1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 41 #include <asm/tlbflush.h> 42 #include <asm/div64.h> 43 44 #include <linux/swapops.h> 45 46 #include "internal.h" 47 48 struct scan_control { 49 /* Incremented by the number of inactive pages that were scanned */ 50 unsigned long nr_scanned; 51 52 /* This context's GFP mask */ 53 gfp_t gfp_mask; 54 55 int may_writepage; 56 57 /* Can pages be swapped as part of reclaim? */ 58 int may_swap; 59 60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 61 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 62 * In this context, it doesn't matter that we scan the 63 * whole list at once. */ 64 int swap_cluster_max; 65 66 int swappiness; 67 68 int all_unreclaimable; 69 70 int order; 71 }; 72 73 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 74 75 #ifdef ARCH_HAS_PREFETCH 76 #define prefetch_prev_lru_page(_page, _base, _field) \ 77 do { \ 78 if ((_page)->lru.prev != _base) { \ 79 struct page *prev; \ 80 \ 81 prev = lru_to_page(&(_page->lru)); \ 82 prefetch(&prev->_field); \ 83 } \ 84 } while (0) 85 #else 86 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 87 #endif 88 89 #ifdef ARCH_HAS_PREFETCHW 90 #define prefetchw_prev_lru_page(_page, _base, _field) \ 91 do { \ 92 if ((_page)->lru.prev != _base) { \ 93 struct page *prev; \ 94 \ 95 prev = lru_to_page(&(_page->lru)); \ 96 prefetchw(&prev->_field); \ 97 } \ 98 } while (0) 99 #else 100 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 101 #endif 102 103 /* 104 * From 0 .. 100. Higher means more swappy. 105 */ 106 int vm_swappiness = 60; 107 long vm_total_pages; /* The total number of pages which the VM controls */ 108 109 static LIST_HEAD(shrinker_list); 110 static DECLARE_RWSEM(shrinker_rwsem); 111 112 /* 113 * Add a shrinker callback to be called from the vm 114 */ 115 void register_shrinker(struct shrinker *shrinker) 116 { 117 shrinker->nr = 0; 118 down_write(&shrinker_rwsem); 119 list_add_tail(&shrinker->list, &shrinker_list); 120 up_write(&shrinker_rwsem); 121 } 122 EXPORT_SYMBOL(register_shrinker); 123 124 /* 125 * Remove one 126 */ 127 void unregister_shrinker(struct shrinker *shrinker) 128 { 129 down_write(&shrinker_rwsem); 130 list_del(&shrinker->list); 131 up_write(&shrinker_rwsem); 132 } 133 EXPORT_SYMBOL(unregister_shrinker); 134 135 #define SHRINK_BATCH 128 136 /* 137 * Call the shrink functions to age shrinkable caches 138 * 139 * Here we assume it costs one seek to replace a lru page and that it also 140 * takes a seek to recreate a cache object. With this in mind we age equal 141 * percentages of the lru and ageable caches. This should balance the seeks 142 * generated by these structures. 143 * 144 * If the vm encountered mapped pages on the LRU it increase the pressure on 145 * slab to avoid swapping. 146 * 147 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 148 * 149 * `lru_pages' represents the number of on-LRU pages in all the zones which 150 * are eligible for the caller's allocation attempt. It is used for balancing 151 * slab reclaim versus page reclaim. 152 * 153 * Returns the number of slab objects which we shrunk. 154 */ 155 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 156 unsigned long lru_pages) 157 { 158 struct shrinker *shrinker; 159 unsigned long ret = 0; 160 161 if (scanned == 0) 162 scanned = SWAP_CLUSTER_MAX; 163 164 if (!down_read_trylock(&shrinker_rwsem)) 165 return 1; /* Assume we'll be able to shrink next time */ 166 167 list_for_each_entry(shrinker, &shrinker_list, list) { 168 unsigned long long delta; 169 unsigned long total_scan; 170 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 171 172 delta = (4 * scanned) / shrinker->seeks; 173 delta *= max_pass; 174 do_div(delta, lru_pages + 1); 175 shrinker->nr += delta; 176 if (shrinker->nr < 0) { 177 printk(KERN_ERR "%s: nr=%ld\n", 178 __FUNCTION__, shrinker->nr); 179 shrinker->nr = max_pass; 180 } 181 182 /* 183 * Avoid risking looping forever due to too large nr value: 184 * never try to free more than twice the estimate number of 185 * freeable entries. 186 */ 187 if (shrinker->nr > max_pass * 2) 188 shrinker->nr = max_pass * 2; 189 190 total_scan = shrinker->nr; 191 shrinker->nr = 0; 192 193 while (total_scan >= SHRINK_BATCH) { 194 long this_scan = SHRINK_BATCH; 195 int shrink_ret; 196 int nr_before; 197 198 nr_before = (*shrinker->shrink)(0, gfp_mask); 199 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 200 if (shrink_ret == -1) 201 break; 202 if (shrink_ret < nr_before) 203 ret += nr_before - shrink_ret; 204 count_vm_events(SLABS_SCANNED, this_scan); 205 total_scan -= this_scan; 206 207 cond_resched(); 208 } 209 210 shrinker->nr += total_scan; 211 } 212 up_read(&shrinker_rwsem); 213 return ret; 214 } 215 216 /* Called without lock on whether page is mapped, so answer is unstable */ 217 static inline int page_mapping_inuse(struct page *page) 218 { 219 struct address_space *mapping; 220 221 /* Page is in somebody's page tables. */ 222 if (page_mapped(page)) 223 return 1; 224 225 /* Be more reluctant to reclaim swapcache than pagecache */ 226 if (PageSwapCache(page)) 227 return 1; 228 229 mapping = page_mapping(page); 230 if (!mapping) 231 return 0; 232 233 /* File is mmap'd by somebody? */ 234 return mapping_mapped(mapping); 235 } 236 237 static inline int is_page_cache_freeable(struct page *page) 238 { 239 return page_count(page) - !!PagePrivate(page) == 2; 240 } 241 242 static int may_write_to_queue(struct backing_dev_info *bdi) 243 { 244 if (current->flags & PF_SWAPWRITE) 245 return 1; 246 if (!bdi_write_congested(bdi)) 247 return 1; 248 if (bdi == current->backing_dev_info) 249 return 1; 250 return 0; 251 } 252 253 /* 254 * We detected a synchronous write error writing a page out. Probably 255 * -ENOSPC. We need to propagate that into the address_space for a subsequent 256 * fsync(), msync() or close(). 257 * 258 * The tricky part is that after writepage we cannot touch the mapping: nothing 259 * prevents it from being freed up. But we have a ref on the page and once 260 * that page is locked, the mapping is pinned. 261 * 262 * We're allowed to run sleeping lock_page() here because we know the caller has 263 * __GFP_FS. 264 */ 265 static void handle_write_error(struct address_space *mapping, 266 struct page *page, int error) 267 { 268 lock_page(page); 269 if (page_mapping(page) == mapping) 270 mapping_set_error(mapping, error); 271 unlock_page(page); 272 } 273 274 /* Request for sync pageout. */ 275 enum pageout_io { 276 PAGEOUT_IO_ASYNC, 277 PAGEOUT_IO_SYNC, 278 }; 279 280 /* possible outcome of pageout() */ 281 typedef enum { 282 /* failed to write page out, page is locked */ 283 PAGE_KEEP, 284 /* move page to the active list, page is locked */ 285 PAGE_ACTIVATE, 286 /* page has been sent to the disk successfully, page is unlocked */ 287 PAGE_SUCCESS, 288 /* page is clean and locked */ 289 PAGE_CLEAN, 290 } pageout_t; 291 292 /* 293 * pageout is called by shrink_page_list() for each dirty page. 294 * Calls ->writepage(). 