1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmpressure.h> 23 #include <linux/vmstat.h> 24 #include <linux/file.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> /* for try_to_release_page(), 28 buffer_heads_over_limit */ 29 #include <linux/mm_inline.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 #include <linux/oom.h> 45 #include <linux/prefetch.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 50 #include <linux/swapops.h> 51 #include <linux/balloon_compaction.h> 52 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/vmscan.h> 57 58 struct scan_control { 59 /* Incremented by the number of inactive pages that were scanned */ 60 unsigned long nr_scanned; 61 62 /* Number of pages freed so far during a call to shrink_zones() */ 63 unsigned long nr_reclaimed; 64 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 unsigned long hibernation_mode; 69 70 /* This context's GFP mask */ 71 gfp_t gfp_mask; 72 73 int may_writepage; 74 75 /* Can mapped pages be reclaimed? */ 76 int may_unmap; 77 78 /* Can pages be swapped as part of reclaim? */ 79 int may_swap; 80 81 int order; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 /* 87 * The memory cgroup that hit its limit and as a result is the 88 * primary target of this reclaim invocation. 89 */ 90 struct mem_cgroup *target_mem_cgroup; 91 92 /* 93 * Nodemask of nodes allowed by the caller. If NULL, all nodes 94 * are scanned. 95 */ 96 nodemask_t *nodemask; 97 }; 98 99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 100 101 #ifdef ARCH_HAS_PREFETCH 102 #define prefetch_prev_lru_page(_page, _base, _field) \ 103 do { \ 104 if ((_page)->lru.prev != _base) { \ 105 struct page *prev; \ 106 \ 107 prev = lru_to_page(&(_page->lru)); \ 108 prefetch(&prev->_field); \ 109 } \ 110 } while (0) 111 #else 112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 113 #endif 114 115 #ifdef ARCH_HAS_PREFETCHW 116 #define prefetchw_prev_lru_page(_page, _base, _field) \ 117 do { \ 118 if ((_page)->lru.prev != _base) { \ 119 struct page *prev; \ 120 \ 121 prev = lru_to_page(&(_page->lru)); \ 122 prefetchw(&prev->_field); \ 123 } \ 124 } while (0) 125 #else 126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 127 #endif 128 129 /* 130 * From 0 .. 100. Higher means more swappy. 131 */ 132 int vm_swappiness = 60; 133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 134 135 static LIST_HEAD(shrinker_list); 136 static DECLARE_RWSEM(shrinker_rwsem); 137 138 #ifdef CONFIG_MEMCG 139 static bool global_reclaim(struct scan_control *sc) 140 { 141 return !sc->target_mem_cgroup; 142 } 143 #else 144 static bool global_reclaim(struct scan_control *sc) 145 { 146 return true; 147 } 148 #endif 149 150 unsigned long zone_reclaimable_pages(struct zone *zone) 151 { 152 int nr; 153 154 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 155 zone_page_state(zone, NR_INACTIVE_FILE); 156 157 if (get_nr_swap_pages() > 0) 158 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 159 zone_page_state(zone, NR_INACTIVE_ANON); 160 161 return nr; 162 } 163 164 bool zone_reclaimable(struct zone *zone) 165 { 166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 167 } 168 169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 170 { 171 if (!mem_cgroup_disabled()) 172 return mem_cgroup_get_lru_size(lruvec, lru); 173 174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 175 } 176 177 /* 178 * Add a shrinker callback to be called from the vm. 179 */ 180 int register_shrinker(struct shrinker *shrinker) 181 { 182 size_t size = sizeof(*shrinker->nr_deferred); 183 184 /* 185 * If we only have one possible node in the system anyway, save 186 * ourselves the trouble and disable NUMA aware behavior. This way we 187 * will save memory and some small loop time later. 188 */ 189 if (nr_node_ids == 1) 190 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 191 192 if (shrinker->flags & SHRINKER_NUMA_AWARE) 193 size *= nr_node_ids; 194 195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 196 if (!shrinker->nr_deferred) 197 return -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 list_add_tail(&shrinker->list, &shrinker_list); 201 up_write(&shrinker_rwsem); 202 return 0; 203 } 204 EXPORT_SYMBOL(register_shrinker); 205 206 /* 207 * Remove one 208 */ 209 void unregister_shrinker(struct shrinker *shrinker) 210 { 211 down_write(&shrinker_rwsem); 212 list_del(&shrinker->list); 213 up_write(&shrinker_rwsem); 214 kfree(shrinker->nr_deferred); 215 } 216 EXPORT_SYMBOL(unregister_shrinker); 217 218 #define SHRINK_BATCH 128 219 220 static unsigned long 221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, 222 unsigned long nr_pages_scanned, unsigned long lru_pages) 223 { 224 unsigned long freed = 0; 225 unsigned long long delta; 226 long total_scan; 227 long max_pass; 228 long nr; 229 long new_nr; 230 int nid = shrinkctl->nid; 231 long batch_size = shrinker->batch ? shrinker->batch 232 : SHRINK_BATCH; 233 234 max_pass = shrinker->count_objects(shrinker, shrinkctl); 235 if (max_pass == 0) 236 return 0; 237 238 /* 239 * copy the current shrinker scan count into a local variable 240 * and zero it so that other concurrent shrinker invocations 241 * don't also do this scanning work. 242 */ 243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 244 245 total_scan = nr; 246 delta = (4 * nr_pages_scanned) / shrinker->seeks; 247 delta *= max_pass; 248 do_div(delta, lru_pages + 1); 249 total_scan += delta; 250 if (total_scan < 0) { 251 printk(KERN_ERR 252 "shrink_slab: %pF negative objects to delete nr=%ld\n", 253 shrinker->scan_objects, total_scan); 254 total_scan = max_pass; 255 } 256 257 /* 258 * We need to avoid excessive windup on filesystem shrinkers 259 * due to large numbers of GFP_NOFS allocations causing the 260 * shrinkers to return -1 all the time. This results in a large 261 * nr being built up so when a shrink that can do some work 262 * comes along it empties the entire cache due to nr >>> 263 * max_pass. This is bad for sustaining a working set in 264 * memory. 265 * 266 * Hence only allow the shrinker to scan the entire cache when 267 * a large delta change is calculated directly. 268 */ 269 if (delta < max_pass / 4) 270 total_scan = min(total_scan, max_pass / 2); 271 272 /* 273 * Avoid risking looping forever due to too large nr value: 274 * never try to free more than twice the estimate number of 275 * freeable entries. 276 */ 277 if (total_scan > max_pass * 2) 278 total_scan = max_pass * 2; 279 280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 281 nr_pages_scanned, lru_pages, 282 max_pass, delta, total_scan); 283 284 while (total_scan >= batch_size) { 285 unsigned long ret; 286 287 shrinkctl->nr_to_scan = batch_size; 288 ret = shrinker->scan_objects(shrinker, shrinkctl); 289 if (ret == SHRINK_STOP) 290 break; 291 freed += ret; 292 293 count_vm_events(SLABS_SCANNED, batch_size); 294 total_scan -= batch_size; 295 296 cond_resched(); 297 } 298 299 /* 300 * move the unused scan count back into the shrinker in a 301 * manner that handles concurrent updates. If we exhausted the 302 * scan, there is no need to do an update. 303 */ 304 if (total_scan > 0) 305 new_nr = atomic_long_add_return(total_scan, 306 &shrinker->nr_deferred[nid]); 307 else 308 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 309 310 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr); 311 return freed; 312 } 313 314 /* 315 * Call the shrink functions to age shrinkable caches 316 * 317 * Here we assume it costs one seek to replace a lru page and that it also 318 * takes a seek to recreate a cache object. With this in mind we age equal 319 * percentages of the lru and ageable caches. This should balance the seeks 320 * generated by these structures. 321 * 322 * If the vm encountered mapped pages on the LRU it increase the pressure on 323 * slab to avoid swapping. 324 * 325 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 326 * 327 * `lru_pages' represents the number of on-LRU pages in all the zones which 328 * are eligible for the caller's allocation attempt. It is used for balancing 329 * slab reclaim versus page reclaim. 330 * 331 * Returns the number of slab objects which we shrunk. 332 */ 333 unsigned long shrink_slab(struct shrink_control *shrinkctl, 334 unsigned long nr_pages_scanned, 335 unsigned long lru_pages) 336 { 337 struct shrinker *shrinker; 338 unsigned long freed = 0; 339 340 if (nr_pages_scanned == 0) 341 nr_pages_scanned = SWAP_CLUSTER_MAX; 342 343 if (!down_read_trylock(&shrinker_rwsem)) { 344 /* 345 * If we would return 0, our callers would understand that we 346 * have nothing else to shrink and give up trying. By returning 347 * 1 we keep it going and assume we'll be able to shrink next 348 * time. 349 */ 350 freed = 1; 351 goto out; 352 } 353 354 list_for_each_entry(shrinker, &shrinker_list, list) { 355 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { 356 if (!node_online(shrinkctl->nid)) 357 continue; 358 359 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) && 360 (shrinkctl->nid != 0)) 361 break; 362 363 freed += shrink_slab_node(shrinkctl, shrinker, 364 nr_pages_scanned, lru_pages); 365 366 } 367 } 368 up_read(&shrinker_rwsem); 369 out: 370 cond_resched(); 371 return freed; 372 } 373 374 static inline int is_page_cache_freeable(struct page *page) 375 { 376 /* 377 * A freeable page cache page is referenced only by the caller 378 * that isolated the page, the page cache radix tree and 379 * optional buffer heads at page->private. 380 */ 381 return page_count(page) - page_has_private(page) == 2; 382 } 383 384 static int may_write_to_queue(struct backing_dev_info *bdi, 385 struct scan_control *sc) 386 { 387 if (current->flags & PF_SWAPWRITE) 388 return 1; 389 if (!bdi_write_congested(bdi)) 390 return 1; 391 if (bdi == current->backing_dev_info) 392 return 1; 393 return 0; 394 } 395 396 /* 397 * We detected a synchronous write error writing a page out. Probably 398 * -ENOSPC. We need to propagate that into the address_space for a subsequent 399 * fsync(), msync() or close(). 400 * 401 * The tricky part is that after writepage we cannot touch the mapping: nothing 402 * prevents it from being freed up. But we have a ref on the page and once 403 * that page is locked, the mapping is pinned. 404 * 405 * We're allowed to run sleeping lock_page() here because we know the caller has 406 * __GFP_FS. 407 */ 408 static void handle_write_error(struct address_space *mapping, 409 struct page *page, int error) 410 { 411 lock_page(page); 412 if (page_mapping(page) == mapping) 413 mapping_set_error(mapping, error); 414 unlock_page(page); 415 } 416 417 /* possible outcome of pageout() */ 418 typedef enum { 419 /* failed to write page out, page is locked */ 420 PAGE_KEEP, 421 /* move page to the active list, page is locked */ 422 PAGE_ACTIVATE, 423 /* page has been sent to the disk successfully, page is unlocked */ 424 PAGE_SUCCESS, 425 /* page is clean and locked */ 426 PAGE_CLEAN, 427 } pageout_t; 428 429 /* 430 * pageout is called by shrink_page_list() for each dirty page. 431 * Calls ->writepage(). 432 */ 433 static pageout_t pageout(struct page *page, struct address_space *mapping, 434 struct scan_control *sc) 435 { 436 /* 437 * If the page is dirty, only perform writeback if that write 438 * will be non-blocking. To prevent this allocation from being 439 * stalled by pagecache activity. But note that there may be 440 * stalls if we need to run get_block(). We could test 441 * PagePrivate for that. 442 * 443 * If this process is currently in __generic_file_aio_write() against 444 * this page's queue, we can perform writeback even if that 445 * will block. 446 * 447 * If the page is swapcache, write it back even if that would 448 * block, for some throttling. This happens by accident, because 449 * swap_backing_dev_info is bust: it doesn't reflect the 450 * congestion state of the swapdevs. Easy to fix, if needed. 451 */ 452 if (!is_page_cache_freeable(page)) 453 return PAGE_KEEP; 454 if (!mapping) { 455 /* 456 * Some data journaling orphaned pages can have 457 * page->mapping == NULL while being dirty with clean buffers. 458 */ 459 if (page_has_private(page)) { 460 if (try_to_free_buffers(page)) { 461 ClearPageDirty(page); 462 printk("%s: orphaned page\n", __func__); 463 return PAGE_CLEAN; 464 } 465 } 466 return PAGE_KEEP; 467 } 468 if (mapping->a_ops->writepage == NULL) 469 return PAGE_ACTIVATE; 470 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 471 return PAGE_KEEP; 472 473 if (clear_page_dirty_for_io(page)) { 474 int res; 475 struct writeback_control wbc = { 476 .sync_mode = WB_SYNC_NONE, 477 .nr_to_write = SWAP_CLUSTER_MAX, 478 .range_start = 0, 479 .range_end = LLONG_MAX, 480 .for_reclaim = 1, 481 }; 482 483 SetPageReclaim(page); 484 res = mapping->a_ops->writepage(page, &wbc); 485 if (res < 0) 486 handle_write_error(mapping, page, res); 487 if (res == AOP_WRITEPAGE_ACTIVATE) { 488 ClearPageReclaim(page); 489 return PAGE_ACTIVATE; 490 } 491 492 if (!PageWriteback(page)) { 493 /* synchronous write or broken a_ops? */ 494 ClearPageReclaim(page); 495 } 496 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 497 inc_zone_page_state(page, NR_VMSCAN_WRITE); 498 return PAGE_SUCCESS; 499 } 500 501 return PAGE_CLEAN; 502 } 503 504 /* 505 * Same as remove_mapping, but if the page is removed from the mapping, it 506 * gets returned with a refcount of 0. 507 */ 508 static int __remove_mapping(struct address_space *mapping, struct page *page) 509 { 510 BUG_ON(!PageLocked(page)); 511 BUG_ON(mapping != page_mapping(page)); 512 513 spin_lock_irq(&mapping->tree_lock); 514 /* 515 * The non racy check for a busy page. 516 * 517 * Must be careful with the order of the tests. When someone has 518 * a ref to the page, it may be possible that they dirty it then 519 * drop the reference. So if PageDirty is tested before page_count 520 * here, then the following race may occur: 521 * 522 * get_user_pages(&page); 523 * [user mapping goes away] 524 * write_to(page); 525 * !PageDirty(page) [good] 526 * SetPageDirty(page); 527 * put_page(page); 528 * !page_count(page) [good, discard it] 529 * 530 * [oops, our write_to data is lost] 531 * 532 * Reversing the order of the tests ensures such a situation cannot 533 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 534 * load is not satisfied before that of page->_count. 535 * 536 * Note that if SetPageDirty is always performed via set_page_dirty, 537 * and thus under tree_lock, then this ordering is not required. 