xref: /openbmc/linux/mm/vmscan.c (revision 7507f099)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
60 
61 #include "internal.h"
62 #include "swap.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/vmscan.h>
66 
67 struct scan_control {
68 	/* How many pages shrink_list() should reclaim */
69 	unsigned long nr_to_reclaim;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/*
84 	 * Scan pressure balancing between anon and file LRUs
85 	 */
86 	unsigned long	anon_cost;
87 	unsigned long	file_cost;
88 
89 	/* Can active pages be deactivated as part of reclaim? */
90 #define DEACTIVATE_ANON 1
91 #define DEACTIVATE_FILE 2
92 	unsigned int may_deactivate:2;
93 	unsigned int force_deactivate:1;
94 	unsigned int skipped_deactivate:1;
95 
96 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
97 	unsigned int may_writepage:1;
98 
99 	/* Can mapped pages be reclaimed? */
100 	unsigned int may_unmap:1;
101 
102 	/* Can pages be swapped as part of reclaim? */
103 	unsigned int may_swap:1;
104 
105 	/*
106 	 * Cgroup memory below memory.low is protected as long as we
107 	 * don't threaten to OOM. If any cgroup is reclaimed at
108 	 * reduced force or passed over entirely due to its memory.low
109 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 	 * result, then go back for one more cycle that reclaims the protected
111 	 * memory (memcg_low_reclaim) to avert OOM.
112 	 */
113 	unsigned int memcg_low_reclaim:1;
114 	unsigned int memcg_low_skipped:1;
115 
116 	unsigned int hibernation_mode:1;
117 
118 	/* One of the zones is ready for compaction */
119 	unsigned int compaction_ready:1;
120 
121 	/* There is easily reclaimable cold cache in the current node */
122 	unsigned int cache_trim_mode:1;
123 
124 	/* The file pages on the current node are dangerously low */
125 	unsigned int file_is_tiny:1;
126 
127 	/* Always discard instead of demoting to lower tier memory */
128 	unsigned int no_demotion:1;
129 
130 	/* Allocation order */
131 	s8 order;
132 
133 	/* Scan (total_size >> priority) pages at once */
134 	s8 priority;
135 
136 	/* The highest zone to isolate pages for reclaim from */
137 	s8 reclaim_idx;
138 
139 	/* This context's GFP mask */
140 	gfp_t gfp_mask;
141 
142 	/* Incremented by the number of inactive pages that were scanned */
143 	unsigned long nr_scanned;
144 
145 	/* Number of pages freed so far during a call to shrink_zones() */
146 	unsigned long nr_reclaimed;
147 
148 	struct {
149 		unsigned int dirty;
150 		unsigned int unqueued_dirty;
151 		unsigned int congested;
152 		unsigned int writeback;
153 		unsigned int immediate;
154 		unsigned int file_taken;
155 		unsigned int taken;
156 	} nr;
157 
158 	/* for recording the reclaimed slab by now */
159 	struct reclaim_state reclaim_state;
160 };
161 
162 #ifdef ARCH_HAS_PREFETCHW
163 #define prefetchw_prev_lru_page(_page, _base, _field)			\
164 	do {								\
165 		if ((_page)->lru.prev != _base) {			\
166 			struct page *prev;				\
167 									\
168 			prev = lru_to_page(&(_page->lru));		\
169 			prefetchw(&prev->_field);			\
170 		}							\
171 	} while (0)
172 #else
173 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
174 #endif
175 
176 /*
177  * From 0 .. 200.  Higher means more swappy.
