xref: /openbmc/linux/mm/vmscan.c (revision 771fcb58e5cd7feaf544552519319e7e8a5cace3)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 
44 #include <linux/swapops.h>
45 
46 #include "internal.h"
47 
48 struct scan_control {
49 	/* Incremented by the number of inactive pages that were scanned */
50 	unsigned long nr_scanned;
51 
52 	/* This context's GFP mask */
53 	gfp_t gfp_mask;
54 
55 	int may_writepage;
56 
57 	/* Can pages be swapped as part of reclaim? */
58 	int may_swap;
59 
60 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 	 * In this context, it doesn't matter that we scan the
63 	 * whole list at once. */
64 	int swap_cluster_max;
65 
66 	int swappiness;
67 
68 	int all_unreclaimable;
69 
70 	int order;
71 };
72 
73 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
74 
75 #ifdef ARCH_HAS_PREFETCH
76 #define prefetch_prev_lru_page(_page, _base, _field)			\
77 	do {								\
78 		if ((_page)->lru.prev != _base) {			\
79 			struct page *prev;				\
80 									\
81 			prev = lru_to_page(&(_page->lru));		\
82 			prefetch(&prev->_field);			\
83 		}							\
84 	} while (0)
85 #else
86 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
87 #endif
88 
89 #ifdef ARCH_HAS_PREFETCHW
90 #define prefetchw_prev_lru_page(_page, _base, _field)			\
91 	do {								\
92 		if ((_page)->lru.prev != _base) {			\
93 			struct page *prev;				\
94 									\
95 			prev = lru_to_page(&(_page->lru));		\
96 			prefetchw(&prev->_field);			\
97 		}							\
98 	} while (0)
99 #else
100 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
101 #endif
102 
103 /*
104  * From 0 .. 100.  Higher means more swappy.
105  */
106 int vm_swappiness = 60;
107 long vm_total_pages;	/* The total number of pages which the VM controls */
108 
109 static LIST_HEAD(shrinker_list);
110 static DECLARE_RWSEM(shrinker_rwsem);
111 
112 /*
113  * Add a shrinker callback to be called from the vm
114  */
115 void register_shrinker(struct shrinker *shrinker)
116 {
117 	shrinker->nr = 0;
118 	down_write(&shrinker_rwsem);
119 	list_add_tail(&shrinker->list, &shrinker_list);
120 	up_write(&shrinker_rwsem);
121 }
122 EXPORT_SYMBOL(register_shrinker);
123 
124 /*
125  * Remove one
126  */
127 void unregister_shrinker(struct shrinker *shrinker)
128 {
129 	down_write(&shrinker_rwsem);
130 	list_del(&shrinker->list);
131 	up_write(&shrinker_rwsem);
132 }
133 EXPORT_SYMBOL(unregister_shrinker);
134 
135 #define SHRINK_BATCH 128
136 /*
137  * Call the shrink functions to age shrinkable caches
138  *
139  * Here we assume it costs one seek to replace a lru page and that it also
140  * takes a seek to recreate a cache object.  With this in mind we age equal
141  * percentages of the lru and ageable caches.  This should balance the seeks
142  * generated by these structures.
143  *
144  * If the vm encountered mapped pages on the LRU it increase the pressure on
145  * slab to avoid swapping.
146  *
147  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
148  *
149  * `lru_pages' represents the number of on-LRU pages in all the zones which
150  * are eligible for the caller's allocation attempt.  It is used for balancing
151  * slab reclaim versus page reclaim.
152  *
153  * Returns the number of slab objects which we shrunk.
154  */
155 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
156 			unsigned long lru_pages)
157 {
158 	struct shrinker *shrinker;
159 	unsigned long ret = 0;
160 
161 	if (scanned == 0)
162 		scanned = SWAP_CLUSTER_MAX;
163 
164 	if (!down_read_trylock(&shrinker_rwsem))
165 		return 1;	/* Assume we'll be able to shrink next time */
166 
167 	list_for_each_entry(shrinker, &shrinker_list, list) {
168 		unsigned long long delta;
169 		unsigned long total_scan;
170 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
171 
172 		delta = (4 * scanned) / shrinker->seeks;
173 		delta *= max_pass;
174 		do_div(delta, lru_pages + 1);
175 		shrinker->nr += delta;
176 		if (shrinker->nr < 0) {
177 			printk(KERN_ERR "%s: nr=%ld\n",
178 					__FUNCTION__, shrinker->nr);
179 			shrinker->nr = max_pass;
180 		}
181 
182 		/*
183 		 * Avoid risking looping forever due to too large nr value:
184 		 * never try to free more than twice the estimate number of
185 		 * freeable entries.
186 		 */
187 		if (shrinker->nr > max_pass * 2)
188 			shrinker->nr = max_pass * 2;
189 
190 		total_scan = shrinker->nr;
191 		shrinker->nr = 0;
192 
193 		while (total_scan >= SHRINK_BATCH) {
194 			long this_scan = SHRINK_BATCH;
195 			int shrink_ret;
196 			int nr_before;
197 
198 			nr_before = (*shrinker->shrink)(0, gfp_mask);
199 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
200 			if (shrink_ret == -1)
201 				break;
202 			if (shrink_ret < nr_before)
203 				ret += nr_before - shrink_ret;
204 			count_vm_events(SLABS_SCANNED, this_scan);
205 			total_scan -= this_scan;
206 
207 			cond_resched();
208 		}
209 
210 		shrinker->nr += total_scan;
211 	}
212 	up_read(&shrinker_rwsem);
213 	return ret;
214 }
215 
216 /* Called without lock on whether page is mapped, so answer is unstable */
217 static inline int page_mapping_inuse(struct page *page)
218 {
219 	struct address_space *mapping;
220 
221 	/* Page is in somebody's page tables. */
222 	if (page_mapped(page))
223 		return 1;
224 
225 	/* Be more reluctant to reclaim swapcache than pagecache */
226 	if (PageSwapCache(page))
227 		return 1;
228 
229 	mapping = page_mapping(page);
230 	if (!mapping)
231 		return 0;
232 
233 	/* File is mmap'd by somebody? */
234 	return mapping_mapped(mapping);
235 }
236 
237 static inline int is_page_cache_freeable(struct page *page)
238 {
239 	return page_count(page) - !!PagePrivate(page) == 2;
240 }
241 
242 static int may_write_to_queue(struct backing_dev_info *bdi)
243 {
244 	if (current->flags & PF_SWAPWRITE)
245 		return 1;
246 	if (!bdi_write_congested(bdi))
247 		return 1;
248 	if (bdi == current->backing_dev_info)
249 		return 1;
250 	return 0;
251 }
252 
253 /*
254  * We detected a synchronous write error writing a page out.  Probably
255  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
256  * fsync(), msync() or close().
257  *
258  * The tricky part is that after writepage we cannot touch the mapping: nothing
259  * prevents it from being freed up.  But we have a ref on the page and once
260  * that page is locked, the mapping is pinned.
261  *
262  * We're allowed to run sleeping lock_page() here because we know the caller has
263  * __GFP_FS.
264  */
265 static void handle_write_error(struct address_space *mapping,
266 				struct page *page, int error)
267 {
268 	lock_page(page);
269 	if (page_mapping(page) == mapping)
270 		mapping_set_error(mapping, error);
271 	unlock_page(page);
272 }
273 
274 /* Request for sync pageout. */
275 enum pageout_io {
276 	PAGEOUT_IO_ASYNC,
277 	PAGEOUT_IO_SYNC,
278 };
279 
280 /* possible outcome of pageout() */
281 typedef enum {
282 	/* failed to write page out, page is locked */
283 	PAGE_KEEP,
284 	/* move page to the active list, page is locked */
285 	PAGE_ACTIVATE,
286 	/* page has been sent to the disk successfully, page is unlocked */
287 	PAGE_SUCCESS,
288 	/* page is clean and locked */
289 	PAGE_CLEAN,
290 } pageout_t;
291 
292 /*
293  * pageout is called by shrink_page_list() for each dirty page.