538 */ 539 if (!page_freeze_refs(page, 2)) 540 goto cannot_free; 541 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 542 if (unlikely(PageDirty(page))) { 543 page_unfreeze_refs(page, 2); 544 goto cannot_free; 545 } 546 547 if (PageSwapCache(page)) { 548 swp_entry_t swap = { .val = page_private(page) }; 549 __delete_from_swap_cache(page); 550 spin_unlock_irq(&mapping->tree_lock); 551 swapcache_free(swap, page); 552 } else { 553 void (*freepage)(struct page *); 554 555 freepage = mapping->a_ops->freepage; 556 557 __delete_from_page_cache(page); 558 spin_unlock_irq(&mapping->tree_lock); 559 mem_cgroup_uncharge_cache_page(page); 560 561 if (freepage != NULL) 562 freepage(page); 563 } 564 565 return 1; 566 567 cannot_free: 568 spin_unlock_irq(&mapping->tree_lock); 569 return 0; 570 } 571 572 /* 573 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 574 * someone else has a ref on the page, abort and return 0. If it was 575 * successfully detached, return 1. Assumes the caller has a single ref on 576 * this page. 577 */ 578 int remove_mapping(struct address_space *mapping, struct page *page) 579 { 580 if (__remove_mapping(mapping, page)) { 581 /* 582 * Unfreezing the refcount with 1 rather than 2 effectively 583 * drops the pagecache ref for us without requiring another 584 * atomic operation. 585 */ 586 page_unfreeze_refs(page, 1); 587 return 1; 588 } 589 return 0; 590 } 591 592 /** 593 * putback_lru_page - put previously isolated page onto appropriate LRU list 594 * @page: page to be put back to appropriate lru list 595 * 596 * Add previously isolated @page to appropriate LRU list. 597 * Page may still be unevictable for other reasons. 598 * 599 * lru_lock must not be held, interrupts must be enabled. 600 */ 601 void putback_lru_page(struct page *page) 602 { 603 bool is_unevictable; 604 int was_unevictable = PageUnevictable(page); 605 606 VM_BUG_ON(PageLRU(page)); 607 608 redo: 609 ClearPageUnevictable(page); 610 611 if (page_evictable(page)) { 612 /* 613 * For evictable pages, we can use the cache. 614 * In event of a race, worst case is we end up with an 615 * unevictable page on [in]active list. 616 * We know how to handle that. 617 */ 618 is_unevictable = false; 619 lru_cache_add(page); 620 } else { 621 /* 622 * Put unevictable pages directly on zone's unevictable 623 * list. 624 */ 625 is_unevictable = true; 626 add_page_to_unevictable_list(page); 627 /* 628 * When racing with an mlock or AS_UNEVICTABLE clearing 629 * (page is unlocked) make sure that if the other thread 630 * does not observe our setting of PG_lru and fails 631 * isolation/check_move_unevictable_pages, 632 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 633 * the page back to the evictable list. 634 * 635 * The other side is TestClearPageMlocked() or shmem_lock(). 636 */ 637 smp_mb(); 638 } 639 640 /* 641 * page's status can change while we move it among lru. If an evictable 642 * page is on unevictable list, it never be freed. To avoid that, 643 * check after we added it to the list, again. 644 */ 645 if (is_unevictable && page_evictable(page)) { 646 if (!isolate_lru_page(page)) { 647 put_page(page); 648 goto redo; 649 } 650 /* This means someone else dropped this page from LRU 651 * So, it will be freed or putback to LRU again. There is 652 * nothing to do here. 653 */ 654 } 655 656 if (was_unevictable && !is_unevictable) 657 count_vm_event(UNEVICTABLE_PGRESCUED); 658 else if (!was_unevictable && is_unevictable) 659 count_vm_event(UNEVICTABLE_PGCULLED); 660 661 put_page(page); /* drop ref from isolate */ 662 } 663 664 enum page_references { 665 PAGEREF_RECLAIM, 666 PAGEREF_RECLAIM_CLEAN, 667 PAGEREF_KEEP, 668 PAGEREF_ACTIVATE, 669 }; 670 671 static enum page_references page_check_references(struct page *page, 672 struct scan_control *sc) 673 { 674 int referenced_ptes, referenced_page; 675 unsigned long vm_flags; 676 677 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 678 &vm_flags); 679 referenced_page = TestClearPageReferenced(page); 680 681 /* 682 * Mlock lost the isolation race with us. Let try_to_unmap() 683 * move the page to the unevictable list. 684 */ 685 if (vm_flags & VM_LOCKED) 686 return PAGEREF_RECLAIM; 687 688 if (referenced_ptes) { 689 if (PageSwapBacked(page)) 690 return PAGEREF_ACTIVATE; 691 /* 692 * All mapped pages start out with page table 693 * references from the instantiating fault, so we need 694 * to look twice if a mapped file page is used more 695 * than once. 696 * 697 * Mark it and spare it for another trip around the 698 * inactive list. Another page table reference will 699 * lead to its activation. 700 * 701 * Note: the mark is set for activated pages as well 702 * so that recently deactivated but used pages are 703 * quickly recovered. 704 */ 705 SetPageReferenced(page); 706 707 if (referenced_page || referenced_ptes > 1) 708 return PAGEREF_ACTIVATE; 709 710 /* 711 * Activate file-backed executable pages after first usage. 712 */ 713 if (vm_flags & VM_EXEC) 714 return PAGEREF_ACTIVATE; 715 716 return PAGEREF_KEEP; 717 } 718 719 /* Reclaim if clean, defer dirty pages to writeback */ 720 if (referenced_page && !PageSwapBacked(page)) 721 return PAGEREF_RECLAIM_CLEAN; 722 723 return PAGEREF_RECLAIM; 724 } 725 726 /* Check if a page is dirty or under writeback */ 727 static void page_check_dirty_writeback(struct page *page, 728 bool *dirty, bool *writeback) 729 { 730 struct address_space *mapping; 731 732 /* 733 * Anonymous pages are not handled by flushers and must be written 734 * from reclaim context. Do not stall reclaim based on them 735 */ 736 if (!page_is_file_cache(page)) { 737 *dirty = false; 738 *writeback = false; 739 return; 740 } 741 742 /* By default assume that the page flags are accurate */ 743 *dirty = PageDirty(page); 744 *writeback = PageWriteback(page); 745 746 /* Verify dirty/writeback state if the filesystem supports it */ 747 if (!page_has_private(page)) 748 return; 749 750 mapping = page_mapping(page); 751 if (mapping && mapping->a_ops->is_dirty_writeback) 752 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 753 } 754 755 /* 756 * shrink_page_list() returns the number of reclaimed pages 757 */ 758 static unsigned long shrink_page_list(struct list_head *page_list, 759 struct zone *zone, 760 struct scan_control *sc, 761 enum ttu_flags ttu_flags, 762 unsigned long *ret_nr_dirty, 763 unsigned long *ret_nr_unqueued_dirty, 764 unsigned long *ret_nr_congested, 765 unsigned long *ret_nr_writeback, 766 unsigned long *ret_nr_immediate, 767 bool force_reclaim) 768 { 769 LIST_HEAD(ret_pages); 770 LIST_HEAD(free_pages); 771 int pgactivate = 0; 772 unsigned long nr_unqueued_dirty = 0; 773 unsigned long nr_dirty = 0; 774 unsigned long nr_congested = 0; 775 unsigned long nr_reclaimed = 0; 776 unsigned long nr_writeback = 0; 777 unsigned long nr_immediate = 0; 778 779 cond_resched(); 780 781 mem_cgroup_uncharge_start(); 782 while (!list_empty(page_list)) { 783 struct address_space *mapping; 784 struct page *page; 785 int may_enter_fs; 786 enum page_references references = PAGEREF_RECLAIM_CLEAN; 787 bool dirty, writeback; 788 789 cond_resched(); 790 791 page = lru_to_page(page_list); 792 list_del(&page->lru); 793 794 if (!trylock_page(page)) 795 goto keep; 796 797 VM_BUG_ON(PageActive(page)); 798 VM_BUG_ON(page_zone(page) != zone); 799 800 sc->nr_scanned++; 801 802 if (unlikely(!page_evictable(page))) 803 goto cull_mlocked; 804 805 if (!sc->may_unmap && page_mapped(page)) 806 goto keep_locked; 807 808 /* Double the slab pressure for mapped and swapcache pages */ 809 if (page_mapped(page) || PageSwapCache(page)) 810 sc->nr_scanned++; 811 812 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 814 815 /* 816 * The number of dirty pages determines if a zone is marked 817 * reclaim_congested which affects wait_iff_congested. kswapd 818 * will stall and start writing pages if the tail of the LRU 819 * is all dirty unqueued pages. 820 */ 821 page_check_dirty_writeback(page, &dirty, &writeback); 822 if (dirty || writeback) 823 nr_dirty++; 824 825 if (dirty && !writeback) 826 nr_unqueued_dirty++; 827 828 /* 829 * Treat this page as congested if the underlying BDI is or if 830 * pages are cycling through the LRU so quickly that the 831 * pages marked for immediate reclaim are making it to the 832 * end of the LRU a second time. 833 */ 834 mapping = page_mapping(page); 835 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 836 (writeback && PageReclaim(page))) 837 nr_congested++; 838 839 /* 840 * If a page at the tail of the LRU is under writeback, there 841 * are three cases to consider. 842 * 843 * 1) If reclaim is encountering an excessive number of pages 844 * under writeback and this page is both under writeback and 845 * PageReclaim then it indicates that pages are being queued 846 * for IO but are being recycled through the LRU before the 847 * IO can complete. Waiting on the page itself risks an 848 * indefinite stall if it is impossible to writeback the 849 * page due to IO error or disconnected storage so instead 850 * note that the LRU is being scanned too quickly and the 851 * caller can stall after page list has been processed. 852 * 853 * 2) Global reclaim encounters a page, memcg encounters a 854 * page that is not marked for immediate reclaim or 855 * the caller does not have __GFP_IO. In this case mark 856 * the page for immediate reclaim and continue scanning. 857 * 858 * __GFP_IO is checked because a loop driver thread might 859 * enter reclaim, and deadlock if it waits on a page for 860 * which it is needed to do the write (loop masks off 861 * __GFP_IO|__GFP_FS for this reason); but more thought 862 * would probably show more reasons. 863 * 864 * Don't require __GFP_FS, since we're not going into the 865 * FS, just waiting on its writeback completion. Worryingly, 866 * ext4 gfs2 and xfs allocate pages with 867 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 868 * may_enter_fs here is liable to OOM on them. 869 * 870 * 3) memcg encounters a page that is not already marked 871 * PageReclaim. memcg does not have any dirty pages 872 * throttling so we could easily OOM just because too many 873 * pages are in writeback and there is nothing else to 874 * reclaim. Wait for the writeback to complete. 875 */ 876 if (PageWriteback(page)) { 877 /* Case 1 above */ 878 if (current_is_kswapd() && 879 PageReclaim(page) && 880 zone_is_reclaim_writeback(zone)) { 881 nr_immediate++; 882 goto keep_locked; 883 884 /* Case 2 above */ 885 } else if (global_reclaim(sc) || 886 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 887 /* 888 * This is slightly racy - end_page_writeback() 889 * might have just cleared PageReclaim, then 890 * setting PageReclaim here end up interpreted 891 * as PageReadahead - but that does not matter 892 * enough to care. What we do want is for this 893 * page to have PageReclaim set next time memcg 894 * reclaim reaches the tests above, so it will 895 * then wait_on_page_writeback() to avoid OOM; 896 * and it's also appropriate in global reclaim. 897 */ 898 SetPageReclaim(page); 899 nr_writeback++; 900 901 goto keep_locked; 902 903 /* Case 3 above */ 904 } else { 905 wait_on_page_writeback(page); 906 } 907 } 908 909 if (!force_reclaim) 910 references = page_check_references(page, sc); 911 912 switch (references) { 913 case PAGEREF_ACTIVATE: 914 goto activate_locked; 915 case PAGEREF_KEEP: 916 goto keep_locked; 917 case PAGEREF_RECLAIM: 918 case PAGEREF_RECLAIM_CLEAN: 919 ; /* try to reclaim the page below */ 920 } 921 922 /* 923 * Anonymous process memory has backing store? 924 * Try to allocate it some swap space here. 925 */ 926 if (PageAnon(page) && !PageSwapCache(page)) { 927 if (!(sc->gfp_mask & __GFP_IO)) 928 goto keep_locked; 929 if (!add_to_swap(page, page_list)) 930 goto activate_locked; 931 may_enter_fs = 1; 932 933 /* Adding to swap updated mapping */ 934 mapping = page_mapping(page); 935 } 936 937 /* 938 * The page is mapped into the page tables of one or more 939 * processes. Try to unmap it here. 940 */ 941 if (page_mapped(page) && mapping) { 942 switch (try_to_unmap(page, ttu_flags)) { 943 case SWAP_FAIL: 944 goto activate_locked; 945 case SWAP_AGAIN: 946 goto keep_locked; 947 case SWAP_MLOCK: 948 goto cull_mlocked; 949 case SWAP_SUCCESS: 950 ; /* try to free the page below */ 951 } 952 } 953 954 if (PageDirty(page)) { 955 /* 956 * Only kswapd can writeback filesystem pages to 957 * avoid risk of stack overflow but only writeback 958 * if many dirty pages have been encountered. 959 */ 960 if (page_is_file_cache(page) && 961 (!current_is_kswapd() || 962 !zone_is_reclaim_dirty(zone))) { 963 /* 964 * Immediately reclaim when written back. 965 * Similar in principal to deactivate_page() 966 * except we already have the page isolated 967 * and know it's dirty 968 */ 969 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 970 SetPageReclaim(page); 971 972 goto keep_locked; 973 } 974 975 if (references == PAGEREF_RECLAIM_CLEAN) 976 goto keep_locked; 977 if (!may_enter_fs) 978 goto keep_locked; 979 if (!sc->may_writepage) 980 goto keep_locked; 981 982 /* Page is dirty, try to write it out here */ 983 switch (pageout(page, mapping, sc)) { 984 case PAGE_KEEP: 985 goto keep_locked; 986 case PAGE_ACTIVATE: 987 goto activate_locked; 988 case PAGE_SUCCESS: 989 if (PageWriteback(page)) 990 goto keep; 991 if (PageDirty(page)) 992 goto keep; 993 994 /* 995 * A synchronous write - probably a ramdisk. Go 996 * ahead and try to reclaim the page. 997 */ 998 if (!trylock_page(page)) 999 goto keep; 1000 if (PageDirty(page) || PageWriteback(page)) 1001 goto keep_locked; 1002 mapping = page_mapping(page); 1003 case PAGE_CLEAN: 1004 ; /* try to free the page below */ 1005 } 1006 } 1007 1008 /* 1009 * If the page has buffers, try to free the buffer mappings 1010 * associated with this page. If we succeed we try to free 1011 * the page as well. 1012 * 1013 * We do this even if the page is PageDirty(). 1014 * try_to_release_page() does not perform I/O, but it is 1015 * possible for a page to have PageDirty set, but it is actually 1016 * clean (all its buffers are clean). This happens if the 1017 * buffers were written out directly, with submit_bh(). ext3 1018 * will do this, as well as the blockdev mapping. 1019 * try_to_release_page() will discover that cleanness and will 1020 * drop the buffers and mark the page clean - it can be freed. 1021 * 1022 * Rarely, pages can have buffers and no ->mapping. These are 1023 * the pages which were not successfully invalidated in 1024 * truncate_complete_page(). We try to drop those buffers here 1025 * and if that worked, and the page is no longer mapped into 1026 * process address space (page_count == 1) it can be freed. 1027 * Otherwise, leave the page on the LRU so it is swappable. 