1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 #include <linux/sched/sysctl.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* 83 * Scan pressure balancing between anon and file LRUs 84 */ 85 unsigned long anon_cost; 86 unsigned long file_cost; 87 88 /* Can active pages be deactivated as part of reclaim? */ 89 #define DEACTIVATE_ANON 1 90 #define DEACTIVATE_FILE 2 91 unsigned int may_deactivate:2; 92 unsigned int force_deactivate:1; 93 unsigned int skipped_deactivate:1; 94 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 96 unsigned int may_writepage:1; 97 98 /* Can mapped pages be reclaimed? */ 99 unsigned int may_unmap:1; 100 101 /* Can pages be swapped as part of reclaim? */ 102 unsigned int may_swap:1; 103 104 /* 105 * Cgroup memory below memory.low is protected as long as we 106 * don't threaten to OOM. If any cgroup is reclaimed at 107 * reduced force or passed over entirely due to its memory.low 108 * setting (memcg_low_skipped), and nothing is reclaimed as a 109 * result, then go back for one more cycle that reclaims the protected 110 * memory (memcg_low_reclaim) to avert OOM. 111 */ 112 unsigned int memcg_low_reclaim:1; 113 unsigned int memcg_low_skipped:1; 114 115 unsigned int hibernation_mode:1; 116 117 /* One of the zones is ready for compaction */ 118 unsigned int compaction_ready:1; 119 120 /* There is easily reclaimable cold cache in the current node */ 121 unsigned int cache_trim_mode:1; 122 123 /* The file pages on the current node are dangerously low */ 124 unsigned int file_is_tiny:1; 125 126 /* Always discard instead of demoting to lower tier memory */ 127 unsigned int no_demotion:1; 128 129 /* Allocation order */ 130 s8 order; 131 132 /* Scan (total_size >> priority) pages at once */ 133 s8 priority; 134 135 /* The highest zone to isolate pages for reclaim from */ 136 s8 reclaim_idx; 137 138 /* This context's GFP mask */ 139 gfp_t gfp_mask; 140 141 /* Incremented by the number of inactive pages that were scanned */ 142 unsigned long nr_scanned; 143 144 /* Number of pages freed so far during a call to shrink_zones() */ 145 unsigned long nr_reclaimed; 146 147 struct { 148 unsigned int dirty; 149 unsigned int unqueued_dirty; 150 unsigned int congested; 151 unsigned int writeback; 152 unsigned int immediate; 153 unsigned int file_taken; 154 unsigned int taken; 155 } nr; 156 157 /* for recording the reclaimed slab by now */ 158 struct reclaim_state reclaim_state; 159 }; 160 161 #ifdef ARCH_HAS_PREFETCHW 162 #define prefetchw_prev_lru_page(_page, _base, _field) \ 163 do { \ 164 if ((_page)->lru.prev != _base) { \ 165 struct page *prev; \ 166 \ 167 prev = lru_to_page(&(_page->lru)); \ 168 prefetchw(&prev->_field); \ 169 } \ 170 } while (0) 171 #else 172 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 173 #endif 174 175 /* 176 * From 0 .. 200. Higher means more swappy. 177 */ 178 int vm_swappiness = 60; 179 180 static void set_task_reclaim_state(struct task_struct *task, 181 struct reclaim_state *rs) 182 { 183 /* Check for an overwrite */ 184 WARN_ON_ONCE(rs && task->reclaim_state); 185 186 /* Check for the nulling of an already-nulled member */ 187 WARN_ON_ONCE(!rs && !task->reclaim_state); 188 189 task->reclaim_state = rs; 190 } 191 192 static LIST_HEAD(shrinker_list); 193 static DECLARE_RWSEM(shrinker_rwsem); 194 195 #ifdef CONFIG_MEMCG 196 static int shrinker_nr_max; 197 198 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 199 static inline int shrinker_map_size(int nr_items) 200 { 201 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 202 } 203 204 static inline int shrinker_defer_size(int nr_items) 205 { 206 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 207 } 208 209 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 210 int nid) 211 { 212 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 213 lockdep_is_held(&shrinker_rwsem)); 214 } 215 216 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 217 int map_size, int defer_size, 218 int old_map_size, int old_defer_size) 219 { 220 struct shrinker_info *new, *old; 221 struct mem_cgroup_per_node *pn; 222 int nid; 223 int size = map_size + defer_size; 224 225 for_each_node(nid) { 226 pn = memcg->nodeinfo[nid]; 227 old = shrinker_info_protected(memcg, nid); 228 /* Not yet online memcg */ 229 if (!old) 230 return 0; 231 232 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 233 if (!new) 234 return -ENOMEM; 235 236 new->nr_deferred = (atomic_long_t *)(new + 1); 237 new->map = (void *)new->nr_deferred + defer_size; 238 239 /* map: set all old bits, clear all new bits */ 240 memset(new->map, (int)0xff, old_map_size); 241 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 242 /* nr_deferred: copy old values, clear all new values */ 243 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 244 memset((void *)new->nr_deferred + old_defer_size, 0, 245 defer_size - old_defer_size); 246 247 rcu_assign_pointer(pn->shrinker_info, new); 248 kvfree_rcu(old, rcu); 249 } 250 251 return 0; 252 } 253 254 void free_shrinker_info(struct mem_cgroup *memcg) 255 { 256 struct mem_cgroup_per_node *pn; 257 struct shrinker_info *info; 258 int nid; 259 260 for_each_node(nid) { 261 pn = memcg->nodeinfo[nid]; 262 info = rcu_dereference_protected(pn->shrinker_info, true); 263 kvfree(info); 264 rcu_assign_pointer(pn->shrinker_info, NULL); 265 } 266 } 267 268 int alloc_shrinker_info(struct mem_cgroup *memcg) 269 { 270 struct shrinker_info *info; 271 int nid, size, ret = 0; 272 int map_size, defer_size = 0; 273 274 down_write(&shrinker_rwsem); 275 map_size = shrinker_map_size(shrinker_nr_max); 276 defer_size = shrinker_defer_size(shrinker_nr_max); 277 size = map_size + defer_size; 278 for_each_node(nid) { 279 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 280 if (!info) { 281 free_shrinker_info(memcg); 282 ret = -ENOMEM; 283 break; 284 } 285 info->nr_deferred = (atomic_long_t *)(info + 1); 286 info->map = (void *)info->nr_deferred + defer_size; 287 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 288 } 289 up_write(&shrinker_rwsem); 290 291 return ret; 292 } 293 294 static inline bool need_expand(int nr_max) 295 { 296 return round_up(nr_max, BITS_PER_LONG) > 297 round_up(shrinker_nr_max, BITS_PER_LONG); 298 } 299 300 static int expand_shrinker_info(int new_id) 301 { 302 int ret = 0; 303 int new_nr_max = new_id + 1; 304 int map_size, defer_size = 0; 305 int old_map_size, old_defer_size = 0; 306 struct mem_cgroup *memcg; 307 308 if (!need_expand(new_nr_max)) 309 goto out; 310 311 if (!root_mem_cgroup) 312 goto out; 313 314 lockdep_assert_held(&shrinker_rwsem); 315 316 map_size = shrinker_map_size(new_nr_max); 317 defer_size = shrinker_defer_size(new_nr_max); 318 old_map_size = shrinker_map_size(shrinker_nr_max); 319 old_defer_size = shrinker_defer_size(shrinker_nr_max); 320 321 memcg = mem_cgroup_iter(NULL, NULL, NULL); 322 do { 323 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 324 old_map_size, old_defer_size); 325 if (ret) { 326 mem_cgroup_iter_break(NULL, memcg); 327 goto out; 328 } 329 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 330 out: 331 if (!ret) 332 shrinker_nr_max = new_nr_max; 333 334 return ret; 335 } 336 337 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 338 { 339 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 340 struct shrinker_info *info; 341 342 rcu_read_lock(); 343 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 344 /* Pairs with smp mb in shrink_slab() */ 345 smp_mb__before_atomic(); 346 set_bit(shrinker_id, info->map); 347 rcu_read_unlock(); 348 } 349 } 350 351 static DEFINE_IDR(shrinker_idr); 352 353 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 354 { 355 int id, ret = -ENOMEM; 356 357 if (mem_cgroup_disabled()) 358 return -ENOSYS; 359 360 down_write(&shrinker_rwsem); 361 /* This may call shrinker, so it must use down_read_trylock() */ 362 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 363 if (id < 0) 364 goto unlock; 365 366 if (id >= shrinker_nr_max) { 367 if (expand_shrinker_info(id)) { 368 idr_remove(&shrinker_idr, id); 369 goto unlock; 370 } 371 } 372 shrinker->id = id; 373 ret = 0; 374 unlock: 375 up_write(&shrinker_rwsem); 376 return ret; 377 } 378 379 static void unregister_memcg_shrinker(struct shrinker *shrinker) 380 { 381 int id = shrinker->id; 382 383 BUG_ON(id < 0); 384 385 lockdep_assert_held(&shrinker_rwsem); 386 387 idr_remove(&shrinker_idr, id); 388 } 389 390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 391 struct mem_cgroup *memcg) 392 { 393 struct shrinker_info *info; 394 395 info = shrinker_info_protected(memcg, nid); 396 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 397 } 398 399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 400 struct mem_cgroup *memcg) 401 { 402 struct shrinker_info *info; 403 404 info = shrinker_info_protected(memcg, nid); 405 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 406 } 407 408 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 409 { 410 int i, nid; 411 long nr; 412 struct mem_cgroup *parent; 413 struct shrinker_info *child_info, *parent_info; 414 415 parent = parent_mem_cgroup(memcg); 416 if (!parent) 417 parent = root_mem_cgroup; 418 419 /* Prevent from concurrent shrinker_info expand */ 420 down_read(&shrinker_rwsem); 421 for_each_node(nid) { 422 child_info = shrinker_info_protected(memcg, nid); 423 parent_info = shrinker_info_protected(parent, nid); 424 for (i = 0; i < shrinker_nr_max; i++) { 425 nr = atomic_long_read(&child_info->nr_deferred[i]); 426 atomic_long_add(nr, &parent_info->nr_deferred[i]); 427 } 428 } 429 up_read(&shrinker_rwsem); 430 } 431 432 static bool cgroup_reclaim(struct scan_control *sc) 433 { 434 return sc->target_mem_cgroup; 435 } 436 437 /** 438 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 439 * @sc: scan_control in question 440 * 441 * The normal page dirty throttling mechanism in balance_dirty_pages() is 442 * completely broken with the legacy memcg and direct stalling in 443 * shrink_page_list() is used for throttling instead, which lacks all the 444 * niceties such as fairness, adaptive pausing, bandwidth proportional 445 * allocation and configurability. 446 * 447 * This function tests whether the vmscan currently in progress can assume 448 * that the normal dirty throttling mechanism is operational. 449 */ 450 static bool writeback_throttling_sane(struct scan_control *sc) 451 { 452 if (!cgroup_reclaim(sc)) 453 return true; 454 #ifdef CONFIG_CGROUP_WRITEBACK 455 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 return true; 457 #endif 458 return false; 459 } 460 #else 461 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 462 { 463 return -ENOSYS; 464 } 465 466 static void unregister_memcg_shrinker(struct shrinker *shrinker) 467 { 468 } 469 470 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 471 struct mem_cgroup *memcg) 472 { 473 return 0; 474 } 475 476 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 477 struct mem_cgroup *memcg) 478 { 479 return 0; 480 } 481 482 static bool cgroup_reclaim(struct scan_control *sc) 483 { 484 return false; 485 } 486 487 static bool writeback_throttling_sane(struct scan_control *sc) 488 { 489 return true; 490 } 491 #endif 492 493 static long xchg_nr_deferred(struct shrinker *shrinker, 494 struct shrink_control *sc) 495 { 496 int nid = sc->nid; 497 498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 499 nid = 0; 500 501 if (sc->memcg && 502 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 503 return xchg_nr_deferred_memcg(nid, shrinker, 504 sc->memcg); 505 506 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 507 } 508 509 510 static long add_nr_deferred(long nr, struct shrinker *shrinker, 511 struct shrink_control *sc) 512 { 513 int nid = sc->nid; 514 515 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 516 nid = 0; 517 518 if (sc->memcg && 519 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 520 return add_nr_deferred_memcg(nr, nid, shrinker, 521 sc->memcg); 522 523 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 524 } 525 526 static bool can_demote(int nid, struct scan_control *sc) 527 { 528 if (!numa_demotion_enabled) 529 return false; 530 if (sc) { 531 if (sc->no_demotion) 532 return false; 533 /* It is pointless to do demotion in memcg reclaim */ 534 if (cgroup_reclaim(sc)) 535 return false; 536 } 537 if (next_demotion_node(nid) == NUMA_NO_NODE) 538 return false; 539 540 return true; 541 } 542 543 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 544 int nid, 545 struct scan_control *sc) 546 { 547 if (memcg == NULL) { 548 /* 549 * For non-memcg reclaim, is there 550 * space in any swap device? 551 */ 552 if (get_nr_swap_pages() > 0) 553 return true; 554 } else { 555 /* Is the memcg below its swap limit? */ 556 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 557 return true; 558 } 559 560 /* 561 * The page can not be swapped. 562 * 563 * Can it be reclaimed from this node via demotion? 564 */ 565 return can_demote(nid, sc); 566 } 567 568 /* 569 * This misses isolated pages which are not accounted for to save counters. 570 * As the data only determines if reclaim or compaction continues, it is 571 * not expected that isolated pages will be a dominating factor. 572 */ 573 unsigned long zone_reclaimable_pages(struct zone *zone) 574 { 575 unsigned long nr; 576 577 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 578 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 579 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 580 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 581 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 582 583 return nr; 584 } 585 586 /** 587 * lruvec_lru_size - Returns the number of pages on the given LRU list. 588 * @lruvec: lru vector 589 * @lru: lru to use 590 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 591 */ 592 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 593 int zone_idx) 594 { 595 unsigned long size = 0; 596 int zid; 597 598 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 599 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 600 601 if (!managed_zone(zone)) 602 continue; 603 604 if (!mem_cgroup_disabled()) 605 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 606 else 607 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 608 } 609 return size; 610 } 611 612 /* 613 * Add a shrinker callback to be called from the vm. 614 */ 615 int prealloc_shrinker(struct shrinker *shrinker) 616 { 617 unsigned int size; 618 int err; 619 620 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 621 err = prealloc_memcg_shrinker(shrinker); 622 if (err != -ENOSYS) 623 return err; 624 625 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 626 } 627 628 size = sizeof(*shrinker->nr_deferred); 629 if (shrinker->flags & SHRINKER_NUMA_AWARE) 630 size *= nr_node_ids; 631 632 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 633 if (!shrinker->nr_deferred) 634 return -ENOMEM; 635 636 return 0; 637 } 638 639 void free_prealloced_shrinker(struct shrinker *shrinker) 640 { 641 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 642 down_write(&shrinker_rwsem); 643 unregister_memcg_shrinker(shrinker); 644 up_write(&shrinker_rwsem); 645 return; 646 } 647 648 kfree(shrinker->nr_deferred); 649 shrinker->nr_deferred = NULL; 650 } 651 652 void register_shrinker_prepared(struct shrinker *shrinker) 653 { 654 down_write(&shrinker_rwsem); 655 list_add_tail(&shrinker->list, &shrinker_list); 656 shrinker->flags |= SHRINKER_REGISTERED; 657 up_write(&shrinker_rwsem); 658 } 659 660 int register_shrinker(struct shrinker *shrinker) 661 { 662 int err = prealloc_shrinker(shrinker); 663 664 if (err) 665 return err; 666 register_shrinker_prepared(shrinker); 667 return 0; 668 } 669 EXPORT_SYMBOL(register_shrinker); 670 671 /* 672 * Remove one 673 */ 674 void unregister_shrinker(struct shrinker *shrinker) 675 { 676 if (!(shrinker->flags & SHRINKER_REGISTERED)) 677 return; 678 679 down_write(&shrinker_rwsem); 680 list_del(&shrinker->list); 681 shrinker->flags &= ~SHRINKER_REGISTERED; 682 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 683 unregister_memcg_shrinker(shrinker); 684 up_write(&shrinker_rwsem); 685 686 kfree(shrinker->nr_deferred); 687 shrinker->nr_deferred = NULL; 688 } 689 EXPORT_SYMBOL(unregister_shrinker); 690 691 /** 692 * synchronize_shrinkers - Wait for all running shrinkers to complete. 693 * 694 * This is equivalent to calling unregister_shrink() and register_shrinker(), 695 * but atomically and with less overhead. This is useful to guarantee that all 696 * shrinker invocations have seen an update, before freeing memory, similar to 697 * rcu. 698 */ 699 void synchronize_shrinkers(void) 700 { 701 down_write(&shrinker_rwsem); 702 up_write(&shrinker_rwsem); 703 } 704 EXPORT_SYMBOL(synchronize_shrinkers); 705 706 #define SHRINK_BATCH 128 707 708 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 709 struct shrinker *shrinker, int priority) 710 { 711 unsigned long freed = 0; 712 unsigned long long delta; 713 long total_scan; 714 long freeable; 715 long nr; 716 long new_nr; 717 long batch_size = shrinker->batch ? shrinker->batch 718 : SHRINK_BATCH; 719 long scanned = 0, next_deferred; 720 721 freeable = shrinker->count_objects(shrinker, shrinkctl); 722 if (freeable == 0 || freeable == SHRINK_EMPTY) 723 return freeable; 724 725 /* 726 * copy the current shrinker scan count into a local variable 727 * and zero it so that other concurrent shrinker invocations 728 * don't also do this scanning work. 729 */ 730 nr = xchg_nr_deferred(shrinker, shrinkctl); 731 732 if (shrinker->seeks) { 733 delta = freeable >> priority; 734 delta *= 4; 735 do_div(delta, shrinker->seeks); 736 } else { 737 /* 738 * These objects don't require any IO to create. Trim 739 * them aggressively under memory pressure to keep 740 * them from causing refetches in the IO caches. 741 */ 742 delta = freeable / 2; 743 } 744 745 total_scan = nr >> priority; 746 total_scan += delta; 747 total_scan = min(total_scan, (2 * freeable)); 748 749 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 750 freeable, delta, total_scan, priority); 751 752 /* 753 * Normally, we should not scan less than batch_size objects in one 754 * pass to avoid too frequent shrinker calls, but if the slab has less 755 * than batch_size objects in total and we are really tight on memory, 756 * we will try to reclaim all available objects, otherwise we can end 757 * up failing allocations although there are plenty of reclaimable 758 * objects spread over several slabs with usage less than the 759 * batch_size. 760 * 761 * We detect the "tight on memory" situations by looking at the total 762 * number of objects we want to scan (total_scan). If it is greater 763 * than the total number of objects on slab (freeable), we must be 764 * scanning at high prio and therefore should try to reclaim as much as 765 * possible. 