1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Can active pages be deactivated as part of reclaim? */ 83 #define DEACTIVATE_ANON 1 84 #define DEACTIVATE_FILE 2 85 unsigned int may_deactivate:2; 86 unsigned int force_deactivate:1; 87 unsigned int skipped_deactivate:1; 88 89 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* 99 * Cgroups are not reclaimed below their configured memory.low, 100 * unless we threaten to OOM. If any cgroups are skipped due to 101 * memory.low and nothing was reclaimed, go back for memory.low. 102 */ 103 unsigned int memcg_low_reclaim:1; 104 unsigned int memcg_low_skipped:1; 105 106 unsigned int hibernation_mode:1; 107 108 /* One of the zones is ready for compaction */ 109 unsigned int compaction_ready:1; 110 111 /* There is easily reclaimable cold cache in the current node */ 112 unsigned int cache_trim_mode:1; 113 114 /* The file pages on the current node are dangerously low */ 115 unsigned int file_is_tiny:1; 116 117 /* Allocation order */ 118 s8 order; 119 120 /* Scan (total_size >> priority) pages at once */ 121 s8 priority; 122 123 /* The highest zone to isolate pages for reclaim from */ 124 s8 reclaim_idx; 125 126 /* This context's GFP mask */ 127 gfp_t gfp_mask; 128 129 /* Incremented by the number of inactive pages that were scanned */ 130 unsigned long nr_scanned; 131 132 /* Number of pages freed so far during a call to shrink_zones() */ 133 unsigned long nr_reclaimed; 134 135 struct { 136 unsigned int dirty; 137 unsigned int unqueued_dirty; 138 unsigned int congested; 139 unsigned int writeback; 140 unsigned int immediate; 141 unsigned int file_taken; 142 unsigned int taken; 143 } nr; 144 145 /* for recording the reclaimed slab by now */ 146 struct reclaim_state reclaim_state; 147 }; 148 149 #ifdef ARCH_HAS_PREFETCHW 150 #define prefetchw_prev_lru_page(_page, _base, _field) \ 151 do { \ 152 if ((_page)->lru.prev != _base) { \ 153 struct page *prev; \ 154 \ 155 prev = lru_to_page(&(_page->lru)); \ 156 prefetchw(&prev->_field); \ 157 } \ 158 } while (0) 159 #else 160 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 161 #endif 162 163 /* 164 * From 0 .. 100. Higher means more swappy. 165 */ 166 int vm_swappiness = 60; 167 /* 168 * The total number of pages which are beyond the high watermark within all 169 * zones. 170 */ 171 unsigned long vm_total_pages; 172 173 static void set_task_reclaim_state(struct task_struct *task, 174 struct reclaim_state *rs) 175 { 176 /* Check for an overwrite */ 177 WARN_ON_ONCE(rs && task->reclaim_state); 178 179 /* Check for the nulling of an already-nulled member */ 180 WARN_ON_ONCE(!rs && !task->reclaim_state); 181 182 task->reclaim_state = rs; 183 } 184 185 static LIST_HEAD(shrinker_list); 186 static DECLARE_RWSEM(shrinker_rwsem); 187 188 #ifdef CONFIG_MEMCG 189 /* 190 * We allow subsystems to populate their shrinker-related 191 * LRU lists before register_shrinker_prepared() is called 192 * for the shrinker, since we don't want to impose 193 * restrictions on their internal registration order. 194 * In this case shrink_slab_memcg() may find corresponding 195 * bit is set in the shrinkers map. 196 * 197 * This value is used by the function to detect registering 198 * shrinkers and to skip do_shrink_slab() calls for them. 199 */ 200 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 201 202 static DEFINE_IDR(shrinker_idr); 203 static int shrinker_nr_max; 204 205 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 206 { 207 int id, ret = -ENOMEM; 208 209 down_write(&shrinker_rwsem); 210 /* This may call shrinker, so it must use down_read_trylock() */ 211 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 212 if (id < 0) 213 goto unlock; 214 215 if (id >= shrinker_nr_max) { 216 if (memcg_expand_shrinker_maps(id)) { 217 idr_remove(&shrinker_idr, id); 218 goto unlock; 219 } 220 221 shrinker_nr_max = id + 1; 222 } 223 shrinker->id = id; 224 ret = 0; 225 unlock: 226 up_write(&shrinker_rwsem); 227 return ret; 228 } 229 230 static void unregister_memcg_shrinker(struct shrinker *shrinker) 231 { 232 int id = shrinker->id; 233 234 BUG_ON(id < 0); 235 236 down_write(&shrinker_rwsem); 237 idr_remove(&shrinker_idr, id); 238 up_write(&shrinker_rwsem); 239 } 240 241 static bool cgroup_reclaim(struct scan_control *sc) 242 { 243 return sc->target_mem_cgroup; 244 } 245 246 /** 247 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 248 * @sc: scan_control in question 249 * 250 * The normal page dirty throttling mechanism in balance_dirty_pages() is 251 * completely broken with the legacy memcg and direct stalling in 252 * shrink_page_list() is used for throttling instead, which lacks all the 253 * niceties such as fairness, adaptive pausing, bandwidth proportional 254 * allocation and configurability. 255 * 256 * This function tests whether the vmscan currently in progress can assume 257 * that the normal dirty throttling mechanism is operational. 258 */ 259 static bool writeback_throttling_sane(struct scan_control *sc) 260 { 261 if (!cgroup_reclaim(sc)) 262 return true; 263 #ifdef CONFIG_CGROUP_WRITEBACK 264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 265 return true; 266 #endif 267 return false; 268 } 269 #else 270 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 271 { 272 return 0; 273 } 274 275 static void unregister_memcg_shrinker(struct shrinker *shrinker) 276 { 277 } 278 279 static bool cgroup_reclaim(struct scan_control *sc) 280 { 281 return false; 282 } 283 284 static bool writeback_throttling_sane(struct scan_control *sc) 285 { 286 return true; 287 } 288 #endif 289 290 /* 291 * This misses isolated pages which are not accounted for to save counters. 292 * As the data only determines if reclaim or compaction continues, it is 293 * not expected that isolated pages will be a dominating factor. 294 */ 295 unsigned long zone_reclaimable_pages(struct zone *zone) 296 { 297 unsigned long nr; 298 299 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 300 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 301 if (get_nr_swap_pages() > 0) 302 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 303 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 304 305 return nr; 306 } 307 308 /** 309 * lruvec_lru_size - Returns the number of pages on the given LRU list. 310 * @lruvec: lru vector 311 * @lru: lru to use 312 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 313 */ 314 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 315 { 316 unsigned long size = 0; 317 int zid; 318 319 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 320 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 321 322 if (!managed_zone(zone)) 323 continue; 324 325 if (!mem_cgroup_disabled()) 326 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 327 else 328 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 329 } 330 return size; 331 } 332 333 /* 334 * Add a shrinker callback to be called from the vm. 335 */ 336 int prealloc_shrinker(struct shrinker *shrinker) 337 { 338 unsigned int size = sizeof(*shrinker->nr_deferred); 339 340 if (shrinker->flags & SHRINKER_NUMA_AWARE) 341 size *= nr_node_ids; 342 343 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 344 if (!shrinker->nr_deferred) 345 return -ENOMEM; 346 347 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 348 if (prealloc_memcg_shrinker(shrinker)) 349 goto free_deferred; 350 } 351 352 return 0; 353 354 free_deferred: 355 kfree(shrinker->nr_deferred); 356 shrinker->nr_deferred = NULL; 357 return -ENOMEM; 358 } 359 360 void free_prealloced_shrinker(struct shrinker *shrinker) 361 { 362 if (!shrinker->nr_deferred) 363 return; 364 365 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 366 unregister_memcg_shrinker(shrinker); 367 368 kfree(shrinker->nr_deferred); 369 shrinker->nr_deferred = NULL; 370 } 371 372 void register_shrinker_prepared(struct shrinker *shrinker) 373 { 374 down_write(&shrinker_rwsem); 375 list_add_tail(&shrinker->list, &shrinker_list); 376 #ifdef CONFIG_MEMCG 377 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 378 idr_replace(&shrinker_idr, shrinker, shrinker->id); 379 #endif 380 up_write(&shrinker_rwsem); 381 } 382 383 int register_shrinker(struct shrinker *shrinker) 384 { 385 int err = prealloc_shrinker(shrinker); 386 387 if (err) 388 return err; 389 register_shrinker_prepared(shrinker); 390 return 0; 391 } 392 EXPORT_SYMBOL(register_shrinker); 393 394 /* 395 * Remove one 396 */ 397 void unregister_shrinker(struct shrinker *shrinker) 398 { 399 if (!shrinker->nr_deferred) 400 return; 401 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 402 unregister_memcg_shrinker(shrinker); 403 down_write(&shrinker_rwsem); 404 list_del(&shrinker->list); 405 up_write(&shrinker_rwsem); 406 kfree(shrinker->nr_deferred); 407 shrinker->nr_deferred = NULL; 408 } 409 EXPORT_SYMBOL(unregister_shrinker); 410 411 #define SHRINK_BATCH 128 412 413 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 414 struct shrinker *shrinker, int priority) 415 { 416 unsigned long freed = 0; 417 unsigned long long delta; 418 long total_scan; 419 long freeable; 420 long nr; 421 long new_nr; 422 int nid = shrinkctl->nid; 423 long batch_size = shrinker->batch ? shrinker->batch 424 : SHRINK_BATCH; 425 long scanned = 0, next_deferred; 426 427 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 428 nid = 0; 429 430 freeable = shrinker->count_objects(shrinker, shrinkctl); 431 if (freeable == 0 || freeable == SHRINK_EMPTY) 432 return freeable; 433 434 /* 435 * copy the current shrinker scan count into a local variable 436 * and zero it so that other concurrent shrinker invocations 437 * don't also do this scanning work. 438 */ 439 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 440 441 total_scan = nr; 442 if (shrinker->seeks) { 443 delta = freeable >> priority; 444 delta *= 4; 445 do_div(delta, shrinker->seeks); 446 } else { 447 /* 448 * These objects don't require any IO to create. Trim 449 * them aggressively under memory pressure to keep 450 * them from causing refetches in the IO caches. 451 */ 452 delta = freeable / 2; 453 } 454 455 total_scan += delta; 456 if (total_scan < 0) { 457 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 458 shrinker->scan_objects, total_scan); 459 total_scan = freeable; 460 next_deferred = nr; 461 } else 462 next_deferred = total_scan; 463 464 /* 465 * We need to avoid excessive windup on filesystem shrinkers 466 * due to large numbers of GFP_NOFS allocations causing the 467 * shrinkers to return -1 all the time. This results in a large 468 * nr being built up so when a shrink that can do some work 469 * comes along it empties the entire cache due to nr >>> 470 * freeable. This is bad for sustaining a working set in 471 * memory. 472 * 473 * Hence only allow the shrinker to scan the entire cache when 474 * a large delta change is calculated directly. 475 */ 476 if (delta < freeable / 4) 477 total_scan = min(total_scan, freeable / 2); 478 479 /* 480 * Avoid risking looping forever due to too large nr value: 481 * never try to free more than twice the estimate number of 482 * freeable entries. 483 */ 484 if (total_scan > freeable * 2) 485 total_scan = freeable * 2; 486 487 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 488 freeable, delta, total_scan, priority); 489 490 /* 491 * Normally, we should not scan less than batch_size objects in one 492 * pass to avoid too frequent shrinker calls, but if the slab has less 493 * than batch_size objects in total and we are really tight on memory, 494 * we will try to reclaim all available objects, otherwise we can end 495 * up failing allocations although there are plenty of reclaimable 496 * objects spread over several slabs with usage less than the 497 * batch_size. 498 * 499 * We detect the "tight on memory" situations by looking at the total 500 * number of objects we want to scan (total_scan). If it is greater 501 * than the total number of objects on slab (freeable), we must be 502 * scanning at high prio and therefore should try to reclaim as much as 503 * possible. 504 */ 505 while (total_scan >= batch_size || 506 total_scan >= freeable) { 507 unsigned long ret; 508 unsigned long nr_to_scan = min(batch_size, total_scan); 509 510 shrinkctl->nr_to_scan = nr_to_scan; 511 shrinkctl->nr_scanned = nr_to_scan; 512 ret = shrinker->scan_objects(shrinker, shrinkctl); 513 if (ret == SHRINK_STOP) 514 break; 515 freed += ret; 516 517 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 518 total_scan -= shrinkctl->nr_scanned; 519 scanned += shrinkctl->nr_scanned; 520 521 cond_resched(); 522 } 523 524 if (next_deferred >= scanned) 525 next_deferred -= scanned; 526 else 527 next_deferred = 0; 528 /* 529 * move the unused scan count back into the shrinker in a 530 * manner that handles concurrent updates. If we exhausted the 531 * scan, there is no need to do an update. 532 */ 533 if (next_deferred > 0) 534 new_nr = atomic_long_add_return(next_deferred, 535 &shrinker->nr_deferred[nid]); 536 else 537 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 538 539 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 540 return freed; 541 } 542 543 #ifdef CONFIG_MEMCG 544 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 545 struct mem_cgroup *memcg, int priority) 546 { 547 struct memcg_shrinker_map *map; 548 unsigned long ret, freed = 0; 549 int i; 550 551 if (!mem_cgroup_online(memcg)) 552 return 0; 553 554 if (!down_read_trylock(&shrinker_rwsem)) 555 return 0; 556 557 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 558 true); 559 if (unlikely(!map)) 560 goto unlock; 561 562 for_each_set_bit(i, map->map, shrinker_nr_max) { 563 struct shrink_control sc = { 564 .gfp_mask = gfp_mask, 565 .nid = nid, 566 .memcg = memcg, 567 }; 568 struct shrinker *shrinker; 569 570 shrinker = idr_find(&shrinker_idr, i); 571 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 572 if (!shrinker) 573 clear_bit(i, map->map); 574 continue; 575 } 576 577 /* Call non-slab shrinkers even though kmem is disabled */ 578 if (!memcg_kmem_enabled() && 579 !(shrinker->flags & SHRINKER_NONSLAB)) 580 continue; 581 582 ret = do_shrink_slab(&sc, shrinker, priority); 583 if (ret == SHRINK_EMPTY) { 584 clear_bit(i, map->map); 585 /* 586 * After the shrinker reported that it had no objects to 587 * free, but before we cleared the corresponding bit in 588 * the memcg shrinker map, a new object might have been 589 * added. To make sure, we have the bit set in this 590 * case, we invoke the shrinker one more time and reset 591 * the bit if it reports that it is not empty anymore. 592 * The memory barrier here pairs with the barrier in 593 * memcg_set_shrinker_bit(): 594 * 595 * list_lru_add() shrink_slab_memcg() 596 * list_add_tail() clear_bit() 597 * <MB> <MB> 598 * set_bit() do_shrink_slab() 599 */ 600 smp_mb__after_atomic(); 601 ret = do_shrink_slab(&sc, shrinker, priority); 602 if (ret == SHRINK_EMPTY) 603 ret = 0; 604 else 605 memcg_set_shrinker_bit(memcg, nid, i); 606 } 607 freed += ret; 608 609 if (rwsem_is_contended(&shrinker_rwsem)) { 610 freed = freed ? : 1; 611 break; 612 } 613 } 614 unlock: 615 up_read(&shrinker_rwsem); 616 return freed; 617 } 618 #else /* CONFIG_MEMCG */ 619 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 620 struct mem_cgroup *memcg, int priority) 621 { 622 return 0; 623 } 624 #endif /* CONFIG_MEMCG */ 625 626 /** 627 * shrink_slab - shrink slab caches 628 * @gfp_mask: allocation context 629 * @nid: node whose slab caches to target 630 * @memcg: memory cgroup whose slab caches to target 631 * @priority: the reclaim priority 632 * 633 * Call the shrink functions to age shrinkable caches. 634 * 635 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 636 * unaware shrinkers will receive a node id of 0 instead. 637 * 638 * @memcg specifies the memory cgroup to target. Unaware shrinkers 639 * are called only if it is the root cgroup. 640 * 641 * @priority is sc->priority, we take the number of objects and >> by priority 642 * in order to get the scan target. 643 * 644 * Returns the number of reclaimed slab objects. 645 */ 646 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 647 struct mem_cgroup *memcg, 648 int priority) 649 { 650 unsigned long ret, freed = 0; 651 struct shrinker *shrinker; 652 653 /* 654 * The root memcg might be allocated even though memcg is disabled 655 * via "cgroup_disable=memory" boot parameter. This could make 656 * mem_cgroup_is_root() return false, then just run memcg slab 657 * shrink, but skip global shrink. This may result in premature 658 * oom. 659 */ 660 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 661 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 662 663 if (!down_read_trylock(&shrinker_rwsem)) 664 goto out; 665 666 list_for_each_entry(shrinker, &shrinker_list, list) { 667 struct shrink_control sc = { 668 .gfp_mask = gfp_mask, 669 .nid = nid, 670 .memcg = memcg, 671 }; 672 673 ret = do_shrink_slab(&sc, shrinker, priority); 674 if (ret == SHRINK_EMPTY) 675 ret = 0; 676 freed += ret; 677 /* 678 * Bail out if someone want to register a new shrinker to 679 * prevent the regsitration from being stalled for long periods 680 * by parallel ongoing shrinking. 