xref: /openbmc/linux/mm/vmscan.c (revision 79f08d9e)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52 
53 #include "internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57 
58 struct scan_control {
59 	/* Incremented by the number of inactive pages that were scanned */
60 	unsigned long nr_scanned;
61 
62 	/* Number of pages freed so far during a call to shrink_zones() */
63 	unsigned long nr_reclaimed;
64 
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	unsigned long hibernation_mode;
69 
70 	/* This context's GFP mask */
71 	gfp_t gfp_mask;
72 
73 	int may_writepage;
74 
75 	/* Can mapped pages be reclaimed? */
76 	int may_unmap;
77 
78 	/* Can pages be swapped as part of reclaim? */
79 	int may_swap;
80 
81 	int order;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	/*
87 	 * The memory cgroup that hit its limit and as a result is the
88 	 * primary target of this reclaim invocation.
89 	 */
90 	struct mem_cgroup *target_mem_cgroup;
91 
92 	/*
93 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 	 * are scanned.
95 	 */
96 	nodemask_t	*nodemask;
97 };
98 
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)			\
103 	do {								\
104 		if ((_page)->lru.prev != _base) {			\
105 			struct page *prev;				\
106 									\
107 			prev = lru_to_page(&(_page->lru));		\
108 			prefetch(&prev->_field);			\
109 		}							\
110 	} while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114 
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)			\
117 	do {								\
118 		if ((_page)->lru.prev != _base) {			\
119 			struct page *prev;				\
120 									\
121 			prev = lru_to_page(&(_page->lru));		\
122 			prefetchw(&prev->_field);			\
123 		}							\
124 	} while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128 
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
134 
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137 
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 	return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 	return true;
147 }
148 #endif
149 
150 unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152 	int nr;
153 
154 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 	     zone_page_state(zone, NR_INACTIVE_FILE);
156 
157 	if (get_nr_swap_pages() > 0)
158 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 		      zone_page_state(zone, NR_INACTIVE_ANON);
160 
161 	return nr;
162 }
163 
164 bool zone_reclaimable(struct zone *zone)
165 {
166 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168 
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171 	if (!mem_cgroup_disabled())
172 		return mem_cgroup_get_lru_size(lruvec, lru);
173 
174 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176 
177 /*
178  * Add a shrinker callback to be called from the vm.
179  */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182 	size_t size = sizeof(*shrinker->nr_deferred);
183 
184 	/*
185 	 * If we only have one possible node in the system anyway, save
186 	 * ourselves the trouble and disable NUMA aware behavior. This way we
187 	 * will save memory and some small loop time later.
188 	 */
189 	if (nr_node_ids == 1)
190 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191 
192 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 		size *= nr_node_ids;
194 
195 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 	if (!shrinker->nr_deferred)
197 		return -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	list_add_tail(&shrinker->list, &shrinker_list);
201 	up_write(&shrinker_rwsem);
202 	return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205 
206 /*
207  * Remove one
208  */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211 	down_write(&shrinker_rwsem);
212 	list_del(&shrinker->list);
213 	up_write(&shrinker_rwsem);
214 	kfree(shrinker->nr_deferred);
215 }
216 EXPORT_SYMBOL(unregister_shrinker);
217 
218 #define SHRINK_BATCH 128
219 
220 static unsigned long
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 		 unsigned long nr_pages_scanned, unsigned long lru_pages)
223 {
224 	unsigned long freed = 0;
225 	unsigned long long delta;
226 	long total_scan;
227 	long max_pass;
228 	long nr;
229 	long new_nr;
230 	int nid = shrinkctl->nid;
231 	long batch_size = shrinker->batch ? shrinker->batch
232 					  : SHRINK_BATCH;
233 
234 	max_pass = shrinker->count_objects(shrinker, shrinkctl);
235 	if (max_pass == 0)
236 		return 0;
237 
238 	/*
239 	 * copy the current shrinker scan count into a local variable
240 	 * and zero it so that other concurrent shrinker invocations
241 	 * don't also do this scanning work.
242 	 */
243 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244 
245 	total_scan = nr;
246 	delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 	delta *= max_pass;
248 	do_div(delta, lru_pages + 1);
249 	total_scan += delta;
250 	if (total_scan < 0) {
251 		printk(KERN_ERR
252 		"shrink_slab: %pF negative objects to delete nr=%ld\n",
253 		       shrinker->scan_objects, total_scan);
254 		total_scan = max_pass;
255 	}
256 
257 	/*
258 	 * We need to avoid excessive windup on filesystem shrinkers
259 	 * due to large numbers of GFP_NOFS allocations causing the
260 	 * shrinkers to return -1 all the time. This results in a large
261 	 * nr being built up so when a shrink that can do some work
262 	 * comes along it empties the entire cache due to nr >>>
263 	 * max_pass.  This is bad for sustaining a working set in
264 	 * memory.
265 	 *
266 	 * Hence only allow the shrinker to scan the entire cache when
267 	 * a large delta change is calculated directly.
268 	 */
269 	if (delta < max_pass / 4)
270 		total_scan = min(total_scan, max_pass / 2);
271 
272 	/*
273 	 * Avoid risking looping forever due to too large nr value:
274 	 * never try to free more than twice the estimate number of
275 	 * freeable entries.
276 	 */
277 	if (total_scan > max_pass * 2)
278 		total_scan = max_pass * 2;
279 
280 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 				nr_pages_scanned, lru_pages,
282 				max_pass, delta, total_scan);
283 
284 	while (total_scan >= batch_size) {
285 		unsigned long ret;
286 
287 		shrinkctl->nr_to_scan = batch_size;
288 		ret = shrinker->scan_objects(shrinker, shrinkctl);
289 		if (ret == SHRINK_STOP)
290 			break;
291 		freed += ret;
292 
293 		count_vm_events(SLABS_SCANNED, batch_size);
294 		total_scan -= batch_size;
295 
296 		cond_resched();
297 	}
298 
299 	/*
300 	 * move the unused scan count back into the shrinker in a
301 	 * manner that handles concurrent updates. If we exhausted the
302 	 * scan, there is no need to do an update.
303 	 */
304 	if (total_scan > 0)
305 		new_nr = atomic_long_add_return(total_scan,
306 						&shrinker->nr_deferred[nid]);
307 	else
308 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
309 
310 	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
311 	return freed;
312 }
313 
314 /*
315  * Call the shrink functions to age shrinkable caches
316  *
317  * Here we assume it costs one seek to replace a lru page and that it also
318  * takes a seek to recreate a cache object.  With this in mind we age equal
319  * percentages of the lru and ageable caches.  This should balance the seeks
320  * generated by these structures.
321  *
322  * If the vm encountered mapped pages on the LRU it increase the pressure on
323  * slab to avoid swapping.
324  *
325  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
326  *
327  * `lru_pages' represents the number of on-LRU pages in all the zones which
328  * are eligible for the caller's allocation attempt.  It is used for balancing
329  * slab reclaim versus page reclaim.
330  *
331  * Returns the number of slab objects which we shrunk.
332  */
333 unsigned long shrink_slab(struct shrink_control *shrinkctl,
334 			  unsigned long nr_pages_scanned,
335 			  unsigned long lru_pages)
336 {
337 	struct shrinker *shrinker;
338 	unsigned long freed = 0;
339 
340 	if (nr_pages_scanned == 0)
341 		nr_pages_scanned = SWAP_CLUSTER_MAX;
342 
343 	if (!down_read_trylock(&shrinker_rwsem)) {
344 		/*
345 		 * If we would return 0, our callers would understand that we
346 		 * have nothing else to shrink and give up trying. By returning
347 		 * 1 we keep it going and assume we'll be able to shrink next
348 		 * time.
349 		 */
350 		freed = 1;
351 		goto out;
352 	}
353 
354 	list_for_each_entry(shrinker, &shrinker_list, list) {
355 		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
356 			if (!node_online(shrinkctl->nid))
357 				continue;
358 
359 			if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
360 			    (shrinkctl->nid != 0))
361 				break;
362 
363 			freed += shrink_slab_node(shrinkctl, shrinker,
364 				 nr_pages_scanned, lru_pages);
365 
366 		}
367 	}
368 	up_read(&shrinker_rwsem);
369 out:
370 	cond_resched();
371 	return freed;
372 }
373 
374 static inline int is_page_cache_freeable(struct page *page)
375 {
376 	/*
377 	 * A freeable page cache page is referenced only by the caller
378 	 * that isolated the page, the page cache radix tree and
379 	 * optional buffer heads at page->private.
380 	 */
381 	return page_count(page) - page_has_private(page) == 2;
382 }
383 
384 static int may_write_to_queue(struct backing_dev_info *bdi,
385 			      struct scan_control *sc)
386 {
387 	if (current->flags & PF_SWAPWRITE)
388 		return 1;
389 	if (!bdi_write_congested(bdi))
390 		return 1;
391 	if (bdi == current->backing_dev_info)
392 		return 1;
393 	return 0;
394 }
395 
396 /*
397  * We detected a synchronous write error writing a page out.  Probably
398  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
399  * fsync(), msync() or close().
400  *
401  * The tricky part is that after writepage we cannot touch the mapping: nothing
402  * prevents it from being freed up.  But we have a ref on the page and once
403  * that page is locked, the mapping is pinned.
404  *
405  * We're allowed to run sleeping lock_page() here because we know the caller has
406  * __GFP_FS.
407  */
408 static void handle_write_error(struct address_space *mapping,
409 				struct page *page, int error)
410 {
411 	lock_page(page);
412 	if (page_mapping(page) == mapping)
413 		mapping_set_error(mapping, error);
414 	unlock_page(page);
415 }
416 
417 /* possible outcome of pageout() */
418 typedef enum {
419 	/* failed to write page out, page is locked */
420 	PAGE_KEEP,
421 	/* move page to the active list, page is locked */
422 	PAGE_ACTIVATE,
423 	/* page has been sent to the disk successfully, page is unlocked */
424 	PAGE_SUCCESS,
425 	/* page is clean and locked */
426 	PAGE_CLEAN,
427 } pageout_t;
428 
429 /*
430  * pageout is called by shrink_page_list() for each dirty page.
431  * Calls ->writepage().
432  */
433 static pageout_t pageout(struct page *page, struct address_space *mapping,
434 			 struct scan_control *sc)
435 {
436 	/*
437 	 * If the page is dirty, only perform writeback if that write
438 	 * will be non-blocking.  To prevent this allocation from being
439 	 * stalled by pagecache activity.  But note that there may be
440 	 * stalls if we need to run get_block().  We could test
441 	 * PagePrivate for that.
442 	 *
443 	 * If this process is currently in __generic_file_aio_write() against
444 	 * this page's queue, we can perform writeback even if that
445 	 * will block.
446 	 *
447 	 * If the page is swapcache, write it back even if that would
448 	 * block, for some throttling. This happens by accident, because
449 	 * swap_backing_dev_info is bust: it doesn't reflect the
450 	 * congestion state of the swapdevs.  Easy to fix, if needed.
451 	 */
452 	if (!is_page_cache_freeable(page))
453 		return PAGE_KEEP;
454 	if (!mapping) {
455 		/*
456 		 * Some data journaling orphaned pages can have
457 		 * page->mapping == NULL while being dirty with clean buffers.
458 		 */
459 		if (page_has_private(page)) {
460 			if (try_to_free_buffers(page)) {
461 				ClearPageDirty(page);
462 				printk("%s: orphaned page\n", __func__);
463 				return PAGE_CLEAN;
464 			}
465 		}
466 		return PAGE_KEEP;
467 	}
468 	if (mapping->a_ops->writepage == NULL)
469 		return PAGE_ACTIVATE;
470 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
471 		return PAGE_KEEP;
472 
473 	if (clear_page_dirty_for_io(page)) {
474 		int res;
475 		struct writeback_control wbc = {
476 			.sync_mode = WB_SYNC_NONE,
477 			.nr_to_write = SWAP_CLUSTER_MAX,
478 			.range_start = 0,
479 			.range_end = LLONG_MAX,
480 			.for_reclaim = 1,
481 		};
482 
483 		SetPageReclaim(page);
484 		res = mapping->a_ops->writepage(page, &wbc);
485 		if (res < 0)
486 			handle_write_error(mapping, page, res);
487 		if (res == AOP_WRITEPAGE_ACTIVATE) {
488 			ClearPageReclaim(page);
489 			return PAGE_ACTIVATE;
490 		}
491 
492 		if (!PageWriteback(page)) {
493 			/* synchronous write or broken a_ops? */
494 			ClearPageReclaim(page);
495 		}
496 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
497 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
498 		return PAGE_SUCCESS;
499 	}
500 
501 	return PAGE_CLEAN;
502 }
503 
504 /*
505  * Same as remove_mapping, but if the page is removed from the mapping, it
506  * gets returned with a refcount of 0.
507  */
508 static int __remove_mapping(struct address_space *mapping, struct page *page)
509 {
510 	BUG_ON(!PageLocked(page));
511 	BUG_ON(mapping != page_mapping(page));
512 
513 	spin_lock_irq(&mapping->tree_lock);
514 	/*
515 	 * The non racy check for a busy page.
516 	 *
517 	 * Must be careful with the order of the tests. When someone has
518 	 * a ref to the page, it may be possible that they dirty it then
519 	 * drop the reference. So if PageDirty is tested before page_count
520 	 * here, then the following race may occur:
521 	 *
522 	 * get_user_pages(&page);
523 	 * [user mapping goes away]
524 	 * write_to(page);
525 	 *				!PageDirty(page)    [good]
526 	 * SetPageDirty(page);
527 	 * put_page(page);
528 	 *				!page_count(page)   [good, discard it]
529 	 *
530 	 * [oops, our write_to data is lost]
531 	 *
532 	 * Reversing the order of the tests ensures such a situation cannot
533 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
534 	 * load is not satisfied before that of page->_count.
535 	 *
536 	 * Note that if SetPageDirty is always performed via set_page_dirty,
537 	 * and thus under tree_lock, then this ordering is not required.
538 	 */
539 	if (!page_freeze_refs(page, 2))
540 		goto cannot_free;
541 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
542 	if (unlikely(PageDirty(page))) {
543 		page_unfreeze_refs(page, 2);
544 		goto cannot_free;
545 	}
546 
547 	if (PageSwapCache(page)) {
548 		swp_entry_t swap = { .val = page_private(page) };
549 		__delete_from_swap_cache(page);
550 		spin_unlock_irq(&mapping->tree_lock);
551 		swapcache_free(swap, page);
552 	} else {
553 		void (*freepage)(struct page *);
554 
555 		freepage = mapping->a_ops->freepage;
556 
557 		__delete_from_page_cache(page);
558 		spin_unlock_irq(&mapping->tree_lock);
559 		mem_cgroup_uncharge_cache_page(page);
560 
561 		if (freepage != NULL)
562 			freepage(page);
563 	}
564 
565 	return 1;
566 
567 cannot_free:
568 	spin_unlock_irq(&mapping->tree_lock);
569 	return 0;
570 }
571 
572 /*
573  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
574  * someone else has a ref on the page, abort and return 0.  If it was
575  * successfully detached, return 1.  Assumes the caller has a single ref on
576  * this page.