178  */
179 int vm_swappiness = 60;
180 
181 static void set_task_reclaim_state(struct task_struct *task,
182 				   struct reclaim_state *rs)
183 {
184 	/* Check for an overwrite */
185 	WARN_ON_ONCE(rs && task->reclaim_state);
186 
187 	/* Check for the nulling of an already-nulled member */
188 	WARN_ON_ONCE(!rs && !task->reclaim_state);
189 
190 	task->reclaim_state = rs;
191 }
192 
193 LIST_HEAD(shrinker_list);
194 DECLARE_RWSEM(shrinker_rwsem);
195 
196 #ifdef CONFIG_MEMCG
197 static int shrinker_nr_max;
198 
199 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
200 static inline int shrinker_map_size(int nr_items)
201 {
202 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203 }
204 
205 static inline int shrinker_defer_size(int nr_items)
206 {
207 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208 }
209 
210 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 						     int nid)
212 {
213 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 					 lockdep_is_held(&shrinker_rwsem));
215 }
216 
217 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
218 				    int map_size, int defer_size,
219 				    int old_map_size, int old_defer_size)
220 {
221 	struct shrinker_info *new, *old;
222 	struct mem_cgroup_per_node *pn;
223 	int nid;
224 	int size = map_size + defer_size;
225 
226 	for_each_node(nid) {
227 		pn = memcg->nodeinfo[nid];
228 		old = shrinker_info_protected(memcg, nid);
229 		/* Not yet online memcg */
230 		if (!old)
231 			return 0;
232 
233 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
234 		if (!new)
235 			return -ENOMEM;
236 
237 		new->nr_deferred = (atomic_long_t *)(new + 1);
238 		new->map = (void *)new->nr_deferred + defer_size;
239 
240 		/* map: set all old bits, clear all new bits */
241 		memset(new->map, (int)0xff, old_map_size);
242 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 		/* nr_deferred: copy old values, clear all new values */
244 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 		memset((void *)new->nr_deferred + old_defer_size, 0,
246 		       defer_size - old_defer_size);
247 
248 		rcu_assign_pointer(pn->shrinker_info, new);
249 		kvfree_rcu(old, rcu);
250 	}
251 
252 	return 0;
253 }
254 
255 void free_shrinker_info(struct mem_cgroup *memcg)
256 {
257 	struct mem_cgroup_per_node *pn;
258 	struct shrinker_info *info;
259 	int nid;
260 
261 	for_each_node(nid) {
262 		pn = memcg->nodeinfo[nid];
263 		info = rcu_dereference_protected(pn->shrinker_info, true);
264 		kvfree(info);
265 		rcu_assign_pointer(pn->shrinker_info, NULL);
266 	}
267 }
268 
269 int alloc_shrinker_info(struct mem_cgroup *memcg)
270 {
271 	struct shrinker_info *info;
272 	int nid, size, ret = 0;
273 	int map_size, defer_size = 0;
274 
275 	down_write(&shrinker_rwsem);
276 	map_size = shrinker_map_size(shrinker_nr_max);
277 	defer_size = shrinker_defer_size(shrinker_nr_max);
278 	size = map_size + defer_size;
279 	for_each_node(nid) {
280 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 		if (!info) {
282 			free_shrinker_info(memcg);
283 			ret = -ENOMEM;
284 			break;
285 		}
286 		info->nr_deferred = (atomic_long_t *)(info + 1);
287 		info->map = (void *)info->nr_deferred + defer_size;
288 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
289 	}
290 	up_write(&shrinker_rwsem);
291 
292 	return ret;
293 }
294 
295 static inline bool need_expand(int nr_max)
296 {
297 	return round_up(nr_max, BITS_PER_LONG) >
298 	       round_up(shrinker_nr_max, BITS_PER_LONG);
299 }
300 
301 static int expand_shrinker_info(int new_id)
302 {
303 	int ret = 0;
304 	int new_nr_max = new_id + 1;
305 	int map_size, defer_size = 0;
306 	int old_map_size, old_defer_size = 0;
307 	struct mem_cgroup *memcg;
308 
309 	if (!need_expand(new_nr_max))
310 		goto out;
311 
312 	if (!root_mem_cgroup)
313 		goto out;
314 
315 	lockdep_assert_held(&shrinker_rwsem);
316 
317 	map_size = shrinker_map_size(new_nr_max);
318 	defer_size = shrinker_defer_size(new_nr_max);
319 	old_map_size = shrinker_map_size(shrinker_nr_max);
320 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
321 
322 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 	do {
324 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 					       old_map_size, old_defer_size);
326 		if (ret) {
327 			mem_cgroup_iter_break(NULL, memcg);
328 			goto out;
329 		}
330 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
331 out:
332 	if (!ret)
333 		shrinker_nr_max = new_nr_max;
334 
335 	return ret;
336 }
337 
338 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339 {
340 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
341 		struct shrinker_info *info;
342 
343 		rcu_read_lock();
344 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
345 		/* Pairs with smp mb in shrink_slab() */
346 		smp_mb__before_atomic();
347 		set_bit(shrinker_id, info->map);
348 		rcu_read_unlock();
349 	}
350 }
351 
352 static DEFINE_IDR(shrinker_idr);
353 
354 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355 {
356 	int id, ret = -ENOMEM;
