xref: /openbmc/linux/mm/vmscan.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Can active pages be deactivated as part of reclaim? */
83 #define DEACTIVATE_ANON 1
84 #define DEACTIVATE_FILE 2
85 	unsigned int may_deactivate:2;
86 	unsigned int force_deactivate:1;
87 	unsigned int skipped_deactivate:1;
88 
89 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/*
99 	 * Cgroups are not reclaimed below their configured memory.low,
100 	 * unless we threaten to OOM. If any cgroups are skipped due to
101 	 * memory.low and nothing was reclaimed, go back for memory.low.
102 	 */
103 	unsigned int memcg_low_reclaim:1;
104 	unsigned int memcg_low_skipped:1;
105 
106 	unsigned int hibernation_mode:1;
107 
108 	/* One of the zones is ready for compaction */
109 	unsigned int compaction_ready:1;
110 
111 	/* There is easily reclaimable cold cache in the current node */
112 	unsigned int cache_trim_mode:1;
113 
114 	/* The file pages on the current node are dangerously low */
115 	unsigned int file_is_tiny:1;
116 
117 	/* Allocation order */
118 	s8 order;
119 
120 	/* Scan (total_size >> priority) pages at once */
121 	s8 priority;
122 
123 	/* The highest zone to isolate pages for reclaim from */
124 	s8 reclaim_idx;
125 
126 	/* This context's GFP mask */
127 	gfp_t gfp_mask;
128 
129 	/* Incremented by the number of inactive pages that were scanned */
130 	unsigned long nr_scanned;
131 
132 	/* Number of pages freed so far during a call to shrink_zones() */
133 	unsigned long nr_reclaimed;
134 
135 	struct {
136 		unsigned int dirty;
137 		unsigned int unqueued_dirty;
138 		unsigned int congested;
139 		unsigned int writeback;
140 		unsigned int immediate;
141 		unsigned int file_taken;
142 		unsigned int taken;
143 	} nr;
144 
145 	/* for recording the reclaimed slab by now */
146 	struct reclaim_state reclaim_state;
147 };
148 
149 #ifdef ARCH_HAS_PREFETCH
150 #define prefetch_prev_lru_page(_page, _base, _field)			\
151 	do {								\
152 		if ((_page)->lru.prev != _base) {			\
153 			struct page *prev;				\
154 									\
155 			prev = lru_to_page(&(_page->lru));		\
156 			prefetch(&prev->_field);			\
157 		}							\
158 	} while (0)
159 #else
160 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
161 #endif
162 
163 #ifdef ARCH_HAS_PREFETCHW
164 #define prefetchw_prev_lru_page(_page, _base, _field)			\
165 	do {								\
166 		if ((_page)->lru.prev != _base) {			\
167 			struct page *prev;				\
168 									\
169 			prev = lru_to_page(&(_page->lru));		\
170 			prefetchw(&prev->_field);			\
171 		}							\
172 	} while (0)
173 #else
174 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
175 #endif
176 
177 /*
178  * From 0 .. 100.  Higher means more swappy.
179  */
180 int vm_swappiness = 60;
181 /*
182  * The total number of pages which are beyond the high watermark within all
183  * zones.
184  */
185 unsigned long vm_total_pages;
186 
187 static void set_task_reclaim_state(struct task_struct *task,
188 				   struct reclaim_state *rs)
189 {
190 	/* Check for an overwrite */
191 	WARN_ON_ONCE(rs && task->reclaim_state);
192 
193 	/* Check for the nulling of an already-nulled member */
194 	WARN_ON_ONCE(!rs && !task->reclaim_state);
195 
196 	task->reclaim_state = rs;
197 }
198 
199 static LIST_HEAD(shrinker_list);
200 static DECLARE_RWSEM(shrinker_rwsem);
201 
202 #ifdef CONFIG_MEMCG
203 /*
204  * We allow subsystems to populate their shrinker-related
205  * LRU lists before register_shrinker_prepared() is called
206  * for the shrinker, since we don't want to impose
207  * restrictions on their internal registration order.
208  * In this case shrink_slab_memcg() may find corresponding
209  * bit is set in the shrinkers map.
210  *
211  * This value is used by the function to detect registering
212  * shrinkers and to skip do_shrink_slab() calls for them.
213  */
214 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
215 
216 static DEFINE_IDR(shrinker_idr);
217 static int shrinker_nr_max;
218 
219 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
220 {
221 	int id, ret = -ENOMEM;
222 
223 	down_write(&shrinker_rwsem);
224 	/* This may call shrinker, so it must use down_read_trylock() */
225 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
226 	if (id < 0)
227 		goto unlock;
228 
229 	if (id >= shrinker_nr_max) {
230 		if (memcg_expand_shrinker_maps(id)) {
231 			idr_remove(&shrinker_idr, id);
232 			goto unlock;
233 		}
234 
235 		shrinker_nr_max = id + 1;
236 	}
237 	shrinker->id = id;
238 	ret = 0;
239 unlock:
240 	up_write(&shrinker_rwsem);
241 	return ret;
242 }
243 
244 static void unregister_memcg_shrinker(struct shrinker *shrinker)
245 {
246 	int id = shrinker->id;
247 
248 	BUG_ON(id < 0);
249 
250 	down_write(&shrinker_rwsem);
251 	idr_remove(&shrinker_idr, id);
252 	up_write(&shrinker_rwsem);
253 }
254 
255 static bool cgroup_reclaim(struct scan_control *sc)
256 {
257 	return sc->target_mem_cgroup;
258 }
259 
260 /**
261  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
262  * @sc: scan_control in question
263  *
264  * The normal page dirty throttling mechanism in balance_dirty_pages() is
265  * completely broken with the legacy memcg and direct stalling in
266  * shrink_page_list() is used for throttling instead, which lacks all the
267  * niceties such as fairness, adaptive pausing, bandwidth proportional
268  * allocation and configurability.
269  *
270  * This function tests whether the vmscan currently in progress can assume
271  * that the normal dirty throttling mechanism is operational.
272  */
273 static bool writeback_throttling_sane(struct scan_control *sc)
274 {
275 	if (!cgroup_reclaim(sc))
276 		return true;
277 #ifdef CONFIG_CGROUP_WRITEBACK
278 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
279 		return true;
280 #endif
281 	return false;
282 }
283 #else
284 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
285 {
286 	return 0;
287 }
288 
289 static void unregister_memcg_shrinker(struct shrinker *shrinker)
290 {
291 }
292 
293 static bool cgroup_reclaim(struct scan_control *sc)
294 {
295 	return false;
296 }
297 
298 static bool writeback_throttling_sane(struct scan_control *sc)
299 {
300 	return true;
301 }
302 #endif
303 
304 /*
305  * This misses isolated pages which are not accounted for to save counters.
306  * As the data only determines if reclaim or compaction continues, it is
307  * not expected that isolated pages will be a dominating factor.
308  */
309 unsigned long zone_reclaimable_pages(struct zone *zone)
310 {
311 	unsigned long nr;
312 
313 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
314 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
315 	if (get_nr_swap_pages() > 0)
316 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
317 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
318 
319 	return nr;
320 }
321 
322 /**
323  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
324  * @lruvec: lru vector
325  * @lru: lru to use
326  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
327  */
328 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
329 {
330 	unsigned long size = 0;
331 	int zid;
332 
333 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
334 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
335 
336 		if (!managed_zone(zone))
337 			continue;
338 
339 		if (!mem_cgroup_disabled())
340 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
341 		else
342 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
343 	}
344 	return size;
345 }
346 
347 /*
348  * Add a shrinker callback to be called from the vm.
349  */
350 int prealloc_shrinker(struct shrinker *shrinker)
351 {
352 	unsigned int size = sizeof(*shrinker->nr_deferred);
353 
354 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
355 		size *= nr_node_ids;
356 
357 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
358 	if (!shrinker->nr_deferred)
359 		return -ENOMEM;
360 
361 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
362 		if (prealloc_memcg_shrinker(shrinker))
363 			goto free_deferred;
364 	}
365 
366 	return 0;
367 
368 free_deferred:
369 	kfree(shrinker->nr_deferred);
370 	shrinker->nr_deferred = NULL;
371 	return -ENOMEM;
372 }
373 
374 void free_prealloced_shrinker(struct shrinker *shrinker)
375 {
376 	if (!shrinker->nr_deferred)
377 		return;
378 
379 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
380 		unregister_memcg_shrinker(shrinker);
381 
382 	kfree(shrinker->nr_deferred);
383 	shrinker->nr_deferred = NULL;
384 }
385 
386 void register_shrinker_prepared(struct shrinker *shrinker)
387 {
388 	down_write(&shrinker_rwsem);
389 	list_add_tail(&shrinker->list, &shrinker_list);
390 #ifdef CONFIG_MEMCG
391 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
392 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
393 #endif
394 	up_write(&shrinker_rwsem);
395 }
396 
397 int register_shrinker(struct shrinker *shrinker)
398 {
399 	int err = prealloc_shrinker(shrinker);
400 
401 	if (err)
402 		return err;
403 	register_shrinker_prepared(shrinker);
404 	return 0;
405 }
406 EXPORT_SYMBOL(register_shrinker);
407 
408 /*
409  * Remove one
410  */
411 void unregister_shrinker(struct shrinker *shrinker)
412 {
413 	if (!shrinker->nr_deferred)
414 		return;
415 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
416 		unregister_memcg_shrinker(shrinker);
417 	down_write(&shrinker_rwsem);
418 	list_del(&shrinker->list);
419 	up_write(&shrinker_rwsem);
420 	kfree(shrinker->nr_deferred);
421 	shrinker->nr_deferred = NULL;
422 }
423 EXPORT_SYMBOL(unregister_shrinker);
424 
425 #define SHRINK_BATCH 128
426 
427 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
428 				    struct shrinker *shrinker, int priority)
429 {
430 	unsigned long freed = 0;
431 	unsigned long long delta;
432 	long total_scan;
433 	long freeable;
434 	long nr;
435 	long new_nr;
436 	int nid = shrinkctl->nid;
437 	long batch_size = shrinker->batch ? shrinker->batch
438 					  : SHRINK_BATCH;
439 	long scanned = 0, next_deferred;
440 
441 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 		nid = 0;
443 
444 	freeable = shrinker->count_objects(shrinker, shrinkctl);
445 	if (freeable == 0 || freeable == SHRINK_EMPTY)
446 		return freeable;
447 
448 	/*
449 	 * copy the current shrinker scan count into a local variable
450 	 * and zero it so that other concurrent shrinker invocations
451 	 * don't also do this scanning work.
452 	 */
453 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
454 
455 	total_scan = nr;
456 	if (shrinker->seeks) {
457 		delta = freeable >> priority;
458 		delta *= 4;
459 		do_div(delta, shrinker->seeks);
460 	} else {
461 		/*
462 		 * These objects don't require any IO to create. Trim
463 		 * them aggressively under memory pressure to keep
464 		 * them from causing refetches in the IO caches.
465 		 */
466 		delta = freeable / 2;
467 	}
468 
469 	total_scan += delta;
470 	if (total_scan < 0) {
471 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
472 		       shrinker->scan_objects, total_scan);
473 		total_scan = freeable;
474 		next_deferred = nr;
475 	} else
476 		next_deferred = total_scan;
477 
478 	/*
479 	 * We need to avoid excessive windup on filesystem shrinkers
480 	 * due to large numbers of GFP_NOFS allocations causing the
481 	 * shrinkers to return -1 all the time. This results in a large
482 	 * nr being built up so when a shrink that can do some work
483 	 * comes along it empties the entire cache due to nr >>>
484 	 * freeable. This is bad for sustaining a working set in
485 	 * memory.
486 	 *
487 	 * Hence only allow the shrinker to scan the entire cache when
488 	 * a large delta change is calculated directly.
489 	 */
490 	if (delta < freeable / 4)
491 		total_scan = min(total_scan, freeable / 2);
492 
493 	/*
494 	 * Avoid risking looping forever due to too large nr value:
495 	 * never try to free more than twice the estimate number of
496 	 * freeable entries.
497 	 */
498 	if (total_scan > freeable * 2)
499 		total_scan = freeable * 2;
500 
501 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
502 				   freeable, delta, total_scan, priority);
503 
504 	/*
505 	 * Normally, we should not scan less than batch_size objects in one
506 	 * pass to avoid too frequent shrinker calls, but if the slab has less
507 	 * than batch_size objects in total and we are really tight on memory,
508 	 * we will try to reclaim all available objects, otherwise we can end
509 	 * up failing allocations although there are plenty of reclaimable
510 	 * objects spread over several slabs with usage less than the
511 	 * batch_size.
512 	 *
513 	 * We detect the "tight on memory" situations by looking at the total
514 	 * number of objects we want to scan (total_scan). If it is greater
515 	 * than the total number of objects on slab (freeable), we must be
516 	 * scanning at high prio and therefore should try to reclaim as much as
517 	 * possible.
518 	 */
519 	while (total_scan >= batch_size ||
520 	       total_scan >= freeable) {
521 		unsigned long ret;
522 		unsigned long nr_to_scan = min(batch_size, total_scan);
523 
524 		shrinkctl->nr_to_scan = nr_to_scan;
525 		shrinkctl->nr_scanned = nr_to_scan;
526 		ret = shrinker->scan_objects(shrinker, shrinkctl);
527 		if (ret == SHRINK_STOP)
528 			break;
529 		freed += ret;
530 
531 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
532 		total_scan -= shrinkctl->nr_scanned;
533 		scanned += shrinkctl->nr_scanned;
534 
535 		cond_resched();
536 	}
537 
538 	if (next_deferred >= scanned)
539 		next_deferred -= scanned;
540 	else
541 		next_deferred = 0;
542 	/*
543 	 * move the unused scan count back into the shrinker in a
544 	 * manner that handles concurrent updates. If we exhausted the
545 	 * scan, there is no need to do an update.
546 	 */
547 	if (next_deferred > 0)
548 		new_nr = atomic_long_add_return(next_deferred,
549 						&shrinker->nr_deferred[nid]);
550 	else
551 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
552 
553 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
554 	return freed;
555 }
556 
557 #ifdef CONFIG_MEMCG
558 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
559 			struct mem_cgroup *memcg, int priority)
560 {
561 	struct memcg_shrinker_map *map;
562 	unsigned long ret, freed = 0;
563 	int i;
564 
565 	if (!mem_cgroup_online(memcg))
566 		return 0;
567 
568 	if (!down_read_trylock(&shrinker_rwsem))
569 		return 0;
570 
571 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
572 					true);
573 	if (unlikely(!map))
574 		goto unlock;
575 
576 	for_each_set_bit(i, map->map, shrinker_nr_max) {
577 		struct shrink_control sc = {
578 			.gfp_mask = gfp_mask,
579 			.nid = nid,
580 			.memcg = memcg,
581 		};
582 		struct shrinker *shrinker;
583 
584 		shrinker = idr_find(&shrinker_idr, i);
585 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
586 			if (!shrinker)
587 				clear_bit(i, map->map);
588 			continue;
589 		}
590 
591 		/* Call non-slab shrinkers even though kmem is disabled */
592 		if (!memcg_kmem_enabled() &&
593 		    !(shrinker->flags & SHRINKER_NONSLAB))
594 			continue;
595 
596 		ret = do_shrink_slab(&sc, shrinker, priority);
597 		if (ret == SHRINK_EMPTY) {
598 			clear_bit(i, map->map);
599 			/*
600 			 * After the shrinker reported that it had no objects to
601 			 * free, but before we cleared the corresponding bit in
602 			 * the memcg shrinker map, a new object might have been
603 			 * added. To make sure, we have the bit set in this
604 			 * case, we invoke the shrinker one more time and reset
605 			 * the bit if it reports that it is not empty anymore.
606 			 * The memory barrier here pairs with the barrier in
607 			 * memcg_set_shrinker_bit():
608 			 *
609 			 * list_lru_add()     shrink_slab_memcg()
610 			 *   list_add_tail()    clear_bit()
611 			 *   <MB>               <MB>
612 			 *   set_bit()          do_shrink_slab()
613 			 */
614 			smp_mb__after_atomic();
615 			ret = do_shrink_slab(&sc, shrinker, priority);
616 			if (ret == SHRINK_EMPTY)
617 				ret = 0;
618 			else
619 				memcg_set_shrinker_bit(memcg, nid, i);
620 		}
621 		freed += ret;
622 
623 		if (rwsem_is_contended(&shrinker_rwsem)) {
624 			freed = freed ? : 1;
625 			break;
626 		}
627 	}
628 unlock:
629 	up_read(&shrinker_rwsem);
630 	return freed;
631 }
632 #else /* CONFIG_MEMCG */
633 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
634 			struct mem_cgroup *memcg, int priority)
635 {
636 	return 0;
637 }
638 #endif /* CONFIG_MEMCG */
639 
640 /**
641  * shrink_slab - shrink slab caches
642  * @gfp_mask: allocation context
643  * @nid: node whose slab caches to target
644  * @memcg: memory cgroup whose slab caches to target
645  * @priority: the reclaim priority
646  *
647  * Call the shrink functions to age shrinkable caches.
648  *
649  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
650  * unaware shrinkers will receive a node id of 0 instead.
651  *
652  * @memcg specifies the memory cgroup to target. Unaware shrinkers
653  * are called only if it is the root cgroup.
654  *
655  * @priority is sc->priority, we take the number of objects and >> by priority
656  * in order to get the scan target.
657  *
658  * Returns the number of reclaimed slab objects.