681 */ 682 if (rwsem_is_contended(&shrinker_rwsem)) { 683 freed = freed ? : 1; 684 break; 685 } 686 } 687 688 up_read(&shrinker_rwsem); 689 out: 690 cond_resched(); 691 return freed; 692 } 693 694 void drop_slab_node(int nid) 695 { 696 unsigned long freed; 697 698 do { 699 struct mem_cgroup *memcg = NULL; 700 701 freed = 0; 702 memcg = mem_cgroup_iter(NULL, NULL, NULL); 703 do { 704 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 705 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 706 } while (freed > 10); 707 } 708 709 void drop_slab(void) 710 { 711 int nid; 712 713 for_each_online_node(nid) 714 drop_slab_node(nid); 715 } 716 717 static inline int is_page_cache_freeable(struct page *page) 718 { 719 /* 720 * A freeable page cache page is referenced only by the caller 721 * that isolated the page, the page cache and optional buffer 722 * heads at page->private. 723 */ 724 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 725 HPAGE_PMD_NR : 1; 726 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 727 } 728 729 static int may_write_to_inode(struct inode *inode) 730 { 731 if (current->flags & PF_SWAPWRITE) 732 return 1; 733 if (!inode_write_congested(inode)) 734 return 1; 735 if (inode_to_bdi(inode) == current->backing_dev_info) 736 return 1; 737 return 0; 738 } 739 740 /* 741 * We detected a synchronous write error writing a page out. Probably 742 * -ENOSPC. We need to propagate that into the address_space for a subsequent 743 * fsync(), msync() or close(). 744 * 745 * The tricky part is that after writepage we cannot touch the mapping: nothing 746 * prevents it from being freed up. But we have a ref on the page and once 747 * that page is locked, the mapping is pinned. 748 * 749 * We're allowed to run sleeping lock_page() here because we know the caller has 750 * __GFP_FS. 751 */ 752 static void handle_write_error(struct address_space *mapping, 753 struct page *page, int error) 754 { 755 lock_page(page); 756 if (page_mapping(page) == mapping) 757 mapping_set_error(mapping, error); 758 unlock_page(page); 759 } 760 761 /* possible outcome of pageout() */ 762 typedef enum { 763 /* failed to write page out, page is locked */ 764 PAGE_KEEP, 765 /* move page to the active list, page is locked */ 766 PAGE_ACTIVATE, 767 /* page has been sent to the disk successfully, page is unlocked */ 768 PAGE_SUCCESS, 769 /* page is clean and locked */ 770 PAGE_CLEAN, 771 } pageout_t; 772 773 /* 774 * pageout is called by shrink_page_list() for each dirty page. 775 * Calls ->writepage(). 776 */ 777 static pageout_t pageout(struct page *page, struct address_space *mapping) 778 { 779 /* 780 * If the page is dirty, only perform writeback if that write 781 * will be non-blocking. To prevent this allocation from being 782 * stalled by pagecache activity. But note that there may be 783 * stalls if we need to run get_block(). We could test 784 * PagePrivate for that. 785 * 786 * If this process is currently in __generic_file_write_iter() against 787 * this page's queue, we can perform writeback even if that 788 * will block. 789 * 790 * If the page is swapcache, write it back even if that would 791 * block, for some throttling. This happens by accident, because 792 * swap_backing_dev_info is bust: it doesn't reflect the 793 * congestion state of the swapdevs. Easy to fix, if needed. 794 */ 795 if (!is_page_cache_freeable(page)) 796 return PAGE_KEEP; 797 if (!mapping) { 798 /* 799 * Some data journaling orphaned pages can have 800 * page->mapping == NULL while being dirty with clean buffers. 801 */ 802 if (page_has_private(page)) { 803 if (try_to_free_buffers(page)) { 804 ClearPageDirty(page); 805 pr_info("%s: orphaned page\n", __func__); 806 return PAGE_CLEAN; 807 } 808 } 809 return PAGE_KEEP; 810 } 811 if (mapping->a_ops->writepage == NULL) 812 return PAGE_ACTIVATE; 813 if (!may_write_to_inode(mapping->host)) 814 return PAGE_KEEP; 815 816 if (clear_page_dirty_for_io(page)) { 817 int res; 818 struct writeback_control wbc = { 819 .sync_mode = WB_SYNC_NONE, 820 .nr_to_write = SWAP_CLUSTER_MAX, 821 .range_start = 0, 822 .range_end = LLONG_MAX, 823 .for_reclaim = 1, 824 }; 825 826 SetPageReclaim(page); 827 res = mapping->a_ops->writepage(page, &wbc); 828 if (res < 0) 829 handle_write_error(mapping, page, res); 830 if (res == AOP_WRITEPAGE_ACTIVATE) { 831 ClearPageReclaim(page); 832 return PAGE_ACTIVATE; 833 } 834 835 if (!PageWriteback(page)) { 836 /* synchronous write or broken a_ops? */ 837 ClearPageReclaim(page); 838 } 839 trace_mm_vmscan_writepage(page); 840 inc_node_page_state(page, NR_VMSCAN_WRITE); 841 return PAGE_SUCCESS; 842 } 843 844 return PAGE_CLEAN; 845 } 846 847 /* 848 * Same as remove_mapping, but if the page is removed from the mapping, it 849 * gets returned with a refcount of 0. 850 */ 851 static int __remove_mapping(struct address_space *mapping, struct page *page, 852 bool reclaimed, struct mem_cgroup *target_memcg) 853 { 854 unsigned long flags; 855 int refcount; 856 857 BUG_ON(!PageLocked(page)); 858 BUG_ON(mapping != page_mapping(page)); 859 860 xa_lock_irqsave(&mapping->i_pages, flags); 861 /* 862 * The non racy check for a busy page. 863 * 864 * Must be careful with the order of the tests. When someone has 865 * a ref to the page, it may be possible that they dirty it then 866 * drop the reference. So if PageDirty is tested before page_count 867 * here, then the following race may occur: 868 * 869 * get_user_pages(&page); 870 * [user mapping goes away] 871 * write_to(page); 872 * !PageDirty(page) [good] 873 * SetPageDirty(page); 874 * put_page(page); 875 * !page_count(page) [good, discard it] 876 * 877 * [oops, our write_to data is lost] 878 * 879 * Reversing the order of the tests ensures such a situation cannot 880 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 881 * load is not satisfied before that of page->_refcount. 882 * 883 * Note that if SetPageDirty is always performed via set_page_dirty, 884 * and thus under the i_pages lock, then this ordering is not required. 885 */ 886 refcount = 1 + compound_nr(page); 887 if (!page_ref_freeze(page, refcount)) 888 goto cannot_free; 889 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 890 if (unlikely(PageDirty(page))) { 891 page_ref_unfreeze(page, refcount); 892 goto cannot_free; 893 } 894 895 if (PageSwapCache(page)) { 896 swp_entry_t swap = { .val = page_private(page) }; 897 mem_cgroup_swapout(page, swap); 898 __delete_from_swap_cache(page, swap); 899 xa_unlock_irqrestore(&mapping->i_pages, flags); 900 put_swap_page(page, swap); 901 } else { 902 void (*freepage)(struct page *); 903 void *shadow = NULL; 904 905 freepage = mapping->a_ops->freepage; 906 /* 907 * Remember a shadow entry for reclaimed file cache in 908 * order to detect refaults, thus thrashing, later on. 909 * 910 * But don't store shadows in an address space that is 911 * already exiting. This is not just an optizimation, 912 * inode reclaim needs to empty out the radix tree or 913 * the nodes are lost. Don't plant shadows behind its 914 * back. 915 * 916 * We also don't store shadows for DAX mappings because the 917 * only page cache pages found in these are zero pages 918 * covering holes, and because we don't want to mix DAX 919 * exceptional entries and shadow exceptional entries in the 920 * same address_space. 921 */ 922 if (reclaimed && page_is_file_cache(page) && 923 !mapping_exiting(mapping) && !dax_mapping(mapping)) 924 shadow = workingset_eviction(page, target_memcg); 925 __delete_from_page_cache(page, shadow); 926 xa_unlock_irqrestore(&mapping->i_pages, flags); 927 928 if (freepage != NULL) 929 freepage(page); 930 } 931 932 return 1; 933 934 cannot_free: 935 xa_unlock_irqrestore(&mapping->i_pages, flags); 936 return 0; 937 } 938 939 /* 940 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 941 * someone else has a ref on the page, abort and return 0. If it was 942 * successfully detached, return 1. Assumes the caller has a single ref on 943 * this page. 944 */ 945 int remove_mapping(struct address_space *mapping, struct page *page) 946 { 947 if (__remove_mapping(mapping, page, false, NULL)) { 948 /* 949 * Unfreezing the refcount with 1 rather than 2 effectively 950 * drops the pagecache ref for us without requiring another 951 * atomic operation. 952 */ 953 page_ref_unfreeze(page, 1); 954 return 1; 955 } 956 return 0; 957 } 958 959 /** 960 * putback_lru_page - put previously isolated page onto appropriate LRU list 961 * @page: page to be put back to appropriate lru list 962 * 963 * Add previously isolated @page to appropriate LRU list. 964 * Page may still be unevictable for other reasons. 965 * 966 * lru_lock must not be held, interrupts must be enabled. 967 */ 968 void putback_lru_page(struct page *page) 969 { 970 lru_cache_add(page); 971 put_page(page); /* drop ref from isolate */ 972 } 973 974 enum page_references { 975 PAGEREF_RECLAIM, 976 PAGEREF_RECLAIM_CLEAN, 977 PAGEREF_KEEP, 978 PAGEREF_ACTIVATE, 979 }; 980 981 static enum page_references page_check_references(struct page *page, 982 struct scan_control *sc) 983 { 984 int referenced_ptes, referenced_page; 985 unsigned long vm_flags; 986 987 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 988 &vm_flags); 989 referenced_page = TestClearPageReferenced(page); 990 991 /* 992 * Mlock lost the isolation race with us. Let try_to_unmap() 993 * move the page to the unevictable list. 994 */ 995 if (vm_flags & VM_LOCKED) 996 return PAGEREF_RECLAIM; 997 998 if (referenced_ptes) { 999 if (PageSwapBacked(page)) 1000 return PAGEREF_ACTIVATE; 1001 /* 1002 * All mapped pages start out with page table 1003 * references from the instantiating fault, so we need 1004 * to look twice if a mapped file page is used more 1005 * than once. 1006 * 1007 * Mark it and spare it for another trip around the 1008 * inactive list. Another page table reference will 1009 * lead to its activation. 1010 * 1011 * Note: the mark is set for activated pages as well 1012 * so that recently deactivated but used pages are 1013 * quickly recovered. 1014 */ 1015 SetPageReferenced(page); 1016 1017 if (referenced_page || referenced_ptes > 1) 1018 return PAGEREF_ACTIVATE; 1019 1020 /* 1021 * Activate file-backed executable pages after first usage. 1022 */ 1023 if (vm_flags & VM_EXEC) 1024 return PAGEREF_ACTIVATE; 1025 1026 return PAGEREF_KEEP; 1027 } 1028 1029 /* Reclaim if clean, defer dirty pages to writeback */ 1030 if (referenced_page && !PageSwapBacked(page)) 1031 return PAGEREF_RECLAIM_CLEAN; 1032 1033 return PAGEREF_RECLAIM; 1034 } 1035 1036 /* Check if a page is dirty or under writeback */ 1037 static void page_check_dirty_writeback(struct page *page, 1038 bool *dirty, bool *writeback) 1039 { 1040 struct address_space *mapping; 1041 1042 /* 1043 * Anonymous pages are not handled by flushers and must be written 1044 * from reclaim context. Do not stall reclaim based on them 1045 */ 1046 if (!page_is_file_cache(page) || 1047 (PageAnon(page) && !PageSwapBacked(page))) { 1048 *dirty = false; 1049 *writeback = false; 1050 return; 1051 } 1052 1053 /* By default assume that the page flags are accurate */ 1054 *dirty = PageDirty(page); 1055 *writeback = PageWriteback(page); 1056 1057 /* Verify dirty/writeback state if the filesystem supports it */ 1058 if (!page_has_private(page)) 1059 return; 1060 1061 mapping = page_mapping(page); 1062 if (mapping && mapping->a_ops->is_dirty_writeback) 1063 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1064 } 1065 1066 /* 1067 * shrink_page_list() returns the number of reclaimed pages 1068 */ 1069 static unsigned long shrink_page_list(struct list_head *page_list, 1070 struct pglist_data *pgdat, 1071 struct scan_control *sc, 1072 enum ttu_flags ttu_flags, 1073 struct reclaim_stat *stat, 1074 bool ignore_references) 1075 { 1076 LIST_HEAD(ret_pages); 1077 LIST_HEAD(free_pages); 1078 unsigned nr_reclaimed = 0; 1079 unsigned pgactivate = 0; 1080 1081 memset(stat, 0, sizeof(*stat)); 1082 cond_resched(); 1083 1084 while (!list_empty(page_list)) { 1085 struct address_space *mapping; 1086 struct page *page; 1087 int may_enter_fs; 1088 enum page_references references = PAGEREF_RECLAIM; 1089 bool dirty, writeback; 1090 unsigned int nr_pages; 1091 1092 cond_resched(); 1093 1094 page = lru_to_page(page_list); 1095 list_del(&page->lru); 1096 1097 if (!trylock_page(page)) 1098 goto keep; 1099 1100 VM_BUG_ON_PAGE(PageActive(page), page); 1101 1102 nr_pages = compound_nr(page); 1103 1104 /* Account the number of base pages even though THP */ 1105 sc->nr_scanned += nr_pages; 1106 1107 if (unlikely(!page_evictable(page))) 1108 goto activate_locked; 1109 1110 if (!sc->may_unmap && page_mapped(page)) 1111 goto keep_locked; 1112 1113 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1114 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1115 1116 /* 1117 * The number of dirty pages determines if a node is marked 1118 * reclaim_congested which affects wait_iff_congested. kswapd 1119 * will stall and start writing pages if the tail of the LRU 1120 * is all dirty unqueued pages. 1121 */ 1122 page_check_dirty_writeback(page, &dirty, &writeback); 1123 if (dirty || writeback) 1124 stat->nr_dirty++; 1125 1126 if (dirty && !writeback) 1127 stat->nr_unqueued_dirty++; 1128 1129 /* 1130 * Treat this page as congested if the underlying BDI is or if 1131 * pages are cycling through the LRU so quickly that the 1132 * pages marked for immediate reclaim are making it to the 1133 * end of the LRU a second time. 1134 */ 1135 mapping = page_mapping(page); 1136 if (((dirty || writeback) && mapping && 1137 inode_write_congested(mapping->host)) || 1138 (writeback && PageReclaim(page))) 1139 stat->nr_congested++; 1140 1141 /* 1142 * If a page at the tail of the LRU is under writeback, there 1143 * are three cases to consider. 1144 * 1145 * 1) If reclaim is encountering an excessive number of pages 1146 * under writeback and this page is both under writeback and 1147 * PageReclaim then it indicates that pages are being queued 1148 * for IO but are being recycled through the LRU before the 1149 * IO can complete. Waiting on the page itself risks an 1150 * indefinite stall if it is impossible to writeback the 1151 * page due to IO error or disconnected storage so instead 1152 * note that the LRU is being scanned too quickly and the 1153 * caller can stall after page list has been processed. 1154 * 1155 * 2) Global or new memcg reclaim encounters a page that is 1156 * not marked for immediate reclaim, or the caller does not 1157 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1158 * not to fs). In this case mark the page for immediate 1159 * reclaim and continue scanning. 1160 * 1161 * Require may_enter_fs because we would wait on fs, which 1162 * may not have submitted IO yet. And the loop driver might 1163 * enter reclaim, and deadlock if it waits on a page for 1164 * which it is needed to do the write (loop masks off 1165 * __GFP_IO|__GFP_FS for this reason); but more thought 1166 * would probably show more reasons. 1167 * 1168 * 3) Legacy memcg encounters a page that is already marked 1169 * PageReclaim. memcg does not have any dirty pages 1170 * throttling so we could easily OOM just because too many 1171 * pages are in writeback and there is nothing else to 1172 * reclaim. Wait for the writeback to complete. 1173 * 1174 * In cases 1) and 2) we activate the pages to get them out of 1175 * the way while we continue scanning for clean pages on the 1176 * inactive list and refilling from the active list. The 1177 * observation here is that waiting for disk writes is more 1178 * expensive than potentially causing reloads down the line. 1179 * Since they're marked for immediate reclaim, they won't put 1180 * memory pressure on the cache working set any longer than it 1181 * takes to write them to disk. 1182 */ 1183 if (PageWriteback(page)) { 1184 /* Case 1 above */ 1185 if (current_is_kswapd() && 1186 PageReclaim(page) && 1187 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1188 stat->nr_immediate++; 1189 goto activate_locked; 1190 1191 /* Case 2 above */ 1192 } else if (writeback_throttling_sane(sc) || 1193 !PageReclaim(page) || !may_enter_fs) { 1194 /* 1195 * This is slightly racy - end_page_writeback() 1196 * might have just cleared PageReclaim, then 1197 * setting PageReclaim here end up interpreted 1198 * as PageReadahead - but that does not matter 1199 * enough to care. What we do want is for this 1200 * page to have PageReclaim set next time memcg 1201 * reclaim reaches the tests above, so it will 1202 * then wait_on_page_writeback() to avoid OOM; 1203 * and it's also appropriate in global reclaim. 