577  */
578 int remove_mapping(struct address_space *mapping, struct page *page)
579 {
580 	if (__remove_mapping(mapping, page)) {
581 		/*
582 		 * Unfreezing the refcount with 1 rather than 2 effectively
583 		 * drops the pagecache ref for us without requiring another
584 		 * atomic operation.
585 		 */
586 		page_unfreeze_refs(page, 1);
587 		return 1;
588 	}
589 	return 0;
590 }
591 
592 /**
593  * putback_lru_page - put previously isolated page onto appropriate LRU list
594  * @page: page to be put back to appropriate lru list
595  *
596  * Add previously isolated @page to appropriate LRU list.
597  * Page may still be unevictable for other reasons.
598  *
599  * lru_lock must not be held, interrupts must be enabled.
600  */
601 void putback_lru_page(struct page *page)
602 {
603 	bool is_unevictable;
604 	int was_unevictable = PageUnevictable(page);
605 
606 	VM_BUG_ON(PageLRU(page));
607 
608 redo:
609 	ClearPageUnevictable(page);
610 
611 	if (page_evictable(page)) {
612 		/*
613 		 * For evictable pages, we can use the cache.
614 		 * In event of a race, worst case is we end up with an
615 		 * unevictable page on [in]active list.
616 		 * We know how to handle that.
617 		 */
618 		is_unevictable = false;
619 		lru_cache_add(page);
620 	} else {
621 		/*
622 		 * Put unevictable pages directly on zone's unevictable
623 		 * list.
624 		 */
625 		is_unevictable = true;
626 		add_page_to_unevictable_list(page);
627 		/*
628 		 * When racing with an mlock or AS_UNEVICTABLE clearing
629 		 * (page is unlocked) make sure that if the other thread
630 		 * does not observe our setting of PG_lru and fails
631 		 * isolation/check_move_unevictable_pages,
632 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
633 		 * the page back to the evictable list.
634 		 *
635 		 * The other side is TestClearPageMlocked() or shmem_lock().
636 		 */
637 		smp_mb();
638 	}
639 
640 	/*
641 	 * page's status can change while we move it among lru. If an evictable
642 	 * page is on unevictable list, it never be freed. To avoid that,
643 	 * check after we added it to the list, again.
644 	 */
645 	if (is_unevictable && page_evictable(page)) {
646 		if (!isolate_lru_page(page)) {
647 			put_page(page);
648 			goto redo;
649 		}
650 		/* This means someone else dropped this page from LRU
651 		 * So, it will be freed or putback to LRU again. There is
652 		 * nothing to do here.
653 		 */
654 	}
655 
656 	if (was_unevictable && !is_unevictable)
657 		count_vm_event(UNEVICTABLE_PGRESCUED);
658 	else if (!was_unevictable && is_unevictable)
659 		count_vm_event(UNEVICTABLE_PGCULLED);
660 
661 	put_page(page);		/* drop ref from isolate */
662 }
663 
664 enum page_references {
665 	PAGEREF_RECLAIM,
666 	PAGEREF_RECLAIM_CLEAN,
667 	PAGEREF_KEEP,
668 	PAGEREF_ACTIVATE,
669 };
670 
671 static enum page_references page_check_references(struct page *page,
672 						  struct scan_control *sc)
673 {
674 	int referenced_ptes, referenced_page;
675 	unsigned long vm_flags;
676 
677 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
678 					  &vm_flags);
679 	referenced_page = TestClearPageReferenced(page);
680 
681 	/*
682 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
683 	 * move the page to the unevictable list.
684 	 */
685 	if (vm_flags & VM_LOCKED)
686 		return PAGEREF_RECLAIM;
687 
688 	if (referenced_ptes) {
689 		if (PageSwapBacked(page))
690 			return PAGEREF_ACTIVATE;
691 		/*
692 		 * All mapped pages start out with page table
693 		 * references from the instantiating fault, so we need
694 		 * to look twice if a mapped file page is used more
695 		 * than once.
696 		 *
697 		 * Mark it and spare it for another trip around the
698 		 * inactive list.  Another page table reference will
699 		 * lead to its activation.
700 		 *
701 		 * Note: the mark is set for activated pages as well
702 		 * so that recently deactivated but used pages are
703 		 * quickly recovered.
704 		 */
705 		SetPageReferenced(page);
706 
707 		if (referenced_page || referenced_ptes > 1)
708 			return PAGEREF_ACTIVATE;
709 
710 		/*
711 		 * Activate file-backed executable pages after first usage.
712 		 */
713 		if (vm_flags & VM_EXEC)
714 			return PAGEREF_ACTIVATE;
715 
716 		return PAGEREF_KEEP;
717 	}
718 
719 	/* Reclaim if clean, defer dirty pages to writeback */
720 	if (referenced_page && !PageSwapBacked(page))
721 		return PAGEREF_RECLAIM_CLEAN;
722 
723 	return PAGEREF_RECLAIM;
724 }
725 
726 /* Check if a page is dirty or under writeback */
727 static void page_check_dirty_writeback(struct page *page,
728 				       bool *dirty, bool *writeback)
729 {
730 	struct address_space *mapping;
731 
732 	/*
733 	 * Anonymous pages are not handled by flushers and must be written
734 	 * from reclaim context. Do not stall reclaim based on them
735 	 */
736 	if (!page_is_file_cache(page)) {
737 		*dirty = false;
738 		*writeback = false;
739 		return;
740 	}
741 
742 	/* By default assume that the page flags are accurate */
743 	*dirty = PageDirty(page);
744 	*writeback = PageWriteback(page);
745 
746 	/* Verify dirty/writeback state if the filesystem supports it */
747 	if (!page_has_private(page))
748 		return;
749 
750 	mapping = page_mapping(page);
751 	if (mapping && mapping->a_ops->is_dirty_writeback)
752 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
753 }
754 
755 /*
756  * shrink_page_list() returns the number of reclaimed pages
757  */
758 static unsigned long shrink_page_list(struct list_head *page_list,
759 				      struct zone *zone,
760 				      struct scan_control *sc,
761 				      enum ttu_flags ttu_flags,
762 				      unsigned long *ret_nr_dirty,
763 				      unsigned long *ret_nr_unqueued_dirty,
764 				      unsigned long *ret_nr_congested,
765 				      unsigned long *ret_nr_writeback,
766 				      unsigned long *ret_nr_immediate,
767 				      bool force_reclaim)
768 {
769 	LIST_HEAD(ret_pages);
770 	LIST_HEAD(free_pages);
771 	int pgactivate = 0;
772 	unsigned long nr_unqueued_dirty = 0;
773 	unsigned long nr_dirty = 0;
774 	unsigned long nr_congested = 0;
775 	unsigned long nr_reclaimed = 0;
776 	unsigned long nr_writeback = 0;
777 	unsigned long nr_immediate = 0;
778 
779 	cond_resched();
780 
781 	mem_cgroup_uncharge_start();
782 	while (!list_empty(page_list)) {
783 		struct address_space *mapping;
784 		struct page *page;
785 		int may_enter_fs;
786 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
787 		bool dirty, writeback;
788 
789 		cond_resched();
790 
791 		page = lru_to_page(page_list);
792 		list_del(&page->lru);
793 
794 		if (!trylock_page(page))
795 			goto keep;
796 
797 		VM_BUG_ON(PageActive(page));
798 		VM_BUG_ON(page_zone(page) != zone);
799 
800 		sc->nr_scanned++;
801 
802 		if (unlikely(!page_evictable(page)))
803 			goto cull_mlocked;
804 
805 		if (!sc->may_unmap && page_mapped(page))
806 			goto keep_locked;
807 
808 		/* Double the slab pressure for mapped and swapcache pages */
809 		if (page_mapped(page) || PageSwapCache(page))
810 			sc->nr_scanned++;
811 
812 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814 
815 		/*
816 		 * The number of dirty pages determines if a zone is marked
817 		 * reclaim_congested which affects wait_iff_congested. kswapd
818 		 * will stall and start writing pages if the tail of the LRU
819 		 * is all dirty unqueued pages.
820 		 */
821 		page_check_dirty_writeback(page, &dirty, &writeback);
822 		if (dirty || writeback)
823 			nr_dirty++;
824 
825 		if (dirty && !writeback)
826 			nr_unqueued_dirty++;
827 
828 		/*
829 		 * Treat this page as congested if the underlying BDI is or if
830 		 * pages are cycling through the LRU so quickly that the
831 		 * pages marked for immediate reclaim are making it to the
832 		 * end of the LRU a second time.
833 		 */
834 		mapping = page_mapping(page);
835 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
836 		    (writeback && PageReclaim(page)))
837 			nr_congested++;
838 
839 		/*
840 		 * If a page at the tail of the LRU is under writeback, there
841 		 * are three cases to consider.
842 		 *
843 		 * 1) If reclaim is encountering an excessive number of pages
844 		 *    under writeback and this page is both under writeback and
845 		 *    PageReclaim then it indicates that pages are being queued
846 		 *    for IO but are being recycled through the LRU before the
847 		 *    IO can complete. Waiting on the page itself risks an
848 		 *    indefinite stall if it is impossible to writeback the
849 		 *    page due to IO error or disconnected storage so instead
850 		 *    note that the LRU is being scanned too quickly and the
851 		 *    caller can stall after page list has been processed.
852 		 *
853 		 * 2) Global reclaim encounters a page, memcg encounters a
854 		 *    page that is not marked for immediate reclaim or
855 		 *    the caller does not have __GFP_IO. In this case mark
856 		 *    the page for immediate reclaim and continue scanning.
857 		 *
858 		 *    __GFP_IO is checked  because a loop driver thread might
859 		 *    enter reclaim, and deadlock if it waits on a page for
860 		 *    which it is needed to do the write (loop masks off
861 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
862 		 *    would probably show more reasons.
863 		 *
864 		 *    Don't require __GFP_FS, since we're not going into the
865 		 *    FS, just waiting on its writeback completion. Worryingly,
866 		 *    ext4 gfs2 and xfs allocate pages with
867 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
868 		 *    may_enter_fs here is liable to OOM on them.
869 		 *
870 		 * 3) memcg encounters a page that is not already marked
871 		 *    PageReclaim. memcg does not have any dirty pages
872 		 *    throttling so we could easily OOM just because too many
873 		 *    pages are in writeback and there is nothing else to
874 		 *    reclaim. Wait for the writeback to complete.
875 		 */
876 		if (PageWriteback(page)) {
877 			/* Case 1 above */
878 			if (current_is_kswapd() &&
879 			    PageReclaim(page) &&
880 			    zone_is_reclaim_writeback(zone)) {
881 				nr_immediate++;
882 				goto keep_locked;
883 
884 			/* Case 2 above */
885 			} else if (global_reclaim(sc) ||
886 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
887 				/*
888 				 * This is slightly racy - end_page_writeback()
889 				 * might have just cleared PageReclaim, then
890 				 * setting PageReclaim here end up interpreted
891 				 * as PageReadahead - but that does not matter
892 				 * enough to care.  What we do want is for this
893 				 * page to have PageReclaim set next time memcg
894 				 * reclaim reaches the tests above, so it will
895 				 * then wait_on_page_writeback() to avoid OOM;
896 				 * and it's also appropriate in global reclaim.
897 				 */
898 				SetPageReclaim(page);
899 				nr_writeback++;
900 
901 				goto keep_locked;
902 
903 			/* Case 3 above */
904 			} else {
905 				wait_on_page_writeback(page);
906 			}
907 		}
908 
909 		if (!force_reclaim)
910 			references = page_check_references(page, sc);
911 
912 		switch (references) {
913 		case PAGEREF_ACTIVATE:
914 			goto activate_locked;
915 		case PAGEREF_KEEP:
916 			goto keep_locked;
917 		case PAGEREF_RECLAIM:
918 		case PAGEREF_RECLAIM_CLEAN:
919 			; /* try to reclaim the page below */
920 		}
921 
922 		/*
923 		 * Anonymous process memory has backing store?
924 		 * Try to allocate it some swap space here.
925 		 */
926 		if (PageAnon(page) && !PageSwapCache(page)) {
927 			if (!(sc->gfp_mask & __GFP_IO))
928 				goto keep_locked;
929 			if (!add_to_swap(page, page_list))
930 				goto activate_locked;
931 			may_enter_fs = 1;
932 
933 			/* Adding to swap updated mapping */
934 			mapping = page_mapping(page);
935 		}
936 
937 		/*
938 		 * The page is mapped into the page tables of one or more
939 		 * processes. Try to unmap it here.
940 		 */
941 		if (page_mapped(page) && mapping) {
942 			switch (try_to_unmap(page, ttu_flags)) {
943 			case SWAP_FAIL:
944 				goto activate_locked;
945 			case SWAP_AGAIN:
946 				goto keep_locked;
947 			case SWAP_MLOCK:
948 				goto cull_mlocked;
949 			case SWAP_SUCCESS:
950 				; /* try to free the page below */
951 			}
952 		}
953 
954 		if (PageDirty(page)) {
955 			/*
956 			 * Only kswapd can writeback filesystem pages to
957 			 * avoid risk of stack overflow but only writeback
958 			 * if many dirty pages have been encountered.
959 			 */
960 			if (page_is_file_cache(page) &&
961 					(!current_is_kswapd() ||
962 					 !zone_is_reclaim_dirty(zone))) {
963 				/*
964 				 * Immediately reclaim when written back.
965 				 * Similar in principal to deactivate_page()
966 				 * except we already have the page isolated
967 				 * and know it's dirty
968 				 */
969 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
970 				SetPageReclaim(page);
971 
972 				goto keep_locked;
973 			}
974 
975 			if (references == PAGEREF_RECLAIM_CLEAN)
976 				goto keep_locked;
977 			if (!may_enter_fs)
978 				goto keep_locked;
979 			if (!sc->may_writepage)
980 				goto keep_locked;
981 
982 			/* Page is dirty, try to write it out here */
983 			switch (pageout(page, mapping, sc)) {
984 			case PAGE_KEEP:
985 				goto keep_locked;
986 			case PAGE_ACTIVATE:
987 				goto activate_locked;
988 			case PAGE_SUCCESS:
989 				if (PageWriteback(page))
990 					goto keep;
991 				if (PageDirty(page))
992 					goto keep;
993 
994 				/*
995 				 * A synchronous write - probably a ramdisk.  Go
996 				 * ahead and try to reclaim the page.
997 				 */
998 				if (!trylock_page(page))
999 					goto keep;
1000 				if (PageDirty(page) || PageWriteback(page))
1001 					goto keep_locked;
1002 				mapping = page_mapping(page);
1003 			case PAGE_CLEAN:
1004 				; /* try to free the page below */
1005 			}
1006 		}
1007 
1008 		/*
1009 		 * If the page has buffers, try to free the buffer mappings
1010 		 * associated with this page. If we succeed we try to free
1011 		 * the page as well.