659  */
660 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
661 				 struct mem_cgroup *memcg,
662 				 int priority)
663 {
664 	unsigned long ret, freed = 0;
665 	struct shrinker *shrinker;
666 
667 	/*
668 	 * The root memcg might be allocated even though memcg is disabled
669 	 * via "cgroup_disable=memory" boot parameter.  This could make
670 	 * mem_cgroup_is_root() return false, then just run memcg slab
671 	 * shrink, but skip global shrink.  This may result in premature
672 	 * oom.
673 	 */
674 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
675 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
676 
677 	if (!down_read_trylock(&shrinker_rwsem))
678 		goto out;
679 
680 	list_for_each_entry(shrinker, &shrinker_list, list) {
681 		struct shrink_control sc = {
682 			.gfp_mask = gfp_mask,
683 			.nid = nid,
684 			.memcg = memcg,
685 		};
686 
687 		ret = do_shrink_slab(&sc, shrinker, priority);
688 		if (ret == SHRINK_EMPTY)
689 			ret = 0;
690 		freed += ret;
691 		/*
692 		 * Bail out if someone want to register a new shrinker to
693 		 * prevent the regsitration from being stalled for long periods
694 		 * by parallel ongoing shrinking.
695 		 */
696 		if (rwsem_is_contended(&shrinker_rwsem)) {
697 			freed = freed ? : 1;
698 			break;
699 		}
700 	}
701 
702 	up_read(&shrinker_rwsem);
703 out:
704 	cond_resched();
705 	return freed;
706 }
707 
708 void drop_slab_node(int nid)
709 {
710 	unsigned long freed;
711 
712 	do {
713 		struct mem_cgroup *memcg = NULL;
714 
715 		freed = 0;
716 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
717 		do {
718 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
719 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
720 	} while (freed > 10);
721 }
722 
723 void drop_slab(void)
724 {
725 	int nid;
726 
727 	for_each_online_node(nid)
728 		drop_slab_node(nid);
729 }
730 
731 static inline int is_page_cache_freeable(struct page *page)
732 {
733 	/*
734 	 * A freeable page cache page is referenced only by the caller
735 	 * that isolated the page, the page cache and optional buffer
736 	 * heads at page->private.
737 	 */
738 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
739 		HPAGE_PMD_NR : 1;
740 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
741 }
742 
743 static int may_write_to_inode(struct inode *inode)
744 {
745 	if (current->flags & PF_SWAPWRITE)
746 		return 1;
747 	if (!inode_write_congested(inode))
748 		return 1;
749 	if (inode_to_bdi(inode) == current->backing_dev_info)
750 		return 1;
751 	return 0;
752 }
753 
754 /*
755  * We detected a synchronous write error writing a page out.  Probably
756  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
757  * fsync(), msync() or close().
758  *
759  * The tricky part is that after writepage we cannot touch the mapping: nothing
760  * prevents it from being freed up.  But we have a ref on the page and once
761  * that page is locked, the mapping is pinned.
762  *
763  * We're allowed to run sleeping lock_page() here because we know the caller has
764  * __GFP_FS.
765  */
766 static void handle_write_error(struct address_space *mapping,
767 				struct page *page, int error)
768 {
769 	lock_page(page);
770 	if (page_mapping(page) == mapping)
771 		mapping_set_error(mapping, error);
772 	unlock_page(page);
773 }
774 
775 /* possible outcome of pageout() */
776 typedef enum {
777 	/* failed to write page out, page is locked */
778 	PAGE_KEEP,
779 	/* move page to the active list, page is locked */
780 	PAGE_ACTIVATE,
781 	/* page has been sent to the disk successfully, page is unlocked */
782 	PAGE_SUCCESS,
783 	/* page is clean and locked */
784 	PAGE_CLEAN,
785 } pageout_t;
786 
787 /*
788  * pageout is called by shrink_page_list() for each dirty page.
789  * Calls ->writepage().
790  */
791 static pageout_t pageout(struct page *page, struct address_space *mapping)
792 {
793 	/*
794 	 * If the page is dirty, only perform writeback if that write
795 	 * will be non-blocking.  To prevent this allocation from being
796 	 * stalled by pagecache activity.  But note that there may be
797 	 * stalls if we need to run get_block().  We could test
798 	 * PagePrivate for that.
799 	 *
800 	 * If this process is currently in __generic_file_write_iter() against
801 	 * this page's queue, we can perform writeback even if that
802 	 * will block.
803 	 *
804 	 * If the page is swapcache, write it back even if that would
805 	 * block, for some throttling. This happens by accident, because
806 	 * swap_backing_dev_info is bust: it doesn't reflect the
807 	 * congestion state of the swapdevs.  Easy to fix, if needed.
808 	 */
809 	if (!is_page_cache_freeable(page))
810 		return PAGE_KEEP;
811 	if (!mapping) {
812 		/*
813 		 * Some data journaling orphaned pages can have
814 		 * page->mapping == NULL while being dirty with clean buffers.
815 		 */
816 		if (page_has_private(page)) {
817 			if (try_to_free_buffers(page)) {
818 				ClearPageDirty(page);
819 				pr_info("%s: orphaned page\n", __func__);
820 				return PAGE_CLEAN;
821 			}
822 		}
823 		return PAGE_KEEP;
824 	}
825 	if (mapping->a_ops->writepage == NULL)
826 		return PAGE_ACTIVATE;
827 	if (!may_write_to_inode(mapping->host))
828 		return PAGE_KEEP;
829 
830 	if (clear_page_dirty_for_io(page)) {
831 		int res;
832 		struct writeback_control wbc = {
833 			.sync_mode = WB_SYNC_NONE,
834 			.nr_to_write = SWAP_CLUSTER_MAX,
835 			.range_start = 0,
836 			.range_end = LLONG_MAX,
837 			.for_reclaim = 1,
838 		};
839 
840 		SetPageReclaim(page);
841 		res = mapping->a_ops->writepage(page, &wbc);
842 		if (res < 0)
843 			handle_write_error(mapping, page, res);
844 		if (res == AOP_WRITEPAGE_ACTIVATE) {
845 			ClearPageReclaim(page);
846 			return PAGE_ACTIVATE;
847 		}
848 
849 		if (!PageWriteback(page)) {
850 			/* synchronous write or broken a_ops? */
851 			ClearPageReclaim(page);
852 		}
853 		trace_mm_vmscan_writepage(page);
854 		inc_node_page_state(page, NR_VMSCAN_WRITE);
855 		return PAGE_SUCCESS;
856 	}
857 
858 	return PAGE_CLEAN;
859 }
860 
861 /*
862  * Same as remove_mapping, but if the page is removed from the mapping, it
863  * gets returned with a refcount of 0.
864  */
865 static int __remove_mapping(struct address_space *mapping, struct page *page,
866 			    bool reclaimed, struct mem_cgroup *target_memcg)
867 {
868 	unsigned long flags;
869 	int refcount;
870 
871 	BUG_ON(!PageLocked(page));
872 	BUG_ON(mapping != page_mapping(page));
873 
874 	xa_lock_irqsave(&mapping->i_pages, flags);
875 	/*
876 	 * The non racy check for a busy page.
877 	 *
878 	 * Must be careful with the order of the tests. When someone has
879 	 * a ref to the page, it may be possible that they dirty it then
880 	 * drop the reference. So if PageDirty is tested before page_count
881 	 * here, then the following race may occur:
882 	 *
883 	 * get_user_pages(&page);
884 	 * [user mapping goes away]
885 	 * write_to(page);
886 	 *				!PageDirty(page)    [good]
887 	 * SetPageDirty(page);
888 	 * put_page(page);
889 	 *				!page_count(page)   [good, discard it]
890 	 *
891 	 * [oops, our write_to data is lost]
892 	 *
893 	 * Reversing the order of the tests ensures such a situation cannot
894 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
895 	 * load is not satisfied before that of page->_refcount.
896 	 *
897 	 * Note that if SetPageDirty is always performed via set_page_dirty,
898 	 * and thus under the i_pages lock, then this ordering is not required.
899 	 */
900 	refcount = 1 + compound_nr(page);
901 	if (!page_ref_freeze(page, refcount))
902 		goto cannot_free;
903 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
904 	if (unlikely(PageDirty(page))) {
905 		page_ref_unfreeze(page, refcount);
906 		goto cannot_free;
907 	}
908 
909 	if (PageSwapCache(page)) {
910 		swp_entry_t swap = { .val = page_private(page) };
911 		mem_cgroup_swapout(page, swap);
912 		__delete_from_swap_cache(page, swap);
913 		xa_unlock_irqrestore(&mapping->i_pages, flags);
914 		put_swap_page(page, swap);
915 	} else {
916 		void (*freepage)(struct page *);
917 		void *shadow = NULL;
918 
919 		freepage = mapping->a_ops->freepage;
920 		/*
921 		 * Remember a shadow entry for reclaimed file cache in
922 		 * order to detect refaults, thus thrashing, later on.
923 		 *
924 		 * But don't store shadows in an address space that is
925 		 * already exiting.  This is not just an optizimation,
926 		 * inode reclaim needs to empty out the radix tree or
927 		 * the nodes are lost.  Don't plant shadows behind its
928 		 * back.
929 		 *
930 		 * We also don't store shadows for DAX mappings because the
931 		 * only page cache pages found in these are zero pages
932 		 * covering holes, and because we don't want to mix DAX
933 		 * exceptional entries and shadow exceptional entries in the
934 		 * same address_space.
935 		 */
936 		if (reclaimed && page_is_file_cache(page) &&
937 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
938 			shadow = workingset_eviction(page, target_memcg);
939 		__delete_from_page_cache(page, shadow);
940 		xa_unlock_irqrestore(&mapping->i_pages, flags);
941 
942 		if (freepage != NULL)
943 			freepage(page);
944 	}
945 
946 	return 1;
947 
948 cannot_free:
949 	xa_unlock_irqrestore(&mapping->i_pages, flags);
950 	return 0;
951 }
952 
953 /*
954  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
955  * someone else has a ref on the page, abort and return 0.  If it was
956  * successfully detached, return 1.  Assumes the caller has a single ref on
957  * this page.
958  */
959 int remove_mapping(struct address_space *mapping, struct page *page)
960 {
961 	if (__remove_mapping(mapping, page, false, NULL)) {
962 		/*
963 		 * Unfreezing the refcount with 1 rather than 2 effectively
964 		 * drops the pagecache ref for us without requiring another
965 		 * atomic operation.
966 		 */
967 		page_ref_unfreeze(page, 1);
968 		return 1;
969 	}
970 	return 0;
971 }
972 
973 /**
974  * putback_lru_page - put previously isolated page onto appropriate LRU list
975  * @page: page to be put back to appropriate lru list
976  *
977  * Add previously isolated @page to appropriate LRU list.
978  * Page may still be unevictable for other reasons.
979  *
980  * lru_lock must not be held, interrupts must be enabled.
981  */
982 void putback_lru_page(struct page *page)
983 {
984 	lru_cache_add(page);
985 	put_page(page);		/* drop ref from isolate */
986 }
987 
988 enum page_references {
989 	PAGEREF_RECLAIM,
990 	PAGEREF_RECLAIM_CLEAN,
991 	PAGEREF_KEEP,
992 	PAGEREF_ACTIVATE,
993 };
994 
995 static enum page_references page_check_references(struct page *page,
996 						  struct scan_control *sc)
997 {
998 	int referenced_ptes, referenced_page;
999 	unsigned long vm_flags;
1000 
1001 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1002 					  &vm_flags);
1003 	referenced_page = TestClearPageReferenced(page);
1004 
1005 	/*
1006 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1007 	 * move the page to the unevictable list.
1008 	 */
1009 	if (vm_flags & VM_LOCKED)
1010 		return PAGEREF_RECLAIM;
1011 
1012 	if (referenced_ptes) {
1013 		if (PageSwapBacked(page))
1014 			return PAGEREF_ACTIVATE;
1015 		/*
1016 		 * All mapped pages start out with page table
1017 		 * references from the instantiating fault, so we need
1018 		 * to look twice if a mapped file page is used more
1019 		 * than once.
1020 		 *
1021 		 * Mark it and spare it for another trip around the
1022 		 * inactive list.  Another page table reference will
1023 		 * lead to its activation.
1024 		 *
1025 		 * Note: the mark is set for activated pages as well
1026 		 * so that recently deactivated but used pages are
1027 		 * quickly recovered.
1028 		 */
1029 		SetPageReferenced(page);
1030 
1031 		if (referenced_page || referenced_ptes > 1)
1032 			return PAGEREF_ACTIVATE;
1033 
1034 		/*
1035 		 * Activate file-backed executable pages after first usage.
1036 		 */
1037 		if (vm_flags & VM_EXEC)
1038 			return PAGEREF_ACTIVATE;
1039 
1040 		return PAGEREF_KEEP;
1041 	}
1042 
1043 	/* Reclaim if clean, defer dirty pages to writeback */
1044 	if (referenced_page && !PageSwapBacked(page))
1045 		return PAGEREF_RECLAIM_CLEAN;
1046 
1047 	return PAGEREF_RECLAIM;
1048 }
1049 
1050 /* Check if a page is dirty or under writeback */
1051 static void page_check_dirty_writeback(struct page *page,
1052 				       bool *dirty, bool *writeback)
1053 {
1054 	struct address_space *mapping;
1055 
1056 	/*
1057 	 * Anonymous pages are not handled by flushers and must be written
1058 	 * from reclaim context. Do not stall reclaim based on them
1059 	 */
1060 	if (!page_is_file_cache(page) ||
1061 	    (PageAnon(page) && !PageSwapBacked(page))) {
1062 		*dirty = false;
1063 		*writeback = false;
1064 		return;
1065 	}
1066 
1067 	/* By default assume that the page flags are accurate */
1068 	*dirty = PageDirty(page);
1069 	*writeback = PageWriteback(page);
1070 
1071 	/* Verify dirty/writeback state if the filesystem supports it */
1072 	if (!page_has_private(page))
1073 		return;
1074 
1075 	mapping = page_mapping(page);
1076 	if (mapping && mapping->a_ops->is_dirty_writeback)
1077 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1078 }
1079 
1080 /*
1081  * shrink_page_list() returns the number of reclaimed pages
1082  */
1083 static unsigned long shrink_page_list(struct list_head *page_list,
1084 				      struct pglist_data *pgdat,
1085 				      struct scan_control *sc,
1086 				      enum ttu_flags ttu_flags,
1087 				      struct reclaim_stat *stat,
1088 				      bool ignore_references)
1089 {
1090 	LIST_HEAD(ret_pages);
1091 	LIST_HEAD(free_pages);
1092 	unsigned nr_reclaimed = 0;
1093 	unsigned pgactivate = 0;
1094 
1095 	memset(stat, 0, sizeof(*stat));
1096 	cond_resched();
1097 
1098 	while (!list_empty(page_list)) {
1099 		struct address_space *mapping;
1100 		struct page *page;
1101 		int may_enter_fs;
1102 		enum page_references references = PAGEREF_RECLAIM;
1103 		bool dirty, writeback;
1104 		unsigned int nr_pages;
1105 
1106 		cond_resched();
1107 
1108 		page = lru_to_page(page_list);
1109 		list_del(&page->lru);
1110 
1111 		if (!trylock_page(page))
1112 			goto keep;
1113 
1114 		VM_BUG_ON_PAGE(PageActive(page), page);
1115 
1116 		nr_pages = compound_nr(page);
1117 
1118 		/* Account the number of base pages even though THP */
1119 		sc->nr_scanned += nr_pages;
1120 
1121 		if (unlikely(!page_evictable(page)))
1122 			goto activate_locked;
1123 
1124 		if (!sc->may_unmap && page_mapped(page))
1125 			goto keep_locked;
1126 
1127 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1128 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1129 
1130 		/*
1131 		 * The number of dirty pages determines if a node is marked
1132 		 * reclaim_congested which affects wait_iff_congested. kswapd
1133 		 * will stall and start writing pages if the tail of the LRU
1134 		 * is all dirty unqueued pages.
1135 		 */
1136 		page_check_dirty_writeback(page, &dirty, &writeback);
1137 		if (dirty || writeback)
1138 			stat->nr_dirty++;
1139 
1140 		if (dirty && !writeback)
1141 			stat->nr_unqueued_dirty++;
1142 
1143 		/*
1144 		 * Treat this page as congested if the underlying BDI is or if
1145 		 * pages are cycling through the LRU so quickly that the
1146 		 * pages marked for immediate reclaim are making it to the
1147 		 * end of the LRU a second time.
1148 		 */
1149 		mapping = page_mapping(page);
1150 		if (((dirty || writeback) && mapping &&
1151 		     inode_write_congested(mapping->host)) ||
1152 		    (writeback && PageReclaim(page)))
1153 			stat->nr_congested++;
1154 
1155 		/*
1156 		 * If a page at the tail of the LRU is under writeback, there
1157 		 * are three cases to consider.
1158 		 *
1159 		 * 1) If reclaim is encountering an excessive number of pages
1160 		 *    under writeback and this page is both under writeback and
1161 		 *    PageReclaim then it indicates that pages are being queued
1162 		 *    for IO but are being recycled through the LRU before the
1163 		 *    IO can complete. Waiting on the page itself risks an
1164 		 *    indefinite stall if it is impossible to writeback the
1165 		 *    page due to IO error or disconnected storage so instead
1166 		 *    note that the LRU is being scanned too quickly and the
1167 		 *    caller can stall after page list has been processed.