1204 */ 1205 SetPageReclaim(page); 1206 stat->nr_writeback++; 1207 goto activate_locked; 1208 1209 /* Case 3 above */ 1210 } else { 1211 unlock_page(page); 1212 wait_on_page_writeback(page); 1213 /* then go back and try same page again */ 1214 list_add_tail(&page->lru, page_list); 1215 continue; 1216 } 1217 } 1218 1219 if (!ignore_references) 1220 references = page_check_references(page, sc); 1221 1222 switch (references) { 1223 case PAGEREF_ACTIVATE: 1224 goto activate_locked; 1225 case PAGEREF_KEEP: 1226 stat->nr_ref_keep += nr_pages; 1227 goto keep_locked; 1228 case PAGEREF_RECLAIM: 1229 case PAGEREF_RECLAIM_CLEAN: 1230 ; /* try to reclaim the page below */ 1231 } 1232 1233 /* 1234 * Anonymous process memory has backing store? 1235 * Try to allocate it some swap space here. 1236 * Lazyfree page could be freed directly 1237 */ 1238 if (PageAnon(page) && PageSwapBacked(page)) { 1239 if (!PageSwapCache(page)) { 1240 if (!(sc->gfp_mask & __GFP_IO)) 1241 goto keep_locked; 1242 if (PageTransHuge(page)) { 1243 /* cannot split THP, skip it */ 1244 if (!can_split_huge_page(page, NULL)) 1245 goto activate_locked; 1246 /* 1247 * Split pages without a PMD map right 1248 * away. Chances are some or all of the 1249 * tail pages can be freed without IO. 1250 */ 1251 if (!compound_mapcount(page) && 1252 split_huge_page_to_list(page, 1253 page_list)) 1254 goto activate_locked; 1255 } 1256 if (!add_to_swap(page)) { 1257 if (!PageTransHuge(page)) 1258 goto activate_locked_split; 1259 /* Fallback to swap normal pages */ 1260 if (split_huge_page_to_list(page, 1261 page_list)) 1262 goto activate_locked; 1263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1264 count_vm_event(THP_SWPOUT_FALLBACK); 1265 #endif 1266 if (!add_to_swap(page)) 1267 goto activate_locked_split; 1268 } 1269 1270 may_enter_fs = 1; 1271 1272 /* Adding to swap updated mapping */ 1273 mapping = page_mapping(page); 1274 } 1275 } else if (unlikely(PageTransHuge(page))) { 1276 /* Split file THP */ 1277 if (split_huge_page_to_list(page, page_list)) 1278 goto keep_locked; 1279 } 1280 1281 /* 1282 * THP may get split above, need minus tail pages and update 1283 * nr_pages to avoid accounting tail pages twice. 1284 * 1285 * The tail pages that are added into swap cache successfully 1286 * reach here. 1287 */ 1288 if ((nr_pages > 1) && !PageTransHuge(page)) { 1289 sc->nr_scanned -= (nr_pages - 1); 1290 nr_pages = 1; 1291 } 1292 1293 /* 1294 * The page is mapped into the page tables of one or more 1295 * processes. Try to unmap it here. 1296 */ 1297 if (page_mapped(page)) { 1298 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1299 1300 if (unlikely(PageTransHuge(page))) 1301 flags |= TTU_SPLIT_HUGE_PMD; 1302 if (!try_to_unmap(page, flags)) { 1303 stat->nr_unmap_fail += nr_pages; 1304 goto activate_locked; 1305 } 1306 } 1307 1308 if (PageDirty(page)) { 1309 /* 1310 * Only kswapd can writeback filesystem pages 1311 * to avoid risk of stack overflow. But avoid 1312 * injecting inefficient single-page IO into 1313 * flusher writeback as much as possible: only 1314 * write pages when we've encountered many 1315 * dirty pages, and when we've already scanned 1316 * the rest of the LRU for clean pages and see 1317 * the same dirty pages again (PageReclaim). 1318 */ 1319 if (page_is_file_cache(page) && 1320 (!current_is_kswapd() || !PageReclaim(page) || 1321 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1322 /* 1323 * Immediately reclaim when written back. 1324 * Similar in principal to deactivate_page() 1325 * except we already have the page isolated 1326 * and know it's dirty 1327 */ 1328 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1329 SetPageReclaim(page); 1330 1331 goto activate_locked; 1332 } 1333 1334 if (references == PAGEREF_RECLAIM_CLEAN) 1335 goto keep_locked; 1336 if (!may_enter_fs) 1337 goto keep_locked; 1338 if (!sc->may_writepage) 1339 goto keep_locked; 1340 1341 /* 1342 * Page is dirty. Flush the TLB if a writable entry 1343 * potentially exists to avoid CPU writes after IO 1344 * starts and then write it out here. 1345 */ 1346 try_to_unmap_flush_dirty(); 1347 switch (pageout(page, mapping)) { 1348 case PAGE_KEEP: 1349 goto keep_locked; 1350 case PAGE_ACTIVATE: 1351 goto activate_locked; 1352 case PAGE_SUCCESS: 1353 if (PageWriteback(page)) 1354 goto keep; 1355 if (PageDirty(page)) 1356 goto keep; 1357 1358 /* 1359 * A synchronous write - probably a ramdisk. Go 1360 * ahead and try to reclaim the page. 1361 */ 1362 if (!trylock_page(page)) 1363 goto keep; 1364 if (PageDirty(page) || PageWriteback(page)) 1365 goto keep_locked; 1366 mapping = page_mapping(page); 1367 case PAGE_CLEAN: 1368 ; /* try to free the page below */ 1369 } 1370 } 1371 1372 /* 1373 * If the page has buffers, try to free the buffer mappings 1374 * associated with this page. If we succeed we try to free 1375 * the page as well. 1376 * 1377 * We do this even if the page is PageDirty(). 1378 * try_to_release_page() does not perform I/O, but it is 1379 * possible for a page to have PageDirty set, but it is actually 1380 * clean (all its buffers are clean). This happens if the 1381 * buffers were written out directly, with submit_bh(). ext3 1382 * will do this, as well as the blockdev mapping. 1383 * try_to_release_page() will discover that cleanness and will 1384 * drop the buffers and mark the page clean - it can be freed. 1385 * 1386 * Rarely, pages can have buffers and no ->mapping. These are 1387 * the pages which were not successfully invalidated in 1388 * truncate_complete_page(). We try to drop those buffers here 1389 * and if that worked, and the page is no longer mapped into 1390 * process address space (page_count == 1) it can be freed. 1391 * Otherwise, leave the page on the LRU so it is swappable. 1392 */ 1393 if (page_has_private(page)) { 1394 if (!try_to_release_page(page, sc->gfp_mask)) 1395 goto activate_locked; 1396 if (!mapping && page_count(page) == 1) { 1397 unlock_page(page); 1398 if (put_page_testzero(page)) 1399 goto free_it; 1400 else { 1401 /* 1402 * rare race with speculative reference. 1403 * the speculative reference will free 1404 * this page shortly, so we may 1405 * increment nr_reclaimed here (and 1406 * leave it off the LRU). 1407 */ 1408 nr_reclaimed++; 1409 continue; 1410 } 1411 } 1412 } 1413 1414 if (PageAnon(page) && !PageSwapBacked(page)) { 1415 /* follow __remove_mapping for reference */ 1416 if (!page_ref_freeze(page, 1)) 1417 goto keep_locked; 1418 if (PageDirty(page)) { 1419 page_ref_unfreeze(page, 1); 1420 goto keep_locked; 1421 } 1422 1423 count_vm_event(PGLAZYFREED); 1424 count_memcg_page_event(page, PGLAZYFREED); 1425 } else if (!mapping || !__remove_mapping(mapping, page, true, 1426 sc->target_mem_cgroup)) 1427 goto keep_locked; 1428 1429 unlock_page(page); 1430 free_it: 1431 /* 1432 * THP may get swapped out in a whole, need account 1433 * all base pages. 1434 */ 1435 nr_reclaimed += nr_pages; 1436 1437 /* 1438 * Is there need to periodically free_page_list? It would 1439 * appear not as the counts should be low 1440 */ 1441 if (unlikely(PageTransHuge(page))) 1442 (*get_compound_page_dtor(page))(page); 1443 else 1444 list_add(&page->lru, &free_pages); 1445 continue; 1446 1447 activate_locked_split: 1448 /* 1449 * The tail pages that are failed to add into swap cache 1450 * reach here. Fixup nr_scanned and nr_pages. 1451 */ 1452 if (nr_pages > 1) { 1453 sc->nr_scanned -= (nr_pages - 1); 1454 nr_pages = 1; 1455 } 1456 activate_locked: 1457 /* Not a candidate for swapping, so reclaim swap space. */ 1458 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1459 PageMlocked(page))) 1460 try_to_free_swap(page); 1461 VM_BUG_ON_PAGE(PageActive(page), page); 1462 if (!PageMlocked(page)) { 1463 int type = page_is_file_cache(page); 1464 SetPageActive(page); 1465 stat->nr_activate[type] += nr_pages; 1466 count_memcg_page_event(page, PGACTIVATE); 1467 } 1468 keep_locked: 1469 unlock_page(page); 1470 keep: 1471 list_add(&page->lru, &ret_pages); 1472 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1473 } 1474 1475 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1476 1477 mem_cgroup_uncharge_list(&free_pages); 1478 try_to_unmap_flush(); 1479 free_unref_page_list(&free_pages); 1480 1481 list_splice(&ret_pages, page_list); 1482 count_vm_events(PGACTIVATE, pgactivate); 1483 1484 return nr_reclaimed; 1485 } 1486 1487 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1488 struct list_head *page_list) 1489 { 1490 struct scan_control sc = { 1491 .gfp_mask = GFP_KERNEL, 1492 .priority = DEF_PRIORITY, 1493 .may_unmap = 1, 1494 }; 1495 struct reclaim_stat dummy_stat; 1496 unsigned long ret; 1497 struct page *page, *next; 1498 LIST_HEAD(clean_pages); 1499 1500 list_for_each_entry_safe(page, next, page_list, lru) { 1501 if (page_is_file_cache(page) && !PageDirty(page) && 1502 !__PageMovable(page) && !PageUnevictable(page)) { 1503 ClearPageActive(page); 1504 list_move(&page->lru, &clean_pages); 1505 } 1506 } 1507 1508 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1509 TTU_IGNORE_ACCESS, &dummy_stat, true); 1510 list_splice(&clean_pages, page_list); 1511 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1512 return ret; 1513 } 1514 1515 /* 1516 * Attempt to remove the specified page from its LRU. Only take this page 1517 * if it is of the appropriate PageActive status. Pages which are being 1518 * freed elsewhere are also ignored. 1519 * 1520 * page: page to consider 1521 * mode: one of the LRU isolation modes defined above 1522 * 1523 * returns 0 on success, -ve errno on failure. 1524 */ 1525 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1526 { 1527 int ret = -EINVAL; 1528 1529 /* Only take pages on the LRU. */ 1530 if (!PageLRU(page)) 1531 return ret; 1532 1533 /* Compaction should not handle unevictable pages but CMA can do so */ 1534 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1535 return ret; 1536 1537 ret = -EBUSY; 1538 1539 /* 1540 * To minimise LRU disruption, the caller can indicate that it only 1541 * wants to isolate pages it will be able to operate on without 1542 * blocking - clean pages for the most part. 1543 * 1544 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1545 * that it is possible to migrate without blocking 1546 */ 1547 if (mode & ISOLATE_ASYNC_MIGRATE) { 1548 /* All the caller can do on PageWriteback is block */ 1549 if (PageWriteback(page)) 1550 return ret; 1551 1552 if (PageDirty(page)) { 1553 struct address_space *mapping; 1554 bool migrate_dirty; 1555 1556 /* 1557 * Only pages without mappings or that have a 1558 * ->migratepage callback are possible to migrate 1559 * without blocking. However, we can be racing with 1560 * truncation so it's necessary to lock the page 1561 * to stabilise the mapping as truncation holds 1562 * the page lock until after the page is removed 1563 * from the page cache. 1564 */ 1565 if (!trylock_page(page)) 1566 return ret; 1567 1568 mapping = page_mapping(page); 1569 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1570 unlock_page(page); 1571 if (!migrate_dirty) 1572 return ret; 1573 } 1574 } 1575 1576 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1577 return ret; 1578 1579 if (likely(get_page_unless_zero(page))) { 1580 /* 1581 * Be careful not to clear PageLRU until after we're 1582 * sure the page is not being freed elsewhere -- the 1583 * page release code relies on it. 1584 */ 1585 ClearPageLRU(page); 1586 ret = 0; 1587 } 1588 1589 return ret; 1590 } 1591 1592 1593 /* 1594 * Update LRU sizes after isolating pages. The LRU size updates must 1595 * be complete before mem_cgroup_update_lru_size due to a santity check. 1596 */ 1597 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1598 enum lru_list lru, unsigned long *nr_zone_taken) 1599 { 1600 int zid; 1601 1602 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1603 if (!nr_zone_taken[zid]) 1604 continue; 1605 1606 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1607 #ifdef CONFIG_MEMCG 1608 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1609 #endif 1610 } 1611 1612 } 1613 1614 /** 1615 * pgdat->lru_lock is heavily contended. Some of the functions that 1616 * shrink the lists perform better by taking out a batch of pages 1617 * and working on them outside the LRU lock. 1618 * 1619 * For pagecache intensive workloads, this function is the hottest 1620 * spot in the kernel (apart from copy_*_user functions). 1621 * 1622 * Appropriate locks must be held before calling this function. 1623 * 1624 * @nr_to_scan: The number of eligible pages to look through on the list. 1625 * @lruvec: The LRU vector to pull pages from. 1626 * @dst: The temp list to put pages on to. 1627 * @nr_scanned: The number of pages that were scanned. 1628 * @sc: The scan_control struct for this reclaim session 1629 * @mode: One of the LRU isolation modes 1630 * @lru: LRU list id for isolating 1631 * 1632 * returns how many pages were moved onto *@dst. 1633 */ 1634 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1635 struct lruvec *lruvec, struct list_head *dst, 1636 unsigned long *nr_scanned, struct scan_control *sc, 1637 enum lru_list lru) 1638 { 1639 struct list_head *src = &lruvec->lists[lru]; 1640 unsigned long nr_taken = 0; 1641 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1642 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1643 unsigned long skipped = 0; 1644 unsigned long scan, total_scan, nr_pages; 1645 LIST_HEAD(pages_skipped); 1646 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1647 1648 total_scan = 0; 1649 scan = 0; 1650 while (scan < nr_to_scan && !list_empty(src)) { 1651 struct page *page; 1652 1653 page = lru_to_page(src); 1654 prefetchw_prev_lru_page(page, src, flags); 1655 1656 VM_BUG_ON_PAGE(!PageLRU(page), page); 1657 1658 nr_pages = compound_nr(page); 1659 total_scan += nr_pages; 1660 1661 if (page_zonenum(page) > sc->reclaim_idx) { 1662 list_move(&page->lru, &pages_skipped); 1663 nr_skipped[page_zonenum(page)] += nr_pages; 1664 continue; 1665 } 1666 1667 /* 1668 * Do not count skipped pages because that makes the function 1669 * return with no isolated pages if the LRU mostly contains 1670 * ineligible pages. This causes the VM to not reclaim any 1671 * pages, triggering a premature OOM. 1672 * 1673 * Account all tail pages of THP. This would not cause 1674 * premature OOM since __isolate_lru_page() returns -EBUSY 1675 * only when the page is being freed somewhere else. 1676 */ 1677 scan += nr_pages; 1678 switch (__isolate_lru_page(page, mode)) { 1679 case 0: 1680 nr_taken += nr_pages; 1681 nr_zone_taken[page_zonenum(page)] += nr_pages; 1682 list_move(&page->lru, dst); 1683 break; 1684 1685 case -EBUSY: 1686 /* else it is being freed elsewhere */ 1687 list_move(&page->lru, src); 1688 continue; 1689 1690 default: 1691 BUG(); 1692 } 1693 } 1694 1695 /* 1696 * Splice any skipped pages to the start of the LRU list. Note that 1697 * this disrupts the LRU order when reclaiming for lower zones but 1698 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1699 * scanning would soon rescan the same pages to skip and put the 1700 * system at risk of premature OOM. 1701 */ 1702 if (!list_empty(&pages_skipped)) { 1703 int zid; 1704 1705 list_splice(&pages_skipped, src); 1706 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1707 if (!nr_skipped[zid]) 1708 continue; 1709 1710 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1711 skipped += nr_skipped[zid]; 1712 } 1713 } 1714 *nr_scanned = total_scan; 1715 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1716 total_scan, skipped, nr_taken, mode, lru); 1717 update_lru_sizes(lruvec, lru, nr_zone_taken); 1718 return nr_taken; 1719 } 1720 1721 /** 1722 * isolate_lru_page - tries to isolate a page from its LRU list 1723 * @page: page to isolate from its LRU list 1724 * 1725 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1726 * vmstat statistic corresponding to whatever LRU list the page was on. 1727 * 1728 * Returns 0 if the page was removed from an LRU list. 1729 * Returns -EBUSY if the page was not on an LRU list. 1730 * 1731 * The returned page will have PageLRU() cleared. If it was found on 1732 * the active list, it will have PageActive set. If it was found on 1733 * the unevictable list, it will have the PageUnevictable bit set. That flag 1734 * may need to be cleared by the caller before letting the page go. 1735 * 1736 * The vmstat statistic corresponding to the list on which the page was 1737 * found will be decremented. 1738 * 1739 * Restrictions: 1740 * 1741 * (1) Must be called with an elevated refcount on the page. This is a 1742 * fundamentnal difference from isolate_lru_pages (which is called 1743 * without a stable reference). 1744 * (2) the lru_lock must not be held. 1745 * (3) interrupts must be enabled. 