766 */ 767 while (total_scan >= batch_size || 768 total_scan >= freeable) { 769 unsigned long ret; 770 unsigned long nr_to_scan = min(batch_size, total_scan); 771 772 shrinkctl->nr_to_scan = nr_to_scan; 773 shrinkctl->nr_scanned = nr_to_scan; 774 ret = shrinker->scan_objects(shrinker, shrinkctl); 775 if (ret == SHRINK_STOP) 776 break; 777 freed += ret; 778 779 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 780 total_scan -= shrinkctl->nr_scanned; 781 scanned += shrinkctl->nr_scanned; 782 783 cond_resched(); 784 } 785 786 /* 787 * The deferred work is increased by any new work (delta) that wasn't 788 * done, decreased by old deferred work that was done now. 789 * 790 * And it is capped to two times of the freeable items. 791 */ 792 next_deferred = max_t(long, (nr + delta - scanned), 0); 793 next_deferred = min(next_deferred, (2 * freeable)); 794 795 /* 796 * move the unused scan count back into the shrinker in a 797 * manner that handles concurrent updates. 798 */ 799 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 800 801 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 802 return freed; 803 } 804 805 #ifdef CONFIG_MEMCG 806 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 807 struct mem_cgroup *memcg, int priority) 808 { 809 struct shrinker_info *info; 810 unsigned long ret, freed = 0; 811 int i; 812 813 if (!mem_cgroup_online(memcg)) 814 return 0; 815 816 if (!down_read_trylock(&shrinker_rwsem)) 817 return 0; 818 819 info = shrinker_info_protected(memcg, nid); 820 if (unlikely(!info)) 821 goto unlock; 822 823 for_each_set_bit(i, info->map, shrinker_nr_max) { 824 struct shrink_control sc = { 825 .gfp_mask = gfp_mask, 826 .nid = nid, 827 .memcg = memcg, 828 }; 829 struct shrinker *shrinker; 830 831 shrinker = idr_find(&shrinker_idr, i); 832 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 833 if (!shrinker) 834 clear_bit(i, info->map); 835 continue; 836 } 837 838 /* Call non-slab shrinkers even though kmem is disabled */ 839 if (!memcg_kmem_enabled() && 840 !(shrinker->flags & SHRINKER_NONSLAB)) 841 continue; 842 843 ret = do_shrink_slab(&sc, shrinker, priority); 844 if (ret == SHRINK_EMPTY) { 845 clear_bit(i, info->map); 846 /* 847 * After the shrinker reported that it had no objects to 848 * free, but before we cleared the corresponding bit in 849 * the memcg shrinker map, a new object might have been 850 * added. To make sure, we have the bit set in this 851 * case, we invoke the shrinker one more time and reset 852 * the bit if it reports that it is not empty anymore. 853 * The memory barrier here pairs with the barrier in 854 * set_shrinker_bit(): 855 * 856 * list_lru_add() shrink_slab_memcg() 857 * list_add_tail() clear_bit() 858 * <MB> <MB> 859 * set_bit() do_shrink_slab() 860 */ 861 smp_mb__after_atomic(); 862 ret = do_shrink_slab(&sc, shrinker, priority); 863 if (ret == SHRINK_EMPTY) 864 ret = 0; 865 else 866 set_shrinker_bit(memcg, nid, i); 867 } 868 freed += ret; 869 870 if (rwsem_is_contended(&shrinker_rwsem)) { 871 freed = freed ? : 1; 872 break; 873 } 874 } 875 unlock: 876 up_read(&shrinker_rwsem); 877 return freed; 878 } 879 #else /* CONFIG_MEMCG */ 880 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 881 struct mem_cgroup *memcg, int priority) 882 { 883 return 0; 884 } 885 #endif /* CONFIG_MEMCG */ 886 887 /** 888 * shrink_slab - shrink slab caches 889 * @gfp_mask: allocation context 890 * @nid: node whose slab caches to target 891 * @memcg: memory cgroup whose slab caches to target 892 * @priority: the reclaim priority 893 * 894 * Call the shrink functions to age shrinkable caches. 895 * 896 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 897 * unaware shrinkers will receive a node id of 0 instead. 898 * 899 * @memcg specifies the memory cgroup to target. Unaware shrinkers 900 * are called only if it is the root cgroup. 901 * 902 * @priority is sc->priority, we take the number of objects and >> by priority 903 * in order to get the scan target. 904 * 905 * Returns the number of reclaimed slab objects. 906 */ 907 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 908 struct mem_cgroup *memcg, 909 int priority) 910 { 911 unsigned long ret, freed = 0; 912 struct shrinker *shrinker; 913 914 /* 915 * The root memcg might be allocated even though memcg is disabled 916 * via "cgroup_disable=memory" boot parameter. This could make 917 * mem_cgroup_is_root() return false, then just run memcg slab 918 * shrink, but skip global shrink. This may result in premature 919 * oom. 920 */ 921 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 922 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 923 924 if (!down_read_trylock(&shrinker_rwsem)) 925 goto out; 926 927 list_for_each_entry(shrinker, &shrinker_list, list) { 928 struct shrink_control sc = { 929 .gfp_mask = gfp_mask, 930 .nid = nid, 931 .memcg = memcg, 932 }; 933 934 ret = do_shrink_slab(&sc, shrinker, priority); 935 if (ret == SHRINK_EMPTY) 936 ret = 0; 937 freed += ret; 938 /* 939 * Bail out if someone want to register a new shrinker to 940 * prevent the registration from being stalled for long periods 941 * by parallel ongoing shrinking. 942 */ 943 if (rwsem_is_contended(&shrinker_rwsem)) { 944 freed = freed ? : 1; 945 break; 946 } 947 } 948 949 up_read(&shrinker_rwsem); 950 out: 951 cond_resched(); 952 return freed; 953 } 954 955 static void drop_slab_node(int nid) 956 { 957 unsigned long freed; 958 int shift = 0; 959 960 do { 961 struct mem_cgroup *memcg = NULL; 962 963 if (fatal_signal_pending(current)) 964 return; 965 966 freed = 0; 967 memcg = mem_cgroup_iter(NULL, NULL, NULL); 968 do { 969 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 970 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 971 } while ((freed >> shift++) > 1); 972 } 973 974 void drop_slab(void) 975 { 976 int nid; 977 978 for_each_online_node(nid) 979 drop_slab_node(nid); 980 } 981 982 static inline int is_page_cache_freeable(struct folio *folio) 983 { 984 /* 985 * A freeable page cache page is referenced only by the caller 986 * that isolated the page, the page cache and optional buffer 987 * heads at page->private. 988 */ 989 return folio_ref_count(folio) - folio_test_private(folio) == 990 1 + folio_nr_pages(folio); 991 } 992 993 /* 994 * We detected a synchronous write error writing a folio out. Probably 995 * -ENOSPC. We need to propagate that into the address_space for a subsequent 996 * fsync(), msync() or close(). 997 * 998 * The tricky part is that after writepage we cannot touch the mapping: nothing 999 * prevents it from being freed up. But we have a ref on the folio and once 1000 * that folio is locked, the mapping is pinned. 1001 * 1002 * We're allowed to run sleeping folio_lock() here because we know the caller has 1003 * __GFP_FS. 1004 */ 1005 static void handle_write_error(struct address_space *mapping, 1006 struct folio *folio, int error) 1007 { 1008 folio_lock(folio); 1009 if (folio_mapping(folio) == mapping) 1010 mapping_set_error(mapping, error); 1011 folio_unlock(folio); 1012 } 1013 1014 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1015 { 1016 int reclaimable = 0, write_pending = 0; 1017 int i; 1018 1019 /* 1020 * If kswapd is disabled, reschedule if necessary but do not 1021 * throttle as the system is likely near OOM. 1022 */ 1023 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1024 return true; 1025 1026 /* 1027 * If there are a lot of dirty/writeback pages then do not 1028 * throttle as throttling will occur when the pages cycle 1029 * towards the end of the LRU if still under writeback. 1030 */ 1031 for (i = 0; i < MAX_NR_ZONES; i++) { 1032 struct zone *zone = pgdat->node_zones + i; 1033 1034 if (!populated_zone(zone)) 1035 continue; 1036 1037 reclaimable += zone_reclaimable_pages(zone); 1038 write_pending += zone_page_state_snapshot(zone, 1039 NR_ZONE_WRITE_PENDING); 1040 } 1041 if (2 * write_pending <= reclaimable) 1042 return true; 1043 1044 return false; 1045 } 1046 1047 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1048 { 1049 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1050 long timeout, ret; 1051 DEFINE_WAIT(wait); 1052 1053 /* 1054 * Do not throttle IO workers, kthreads other than kswapd or 1055 * workqueues. They may be required for reclaim to make 1056 * forward progress (e.g. journalling workqueues or kthreads). 1057 */ 1058 if (!current_is_kswapd() && 1059 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1060 cond_resched(); 1061 return; 1062 } 1063 1064 /* 1065 * These figures are pulled out of thin air. 1066 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1067 * parallel reclaimers which is a short-lived event so the timeout is 1068 * short. Failing to make progress or waiting on writeback are 1069 * potentially long-lived events so use a longer timeout. This is shaky 1070 * logic as a failure to make progress could be due to anything from 1071 * writeback to a slow device to excessive references pages at the tail 1072 * of the inactive LRU. 1073 */ 1074 switch(reason) { 1075 case VMSCAN_THROTTLE_WRITEBACK: 1076 timeout = HZ/10; 1077 1078 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1079 WRITE_ONCE(pgdat->nr_reclaim_start, 1080 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1081 } 1082 1083 break; 1084 case VMSCAN_THROTTLE_CONGESTED: 1085 fallthrough; 1086 case VMSCAN_THROTTLE_NOPROGRESS: 1087 if (skip_throttle_noprogress(pgdat)) { 1088 cond_resched(); 1089 return; 1090 } 1091 1092 timeout = 1; 1093 1094 break; 1095 case VMSCAN_THROTTLE_ISOLATED: 1096 timeout = HZ/50; 1097 break; 1098 default: 1099 WARN_ON_ONCE(1); 1100 timeout = HZ; 1101 break; 1102 } 1103 1104 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1105 ret = schedule_timeout(timeout); 1106 finish_wait(wqh, &wait); 1107 1108 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1109 atomic_dec(&pgdat->nr_writeback_throttled); 1110 1111 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1112 jiffies_to_usecs(timeout - ret), 1113 reason); 1114 } 1115 1116 /* 1117 * Account for pages written if tasks are throttled waiting on dirty 1118 * pages to clean. If enough pages have been cleaned since throttling 1119 * started then wakeup the throttled tasks. 1120 */ 1121 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1122 int nr_throttled) 1123 { 1124 unsigned long nr_written; 1125 1126 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1127 1128 /* 1129 * This is an inaccurate read as the per-cpu deltas may not 1130 * be synchronised. However, given that the system is 1131 * writeback throttled, it is not worth taking the penalty 1132 * of getting an accurate count. At worst, the throttle 1133 * timeout guarantees forward progress. 1134 */ 1135 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1136 READ_ONCE(pgdat->nr_reclaim_start); 1137 1138 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1139 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1140 } 1141 1142 /* possible outcome of pageout() */ 1143 typedef enum { 1144 /* failed to write page out, page is locked */ 1145 PAGE_KEEP, 1146 /* move page to the active list, page is locked */ 1147 PAGE_ACTIVATE, 1148 /* page has been sent to the disk successfully, page is unlocked */ 1149 PAGE_SUCCESS, 1150 /* page is clean and locked */ 1151 PAGE_CLEAN, 1152 } pageout_t; 1153 1154 /* 1155 * pageout is called by shrink_page_list() for each dirty page. 1156 * Calls ->writepage(). 1157 */ 1158 static pageout_t pageout(struct folio *folio, struct address_space *mapping) 1159 { 1160 /* 1161 * If the folio is dirty, only perform writeback if that write 1162 * will be non-blocking. To prevent this allocation from being 1163 * stalled by pagecache activity. But note that there may be 1164 * stalls if we need to run get_block(). We could test 1165 * PagePrivate for that. 1166 * 1167 * If this process is currently in __generic_file_write_iter() against 1168 * this folio's queue, we can perform writeback even if that 1169 * will block. 1170 * 1171 * If the folio is swapcache, write it back even if that would 1172 * block, for some throttling. This happens by accident, because 1173 * swap_backing_dev_info is bust: it doesn't reflect the 1174 * congestion state of the swapdevs. Easy to fix, if needed. 1175 */ 1176 if (!is_page_cache_freeable(folio)) 1177 return PAGE_KEEP; 1178 if (!mapping) { 1179 /* 1180 * Some data journaling orphaned folios can have 1181 * folio->mapping == NULL while being dirty with clean buffers. 1182 */ 1183 if (folio_test_private(folio)) { 1184 if (try_to_free_buffers(&folio->page)) { 1185 folio_clear_dirty(folio); 1186 pr_info("%s: orphaned folio\n", __func__); 1187 return PAGE_CLEAN; 1188 } 1189 } 1190 return PAGE_KEEP; 1191 } 1192 if (mapping->a_ops->writepage == NULL) 1193 return PAGE_ACTIVATE; 1194 1195 if (folio_clear_dirty_for_io(folio)) { 1196 int res; 1197 struct writeback_control wbc = { 1198 .sync_mode = WB_SYNC_NONE, 1199 .nr_to_write = SWAP_CLUSTER_MAX, 1200 .range_start = 0, 1201 .range_end = LLONG_MAX, 1202 .for_reclaim = 1, 1203 }; 1204 1205 folio_set_reclaim(folio); 1206 res = mapping->a_ops->writepage(&folio->page, &wbc); 1207 if (res < 0) 1208 handle_write_error(mapping, folio, res); 1209 if (res == AOP_WRITEPAGE_ACTIVATE) { 1210 folio_clear_reclaim(folio); 1211 return PAGE_ACTIVATE; 1212 } 1213 1214 if (!folio_test_writeback(folio)) { 1215 /* synchronous write or broken a_ops? */ 1216 folio_clear_reclaim(folio); 1217 } 1218 trace_mm_vmscan_write_folio(folio); 1219 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1220 return PAGE_SUCCESS; 1221 } 1222 1223 return PAGE_CLEAN; 1224 } 1225 1226 /* 1227 * Same as remove_mapping, but if the page is removed from the mapping, it 1228 * gets returned with a refcount of 0. 1229 */ 1230 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1231 bool reclaimed, struct mem_cgroup *target_memcg) 1232 { 1233 int refcount; 1234 void *shadow = NULL; 1235 1236 BUG_ON(!folio_test_locked(folio)); 1237 BUG_ON(mapping != folio_mapping(folio)); 1238 1239 if (!folio_test_swapcache(folio)) 1240 spin_lock(&mapping->host->i_lock); 1241 xa_lock_irq(&mapping->i_pages); 1242 /* 1243 * The non racy check for a busy page. 1244 * 1245 * Must be careful with the order of the tests. When someone has 1246 * a ref to the page, it may be possible that they dirty it then 1247 * drop the reference. So if PageDirty is tested before page_count 1248 * here, then the following race may occur: 1249 * 1250 * get_user_pages(&page); 1251 * [user mapping goes away] 1252 * write_to(page); 1253 * !PageDirty(page) [good] 1254 * SetPageDirty(page); 1255 * put_page(page); 1256 * !page_count(page) [good, discard it] 1257 * 1258 * [oops, our write_to data is lost] 1259 * 1260 * Reversing the order of the tests ensures such a situation cannot 1261 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1262 * load is not satisfied before that of page->_refcount. 1263 * 1264 * Note that if SetPageDirty is always performed via set_page_dirty, 1265 * and thus under the i_pages lock, then this ordering is not required. 1266 */ 1267 refcount = 1 + folio_nr_pages(folio); 1268 if (!folio_ref_freeze(folio, refcount)) 1269 goto cannot_free; 1270 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1271 if (unlikely(folio_test_dirty(folio))) { 1272 folio_ref_unfreeze(folio, refcount); 1273 goto cannot_free; 1274 } 1275 1276 if (folio_test_swapcache(folio)) { 1277 swp_entry_t swap = folio_swap_entry(folio); 1278 mem_cgroup_swapout(folio, swap); 1279 if (reclaimed && !mapping_exiting(mapping)) 1280 shadow = workingset_eviction(folio, target_memcg); 1281 __delete_from_swap_cache(&folio->page, swap, shadow); 1282 xa_unlock_irq(&mapping->i_pages); 1283 put_swap_page(&folio->page, swap); 1284 } else { 1285 void (*freepage)(struct page *); 1286 1287 freepage = mapping->a_ops->freepage; 1288 /* 1289 * Remember a shadow entry for reclaimed file cache in 1290 * order to detect refaults, thus thrashing, later on. 1291 * 1292 * But don't store shadows in an address space that is 1293 * already exiting. This is not just an optimization, 1294 * inode reclaim needs to empty out the radix tree or 1295 * the nodes are lost. Don't plant shadows behind its 1296 * back. 1297 * 1298 * We also don't store shadows for DAX mappings because the 1299 * only page cache pages found in these are zero pages 1300 * covering holes, and because we don't want to mix DAX 1301 * exceptional entries and shadow exceptional entries in the 1302 * same address_space. 1303 */ 1304 if (reclaimed && folio_is_file_lru(folio) && 1305 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1306 shadow = workingset_eviction(folio, target_memcg); 1307 __filemap_remove_folio(folio, shadow); 1308 xa_unlock_irq(&mapping->i_pages); 1309 if (mapping_shrinkable(mapping)) 1310 inode_add_lru(mapping->host); 1311 spin_unlock(&mapping->host->i_lock); 1312 1313 if (freepage != NULL) 1314 freepage(&folio->page); 1315 } 1316 1317 return 1; 1318 1319 cannot_free: 1320 xa_unlock_irq(&mapping->i_pages); 1321 if (!folio_test_swapcache(folio)) 1322 spin_unlock(&mapping->host->i_lock); 1323 return 0; 1324 } 1325 1326 /** 1327 * remove_mapping() - Attempt to remove a folio from its mapping. 1328 * @mapping: The address space. 1329 * @folio: The folio to remove. 1330 * 1331 * If the folio is dirty, under writeback or if someone else has a ref 1332 * on it, removal will fail. 1333 * Return: The number of pages removed from the mapping. 0 if the folio 1334 * could not be removed. 1335 * Context: The caller should have a single refcount on the folio and 1336 * hold its lock. 1337 */ 1338 long remove_mapping(struct address_space *mapping, struct folio *folio) 1339 { 1340 if (__remove_mapping(mapping, folio, false, NULL)) { 1341 /* 1342 * Unfreezing the refcount with 1 effectively 1343 * drops the pagecache ref for us without requiring another 1344 * atomic operation. 1345 */ 1346 folio_ref_unfreeze(folio, 1); 1347 return folio_nr_pages(folio); 1348 } 1349 return 0; 1350 } 1351 1352 /** 1353 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1354 * @folio: Folio to be returned to an LRU list. 1355 * 1356 * Add previously isolated @folio to appropriate LRU list. 1357 * The folio may still be unevictable for other reasons. 1358 * 1359 * Context: lru_lock must not be held, interrupts must be enabled. 