1168 		 *
1169 		 * 2) Global or new memcg reclaim encounters a page that is
1170 		 *    not marked for immediate reclaim, or the caller does not
1171 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1172 		 *    not to fs). In this case mark the page for immediate
1173 		 *    reclaim and continue scanning.
1174 		 *
1175 		 *    Require may_enter_fs because we would wait on fs, which
1176 		 *    may not have submitted IO yet. And the loop driver might
1177 		 *    enter reclaim, and deadlock if it waits on a page for
1178 		 *    which it is needed to do the write (loop masks off
1179 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1180 		 *    would probably show more reasons.
1181 		 *
1182 		 * 3) Legacy memcg encounters a page that is already marked
1183 		 *    PageReclaim. memcg does not have any dirty pages
1184 		 *    throttling so we could easily OOM just because too many
1185 		 *    pages are in writeback and there is nothing else to
1186 		 *    reclaim. Wait for the writeback to complete.
1187 		 *
1188 		 * In cases 1) and 2) we activate the pages to get them out of
1189 		 * the way while we continue scanning for clean pages on the
1190 		 * inactive list and refilling from the active list. The
1191 		 * observation here is that waiting for disk writes is more
1192 		 * expensive than potentially causing reloads down the line.
1193 		 * Since they're marked for immediate reclaim, they won't put
1194 		 * memory pressure on the cache working set any longer than it
1195 		 * takes to write them to disk.
1196 		 */
1197 		if (PageWriteback(page)) {
1198 			/* Case 1 above */
1199 			if (current_is_kswapd() &&
1200 			    PageReclaim(page) &&
1201 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1202 				stat->nr_immediate++;
1203 				goto activate_locked;
1204 
1205 			/* Case 2 above */
1206 			} else if (writeback_throttling_sane(sc) ||
1207 			    !PageReclaim(page) || !may_enter_fs) {
1208 				/*
1209 				 * This is slightly racy - end_page_writeback()
1210 				 * might have just cleared PageReclaim, then
1211 				 * setting PageReclaim here end up interpreted
1212 				 * as PageReadahead - but that does not matter
1213 				 * enough to care.  What we do want is for this
1214 				 * page to have PageReclaim set next time memcg
1215 				 * reclaim reaches the tests above, so it will
1216 				 * then wait_on_page_writeback() to avoid OOM;
1217 				 * and it's also appropriate in global reclaim.
1218 				 */
1219 				SetPageReclaim(page);
1220 				stat->nr_writeback++;
1221 				goto activate_locked;
1222 
1223 			/* Case 3 above */
1224 			} else {
1225 				unlock_page(page);
1226 				wait_on_page_writeback(page);
1227 				/* then go back and try same page again */
1228 				list_add_tail(&page->lru, page_list);
1229 				continue;
1230 			}
1231 		}
1232 
1233 		if (!ignore_references)
1234 			references = page_check_references(page, sc);
1235 
1236 		switch (references) {
1237 		case PAGEREF_ACTIVATE:
1238 			goto activate_locked;
1239 		case PAGEREF_KEEP:
1240 			stat->nr_ref_keep += nr_pages;
1241 			goto keep_locked;
1242 		case PAGEREF_RECLAIM:
1243 		case PAGEREF_RECLAIM_CLEAN:
1244 			; /* try to reclaim the page below */
1245 		}
1246 
1247 		/*
1248 		 * Anonymous process memory has backing store?
1249 		 * Try to allocate it some swap space here.
1250 		 * Lazyfree page could be freed directly
1251 		 */
1252 		if (PageAnon(page) && PageSwapBacked(page)) {
1253 			if (!PageSwapCache(page)) {
1254 				if (!(sc->gfp_mask & __GFP_IO))
1255 					goto keep_locked;
1256 				if (PageTransHuge(page)) {
1257 					/* cannot split THP, skip it */
1258 					if (!can_split_huge_page(page, NULL))
1259 						goto activate_locked;
1260 					/*
1261 					 * Split pages without a PMD map right
1262 					 * away. Chances are some or all of the
1263 					 * tail pages can be freed without IO.
1264 					 */
1265 					if (!compound_mapcount(page) &&
1266 					    split_huge_page_to_list(page,
1267 								    page_list))
1268 						goto activate_locked;
1269 				}
1270 				if (!add_to_swap(page)) {
1271 					if (!PageTransHuge(page))
1272 						goto activate_locked_split;
1273 					/* Fallback to swap normal pages */
1274 					if (split_huge_page_to_list(page,
1275 								    page_list))
1276 						goto activate_locked;
1277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1278 					count_vm_event(THP_SWPOUT_FALLBACK);
1279 #endif
1280 					if (!add_to_swap(page))
1281 						goto activate_locked_split;
1282 				}
1283 
1284 				may_enter_fs = 1;
1285 
1286 				/* Adding to swap updated mapping */
1287 				mapping = page_mapping(page);
1288 			}
1289 		} else if (unlikely(PageTransHuge(page))) {
1290 			/* Split file THP */
1291 			if (split_huge_page_to_list(page, page_list))
1292 				goto keep_locked;
1293 		}
1294 
1295 		/*
1296 		 * THP may get split above, need minus tail pages and update
1297 		 * nr_pages to avoid accounting tail pages twice.
1298 		 *
1299 		 * The tail pages that are added into swap cache successfully
1300 		 * reach here.
1301 		 */
1302 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1303 			sc->nr_scanned -= (nr_pages - 1);
1304 			nr_pages = 1;
1305 		}
1306 
1307 		/*
1308 		 * The page is mapped into the page tables of one or more
1309 		 * processes. Try to unmap it here.
1310 		 */
1311 		if (page_mapped(page)) {
1312 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1313 
1314 			if (unlikely(PageTransHuge(page)))
1315 				flags |= TTU_SPLIT_HUGE_PMD;
1316 			if (!try_to_unmap(page, flags)) {
1317 				stat->nr_unmap_fail += nr_pages;
1318 				goto activate_locked;
1319 			}
1320 		}
1321 
1322 		if (PageDirty(page)) {
1323 			/*
1324 			 * Only kswapd can writeback filesystem pages
1325 			 * to avoid risk of stack overflow. But avoid
1326 			 * injecting inefficient single-page IO into
1327 			 * flusher writeback as much as possible: only
1328 			 * write pages when we've encountered many
1329 			 * dirty pages, and when we've already scanned
1330 			 * the rest of the LRU for clean pages and see
1331 			 * the same dirty pages again (PageReclaim).
1332 			 */
1333 			if (page_is_file_cache(page) &&
1334 			    (!current_is_kswapd() || !PageReclaim(page) ||
1335 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1336 				/*
1337 				 * Immediately reclaim when written back.
1338 				 * Similar in principal to deactivate_page()
1339 				 * except we already have the page isolated
1340 				 * and know it's dirty
1341 				 */
1342 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1343 				SetPageReclaim(page);
1344 
1345 				goto activate_locked;
1346 			}
1347 
1348 			if (references == PAGEREF_RECLAIM_CLEAN)
1349 				goto keep_locked;
1350 			if (!may_enter_fs)
1351 				goto keep_locked;
1352 			if (!sc->may_writepage)
1353 				goto keep_locked;
1354 
1355 			/*
1356 			 * Page is dirty. Flush the TLB if a writable entry
1357 			 * potentially exists to avoid CPU writes after IO
1358 			 * starts and then write it out here.
1359 			 */
1360 			try_to_unmap_flush_dirty();
1361 			switch (pageout(page, mapping)) {
1362 			case PAGE_KEEP:
1363 				goto keep_locked;
1364 			case PAGE_ACTIVATE:
1365 				goto activate_locked;
1366 			case PAGE_SUCCESS:
1367 				if (PageWriteback(page))
1368 					goto keep;
1369 				if (PageDirty(page))
1370 					goto keep;
1371 
1372 				/*
1373 				 * A synchronous write - probably a ramdisk.  Go
1374 				 * ahead and try to reclaim the page.
1375 				 */
1376 				if (!trylock_page(page))
1377 					goto keep;
1378 				if (PageDirty(page) || PageWriteback(page))
1379 					goto keep_locked;
1380 				mapping = page_mapping(page);
1381 			case PAGE_CLEAN:
1382 				; /* try to free the page below */
1383 			}
1384 		}
1385 
1386 		/*
1387 		 * If the page has buffers, try to free the buffer mappings
1388 		 * associated with this page. If we succeed we try to free
1389 		 * the page as well.
1390 		 *
1391 		 * We do this even if the page is PageDirty().
1392 		 * try_to_release_page() does not perform I/O, but it is
1393 		 * possible for a page to have PageDirty set, but it is actually
1394 		 * clean (all its buffers are clean).  This happens if the
1395 		 * buffers were written out directly, with submit_bh(). ext3
1396 		 * will do this, as well as the blockdev mapping.
1397 		 * try_to_release_page() will discover that cleanness and will
1398 		 * drop the buffers and mark the page clean - it can be freed.
1399 		 *
1400 		 * Rarely, pages can have buffers and no ->mapping.  These are
1401 		 * the pages which were not successfully invalidated in
1402 		 * truncate_complete_page().  We try to drop those buffers here
1403 		 * and if that worked, and the page is no longer mapped into
1404 		 * process address space (page_count == 1) it can be freed.
1405 		 * Otherwise, leave the page on the LRU so it is swappable.
1406 		 */
1407 		if (page_has_private(page)) {
1408 			if (!try_to_release_page(page, sc->gfp_mask))
1409 				goto activate_locked;
1410 			if (!mapping && page_count(page) == 1) {
1411 				unlock_page(page);
1412 				if (put_page_testzero(page))
1413 					goto free_it;
1414 				else {
1415 					/*
1416 					 * rare race with speculative reference.
1417 					 * the speculative reference will free
1418 					 * this page shortly, so we may
1419 					 * increment nr_reclaimed here (and
1420 					 * leave it off the LRU).
1421 					 */
1422 					nr_reclaimed++;
1423 					continue;
1424 				}
1425 			}
1426 		}
1427 
1428 		if (PageAnon(page) && !PageSwapBacked(page)) {
1429 			/* follow __remove_mapping for reference */
1430 			if (!page_ref_freeze(page, 1))
1431 				goto keep_locked;
1432 			if (PageDirty(page)) {
1433 				page_ref_unfreeze(page, 1);
1434 				goto keep_locked;
1435 			}
1436 
1437 			count_vm_event(PGLAZYFREED);
1438 			count_memcg_page_event(page, PGLAZYFREED);
1439 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1440 							 sc->target_mem_cgroup))
1441 			goto keep_locked;
1442 
1443 		unlock_page(page);
1444 free_it:
1445 		/*
1446 		 * THP may get swapped out in a whole, need account
1447 		 * all base pages.
1448 		 */
1449 		nr_reclaimed += nr_pages;
1450 
1451 		/*
1452 		 * Is there need to periodically free_page_list? It would
1453 		 * appear not as the counts should be low
1454 		 */
1455 		if (unlikely(PageTransHuge(page)))
1456 			(*get_compound_page_dtor(page))(page);
1457 		else
1458 			list_add(&page->lru, &free_pages);
1459 		continue;
1460 
1461 activate_locked_split:
1462 		/*
1463 		 * The tail pages that are failed to add into swap cache
1464 		 * reach here.  Fixup nr_scanned and nr_pages.
1465 		 */
1466 		if (nr_pages > 1) {
1467 			sc->nr_scanned -= (nr_pages - 1);
1468 			nr_pages = 1;
1469 		}
1470 activate_locked:
1471 		/* Not a candidate for swapping, so reclaim swap space. */
1472 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1473 						PageMlocked(page)))
1474 			try_to_free_swap(page);
1475 		VM_BUG_ON_PAGE(PageActive(page), page);
1476 		if (!PageMlocked(page)) {
1477 			int type = page_is_file_cache(page);
1478 			SetPageActive(page);
1479 			stat->nr_activate[type] += nr_pages;
1480 			count_memcg_page_event(page, PGACTIVATE);
1481 		}
1482 keep_locked:
1483 		unlock_page(page);
1484 keep:
1485 		list_add(&page->lru, &ret_pages);
1486 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1487 	}
1488 
1489 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1490 
1491 	mem_cgroup_uncharge_list(&free_pages);
1492 	try_to_unmap_flush();
1493 	free_unref_page_list(&free_pages);
1494 
1495 	list_splice(&ret_pages, page_list);
1496 	count_vm_events(PGACTIVATE, pgactivate);
1497 
1498 	return nr_reclaimed;
1499 }
1500 
1501 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1502 					    struct list_head *page_list)
1503 {
1504 	struct scan_control sc = {
1505 		.gfp_mask = GFP_KERNEL,
1506 		.priority = DEF_PRIORITY,
1507 		.may_unmap = 1,
1508 	};
1509 	struct reclaim_stat dummy_stat;
1510 	unsigned long ret;
1511 	struct page *page, *next;
1512 	LIST_HEAD(clean_pages);
1513 
1514 	list_for_each_entry_safe(page, next, page_list, lru) {
1515 		if (page_is_file_cache(page) && !PageDirty(page) &&
1516 		    !__PageMovable(page) && !PageUnevictable(page)) {
1517 			ClearPageActive(page);
1518 			list_move(&page->lru, &clean_pages);
1519 		}
1520 	}
1521 
1522 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1523 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1524 	list_splice(&clean_pages, page_list);
1525 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1526 	return ret;
1527 }
1528 
1529 /*
1530  * Attempt to remove the specified page from its LRU.  Only take this page
1531  * if it is of the appropriate PageActive status.  Pages which are being
1532  * freed elsewhere are also ignored.
1533  *
1534  * page:	page to consider
1535  * mode:	one of the LRU isolation modes defined above
1536  *
1537  * returns 0 on success, -ve errno on failure.
1538  */
1539 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1540 {
1541 	int ret = -EINVAL;
1542 
1543 	/* Only take pages on the LRU. */
1544 	if (!PageLRU(page))
1545 		return ret;
1546 
1547 	/* Compaction should not handle unevictable pages but CMA can do so */
1548 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1549 		return ret;
1550 
1551 	ret = -EBUSY;
1552 
1553 	/*
1554 	 * To minimise LRU disruption, the caller can indicate that it only
1555 	 * wants to isolate pages it will be able to operate on without
1556 	 * blocking - clean pages for the most part.
1557 	 *
1558 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1559 	 * that it is possible to migrate without blocking
1560 	 */
1561 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1562 		/* All the caller can do on PageWriteback is block */
1563 		if (PageWriteback(page))
1564 			return ret;
1565 
1566 		if (PageDirty(page)) {
1567 			struct address_space *mapping;
1568 			bool migrate_dirty;
1569 
1570 			/*
1571 			 * Only pages without mappings or that have a
1572 			 * ->migratepage callback are possible to migrate
1573 			 * without blocking. However, we can be racing with
1574 			 * truncation so it's necessary to lock the page
1575 			 * to stabilise the mapping as truncation holds
1576 			 * the page lock until after the page is removed
1577 			 * from the page cache.
1578 			 */
1579 			if (!trylock_page(page))
1580 				return ret;
1581 
1582 			mapping = page_mapping(page);
1583 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1584 			unlock_page(page);
1585 			if (!migrate_dirty)
1586 				return ret;
1587 		}
1588 	}
1589 
1590 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1591 		return ret;
1592 
1593 	if (likely(get_page_unless_zero(page))) {
1594 		/*
1595 		 * Be careful not to clear PageLRU until after we're
1596 		 * sure the page is not being freed elsewhere -- the
1597 		 * page release code relies on it.
1598 		 */
1599 		ClearPageLRU(page);
1600 		ret = 0;
1601 	}
1602 
1603 	return ret;
1604 }
1605 
1606 
1607 /*
1608  * Update LRU sizes after isolating pages. The LRU size updates must
1609  * be complete before mem_cgroup_update_lru_size due to a santity check.
1610  */
1611 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1612 			enum lru_list lru, unsigned long *nr_zone_taken)
1613 {
1614 	int zid;
1615 
1616 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1617 		if (!nr_zone_taken[zid])
1618 			continue;
1619 
1620 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1621 #ifdef CONFIG_MEMCG
1622 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1623 #endif
1624 	}
1625 
1626 }
1627 
1628 /**
1629  * pgdat->lru_lock is heavily contended.  Some of the functions that
1630  * shrink the lists perform better by taking out a batch of pages
1631  * and working on them outside the LRU lock.
1632  *
1633  * For pagecache intensive workloads, this function is the hottest
1634  * spot in the kernel (apart from copy_*_user functions).
1635  *
1636  * Appropriate locks must be held before calling this function.
1637  *
1638  * @nr_to_scan:	The number of eligible pages to look through on the list.
1639  * @lruvec:	The LRU vector to pull pages from.
1640  * @dst:	The temp list to put pages on to.
1641  * @nr_scanned:	The number of pages that were scanned.
1642  * @sc:		The scan_control struct for this reclaim session
1643  * @mode:	One of the LRU isolation modes
1644  * @lru:	LRU list id for isolating
1645  *
1646  * returns how many pages were moved onto *@dst.