1028 */ 1029 if (page_has_private(page)) { 1030 if (!try_to_release_page(page, sc->gfp_mask)) 1031 goto activate_locked; 1032 if (!mapping && page_count(page) == 1) { 1033 unlock_page(page); 1034 if (put_page_testzero(page)) 1035 goto free_it; 1036 else { 1037 /* 1038 * rare race with speculative reference. 1039 * the speculative reference will free 1040 * this page shortly, so we may 1041 * increment nr_reclaimed here (and 1042 * leave it off the LRU). 1043 */ 1044 nr_reclaimed++; 1045 continue; 1046 } 1047 } 1048 } 1049 1050 if (!mapping || !__remove_mapping(mapping, page)) 1051 goto keep_locked; 1052 1053 /* 1054 * At this point, we have no other references and there is 1055 * no way to pick any more up (removed from LRU, removed 1056 * from pagecache). Can use non-atomic bitops now (and 1057 * we obviously don't have to worry about waking up a process 1058 * waiting on the page lock, because there are no references. 1059 */ 1060 __clear_page_locked(page); 1061 free_it: 1062 nr_reclaimed++; 1063 1064 /* 1065 * Is there need to periodically free_page_list? It would 1066 * appear not as the counts should be low 1067 */ 1068 list_add(&page->lru, &free_pages); 1069 continue; 1070 1071 cull_mlocked: 1072 if (PageSwapCache(page)) 1073 try_to_free_swap(page); 1074 unlock_page(page); 1075 putback_lru_page(page); 1076 continue; 1077 1078 activate_locked: 1079 /* Not a candidate for swapping, so reclaim swap space. */ 1080 if (PageSwapCache(page) && vm_swap_full()) 1081 try_to_free_swap(page); 1082 VM_BUG_ON(PageActive(page)); 1083 SetPageActive(page); 1084 pgactivate++; 1085 keep_locked: 1086 unlock_page(page); 1087 keep: 1088 list_add(&page->lru, &ret_pages); 1089 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 1090 } 1091 1092 free_hot_cold_page_list(&free_pages, 1); 1093 1094 list_splice(&ret_pages, page_list); 1095 count_vm_events(PGACTIVATE, pgactivate); 1096 mem_cgroup_uncharge_end(); 1097 *ret_nr_dirty += nr_dirty; 1098 *ret_nr_congested += nr_congested; 1099 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1100 *ret_nr_writeback += nr_writeback; 1101 *ret_nr_immediate += nr_immediate; 1102 return nr_reclaimed; 1103 } 1104 1105 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1106 struct list_head *page_list) 1107 { 1108 struct scan_control sc = { 1109 .gfp_mask = GFP_KERNEL, 1110 .priority = DEF_PRIORITY, 1111 .may_unmap = 1, 1112 }; 1113 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1114 struct page *page, *next; 1115 LIST_HEAD(clean_pages); 1116 1117 list_for_each_entry_safe(page, next, page_list, lru) { 1118 if (page_is_file_cache(page) && !PageDirty(page) && 1119 !isolated_balloon_page(page)) { 1120 ClearPageActive(page); 1121 list_move(&page->lru, &clean_pages); 1122 } 1123 } 1124 1125 ret = shrink_page_list(&clean_pages, zone, &sc, 1126 TTU_UNMAP|TTU_IGNORE_ACCESS, 1127 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1128 list_splice(&clean_pages, page_list); 1129 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1130 return ret; 1131 } 1132 1133 /* 1134 * Attempt to remove the specified page from its LRU. Only take this page 1135 * if it is of the appropriate PageActive status. Pages which are being 1136 * freed elsewhere are also ignored. 1137 * 1138 * page: page to consider 1139 * mode: one of the LRU isolation modes defined above 1140 * 1141 * returns 0 on success, -ve errno on failure. 1142 */ 1143 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1144 { 1145 int ret = -EINVAL; 1146 1147 /* Only take pages on the LRU. */ 1148 if (!PageLRU(page)) 1149 return ret; 1150 1151 /* Compaction should not handle unevictable pages but CMA can do so */ 1152 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1153 return ret; 1154 1155 ret = -EBUSY; 1156 1157 /* 1158 * To minimise LRU disruption, the caller can indicate that it only 1159 * wants to isolate pages it will be able to operate on without 1160 * blocking - clean pages for the most part. 1161 * 1162 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1163 * is used by reclaim when it is cannot write to backing storage 1164 * 1165 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1166 * that it is possible to migrate without blocking 1167 */ 1168 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1169 /* All the caller can do on PageWriteback is block */ 1170 if (PageWriteback(page)) 1171 return ret; 1172 1173 if (PageDirty(page)) { 1174 struct address_space *mapping; 1175 1176 /* ISOLATE_CLEAN means only clean pages */ 1177 if (mode & ISOLATE_CLEAN) 1178 return ret; 1179 1180 /* 1181 * Only pages without mappings or that have a 1182 * ->migratepage callback are possible to migrate 1183 * without blocking 1184 */ 1185 mapping = page_mapping(page); 1186 if (mapping && !mapping->a_ops->migratepage) 1187 return ret; 1188 } 1189 } 1190 1191 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1192 return ret; 1193 1194 if (likely(get_page_unless_zero(page))) { 1195 /* 1196 * Be careful not to clear PageLRU until after we're 1197 * sure the page is not being freed elsewhere -- the 1198 * page release code relies on it. 1199 */ 1200 ClearPageLRU(page); 1201 ret = 0; 1202 } 1203 1204 return ret; 1205 } 1206 1207 /* 1208 * zone->lru_lock is heavily contended. Some of the functions that 1209 * shrink the lists perform better by taking out a batch of pages 1210 * and working on them outside the LRU lock. 1211 * 1212 * For pagecache intensive workloads, this function is the hottest 1213 * spot in the kernel (apart from copy_*_user functions). 1214 * 1215 * Appropriate locks must be held before calling this function. 1216 * 1217 * @nr_to_scan: The number of pages to look through on the list. 1218 * @lruvec: The LRU vector to pull pages from. 1219 * @dst: The temp list to put pages on to. 1220 * @nr_scanned: The number of pages that were scanned. 1221 * @sc: The scan_control struct for this reclaim session 1222 * @mode: One of the LRU isolation modes 1223 * @lru: LRU list id for isolating 1224 * 1225 * returns how many pages were moved onto *@dst. 1226 */ 1227 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1228 struct lruvec *lruvec, struct list_head *dst, 1229 unsigned long *nr_scanned, struct scan_control *sc, 1230 isolate_mode_t mode, enum lru_list lru) 1231 { 1232 struct list_head *src = &lruvec->lists[lru]; 1233 unsigned long nr_taken = 0; 1234 unsigned long scan; 1235 1236 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1237 struct page *page; 1238 int nr_pages; 1239 1240 page = lru_to_page(src); 1241 prefetchw_prev_lru_page(page, src, flags); 1242 1243 VM_BUG_ON(!PageLRU(page)); 1244 1245 switch (__isolate_lru_page(page, mode)) { 1246 case 0: 1247 nr_pages = hpage_nr_pages(page); 1248 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1249 list_move(&page->lru, dst); 1250 nr_taken += nr_pages; 1251 break; 1252 1253 case -EBUSY: 1254 /* else it is being freed elsewhere */ 1255 list_move(&page->lru, src); 1256 continue; 1257 1258 default: 1259 BUG(); 1260 } 1261 } 1262 1263 *nr_scanned = scan; 1264 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1265 nr_taken, mode, is_file_lru(lru)); 1266 return nr_taken; 1267 } 1268 1269 /** 1270 * isolate_lru_page - tries to isolate a page from its LRU list 1271 * @page: page to isolate from its LRU list 1272 * 1273 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1274 * vmstat statistic corresponding to whatever LRU list the page was on. 1275 * 1276 * Returns 0 if the page was removed from an LRU list. 1277 * Returns -EBUSY if the page was not on an LRU list. 1278 * 1279 * The returned page will have PageLRU() cleared. If it was found on 1280 * the active list, it will have PageActive set. If it was found on 1281 * the unevictable list, it will have the PageUnevictable bit set. That flag 1282 * may need to be cleared by the caller before letting the page go. 1283 * 1284 * The vmstat statistic corresponding to the list on which the page was 1285 * found will be decremented. 1286 * 1287 * Restrictions: 1288 * (1) Must be called with an elevated refcount on the page. This is a 1289 * fundamentnal difference from isolate_lru_pages (which is called 1290 * without a stable reference). 1291 * (2) the lru_lock must not be held. 1292 * (3) interrupts must be enabled. 1293 */ 1294 int isolate_lru_page(struct page *page) 1295 { 1296 int ret = -EBUSY; 1297 1298 VM_BUG_ON(!page_count(page)); 1299 1300 if (PageLRU(page)) { 1301 struct zone *zone = page_zone(page); 1302 struct lruvec *lruvec; 1303 1304 spin_lock_irq(&zone->lru_lock); 1305 lruvec = mem_cgroup_page_lruvec(page, zone); 1306 if (PageLRU(page)) { 1307 int lru = page_lru(page); 1308 get_page(page); 1309 ClearPageLRU(page); 1310 del_page_from_lru_list(page, lruvec, lru); 1311 ret = 0; 1312 } 1313 spin_unlock_irq(&zone->lru_lock); 1314 } 1315 return ret; 1316 } 1317 1318 /* 1319 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1320 * then get resheduled. When there are massive number of tasks doing page 1321 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1322 * the LRU list will go small and be scanned faster than necessary, leading to 1323 * unnecessary swapping, thrashing and OOM. 1324 */ 1325 static int too_many_isolated(struct zone *zone, int file, 1326 struct scan_control *sc) 1327 { 1328 unsigned long inactive, isolated; 1329 1330 if (current_is_kswapd()) 1331 return 0; 1332 1333 if (!global_reclaim(sc)) 1334 return 0; 1335 1336 if (file) { 1337 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1338 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1339 } else { 1340 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1341 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1342 } 1343 1344 /* 1345 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1346 * won't get blocked by normal direct-reclaimers, forming a circular 1347 * deadlock. 1348 */ 1349 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1350 inactive >>= 3; 1351 1352 return isolated > inactive; 1353 } 1354 1355 static noinline_for_stack void 1356 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1357 { 1358 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1359 struct zone *zone = lruvec_zone(lruvec); 1360 LIST_HEAD(pages_to_free); 1361 1362 /* 1363 * Put back any unfreeable pages. 1364 */ 1365 while (!list_empty(page_list)) { 1366 struct page *page = lru_to_page(page_list); 1367 int lru; 1368 1369 VM_BUG_ON(PageLRU(page)); 1370 list_del(&page->lru); 1371 if (unlikely(!page_evictable(page))) { 1372 spin_unlock_irq(&zone->lru_lock); 1373 putback_lru_page(page); 1374 spin_lock_irq(&zone->lru_lock); 1375 continue; 1376 } 1377 1378 lruvec = mem_cgroup_page_lruvec(page, zone); 1379 1380 SetPageLRU(page); 1381 lru = page_lru(page); 1382 add_page_to_lru_list(page, lruvec, lru); 1383 1384 if (is_active_lru(lru)) { 1385 int file = is_file_lru(lru); 1386 int numpages = hpage_nr_pages(page); 1387 reclaim_stat->recent_rotated[file] += numpages; 1388 } 1389 if (put_page_testzero(page)) { 1390 __ClearPageLRU(page); 1391 __ClearPageActive(page); 1392 del_page_from_lru_list(page, lruvec, lru); 1393 1394 if (unlikely(PageCompound(page))) { 1395 spin_unlock_irq(&zone->lru_lock); 1396 (*get_compound_page_dtor(page))(page); 1397 spin_lock_irq(&zone->lru_lock); 1398 } else 1399 list_add(&page->lru, &pages_to_free); 1400 } 1401 } 1402 1403 /* 1404 * To save our caller's stack, now use input list for pages to free. 1405 */ 1406 list_splice(&pages_to_free, page_list); 1407 } 1408 1409 /* 1410 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1411 * of reclaimed pages 1412 */ 1413 static noinline_for_stack unsigned long 1414 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1415 struct scan_control *sc, enum lru_list lru) 1416 { 1417 LIST_HEAD(page_list); 1418 unsigned long nr_scanned; 1419 unsigned long nr_reclaimed = 0; 1420 unsigned long nr_taken; 1421 unsigned long nr_dirty = 0; 1422 unsigned long nr_congested = 0; 1423 unsigned long nr_unqueued_dirty = 0; 1424 unsigned long nr_writeback = 0; 1425 unsigned long nr_immediate = 0; 1426 isolate_mode_t isolate_mode = 0; 1427 int file = is_file_lru(lru); 1428 struct zone *zone = lruvec_zone(lruvec); 1429 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1430 1431 while (unlikely(too_many_isolated(zone, file, sc))) { 1432 congestion_wait(BLK_RW_ASYNC, HZ/10); 1433 1434 /* We are about to die and free our memory. Return now. */ 1435 if (fatal_signal_pending(current)) 1436 return SWAP_CLUSTER_MAX; 1437 } 1438 1439 lru_add_drain(); 1440 1441 if (!sc->may_unmap) 1442 isolate_mode |= ISOLATE_UNMAPPED; 1443 if (!sc->may_writepage) 1444 isolate_mode |= ISOLATE_CLEAN; 1445 1446 spin_lock_irq(&zone->lru_lock); 1447 1448 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1449 &nr_scanned, sc, isolate_mode, lru); 1450 1451 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1452 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1453 1454 if (global_reclaim(sc)) { 1455 zone->pages_scanned += nr_scanned; 1456 if (current_is_kswapd()) 1457 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1458 else 1459 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1460 } 1461 spin_unlock_irq(&zone->lru_lock); 1462 1463 if (nr_taken == 0) 1464 return 0; 1465 1466 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1467 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1468 &nr_writeback, &nr_immediate, 1469 false); 1470 1471 spin_lock_irq(&zone->lru_lock); 1472 1473 reclaim_stat->recent_scanned[file] += nr_taken; 1474 1475 if (global_reclaim(sc)) { 1476 if (current_is_kswapd()) 1477 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1478 nr_reclaimed); 1479 else 1480 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1481 nr_reclaimed); 1482 } 1483 1484 putback_inactive_pages(lruvec, &page_list); 1485 1486 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1487 1488 spin_unlock_irq(&zone->lru_lock); 1489 1490 free_hot_cold_page_list(&page_list, 1); 1491 1492 /* 1493 * If reclaim is isolating dirty pages under writeback, it implies 1494 * that the long-lived page allocation rate is exceeding the page 1495 * laundering rate. Either the global limits are not being effective 1496 * at throttling processes due to the page distribution throughout 1497 * zones or there is heavy usage of a slow backing device. The 1498 * only option is to throttle from reclaim context which is not ideal 1499 * as there is no guarantee the dirtying process is throttled in the 1500 * same way balance_dirty_pages() manages. 