295 */ 296 static pageout_t pageout(struct page *page, struct address_space *mapping, 297 enum pageout_io sync_writeback) 298 { 299 /* 300 * If the page is dirty, only perform writeback if that write 301 * will be non-blocking. To prevent this allocation from being 302 * stalled by pagecache activity. But note that there may be 303 * stalls if we need to run get_block(). We could test 304 * PagePrivate for that. 305 * 306 * If this process is currently in generic_file_write() against 307 * this page's queue, we can perform writeback even if that 308 * will block. 309 * 310 * If the page is swapcache, write it back even if that would 311 * block, for some throttling. This happens by accident, because 312 * swap_backing_dev_info is bust: it doesn't reflect the 313 * congestion state of the swapdevs. Easy to fix, if needed. 314 * See swapfile.c:page_queue_congested(). 315 */ 316 if (!is_page_cache_freeable(page)) 317 return PAGE_KEEP; 318 if (!mapping) { 319 /* 320 * Some data journaling orphaned pages can have 321 * page->mapping == NULL while being dirty with clean buffers. 322 */ 323 if (PagePrivate(page)) { 324 if (try_to_free_buffers(page)) { 325 ClearPageDirty(page); 326 printk("%s: orphaned page\n", __FUNCTION__); 327 return PAGE_CLEAN; 328 } 329 } 330 return PAGE_KEEP; 331 } 332 if (mapping->a_ops->writepage == NULL) 333 return PAGE_ACTIVATE; 334 if (!may_write_to_queue(mapping->backing_dev_info)) 335 return PAGE_KEEP; 336 337 if (clear_page_dirty_for_io(page)) { 338 int res; 339 struct writeback_control wbc = { 340 .sync_mode = WB_SYNC_NONE, 341 .nr_to_write = SWAP_CLUSTER_MAX, 342 .range_start = 0, 343 .range_end = LLONG_MAX, 344 .nonblocking = 1, 345 .for_reclaim = 1, 346 }; 347 348 SetPageReclaim(page); 349 res = mapping->a_ops->writepage(page, &wbc); 350 if (res < 0) 351 handle_write_error(mapping, page, res); 352 if (res == AOP_WRITEPAGE_ACTIVATE) { 353 ClearPageReclaim(page); 354 return PAGE_ACTIVATE; 355 } 356 357 /* 358 * Wait on writeback if requested to. This happens when 359 * direct reclaiming a large contiguous area and the 360 * first attempt to free a range of pages fails. 361 */ 362 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 363 wait_on_page_writeback(page); 364 365 if (!PageWriteback(page)) { 366 /* synchronous write or broken a_ops? */ 367 ClearPageReclaim(page); 368 } 369 inc_zone_page_state(page, NR_VMSCAN_WRITE); 370 return PAGE_SUCCESS; 371 } 372 373 return PAGE_CLEAN; 374 } 375 376 /* 377 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 378 * someone else has a ref on the page, abort and return 0. If it was 379 * successfully detached, return 1. Assumes the caller has a single ref on 380 * this page. 381 */ 382 int remove_mapping(struct address_space *mapping, struct page *page) 383 { 384 BUG_ON(!PageLocked(page)); 385 BUG_ON(mapping != page_mapping(page)); 386 387 write_lock_irq(&mapping->tree_lock); 388 /* 389 * The non racy check for a busy page. 390 * 391 * Must be careful with the order of the tests. When someone has 392 * a ref to the page, it may be possible that they dirty it then 393 * drop the reference. So if PageDirty is tested before page_count 394 * here, then the following race may occur: 395 * 396 * get_user_pages(&page); 397 * [user mapping goes away] 398 * write_to(page); 399 * !PageDirty(page) [good] 400 * SetPageDirty(page); 401 * put_page(page); 402 * !page_count(page) [good, discard it] 403 * 404 * [oops, our write_to data is lost] 405 * 406 * Reversing the order of the tests ensures such a situation cannot 407 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 408 * load is not satisfied before that of page->_count. 409 * 410 * Note that if SetPageDirty is always performed via set_page_dirty, 411 * and thus under tree_lock, then this ordering is not required. 412 */ 413 if (unlikely(page_count(page) != 2)) 414 goto cannot_free; 415 smp_rmb(); 416 if (unlikely(PageDirty(page))) 417 goto cannot_free; 418 419 if (PageSwapCache(page)) { 420 swp_entry_t swap = { .val = page_private(page) }; 421 __delete_from_swap_cache(page); 422 write_unlock_irq(&mapping->tree_lock); 423 swap_free(swap); 424 __put_page(page); /* The pagecache ref */ 425 return 1; 426 } 427 428 __remove_from_page_cache(page); 429 write_unlock_irq(&mapping->tree_lock); 430 __put_page(page); 431 return 1; 432 433 cannot_free: 434 write_unlock_irq(&mapping->tree_lock); 435 return 0; 436 } 437 438 /* 439 * shrink_page_list() returns the number of reclaimed pages 440 */ 441 static unsigned long shrink_page_list(struct list_head *page_list, 442 struct scan_control *sc, 443 enum pageout_io sync_writeback) 444 { 445 LIST_HEAD(ret_pages); 446 struct pagevec freed_pvec; 447 int pgactivate = 0; 448 unsigned long nr_reclaimed = 0; 449 450 cond_resched(); 451 452 pagevec_init(&freed_pvec, 1); 453 while (!list_empty(page_list)) { 454 struct address_space *mapping; 455 struct page *page; 456 int may_enter_fs; 457 int referenced; 458 459 cond_resched(); 460 461 page = lru_to_page(page_list); 462 list_del(&page->lru); 463 464 if (TestSetPageLocked(page)) 465 goto keep; 466 467 VM_BUG_ON(PageActive(page)); 468 469 sc->nr_scanned++; 470 471 if (!sc->may_swap && page_mapped(page)) 472 goto keep_locked; 473 474 /* Double the slab pressure for mapped and swapcache pages */ 475 if (page_mapped(page) || PageSwapCache(page)) 476 sc->nr_scanned++; 477 478 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 479 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 480 481 if (PageWriteback(page)) { 482 /* 483 * Synchronous reclaim is performed in two passes, 484 * first an asynchronous pass over the list to 485 * start parallel writeback, and a second synchronous 486 * pass to wait for the IO to complete. Wait here 487 * for any page for which writeback has already 488 * started. 489 */ 490 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 491 wait_on_page_writeback(page); 492 else 493 goto keep_locked; 494 } 495 496 referenced = page_referenced(page, 1); 497 /* In active use or really unfreeable? Activate it. */ 498 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 499 referenced && page_mapping_inuse(page)) 500 goto activate_locked; 501 502 #ifdef CONFIG_SWAP 503 /* 504 * Anonymous process memory has backing store? 505 * Try to allocate it some swap space here. 506 */ 507 if (PageAnon(page) && !PageSwapCache(page)) 508 if (!add_to_swap(page, GFP_ATOMIC)) 509 goto activate_locked; 510 #endif /* CONFIG_SWAP */ 511 512 mapping = page_mapping(page); 513 514 /* 515 * The page is mapped into the page tables of one or more 516 * processes. Try to unmap it here. 517 */ 518 if (page_mapped(page) && mapping) { 519 switch (try_to_unmap(page, 0)) { 520 case SWAP_FAIL: 521 goto activate_locked; 522 case SWAP_AGAIN: 523 goto keep_locked; 524 case SWAP_SUCCESS: 525 ; /* try to free the page below */ 526 } 527 } 528 529 if (PageDirty(page)) { 530 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 531 goto keep_locked; 532 if (!may_enter_fs) 533 goto keep_locked; 534 if (!sc->may_writepage) 535 goto keep_locked; 536 537 /* Page is dirty, try to write it out here */ 538 switch (pageout(page, mapping, sync_writeback)) { 539 case PAGE_KEEP: 540 goto keep_locked; 541 case PAGE_ACTIVATE: 542 goto activate_locked; 543 case PAGE_SUCCESS: 544 if (PageWriteback(page) || PageDirty(page)) 545 goto keep; 546 /* 547 * A synchronous write - probably a ramdisk. Go 548 * ahead and try to reclaim the page. 549 */ 550 if (TestSetPageLocked(page)) 551 goto keep; 552 if (PageDirty(page) || PageWriteback(page)) 553 goto keep_locked; 554 mapping = page_mapping(page); 555 case PAGE_CLEAN: 556 ; /* try to free the page below */ 557 } 558 } 559 560 /* 561 * If the page has buffers, try to free the buffer mappings 562 * associated with this page. If we succeed we try to free 563 * the page as well. 564 * 565 * We do this even if the page is PageDirty(). 