1360 */ 1361 void folio_putback_lru(struct folio *folio) 1362 { 1363 folio_add_lru(folio); 1364 folio_put(folio); /* drop ref from isolate */ 1365 } 1366 1367 enum page_references { 1368 PAGEREF_RECLAIM, 1369 PAGEREF_RECLAIM_CLEAN, 1370 PAGEREF_KEEP, 1371 PAGEREF_ACTIVATE, 1372 }; 1373 1374 static enum page_references folio_check_references(struct folio *folio, 1375 struct scan_control *sc) 1376 { 1377 int referenced_ptes, referenced_folio; 1378 unsigned long vm_flags; 1379 1380 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1381 &vm_flags); 1382 referenced_folio = folio_test_clear_referenced(folio); 1383 1384 /* 1385 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1386 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1387 */ 1388 if (vm_flags & VM_LOCKED) 1389 return PAGEREF_ACTIVATE; 1390 1391 if (referenced_ptes) { 1392 /* 1393 * All mapped folios start out with page table 1394 * references from the instantiating fault, so we need 1395 * to look twice if a mapped file/anon folio is used more 1396 * than once. 1397 * 1398 * Mark it and spare it for another trip around the 1399 * inactive list. Another page table reference will 1400 * lead to its activation. 1401 * 1402 * Note: the mark is set for activated folios as well 1403 * so that recently deactivated but used folios are 1404 * quickly recovered. 1405 */ 1406 folio_set_referenced(folio); 1407 1408 if (referenced_folio || referenced_ptes > 1) 1409 return PAGEREF_ACTIVATE; 1410 1411 /* 1412 * Activate file-backed executable folios after first usage. 1413 */ 1414 if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio)) 1415 return PAGEREF_ACTIVATE; 1416 1417 return PAGEREF_KEEP; 1418 } 1419 1420 /* Reclaim if clean, defer dirty folios to writeback */ 1421 if (referenced_folio && !folio_test_swapbacked(folio)) 1422 return PAGEREF_RECLAIM_CLEAN; 1423 1424 return PAGEREF_RECLAIM; 1425 } 1426 1427 /* Check if a page is dirty or under writeback */ 1428 static void folio_check_dirty_writeback(struct folio *folio, 1429 bool *dirty, bool *writeback) 1430 { 1431 struct address_space *mapping; 1432 1433 /* 1434 * Anonymous pages are not handled by flushers and must be written 1435 * from reclaim context. Do not stall reclaim based on them 1436 */ 1437 if (!folio_is_file_lru(folio) || 1438 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1439 *dirty = false; 1440 *writeback = false; 1441 return; 1442 } 1443 1444 /* By default assume that the folio flags are accurate */ 1445 *dirty = folio_test_dirty(folio); 1446 *writeback = folio_test_writeback(folio); 1447 1448 /* Verify dirty/writeback state if the filesystem supports it */ 1449 if (!folio_test_private(folio)) 1450 return; 1451 1452 mapping = folio_mapping(folio); 1453 if (mapping && mapping->a_ops->is_dirty_writeback) 1454 mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback); 1455 } 1456 1457 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1458 { 1459 struct migration_target_control mtc = { 1460 /* 1461 * Allocate from 'node', or fail quickly and quietly. 1462 * When this happens, 'page' will likely just be discarded 1463 * instead of migrated. 1464 */ 1465 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1466 __GFP_THISNODE | __GFP_NOWARN | 1467 __GFP_NOMEMALLOC | GFP_NOWAIT, 1468 .nid = node 1469 }; 1470 1471 return alloc_migration_target(page, (unsigned long)&mtc); 1472 } 1473 1474 /* 1475 * Take pages on @demote_list and attempt to demote them to 1476 * another node. Pages which are not demoted are left on 1477 * @demote_pages. 1478 */ 1479 static unsigned int demote_page_list(struct list_head *demote_pages, 1480 struct pglist_data *pgdat) 1481 { 1482 int target_nid = next_demotion_node(pgdat->node_id); 1483 unsigned int nr_succeeded; 1484 1485 if (list_empty(demote_pages)) 1486 return 0; 1487 1488 if (target_nid == NUMA_NO_NODE) 1489 return 0; 1490 1491 /* Demotion ignores all cpuset and mempolicy settings */ 1492 migrate_pages(demote_pages, alloc_demote_page, NULL, 1493 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1494 &nr_succeeded); 1495 1496 if (current_is_kswapd()) 1497 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1498 else 1499 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1500 1501 return nr_succeeded; 1502 } 1503 1504 /* 1505 * shrink_page_list() returns the number of reclaimed pages 1506 */ 1507 static unsigned int shrink_page_list(struct list_head *page_list, 1508 struct pglist_data *pgdat, 1509 struct scan_control *sc, 1510 struct reclaim_stat *stat, 1511 bool ignore_references) 1512 { 1513 LIST_HEAD(ret_pages); 1514 LIST_HEAD(free_pages); 1515 LIST_HEAD(demote_pages); 1516 unsigned int nr_reclaimed = 0; 1517 unsigned int pgactivate = 0; 1518 bool do_demote_pass; 1519 1520 memset(stat, 0, sizeof(*stat)); 1521 cond_resched(); 1522 do_demote_pass = can_demote(pgdat->node_id, sc); 1523 1524 retry: 1525 while (!list_empty(page_list)) { 1526 struct address_space *mapping; 1527 struct page *page; 1528 struct folio *folio; 1529 enum page_references references = PAGEREF_RECLAIM; 1530 bool dirty, writeback, may_enter_fs; 1531 unsigned int nr_pages; 1532 1533 cond_resched(); 1534 1535 folio = lru_to_folio(page_list); 1536 list_del(&folio->lru); 1537 page = &folio->page; 1538 1539 if (!trylock_page(page)) 1540 goto keep; 1541 1542 VM_BUG_ON_PAGE(PageActive(page), page); 1543 1544 nr_pages = compound_nr(page); 1545 1546 /* Account the number of base pages even though THP */ 1547 sc->nr_scanned += nr_pages; 1548 1549 if (unlikely(!page_evictable(page))) 1550 goto activate_locked; 1551 1552 if (!sc->may_unmap && page_mapped(page)) 1553 goto keep_locked; 1554 1555 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1556 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1557 1558 /* 1559 * The number of dirty pages determines if a node is marked 1560 * reclaim_congested. kswapd will stall and start writing 1561 * pages if the tail of the LRU is all dirty unqueued pages. 1562 */ 1563 folio_check_dirty_writeback(folio, &dirty, &writeback); 1564 if (dirty || writeback) 1565 stat->nr_dirty += nr_pages; 1566 1567 if (dirty && !writeback) 1568 stat->nr_unqueued_dirty += nr_pages; 1569 1570 /* 1571 * Treat this page as congested if the underlying BDI is or if 1572 * pages are cycling through the LRU so quickly that the 1573 * pages marked for immediate reclaim are making it to the 1574 * end of the LRU a second time. 1575 */ 1576 mapping = page_mapping(page); 1577 if (writeback && PageReclaim(page)) 1578 stat->nr_congested += nr_pages; 1579 1580 /* 1581 * If a page at the tail of the LRU is under writeback, there 1582 * are three cases to consider. 1583 * 1584 * 1) If reclaim is encountering an excessive number of pages 1585 * under writeback and this page is both under writeback and 1586 * PageReclaim then it indicates that pages are being queued 1587 * for IO but are being recycled through the LRU before the 1588 * IO can complete. Waiting on the page itself risks an 1589 * indefinite stall if it is impossible to writeback the 1590 * page due to IO error or disconnected storage so instead 1591 * note that the LRU is being scanned too quickly and the 1592 * caller can stall after page list has been processed. 1593 * 1594 * 2) Global or new memcg reclaim encounters a page that is 1595 * not marked for immediate reclaim, or the caller does not 1596 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1597 * not to fs). In this case mark the page for immediate 1598 * reclaim and continue scanning. 1599 * 1600 * Require may_enter_fs because we would wait on fs, which 1601 * may not have submitted IO yet. And the loop driver might 1602 * enter reclaim, and deadlock if it waits on a page for 1603 * which it is needed to do the write (loop masks off 1604 * __GFP_IO|__GFP_FS for this reason); but more thought 1605 * would probably show more reasons. 1606 * 1607 * 3) Legacy memcg encounters a page that is already marked 1608 * PageReclaim. memcg does not have any dirty pages 1609 * throttling so we could easily OOM just because too many 1610 * pages are in writeback and there is nothing else to 1611 * reclaim. Wait for the writeback to complete. 1612 * 1613 * In cases 1) and 2) we activate the pages to get them out of 1614 * the way while we continue scanning for clean pages on the 1615 * inactive list and refilling from the active list. The 1616 * observation here is that waiting for disk writes is more 1617 * expensive than potentially causing reloads down the line. 1618 * Since they're marked for immediate reclaim, they won't put 1619 * memory pressure on the cache working set any longer than it 1620 * takes to write them to disk. 1621 */ 1622 if (PageWriteback(page)) { 1623 /* Case 1 above */ 1624 if (current_is_kswapd() && 1625 PageReclaim(page) && 1626 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1627 stat->nr_immediate += nr_pages; 1628 goto activate_locked; 1629 1630 /* Case 2 above */ 1631 } else if (writeback_throttling_sane(sc) || 1632 !PageReclaim(page) || !may_enter_fs) { 1633 /* 1634 * This is slightly racy - end_page_writeback() 1635 * might have just cleared PageReclaim, then 1636 * setting PageReclaim here end up interpreted 1637 * as PageReadahead - but that does not matter 1638 * enough to care. What we do want is for this 1639 * page to have PageReclaim set next time memcg 1640 * reclaim reaches the tests above, so it will 1641 * then wait_on_page_writeback() to avoid OOM; 1642 * and it's also appropriate in global reclaim. 1643 */ 1644 SetPageReclaim(page); 1645 stat->nr_writeback += nr_pages; 1646 goto activate_locked; 1647 1648 /* Case 3 above */ 1649 } else { 1650 unlock_page(page); 1651 wait_on_page_writeback(page); 1652 /* then go back and try same page again */ 1653 list_add_tail(&page->lru, page_list); 1654 continue; 1655 } 1656 } 1657 1658 if (!ignore_references) 1659 references = folio_check_references(folio, sc); 1660 1661 switch (references) { 1662 case PAGEREF_ACTIVATE: 1663 goto activate_locked; 1664 case PAGEREF_KEEP: 1665 stat->nr_ref_keep += nr_pages; 1666 goto keep_locked; 1667 case PAGEREF_RECLAIM: 1668 case PAGEREF_RECLAIM_CLEAN: 1669 ; /* try to reclaim the page below */ 1670 } 1671 1672 /* 1673 * Before reclaiming the page, try to relocate 1674 * its contents to another node. 1675 */ 1676 if (do_demote_pass && 1677 (thp_migration_supported() || !PageTransHuge(page))) { 1678 list_add(&page->lru, &demote_pages); 1679 unlock_page(page); 1680 continue; 1681 } 1682 1683 /* 1684 * Anonymous process memory has backing store? 1685 * Try to allocate it some swap space here. 1686 * Lazyfree page could be freed directly 1687 */ 1688 if (PageAnon(page) && PageSwapBacked(page)) { 1689 if (!PageSwapCache(page)) { 1690 if (!(sc->gfp_mask & __GFP_IO)) 1691 goto keep_locked; 1692 if (folio_maybe_dma_pinned(folio)) 1693 goto keep_locked; 1694 if (PageTransHuge(page)) { 1695 /* cannot split THP, skip it */ 1696 if (!can_split_folio(folio, NULL)) 1697 goto activate_locked; 1698 /* 1699 * Split pages without a PMD map right 1700 * away. Chances are some or all of the 1701 * tail pages can be freed without IO. 1702 */ 1703 if (!folio_entire_mapcount(folio) && 1704 split_folio_to_list(folio, 1705 page_list)) 1706 goto activate_locked; 1707 } 1708 if (!add_to_swap(page)) { 1709 if (!PageTransHuge(page)) 1710 goto activate_locked_split; 1711 /* Fallback to swap normal pages */ 1712 if (split_folio_to_list(folio, 1713 page_list)) 1714 goto activate_locked; 1715 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1716 count_vm_event(THP_SWPOUT_FALLBACK); 1717 #endif 1718 if (!add_to_swap(page)) 1719 goto activate_locked_split; 1720 } 1721 1722 may_enter_fs = true; 1723 1724 /* Adding to swap updated mapping */ 1725 mapping = page_mapping(page); 1726 } 1727 } else if (PageSwapBacked(page) && PageTransHuge(page)) { 1728 /* Split shmem THP */ 1729 if (split_folio_to_list(folio, page_list)) 1730 goto keep_locked; 1731 } 1732 1733 /* 1734 * THP may get split above, need minus tail pages and update 1735 * nr_pages to avoid accounting tail pages twice. 1736 * 1737 * The tail pages that are added into swap cache successfully 1738 * reach here. 1739 */ 1740 if ((nr_pages > 1) && !PageTransHuge(page)) { 1741 sc->nr_scanned -= (nr_pages - 1); 1742 nr_pages = 1; 1743 } 1744 1745 /* 1746 * The page is mapped into the page tables of one or more 1747 * processes. Try to unmap it here. 1748 */ 1749 if (page_mapped(page)) { 1750 enum ttu_flags flags = TTU_BATCH_FLUSH; 1751 bool was_swapbacked = PageSwapBacked(page); 1752 1753 if (PageTransHuge(page) && 1754 thp_order(page) >= HPAGE_PMD_ORDER) 1755 flags |= TTU_SPLIT_HUGE_PMD; 1756 1757 try_to_unmap(folio, flags); 1758 if (page_mapped(page)) { 1759 stat->nr_unmap_fail += nr_pages; 1760 if (!was_swapbacked && PageSwapBacked(page)) 1761 stat->nr_lazyfree_fail += nr_pages; 1762 goto activate_locked; 1763 } 1764 } 1765 1766 if (PageDirty(page)) { 1767 /* 1768 * Only kswapd can writeback filesystem pages 1769 * to avoid risk of stack overflow. But avoid 1770 * injecting inefficient single-page IO into 1771 * flusher writeback as much as possible: only 1772 * write pages when we've encountered many 1773 * dirty pages, and when we've already scanned 1774 * the rest of the LRU for clean pages and see 1775 * the same dirty pages again (PageReclaim). 1776 */ 1777 if (page_is_file_lru(page) && 1778 (!current_is_kswapd() || !PageReclaim(page) || 1779 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1780 /* 1781 * Immediately reclaim when written back. 1782 * Similar in principal to deactivate_page() 1783 * except we already have the page isolated 1784 * and know it's dirty 1785 */ 1786 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1787 SetPageReclaim(page); 1788 1789 goto activate_locked; 1790 } 1791 1792 if (references == PAGEREF_RECLAIM_CLEAN) 1793 goto keep_locked; 1794 if (!may_enter_fs) 1795 goto keep_locked; 1796 if (!sc->may_writepage) 1797 goto keep_locked; 1798 1799 /* 1800 * Page is dirty. Flush the TLB if a writable entry 1801 * potentially exists to avoid CPU writes after IO 1802 * starts and then write it out here. 1803 */ 1804 try_to_unmap_flush_dirty(); 1805 switch (pageout(folio, mapping)) { 1806 case PAGE_KEEP: 1807 goto keep_locked; 1808 case PAGE_ACTIVATE: 1809 goto activate_locked; 1810 case PAGE_SUCCESS: 1811 stat->nr_pageout += nr_pages; 1812 1813 if (PageWriteback(page)) 1814 goto keep; 1815 if (PageDirty(page)) 1816 goto keep; 1817 1818 /* 1819 * A synchronous write - probably a ramdisk. Go 1820 * ahead and try to reclaim the page. 1821 */ 1822 if (!trylock_page(page)) 1823 goto keep; 1824 if (PageDirty(page) || PageWriteback(page)) 1825 goto keep_locked; 1826 mapping = page_mapping(page); 1827 fallthrough; 1828 case PAGE_CLEAN: 1829 ; /* try to free the page below */ 1830 } 1831 } 1832 1833 /* 1834 * If the page has buffers, try to free the buffer mappings 1835 * associated with this page. If we succeed we try to free 1836 * the page as well. 1837 * 1838 * We do this even if the page is PageDirty(). 1839 * try_to_release_page() does not perform I/O, but it is 1840 * possible for a page to have PageDirty set, but it is actually 1841 * clean (all its buffers are clean). This happens if the 1842 * buffers were written out directly, with submit_bh(). ext3 1843 * will do this, as well as the blockdev mapping. 1844 * try_to_release_page() will discover that cleanness and will 1845 * drop the buffers and mark the page clean - it can be freed. 1846 * 1847 * Rarely, pages can have buffers and no ->mapping. These are 1848 * the pages which were not successfully invalidated in 1849 * truncate_cleanup_page(). We try to drop those buffers here 1850 * and if that worked, and the page is no longer mapped into 1851 * process address space (page_count == 1) it can be freed. 1852 * Otherwise, leave the page on the LRU so it is swappable. 1853 */ 1854 if (page_has_private(page)) { 1855 if (!try_to_release_page(page, sc->gfp_mask)) 1856 goto activate_locked; 1857 if (!mapping && page_count(page) == 1) { 1858 unlock_page(page); 1859 if (put_page_testzero(page)) 1860 goto free_it; 1861 else { 1862 /* 1863 * rare race with speculative reference. 1864 * the speculative reference will free 1865 * this page shortly, so we may 1866 * increment nr_reclaimed here (and 1867 * leave it off the LRU). 1868 */ 1869 nr_reclaimed++; 1870 continue; 1871 } 1872 } 1873 } 1874 1875 if (PageAnon(page) && !PageSwapBacked(page)) { 1876 /* follow __remove_mapping for reference */ 1877 if (!page_ref_freeze(page, 1)) 1878 goto keep_locked; 1879 /* 1880 * The page has only one reference left, which is 1881 * from the isolation. After the caller puts the 1882 * page back on lru and drops the reference, the 1883 * page will be freed anyway. It doesn't matter 1884 * which lru it goes. So we don't bother checking 1885 * PageDirty here. 1886 */ 1887 count_vm_event(PGLAZYFREED); 1888 count_memcg_page_event(page, PGLAZYFREED); 1889 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1890 sc->target_mem_cgroup)) 1891 goto keep_locked; 1892 1893 unlock_page(page); 1894 free_it: 1895 /* 1896 * THP may get swapped out in a whole, need account 1897 * all base pages. 1898 */ 1899 nr_reclaimed += nr_pages; 1900 1901 /* 1902 * Is there need to periodically free_page_list? It would 1903 * appear not as the counts should be low 1904 */ 1905 if (unlikely(PageTransHuge(page))) 1906 destroy_compound_page(page); 1907 else 1908 list_add(&page->lru, &free_pages); 1909 continue; 1910 1911 activate_locked_split: 1912 /* 1913 * The tail pages that are failed to add into swap cache 1914 * reach here. Fixup nr_scanned and nr_pages. 1915 */ 1916 if (nr_pages > 1) { 1917 sc->nr_scanned -= (nr_pages - 1); 1918 nr_pages = 1; 1919 } 1920 activate_locked: 1921 /* Not a candidate for swapping, so reclaim swap space. */ 1922 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1923 PageMlocked(page))) 1924 try_to_free_swap(page); 1925 VM_BUG_ON_PAGE(PageActive(page), page); 1926 if (!PageMlocked(page)) { 1927 int type = page_is_file_lru(page); 1928 SetPageActive(page); 1929 stat->nr_activate[type] += nr_pages; 1930 count_memcg_page_event(page, PGACTIVATE); 1931 } 1932 keep_locked: 1933 unlock_page(page); 1934 keep: 1935 list_add(&page->lru, &ret_pages); 1936 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1937 } 1938 /* 'page_list' is always empty here */ 1939 1940 /* Migrate pages selected for demotion */ 1941 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1942 /* Pages that could not be demoted are still in @demote_pages */ 1943 if (!list_empty(&demote_pages)) { 1944 /* Pages which failed to demoted go back on @page_list for retry: */ 1945 list_splice_init(&demote_pages, page_list); 1946 do_demote_pass = false; 1947 goto retry; 1948 } 1949 1950 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1951 1952 mem_cgroup_uncharge_list(&free_pages); 1953 try_to_unmap_flush(); 1954 free_unref_page_list(&free_pages); 1955 1956 list_splice(&ret_pages, page_list); 1957 count_vm_events(PGACTIVATE, pgactivate); 1958 1959 return nr_reclaimed; 1960 } 1961 1962 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1963 struct list_head *page_list) 1964 { 1965 struct scan_control sc = { 1966 .gfp_mask = GFP_KERNEL, 1967 .may_unmap = 1, 1968 }; 1969 struct reclaim_stat stat; 1970 unsigned int nr_reclaimed; 1971 struct page *page, *next; 1972 LIST_HEAD(clean_pages); 1973 unsigned int noreclaim_flag; 1974 1975 list_for_each_entry_safe(page, next, page_list, lru) { 1976 if (!PageHuge(page) && page_is_file_lru(page) && 1977 !PageDirty(page) && !