1746 */ 1747 int isolate_lru_page(struct page *page) 1748 { 1749 int ret = -EBUSY; 1750 1751 VM_BUG_ON_PAGE(!page_count(page), page); 1752 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1753 1754 if (PageLRU(page)) { 1755 pg_data_t *pgdat = page_pgdat(page); 1756 struct lruvec *lruvec; 1757 1758 spin_lock_irq(&pgdat->lru_lock); 1759 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1760 if (PageLRU(page)) { 1761 int lru = page_lru(page); 1762 get_page(page); 1763 ClearPageLRU(page); 1764 del_page_from_lru_list(page, lruvec, lru); 1765 ret = 0; 1766 } 1767 spin_unlock_irq(&pgdat->lru_lock); 1768 } 1769 return ret; 1770 } 1771 1772 /* 1773 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1774 * then get rescheduled. When there are massive number of tasks doing page 1775 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1776 * the LRU list will go small and be scanned faster than necessary, leading to 1777 * unnecessary swapping, thrashing and OOM. 1778 */ 1779 static int too_many_isolated(struct pglist_data *pgdat, int file, 1780 struct scan_control *sc) 1781 { 1782 unsigned long inactive, isolated; 1783 1784 if (current_is_kswapd()) 1785 return 0; 1786 1787 if (!writeback_throttling_sane(sc)) 1788 return 0; 1789 1790 if (file) { 1791 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1792 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1793 } else { 1794 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1795 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1796 } 1797 1798 /* 1799 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1800 * won't get blocked by normal direct-reclaimers, forming a circular 1801 * deadlock. 1802 */ 1803 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1804 inactive >>= 3; 1805 1806 return isolated > inactive; 1807 } 1808 1809 /* 1810 * This moves pages from @list to corresponding LRU list. 1811 * 1812 * We move them the other way if the page is referenced by one or more 1813 * processes, from rmap. 1814 * 1815 * If the pages are mostly unmapped, the processing is fast and it is 1816 * appropriate to hold zone_lru_lock across the whole operation. But if 1817 * the pages are mapped, the processing is slow (page_referenced()) so we 1818 * should drop zone_lru_lock around each page. It's impossible to balance 1819 * this, so instead we remove the pages from the LRU while processing them. 1820 * It is safe to rely on PG_active against the non-LRU pages in here because 1821 * nobody will play with that bit on a non-LRU page. 1822 * 1823 * The downside is that we have to touch page->_refcount against each page. 1824 * But we had to alter page->flags anyway. 1825 * 1826 * Returns the number of pages moved to the given lruvec. 1827 */ 1828 1829 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1830 struct list_head *list) 1831 { 1832 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1833 int nr_pages, nr_moved = 0; 1834 LIST_HEAD(pages_to_free); 1835 struct page *page; 1836 enum lru_list lru; 1837 1838 while (!list_empty(list)) { 1839 page = lru_to_page(list); 1840 VM_BUG_ON_PAGE(PageLRU(page), page); 1841 if (unlikely(!page_evictable(page))) { 1842 list_del(&page->lru); 1843 spin_unlock_irq(&pgdat->lru_lock); 1844 putback_lru_page(page); 1845 spin_lock_irq(&pgdat->lru_lock); 1846 continue; 1847 } 1848 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1849 1850 SetPageLRU(page); 1851 lru = page_lru(page); 1852 1853 nr_pages = hpage_nr_pages(page); 1854 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1855 list_move(&page->lru, &lruvec->lists[lru]); 1856 1857 if (put_page_testzero(page)) { 1858 __ClearPageLRU(page); 1859 __ClearPageActive(page); 1860 del_page_from_lru_list(page, lruvec, lru); 1861 1862 if (unlikely(PageCompound(page))) { 1863 spin_unlock_irq(&pgdat->lru_lock); 1864 (*get_compound_page_dtor(page))(page); 1865 spin_lock_irq(&pgdat->lru_lock); 1866 } else 1867 list_add(&page->lru, &pages_to_free); 1868 } else { 1869 nr_moved += nr_pages; 1870 } 1871 } 1872 1873 /* 1874 * To save our caller's stack, now use input list for pages to free. 1875 */ 1876 list_splice(&pages_to_free, list); 1877 1878 return nr_moved; 1879 } 1880 1881 /* 1882 * If a kernel thread (such as nfsd for loop-back mounts) services 1883 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1884 * In that case we should only throttle if the backing device it is 1885 * writing to is congested. In other cases it is safe to throttle. 1886 */ 1887 static int current_may_throttle(void) 1888 { 1889 return !(current->flags & PF_LESS_THROTTLE) || 1890 current->backing_dev_info == NULL || 1891 bdi_write_congested(current->backing_dev_info); 1892 } 1893 1894 /* 1895 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1896 * of reclaimed pages 1897 */ 1898 static noinline_for_stack unsigned long 1899 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1900 struct scan_control *sc, enum lru_list lru) 1901 { 1902 LIST_HEAD(page_list); 1903 unsigned long nr_scanned; 1904 unsigned long nr_reclaimed = 0; 1905 unsigned long nr_taken; 1906 struct reclaim_stat stat; 1907 int file = is_file_lru(lru); 1908 enum vm_event_item item; 1909 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1910 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1911 bool stalled = false; 1912 1913 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1914 if (stalled) 1915 return 0; 1916 1917 /* wait a bit for the reclaimer. */ 1918 msleep(100); 1919 stalled = true; 1920 1921 /* We are about to die and free our memory. Return now. */ 1922 if (fatal_signal_pending(current)) 1923 return SWAP_CLUSTER_MAX; 1924 } 1925 1926 lru_add_drain(); 1927 1928 spin_lock_irq(&pgdat->lru_lock); 1929 1930 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1931 &nr_scanned, sc, lru); 1932 1933 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1934 reclaim_stat->recent_scanned[file] += nr_taken; 1935 1936 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1937 if (!cgroup_reclaim(sc)) 1938 __count_vm_events(item, nr_scanned); 1939 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1940 spin_unlock_irq(&pgdat->lru_lock); 1941 1942 if (nr_taken == 0) 1943 return 0; 1944 1945 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1946 &stat, false); 1947 1948 spin_lock_irq(&pgdat->lru_lock); 1949 1950 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1951 if (!cgroup_reclaim(sc)) 1952 __count_vm_events(item, nr_reclaimed); 1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1954 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 1955 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 1956 1957 move_pages_to_lru(lruvec, &page_list); 1958 1959 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1960 1961 spin_unlock_irq(&pgdat->lru_lock); 1962 1963 mem_cgroup_uncharge_list(&page_list); 1964 free_unref_page_list(&page_list); 1965 1966 /* 1967 * If dirty pages are scanned that are not queued for IO, it 1968 * implies that flushers are not doing their job. This can 1969 * happen when memory pressure pushes dirty pages to the end of 1970 * the LRU before the dirty limits are breached and the dirty 1971 * data has expired. It can also happen when the proportion of 1972 * dirty pages grows not through writes but through memory 1973 * pressure reclaiming all the clean cache. And in some cases, 1974 * the flushers simply cannot keep up with the allocation 1975 * rate. Nudge the flusher threads in case they are asleep. 1976 */ 1977 if (stat.nr_unqueued_dirty == nr_taken) 1978 wakeup_flusher_threads(WB_REASON_VMSCAN); 1979 1980 sc->nr.dirty += stat.nr_dirty; 1981 sc->nr.congested += stat.nr_congested; 1982 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1983 sc->nr.writeback += stat.nr_writeback; 1984 sc->nr.immediate += stat.nr_immediate; 1985 sc->nr.taken += nr_taken; 1986 if (file) 1987 sc->nr.file_taken += nr_taken; 1988 1989 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1990 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1991 return nr_reclaimed; 1992 } 1993 1994 static void shrink_active_list(unsigned long nr_to_scan, 1995 struct lruvec *lruvec, 1996 struct scan_control *sc, 1997 enum lru_list lru) 1998 { 1999 unsigned long nr_taken; 2000 unsigned long nr_scanned; 2001 unsigned long vm_flags; 2002 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2003 LIST_HEAD(l_active); 2004 LIST_HEAD(l_inactive); 2005 struct page *page; 2006 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2007 unsigned nr_deactivate, nr_activate; 2008 unsigned nr_rotated = 0; 2009 int file = is_file_lru(lru); 2010 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2011 2012 lru_add_drain(); 2013 2014 spin_lock_irq(&pgdat->lru_lock); 2015 2016 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2017 &nr_scanned, sc, lru); 2018 2019 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2020 reclaim_stat->recent_scanned[file] += nr_taken; 2021 2022 __count_vm_events(PGREFILL, nr_scanned); 2023 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2024 2025 spin_unlock_irq(&pgdat->lru_lock); 2026 2027 while (!list_empty(&l_hold)) { 2028 cond_resched(); 2029 page = lru_to_page(&l_hold); 2030 list_del(&page->lru); 2031 2032 if (unlikely(!page_evictable(page))) { 2033 putback_lru_page(page); 2034 continue; 2035 } 2036 2037 if (unlikely(buffer_heads_over_limit)) { 2038 if (page_has_private(page) && trylock_page(page)) { 2039 if (page_has_private(page)) 2040 try_to_release_page(page, 0); 2041 unlock_page(page); 2042 } 2043 } 2044 2045 if (page_referenced(page, 0, sc->target_mem_cgroup, 2046 &vm_flags)) { 2047 nr_rotated += hpage_nr_pages(page); 2048 /* 2049 * Identify referenced, file-backed active pages and 2050 * give them one more trip around the active list. So 2051 * that executable code get better chances to stay in 2052 * memory under moderate memory pressure. Anon pages 2053 * are not likely to be evicted by use-once streaming 2054 * IO, plus JVM can create lots of anon VM_EXEC pages, 2055 * so we ignore them here. 2056 */ 2057 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2058 list_add(&page->lru, &l_active); 2059 continue; 2060 } 2061 } 2062 2063 ClearPageActive(page); /* we are de-activating */ 2064 SetPageWorkingset(page); 2065 list_add(&page->lru, &l_inactive); 2066 } 2067 2068 /* 2069 * Move pages back to the lru list. 2070 */ 2071 spin_lock_irq(&pgdat->lru_lock); 2072 /* 2073 * Count referenced pages from currently used mappings as rotated, 2074 * even though only some of them are actually re-activated. This 2075 * helps balance scan pressure between file and anonymous pages in 2076 * get_scan_count. 2077 */ 2078 reclaim_stat->recent_rotated[file] += nr_rotated; 2079 2080 nr_activate = move_pages_to_lru(lruvec, &l_active); 2081 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2082 /* Keep all free pages in l_active list */ 2083 list_splice(&l_inactive, &l_active); 2084 2085 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2086 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2087 2088 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2089 spin_unlock_irq(&pgdat->lru_lock); 2090 2091 mem_cgroup_uncharge_list(&l_active); 2092 free_unref_page_list(&l_active); 2093 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2094 nr_deactivate, nr_rotated, sc->priority, file); 2095 } 2096 2097 unsigned long reclaim_pages(struct list_head *page_list) 2098 { 2099 int nid = -1; 2100 unsigned long nr_reclaimed = 0; 2101 LIST_HEAD(node_page_list); 2102 struct reclaim_stat dummy_stat; 2103 struct page *page; 2104 struct scan_control sc = { 2105 .gfp_mask = GFP_KERNEL, 2106 .priority = DEF_PRIORITY, 2107 .may_writepage = 1, 2108 .may_unmap = 1, 2109 .may_swap = 1, 2110 }; 2111 2112 while (!list_empty(page_list)) { 2113 page = lru_to_page(page_list); 2114 if (nid == -1) { 2115 nid = page_to_nid(page); 2116 INIT_LIST_HEAD(&node_page_list); 2117 } 2118 2119 if (nid == page_to_nid(page)) { 2120 ClearPageActive(page); 2121 list_move(&page->lru, &node_page_list); 2122 continue; 2123 } 2124 2125 nr_reclaimed += shrink_page_list(&node_page_list, 2126 NODE_DATA(nid), 2127 &sc, 0, 2128 &dummy_stat, false); 2129 while (!list_empty(&node_page_list)) { 2130 page = lru_to_page(&node_page_list); 2131 list_del(&page->lru); 2132 putback_lru_page(page); 2133 } 2134 2135 nid = -1; 2136 } 2137 2138 if (!list_empty(&node_page_list)) { 2139 nr_reclaimed += shrink_page_list(&node_page_list, 2140 NODE_DATA(nid), 2141 &sc, 0, 2142 &dummy_stat, false); 2143 while (!list_empty(&node_page_list)) { 2144 page = lru_to_page(&node_page_list); 2145 list_del(&page->lru); 2146 putback_lru_page(page); 2147 } 2148 } 2149 2150 return nr_reclaimed; 2151 } 2152 2153 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2154 struct lruvec *lruvec, struct scan_control *sc) 2155 { 2156 if (is_active_lru(lru)) { 2157 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2158 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2159 else 2160 sc->skipped_deactivate = 1; 2161 return 0; 2162 } 2163 2164 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2165 } 2166 2167 /* 2168 * The inactive anon list should be small enough that the VM never has 2169 * to do too much work. 2170 * 2171 * The inactive file list should be small enough to leave most memory 2172 * to the established workingset on the scan-resistant active list, 2173 * but large enough to avoid thrashing the aggregate readahead window. 2174 * 2175 * Both inactive lists should also be large enough that each inactive 2176 * page has a chance to be referenced again before it is reclaimed. 2177 * 2178 * If that fails and refaulting is observed, the inactive list grows. 2179 * 2180 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2181 * on this LRU, maintained by the pageout code. An inactive_ratio 2182 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2183 * 2184 * total target max 2185 * memory ratio inactive 2186 * ------------------------------------- 2187 * 10MB 1 5MB 2188 * 100MB 1 50MB 2189 * 1GB 3 250MB 2190 * 10GB 10 0.9GB 2191 * 100GB 31 3GB 2192 * 1TB 101 10GB 2193 * 10TB 320 32GB 2194 */ 2195 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2196 { 2197 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2198 unsigned long inactive, active; 2199 unsigned long inactive_ratio; 2200 unsigned long gb; 2201 2202 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2203 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2204 2205 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2206 if (gb) 2207 inactive_ratio = int_sqrt(10 * gb); 2208 else 2209 inactive_ratio = 1; 2210 2211 return inactive * inactive_ratio < active; 2212 } 2213 2214 enum scan_balance { 2215 SCAN_EQUAL, 2216 SCAN_FRACT, 2217 SCAN_ANON, 2218 SCAN_FILE, 2219 }; 2220 2221 /* 2222 * Determine how aggressively the anon and file LRU lists should be 2223 * scanned. The relative value of each set of LRU lists is determined 2224 * by looking at the fraction of the pages scanned we did rotate back 2225 * onto the active list instead of evict. 2226 * 2227 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2228 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2229 */ 2230 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2231 unsigned long *nr) 2232 { 2233 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2234 int swappiness = mem_cgroup_swappiness(memcg); 2235 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2236 u64 fraction[2]; 2237 u64 denominator = 0; /* gcc */ 2238 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2239 unsigned long anon_prio, file_prio; 2240 enum scan_balance scan_balance; 2241 unsigned long anon, file; 2242 unsigned long ap, fp; 2243 enum lru_list lru; 2244 2245 /* If we have no swap space, do not bother scanning anon pages. */ 2246 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2247 scan_balance = SCAN_FILE; 2248 goto out; 2249 } 2250 2251 /* 2252 * Global reclaim will swap to prevent OOM even with no 2253 * swappiness, but memcg users want to use this knob to 2254 * disable swapping for individual groups completely when 2255 * using the memory controller's swap limit feature would be 2256 * too expensive. 2257 */ 2258 if (cgroup_reclaim(sc) && !swappiness) { 2259 scan_balance = SCAN_FILE; 2260 goto out; 2261 } 2262 2263 /* 2264 * Do not apply any pressure balancing cleverness when the 2265 * system is close to OOM, scan both anon and file equally 2266 * (unless the swappiness setting disagrees with swapping). 2267 */ 2268 if (!sc->priority && swappiness) { 2269 scan_balance = SCAN_EQUAL; 2270 goto out; 2271 } 2272 2273 /* 2274 * If the system is almost out of file pages, force-scan anon. 2275 */ 2276 if (sc->file_is_tiny) { 2277 scan_balance = SCAN_ANON; 2278 goto out; 2279 } 2280 2281 /* 2282 * If there is enough inactive page cache, we do not reclaim 2283 * anything from the anonymous working right now. 2284 */ 2285 if (sc->cache_trim_mode) { 2286 scan_balance = SCAN_FILE; 2287 goto out; 2288 } 2289 2290 scan_balance = SCAN_FRACT; 2291 2292 /* 2293 * With swappiness at 100, anonymous and file have the same priority. 