566 * try_to_release_page() does not perform I/O, but it is 567 * possible for a page to have PageDirty set, but it is actually 568 * clean (all its buffers are clean). This happens if the 569 * buffers were written out directly, with submit_bh(). ext3 570 * will do this, as well as the blockdev mapping. 571 * try_to_release_page() will discover that cleanness and will 572 * drop the buffers and mark the page clean - it can be freed. 573 * 574 * Rarely, pages can have buffers and no ->mapping. These are 575 * the pages which were not successfully invalidated in 576 * truncate_complete_page(). We try to drop those buffers here 577 * and if that worked, and the page is no longer mapped into 578 * process address space (page_count == 1) it can be freed. 579 * Otherwise, leave the page on the LRU so it is swappable. 580 */ 581 if (PagePrivate(page)) { 582 if (!try_to_release_page(page, sc->gfp_mask)) 583 goto activate_locked; 584 if (!mapping && page_count(page) == 1) 585 goto free_it; 586 } 587 588 if (!mapping || !remove_mapping(mapping, page)) 589 goto keep_locked; 590 591 free_it: 592 unlock_page(page); 593 nr_reclaimed++; 594 if (!pagevec_add(&freed_pvec, page)) 595 __pagevec_release_nonlru(&freed_pvec); 596 continue; 597 598 activate_locked: 599 SetPageActive(page); 600 pgactivate++; 601 keep_locked: 602 unlock_page(page); 603 keep: 604 list_add(&page->lru, &ret_pages); 605 VM_BUG_ON(PageLRU(page)); 606 } 607 list_splice(&ret_pages, page_list); 608 if (pagevec_count(&freed_pvec)) 609 __pagevec_release_nonlru(&freed_pvec); 610 count_vm_events(PGACTIVATE, pgactivate); 611 return nr_reclaimed; 612 } 613 614 /* LRU Isolation modes. */ 615 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 616 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 617 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 618 619 /* 620 * Attempt to remove the specified page from its LRU. Only take this page 621 * if it is of the appropriate PageActive status. Pages which are being 622 * freed elsewhere are also ignored. 623 * 624 * page: page to consider 625 * mode: one of the LRU isolation modes defined above 626 * 627 * returns 0 on success, -ve errno on failure. 628 */ 629 static int __isolate_lru_page(struct page *page, int mode) 630 { 631 int ret = -EINVAL; 632 633 /* Only take pages on the LRU. */ 634 if (!PageLRU(page)) 635 return ret; 636 637 /* 638 * When checking the active state, we need to be sure we are 639 * dealing with comparible boolean values. Take the logical not 640 * of each. 641 */ 642 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 643 return ret; 644 645 ret = -EBUSY; 646 if (likely(get_page_unless_zero(page))) { 647 /* 648 * Be careful not to clear PageLRU until after we're 649 * sure the page is not being freed elsewhere -- the 650 * page release code relies on it. 651 */ 652 ClearPageLRU(page); 653 ret = 0; 654 } 655 656 return ret; 657 } 658 659 /* 660 * zone->lru_lock is heavily contended. Some of the functions that 661 * shrink the lists perform better by taking out a batch of pages 662 * and working on them outside the LRU lock. 663 * 664 * For pagecache intensive workloads, this function is the hottest 665 * spot in the kernel (apart from copy_*_user functions). 666 * 667 * Appropriate locks must be held before calling this function. 668 * 669 * @nr_to_scan: The number of pages to look through on the list. 670 * @src: The LRU list to pull pages off. 671 * @dst: The temp list to put pages on to. 672 * @scanned: The number of pages that were scanned. 673 * @order: The caller's attempted allocation order 674 * @mode: One of the LRU isolation modes 675 * 676 * returns how many pages were moved onto *@dst. 677 */ 678 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 679 struct list_head *src, struct list_head *dst, 680 unsigned long *scanned, int order, int mode) 681 { 682 unsigned long nr_taken = 0; 683 unsigned long scan; 684 685 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 686 struct page *page; 687 unsigned long pfn; 688 unsigned long end_pfn; 689 unsigned long page_pfn; 690 int zone_id; 691 692 page = lru_to_page(src); 693 prefetchw_prev_lru_page(page, src, flags); 694 695 VM_BUG_ON(!PageLRU(page)); 696 697 switch (__isolate_lru_page(page, mode)) { 698 case 0: 699 list_move(&page->lru, dst); 700 nr_taken++; 701 break; 702 703 case -EBUSY: 704 /* else it is being freed elsewhere */ 705 list_move(&page->lru, src); 706 continue; 707 708 default: 709 BUG(); 710 } 711 712 if (!order) 713 continue; 714 715 /* 716 * Attempt to take all pages in the order aligned region 717 * surrounding the tag page. Only take those pages of 718 * the same active state as that tag page. We may safely 719 * round the target page pfn down to the requested order 720 * as the mem_map is guarenteed valid out to MAX_ORDER, 721 * where that page is in a different zone we will detect 722 * it from its zone id and abort this block scan. 723 */ 724 zone_id = page_zone_id(page); 725 page_pfn = page_to_pfn(page); 726 pfn = page_pfn & ~((1 << order) - 1); 727 end_pfn = pfn + (1 << order); 728 for (; pfn < end_pfn; pfn++) { 729 struct page *cursor_page; 730 731 /* The target page is in the block, ignore it. */ 732 if (unlikely(pfn == page_pfn)) 733 continue; 734 735 /* Avoid holes within the zone. */ 736 if (unlikely(!pfn_valid_within(pfn))) 737 break; 738 739 cursor_page = pfn_to_page(pfn); 740 /* Check that we have not crossed a zone boundary. */ 741 if (unlikely(page_zone_id(cursor_page) != zone_id)) 742 continue; 743 switch (__isolate_lru_page(cursor_page, mode)) { 744 case 0: 745 list_move(&cursor_page->lru, dst); 746 nr_taken++; 747 scan++; 748 break; 749 750 case -EBUSY: 751 /* else it is being freed elsewhere */ 752 list_move(&cursor_page->lru, src); 753 default: 754 break; 755 } 756 } 757 } 758 759 *scanned = scan; 760 return nr_taken; 761 } 762 763 /* 764 * clear_active_flags() is a helper for shrink_active_list(), clearing 765 * any active bits from the pages in the list. 766 */ 767 static unsigned long clear_active_flags(struct list_head *page_list) 768 { 769 int nr_active = 0; 770 struct page *page; 771 772 list_for_each_entry(page, page_list, lru) 773 if (PageActive(page)) { 774 ClearPageActive(page); 775 nr_active++; 776 } 777 778 return nr_active; 779 } 780 781 /* 782 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 783 * of reclaimed pages 784 */ 785 static unsigned long shrink_inactive_list(unsigned long max_scan, 786 struct zone *zone, struct scan_control *sc) 787 { 788 LIST_HEAD(page_list); 789 struct pagevec pvec; 790 unsigned long nr_scanned = 0; 791 unsigned long nr_reclaimed = 0; 792 793 pagevec_init(&pvec, 1); 794 795 lru_add_drain(); 796 spin_lock_irq(&zone->lru_lock); 797 do { 798 struct page *page; 799 unsigned long nr_taken; 800 unsigned long nr_scan; 801 unsigned long nr_freed; 802 unsigned long nr_active; 803 804 nr_taken = isolate_lru_pages(sc->swap_cluster_max, 805 &zone->inactive_list, 806 &page_list, &nr_scan, sc->order, 807 (sc->order > PAGE_ALLOC_COSTLY_ORDER)? 