357 
358 	if (mem_cgroup_disabled())
359 		return -ENOSYS;
360 
361 	down_write(&shrinker_rwsem);
362 	/* This may call shrinker, so it must use down_read_trylock() */
363 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
364 	if (id < 0)
365 		goto unlock;
366 
367 	if (id >= shrinker_nr_max) {
368 		if (expand_shrinker_info(id)) {
369 			idr_remove(&shrinker_idr, id);
370 			goto unlock;
371 		}
372 	}
373 	shrinker->id = id;
374 	ret = 0;
375 unlock:
376 	up_write(&shrinker_rwsem);
377 	return ret;
378 }
379 
380 static void unregister_memcg_shrinker(struct shrinker *shrinker)
381 {
382 	int id = shrinker->id;
383 
384 	BUG_ON(id < 0);
385 
386 	lockdep_assert_held(&shrinker_rwsem);
387 
388 	idr_remove(&shrinker_idr, id);
389 }
390 
391 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 				   struct mem_cgroup *memcg)
393 {
394 	struct shrinker_info *info;
395 
396 	info = shrinker_info_protected(memcg, nid);
397 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398 }
399 
400 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 				  struct mem_cgroup *memcg)
402 {
403 	struct shrinker_info *info;
404 
405 	info = shrinker_info_protected(memcg, nid);
406 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407 }
408 
409 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
410 {
411 	int i, nid;
412 	long nr;
413 	struct mem_cgroup *parent;
414 	struct shrinker_info *child_info, *parent_info;
415 
416 	parent = parent_mem_cgroup(memcg);
417 	if (!parent)
418 		parent = root_mem_cgroup;
419 
420 	/* Prevent from concurrent shrinker_info expand */
421 	down_read(&shrinker_rwsem);
422 	for_each_node(nid) {
423 		child_info = shrinker_info_protected(memcg, nid);
424 		parent_info = shrinker_info_protected(parent, nid);
425 		for (i = 0; i < shrinker_nr_max; i++) {
426 			nr = atomic_long_read(&child_info->nr_deferred[i]);
427 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 		}
429 	}
430 	up_read(&shrinker_rwsem);
431 }
432 
433 static bool cgroup_reclaim(struct scan_control *sc)
434 {
435 	return sc->target_mem_cgroup;
436 }
437 
438 /**
439  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
440  * @sc: scan_control in question
441  *
442  * The normal page dirty throttling mechanism in balance_dirty_pages() is
443  * completely broken with the legacy memcg and direct stalling in
444  * shrink_page_list() is used for throttling instead, which lacks all the
445  * niceties such as fairness, adaptive pausing, bandwidth proportional
446  * allocation and configurability.
447  *
448  * This function tests whether the vmscan currently in progress can assume
449  * that the normal dirty throttling mechanism is operational.
450  */
451 static bool writeback_throttling_sane(struct scan_control *sc)
452 {
453 	if (!cgroup_reclaim(sc))
454 		return true;
455 #ifdef CONFIG_CGROUP_WRITEBACK
456 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
457 		return true;
458 #endif
459 	return false;
460 }
461 #else
462 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
463 {
464 	return -ENOSYS;
465 }
466 
467 static void unregister_memcg_shrinker(struct shrinker *shrinker)
468 {
469 }
470 
471 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 				   struct mem_cgroup *memcg)
473 {
474 	return 0;
475 }
476 
477 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 				  struct mem_cgroup *memcg)
479 {
480 	return 0;
481 }
482 
483 static bool cgroup_reclaim(struct scan_control *sc)
484 {
485 	return false;
486 }
487 
488 static bool writeback_throttling_sane(struct scan_control *sc)
489 {
490 	return true;
491 }
492 #endif
493 
494 static long xchg_nr_deferred(struct shrinker *shrinker,
495 			     struct shrink_control *sc)
496 {
497 	int nid = sc->nid;
498 
499 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 		nid = 0;
501 
502 	if (sc->memcg &&
503 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 		return xchg_nr_deferred_memcg(nid, shrinker,
505 					      sc->memcg);
506 
507 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
508 }
509 
510 
511 static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 			    struct shrink_control *sc)
513 {
514 	int nid = sc->nid;
515 
516 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 		nid = 0;
518 
519 	if (sc->memcg &&
520 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 		return add_nr_deferred_memcg(nr, nid, shrinker,
522 					     sc->memcg);
523 
524 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525 }
526 
527 static bool can_demote(int nid, struct scan_control *sc)
528 {
529 	if (!numa_demotion_enabled)
530 		return false;
531 	if (sc && sc->no_demotion)
532 		return false;
533 	if (next_demotion_node(nid) == NUMA_NO_NODE)
534 		return false;
535 
536 	return true;
537 }
538 
539 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
540 					  int nid,
541 					  struct scan_control *sc)
542 {
543 	if (memcg == NULL) {
544 		/*
545 		 * For non-memcg reclaim, is there
546 		 * space in any swap device?