1647  */
1648 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1649 		struct lruvec *lruvec, struct list_head *dst,
1650 		unsigned long *nr_scanned, struct scan_control *sc,
1651 		enum lru_list lru)
1652 {
1653 	struct list_head *src = &lruvec->lists[lru];
1654 	unsigned long nr_taken = 0;
1655 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1656 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1657 	unsigned long skipped = 0;
1658 	unsigned long scan, total_scan, nr_pages;
1659 	LIST_HEAD(pages_skipped);
1660 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1661 
1662 	total_scan = 0;
1663 	scan = 0;
1664 	while (scan < nr_to_scan && !list_empty(src)) {
1665 		struct page *page;
1666 
1667 		page = lru_to_page(src);
1668 		prefetchw_prev_lru_page(page, src, flags);
1669 
1670 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1671 
1672 		nr_pages = compound_nr(page);
1673 		total_scan += nr_pages;
1674 
1675 		if (page_zonenum(page) > sc->reclaim_idx) {
1676 			list_move(&page->lru, &pages_skipped);
1677 			nr_skipped[page_zonenum(page)] += nr_pages;
1678 			continue;
1679 		}
1680 
1681 		/*
1682 		 * Do not count skipped pages because that makes the function
1683 		 * return with no isolated pages if the LRU mostly contains
1684 		 * ineligible pages.  This causes the VM to not reclaim any
1685 		 * pages, triggering a premature OOM.
1686 		 *
1687 		 * Account all tail pages of THP.  This would not cause
1688 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1689 		 * only when the page is being freed somewhere else.
1690 		 */
1691 		scan += nr_pages;
1692 		switch (__isolate_lru_page(page, mode)) {
1693 		case 0:
1694 			nr_taken += nr_pages;
1695 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1696 			list_move(&page->lru, dst);
1697 			break;
1698 
1699 		case -EBUSY:
1700 			/* else it is being freed elsewhere */
1701 			list_move(&page->lru, src);
1702 			continue;
1703 
1704 		default:
1705 			BUG();
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * Splice any skipped pages to the start of the LRU list. Note that
1711 	 * this disrupts the LRU order when reclaiming for lower zones but
1712 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1713 	 * scanning would soon rescan the same pages to skip and put the
1714 	 * system at risk of premature OOM.
1715 	 */
1716 	if (!list_empty(&pages_skipped)) {
1717 		int zid;
1718 
1719 		list_splice(&pages_skipped, src);
1720 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1721 			if (!nr_skipped[zid])
1722 				continue;
1723 
1724 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1725 			skipped += nr_skipped[zid];
1726 		}
1727 	}
1728 	*nr_scanned = total_scan;
1729 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1730 				    total_scan, skipped, nr_taken, mode, lru);
1731 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1732 	return nr_taken;
1733 }
1734 
1735 /**
1736  * isolate_lru_page - tries to isolate a page from its LRU list
1737  * @page: page to isolate from its LRU list
1738  *
1739  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1740  * vmstat statistic corresponding to whatever LRU list the page was on.
1741  *
1742  * Returns 0 if the page was removed from an LRU list.
1743  * Returns -EBUSY if the page was not on an LRU list.
1744  *
1745  * The returned page will have PageLRU() cleared.  If it was found on
1746  * the active list, it will have PageActive set.  If it was found on
1747  * the unevictable list, it will have the PageUnevictable bit set. That flag
1748  * may need to be cleared by the caller before letting the page go.
1749  *
1750  * The vmstat statistic corresponding to the list on which the page was
1751  * found will be decremented.
1752  *
1753  * Restrictions:
1754  *
1755  * (1) Must be called with an elevated refcount on the page. This is a
1756  *     fundamentnal difference from isolate_lru_pages (which is called
1757  *     without a stable reference).
1758  * (2) the lru_lock must not be held.
1759  * (3) interrupts must be enabled.
1760  */
1761 int isolate_lru_page(struct page *page)
1762 {
1763 	int ret = -EBUSY;
1764 
1765 	VM_BUG_ON_PAGE(!page_count(page), page);
1766 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1767 
1768 	if (PageLRU(page)) {
1769 		pg_data_t *pgdat = page_pgdat(page);
1770 		struct lruvec *lruvec;
1771 
1772 		spin_lock_irq(&pgdat->lru_lock);
1773 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1774 		if (PageLRU(page)) {
1775 			int lru = page_lru(page);
1776 			get_page(page);
1777 			ClearPageLRU(page);
1778 			del_page_from_lru_list(page, lruvec, lru);
1779 			ret = 0;
1780 		}
1781 		spin_unlock_irq(&pgdat->lru_lock);
1782 	}
1783 	return ret;
1784 }
1785 
1786 /*
1787  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1788  * then get rescheduled. When there are massive number of tasks doing page
1789  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1790  * the LRU list will go small and be scanned faster than necessary, leading to
1791  * unnecessary swapping, thrashing and OOM.
1792  */
1793 static int too_many_isolated(struct pglist_data *pgdat, int file,
1794 		struct scan_control *sc)
1795 {
1796 	unsigned long inactive, isolated;
1797 
1798 	if (current_is_kswapd())
1799 		return 0;
1800 
1801 	if (!writeback_throttling_sane(sc))
1802 		return 0;
1803 
1804 	if (file) {
1805 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1806 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1807 	} else {
1808 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1809 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1810 	}
1811 
1812 	/*
1813 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1814 	 * won't get blocked by normal direct-reclaimers, forming a circular
1815 	 * deadlock.
1816 	 */
1817 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1818 		inactive >>= 3;
1819 
1820 	return isolated > inactive;
1821 }
1822 
1823 /*
1824  * This moves pages from @list to corresponding LRU list.
1825  *
1826  * We move them the other way if the page is referenced by one or more
1827  * processes, from rmap.
1828  *
1829  * If the pages are mostly unmapped, the processing is fast and it is
1830  * appropriate to hold zone_lru_lock across the whole operation.  But if
1831  * the pages are mapped, the processing is slow (page_referenced()) so we
1832  * should drop zone_lru_lock around each page.  It's impossible to balance
1833  * this, so instead we remove the pages from the LRU while processing them.
1834  * It is safe to rely on PG_active against the non-LRU pages in here because
1835  * nobody will play with that bit on a non-LRU page.
1836  *
1837  * The downside is that we have to touch page->_refcount against each page.
1838  * But we had to alter page->flags anyway.
1839  *
1840  * Returns the number of pages moved to the given lruvec.
1841  */
1842 
1843 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1844 						     struct list_head *list)
1845 {
1846 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1847 	int nr_pages, nr_moved = 0;
1848 	LIST_HEAD(pages_to_free);
1849 	struct page *page;
1850 	enum lru_list lru;
1851 
1852 	while (!list_empty(list)) {
1853 		page = lru_to_page(list);
1854 		VM_BUG_ON_PAGE(PageLRU(page), page);
1855 		if (unlikely(!page_evictable(page))) {
1856 			list_del(&page->lru);
1857 			spin_unlock_irq(&pgdat->lru_lock);
1858 			putback_lru_page(page);
1859 			spin_lock_irq(&pgdat->lru_lock);
1860 			continue;
1861 		}
1862 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1863 
1864 		SetPageLRU(page);
1865 		lru = page_lru(page);
1866 
1867 		nr_pages = hpage_nr_pages(page);
1868 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1869 		list_move(&page->lru, &lruvec->lists[lru]);
1870 
1871 		if (put_page_testzero(page)) {
1872 			__ClearPageLRU(page);
1873 			__ClearPageActive(page);
1874 			del_page_from_lru_list(page, lruvec, lru);
1875 
1876 			if (unlikely(PageCompound(page))) {
1877 				spin_unlock_irq(&pgdat->lru_lock);
1878 				(*get_compound_page_dtor(page))(page);
1879 				spin_lock_irq(&pgdat->lru_lock);
1880 			} else
1881 				list_add(&page->lru, &pages_to_free);
1882 		} else {
1883 			nr_moved += nr_pages;
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * To save our caller's stack, now use input list for pages to free.
1889 	 */
1890 	list_splice(&pages_to_free, list);
1891 
1892 	return nr_moved;
1893 }
1894 
1895 /*
1896  * If a kernel thread (such as nfsd for loop-back mounts) services
1897  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1898  * In that case we should only throttle if the backing device it is
1899  * writing to is congested.  In other cases it is safe to throttle.
1900  */
1901 static int current_may_throttle(void)
1902 {
1903 	return !(current->flags & PF_LESS_THROTTLE) ||
1904 		current->backing_dev_info == NULL ||
1905 		bdi_write_congested(current->backing_dev_info);
1906 }
1907 
1908 /*
1909  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1910  * of reclaimed pages
1911  */
1912 static noinline_for_stack unsigned long
1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914 		     struct scan_control *sc, enum lru_list lru)
1915 {
1916 	LIST_HEAD(page_list);
1917 	unsigned long nr_scanned;
1918 	unsigned long nr_reclaimed = 0;
1919 	unsigned long nr_taken;
1920 	struct reclaim_stat stat;
1921 	int file = is_file_lru(lru);
1922 	enum vm_event_item item;
1923 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1925 	bool stalled = false;
1926 
1927 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1928 		if (stalled)
1929 			return 0;
1930 
1931 		/* wait a bit for the reclaimer. */
1932 		msleep(100);
1933 		stalled = true;
1934 
1935 		/* We are about to die and free our memory. Return now. */
1936 		if (fatal_signal_pending(current))
1937 			return SWAP_CLUSTER_MAX;
1938 	}
1939 
1940 	lru_add_drain();
1941 
1942 	spin_lock_irq(&pgdat->lru_lock);
1943 
1944 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1945 				     &nr_scanned, sc, lru);
1946 
1947 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1948 	reclaim_stat->recent_scanned[file] += nr_taken;
1949 
1950 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1951 	if (!cgroup_reclaim(sc))
1952 		__count_vm_events(item, nr_scanned);
1953 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1954 	spin_unlock_irq(&pgdat->lru_lock);
1955 
1956 	if (nr_taken == 0)
1957 		return 0;
1958 
1959 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1960 				&stat, false);
1961 
1962 	spin_lock_irq(&pgdat->lru_lock);
1963 
1964 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1965 	if (!cgroup_reclaim(sc))
1966 		__count_vm_events(item, nr_reclaimed);
1967 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1968 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1969 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1970 
1971 	move_pages_to_lru(lruvec, &page_list);
1972 
1973 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1974 
1975 	spin_unlock_irq(&pgdat->lru_lock);
1976 
1977 	mem_cgroup_uncharge_list(&page_list);
1978 	free_unref_page_list(&page_list);
1979 
1980 	/*
1981 	 * If dirty pages are scanned that are not queued for IO, it
1982 	 * implies that flushers are not doing their job. This can
1983 	 * happen when memory pressure pushes dirty pages to the end of
1984 	 * the LRU before the dirty limits are breached and the dirty
1985 	 * data has expired. It can also happen when the proportion of
1986 	 * dirty pages grows not through writes but through memory
1987 	 * pressure reclaiming all the clean cache. And in some cases,
1988 	 * the flushers simply cannot keep up with the allocation
1989 	 * rate. Nudge the flusher threads in case they are asleep.
1990 	 */
1991 	if (stat.nr_unqueued_dirty == nr_taken)
1992 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1993 
1994 	sc->nr.dirty += stat.nr_dirty;
1995 	sc->nr.congested += stat.nr_congested;
1996 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1997 	sc->nr.writeback += stat.nr_writeback;
1998 	sc->nr.immediate += stat.nr_immediate;
1999 	sc->nr.taken += nr_taken;
2000 	if (file)
2001 		sc->nr.file_taken += nr_taken;
2002 
2003 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2004 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2005 	return nr_reclaimed;
2006 }
2007 
2008 static void shrink_active_list(unsigned long nr_to_scan,
2009 			       struct lruvec *lruvec,
2010 			       struct scan_control *sc,
2011 			       enum lru_list lru)
2012 {
2013 	unsigned long nr_taken;
2014 	unsigned long nr_scanned;
2015 	unsigned long vm_flags;
2016 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2017 	LIST_HEAD(l_active);
2018 	LIST_HEAD(l_inactive);
2019 	struct page *page;
2020 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2021 	unsigned nr_deactivate, nr_activate;
2022 	unsigned nr_rotated = 0;
2023 	int file = is_file_lru(lru);
2024 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2025 
2026 	lru_add_drain();
2027 
2028 	spin_lock_irq(&pgdat->lru_lock);
2029 
2030 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2031 				     &nr_scanned, sc, lru);
2032 
2033 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2034 	reclaim_stat->recent_scanned[file] += nr_taken;
2035 
2036 	__count_vm_events(PGREFILL, nr_scanned);
2037 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2038 
2039 	spin_unlock_irq(&pgdat->lru_lock);
2040 
2041 	while (!list_empty(&l_hold)) {
2042 		cond_resched();
2043 		page = lru_to_page(&l_hold);
2044 		list_del(&page->lru);
2045 
2046 		if (unlikely(!page_evictable(page))) {
2047 			putback_lru_page(page);
2048 			continue;
2049 		}
2050 
2051 		if (unlikely(buffer_heads_over_limit)) {
2052 			if (page_has_private(page) && trylock_page(page)) {
2053 				if (page_has_private(page))
2054 					try_to_release_page(page, 0);
2055 				unlock_page(page);
2056 			}
2057 		}
2058 
2059 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2060 				    &vm_flags)) {
2061 			nr_rotated += hpage_nr_pages(page);
2062 			/*
2063 			 * Identify referenced, file-backed active pages and
2064 			 * give them one more trip around the active list. So
2065 			 * that executable code get better chances to stay in
2066 			 * memory under moderate memory pressure.  Anon pages
2067 			 * are not likely to be evicted by use-once streaming
2068 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2069 			 * so we ignore them here.
2070 			 */
2071 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2072 				list_add(&page->lru, &l_active);
2073 				continue;
2074 			}
2075 		}
2076 
2077 		ClearPageActive(page);	/* we are de-activating */
2078 		SetPageWorkingset(page);
2079 		list_add(&page->lru, &l_inactive);
2080 	}
2081 
2082 	/*
2083 	 * Move pages back to the lru list.
2084 	 */
2085 	spin_lock_irq(&pgdat->lru_lock);
2086 	/*
2087 	 * Count referenced pages from currently used mappings as rotated,
2088 	 * even though only some of them are actually re-activated.  This
2089 	 * helps balance scan pressure between file and anonymous pages in
2090 	 * get_scan_count.
2091 	 */
2092 	reclaim_stat->recent_rotated[file] += nr_rotated;
2093 
2094 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2095 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2096 	/* Keep all free pages in l_active list */
2097 	list_splice(&l_inactive, &l_active);
2098 
2099 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2100 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2101 
2102 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2103 	spin_unlock_irq(&pgdat->lru_lock);
2104 
2105 	mem_cgroup_uncharge_list(&l_active);
2106 	free_unref_page_list(&l_active);
2107 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2108 			nr_deactivate, nr_rotated, sc->priority, file);
2109 }
2110 
2111 unsigned long reclaim_pages(struct list_head *page_list)
2112 {
2113 	int nid = -1;
2114 	unsigned long nr_reclaimed = 0;
2115 	LIST_HEAD(node_page_list);
2116 	struct reclaim_stat dummy_stat;
2117 	struct page *page;
2118 	struct scan_control sc = {
2119 		.gfp_mask = GFP_KERNEL,
2120 		.priority = DEF_PRIORITY,
2121 		.may_writepage = 1,
2122 		.may_unmap = 1,
2123 		.may_swap = 1,
2124 	};
2125 
2126 	while (!list_empty(page_list)) {
2127 		page = lru_to_page(page_list);
2128 		if (nid == -1) {
2129 			nid = page_to_nid(page);
2130 			INIT_LIST_HEAD(&node_page_list);
2131 		}
2132 
2133 		if (nid == page_to_nid(page)) {
2134 			ClearPageActive(page);
2135 			list_move(&page->lru, &node_page_list);
2136 			continue;
2137 		}
2138 
2139 		nr_reclaimed += shrink_page_list(&node_page_list,
2140 						NODE_DATA(nid),
2141 						&sc, 0,
2142 						&dummy_stat, false);
2143 		while (!list_empty(&node_page_list)) {
2144 			page = lru_to_page(&node_page_list);
2145 			list_del(&page->lru);
2146 			putback_lru_page(page);
2147 		}
2148 
2149 		nid = -1;
2150 	}
2151 
2152 	if (!list_empty(&node_page_list)) {
2153 		nr_reclaimed += shrink_page_list(&node_page_list,
2154 						NODE_DATA(nid),
2155 						&sc, 0,
2156 						&dummy_stat, false);
2157 		while (!list_empty(&node_page_list)) {
2158 			page = lru_to_page(&node_page_list);
2159 			list_del(&page->lru);
2160 			putback_lru_page(page);
2161 		}
2162 	}
2163 
2164 	return nr_reclaimed;
2165 }
2166 
2167 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2168 				 struct lruvec *lruvec, struct scan_control *sc)
2169 {
2170 	if (is_active_lru(lru)) {
2171 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2172 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2173 		else
2174 			sc->skipped_deactivate = 1;
2175 		return 0;
2176 	}
2177 
2178 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2179 }
2180 
2181 /*
2182  * The inactive anon list should be small enough that the VM never has
2183  * to do too much work.
2184  *
2185  * The inactive file list should be small enough to leave most memory
2186  * to the established workingset on the scan-resistant active list,
2187  * but large enough to avoid thrashing the aggregate readahead window.
2188  *
2189  * Both inactive lists should also be large enough that each inactive
2190  * page has a chance to be referenced again before it is reclaimed.
2191  *
2192  * If that fails and refaulting is observed, the inactive list grows.