294  * Calls ->writepage().
295  */
296 static pageout_t pageout(struct page *page, struct address_space *mapping,
297 						enum pageout_io sync_writeback)
298 {
299 	/*
300 	 * If the page is dirty, only perform writeback if that write
301 	 * will be non-blocking.  To prevent this allocation from being
302 	 * stalled by pagecache activity.  But note that there may be
303 	 * stalls if we need to run get_block().  We could test
304 	 * PagePrivate for that.
305 	 *
306 	 * If this process is currently in generic_file_write() against
307 	 * this page's queue, we can perform writeback even if that
308 	 * will block.
309 	 *
310 	 * If the page is swapcache, write it back even if that would
311 	 * block, for some throttling. This happens by accident, because
312 	 * swap_backing_dev_info is bust: it doesn't reflect the
313 	 * congestion state of the swapdevs.  Easy to fix, if needed.
314 	 * See swapfile.c:page_queue_congested().
315 	 */
316 	if (!is_page_cache_freeable(page))
317 		return PAGE_KEEP;
318 	if (!mapping) {
319 		/*
320 		 * Some data journaling orphaned pages can have
321 		 * page->mapping == NULL while being dirty with clean buffers.
322 		 */
323 		if (PagePrivate(page)) {
324 			if (try_to_free_buffers(page)) {
325 				ClearPageDirty(page);
326 				printk("%s: orphaned page\n", __FUNCTION__);
327 				return PAGE_CLEAN;
328 			}
329 		}
330 		return PAGE_KEEP;
331 	}
332 	if (mapping->a_ops->writepage == NULL)
333 		return PAGE_ACTIVATE;
334 	if (!may_write_to_queue(mapping->backing_dev_info))
335 		return PAGE_KEEP;
336 
337 	if (clear_page_dirty_for_io(page)) {
338 		int res;
339 		struct writeback_control wbc = {
340 			.sync_mode = WB_SYNC_NONE,
341 			.nr_to_write = SWAP_CLUSTER_MAX,
342 			.range_start = 0,
343 			.range_end = LLONG_MAX,
344 			.nonblocking = 1,
345 			.for_reclaim = 1,
346 		};
347 
348 		SetPageReclaim(page);
349 		res = mapping->a_ops->writepage(page, &wbc);
350 		if (res < 0)
351 			handle_write_error(mapping, page, res);
352 		if (res == AOP_WRITEPAGE_ACTIVATE) {
353 			ClearPageReclaim(page);
354 			return PAGE_ACTIVATE;
355 		}
356 
357 		/*
358 		 * Wait on writeback if requested to. This happens when
359 		 * direct reclaiming a large contiguous area and the
360 		 * first attempt to free a range of pages fails.
361 		 */
362 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
363 			wait_on_page_writeback(page);
364 
365 		if (!PageWriteback(page)) {
366 			/* synchronous write or broken a_ops? */
367 			ClearPageReclaim(page);
368 		}
369 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
370 		return PAGE_SUCCESS;
371 	}
372 
373 	return PAGE_CLEAN;
374 }
375 
376 /*
377  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
378  * someone else has a ref on the page, abort and return 0.  If it was
379  * successfully detached, return 1.  Assumes the caller has a single ref on
380  * this page.
381  */
382 int remove_mapping(struct address_space *mapping, struct page *page)
383 {
384 	BUG_ON(!PageLocked(page));
385 	BUG_ON(mapping != page_mapping(page));
386 
387 	write_lock_irq(&mapping->tree_lock);
388 	/*
389 	 * The non racy check for a busy page.
390 	 *
391 	 * Must be careful with the order of the tests. When someone has
392 	 * a ref to the page, it may be possible that they dirty it then
393 	 * drop the reference. So if PageDirty is tested before page_count
394 	 * here, then the following race may occur:
395 	 *
396 	 * get_user_pages(&page);
397 	 * [user mapping goes away]
398 	 * write_to(page);
399 	 *				!PageDirty(page)    [good]
400 	 * SetPageDirty(page);
401 	 * put_page(page);
402 	 *				!page_count(page)   [good, discard it]
403 	 *
404 	 * [oops, our write_to data is lost]
405 	 *
406 	 * Reversing the order of the tests ensures such a situation cannot
407 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
408 	 * load is not satisfied before that of page->_count.
409 	 *
410 	 * Note that if SetPageDirty is always performed via set_page_dirty,
411 	 * and thus under tree_lock, then this ordering is not required.
412 	 */
413 	if (unlikely(page_count(page) != 2))
414 		goto cannot_free;
415 	smp_rmb();
416 	if (unlikely(PageDirty(page)))
417 		goto cannot_free;
418 
419 	if (PageSwapCache(page)) {
420 		swp_entry_t swap = { .val = page_private(page) };
421 		__delete_from_swap_cache(page);
422 		write_unlock_irq(&mapping->tree_lock);
423 		swap_free(swap);
424 		__put_page(page);	/* The pagecache ref */
425 		return 1;
426 	}
427 
428 	__remove_from_page_cache(page);
429 	write_unlock_irq(&mapping->tree_lock);
430 	__put_page(page);
431 	return 1;
432 
433 cannot_free:
434 	write_unlock_irq(&mapping->tree_lock);
435 	return 0;
436 }
437 
438 /*
439  * shrink_page_list() returns the number of reclaimed pages
440  */
441 static unsigned long shrink_page_list(struct list_head *page_list,
442 					struct scan_control *sc,
443 					enum pageout_io sync_writeback)
444 {
445 	LIST_HEAD(ret_pages);
446 	struct pagevec freed_pvec;
447 	int pgactivate = 0;
448 	unsigned long nr_reclaimed = 0;
449 
450 	cond_resched();
451 
452 	pagevec_init(&freed_pvec, 1);
453 	while (!list_empty(page_list)) {
454 		struct address_space *mapping;
455 		struct page *page;
456 		int may_enter_fs;
457 		int referenced;
458 
459 		cond_resched();
460 
461 		page = lru_to_page(page_list);
462 		list_del(&page->lru);
463 
464 		if (TestSetPageLocked(page))
465 			goto keep;
466 
467 		VM_BUG_ON(PageActive(page));
468 
469 		sc->nr_scanned++;
470 
471 		if (!sc->may_swap && page_mapped(page))
472 			goto keep_locked;
473 
474 		/* Double the slab pressure for mapped and swapcache pages */
475 		if (page_mapped(page) || PageSwapCache(page))
476 			sc->nr_scanned++;
477 
478 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
479 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
480 
481 		if (PageWriteback(page)) {
482 			/*
483 			 * Synchronous reclaim is performed in two passes,
484 			 * first an asynchronous pass over the list to
485 			 * start parallel writeback, and a second synchronous
486 			 * pass to wait for the IO to complete.  Wait here
487 			 * for any page for which writeback has already
488 			 * started.
489 			 */
490 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
491 				wait_on_page_writeback(page);
492 			else
493 				goto keep_locked;
494 		}
495 
496 		referenced = page_referenced(page, 1);
497 		/* In active use or really unfreeable?  Activate it. */
498 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
499 					referenced && page_mapping_inuse(page))
500 			goto activate_locked;
501 
502 #ifdef CONFIG_SWAP
503 		/*
504 		 * Anonymous process memory has backing store?
505 		 * Try to allocate it some swap space here.
506 		 */
507 		if (PageAnon(page) && !PageSwapCache(page))
508 			if (!add_to_swap(page, GFP_ATOMIC))
509 				goto activate_locked;
510 #endif /* CONFIG_SWAP */
511 
512 		mapping = page_mapping(page);
513 
514 		/*
515 		 * The page is mapped into the page tables of one or more
516 		 * processes. Try to unmap it here.