547 		 */
548 		if (get_nr_swap_pages() > 0)
549 			return true;
550 	} else {
551 		/* Is the memcg below its swap limit? */
552 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
553 			return true;
554 	}
555 
556 	/*
557 	 * The page can not be swapped.
558 	 *
559 	 * Can it be reclaimed from this node via demotion?
560 	 */
561 	return can_demote(nid, sc);
562 }
563 
564 /*
565  * This misses isolated pages which are not accounted for to save counters.
566  * As the data only determines if reclaim or compaction continues, it is
567  * not expected that isolated pages will be a dominating factor.
568  */
569 unsigned long zone_reclaimable_pages(struct zone *zone)
570 {
571 	unsigned long nr;
572 
573 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
574 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
575 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
576 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
577 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
578 
579 	return nr;
580 }
581 
582 /**
583  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
584  * @lruvec: lru vector
585  * @lru: lru to use
586  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
587  */
588 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
589 				     int zone_idx)
590 {
591 	unsigned long size = 0;
592 	int zid;
593 
594 	for (zid = 0; zid <= zone_idx; zid++) {
595 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
596 
597 		if (!managed_zone(zone))
598 			continue;
599 
600 		if (!mem_cgroup_disabled())
601 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
602 		else
603 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
604 	}
605 	return size;
606 }
607 
608 /*
609  * Add a shrinker callback to be called from the vm.
610  */
611 static int __prealloc_shrinker(struct shrinker *shrinker)
612 {
613 	unsigned int size;
614 	int err;
615 
616 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
617 		err = prealloc_memcg_shrinker(shrinker);
618 		if (err != -ENOSYS)
619 			return err;
620 
621 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
622 	}
623 
624 	size = sizeof(*shrinker->nr_deferred);
625 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
626 		size *= nr_node_ids;
627 
628 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
629 	if (!shrinker->nr_deferred)
630 		return -ENOMEM;
631 
632 	return 0;
633 }
634 
635 #ifdef CONFIG_SHRINKER_DEBUG
636 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
637 {
638 	va_list ap;
639 	int err;
640 
641 	va_start(ap, fmt);
642 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
643 	va_end(ap);
644 	if (!shrinker->name)
645 		return -ENOMEM;
646 
647 	err = __prealloc_shrinker(shrinker);
648 	if (err)
649 		kfree_const(shrinker->name);
650 
651 	return err;
652 }
653 #else
654 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
655 {
656 	return __prealloc_shrinker(shrinker);
657 }
658 #endif
659 
660 void free_prealloced_shrinker(struct shrinker *shrinker)
661 {
662 #ifdef CONFIG_SHRINKER_DEBUG
663 	kfree_const(shrinker->name);
664 #endif
665 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
666 		down_write(&shrinker_rwsem);
667 		unregister_memcg_shrinker(shrinker);
668 		up_write(&shrinker_rwsem);
669 		return;
670 	}
671 
672 	kfree(shrinker->nr_deferred);
673 	shrinker->nr_deferred = NULL;
674 }
675 
676 void register_shrinker_prepared(struct shrinker *shrinker)
677 {
678 	down_write(&shrinker_rwsem);
679 	list_add_tail(&shrinker->list, &shrinker_list);
680 	shrinker->flags |= SHRINKER_REGISTERED;
681 	shrinker_debugfs_add(shrinker);
682 	up_write(&shrinker_rwsem);
683 }
684 
685 static int __register_shrinker(struct shrinker *shrinker)
686 {
687 	int err = __prealloc_shrinker(shrinker);
688 
689 	if (err)
690 		return err;
691 	register_shrinker_prepared(shrinker);
692 	return 0;
693 }
694 
695 #ifdef CONFIG_SHRINKER_DEBUG
696 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
697 {
698 	va_list ap;
699 	int err;
700 
701 	va_start(ap, fmt);
702 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
703 	va_end(ap);
704 	if (!shrinker->name)
705 		return -ENOMEM;
706 
707 	err = __register_shrinker(shrinker);
708 	if (err)
709 		kfree_const(shrinker->name);
710 	return err;
711 }
712 #else
713 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	return __register_shrinker(shrinker);
716 }
717 #endif
718 EXPORT_SYMBOL(register_shrinker);
719 
720 /*
721  * Remove one
722  */
723 void unregister_shrinker(struct shrinker *shrinker)
724 {
725 	if (!(shrinker->flags & SHRINKER_REGISTERED))
726 		return;
727 
728 	down_write(&shrinker_rwsem);
729 	list_del(&shrinker->list);
730 	shrinker->flags &= ~SHRINKER_REGISTERED;
731 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
732 		unregister_memcg_shrinker(shrinker);
733 	shrinker_debugfs_remove(shrinker);
734 	up_write(&shrinker_rwsem);
735 
736 	kfree(shrinker->nr_deferred);
737 	shrinker->nr_deferred = NULL;
738 }
739 EXPORT_SYMBOL(unregister_shrinker);
740 
741 /**
742  * synchronize_shrinkers - Wait for all running shrinkers to complete.