808 ISOLATE_BOTH : ISOLATE_INACTIVE); 809 nr_active = clear_active_flags(&page_list); 810 __count_vm_events(PGDEACTIVATE, nr_active); 811 812 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active); 813 __mod_zone_page_state(zone, NR_INACTIVE, 814 -(nr_taken - nr_active)); 815 zone->pages_scanned += nr_scan; 816 spin_unlock_irq(&zone->lru_lock); 817 818 nr_scanned += nr_scan; 819 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 820 821 /* 822 * If we are direct reclaiming for contiguous pages and we do 823 * not reclaim everything in the list, try again and wait 824 * for IO to complete. This will stall high-order allocations 825 * but that should be acceptable to the caller 826 */ 827 if (nr_freed < nr_taken && !current_is_kswapd() && 828 sc->order > PAGE_ALLOC_COSTLY_ORDER) { 829 congestion_wait(WRITE, HZ/10); 830 831 /* 832 * The attempt at page out may have made some 833 * of the pages active, mark them inactive again. 834 */ 835 nr_active = clear_active_flags(&page_list); 836 count_vm_events(PGDEACTIVATE, nr_active); 837 838 nr_freed += shrink_page_list(&page_list, sc, 839 PAGEOUT_IO_SYNC); 840 } 841 842 nr_reclaimed += nr_freed; 843 local_irq_disable(); 844 if (current_is_kswapd()) { 845 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 846 __count_vm_events(KSWAPD_STEAL, nr_freed); 847 } else 848 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 849 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 850 851 if (nr_taken == 0) 852 goto done; 853 854 spin_lock(&zone->lru_lock); 855 /* 856 * Put back any unfreeable pages. 857 */ 858 while (!list_empty(&page_list)) { 859 page = lru_to_page(&page_list); 860 VM_BUG_ON(PageLRU(page)); 861 SetPageLRU(page); 862 list_del(&page->lru); 863 if (PageActive(page)) 864 add_page_to_active_list(zone, page); 865 else 866 add_page_to_inactive_list(zone, page); 867 if (!pagevec_add(&pvec, page)) { 868 spin_unlock_irq(&zone->lru_lock); 869 __pagevec_release(&pvec); 870 spin_lock_irq(&zone->lru_lock); 871 } 872 } 873 } while (nr_scanned < max_scan); 874 spin_unlock(&zone->lru_lock); 875 done: 876 local_irq_enable(); 877 pagevec_release(&pvec); 878 return nr_reclaimed; 879 } 880 881 /* 882 * We are about to scan this zone at a certain priority level. If that priority 883 * level is smaller (ie: more urgent) than the previous priority, then note 884 * that priority level within the zone. This is done so that when the next 885 * process comes in to scan this zone, it will immediately start out at this 886 * priority level rather than having to build up its own scanning priority. 887 * Here, this priority affects only the reclaim-mapped threshold. 888 */ 889 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 890 { 891 if (priority < zone->prev_priority) 892 zone->prev_priority = priority; 893 } 894 895 static inline int zone_is_near_oom(struct zone *zone) 896 { 897 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE) 898 + zone_page_state(zone, NR_INACTIVE))*3; 899 } 900 901 /* 902 * This moves pages from the active list to the inactive list. 903 * 904 * We move them the other way if the page is referenced by one or more 905 * processes, from rmap. 906 * 907 * If the pages are mostly unmapped, the processing is fast and it is 908 * appropriate to hold zone->lru_lock across the whole operation. But if 909 * the pages are mapped, the processing is slow (page_referenced()) so we 910 * should drop zone->lru_lock around each page. It's impossible to balance 911 * this, so instead we remove the pages from the LRU while processing them. 912 * It is safe to rely on PG_active against the non-LRU pages in here because 913 * nobody will play with that bit on a non-LRU page. 914 * 915 * The downside is that we have to touch page->_count against each page. 916 * But we had to alter page->flags anyway. 917 */ 918 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 919 struct scan_control *sc, int priority) 920 { 921 unsigned long pgmoved; 922 int pgdeactivate = 0; 923 unsigned long pgscanned; 924 LIST_HEAD(l_hold); /* The pages which were snipped off */ 925 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ 926 LIST_HEAD(l_active); /* Pages to go onto the active_list */ 927 struct page *page; 928 struct pagevec pvec; 929 int reclaim_mapped = 0; 930 931 if (sc->may_swap) { 932 long mapped_ratio; 933 long distress; 934 long swap_tendency; 935 long imbalance; 936 937 if (zone_is_near_oom(zone)) 938 goto force_reclaim_mapped; 939 940 /* 941 * `distress' is a measure of how much trouble we're having 942 * reclaiming pages. 0 -> no problems. 100 -> great trouble. 943 */ 944 distress = 100 >> min(zone->prev_priority, priority); 945 946 /* 947 * The point of this algorithm is to decide when to start 948 * reclaiming mapped memory instead of just pagecache. Work out 949 * how much memory 950 * is mapped. 951 */ 952 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) + 953 global_page_state(NR_ANON_PAGES)) * 100) / 954 vm_total_pages; 955 956 /* 957 * Now decide how much we really want to unmap some pages. The 958 * mapped ratio is downgraded - just because there's a lot of 959 * mapped memory doesn't necessarily mean that page reclaim 960 * isn't succeeding. 961 * 962 * The distress ratio is important - we don't want to start 963 * going oom. 964 * 965 * A 100% value of vm_swappiness overrides this algorithm 966 * altogether. 967 */ 968 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness; 969 970 /* 971 * If there's huge imbalance between active and inactive 972 * (think active 100 times larger than inactive) we should 973 * become more permissive, or the system will take too much 974 * cpu before it start swapping during memory pressure. 975 * Distress is about avoiding early-oom, this is about 976 * making swappiness graceful despite setting it to low 977 * values. 978 * 979 * Avoid div by zero with nr_inactive+1, and max resulting 980 * value is vm_total_pages. 981 */ 982 imbalance = zone_page_state(zone, NR_ACTIVE); 983 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1; 984 985 /* 986 * Reduce the effect of imbalance if swappiness is low, 987 * this means for a swappiness very low, the imbalance 988 * must be much higher than 100 for this logic to make 989 * the difference. 990 * 991 * Max temporary value is vm_total_pages*100. 992 */ 993 imbalance *= (vm_swappiness + 1); 994 imbalance /= 100; 995 996 /* 997 * If not much of the ram is mapped, makes the imbalance 998 * less relevant, it's high priority we refill the inactive 999 * list with mapped pages only in presence of high ratio of 1000 * mapped pages. 1001 * 1002 * Max temporary value is vm_total_pages*100. 