517 		 */
518 		if (page_mapped(page) && mapping) {
519 			switch (try_to_unmap(page, 0)) {
520 			case SWAP_FAIL:
521 				goto activate_locked;
522 			case SWAP_AGAIN:
523 				goto keep_locked;
524 			case SWAP_SUCCESS:
525 				; /* try to free the page below */
526 			}
527 		}
528 
529 		if (PageDirty(page)) {
530 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
531 				goto keep_locked;
532 			if (!may_enter_fs)
533 				goto keep_locked;
534 			if (!sc->may_writepage)
535 				goto keep_locked;
536 
537 			/* Page is dirty, try to write it out here */
538 			switch (pageout(page, mapping, sync_writeback)) {
539 			case PAGE_KEEP:
540 				goto keep_locked;
541 			case PAGE_ACTIVATE:
542 				goto activate_locked;
543 			case PAGE_SUCCESS:
544 				if (PageWriteback(page) || PageDirty(page))
545 					goto keep;
546 				/*
547 				 * A synchronous write - probably a ramdisk.  Go
548 				 * ahead and try to reclaim the page.
549 				 */
550 				if (TestSetPageLocked(page))
551 					goto keep;
552 				if (PageDirty(page) || PageWriteback(page))
553 					goto keep_locked;
554 				mapping = page_mapping(page);
555 			case PAGE_CLEAN:
556 				; /* try to free the page below */
557 			}
558 		}
559 
560 		/*
561 		 * If the page has buffers, try to free the buffer mappings
562 		 * associated with this page. If we succeed we try to free
563 		 * the page as well.
564 		 *
565 		 * We do this even if the page is PageDirty().
566 		 * try_to_release_page() does not perform I/O, but it is
567 		 * possible for a page to have PageDirty set, but it is actually
568 		 * clean (all its buffers are clean).  This happens if the
569 		 * buffers were written out directly, with submit_bh(). ext3
570 		 * will do this, as well as the blockdev mapping.
571 		 * try_to_release_page() will discover that cleanness and will
572 		 * drop the buffers and mark the page clean - it can be freed.
573 		 *
574 		 * Rarely, pages can have buffers and no ->mapping.  These are
575 		 * the pages which were not successfully invalidated in
576 		 * truncate_complete_page().  We try to drop those buffers here
577 		 * and if that worked, and the page is no longer mapped into
578 		 * process address space (page_count == 1) it can be freed.
579 		 * Otherwise, leave the page on the LRU so it is swappable.
580 		 */
581 		if (PagePrivate(page)) {
582 			if (!try_to_release_page(page, sc->gfp_mask))
583 				goto activate_locked;
584 			if (!mapping && page_count(page) == 1)
585 				goto free_it;
586 		}
587 
588 		if (!mapping || !remove_mapping(mapping, page))
589 			goto keep_locked;
590 
591 free_it:
592 		unlock_page(page);
593 		nr_reclaimed++;
594 		if (!pagevec_add(&freed_pvec, page))
595 			__pagevec_release_nonlru(&freed_pvec);
596 		continue;
597 
598 activate_locked:
599 		SetPageActive(page);
600 		pgactivate++;
601 keep_locked:
602 		unlock_page(page);
603 keep:
604 		list_add(&page->lru, &ret_pages);
605 		VM_BUG_ON(PageLRU(page));
606 	}
607 	list_splice(&ret_pages, page_list);
608 	if (pagevec_count(&freed_pvec))
609 		__pagevec_release_nonlru(&freed_pvec);
610 	count_vm_events(PGACTIVATE, pgactivate);
611 	return nr_reclaimed;
612 }
613 
614 /* LRU Isolation modes. */
615 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
616 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
617 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
618 
619 /*
620  * Attempt to remove the specified page from its LRU.  Only take this page
621  * if it is of the appropriate PageActive status.  Pages which are being
622  * freed elsewhere are also ignored.
623  *
624  * page:	page to consider
625  * mode:	one of the LRU isolation modes defined above
626  *
627  * returns 0 on success, -ve errno on failure.
628  */
629 static int __isolate_lru_page(struct page *page, int mode)
630 {
631 	int ret = -EINVAL;
632 
633 	/* Only take pages on the LRU. */
634 	if (!PageLRU(page))
635 		return ret;
636 
637 	/*
638 	 * When checking the active state, we need to be sure we are
639 	 * dealing with comparible boolean values.  Take the logical not
640 	 * of each.
641 	 */
642 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
643 		return ret;
644 
645 	ret = -EBUSY;
646 	if (likely(get_page_unless_zero(page))) {
647 		/*
648 		 * Be careful not to clear PageLRU until after we're
649 		 * sure the page is not being freed elsewhere -- the
650 		 * page release code relies on it.
651 		 */
652 		ClearPageLRU(page);
653 		ret = 0;
654 	}
655 
656 	return ret;
657 }
658 
659 /*
660  * zone->lru_lock is heavily contended.  Some of the functions that
661  * shrink the lists perform better by taking out a batch of pages
662  * and working on them outside the LRU lock.
663  *
664  * For pagecache intensive workloads, this function is the hottest
665  * spot in the kernel (apart from copy_*_user functions).
666  *
667  * Appropriate locks must be held before calling this function.
668  *
669  * @nr_to_scan:	The number of pages to look through on the list.
670  * @src:	The LRU list to pull pages off.
671  * @dst:	The temp list to put pages on to.
672  * @scanned:	The number of pages that were scanned.
673  * @order:	The caller's attempted allocation order
674  * @mode:	One of the LRU isolation modes
675  *
676  * returns how many pages were moved onto *@dst.
677  */
678 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
679 		struct list_head *src, struct list_head *dst,
680 		unsigned long *scanned, int order, int mode)
681 {
682 	unsigned long nr_taken = 0;
683 	unsigned long scan;
684 
685 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
686 		struct page *page;
687 		unsigned long pfn;
688 		unsigned long end_pfn;
689 		unsigned long page_pfn;
690 		int zone_id;
691 
692 		page = lru_to_page(src);
693 		prefetchw_prev_lru_page(page, src, flags);
694 
695 		VM_BUG_ON(!PageLRU(page));
696 
697 		switch (__isolate_lru_page(page, mode)) {
698 		case 0:
699 			list_move(&page->lru, dst);
700 			nr_taken++;
701 			break;
702 
703 		case -EBUSY:
704 			/* else it is being freed elsewhere */
705 			list_move(&page->lru, src);
706 			continue;
707 
708 		default:
709 			BUG();
710 		}
711 
712 		if (!order)
713 			continue;
714 
715 		/*
716 		 * Attempt to take all pages in the order aligned region
717 		 * surrounding the tag page.  Only take those pages of
718 		 * the same active state as that tag page.  We may safely
719 		 * round the target page pfn down to the requested order
720 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
721 		 * where that page is in a different zone we will detect
722 		 * it from its zone id and abort this block scan.
723 		 */
724 		zone_id = page_zone_id(page);
725 		page_pfn = page_to_pfn(page);
726 		pfn = page_pfn & ~((1 << order) - 1);
727 		end_pfn = pfn + (1 << order);
728 		for (; pfn < end_pfn; pfn++) {
729 			struct page *cursor_page;
730 
731 			/* The target page is in the block, ignore it. */
732 			if (unlikely(pfn == page_pfn))
733 				continue;
734 
735 			/* Avoid holes within the zone. */
736 			if (unlikely(!pfn_valid_within(pfn)))
737 				break;
738 
739 			cursor_page = pfn_to_page(pfn);
740 			/* Check that we have not crossed a zone boundary. */
741 			if (unlikely(page_zone_id(cursor_page) != zone_id))
742 				continue;
743 			switch (__isolate_lru_page(cursor_page, mode)) {
744 			case 0:
745 				list_move(&cursor_page->lru, dst);
746 				nr_taken++;
747 				scan++;
748 				break;
749 
750 			case -EBUSY:
751 				/* else it is being freed elsewhere */
752 				list_move(&cursor_page->lru, src);
753 			default:
754 				break;
755 			}
756 		}
757 	}
758 
759 	*scanned = scan;
760 	return nr_taken;
761 }
762 
763 /*
764  * clear_active_flags() is a helper for shrink_active_list(), clearing
765  * any active bits from the pages in the list.