1501 * 1502 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1503 * of pages under pages flagged for immediate reclaim and stall if any 1504 * are encountered in the nr_immediate check below. 1505 */ 1506 if (nr_writeback && nr_writeback == nr_taken) 1507 zone_set_flag(zone, ZONE_WRITEBACK); 1508 1509 /* 1510 * memcg will stall in page writeback so only consider forcibly 1511 * stalling for global reclaim 1512 */ 1513 if (global_reclaim(sc)) { 1514 /* 1515 * Tag a zone as congested if all the dirty pages scanned were 1516 * backed by a congested BDI and wait_iff_congested will stall. 1517 */ 1518 if (nr_dirty && nr_dirty == nr_congested) 1519 zone_set_flag(zone, ZONE_CONGESTED); 1520 1521 /* 1522 * If dirty pages are scanned that are not queued for IO, it 1523 * implies that flushers are not keeping up. In this case, flag 1524 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1525 * pages from reclaim context. It will forcibly stall in the 1526 * next check. 1527 */ 1528 if (nr_unqueued_dirty == nr_taken) 1529 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1530 1531 /* 1532 * In addition, if kswapd scans pages marked marked for 1533 * immediate reclaim and under writeback (nr_immediate), it 1534 * implies that pages are cycling through the LRU faster than 1535 * they are written so also forcibly stall. 1536 */ 1537 if (nr_unqueued_dirty == nr_taken || nr_immediate) 1538 congestion_wait(BLK_RW_ASYNC, HZ/10); 1539 } 1540 1541 /* 1542 * Stall direct reclaim for IO completions if underlying BDIs or zone 1543 * is congested. Allow kswapd to continue until it starts encountering 1544 * unqueued dirty pages or cycling through the LRU too quickly. 1545 */ 1546 if (!sc->hibernation_mode && !current_is_kswapd()) 1547 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1548 1549 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1550 zone_idx(zone), 1551 nr_scanned, nr_reclaimed, 1552 sc->priority, 1553 trace_shrink_flags(file)); 1554 return nr_reclaimed; 1555 } 1556 1557 /* 1558 * This moves pages from the active list to the inactive list. 1559 * 1560 * We move them the other way if the page is referenced by one or more 1561 * processes, from rmap. 1562 * 1563 * If the pages are mostly unmapped, the processing is fast and it is 1564 * appropriate to hold zone->lru_lock across the whole operation. But if 1565 * the pages are mapped, the processing is slow (page_referenced()) so we 1566 * should drop zone->lru_lock around each page. It's impossible to balance 1567 * this, so instead we remove the pages from the LRU while processing them. 1568 * It is safe to rely on PG_active against the non-LRU pages in here because 1569 * nobody will play with that bit on a non-LRU page. 1570 * 1571 * The downside is that we have to touch page->_count against each page. 1572 * But we had to alter page->flags anyway. 1573 */ 1574 1575 static void move_active_pages_to_lru(struct lruvec *lruvec, 1576 struct list_head *list, 1577 struct list_head *pages_to_free, 1578 enum lru_list lru) 1579 { 1580 struct zone *zone = lruvec_zone(lruvec); 1581 unsigned long pgmoved = 0; 1582 struct page *page; 1583 int nr_pages; 1584 1585 while (!list_empty(list)) { 1586 page = lru_to_page(list); 1587 lruvec = mem_cgroup_page_lruvec(page, zone); 1588 1589 VM_BUG_ON(PageLRU(page)); 1590 SetPageLRU(page); 1591 1592 nr_pages = hpage_nr_pages(page); 1593 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1594 list_move(&page->lru, &lruvec->lists[lru]); 1595 pgmoved += nr_pages; 1596 1597 if (put_page_testzero(page)) { 1598 __ClearPageLRU(page); 1599 __ClearPageActive(page); 1600 del_page_from_lru_list(page, lruvec, lru); 1601 1602 if (unlikely(PageCompound(page))) { 1603 spin_unlock_irq(&zone->lru_lock); 1604 (*get_compound_page_dtor(page))(page); 1605 spin_lock_irq(&zone->lru_lock); 1606 } else 1607 list_add(&page->lru, pages_to_free); 1608 } 1609 } 1610 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1611 if (!is_active_lru(lru)) 1612 __count_vm_events(PGDEACTIVATE, pgmoved); 1613 } 1614 1615 static void shrink_active_list(unsigned long nr_to_scan, 1616 struct lruvec *lruvec, 1617 struct scan_control *sc, 1618 enum lru_list lru) 1619 { 1620 unsigned long nr_taken; 1621 unsigned long nr_scanned; 1622 unsigned long vm_flags; 1623 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1624 LIST_HEAD(l_active); 1625 LIST_HEAD(l_inactive); 1626 struct page *page; 1627 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1628 unsigned long nr_rotated = 0; 1629 isolate_mode_t isolate_mode = 0; 1630 int file = is_file_lru(lru); 1631 struct zone *zone = lruvec_zone(lruvec); 1632 1633 lru_add_drain(); 1634 1635 if (!sc->may_unmap) 1636 isolate_mode |= ISOLATE_UNMAPPED; 1637 if (!sc->may_writepage) 1638 isolate_mode |= ISOLATE_CLEAN; 1639 1640 spin_lock_irq(&zone->lru_lock); 1641 1642 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1643 &nr_scanned, sc, isolate_mode, lru); 1644 if (global_reclaim(sc)) 1645 zone->pages_scanned += nr_scanned; 1646 1647 reclaim_stat->recent_scanned[file] += nr_taken; 1648 1649 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1650 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1651 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1652 spin_unlock_irq(&zone->lru_lock); 1653 1654 while (!list_empty(&l_hold)) { 1655 cond_resched(); 1656 page = lru_to_page(&l_hold); 1657 list_del(&page->lru); 1658 1659 if (unlikely(!page_evictable(page))) { 1660 putback_lru_page(page); 1661 continue; 1662 } 1663 1664 if (unlikely(buffer_heads_over_limit)) { 1665 if (page_has_private(page) && trylock_page(page)) { 1666 if (page_has_private(page)) 1667 try_to_release_page(page, 0); 1668 unlock_page(page); 1669 } 1670 } 1671 1672 if (page_referenced(page, 0, sc->target_mem_cgroup, 1673 &vm_flags)) { 1674 nr_rotated += hpage_nr_pages(page); 1675 /* 1676 * Identify referenced, file-backed active pages and 1677 * give them one more trip around the active list. So 1678 * that executable code get better chances to stay in 1679 * memory under moderate memory pressure. Anon pages 1680 * are not likely to be evicted by use-once streaming 1681 * IO, plus JVM can create lots of anon VM_EXEC pages, 1682 * so we ignore them here. 1683 */ 1684 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1685 list_add(&page->lru, &l_active); 1686 continue; 1687 } 1688 } 1689 1690 ClearPageActive(page); /* we are de-activating */ 1691 list_add(&page->lru, &l_inactive); 1692 } 1693 1694 /* 1695 * Move pages back to the lru list. 1696 */ 1697 spin_lock_irq(&zone->lru_lock); 1698 /* 1699 * Count referenced pages from currently used mappings as rotated, 1700 * even though only some of them are actually re-activated. This 1701 * helps balance scan pressure between file and anonymous pages in 1702 * get_scan_ratio. 1703 */ 1704 reclaim_stat->recent_rotated[file] += nr_rotated; 1705 1706 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1707 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1708 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1709 spin_unlock_irq(&zone->lru_lock); 1710 1711 free_hot_cold_page_list(&l_hold, 1); 1712 } 1713 1714 #ifdef CONFIG_SWAP 1715 static int inactive_anon_is_low_global(struct zone *zone) 1716 { 1717 unsigned long active, inactive; 1718 1719 active = zone_page_state(zone, NR_ACTIVE_ANON); 1720 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1721 1722 if (inactive * zone->inactive_ratio < active) 1723 return 1; 1724 1725 return 0; 1726 } 1727 1728 /** 1729 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1730 * @lruvec: LRU vector to check 1731 * 1732 * Returns true if the zone does not have enough inactive anon pages, 1733 * meaning some active anon pages need to be deactivated. 1734 */ 1735 static int inactive_anon_is_low(struct lruvec *lruvec) 1736 { 1737 /* 1738 * If we don't have swap space, anonymous page deactivation 1739 * is pointless. 1740 */ 1741 if (!total_swap_pages) 1742 return 0; 1743 1744 if (!mem_cgroup_disabled()) 1745 return mem_cgroup_inactive_anon_is_low(lruvec); 1746 1747 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1748 } 1749 #else 1750 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1751 { 1752 return 0; 1753 } 1754 #endif 1755 1756 /** 1757 * inactive_file_is_low - check if file pages need to be deactivated 1758 * @lruvec: LRU vector to check 1759 * 1760 * When the system is doing streaming IO, memory pressure here 1761 * ensures that active file pages get deactivated, until more 1762 * than half of the file pages are on the inactive list. 1763 * 1764 * Once we get to that situation, protect the system's working 1765 * set from being evicted by disabling active file page aging. 1766 * 1767 * This uses a different ratio than the anonymous pages, because 1768 * the page cache uses a use-once replacement algorithm. 1769 */ 1770 static int inactive_file_is_low(struct lruvec *lruvec) 1771 { 1772 unsigned long inactive; 1773 unsigned long active; 1774 1775 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1776 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1777 1778 return active > inactive; 1779 } 1780 1781 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1782 { 1783 if (is_file_lru(lru)) 1784 return inactive_file_is_low(lruvec); 1785 else 1786 return inactive_anon_is_low(lruvec); 1787 } 1788 1789 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1790 struct lruvec *lruvec, struct scan_control *sc) 1791 { 1792 if (is_active_lru(lru)) { 1793 if (inactive_list_is_low(lruvec, lru)) 1794 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1795 return 0; 1796 } 1797 1798 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1799 } 1800 1801 static int vmscan_swappiness(struct scan_control *sc) 1802 { 1803 if (global_reclaim(sc)) 1804 return vm_swappiness; 1805 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1806 } 1807 1808 enum scan_balance { 1809 SCAN_EQUAL, 1810 SCAN_FRACT, 1811 SCAN_ANON, 1812 SCAN_FILE, 1813 }; 1814 1815 /* 1816 * Determine how aggressively the anon and file LRU lists should be 1817 * scanned. The relative value of each set of LRU lists is determined 1818 * by looking at the fraction of the pages scanned we did rotate back 1819 * onto the active list instead of evict. 1820 * 1821 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1822 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1823 */ 1824 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1825 unsigned long *nr) 1826 { 1827 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1828 u64 fraction[2]; 1829 u64 denominator = 0; /* gcc */ 1830 struct zone *zone = lruvec_zone(lruvec); 1831 unsigned long anon_prio, file_prio; 1832 enum scan_balance scan_balance; 1833 unsigned long anon, file, free; 1834 bool force_scan = false; 1835 unsigned long ap, fp; 1836 enum lru_list lru; 1837 1838 /* 1839 * If the zone or memcg is small, nr[l] can be 0. This 1840 * results in no scanning on this priority and a potential 1841 * priority drop. Global direct reclaim can go to the next 1842 * zone and tends to have no problems. Global kswapd is for 1843 * zone balancing and it needs to scan a minimum amount. When 1844 * reclaiming for a memcg, a priority drop can cause high 1845 * latencies, so it's better to scan a minimum amount there as 1846 * well. 1847 */ 1848 if (current_is_kswapd() && !zone_reclaimable(zone)) 1849 force_scan = true; 1850 if (!global_reclaim(sc)) 1851 force_scan = true; 1852 1853 /* If we have no swap space, do not bother scanning anon pages. */ 1854 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1855 scan_balance = SCAN_FILE; 1856 goto out; 1857 } 1858 1859 /* 1860 * Global reclaim will swap to prevent OOM even with no 1861 * swappiness, but memcg users want to use this knob to 1862 * disable swapping for individual groups completely when 1863 * using the memory controller's swap limit feature would be 1864 * too expensive. 1865 */ 1866 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { 1867 scan_balance = SCAN_FILE; 1868 goto out; 1869 } 1870 1871 /* 1872 * Do not apply any pressure balancing cleverness when the 1873 * system is close to OOM, scan both anon and file equally 1874 * (unless the swappiness setting disagrees with swapping). 1875 */ 1876 if (!sc->priority && vmscan_swappiness(sc)) { 1877 scan_balance = SCAN_EQUAL; 1878 goto out; 1879 } 1880 1881 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1882 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1883 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1884 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1885 1886 /* 1887 * If it's foreseeable that reclaiming the file cache won't be 1888 * enough to get the zone back into a desirable shape, we have 1889 * to swap. Better start now and leave the - probably heavily 1890 * thrashing - remaining file pages alone. 1891 */ 1892 if (global_reclaim(sc)) { 1893 free = zone_page_state(zone, NR_FREE_PAGES); 1894 if (unlikely(file + free <= high_wmark_pages(zone))) { 1895 scan_balance = SCAN_ANON; 1896 goto out; 1897 } 1898 } 1899 1900 /* 1901 * There is enough inactive page cache, do not reclaim 1902 * anything from the anonymous working set right now. 1903 */ 1904 if (!inactive_file_is_low(lruvec)) { 1905 scan_balance = SCAN_FILE; 1906 goto out; 1907 } 1908 1909 scan_balance = SCAN_FRACT; 1910 1911 /* 1912 * With swappiness at 100, anonymous and file have the same priority. 1913 * This scanning priority is essentially the inverse of IO cost. 1914 */ 1915 anon_prio = vmscan_swappiness(sc); 1916 file_prio = 200 - anon_prio; 1917 1918 /* 1919 * OK, so we have swap space and a fair amount of page cache 1920 * pages. We use the recently rotated / recently scanned 1921 * ratios to determine how valuable each cache is. 1922 * 1923 * Because workloads change over time (and to avoid overflow) 1924 * we keep these statistics as a floating average, which ends 1925 * up weighing recent references more than old ones. 1926 * 1927 * anon in [0], file in [1] 1928 */ 1929 spin_lock_irq(&zone->lru_lock); 1930 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1931 reclaim_stat->recent_scanned[0] /= 2; 1932 reclaim_stat->recent_rotated[0] /= 2; 1933 } 1934 1935 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1936 reclaim_stat->recent_scanned[1] /= 2; 1937 reclaim_stat->recent_rotated[1] /= 2; 1938 } 1939 1940 /* 1941 * The amount of pressure on anon vs file pages is inversely 1942 * proportional to the fraction of recently scanned pages on 1943 * each list that were recently referenced and in active use. 1944 */ 1945 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1946 ap /= reclaim_stat->recent_rotated[0] + 1; 1947 1948 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1949 fp /= reclaim_stat->recent_rotated[1] + 1; 1950 spin_unlock_irq(&zone->lru_lock); 1951 1952 fraction[0] = ap; 1953 fraction[1] = fp; 1954 denominator = ap + fp + 1; 1955 out: 1956 for_each_evictable_lru(lru) { 1957 int file = is_file_lru(lru); 1958 unsigned long size; 1959 unsigned long scan; 1960 1961 size = get_lru_size(lruvec, lru); 1962 scan = size >> sc->priority; 1963 1964 if (!scan && force_scan) 1965 scan = min(size, SWAP_CLUSTER_MAX); 1966 1967 switch (scan_balance) { 1968 case SCAN_EQUAL: 1969 /* Scan lists relative to size */ 1970 break; 1971 case SCAN_FRACT: 1972 /* 1973 * Scan types proportional to swappiness and 1974 * their relative recent reclaim efficiency. 