__PageMovable(page) && 1978 !PageUnevictable(page)) { 1979 ClearPageActive(page); 1980 list_move(&page->lru, &clean_pages); 1981 } 1982 } 1983 1984 /* 1985 * We should be safe here since we are only dealing with file pages and 1986 * we are not kswapd and therefore cannot write dirty file pages. But 1987 * call memalloc_noreclaim_save() anyway, just in case these conditions 1988 * change in the future. 1989 */ 1990 noreclaim_flag = memalloc_noreclaim_save(); 1991 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1992 &stat, true); 1993 memalloc_noreclaim_restore(noreclaim_flag); 1994 1995 list_splice(&clean_pages, page_list); 1996 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1997 -(long)nr_reclaimed); 1998 /* 1999 * Since lazyfree pages are isolated from file LRU from the beginning, 2000 * they will rotate back to anonymous LRU in the end if it failed to 2001 * discard so isolated count will be mismatched. 2002 * Compensate the isolated count for both LRU lists. 2003 */ 2004 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2005 stat.nr_lazyfree_fail); 2006 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2007 -(long)stat.nr_lazyfree_fail); 2008 return nr_reclaimed; 2009 } 2010 2011 /* 2012 * Update LRU sizes after isolating pages. The LRU size updates must 2013 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2014 */ 2015 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2016 enum lru_list lru, unsigned long *nr_zone_taken) 2017 { 2018 int zid; 2019 2020 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2021 if (!nr_zone_taken[zid]) 2022 continue; 2023 2024 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2025 } 2026 2027 } 2028 2029 /* 2030 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2031 * 2032 * lruvec->lru_lock is heavily contended. Some of the functions that 2033 * shrink the lists perform better by taking out a batch of pages 2034 * and working on them outside the LRU lock. 2035 * 2036 * For pagecache intensive workloads, this function is the hottest 2037 * spot in the kernel (apart from copy_*_user functions). 2038 * 2039 * Lru_lock must be held before calling this function. 2040 * 2041 * @nr_to_scan: The number of eligible pages to look through on the list. 2042 * @lruvec: The LRU vector to pull pages from. 2043 * @dst: The temp list to put pages on to. 2044 * @nr_scanned: The number of pages that were scanned. 2045 * @sc: The scan_control struct for this reclaim session 2046 * @lru: LRU list id for isolating 2047 * 2048 * returns how many pages were moved onto *@dst. 2049 */ 2050 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 2051 struct lruvec *lruvec, struct list_head *dst, 2052 unsigned long *nr_scanned, struct scan_control *sc, 2053 enum lru_list lru) 2054 { 2055 struct list_head *src = &lruvec->lists[lru]; 2056 unsigned long nr_taken = 0; 2057 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2058 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2059 unsigned long skipped = 0; 2060 unsigned long scan, total_scan, nr_pages; 2061 LIST_HEAD(pages_skipped); 2062 2063 total_scan = 0; 2064 scan = 0; 2065 while (scan < nr_to_scan && !list_empty(src)) { 2066 struct list_head *move_to = src; 2067 struct page *page; 2068 2069 page = lru_to_page(src); 2070 prefetchw_prev_lru_page(page, src, flags); 2071 2072 nr_pages = compound_nr(page); 2073 total_scan += nr_pages; 2074 2075 if (page_zonenum(page) > sc->reclaim_idx) { 2076 nr_skipped[page_zonenum(page)] += nr_pages; 2077 move_to = &pages_skipped; 2078 goto move; 2079 } 2080 2081 /* 2082 * Do not count skipped pages because that makes the function 2083 * return with no isolated pages if the LRU mostly contains 2084 * ineligible pages. This causes the VM to not reclaim any 2085 * pages, triggering a premature OOM. 2086 * Account all tail pages of THP. 2087 */ 2088 scan += nr_pages; 2089 2090 if (!PageLRU(page)) 2091 goto move; 2092 if (!sc->may_unmap && page_mapped(page)) 2093 goto move; 2094 2095 /* 2096 * Be careful not to clear PageLRU until after we're 2097 * sure the page is not being freed elsewhere -- the 2098 * page release code relies on it. 2099 */ 2100 if (unlikely(!get_page_unless_zero(page))) 2101 goto move; 2102 2103 if (!TestClearPageLRU(page)) { 2104 /* Another thread is already isolating this page */ 2105 put_page(page); 2106 goto move; 2107 } 2108 2109 nr_taken += nr_pages; 2110 nr_zone_taken[page_zonenum(page)] += nr_pages; 2111 move_to = dst; 2112 move: 2113 list_move(&page->lru, move_to); 2114 } 2115 2116 /* 2117 * Splice any skipped pages to the start of the LRU list. Note that 2118 * this disrupts the LRU order when reclaiming for lower zones but 2119 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2120 * scanning would soon rescan the same pages to skip and put the 2121 * system at risk of premature OOM. 2122 */ 2123 if (!list_empty(&pages_skipped)) { 2124 int zid; 2125 2126 list_splice(&pages_skipped, src); 2127 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2128 if (!nr_skipped[zid]) 2129 continue; 2130 2131 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2132 skipped += nr_skipped[zid]; 2133 } 2134 } 2135 *nr_scanned = total_scan; 2136 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2137 total_scan, skipped, nr_taken, 2138 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2139 update_lru_sizes(lruvec, lru, nr_zone_taken); 2140 return nr_taken; 2141 } 2142 2143 /** 2144 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2145 * @folio: Folio to isolate from its LRU list. 2146 * 2147 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2148 * corresponding to whatever LRU list the folio was on. 2149 * 2150 * The folio will have its LRU flag cleared. If it was found on the 2151 * active list, it will have the Active flag set. If it was found on the 2152 * unevictable list, it will have the Unevictable flag set. These flags 2153 * may need to be cleared by the caller before letting the page go. 2154 * 2155 * Context: 2156 * 2157 * (1) Must be called with an elevated refcount on the page. This is a 2158 * fundamental difference from isolate_lru_pages() (which is called 2159 * without a stable reference). 2160 * (2) The lru_lock must not be held. 2161 * (3) Interrupts must be enabled. 2162 * 2163 * Return: 0 if the folio was removed from an LRU list. 2164 * -EBUSY if the folio was not on an LRU list. 2165 */ 2166 int folio_isolate_lru(struct folio *folio) 2167 { 2168 int ret = -EBUSY; 2169 2170 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2171 2172 if (folio_test_clear_lru(folio)) { 2173 struct lruvec *lruvec; 2174 2175 folio_get(folio); 2176 lruvec = folio_lruvec_lock_irq(folio); 2177 lruvec_del_folio(lruvec, folio); 2178 unlock_page_lruvec_irq(lruvec); 2179 ret = 0; 2180 } 2181 2182 return ret; 2183 } 2184 2185 /* 2186 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2187 * then get rescheduled. When there are massive number of tasks doing page 2188 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2189 * the LRU list will go small and be scanned faster than necessary, leading to 2190 * unnecessary swapping, thrashing and OOM. 2191 */ 2192 static int too_many_isolated(struct pglist_data *pgdat, int file, 2193 struct scan_control *sc) 2194 { 2195 unsigned long inactive, isolated; 2196 bool too_many; 2197 2198 if (current_is_kswapd()) 2199 return 0; 2200 2201 if (!writeback_throttling_sane(sc)) 2202 return 0; 2203 2204 if (file) { 2205 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2206 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2207 } else { 2208 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2209 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2210 } 2211 2212 /* 2213 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2214 * won't get blocked by normal direct-reclaimers, forming a circular 2215 * deadlock. 2216 */ 2217 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2218 inactive >>= 3; 2219 2220 too_many = isolated > inactive; 2221 2222 /* Wake up tasks throttled due to too_many_isolated. */ 2223 if (!too_many) 2224 wake_throttle_isolated(pgdat); 2225 2226 return too_many; 2227 } 2228 2229 /* 2230 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2231 * On return, @list is reused as a list of pages to be freed by the caller. 2232 * 2233 * Returns the number of pages moved to the given lruvec. 2234 */ 2235 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2236 struct list_head *list) 2237 { 2238 int nr_pages, nr_moved = 0; 2239 LIST_HEAD(pages_to_free); 2240 struct page *page; 2241 2242 while (!list_empty(list)) { 2243 page = lru_to_page(list); 2244 VM_BUG_ON_PAGE(PageLRU(page), page); 2245 list_del(&page->lru); 2246 if (unlikely(!page_evictable(page))) { 2247 spin_unlock_irq(&lruvec->lru_lock); 2248 putback_lru_page(page); 2249 spin_lock_irq(&lruvec->lru_lock); 2250 continue; 2251 } 2252 2253 /* 2254 * The SetPageLRU needs to be kept here for list integrity. 2255 * Otherwise: 2256 * #0 move_pages_to_lru #1 release_pages 2257 * if !put_page_testzero 2258 * if (put_page_testzero()) 2259 * !PageLRU //skip lru_lock 2260 * SetPageLRU() 2261 * list_add(&page->lru,) 2262 * list_add(&page->lru,) 2263 */ 2264 SetPageLRU(page); 2265 2266 if (unlikely(put_page_testzero(page))) { 2267 __clear_page_lru_flags(page); 2268 2269 if (unlikely(PageCompound(page))) { 2270 spin_unlock_irq(&lruvec->lru_lock); 2271 destroy_compound_page(page); 2272 spin_lock_irq(&lruvec->lru_lock); 2273 } else 2274 list_add(&page->lru, &pages_to_free); 2275 2276 continue; 2277 } 2278 2279 /* 2280 * All pages were isolated from the same lruvec (and isolation 2281 * inhibits memcg migration). 2282 */ 2283 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page); 2284 add_page_to_lru_list(page, lruvec); 2285 nr_pages = thp_nr_pages(page); 2286 nr_moved += nr_pages; 2287 if (PageActive(page)) 2288 workingset_age_nonresident(lruvec, nr_pages); 2289 } 2290 2291 /* 2292 * To save our caller's stack, now use input list for pages to free. 2293 */ 2294 list_splice(&pages_to_free, list); 2295 2296 return nr_moved; 2297 } 2298 2299 /* 2300 * If a kernel thread (such as nfsd for loop-back mounts) services 2301 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2302 * In that case we should only throttle if the backing device it is 2303 * writing to is congested. In other cases it is safe to throttle. 2304 */ 2305 static int current_may_throttle(void) 2306 { 2307 return !(current->flags & PF_LOCAL_THROTTLE); 2308 } 2309 2310 /* 2311 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2312 * of reclaimed pages 2313 */ 2314 static unsigned long 2315 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2316 struct scan_control *sc, enum lru_list lru) 2317 { 2318 LIST_HEAD(page_list); 2319 unsigned long nr_scanned; 2320 unsigned int nr_reclaimed = 0; 2321 unsigned long nr_taken; 2322 struct reclaim_stat stat; 2323 bool file = is_file_lru(lru); 2324 enum vm_event_item item; 2325 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2326 bool stalled = false; 2327 2328 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2329 if (stalled) 2330 return 0; 2331 2332 /* wait a bit for the reclaimer. */ 2333 stalled = true; 2334 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2335 2336 /* We are about to die and free our memory. Return now. */ 2337 if (fatal_signal_pending(current)) 2338 return SWAP_CLUSTER_MAX; 2339 } 2340 2341 lru_add_drain(); 2342 2343 spin_lock_irq(&lruvec->lru_lock); 2344 2345 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2346 &nr_scanned, sc, lru); 2347 2348 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2349 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2350 if (!cgroup_reclaim(sc)) 2351 __count_vm_events(item, nr_scanned); 2352 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2353 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2354 2355 spin_unlock_irq(&lruvec->lru_lock); 2356 2357 if (nr_taken == 0) 2358 return 0; 2359 2360 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2361 2362 spin_lock_irq(&lruvec->lru_lock); 2363 move_pages_to_lru(lruvec, &page_list); 2364 2365 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2366 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2367 if (!cgroup_reclaim(sc)) 2368 __count_vm_events(item, nr_reclaimed); 2369 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2370 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2371 spin_unlock_irq(&lruvec->lru_lock); 2372 2373 lru_note_cost(lruvec, file, stat.nr_pageout); 2374 mem_cgroup_uncharge_list(&page_list); 2375 free_unref_page_list(&page_list); 2376 2377 /* 2378 * If dirty pages are scanned that are not queued for IO, it 2379 * implies that flushers are not doing their job. This can 2380 * happen when memory pressure pushes dirty pages to the end of 2381 * the LRU before the dirty limits are breached and the dirty 2382 * data has expired. It can also happen when the proportion of 2383 * dirty pages grows not through writes but through memory 2384 * pressure reclaiming all the clean cache. And in some cases, 2385 * the flushers simply cannot keep up with the allocation 2386 * rate. Nudge the flusher threads in case they are asleep. 2387 */ 2388 if (stat.nr_unqueued_dirty == nr_taken) 2389 wakeup_flusher_threads(WB_REASON_VMSCAN); 2390 2391 sc->nr.dirty += stat.nr_dirty; 2392 sc->nr.congested += stat.nr_congested; 2393 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2394 sc->nr.writeback += stat.nr_writeback; 2395 sc->nr.immediate += stat.nr_immediate; 2396 sc->nr.taken += nr_taken; 2397 if (file) 2398 sc->nr.file_taken += nr_taken; 2399 2400 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2401 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2402 return nr_reclaimed; 2403 } 2404 2405 /* 2406 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2407 * 2408 * We move them the other way if the page is referenced by one or more 2409 * processes. 2410 * 2411 * If the pages are mostly unmapped, the processing is fast and it is 2412 * appropriate to hold lru_lock across the whole operation. But if 2413 * the pages are mapped, the processing is slow (folio_referenced()), so 2414 * we should drop lru_lock around each page. It's impossible to balance 2415 * this, so instead we remove the pages from the LRU while processing them. 2416 * It is safe to rely on PG_active against the non-LRU pages in here because 2417 * nobody will play with that bit on a non-LRU page. 2418 * 2419 * The downside is that we have to touch page->_refcount against each page. 2420 * But we had to alter page->flags anyway. 2421 */ 2422 static void shrink_active_list(unsigned long nr_to_scan, 2423 struct lruvec *lruvec, 2424 struct scan_control *sc, 2425 enum lru_list lru) 2426 { 2427 unsigned long nr_taken; 2428 unsigned long nr_scanned; 2429 unsigned long vm_flags; 2430 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2431 LIST_HEAD(l_active); 2432 LIST_HEAD(l_inactive); 2433 unsigned nr_deactivate, nr_activate; 2434 unsigned nr_rotated = 0; 2435 int file = is_file_lru(lru); 2436 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2437 2438 lru_add_drain(); 2439 2440 spin_lock_irq(&lruvec->lru_lock); 2441 2442 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2443 &nr_scanned, sc, lru); 2444 2445 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2446 2447 if (!cgroup_reclaim(sc)) 2448 __count_vm_events(PGREFILL, nr_scanned); 2449 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2450 2451 spin_unlock_irq(&lruvec->lru_lock); 2452 2453 while (!list_empty(&l_hold)) { 2454 struct folio *folio; 2455 struct page *page; 2456 2457 cond_resched(); 2458 folio = lru_to_folio(&l_hold); 2459 list_del(&folio->lru); 2460 page = &folio->page; 2461 2462 if (unlikely(!page_evictable(page))) { 2463 putback_lru_page(page); 2464 continue; 2465 } 2466 2467 if (unlikely(buffer_heads_over_limit)) { 2468 if (page_has_private(page) && trylock_page(page)) { 2469 if (page_has_private(page)) 2470 try_to_release_page(page, 0); 2471 unlock_page(page); 2472 } 2473 } 2474 2475 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2476 &vm_flags)) { 2477 /* 2478 * Identify referenced, file-backed active pages and 2479 * give them one more trip around the active list. So 2480 * that executable code get better chances to stay in 2481 * memory under moderate memory pressure. Anon pages 2482 * are not likely to be evicted by use-once streaming 2483 * IO, plus JVM can create lots of anon VM_EXEC pages, 2484 * so we ignore them here. 2485 */ 2486 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2487 nr_rotated += thp_nr_pages(page); 2488 list_add(&page->lru, &l_active); 2489 continue; 2490 } 2491 } 2492 2493 ClearPageActive(page); /* we are de-activating */ 2494 SetPageWorkingset(page); 2495 list_add(&page->lru, &l_inactive); 2496 } 2497 2498 /* 2499 * Move pages back to the lru list. 2500 */ 2501 spin_lock_irq(&lruvec->lru_lock); 2502 2503 nr_activate = move_pages_to_lru(lruvec, &l_active); 2504 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2505 /* Keep all free pages in l_active list */ 2506 list_splice(&l_inactive, &l_active); 2507 2508 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2509 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2510 2511 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2512 spin_unlock_irq(&lruvec->lru_lock); 2513 2514 mem_cgroup_uncharge_list(&l_active); 2515 free_unref_page_list(&l_active); 2516 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2517 nr_deactivate, nr_rotated, sc->priority, file); 2518 } 2519 2520 unsigned long reclaim_pages(struct list_head *page_list) 2521 { 2522 int nid = NUMA_NO_NODE; 2523 unsigned int nr_reclaimed = 0; 2524 LIST_HEAD(node_page_list); 2525 struct reclaim_stat dummy_stat; 2526 struct page *page; 2527 unsigned int noreclaim_flag; 2528 struct scan_control sc = { 2529 .gfp_mask = GFP_KERNEL, 2530 .may_writepage = 1, 2531 .may_unmap = 1, 2532 .may_swap = 1, 2533 .no_demotion = 1, 2534 }; 2535 2536 noreclaim_flag = memalloc_noreclaim_save(); 2537 2538 while (!list_empty(page_list)) { 2539 page = lru_to_page(page_list); 2540 if (nid == NUMA_NO_NODE) { 2541 nid = page_to_nid(page); 2542 INIT_LIST_HEAD(&node_page_list); 2543 } 2544 2545 if (nid == page_to_nid(page)) { 2546 ClearPageActive(page); 2547 list_move(&page->lru, &node_page_list); 2548 continue; 2549 } 2550 2551 nr_reclaimed += shrink_page_list(&node_page_list, 2552 NODE_DATA(nid), 2553 &sc, &dummy_stat, false); 2554 while (!list_empty(&node_page_list)) { 2555 page = lru_to_page(&node_page_list); 2556 list_del(&page->lru); 2557 putback_lru_page(page); 2558 } 2559 2560 nid = NUMA_NO_NODE; 2561 } 2562 2563 if (!list_empty(&node_page_list)) { 2564 nr_reclaimed += shrink_page_list(&node_page_list, 2565 NODE_DATA(nid), 2566 &sc, &dummy_stat, false); 2567 while (!list_empty(&node_page_list)) { 2568 page = lru_to_page(&node_page_list); 2569 list_del(&page->lru); 2570 putback_lru_page(page); 2571 } 2572 } 2573 2574 memalloc_noreclaim_restore(noreclaim_flag); 2575 2576 return nr_reclaimed; 2577 } 2578 2579 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2580 struct lruvec *lruvec, struct scan_control *sc) 2581 { 2582 if (is_active_lru(lru)) { 2583 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2584 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2585 else 2586 sc->skipped_deactivate = 1; 2587 return 0; 2588 } 2589 2590 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2591 } 2592 2593 /* 2594 * The inactive anon list should be small enough that the VM never has 2595 * to do too much work. 2596 * 2597 * The inactive file list should be small enough to leave most memory 2598 * to the established workingset on the scan-resistant active list, 2599 * but large enough to avoid thrashing the aggregate readahead window. 