766  */
767 static unsigned long clear_active_flags(struct list_head *page_list)
768 {
769 	int nr_active = 0;
770 	struct page *page;
771 
772 	list_for_each_entry(page, page_list, lru)
773 		if (PageActive(page)) {
774 			ClearPageActive(page);
775 			nr_active++;
776 		}
777 
778 	return nr_active;
779 }
780 
781 /*
782  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
783  * of reclaimed pages
784  */
785 static unsigned long shrink_inactive_list(unsigned long max_scan,
786 				struct zone *zone, struct scan_control *sc)
787 {
788 	LIST_HEAD(page_list);
789 	struct pagevec pvec;
790 	unsigned long nr_scanned = 0;
791 	unsigned long nr_reclaimed = 0;
792 
793 	pagevec_init(&pvec, 1);
794 
795 	lru_add_drain();
796 	spin_lock_irq(&zone->lru_lock);
797 	do {
798 		struct page *page;
799 		unsigned long nr_taken;
800 		unsigned long nr_scan;
801 		unsigned long nr_freed;
802 		unsigned long nr_active;
803 
804 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
805 			     &zone->inactive_list,
806 			     &page_list, &nr_scan, sc->order,
807 			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
808 					     ISOLATE_BOTH : ISOLATE_INACTIVE);
809 		nr_active = clear_active_flags(&page_list);
810 		__count_vm_events(PGDEACTIVATE, nr_active);
811 
812 		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
813 		__mod_zone_page_state(zone, NR_INACTIVE,
814 						-(nr_taken - nr_active));
815 		zone->pages_scanned += nr_scan;
816 		spin_unlock_irq(&zone->lru_lock);
817 
818 		nr_scanned += nr_scan;
819 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
820 
821 		/*
822 		 * If we are direct reclaiming for contiguous pages and we do
823 		 * not reclaim everything in the list, try again and wait
824 		 * for IO to complete. This will stall high-order allocations
825 		 * but that should be acceptable to the caller
826 		 */
827 		if (nr_freed < nr_taken && !current_is_kswapd() &&
828 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
829 			congestion_wait(WRITE, HZ/10);
830 
831 			/*
832 			 * The attempt at page out may have made some
833 			 * of the pages active, mark them inactive again.
834 			 */
835 			nr_active = clear_active_flags(&page_list);
836 			count_vm_events(PGDEACTIVATE, nr_active);
837 
838 			nr_freed += shrink_page_list(&page_list, sc,
839 							PAGEOUT_IO_SYNC);
840 		}
841 
842 		nr_reclaimed += nr_freed;
843 		local_irq_disable();
844 		if (current_is_kswapd()) {
845 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
846 			__count_vm_events(KSWAPD_STEAL, nr_freed);
847 		} else
848 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
849 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
850 
851 		if (nr_taken == 0)
852 			goto done;
853 
854 		spin_lock(&zone->lru_lock);
855 		/*
856 		 * Put back any unfreeable pages.
857 		 */
858 		while (!list_empty(&page_list)) {
859 			page = lru_to_page(&page_list);
860 			VM_BUG_ON(PageLRU(page));
861 			SetPageLRU(page);
862 			list_del(&page->lru);
863 			if (PageActive(page))
864 				add_page_to_active_list(zone, page);
865 			else
866 				add_page_to_inactive_list(zone, page);
867 			if (!pagevec_add(&pvec, page)) {
868 				spin_unlock_irq(&zone->lru_lock);
869 				__pagevec_release(&pvec);
870 				spin_lock_irq(&zone->lru_lock);
871 			}
872 		}
873   	} while (nr_scanned < max_scan);
874 	spin_unlock(&zone->lru_lock);
875 done:
876 	local_irq_enable();
877 	pagevec_release(&pvec);
878 	return nr_reclaimed;
879 }
880 
881 /*
882  * We are about to scan this zone at a certain priority level.  If that priority
883  * level is smaller (ie: more urgent) than the previous priority, then note
884  * that priority level within the zone.  This is done so that when the next
885  * process comes in to scan this zone, it will immediately start out at this
886  * priority level rather than having to build up its own scanning priority.
887  * Here, this priority affects only the reclaim-mapped threshold.
888  */
889 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
890 {
891 	if (priority < zone->prev_priority)
892 		zone->prev_priority = priority;
893 }
894 
895 static inline int zone_is_near_oom(struct zone *zone)
896 {
897 	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
898 				+ zone_page_state(zone, NR_INACTIVE))*3;
899 }
900 
901 /*
902  * This moves pages from the active list to the inactive list.
903  *
904  * We move them the other way if the page is referenced by one or more
905  * processes, from rmap.
906  *
907  * If the pages are mostly unmapped, the processing is fast and it is
908  * appropriate to hold zone->lru_lock across the whole operation.  But if
909  * the pages are mapped, the processing is slow (page_referenced()) so we
910  * should drop zone->lru_lock around each page.  It's impossible to balance
911  * this, so instead we remove the pages from the LRU while processing them.
912  * It is safe to rely on PG_active against the non-LRU pages in here because
913  * nobody will play with that bit on a non-LRU page.
914  *
915  * The downside is that we have to touch page->_count against each page.
916  * But we had to alter page->flags anyway.
917  */
918 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
919 				struct scan_control *sc, int priority)
920 {
921 	unsigned long pgmoved;
922 	int pgdeactivate = 0;
923 	unsigned long pgscanned;
924 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
925 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
926 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
927 	struct page *page;
928 	struct pagevec pvec;
929 	int reclaim_mapped = 0;
930 
931 	if (sc->may_swap) {
932 		long mapped_ratio;
933 		long distress;
934 		long swap_tendency;
935 		long imbalance;
936 
937 		if (zone_is_near_oom(zone))
938 			goto force_reclaim_mapped;
939 
940 		/*
941 		 * `distress' is a measure of how much trouble we're having
942 		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
943 		 */
944 		distress = 100 >> min(zone->prev_priority, priority);
945 
946 		/*
947 		 * The point of this algorithm is to decide when to start
948 		 * reclaiming mapped memory instead of just pagecache.  Work out
949 		 * how much memory
950 		 * is mapped.
951 		 */
952 		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
953 				global_page_state(NR_ANON_PAGES)) * 100) /
954 					vm_total_pages;
955 
956 		/*
957 		 * Now decide how much we really want to unmap some pages.  The
958 		 * mapped ratio is downgraded - just because there's a lot of
959 		 * mapped memory doesn't necessarily mean that page reclaim
960 		 * isn't succeeding.
961 		 *
962 		 * The distress ratio is important - we don't want to start
963 		 * going oom.
964 		 *
965 		 * A 100% value of vm_swappiness overrides this algorithm
966 		 * altogether.
967 		 */
968 		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
969 
970 		/*
971 		 * If there's huge imbalance between active and inactive
972 		 * (think active 100 times larger than inactive) we should
973 		 * become more permissive, or the system will take too much
974 		 * cpu before it start swapping during memory pressure.
975 		 * Distress is about avoiding early-oom, this is about
976 		 * making swappiness graceful despite setting it to low
977 		 * values.
978 		 *
979 		 * Avoid div by zero with nr_inactive+1, and max resulting
980 		 * value is vm_total_pages.
981 		 */
982 		imbalance  = zone_page_state(zone, NR_ACTIVE);
983 		imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
984 
985 		/*
986 		 * Reduce the effect of imbalance if swappiness is low,
987 		 * this means for a swappiness very low, the imbalance
988 		 * must be much higher than 100 for this logic to make
989 		 * the difference.
990 		 *
991 		 * Max temporary value is vm_total_pages*100.
992 		 */
993 		imbalance *= (vm_swappiness + 1);
994 		imbalance /= 100;
995 
996 		/*
997 		 * If not much of the ram is mapped, makes the imbalance
998 		 * less relevant, it's high priority we refill the inactive
999 		 * list with mapped pages only in presence of high ratio of
1000 		 * mapped pages.