2193  *
2194  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2195  * on this LRU, maintained by the pageout code. An inactive_ratio
2196  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2197  *
2198  * total     target    max
2199  * memory    ratio     inactive
2200  * -------------------------------------
2201  *   10MB       1         5MB
2202  *  100MB       1        50MB
2203  *    1GB       3       250MB
2204  *   10GB      10       0.9GB
2205  *  100GB      31         3GB
2206  *    1TB     101        10GB
2207  *   10TB     320        32GB
2208  */
2209 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2210 {
2211 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2212 	unsigned long inactive, active;
2213 	unsigned long inactive_ratio;
2214 	unsigned long gb;
2215 
2216 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2217 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2218 
2219 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2220 	if (gb)
2221 		inactive_ratio = int_sqrt(10 * gb);
2222 	else
2223 		inactive_ratio = 1;
2224 
2225 	return inactive * inactive_ratio < active;
2226 }
2227 
2228 enum scan_balance {
2229 	SCAN_EQUAL,
2230 	SCAN_FRACT,
2231 	SCAN_ANON,
2232 	SCAN_FILE,
2233 };
2234 
2235 /*
2236  * Determine how aggressively the anon and file LRU lists should be
2237  * scanned.  The relative value of each set of LRU lists is determined
2238  * by looking at the fraction of the pages scanned we did rotate back
2239  * onto the active list instead of evict.
2240  *
2241  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2242  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2243  */
2244 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2245 			   unsigned long *nr)
2246 {
2247 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2248 	int swappiness = mem_cgroup_swappiness(memcg);
2249 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2250 	u64 fraction[2];
2251 	u64 denominator = 0;	/* gcc */
2252 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2253 	unsigned long anon_prio, file_prio;
2254 	enum scan_balance scan_balance;
2255 	unsigned long anon, file;
2256 	unsigned long ap, fp;
2257 	enum lru_list lru;
2258 
2259 	/* If we have no swap space, do not bother scanning anon pages. */
2260 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2261 		scan_balance = SCAN_FILE;
2262 		goto out;
2263 	}
2264 
2265 	/*
2266 	 * Global reclaim will swap to prevent OOM even with no
2267 	 * swappiness, but memcg users want to use this knob to
2268 	 * disable swapping for individual groups completely when
2269 	 * using the memory controller's swap limit feature would be
2270 	 * too expensive.
2271 	 */
2272 	if (cgroup_reclaim(sc) && !swappiness) {
2273 		scan_balance = SCAN_FILE;
2274 		goto out;
2275 	}
2276 
2277 	/*
2278 	 * Do not apply any pressure balancing cleverness when the
2279 	 * system is close to OOM, scan both anon and file equally
2280 	 * (unless the swappiness setting disagrees with swapping).
2281 	 */
2282 	if (!sc->priority && swappiness) {
2283 		scan_balance = SCAN_EQUAL;
2284 		goto out;
2285 	}
2286 
2287 	/*
2288 	 * If the system is almost out of file pages, force-scan anon.
2289 	 */
2290 	if (sc->file_is_tiny) {
2291 		scan_balance = SCAN_ANON;
2292 		goto out;
2293 	}
2294 
2295 	/*
2296 	 * If there is enough inactive page cache, we do not reclaim
2297 	 * anything from the anonymous working right now.
2298 	 */
2299 	if (sc->cache_trim_mode) {
2300 		scan_balance = SCAN_FILE;
2301 		goto out;
2302 	}
2303 
2304 	scan_balance = SCAN_FRACT;
2305 
2306 	/*
2307 	 * With swappiness at 100, anonymous and file have the same priority.
2308 	 * This scanning priority is essentially the inverse of IO cost.
2309 	 */
2310 	anon_prio = swappiness;
2311 	file_prio = 200 - anon_prio;
2312 
2313 	/*
2314 	 * OK, so we have swap space and a fair amount of page cache
2315 	 * pages.  We use the recently rotated / recently scanned
2316 	 * ratios to determine how valuable each cache is.
2317 	 *
2318 	 * Because workloads change over time (and to avoid overflow)
2319 	 * we keep these statistics as a floating average, which ends
2320 	 * up weighing recent references more than old ones.
2321 	 *
2322 	 * anon in [0], file in [1]
2323 	 */
2324 
2325 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2326 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2327 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2328 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2329 
2330 	spin_lock_irq(&pgdat->lru_lock);
2331 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2332 		reclaim_stat->recent_scanned[0] /= 2;
2333 		reclaim_stat->recent_rotated[0] /= 2;
2334 	}
2335 
2336 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2337 		reclaim_stat->recent_scanned[1] /= 2;
2338 		reclaim_stat->recent_rotated[1] /= 2;
2339 	}
2340 
2341 	/*
2342 	 * The amount of pressure on anon vs file pages is inversely
2343 	 * proportional to the fraction of recently scanned pages on
2344 	 * each list that were recently referenced and in active use.
2345 	 */
2346 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2347 	ap /= reclaim_stat->recent_rotated[0] + 1;
2348 
2349 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2350 	fp /= reclaim_stat->recent_rotated[1] + 1;
2351 	spin_unlock_irq(&pgdat->lru_lock);
2352 
2353 	fraction[0] = ap;
2354 	fraction[1] = fp;
2355 	denominator = ap + fp + 1;
2356 out:
2357 	for_each_evictable_lru(lru) {
2358 		int file = is_file_lru(lru);
2359 		unsigned long lruvec_size;
2360 		unsigned long scan;
2361 		unsigned long protection;
2362 
2363 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2364 		protection = mem_cgroup_protection(memcg,
2365 						   sc->memcg_low_reclaim);
2366 
2367 		if (protection) {
2368 			/*
2369 			 * Scale a cgroup's reclaim pressure by proportioning
2370 			 * its current usage to its memory.low or memory.min
2371 			 * setting.
2372 			 *
2373 			 * This is important, as otherwise scanning aggression
2374 			 * becomes extremely binary -- from nothing as we
2375 			 * approach the memory protection threshold, to totally
2376 			 * nominal as we exceed it.  This results in requiring
2377 			 * setting extremely liberal protection thresholds. It
2378 			 * also means we simply get no protection at all if we
2379 			 * set it too low, which is not ideal.
2380 			 *
2381 			 * If there is any protection in place, we reduce scan
2382 			 * pressure by how much of the total memory used is
2383 			 * within protection thresholds.
2384 			 *
2385 			 * There is one special case: in the first reclaim pass,
2386 			 * we skip over all groups that are within their low
2387 			 * protection. If that fails to reclaim enough pages to
2388 			 * satisfy the reclaim goal, we come back and override
2389 			 * the best-effort low protection. However, we still
2390 			 * ideally want to honor how well-behaved groups are in
2391 			 * that case instead of simply punishing them all
2392 			 * equally. As such, we reclaim them based on how much
2393 			 * memory they are using, reducing the scan pressure
2394 			 * again by how much of the total memory used is under
2395 			 * hard protection.
2396 			 */
2397 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2398 
2399 			/* Avoid TOCTOU with earlier protection check */
2400 			cgroup_size = max(cgroup_size, protection);
2401 
2402 			scan = lruvec_size - lruvec_size * protection /
2403 				cgroup_size;
2404 
2405 			/*
2406 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2407 			 * reclaim moving forwards, avoiding decremeting
2408 			 * sc->priority further than desirable.
2409 			 */
2410 			scan = max(scan, SWAP_CLUSTER_MAX);
2411 		} else {
2412 			scan = lruvec_size;
2413 		}
2414 
2415 		scan >>= sc->priority;
2416 
2417 		/*
2418 		 * If the cgroup's already been deleted, make sure to
2419 		 * scrape out the remaining cache.
2420 		 */
2421 		if (!scan && !mem_cgroup_online(memcg))
2422 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2423 
2424 		switch (scan_balance) {
2425 		case SCAN_EQUAL:
2426 			/* Scan lists relative to size */
2427 			break;
2428 		case SCAN_FRACT:
2429 			/*
2430 			 * Scan types proportional to swappiness and
2431 			 * their relative recent reclaim efficiency.
2432 			 * Make sure we don't miss the last page
2433 			 * because of a round-off error.
2434 			 */
2435 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2436 						  denominator);
2437 			break;
2438 		case SCAN_FILE:
2439 		case SCAN_ANON:
2440 			/* Scan one type exclusively */
2441 			if ((scan_balance == SCAN_FILE) != file) {
2442 				lruvec_size = 0;
2443 				scan = 0;
2444 			}
2445 			break;
2446 		default:
2447 			/* Look ma, no brain */
2448 			BUG();
2449 		}
2450 
2451 		nr[lru] = scan;
2452 	}
2453 }
2454 
2455 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2456 {
2457 	unsigned long nr[NR_LRU_LISTS];
2458 	unsigned long targets[NR_LRU_LISTS];
2459 	unsigned long nr_to_scan;
2460 	enum lru_list lru;
2461 	unsigned long nr_reclaimed = 0;
2462 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2463 	struct blk_plug plug;
2464 	bool scan_adjusted;
2465 
2466 	get_scan_count(lruvec, sc, nr);
2467 
2468 	/* Record the original scan target for proportional adjustments later */
2469 	memcpy(targets, nr, sizeof(nr));
2470 
2471 	/*
2472 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2473 	 * event that can occur when there is little memory pressure e.g.
2474 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2475 	 * when the requested number of pages are reclaimed when scanning at
2476 	 * DEF_PRIORITY on the assumption that the fact we are direct
2477 	 * reclaiming implies that kswapd is not keeping up and it is best to
2478 	 * do a batch of work at once. For memcg reclaim one check is made to
2479 	 * abort proportional reclaim if either the file or anon lru has already
2480 	 * dropped to zero at the first pass.
2481 	 */
2482 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2483 			 sc->priority == DEF_PRIORITY);
2484 
2485 	blk_start_plug(&plug);
2486 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2487 					nr[LRU_INACTIVE_FILE]) {
2488 		unsigned long nr_anon, nr_file, percentage;
2489 		unsigned long nr_scanned;
2490 
2491 		for_each_evictable_lru(lru) {
2492 			if (nr[lru]) {
2493 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2494 				nr[lru] -= nr_to_scan;
2495 
2496 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2497 							    lruvec, sc);
2498 			}
2499 		}
2500 
2501 		cond_resched();
2502 
2503 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2504 			continue;
2505 
2506 		/*
2507 		 * For kswapd and memcg, reclaim at least the number of pages
2508 		 * requested. Ensure that the anon and file LRUs are scanned
2509 		 * proportionally what was requested by get_scan_count(). We
2510 		 * stop reclaiming one LRU and reduce the amount scanning
2511 		 * proportional to the original scan target.
2512 		 */
2513 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2514 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2515 
2516 		/*
2517 		 * It's just vindictive to attack the larger once the smaller
2518 		 * has gone to zero.  And given the way we stop scanning the
2519 		 * smaller below, this makes sure that we only make one nudge
2520 		 * towards proportionality once we've got nr_to_reclaim.
2521 		 */
2522 		if (!nr_file || !nr_anon)
2523 			break;
2524 
2525 		if (nr_file > nr_anon) {
2526 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2527 						targets[LRU_ACTIVE_ANON] + 1;
2528 			lru = LRU_BASE;
2529 			percentage = nr_anon * 100 / scan_target;
2530 		} else {
2531 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2532 						targets[LRU_ACTIVE_FILE] + 1;
2533 			lru = LRU_FILE;
2534 			percentage = nr_file * 100 / scan_target;
2535 		}
2536 
2537 		/* Stop scanning the smaller of the LRU */
2538 		nr[lru] = 0;
2539 		nr[lru + LRU_ACTIVE] = 0;
2540 
2541 		/*
2542 		 * Recalculate the other LRU scan count based on its original
2543 		 * scan target and the percentage scanning already complete
2544 		 */
2545 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2546 		nr_scanned = targets[lru] - nr[lru];
2547 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2548 		nr[lru] -= min(nr[lru], nr_scanned);
2549 
2550 		lru += LRU_ACTIVE;
2551 		nr_scanned = targets[lru] - nr[lru];
2552 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2553 		nr[lru] -= min(nr[lru], nr_scanned);
2554 
2555 		scan_adjusted = true;
2556 	}
2557 	blk_finish_plug(&plug);
2558 	sc->nr_reclaimed += nr_reclaimed;
2559 
2560 	/*
2561 	 * Even if we did not try to evict anon pages at all, we want to
2562 	 * rebalance the anon lru active/inactive ratio.
2563 	 */
2564 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2565 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2566 				   sc, LRU_ACTIVE_ANON);
2567 }
2568 
2569 /* Use reclaim/compaction for costly allocs or under memory pressure */
2570 static bool in_reclaim_compaction(struct scan_control *sc)
2571 {
2572 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2573 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2574 			 sc->priority < DEF_PRIORITY - 2))
2575 		return true;
2576 
2577 	return false;
2578 }
2579 
2580 /*
2581  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2582  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2583  * true if more pages should be reclaimed such that when the page allocator
2584  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2585  * It will give up earlier than that if there is difficulty reclaiming pages.
2586  */
2587 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2588 					unsigned long nr_reclaimed,
2589 					struct scan_control *sc)
2590 {
2591 	unsigned long pages_for_compaction;
2592 	unsigned long inactive_lru_pages;
2593 	int z;
2594 
2595 	/* If not in reclaim/compaction mode, stop */
2596 	if (!in_reclaim_compaction(sc))
2597 		return false;
2598 
2599 	/*
2600 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2601 	 * number of pages that were scanned. This will return to the caller
2602 	 * with the risk reclaim/compaction and the resulting allocation attempt
2603 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2604 	 * allocations through requiring that the full LRU list has been scanned
2605 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2606 	 * scan, but that approximation was wrong, and there were corner cases
2607 	 * where always a non-zero amount of pages were scanned.
2608 	 */
2609 	if (!nr_reclaimed)
2610 		return false;
2611 
2612 	/* If compaction would go ahead or the allocation would succeed, stop */
2613 	for (z = 0; z <= sc->reclaim_idx; z++) {
2614 		struct zone *zone = &pgdat->node_zones[z];
2615 		if (!managed_zone(zone))
2616 			continue;
2617 
2618 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2619 		case COMPACT_SUCCESS:
2620 		case COMPACT_CONTINUE:
2621 			return false;
2622 		default:
2623 			/* check next zone */
2624 			;
2625 		}
2626 	}
2627 
2628 	/*
2629 	 * If we have not reclaimed enough pages for compaction and the
2630 	 * inactive lists are large enough, continue reclaiming
2631 	 */
2632 	pages_for_compaction = compact_gap(sc->order);
2633 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2634 	if (get_nr_swap_pages() > 0)
2635 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2636 
2637 	return inactive_lru_pages > pages_for_compaction;
2638 }
2639 
2640 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2641 {
2642 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2643 	struct mem_cgroup *memcg;
2644 
2645 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2646 	do {
2647 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2648 		unsigned long reclaimed;
2649 		unsigned long scanned;
2650 
2651 		switch (mem_cgroup_protected(target_memcg, memcg)) {
2652 		case MEMCG_PROT_MIN:
2653 			/*
2654 			 * Hard protection.
2655 			 * If there is no reclaimable memory, OOM.
2656 			 */
2657 			continue;
2658 		case MEMCG_PROT_LOW:
2659 			/*
2660 			 * Soft protection.
2661 			 * Respect the protection only as long as
2662 			 * there is an unprotected supply
2663 			 * of reclaimable memory from other cgroups.
2664 			 */
2665 			if (!sc->memcg_low_reclaim) {
2666 				sc->memcg_low_skipped = 1;
2667 				continue;
2668 			}
2669 			memcg_memory_event(memcg, MEMCG_LOW);
2670 			break;
2671 		case MEMCG_PROT_NONE:
2672 			/*
2673 			 * All protection thresholds breached. We may
2674 			 * still choose to vary the scan pressure
2675 			 * applied based on by how much the cgroup in
2676 			 * question has exceeded its protection
2677 			 * thresholds (see get_scan_count).
2678 			 */
2679 			break;
2680 		}
2681 
2682 		reclaimed = sc->nr_reclaimed;
2683 		scanned = sc->nr_scanned;
2684 
2685 		shrink_lruvec(lruvec, sc);
2686 
2687 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2688 			    sc->priority);
2689 
2690 		/* Record the group's reclaim efficiency */
2691 		vmpressure(sc->gfp_mask, memcg, false,
2692 			   sc->nr_scanned - scanned,
2693 			   sc->nr_reclaimed - reclaimed);
2694 
2695 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2696 }
2697 
2698 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2699 {
2700 	struct reclaim_state *reclaim_state = current->reclaim_state;
2701 	unsigned long nr_reclaimed, nr_scanned;
2702 	struct lruvec *target_lruvec;
2703 	bool reclaimable = false;
2704 	unsigned long file;
2705 
2706 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2707 
2708 again:
2709 	memset(&sc->nr, 0, sizeof(sc->nr));
2710 
2711 	nr_reclaimed = sc->nr_reclaimed;
2712 	nr_scanned = sc->nr_scanned;
2713 
2714 	/*
2715 	 * Target desirable inactive:active list ratios for the anon
2716 	 * and file LRU lists.
2717 	 */
2718 	if (!sc->force_deactivate) {
2719 		unsigned long refaults;
2720 
2721 		if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2722 			sc->may_deactivate |= DEACTIVATE_ANON;
2723 		else
2724 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2725 
2726 		/*
2727 		 * When refaults are being observed, it means a new
2728 		 * workingset is being established. Deactivate to get
2729 		 * rid of any stale active pages quickly.