2294 * This scanning priority is essentially the inverse of IO cost. 2295 */ 2296 anon_prio = swappiness; 2297 file_prio = 200 - anon_prio; 2298 2299 /* 2300 * OK, so we have swap space and a fair amount of page cache 2301 * pages. We use the recently rotated / recently scanned 2302 * ratios to determine how valuable each cache is. 2303 * 2304 * Because workloads change over time (and to avoid overflow) 2305 * we keep these statistics as a floating average, which ends 2306 * up weighing recent references more than old ones. 2307 * 2308 * anon in [0], file in [1] 2309 */ 2310 2311 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2312 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2313 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2314 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2315 2316 spin_lock_irq(&pgdat->lru_lock); 2317 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2318 reclaim_stat->recent_scanned[0] /= 2; 2319 reclaim_stat->recent_rotated[0] /= 2; 2320 } 2321 2322 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2323 reclaim_stat->recent_scanned[1] /= 2; 2324 reclaim_stat->recent_rotated[1] /= 2; 2325 } 2326 2327 /* 2328 * The amount of pressure on anon vs file pages is inversely 2329 * proportional to the fraction of recently scanned pages on 2330 * each list that were recently referenced and in active use. 2331 */ 2332 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2333 ap /= reclaim_stat->recent_rotated[0] + 1; 2334 2335 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2336 fp /= reclaim_stat->recent_rotated[1] + 1; 2337 spin_unlock_irq(&pgdat->lru_lock); 2338 2339 fraction[0] = ap; 2340 fraction[1] = fp; 2341 denominator = ap + fp + 1; 2342 out: 2343 for_each_evictable_lru(lru) { 2344 int file = is_file_lru(lru); 2345 unsigned long lruvec_size; 2346 unsigned long scan; 2347 unsigned long protection; 2348 2349 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2350 protection = mem_cgroup_protection(memcg, 2351 sc->memcg_low_reclaim); 2352 2353 if (protection) { 2354 /* 2355 * Scale a cgroup's reclaim pressure by proportioning 2356 * its current usage to its memory.low or memory.min 2357 * setting. 2358 * 2359 * This is important, as otherwise scanning aggression 2360 * becomes extremely binary -- from nothing as we 2361 * approach the memory protection threshold, to totally 2362 * nominal as we exceed it. This results in requiring 2363 * setting extremely liberal protection thresholds. It 2364 * also means we simply get no protection at all if we 2365 * set it too low, which is not ideal. 2366 * 2367 * If there is any protection in place, we reduce scan 2368 * pressure by how much of the total memory used is 2369 * within protection thresholds. 2370 * 2371 * There is one special case: in the first reclaim pass, 2372 * we skip over all groups that are within their low 2373 * protection. If that fails to reclaim enough pages to 2374 * satisfy the reclaim goal, we come back and override 2375 * the best-effort low protection. However, we still 2376 * ideally want to honor how well-behaved groups are in 2377 * that case instead of simply punishing them all 2378 * equally. As such, we reclaim them based on how much 2379 * memory they are using, reducing the scan pressure 2380 * again by how much of the total memory used is under 2381 * hard protection. 2382 */ 2383 unsigned long cgroup_size = mem_cgroup_size(memcg); 2384 2385 /* Avoid TOCTOU with earlier protection check */ 2386 cgroup_size = max(cgroup_size, protection); 2387 2388 scan = lruvec_size - lruvec_size * protection / 2389 cgroup_size; 2390 2391 /* 2392 * Minimally target SWAP_CLUSTER_MAX pages to keep 2393 * reclaim moving forwards, avoiding decremeting 2394 * sc->priority further than desirable. 2395 */ 2396 scan = max(scan, SWAP_CLUSTER_MAX); 2397 } else { 2398 scan = lruvec_size; 2399 } 2400 2401 scan >>= sc->priority; 2402 2403 /* 2404 * If the cgroup's already been deleted, make sure to 2405 * scrape out the remaining cache. 2406 */ 2407 if (!scan && !mem_cgroup_online(memcg)) 2408 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2409 2410 switch (scan_balance) { 2411 case SCAN_EQUAL: 2412 /* Scan lists relative to size */ 2413 break; 2414 case SCAN_FRACT: 2415 /* 2416 * Scan types proportional to swappiness and 2417 * their relative recent reclaim efficiency. 2418 * Make sure we don't miss the last page 2419 * because of a round-off error. 2420 */ 2421 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2422 denominator); 2423 break; 2424 case SCAN_FILE: 2425 case SCAN_ANON: 2426 /* Scan one type exclusively */ 2427 if ((scan_balance == SCAN_FILE) != file) { 2428 lruvec_size = 0; 2429 scan = 0; 2430 } 2431 break; 2432 default: 2433 /* Look ma, no brain */ 2434 BUG(); 2435 } 2436 2437 nr[lru] = scan; 2438 } 2439 } 2440 2441 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2442 { 2443 unsigned long nr[NR_LRU_LISTS]; 2444 unsigned long targets[NR_LRU_LISTS]; 2445 unsigned long nr_to_scan; 2446 enum lru_list lru; 2447 unsigned long nr_reclaimed = 0; 2448 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2449 struct blk_plug plug; 2450 bool scan_adjusted; 2451 2452 get_scan_count(lruvec, sc, nr); 2453 2454 /* Record the original scan target for proportional adjustments later */ 2455 memcpy(targets, nr, sizeof(nr)); 2456 2457 /* 2458 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2459 * event that can occur when there is little memory pressure e.g. 2460 * multiple streaming readers/writers. Hence, we do not abort scanning 2461 * when the requested number of pages are reclaimed when scanning at 2462 * DEF_PRIORITY on the assumption that the fact we are direct 2463 * reclaiming implies that kswapd is not keeping up and it is best to 2464 * do a batch of work at once. For memcg reclaim one check is made to 2465 * abort proportional reclaim if either the file or anon lru has already 2466 * dropped to zero at the first pass. 2467 */ 2468 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2469 sc->priority == DEF_PRIORITY); 2470 2471 blk_start_plug(&plug); 2472 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2473 nr[LRU_INACTIVE_FILE]) { 2474 unsigned long nr_anon, nr_file, percentage; 2475 unsigned long nr_scanned; 2476 2477 for_each_evictable_lru(lru) { 2478 if (nr[lru]) { 2479 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2480 nr[lru] -= nr_to_scan; 2481 2482 nr_reclaimed += shrink_list(lru, nr_to_scan, 2483 lruvec, sc); 2484 } 2485 } 2486 2487 cond_resched(); 2488 2489 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2490 continue; 2491 2492 /* 2493 * For kswapd and memcg, reclaim at least the number of pages 2494 * requested. Ensure that the anon and file LRUs are scanned 2495 * proportionally what was requested by get_scan_count(). We 2496 * stop reclaiming one LRU and reduce the amount scanning 2497 * proportional to the original scan target. 2498 */ 2499 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2500 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2501 2502 /* 2503 * It's just vindictive to attack the larger once the smaller 2504 * has gone to zero. And given the way we stop scanning the 2505 * smaller below, this makes sure that we only make one nudge 2506 * towards proportionality once we've got nr_to_reclaim. 2507 */ 2508 if (!nr_file || !nr_anon) 2509 break; 2510 2511 if (nr_file > nr_anon) { 2512 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2513 targets[LRU_ACTIVE_ANON] + 1; 2514 lru = LRU_BASE; 2515 percentage = nr_anon * 100 / scan_target; 2516 } else { 2517 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2518 targets[LRU_ACTIVE_FILE] + 1; 2519 lru = LRU_FILE; 2520 percentage = nr_file * 100 / scan_target; 2521 } 2522 2523 /* Stop scanning the smaller of the LRU */ 2524 nr[lru] = 0; 2525 nr[lru + LRU_ACTIVE] = 0; 2526 2527 /* 2528 * Recalculate the other LRU scan count based on its original 2529 * scan target and the percentage scanning already complete 2530 */ 2531 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2532 nr_scanned = targets[lru] - nr[lru]; 2533 nr[lru] = targets[lru] * (100 - percentage) / 100; 2534 nr[lru] -= min(nr[lru], nr_scanned); 2535 2536 lru += LRU_ACTIVE; 2537 nr_scanned = targets[lru] - nr[lru]; 2538 nr[lru] = targets[lru] * (100 - percentage) / 100; 2539 nr[lru] -= min(nr[lru], nr_scanned); 2540 2541 scan_adjusted = true; 2542 } 2543 blk_finish_plug(&plug); 2544 sc->nr_reclaimed += nr_reclaimed; 2545 2546 /* 2547 * Even if we did not try to evict anon pages at all, we want to 2548 * rebalance the anon lru active/inactive ratio. 2549 */ 2550 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2551 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2552 sc, LRU_ACTIVE_ANON); 2553 } 2554 2555 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2556 static bool in_reclaim_compaction(struct scan_control *sc) 2557 { 2558 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2559 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2560 sc->priority < DEF_PRIORITY - 2)) 2561 return true; 2562 2563 return false; 2564 } 2565 2566 /* 2567 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2568 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2569 * true if more pages should be reclaimed such that when the page allocator 2570 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2571 * It will give up earlier than that if there is difficulty reclaiming pages. 2572 */ 2573 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2574 unsigned long nr_reclaimed, 2575 struct scan_control *sc) 2576 { 2577 unsigned long pages_for_compaction; 2578 unsigned long inactive_lru_pages; 2579 int z; 2580 2581 /* If not in reclaim/compaction mode, stop */ 2582 if (!in_reclaim_compaction(sc)) 2583 return false; 2584 2585 /* 2586 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2587 * number of pages that were scanned. This will return to the caller 2588 * with the risk reclaim/compaction and the resulting allocation attempt 2589 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2590 * allocations through requiring that the full LRU list has been scanned 2591 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2592 * scan, but that approximation was wrong, and there were corner cases 2593 * where always a non-zero amount of pages were scanned. 2594 */ 2595 if (!nr_reclaimed) 2596 return false; 2597 2598 /* If compaction would go ahead or the allocation would succeed, stop */ 2599 for (z = 0; z <= sc->reclaim_idx; z++) { 2600 struct zone *zone = &pgdat->node_zones[z]; 2601 if (!managed_zone(zone)) 2602 continue; 2603 2604 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2605 case COMPACT_SUCCESS: 2606 case COMPACT_CONTINUE: 2607 return false; 2608 default: 2609 /* check next zone */ 2610 ; 2611 } 2612 } 2613 2614 /* 2615 * If we have not reclaimed enough pages for compaction and the 2616 * inactive lists are large enough, continue reclaiming 2617 */ 2618 pages_for_compaction = compact_gap(sc->order); 2619 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2620 if (get_nr_swap_pages() > 0) 2621 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2622 2623 return inactive_lru_pages > pages_for_compaction; 2624 } 2625 2626 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2627 { 2628 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2629 struct mem_cgroup *memcg; 2630 2631 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2632 do { 2633 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2634 unsigned long reclaimed; 2635 unsigned long scanned; 2636 2637 switch (mem_cgroup_protected(target_memcg, memcg)) { 2638 case MEMCG_PROT_MIN: 2639 /* 2640 * Hard protection. 2641 * If there is no reclaimable memory, OOM. 2642 */ 2643 continue; 2644 case MEMCG_PROT_LOW: 2645 /* 2646 * Soft protection. 2647 * Respect the protection only as long as 2648 * there is an unprotected supply 2649 * of reclaimable memory from other cgroups. 2650 */ 2651 if (!sc->memcg_low_reclaim) { 2652 sc->memcg_low_skipped = 1; 2653 continue; 2654 } 2655 memcg_memory_event(memcg, MEMCG_LOW); 2656 break; 2657 case MEMCG_PROT_NONE: 2658 /* 2659 * All protection thresholds breached. We may 2660 * still choose to vary the scan pressure 2661 * applied based on by how much the cgroup in 2662 * question has exceeded its protection 2663 * thresholds (see get_scan_count). 2664 */ 2665 break; 2666 } 2667 2668 reclaimed = sc->nr_reclaimed; 2669 scanned = sc->nr_scanned; 2670 2671 shrink_lruvec(lruvec, sc); 2672 2673 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2674 sc->priority); 2675 2676 /* Record the group's reclaim efficiency */ 2677 vmpressure(sc->gfp_mask, memcg, false, 2678 sc->nr_scanned - scanned, 2679 sc->nr_reclaimed - reclaimed); 2680 2681 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2682 } 2683 2684 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2685 { 2686 struct reclaim_state *reclaim_state = current->reclaim_state; 2687 unsigned long nr_reclaimed, nr_scanned; 2688 struct lruvec *target_lruvec; 2689 bool reclaimable = false; 2690 unsigned long file; 2691 2692 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2693 2694 again: 2695 memset(&sc->nr, 0, sizeof(sc->nr)); 2696 2697 nr_reclaimed = sc->nr_reclaimed; 2698 nr_scanned = sc->nr_scanned; 2699 2700 /* 2701 * Target desirable inactive:active list ratios for the anon 2702 * and file LRU lists. 2703 */ 2704 if (!sc->force_deactivate) { 2705 unsigned long refaults; 2706 2707 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2708 sc->may_deactivate |= DEACTIVATE_ANON; 2709 else 2710 sc->may_deactivate &= ~DEACTIVATE_ANON; 2711 2712 /* 2713 * When refaults are being observed, it means a new 2714 * workingset is being established. Deactivate to get 2715 * rid of any stale active pages quickly. 2716 */ 2717 refaults = lruvec_page_state(target_lruvec, 2718 WORKINGSET_ACTIVATE); 2719 if (refaults != target_lruvec->refaults || 2720 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2721 sc->may_deactivate |= DEACTIVATE_FILE; 2722 else 2723 sc->may_deactivate &= ~DEACTIVATE_FILE; 2724 } else 2725 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2726 2727 /* 2728 * If we have plenty of inactive file pages that aren't 2729 * thrashing, try to reclaim those first before touching 2730 * anonymous pages. 2731 */ 2732 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2733 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2734 sc->cache_trim_mode = 1; 2735 else 2736 sc->cache_trim_mode = 0; 2737 2738 /* 2739 * Prevent the reclaimer from falling into the cache trap: as 2740 * cache pages start out inactive, every cache fault will tip 2741 * the scan balance towards the file LRU. And as the file LRU 2742 * shrinks, so does the window for rotation from references. 2743 * This means we have a runaway feedback loop where a tiny 2744 * thrashing file LRU becomes infinitely more attractive than 2745 * anon pages. Try to detect this based on file LRU size. 2746 */ 2747 if (!cgroup_reclaim(sc)) { 2748 unsigned long total_high_wmark = 0; 2749 unsigned long free, anon; 2750 int z; 2751 2752 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2753 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2754 node_page_state(pgdat, NR_INACTIVE_FILE); 2755 2756 for (z = 0; z < MAX_NR_ZONES; z++) { 2757 struct zone *zone = &pgdat->node_zones[z]; 2758 if (!managed_zone(zone)) 2759 continue; 2760 2761 total_high_wmark += high_wmark_pages(zone); 2762 } 2763 2764 /* 2765 * Consider anon: if that's low too, this isn't a 2766 * runaway file reclaim problem, but rather just 2767 * extreme pressure. Reclaim as per usual then. 2768 */ 2769 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2770 2771 sc->file_is_tiny = 2772 file + free <= total_high_wmark && 2773 !(sc->may_deactivate & DEACTIVATE_ANON) && 2774 anon >> sc->priority; 2775 } 2776 2777 shrink_node_memcgs(pgdat, sc); 2778 2779 if (reclaim_state) { 2780 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2781 reclaim_state->reclaimed_slab = 0; 2782 } 2783 2784 /* Record the subtree's reclaim efficiency */ 2785 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2786 sc->nr_scanned - nr_scanned, 2787 sc->nr_reclaimed - nr_reclaimed); 2788 2789 if (sc->nr_reclaimed - nr_reclaimed) 2790 reclaimable = true; 2791 2792 if (current_is_kswapd()) { 2793 /* 2794 * If reclaim is isolating dirty pages under writeback, 2795 * it implies that the long-lived page allocation rate 2796 * is exceeding the page laundering rate. Either the 2797 * global limits are not being effective at throttling 2798 * processes due to the page distribution throughout 2799 * zones or there is heavy usage of a slow backing 2800 * device. The only option is to throttle from reclaim 2801 * context which is not ideal as there is no guarantee 2802 * the dirtying process is throttled in the same way 2803 * balance_dirty_pages() manages. 