1003 */ 1004 imbalance *= mapped_ratio; 1005 imbalance /= 100; 1006 1007 /* apply imbalance feedback to swap_tendency */ 1008 swap_tendency += imbalance; 1009 1010 /* 1011 * Now use this metric to decide whether to start moving mapped 1012 * memory onto the inactive list. 1013 */ 1014 if (swap_tendency >= 100) 1015 force_reclaim_mapped: 1016 reclaim_mapped = 1; 1017 } 1018 1019 lru_add_drain(); 1020 spin_lock_irq(&zone->lru_lock); 1021 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list, 1022 &l_hold, &pgscanned, sc->order, ISOLATE_ACTIVE); 1023 zone->pages_scanned += pgscanned; 1024 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved); 1025 spin_unlock_irq(&zone->lru_lock); 1026 1027 while (!list_empty(&l_hold)) { 1028 cond_resched(); 1029 page = lru_to_page(&l_hold); 1030 list_del(&page->lru); 1031 if (page_mapped(page)) { 1032 if (!reclaim_mapped || 1033 (total_swap_pages == 0 && PageAnon(page)) || 1034 page_referenced(page, 0)) { 1035 list_add(&page->lru, &l_active); 1036 continue; 1037 } 1038 } 1039 list_add(&page->lru, &l_inactive); 1040 } 1041 1042 pagevec_init(&pvec, 1); 1043 pgmoved = 0; 1044 spin_lock_irq(&zone->lru_lock); 1045 while (!list_empty(&l_inactive)) { 1046 page = lru_to_page(&l_inactive); 1047 prefetchw_prev_lru_page(page, &l_inactive, flags); 1048 VM_BUG_ON(PageLRU(page)); 1049 SetPageLRU(page); 1050 VM_BUG_ON(!PageActive(page)); 1051 ClearPageActive(page); 1052 1053 list_move(&page->lru, &zone->inactive_list); 1054 pgmoved++; 1055 if (!pagevec_add(&pvec, page)) { 1056 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 1057 spin_unlock_irq(&zone->lru_lock); 1058 pgdeactivate += pgmoved; 1059 pgmoved = 0; 1060 if (buffer_heads_over_limit) 1061 pagevec_strip(&pvec); 1062 __pagevec_release(&pvec); 1063 spin_lock_irq(&zone->lru_lock); 1064 } 1065 } 1066 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 1067 pgdeactivate += pgmoved; 1068 if (buffer_heads_over_limit) { 1069 spin_unlock_irq(&zone->lru_lock); 1070 pagevec_strip(&pvec); 1071 spin_lock_irq(&zone->lru_lock); 1072 } 1073 1074 pgmoved = 0; 1075 while (!list_empty(&l_active)) { 1076 page = lru_to_page(&l_active); 1077 prefetchw_prev_lru_page(page, &l_active, flags); 1078 VM_BUG_ON(PageLRU(page)); 1079 SetPageLRU(page); 1080 VM_BUG_ON(!PageActive(page)); 1081 list_move(&page->lru, &zone->active_list); 1082 pgmoved++; 1083 if (!pagevec_add(&pvec, page)) { 1084 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 1085 pgmoved = 0; 1086 spin_unlock_irq(&zone->lru_lock); 1087 __pagevec_release(&pvec); 1088 spin_lock_irq(&zone->lru_lock); 1089 } 1090 } 1091 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 1092 1093 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1094 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1095 spin_unlock_irq(&zone->lru_lock); 1096 1097 pagevec_release(&pvec); 1098 } 1099 1100 /* 1101 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1102 */ 1103 static unsigned long shrink_zone(int priority, struct zone *zone, 1104 struct scan_control *sc) 1105 { 1106 unsigned long nr_active; 1107 unsigned long nr_inactive; 1108 unsigned long nr_to_scan; 1109 unsigned long nr_reclaimed = 0; 1110 1111 /* 1112 * Add one to `nr_to_scan' just to make sure that the kernel will 1113 * slowly sift through the active list. 1114 */ 1115 zone->nr_scan_active += 1116 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1; 1117 nr_active = zone->nr_scan_active; 1118 if (nr_active >= sc->swap_cluster_max) 1119 zone->nr_scan_active = 0; 1120 else 1121 nr_active = 0; 1122 1123 zone->nr_scan_inactive += 1124 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1; 1125 nr_inactive = zone->nr_scan_inactive; 1126 if (nr_inactive >= sc->swap_cluster_max) 1127 zone->nr_scan_inactive = 0; 1128 else 1129 nr_inactive = 0; 1130 1131 while (nr_active || nr_inactive) { 1132 if (nr_active) { 1133 nr_to_scan = min(nr_active, 1134 (unsigned long)sc->swap_cluster_max); 1135 nr_active -= nr_to_scan; 1136 shrink_active_list(nr_to_scan, zone, sc, priority); 1137 } 1138 1139 if (nr_inactive) { 1140 nr_to_scan = min(nr_inactive, 1141 (unsigned long)sc->swap_cluster_max); 1142 nr_inactive -= nr_to_scan; 1143 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, 1144 sc); 1145 } 1146 } 1147 1148 throttle_vm_writeout(sc->gfp_mask); 1149 return nr_reclaimed; 1150 } 1151 1152 /* 1153 * This is the direct reclaim path, for page-allocating processes. We only 1154 * try to reclaim pages from zones which will satisfy the caller's allocation 1155 * request. 1156 * 1157 * We reclaim from a zone even if that zone is over pages_high. Because: 1158 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1159 * allocation or 1160 * b) The zones may be over pages_high but they must go *over* pages_high to 1161 * satisfy the `incremental min' zone defense algorithm. 1162 * 1163 * Returns the number of reclaimed pages. 1164 * 1165 * If a zone is deemed to be full of pinned pages then just give it a light 1166 * scan then give up on it. 1167 */ 1168 static unsigned long shrink_zones(int priority, struct zone **zones, 1169 struct scan_control *sc) 1170 { 1171 unsigned long nr_reclaimed = 0; 1172 int i; 1173 1174 sc->all_unreclaimable = 1; 1175 for (i = 0; zones[i] != NULL; i++) { 1176 struct zone *zone = zones[i]; 1177 1178 if (!populated_zone(zone)) 1179 continue; 1180 1181 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1182 continue; 1183 1184 note_zone_scanning_priority(zone, priority); 1185 1186 if (zone_is_all_unreclaimable(zone) && priority != DEF_PRIORITY) 1187 continue; /* Let kswapd poll it */ 1188 1189 sc->all_unreclaimable = 0; 1190 1191 nr_reclaimed += shrink_zone(priority, zone, sc); 1192 } 1193 return nr_reclaimed; 1194 } 1195 1196 /* 1197 * This is the main entry point to direct page reclaim. 1198 * 1199 * If a full scan of the inactive list fails to free enough memory then we 1200 * are "out of memory" and something needs to be killed. 1201 * 1202 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1203 * high - the zone may be full of dirty or under-writeback pages, which this 1204 * caller can't do much about. We kick pdflush and take explicit naps in the 1205 * hope that some of these pages can be written. But if the allocating task 1206 * holds filesystem locks which prevent writeout this might not work, and the 1207 * allocation attempt will fail. 1208 */ 1209 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask) 1210 { 1211 int priority; 1212 int ret = 0; 1213 unsigned long total_scanned = 0; 1214 unsigned long nr_reclaimed = 0; 1215 struct reclaim_state *reclaim_state = current->reclaim_state; 1216 unsigned long lru_pages = 0; 1217 int i; 1218 struct scan_control sc = { 1219 .gfp_mask = gfp_mask, 1220 .may_writepage = !laptop_mode, 1221 .swap_cluster_max = SWAP_CLUSTER_MAX, 1222 .may_swap = 1, 1223 .swappiness = vm_swappiness, 1224 .order = order, 1225 }; 1226 1227 count_vm_event(ALLOCSTALL); 1228 1229 for (i = 0; zones[i] != NULL; i++) { 1230 struct zone *zone = zones[i]; 1231 1232 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1233 continue; 1234 1235 lru_pages += zone_page_state(zone, NR_ACTIVE) 1236 + zone_page_state(zone, NR_INACTIVE); 1237 } 1238 1239 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1240 sc.nr_scanned = 0; 1241 if (!priority) 1242 disable_swap_token(); 1243 nr_reclaimed += shrink_zones(priority, zones, &sc); 1244 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages); 1245 if (reclaim_state) { 1246 nr_reclaimed += reclaim_state->reclaimed_slab; 1247 reclaim_state->reclaimed_slab = 0; 1248 } 1249 total_scanned += sc.nr_scanned; 1250 if (nr_reclaimed >= sc.swap_cluster_max) { 1251 ret = 1; 1252 goto out; 1253 } 1254 1255 /* 1256 * Try to write back as many pages as we just scanned. This 1257 * tends to cause slow streaming writers to write data to the 1258 * disk smoothly, at the dirtying rate, which is nice. But 1259 * that's undesirable in laptop mode, where we *want* lumpy 1260 * writeout. So in laptop mode, write out the whole world. 