1975 */ 1976 scan = div64_u64(scan * fraction[file], denominator); 1977 break; 1978 case SCAN_FILE: 1979 case SCAN_ANON: 1980 /* Scan one type exclusively */ 1981 if ((scan_balance == SCAN_FILE) != file) 1982 scan = 0; 1983 break; 1984 default: 1985 /* Look ma, no brain */ 1986 BUG(); 1987 } 1988 nr[lru] = scan; 1989 } 1990 } 1991 1992 /* 1993 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1994 */ 1995 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 1996 { 1997 unsigned long nr[NR_LRU_LISTS]; 1998 unsigned long targets[NR_LRU_LISTS]; 1999 unsigned long nr_to_scan; 2000 enum lru_list lru; 2001 unsigned long nr_reclaimed = 0; 2002 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2003 struct blk_plug plug; 2004 bool scan_adjusted = false; 2005 2006 get_scan_count(lruvec, sc, nr); 2007 2008 /* Record the original scan target for proportional adjustments later */ 2009 memcpy(targets, nr, sizeof(nr)); 2010 2011 blk_start_plug(&plug); 2012 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2013 nr[LRU_INACTIVE_FILE]) { 2014 unsigned long nr_anon, nr_file, percentage; 2015 unsigned long nr_scanned; 2016 2017 for_each_evictable_lru(lru) { 2018 if (nr[lru]) { 2019 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2020 nr[lru] -= nr_to_scan; 2021 2022 nr_reclaimed += shrink_list(lru, nr_to_scan, 2023 lruvec, sc); 2024 } 2025 } 2026 2027 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2028 continue; 2029 2030 /* 2031 * For global direct reclaim, reclaim only the number of pages 2032 * requested. Less care is taken to scan proportionally as it 2033 * is more important to minimise direct reclaim stall latency 2034 * than it is to properly age the LRU lists. 2035 */ 2036 if (global_reclaim(sc) && !current_is_kswapd()) 2037 break; 2038 2039 /* 2040 * For kswapd and memcg, reclaim at least the number of pages 2041 * requested. Ensure that the anon and file LRUs shrink 2042 * proportionally what was requested by get_scan_count(). We 2043 * stop reclaiming one LRU and reduce the amount scanning 2044 * proportional to the original scan target. 2045 */ 2046 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2047 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2048 2049 if (nr_file > nr_anon) { 2050 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2051 targets[LRU_ACTIVE_ANON] + 1; 2052 lru = LRU_BASE; 2053 percentage = nr_anon * 100 / scan_target; 2054 } else { 2055 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2056 targets[LRU_ACTIVE_FILE] + 1; 2057 lru = LRU_FILE; 2058 percentage = nr_file * 100 / scan_target; 2059 } 2060 2061 /* Stop scanning the smaller of the LRU */ 2062 nr[lru] = 0; 2063 nr[lru + LRU_ACTIVE] = 0; 2064 2065 /* 2066 * Recalculate the other LRU scan count based on its original 2067 * scan target and the percentage scanning already complete 2068 */ 2069 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2070 nr_scanned = targets[lru] - nr[lru]; 2071 nr[lru] = targets[lru] * (100 - percentage) / 100; 2072 nr[lru] -= min(nr[lru], nr_scanned); 2073 2074 lru += LRU_ACTIVE; 2075 nr_scanned = targets[lru] - nr[lru]; 2076 nr[lru] = targets[lru] * (100 - percentage) / 100; 2077 nr[lru] -= min(nr[lru], nr_scanned); 2078 2079 scan_adjusted = true; 2080 } 2081 blk_finish_plug(&plug); 2082 sc->nr_reclaimed += nr_reclaimed; 2083 2084 /* 2085 * Even if we did not try to evict anon pages at all, we want to 2086 * rebalance the anon lru active/inactive ratio. 2087 */ 2088 if (inactive_anon_is_low(lruvec)) 2089 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2090 sc, LRU_ACTIVE_ANON); 2091 2092 throttle_vm_writeout(sc->gfp_mask); 2093 } 2094 2095 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2096 static bool in_reclaim_compaction(struct scan_control *sc) 2097 { 2098 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2099 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2100 sc->priority < DEF_PRIORITY - 2)) 2101 return true; 2102 2103 return false; 2104 } 2105 2106 /* 2107 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2108 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2109 * true if more pages should be reclaimed such that when the page allocator 2110 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2111 * It will give up earlier than that if there is difficulty reclaiming pages. 2112 */ 2113 static inline bool should_continue_reclaim(struct zone *zone, 2114 unsigned long nr_reclaimed, 2115 unsigned long nr_scanned, 2116 struct scan_control *sc) 2117 { 2118 unsigned long pages_for_compaction; 2119 unsigned long inactive_lru_pages; 2120 2121 /* If not in reclaim/compaction mode, stop */ 2122 if (!in_reclaim_compaction(sc)) 2123 return false; 2124 2125 /* Consider stopping depending on scan and reclaim activity */ 2126 if (sc->gfp_mask & __GFP_REPEAT) { 2127 /* 2128 * For __GFP_REPEAT allocations, stop reclaiming if the 2129 * full LRU list has been scanned and we are still failing 2130 * to reclaim pages. This full LRU scan is potentially 2131 * expensive but a __GFP_REPEAT caller really wants to succeed 2132 */ 2133 if (!nr_reclaimed && !nr_scanned) 2134 return false; 2135 } else { 2136 /* 2137 * For non-__GFP_REPEAT allocations which can presumably 2138 * fail without consequence, stop if we failed to reclaim 2139 * any pages from the last SWAP_CLUSTER_MAX number of 2140 * pages that were scanned. This will return to the 2141 * caller faster at the risk reclaim/compaction and 2142 * the resulting allocation attempt fails 2143 */ 2144 if (!nr_reclaimed) 2145 return false; 2146 } 2147 2148 /* 2149 * If we have not reclaimed enough pages for compaction and the 2150 * inactive lists are large enough, continue reclaiming 2151 */ 2152 pages_for_compaction = (2UL << sc->order); 2153 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2154 if (get_nr_swap_pages() > 0) 2155 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2156 if (sc->nr_reclaimed < pages_for_compaction && 2157 inactive_lru_pages > pages_for_compaction) 2158 return true; 2159 2160 /* If compaction would go ahead or the allocation would succeed, stop */ 2161 switch (compaction_suitable(zone, sc->order)) { 2162 case COMPACT_PARTIAL: 2163 case COMPACT_CONTINUE: 2164 return false; 2165 default: 2166 return true; 2167 } 2168 } 2169 2170 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2171 { 2172 unsigned long nr_reclaimed, nr_scanned; 2173 2174 do { 2175 struct mem_cgroup *root = sc->target_mem_cgroup; 2176 struct mem_cgroup_reclaim_cookie reclaim = { 2177 .zone = zone, 2178 .priority = sc->priority, 2179 }; 2180 struct mem_cgroup *memcg; 2181 2182 nr_reclaimed = sc->nr_reclaimed; 2183 nr_scanned = sc->nr_scanned; 2184 2185 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2186 do { 2187 struct lruvec *lruvec; 2188 2189 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2190 2191 shrink_lruvec(lruvec, sc); 2192 2193 /* 2194 * Direct reclaim and kswapd have to scan all memory 2195 * cgroups to fulfill the overall scan target for the 2196 * zone. 2197 * 2198 * Limit reclaim, on the other hand, only cares about 2199 * nr_to_reclaim pages to be reclaimed and it will 2200 * retry with decreasing priority if one round over the 2201 * whole hierarchy is not sufficient. 2202 */ 2203 if (!global_reclaim(sc) && 2204 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2205 mem_cgroup_iter_break(root, memcg); 2206 break; 2207 } 2208 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2209 } while (memcg); 2210 2211 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2212 sc->nr_scanned - nr_scanned, 2213 sc->nr_reclaimed - nr_reclaimed); 2214 2215 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2216 sc->nr_scanned - nr_scanned, sc)); 2217 } 2218 2219 /* Returns true if compaction should go ahead for a high-order request */ 2220 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2221 { 2222 unsigned long balance_gap, watermark; 2223 bool watermark_ok; 2224 2225 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2226 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2227 return false; 2228 2229 /* 2230 * Compaction takes time to run and there are potentially other 2231 * callers using the pages just freed. Continue reclaiming until 2232 * there is a buffer of free pages available to give compaction 2233 * a reasonable chance of completing and allocating the page 2234 */ 2235 balance_gap = min(low_wmark_pages(zone), 2236 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2237 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2238 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2239 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2240 2241 /* 2242 * If compaction is deferred, reclaim up to a point where 2243 * compaction will have a chance of success when re-enabled 2244 */ 2245 if (compaction_deferred(zone, sc->order)) 2246 return watermark_ok; 2247 2248 /* If compaction is not ready to start, keep reclaiming */ 2249 if (!compaction_suitable(zone, sc->order)) 2250 return false; 2251 2252 return watermark_ok; 2253 } 2254 2255 /* 2256 * This is the direct reclaim path, for page-allocating processes. We only 2257 * try to reclaim pages from zones which will satisfy the caller's allocation 2258 * request. 2259 * 2260 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2261 * Because: 2262 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2263 * allocation or 2264 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2265 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2266 * zone defense algorithm. 2267 * 2268 * If a zone is deemed to be full of pinned pages then just give it a light 2269 * scan then give up on it. 2270 * 2271 * This function returns true if a zone is being reclaimed for a costly 2272 * high-order allocation and compaction is ready to begin. This indicates to 2273 * the caller that it should consider retrying the allocation instead of 2274 * further reclaim. 2275 */ 2276 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2277 { 2278 struct zoneref *z; 2279 struct zone *zone; 2280 unsigned long nr_soft_reclaimed; 2281 unsigned long nr_soft_scanned; 2282 bool aborted_reclaim = false; 2283 2284 /* 2285 * If the number of buffer_heads in the machine exceeds the maximum 2286 * allowed level, force direct reclaim to scan the highmem zone as 2287 * highmem pages could be pinning lowmem pages storing buffer_heads 2288 */ 2289 if (buffer_heads_over_limit) 2290 sc->gfp_mask |= __GFP_HIGHMEM; 2291 2292 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2293 gfp_zone(sc->gfp_mask), sc->nodemask) { 2294 if (!populated_zone(zone)) 2295 continue; 2296 /* 2297 * Take care memory controller reclaiming has small influence 2298 * to global LRU. 2299 */ 2300 if (global_reclaim(sc)) { 2301 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2302 continue; 2303 if (sc->priority != DEF_PRIORITY && 2304 !zone_reclaimable(zone)) 2305 continue; /* Let kswapd poll it */ 2306 if (IS_ENABLED(CONFIG_COMPACTION)) { 2307 /* 2308 * If we already have plenty of memory free for 2309 * compaction in this zone, don't free any more. 2310 * Even though compaction is invoked for any 2311 * non-zero order, only frequent costly order 2312 * reclamation is disruptive enough to become a 2313 * noticeable problem, like transparent huge 2314 * page allocations. 2315 */ 2316 if (compaction_ready(zone, sc)) { 2317 aborted_reclaim = true; 2318 continue; 2319 } 2320 } 2321 /* 2322 * This steals pages from memory cgroups over softlimit 2323 * and returns the number of reclaimed pages and 2324 * scanned pages. This works for global memory pressure 2325 * and balancing, not for a memcg's limit. 2326 */ 2327 nr_soft_scanned = 0; 2328 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2329 sc->order, sc->gfp_mask, 2330 &nr_soft_scanned); 2331 sc->nr_reclaimed += nr_soft_reclaimed; 2332 sc->nr_scanned += nr_soft_scanned; 2333 /* need some check for avoid more shrink_zone() */ 2334 } 2335 2336 shrink_zone(zone, sc); 2337 } 2338 2339 return aborted_reclaim; 2340 } 2341 2342 /* All zones in zonelist are unreclaimable? */ 2343 static bool all_unreclaimable(struct zonelist *zonelist, 2344 struct scan_control *sc) 2345 { 2346 struct zoneref *z; 2347 struct zone *zone; 2348 2349 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2350 gfp_zone(sc->gfp_mask), sc->nodemask) { 2351 if (!populated_zone(zone)) 2352 continue; 2353 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2354 continue; 2355 if (zone_reclaimable(zone)) 2356 return false; 2357 } 2358 2359 return true; 2360 } 2361 2362 /* 2363 * This is the main entry point to direct page reclaim. 2364 * 2365 * If a full scan of the inactive list fails to free enough memory then we 2366 * are "out of memory" and something needs to be killed. 2367 * 2368 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2369 * high - the zone may be full of dirty or under-writeback pages, which this 2370 * caller can't do much about. We kick the writeback threads and take explicit 2371 * naps in the hope that some of these pages can be written. But if the 2372 * allocating task holds filesystem locks which prevent writeout this might not 2373 * work, and the allocation attempt will fail. 2374 * 2375 * returns: 0, if no pages reclaimed 2376 * else, the number of pages reclaimed 2377 */ 2378 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2379 struct scan_control *sc, 2380 struct shrink_control *shrink) 2381 { 2382 unsigned long total_scanned = 0; 2383 struct reclaim_state *reclaim_state = current->reclaim_state; 2384 struct zoneref *z; 2385 struct zone *zone; 2386 unsigned long writeback_threshold; 2387 bool aborted_reclaim; 2388 2389 delayacct_freepages_start(); 2390 2391 if (global_reclaim(sc)) 2392 count_vm_event(ALLOCSTALL); 2393 2394 do { 2395 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2396 sc->priority); 2397 sc->nr_scanned = 0; 2398 aborted_reclaim = shrink_zones(zonelist, sc); 2399 2400 /* 2401 * Don't shrink slabs when reclaiming memory from over limit 2402 * cgroups but do shrink slab at least once when aborting 2403 * reclaim for compaction to avoid unevenly scanning file/anon 2404 * LRU pages over slab pages. 