2804 * 2805 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2806 * count the number of pages under pages flagged for 2807 * immediate reclaim and stall if any are encountered 2808 * in the nr_immediate check below. 2809 */ 2810 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2811 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2812 2813 /* Allow kswapd to start writing pages during reclaim.*/ 2814 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2815 set_bit(PGDAT_DIRTY, &pgdat->flags); 2816 2817 /* 2818 * If kswapd scans pages marked marked for immediate 2819 * reclaim and under writeback (nr_immediate), it 2820 * implies that pages are cycling through the LRU 2821 * faster than they are written so also forcibly stall. 2822 */ 2823 if (sc->nr.immediate) 2824 congestion_wait(BLK_RW_ASYNC, HZ/10); 2825 } 2826 2827 /* 2828 * Tag a node/memcg as congested if all the dirty pages 2829 * scanned were backed by a congested BDI and 2830 * wait_iff_congested will stall. 2831 * 2832 * Legacy memcg will stall in page writeback so avoid forcibly 2833 * stalling in wait_iff_congested(). 2834 */ 2835 if ((current_is_kswapd() || 2836 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2837 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2838 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2839 2840 /* 2841 * Stall direct reclaim for IO completions if underlying BDIs 2842 * and node is congested. Allow kswapd to continue until it 2843 * starts encountering unqueued dirty pages or cycling through 2844 * the LRU too quickly. 2845 */ 2846 if (!current_is_kswapd() && current_may_throttle() && 2847 !sc->hibernation_mode && 2848 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2849 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2850 2851 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2852 sc)) 2853 goto again; 2854 2855 /* 2856 * Kswapd gives up on balancing particular nodes after too 2857 * many failures to reclaim anything from them and goes to 2858 * sleep. On reclaim progress, reset the failure counter. A 2859 * successful direct reclaim run will revive a dormant kswapd. 2860 */ 2861 if (reclaimable) 2862 pgdat->kswapd_failures = 0; 2863 } 2864 2865 /* 2866 * Returns true if compaction should go ahead for a costly-order request, or 2867 * the allocation would already succeed without compaction. Return false if we 2868 * should reclaim first. 2869 */ 2870 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2871 { 2872 unsigned long watermark; 2873 enum compact_result suitable; 2874 2875 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2876 if (suitable == COMPACT_SUCCESS) 2877 /* Allocation should succeed already. Don't reclaim. */ 2878 return true; 2879 if (suitable == COMPACT_SKIPPED) 2880 /* Compaction cannot yet proceed. Do reclaim. */ 2881 return false; 2882 2883 /* 2884 * Compaction is already possible, but it takes time to run and there 2885 * are potentially other callers using the pages just freed. So proceed 2886 * with reclaim to make a buffer of free pages available to give 2887 * compaction a reasonable chance of completing and allocating the page. 2888 * Note that we won't actually reclaim the whole buffer in one attempt 2889 * as the target watermark in should_continue_reclaim() is lower. But if 2890 * we are already above the high+gap watermark, don't reclaim at all. 2891 */ 2892 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2893 2894 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2895 } 2896 2897 /* 2898 * This is the direct reclaim path, for page-allocating processes. We only 2899 * try to reclaim pages from zones which will satisfy the caller's allocation 2900 * request. 2901 * 2902 * If a zone is deemed to be full of pinned pages then just give it a light 2903 * scan then give up on it. 2904 */ 2905 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2906 { 2907 struct zoneref *z; 2908 struct zone *zone; 2909 unsigned long nr_soft_reclaimed; 2910 unsigned long nr_soft_scanned; 2911 gfp_t orig_mask; 2912 pg_data_t *last_pgdat = NULL; 2913 2914 /* 2915 * If the number of buffer_heads in the machine exceeds the maximum 2916 * allowed level, force direct reclaim to scan the highmem zone as 2917 * highmem pages could be pinning lowmem pages storing buffer_heads 2918 */ 2919 orig_mask = sc->gfp_mask; 2920 if (buffer_heads_over_limit) { 2921 sc->gfp_mask |= __GFP_HIGHMEM; 2922 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2923 } 2924 2925 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2926 sc->reclaim_idx, sc->nodemask) { 2927 /* 2928 * Take care memory controller reclaiming has small influence 2929 * to global LRU. 2930 */ 2931 if (!cgroup_reclaim(sc)) { 2932 if (!cpuset_zone_allowed(zone, 2933 GFP_KERNEL | __GFP_HARDWALL)) 2934 continue; 2935 2936 /* 2937 * If we already have plenty of memory free for 2938 * compaction in this zone, don't free any more. 2939 * Even though compaction is invoked for any 2940 * non-zero order, only frequent costly order 2941 * reclamation is disruptive enough to become a 2942 * noticeable problem, like transparent huge 2943 * page allocations. 2944 */ 2945 if (IS_ENABLED(CONFIG_COMPACTION) && 2946 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2947 compaction_ready(zone, sc)) { 2948 sc->compaction_ready = true; 2949 continue; 2950 } 2951 2952 /* 2953 * Shrink each node in the zonelist once. If the 2954 * zonelist is ordered by zone (not the default) then a 2955 * node may be shrunk multiple times but in that case 2956 * the user prefers lower zones being preserved. 2957 */ 2958 if (zone->zone_pgdat == last_pgdat) 2959 continue; 2960 2961 /* 2962 * This steals pages from memory cgroups over softlimit 2963 * and returns the number of reclaimed pages and 2964 * scanned pages. This works for global memory pressure 2965 * and balancing, not for a memcg's limit. 2966 */ 2967 nr_soft_scanned = 0; 2968 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2969 sc->order, sc->gfp_mask, 2970 &nr_soft_scanned); 2971 sc->nr_reclaimed += nr_soft_reclaimed; 2972 sc->nr_scanned += nr_soft_scanned; 2973 /* need some check for avoid more shrink_zone() */ 2974 } 2975 2976 /* See comment about same check for global reclaim above */ 2977 if (zone->zone_pgdat == last_pgdat) 2978 continue; 2979 last_pgdat = zone->zone_pgdat; 2980 shrink_node(zone->zone_pgdat, sc); 2981 } 2982 2983 /* 2984 * Restore to original mask to avoid the impact on the caller if we 2985 * promoted it to __GFP_HIGHMEM. 2986 */ 2987 sc->gfp_mask = orig_mask; 2988 } 2989 2990 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2991 { 2992 struct lruvec *target_lruvec; 2993 unsigned long refaults; 2994 2995 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2996 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE); 2997 target_lruvec->refaults = refaults; 2998 } 2999 3000 /* 3001 * This is the main entry point to direct page reclaim. 3002 * 3003 * If a full scan of the inactive list fails to free enough memory then we 3004 * are "out of memory" and something needs to be killed. 3005 * 3006 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3007 * high - the zone may be full of dirty or under-writeback pages, which this 3008 * caller can't do much about. We kick the writeback threads and take explicit 3009 * naps in the hope that some of these pages can be written. But if the 3010 * allocating task holds filesystem locks which prevent writeout this might not 3011 * work, and the allocation attempt will fail. 3012 * 3013 * returns: 0, if no pages reclaimed 3014 * else, the number of pages reclaimed 3015 */ 3016 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3017 struct scan_control *sc) 3018 { 3019 int initial_priority = sc->priority; 3020 pg_data_t *last_pgdat; 3021 struct zoneref *z; 3022 struct zone *zone; 3023 retry: 3024 delayacct_freepages_start(); 3025 3026 if (!cgroup_reclaim(sc)) 3027 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3028 3029 do { 3030 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3031 sc->priority); 3032 sc->nr_scanned = 0; 3033 shrink_zones(zonelist, sc); 3034 3035 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3036 break; 3037 3038 if (sc->compaction_ready) 3039 break; 3040 3041 /* 3042 * If we're getting trouble reclaiming, start doing 3043 * writepage even in laptop mode. 3044 */ 3045 if (sc->priority < DEF_PRIORITY - 2) 3046 sc->may_writepage = 1; 3047 } while (--sc->priority >= 0); 3048 3049 last_pgdat = NULL; 3050 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3051 sc->nodemask) { 3052 if (zone->zone_pgdat == last_pgdat) 3053 continue; 3054 last_pgdat = zone->zone_pgdat; 3055 3056 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3057 3058 if (cgroup_reclaim(sc)) { 3059 struct lruvec *lruvec; 3060 3061 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3062 zone->zone_pgdat); 3063 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3064 } 3065 } 3066 3067 delayacct_freepages_end(); 3068 3069 if (sc->nr_reclaimed) 3070 return sc->nr_reclaimed; 3071 3072 /* Aborted reclaim to try compaction? don't OOM, then */ 3073 if (sc->compaction_ready) 3074 return 1; 3075 3076 /* 3077 * We make inactive:active ratio decisions based on the node's 3078 * composition of memory, but a restrictive reclaim_idx or a 3079 * memory.low cgroup setting can exempt large amounts of 3080 * memory from reclaim. Neither of which are very common, so 3081 * instead of doing costly eligibility calculations of the 3082 * entire cgroup subtree up front, we assume the estimates are 3083 * good, and retry with forcible deactivation if that fails. 3084 */ 3085 if (sc->skipped_deactivate) { 3086 sc->priority = initial_priority; 3087 sc->force_deactivate = 1; 3088 sc->skipped_deactivate = 0; 3089 goto retry; 3090 } 3091 3092 /* Untapped cgroup reserves? Don't OOM, retry. */ 3093 if (sc->memcg_low_skipped) { 3094 sc->priority = initial_priority; 3095 sc->force_deactivate = 0; 3096 sc->skipped_deactivate = 0; 3097 sc->memcg_low_reclaim = 1; 3098 sc->memcg_low_skipped = 0; 3099 goto retry; 3100 } 3101 3102 return 0; 3103 } 3104 3105 static bool allow_direct_reclaim(pg_data_t *pgdat) 3106 { 3107 struct zone *zone; 3108 unsigned long pfmemalloc_reserve = 0; 3109 unsigned long free_pages = 0; 3110 int i; 3111 bool wmark_ok; 3112 3113 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3114 return true; 3115 3116 for (i = 0; i <= ZONE_NORMAL; i++) { 3117 zone = &pgdat->node_zones[i]; 3118 if (!managed_zone(zone)) 3119 continue; 3120 3121 if (!zone_reclaimable_pages(zone)) 3122 continue; 3123 3124 pfmemalloc_reserve += min_wmark_pages(zone); 3125 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3126 } 3127 3128 /* If there are no reserves (unexpected config) then do not throttle */ 3129 if (!pfmemalloc_reserve) 3130 return true; 3131 3132 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3133 3134 /* kswapd must be awake if processes are being throttled */ 3135 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3136 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3137 (enum zone_type)ZONE_NORMAL); 3138 wake_up_interruptible(&pgdat->kswapd_wait); 3139 } 3140 3141 return wmark_ok; 3142 } 3143 3144 /* 3145 * Throttle direct reclaimers if backing storage is backed by the network 3146 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3147 * depleted. kswapd will continue to make progress and wake the processes 3148 * when the low watermark is reached. 3149 * 3150 * Returns true if a fatal signal was delivered during throttling. If this 3151 * happens, the page allocator should not consider triggering the OOM killer. 3152 */ 3153 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3154 nodemask_t *nodemask) 3155 { 3156 struct zoneref *z; 3157 struct zone *zone; 3158 pg_data_t *pgdat = NULL; 3159 3160 /* 3161 * Kernel threads should not be throttled as they may be indirectly 3162 * responsible for cleaning pages necessary for reclaim to make forward 3163 * progress. kjournald for example may enter direct reclaim while 3164 * committing a transaction where throttling it could forcing other 3165 * processes to block on log_wait_commit(). 3166 */ 3167 if (current->flags & PF_KTHREAD) 3168 goto out; 3169 3170 /* 3171 * If a fatal signal is pending, this process should not throttle. 3172 * It should return quickly so it can exit and free its memory 3173 */ 3174 if (fatal_signal_pending(current)) 3175 goto out; 3176 3177 /* 3178 * Check if the pfmemalloc reserves are ok by finding the first node 3179 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3180 * GFP_KERNEL will be required for allocating network buffers when 3181 * swapping over the network so ZONE_HIGHMEM is unusable. 3182 * 3183 * Throttling is based on the first usable node and throttled processes 3184 * wait on a queue until kswapd makes progress and wakes them. There 3185 * is an affinity then between processes waking up and where reclaim 3186 * progress has been made assuming the process wakes on the same node. 3187 * More importantly, processes running on remote nodes will not compete 3188 * for remote pfmemalloc reserves and processes on different nodes 3189 * should make reasonable progress. 3190 */ 3191 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3192 gfp_zone(gfp_mask), nodemask) { 3193 if (zone_idx(zone) > ZONE_NORMAL) 3194 continue; 3195 3196 /* Throttle based on the first usable node */ 3197 pgdat = zone->zone_pgdat; 3198 if (allow_direct_reclaim(pgdat)) 3199 goto out; 3200 break; 3201 } 3202 3203 /* If no zone was usable by the allocation flags then do not throttle */ 3204 if (!pgdat) 3205 goto out; 3206 3207 /* Account for the throttling */ 3208 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3209 3210 /* 3211 * If the caller cannot enter the filesystem, it's possible that it 3212 * is due to the caller holding an FS lock or performing a journal 3213 * transaction in the case of a filesystem like ext[3|4]. In this case, 3214 * it is not safe to block on pfmemalloc_wait as kswapd could be 3215 * blocked waiting on the same lock. Instead, throttle for up to a 3216 * second before continuing. 3217 */ 3218 if (!(gfp_mask & __GFP_FS)) { 3219 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3220 allow_direct_reclaim(pgdat), HZ); 3221 3222 goto check_pending; 3223 } 3224 3225 /* Throttle until kswapd wakes the process */ 3226 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3227 allow_direct_reclaim(pgdat)); 3228 3229 check_pending: 3230 if (fatal_signal_pending(current)) 3231 return true; 3232 3233 out: 3234 return false; 3235 } 3236 3237 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3238 gfp_t gfp_mask, nodemask_t *nodemask) 3239 { 3240 unsigned long nr_reclaimed; 3241 struct scan_control sc = { 3242 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3243 .gfp_mask = current_gfp_context(gfp_mask), 3244 .reclaim_idx = gfp_zone(gfp_mask), 3245 .order = order, 3246 .nodemask = nodemask, 3247 .priority = DEF_PRIORITY, 3248 .may_writepage = !laptop_mode, 3249 .may_unmap = 1, 3250 .may_swap = 1, 3251 }; 3252 3253 /* 3254 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3255 * Confirm they are large enough for max values. 3256 */ 3257 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3258 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3259 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3260 3261 /* 3262 * Do not enter reclaim if fatal signal was delivered while throttled. 3263 * 1 is returned so that the page allocator does not OOM kill at this 3264 * point. 