743  *
744  * This is equivalent to calling unregister_shrink() and register_shrinker(),
745  * but atomically and with less overhead. This is useful to guarantee that all
746  * shrinker invocations have seen an update, before freeing memory, similar to
747  * rcu.
748  */
749 void synchronize_shrinkers(void)
750 {
751 	down_write(&shrinker_rwsem);
752 	up_write(&shrinker_rwsem);
753 }
754 EXPORT_SYMBOL(synchronize_shrinkers);
755 
756 #define SHRINK_BATCH 128
757 
758 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
759 				    struct shrinker *shrinker, int priority)
760 {
761 	unsigned long freed = 0;
762 	unsigned long long delta;
763 	long total_scan;
764 	long freeable;
765 	long nr;
766 	long new_nr;
767 	long batch_size = shrinker->batch ? shrinker->batch
768 					  : SHRINK_BATCH;
769 	long scanned = 0, next_deferred;
770 
771 	freeable = shrinker->count_objects(shrinker, shrinkctl);
772 	if (freeable == 0 || freeable == SHRINK_EMPTY)
773 		return freeable;
774 
775 	/*
776 	 * copy the current shrinker scan count into a local variable
777 	 * and zero it so that other concurrent shrinker invocations
778 	 * don't also do this scanning work.
779 	 */
780 	nr = xchg_nr_deferred(shrinker, shrinkctl);
781 
782 	if (shrinker->seeks) {
783 		delta = freeable >> priority;
784 		delta *= 4;
785 		do_div(delta, shrinker->seeks);
786 	} else {
787 		/*
788 		 * These objects don't require any IO to create. Trim
789 		 * them aggressively under memory pressure to keep
790 		 * them from causing refetches in the IO caches.
791 		 */
792 		delta = freeable / 2;
793 	}
794 
795 	total_scan = nr >> priority;
796 	total_scan += delta;
797 	total_scan = min(total_scan, (2 * freeable));
798 
799 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
800 				   freeable, delta, total_scan, priority);
801 
802 	/*
803 	 * Normally, we should not scan less than batch_size objects in one
804 	 * pass to avoid too frequent shrinker calls, but if the slab has less
805 	 * than batch_size objects in total and we are really tight on memory,
806 	 * we will try to reclaim all available objects, otherwise we can end
807 	 * up failing allocations although there are plenty of reclaimable
808 	 * objects spread over several slabs with usage less than the
809 	 * batch_size.
810 	 *
811 	 * We detect the "tight on memory" situations by looking at the total
812 	 * number of objects we want to scan (total_scan). If it is greater
813 	 * than the total number of objects on slab (freeable), we must be
814 	 * scanning at high prio and therefore should try to reclaim as much as
815 	 * possible.
816 	 */
817 	while (total_scan >= batch_size ||
818 	       total_scan >= freeable) {
819 		unsigned long ret;
820 		unsigned long nr_to_scan = min(batch_size, total_scan);
821 
822 		shrinkctl->nr_to_scan = nr_to_scan;
823 		shrinkctl->nr_scanned = nr_to_scan;
824 		ret = shrinker->scan_objects(shrinker, shrinkctl);
825 		if (ret == SHRINK_STOP)
826 			break;
827 		freed += ret;
828 
829 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
830 		total_scan -= shrinkctl->nr_scanned;
831 		scanned += shrinkctl->nr_scanned;
832 
833 		cond_resched();
834 	}
835 
836 	/*
837 	 * The deferred work is increased by any new work (delta) that wasn't
838 	 * done, decreased by old deferred work that was done now.