1261 */ 1262 if (total_scanned > sc.swap_cluster_max + 1263 sc.swap_cluster_max / 2) { 1264 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1265 sc.may_writepage = 1; 1266 } 1267 1268 /* Take a nap, wait for some writeback to complete */ 1269 if (sc.nr_scanned && priority < DEF_PRIORITY - 2) 1270 congestion_wait(WRITE, HZ/10); 1271 } 1272 /* top priority shrink_caches still had more to do? don't OOM, then */ 1273 if (!sc.all_unreclaimable) 1274 ret = 1; 1275 out: 1276 /* 1277 * Now that we've scanned all the zones at this priority level, note 1278 * that level within the zone so that the next thread which performs 1279 * scanning of this zone will immediately start out at this priority 1280 * level. This affects only the decision whether or not to bring 1281 * mapped pages onto the inactive list. 1282 */ 1283 if (priority < 0) 1284 priority = 0; 1285 for (i = 0; zones[i] != NULL; i++) { 1286 struct zone *zone = zones[i]; 1287 1288 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1289 continue; 1290 1291 zone->prev_priority = priority; 1292 } 1293 return ret; 1294 } 1295 1296 /* 1297 * For kswapd, balance_pgdat() will work across all this node's zones until 1298 * they are all at pages_high. 1299 * 1300 * Returns the number of pages which were actually freed. 1301 * 1302 * There is special handling here for zones which are full of pinned pages. 1303 * This can happen if the pages are all mlocked, or if they are all used by 1304 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1305 * What we do is to detect the case where all pages in the zone have been 1306 * scanned twice and there has been zero successful reclaim. Mark the zone as 1307 * dead and from now on, only perform a short scan. Basically we're polling 1308 * the zone for when the problem goes away. 1309 * 1310 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1311 * zones which have free_pages > pages_high, but once a zone is found to have 1312 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1313 * of the number of free pages in the lower zones. This interoperates with 1314 * the page allocator fallback scheme to ensure that aging of pages is balanced 1315 * across the zones. 1316 */ 1317 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1318 { 1319 int all_zones_ok; 1320 int priority; 1321 int i; 1322 unsigned long total_scanned; 1323 unsigned long nr_reclaimed; 1324 struct reclaim_state *reclaim_state = current->reclaim_state; 1325 struct scan_control sc = { 1326 .gfp_mask = GFP_KERNEL, 1327 .may_swap = 1, 1328 .swap_cluster_max = SWAP_CLUSTER_MAX, 1329 .swappiness = vm_swappiness, 1330 .order = order, 1331 }; 1332 /* 1333 * temp_priority is used to remember the scanning priority at which 1334 * this zone was successfully refilled to free_pages == pages_high. 1335 */ 1336 int temp_priority[MAX_NR_ZONES]; 1337 1338 loop_again: 1339 total_scanned = 0; 1340 nr_reclaimed = 0; 1341 sc.may_writepage = !laptop_mode; 1342 count_vm_event(PAGEOUTRUN); 1343 1344 for (i = 0; i < pgdat->nr_zones; i++) 1345 temp_priority[i] = DEF_PRIORITY; 1346 1347 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1348 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1349 unsigned long lru_pages = 0; 1350 1351 /* The swap token gets in the way of swapout... */ 1352 if (!priority) 1353 disable_swap_token(); 1354 1355 all_zones_ok = 1; 1356 1357 /* 1358 * Scan in the highmem->dma direction for the highest 1359 * zone which needs scanning 1360 */ 1361 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1362 struct zone *zone = pgdat->node_zones + i; 1363 1364 if (!populated_zone(zone)) 1365 continue; 1366 1367 if (zone_is_all_unreclaimable(zone) && 1368 priority != DEF_PRIORITY) 1369 continue; 1370 1371 if (!zone_watermark_ok(zone, order, zone->pages_high, 1372 0, 0)) { 1373 end_zone = i; 1374 break; 1375 } 1376 } 1377 if (i < 0) 1378 goto out; 1379 1380 for (i = 0; i <= end_zone; i++) { 1381 struct zone *zone = pgdat->node_zones + i; 1382 1383 lru_pages += zone_page_state(zone, NR_ACTIVE) 1384 + zone_page_state(zone, NR_INACTIVE); 1385 } 1386 1387 /* 1388 * Now scan the zone in the dma->highmem direction, stopping 1389 * at the last zone which needs scanning. 1390 * 1391 * We do this because the page allocator works in the opposite 1392 * direction. This prevents the page allocator from allocating 1393 * pages behind kswapd's direction of progress, which would 1394 * cause too much scanning of the lower zones. 1395 */ 1396 for (i = 0; i <= end_zone; i++) { 1397 struct zone *zone = pgdat->node_zones + i; 1398 int nr_slab; 1399 1400 if (!populated_zone(zone)) 1401 continue; 1402 1403 if (zone_is_all_unreclaimable(zone) && 1404 priority != DEF_PRIORITY) 1405 continue; 1406 1407 if (!zone_watermark_ok(zone, order, zone->pages_high, 1408 end_zone, 0)) 1409 all_zones_ok = 0; 1410 temp_priority[i] = priority; 1411 sc.nr_scanned = 0; 1412 note_zone_scanning_priority(zone, priority); 1413 /* 1414 * We put equal pressure on every zone, unless one 1415 * zone has way too many pages free already. 1416 */ 1417 if (!zone_watermark_ok(zone, order, 8*zone->pages_high, 1418 end_zone, 0)) 1419 nr_reclaimed += shrink_zone(priority, zone, &sc); 1420 reclaim_state->reclaimed_slab = 0; 1421 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1422 lru_pages); 1423 nr_reclaimed += reclaim_state->reclaimed_slab; 1424 total_scanned += sc.nr_scanned; 1425 if (zone_is_all_unreclaimable(zone)) 1426 continue; 1427 if (nr_slab == 0 && zone->pages_scanned >= 1428 (zone_page_state(zone, NR_ACTIVE) 1429 + zone_page_state(zone, NR_INACTIVE)) * 6) 1430 zone_set_flag(zone, 1431 ZONE_ALL_UNRECLAIMABLE); 1432 /* 1433 * If we've done a decent amount of scanning and 1434 * the reclaim ratio is low, start doing writepage 1435 * even in laptop mode 1436 */ 1437 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1438 total_scanned > nr_reclaimed + nr_reclaimed / 2) 1439 sc.may_writepage = 1; 1440 } 1441 if (all_zones_ok) 1442 break; /* kswapd: all done */ 1443 /* 1444 * OK, kswapd is getting into trouble. Take a nap, then take 1445 * another pass across the zones. 1446 */ 1447 if (total_scanned && priority < DEF_PRIORITY - 2) 1448 congestion_wait(WRITE, HZ/10); 1449 1450 /* 1451 * We do this so kswapd doesn't build up large priorities for 1452 * example when it is freeing in parallel with allocators. It 1453 * matches the direct reclaim path behaviour in terms of impact 1454 * on zone->*_priority. 1455 */ 1456 if (nr_reclaimed >= SWAP_CLUSTER_MAX) 1457 break; 1458 } 1459 out: 1460 /* 1461 * Note within each zone the priority level at which this zone was 1462 * brought into a happy state. So that the next thread which scans this 1463 * zone will start out at that priority level. 