2405 */ 2406 if (global_reclaim(sc)) { 2407 unsigned long lru_pages = 0; 2408 2409 nodes_clear(shrink->nodes_to_scan); 2410 for_each_zone_zonelist(zone, z, zonelist, 2411 gfp_zone(sc->gfp_mask)) { 2412 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2413 continue; 2414 2415 lru_pages += zone_reclaimable_pages(zone); 2416 node_set(zone_to_nid(zone), 2417 shrink->nodes_to_scan); 2418 } 2419 2420 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2421 if (reclaim_state) { 2422 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2423 reclaim_state->reclaimed_slab = 0; 2424 } 2425 } 2426 total_scanned += sc->nr_scanned; 2427 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2428 goto out; 2429 2430 /* 2431 * If we're getting trouble reclaiming, start doing 2432 * writepage even in laptop mode. 2433 */ 2434 if (sc->priority < DEF_PRIORITY - 2) 2435 sc->may_writepage = 1; 2436 2437 /* 2438 * Try to write back as many pages as we just scanned. This 2439 * tends to cause slow streaming writers to write data to the 2440 * disk smoothly, at the dirtying rate, which is nice. But 2441 * that's undesirable in laptop mode, where we *want* lumpy 2442 * writeout. So in laptop mode, write out the whole world. 2443 */ 2444 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2445 if (total_scanned > writeback_threshold) { 2446 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2447 WB_REASON_TRY_TO_FREE_PAGES); 2448 sc->may_writepage = 1; 2449 } 2450 } while (--sc->priority >= 0 && !aborted_reclaim); 2451 2452 out: 2453 delayacct_freepages_end(); 2454 2455 if (sc->nr_reclaimed) 2456 return sc->nr_reclaimed; 2457 2458 /* 2459 * As hibernation is going on, kswapd is freezed so that it can't mark 2460 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2461 * check. 2462 */ 2463 if (oom_killer_disabled) 2464 return 0; 2465 2466 /* Aborted reclaim to try compaction? don't OOM, then */ 2467 if (aborted_reclaim) 2468 return 1; 2469 2470 /* top priority shrink_zones still had more to do? don't OOM, then */ 2471 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2472 return 1; 2473 2474 return 0; 2475 } 2476 2477 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2478 { 2479 struct zone *zone; 2480 unsigned long pfmemalloc_reserve = 0; 2481 unsigned long free_pages = 0; 2482 int i; 2483 bool wmark_ok; 2484 2485 for (i = 0; i <= ZONE_NORMAL; i++) { 2486 zone = &pgdat->node_zones[i]; 2487 pfmemalloc_reserve += min_wmark_pages(zone); 2488 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2489 } 2490 2491 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2492 2493 /* kswapd must be awake if processes are being throttled */ 2494 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2495 pgdat->classzone_idx = min(pgdat->classzone_idx, 2496 (enum zone_type)ZONE_NORMAL); 2497 wake_up_interruptible(&pgdat->kswapd_wait); 2498 } 2499 2500 return wmark_ok; 2501 } 2502 2503 /* 2504 * Throttle direct reclaimers if backing storage is backed by the network 2505 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2506 * depleted. kswapd will continue to make progress and wake the processes 2507 * when the low watermark is reached. 2508 * 2509 * Returns true if a fatal signal was delivered during throttling. If this 2510 * happens, the page allocator should not consider triggering the OOM killer. 2511 */ 2512 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2513 nodemask_t *nodemask) 2514 { 2515 struct zone *zone; 2516 int high_zoneidx = gfp_zone(gfp_mask); 2517 pg_data_t *pgdat; 2518 2519 /* 2520 * Kernel threads should not be throttled as they may be indirectly 2521 * responsible for cleaning pages necessary for reclaim to make forward 2522 * progress. kjournald for example may enter direct reclaim while 2523 * committing a transaction where throttling it could forcing other 2524 * processes to block on log_wait_commit(). 2525 */ 2526 if (current->flags & PF_KTHREAD) 2527 goto out; 2528 2529 /* 2530 * If a fatal signal is pending, this process should not throttle. 2531 * It should return quickly so it can exit and free its memory 2532 */ 2533 if (fatal_signal_pending(current)) 2534 goto out; 2535 2536 /* Check if the pfmemalloc reserves are ok */ 2537 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2538 pgdat = zone->zone_pgdat; 2539 if (pfmemalloc_watermark_ok(pgdat)) 2540 goto out; 2541 2542 /* Account for the throttling */ 2543 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2544 2545 /* 2546 * If the caller cannot enter the filesystem, it's possible that it 2547 * is due to the caller holding an FS lock or performing a journal 2548 * transaction in the case of a filesystem like ext[3|4]. In this case, 2549 * it is not safe to block on pfmemalloc_wait as kswapd could be 2550 * blocked waiting on the same lock. Instead, throttle for up to a 2551 * second before continuing. 2552 */ 2553 if (!(gfp_mask & __GFP_FS)) { 2554 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2555 pfmemalloc_watermark_ok(pgdat), HZ); 2556 2557 goto check_pending; 2558 } 2559 2560 /* Throttle until kswapd wakes the process */ 2561 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2562 pfmemalloc_watermark_ok(pgdat)); 2563 2564 check_pending: 2565 if (fatal_signal_pending(current)) 2566 return true; 2567 2568 out: 2569 return false; 2570 } 2571 2572 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2573 gfp_t gfp_mask, nodemask_t *nodemask) 2574 { 2575 unsigned long nr_reclaimed; 2576 struct scan_control sc = { 2577 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2578 .may_writepage = !laptop_mode, 2579 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2580 .may_unmap = 1, 2581 .may_swap = 1, 2582 .order = order, 2583 .priority = DEF_PRIORITY, 2584 .target_mem_cgroup = NULL, 2585 .nodemask = nodemask, 2586 }; 2587 struct shrink_control shrink = { 2588 .gfp_mask = sc.gfp_mask, 2589 }; 2590 2591 /* 2592 * Do not enter reclaim if fatal signal was delivered while throttled. 2593 * 1 is returned so that the page allocator does not OOM kill at this 2594 * point. 2595 */ 2596 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2597 return 1; 2598 2599 trace_mm_vmscan_direct_reclaim_begin(order, 2600 sc.may_writepage, 2601 gfp_mask); 2602 2603 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2604 2605 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2606 2607 return nr_reclaimed; 2608 } 2609 2610 #ifdef CONFIG_MEMCG 2611 2612 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2613 gfp_t gfp_mask, bool noswap, 2614 struct zone *zone, 2615 unsigned long *nr_scanned) 2616 { 2617 struct scan_control sc = { 2618 .nr_scanned = 0, 2619 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2620 .may_writepage = !laptop_mode, 2621 .may_unmap = 1, 2622 .may_swap = !noswap, 2623 .order = 0, 2624 .priority = 0, 2625 .target_mem_cgroup = memcg, 2626 }; 2627 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2628 2629 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2630 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2631 2632 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2633 sc.may_writepage, 2634 sc.gfp_mask); 2635 2636 /* 2637 * NOTE: Although we can get the priority field, using it 2638 * here is not a good idea, since it limits the pages we can scan. 2639 * if we don't reclaim here, the shrink_zone from balance_pgdat 2640 * will pick up pages from other mem cgroup's as well. We hack 2641 * the priority and make it zero. 2642 */ 2643 shrink_lruvec(lruvec, &sc); 2644 2645 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2646 2647 *nr_scanned = sc.nr_scanned; 2648 return sc.nr_reclaimed; 2649 } 2650 2651 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2652 gfp_t gfp_mask, 2653 bool noswap) 2654 { 2655 struct zonelist *zonelist; 2656 unsigned long nr_reclaimed; 2657 int nid; 2658 struct scan_control sc = { 2659 .may_writepage = !laptop_mode, 2660 .may_unmap = 1, 2661 .may_swap = !noswap, 2662 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2663 .order = 0, 2664 .priority = DEF_PRIORITY, 2665 .target_mem_cgroup = memcg, 2666 .nodemask = NULL, /* we don't care the placement */ 2667 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2668 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2669 }; 2670 struct shrink_control shrink = { 2671 .gfp_mask = sc.gfp_mask, 2672 }; 2673 2674 /* 2675 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2676 * take care of from where we get pages. So the node where we start the 2677 * scan does not need to be the current node. 2678 */ 2679 nid = mem_cgroup_select_victim_node(memcg); 2680 2681 zonelist = NODE_DATA(nid)->node_zonelists; 2682 2683 trace_mm_vmscan_memcg_reclaim_begin(0, 2684 sc.may_writepage, 2685 sc.gfp_mask); 2686 2687 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2688 2689 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2690 2691 return nr_reclaimed; 2692 } 2693 #endif 2694 2695 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2696 { 2697 struct mem_cgroup *memcg; 2698 2699 if (!total_swap_pages) 2700 return; 2701 2702 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2703 do { 2704 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2705 2706 if (inactive_anon_is_low(lruvec)) 2707 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2708 sc, LRU_ACTIVE_ANON); 2709 2710 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2711 } while (memcg); 2712 } 2713 2714 static bool zone_balanced(struct zone *zone, int order, 2715 unsigned long balance_gap, int classzone_idx) 2716 { 2717 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2718 balance_gap, classzone_idx, 0)) 2719 return false; 2720 2721 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2722 !compaction_suitable(zone, order)) 2723 return false; 2724 2725 return true; 2726 } 2727 2728 /* 2729 * pgdat_balanced() is used when checking if a node is balanced. 2730 * 2731 * For order-0, all zones must be balanced! 2732 * 2733 * For high-order allocations only zones that meet watermarks and are in a 2734 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2735 * total of balanced pages must be at least 25% of the zones allowed by 2736 * classzone_idx for the node to be considered balanced. Forcing all zones to 2737 * be balanced for high orders can cause excessive reclaim when there are 2738 * imbalanced zones. 2739 * The choice of 25% is due to 2740 * o a 16M DMA zone that is balanced will not balance a zone on any 2741 * reasonable sized machine 2742 * o On all other machines, the top zone must be at least a reasonable 2743 * percentage of the middle zones. For example, on 32-bit x86, highmem 2744 * would need to be at least 256M for it to be balance a whole node. 2745 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2746 * to balance a node on its own. These seemed like reasonable ratios. 2747 */ 2748 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2749 { 2750 unsigned long managed_pages = 0; 2751 unsigned long balanced_pages = 0; 2752 int i; 2753 2754 /* Check the watermark levels */ 2755 for (i = 0; i <= classzone_idx; i++) { 2756 struct zone *zone = pgdat->node_zones + i; 2757 2758 if (!populated_zone(zone)) 2759 continue; 2760 2761 managed_pages += zone->managed_pages; 2762 2763 /* 2764 * A special case here: 2765 * 2766 * balance_pgdat() skips over all_unreclaimable after 2767 * DEF_PRIORITY. Effectively, it considers them balanced so 2768 * they must be considered balanced here as well! 2769 */ 2770 if (!zone_reclaimable(zone)) { 2771 balanced_pages += zone->managed_pages; 2772 continue; 2773 } 2774 2775 if (zone_balanced(zone, order, 0, i)) 2776 balanced_pages += zone->managed_pages; 2777 else if (!order) 2778 return false; 2779 } 2780 2781 if (order) 2782 return balanced_pages >= (managed_pages >> 2); 2783 else 2784 return true; 2785 } 2786 2787 /* 2788 * Prepare kswapd for sleeping. This verifies that there are no processes 2789 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2790 * 2791 * Returns true if kswapd is ready to sleep 2792 */ 2793 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2794 int classzone_idx) 2795 { 2796 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2797 if (remaining) 2798 return false; 2799 2800 /* 2801 * There is a potential race between when kswapd checks its watermarks 2802 * and a process gets throttled. There is also a potential race if 2803 * processes get throttled, kswapd wakes, a large process exits therby 2804 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2805 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2806 * so wake them now if necessary. If necessary, processes will wake 2807 * kswapd and get throttled again 2808 */ 2809 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2810 wake_up(&pgdat->pfmemalloc_wait); 2811 return false; 2812 } 2813 2814 return pgdat_balanced(pgdat, order, classzone_idx); 2815 } 2816 2817 /* 2818 * kswapd shrinks the zone by the number of pages required to reach 2819 * the high watermark. 2820 * 2821 * Returns true if kswapd scanned at least the requested number of pages to 2822 * reclaim or if the lack of progress was due to pages under writeback. 2823 * This is used to determine if the scanning priority needs to be raised. 2824 */ 2825 static bool kswapd_shrink_zone(struct zone *zone, 2826 int classzone_idx, 2827 struct scan_control *sc, 2828 unsigned long lru_pages, 2829 unsigned long *nr_attempted) 2830 { 2831 int testorder = sc->order; 2832 unsigned long balance_gap; 2833 struct reclaim_state *reclaim_state = current->reclaim_state; 2834 struct shrink_control shrink = { 2835 .gfp_mask = sc->gfp_mask, 2836 }; 2837 bool lowmem_pressure; 2838 2839 /* Reclaim above the high watermark. */ 2840 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2841 2842 /* 2843 * Kswapd reclaims only single pages with compaction enabled. Trying 2844 * too hard to reclaim until contiguous free pages have become 2845 * available can hurt performance by evicting too much useful data 2846 * from memory. Do not reclaim more than needed for compaction. 2847 */ 2848 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2849 compaction_suitable(zone, sc->order) != 2850 COMPACT_SKIPPED) 2851 testorder = 0; 2852 2853 /* 2854 * We put equal pressure on every zone, unless one zone has way too 2855 * many pages free already. The "too many pages" is defined as the 2856 * high wmark plus a "gap" where the gap is either the low 2857 * watermark or 1% of the zone, whichever is smaller. 