2600 * 2601 * Both inactive lists should also be large enough that each inactive 2602 * page has a chance to be referenced again before it is reclaimed. 2603 * 2604 * If that fails and refaulting is observed, the inactive list grows. 2605 * 2606 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2607 * on this LRU, maintained by the pageout code. An inactive_ratio 2608 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2609 * 2610 * total target max 2611 * memory ratio inactive 2612 * ------------------------------------- 2613 * 10MB 1 5MB 2614 * 100MB 1 50MB 2615 * 1GB 3 250MB 2616 * 10GB 10 0.9GB 2617 * 100GB 31 3GB 2618 * 1TB 101 10GB 2619 * 10TB 320 32GB 2620 */ 2621 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2622 { 2623 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2624 unsigned long inactive, active; 2625 unsigned long inactive_ratio; 2626 unsigned long gb; 2627 2628 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2629 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2630 2631 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2632 if (gb) 2633 inactive_ratio = int_sqrt(10 * gb); 2634 else 2635 inactive_ratio = 1; 2636 2637 return inactive * inactive_ratio < active; 2638 } 2639 2640 enum scan_balance { 2641 SCAN_EQUAL, 2642 SCAN_FRACT, 2643 SCAN_ANON, 2644 SCAN_FILE, 2645 }; 2646 2647 /* 2648 * Determine how aggressively the anon and file LRU lists should be 2649 * scanned. The relative value of each set of LRU lists is determined 2650 * by looking at the fraction of the pages scanned we did rotate back 2651 * onto the active list instead of evict. 2652 * 2653 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2654 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2655 */ 2656 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2657 unsigned long *nr) 2658 { 2659 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2660 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2661 unsigned long anon_cost, file_cost, total_cost; 2662 int swappiness = mem_cgroup_swappiness(memcg); 2663 u64 fraction[ANON_AND_FILE]; 2664 u64 denominator = 0; /* gcc */ 2665 enum scan_balance scan_balance; 2666 unsigned long ap, fp; 2667 enum lru_list lru; 2668 2669 /* If we have no swap space, do not bother scanning anon pages. */ 2670 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2671 scan_balance = SCAN_FILE; 2672 goto out; 2673 } 2674 2675 /* 2676 * Global reclaim will swap to prevent OOM even with no 2677 * swappiness, but memcg users want to use this knob to 2678 * disable swapping for individual groups completely when 2679 * using the memory controller's swap limit feature would be 2680 * too expensive. 2681 */ 2682 if (cgroup_reclaim(sc) && !swappiness) { 2683 scan_balance = SCAN_FILE; 2684 goto out; 2685 } 2686 2687 /* 2688 * Do not apply any pressure balancing cleverness when the 2689 * system is close to OOM, scan both anon and file equally 2690 * (unless the swappiness setting disagrees with swapping). 2691 */ 2692 if (!sc->priority && swappiness) { 2693 scan_balance = SCAN_EQUAL; 2694 goto out; 2695 } 2696 2697 /* 2698 * If the system is almost out of file pages, force-scan anon. 2699 */ 2700 if (sc->file_is_tiny) { 2701 scan_balance = SCAN_ANON; 2702 goto out; 2703 } 2704 2705 /* 2706 * If there is enough inactive page cache, we do not reclaim 2707 * anything from the anonymous working right now. 2708 */ 2709 if (sc->cache_trim_mode) { 2710 scan_balance = SCAN_FILE; 2711 goto out; 2712 } 2713 2714 scan_balance = SCAN_FRACT; 2715 /* 2716 * Calculate the pressure balance between anon and file pages. 2717 * 2718 * The amount of pressure we put on each LRU is inversely 2719 * proportional to the cost of reclaiming each list, as 2720 * determined by the share of pages that are refaulting, times 2721 * the relative IO cost of bringing back a swapped out 2722 * anonymous page vs reloading a filesystem page (swappiness). 2723 * 2724 * Although we limit that influence to ensure no list gets 2725 * left behind completely: at least a third of the pressure is 2726 * applied, before swappiness. 2727 * 2728 * With swappiness at 100, anon and file have equal IO cost. 2729 */ 2730 total_cost = sc->anon_cost + sc->file_cost; 2731 anon_cost = total_cost + sc->anon_cost; 2732 file_cost = total_cost + sc->file_cost; 2733 total_cost = anon_cost + file_cost; 2734 2735 ap = swappiness * (total_cost + 1); 2736 ap /= anon_cost + 1; 2737 2738 fp = (200 - swappiness) * (total_cost + 1); 2739 fp /= file_cost + 1; 2740 2741 fraction[0] = ap; 2742 fraction[1] = fp; 2743 denominator = ap + fp; 2744 out: 2745 for_each_evictable_lru(lru) { 2746 int file = is_file_lru(lru); 2747 unsigned long lruvec_size; 2748 unsigned long low, min; 2749 unsigned long scan; 2750 2751 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2752 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2753 &min, &low); 2754 2755 if (min || low) { 2756 /* 2757 * Scale a cgroup's reclaim pressure by proportioning 2758 * its current usage to its memory.low or memory.min 2759 * setting. 2760 * 2761 * This is important, as otherwise scanning aggression 2762 * becomes extremely binary -- from nothing as we 2763 * approach the memory protection threshold, to totally 2764 * nominal as we exceed it. This results in requiring 2765 * setting extremely liberal protection thresholds. It 2766 * also means we simply get no protection at all if we 2767 * set it too low, which is not ideal. 2768 * 2769 * If there is any protection in place, we reduce scan 2770 * pressure by how much of the total memory used is 2771 * within protection thresholds. 2772 * 2773 * There is one special case: in the first reclaim pass, 2774 * we skip over all groups that are within their low 2775 * protection. If that fails to reclaim enough pages to 2776 * satisfy the reclaim goal, we come back and override 2777 * the best-effort low protection. However, we still 2778 * ideally want to honor how well-behaved groups are in 2779 * that case instead of simply punishing them all 2780 * equally. As such, we reclaim them based on how much 2781 * memory they are using, reducing the scan pressure 2782 * again by how much of the total memory used is under 2783 * hard protection. 2784 */ 2785 unsigned long cgroup_size = mem_cgroup_size(memcg); 2786 unsigned long protection; 2787 2788 /* memory.low scaling, make sure we retry before OOM */ 2789 if (!sc->memcg_low_reclaim && low > min) { 2790 protection = low; 2791 sc->memcg_low_skipped = 1; 2792 } else { 2793 protection = min; 2794 } 2795 2796 /* Avoid TOCTOU with earlier protection check */ 2797 cgroup_size = max(cgroup_size, protection); 2798 2799 scan = lruvec_size - lruvec_size * protection / 2800 (cgroup_size + 1); 2801 2802 /* 2803 * Minimally target SWAP_CLUSTER_MAX pages to keep 2804 * reclaim moving forwards, avoiding decrementing 2805 * sc->priority further than desirable. 2806 */ 2807 scan = max(scan, SWAP_CLUSTER_MAX); 2808 } else { 2809 scan = lruvec_size; 2810 } 2811 2812 scan >>= sc->priority; 2813 2814 /* 2815 * If the cgroup's already been deleted, make sure to 2816 * scrape out the remaining cache. 2817 */ 2818 if (!scan && !mem_cgroup_online(memcg)) 2819 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2820 2821 switch (scan_balance) { 2822 case SCAN_EQUAL: 2823 /* Scan lists relative to size */ 2824 break; 2825 case SCAN_FRACT: 2826 /* 2827 * Scan types proportional to swappiness and 2828 * their relative recent reclaim efficiency. 2829 * Make sure we don't miss the last page on 2830 * the offlined memory cgroups because of a 2831 * round-off error. 2832 */ 2833 scan = mem_cgroup_online(memcg) ? 2834 div64_u64(scan * fraction[file], denominator) : 2835 DIV64_U64_ROUND_UP(scan * fraction[file], 2836 denominator); 2837 break; 2838 case SCAN_FILE: 2839 case SCAN_ANON: 2840 /* Scan one type exclusively */ 2841 if ((scan_balance == SCAN_FILE) != file) 2842 scan = 0; 2843 break; 2844 default: 2845 /* Look ma, no brain */ 2846 BUG(); 2847 } 2848 2849 nr[lru] = scan; 2850 } 2851 } 2852 2853 /* 2854 * Anonymous LRU management is a waste if there is 2855 * ultimately no way to reclaim the memory. 2856 */ 2857 static bool can_age_anon_pages(struct pglist_data *pgdat, 2858 struct scan_control *sc) 2859 { 2860 /* Aging the anon LRU is valuable if swap is present: */ 2861 if (total_swap_pages > 0) 2862 return true; 2863 2864 /* Also valuable if anon pages can be demoted: */ 2865 return can_demote(pgdat->node_id, sc); 2866 } 2867 2868 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2869 { 2870 unsigned long nr[NR_LRU_LISTS]; 2871 unsigned long targets[NR_LRU_LISTS]; 2872 unsigned long nr_to_scan; 2873 enum lru_list lru; 2874 unsigned long nr_reclaimed = 0; 2875 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2876 struct blk_plug plug; 2877 bool scan_adjusted; 2878 2879 get_scan_count(lruvec, sc, nr); 2880 2881 /* Record the original scan target for proportional adjustments later */ 2882 memcpy(targets, nr, sizeof(nr)); 2883 2884 /* 2885 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2886 * event that can occur when there is little memory pressure e.g. 2887 * multiple streaming readers/writers. Hence, we do not abort scanning 2888 * when the requested number of pages are reclaimed when scanning at 2889 * DEF_PRIORITY on the assumption that the fact we are direct 2890 * reclaiming implies that kswapd is not keeping up and it is best to 2891 * do a batch of work at once. For memcg reclaim one check is made to 2892 * abort proportional reclaim if either the file or anon lru has already 2893 * dropped to zero at the first pass. 2894 */ 2895 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2896 sc->priority == DEF_PRIORITY); 2897 2898 blk_start_plug(&plug); 2899 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2900 nr[LRU_INACTIVE_FILE]) { 2901 unsigned long nr_anon, nr_file, percentage; 2902 unsigned long nr_scanned; 2903 2904 for_each_evictable_lru(lru) { 2905 if (nr[lru]) { 2906 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2907 nr[lru] -= nr_to_scan; 2908 2909 nr_reclaimed += shrink_list(lru, nr_to_scan, 2910 lruvec, sc); 2911 } 2912 } 2913 2914 cond_resched(); 2915 2916 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2917 continue; 2918 2919 /* 2920 * For kswapd and memcg, reclaim at least the number of pages 2921 * requested. Ensure that the anon and file LRUs are scanned 2922 * proportionally what was requested by get_scan_count(). We 2923 * stop reclaiming one LRU and reduce the amount scanning 2924 * proportional to the original scan target. 2925 */ 2926 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2927 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2928 2929 /* 2930 * It's just vindictive to attack the larger once the smaller 2931 * has gone to zero. And given the way we stop scanning the 2932 * smaller below, this makes sure that we only make one nudge 2933 * towards proportionality once we've got nr_to_reclaim. 2934 */ 2935 if (!nr_file || !nr_anon) 2936 break; 2937 2938 if (nr_file > nr_anon) { 2939 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2940 targets[LRU_ACTIVE_ANON] + 1; 2941 lru = LRU_BASE; 2942 percentage = nr_anon * 100 / scan_target; 2943 } else { 2944 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2945 targets[LRU_ACTIVE_FILE] + 1; 2946 lru = LRU_FILE; 2947 percentage = nr_file * 100 / scan_target; 2948 } 2949 2950 /* Stop scanning the smaller of the LRU */ 2951 nr[lru] = 0; 2952 nr[lru + LRU_ACTIVE] = 0; 2953 2954 /* 2955 * Recalculate the other LRU scan count based on its original 2956 * scan target and the percentage scanning already complete 2957 */ 2958 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2959 nr_scanned = targets[lru] - nr[lru]; 2960 nr[lru] = targets[lru] * (100 - percentage) / 100; 2961 nr[lru] -= min(nr[lru], nr_scanned); 2962 2963 lru += LRU_ACTIVE; 2964 nr_scanned = targets[lru] - nr[lru]; 2965 nr[lru] = targets[lru] * (100 - percentage) / 100; 2966 nr[lru] -= min(nr[lru], nr_scanned); 2967 2968 scan_adjusted = true; 2969 } 2970 blk_finish_plug(&plug); 2971 sc->nr_reclaimed += nr_reclaimed; 2972 2973 /* 2974 * Even if we did not try to evict anon pages at all, we want to 2975 * rebalance the anon lru active/inactive ratio. 2976 */ 2977 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 2978 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2979 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2980 sc, LRU_ACTIVE_ANON); 2981 } 2982 2983 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2984 static bool in_reclaim_compaction(struct scan_control *sc) 2985 { 2986 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2987 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2988 sc->priority < DEF_PRIORITY - 2)) 2989 return true; 2990 2991 return false; 2992 } 2993 2994 /* 2995 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2996 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2997 * true if more pages should be reclaimed such that when the page allocator 2998 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2999 * It will give up earlier than that if there is difficulty reclaiming pages. 3000 */ 3001 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 3002 unsigned long nr_reclaimed, 3003 struct scan_control *sc) 3004 { 3005 unsigned long pages_for_compaction; 3006 unsigned long inactive_lru_pages; 3007 int z; 3008 3009 /* If not in reclaim/compaction mode, stop */ 3010 if (!in_reclaim_compaction(sc)) 3011 return false; 3012 3013 /* 3014 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 3015 * number of pages that were scanned. This will return to the caller 3016 * with the risk reclaim/compaction and the resulting allocation attempt 3017 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 3018 * allocations through requiring that the full LRU list has been scanned 3019 * first, by assuming that zero delta of sc->nr_scanned means full LRU 3020 * scan, but that approximation was wrong, and there were corner cases 3021 * where always a non-zero amount of pages were scanned. 3022 */ 3023 if (!nr_reclaimed) 3024 return false; 3025 3026 /* If compaction would go ahead or the allocation would succeed, stop */ 3027 for (z = 0; z <= sc->reclaim_idx; z++) { 3028 struct zone *zone = &pgdat->node_zones[z]; 3029 if (!managed_zone(zone)) 3030 continue; 3031 3032 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 3033 case COMPACT_SUCCESS: 3034 case COMPACT_CONTINUE: 3035 return false; 3036 default: 3037 /* check next zone */ 3038 ; 3039 } 3040 } 3041 3042 /* 3043 * If we have not reclaimed enough pages for compaction and the 3044 * inactive lists are large enough, continue reclaiming 3045 */ 3046 pages_for_compaction = compact_gap(sc->order); 3047 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 3048 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3049 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 3050 3051 return inactive_lru_pages > pages_for_compaction; 3052 } 3053 3054 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 3055 { 3056 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 3057 struct mem_cgroup *memcg; 3058 3059 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 3060 do { 3061 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3062 unsigned long reclaimed; 3063 unsigned long scanned; 3064 3065 /* 3066 * This loop can become CPU-bound when target memcgs 3067 * aren't eligible for reclaim - either because they 3068 * don't have any reclaimable pages, or because their 3069 * memory is explicitly protected. Avoid soft lockups. 3070 */ 3071 cond_resched(); 3072 3073 mem_cgroup_calculate_protection(target_memcg, memcg); 3074 3075 if (mem_cgroup_below_min(memcg)) { 3076 /* 3077 * Hard protection. 3078 * If there is no reclaimable memory, OOM. 3079 */ 3080 continue; 3081 } else if (mem_cgroup_below_low(memcg)) { 3082 /* 3083 * Soft protection. 3084 * Respect the protection only as long as 3085 * there is an unprotected supply 3086 * of reclaimable memory from other cgroups. 3087 */ 3088 if (!sc->memcg_low_reclaim) { 3089 sc->memcg_low_skipped = 1; 3090 continue; 3091 } 3092 memcg_memory_event(memcg, MEMCG_LOW); 3093 } 3094 3095 reclaimed = sc->nr_reclaimed; 3096 scanned = sc->nr_scanned; 3097 3098 shrink_lruvec(lruvec, sc); 3099 3100 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3101 sc->priority); 3102 3103 /* Record the group's reclaim efficiency */ 3104 vmpressure(sc->gfp_mask, memcg, false, 3105 sc->nr_scanned - scanned, 3106 sc->nr_reclaimed - reclaimed); 3107 3108 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3109 } 3110 3111 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3112 { 3113 struct reclaim_state *reclaim_state = current->reclaim_state; 3114 unsigned long nr_reclaimed, nr_scanned; 3115 struct lruvec *target_lruvec; 3116 bool reclaimable = false; 3117 unsigned long file; 3118 3119 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3120 3121 again: 3122 /* 3123 * Flush the memory cgroup stats, so that we read accurate per-memcg 3124 * lruvec stats for heuristics. 