1464 */ 1465 for (i = 0; i < pgdat->nr_zones; i++) { 1466 struct zone *zone = pgdat->node_zones + i; 1467 1468 zone->prev_priority = temp_priority[i]; 1469 } 1470 if (!all_zones_ok) { 1471 cond_resched(); 1472 1473 try_to_freeze(); 1474 1475 goto loop_again; 1476 } 1477 1478 return nr_reclaimed; 1479 } 1480 1481 /* 1482 * The background pageout daemon, started as a kernel thread 1483 * from the init process. 1484 * 1485 * This basically trickles out pages so that we have _some_ 1486 * free memory available even if there is no other activity 1487 * that frees anything up. This is needed for things like routing 1488 * etc, where we otherwise might have all activity going on in 1489 * asynchronous contexts that cannot page things out. 1490 * 1491 * If there are applications that are active memory-allocators 1492 * (most normal use), this basically shouldn't matter. 1493 */ 1494 static int kswapd(void *p) 1495 { 1496 unsigned long order; 1497 pg_data_t *pgdat = (pg_data_t*)p; 1498 struct task_struct *tsk = current; 1499 DEFINE_WAIT(wait); 1500 struct reclaim_state reclaim_state = { 1501 .reclaimed_slab = 0, 1502 }; 1503 cpumask_t cpumask; 1504 1505 cpumask = node_to_cpumask(pgdat->node_id); 1506 if (!cpus_empty(cpumask)) 1507 set_cpus_allowed(tsk, cpumask); 1508 current->reclaim_state = &reclaim_state; 1509 1510 /* 1511 * Tell the memory management that we're a "memory allocator", 1512 * and that if we need more memory we should get access to it 1513 * regardless (see "__alloc_pages()"). "kswapd" should 1514 * never get caught in the normal page freeing logic. 1515 * 1516 * (Kswapd normally doesn't need memory anyway, but sometimes 1517 * you need a small amount of memory in order to be able to 1518 * page out something else, and this flag essentially protects 1519 * us from recursively trying to free more memory as we're 1520 * trying to free the first piece of memory in the first place). 1521 */ 1522 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1523 set_freezable(); 1524 1525 order = 0; 1526 for ( ; ; ) { 1527 unsigned long new_order; 1528 1529 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1530 new_order = pgdat->kswapd_max_order; 1531 pgdat->kswapd_max_order = 0; 1532 if (order < new_order) { 1533 /* 1534 * Don't sleep if someone wants a larger 'order' 1535 * allocation 1536 */ 1537 order = new_order; 1538 } else { 1539 if (!freezing(current)) 1540 schedule(); 1541 1542 order = pgdat->kswapd_max_order; 1543 } 1544 finish_wait(&pgdat->kswapd_wait, &wait); 1545 1546 if (!try_to_freeze()) { 1547 /* We can speed up thawing tasks if we don't call 1548 * balance_pgdat after returning from the refrigerator 1549 */ 1550 balance_pgdat(pgdat, order); 1551 } 1552 } 1553 return 0; 1554 } 1555 1556 /* 1557 * A zone is low on free memory, so wake its kswapd task to service it. 1558 */ 1559 void wakeup_kswapd(struct zone *zone, int order) 1560 { 1561 pg_data_t *pgdat; 1562 1563 if (!populated_zone(zone)) 1564 return; 1565 1566 pgdat = zone->zone_pgdat; 1567 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 1568 return; 1569 if (pgdat->kswapd_max_order < order) 1570 pgdat->kswapd_max_order = order; 1571 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1572 return; 1573 if (!waitqueue_active(&pgdat->kswapd_wait)) 1574 return; 1575 wake_up_interruptible(&pgdat->kswapd_wait); 1576 } 1577 1578 #ifdef CONFIG_PM 1579 /* 1580 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 1581 * from LRU lists system-wide, for given pass and priority, and returns the 1582 * number of reclaimed pages 1583 * 1584 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 1585 */ 1586 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, 1587 int pass, struct scan_control *sc) 1588 { 1589 struct zone *zone; 1590 unsigned long nr_to_scan, ret = 0; 1591 1592 for_each_zone(zone) { 1593 1594 if (!populated_zone(zone)) 1595 continue; 1596 1597 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 1598 continue; 1599 1600 /* For pass = 0 we don't shrink the active list */ 1601 if (pass > 0) { 1602 zone->nr_scan_active += 1603 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1; 1604 if (zone->nr_scan_active >= nr_pages || pass > 3) { 1605 zone->nr_scan_active = 0; 1606 nr_to_scan = min(nr_pages, 1607 zone_page_state(zone, NR_ACTIVE)); 1608 shrink_active_list(nr_to_scan, zone, sc, prio); 1609 } 1610 } 1611 1612 zone->nr_scan_inactive += 1613 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1; 1614 if (zone->nr_scan_inactive >= nr_pages || pass > 3) { 1615 zone->nr_scan_inactive = 0; 1616 nr_to_scan = min(nr_pages, 1617 zone_page_state(zone, NR_INACTIVE)); 1618 ret += shrink_inactive_list(nr_to_scan, zone, sc); 1619 if (ret >= nr_pages) 1620 return ret; 1621 } 1622 } 1623 1624 return ret; 1625 } 1626 1627 static unsigned long count_lru_pages(void) 1628 { 1629 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE); 1630 } 1631 1632 /* 1633 * Try to free `nr_pages' of memory, system-wide, and return the number of 1634 * freed pages. 1635 * 1636 * Rather than trying to age LRUs the aim is to preserve the overall 1637 * LRU order by reclaiming preferentially 1638 * inactive > active > active referenced > active mapped 1639 */ 1640 unsigned long shrink_all_memory(unsigned long nr_pages) 1641 { 1642 unsigned long lru_pages, nr_slab; 1643 unsigned long ret = 0; 1644 int pass; 1645 struct reclaim_state reclaim_state; 1646 struct scan_control sc = { 1647 .gfp_mask = GFP_KERNEL, 1648 .may_swap = 0, 1649 .swap_cluster_max = nr_pages, 1650 .may_writepage = 1, 1651 .swappiness = vm_swappiness, 1652 }; 1653 1654 current->reclaim_state = &reclaim_state; 1655 1656 lru_pages = count_lru_pages(); 1657 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 1658 /* If slab caches are huge, it's better to hit them first */ 1659 while (nr_slab >= lru_pages) { 1660 reclaim_state.reclaimed_slab = 0; 1661 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 1662 if (!reclaim_state.reclaimed_slab) 1663 break; 1664 1665 ret += reclaim_state.reclaimed_slab; 1666 if (ret >= nr_pages) 1667 goto out; 1668 1669 nr_slab -= reclaim_state.reclaimed_slab; 1670 } 1671 1672 /* 1673 * We try to shrink LRUs in 5 passes: 1674 * 0 = Reclaim from inactive_list only 1675 * 1 = Reclaim from active list but don't reclaim mapped 1676 * 2 = 2nd pass of type 1 1677 * 3 = Reclaim mapped (normal reclaim) 1678 * 4 = 2nd pass of type 3 1679 */ 1680 for (pass = 0; pass < 5; pass++) { 1681 int prio; 1682 1683 /* Force reclaiming mapped pages in the passes #3 and #4 */ 1684 if (pass > 2) { 1685 sc.may_swap = 1; 1686 sc.swappiness = 100; 1687 } 1688 1689 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 1690 unsigned long nr_to_scan = nr_pages - ret; 1691 1692 sc.nr_scanned = 0; 1693 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); 1694 if (ret >= nr_pages) 1695 goto out; 1696 1697 reclaim_state.reclaimed_slab = 0; 1698 shrink_slab(sc.nr_scanned, sc.gfp_mask, 1699 count_lru_pages()); 1700 ret += reclaim_state.reclaimed_slab; 1701 if (ret >= nr_pages) 1702 goto out; 1703 1704 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 1705 congestion_wait(WRITE, HZ / 10); 1706 } 1707 } 1708 1709 /* 