1012 		 *
1013 		 * We do this even if the page is PageDirty().
1014 		 * try_to_release_page() does not perform I/O, but it is
1015 		 * possible for a page to have PageDirty set, but it is actually
1016 		 * clean (all its buffers are clean).  This happens if the
1017 		 * buffers were written out directly, with submit_bh(). ext3
1018 		 * will do this, as well as the blockdev mapping.
1019 		 * try_to_release_page() will discover that cleanness and will
1020 		 * drop the buffers and mark the page clean - it can be freed.
1021 		 *
1022 		 * Rarely, pages can have buffers and no ->mapping.  These are
1023 		 * the pages which were not successfully invalidated in
1024 		 * truncate_complete_page().  We try to drop those buffers here
1025 		 * and if that worked, and the page is no longer mapped into
1026 		 * process address space (page_count == 1) it can be freed.
1027 		 * Otherwise, leave the page on the LRU so it is swappable.
1028 		 */
1029 		if (page_has_private(page)) {
1030 			if (!try_to_release_page(page, sc->gfp_mask))
1031 				goto activate_locked;
1032 			if (!mapping && page_count(page) == 1) {
1033 				unlock_page(page);
1034 				if (put_page_testzero(page))
1035 					goto free_it;
1036 				else {
1037 					/*
1038 					 * rare race with speculative reference.
1039 					 * the speculative reference will free
1040 					 * this page shortly, so we may
1041 					 * increment nr_reclaimed here (and
1042 					 * leave it off the LRU).
1043 					 */
1044 					nr_reclaimed++;
1045 					continue;
1046 				}
1047 			}
1048 		}
1049 
1050 		if (!mapping || !__remove_mapping(mapping, page))
1051 			goto keep_locked;
1052 
1053 		/*
1054 		 * At this point, we have no other references and there is
1055 		 * no way to pick any more up (removed from LRU, removed
1056 		 * from pagecache). Can use non-atomic bitops now (and
1057 		 * we obviously don't have to worry about waking up a process
1058 		 * waiting on the page lock, because there are no references.
1059 		 */
1060 		__clear_page_locked(page);
1061 free_it:
1062 		nr_reclaimed++;
1063 
1064 		/*
1065 		 * Is there need to periodically free_page_list? It would
1066 		 * appear not as the counts should be low
1067 		 */
1068 		list_add(&page->lru, &free_pages);
1069 		continue;
1070 
1071 cull_mlocked:
1072 		if (PageSwapCache(page))
1073 			try_to_free_swap(page);
1074 		unlock_page(page);
1075 		putback_lru_page(page);
1076 		continue;
1077 
1078 activate_locked:
1079 		/* Not a candidate for swapping, so reclaim swap space. */
1080 		if (PageSwapCache(page) && vm_swap_full())
1081 			try_to_free_swap(page);
1082 		VM_BUG_ON(PageActive(page));
1083 		SetPageActive(page);
1084 		pgactivate++;
1085 keep_locked:
1086 		unlock_page(page);
1087 keep:
1088 		list_add(&page->lru, &ret_pages);
1089 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1090 	}
1091 
1092 	free_hot_cold_page_list(&free_pages, 1);
1093 
1094 	list_splice(&ret_pages, page_list);
1095 	count_vm_events(PGACTIVATE, pgactivate);
1096 	mem_cgroup_uncharge_end();
1097 	*ret_nr_dirty += nr_dirty;
1098 	*ret_nr_congested += nr_congested;
1099 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1100 	*ret_nr_writeback += nr_writeback;
1101 	*ret_nr_immediate += nr_immediate;
1102 	return nr_reclaimed;
1103 }
1104 
1105 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1106 					    struct list_head *page_list)
1107 {
1108 	struct scan_control sc = {
1109 		.gfp_mask = GFP_KERNEL,
1110 		.priority = DEF_PRIORITY,
1111 		.may_unmap = 1,
1112 	};
1113 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1114 	struct page *page, *next;
1115 	LIST_HEAD(clean_pages);
1116 
1117 	list_for_each_entry_safe(page, next, page_list, lru) {
1118 		if (page_is_file_cache(page) && !PageDirty(page) &&
1119 		    !isolated_balloon_page(page)) {
1120 			ClearPageActive(page);
1121 			list_move(&page->lru, &clean_pages);
1122 		}
1123 	}
1124 
1125 	ret = shrink_page_list(&clean_pages, zone, &sc,
1126 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1127 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1128 	list_splice(&clean_pages, page_list);
1129 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1130 	return ret;
1131 }
1132 
1133 /*
1134  * Attempt to remove the specified page from its LRU.  Only take this page
1135  * if it is of the appropriate PageActive status.  Pages which are being
1136  * freed elsewhere are also ignored.
1137  *
1138  * page:	page to consider
1139  * mode:	one of the LRU isolation modes defined above
1140  *
1141  * returns 0 on success, -ve errno on failure.
1142  */
1143 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1144 {
1145 	int ret = -EINVAL;
1146 
1147 	/* Only take pages on the LRU. */
1148 	if (!PageLRU(page))
1149 		return ret;
1150 
1151 	/* Compaction should not handle unevictable pages but CMA can do so */
1152 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1153 		return ret;
1154 
1155 	ret = -EBUSY;
1156 
1157 	/*
1158 	 * To minimise LRU disruption, the caller can indicate that it only
1159 	 * wants to isolate pages it will be able to operate on without
1160 	 * blocking - clean pages for the most part.
1161 	 *
1162 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1163 	 * is used by reclaim when it is cannot write to backing storage
1164 	 *
1165 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1166 	 * that it is possible to migrate without blocking
1167 	 */
1168 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1169 		/* All the caller can do on PageWriteback is block */
1170 		if (PageWriteback(page))
1171 			return ret;
1172 
1173 		if (PageDirty(page)) {
1174 			struct address_space *mapping;
1175 
1176 			/* ISOLATE_CLEAN means only clean pages */
1177 			if (mode & ISOLATE_CLEAN)
1178 				return ret;
1179 
1180 			/*
1181 			 * Only pages without mappings or that have a
1182 			 * ->migratepage callback are possible to migrate
1183 			 * without blocking
1184 			 */
1185 			mapping = page_mapping(page);
1186 			if (mapping && !mapping->a_ops->migratepage)
1187 				return ret;
1188 		}
1189 	}
1190 
1191 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1192 		return ret;
1193 
1194 	if (likely(get_page_unless_zero(page))) {
1195 		/*
1196 		 * Be careful not to clear PageLRU until after we're
1197 		 * sure the page is not being freed elsewhere -- the
1198 		 * page release code relies on it.
1199 		 */
1200 		ClearPageLRU(page);
1201 		ret = 0;
1202 	}
1203 
1204 	return ret;
1205 }
1206 
1207 /*
1208  * zone->lru_lock is heavily contended.  Some of the functions that
1209  * shrink the lists perform better by taking out a batch of pages
1210  * and working on them outside the LRU lock.
1211  *
1212  * For pagecache intensive workloads, this function is the hottest
1213  * spot in the kernel (apart from copy_*_user functions).
1214  *
1215  * Appropriate locks must be held before calling this function.
1216  *
1217  * @nr_to_scan:	The number of pages to look through on the list.
1218  * @lruvec:	The LRU vector to pull pages from.
1219  * @dst:	The temp list to put pages on to.
1220  * @nr_scanned:	The number of pages that were scanned.
1221  * @sc:		The scan_control struct for this reclaim session
1222  * @mode:	One of the LRU isolation modes
1223  * @lru:	LRU list id for isolating
1224  *
1225  * returns how many pages were moved onto *@dst.
1226  */
1227 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1228 		struct lruvec *lruvec, struct list_head *dst,
1229 		unsigned long *nr_scanned, struct scan_control *sc,
1230 		isolate_mode_t mode, enum lru_list lru)
1231 {
1232 	struct list_head *src = &lruvec->lists[lru];
1233 	unsigned long nr_taken = 0;
1234 	unsigned long scan;
1235 
1236 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1237 		struct page *page;
1238 		int nr_pages;
1239 
1240 		page = lru_to_page(src);
1241 		prefetchw_prev_lru_page(page, src, flags);
1242 
1243 		VM_BUG_ON(!PageLRU(page));
1244 
1245 		switch (__isolate_lru_page(page, mode)) {
1246 		case 0:
1247 			nr_pages = hpage_nr_pages(page);
1248 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1249 			list_move(&page->lru, dst);
1250 			nr_taken += nr_pages;
1251 			break;
1252 
1253 		case -EBUSY:
1254 			/* else it is being freed elsewhere */
1255 			list_move(&page->lru, src);
1256 			continue;
1257 
1258 		default:
1259 			BUG();
1260 		}
1261 	}
1262 
1263 	*nr_scanned = scan;
1264 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1265 				    nr_taken, mode, is_file_lru(lru));
1266 	return nr_taken;
1267 }
1268 
1269 /**
1270  * isolate_lru_page - tries to isolate a page from its LRU list
1271  * @page: page to isolate from its LRU list
1272  *
1273  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1274  * vmstat statistic corresponding to whatever LRU list the page was on.
1275  *
1276  * Returns 0 if the page was removed from an LRU list.
1277  * Returns -EBUSY if the page was not on an LRU list.
1278  *
1279  * The returned page will have PageLRU() cleared.  If it was found on
1280  * the active list, it will have PageActive set.  If it was found on
1281  * the unevictable list, it will have the PageUnevictable bit set. That flag
1282  * may need to be cleared by the caller before letting the page go.
1283  *
1284  * The vmstat statistic corresponding to the list on which the page was
1285  * found will be decremented.
1286  *
1287  * Restrictions:
1288  * (1) Must be called with an elevated refcount on the page. This is a
1289  *     fundamentnal difference from isolate_lru_pages (which is called
1290  *     without a stable reference).
1291  * (2) the lru_lock must not be held.
1292  * (3) interrupts must be enabled.
1293  */
1294 int isolate_lru_page(struct page *page)
1295 {
1296 	int ret = -EBUSY;
1297 
1298 	VM_BUG_ON(!page_count(page));
1299 
1300 	if (PageLRU(page)) {
1301 		struct zone *zone = page_zone(page);
1302 		struct lruvec *lruvec;
1303 
1304 		spin_lock_irq(&zone->lru_lock);
1305 		lruvec = mem_cgroup_page_lruvec(page, zone);
1306 		if (PageLRU(page)) {
1307 			int lru = page_lru(page);
1308 			get_page(page);
1309 			ClearPageLRU(page);
1310 			del_page_from_lru_list(page, lruvec, lru);
1311 			ret = 0;
1312 		}
1313 		spin_unlock_irq(&zone->lru_lock);
1314 	}
1315 	return ret;
1316 }
1317 
1318 /*
1319  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1320  * then get resheduled. When there are massive number of tasks doing page
1321  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1322  * the LRU list will go small and be scanned faster than necessary, leading to
1323  * unnecessary swapping, thrashing and OOM.
1324  */
1325 static int too_many_isolated(struct zone *zone, int file,
1326 		struct scan_control *sc)
1327 {
1328 	unsigned long inactive, isolated;
1329 
1330 	if (current_is_kswapd())
1331 		return 0;
1332 
1333 	if (!global_reclaim(sc))
1334 		return 0;
1335 
1336 	if (file) {
1337 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1338 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1339 	} else {
1340 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1341 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1342 	}
1343 
1344 	/*
1345 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1346 	 * won't get blocked by normal direct-reclaimers, forming a circular
1347 	 * deadlock.
1348 	 */
1349 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1350 		inactive >>= 3;
1351 
1352 	return isolated > inactive;
1353 }
1354 
1355 static noinline_for_stack void
1356 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1357 {
1358 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1359 	struct zone *zone = lruvec_zone(lruvec);
1360 	LIST_HEAD(pages_to_free);
1361 
1362 	/*
1363 	 * Put back any unfreeable pages.
1364 	 */
1365 	while (!list_empty(page_list)) {
1366 		struct page *page = lru_to_page(page_list);
1367 		int lru;
1368 
1369 		VM_BUG_ON(PageLRU(page));
1370 		list_del(&page->lru);
1371 		if (unlikely(!page_evictable(page))) {
1372 			spin_unlock_irq(&zone->lru_lock);
1373 			putback_lru_page(page);
1374 			spin_lock_irq(&zone->lru_lock);
1375 			continue;
1376 		}
1377 
1378 		lruvec = mem_cgroup_page_lruvec(page, zone);
1379 
1380 		SetPageLRU(page);
1381 		lru = page_lru(page);
1382 		add_page_to_lru_list(page, lruvec, lru);
1383 
1384 		if (is_active_lru(lru)) {
1385 			int file = is_file_lru(lru);
1386 			int numpages = hpage_nr_pages(page);
1387 			reclaim_stat->recent_rotated[file] += numpages;
1388 		}
1389 		if (put_page_testzero(page)) {
1390 			__ClearPageLRU(page);
1391 			__ClearPageActive(page);
1392 			del_page_from_lru_list(page, lruvec, lru);
1393 
1394 			if (unlikely(PageCompound(page))) {
1395 				spin_unlock_irq(&zone->lru_lock);
1396 				(*get_compound_page_dtor(page))(page);
1397 				spin_lock_irq(&zone->lru_lock);
1398 			} else
1399 				list_add(&page->lru, &pages_to_free);
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * To save our caller's stack, now use input list for pages to free.
1405 	 */
1406 	list_splice(&pages_to_free, page_list);
1407 }
1408 
1409 /*
1410  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1411  * of reclaimed pages
1412  */
1413 static noinline_for_stack unsigned long
1414 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1415 		     struct scan_control *sc, enum lru_list lru)
1416 {
1417 	LIST_HEAD(page_list);
1418 	unsigned long nr_scanned;
1419 	unsigned long nr_reclaimed = 0;
1420 	unsigned long nr_taken;
1421 	unsigned long nr_dirty = 0;
1422 	unsigned long nr_congested = 0;
1423 	unsigned long nr_unqueued_dirty = 0;
1424 	unsigned long nr_writeback = 0;
1425 	unsigned long nr_immediate = 0;
1426 	isolate_mode_t isolate_mode = 0;
1427 	int file = is_file_lru(lru);
1428 	struct zone *zone = lruvec_zone(lruvec);
1429 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1430 
1431 	while (unlikely(too_many_isolated(zone, file, sc))) {
1432 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1433 
1434 		/* We are about to die and free our memory. Return now. */
1435 		if (fatal_signal_pending(current))
1436 			return SWAP_CLUSTER_MAX;
1437 	}
1438 
1439 	lru_add_drain();
1440 
1441 	if (!sc->may_unmap)
1442 		isolate_mode |= ISOLATE_UNMAPPED;
1443 	if (!sc->may_writepage)
1444 		isolate_mode |= ISOLATE_CLEAN;
1445 
1446 	spin_lock_irq(&zone->lru_lock);
1447 
1448 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1449 				     &nr_scanned, sc, isolate_mode, lru);
1450 
1451 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1452 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1453 
1454 	if (global_reclaim(sc)) {
1455 		zone->pages_scanned += nr_scanned;
1456 		if (current_is_kswapd())
1457 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1458 		else
1459 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1460 	}
1461 	spin_unlock_irq(&zone->lru_lock);
1462 
1463 	if (nr_taken == 0)
1464 		return 0;
1465 
1466 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1467 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1468 				&nr_writeback, &nr_immediate,
1469 				false);
1470 
1471 	spin_lock_irq(&zone->lru_lock);
1472 
1473 	reclaim_stat->recent_scanned[file] += nr_taken;
1474 
1475 	if (global_reclaim(sc)) {
1476 		if (current_is_kswapd())
1477 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1478 					       nr_reclaimed);
1479 		else
1480 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1481 					       nr_reclaimed);
1482 	}
1483 
1484 	putback_inactive_pages(lruvec, &page_list);
1485 
1486 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1487 
1488 	spin_unlock_irq(&zone->lru_lock);
1489 
1490 	free_hot_cold_page_list(&page_list, 1);
1491 
1492 	/*
1493 	 * If reclaim is isolating dirty pages under writeback, it implies
1494 	 * that the long-lived page allocation rate is exceeding the page
1495 	 * laundering rate. Either the global limits are not being effective
1496 	 * at throttling processes due to the page distribution throughout
1497 	 * zones or there is heavy usage of a slow backing device. The
1498 	 * only option is to throttle from reclaim context which is not ideal
1499 	 * as there is no guarantee the dirtying process is throttled in the
1500 	 * same way balance_dirty_pages() manages.