3265 */ 3266 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3267 return 1; 3268 3269 set_task_reclaim_state(current, &sc.reclaim_state); 3270 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3271 3272 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3273 3274 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3275 set_task_reclaim_state(current, NULL); 3276 3277 return nr_reclaimed; 3278 } 3279 3280 #ifdef CONFIG_MEMCG 3281 3282 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3283 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3284 gfp_t gfp_mask, bool noswap, 3285 pg_data_t *pgdat, 3286 unsigned long *nr_scanned) 3287 { 3288 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3289 struct scan_control sc = { 3290 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3291 .target_mem_cgroup = memcg, 3292 .may_writepage = !laptop_mode, 3293 .may_unmap = 1, 3294 .reclaim_idx = MAX_NR_ZONES - 1, 3295 .may_swap = !noswap, 3296 }; 3297 3298 WARN_ON_ONCE(!current->reclaim_state); 3299 3300 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3301 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3302 3303 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3304 sc.gfp_mask); 3305 3306 /* 3307 * NOTE: Although we can get the priority field, using it 3308 * here is not a good idea, since it limits the pages we can scan. 3309 * if we don't reclaim here, the shrink_node from balance_pgdat 3310 * will pick up pages from other mem cgroup's as well. We hack 3311 * the priority and make it zero. 3312 */ 3313 shrink_lruvec(lruvec, &sc); 3314 3315 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3316 3317 *nr_scanned = sc.nr_scanned; 3318 3319 return sc.nr_reclaimed; 3320 } 3321 3322 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3323 unsigned long nr_pages, 3324 gfp_t gfp_mask, 3325 bool may_swap) 3326 { 3327 unsigned long nr_reclaimed; 3328 unsigned long pflags; 3329 unsigned int noreclaim_flag; 3330 struct scan_control sc = { 3331 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3332 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3333 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3334 .reclaim_idx = MAX_NR_ZONES - 1, 3335 .target_mem_cgroup = memcg, 3336 .priority = DEF_PRIORITY, 3337 .may_writepage = !laptop_mode, 3338 .may_unmap = 1, 3339 .may_swap = may_swap, 3340 }; 3341 /* 3342 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3343 * equal pressure on all the nodes. This is based on the assumption that 3344 * the reclaim does not bail out early. 3345 */ 3346 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3347 3348 set_task_reclaim_state(current, &sc.reclaim_state); 3349 3350 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3351 3352 psi_memstall_enter(&pflags); 3353 noreclaim_flag = memalloc_noreclaim_save(); 3354 3355 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3356 3357 memalloc_noreclaim_restore(noreclaim_flag); 3358 psi_memstall_leave(&pflags); 3359 3360 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3361 set_task_reclaim_state(current, NULL); 3362 3363 return nr_reclaimed; 3364 } 3365 #endif 3366 3367 static void age_active_anon(struct pglist_data *pgdat, 3368 struct scan_control *sc) 3369 { 3370 struct mem_cgroup *memcg; 3371 struct lruvec *lruvec; 3372 3373 if (!total_swap_pages) 3374 return; 3375 3376 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3377 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3378 return; 3379 3380 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3381 do { 3382 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3383 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3384 sc, LRU_ACTIVE_ANON); 3385 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3386 } while (memcg); 3387 } 3388 3389 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3390 { 3391 int i; 3392 struct zone *zone; 3393 3394 /* 3395 * Check for watermark boosts top-down as the higher zones 3396 * are more likely to be boosted. Both watermarks and boosts 3397 * should not be checked at the time time as reclaim would 3398 * start prematurely when there is no boosting and a lower 3399 * zone is balanced. 3400 */ 3401 for (i = classzone_idx; i >= 0; i--) { 3402 zone = pgdat->node_zones + i; 3403 if (!managed_zone(zone)) 3404 continue; 3405 3406 if (zone->watermark_boost) 3407 return true; 3408 } 3409 3410 return false; 3411 } 3412 3413 /* 3414 * Returns true if there is an eligible zone balanced for the request order 3415 * and classzone_idx 3416 */ 3417 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3418 { 3419 int i; 3420 unsigned long mark = -1; 3421 struct zone *zone; 3422 3423 /* 3424 * Check watermarks bottom-up as lower zones are more likely to 3425 * meet watermarks. 3426 */ 3427 for (i = 0; i <= classzone_idx; i++) { 3428 zone = pgdat->node_zones + i; 3429 3430 if (!managed_zone(zone)) 3431 continue; 3432 3433 mark = high_wmark_pages(zone); 3434 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3435 return true; 3436 } 3437 3438 /* 3439 * If a node has no populated zone within classzone_idx, it does not 3440 * need balancing by definition. This can happen if a zone-restricted 3441 * allocation tries to wake a remote kswapd. 3442 */ 3443 if (mark == -1) 3444 return true; 3445 3446 return false; 3447 } 3448 3449 /* Clear pgdat state for congested, dirty or under writeback. */ 3450 static void clear_pgdat_congested(pg_data_t *pgdat) 3451 { 3452 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3453 3454 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3455 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3456 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3457 } 3458 3459 /* 3460 * Prepare kswapd for sleeping. This verifies that there are no processes 3461 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3462 * 3463 * Returns true if kswapd is ready to sleep 3464 */ 3465 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3466 { 3467 /* 3468 * The throttled processes are normally woken up in balance_pgdat() as 3469 * soon as allow_direct_reclaim() is true. But there is a potential 3470 * race between when kswapd checks the watermarks and a process gets 3471 * throttled. There is also a potential race if processes get 3472 * throttled, kswapd wakes, a large process exits thereby balancing the 3473 * zones, which causes kswapd to exit balance_pgdat() before reaching 3474 * the wake up checks. If kswapd is going to sleep, no process should 3475 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3476 * the wake up is premature, processes will wake kswapd and get 3477 * throttled again. The difference from wake ups in balance_pgdat() is 3478 * that here we are under prepare_to_wait(). 3479 */ 3480 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3481 wake_up_all(&pgdat->pfmemalloc_wait); 3482 3483 /* Hopeless node, leave it to direct reclaim */ 3484 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3485 return true; 3486 3487 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3488 clear_pgdat_congested(pgdat); 3489 return true; 3490 } 3491 3492 return false; 3493 } 3494 3495 /* 3496 * kswapd shrinks a node of pages that are at or below the highest usable 3497 * zone that is currently unbalanced. 3498 * 3499 * Returns true if kswapd scanned at least the requested number of pages to 3500 * reclaim or if the lack of progress was due to pages under writeback. 3501 * This is used to determine if the scanning priority needs to be raised. 3502 */ 3503 static bool kswapd_shrink_node(pg_data_t *pgdat, 3504 struct scan_control *sc) 3505 { 3506 struct zone *zone; 3507 int z; 3508 3509 /* Reclaim a number of pages proportional to the number of zones */ 3510 sc->nr_to_reclaim = 0; 3511 for (z = 0; z <= sc->reclaim_idx; z++) { 3512 zone = pgdat->node_zones + z; 3513 if (!managed_zone(zone)) 3514 continue; 3515 3516 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3517 } 3518 3519 /* 3520 * Historically care was taken to put equal pressure on all zones but 3521 * now pressure is applied based on node LRU order. 3522 */ 3523 shrink_node(pgdat, sc); 3524 3525 /* 3526 * Fragmentation may mean that the system cannot be rebalanced for 3527 * high-order allocations. If twice the allocation size has been 3528 * reclaimed then recheck watermarks only at order-0 to prevent 3529 * excessive reclaim. Assume that a process requested a high-order 3530 * can direct reclaim/compact. 3531 */ 3532 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3533 sc->order = 0; 3534 3535 return sc->nr_scanned >= sc->nr_to_reclaim; 3536 } 3537 3538 /* 3539 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3540 * that are eligible for use by the caller until at least one zone is 3541 * balanced. 3542 * 3543 * Returns the order kswapd finished reclaiming at. 3544 * 3545 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3546 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3547 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3548 * or lower is eligible for reclaim until at least one usable zone is 3549 * balanced. 3550 */ 3551 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3552 { 3553 int i; 3554 unsigned long nr_soft_reclaimed; 3555 unsigned long nr_soft_scanned; 3556 unsigned long pflags; 3557 unsigned long nr_boost_reclaim; 3558 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3559 bool boosted; 3560 struct zone *zone; 3561 struct scan_control sc = { 3562 .gfp_mask = GFP_KERNEL, 3563 .order = order, 3564 .may_unmap = 1, 3565 }; 3566 3567 set_task_reclaim_state(current, &sc.reclaim_state); 3568 psi_memstall_enter(&pflags); 3569 __fs_reclaim_acquire(); 3570 3571 count_vm_event(PAGEOUTRUN); 3572 3573 /* 3574 * Account for the reclaim boost. Note that the zone boost is left in 3575 * place so that parallel allocations that are near the watermark will 3576 * stall or direct reclaim until kswapd is finished. 3577 */ 3578 nr_boost_reclaim = 0; 3579 for (i = 0; i <= classzone_idx; i++) { 3580 zone = pgdat->node_zones + i; 3581 if (!managed_zone(zone)) 3582 continue; 3583 3584 nr_boost_reclaim += zone->watermark_boost; 3585 zone_boosts[i] = zone->watermark_boost; 3586 } 3587 boosted = nr_boost_reclaim; 3588 3589 restart: 3590 sc.priority = DEF_PRIORITY; 3591 do { 3592 unsigned long nr_reclaimed = sc.nr_reclaimed; 3593 bool raise_priority = true; 3594 bool balanced; 3595 bool ret; 3596 3597 sc.reclaim_idx = classzone_idx; 3598 3599 /* 3600 * If the number of buffer_heads exceeds the maximum allowed 3601 * then consider reclaiming from all zones. This has a dual 3602 * purpose -- on 64-bit systems it is expected that 3603 * buffer_heads are stripped during active rotation. On 32-bit 3604 * systems, highmem pages can pin lowmem memory and shrinking 3605 * buffers can relieve lowmem pressure. Reclaim may still not 3606 * go ahead if all eligible zones for the original allocation 3607 * request are balanced to avoid excessive reclaim from kswapd. 3608 */ 3609 if (buffer_heads_over_limit) { 3610 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3611 zone = pgdat->node_zones + i; 3612 if (!managed_zone(zone)) 3613 continue; 3614 3615 sc.reclaim_idx = i; 3616 break; 3617 } 3618 } 3619 3620 /* 3621 * If the pgdat is imbalanced then ignore boosting and preserve 3622 * the watermarks for a later time and restart. Note that the 3623 * zone watermarks will be still reset at the end of balancing 3624 * on the grounds that the normal reclaim should be enough to 3625 * re-evaluate if boosting is required when kswapd next wakes. 3626 */ 3627 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3628 if (!balanced && nr_boost_reclaim) { 3629 nr_boost_reclaim = 0; 3630 goto restart; 3631 } 3632 3633 /* 3634 * If boosting is not active then only reclaim if there are no 3635 * eligible zones. Note that sc.reclaim_idx is not used as 3636 * buffer_heads_over_limit may have adjusted it. 3637 */ 3638 if (!nr_boost_reclaim && balanced) 3639 goto out; 3640 3641 /* Limit the priority of boosting to avoid reclaim writeback */ 3642 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3643 raise_priority = false; 3644 3645 /* 3646 * Do not writeback or swap pages for boosted reclaim. The 3647 * intent is to relieve pressure not issue sub-optimal IO 3648 * from reclaim context. If no pages are reclaimed, the 3649 * reclaim will be aborted. 3650 */ 3651 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3652 sc.may_swap = !nr_boost_reclaim; 3653 3654 /* 3655 * Do some background aging of the anon list, to give 3656 * pages a chance to be referenced before reclaiming. All 3657 * pages are rotated regardless of classzone as this is 3658 * about consistent aging. 3659 */ 3660 age_active_anon(pgdat, &sc); 3661 3662 /* 3663 * If we're getting trouble reclaiming, start doing writepage 3664 * even in laptop mode. 3665 */ 3666 if (sc.priority < DEF_PRIORITY - 2) 3667 sc.may_writepage = 1; 3668 3669 /* Call soft limit reclaim before calling shrink_node. */ 3670 sc.nr_scanned = 0; 3671 nr_soft_scanned = 0; 3672 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3673 sc.gfp_mask, &nr_soft_scanned); 3674 sc.nr_reclaimed += nr_soft_reclaimed; 3675 3676 /* 3677 * There should be no need to raise the scanning priority if 3678 * enough pages are already being scanned that that high 3679 * watermark would be met at 100% efficiency. 3680 */ 3681 if (kswapd_shrink_node(pgdat, &sc)) 3682 raise_priority = false; 3683 3684 /* 3685 * If the low watermark is met there is no need for processes 3686 * to be throttled on pfmemalloc_wait as they should not be 3687 * able to safely make forward progress. Wake them 3688 */ 3689 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3690 allow_direct_reclaim(pgdat)) 3691 wake_up_all(&pgdat->pfmemalloc_wait); 3692 3693 /* Check if kswapd should be suspending */ 3694 __fs_reclaim_release(); 3695 ret = try_to_freeze(); 3696 __fs_reclaim_acquire(); 3697 if (ret || kthread_should_stop()) 3698 break; 3699 3700 /* 3701 * Raise priority if scanning rate is too low or there was no 3702 * progress in reclaiming pages 3703 */ 3704 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3705 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3706 3707 /* 3708 * If reclaim made no progress for a boost, stop reclaim as 3709 * IO cannot be queued and it could be an infinite loop in 3710 * extreme circumstances. 3711 */ 3712 if (nr_boost_reclaim && !nr_reclaimed) 3713 break; 3714 3715 if (raise_priority || !nr_reclaimed) 3716 sc.priority--; 3717 } while (sc.priority >= 1); 3718 3719 if (!sc.nr_reclaimed) 3720 pgdat->kswapd_failures++; 3721 3722 out: 3723 /* If reclaim was boosted, account for the reclaim done in this pass */ 3724 if (boosted) { 3725 unsigned long flags; 3726 3727 for (i = 0; i <= classzone_idx; i++) { 3728 if (!zone_boosts[i]) 3729 continue; 3730 3731 /* Increments are under the zone lock */ 3732 zone = pgdat->node_zones + i; 3733 spin_lock_irqsave(&zone->lock, flags); 3734 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3735 spin_unlock_irqrestore(&zone->lock, flags); 3736 } 3737 3738 /* 3739 * As there is now likely space, wakeup kcompact to defragment 3740 * pageblocks. 3741 */ 3742 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3743 } 3744 3745 snapshot_refaults(NULL, pgdat); 3746 __fs_reclaim_release(); 3747 psi_memstall_leave(&pflags); 3748 set_task_reclaim_state(current, NULL); 3749 3750 /* 3751 * Return the order kswapd stopped reclaiming at as 3752 * prepare_kswapd_sleep() takes it into account. If another caller 3753 * entered the allocator slow path while kswapd was awake, order will 3754 * remain at the higher level. 3755 */ 3756 return sc.order; 3757 } 3758 3759 /* 3760 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3761 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3762 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3763 * after previous reclaim attempt (node is still unbalanced). In that case 3764 * return the zone index of the previous kswapd reclaim cycle. 3765 */ 3766 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3767 enum zone_type prev_classzone_idx) 3768 { 3769 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3770 return prev_classzone_idx; 3771 return pgdat->kswapd_classzone_idx; 3772 } 3773 3774 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3775 unsigned int classzone_idx) 3776 { 3777 long remaining = 0; 3778 DEFINE_WAIT(wait); 3779 3780 if (freezing(current) || kthread_should_stop()) 3781 return; 3782 3783 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3784 3785 /* 3786 * Try to sleep for a short interval. Note that kcompactd will only be 3787 * woken if it is possible to sleep for a short interval. This is 3788 * deliberate on the assumption that if reclaim cannot keep an 3789 * eligible zone balanced that it's also unlikely that compaction will 3790 * succeed. 3791 */ 3792 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3793 /* 3794 * Compaction records what page blocks it recently failed to 3795 * isolate pages from and skips them in the future scanning. 3796 * When kswapd is going to sleep, it is reasonable to assume 3797 * that pages and compaction may succeed so reset the cache. 3798 */ 3799 reset_isolation_suitable(pgdat); 3800 3801 /* 3802 * We have freed the memory, now we should compact it to make 3803 * allocation of the requested order possible. 3804 */ 3805 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3806 3807 remaining = schedule_timeout(HZ/10); 3808 3809 /* 3810 * If woken prematurely then reset kswapd_classzone_idx and 3811 * order. The values will either be from a wakeup request or 3812 * the previous request that slept prematurely. 