1001 		 *
1002 		 * Max temporary value is vm_total_pages*100.
1003 		 */
1004 		imbalance *= mapped_ratio;
1005 		imbalance /= 100;
1006 
1007 		/* apply imbalance feedback to swap_tendency */
1008 		swap_tendency += imbalance;
1009 
1010 		/*
1011 		 * Now use this metric to decide whether to start moving mapped
1012 		 * memory onto the inactive list.
1013 		 */
1014 		if (swap_tendency >= 100)
1015 force_reclaim_mapped:
1016 			reclaim_mapped = 1;
1017 	}
1018 
1019 	lru_add_drain();
1020 	spin_lock_irq(&zone->lru_lock);
1021 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1022 			    &l_hold, &pgscanned, sc->order, ISOLATE_ACTIVE);
1023 	zone->pages_scanned += pgscanned;
1024 	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1025 	spin_unlock_irq(&zone->lru_lock);
1026 
1027 	while (!list_empty(&l_hold)) {
1028 		cond_resched();
1029 		page = lru_to_page(&l_hold);
1030 		list_del(&page->lru);
1031 		if (page_mapped(page)) {
1032 			if (!reclaim_mapped ||
1033 			    (total_swap_pages == 0 && PageAnon(page)) ||
1034 			    page_referenced(page, 0)) {
1035 				list_add(&page->lru, &l_active);
1036 				continue;
1037 			}
1038 		}
1039 		list_add(&page->lru, &l_inactive);
1040 	}
1041 
1042 	pagevec_init(&pvec, 1);
1043 	pgmoved = 0;
1044 	spin_lock_irq(&zone->lru_lock);
1045 	while (!list_empty(&l_inactive)) {
1046 		page = lru_to_page(&l_inactive);
1047 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1048 		VM_BUG_ON(PageLRU(page));
1049 		SetPageLRU(page);
1050 		VM_BUG_ON(!PageActive(page));
1051 		ClearPageActive(page);
1052 
1053 		list_move(&page->lru, &zone->inactive_list);
1054 		pgmoved++;
1055 		if (!pagevec_add(&pvec, page)) {
1056 			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1057 			spin_unlock_irq(&zone->lru_lock);
1058 			pgdeactivate += pgmoved;
1059 			pgmoved = 0;
1060 			if (buffer_heads_over_limit)
1061 				pagevec_strip(&pvec);
1062 			__pagevec_release(&pvec);
1063 			spin_lock_irq(&zone->lru_lock);
1064 		}
1065 	}
1066 	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1067 	pgdeactivate += pgmoved;
1068 	if (buffer_heads_over_limit) {
1069 		spin_unlock_irq(&zone->lru_lock);
1070 		pagevec_strip(&pvec);
1071 		spin_lock_irq(&zone->lru_lock);
1072 	}
1073 
1074 	pgmoved = 0;
1075 	while (!list_empty(&l_active)) {
1076 		page = lru_to_page(&l_active);
1077 		prefetchw_prev_lru_page(page, &l_active, flags);
1078 		VM_BUG_ON(PageLRU(page));
1079 		SetPageLRU(page);
1080 		VM_BUG_ON(!PageActive(page));
1081 		list_move(&page->lru, &zone->active_list);
1082 		pgmoved++;
1083 		if (!pagevec_add(&pvec, page)) {
1084 			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1085 			pgmoved = 0;
1086 			spin_unlock_irq(&zone->lru_lock);
1087 			__pagevec_release(&pvec);
1088 			spin_lock_irq(&zone->lru_lock);
1089 		}
1090 	}
1091 	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1092 
1093 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1094 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1095 	spin_unlock_irq(&zone->lru_lock);
1096 
1097 	pagevec_release(&pvec);
1098 }
1099 
1100 /*
1101  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1102  */
1103 static unsigned long shrink_zone(int priority, struct zone *zone,
1104 				struct scan_control *sc)
1105 {
1106 	unsigned long nr_active;
1107 	unsigned long nr_inactive;
1108 	unsigned long nr_to_scan;
1109 	unsigned long nr_reclaimed = 0;
1110 
1111 	/*
1112 	 * Add one to `nr_to_scan' just to make sure that the kernel will
1113 	 * slowly sift through the active list.
1114 	 */
1115 	zone->nr_scan_active +=
1116 		(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1117 	nr_active = zone->nr_scan_active;
1118 	if (nr_active >= sc->swap_cluster_max)
1119 		zone->nr_scan_active = 0;
1120 	else
1121 		nr_active = 0;
1122 
1123 	zone->nr_scan_inactive +=
1124 		(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1125 	nr_inactive = zone->nr_scan_inactive;
1126 	if (nr_inactive >= sc->swap_cluster_max)
1127 		zone->nr_scan_inactive = 0;
1128 	else
1129 		nr_inactive = 0;
1130 
1131 	while (nr_active || nr_inactive) {
1132 		if (nr_active) {
1133 			nr_to_scan = min(nr_active,
1134 					(unsigned long)sc->swap_cluster_max);
1135 			nr_active -= nr_to_scan;
1136 			shrink_active_list(nr_to_scan, zone, sc, priority);
1137 		}
1138 
1139 		if (nr_inactive) {
1140 			nr_to_scan = min(nr_inactive,
1141 					(unsigned long)sc->swap_cluster_max);
1142 			nr_inactive -= nr_to_scan;
1143 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1144 								sc);
1145 		}
1146 	}
1147 
1148 	throttle_vm_writeout(sc->gfp_mask);
1149 	return nr_reclaimed;
1150 }
1151 
1152 /*
1153  * This is the direct reclaim path, for page-allocating processes.  We only
1154  * try to reclaim pages from zones which will satisfy the caller's allocation
1155  * request.
1156  *
1157  * We reclaim from a zone even if that zone is over pages_high.  Because:
1158  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1159  *    allocation or
1160  * b) The zones may be over pages_high but they must go *over* pages_high to
1161  *    satisfy the `incremental min' zone defense algorithm.
1162  *
1163  * Returns the number of reclaimed pages.
1164  *
1165  * If a zone is deemed to be full of pinned pages then just give it a light
1166  * scan then give up on it.
1167  */
1168 static unsigned long shrink_zones(int priority, struct zone **zones,
1169 					struct scan_control *sc)
1170 {
1171 	unsigned long nr_reclaimed = 0;
1172 	int i;
1173 
1174 	sc->all_unreclaimable = 1;
1175 	for (i = 0; zones[i] != NULL; i++) {
1176 		struct zone *zone = zones[i];
1177 
1178 		if (!populated_zone(zone))
1179 			continue;
1180 
1181 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1182 			continue;
1183 
1184 		note_zone_scanning_priority(zone, priority);
1185 
1186 		if (zone_is_all_unreclaimable(zone) && priority != DEF_PRIORITY)
1187 			continue;	/* Let kswapd poll it */
1188 
1189 		sc->all_unreclaimable = 0;
1190 
1191 		nr_reclaimed += shrink_zone(priority, zone, sc);
1192 	}
1193 	return nr_reclaimed;
1194 }
1195 
1196 /*
1197  * This is the main entry point to direct page reclaim.
1198  *
1199  * If a full scan of the inactive list fails to free enough memory then we
1200  * are "out of memory" and something needs to be killed.
1201  *
1202  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1203  * high - the zone may be full of dirty or under-writeback pages, which this
1204  * caller can't do much about.  We kick pdflush and take explicit naps in the
1205  * hope that some of these pages can be written.  But if the allocating task
1206  * holds filesystem locks which prevent writeout this might not work, and the
1207  * allocation attempt will fail.