1501 	 *
1502 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1503 	 * of pages under pages flagged for immediate reclaim and stall if any
1504 	 * are encountered in the nr_immediate check below.
1505 	 */
1506 	if (nr_writeback && nr_writeback == nr_taken)
1507 		zone_set_flag(zone, ZONE_WRITEBACK);
1508 
1509 	/*
1510 	 * memcg will stall in page writeback so only consider forcibly
1511 	 * stalling for global reclaim
1512 	 */
1513 	if (global_reclaim(sc)) {
1514 		/*
1515 		 * Tag a zone as congested if all the dirty pages scanned were
1516 		 * backed by a congested BDI and wait_iff_congested will stall.
1517 		 */
1518 		if (nr_dirty && nr_dirty == nr_congested)
1519 			zone_set_flag(zone, ZONE_CONGESTED);
1520 
1521 		/*
1522 		 * If dirty pages are scanned that are not queued for IO, it
1523 		 * implies that flushers are not keeping up. In this case, flag
1524 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1525 		 * pages from reclaim context. It will forcibly stall in the
1526 		 * next check.
1527 		 */
1528 		if (nr_unqueued_dirty == nr_taken)
1529 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1530 
1531 		/*
1532 		 * In addition, if kswapd scans pages marked marked for
1533 		 * immediate reclaim and under writeback (nr_immediate), it
1534 		 * implies that pages are cycling through the LRU faster than
1535 		 * they are written so also forcibly stall.
1536 		 */
1537 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1538 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1539 	}
1540 
1541 	/*
1542 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1543 	 * is congested. Allow kswapd to continue until it starts encountering
1544 	 * unqueued dirty pages or cycling through the LRU too quickly.
1545 	 */
1546 	if (!sc->hibernation_mode && !current_is_kswapd())
1547 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1548 
1549 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1550 		zone_idx(zone),
1551 		nr_scanned, nr_reclaimed,
1552 		sc->priority,
1553 		trace_shrink_flags(file));
1554 	return nr_reclaimed;
1555 }
1556 
1557 /*
1558  * This moves pages from the active list to the inactive list.
1559  *
1560  * We move them the other way if the page is referenced by one or more
1561  * processes, from rmap.
1562  *
1563  * If the pages are mostly unmapped, the processing is fast and it is
1564  * appropriate to hold zone->lru_lock across the whole operation.  But if
1565  * the pages are mapped, the processing is slow (page_referenced()) so we
1566  * should drop zone->lru_lock around each page.  It's impossible to balance
1567  * this, so instead we remove the pages from the LRU while processing them.
1568  * It is safe to rely on PG_active against the non-LRU pages in here because
1569  * nobody will play with that bit on a non-LRU page.
1570  *
1571  * The downside is that we have to touch page->_count against each page.
1572  * But we had to alter page->flags anyway.
1573  */
1574 
1575 static void move_active_pages_to_lru(struct lruvec *lruvec,
1576 				     struct list_head *list,
1577 				     struct list_head *pages_to_free,
1578 				     enum lru_list lru)
1579 {
1580 	struct zone *zone = lruvec_zone(lruvec);
1581 	unsigned long pgmoved = 0;
1582 	struct page *page;
1583 	int nr_pages;
1584 
1585 	while (!list_empty(list)) {
1586 		page = lru_to_page(list);
1587 		lruvec = mem_cgroup_page_lruvec(page, zone);
1588 
1589 		VM_BUG_ON(PageLRU(page));
1590 		SetPageLRU(page);
1591 
1592 		nr_pages = hpage_nr_pages(page);
1593 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1594 		list_move(&page->lru, &lruvec->lists[lru]);
1595 		pgmoved += nr_pages;
1596 
1597 		if (put_page_testzero(page)) {
1598 			__ClearPageLRU(page);
1599 			__ClearPageActive(page);
1600 			del_page_from_lru_list(page, lruvec, lru);
1601 
1602 			if (unlikely(PageCompound(page))) {
1603 				spin_unlock_irq(&zone->lru_lock);
1604 				(*get_compound_page_dtor(page))(page);
1605 				spin_lock_irq(&zone->lru_lock);
1606 			} else
1607 				list_add(&page->lru, pages_to_free);
1608 		}
1609 	}
1610 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1611 	if (!is_active_lru(lru))
1612 		__count_vm_events(PGDEACTIVATE, pgmoved);
1613 }
1614 
1615 static void shrink_active_list(unsigned long nr_to_scan,
1616 			       struct lruvec *lruvec,
1617 			       struct scan_control *sc,
1618 			       enum lru_list lru)
1619 {
1620 	unsigned long nr_taken;
1621 	unsigned long nr_scanned;
1622 	unsigned long vm_flags;
1623 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1624 	LIST_HEAD(l_active);
1625 	LIST_HEAD(l_inactive);
1626 	struct page *page;
1627 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1628 	unsigned long nr_rotated = 0;
1629 	isolate_mode_t isolate_mode = 0;
1630 	int file = is_file_lru(lru);
1631 	struct zone *zone = lruvec_zone(lruvec);
1632 
1633 	lru_add_drain();
1634 
1635 	if (!sc->may_unmap)
1636 		isolate_mode |= ISOLATE_UNMAPPED;
1637 	if (!sc->may_writepage)
1638 		isolate_mode |= ISOLATE_CLEAN;
1639 
1640 	spin_lock_irq(&zone->lru_lock);
1641 
1642 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1643 				     &nr_scanned, sc, isolate_mode, lru);
1644 	if (global_reclaim(sc))
1645 		zone->pages_scanned += nr_scanned;
1646 
1647 	reclaim_stat->recent_scanned[file] += nr_taken;
1648 
1649 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1650 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1651 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1652 	spin_unlock_irq(&zone->lru_lock);
1653 
1654 	while (!list_empty(&l_hold)) {
1655 		cond_resched();
1656 		page = lru_to_page(&l_hold);
1657 		list_del(&page->lru);
1658 
1659 		if (unlikely(!page_evictable(page))) {
1660 			putback_lru_page(page);
1661 			continue;
1662 		}
1663 
1664 		if (unlikely(buffer_heads_over_limit)) {
1665 			if (page_has_private(page) && trylock_page(page)) {
1666 				if (page_has_private(page))
1667 					try_to_release_page(page, 0);
1668 				unlock_page(page);
1669 			}
1670 		}
1671 
1672 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1673 				    &vm_flags)) {
1674 			nr_rotated += hpage_nr_pages(page);
1675 			/*
1676 			 * Identify referenced, file-backed active pages and
1677 			 * give them one more trip around the active list. So
1678 			 * that executable code get better chances to stay in
1679 			 * memory under moderate memory pressure.  Anon pages
1680 			 * are not likely to be evicted by use-once streaming
1681 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1682 			 * so we ignore them here.
1683 			 */
1684 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1685 				list_add(&page->lru, &l_active);
1686 				continue;
1687 			}
1688 		}
1689 
1690 		ClearPageActive(page);	/* we are de-activating */
1691 		list_add(&page->lru, &l_inactive);
1692 	}
1693 
1694 	/*
1695 	 * Move pages back to the lru list.
1696 	 */
1697 	spin_lock_irq(&zone->lru_lock);
1698 	/*
1699 	 * Count referenced pages from currently used mappings as rotated,
1700 	 * even though only some of them are actually re-activated.  This
1701 	 * helps balance scan pressure between file and anonymous pages in
1702 	 * get_scan_ratio.
1703 	 */
1704 	reclaim_stat->recent_rotated[file] += nr_rotated;
1705 
1706 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1707 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1708 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1709 	spin_unlock_irq(&zone->lru_lock);
1710 
1711 	free_hot_cold_page_list(&l_hold, 1);
1712 }
1713 
1714 #ifdef CONFIG_SWAP
1715 static int inactive_anon_is_low_global(struct zone *zone)
1716 {
1717 	unsigned long active, inactive;
1718 
1719 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1720 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1721 
1722 	if (inactive * zone->inactive_ratio < active)
1723 		return 1;
1724 
1725 	return 0;
1726 }
1727 
1728 /**
1729  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1730  * @lruvec: LRU vector to check
1731  *
1732  * Returns true if the zone does not have enough inactive anon pages,
1733  * meaning some active anon pages need to be deactivated.
1734  */
1735 static int inactive_anon_is_low(struct lruvec *lruvec)
1736 {
1737 	/*
1738 	 * If we don't have swap space, anonymous page deactivation
1739 	 * is pointless.
1740 	 */
1741 	if (!total_swap_pages)
1742 		return 0;
1743 
1744 	if (!mem_cgroup_disabled())
1745 		return mem_cgroup_inactive_anon_is_low(lruvec);
1746 
1747 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1748 }
1749 #else
1750 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1751 {
1752 	return 0;
1753 }
1754 #endif
1755 
1756 /**
1757  * inactive_file_is_low - check if file pages need to be deactivated
1758  * @lruvec: LRU vector to check
1759  *
1760  * When the system is doing streaming IO, memory pressure here
1761  * ensures that active file pages get deactivated, until more
1762  * than half of the file pages are on the inactive list.
1763  *
1764  * Once we get to that situation, protect the system's working
1765  * set from being evicted by disabling active file page aging.
1766  *
1767  * This uses a different ratio than the anonymous pages, because
1768  * the page cache uses a use-once replacement algorithm.
1769  */
1770 static int inactive_file_is_low(struct lruvec *lruvec)
1771 {
1772 	unsigned long inactive;
1773 	unsigned long active;
1774 
1775 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1776 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1777 
1778 	return active > inactive;
1779 }
1780 
1781 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1782 {
1783 	if (is_file_lru(lru))
1784 		return inactive_file_is_low(lruvec);
1785 	else
1786 		return inactive_anon_is_low(lruvec);
1787 }
1788 
1789 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1790 				 struct lruvec *lruvec, struct scan_control *sc)
1791 {
1792 	if (is_active_lru(lru)) {
1793 		if (inactive_list_is_low(lruvec, lru))
1794 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1795 		return 0;
1796 	}
1797 
1798 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1799 }
1800 
1801 static int vmscan_swappiness(struct scan_control *sc)
1802 {
1803 	if (global_reclaim(sc))
1804 		return vm_swappiness;
1805 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1806 }
1807 
1808 enum scan_balance {
1809 	SCAN_EQUAL,
1810 	SCAN_FRACT,
1811 	SCAN_ANON,
1812 	SCAN_FILE,
1813 };
1814 
1815 /*
1816  * Determine how aggressively the anon and file LRU lists should be
1817  * scanned.  The relative value of each set of LRU lists is determined
1818  * by looking at the fraction of the pages scanned we did rotate back
1819  * onto the active list instead of evict.
1820  *
1821  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1822  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1823  */
1824 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1825 			   unsigned long *nr)
1826 {
1827 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1828 	u64 fraction[2];
1829 	u64 denominator = 0;	/* gcc */
1830 	struct zone *zone = lruvec_zone(lruvec);
1831 	unsigned long anon_prio, file_prio;
1832 	enum scan_balance scan_balance;
1833 	unsigned long anon, file, free;
1834 	bool force_scan = false;
1835 	unsigned long ap, fp;
1836 	enum lru_list lru;
1837 
1838 	/*
1839 	 * If the zone or memcg is small, nr[l] can be 0.  This
1840 	 * results in no scanning on this priority and a potential
1841 	 * priority drop.  Global direct reclaim can go to the next
1842 	 * zone and tends to have no problems. Global kswapd is for
1843 	 * zone balancing and it needs to scan a minimum amount. When
1844 	 * reclaiming for a memcg, a priority drop can cause high
1845 	 * latencies, so it's better to scan a minimum amount there as
1846 	 * well.
1847 	 */
1848 	if (current_is_kswapd() && !zone_reclaimable(zone))
1849 		force_scan = true;
1850 	if (!global_reclaim(sc))
1851 		force_scan = true;
1852 
1853 	/* If we have no swap space, do not bother scanning anon pages. */
1854 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1855 		scan_balance = SCAN_FILE;
1856 		goto out;
1857 	}
1858 
1859 	/*
1860 	 * Global reclaim will swap to prevent OOM even with no
1861 	 * swappiness, but memcg users want to use this knob to
1862 	 * disable swapping for individual groups completely when
1863 	 * using the memory controller's swap limit feature would be
1864 	 * too expensive.
1865 	 */
1866 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1867 		scan_balance = SCAN_FILE;
1868 		goto out;
1869 	}
1870 
1871 	/*
1872 	 * Do not apply any pressure balancing cleverness when the
1873 	 * system is close to OOM, scan both anon and file equally
1874 	 * (unless the swappiness setting disagrees with swapping).
1875 	 */
1876 	if (!sc->priority && vmscan_swappiness(sc)) {
1877 		scan_balance = SCAN_EQUAL;
1878 		goto out;
1879 	}
1880 
1881 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1882 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1883 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1884 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1885 
1886 	/*
1887 	 * If it's foreseeable that reclaiming the file cache won't be
1888 	 * enough to get the zone back into a desirable shape, we have
1889 	 * to swap.  Better start now and leave the - probably heavily
1890 	 * thrashing - remaining file pages alone.
1891 	 */
1892 	if (global_reclaim(sc)) {
1893 		free = zone_page_state(zone, NR_FREE_PAGES);
1894 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1895 			scan_balance = SCAN_ANON;
1896 			goto out;
1897 		}
1898 	}
1899 
1900 	/*
1901 	 * There is enough inactive page cache, do not reclaim
1902 	 * anything from the anonymous working set right now.