2730 		 */
2731 		refaults = lruvec_page_state(target_lruvec,
2732 					     WORKINGSET_ACTIVATE);
2733 		if (refaults != target_lruvec->refaults ||
2734 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2735 			sc->may_deactivate |= DEACTIVATE_FILE;
2736 		else
2737 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2738 	} else
2739 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2740 
2741 	/*
2742 	 * If we have plenty of inactive file pages that aren't
2743 	 * thrashing, try to reclaim those first before touching
2744 	 * anonymous pages.
2745 	 */
2746 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2747 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2748 		sc->cache_trim_mode = 1;
2749 	else
2750 		sc->cache_trim_mode = 0;
2751 
2752 	/*
2753 	 * Prevent the reclaimer from falling into the cache trap: as
2754 	 * cache pages start out inactive, every cache fault will tip
2755 	 * the scan balance towards the file LRU.  And as the file LRU
2756 	 * shrinks, so does the window for rotation from references.
2757 	 * This means we have a runaway feedback loop where a tiny
2758 	 * thrashing file LRU becomes infinitely more attractive than
2759 	 * anon pages.  Try to detect this based on file LRU size.
2760 	 */
2761 	if (!cgroup_reclaim(sc)) {
2762 		unsigned long total_high_wmark = 0;
2763 		unsigned long free, anon;
2764 		int z;
2765 
2766 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2767 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2768 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2769 
2770 		for (z = 0; z < MAX_NR_ZONES; z++) {
2771 			struct zone *zone = &pgdat->node_zones[z];
2772 			if (!managed_zone(zone))
2773 				continue;
2774 
2775 			total_high_wmark += high_wmark_pages(zone);
2776 		}
2777 
2778 		/*
2779 		 * Consider anon: if that's low too, this isn't a
2780 		 * runaway file reclaim problem, but rather just
2781 		 * extreme pressure. Reclaim as per usual then.
2782 		 */
2783 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2784 
2785 		sc->file_is_tiny =
2786 			file + free <= total_high_wmark &&
2787 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2788 			anon >> sc->priority;
2789 	}
2790 
2791 	shrink_node_memcgs(pgdat, sc);
2792 
2793 	if (reclaim_state) {
2794 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2795 		reclaim_state->reclaimed_slab = 0;
2796 	}
2797 
2798 	/* Record the subtree's reclaim efficiency */
2799 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2800 		   sc->nr_scanned - nr_scanned,
2801 		   sc->nr_reclaimed - nr_reclaimed);
2802 
2803 	if (sc->nr_reclaimed - nr_reclaimed)
2804 		reclaimable = true;
2805 
2806 	if (current_is_kswapd()) {
2807 		/*
2808 		 * If reclaim is isolating dirty pages under writeback,
2809 		 * it implies that the long-lived page allocation rate
2810 		 * is exceeding the page laundering rate. Either the
2811 		 * global limits are not being effective at throttling
2812 		 * processes due to the page distribution throughout
2813 		 * zones or there is heavy usage of a slow backing
2814 		 * device. The only option is to throttle from reclaim
2815 		 * context which is not ideal as there is no guarantee
2816 		 * the dirtying process is throttled in the same way
2817 		 * balance_dirty_pages() manages.
2818 		 *
2819 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2820 		 * count the number of pages under pages flagged for
2821 		 * immediate reclaim and stall if any are encountered
2822 		 * in the nr_immediate check below.
2823 		 */
2824 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2825 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2826 
2827 		/* Allow kswapd to start writing pages during reclaim.*/
2828 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2829 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2830 
2831 		/*
2832 		 * If kswapd scans pages marked marked for immediate
2833 		 * reclaim and under writeback (nr_immediate), it
2834 		 * implies that pages are cycling through the LRU
2835 		 * faster than they are written so also forcibly stall.
2836 		 */
2837 		if (sc->nr.immediate)
2838 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2839 	}
2840 
2841 	/*
2842 	 * Tag a node/memcg as congested if all the dirty pages
2843 	 * scanned were backed by a congested BDI and
2844 	 * wait_iff_congested will stall.
2845 	 *
2846 	 * Legacy memcg will stall in page writeback so avoid forcibly
2847 	 * stalling in wait_iff_congested().
2848 	 */
2849 	if ((current_is_kswapd() ||
2850 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2851 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2852 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2853 
2854 	/*
2855 	 * Stall direct reclaim for IO completions if underlying BDIs
2856 	 * and node is congested. Allow kswapd to continue until it
2857 	 * starts encountering unqueued dirty pages or cycling through
2858 	 * the LRU too quickly.
2859 	 */
2860 	if (!current_is_kswapd() && current_may_throttle() &&
2861 	    !sc->hibernation_mode &&
2862 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2863 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2864 
2865 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2866 				    sc))
2867 		goto again;
2868 
2869 	/*
2870 	 * Kswapd gives up on balancing particular nodes after too
2871 	 * many failures to reclaim anything from them and goes to
2872 	 * sleep. On reclaim progress, reset the failure counter. A
2873 	 * successful direct reclaim run will revive a dormant kswapd.
2874 	 */
2875 	if (reclaimable)
2876 		pgdat->kswapd_failures = 0;
2877 
2878 	return reclaimable;
2879 }
2880 
2881 /*
2882  * Returns true if compaction should go ahead for a costly-order request, or
2883  * the allocation would already succeed without compaction. Return false if we
2884  * should reclaim first.
2885  */
2886 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2887 {
2888 	unsigned long watermark;
2889 	enum compact_result suitable;
2890 
2891 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2892 	if (suitable == COMPACT_SUCCESS)
2893 		/* Allocation should succeed already. Don't reclaim. */
2894 		return true;
2895 	if (suitable == COMPACT_SKIPPED)
2896 		/* Compaction cannot yet proceed. Do reclaim. */
2897 		return false;
2898 
2899 	/*
2900 	 * Compaction is already possible, but it takes time to run and there
2901 	 * are potentially other callers using the pages just freed. So proceed
2902 	 * with reclaim to make a buffer of free pages available to give
2903 	 * compaction a reasonable chance of completing and allocating the page.
2904 	 * Note that we won't actually reclaim the whole buffer in one attempt
2905 	 * as the target watermark in should_continue_reclaim() is lower. But if
2906 	 * we are already above the high+gap watermark, don't reclaim at all.
2907 	 */
2908 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2909 
2910 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2911 }
2912 
2913 /*
2914  * This is the direct reclaim path, for page-allocating processes.  We only
2915  * try to reclaim pages from zones which will satisfy the caller's allocation
2916  * request.
2917  *
2918  * If a zone is deemed to be full of pinned pages then just give it a light
2919  * scan then give up on it.
2920  */
2921 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2922 {
2923 	struct zoneref *z;
2924 	struct zone *zone;
2925 	unsigned long nr_soft_reclaimed;
2926 	unsigned long nr_soft_scanned;
2927 	gfp_t orig_mask;
2928 	pg_data_t *last_pgdat = NULL;
2929 
2930 	/*
2931 	 * If the number of buffer_heads in the machine exceeds the maximum
2932 	 * allowed level, force direct reclaim to scan the highmem zone as
2933 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2934 	 */
2935 	orig_mask = sc->gfp_mask;
2936 	if (buffer_heads_over_limit) {
2937 		sc->gfp_mask |= __GFP_HIGHMEM;
2938 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2939 	}
2940 
2941 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2942 					sc->reclaim_idx, sc->nodemask) {
2943 		/*
2944 		 * Take care memory controller reclaiming has small influence
2945 		 * to global LRU.
2946 		 */
2947 		if (!cgroup_reclaim(sc)) {
2948 			if (!cpuset_zone_allowed(zone,
2949 						 GFP_KERNEL | __GFP_HARDWALL))
2950 				continue;
2951 
2952 			/*
2953 			 * If we already have plenty of memory free for
2954 			 * compaction in this zone, don't free any more.
2955 			 * Even though compaction is invoked for any
2956 			 * non-zero order, only frequent costly order
2957 			 * reclamation is disruptive enough to become a
2958 			 * noticeable problem, like transparent huge
2959 			 * page allocations.
2960 			 */
2961 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2962 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2963 			    compaction_ready(zone, sc)) {
2964 				sc->compaction_ready = true;
2965 				continue;
2966 			}
2967 
2968 			/*
2969 			 * Shrink each node in the zonelist once. If the
2970 			 * zonelist is ordered by zone (not the default) then a
2971 			 * node may be shrunk multiple times but in that case
2972 			 * the user prefers lower zones being preserved.
2973 			 */
2974 			if (zone->zone_pgdat == last_pgdat)
2975 				continue;
2976 
2977 			/*
2978 			 * This steals pages from memory cgroups over softlimit
2979 			 * and returns the number of reclaimed pages and
2980 			 * scanned pages. This works for global memory pressure
2981 			 * and balancing, not for a memcg's limit.
2982 			 */
2983 			nr_soft_scanned = 0;
2984 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2985 						sc->order, sc->gfp_mask,
2986 						&nr_soft_scanned);
2987 			sc->nr_reclaimed += nr_soft_reclaimed;
2988 			sc->nr_scanned += nr_soft_scanned;
2989 			/* need some check for avoid more shrink_zone() */
2990 		}
2991 
2992 		/* See comment about same check for global reclaim above */
2993 		if (zone->zone_pgdat == last_pgdat)
2994 			continue;
2995 		last_pgdat = zone->zone_pgdat;
2996 		shrink_node(zone->zone_pgdat, sc);
2997 	}
2998 
2999 	/*
3000 	 * Restore to original mask to avoid the impact on the caller if we
3001 	 * promoted it to __GFP_HIGHMEM.
3002 	 */
3003 	sc->gfp_mask = orig_mask;
3004 }
3005 
3006 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3007 {
3008 	struct lruvec *target_lruvec;
3009 	unsigned long refaults;
3010 
3011 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3012 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
3013 	target_lruvec->refaults = refaults;
3014 }
3015 
3016 /*
3017  * This is the main entry point to direct page reclaim.
3018  *
3019  * If a full scan of the inactive list fails to free enough memory then we
3020  * are "out of memory" and something needs to be killed.
3021  *
3022  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3023  * high - the zone may be full of dirty or under-writeback pages, which this
3024  * caller can't do much about.  We kick the writeback threads and take explicit
3025  * naps in the hope that some of these pages can be written.  But if the
3026  * allocating task holds filesystem locks which prevent writeout this might not
3027  * work, and the allocation attempt will fail.
3028  *
3029  * returns:	0, if no pages reclaimed
3030  * 		else, the number of pages reclaimed
3031  */
3032 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3033 					  struct scan_control *sc)
3034 {
3035 	int initial_priority = sc->priority;
3036 	pg_data_t *last_pgdat;
3037 	struct zoneref *z;
3038 	struct zone *zone;
3039 retry:
3040 	delayacct_freepages_start();
3041 
3042 	if (!cgroup_reclaim(sc))
3043 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3044 
3045 	do {
3046 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3047 				sc->priority);
3048 		sc->nr_scanned = 0;
3049 		shrink_zones(zonelist, sc);
3050 
3051 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3052 			break;
3053 
3054 		if (sc->compaction_ready)
3055 			break;
3056 
3057 		/*
3058 		 * If we're getting trouble reclaiming, start doing
3059 		 * writepage even in laptop mode.
3060 		 */
3061 		if (sc->priority < DEF_PRIORITY - 2)
3062 			sc->may_writepage = 1;
3063 	} while (--sc->priority >= 0);
3064 
3065 	last_pgdat = NULL;
3066 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3067 					sc->nodemask) {
3068 		if (zone->zone_pgdat == last_pgdat)
3069 			continue;
3070 		last_pgdat = zone->zone_pgdat;
3071 
3072 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3073 
3074 		if (cgroup_reclaim(sc)) {
3075 			struct lruvec *lruvec;
3076 
3077 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3078 						   zone->zone_pgdat);
3079 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3080 		}
3081 	}
3082 
3083 	delayacct_freepages_end();
3084 
3085 	if (sc->nr_reclaimed)
3086 		return sc->nr_reclaimed;
3087 
3088 	/* Aborted reclaim to try compaction? don't OOM, then */
3089 	if (sc->compaction_ready)
3090 		return 1;
3091 
3092 	/*
3093 	 * We make inactive:active ratio decisions based on the node's
3094 	 * composition of memory, but a restrictive reclaim_idx or a
3095 	 * memory.low cgroup setting can exempt large amounts of
3096 	 * memory from reclaim. Neither of which are very common, so
3097 	 * instead of doing costly eligibility calculations of the
3098 	 * entire cgroup subtree up front, we assume the estimates are
3099 	 * good, and retry with forcible deactivation if that fails.
3100 	 */
3101 	if (sc->skipped_deactivate) {
3102 		sc->priority = initial_priority;
3103 		sc->force_deactivate = 1;
3104 		sc->skipped_deactivate = 0;
3105 		goto retry;
3106 	}
3107 
3108 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3109 	if (sc->memcg_low_skipped) {
3110 		sc->priority = initial_priority;
3111 		sc->force_deactivate = 0;
3112 		sc->skipped_deactivate = 0;
3113 		sc->memcg_low_reclaim = 1;
3114 		sc->memcg_low_skipped = 0;
3115 		goto retry;
3116 	}
3117 
3118 	return 0;
3119 }
3120 
3121 static bool allow_direct_reclaim(pg_data_t *pgdat)
3122 {
3123 	struct zone *zone;
3124 	unsigned long pfmemalloc_reserve = 0;
3125 	unsigned long free_pages = 0;
3126 	int i;
3127 	bool wmark_ok;
3128 
3129 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3130 		return true;
3131 
3132 	for (i = 0; i <= ZONE_NORMAL; i++) {
3133 		zone = &pgdat->node_zones[i];
3134 		if (!managed_zone(zone))
3135 			continue;
3136 
3137 		if (!zone_reclaimable_pages(zone))
3138 			continue;
3139 
3140 		pfmemalloc_reserve += min_wmark_pages(zone);
3141 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3142 	}
3143 
3144 	/* If there are no reserves (unexpected config) then do not throttle */
3145 	if (!pfmemalloc_reserve)
3146 		return true;
3147 
3148 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3149 
3150 	/* kswapd must be awake if processes are being throttled */
3151 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3152 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3153 						(enum zone_type)ZONE_NORMAL);
3154 		wake_up_interruptible(&pgdat->kswapd_wait);
3155 	}
3156 
3157 	return wmark_ok;
3158 }
3159 
3160 /*
3161  * Throttle direct reclaimers if backing storage is backed by the network
3162  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3163  * depleted. kswapd will continue to make progress and wake the processes
3164  * when the low watermark is reached.
3165  *
3166  * Returns true if a fatal signal was delivered during throttling. If this
3167  * happens, the page allocator should not consider triggering the OOM killer.
3168  */
3169 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3170 					nodemask_t *nodemask)
3171 {
3172 	struct zoneref *z;
3173 	struct zone *zone;
3174 	pg_data_t *pgdat = NULL;
3175 
3176 	/*
3177 	 * Kernel threads should not be throttled as they may be indirectly
3178 	 * responsible for cleaning pages necessary for reclaim to make forward
3179 	 * progress. kjournald for example may enter direct reclaim while
3180 	 * committing a transaction where throttling it could forcing other
3181 	 * processes to block on log_wait_commit().
3182 	 */
3183 	if (current->flags & PF_KTHREAD)
3184 		goto out;
3185 
3186 	/*
3187 	 * If a fatal signal is pending, this process should not throttle.
3188 	 * It should return quickly so it can exit and free its memory
3189 	 */
3190 	if (fatal_signal_pending(current))
3191 		goto out;
3192 
3193 	/*
3194 	 * Check if the pfmemalloc reserves are ok by finding the first node
3195 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3196 	 * GFP_KERNEL will be required for allocating network buffers when
3197 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3198 	 *
3199 	 * Throttling is based on the first usable node and throttled processes
3200 	 * wait on a queue until kswapd makes progress and wakes them. There
3201 	 * is an affinity then between processes waking up and where reclaim
3202 	 * progress has been made assuming the process wakes on the same node.
3203 	 * More importantly, processes running on remote nodes will not compete
3204 	 * for remote pfmemalloc reserves and processes on different nodes
3205 	 * should make reasonable progress.
3206 	 */
3207 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3208 					gfp_zone(gfp_mask), nodemask) {
3209 		if (zone_idx(zone) > ZONE_NORMAL)
3210 			continue;
3211 
3212 		/* Throttle based on the first usable node */
3213 		pgdat = zone->zone_pgdat;
3214 		if (allow_direct_reclaim(pgdat))
3215 			goto out;
3216 		break;
3217 	}
3218 
3219 	/* If no zone was usable by the allocation flags then do not throttle */
3220 	if (!pgdat)
3221 		goto out;
3222 
3223 	/* Account for the throttling */
3224 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3225 
3226 	/*
3227 	 * If the caller cannot enter the filesystem, it's possible that it
3228 	 * is due to the caller holding an FS lock or performing a journal
3229 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3230 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3231 	 * blocked waiting on the same lock. Instead, throttle for up to a
3232 	 * second before continuing.