3125 */ 3126 mem_cgroup_flush_stats(); 3127 3128 memset(&sc->nr, 0, sizeof(sc->nr)); 3129 3130 nr_reclaimed = sc->nr_reclaimed; 3131 nr_scanned = sc->nr_scanned; 3132 3133 /* 3134 * Determine the scan balance between anon and file LRUs. 3135 */ 3136 spin_lock_irq(&target_lruvec->lru_lock); 3137 sc->anon_cost = target_lruvec->anon_cost; 3138 sc->file_cost = target_lruvec->file_cost; 3139 spin_unlock_irq(&target_lruvec->lru_lock); 3140 3141 /* 3142 * Target desirable inactive:active list ratios for the anon 3143 * and file LRU lists. 3144 */ 3145 if (!sc->force_deactivate) { 3146 unsigned long refaults; 3147 3148 refaults = lruvec_page_state(target_lruvec, 3149 WORKINGSET_ACTIVATE_ANON); 3150 if (refaults != target_lruvec->refaults[0] || 3151 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3152 sc->may_deactivate |= DEACTIVATE_ANON; 3153 else 3154 sc->may_deactivate &= ~DEACTIVATE_ANON; 3155 3156 /* 3157 * When refaults are being observed, it means a new 3158 * workingset is being established. Deactivate to get 3159 * rid of any stale active pages quickly. 3160 */ 3161 refaults = lruvec_page_state(target_lruvec, 3162 WORKINGSET_ACTIVATE_FILE); 3163 if (refaults != target_lruvec->refaults[1] || 3164 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3165 sc->may_deactivate |= DEACTIVATE_FILE; 3166 else 3167 sc->may_deactivate &= ~DEACTIVATE_FILE; 3168 } else 3169 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3170 3171 /* 3172 * If we have plenty of inactive file pages that aren't 3173 * thrashing, try to reclaim those first before touching 3174 * anonymous pages. 3175 */ 3176 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3177 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3178 sc->cache_trim_mode = 1; 3179 else 3180 sc->cache_trim_mode = 0; 3181 3182 /* 3183 * Prevent the reclaimer from falling into the cache trap: as 3184 * cache pages start out inactive, every cache fault will tip 3185 * the scan balance towards the file LRU. And as the file LRU 3186 * shrinks, so does the window for rotation from references. 3187 * This means we have a runaway feedback loop where a tiny 3188 * thrashing file LRU becomes infinitely more attractive than 3189 * anon pages. Try to detect this based on file LRU size. 3190 */ 3191 if (!cgroup_reclaim(sc)) { 3192 unsigned long total_high_wmark = 0; 3193 unsigned long free, anon; 3194 int z; 3195 3196 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3197 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3198 node_page_state(pgdat, NR_INACTIVE_FILE); 3199 3200 for (z = 0; z < MAX_NR_ZONES; z++) { 3201 struct zone *zone = &pgdat->node_zones[z]; 3202 if (!managed_zone(zone)) 3203 continue; 3204 3205 total_high_wmark += high_wmark_pages(zone); 3206 } 3207 3208 /* 3209 * Consider anon: if that's low too, this isn't a 3210 * runaway file reclaim problem, but rather just 3211 * extreme pressure. Reclaim as per usual then. 3212 */ 3213 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3214 3215 sc->file_is_tiny = 3216 file + free <= total_high_wmark && 3217 !(sc->may_deactivate & DEACTIVATE_ANON) && 3218 anon >> sc->priority; 3219 } 3220 3221 shrink_node_memcgs(pgdat, sc); 3222 3223 if (reclaim_state) { 3224 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3225 reclaim_state->reclaimed_slab = 0; 3226 } 3227 3228 /* Record the subtree's reclaim efficiency */ 3229 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3230 sc->nr_scanned - nr_scanned, 3231 sc->nr_reclaimed - nr_reclaimed); 3232 3233 if (sc->nr_reclaimed - nr_reclaimed) 3234 reclaimable = true; 3235 3236 if (current_is_kswapd()) { 3237 /* 3238 * If reclaim is isolating dirty pages under writeback, 3239 * it implies that the long-lived page allocation rate 3240 * is exceeding the page laundering rate. Either the 3241 * global limits are not being effective at throttling 3242 * processes due to the page distribution throughout 3243 * zones or there is heavy usage of a slow backing 3244 * device. The only option is to throttle from reclaim 3245 * context which is not ideal as there is no guarantee 3246 * the dirtying process is throttled in the same way 3247 * balance_dirty_pages() manages. 3248 * 3249 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3250 * count the number of pages under pages flagged for 3251 * immediate reclaim and stall if any are encountered 3252 * in the nr_immediate check below. 3253 */ 3254 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3255 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3256 3257 /* Allow kswapd to start writing pages during reclaim.*/ 3258 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3259 set_bit(PGDAT_DIRTY, &pgdat->flags); 3260 3261 /* 3262 * If kswapd scans pages marked for immediate 3263 * reclaim and under writeback (nr_immediate), it 3264 * implies that pages are cycling through the LRU 3265 * faster than they are written so forcibly stall 3266 * until some pages complete writeback. 3267 */ 3268 if (sc->nr.immediate) 3269 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3270 } 3271 3272 /* 3273 * Tag a node/memcg as congested if all the dirty pages were marked 3274 * for writeback and immediate reclaim (counted in nr.congested). 3275 * 3276 * Legacy memcg will stall in page writeback so avoid forcibly 3277 * stalling in reclaim_throttle(). 3278 */ 3279 if ((current_is_kswapd() || 3280 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3281 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3282 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3283 3284 /* 3285 * Stall direct reclaim for IO completions if the lruvec is 3286 * node is congested. Allow kswapd to continue until it 3287 * starts encountering unqueued dirty pages or cycling through 3288 * the LRU too quickly. 3289 */ 3290 if (!current_is_kswapd() && current_may_throttle() && 3291 !sc->hibernation_mode && 3292 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3293 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 3294 3295 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3296 sc)) 3297 goto again; 3298 3299 /* 3300 * Kswapd gives up on balancing particular nodes after too 3301 * many failures to reclaim anything from them and goes to 3302 * sleep. On reclaim progress, reset the failure counter. A 3303 * successful direct reclaim run will revive a dormant kswapd. 3304 */ 3305 if (reclaimable) 3306 pgdat->kswapd_failures = 0; 3307 } 3308 3309 /* 3310 * Returns true if compaction should go ahead for a costly-order request, or 3311 * the allocation would already succeed without compaction. Return false if we 3312 * should reclaim first. 3313 */ 3314 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3315 { 3316 unsigned long watermark; 3317 enum compact_result suitable; 3318 3319 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3320 if (suitable == COMPACT_SUCCESS) 3321 /* Allocation should succeed already. Don't reclaim. */ 3322 return true; 3323 if (suitable == COMPACT_SKIPPED) 3324 /* Compaction cannot yet proceed. Do reclaim. */ 3325 return false; 3326 3327 /* 3328 * Compaction is already possible, but it takes time to run and there 3329 * are potentially other callers using the pages just freed. So proceed 3330 * with reclaim to make a buffer of free pages available to give 3331 * compaction a reasonable chance of completing and allocating the page. 3332 * Note that we won't actually reclaim the whole buffer in one attempt 3333 * as the target watermark in should_continue_reclaim() is lower. But if 3334 * we are already above the high+gap watermark, don't reclaim at all. 3335 */ 3336 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3337 3338 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3339 } 3340 3341 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 3342 { 3343 /* 3344 * If reclaim is making progress greater than 12% efficiency then 3345 * wake all the NOPROGRESS throttled tasks. 3346 */ 3347 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 3348 wait_queue_head_t *wqh; 3349 3350 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 3351 if (waitqueue_active(wqh)) 3352 wake_up(wqh); 3353 3354 return; 3355 } 3356 3357 /* 3358 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 3359 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 3360 * under writeback and marked for immediate reclaim at the tail of the 3361 * LRU. 3362 */ 3363 if (current_is_kswapd() || cgroup_reclaim(sc)) 3364 return; 3365 3366 /* Throttle if making no progress at high prioities. */ 3367 if (sc->priority == 1 && !sc->nr_reclaimed) 3368 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 3369 } 3370 3371 /* 3372 * This is the direct reclaim path, for page-allocating processes. We only 3373 * try to reclaim pages from zones which will satisfy the caller's allocation 3374 * request. 3375 * 3376 * If a zone is deemed to be full of pinned pages then just give it a light 3377 * scan then give up on it. 3378 */ 3379 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3380 { 3381 struct zoneref *z; 3382 struct zone *zone; 3383 unsigned long nr_soft_reclaimed; 3384 unsigned long nr_soft_scanned; 3385 gfp_t orig_mask; 3386 pg_data_t *last_pgdat = NULL; 3387 pg_data_t *first_pgdat = NULL; 3388 3389 /* 3390 * If the number of buffer_heads in the machine exceeds the maximum 3391 * allowed level, force direct reclaim to scan the highmem zone as 3392 * highmem pages could be pinning lowmem pages storing buffer_heads 3393 */ 3394 orig_mask = sc->gfp_mask; 3395 if (buffer_heads_over_limit) { 3396 sc->gfp_mask |= __GFP_HIGHMEM; 3397 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3398 } 3399 3400 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3401 sc->reclaim_idx, sc->nodemask) { 3402 /* 3403 * Take care memory controller reclaiming has small influence 3404 * to global LRU. 3405 */ 3406 if (!cgroup_reclaim(sc)) { 3407 if (!cpuset_zone_allowed(zone, 3408 GFP_KERNEL | __GFP_HARDWALL)) 3409 continue; 3410 3411 /* 3412 * If we already have plenty of memory free for 3413 * compaction in this zone, don't free any more. 3414 * Even though compaction is invoked for any 3415 * non-zero order, only frequent costly order 3416 * reclamation is disruptive enough to become a 3417 * noticeable problem, like transparent huge 3418 * page allocations. 3419 */ 3420 if (IS_ENABLED(CONFIG_COMPACTION) && 3421 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3422 compaction_ready(zone, sc)) { 3423 sc->compaction_ready = true; 3424 continue; 3425 } 3426 3427 /* 3428 * Shrink each node in the zonelist once. If the 3429 * zonelist is ordered by zone (not the default) then a 3430 * node may be shrunk multiple times but in that case 3431 * the user prefers lower zones being preserved. 3432 */ 3433 if (zone->zone_pgdat == last_pgdat) 3434 continue; 3435 3436 /* 3437 * This steals pages from memory cgroups over softlimit 3438 * and returns the number of reclaimed pages and 3439 * scanned pages. This works for global memory pressure 3440 * and balancing, not for a memcg's limit. 3441 */ 3442 nr_soft_scanned = 0; 3443 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3444 sc->order, sc->gfp_mask, 3445 &nr_soft_scanned); 3446 sc->nr_reclaimed += nr_soft_reclaimed; 3447 sc->nr_scanned += nr_soft_scanned; 3448 /* need some check for avoid more shrink_zone() */ 3449 } 3450 3451 if (!first_pgdat) 3452 first_pgdat = zone->zone_pgdat; 3453 3454 /* See comment about same check for global reclaim above */ 3455 if (zone->zone_pgdat == last_pgdat) 3456 continue; 3457 last_pgdat = zone->zone_pgdat; 3458 shrink_node(zone->zone_pgdat, sc); 3459 } 3460 3461 if (first_pgdat) 3462 consider_reclaim_throttle(first_pgdat, sc); 3463 3464 /* 3465 * Restore to original mask to avoid the impact on the caller if we 3466 * promoted it to __GFP_HIGHMEM. 3467 */ 3468 sc->gfp_mask = orig_mask; 3469 } 3470 3471 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3472 { 3473 struct lruvec *target_lruvec; 3474 unsigned long refaults; 3475 3476 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3477 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3478 target_lruvec->refaults[0] = refaults; 3479 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3480 target_lruvec->refaults[1] = refaults; 3481 } 3482 3483 /* 3484 * This is the main entry point to direct page reclaim. 3485 * 3486 * If a full scan of the inactive list fails to free enough memory then we 3487 * are "out of memory" and something needs to be killed. 3488 * 3489 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3490 * high - the zone may be full of dirty or under-writeback pages, which this 3491 * caller can't do much about. We kick the writeback threads and take explicit 3492 * naps in the hope that some of these pages can be written. But if the 3493 * allocating task holds filesystem locks which prevent writeout this might not 3494 * work, and the allocation attempt will fail. 3495 * 3496 * returns: 0, if no pages reclaimed 3497 * else, the number of pages reclaimed 3498 */ 3499 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3500 struct scan_control *sc) 3501 { 3502 int initial_priority = sc->priority; 3503 pg_data_t *last_pgdat; 3504 struct zoneref *z; 3505 struct zone *zone; 3506 retry: 3507 delayacct_freepages_start(); 3508 3509 if (!cgroup_reclaim(sc)) 3510 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3511 3512 do { 3513 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3514 sc->priority); 3515 sc->nr_scanned = 0; 3516 shrink_zones(zonelist, sc); 3517 3518 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3519 break; 3520 3521 if (sc->compaction_ready) 3522 break; 3523 3524 /* 3525 * If we're getting trouble reclaiming, start doing 3526 * writepage even in laptop mode. 3527 */ 3528 if (sc->priority < DEF_PRIORITY - 2) 3529 sc->may_writepage = 1; 3530 } while (--sc->priority >= 0); 3531 3532 last_pgdat = NULL; 3533 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3534 sc->nodemask) { 3535 if (zone->zone_pgdat == last_pgdat) 3536 continue; 3537 last_pgdat = zone->zone_pgdat; 3538 3539 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3540 3541 if (cgroup_reclaim(sc)) { 3542 struct lruvec *lruvec; 3543 3544 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3545 zone->zone_pgdat); 3546 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3547 } 3548 } 3549 3550 delayacct_freepages_end(); 3551 3552 if (sc->nr_reclaimed) 3553 return sc->nr_reclaimed; 3554 3555 /* Aborted reclaim to try compaction? don't OOM, then */ 3556 if (sc->compaction_ready) 3557 return 1; 3558 3559 /* 3560 * We make inactive:active ratio decisions based on the node's 3561 * composition of memory, but a restrictive reclaim_idx or a 3562 * memory.low cgroup setting can exempt large amounts of 3563 * memory from reclaim. Neither of which are very common, so 3564 * instead of doing costly eligibility calculations of the 3565 * entire cgroup subtree up front, we assume the estimates are 3566 * good, and retry with forcible deactivation if that fails. 3567 */ 3568 if (sc->skipped_deactivate) { 3569 sc->priority = initial_priority; 3570 sc->force_deactivate = 1; 3571 sc->skipped_deactivate = 0; 3572 goto retry; 3573 } 3574 3575 /* Untapped cgroup reserves? Don't OOM, retry. */ 3576 if (sc->memcg_low_skipped) { 3577 sc->priority = initial_priority; 3578 sc->force_deactivate = 0; 3579 sc->memcg_low_reclaim = 1; 3580 sc->memcg_low_skipped = 0; 3581 goto retry; 3582 } 3583 3584 return 0; 3585 } 3586 3587 static bool allow_direct_reclaim(pg_data_t *pgdat) 3588 { 3589 struct zone *zone; 3590 unsigned long pfmemalloc_reserve = 0; 3591 unsigned long free_pages = 0; 3592 int i; 3593 bool wmark_ok; 3594 3595 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3596 return true; 3597 3598 for (i = 0; i <= ZONE_NORMAL; i++) { 3599 zone = &pgdat->node_zones[i]; 3600 if (!managed_zone(zone)) 3601 continue; 3602 3603 if (!zone_reclaimable_pages(zone)) 3604 continue; 3605 3606 pfmemalloc_reserve += min_wmark_pages(zone); 3607 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3608 } 3609 3610 /* If there are no reserves (unexpected config) then do not throttle */ 3611 if (!pfmemalloc_reserve) 3612 return true; 3613 3614 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3615 3616 /* kswapd must be awake if processes are being throttled */ 3617 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3618 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3619 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3620 3621 wake_up_interruptible(&pgdat->kswapd_wait); 3622 } 3623 3624 return wmark_ok; 3625 } 3626 3627 /* 3628 * Throttle direct reclaimers if backing storage is backed by the network 3629 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3630 * depleted. kswapd will continue to make progress and wake the processes 3631 * when the low watermark is reached. 3632 * 3633 * Returns true if a fatal signal was delivered during throttling. If this 3634 * happens, the page allocator should not consider triggering the OOM killer. 3635 */ 3636 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3637 nodemask_t *nodemask) 3638 { 3639 struct zoneref *z; 3640 struct zone *zone; 3641 pg_data_t *pgdat = NULL; 3642 3643 /* 3644 * Kernel threads should not be throttled as they may be indirectly 3645 * responsible for cleaning pages necessary for reclaim to make forward 3646 * progress. kjournald for example may enter direct reclaim while 3647 * committing a transaction where throttling it could forcing other 3648 * processes to block on log_wait_commit(). 3649 */ 3650 if (current->flags & PF_KTHREAD) 3651 goto out; 3652 3653 /* 3654 * If a fatal signal is pending, this process should not throttle. 3655 * It should return quickly so it can exit and free its memory 3656 */ 3657 if (fatal_signal_pending(current)) 3658 goto out; 3659 3660 /* 3661 * Check if the pfmemalloc reserves are ok by finding the first node 3662 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3663 * GFP_KERNEL will be required for allocating network buffers when 3664 * swapping over the network so ZONE_HIGHMEM is unusable. 