1903 	 */
1904 	if (!inactive_file_is_low(lruvec)) {
1905 		scan_balance = SCAN_FILE;
1906 		goto out;
1907 	}
1908 
1909 	scan_balance = SCAN_FRACT;
1910 
1911 	/*
1912 	 * With swappiness at 100, anonymous and file have the same priority.
1913 	 * This scanning priority is essentially the inverse of IO cost.
1914 	 */
1915 	anon_prio = vmscan_swappiness(sc);
1916 	file_prio = 200 - anon_prio;
1917 
1918 	/*
1919 	 * OK, so we have swap space and a fair amount of page cache
1920 	 * pages.  We use the recently rotated / recently scanned
1921 	 * ratios to determine how valuable each cache is.
1922 	 *
1923 	 * Because workloads change over time (and to avoid overflow)
1924 	 * we keep these statistics as a floating average, which ends
1925 	 * up weighing recent references more than old ones.
1926 	 *
1927 	 * anon in [0], file in [1]
1928 	 */
1929 	spin_lock_irq(&zone->lru_lock);
1930 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1931 		reclaim_stat->recent_scanned[0] /= 2;
1932 		reclaim_stat->recent_rotated[0] /= 2;
1933 	}
1934 
1935 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1936 		reclaim_stat->recent_scanned[1] /= 2;
1937 		reclaim_stat->recent_rotated[1] /= 2;
1938 	}
1939 
1940 	/*
1941 	 * The amount of pressure on anon vs file pages is inversely
1942 	 * proportional to the fraction of recently scanned pages on
1943 	 * each list that were recently referenced and in active use.
1944 	 */
1945 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1946 	ap /= reclaim_stat->recent_rotated[0] + 1;
1947 
1948 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1949 	fp /= reclaim_stat->recent_rotated[1] + 1;
1950 	spin_unlock_irq(&zone->lru_lock);
1951 
1952 	fraction[0] = ap;
1953 	fraction[1] = fp;
1954 	denominator = ap + fp + 1;
1955 out:
1956 	for_each_evictable_lru(lru) {
1957 		int file = is_file_lru(lru);
1958 		unsigned long size;
1959 		unsigned long scan;
1960 
1961 		size = get_lru_size(lruvec, lru);
1962 		scan = size >> sc->priority;
1963 
1964 		if (!scan && force_scan)
1965 			scan = min(size, SWAP_CLUSTER_MAX);
1966 
1967 		switch (scan_balance) {
1968 		case SCAN_EQUAL:
1969 			/* Scan lists relative to size */
1970 			break;
1971 		case SCAN_FRACT:
1972 			/*
1973 			 * Scan types proportional to swappiness and
1974 			 * their relative recent reclaim efficiency.
1975 			 */
1976 			scan = div64_u64(scan * fraction[file], denominator);
1977 			break;
1978 		case SCAN_FILE:
1979 		case SCAN_ANON:
1980 			/* Scan one type exclusively */
1981 			if ((scan_balance == SCAN_FILE) != file)
1982 				scan = 0;
1983 			break;
1984 		default:
1985 			/* Look ma, no brain */
1986 			BUG();
1987 		}
1988 		nr[lru] = scan;
1989 	}
1990 }
1991 
1992 /*
1993  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1994  */
1995 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1996 {
1997 	unsigned long nr[NR_LRU_LISTS];
1998 	unsigned long targets[NR_LRU_LISTS];
1999 	unsigned long nr_to_scan;
2000 	enum lru_list lru;
2001 	unsigned long nr_reclaimed = 0;
2002 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2003 	struct blk_plug plug;
2004 	bool scan_adjusted = false;
2005 
2006 	get_scan_count(lruvec, sc, nr);
2007 
2008 	/* Record the original scan target for proportional adjustments later */
2009 	memcpy(targets, nr, sizeof(nr));
2010 
2011 	blk_start_plug(&plug);
2012 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2013 					nr[LRU_INACTIVE_FILE]) {
2014 		unsigned long nr_anon, nr_file, percentage;
2015 		unsigned long nr_scanned;
2016 
2017 		for_each_evictable_lru(lru) {
2018 			if (nr[lru]) {
2019 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2020 				nr[lru] -= nr_to_scan;
2021 
2022 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2023 							    lruvec, sc);
2024 			}
2025 		}
2026 
2027 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2028 			continue;
2029 
2030 		/*
2031 		 * For global direct reclaim, reclaim only the number of pages
2032 		 * requested. Less care is taken to scan proportionally as it
2033 		 * is more important to minimise direct reclaim stall latency
2034 		 * than it is to properly age the LRU lists.
2035 		 */
2036 		if (global_reclaim(sc) && !current_is_kswapd())
2037 			break;
2038 
2039 		/*
2040 		 * For kswapd and memcg, reclaim at least the number of pages
2041 		 * requested. Ensure that the anon and file LRUs shrink
2042 		 * proportionally what was requested by get_scan_count(). We
2043 		 * stop reclaiming one LRU and reduce the amount scanning
2044 		 * proportional to the original scan target.
2045 		 */
2046 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2047 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2048 
2049 		if (nr_file > nr_anon) {
2050 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2051 						targets[LRU_ACTIVE_ANON] + 1;
2052 			lru = LRU_BASE;
2053 			percentage = nr_anon * 100 / scan_target;
2054 		} else {
2055 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2056 						targets[LRU_ACTIVE_FILE] + 1;
2057 			lru = LRU_FILE;
2058 			percentage = nr_file * 100 / scan_target;
2059 		}
2060 
2061 		/* Stop scanning the smaller of the LRU */
2062 		nr[lru] = 0;
2063 		nr[lru + LRU_ACTIVE] = 0;
2064 
2065 		/*
2066 		 * Recalculate the other LRU scan count based on its original
2067 		 * scan target and the percentage scanning already complete
2068 		 */
2069 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2070 		nr_scanned = targets[lru] - nr[lru];
2071 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2072 		nr[lru] -= min(nr[lru], nr_scanned);
2073 
2074 		lru += LRU_ACTIVE;
2075 		nr_scanned = targets[lru] - nr[lru];
2076 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2077 		nr[lru] -= min(nr[lru], nr_scanned);
2078 
2079 		scan_adjusted = true;
2080 	}
2081 	blk_finish_plug(&plug);
2082 	sc->nr_reclaimed += nr_reclaimed;
2083 
2084 	/*
2085 	 * Even if we did not try to evict anon pages at all, we want to
2086 	 * rebalance the anon lru active/inactive ratio.
2087 	 */
2088 	if (inactive_anon_is_low(lruvec))
2089 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2090 				   sc, LRU_ACTIVE_ANON);
2091 
2092 	throttle_vm_writeout(sc->gfp_mask);
2093 }
2094 
2095 /* Use reclaim/compaction for costly allocs or under memory pressure */
2096 static bool in_reclaim_compaction(struct scan_control *sc)
2097 {
2098 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2099 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2100 			 sc->priority < DEF_PRIORITY - 2))
2101 		return true;
2102 
2103 	return false;
2104 }
2105 
2106 /*
2107  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2108  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2109  * true if more pages should be reclaimed such that when the page allocator
2110  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2111  * It will give up earlier than that if there is difficulty reclaiming pages.
2112  */
2113 static inline bool should_continue_reclaim(struct zone *zone,
2114 					unsigned long nr_reclaimed,
2115 					unsigned long nr_scanned,
2116 					struct scan_control *sc)
2117 {
2118 	unsigned long pages_for_compaction;
2119 	unsigned long inactive_lru_pages;
2120 
2121 	/* If not in reclaim/compaction mode, stop */
2122 	if (!in_reclaim_compaction(sc))
2123 		return false;
2124 
2125 	/* Consider stopping depending on scan and reclaim activity */
2126 	if (sc->gfp_mask & __GFP_REPEAT) {
2127 		/*
2128 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2129 		 * full LRU list has been scanned and we are still failing
2130 		 * to reclaim pages. This full LRU scan is potentially
2131 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2132 		 */
2133 		if (!nr_reclaimed && !nr_scanned)
2134 			return false;
2135 	} else {
2136 		/*
2137 		 * For non-__GFP_REPEAT allocations which can presumably
2138 		 * fail without consequence, stop if we failed to reclaim
2139 		 * any pages from the last SWAP_CLUSTER_MAX number of
2140 		 * pages that were scanned. This will return to the
2141 		 * caller faster at the risk reclaim/compaction and
2142 		 * the resulting allocation attempt fails
2143 		 */
2144 		if (!nr_reclaimed)
2145 			return false;
2146 	}
2147 
2148 	/*
2149 	 * If we have not reclaimed enough pages for compaction and the
2150 	 * inactive lists are large enough, continue reclaiming
2151 	 */
2152 	pages_for_compaction = (2UL << sc->order);
2153 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2154 	if (get_nr_swap_pages() > 0)
2155 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2156 	if (sc->nr_reclaimed < pages_for_compaction &&
2157 			inactive_lru_pages > pages_for_compaction)
2158 		return true;
2159 
2160 	/* If compaction would go ahead or the allocation would succeed, stop */
2161 	switch (compaction_suitable(zone, sc->order)) {
2162 	case COMPACT_PARTIAL:
2163 	case COMPACT_CONTINUE:
2164 		return false;
2165 	default:
2166 		return true;
2167 	}
2168 }
2169 
2170 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2171 {
2172 	unsigned long nr_reclaimed, nr_scanned;
2173 
2174 	do {
2175 		struct mem_cgroup *root = sc->target_mem_cgroup;
2176 		struct mem_cgroup_reclaim_cookie reclaim = {
2177 			.zone = zone,
2178 			.priority = sc->priority,
2179 		};
2180 		struct mem_cgroup *memcg;
2181 
2182 		nr_reclaimed = sc->nr_reclaimed;
2183 		nr_scanned = sc->nr_scanned;
2184 
2185 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2186 		do {
2187 			struct lruvec *lruvec;
2188 
2189 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2190 
2191 			shrink_lruvec(lruvec, sc);
2192 
2193 			/*
2194 			 * Direct reclaim and kswapd have to scan all memory
2195 			 * cgroups to fulfill the overall scan target for the
2196 			 * zone.
2197 			 *
2198 			 * Limit reclaim, on the other hand, only cares about
2199 			 * nr_to_reclaim pages to be reclaimed and it will
2200 			 * retry with decreasing priority if one round over the
2201 			 * whole hierarchy is not sufficient.
2202 			 */
2203 			if (!global_reclaim(sc) &&
2204 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2205 				mem_cgroup_iter_break(root, memcg);
2206 				break;
2207 			}
2208 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2209 		} while (memcg);
2210 
2211 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2212 			   sc->nr_scanned - nr_scanned,
2213 			   sc->nr_reclaimed - nr_reclaimed);
2214 
2215 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2216 					 sc->nr_scanned - nr_scanned, sc));
2217 }
2218 
2219 /* Returns true if compaction should go ahead for a high-order request */
2220 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2221 {
2222 	unsigned long balance_gap, watermark;
2223 	bool watermark_ok;
2224 
2225 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2226 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2227 		return false;
2228 
2229 	/*
2230 	 * Compaction takes time to run and there are potentially other
2231 	 * callers using the pages just freed. Continue reclaiming until
2232 	 * there is a buffer of free pages available to give compaction
2233 	 * a reasonable chance of completing and allocating the page
2234 	 */
2235 	balance_gap = min(low_wmark_pages(zone),
2236 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2237 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2238 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2239 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2240 
2241 	/*
2242 	 * If compaction is deferred, reclaim up to a point where
2243 	 * compaction will have a chance of success when re-enabled
2244 	 */
2245 	if (compaction_deferred(zone, sc->order))
2246 		return watermark_ok;
2247 
2248 	/* If compaction is not ready to start, keep reclaiming */
2249 	if (!compaction_suitable(zone, sc->order))
2250 		return false;
2251 
2252 	return watermark_ok;
2253 }
2254 
2255 /*
2256  * This is the direct reclaim path, for page-allocating processes.  We only
2257  * try to reclaim pages from zones which will satisfy the caller's allocation
2258  * request.
2259  *
2260  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2261  * Because:
2262  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2263  *    allocation or
2264  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2265  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2266  *    zone defense algorithm.
2267  *
2268  * If a zone is deemed to be full of pinned pages then just give it a light
2269  * scan then give up on it.
2270  *
2271  * This function returns true if a zone is being reclaimed for a costly
2272  * high-order allocation and compaction is ready to begin. This indicates to
2273  * the caller that it should consider retrying the allocation instead of
2274  * further reclaim.
2275  */
2276 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2277 {
2278 	struct zoneref *z;
2279 	struct zone *zone;
2280 	unsigned long nr_soft_reclaimed;
2281 	unsigned long nr_soft_scanned;
2282 	bool aborted_reclaim = false;
2283 
2284 	/*
2285 	 * If the number of buffer_heads in the machine exceeds the maximum
2286 	 * allowed level, force direct reclaim to scan the highmem zone as
2287 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2288 	 */
2289 	if (buffer_heads_over_limit)
2290 		sc->gfp_mask |= __GFP_HIGHMEM;
2291 
2292 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2293 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2294 		if (!populated_zone(zone))
2295 			continue;
2296 		/*
2297 		 * Take care memory controller reclaiming has small influence
2298 		 * to global LRU.
2299 		 */
2300 		if (global_reclaim(sc)) {
2301 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2302 				continue;
2303 			if (sc->priority != DEF_PRIORITY &&
2304 			    !zone_reclaimable(zone))
2305 				continue;	/* Let kswapd poll it */
2306 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2307 				/*
2308 				 * If we already have plenty of memory free for
2309 				 * compaction in this zone, don't free any more.
2310 				 * Even though compaction is invoked for any
2311 				 * non-zero order, only frequent costly order
2312 				 * reclamation is disruptive enough to become a
2313 				 * noticeable problem, like transparent huge
2314 				 * page allocations.
2315 				 */
2316 				if (compaction_ready(zone, sc)) {
2317 					aborted_reclaim = true;
2318 					continue;
2319 				}
2320 			}
2321 			/*
2322 			 * This steals pages from memory cgroups over softlimit
2323 			 * and returns the number of reclaimed pages and
2324 			 * scanned pages. This works for global memory pressure
2325 			 * and balancing, not for a memcg's limit.
2326 			 */
2327 			nr_soft_scanned = 0;
2328 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2329 						sc->order, sc->gfp_mask,
2330 						&nr_soft_scanned);
2331 			sc->nr_reclaimed += nr_soft_reclaimed;
2332 			sc->nr_scanned += nr_soft_scanned;
2333 			/* need some check for avoid more shrink_zone() */
2334 		}
2335 
2336 		shrink_zone(zone, sc);
2337 	}
2338 
2339 	return aborted_reclaim;
2340 }
2341 
2342 /* All zones in zonelist are unreclaimable? */
2343 static bool all_unreclaimable(struct zonelist *zonelist,
2344 		struct scan_control *sc)
2345 {
2346 	struct zoneref *z;
2347 	struct zone *zone;
2348 
2349 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2350 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2351 		if (!populated_zone(zone))
2352 			continue;
2353 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2354 			continue;
2355 		if (zone_reclaimable(zone))
2356 			return false;
2357 	}
2358 
2359 	return true;
2360 }
2361 
2362 /*
2363  * This is the main entry point to direct page reclaim.