3233 	 */
3234 	if (!(gfp_mask & __GFP_FS)) {
3235 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3236 			allow_direct_reclaim(pgdat), HZ);
3237 
3238 		goto check_pending;
3239 	}
3240 
3241 	/* Throttle until kswapd wakes the process */
3242 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3243 		allow_direct_reclaim(pgdat));
3244 
3245 check_pending:
3246 	if (fatal_signal_pending(current))
3247 		return true;
3248 
3249 out:
3250 	return false;
3251 }
3252 
3253 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3254 				gfp_t gfp_mask, nodemask_t *nodemask)
3255 {
3256 	unsigned long nr_reclaimed;
3257 	struct scan_control sc = {
3258 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3259 		.gfp_mask = current_gfp_context(gfp_mask),
3260 		.reclaim_idx = gfp_zone(gfp_mask),
3261 		.order = order,
3262 		.nodemask = nodemask,
3263 		.priority = DEF_PRIORITY,
3264 		.may_writepage = !laptop_mode,
3265 		.may_unmap = 1,
3266 		.may_swap = 1,
3267 	};
3268 
3269 	/*
3270 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3271 	 * Confirm they are large enough for max values.
3272 	 */
3273 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3274 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3275 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3276 
3277 	/*
3278 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3279 	 * 1 is returned so that the page allocator does not OOM kill at this
3280 	 * point.
3281 	 */
3282 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3283 		return 1;
3284 
3285 	set_task_reclaim_state(current, &sc.reclaim_state);
3286 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3287 
3288 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3289 
3290 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3291 	set_task_reclaim_state(current, NULL);
3292 
3293 	return nr_reclaimed;
3294 }
3295 
3296 #ifdef CONFIG_MEMCG
3297 
3298 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3299 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3300 						gfp_t gfp_mask, bool noswap,
3301 						pg_data_t *pgdat,
3302 						unsigned long *nr_scanned)
3303 {
3304 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3305 	struct scan_control sc = {
3306 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3307 		.target_mem_cgroup = memcg,
3308 		.may_writepage = !laptop_mode,
3309 		.may_unmap = 1,
3310 		.reclaim_idx = MAX_NR_ZONES - 1,
3311 		.may_swap = !noswap,
3312 	};
3313 
3314 	WARN_ON_ONCE(!current->reclaim_state);
3315 
3316 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3317 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3318 
3319 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3320 						      sc.gfp_mask);
3321 
3322 	/*
3323 	 * NOTE: Although we can get the priority field, using it
3324 	 * here is not a good idea, since it limits the pages we can scan.
3325 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3326 	 * will pick up pages from other mem cgroup's as well. We hack
3327 	 * the priority and make it zero.
3328 	 */
3329 	shrink_lruvec(lruvec, &sc);
3330 
3331 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3332 
3333 	*nr_scanned = sc.nr_scanned;
3334 
3335 	return sc.nr_reclaimed;
3336 }
3337 
3338 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3339 					   unsigned long nr_pages,
3340 					   gfp_t gfp_mask,
3341 					   bool may_swap)
3342 {
3343 	unsigned long nr_reclaimed;
3344 	unsigned long pflags;
3345 	unsigned int noreclaim_flag;
3346 	struct scan_control sc = {
3347 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3348 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3349 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3350 		.reclaim_idx = MAX_NR_ZONES - 1,
3351 		.target_mem_cgroup = memcg,
3352 		.priority = DEF_PRIORITY,
3353 		.may_writepage = !laptop_mode,
3354 		.may_unmap = 1,
3355 		.may_swap = may_swap,
3356 	};
3357 	/*
3358 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3359 	 * equal pressure on all the nodes. This is based on the assumption that
3360 	 * the reclaim does not bail out early.
3361 	 */
3362 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3363 
3364 	set_task_reclaim_state(current, &sc.reclaim_state);
3365 
3366 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3367 
3368 	psi_memstall_enter(&pflags);
3369 	noreclaim_flag = memalloc_noreclaim_save();
3370 
3371 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3372 
3373 	memalloc_noreclaim_restore(noreclaim_flag);
3374 	psi_memstall_leave(&pflags);
3375 
3376 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3377 	set_task_reclaim_state(current, NULL);
3378 
3379 	return nr_reclaimed;
3380 }
3381 #endif
3382 
3383 static void age_active_anon(struct pglist_data *pgdat,
3384 				struct scan_control *sc)
3385 {
3386 	struct mem_cgroup *memcg;
3387 	struct lruvec *lruvec;
3388 
3389 	if (!total_swap_pages)
3390 		return;
3391 
3392 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3393 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3394 		return;
3395 
3396 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3397 	do {
3398 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3399 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3400 				   sc, LRU_ACTIVE_ANON);
3401 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3402 	} while (memcg);
3403 }
3404 
3405 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3406 {
3407 	int i;
3408 	struct zone *zone;
3409 
3410 	/*
3411 	 * Check for watermark boosts top-down as the higher zones
3412 	 * are more likely to be boosted. Both watermarks and boosts
3413 	 * should not be checked at the time time as reclaim would
3414 	 * start prematurely when there is no boosting and a lower
3415 	 * zone is balanced.
3416 	 */
3417 	for (i = classzone_idx; i >= 0; i--) {
3418 		zone = pgdat->node_zones + i;
3419 		if (!managed_zone(zone))
3420 			continue;
3421 
3422 		if (zone->watermark_boost)
3423 			return true;
3424 	}
3425 
3426 	return false;
3427 }
3428 
3429 /*
3430  * Returns true if there is an eligible zone balanced for the request order
3431  * and classzone_idx
3432  */
3433 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3434 {
3435 	int i;
3436 	unsigned long mark = -1;
3437 	struct zone *zone;
3438 
3439 	/*
3440 	 * Check watermarks bottom-up as lower zones are more likely to
3441 	 * meet watermarks.
3442 	 */
3443 	for (i = 0; i <= classzone_idx; i++) {
3444 		zone = pgdat->node_zones + i;
3445 
3446 		if (!managed_zone(zone))
3447 			continue;
3448 
3449 		mark = high_wmark_pages(zone);
3450 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3451 			return true;
3452 	}
3453 
3454 	/*
3455 	 * If a node has no populated zone within classzone_idx, it does not
3456 	 * need balancing by definition. This can happen if a zone-restricted
3457 	 * allocation tries to wake a remote kswapd.
3458 	 */
3459 	if (mark == -1)
3460 		return true;
3461 
3462 	return false;
3463 }
3464 
3465 /* Clear pgdat state for congested, dirty or under writeback. */
3466 static void clear_pgdat_congested(pg_data_t *pgdat)
3467 {
3468 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3469 
3470 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3471 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3472 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3473 }
3474 
3475 /*
3476  * Prepare kswapd for sleeping. This verifies that there are no processes
3477  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3478  *
3479  * Returns true if kswapd is ready to sleep
3480  */
3481 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3482 {
3483 	/*
3484 	 * The throttled processes are normally woken up in balance_pgdat() as
3485 	 * soon as allow_direct_reclaim() is true. But there is a potential
3486 	 * race between when kswapd checks the watermarks and a process gets
3487 	 * throttled. There is also a potential race if processes get
3488 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3489 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3490 	 * the wake up checks. If kswapd is going to sleep, no process should
3491 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3492 	 * the wake up is premature, processes will wake kswapd and get
3493 	 * throttled again. The difference from wake ups in balance_pgdat() is
3494 	 * that here we are under prepare_to_wait().
3495 	 */
3496 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3497 		wake_up_all(&pgdat->pfmemalloc_wait);
3498 
3499 	/* Hopeless node, leave it to direct reclaim */
3500 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3501 		return true;
3502 
3503 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3504 		clear_pgdat_congested(pgdat);
3505 		return true;
3506 	}
3507 
3508 	return false;
3509 }
3510 
3511 /*
3512  * kswapd shrinks a node of pages that are at or below the highest usable
3513  * zone that is currently unbalanced.
3514  *
3515  * Returns true if kswapd scanned at least the requested number of pages to
3516  * reclaim or if the lack of progress was due to pages under writeback.
3517  * This is used to determine if the scanning priority needs to be raised.
3518  */
3519 static bool kswapd_shrink_node(pg_data_t *pgdat,
3520 			       struct scan_control *sc)
3521 {
3522 	struct zone *zone;
3523 	int z;
3524 
3525 	/* Reclaim a number of pages proportional to the number of zones */
3526 	sc->nr_to_reclaim = 0;
3527 	for (z = 0; z <= sc->reclaim_idx; z++) {
3528 		zone = pgdat->node_zones + z;
3529 		if (!managed_zone(zone))
3530 			continue;
3531 
3532 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3533 	}
3534 
3535 	/*
3536 	 * Historically care was taken to put equal pressure on all zones but
3537 	 * now pressure is applied based on node LRU order.
3538 	 */
3539 	shrink_node(pgdat, sc);
3540 
3541 	/*
3542 	 * Fragmentation may mean that the system cannot be rebalanced for
3543 	 * high-order allocations. If twice the allocation size has been
3544 	 * reclaimed then recheck watermarks only at order-0 to prevent
3545 	 * excessive reclaim. Assume that a process requested a high-order
3546 	 * can direct reclaim/compact.
3547 	 */
3548 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3549 		sc->order = 0;
3550 
3551 	return sc->nr_scanned >= sc->nr_to_reclaim;
3552 }
3553 
3554 /*
3555  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3556  * that are eligible for use by the caller until at least one zone is
3557  * balanced.
3558  *
3559  * Returns the order kswapd finished reclaiming at.
3560  *
3561  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3562  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3563  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3564  * or lower is eligible for reclaim until at least one usable zone is
3565  * balanced.
3566  */
3567 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3568 {
3569 	int i;
3570 	unsigned long nr_soft_reclaimed;
3571 	unsigned long nr_soft_scanned;
3572 	unsigned long pflags;
3573 	unsigned long nr_boost_reclaim;
3574 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3575 	bool boosted;
3576 	struct zone *zone;
3577 	struct scan_control sc = {
3578 		.gfp_mask = GFP_KERNEL,
3579 		.order = order,
3580 		.may_unmap = 1,
3581 	};
3582 
3583 	set_task_reclaim_state(current, &sc.reclaim_state);
3584 	psi_memstall_enter(&pflags);
3585 	__fs_reclaim_acquire();
3586 
3587 	count_vm_event(PAGEOUTRUN);
3588 
3589 	/*
3590 	 * Account for the reclaim boost. Note that the zone boost is left in
3591 	 * place so that parallel allocations that are near the watermark will
3592 	 * stall or direct reclaim until kswapd is finished.
3593 	 */
3594 	nr_boost_reclaim = 0;
3595 	for (i = 0; i <= classzone_idx; i++) {
3596 		zone = pgdat->node_zones + i;
3597 		if (!managed_zone(zone))
3598 			continue;
3599 
3600 		nr_boost_reclaim += zone->watermark_boost;
3601 		zone_boosts[i] = zone->watermark_boost;
3602 	}
3603 	boosted = nr_boost_reclaim;
3604 
3605 restart:
3606 	sc.priority = DEF_PRIORITY;
3607 	do {
3608 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3609 		bool raise_priority = true;
3610 		bool balanced;
3611 		bool ret;
3612 
3613 		sc.reclaim_idx = classzone_idx;
3614 
3615 		/*
3616 		 * If the number of buffer_heads exceeds the maximum allowed
3617 		 * then consider reclaiming from all zones. This has a dual
3618 		 * purpose -- on 64-bit systems it is expected that
3619 		 * buffer_heads are stripped during active rotation. On 32-bit
3620 		 * systems, highmem pages can pin lowmem memory and shrinking
3621 		 * buffers can relieve lowmem pressure. Reclaim may still not
3622 		 * go ahead if all eligible zones for the original allocation
3623 		 * request are balanced to avoid excessive reclaim from kswapd.
3624 		 */
3625 		if (buffer_heads_over_limit) {
3626 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3627 				zone = pgdat->node_zones + i;
3628 				if (!managed_zone(zone))
3629 					continue;
3630 
3631 				sc.reclaim_idx = i;
3632 				break;
3633 			}
3634 		}
3635 
3636 		/*
3637 		 * If the pgdat is imbalanced then ignore boosting and preserve
3638 		 * the watermarks for a later time and restart. Note that the
3639 		 * zone watermarks will be still reset at the end of balancing
3640 		 * on the grounds that the normal reclaim should be enough to
3641 		 * re-evaluate if boosting is required when kswapd next wakes.
3642 		 */
3643 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3644 		if (!balanced && nr_boost_reclaim) {
3645 			nr_boost_reclaim = 0;
3646 			goto restart;
3647 		}
3648 
3649 		/*
3650 		 * If boosting is not active then only reclaim if there are no
3651 		 * eligible zones. Note that sc.reclaim_idx is not used as
3652 		 * buffer_heads_over_limit may have adjusted it.
3653 		 */
3654 		if (!nr_boost_reclaim && balanced)
3655 			goto out;
3656 
3657 		/* Limit the priority of boosting to avoid reclaim writeback */
3658 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3659 			raise_priority = false;
3660 
3661 		/*
3662 		 * Do not writeback or swap pages for boosted reclaim. The
3663 		 * intent is to relieve pressure not issue sub-optimal IO
3664 		 * from reclaim context. If no pages are reclaimed, the
3665 		 * reclaim will be aborted.
3666 		 */
3667 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3668 		sc.may_swap = !nr_boost_reclaim;
3669 
3670 		/*
3671 		 * Do some background aging of the anon list, to give
3672 		 * pages a chance to be referenced before reclaiming. All
3673 		 * pages are rotated regardless of classzone as this is
3674 		 * about consistent aging.
3675 		 */
3676 		age_active_anon(pgdat, &sc);
3677 
3678 		/*
3679 		 * If we're getting trouble reclaiming, start doing writepage
3680 		 * even in laptop mode.
3681 		 */
3682 		if (sc.priority < DEF_PRIORITY - 2)
3683 			sc.may_writepage = 1;
3684 
3685 		/* Call soft limit reclaim before calling shrink_node. */
3686 		sc.nr_scanned = 0;
3687 		nr_soft_scanned = 0;
3688 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3689 						sc.gfp_mask, &nr_soft_scanned);
3690 		sc.nr_reclaimed += nr_soft_reclaimed;
3691 
3692 		/*
3693 		 * There should be no need to raise the scanning priority if
3694 		 * enough pages are already being scanned that that high
3695 		 * watermark would be met at 100% efficiency.
3696 		 */
3697 		if (kswapd_shrink_node(pgdat, &sc))
3698 			raise_priority = false;
3699 
3700 		/*
3701 		 * If the low watermark is met there is no need for processes
3702 		 * to be throttled on pfmemalloc_wait as they should not be
3703 		 * able to safely make forward progress. Wake them
3704 		 */
3705 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3706 				allow_direct_reclaim(pgdat))
3707 			wake_up_all(&pgdat->pfmemalloc_wait);
3708 
3709 		/* Check if kswapd should be suspending */
3710 		__fs_reclaim_release();
3711 		ret = try_to_freeze();
3712 		__fs_reclaim_acquire();
3713 		if (ret || kthread_should_stop())
3714 			break;
3715 
3716 		/*
3717 		 * Raise priority if scanning rate is too low or there was no
3718 		 * progress in reclaiming pages
3719 		 */
3720 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3721 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3722 
3723 		/*
3724 		 * If reclaim made no progress for a boost, stop reclaim as
3725 		 * IO cannot be queued and it could be an infinite loop in
3726 		 * extreme circumstances.
3727 		 */
3728 		if (nr_boost_reclaim && !nr_reclaimed)
3729 			break;
3730 
3731 		if (raise_priority || !nr_reclaimed)
3732 			sc.priority--;
3733 	} while (sc.priority >= 1);
3734 
3735 	if (!sc.nr_reclaimed)
3736 		pgdat->kswapd_failures++;
3737 
3738 out:
3739 	/* If reclaim was boosted, account for the reclaim done in this pass */
3740 	if (boosted) {
3741 		unsigned long flags;
3742 
3743 		for (i = 0; i <= classzone_idx; i++) {
3744 			if (!zone_boosts[i])
3745 				continue;
3746 
3747 			/* Increments are under the zone lock */
3748 			zone = pgdat->node_zones + i;
3749 			spin_lock_irqsave(&zone->lock, flags);
3750 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3751 			spin_unlock_irqrestore(&zone->lock, flags);
3752 		}
3753 
3754 		/*
3755 		 * As there is now likely space, wakeup kcompact to defragment
3756 		 * pageblocks.
3757 		 */
3758 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3759 	}
3760 
3761 	snapshot_refaults(NULL, pgdat);
3762 	__fs_reclaim_release();
3763 	psi_memstall_leave(&pflags);
3764 	set_task_reclaim_state(current, NULL);
3765 
3766 	/*
3767 	 * Return the order kswapd stopped reclaiming at as
3768 	 * prepare_kswapd_sleep() takes it into account. If another caller
3769 	 * entered the allocator slow path while kswapd was awake, order will
3770 	 * remain at the higher level.
3771 	 */
3772 	return sc.order;
3773 }
3774 
3775 /*
3776  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3777  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3778  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3779  * after previous reclaim attempt (node is still unbalanced). In that case
3780  * return the zone index of the previous kswapd reclaim cycle.
3781  */
3782 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3783 					   enum zone_type prev_classzone_idx)
3784 {
3785 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3786 		return prev_classzone_idx;
3787 	return pgdat->kswapd_classzone_idx;
3788 }
3789 
3790 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3791 				unsigned int classzone_idx)
3792 {
3793 	long remaining = 0;
3794 	DEFINE_WAIT(wait);
3795 
3796 	if (freezing(current) || kthread_should_stop())
3797 		return;
3798 
3799 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3800 
3801 	/*
3802 	 * Try to sleep for a short interval. Note that kcompactd will only be
3803 	 * woken if it is possible to sleep for a short interval. This is
3804 	 * deliberate on the assumption that if reclaim cannot keep an
3805 	 * eligible zone balanced that it's also unlikely that compaction will
3806 	 * succeed.