3665 * 3666 * Throttling is based on the first usable node and throttled processes 3667 * wait on a queue until kswapd makes progress and wakes them. There 3668 * is an affinity then between processes waking up and where reclaim 3669 * progress has been made assuming the process wakes on the same node. 3670 * More importantly, processes running on remote nodes will not compete 3671 * for remote pfmemalloc reserves and processes on different nodes 3672 * should make reasonable progress. 3673 */ 3674 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3675 gfp_zone(gfp_mask), nodemask) { 3676 if (zone_idx(zone) > ZONE_NORMAL) 3677 continue; 3678 3679 /* Throttle based on the first usable node */ 3680 pgdat = zone->zone_pgdat; 3681 if (allow_direct_reclaim(pgdat)) 3682 goto out; 3683 break; 3684 } 3685 3686 /* If no zone was usable by the allocation flags then do not throttle */ 3687 if (!pgdat) 3688 goto out; 3689 3690 /* Account for the throttling */ 3691 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3692 3693 /* 3694 * If the caller cannot enter the filesystem, it's possible that it 3695 * is due to the caller holding an FS lock or performing a journal 3696 * transaction in the case of a filesystem like ext[3|4]. In this case, 3697 * it is not safe to block on pfmemalloc_wait as kswapd could be 3698 * blocked waiting on the same lock. Instead, throttle for up to a 3699 * second before continuing. 3700 */ 3701 if (!(gfp_mask & __GFP_FS)) 3702 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3703 allow_direct_reclaim(pgdat), HZ); 3704 else 3705 /* Throttle until kswapd wakes the process */ 3706 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3707 allow_direct_reclaim(pgdat)); 3708 3709 if (fatal_signal_pending(current)) 3710 return true; 3711 3712 out: 3713 return false; 3714 } 3715 3716 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3717 gfp_t gfp_mask, nodemask_t *nodemask) 3718 { 3719 unsigned long nr_reclaimed; 3720 struct scan_control sc = { 3721 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3722 .gfp_mask = current_gfp_context(gfp_mask), 3723 .reclaim_idx = gfp_zone(gfp_mask), 3724 .order = order, 3725 .nodemask = nodemask, 3726 .priority = DEF_PRIORITY, 3727 .may_writepage = !laptop_mode, 3728 .may_unmap = 1, 3729 .may_swap = 1, 3730 }; 3731 3732 /* 3733 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3734 * Confirm they are large enough for max values. 3735 */ 3736 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3737 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3738 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3739 3740 /* 3741 * Do not enter reclaim if fatal signal was delivered while throttled. 3742 * 1 is returned so that the page allocator does not OOM kill at this 3743 * point. 3744 */ 3745 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3746 return 1; 3747 3748 set_task_reclaim_state(current, &sc.reclaim_state); 3749 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3750 3751 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3752 3753 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3754 set_task_reclaim_state(current, NULL); 3755 3756 return nr_reclaimed; 3757 } 3758 3759 #ifdef CONFIG_MEMCG 3760 3761 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3762 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3763 gfp_t gfp_mask, bool noswap, 3764 pg_data_t *pgdat, 3765 unsigned long *nr_scanned) 3766 { 3767 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3768 struct scan_control sc = { 3769 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3770 .target_mem_cgroup = memcg, 3771 .may_writepage = !laptop_mode, 3772 .may_unmap = 1, 3773 .reclaim_idx = MAX_NR_ZONES - 1, 3774 .may_swap = !noswap, 3775 }; 3776 3777 WARN_ON_ONCE(!current->reclaim_state); 3778 3779 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3780 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3781 3782 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3783 sc.gfp_mask); 3784 3785 /* 3786 * NOTE: Although we can get the priority field, using it 3787 * here is not a good idea, since it limits the pages we can scan. 3788 * if we don't reclaim here, the shrink_node from balance_pgdat 3789 * will pick up pages from other mem cgroup's as well. We hack 3790 * the priority and make it zero. 3791 */ 3792 shrink_lruvec(lruvec, &sc); 3793 3794 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3795 3796 *nr_scanned = sc.nr_scanned; 3797 3798 return sc.nr_reclaimed; 3799 } 3800 3801 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3802 unsigned long nr_pages, 3803 gfp_t gfp_mask, 3804 bool may_swap) 3805 { 3806 unsigned long nr_reclaimed; 3807 unsigned int noreclaim_flag; 3808 struct scan_control sc = { 3809 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3810 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3811 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3812 .reclaim_idx = MAX_NR_ZONES - 1, 3813 .target_mem_cgroup = memcg, 3814 .priority = DEF_PRIORITY, 3815 .may_writepage = !laptop_mode, 3816 .may_unmap = 1, 3817 .may_swap = may_swap, 3818 }; 3819 /* 3820 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3821 * equal pressure on all the nodes. This is based on the assumption that 3822 * the reclaim does not bail out early. 3823 */ 3824 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3825 3826 set_task_reclaim_state(current, &sc.reclaim_state); 3827 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3828 noreclaim_flag = memalloc_noreclaim_save(); 3829 3830 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3831 3832 memalloc_noreclaim_restore(noreclaim_flag); 3833 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3834 set_task_reclaim_state(current, NULL); 3835 3836 return nr_reclaimed; 3837 } 3838 #endif 3839 3840 static void age_active_anon(struct pglist_data *pgdat, 3841 struct scan_control *sc) 3842 { 3843 struct mem_cgroup *memcg; 3844 struct lruvec *lruvec; 3845 3846 if (!can_age_anon_pages(pgdat, sc)) 3847 return; 3848 3849 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3850 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3851 return; 3852 3853 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3854 do { 3855 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3856 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3857 sc, LRU_ACTIVE_ANON); 3858 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3859 } while (memcg); 3860 } 3861 3862 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3863 { 3864 int i; 3865 struct zone *zone; 3866 3867 /* 3868 * Check for watermark boosts top-down as the higher zones 3869 * are more likely to be boosted. Both watermarks and boosts 3870 * should not be checked at the same time as reclaim would 3871 * start prematurely when there is no boosting and a lower 3872 * zone is balanced. 3873 */ 3874 for (i = highest_zoneidx; i >= 0; i--) { 3875 zone = pgdat->node_zones + i; 3876 if (!managed_zone(zone)) 3877 continue; 3878 3879 if (zone->watermark_boost) 3880 return true; 3881 } 3882 3883 return false; 3884 } 3885 3886 /* 3887 * Returns true if there is an eligible zone balanced for the request order 3888 * and highest_zoneidx 3889 */ 3890 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3891 { 3892 int i; 3893 unsigned long mark = -1; 3894 struct zone *zone; 3895 3896 /* 3897 * Check watermarks bottom-up as lower zones are more likely to 3898 * meet watermarks. 3899 */ 3900 for (i = 0; i <= highest_zoneidx; i++) { 3901 zone = pgdat->node_zones + i; 3902 3903 if (!managed_zone(zone)) 3904 continue; 3905 3906 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 3907 mark = wmark_pages(zone, WMARK_PROMO); 3908 else 3909 mark = high_wmark_pages(zone); 3910 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3911 return true; 3912 } 3913 3914 /* 3915 * If a node has no populated zone within highest_zoneidx, it does not 3916 * need balancing by definition. This can happen if a zone-restricted 3917 * allocation tries to wake a remote kswapd. 3918 */ 3919 if (mark == -1) 3920 return true; 3921 3922 return false; 3923 } 3924 3925 /* Clear pgdat state for congested, dirty or under writeback. */ 3926 static void clear_pgdat_congested(pg_data_t *pgdat) 3927 { 3928 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3929 3930 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3931 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3932 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3933 } 3934 3935 /* 3936 * Prepare kswapd for sleeping. This verifies that there are no processes 3937 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3938 * 3939 * Returns true if kswapd is ready to sleep 3940 */ 3941 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3942 int highest_zoneidx) 3943 { 3944 /* 3945 * The throttled processes are normally woken up in balance_pgdat() as 3946 * soon as allow_direct_reclaim() is true. But there is a potential 3947 * race between when kswapd checks the watermarks and a process gets 3948 * throttled. There is also a potential race if processes get 3949 * throttled, kswapd wakes, a large process exits thereby balancing the 3950 * zones, which causes kswapd to exit balance_pgdat() before reaching 3951 * the wake up checks. If kswapd is going to sleep, no process should 3952 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3953 * the wake up is premature, processes will wake kswapd and get 3954 * throttled again. The difference from wake ups in balance_pgdat() is 3955 * that here we are under prepare_to_wait(). 3956 */ 3957 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3958 wake_up_all(&pgdat->pfmemalloc_wait); 3959 3960 /* Hopeless node, leave it to direct reclaim */ 3961 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3962 return true; 3963 3964 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3965 clear_pgdat_congested(pgdat); 3966 return true; 3967 } 3968 3969 return false; 3970 } 3971 3972 /* 3973 * kswapd shrinks a node of pages that are at or below the highest usable 3974 * zone that is currently unbalanced. 3975 * 3976 * Returns true if kswapd scanned at least the requested number of pages to 3977 * reclaim or if the lack of progress was due to pages under writeback. 3978 * This is used to determine if the scanning priority needs to be raised. 3979 */ 3980 static bool kswapd_shrink_node(pg_data_t *pgdat, 3981 struct scan_control *sc) 3982 { 3983 struct zone *zone; 3984 int z; 3985 3986 /* Reclaim a number of pages proportional to the number of zones */ 3987 sc->nr_to_reclaim = 0; 3988 for (z = 0; z <= sc->reclaim_idx; z++) { 3989 zone = pgdat->node_zones + z; 3990 if (!managed_zone(zone)) 3991 continue; 3992 3993 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3994 } 3995 3996 /* 3997 * Historically care was taken to put equal pressure on all zones but 3998 * now pressure is applied based on node LRU order. 3999 */ 4000 shrink_node(pgdat, sc); 4001 4002 /* 4003 * Fragmentation may mean that the system cannot be rebalanced for 4004 * high-order allocations. If twice the allocation size has been 4005 * reclaimed then recheck watermarks only at order-0 to prevent 4006 * excessive reclaim. Assume that a process requested a high-order 4007 * can direct reclaim/compact. 4008 */ 4009 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 4010 sc->order = 0; 4011 4012 return sc->nr_scanned >= sc->nr_to_reclaim; 4013 } 4014 4015 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 4016 static inline void 4017 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 4018 { 4019 int i; 4020 struct zone *zone; 4021 4022 for (i = 0; i <= highest_zoneidx; i++) { 4023 zone = pgdat->node_zones + i; 4024 4025 if (!managed_zone(zone)) 4026 continue; 4027 4028 if (active) 4029 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4030 else 4031 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4032 } 4033 } 4034 4035 static inline void 4036 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4037 { 4038 update_reclaim_active(pgdat, highest_zoneidx, true); 4039 } 4040 4041 static inline void 4042 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4043 { 4044 update_reclaim_active(pgdat, highest_zoneidx, false); 4045 } 4046 4047 /* 4048 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 4049 * that are eligible for use by the caller until at least one zone is 4050 * balanced. 4051 * 4052 * Returns the order kswapd finished reclaiming at. 4053 * 4054 * kswapd scans the zones in the highmem->normal->dma direction. It skips 4055 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 4056 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 4057 * or lower is eligible for reclaim until at least one usable zone is 4058 * balanced. 4059 */ 4060 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 4061 { 4062 int i; 4063 unsigned long nr_soft_reclaimed; 4064 unsigned long nr_soft_scanned; 4065 unsigned long pflags; 4066 unsigned long nr_boost_reclaim; 4067 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 4068 bool boosted; 4069 struct zone *zone; 4070 struct scan_control sc = { 4071 .gfp_mask = GFP_KERNEL, 4072 .order = order, 4073 .may_unmap = 1, 4074 }; 4075 4076 set_task_reclaim_state(current, &sc.reclaim_state); 4077 psi_memstall_enter(&pflags); 4078 __fs_reclaim_acquire(_THIS_IP_); 4079 4080 count_vm_event(PAGEOUTRUN); 4081 4082 /* 4083 * Account for the reclaim boost. Note that the zone boost is left in 4084 * place so that parallel allocations that are near the watermark will 4085 * stall or direct reclaim until kswapd is finished. 4086 */ 4087 nr_boost_reclaim = 0; 4088 for (i = 0; i <= highest_zoneidx; i++) { 4089 zone = pgdat->node_zones + i; 4090 if (!managed_zone(zone)) 4091 continue; 4092 4093 nr_boost_reclaim += zone->watermark_boost; 4094 zone_boosts[i] = zone->watermark_boost; 4095 } 4096 boosted = nr_boost_reclaim; 4097 4098 restart: 4099 set_reclaim_active(pgdat, highest_zoneidx); 4100 sc.priority = DEF_PRIORITY; 4101 do { 4102 unsigned long nr_reclaimed = sc.nr_reclaimed; 4103 bool raise_priority = true; 4104 bool balanced; 4105 bool ret; 4106 4107 sc.reclaim_idx = highest_zoneidx; 4108 4109 /* 4110 * If the number of buffer_heads exceeds the maximum allowed 4111 * then consider reclaiming from all zones. This has a dual 4112 * purpose -- on 64-bit systems it is expected that 4113 * buffer_heads are stripped during active rotation. On 32-bit 4114 * systems, highmem pages can pin lowmem memory and shrinking 4115 * buffers can relieve lowmem pressure. Reclaim may still not 4116 * go ahead if all eligible zones for the original allocation 4117 * request are balanced to avoid excessive reclaim from kswapd. 4118 */ 4119 if (buffer_heads_over_limit) { 4120 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4121 zone = pgdat->node_zones + i; 4122 if (!managed_zone(zone)) 4123 continue; 4124 4125 sc.reclaim_idx = i; 4126 break; 4127 } 4128 } 4129 4130 /* 4131 * If the pgdat is imbalanced then ignore boosting and preserve 4132 * the watermarks for a later time and restart. Note that the 4133 * zone watermarks will be still reset at the end of balancing 4134 * on the grounds that the normal reclaim should be enough to 4135 * re-evaluate if boosting is required when kswapd next wakes. 4136 */ 4137 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4138 if (!balanced && nr_boost_reclaim) { 4139 nr_boost_reclaim = 0; 4140 goto restart; 4141 } 4142 4143 /* 4144 * If boosting is not active then only reclaim if there are no 4145 * eligible zones. Note that sc.reclaim_idx is not used as 4146 * buffer_heads_over_limit may have adjusted it. 4147 */ 4148 if (!nr_boost_reclaim && balanced) 4149 goto out; 4150 4151 /* Limit the priority of boosting to avoid reclaim writeback */ 4152 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4153 raise_priority = false; 4154 4155 /* 4156 * Do not writeback or swap pages for boosted reclaim. The 4157 * intent is to relieve pressure not issue sub-optimal IO 4158 * from reclaim context. If no pages are reclaimed, the 4159 * reclaim will be aborted. 4160 */ 4161 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4162 sc.may_swap = !nr_boost_reclaim; 4163 4164 /* 4165 * Do some background aging of the anon list, to give 4166 * pages a chance to be referenced before reclaiming. All 4167 * pages are rotated regardless of classzone as this is 4168 * about consistent aging. 4169 */ 4170 age_active_anon(pgdat, &sc); 4171 4172 /* 4173 * If we're getting trouble reclaiming, start doing writepage 4174 * even in laptop mode. 4175 */ 4176 if (sc.priority < DEF_PRIORITY - 2) 4177 sc.may_writepage = 1; 4178 4179 /* Call soft limit reclaim before calling shrink_node. */ 4180 sc.nr_scanned = 0; 4181 nr_soft_scanned = 0; 4182 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4183 sc.gfp_mask, &nr_soft_scanned); 4184 sc.nr_reclaimed += nr_soft_reclaimed; 4185 4186 /* 4187 * There should be no need to raise the scanning priority if 4188 * enough pages are already being scanned that that high 4189 * watermark would be met at 100% efficiency. 4190 */ 4191 if (kswapd_shrink_node(pgdat, &sc)) 4192 raise_priority = false; 4193 4194 /* 4195 * If the low watermark is met there is no need for processes 4196 * to be throttled on pfmemalloc_wait as they should not be 4197 * able to safely make forward progress. Wake them 4198 */ 4199 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4200 allow_direct_reclaim(pgdat)) 4201 wake_up_all(&pgdat->pfmemalloc_wait); 4202 4203 /* Check if kswapd should be suspending */ 4204 __fs_reclaim_release(_THIS_IP_); 4205 ret = try_to_freeze(); 4206 __fs_reclaim_acquire(_THIS_IP_); 4207 if (ret || kthread_should_stop()) 4208 break; 4209 4210 /* 4211 * Raise priority if scanning rate is too low or there was no 4212 * progress in reclaiming pages 4213 */ 4214 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4215 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4216 4217 /* 4218 * If reclaim made no progress for a boost, stop reclaim as 4219 * IO cannot be queued and it could be an infinite loop in 4220 * extreme circumstances. 4221 */ 4222 if (nr_boost_reclaim && !nr_reclaimed) 4223 break; 4224 4225 if (raise_priority || !nr_reclaimed) 4226 sc.priority--; 4227 } while (sc.priority >= 1); 4228 4229 if (!sc.nr_reclaimed) 4230 pgdat->kswapd_failures++; 4231 4232 out: 4233 clear_reclaim_active(pgdat, highest_zoneidx); 4234 4235 /* If reclaim was boosted, account for the reclaim done in this pass */ 4236 if (boosted) { 4237 unsigned long flags; 4238 4239 for (i = 0; i <= highest_zoneidx; i++) { 4240 if (!zone_boosts[i]) 4241 continue; 4242 4243 /* Increments are under the zone lock */ 4244 zone = pgdat->node_zones + i; 4245 spin_lock_irqsave(&zone->lock, flags); 4246 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4247 spin_unlock_irqrestore(&zone->lock, flags); 4248 } 4249 4250 /* 4251 * As there is now likely space, wakeup kcompact to defragment 4252 * pageblocks. 