1710 * If ret = 0, we could not shrink LRUs, but there may be something 1711 * in slab caches 1712 */ 1713 if (!ret) { 1714 do { 1715 reclaim_state.reclaimed_slab = 0; 1716 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages()); 1717 ret += reclaim_state.reclaimed_slab; 1718 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); 1719 } 1720 1721 out: 1722 current->reclaim_state = NULL; 1723 1724 return ret; 1725 } 1726 #endif 1727 1728 /* It's optimal to keep kswapds on the same CPUs as their memory, but 1729 not required for correctness. So if the last cpu in a node goes 1730 away, we get changed to run anywhere: as the first one comes back, 1731 restore their cpu bindings. */ 1732 static int __devinit cpu_callback(struct notifier_block *nfb, 1733 unsigned long action, void *hcpu) 1734 { 1735 pg_data_t *pgdat; 1736 cpumask_t mask; 1737 int nid; 1738 1739 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 1740 for_each_node_state(nid, N_HIGH_MEMORY) { 1741 pgdat = NODE_DATA(nid); 1742 mask = node_to_cpumask(pgdat->node_id); 1743 if (any_online_cpu(mask) != NR_CPUS) 1744 /* One of our CPUs online: restore mask */ 1745 set_cpus_allowed(pgdat->kswapd, mask); 1746 } 1747 } 1748 return NOTIFY_OK; 1749 } 1750 1751 /* 1752 * This kswapd start function will be called by init and node-hot-add. 1753 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 1754 */ 1755 int kswapd_run(int nid) 1756 { 1757 pg_data_t *pgdat = NODE_DATA(nid); 1758 int ret = 0; 1759 1760 if (pgdat->kswapd) 1761 return 0; 1762 1763 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 1764 if (IS_ERR(pgdat->kswapd)) { 1765 /* failure at boot is fatal */ 1766 BUG_ON(system_state == SYSTEM_BOOTING); 1767 printk("Failed to start kswapd on node %d\n",nid); 1768 ret = -1; 1769 } 1770 return ret; 1771 } 1772 1773 static int __init kswapd_init(void) 1774 { 1775 int nid; 1776 1777 swap_setup(); 1778 for_each_node_state(nid, N_HIGH_MEMORY) 1779 kswapd_run(nid); 1780 hotcpu_notifier(cpu_callback, 0); 1781 return 0; 1782 } 1783 1784 module_init(kswapd_init) 1785 1786 #ifdef CONFIG_NUMA 1787 /* 1788 * Zone reclaim mode 1789 * 1790 * If non-zero call zone_reclaim when the number of free pages falls below 1791 * the watermarks. 1792 */ 1793 int zone_reclaim_mode __read_mostly; 1794 1795 #define RECLAIM_OFF 0 1796 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ 1797 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 1798 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 1799 1800 /* 1801 * Priority for ZONE_RECLAIM. This determines the fraction of pages 1802 * of a node considered for each zone_reclaim. 4 scans 1/16th of 1803 * a zone. 1804 */ 1805 #define ZONE_RECLAIM_PRIORITY 4 1806 1807 /* 1808 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 1809 * occur. 1810 */ 1811 int sysctl_min_unmapped_ratio = 1; 1812 1813 /* 1814 * If the number of slab pages in a zone grows beyond this percentage then 1815 * slab reclaim needs to occur. 1816 */ 1817 int sysctl_min_slab_ratio = 5; 1818 1819 /* 1820 * Try to free up some pages from this zone through reclaim. 1821 */ 1822 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 1823 { 1824 /* Minimum pages needed in order to stay on node */ 1825 const unsigned long nr_pages = 1 << order; 1826 struct task_struct *p = current; 1827 struct reclaim_state reclaim_state; 1828 int priority; 1829 unsigned long nr_reclaimed = 0; 1830 struct scan_control sc = { 1831 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 1832 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), 1833 .swap_cluster_max = max_t(unsigned long, nr_pages, 1834 SWAP_CLUSTER_MAX), 1835 .gfp_mask = gfp_mask, 1836 .swappiness = vm_swappiness, 1837 }; 1838 unsigned long slab_reclaimable; 1839 1840 disable_swap_token(); 1841 cond_resched(); 1842 /* 1843 * We need to be able to allocate from the reserves for RECLAIM_SWAP 1844 * and we also need to be able to write out pages for RECLAIM_WRITE 1845 * and RECLAIM_SWAP. 1846 */ 1847 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 1848 reclaim_state.reclaimed_slab = 0; 1849 p->reclaim_state = &reclaim_state; 1850 1851 if (zone_page_state(zone, NR_FILE_PAGES) - 1852 zone_page_state(zone, NR_FILE_MAPPED) > 1853 zone->min_unmapped_pages) { 1854 /* 1855 * Free memory by calling shrink zone with increasing 1856 * priorities until we have enough memory freed. 1857 */ 1858 priority = ZONE_RECLAIM_PRIORITY; 1859 do { 1860 note_zone_scanning_priority(zone, priority); 1861 nr_reclaimed += shrink_zone(priority, zone, &sc); 1862 priority--; 1863 } while (priority >= 0 && nr_reclaimed < nr_pages); 1864 } 1865 1866 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 1867 if (slab_reclaimable > zone->min_slab_pages) { 1868 /* 1869 * shrink_slab() does not currently allow us to determine how 1870 * many pages were freed in this zone. So we take the current 1871 * number of slab pages and shake the slab until it is reduced 1872 * by the same nr_pages that we used for reclaiming unmapped 1873 * pages. 1874 * 1875 * Note that shrink_slab will free memory on all zones and may 1876 * take a long time. 1877 */ 1878 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 1879 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 1880 slab_reclaimable - nr_pages) 1881 ; 1882 1883 /* 1884 * Update nr_reclaimed by the number of slab pages we 1885 * reclaimed from this zone. 1886 */ 1887 nr_reclaimed += slab_reclaimable - 1888 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 1889 } 1890 1891 p->reclaim_state = NULL; 1892 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 1893 return nr_reclaimed >= nr_pages; 1894 } 1895 1896 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 1897 { 1898 int node_id; 1899 int ret; 1900 1901 /* 1902 * Zone reclaim reclaims unmapped file backed pages and 1903 * slab pages if we are over the defined limits. 1904 * 1905 * A small portion of unmapped file backed pages is needed for 1906 * file I/O otherwise pages read by file I/O will be immediately 1907 * thrown out if the zone is overallocated. So we do not reclaim 1908 * if less than a specified percentage of the zone is used by 1909 * unmapped file backed pages. 1910 */ 1911 if (zone_page_state(zone, NR_FILE_PAGES) - 1912 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 1913 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 1914 <= zone->min_slab_pages) 1915 return 0; 1916 1917 if (zone_is_all_unreclaimable(zone)) 1918 return 0; 1919 1920 /* 1921 * Do not scan if the allocation should not be delayed. 1922 */ 1923 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 1924 return 0; 1925 1926 /* 1927 * Only run zone reclaim on the local zone or on zones that do not 1928 * have associated processors. This will favor the local processor 1929 * over remote processors and spread off node memory allocations 1930 * as wide as possible. 1931 */ 1932 node_id = zone_to_nid(zone); 1933 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 1934 return 0; 1935 1936 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 1937 return 0; 1938 ret = __zone_reclaim(zone, gfp_mask, order); 1939 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 1940 1941 return ret; 1942 } 1943 #endif 1944