1208  */
1209 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1210 {
1211 	int priority;
1212 	int ret = 0;
1213 	unsigned long total_scanned = 0;
1214 	unsigned long nr_reclaimed = 0;
1215 	struct reclaim_state *reclaim_state = current->reclaim_state;
1216 	unsigned long lru_pages = 0;
1217 	int i;
1218 	struct scan_control sc = {
1219 		.gfp_mask = gfp_mask,
1220 		.may_writepage = !laptop_mode,
1221 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1222 		.may_swap = 1,
1223 		.swappiness = vm_swappiness,
1224 		.order = order,
1225 	};
1226 
1227 	count_vm_event(ALLOCSTALL);
1228 
1229 	for (i = 0; zones[i] != NULL; i++) {
1230 		struct zone *zone = zones[i];
1231 
1232 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1233 			continue;
1234 
1235 		lru_pages += zone_page_state(zone, NR_ACTIVE)
1236 				+ zone_page_state(zone, NR_INACTIVE);
1237 	}
1238 
1239 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1240 		sc.nr_scanned = 0;
1241 		if (!priority)
1242 			disable_swap_token();
1243 		nr_reclaimed += shrink_zones(priority, zones, &sc);
1244 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1245 		if (reclaim_state) {
1246 			nr_reclaimed += reclaim_state->reclaimed_slab;
1247 			reclaim_state->reclaimed_slab = 0;
1248 		}
1249 		total_scanned += sc.nr_scanned;
1250 		if (nr_reclaimed >= sc.swap_cluster_max) {
1251 			ret = 1;
1252 			goto out;
1253 		}
1254 
1255 		/*
1256 		 * Try to write back as many pages as we just scanned.  This
1257 		 * tends to cause slow streaming writers to write data to the
1258 		 * disk smoothly, at the dirtying rate, which is nice.   But
1259 		 * that's undesirable in laptop mode, where we *want* lumpy
1260 		 * writeout.  So in laptop mode, write out the whole world.
1261 		 */
1262 		if (total_scanned > sc.swap_cluster_max +
1263 					sc.swap_cluster_max / 2) {
1264 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1265 			sc.may_writepage = 1;
1266 		}
1267 
1268 		/* Take a nap, wait for some writeback to complete */
1269 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1270 			congestion_wait(WRITE, HZ/10);
1271 	}
1272 	/* top priority shrink_caches still had more to do? don't OOM, then */
1273 	if (!sc.all_unreclaimable)
1274 		ret = 1;
1275 out:
1276 	/*
1277 	 * Now that we've scanned all the zones at this priority level, note
1278 	 * that level within the zone so that the next thread which performs
1279 	 * scanning of this zone will immediately start out at this priority
1280 	 * level.  This affects only the decision whether or not to bring
1281 	 * mapped pages onto the inactive list.
1282 	 */
1283 	if (priority < 0)
1284 		priority = 0;
1285 	for (i = 0; zones[i] != NULL; i++) {
1286 		struct zone *zone = zones[i];
1287 
1288 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1289 			continue;
1290 
1291 		zone->prev_priority = priority;
1292 	}
1293 	return ret;
1294 }
1295 
1296 /*
1297  * For kswapd, balance_pgdat() will work across all this node's zones until
1298  * they are all at pages_high.
1299  *
1300  * Returns the number of pages which were actually freed.
1301  *
1302  * There is special handling here for zones which are full of pinned pages.
1303  * This can happen if the pages are all mlocked, or if they are all used by
1304  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1305  * What we do is to detect the case where all pages in the zone have been
1306  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1307  * dead and from now on, only perform a short scan.  Basically we're polling
1308  * the zone for when the problem goes away.
1309  *
1310  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1311  * zones which have free_pages > pages_high, but once a zone is found to have
1312  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1313  * of the number of free pages in the lower zones.  This interoperates with
1314  * the page allocator fallback scheme to ensure that aging of pages is balanced
1315  * across the zones.
1316  */
1317 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1318 {
1319 	int all_zones_ok;
1320 	int priority;
1321 	int i;
1322 	unsigned long total_scanned;
1323 	unsigned long nr_reclaimed;
1324 	struct reclaim_state *reclaim_state = current->reclaim_state;
1325 	struct scan_control sc = {
1326 		.gfp_mask = GFP_KERNEL,
1327 		.may_swap = 1,
1328 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1329 		.swappiness = vm_swappiness,
1330 		.order = order,
1331 	};
1332 	/*
1333 	 * temp_priority is used to remember the scanning priority at which
1334 	 * this zone was successfully refilled to free_pages == pages_high.
1335 	 */
1336 	int temp_priority[MAX_NR_ZONES];
1337 
1338 loop_again:
1339 	total_scanned = 0;
1340 	nr_reclaimed = 0;
1341 	sc.may_writepage = !laptop_mode;
1342 	count_vm_event(PAGEOUTRUN);
1343 
1344 	for (i = 0; i < pgdat->nr_zones; i++)
1345 		temp_priority[i] = DEF_PRIORITY;
1346 
1347 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1348 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1349 		unsigned long lru_pages = 0;
1350 
1351 		/* The swap token gets in the way of swapout... */
1352 		if (!priority)
1353 			disable_swap_token();
1354 
1355 		all_zones_ok = 1;
1356 
1357 		/*
1358 		 * Scan in the highmem->dma direction for the highest
1359 		 * zone which needs scanning
1360 		 */
1361 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1362 			struct zone *zone = pgdat->node_zones + i;
1363 
1364 			if (!populated_zone(zone))
1365 				continue;
1366 
1367 			if (zone_is_all_unreclaimable(zone) &&
1368 			    priority != DEF_PRIORITY)
1369 				continue;
1370 
1371 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1372 					       0, 0)) {
1373 				end_zone = i;
1374 				break;
1375 			}
1376 		}
1377 		if (i < 0)
1378 			goto out;
1379 
1380 		for (i = 0; i <= end_zone; i++) {
1381 			struct zone *zone = pgdat->node_zones + i;
1382 
1383 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1384 					+ zone_page_state(zone, NR_INACTIVE);
1385 		}
1386 
1387 		/*
1388 		 * Now scan the zone in the dma->highmem direction, stopping
1389 		 * at the last zone which needs scanning.
1390 		 *
1391 		 * We do this because the page allocator works in the opposite
1392 		 * direction.  This prevents the page allocator from allocating
1393 		 * pages behind kswapd's direction of progress, which would
1394 		 * cause too much scanning of the lower zones.
1395 		 */
1396 		for (i = 0; i <= end_zone; i++) {
1397 			struct zone *zone = pgdat->node_zones + i;
1398 			int nr_slab;
1399 
1400 			if (!populated_zone(zone))
1401 				continue;
1402 
1403 			if (zone_is_all_unreclaimable(zone) &&
1404 					priority != DEF_PRIORITY)
1405 				continue;
1406 
1407 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1408 					       end_zone, 0))
1409 				all_zones_ok = 0;
1410 			temp_priority[i] = priority;
1411 			sc.nr_scanned = 0;
1412 			note_zone_scanning_priority(zone, priority);
1413 			/*
1414 			 * We put equal pressure on every zone, unless one
1415 			 * zone has way too many pages free already.
1416 			 */
1417 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1418 						end_zone, 0))
1419 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1420 			reclaim_state->reclaimed_slab = 0;
1421 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1422 						lru_pages);
1423 			nr_reclaimed += reclaim_state->reclaimed_slab;
1424 			total_scanned += sc.nr_scanned;
1425 			if (zone_is_all_unreclaimable(zone))
1426 				continue;
1427 			if (nr_slab == 0 && zone->pages_scanned >=
1428 				(zone_page_state(zone, NR_ACTIVE)
1429 				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1430 					zone_set_flag(zone,
1431 						      ZONE_ALL_UNRECLAIMABLE);
1432 			/*
1433 			 * If we've done a decent amount of scanning and
1434 			 * the reclaim ratio is low, start doing writepage
1435 			 * even in laptop mode
1436 			 */
1437 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1438 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1439 				sc.may_writepage = 1;
1440 		}
1441 		if (all_zones_ok)
1442 			break;		/* kswapd: all done */
1443 		/*
1444 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1445 		 * another pass across the zones.