4253 */ 4254 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4255 } 4256 4257 snapshot_refaults(NULL, pgdat); 4258 __fs_reclaim_release(_THIS_IP_); 4259 psi_memstall_leave(&pflags); 4260 set_task_reclaim_state(current, NULL); 4261 4262 /* 4263 * Return the order kswapd stopped reclaiming at as 4264 * prepare_kswapd_sleep() takes it into account. If another caller 4265 * entered the allocator slow path while kswapd was awake, order will 4266 * remain at the higher level. 4267 */ 4268 return sc.order; 4269 } 4270 4271 /* 4272 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4273 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4274 * not a valid index then either kswapd runs for first time or kswapd couldn't 4275 * sleep after previous reclaim attempt (node is still unbalanced). In that 4276 * case return the zone index of the previous kswapd reclaim cycle. 4277 */ 4278 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4279 enum zone_type prev_highest_zoneidx) 4280 { 4281 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4282 4283 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4284 } 4285 4286 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4287 unsigned int highest_zoneidx) 4288 { 4289 long remaining = 0; 4290 DEFINE_WAIT(wait); 4291 4292 if (freezing(current) || kthread_should_stop()) 4293 return; 4294 4295 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4296 4297 /* 4298 * Try to sleep for a short interval. Note that kcompactd will only be 4299 * woken if it is possible to sleep for a short interval. This is 4300 * deliberate on the assumption that if reclaim cannot keep an 4301 * eligible zone balanced that it's also unlikely that compaction will 4302 * succeed. 4303 */ 4304 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4305 /* 4306 * Compaction records what page blocks it recently failed to 4307 * isolate pages from and skips them in the future scanning. 4308 * When kswapd is going to sleep, it is reasonable to assume 4309 * that pages and compaction may succeed so reset the cache. 4310 */ 4311 reset_isolation_suitable(pgdat); 4312 4313 /* 4314 * We have freed the memory, now we should compact it to make 4315 * allocation of the requested order possible. 4316 */ 4317 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4318 4319 remaining = schedule_timeout(HZ/10); 4320 4321 /* 4322 * If woken prematurely then reset kswapd_highest_zoneidx and 4323 * order. The values will either be from a wakeup request or 4324 * the previous request that slept prematurely. 4325 */ 4326 if (remaining) { 4327 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4328 kswapd_highest_zoneidx(pgdat, 4329 highest_zoneidx)); 4330 4331 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4332 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4333 } 4334 4335 finish_wait(&pgdat->kswapd_wait, &wait); 4336 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4337 } 4338 4339 /* 4340 * After a short sleep, check if it was a premature sleep. If not, then 4341 * go fully to sleep until explicitly woken up. 4342 */ 4343 if (!remaining && 4344 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4345 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4346 4347 /* 4348 * vmstat counters are not perfectly accurate and the estimated 4349 * value for counters such as NR_FREE_PAGES can deviate from the 4350 * true value by nr_online_cpus * threshold. To avoid the zone 4351 * watermarks being breached while under pressure, we reduce the 4352 * per-cpu vmstat threshold while kswapd is awake and restore 4353 * them before going back to sleep. 4354 */ 4355 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4356 4357 if (!kthread_should_stop()) 4358 schedule(); 4359 4360 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4361 } else { 4362 if (remaining) 4363 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4364 else 4365 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4366 } 4367 finish_wait(&pgdat->kswapd_wait, &wait); 4368 } 4369 4370 /* 4371 * The background pageout daemon, started as a kernel thread 4372 * from the init process. 4373 * 4374 * This basically trickles out pages so that we have _some_ 4375 * free memory available even if there is no other activity 4376 * that frees anything up. This is needed for things like routing 4377 * etc, where we otherwise might have all activity going on in 4378 * asynchronous contexts that cannot page things out. 4379 * 4380 * If there are applications that are active memory-allocators 4381 * (most normal use), this basically shouldn't matter. 4382 */ 4383 static int kswapd(void *p) 4384 { 4385 unsigned int alloc_order, reclaim_order; 4386 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4387 pg_data_t *pgdat = (pg_data_t *)p; 4388 struct task_struct *tsk = current; 4389 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4390 4391 if (!cpumask_empty(cpumask)) 4392 set_cpus_allowed_ptr(tsk, cpumask); 4393 4394 /* 4395 * Tell the memory management that we're a "memory allocator", 4396 * and that if we need more memory we should get access to it 4397 * regardless (see "__alloc_pages()"). "kswapd" should 4398 * never get caught in the normal page freeing logic. 4399 * 4400 * (Kswapd normally doesn't need memory anyway, but sometimes 4401 * you need a small amount of memory in order to be able to 4402 * page out something else, and this flag essentially protects 4403 * us from recursively trying to free more memory as we're 4404 * trying to free the first piece of memory in the first place). 4405 */ 4406 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 4407 set_freezable(); 4408 4409 WRITE_ONCE(pgdat->kswapd_order, 0); 4410 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4411 atomic_set(&pgdat->nr_writeback_throttled, 0); 4412 for ( ; ; ) { 4413 bool ret; 4414 4415 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4416 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4417 highest_zoneidx); 4418 4419 kswapd_try_sleep: 4420 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4421 highest_zoneidx); 4422 4423 /* Read the new order and highest_zoneidx */ 4424 alloc_order = READ_ONCE(pgdat->kswapd_order); 4425 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4426 highest_zoneidx); 4427 WRITE_ONCE(pgdat->kswapd_order, 0); 4428 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4429 4430 ret = try_to_freeze(); 4431 if (kthread_should_stop()) 4432 break; 4433 4434 /* 4435 * We can speed up thawing tasks if we don't call balance_pgdat 4436 * after returning from the refrigerator 4437 */ 4438 if (ret) 4439 continue; 4440 4441 /* 4442 * Reclaim begins at the requested order but if a high-order 4443 * reclaim fails then kswapd falls back to reclaiming for 4444 * order-0. If that happens, kswapd will consider sleeping 4445 * for the order it finished reclaiming at (reclaim_order) 4446 * but kcompactd is woken to compact for the original 4447 * request (alloc_order). 4448 */ 4449 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4450 alloc_order); 4451 reclaim_order = balance_pgdat(pgdat, alloc_order, 4452 highest_zoneidx); 4453 if (reclaim_order < alloc_order) 4454 goto kswapd_try_sleep; 4455 } 4456 4457 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 4458 4459 return 0; 4460 } 4461 4462 /* 4463 * A zone is low on free memory or too fragmented for high-order memory. If 4464 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4465 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4466 * has failed or is not needed, still wake up kcompactd if only compaction is 4467 * needed. 4468 */ 4469 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4470 enum zone_type highest_zoneidx) 4471 { 4472 pg_data_t *pgdat; 4473 enum zone_type curr_idx; 4474 4475 if (!managed_zone(zone)) 4476 return; 4477 4478 if (!cpuset_zone_allowed(zone, gfp_flags)) 4479 return; 4480 4481 pgdat = zone->zone_pgdat; 4482 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4483 4484 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4485 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4486 4487 if (READ_ONCE(pgdat->kswapd_order) < order) 4488 WRITE_ONCE(pgdat->kswapd_order, order); 4489 4490 if (!waitqueue_active(&pgdat->kswapd_wait)) 4491 return; 4492 4493 /* Hopeless node, leave it to direct reclaim if possible */ 4494 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4495 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4496 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4497 /* 4498 * There may be plenty of free memory available, but it's too 4499 * fragmented for high-order allocations. Wake up kcompactd 4500 * and rely on compaction_suitable() to determine if it's 4501 * needed. If it fails, it will defer subsequent attempts to 4502 * ratelimit its work. 4503 */ 4504 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4505 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4506 return; 4507 } 4508 4509 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4510 gfp_flags); 4511 wake_up_interruptible(&pgdat->kswapd_wait); 4512 } 4513 4514 #ifdef CONFIG_HIBERNATION 4515 /* 4516 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4517 * freed pages. 4518 * 4519 * Rather than trying to age LRUs the aim is to preserve the overall 4520 * LRU order by reclaiming preferentially 4521 * inactive > active > active referenced > active mapped 4522 */ 4523 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4524 { 4525 struct scan_control sc = { 4526 .nr_to_reclaim = nr_to_reclaim, 4527 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4528 .reclaim_idx = MAX_NR_ZONES - 1, 4529 .priority = DEF_PRIORITY, 4530 .may_writepage = 1, 4531 .may_unmap = 1, 4532 .may_swap = 1, 4533 .hibernation_mode = 1, 4534 }; 4535 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4536 unsigned long nr_reclaimed; 4537 unsigned int noreclaim_flag; 4538 4539 fs_reclaim_acquire(sc.gfp_mask); 4540 noreclaim_flag = memalloc_noreclaim_save(); 4541 set_task_reclaim_state(current, &sc.reclaim_state); 4542 4543 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4544 4545 set_task_reclaim_state(current, NULL); 4546 memalloc_noreclaim_restore(noreclaim_flag); 4547 fs_reclaim_release(sc.gfp_mask); 4548 4549 return nr_reclaimed; 4550 } 4551 #endif /* CONFIG_HIBERNATION */ 4552 4553 /* 4554 * This kswapd start function will be called by init and node-hot-add. 4555 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4556 */ 4557 void kswapd_run(int nid) 4558 { 4559 pg_data_t *pgdat = NODE_DATA(nid); 4560 4561 if (pgdat->kswapd) 4562 return; 4563 4564 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4565 if (IS_ERR(pgdat->kswapd)) { 4566 /* failure at boot is fatal */ 4567 BUG_ON(system_state < SYSTEM_RUNNING); 4568 pr_err("Failed to start kswapd on node %d\n", nid); 4569 pgdat->kswapd = NULL; 4570 } 4571 } 4572 4573 /* 4574 * Called by memory hotplug when all memory in a node is offlined. Caller must 4575 * hold mem_hotplug_begin/end(). 4576 */ 4577 void kswapd_stop(int nid) 4578 { 4579 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4580 4581 if (kswapd) { 4582 kthread_stop(kswapd); 4583 NODE_DATA(nid)->kswapd = NULL; 4584 } 4585 } 4586 4587 static int __init kswapd_init(void) 4588 { 4589 int nid; 4590 4591 swap_setup(); 4592 for_each_node_state(nid, N_MEMORY) 4593 kswapd_run(nid); 4594 return 0; 4595 } 4596 4597 module_init(kswapd_init) 4598 4599 #ifdef CONFIG_NUMA 4600 /* 4601 * Node reclaim mode 4602 * 4603 * If non-zero call node_reclaim when the number of free pages falls below 4604 * the watermarks. 4605 */ 4606 int node_reclaim_mode __read_mostly; 4607 4608 /* 4609 * Priority for NODE_RECLAIM. This determines the fraction of pages 4610 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4611 * a zone. 4612 */ 4613 #define NODE_RECLAIM_PRIORITY 4 4614 4615 /* 4616 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4617 * occur. 4618 */ 4619 int sysctl_min_unmapped_ratio = 1; 4620 4621 /* 4622 * If the number of slab pages in a zone grows beyond this percentage then 4623 * slab reclaim needs to occur. 4624 */ 4625 int sysctl_min_slab_ratio = 5; 4626 4627 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4628 { 4629 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4630 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4631 node_page_state(pgdat, NR_ACTIVE_FILE); 4632 4633 /* 4634 * It's possible for there to be more file mapped pages than 4635 * accounted for by the pages on the file LRU lists because 4636 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4637 */ 4638 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4639 } 4640 4641 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4642 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4643 { 4644 unsigned long nr_pagecache_reclaimable; 4645 unsigned long delta = 0; 4646 4647 /* 4648 * If RECLAIM_UNMAP is set, then all file pages are considered 4649 * potentially reclaimable. Otherwise, we have to worry about 4650 * pages like swapcache and node_unmapped_file_pages() provides 4651 * a better estimate 4652 */ 4653 if (node_reclaim_mode & RECLAIM_UNMAP) 4654 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4655 else 4656 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4657 4658 /* If we can't clean pages, remove dirty pages from consideration */ 4659 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4660 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4661 4662 /* Watch for any possible underflows due to delta */ 4663 if (unlikely(delta > nr_pagecache_reclaimable)) 4664 delta = nr_pagecache_reclaimable; 4665 4666 return nr_pagecache_reclaimable - delta; 4667 } 4668 4669 /* 4670 * Try to free up some pages from this node through reclaim. 4671 */ 4672 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4673 { 4674 /* Minimum pages needed in order to stay on node */ 4675 const unsigned long nr_pages = 1 << order; 4676 struct task_struct *p = current; 4677 unsigned int noreclaim_flag; 4678 struct scan_control sc = { 4679 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4680 .gfp_mask = current_gfp_context(gfp_mask), 4681 .order = order, 4682 .priority = NODE_RECLAIM_PRIORITY, 4683 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4684 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4685 .may_swap = 1, 4686 .reclaim_idx = gfp_zone(gfp_mask), 4687 }; 4688 unsigned long pflags; 4689 4690 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4691 sc.gfp_mask); 4692 4693 cond_resched(); 4694 psi_memstall_enter(&pflags); 4695 fs_reclaim_acquire(sc.gfp_mask); 4696 /* 4697 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4698 */ 4699 noreclaim_flag = memalloc_noreclaim_save(); 4700 set_task_reclaim_state(p, &sc.reclaim_state); 4701 4702 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4703 /* 4704 * Free memory by calling shrink node with increasing 4705 * priorities until we have enough memory freed. 4706 */ 4707 do { 4708 shrink_node(pgdat, &sc); 4709 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4710 } 4711 4712 set_task_reclaim_state(p, NULL); 4713 memalloc_noreclaim_restore(noreclaim_flag); 4714 fs_reclaim_release(sc.gfp_mask); 4715 psi_memstall_leave(&pflags); 4716 4717 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4718 4719 return sc.nr_reclaimed >= nr_pages; 4720 } 4721 4722 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4723 { 4724 int ret; 4725 4726 /* 4727 * Node reclaim reclaims unmapped file backed pages and 4728 * slab pages if we are over the defined limits. 4729 * 4730 * A small portion of unmapped file backed pages is needed for 4731 * file I/O otherwise pages read by file I/O will be immediately 4732 * thrown out if the node is overallocated. So we do not reclaim 4733 * if less than a specified percentage of the node is used by 4734 * unmapped file backed pages. 4735 */ 4736 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4737 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4738 pgdat->min_slab_pages) 4739 return NODE_RECLAIM_FULL; 4740 4741 /* 4742 * Do not scan if the allocation should not be delayed. 4743 */ 4744 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4745 return NODE_RECLAIM_NOSCAN; 4746 4747 /* 4748 * Only run node reclaim on the local node or on nodes that do not 4749 * have associated processors. This will favor the local processor 4750 * over remote processors and spread off node memory allocations 4751 * as wide as possible. 4752 */ 4753 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4754 return NODE_RECLAIM_NOSCAN; 4755 4756 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4757 return NODE_RECLAIM_NOSCAN; 4758 4759 ret = __node_reclaim(pgdat, gfp_mask, order); 4760 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4761 4762 if (!ret) 4763 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4764 4765 return ret; 4766 } 4767 #endif 4768 4769 /** 4770 * check_move_unevictable_pages - check pages for evictability and move to 4771 * appropriate zone lru list 4772 * @pvec: pagevec with lru pages to check 4773 * 4774 * Checks pages for evictability, if an evictable page is in the unevictable 4775 * lru list, moves it to the appropriate evictable lru list. This function 4776 * should be only used for lru pages. 4777 */ 4778 void check_move_unevictable_pages(struct pagevec *pvec) 4779 { 4780 struct lruvec *lruvec = NULL; 4781 int pgscanned = 0; 4782 int pgrescued = 0; 4783 int i; 4784 4785 for (i = 0; i < pvec->nr; i++) { 4786 struct page *page = pvec->pages[i]; 4787 struct folio *folio = page_folio(page); 4788 int nr_pages; 4789 4790 if (PageTransTail(page)) 4791 continue; 4792 4793 nr_pages = thp_nr_pages(page); 4794 pgscanned += nr_pages; 4795 4796 /* block memcg migration during page moving between lru */ 4797 if (!TestClearPageLRU(page)) 4798 continue; 4799 4800 lruvec = folio_lruvec_relock_irq(folio, lruvec); 4801 if (page_evictable(page) && PageUnevictable(page)) { 4802 del_page_from_lru_list(page, lruvec); 4803 ClearPageUnevictable(page); 4804 add_page_to_lru_list(page, lruvec); 4805 pgrescued += nr_pages; 4806 } 4807 SetPageLRU(page); 4808 } 4809 4810 if (lruvec) { 4811 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4812 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4813 unlock_page_lruvec_irq(lruvec); 4814 } else if (pgscanned) { 4815 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4816 } 4817 } 4818 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4819