3813 */ 3814 if (remaining) { 3815 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3816 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3817 } 3818 3819 finish_wait(&pgdat->kswapd_wait, &wait); 3820 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3821 } 3822 3823 /* 3824 * After a short sleep, check if it was a premature sleep. If not, then 3825 * go fully to sleep until explicitly woken up. 3826 */ 3827 if (!remaining && 3828 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3829 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3830 3831 /* 3832 * vmstat counters are not perfectly accurate and the estimated 3833 * value for counters such as NR_FREE_PAGES can deviate from the 3834 * true value by nr_online_cpus * threshold. To avoid the zone 3835 * watermarks being breached while under pressure, we reduce the 3836 * per-cpu vmstat threshold while kswapd is awake and restore 3837 * them before going back to sleep. 3838 */ 3839 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3840 3841 if (!kthread_should_stop()) 3842 schedule(); 3843 3844 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3845 } else { 3846 if (remaining) 3847 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3848 else 3849 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3850 } 3851 finish_wait(&pgdat->kswapd_wait, &wait); 3852 } 3853 3854 /* 3855 * The background pageout daemon, started as a kernel thread 3856 * from the init process. 3857 * 3858 * This basically trickles out pages so that we have _some_ 3859 * free memory available even if there is no other activity 3860 * that frees anything up. This is needed for things like routing 3861 * etc, where we otherwise might have all activity going on in 3862 * asynchronous contexts that cannot page things out. 3863 * 3864 * If there are applications that are active memory-allocators 3865 * (most normal use), this basically shouldn't matter. 3866 */ 3867 static int kswapd(void *p) 3868 { 3869 unsigned int alloc_order, reclaim_order; 3870 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3871 pg_data_t *pgdat = (pg_data_t*)p; 3872 struct task_struct *tsk = current; 3873 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3874 3875 if (!cpumask_empty(cpumask)) 3876 set_cpus_allowed_ptr(tsk, cpumask); 3877 3878 /* 3879 * Tell the memory management that we're a "memory allocator", 3880 * and that if we need more memory we should get access to it 3881 * regardless (see "__alloc_pages()"). "kswapd" should 3882 * never get caught in the normal page freeing logic. 3883 * 3884 * (Kswapd normally doesn't need memory anyway, but sometimes 3885 * you need a small amount of memory in order to be able to 3886 * page out something else, and this flag essentially protects 3887 * us from recursively trying to free more memory as we're 3888 * trying to free the first piece of memory in the first place). 3889 */ 3890 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3891 set_freezable(); 3892 3893 pgdat->kswapd_order = 0; 3894 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3895 for ( ; ; ) { 3896 bool ret; 3897 3898 alloc_order = reclaim_order = pgdat->kswapd_order; 3899 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3900 3901 kswapd_try_sleep: 3902 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3903 classzone_idx); 3904 3905 /* Read the new order and classzone_idx */ 3906 alloc_order = reclaim_order = pgdat->kswapd_order; 3907 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3908 pgdat->kswapd_order = 0; 3909 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3910 3911 ret = try_to_freeze(); 3912 if (kthread_should_stop()) 3913 break; 3914 3915 /* 3916 * We can speed up thawing tasks if we don't call balance_pgdat 3917 * after returning from the refrigerator 3918 */ 3919 if (ret) 3920 continue; 3921 3922 /* 3923 * Reclaim begins at the requested order but if a high-order 3924 * reclaim fails then kswapd falls back to reclaiming for 3925 * order-0. If that happens, kswapd will consider sleeping 3926 * for the order it finished reclaiming at (reclaim_order) 3927 * but kcompactd is woken to compact for the original 3928 * request (alloc_order). 3929 */ 3930 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3931 alloc_order); 3932 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3933 if (reclaim_order < alloc_order) 3934 goto kswapd_try_sleep; 3935 } 3936 3937 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3938 3939 return 0; 3940 } 3941 3942 /* 3943 * A zone is low on free memory or too fragmented for high-order memory. If 3944 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3945 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3946 * has failed or is not needed, still wake up kcompactd if only compaction is 3947 * needed. 3948 */ 3949 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3950 enum zone_type classzone_idx) 3951 { 3952 pg_data_t *pgdat; 3953 3954 if (!managed_zone(zone)) 3955 return; 3956 3957 if (!cpuset_zone_allowed(zone, gfp_flags)) 3958 return; 3959 pgdat = zone->zone_pgdat; 3960 3961 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3962 pgdat->kswapd_classzone_idx = classzone_idx; 3963 else 3964 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3965 classzone_idx); 3966 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3967 if (!waitqueue_active(&pgdat->kswapd_wait)) 3968 return; 3969 3970 /* Hopeless node, leave it to direct reclaim if possible */ 3971 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3972 (pgdat_balanced(pgdat, order, classzone_idx) && 3973 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3974 /* 3975 * There may be plenty of free memory available, but it's too 3976 * fragmented for high-order allocations. Wake up kcompactd 3977 * and rely on compaction_suitable() to determine if it's 3978 * needed. If it fails, it will defer subsequent attempts to 3979 * ratelimit its work. 3980 */ 3981 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3982 wakeup_kcompactd(pgdat, order, classzone_idx); 3983 return; 3984 } 3985 3986 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3987 gfp_flags); 3988 wake_up_interruptible(&pgdat->kswapd_wait); 3989 } 3990 3991 #ifdef CONFIG_HIBERNATION 3992 /* 3993 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3994 * freed pages. 3995 * 3996 * Rather than trying to age LRUs the aim is to preserve the overall 3997 * LRU order by reclaiming preferentially 3998 * inactive > active > active referenced > active mapped 3999 */ 4000 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4001 { 4002 struct scan_control sc = { 4003 .nr_to_reclaim = nr_to_reclaim, 4004 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4005 .reclaim_idx = MAX_NR_ZONES - 1, 4006 .priority = DEF_PRIORITY, 4007 .may_writepage = 1, 4008 .may_unmap = 1, 4009 .may_swap = 1, 4010 .hibernation_mode = 1, 4011 }; 4012 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4013 unsigned long nr_reclaimed; 4014 unsigned int noreclaim_flag; 4015 4016 fs_reclaim_acquire(sc.gfp_mask); 4017 noreclaim_flag = memalloc_noreclaim_save(); 4018 set_task_reclaim_state(current, &sc.reclaim_state); 4019 4020 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4021 4022 set_task_reclaim_state(current, NULL); 4023 memalloc_noreclaim_restore(noreclaim_flag); 4024 fs_reclaim_release(sc.gfp_mask); 4025 4026 return nr_reclaimed; 4027 } 4028 #endif /* CONFIG_HIBERNATION */ 4029 4030 /* It's optimal to keep kswapds on the same CPUs as their memory, but 4031 not required for correctness. So if the last cpu in a node goes 4032 away, we get changed to run anywhere: as the first one comes back, 4033 restore their cpu bindings. */ 4034 static int kswapd_cpu_online(unsigned int cpu) 4035 { 4036 int nid; 4037 4038 for_each_node_state(nid, N_MEMORY) { 4039 pg_data_t *pgdat = NODE_DATA(nid); 4040 const struct cpumask *mask; 4041 4042 mask = cpumask_of_node(pgdat->node_id); 4043 4044 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 4045 /* One of our CPUs online: restore mask */ 4046 set_cpus_allowed_ptr(pgdat->kswapd, mask); 4047 } 4048 return 0; 4049 } 4050 4051 /* 4052 * This kswapd start function will be called by init and node-hot-add. 4053 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4054 */ 4055 int kswapd_run(int nid) 4056 { 4057 pg_data_t *pgdat = NODE_DATA(nid); 4058 int ret = 0; 4059 4060 if (pgdat->kswapd) 4061 return 0; 4062 4063 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4064 if (IS_ERR(pgdat->kswapd)) { 4065 /* failure at boot is fatal */ 4066 BUG_ON(system_state < SYSTEM_RUNNING); 4067 pr_err("Failed to start kswapd on node %d\n", nid); 4068 ret = PTR_ERR(pgdat->kswapd); 4069 pgdat->kswapd = NULL; 4070 } 4071 return ret; 4072 } 4073 4074 /* 4075 * Called by memory hotplug when all memory in a node is offlined. Caller must 4076 * hold mem_hotplug_begin/end(). 4077 */ 4078 void kswapd_stop(int nid) 4079 { 4080 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4081 4082 if (kswapd) { 4083 kthread_stop(kswapd); 4084 NODE_DATA(nid)->kswapd = NULL; 4085 } 4086 } 4087 4088 static int __init kswapd_init(void) 4089 { 4090 int nid, ret; 4091 4092 swap_setup(); 4093 for_each_node_state(nid, N_MEMORY) 4094 kswapd_run(nid); 4095 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4096 "mm/vmscan:online", kswapd_cpu_online, 4097 NULL); 4098 WARN_ON(ret < 0); 4099 return 0; 4100 } 4101 4102 module_init(kswapd_init) 4103 4104 #ifdef CONFIG_NUMA 4105 /* 4106 * Node reclaim mode 4107 * 4108 * If non-zero call node_reclaim when the number of free pages falls below 4109 * the watermarks. 4110 */ 4111 int node_reclaim_mode __read_mostly; 4112 4113 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4114 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4115 4116 /* 4117 * Priority for NODE_RECLAIM. This determines the fraction of pages 4118 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4119 * a zone. 4120 */ 4121 #define NODE_RECLAIM_PRIORITY 4 4122 4123 /* 4124 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4125 * occur. 4126 */ 4127 int sysctl_min_unmapped_ratio = 1; 4128 4129 /* 4130 * If the number of slab pages in a zone grows beyond this percentage then 4131 * slab reclaim needs to occur. 4132 */ 4133 int sysctl_min_slab_ratio = 5; 4134 4135 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4136 { 4137 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4138 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4139 node_page_state(pgdat, NR_ACTIVE_FILE); 4140 4141 /* 4142 * It's possible for there to be more file mapped pages than 4143 * accounted for by the pages on the file LRU lists because 4144 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4145 */ 4146 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4147 } 4148 4149 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4150 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4151 { 4152 unsigned long nr_pagecache_reclaimable; 4153 unsigned long delta = 0; 4154 4155 /* 4156 * If RECLAIM_UNMAP is set, then all file pages are considered 4157 * potentially reclaimable. Otherwise, we have to worry about 4158 * pages like swapcache and node_unmapped_file_pages() provides 4159 * a better estimate 4160 */ 4161 if (node_reclaim_mode & RECLAIM_UNMAP) 4162 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4163 else 4164 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4165 4166 /* If we can't clean pages, remove dirty pages from consideration */ 4167 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4168 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4169 4170 /* Watch for any possible underflows due to delta */ 4171 if (unlikely(delta > nr_pagecache_reclaimable)) 4172 delta = nr_pagecache_reclaimable; 4173 4174 return nr_pagecache_reclaimable - delta; 4175 } 4176 4177 /* 4178 * Try to free up some pages from this node through reclaim. 4179 */ 4180 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4181 { 4182 /* Minimum pages needed in order to stay on node */ 4183 const unsigned long nr_pages = 1 << order; 4184 struct task_struct *p = current; 4185 unsigned int noreclaim_flag; 4186 struct scan_control sc = { 4187 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4188 .gfp_mask = current_gfp_context(gfp_mask), 4189 .order = order, 4190 .priority = NODE_RECLAIM_PRIORITY, 4191 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4192 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4193 .may_swap = 1, 4194 .reclaim_idx = gfp_zone(gfp_mask), 4195 }; 4196 4197 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4198 sc.gfp_mask); 4199 4200 cond_resched(); 4201 fs_reclaim_acquire(sc.gfp_mask); 4202 /* 4203 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4204 * and we also need to be able to write out pages for RECLAIM_WRITE 4205 * and RECLAIM_UNMAP. 4206 */ 4207 noreclaim_flag = memalloc_noreclaim_save(); 4208 p->flags |= PF_SWAPWRITE; 4209 set_task_reclaim_state(p, &sc.reclaim_state); 4210 4211 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4212 /* 4213 * Free memory by calling shrink node with increasing 4214 * priorities until we have enough memory freed. 4215 */ 4216 do { 4217 shrink_node(pgdat, &sc); 4218 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4219 } 4220 4221 set_task_reclaim_state(p, NULL); 4222 current->flags &= ~PF_SWAPWRITE; 4223 memalloc_noreclaim_restore(noreclaim_flag); 4224 fs_reclaim_release(sc.gfp_mask); 4225 4226 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4227 4228 return sc.nr_reclaimed >= nr_pages; 4229 } 4230 4231 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4232 { 4233 int ret; 4234 4235 /* 4236 * Node reclaim reclaims unmapped file backed pages and 4237 * slab pages if we are over the defined limits. 4238 * 4239 * A small portion of unmapped file backed pages is needed for 4240 * file I/O otherwise pages read by file I/O will be immediately 4241 * thrown out if the node is overallocated. So we do not reclaim 4242 * if less than a specified percentage of the node is used by 4243 * unmapped file backed pages. 4244 */ 4245 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4246 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4247 return NODE_RECLAIM_FULL; 4248 4249 /* 4250 * Do not scan if the allocation should not be delayed. 4251 */ 4252 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4253 return NODE_RECLAIM_NOSCAN; 4254 4255 /* 4256 * Only run node reclaim on the local node or on nodes that do not 4257 * have associated processors. This will favor the local processor 4258 * over remote processors and spread off node memory allocations 4259 * as wide as possible. 4260 */ 4261 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4262 return NODE_RECLAIM_NOSCAN; 4263 4264 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4265 return NODE_RECLAIM_NOSCAN; 4266 4267 ret = __node_reclaim(pgdat, gfp_mask, order); 4268 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4269 4270 if (!ret) 4271 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4272 4273 return ret; 4274 } 4275 #endif 4276 4277 /* 4278 * page_evictable - test whether a page is evictable 4279 * @page: the page to test 4280 * 4281 * Test whether page is evictable--i.e., should be placed on active/inactive 4282 * lists vs unevictable list. 4283 * 4284 * Reasons page might not be evictable: 4285 * (1) page's mapping marked unevictable 4286 * (2) page is part of an mlocked VMA 4287 * 4288 */ 4289 int page_evictable(struct page *page) 4290 { 4291 int ret; 4292 4293 /* Prevent address_space of inode and swap cache from being freed */ 4294 rcu_read_lock(); 4295 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4296 rcu_read_unlock(); 4297 return ret; 4298 } 4299 4300 /** 4301 * check_move_unevictable_pages - check pages for evictability and move to 4302 * appropriate zone lru list 4303 * @pvec: pagevec with lru pages to check 4304 * 4305 * Checks pages for evictability, if an evictable page is in the unevictable 4306 * lru list, moves it to the appropriate evictable lru list. This function 4307 * should be only used for lru pages. 4308 */ 4309 void check_move_unevictable_pages(struct pagevec *pvec) 4310 { 4311 struct lruvec *lruvec; 4312 struct pglist_data *pgdat = NULL; 4313 int pgscanned = 0; 4314 int pgrescued = 0; 4315 int i; 4316 4317 for (i = 0; i < pvec->nr; i++) { 4318 struct page *page = pvec->pages[i]; 4319 struct pglist_data *pagepgdat = page_pgdat(page); 4320 4321 pgscanned++; 4322 if (pagepgdat != pgdat) { 4323 if (pgdat) 4324 spin_unlock_irq(&pgdat->lru_lock); 4325 pgdat = pagepgdat; 4326 spin_lock_irq(&pgdat->lru_lock); 4327 } 4328 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4329 4330 if (!PageLRU(page) || !PageUnevictable(page)) 4331 continue; 4332 4333 if (page_evictable(page)) { 4334 enum lru_list lru = page_lru_base_type(page); 4335 4336 VM_BUG_ON_PAGE(PageActive(page), page); 4337 ClearPageUnevictable(page); 4338 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4339 add_page_to_lru_list(page, lruvec, lru); 4340 pgrescued++; 4341 } 4342 } 4343 4344 if (pgdat) { 4345 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4346 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4347 spin_unlock_irq(&pgdat->lru_lock); 4348 } 4349 } 4350 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4351