2364  *
2365  * If a full scan of the inactive list fails to free enough memory then we
2366  * are "out of memory" and something needs to be killed.
2367  *
2368  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2369  * high - the zone may be full of dirty or under-writeback pages, which this
2370  * caller can't do much about.  We kick the writeback threads and take explicit
2371  * naps in the hope that some of these pages can be written.  But if the
2372  * allocating task holds filesystem locks which prevent writeout this might not
2373  * work, and the allocation attempt will fail.
2374  *
2375  * returns:	0, if no pages reclaimed
2376  * 		else, the number of pages reclaimed
2377  */
2378 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2379 					struct scan_control *sc,
2380 					struct shrink_control *shrink)
2381 {
2382 	unsigned long total_scanned = 0;
2383 	struct reclaim_state *reclaim_state = current->reclaim_state;
2384 	struct zoneref *z;
2385 	struct zone *zone;
2386 	unsigned long writeback_threshold;
2387 	bool aborted_reclaim;
2388 
2389 	delayacct_freepages_start();
2390 
2391 	if (global_reclaim(sc))
2392 		count_vm_event(ALLOCSTALL);
2393 
2394 	do {
2395 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2396 				sc->priority);
2397 		sc->nr_scanned = 0;
2398 		aborted_reclaim = shrink_zones(zonelist, sc);
2399 
2400 		/*
2401 		 * Don't shrink slabs when reclaiming memory from over limit
2402 		 * cgroups but do shrink slab at least once when aborting
2403 		 * reclaim for compaction to avoid unevenly scanning file/anon
2404 		 * LRU pages over slab pages.
2405 		 */
2406 		if (global_reclaim(sc)) {
2407 			unsigned long lru_pages = 0;
2408 
2409 			nodes_clear(shrink->nodes_to_scan);
2410 			for_each_zone_zonelist(zone, z, zonelist,
2411 					gfp_zone(sc->gfp_mask)) {
2412 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2413 					continue;
2414 
2415 				lru_pages += zone_reclaimable_pages(zone);
2416 				node_set(zone_to_nid(zone),
2417 					 shrink->nodes_to_scan);
2418 			}
2419 
2420 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2421 			if (reclaim_state) {
2422 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2423 				reclaim_state->reclaimed_slab = 0;
2424 			}
2425 		}
2426 		total_scanned += sc->nr_scanned;
2427 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2428 			goto out;
2429 
2430 		/*
2431 		 * If we're getting trouble reclaiming, start doing
2432 		 * writepage even in laptop mode.
2433 		 */
2434 		if (sc->priority < DEF_PRIORITY - 2)
2435 			sc->may_writepage = 1;
2436 
2437 		/*
2438 		 * Try to write back as many pages as we just scanned.  This
2439 		 * tends to cause slow streaming writers to write data to the
2440 		 * disk smoothly, at the dirtying rate, which is nice.   But
2441 		 * that's undesirable in laptop mode, where we *want* lumpy
2442 		 * writeout.  So in laptop mode, write out the whole world.
2443 		 */
2444 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2445 		if (total_scanned > writeback_threshold) {
2446 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2447 						WB_REASON_TRY_TO_FREE_PAGES);
2448 			sc->may_writepage = 1;
2449 		}
2450 	} while (--sc->priority >= 0 && !aborted_reclaim);
2451 
2452 out:
2453 	delayacct_freepages_end();
2454 
2455 	if (sc->nr_reclaimed)
2456 		return sc->nr_reclaimed;
2457 
2458 	/*
2459 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2460 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2461 	 * check.
2462 	 */
2463 	if (oom_killer_disabled)
2464 		return 0;
2465 
2466 	/* Aborted reclaim to try compaction? don't OOM, then */
2467 	if (aborted_reclaim)
2468 		return 1;
2469 
2470 	/* top priority shrink_zones still had more to do? don't OOM, then */
2471 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2472 		return 1;
2473 
2474 	return 0;
2475 }
2476 
2477 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2478 {
2479 	struct zone *zone;
2480 	unsigned long pfmemalloc_reserve = 0;
2481 	unsigned long free_pages = 0;
2482 	int i;
2483 	bool wmark_ok;
2484 
2485 	for (i = 0; i <= ZONE_NORMAL; i++) {
2486 		zone = &pgdat->node_zones[i];
2487 		pfmemalloc_reserve += min_wmark_pages(zone);
2488 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2489 	}
2490 
2491 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2492 
2493 	/* kswapd must be awake if processes are being throttled */
2494 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2495 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2496 						(enum zone_type)ZONE_NORMAL);
2497 		wake_up_interruptible(&pgdat->kswapd_wait);
2498 	}
2499 
2500 	return wmark_ok;
2501 }
2502 
2503 /*
2504  * Throttle direct reclaimers if backing storage is backed by the network
2505  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2506  * depleted. kswapd will continue to make progress and wake the processes
2507  * when the low watermark is reached.
2508  *
2509  * Returns true if a fatal signal was delivered during throttling. If this
2510  * happens, the page allocator should not consider triggering the OOM killer.
2511  */
2512 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2513 					nodemask_t *nodemask)
2514 {
2515 	struct zone *zone;
2516 	int high_zoneidx = gfp_zone(gfp_mask);
2517 	pg_data_t *pgdat;
2518 
2519 	/*
2520 	 * Kernel threads should not be throttled as they may be indirectly
2521 	 * responsible for cleaning pages necessary for reclaim to make forward
2522 	 * progress. kjournald for example may enter direct reclaim while
2523 	 * committing a transaction where throttling it could forcing other
2524 	 * processes to block on log_wait_commit().
2525 	 */
2526 	if (current->flags & PF_KTHREAD)
2527 		goto out;
2528 
2529 	/*
2530 	 * If a fatal signal is pending, this process should not throttle.
2531 	 * It should return quickly so it can exit and free its memory
2532 	 */
2533 	if (fatal_signal_pending(current))
2534 		goto out;
2535 
2536 	/* Check if the pfmemalloc reserves are ok */
2537 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2538 	pgdat = zone->zone_pgdat;
2539 	if (pfmemalloc_watermark_ok(pgdat))
2540 		goto out;
2541 
2542 	/* Account for the throttling */
2543 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2544 
2545 	/*
2546 	 * If the caller cannot enter the filesystem, it's possible that it
2547 	 * is due to the caller holding an FS lock or performing a journal
2548 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2549 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2550 	 * blocked waiting on the same lock. Instead, throttle for up to a
2551 	 * second before continuing.
2552 	 */
2553 	if (!(gfp_mask & __GFP_FS)) {
2554 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2555 			pfmemalloc_watermark_ok(pgdat), HZ);
2556 
2557 		goto check_pending;
2558 	}
2559 
2560 	/* Throttle until kswapd wakes the process */
2561 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2562 		pfmemalloc_watermark_ok(pgdat));
2563 
2564 check_pending:
2565 	if (fatal_signal_pending(current))
2566 		return true;
2567 
2568 out:
2569 	return false;
2570 }
2571 
2572 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2573 				gfp_t gfp_mask, nodemask_t *nodemask)
2574 {
2575 	unsigned long nr_reclaimed;
2576 	struct scan_control sc = {
2577 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2578 		.may_writepage = !laptop_mode,
2579 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2580 		.may_unmap = 1,
2581 		.may_swap = 1,
2582 		.order = order,
2583 		.priority = DEF_PRIORITY,
2584 		.target_mem_cgroup = NULL,
2585 		.nodemask = nodemask,
2586 	};
2587 	struct shrink_control shrink = {
2588 		.gfp_mask = sc.gfp_mask,
2589 	};
2590 
2591 	/*
2592 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2593 	 * 1 is returned so that the page allocator does not OOM kill at this
2594 	 * point.
2595 	 */
2596 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2597 		return 1;
2598 
2599 	trace_mm_vmscan_direct_reclaim_begin(order,
2600 				sc.may_writepage,
2601 				gfp_mask);
2602 
2603 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2604 
2605 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2606 
2607 	return nr_reclaimed;
2608 }
2609 
2610 #ifdef CONFIG_MEMCG
2611 
2612 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2613 						gfp_t gfp_mask, bool noswap,
2614 						struct zone *zone,
2615 						unsigned long *nr_scanned)
2616 {
2617 	struct scan_control sc = {
2618 		.nr_scanned = 0,
2619 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2620 		.may_writepage = !laptop_mode,
2621 		.may_unmap = 1,
2622 		.may_swap = !noswap,
2623 		.order = 0,
2624 		.priority = 0,
2625 		.target_mem_cgroup = memcg,
2626 	};
2627 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2628 
2629 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2630 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2631 
2632 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2633 						      sc.may_writepage,
2634 						      sc.gfp_mask);
2635 
2636 	/*
2637 	 * NOTE: Although we can get the priority field, using it
2638 	 * here is not a good idea, since it limits the pages we can scan.
2639 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2640 	 * will pick up pages from other mem cgroup's as well. We hack
2641 	 * the priority and make it zero.
2642 	 */
2643 	shrink_lruvec(lruvec, &sc);
2644 
2645 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2646 
2647 	*nr_scanned = sc.nr_scanned;
2648 	return sc.nr_reclaimed;
2649 }
2650 
2651 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2652 					   gfp_t gfp_mask,
2653 					   bool noswap)
2654 {
2655 	struct zonelist *zonelist;
2656 	unsigned long nr_reclaimed;
2657 	int nid;
2658 	struct scan_control sc = {
2659 		.may_writepage = !laptop_mode,
2660 		.may_unmap = 1,
2661 		.may_swap = !noswap,
2662 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2663 		.order = 0,
2664 		.priority = DEF_PRIORITY,
2665 		.target_mem_cgroup = memcg,
2666 		.nodemask = NULL, /* we don't care the placement */
2667 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2668 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2669 	};
2670 	struct shrink_control shrink = {
2671 		.gfp_mask = sc.gfp_mask,
2672 	};
2673 
2674 	/*
2675 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2676 	 * take care of from where we get pages. So the node where we start the
2677 	 * scan does not need to be the current node.
2678 	 */
2679 	nid = mem_cgroup_select_victim_node(memcg);
2680 
2681 	zonelist = NODE_DATA(nid)->node_zonelists;
2682 
2683 	trace_mm_vmscan_memcg_reclaim_begin(0,
2684 					    sc.may_writepage,
2685 					    sc.gfp_mask);
2686 
2687 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2688 
2689 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2690 
2691 	return nr_reclaimed;
2692 }
2693 #endif
2694 
2695 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2696 {
2697 	struct mem_cgroup *memcg;
2698 
2699 	if (!total_swap_pages)
2700 		return;
2701 
2702 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2703 	do {
2704 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2705 
2706 		if (inactive_anon_is_low(lruvec))
2707 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2708 					   sc, LRU_ACTIVE_ANON);
2709 
2710 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2711 	} while (memcg);
2712 }
2713 
2714 static bool zone_balanced(struct zone *zone, int order,
2715 			  unsigned long balance_gap, int classzone_idx)
2716 {
2717 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2718 				    balance_gap, classzone_idx, 0))
2719 		return false;
2720 
2721 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2722 	    !compaction_suitable(zone, order))
2723 		return false;
2724 
2725 	return true;
2726 }
2727 
2728 /*
2729  * pgdat_balanced() is used when checking if a node is balanced.
2730  *
2731  * For order-0, all zones must be balanced!
2732  *
2733  * For high-order allocations only zones that meet watermarks and are in a
2734  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2735  * total of balanced pages must be at least 25% of the zones allowed by
2736  * classzone_idx for the node to be considered balanced. Forcing all zones to
2737  * be balanced for high orders can cause excessive reclaim when there are
2738  * imbalanced zones.
2739  * The choice of 25% is due to
2740  *   o a 16M DMA zone that is balanced will not balance a zone on any
2741  *     reasonable sized machine
2742  *   o On all other machines, the top zone must be at least a reasonable
2743  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2744  *     would need to be at least 256M for it to be balance a whole node.
2745  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2746  *     to balance a node on its own. These seemed like reasonable ratios.
2747  */
2748 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2749 {
2750 	unsigned long managed_pages = 0;
2751 	unsigned long balanced_pages = 0;
2752 	int i;
2753 
2754 	/* Check the watermark levels */
2755 	for (i = 0; i <= classzone_idx; i++) {
2756 		struct zone *zone = pgdat->node_zones + i;
2757 
2758 		if (!populated_zone(zone))
2759 			continue;
2760 
2761 		managed_pages += zone->managed_pages;
2762 
2763 		/*
2764 		 * A special case here:
2765 		 *
2766 		 * balance_pgdat() skips over all_unreclaimable after
2767 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2768 		 * they must be considered balanced here as well!
2769 		 */
2770 		if (!zone_reclaimable(zone)) {
2771 			balanced_pages += zone->managed_pages;
2772 			continue;
2773 		}
2774 
2775 		if (zone_balanced(zone, order, 0, i))
2776 			balanced_pages += zone->managed_pages;
2777 		else if (!order)
2778 			return false;
2779 	}
2780 
2781 	if (order)
2782 		return balanced_pages >= (managed_pages >> 2);
2783 	else
2784 		return true;
2785 }
2786 
2787 /*
2788  * Prepare kswapd for sleeping. This verifies that there are no processes
2789  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2790  *
2791  * Returns true if kswapd is ready to sleep
2792  */
2793 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2794 					int classzone_idx)
2795 {
2796 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2797 	if (remaining)
2798 		return false;
2799 
2800 	/*
2801 	 * There is a potential race between when kswapd checks its watermarks
2802 	 * and a process gets throttled. There is also a potential race if
2803 	 * processes get throttled, kswapd wakes, a large process exits therby
2804 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2805 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2806 	 * so wake them now if necessary. If necessary, processes will wake
2807 	 * kswapd and get throttled again
2808 	 */
2809 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2810 		wake_up(&pgdat->pfmemalloc_wait);
2811 		return false;
2812 	}
2813 
2814 	return pgdat_balanced(pgdat, order, classzone_idx);
2815 }
2816 
2817 /*
2818  * kswapd shrinks the zone by the number of pages required to reach
2819  * the high watermark.
2820  *
2821  * Returns true if kswapd scanned at least the requested number of pages to
2822  * reclaim or if the lack of progress was due to pages under writeback.
2823  * This is used to determine if the scanning priority needs to be raised.