1446 		 */
1447 		if (total_scanned && priority < DEF_PRIORITY - 2)
1448 			congestion_wait(WRITE, HZ/10);
1449 
1450 		/*
1451 		 * We do this so kswapd doesn't build up large priorities for
1452 		 * example when it is freeing in parallel with allocators. It
1453 		 * matches the direct reclaim path behaviour in terms of impact
1454 		 * on zone->*_priority.
1455 		 */
1456 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1457 			break;
1458 	}
1459 out:
1460 	/*
1461 	 * Note within each zone the priority level at which this zone was
1462 	 * brought into a happy state.  So that the next thread which scans this
1463 	 * zone will start out at that priority level.
1464 	 */
1465 	for (i = 0; i < pgdat->nr_zones; i++) {
1466 		struct zone *zone = pgdat->node_zones + i;
1467 
1468 		zone->prev_priority = temp_priority[i];
1469 	}
1470 	if (!all_zones_ok) {
1471 		cond_resched();
1472 
1473 		try_to_freeze();
1474 
1475 		goto loop_again;
1476 	}
1477 
1478 	return nr_reclaimed;
1479 }
1480 
1481 /*
1482  * The background pageout daemon, started as a kernel thread
1483  * from the init process.
1484  *
1485  * This basically trickles out pages so that we have _some_
1486  * free memory available even if there is no other activity
1487  * that frees anything up. This is needed for things like routing
1488  * etc, where we otherwise might have all activity going on in
1489  * asynchronous contexts that cannot page things out.
1490  *
1491  * If there are applications that are active memory-allocators
1492  * (most normal use), this basically shouldn't matter.
1493  */
1494 static int kswapd(void *p)
1495 {
1496 	unsigned long order;
1497 	pg_data_t *pgdat = (pg_data_t*)p;
1498 	struct task_struct *tsk = current;
1499 	DEFINE_WAIT(wait);
1500 	struct reclaim_state reclaim_state = {
1501 		.reclaimed_slab = 0,
1502 	};
1503 	cpumask_t cpumask;
1504 
1505 	cpumask = node_to_cpumask(pgdat->node_id);
1506 	if (!cpus_empty(cpumask))
1507 		set_cpus_allowed(tsk, cpumask);
1508 	current->reclaim_state = &reclaim_state;
1509 
1510 	/*
1511 	 * Tell the memory management that we're a "memory allocator",
1512 	 * and that if we need more memory we should get access to it
1513 	 * regardless (see "__alloc_pages()"). "kswapd" should
1514 	 * never get caught in the normal page freeing logic.
1515 	 *
1516 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1517 	 * you need a small amount of memory in order to be able to
1518 	 * page out something else, and this flag essentially protects
1519 	 * us from recursively trying to free more memory as we're
1520 	 * trying to free the first piece of memory in the first place).
1521 	 */
1522 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1523 	set_freezable();
1524 
1525 	order = 0;
1526 	for ( ; ; ) {
1527 		unsigned long new_order;
1528 
1529 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1530 		new_order = pgdat->kswapd_max_order;
1531 		pgdat->kswapd_max_order = 0;
1532 		if (order < new_order) {
1533 			/*
1534 			 * Don't sleep if someone wants a larger 'order'
1535 			 * allocation
1536 			 */
1537 			order = new_order;
1538 		} else {
1539 			if (!freezing(current))
1540 				schedule();
1541 
1542 			order = pgdat->kswapd_max_order;
1543 		}
1544 		finish_wait(&pgdat->kswapd_wait, &wait);
1545 
1546 		if (!try_to_freeze()) {
1547 			/* We can speed up thawing tasks if we don't call
1548 			 * balance_pgdat after returning from the refrigerator
1549 			 */
1550 			balance_pgdat(pgdat, order);
1551 		}
1552 	}
1553 	return 0;
1554 }
1555 
1556 /*
1557  * A zone is low on free memory, so wake its kswapd task to service it.
1558  */
1559 void wakeup_kswapd(struct zone *zone, int order)
1560 {
1561 	pg_data_t *pgdat;
1562 
1563 	if (!populated_zone(zone))
1564 		return;
1565 
1566 	pgdat = zone->zone_pgdat;
1567 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1568 		return;
1569 	if (pgdat->kswapd_max_order < order)
1570 		pgdat->kswapd_max_order = order;
1571 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1572 		return;
1573 	if (!waitqueue_active(&pgdat->kswapd_wait))
1574 		return;
1575 	wake_up_interruptible(&pgdat->kswapd_wait);
1576 }
1577 
1578 #ifdef CONFIG_PM
1579 /*
1580  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1581  * from LRU lists system-wide, for given pass and priority, and returns the
1582  * number of reclaimed pages
1583  *
1584  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1585  */
1586 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1587 				      int pass, struct scan_control *sc)
1588 {
1589 	struct zone *zone;
1590 	unsigned long nr_to_scan, ret = 0;
1591 
1592 	for_each_zone(zone) {
1593 
1594 		if (!populated_zone(zone))
1595 			continue;
1596 
1597 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1598 			continue;
1599 
1600 		/* For pass = 0 we don't shrink the active list */
1601 		if (pass > 0) {
1602 			zone->nr_scan_active +=
1603 				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1604 			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1605 				zone->nr_scan_active = 0;
1606 				nr_to_scan = min(nr_pages,
1607 					zone_page_state(zone, NR_ACTIVE));
1608 				shrink_active_list(nr_to_scan, zone, sc, prio);
1609 			}
1610 		}
1611 
1612 		zone->nr_scan_inactive +=
1613 			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1614 		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1615 			zone->nr_scan_inactive = 0;
1616 			nr_to_scan = min(nr_pages,
1617 				zone_page_state(zone, NR_INACTIVE));
1618 			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1619 			if (ret >= nr_pages)
1620 				return ret;
1621 		}
1622 	}
1623 
1624 	return ret;
1625 }
1626 
1627 static unsigned long count_lru_pages(void)
1628 {
1629 	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1630 }
1631 
1632 /*
1633  * Try to free `nr_pages' of memory, system-wide, and return the number of
1634  * freed pages.
1635  *
1636  * Rather than trying to age LRUs the aim is to preserve the overall
1637  * LRU order by reclaiming preferentially
1638  * inactive > active > active referenced > active mapped
1639  */
1640 unsigned long shrink_all_memory(unsigned long nr_pages)
1641 {
1642 	unsigned long lru_pages, nr_slab;
1643 	unsigned long ret = 0;
1644 	int pass;
1645 	struct reclaim_state reclaim_state;
1646 	struct scan_control sc = {
1647 		.gfp_mask = GFP_KERNEL,
1648 		.may_swap = 0,
1649 		.swap_cluster_max = nr_pages,
1650 		.may_writepage = 1,
1651 		.swappiness = vm_swappiness,
1652 	};
1653 
1654 	current->reclaim_state = &reclaim_state;
1655 
1656 	lru_pages = count_lru_pages();
1657 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1658 	/* If slab caches are huge, it's better to hit them first */
1659 	while (nr_slab >= lru_pages) {
1660 		reclaim_state.reclaimed_slab = 0;
1661 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1662 		if (!reclaim_state.reclaimed_slab)
1663 			break;
1664 
1665 		ret += reclaim_state.reclaimed_slab;
1666 		if (ret >= nr_pages)
1667 			goto out;
1668 
1669 		nr_slab -= reclaim_state.reclaimed_slab;
1670 	}
1671 
1672 	/*
1673 	 * We try to shrink LRUs in 5 passes:
1674 	 * 0 = Reclaim from inactive_list only
1675 	 * 1 = Reclaim from active list but don't reclaim mapped
1676 	 * 2 = 2nd pass of type 1
1677 	 * 3 = Reclaim mapped (normal reclaim)
1678 	 * 4 = 2nd pass of type 3
1679 	 */
1680 	for (pass = 0; pass < 5; pass++) {
1681 		int prio;
1682 
1683 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1684 		if (pass > 2) {
1685 			sc.may_swap = 1;
1686 			sc.swappiness = 100;
1687 		}
1688 
1689 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1690 			unsigned long nr_to_scan = nr_pages - ret;
1691 
1692 			sc.nr_scanned = 0;
1693 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1694 			if (ret >= nr_pages)
1695 				goto out;
1696 
1697 			reclaim_state.reclaimed_slab = 0;
1698 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1699 					count_lru_pages());
1700 			ret += reclaim_state.reclaimed_slab;
1701 			if (ret >= nr_pages)
1702 				goto out;
1703 
1704 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1705 				congestion_wait(WRITE, HZ / 10);
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * If ret = 0, we could not shrink LRUs, but there may be something
1711 	 * in slab caches
1712 	 */
1713 	if (!ret) {
1714 		do {
1715 			reclaim_state.reclaimed_slab = 0;
1716 			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1717 			ret += reclaim_state.reclaimed_slab;
1718 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1719 	}
1720 
1721 out:
1722 	current->reclaim_state = NULL;
1723 
1724 	return ret;
1725 }
1726 #endif
1727 
1728 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1729    not required for correctness.  So if the last cpu in a node goes
1730    away, we get changed to run anywhere: as the first one comes back,
1731    restore their cpu bindings. */
1732 static int __devinit cpu_callback(struct notifier_block *nfb,
1733 				  unsigned long action, void *hcpu)
1734 {
1735 	pg_data_t *pgdat;
1736 	cpumask_t mask;
1737 	int nid;
1738 
1739 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1740 		for_each_node_state(nid, N_HIGH_MEMORY) {
1741 			pgdat = NODE_DATA(nid);
1742 			mask = node_to_cpumask(pgdat->node_id);
1743 			if (any_online_cpu(mask) != NR_CPUS)
1744 				/* One of our CPUs online: restore mask */
1745 				set_cpus_allowed(pgdat->kswapd, mask);
1746 		}
1747 	}
1748 	return NOTIFY_OK;
1749 }
1750 
1751 /*
1752  * This kswapd start function will be called by init and node-hot-add.