2858 */ 2859 balance_gap = min(low_wmark_pages(zone), 2860 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2861 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2862 2863 /* 2864 * If there is no low memory pressure or the zone is balanced then no 2865 * reclaim is necessary 2866 */ 2867 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2868 if (!lowmem_pressure && zone_balanced(zone, testorder, 2869 balance_gap, classzone_idx)) 2870 return true; 2871 2872 shrink_zone(zone, sc); 2873 nodes_clear(shrink.nodes_to_scan); 2874 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2875 2876 reclaim_state->reclaimed_slab = 0; 2877 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2878 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2879 2880 /* Account for the number of pages attempted to reclaim */ 2881 *nr_attempted += sc->nr_to_reclaim; 2882 2883 zone_clear_flag(zone, ZONE_WRITEBACK); 2884 2885 /* 2886 * If a zone reaches its high watermark, consider it to be no longer 2887 * congested. It's possible there are dirty pages backed by congested 2888 * BDIs but as pressure is relieved, speculatively avoid congestion 2889 * waits. 2890 */ 2891 if (zone_reclaimable(zone) && 2892 zone_balanced(zone, testorder, 0, classzone_idx)) { 2893 zone_clear_flag(zone, ZONE_CONGESTED); 2894 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2895 } 2896 2897 return sc->nr_scanned >= sc->nr_to_reclaim; 2898 } 2899 2900 /* 2901 * For kswapd, balance_pgdat() will work across all this node's zones until 2902 * they are all at high_wmark_pages(zone). 2903 * 2904 * Returns the final order kswapd was reclaiming at 2905 * 2906 * There is special handling here for zones which are full of pinned pages. 2907 * This can happen if the pages are all mlocked, or if they are all used by 2908 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2909 * What we do is to detect the case where all pages in the zone have been 2910 * scanned twice and there has been zero successful reclaim. Mark the zone as 2911 * dead and from now on, only perform a short scan. Basically we're polling 2912 * the zone for when the problem goes away. 2913 * 2914 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2915 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2916 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2917 * lower zones regardless of the number of free pages in the lower zones. This 2918 * interoperates with the page allocator fallback scheme to ensure that aging 2919 * of pages is balanced across the zones. 2920 */ 2921 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2922 int *classzone_idx) 2923 { 2924 int i; 2925 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2926 unsigned long nr_soft_reclaimed; 2927 unsigned long nr_soft_scanned; 2928 struct scan_control sc = { 2929 .gfp_mask = GFP_KERNEL, 2930 .priority = DEF_PRIORITY, 2931 .may_unmap = 1, 2932 .may_swap = 1, 2933 .may_writepage = !laptop_mode, 2934 .order = order, 2935 .target_mem_cgroup = NULL, 2936 }; 2937 count_vm_event(PAGEOUTRUN); 2938 2939 do { 2940 unsigned long lru_pages = 0; 2941 unsigned long nr_attempted = 0; 2942 bool raise_priority = true; 2943 bool pgdat_needs_compaction = (order > 0); 2944 2945 sc.nr_reclaimed = 0; 2946 2947 /* 2948 * Scan in the highmem->dma direction for the highest 2949 * zone which needs scanning 2950 */ 2951 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2952 struct zone *zone = pgdat->node_zones + i; 2953 2954 if (!populated_zone(zone)) 2955 continue; 2956 2957 if (sc.priority != DEF_PRIORITY && 2958 !zone_reclaimable(zone)) 2959 continue; 2960 2961 /* 2962 * Do some background aging of the anon list, to give 2963 * pages a chance to be referenced before reclaiming. 2964 */ 2965 age_active_anon(zone, &sc); 2966 2967 /* 2968 * If the number of buffer_heads in the machine 2969 * exceeds the maximum allowed level and this node 2970 * has a highmem zone, force kswapd to reclaim from 2971 * it to relieve lowmem pressure. 2972 */ 2973 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2974 end_zone = i; 2975 break; 2976 } 2977 2978 if (!zone_balanced(zone, order, 0, 0)) { 2979 end_zone = i; 2980 break; 2981 } else { 2982 /* 2983 * If balanced, clear the dirty and congested 2984 * flags 2985 */ 2986 zone_clear_flag(zone, ZONE_CONGESTED); 2987 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2988 } 2989 } 2990 2991 if (i < 0) 2992 goto out; 2993 2994 for (i = 0; i <= end_zone; i++) { 2995 struct zone *zone = pgdat->node_zones + i; 2996 2997 if (!populated_zone(zone)) 2998 continue; 2999 3000 lru_pages += zone_reclaimable_pages(zone); 3001 3002 /* 3003 * If any zone is currently balanced then kswapd will 3004 * not call compaction as it is expected that the 3005 * necessary pages are already available. 3006 */ 3007 if (pgdat_needs_compaction && 3008 zone_watermark_ok(zone, order, 3009 low_wmark_pages(zone), 3010 *classzone_idx, 0)) 3011 pgdat_needs_compaction = false; 3012 } 3013 3014 /* 3015 * If we're getting trouble reclaiming, start doing writepage 3016 * even in laptop mode. 3017 */ 3018 if (sc.priority < DEF_PRIORITY - 2) 3019 sc.may_writepage = 1; 3020 3021 /* 3022 * Now scan the zone in the dma->highmem direction, stopping 3023 * at the last zone which needs scanning. 3024 * 3025 * We do this because the page allocator works in the opposite 3026 * direction. This prevents the page allocator from allocating 3027 * pages behind kswapd's direction of progress, which would 3028 * cause too much scanning of the lower zones. 3029 */ 3030 for (i = 0; i <= end_zone; i++) { 3031 struct zone *zone = pgdat->node_zones + i; 3032 3033 if (!populated_zone(zone)) 3034 continue; 3035 3036 if (sc.priority != DEF_PRIORITY && 3037 !zone_reclaimable(zone)) 3038 continue; 3039 3040 sc.nr_scanned = 0; 3041 3042 nr_soft_scanned = 0; 3043 /* 3044 * Call soft limit reclaim before calling shrink_zone. 3045 */ 3046 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3047 order, sc.gfp_mask, 3048 &nr_soft_scanned); 3049 sc.nr_reclaimed += nr_soft_reclaimed; 3050 3051 /* 3052 * There should be no need to raise the scanning 3053 * priority if enough pages are already being scanned 3054 * that that high watermark would be met at 100% 3055 * efficiency. 3056 */ 3057 if (kswapd_shrink_zone(zone, end_zone, &sc, 3058 lru_pages, &nr_attempted)) 3059 raise_priority = false; 3060 } 3061 3062 /* 3063 * If the low watermark is met there is no need for processes 3064 * to be throttled on pfmemalloc_wait as they should not be 3065 * able to safely make forward progress. Wake them 3066 */ 3067 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3068 pfmemalloc_watermark_ok(pgdat)) 3069 wake_up(&pgdat->pfmemalloc_wait); 3070 3071 /* 3072 * Fragmentation may mean that the system cannot be rebalanced 3073 * for high-order allocations in all zones. If twice the 3074 * allocation size has been reclaimed and the zones are still 3075 * not balanced then recheck the watermarks at order-0 to 3076 * prevent kswapd reclaiming excessively. Assume that a 3077 * process requested a high-order can direct reclaim/compact. 3078 */ 3079 if (order && sc.nr_reclaimed >= 2UL << order) 3080 order = sc.order = 0; 3081 3082 /* Check if kswapd should be suspending */ 3083 if (try_to_freeze() || kthread_should_stop()) 3084 break; 3085 3086 /* 3087 * Compact if necessary and kswapd is reclaiming at least the 3088 * high watermark number of pages as requsted 3089 */ 3090 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3091 compact_pgdat(pgdat, order); 3092 3093 /* 3094 * Raise priority if scanning rate is too low or there was no 3095 * progress in reclaiming pages 3096 */ 3097 if (raise_priority || !sc.nr_reclaimed) 3098 sc.priority--; 3099 } while (sc.priority >= 1 && 3100 !pgdat_balanced(pgdat, order, *classzone_idx)); 3101 3102 out: 3103 /* 3104 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3105 * makes a decision on the order we were last reclaiming at. However, 3106 * if another caller entered the allocator slow path while kswapd 3107 * was awake, order will remain at the higher level 3108 */ 3109 *classzone_idx = end_zone; 3110 return order; 3111 } 3112 3113 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3114 { 3115 long remaining = 0; 3116 DEFINE_WAIT(wait); 3117 3118 if (freezing(current) || kthread_should_stop()) 3119 return; 3120 3121 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3122 3123 /* Try to sleep for a short interval */ 3124 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3125 remaining = schedule_timeout(HZ/10); 3126 finish_wait(&pgdat->kswapd_wait, &wait); 3127 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3128 } 3129 3130 /* 3131 * After a short sleep, check if it was a premature sleep. If not, then 3132 * go fully to sleep until explicitly woken up. 3133 */ 3134 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3135 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3136 3137 /* 3138 * vmstat counters are not perfectly accurate and the estimated 3139 * value for counters such as NR_FREE_PAGES can deviate from the 3140 * true value by nr_online_cpus * threshold. To avoid the zone 3141 * watermarks being breached while under pressure, we reduce the 3142 * per-cpu vmstat threshold while kswapd is awake and restore 3143 * them before going back to sleep. 3144 */ 3145 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3146 3147 /* 3148 * Compaction records what page blocks it recently failed to 3149 * isolate pages from and skips them in the future scanning. 3150 * When kswapd is going to sleep, it is reasonable to assume 3151 * that pages and compaction may succeed so reset the cache. 3152 */ 3153 reset_isolation_suitable(pgdat); 3154 3155 if (!kthread_should_stop()) 3156 schedule(); 3157 3158 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3159 } else { 3160 if (remaining) 3161 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3162 else 3163 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3164 } 3165 finish_wait(&pgdat->kswapd_wait, &wait); 3166 } 3167 3168 /* 3169 * The background pageout daemon, started as a kernel thread 3170 * from the init process. 3171 * 3172 * This basically trickles out pages so that we have _some_ 3173 * free memory available even if there is no other activity 3174 * that frees anything up. This is needed for things like routing 3175 * etc, where we otherwise might have all activity going on in 3176 * asynchronous contexts that cannot page things out. 3177 * 3178 * If there are applications that are active memory-allocators 3179 * (most normal use), this basically shouldn't matter. 3180 */ 3181 static int kswapd(void *p) 3182 { 3183 unsigned long order, new_order; 3184 unsigned balanced_order; 3185 int classzone_idx, new_classzone_idx; 3186 int balanced_classzone_idx; 3187 pg_data_t *pgdat = (pg_data_t*)p; 3188 struct task_struct *tsk = current; 3189 3190 struct reclaim_state reclaim_state = { 3191 .reclaimed_slab = 0, 3192 }; 3193 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3194 3195 lockdep_set_current_reclaim_state(GFP_KERNEL); 3196 3197 if (!cpumask_empty(cpumask)) 3198 set_cpus_allowed_ptr(tsk, cpumask); 3199 current->reclaim_state = &reclaim_state; 3200 3201 /* 3202 * Tell the memory management that we're a "memory allocator", 3203 * and that if we need more memory we should get access to it 3204 * regardless (see "__alloc_pages()"). "kswapd" should 3205 * never get caught in the normal page freeing logic. 3206 * 3207 * (Kswapd normally doesn't need memory anyway, but sometimes 3208 * you need a small amount of memory in order to be able to 3209 * page out something else, and this flag essentially protects 3210 * us from recursively trying to free more memory as we're 3211 * trying to free the first piece of memory in the first place). 3212 */ 3213 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3214 set_freezable(); 3215 3216 order = new_order = 0; 3217 balanced_order = 0; 3218 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3219 balanced_classzone_idx = classzone_idx; 3220 for ( ; ; ) { 3221 bool ret; 3222 3223 /* 3224 * If the last balance_pgdat was unsuccessful it's unlikely a 3225 * new request of a similar or harder type will succeed soon 3226 * so consider going to sleep on the basis we reclaimed at 3227 */ 3228 if (balanced_classzone_idx >= new_classzone_idx && 3229 balanced_order == new_order) { 3230 new_order = pgdat->kswapd_max_order; 3231 new_classzone_idx = pgdat->classzone_idx; 3232 pgdat->kswapd_max_order = 0; 3233 pgdat->classzone_idx = pgdat->nr_zones - 1; 3234 } 3235 3236 if (order < new_order || classzone_idx > new_classzone_idx) { 3237 /* 3238 * Don't sleep if someone wants a larger 'order' 3239 * allocation or has tigher zone constraints 3240 */ 3241 order = new_order; 3242 classzone_idx = new_classzone_idx; 3243 } else { 3244 kswapd_try_to_sleep(pgdat, balanced_order, 3245 balanced_classzone_idx); 3246 order = pgdat->kswapd_max_order; 3247 classzone_idx = pgdat->classzone_idx; 3248 new_order = order; 3249 new_classzone_idx = classzone_idx; 3250 pgdat->kswapd_max_order = 0; 3251 pgdat->classzone_idx = pgdat->nr_zones - 1; 3252 } 3253 3254 ret = try_to_freeze(); 3255 if (kthread_should_stop()) 3256 break; 3257 3258 /* 3259 * We can speed up thawing tasks if we don't call balance_pgdat 3260 * after returning from the refrigerator 3261 */ 3262 if (!ret) { 3263 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3264 balanced_classzone_idx = classzone_idx; 3265 balanced_order = balance_pgdat(pgdat, order, 3266 &balanced_classzone_idx); 3267 } 3268 } 3269 3270 current->reclaim_state = NULL; 3271 return 0; 3272 } 3273 3274 /* 3275 * A zone is low on free memory, so wake its kswapd task to service it. 3276 */ 3277 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3278 { 3279 pg_data_t *pgdat; 3280 3281 if (!populated_zone(zone)) 3282 return; 3283 3284 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3285 return; 3286 pgdat = zone->zone_pgdat; 3287 if (pgdat->kswapd_max_order < order) { 3288 pgdat->kswapd_max_order = order; 3289 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3290 } 3291 if (!waitqueue_active(&pgdat->kswapd_wait)) 3292 return; 3293 if (zone_balanced(zone, order, 0, 0)) 3294 return; 3295 3296 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3297 wake_up_interruptible(&pgdat->kswapd_wait); 3298 } 3299 3300 /* 3301 * The reclaimable count would be mostly accurate. 