2824  */
2825 static bool kswapd_shrink_zone(struct zone *zone,
2826 			       int classzone_idx,
2827 			       struct scan_control *sc,
2828 			       unsigned long lru_pages,
2829 			       unsigned long *nr_attempted)
2830 {
2831 	int testorder = sc->order;
2832 	unsigned long balance_gap;
2833 	struct reclaim_state *reclaim_state = current->reclaim_state;
2834 	struct shrink_control shrink = {
2835 		.gfp_mask = sc->gfp_mask,
2836 	};
2837 	bool lowmem_pressure;
2838 
2839 	/* Reclaim above the high watermark. */
2840 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2841 
2842 	/*
2843 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2844 	 * too hard to reclaim until contiguous free pages have become
2845 	 * available can hurt performance by evicting too much useful data
2846 	 * from memory. Do not reclaim more than needed for compaction.
2847 	 */
2848 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2849 			compaction_suitable(zone, sc->order) !=
2850 				COMPACT_SKIPPED)
2851 		testorder = 0;
2852 
2853 	/*
2854 	 * We put equal pressure on every zone, unless one zone has way too
2855 	 * many pages free already. The "too many pages" is defined as the
2856 	 * high wmark plus a "gap" where the gap is either the low
2857 	 * watermark or 1% of the zone, whichever is smaller.
2858 	 */
2859 	balance_gap = min(low_wmark_pages(zone),
2860 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2861 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2862 
2863 	/*
2864 	 * If there is no low memory pressure or the zone is balanced then no
2865 	 * reclaim is necessary
2866 	 */
2867 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2868 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2869 						balance_gap, classzone_idx))
2870 		return true;
2871 
2872 	shrink_zone(zone, sc);
2873 	nodes_clear(shrink.nodes_to_scan);
2874 	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2875 
2876 	reclaim_state->reclaimed_slab = 0;
2877 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2878 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2879 
2880 	/* Account for the number of pages attempted to reclaim */
2881 	*nr_attempted += sc->nr_to_reclaim;
2882 
2883 	zone_clear_flag(zone, ZONE_WRITEBACK);
2884 
2885 	/*
2886 	 * If a zone reaches its high watermark, consider it to be no longer
2887 	 * congested. It's possible there are dirty pages backed by congested
2888 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2889 	 * waits.
2890 	 */
2891 	if (zone_reclaimable(zone) &&
2892 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2893 		zone_clear_flag(zone, ZONE_CONGESTED);
2894 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2895 	}
2896 
2897 	return sc->nr_scanned >= sc->nr_to_reclaim;
2898 }
2899 
2900 /*
2901  * For kswapd, balance_pgdat() will work across all this node's zones until
2902  * they are all at high_wmark_pages(zone).
2903  *
2904  * Returns the final order kswapd was reclaiming at
2905  *
2906  * There is special handling here for zones which are full of pinned pages.
2907  * This can happen if the pages are all mlocked, or if they are all used by
2908  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2909  * What we do is to detect the case where all pages in the zone have been
2910  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2911  * dead and from now on, only perform a short scan.  Basically we're polling
2912  * the zone for when the problem goes away.
2913  *
2914  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2915  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2916  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2917  * lower zones regardless of the number of free pages in the lower zones. This
2918  * interoperates with the page allocator fallback scheme to ensure that aging
2919  * of pages is balanced across the zones.
2920  */
2921 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2922 							int *classzone_idx)
2923 {
2924 	int i;
2925 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2926 	unsigned long nr_soft_reclaimed;
2927 	unsigned long nr_soft_scanned;
2928 	struct scan_control sc = {
2929 		.gfp_mask = GFP_KERNEL,
2930 		.priority = DEF_PRIORITY,
2931 		.may_unmap = 1,
2932 		.may_swap = 1,
2933 		.may_writepage = !laptop_mode,
2934 		.order = order,
2935 		.target_mem_cgroup = NULL,
2936 	};
2937 	count_vm_event(PAGEOUTRUN);
2938 
2939 	do {
2940 		unsigned long lru_pages = 0;
2941 		unsigned long nr_attempted = 0;
2942 		bool raise_priority = true;
2943 		bool pgdat_needs_compaction = (order > 0);
2944 
2945 		sc.nr_reclaimed = 0;
2946 
2947 		/*
2948 		 * Scan in the highmem->dma direction for the highest
2949 		 * zone which needs scanning
2950 		 */
2951 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2952 			struct zone *zone = pgdat->node_zones + i;
2953 
2954 			if (!populated_zone(zone))
2955 				continue;
2956 
2957 			if (sc.priority != DEF_PRIORITY &&
2958 			    !zone_reclaimable(zone))
2959 				continue;
2960 
2961 			/*
2962 			 * Do some background aging of the anon list, to give
2963 			 * pages a chance to be referenced before reclaiming.
2964 			 */
2965 			age_active_anon(zone, &sc);
2966 
2967 			/*
2968 			 * If the number of buffer_heads in the machine
2969 			 * exceeds the maximum allowed level and this node
2970 			 * has a highmem zone, force kswapd to reclaim from
2971 			 * it to relieve lowmem pressure.
2972 			 */
2973 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2974 				end_zone = i;
2975 				break;
2976 			}
2977 
2978 			if (!zone_balanced(zone, order, 0, 0)) {
2979 				end_zone = i;
2980 				break;
2981 			} else {
2982 				/*
2983 				 * If balanced, clear the dirty and congested
2984 				 * flags
2985 				 */
2986 				zone_clear_flag(zone, ZONE_CONGESTED);
2987 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2988 			}
2989 		}
2990 
2991 		if (i < 0)
2992 			goto out;
2993 
2994 		for (i = 0; i <= end_zone; i++) {
2995 			struct zone *zone = pgdat->node_zones + i;
2996 
2997 			if (!populated_zone(zone))
2998 				continue;
2999 
3000 			lru_pages += zone_reclaimable_pages(zone);
3001 
3002 			/*
3003 			 * If any zone is currently balanced then kswapd will
3004 			 * not call compaction as it is expected that the
3005 			 * necessary pages are already available.
3006 			 */
3007 			if (pgdat_needs_compaction &&
3008 					zone_watermark_ok(zone, order,
3009 						low_wmark_pages(zone),
3010 						*classzone_idx, 0))
3011 				pgdat_needs_compaction = false;
3012 		}
3013 
3014 		/*
3015 		 * If we're getting trouble reclaiming, start doing writepage
3016 		 * even in laptop mode.
3017 		 */
3018 		if (sc.priority < DEF_PRIORITY - 2)
3019 			sc.may_writepage = 1;
3020 
3021 		/*
3022 		 * Now scan the zone in the dma->highmem direction, stopping
3023 		 * at the last zone which needs scanning.
3024 		 *
3025 		 * We do this because the page allocator works in the opposite
3026 		 * direction.  This prevents the page allocator from allocating
3027 		 * pages behind kswapd's direction of progress, which would
3028 		 * cause too much scanning of the lower zones.
3029 		 */
3030 		for (i = 0; i <= end_zone; i++) {
3031 			struct zone *zone = pgdat->node_zones + i;
3032 
3033 			if (!populated_zone(zone))
3034 				continue;
3035 
3036 			if (sc.priority != DEF_PRIORITY &&
3037 			    !zone_reclaimable(zone))
3038 				continue;
3039 
3040 			sc.nr_scanned = 0;
3041 
3042 			nr_soft_scanned = 0;
3043 			/*
3044 			 * Call soft limit reclaim before calling shrink_zone.
3045 			 */
3046 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3047 							order, sc.gfp_mask,
3048 							&nr_soft_scanned);
3049 			sc.nr_reclaimed += nr_soft_reclaimed;
3050 
3051 			/*
3052 			 * There should be no need to raise the scanning
3053 			 * priority if enough pages are already being scanned
3054 			 * that that high watermark would be met at 100%
3055 			 * efficiency.
3056 			 */
3057 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3058 					lru_pages, &nr_attempted))
3059 				raise_priority = false;
3060 		}
3061 
3062 		/*
3063 		 * If the low watermark is met there is no need for processes
3064 		 * to be throttled on pfmemalloc_wait as they should not be
3065 		 * able to safely make forward progress. Wake them
3066 		 */
3067 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3068 				pfmemalloc_watermark_ok(pgdat))
3069 			wake_up(&pgdat->pfmemalloc_wait);
3070 
3071 		/*
3072 		 * Fragmentation may mean that the system cannot be rebalanced
3073 		 * for high-order allocations in all zones. If twice the
3074 		 * allocation size has been reclaimed and the zones are still
3075 		 * not balanced then recheck the watermarks at order-0 to
3076 		 * prevent kswapd reclaiming excessively. Assume that a
3077 		 * process requested a high-order can direct reclaim/compact.
3078 		 */
3079 		if (order && sc.nr_reclaimed >= 2UL << order)
3080 			order = sc.order = 0;
3081 
3082 		/* Check if kswapd should be suspending */
3083 		if (try_to_freeze() || kthread_should_stop())
3084 			break;
3085 
3086 		/*
3087 		 * Compact if necessary and kswapd is reclaiming at least the
3088 		 * high watermark number of pages as requsted
3089 		 */
3090 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3091 			compact_pgdat(pgdat, order);
3092 
3093 		/*
3094 		 * Raise priority if scanning rate is too low or there was no
3095 		 * progress in reclaiming pages
3096 		 */
3097 		if (raise_priority || !sc.nr_reclaimed)
3098 			sc.priority--;
3099 	} while (sc.priority >= 1 &&
3100 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3101 
3102 out:
3103 	/*
3104 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3105 	 * makes a decision on the order we were last reclaiming at. However,
3106 	 * if another caller entered the allocator slow path while kswapd
3107 	 * was awake, order will remain at the higher level
3108 	 */
3109 	*classzone_idx = end_zone;
3110 	return order;
3111 }
3112 
3113 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3114 {
3115 	long remaining = 0;
3116 	DEFINE_WAIT(wait);
3117 
3118 	if (freezing(current) || kthread_should_stop())
3119 		return;
3120 
3121 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3122 
3123 	/* Try to sleep for a short interval */
3124 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3125 		remaining = schedule_timeout(HZ/10);
3126 		finish_wait(&pgdat->kswapd_wait, &wait);
3127 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3128 	}
3129 
3130 	/*
3131 	 * After a short sleep, check if it was a premature sleep. If not, then
3132 	 * go fully to sleep until explicitly woken up.
3133 	 */
3134 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3135 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3136 
3137 		/*
3138 		 * vmstat counters are not perfectly accurate and the estimated
3139 		 * value for counters such as NR_FREE_PAGES can deviate from the
3140 		 * true value by nr_online_cpus * threshold. To avoid the zone
3141 		 * watermarks being breached while under pressure, we reduce the
3142 		 * per-cpu vmstat threshold while kswapd is awake and restore
3143 		 * them before going back to sleep.
3144 		 */
3145 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3146 
3147 		/*
3148 		 * Compaction records what page blocks it recently failed to
3149 		 * isolate pages from and skips them in the future scanning.
3150 		 * When kswapd is going to sleep, it is reasonable to assume
3151 		 * that pages and compaction may succeed so reset the cache.
3152 		 */
3153 		reset_isolation_suitable(pgdat);
3154 
3155 		if (!kthread_should_stop())
3156 			schedule();
3157 
3158 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3159 	} else {
3160 		if (remaining)
3161 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3162 		else
3163 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3164 	}
3165 	finish_wait(&pgdat->kswapd_wait, &wait);
3166 }
3167 
3168 /*
3169  * The background pageout daemon, started as a kernel thread
3170  * from the init process.
3171  *
3172  * This basically trickles out pages so that we have _some_
3173  * free memory available even if there is no other activity
3174  * that frees anything up. This is needed for things like routing
3175  * etc, where we otherwise might have all activity going on in
3176  * asynchronous contexts that cannot page things out.
3177  *
3178  * If there are applications that are active memory-allocators
3179  * (most normal use), this basically shouldn't matter.
3180  */
3181 static int kswapd(void *p)
3182 {
3183 	unsigned long order, new_order;
3184 	unsigned balanced_order;
3185 	int classzone_idx, new_classzone_idx;
3186 	int balanced_classzone_idx;
3187 	pg_data_t *pgdat = (pg_data_t*)p;
3188 	struct task_struct *tsk = current;
3189 
3190 	struct reclaim_state reclaim_state = {
3191 		.reclaimed_slab = 0,
3192 	};
3193 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3194 
3195 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3196 
3197 	if (!cpumask_empty(cpumask))
3198 		set_cpus_allowed_ptr(tsk, cpumask);
3199 	current->reclaim_state = &reclaim_state;
3200 
3201 	/*
3202 	 * Tell the memory management that we're a "memory allocator",
3203 	 * and that if we need more memory we should get access to it
3204 	 * regardless (see "__alloc_pages()"). "kswapd" should
3205 	 * never get caught in the normal page freeing logic.
3206 	 *
3207 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3208 	 * you need a small amount of memory in order to be able to
3209 	 * page out something else, and this flag essentially protects
3210 	 * us from recursively trying to free more memory as we're
3211 	 * trying to free the first piece of memory in the first place).
3212 	 */
3213 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3214 	set_freezable();
3215 
3216 	order = new_order = 0;
3217 	balanced_order = 0;
3218 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3219 	balanced_classzone_idx = classzone_idx;
3220 	for ( ; ; ) {
3221 		bool ret;
3222 
3223 		/*
3224 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3225 		 * new request of a similar or harder type will succeed soon
3226 		 * so consider going to sleep on the basis we reclaimed at
3227 		 */
3228 		if (balanced_classzone_idx >= new_classzone_idx &&
3229 					balanced_order == new_order) {
3230 			new_order = pgdat->kswapd_max_order;
3231 			new_classzone_idx = pgdat->classzone_idx;
3232 			pgdat->kswapd_max_order =  0;
3233 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3234 		}
3235 
3236 		if (order < new_order || classzone_idx > new_classzone_idx) {
3237 			/*
3238 			 * Don't sleep if someone wants a larger 'order'
3239 			 * allocation or has tigher zone constraints
3240 			 */
3241 			order = new_order;
3242 			classzone_idx = new_classzone_idx;
3243 		} else {
3244 			kswapd_try_to_sleep(pgdat, balanced_order,
3245 						balanced_classzone_idx);
3246 			order = pgdat->kswapd_max_order;
3247 			classzone_idx = pgdat->classzone_idx;
3248 			new_order = order;
3249 			new_classzone_idx = classzone_idx;
3250 			pgdat->kswapd_max_order = 0;
3251 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3252 		}
3253 
3254 		ret = try_to_freeze();
3255 		if (kthread_should_stop())
3256 			break;
3257 
3258 		/*
3259 		 * We can speed up thawing tasks if we don't call balance_pgdat
3260 		 * after returning from the refrigerator
3261 		 */
3262 		if (!ret) {
3263 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3264 			balanced_classzone_idx = classzone_idx;
3265 			balanced_order = balance_pgdat(pgdat, order,
3266 						&balanced_classzone_idx);
3267 		}
3268 	}
3269 
3270 	current->reclaim_state = NULL;
3271 	return 0;
3272 }
3273 
3274 /*
3275  * A zone is low on free memory, so wake its kswapd task to service it.