1753  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1754  */
1755 int kswapd_run(int nid)
1756 {
1757 	pg_data_t *pgdat = NODE_DATA(nid);
1758 	int ret = 0;
1759 
1760 	if (pgdat->kswapd)
1761 		return 0;
1762 
1763 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1764 	if (IS_ERR(pgdat->kswapd)) {
1765 		/* failure at boot is fatal */
1766 		BUG_ON(system_state == SYSTEM_BOOTING);
1767 		printk("Failed to start kswapd on node %d\n",nid);
1768 		ret = -1;
1769 	}
1770 	return ret;
1771 }
1772 
1773 static int __init kswapd_init(void)
1774 {
1775 	int nid;
1776 
1777 	swap_setup();
1778 	for_each_node_state(nid, N_HIGH_MEMORY)
1779  		kswapd_run(nid);
1780 	hotcpu_notifier(cpu_callback, 0);
1781 	return 0;
1782 }
1783 
1784 module_init(kswapd_init)
1785 
1786 #ifdef CONFIG_NUMA
1787 /*
1788  * Zone reclaim mode
1789  *
1790  * If non-zero call zone_reclaim when the number of free pages falls below
1791  * the watermarks.
1792  */
1793 int zone_reclaim_mode __read_mostly;
1794 
1795 #define RECLAIM_OFF 0
1796 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1797 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1798 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1799 
1800 /*
1801  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1802  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1803  * a zone.
1804  */
1805 #define ZONE_RECLAIM_PRIORITY 4
1806 
1807 /*
1808  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1809  * occur.
1810  */
1811 int sysctl_min_unmapped_ratio = 1;
1812 
1813 /*
1814  * If the number of slab pages in a zone grows beyond this percentage then
1815  * slab reclaim needs to occur.
1816  */
1817 int sysctl_min_slab_ratio = 5;
1818 
1819 /*
1820  * Try to free up some pages from this zone through reclaim.
1821  */
1822 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1823 {
1824 	/* Minimum pages needed in order to stay on node */
1825 	const unsigned long nr_pages = 1 << order;
1826 	struct task_struct *p = current;
1827 	struct reclaim_state reclaim_state;
1828 	int priority;
1829 	unsigned long nr_reclaimed = 0;
1830 	struct scan_control sc = {
1831 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1832 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1833 		.swap_cluster_max = max_t(unsigned long, nr_pages,
1834 					SWAP_CLUSTER_MAX),
1835 		.gfp_mask = gfp_mask,
1836 		.swappiness = vm_swappiness,
1837 	};
1838 	unsigned long slab_reclaimable;
1839 
1840 	disable_swap_token();
1841 	cond_resched();
1842 	/*
1843 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1844 	 * and we also need to be able to write out pages for RECLAIM_WRITE
1845 	 * and RECLAIM_SWAP.
1846 	 */
1847 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1848 	reclaim_state.reclaimed_slab = 0;
1849 	p->reclaim_state = &reclaim_state;
1850 
1851 	if (zone_page_state(zone, NR_FILE_PAGES) -
1852 		zone_page_state(zone, NR_FILE_MAPPED) >
1853 		zone->min_unmapped_pages) {
1854 		/*
1855 		 * Free memory by calling shrink zone with increasing
1856 		 * priorities until we have enough memory freed.
1857 		 */
1858 		priority = ZONE_RECLAIM_PRIORITY;
1859 		do {
1860 			note_zone_scanning_priority(zone, priority);
1861 			nr_reclaimed += shrink_zone(priority, zone, &sc);
1862 			priority--;
1863 		} while (priority >= 0 && nr_reclaimed < nr_pages);
1864 	}
1865 
1866 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1867 	if (slab_reclaimable > zone->min_slab_pages) {
1868 		/*
1869 		 * shrink_slab() does not currently allow us to determine how
1870 		 * many pages were freed in this zone. So we take the current
1871 		 * number of slab pages and shake the slab until it is reduced
1872 		 * by the same nr_pages that we used for reclaiming unmapped
1873 		 * pages.
1874 		 *
1875 		 * Note that shrink_slab will free memory on all zones and may
1876 		 * take a long time.
1877 		 */
1878 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1879 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1880 				slab_reclaimable - nr_pages)
1881 			;
1882 
1883 		/*
1884 		 * Update nr_reclaimed by the number of slab pages we
1885 		 * reclaimed from this zone.
1886 		 */
1887 		nr_reclaimed += slab_reclaimable -
1888 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1889 	}
1890 
1891 	p->reclaim_state = NULL;
1892 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1893 	return nr_reclaimed >= nr_pages;
1894 }
1895 
1896 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1897 {
1898 	int node_id;
1899 	int ret;
1900 
1901 	/*
1902 	 * Zone reclaim reclaims unmapped file backed pages and
1903 	 * slab pages if we are over the defined limits.
1904 	 *
1905 	 * A small portion of unmapped file backed pages is needed for
1906 	 * file I/O otherwise pages read by file I/O will be immediately
1907 	 * thrown out if the zone is overallocated. So we do not reclaim
1908 	 * if less than a specified percentage of the zone is used by
1909 	 * unmapped file backed pages.
1910 	 */
1911 	if (zone_page_state(zone, NR_FILE_PAGES) -
1912 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1913 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1914 			<= zone->min_slab_pages)
1915 		return 0;
1916 
1917 	if (zone_is_all_unreclaimable(zone))
1918 		return 0;
1919 
1920 	/*
1921 	 * Do not scan if the allocation should not be delayed.
1922 	 */
1923 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
1924 			return 0;
1925 
1926 	/*
1927 	 * Only run zone reclaim on the local zone or on zones that do not
1928 	 * have associated processors. This will favor the local processor
1929 	 * over remote processors and spread off node memory allocations
1930 	 * as wide as possible.
1931 	 */
1932 	node_id = zone_to_nid(zone);
1933 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
1934 		return 0;
1935 
1936 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
1937 		return 0;
1938 	ret = __zone_reclaim(zone, gfp_mask, order);
1939 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
1940 
1941 	return ret;
1942 }
1943 #endif
1944