3302 * The less reclaimable pages may be 3303 * - mlocked pages, which will be moved to unevictable list when encountered 3304 * - mapped pages, which may require several travels to be reclaimed 3305 * - dirty pages, which is not "instantly" reclaimable 3306 */ 3307 unsigned long global_reclaimable_pages(void) 3308 { 3309 int nr; 3310 3311 nr = global_page_state(NR_ACTIVE_FILE) + 3312 global_page_state(NR_INACTIVE_FILE); 3313 3314 if (get_nr_swap_pages() > 0) 3315 nr += global_page_state(NR_ACTIVE_ANON) + 3316 global_page_state(NR_INACTIVE_ANON); 3317 3318 return nr; 3319 } 3320 3321 #ifdef CONFIG_HIBERNATION 3322 /* 3323 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3324 * freed pages. 3325 * 3326 * Rather than trying to age LRUs the aim is to preserve the overall 3327 * LRU order by reclaiming preferentially 3328 * inactive > active > active referenced > active mapped 3329 */ 3330 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3331 { 3332 struct reclaim_state reclaim_state; 3333 struct scan_control sc = { 3334 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3335 .may_swap = 1, 3336 .may_unmap = 1, 3337 .may_writepage = 1, 3338 .nr_to_reclaim = nr_to_reclaim, 3339 .hibernation_mode = 1, 3340 .order = 0, 3341 .priority = DEF_PRIORITY, 3342 }; 3343 struct shrink_control shrink = { 3344 .gfp_mask = sc.gfp_mask, 3345 }; 3346 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3347 struct task_struct *p = current; 3348 unsigned long nr_reclaimed; 3349 3350 p->flags |= PF_MEMALLOC; 3351 lockdep_set_current_reclaim_state(sc.gfp_mask); 3352 reclaim_state.reclaimed_slab = 0; 3353 p->reclaim_state = &reclaim_state; 3354 3355 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3356 3357 p->reclaim_state = NULL; 3358 lockdep_clear_current_reclaim_state(); 3359 p->flags &= ~PF_MEMALLOC; 3360 3361 return nr_reclaimed; 3362 } 3363 #endif /* CONFIG_HIBERNATION */ 3364 3365 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3366 not required for correctness. So if the last cpu in a node goes 3367 away, we get changed to run anywhere: as the first one comes back, 3368 restore their cpu bindings. */ 3369 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3370 void *hcpu) 3371 { 3372 int nid; 3373 3374 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3375 for_each_node_state(nid, N_MEMORY) { 3376 pg_data_t *pgdat = NODE_DATA(nid); 3377 const struct cpumask *mask; 3378 3379 mask = cpumask_of_node(pgdat->node_id); 3380 3381 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3382 /* One of our CPUs online: restore mask */ 3383 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3384 } 3385 } 3386 return NOTIFY_OK; 3387 } 3388 3389 /* 3390 * This kswapd start function will be called by init and node-hot-add. 3391 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3392 */ 3393 int kswapd_run(int nid) 3394 { 3395 pg_data_t *pgdat = NODE_DATA(nid); 3396 int ret = 0; 3397 3398 if (pgdat->kswapd) 3399 return 0; 3400 3401 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3402 if (IS_ERR(pgdat->kswapd)) { 3403 /* failure at boot is fatal */ 3404 BUG_ON(system_state == SYSTEM_BOOTING); 3405 pr_err("Failed to start kswapd on node %d\n", nid); 3406 ret = PTR_ERR(pgdat->kswapd); 3407 pgdat->kswapd = NULL; 3408 } 3409 return ret; 3410 } 3411 3412 /* 3413 * Called by memory hotplug when all memory in a node is offlined. Caller must 3414 * hold lock_memory_hotplug(). 3415 */ 3416 void kswapd_stop(int nid) 3417 { 3418 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3419 3420 if (kswapd) { 3421 kthread_stop(kswapd); 3422 NODE_DATA(nid)->kswapd = NULL; 3423 } 3424 } 3425 3426 static int __init kswapd_init(void) 3427 { 3428 int nid; 3429 3430 swap_setup(); 3431 for_each_node_state(nid, N_MEMORY) 3432 kswapd_run(nid); 3433 hotcpu_notifier(cpu_callback, 0); 3434 return 0; 3435 } 3436 3437 module_init(kswapd_init) 3438 3439 #ifdef CONFIG_NUMA 3440 /* 3441 * Zone reclaim mode 3442 * 3443 * If non-zero call zone_reclaim when the number of free pages falls below 3444 * the watermarks. 3445 */ 3446 int zone_reclaim_mode __read_mostly; 3447 3448 #define RECLAIM_OFF 0 3449 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3450 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3451 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3452 3453 /* 3454 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3455 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3456 * a zone. 3457 */ 3458 #define ZONE_RECLAIM_PRIORITY 4 3459 3460 /* 3461 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3462 * occur. 3463 */ 3464 int sysctl_min_unmapped_ratio = 1; 3465 3466 /* 3467 * If the number of slab pages in a zone grows beyond this percentage then 3468 * slab reclaim needs to occur. 3469 */ 3470 int sysctl_min_slab_ratio = 5; 3471 3472 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3473 { 3474 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3475 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3476 zone_page_state(zone, NR_ACTIVE_FILE); 3477 3478 /* 3479 * It's possible for there to be more file mapped pages than 3480 * accounted for by the pages on the file LRU lists because 3481 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3482 */ 3483 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3484 } 3485 3486 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3487 static long zone_pagecache_reclaimable(struct zone *zone) 3488 { 3489 long nr_pagecache_reclaimable; 3490 long delta = 0; 3491 3492 /* 3493 * If RECLAIM_SWAP is set, then all file pages are considered 3494 * potentially reclaimable. Otherwise, we have to worry about 3495 * pages like swapcache and zone_unmapped_file_pages() provides 3496 * a better estimate 3497 */ 3498 if (zone_reclaim_mode & RECLAIM_SWAP) 3499 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3500 else 3501 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3502 3503 /* If we can't clean pages, remove dirty pages from consideration */ 3504 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3505 delta += zone_page_state(zone, NR_FILE_DIRTY); 3506 3507 /* Watch for any possible underflows due to delta */ 3508 if (unlikely(delta > nr_pagecache_reclaimable)) 3509 delta = nr_pagecache_reclaimable; 3510 3511 return nr_pagecache_reclaimable - delta; 3512 } 3513 3514 /* 3515 * Try to free up some pages from this zone through reclaim. 3516 */ 3517 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3518 { 3519 /* Minimum pages needed in order to stay on node */ 3520 const unsigned long nr_pages = 1 << order; 3521 struct task_struct *p = current; 3522 struct reclaim_state reclaim_state; 3523 struct scan_control sc = { 3524 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3525 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3526 .may_swap = 1, 3527 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3528 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3529 .order = order, 3530 .priority = ZONE_RECLAIM_PRIORITY, 3531 }; 3532 struct shrink_control shrink = { 3533 .gfp_mask = sc.gfp_mask, 3534 }; 3535 unsigned long nr_slab_pages0, nr_slab_pages1; 3536 3537 cond_resched(); 3538 /* 3539 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3540 * and we also need to be able to write out pages for RECLAIM_WRITE 3541 * and RECLAIM_SWAP. 3542 */ 3543 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3544 lockdep_set_current_reclaim_state(gfp_mask); 3545 reclaim_state.reclaimed_slab = 0; 3546 p->reclaim_state = &reclaim_state; 3547 3548 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3549 /* 3550 * Free memory by calling shrink zone with increasing 3551 * priorities until we have enough memory freed. 3552 */ 3553 do { 3554 shrink_zone(zone, &sc); 3555 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3556 } 3557 3558 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3559 if (nr_slab_pages0 > zone->min_slab_pages) { 3560 /* 3561 * shrink_slab() does not currently allow us to determine how 3562 * many pages were freed in this zone. So we take the current 3563 * number of slab pages and shake the slab until it is reduced 3564 * by the same nr_pages that we used for reclaiming unmapped 3565 * pages. 3566 */ 3567 nodes_clear(shrink.nodes_to_scan); 3568 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 3569 for (;;) { 3570 unsigned long lru_pages = zone_reclaimable_pages(zone); 3571 3572 /* No reclaimable slab or very low memory pressure */ 3573 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3574 break; 3575 3576 /* Freed enough memory */ 3577 nr_slab_pages1 = zone_page_state(zone, 3578 NR_SLAB_RECLAIMABLE); 3579 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3580 break; 3581 } 3582 3583 /* 3584 * Update nr_reclaimed by the number of slab pages we 3585 * reclaimed from this zone. 3586 */ 3587 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3588 if (nr_slab_pages1 < nr_slab_pages0) 3589 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3590 } 3591 3592 p->reclaim_state = NULL; 3593 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3594 lockdep_clear_current_reclaim_state(); 3595 return sc.nr_reclaimed >= nr_pages; 3596 } 3597 3598 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3599 { 3600 int node_id; 3601 int ret; 3602 3603 /* 3604 * Zone reclaim reclaims unmapped file backed pages and 3605 * slab pages if we are over the defined limits. 3606 * 3607 * A small portion of unmapped file backed pages is needed for 3608 * file I/O otherwise pages read by file I/O will be immediately 3609 * thrown out if the zone is overallocated. So we do not reclaim 3610 * if less than a specified percentage of the zone is used by 3611 * unmapped file backed pages. 3612 */ 3613 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3614 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3615 return ZONE_RECLAIM_FULL; 3616 3617 if (!zone_reclaimable(zone)) 3618 return ZONE_RECLAIM_FULL; 3619 3620 /* 3621 * Do not scan if the allocation should not be delayed. 3622 */ 3623 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3624 return ZONE_RECLAIM_NOSCAN; 3625 3626 /* 3627 * Only run zone reclaim on the local zone or on zones that do not 3628 * have associated processors. This will favor the local processor 3629 * over remote processors and spread off node memory allocations 3630 * as wide as possible. 3631 */ 3632 node_id = zone_to_nid(zone); 3633 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3634 return ZONE_RECLAIM_NOSCAN; 3635 3636 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3637 return ZONE_RECLAIM_NOSCAN; 3638 3639 ret = __zone_reclaim(zone, gfp_mask, order); 3640 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3641 3642 if (!ret) 3643 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3644 3645 return ret; 3646 } 3647 #endif 3648 3649 /* 3650 * page_evictable - test whether a page is evictable 3651 * @page: the page to test 3652 * 3653 * Test whether page is evictable--i.e., should be placed on active/inactive 3654 * lists vs unevictable list. 3655 * 3656 * Reasons page might not be evictable: 3657 * (1) page's mapping marked unevictable 3658 * (2) page is part of an mlocked VMA 3659 * 3660 */ 3661 int page_evictable(struct page *page) 3662 { 3663 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3664 } 3665 3666 #ifdef CONFIG_SHMEM 3667 /** 3668 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3669 * @pages: array of pages to check 3670 * @nr_pages: number of pages to check 3671 * 3672 * Checks pages for evictability and moves them to the appropriate lru list. 3673 * 3674 * This function is only used for SysV IPC SHM_UNLOCK. 3675 */ 3676 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3677 { 3678 struct lruvec *lruvec; 3679 struct zone *zone = NULL; 3680 int pgscanned = 0; 3681 int pgrescued = 0; 3682 int i; 3683 3684 for (i = 0; i < nr_pages; i++) { 3685 struct page *page = pages[i]; 3686 struct zone *pagezone; 3687 3688 pgscanned++; 3689 pagezone = page_zone(page); 3690 if (pagezone != zone) { 3691 if (zone) 3692 spin_unlock_irq(&zone->lru_lock); 3693 zone = pagezone; 3694 spin_lock_irq(&zone->lru_lock); 3695 } 3696 lruvec = mem_cgroup_page_lruvec(page, zone); 3697 3698 if (!PageLRU(page) || !PageUnevictable(page)) 3699 continue; 3700 3701 if (page_evictable(page)) { 3702 enum lru_list lru = page_lru_base_type(page); 3703 3704 VM_BUG_ON(PageActive(page)); 3705 ClearPageUnevictable(page); 3706 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3707 add_page_to_lru_list(page, lruvec, lru); 3708 pgrescued++; 3709 } 3710 } 3711 3712 if (zone) { 3713 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3714 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3715 spin_unlock_irq(&zone->lru_lock); 3716 } 3717 } 3718 #endif /* CONFIG_SHMEM */ 3719 3720 static void warn_scan_unevictable_pages(void) 3721 { 3722 printk_once(KERN_WARNING 3723 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3724 "disabled for lack of a legitimate use case. If you have " 3725 "one, please send an email to linux-mm@kvack.org.\n", 3726 current->comm); 3727 } 3728 3729 /* 3730 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3731 * all nodes' unevictable lists for evictable pages 3732 */ 3733 unsigned long scan_unevictable_pages; 3734 3735 int scan_unevictable_handler(struct ctl_table *table, int write, 3736 void __user *buffer, 3737 size_t *length, loff_t *ppos) 3738 { 3739 warn_scan_unevictable_pages(); 3740 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3741 scan_unevictable_pages = 0; 3742 return 0; 3743 } 3744 3745 #ifdef CONFIG_NUMA 3746 /* 3747 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3748 * a specified node's per zone unevictable lists for evictable pages. 3749 */ 3750 3751 static ssize_t read_scan_unevictable_node(struct device *dev, 3752 struct device_attribute *attr, 3753 char *buf) 3754 { 3755 warn_scan_unevictable_pages(); 3756 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3757 } 3758 3759 static ssize_t write_scan_unevictable_node(struct device *dev, 3760 struct device_attribute *attr, 3761 const char *buf, size_t count) 3762 { 3763 warn_scan_unevictable_pages(); 3764 return 1; 3765 } 3766 3767 3768 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3769 read_scan_unevictable_node, 3770 write_scan_unevictable_node); 3771 3772 int scan_unevictable_register_node(struct node *node) 3773 { 3774 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3775 } 3776 3777 void scan_unevictable_unregister_node(struct node *node) 3778 { 3779 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3780 } 3781 #endif 3782