3276  */
3277 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3278 {
3279 	pg_data_t *pgdat;
3280 
3281 	if (!populated_zone(zone))
3282 		return;
3283 
3284 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3285 		return;
3286 	pgdat = zone->zone_pgdat;
3287 	if (pgdat->kswapd_max_order < order) {
3288 		pgdat->kswapd_max_order = order;
3289 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3290 	}
3291 	if (!waitqueue_active(&pgdat->kswapd_wait))
3292 		return;
3293 	if (zone_balanced(zone, order, 0, 0))
3294 		return;
3295 
3296 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3297 	wake_up_interruptible(&pgdat->kswapd_wait);
3298 }
3299 
3300 /*
3301  * The reclaimable count would be mostly accurate.
3302  * The less reclaimable pages may be
3303  * - mlocked pages, which will be moved to unevictable list when encountered
3304  * - mapped pages, which may require several travels to be reclaimed
3305  * - dirty pages, which is not "instantly" reclaimable
3306  */
3307 unsigned long global_reclaimable_pages(void)
3308 {
3309 	int nr;
3310 
3311 	nr = global_page_state(NR_ACTIVE_FILE) +
3312 	     global_page_state(NR_INACTIVE_FILE);
3313 
3314 	if (get_nr_swap_pages() > 0)
3315 		nr += global_page_state(NR_ACTIVE_ANON) +
3316 		      global_page_state(NR_INACTIVE_ANON);
3317 
3318 	return nr;
3319 }
3320 
3321 #ifdef CONFIG_HIBERNATION
3322 /*
3323  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3324  * freed pages.
3325  *
3326  * Rather than trying to age LRUs the aim is to preserve the overall
3327  * LRU order by reclaiming preferentially
3328  * inactive > active > active referenced > active mapped
3329  */
3330 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3331 {
3332 	struct reclaim_state reclaim_state;
3333 	struct scan_control sc = {
3334 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3335 		.may_swap = 1,
3336 		.may_unmap = 1,
3337 		.may_writepage = 1,
3338 		.nr_to_reclaim = nr_to_reclaim,
3339 		.hibernation_mode = 1,
3340 		.order = 0,
3341 		.priority = DEF_PRIORITY,
3342 	};
3343 	struct shrink_control shrink = {
3344 		.gfp_mask = sc.gfp_mask,
3345 	};
3346 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3347 	struct task_struct *p = current;
3348 	unsigned long nr_reclaimed;
3349 
3350 	p->flags |= PF_MEMALLOC;
3351 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3352 	reclaim_state.reclaimed_slab = 0;
3353 	p->reclaim_state = &reclaim_state;
3354 
3355 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3356 
3357 	p->reclaim_state = NULL;
3358 	lockdep_clear_current_reclaim_state();
3359 	p->flags &= ~PF_MEMALLOC;
3360 
3361 	return nr_reclaimed;
3362 }
3363 #endif /* CONFIG_HIBERNATION */
3364 
3365 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3366    not required for correctness.  So if the last cpu in a node goes
3367    away, we get changed to run anywhere: as the first one comes back,
3368    restore their cpu bindings. */
3369 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3370 			void *hcpu)
3371 {
3372 	int nid;
3373 
3374 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3375 		for_each_node_state(nid, N_MEMORY) {
3376 			pg_data_t *pgdat = NODE_DATA(nid);
3377 			const struct cpumask *mask;
3378 
3379 			mask = cpumask_of_node(pgdat->node_id);
3380 
3381 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3382 				/* One of our CPUs online: restore mask */
3383 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3384 		}
3385 	}
3386 	return NOTIFY_OK;
3387 }
3388 
3389 /*
3390  * This kswapd start function will be called by init and node-hot-add.
3391  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3392  */
3393 int kswapd_run(int nid)
3394 {
3395 	pg_data_t *pgdat = NODE_DATA(nid);
3396 	int ret = 0;
3397 
3398 	if (pgdat->kswapd)
3399 		return 0;
3400 
3401 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3402 	if (IS_ERR(pgdat->kswapd)) {
3403 		/* failure at boot is fatal */
3404 		BUG_ON(system_state == SYSTEM_BOOTING);
3405 		pr_err("Failed to start kswapd on node %d\n", nid);
3406 		ret = PTR_ERR(pgdat->kswapd);
3407 		pgdat->kswapd = NULL;
3408 	}
3409 	return ret;
3410 }
3411 
3412 /*
3413  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3414  * hold lock_memory_hotplug().
3415  */
3416 void kswapd_stop(int nid)
3417 {
3418 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3419 
3420 	if (kswapd) {
3421 		kthread_stop(kswapd);
3422 		NODE_DATA(nid)->kswapd = NULL;
3423 	}
3424 }
3425 
3426 static int __init kswapd_init(void)
3427 {
3428 	int nid;
3429 
3430 	swap_setup();
3431 	for_each_node_state(nid, N_MEMORY)
3432  		kswapd_run(nid);
3433 	hotcpu_notifier(cpu_callback, 0);
3434 	return 0;
3435 }
3436 
3437 module_init(kswapd_init)
3438 
3439 #ifdef CONFIG_NUMA
3440 /*
3441  * Zone reclaim mode
3442  *
3443  * If non-zero call zone_reclaim when the number of free pages falls below
3444  * the watermarks.
3445  */
3446 int zone_reclaim_mode __read_mostly;
3447 
3448 #define RECLAIM_OFF 0
3449 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3450 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3451 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3452 
3453 /*
3454  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3455  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3456  * a zone.
3457  */
3458 #define ZONE_RECLAIM_PRIORITY 4
3459 
3460 /*
3461  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3462  * occur.
3463  */
3464 int sysctl_min_unmapped_ratio = 1;
3465 
3466 /*
3467  * If the number of slab pages in a zone grows beyond this percentage then
3468  * slab reclaim needs to occur.
3469  */
3470 int sysctl_min_slab_ratio = 5;
3471 
3472 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3473 {
3474 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3475 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3476 		zone_page_state(zone, NR_ACTIVE_FILE);
3477 
3478 	/*
3479 	 * It's possible for there to be more file mapped pages than
3480 	 * accounted for by the pages on the file LRU lists because
3481 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3482 	 */
3483 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3484 }
3485 
3486 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3487 static long zone_pagecache_reclaimable(struct zone *zone)
3488 {
3489 	long nr_pagecache_reclaimable;
3490 	long delta = 0;
3491 
3492 	/*
3493 	 * If RECLAIM_SWAP is set, then all file pages are considered
3494 	 * potentially reclaimable. Otherwise, we have to worry about
3495 	 * pages like swapcache and zone_unmapped_file_pages() provides
3496 	 * a better estimate
3497 	 */
3498 	if (zone_reclaim_mode & RECLAIM_SWAP)
3499 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3500 	else
3501 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3502 
3503 	/* If we can't clean pages, remove dirty pages from consideration */
3504 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3505 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3506 
3507 	/* Watch for any possible underflows due to delta */
3508 	if (unlikely(delta > nr_pagecache_reclaimable))
3509 		delta = nr_pagecache_reclaimable;
3510 
3511 	return nr_pagecache_reclaimable - delta;
3512 }
3513 
3514 /*
3515  * Try to free up some pages from this zone through reclaim.
3516  */
3517 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3518 {
3519 	/* Minimum pages needed in order to stay on node */
3520 	const unsigned long nr_pages = 1 << order;
3521 	struct task_struct *p = current;
3522 	struct reclaim_state reclaim_state;
3523 	struct scan_control sc = {
3524 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3525 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3526 		.may_swap = 1,
3527 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3528 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3529 		.order = order,
3530 		.priority = ZONE_RECLAIM_PRIORITY,
3531 	};
3532 	struct shrink_control shrink = {
3533 		.gfp_mask = sc.gfp_mask,
3534 	};
3535 	unsigned long nr_slab_pages0, nr_slab_pages1;
3536 
3537 	cond_resched();
3538 	/*
3539 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3540 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3541 	 * and RECLAIM_SWAP.
3542 	 */
3543 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3544 	lockdep_set_current_reclaim_state(gfp_mask);
3545 	reclaim_state.reclaimed_slab = 0;
3546 	p->reclaim_state = &reclaim_state;
3547 
3548 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3549 		/*
3550 		 * Free memory by calling shrink zone with increasing
3551 		 * priorities until we have enough memory freed.
3552 		 */
3553 		do {
3554 			shrink_zone(zone, &sc);
3555 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3556 	}
3557 
3558 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3559 	if (nr_slab_pages0 > zone->min_slab_pages) {
3560 		/*
3561 		 * shrink_slab() does not currently allow us to determine how
3562 		 * many pages were freed in this zone. So we take the current
3563 		 * number of slab pages and shake the slab until it is reduced
3564 		 * by the same nr_pages that we used for reclaiming unmapped
3565 		 * pages.
3566 		 */
3567 		nodes_clear(shrink.nodes_to_scan);
3568 		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3569 		for (;;) {
3570 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3571 
3572 			/* No reclaimable slab or very low memory pressure */
3573 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3574 				break;
3575 
3576 			/* Freed enough memory */
3577 			nr_slab_pages1 = zone_page_state(zone,
3578 							NR_SLAB_RECLAIMABLE);
3579 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3580 				break;
3581 		}
3582 
3583 		/*
3584 		 * Update nr_reclaimed by the number of slab pages we
3585 		 * reclaimed from this zone.
3586 		 */
3587 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3588 		if (nr_slab_pages1 < nr_slab_pages0)
3589 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3590 	}
3591 
3592 	p->reclaim_state = NULL;
3593 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3594 	lockdep_clear_current_reclaim_state();
3595 	return sc.nr_reclaimed >= nr_pages;
3596 }
3597 
3598 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3599 {
3600 	int node_id;
3601 	int ret;
3602 
3603 	/*
3604 	 * Zone reclaim reclaims unmapped file backed pages and
3605 	 * slab pages if we are over the defined limits.
3606 	 *
3607 	 * A small portion of unmapped file backed pages is needed for
3608 	 * file I/O otherwise pages read by file I/O will be immediately
3609 	 * thrown out if the zone is overallocated. So we do not reclaim
3610 	 * if less than a specified percentage of the zone is used by
3611 	 * unmapped file backed pages.
3612 	 */
3613 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3614 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3615 		return ZONE_RECLAIM_FULL;
3616 
3617 	if (!zone_reclaimable(zone))
3618 		return ZONE_RECLAIM_FULL;
3619 
3620 	/*
3621 	 * Do not scan if the allocation should not be delayed.
3622 	 */
3623 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3624 		return ZONE_RECLAIM_NOSCAN;
3625 
3626 	/*
3627 	 * Only run zone reclaim on the local zone or on zones that do not
3628 	 * have associated processors. This will favor the local processor
3629 	 * over remote processors and spread off node memory allocations
3630 	 * as wide as possible.
3631 	 */
3632 	node_id = zone_to_nid(zone);
3633 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3634 		return ZONE_RECLAIM_NOSCAN;
3635 
3636 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3637 		return ZONE_RECLAIM_NOSCAN;
3638 
3639 	ret = __zone_reclaim(zone, gfp_mask, order);
3640 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3641 
3642 	if (!ret)
3643 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3644 
3645 	return ret;
3646 }
3647 #endif
3648 
3649 /*
3650  * page_evictable - test whether a page is evictable
3651  * @page: the page to test
3652  *
3653  * Test whether page is evictable--i.e., should be placed on active/inactive
3654  * lists vs unevictable list.
3655  *
3656  * Reasons page might not be evictable:
3657  * (1) page's mapping marked unevictable
3658  * (2) page is part of an mlocked VMA
3659  *
3660  */
3661 int page_evictable(struct page *page)
3662 {
3663 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3664 }
3665 
3666 #ifdef CONFIG_SHMEM
3667 /**
3668  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3669  * @pages:	array of pages to check
3670  * @nr_pages:	number of pages to check
3671  *
3672  * Checks pages for evictability and moves them to the appropriate lru list.
3673  *
3674  * This function is only used for SysV IPC SHM_UNLOCK.
3675  */
3676 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3677 {
3678 	struct lruvec *lruvec;
3679 	struct zone *zone = NULL;
3680 	int pgscanned = 0;
3681 	int pgrescued = 0;
3682 	int i;
3683 
3684 	for (i = 0; i < nr_pages; i++) {
3685 		struct page *page = pages[i];
3686 		struct zone *pagezone;
3687 
3688 		pgscanned++;
3689 		pagezone = page_zone(page);
3690 		if (pagezone != zone) {
3691 			if (zone)
3692 				spin_unlock_irq(&zone->lru_lock);
3693 			zone = pagezone;
3694 			spin_lock_irq(&zone->lru_lock);
3695 		}
3696 		lruvec = mem_cgroup_page_lruvec(page, zone);
3697 
3698 		if (!PageLRU(page) || !PageUnevictable(page))
3699 			continue;
3700 
3701 		if (page_evictable(page)) {
3702 			enum lru_list lru = page_lru_base_type(page);
3703 
3704 			VM_BUG_ON(PageActive(page));
3705 			ClearPageUnevictable(page);
3706 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3707 			add_page_to_lru_list(page, lruvec, lru);
3708 			pgrescued++;
3709 		}
3710 	}
3711 
3712 	if (zone) {
3713 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3714 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3715 		spin_unlock_irq(&zone->lru_lock);
3716 	}
3717 }
3718 #endif /* CONFIG_SHMEM */
3719 
3720 static void warn_scan_unevictable_pages(void)
3721 {
3722 	printk_once(KERN_WARNING
3723 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3724 		    "disabled for lack of a legitimate use case.  If you have "
3725 		    "one, please send an email to linux-mm@kvack.org.\n",
3726 		    current->comm);
3727 }
3728 
3729 /*
3730  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3731  * all nodes' unevictable lists for evictable pages
3732  */
3733 unsigned long scan_unevictable_pages;
3734 
3735 int scan_unevictable_handler(struct ctl_table *table, int write,
3736 			   void __user *buffer,
3737 			   size_t *length, loff_t *ppos)
3738 {
3739 	warn_scan_unevictable_pages();
3740 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3741 	scan_unevictable_pages = 0;
3742 	return 0;
3743 }
3744 
3745 #ifdef CONFIG_NUMA
3746 /*
3747  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3748  * a specified node's per zone unevictable lists for evictable pages.
3749  */
3750 
3751 static ssize_t read_scan_unevictable_node(struct device *dev,
3752 					  struct device_attribute *attr,
3753 					  char *buf)
3754 {
3755 	warn_scan_unevictable_pages();
3756 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3757 }
3758 
3759 static ssize_t write_scan_unevictable_node(struct device *dev,
3760 					   struct device_attribute *attr,
3761 					const char *buf, size_t count)
3762 {
3763 	warn_scan_unevictable_pages();
3764 	return 1;
3765 }
3766 
3767 
3768 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3769 			read_scan_unevictable_node,
3770 			write_scan_unevictable_node);
3771 
3772 int scan_unevictable_register_node(struct node *node)
3773 {
3774 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3775 }
3776 
3777 void scan_unevictable_unregister_node(struct node *node)
3778 {
3779 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3780 }
3781 #endif
3782