3807 	 */
3808 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3809 		/*
3810 		 * Compaction records what page blocks it recently failed to
3811 		 * isolate pages from and skips them in the future scanning.
3812 		 * When kswapd is going to sleep, it is reasonable to assume
3813 		 * that pages and compaction may succeed so reset the cache.
3814 		 */
3815 		reset_isolation_suitable(pgdat);
3816 
3817 		/*
3818 		 * We have freed the memory, now we should compact it to make
3819 		 * allocation of the requested order possible.
3820 		 */
3821 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3822 
3823 		remaining = schedule_timeout(HZ/10);
3824 
3825 		/*
3826 		 * If woken prematurely then reset kswapd_classzone_idx and
3827 		 * order. The values will either be from a wakeup request or
3828 		 * the previous request that slept prematurely.
3829 		 */
3830 		if (remaining) {
3831 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3832 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3833 		}
3834 
3835 		finish_wait(&pgdat->kswapd_wait, &wait);
3836 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3837 	}
3838 
3839 	/*
3840 	 * After a short sleep, check if it was a premature sleep. If not, then
3841 	 * go fully to sleep until explicitly woken up.
3842 	 */
3843 	if (!remaining &&
3844 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3845 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3846 
3847 		/*
3848 		 * vmstat counters are not perfectly accurate and the estimated
3849 		 * value for counters such as NR_FREE_PAGES can deviate from the
3850 		 * true value by nr_online_cpus * threshold. To avoid the zone
3851 		 * watermarks being breached while under pressure, we reduce the
3852 		 * per-cpu vmstat threshold while kswapd is awake and restore
3853 		 * them before going back to sleep.
3854 		 */
3855 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3856 
3857 		if (!kthread_should_stop())
3858 			schedule();
3859 
3860 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3861 	} else {
3862 		if (remaining)
3863 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3864 		else
3865 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3866 	}
3867 	finish_wait(&pgdat->kswapd_wait, &wait);
3868 }
3869 
3870 /*
3871  * The background pageout daemon, started as a kernel thread
3872  * from the init process.
3873  *
3874  * This basically trickles out pages so that we have _some_
3875  * free memory available even if there is no other activity
3876  * that frees anything up. This is needed for things like routing
3877  * etc, where we otherwise might have all activity going on in
3878  * asynchronous contexts that cannot page things out.
3879  *
3880  * If there are applications that are active memory-allocators
3881  * (most normal use), this basically shouldn't matter.
3882  */
3883 static int kswapd(void *p)
3884 {
3885 	unsigned int alloc_order, reclaim_order;
3886 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3887 	pg_data_t *pgdat = (pg_data_t*)p;
3888 	struct task_struct *tsk = current;
3889 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3890 
3891 	if (!cpumask_empty(cpumask))
3892 		set_cpus_allowed_ptr(tsk, cpumask);
3893 
3894 	/*
3895 	 * Tell the memory management that we're a "memory allocator",
3896 	 * and that if we need more memory we should get access to it
3897 	 * regardless (see "__alloc_pages()"). "kswapd" should
3898 	 * never get caught in the normal page freeing logic.
3899 	 *
3900 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3901 	 * you need a small amount of memory in order to be able to
3902 	 * page out something else, and this flag essentially protects
3903 	 * us from recursively trying to free more memory as we're
3904 	 * trying to free the first piece of memory in the first place).
3905 	 */
3906 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3907 	set_freezable();
3908 
3909 	pgdat->kswapd_order = 0;
3910 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3911 	for ( ; ; ) {
3912 		bool ret;
3913 
3914 		alloc_order = reclaim_order = pgdat->kswapd_order;
3915 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3916 
3917 kswapd_try_sleep:
3918 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3919 					classzone_idx);
3920 
3921 		/* Read the new order and classzone_idx */
3922 		alloc_order = reclaim_order = pgdat->kswapd_order;
3923 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3924 		pgdat->kswapd_order = 0;
3925 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3926 
3927 		ret = try_to_freeze();
3928 		if (kthread_should_stop())
3929 			break;
3930 
3931 		/*
3932 		 * We can speed up thawing tasks if we don't call balance_pgdat
3933 		 * after returning from the refrigerator
3934 		 */
3935 		if (ret)
3936 			continue;
3937 
3938 		/*
3939 		 * Reclaim begins at the requested order but if a high-order
3940 		 * reclaim fails then kswapd falls back to reclaiming for
3941 		 * order-0. If that happens, kswapd will consider sleeping
3942 		 * for the order it finished reclaiming at (reclaim_order)
3943 		 * but kcompactd is woken to compact for the original
3944 		 * request (alloc_order).
3945 		 */
3946 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3947 						alloc_order);
3948 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3949 		if (reclaim_order < alloc_order)
3950 			goto kswapd_try_sleep;
3951 	}
3952 
3953 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3954 
3955 	return 0;
3956 }
3957 
3958 /*
3959  * A zone is low on free memory or too fragmented for high-order memory.  If
3960  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3961  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3962  * has failed or is not needed, still wake up kcompactd if only compaction is
3963  * needed.
3964  */
3965 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3966 		   enum zone_type classzone_idx)
3967 {
3968 	pg_data_t *pgdat;
3969 
3970 	if (!managed_zone(zone))
3971 		return;
3972 
3973 	if (!cpuset_zone_allowed(zone, gfp_flags))
3974 		return;
3975 	pgdat = zone->zone_pgdat;
3976 
3977 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3978 		pgdat->kswapd_classzone_idx = classzone_idx;
3979 	else
3980 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3981 						  classzone_idx);
3982 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3983 	if (!waitqueue_active(&pgdat->kswapd_wait))
3984 		return;
3985 
3986 	/* Hopeless node, leave it to direct reclaim if possible */
3987 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3988 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3989 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3990 		/*
3991 		 * There may be plenty of free memory available, but it's too
3992 		 * fragmented for high-order allocations.  Wake up kcompactd
3993 		 * and rely on compaction_suitable() to determine if it's
3994 		 * needed.  If it fails, it will defer subsequent attempts to
3995 		 * ratelimit its work.
3996 		 */
3997 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3998 			wakeup_kcompactd(pgdat, order, classzone_idx);
3999 		return;
4000 	}
4001 
4002 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4003 				      gfp_flags);
4004 	wake_up_interruptible(&pgdat->kswapd_wait);
4005 }
4006 
4007 #ifdef CONFIG_HIBERNATION
4008 /*
4009  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4010  * freed pages.
4011  *
4012  * Rather than trying to age LRUs the aim is to preserve the overall
4013  * LRU order by reclaiming preferentially
4014  * inactive > active > active referenced > active mapped
4015  */
4016 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4017 {
4018 	struct scan_control sc = {
4019 		.nr_to_reclaim = nr_to_reclaim,
4020 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4021 		.reclaim_idx = MAX_NR_ZONES - 1,
4022 		.priority = DEF_PRIORITY,
4023 		.may_writepage = 1,
4024 		.may_unmap = 1,
4025 		.may_swap = 1,
4026 		.hibernation_mode = 1,
4027 	};
4028 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4029 	unsigned long nr_reclaimed;
4030 	unsigned int noreclaim_flag;
4031 
4032 	fs_reclaim_acquire(sc.gfp_mask);
4033 	noreclaim_flag = memalloc_noreclaim_save();
4034 	set_task_reclaim_state(current, &sc.reclaim_state);
4035 
4036 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4037 
4038 	set_task_reclaim_state(current, NULL);
4039 	memalloc_noreclaim_restore(noreclaim_flag);
4040 	fs_reclaim_release(sc.gfp_mask);
4041 
4042 	return nr_reclaimed;
4043 }
4044 #endif /* CONFIG_HIBERNATION */
4045 
4046 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4047    not required for correctness.  So if the last cpu in a node goes
4048    away, we get changed to run anywhere: as the first one comes back,
4049    restore their cpu bindings. */
4050 static int kswapd_cpu_online(unsigned int cpu)
4051 {
4052 	int nid;
4053 
4054 	for_each_node_state(nid, N_MEMORY) {
4055 		pg_data_t *pgdat = NODE_DATA(nid);
4056 		const struct cpumask *mask;
4057 
4058 		mask = cpumask_of_node(pgdat->node_id);
4059 
4060 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4061 			/* One of our CPUs online: restore mask */
4062 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4063 	}
4064 	return 0;
4065 }
4066 
4067 /*
4068  * This kswapd start function will be called by init and node-hot-add.
4069  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4070  */
4071 int kswapd_run(int nid)
4072 {
4073 	pg_data_t *pgdat = NODE_DATA(nid);
4074 	int ret = 0;
4075 
4076 	if (pgdat->kswapd)
4077 		return 0;
4078 
4079 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4080 	if (IS_ERR(pgdat->kswapd)) {
4081 		/* failure at boot is fatal */
4082 		BUG_ON(system_state < SYSTEM_RUNNING);
4083 		pr_err("Failed to start kswapd on node %d\n", nid);
4084 		ret = PTR_ERR(pgdat->kswapd);
4085 		pgdat->kswapd = NULL;
4086 	}
4087 	return ret;
4088 }
4089 
4090 /*
4091  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4092  * hold mem_hotplug_begin/end().
4093  */
4094 void kswapd_stop(int nid)
4095 {
4096 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4097 
4098 	if (kswapd) {
4099 		kthread_stop(kswapd);
4100 		NODE_DATA(nid)->kswapd = NULL;
4101 	}
4102 }
4103 
4104 static int __init kswapd_init(void)
4105 {
4106 	int nid, ret;
4107 
4108 	swap_setup();
4109 	for_each_node_state(nid, N_MEMORY)
4110  		kswapd_run(nid);
4111 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4112 					"mm/vmscan:online", kswapd_cpu_online,
4113 					NULL);
4114 	WARN_ON(ret < 0);
4115 	return 0;
4116 }
4117 
4118 module_init(kswapd_init)
4119 
4120 #ifdef CONFIG_NUMA
4121 /*
4122  * Node reclaim mode
4123  *
4124  * If non-zero call node_reclaim when the number of free pages falls below
4125  * the watermarks.
4126  */
4127 int node_reclaim_mode __read_mostly;
4128 
4129 #define RECLAIM_OFF 0
4130 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4131 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4132 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4133 
4134 /*
4135  * Priority for NODE_RECLAIM. This determines the fraction of pages
4136  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4137  * a zone.
4138  */
4139 #define NODE_RECLAIM_PRIORITY 4
4140 
4141 /*
4142  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4143  * occur.
4144  */
4145 int sysctl_min_unmapped_ratio = 1;
4146 
4147 /*
4148  * If the number of slab pages in a zone grows beyond this percentage then
4149  * slab reclaim needs to occur.
4150  */
4151 int sysctl_min_slab_ratio = 5;
4152 
4153 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4154 {
4155 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4156 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4157 		node_page_state(pgdat, NR_ACTIVE_FILE);
4158 
4159 	/*
4160 	 * It's possible for there to be more file mapped pages than
4161 	 * accounted for by the pages on the file LRU lists because
4162 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4163 	 */
4164 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4165 }
4166 
4167 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4168 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4169 {
4170 	unsigned long nr_pagecache_reclaimable;
4171 	unsigned long delta = 0;
4172 
4173 	/*
4174 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4175 	 * potentially reclaimable. Otherwise, we have to worry about
4176 	 * pages like swapcache and node_unmapped_file_pages() provides
4177 	 * a better estimate
4178 	 */
4179 	if (node_reclaim_mode & RECLAIM_UNMAP)
4180 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4181 	else
4182 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4183 
4184 	/* If we can't clean pages, remove dirty pages from consideration */
4185 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4186 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4187 
4188 	/* Watch for any possible underflows due to delta */
4189 	if (unlikely(delta > nr_pagecache_reclaimable))
4190 		delta = nr_pagecache_reclaimable;
4191 
4192 	return nr_pagecache_reclaimable - delta;
4193 }
4194 
4195 /*
4196  * Try to free up some pages from this node through reclaim.
4197  */
4198 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4199 {
4200 	/* Minimum pages needed in order to stay on node */
4201 	const unsigned long nr_pages = 1 << order;
4202 	struct task_struct *p = current;
4203 	unsigned int noreclaim_flag;
4204 	struct scan_control sc = {
4205 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4206 		.gfp_mask = current_gfp_context(gfp_mask),
4207 		.order = order,
4208 		.priority = NODE_RECLAIM_PRIORITY,
4209 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4210 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4211 		.may_swap = 1,
4212 		.reclaim_idx = gfp_zone(gfp_mask),
4213 	};
4214 
4215 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4216 					   sc.gfp_mask);
4217 
4218 	cond_resched();
4219 	fs_reclaim_acquire(sc.gfp_mask);
4220 	/*
4221 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4222 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4223 	 * and RECLAIM_UNMAP.
4224 	 */
4225 	noreclaim_flag = memalloc_noreclaim_save();
4226 	p->flags |= PF_SWAPWRITE;
4227 	set_task_reclaim_state(p, &sc.reclaim_state);
4228 
4229 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4230 		/*
4231 		 * Free memory by calling shrink node with increasing
4232 		 * priorities until we have enough memory freed.
4233 		 */
4234 		do {
4235 			shrink_node(pgdat, &sc);
4236 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4237 	}
4238 
4239 	set_task_reclaim_state(p, NULL);
4240 	current->flags &= ~PF_SWAPWRITE;
4241 	memalloc_noreclaim_restore(noreclaim_flag);
4242 	fs_reclaim_release(sc.gfp_mask);
4243 
4244 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4245 
4246 	return sc.nr_reclaimed >= nr_pages;
4247 }
4248 
4249 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4250 {
4251 	int ret;
4252 
4253 	/*
4254 	 * Node reclaim reclaims unmapped file backed pages and
4255 	 * slab pages if we are over the defined limits.
4256 	 *
4257 	 * A small portion of unmapped file backed pages is needed for
4258 	 * file I/O otherwise pages read by file I/O will be immediately
4259 	 * thrown out if the node is overallocated. So we do not reclaim
4260 	 * if less than a specified percentage of the node is used by
4261 	 * unmapped file backed pages.
4262 	 */
4263 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4264 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4265 		return NODE_RECLAIM_FULL;
4266 
4267 	/*
4268 	 * Do not scan if the allocation should not be delayed.
4269 	 */
4270 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4271 		return NODE_RECLAIM_NOSCAN;
4272 
4273 	/*
4274 	 * Only run node reclaim on the local node or on nodes that do not
4275 	 * have associated processors. This will favor the local processor
4276 	 * over remote processors and spread off node memory allocations
4277 	 * as wide as possible.
4278 	 */
4279 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4280 		return NODE_RECLAIM_NOSCAN;
4281 
4282 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4283 		return NODE_RECLAIM_NOSCAN;
4284 
4285 	ret = __node_reclaim(pgdat, gfp_mask, order);
4286 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4287 
4288 	if (!ret)
4289 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4290 
4291 	return ret;
4292 }
4293 #endif
4294 
4295 /*
4296  * page_evictable - test whether a page is evictable
4297  * @page: the page to test
4298  *
4299  * Test whether page is evictable--i.e., should be placed on active/inactive
4300  * lists vs unevictable list.
4301  *
4302  * Reasons page might not be evictable:
4303  * (1) page's mapping marked unevictable
4304  * (2) page is part of an mlocked VMA
4305  *
4306  */
4307 int page_evictable(struct page *page)
4308 {
4309 	int ret;
4310 
4311 	/* Prevent address_space of inode and swap cache from being freed */
4312 	rcu_read_lock();
4313 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4314 	rcu_read_unlock();
4315 	return ret;
4316 }
4317 
4318 /**
4319  * check_move_unevictable_pages - check pages for evictability and move to
4320  * appropriate zone lru list
4321  * @pvec: pagevec with lru pages to check
4322  *
4323  * Checks pages for evictability, if an evictable page is in the unevictable
4324  * lru list, moves it to the appropriate evictable lru list. This function
4325  * should be only used for lru pages.
4326  */
4327 void check_move_unevictable_pages(struct pagevec *pvec)
4328 {
4329 	struct lruvec *lruvec;
4330 	struct pglist_data *pgdat = NULL;
4331 	int pgscanned = 0;
4332 	int pgrescued = 0;
4333 	int i;
4334 
4335 	for (i = 0; i < pvec->nr; i++) {
4336 		struct page *page = pvec->pages[i];
4337 		struct pglist_data *pagepgdat = page_pgdat(page);
4338 
4339 		pgscanned++;
4340 		if (pagepgdat != pgdat) {
4341 			if (pgdat)
4342 				spin_unlock_irq(&pgdat->lru_lock);
4343 			pgdat = pagepgdat;
4344 			spin_lock_irq(&pgdat->lru_lock);
4345 		}
4346 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4347 
4348 		if (!PageLRU(page) || !PageUnevictable(page))
4349 			continue;
4350 
4351 		if (page_evictable(page)) {
4352 			enum lru_list lru = page_lru_base_type(page);
4353 
4354 			VM_BUG_ON_PAGE(PageActive(page), page);
4355 			ClearPageUnevictable(page);
4356 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4357 			add_page_to_lru_list(page, lruvec, lru);
4358 			pgrescued++;
4359 		}
4360 	}
4361 
4362 	if (pgdat) {
4363 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4364 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4365 		spin_unlock_irq(&pgdat->lru_lock);
4366 	}
4367 }
4368 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4369