839 	 *
840 	 * And it is capped to two times of the freeable items.
841 	 */
842 	next_deferred = max_t(long, (nr + delta - scanned), 0);
843 	next_deferred = min(next_deferred, (2 * freeable));
844 
845 	/*
846 	 * move the unused scan count back into the shrinker in a
847 	 * manner that handles concurrent updates.
848 	 */
849 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
850 
851 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
852 	return freed;
853 }
854 
855 #ifdef CONFIG_MEMCG
856 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
857 			struct mem_cgroup *memcg, int priority)
858 {
859 	struct shrinker_info *info;
860 	unsigned long ret, freed = 0;
861 	int i;
862 
863 	if (!mem_cgroup_online(memcg))
864 		return 0;
865 
866 	if (!down_read_trylock(&shrinker_rwsem))
867 		return 0;
868 
869 	info = shrinker_info_protected(memcg, nid);
870 	if (unlikely(!info))
871 		goto unlock;
872 
873 	for_each_set_bit(i, info->map, shrinker_nr_max) {
874 		struct shrink_control sc = {
875 			.gfp_mask = gfp_mask,
876 			.nid = nid,
877 			.memcg = memcg,
878 		};
879 		struct shrinker *shrinker;
880 
881 		shrinker = idr_find(&shrinker_idr, i);
882 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
883 			if (!shrinker)
884 				clear_bit(i, info->map);
885 			continue;
886 		}
887 
888 		/* Call non-slab shrinkers even though kmem is disabled */
889 		if (!memcg_kmem_enabled() &&
890 		    !(shrinker->flags & SHRINKER_NONSLAB))
891 			continue;
892 
893 		ret = do_shrink_slab(&sc, shrinker, priority);
894 		if (ret == SHRINK_EMPTY) {
895 			clear_bit(i, info->map);
896 			/*
897 			 * After the shrinker reported that it had no objects to
898 			 * free, but before we cleared the corresponding bit in
899 			 * the memcg shrinker map, a new object might have been
900 			 * added. To make sure, we have the bit set in this
901 			 * case, we invoke the shrinker one more time and reset
902 			 * the bit if it reports that it is not empty anymore.
903 			 * The memory barrier here pairs with the barrier in
904 			 * set_shrinker_bit():
905 			 *
906 			 * list_lru_add()     shrink_slab_memcg()
907 			 *   list_add_tail()    clear_bit()
908 			 *   <MB>               <MB>
909 			 *   set_bit()          do_shrink_slab()
910 			 */
911 			smp_mb__after_atomic();
912 			ret = do_shrink_slab(&sc, shrinker, priority);
913 			if (ret == SHRINK_EMPTY)
914 				ret = 0;
915 			else
916 				set_shrinker_bit(memcg, nid, i);
917 		}
918 		freed += ret;
919 
920 		if (rwsem_is_contended(&shrinker_rwsem)) {
921 			freed = freed ? : 1;
922 			break;
923 		}
924 	}
925 unlock:
926 	up_read(&shrinker_rwsem);
927 	return freed;
928 }
929 #else /* CONFIG_MEMCG */
930 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
931 			struct mem_cgroup *memcg, int priority)
932 {
933 	return 0;
934 }
935 #endif /* CONFIG_MEMCG */
936 
937 /**
938  * shrink_slab - shrink slab caches
939  * @gfp_mask: allocation context
940  * @nid: node whose slab caches to target
941  * @memcg: memory cgroup whose slab caches to target
942  * @priority: the reclaim priority
943  *
944  * Call the shrink functions to age shrinkable caches.
945  *
946  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
947  * unaware shrinkers will receive a node id of 0 instead.
948  *
949  * @memcg specifies the memory cgroup to target. Unaware shrinkers
950  * are called only if it is the root cgroup.
951  *
952  * @priority is sc->priority, we take the number of objects and >> by priority
953  * in order to get the scan target.
954  *
955  * Returns the number of reclaimed slab objects.
956  */
957 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
958 				 struct mem_cgroup *memcg,
959 				 int priority)
960 {
961 	unsigned long ret, freed = 0;
962 	struct shrinker *shrinker;
963 
964 	/*
965 	 * The root memcg might be allocated even though memcg is disabled
966 	 * via "cgroup_disable=memory" boot parameter.  This could make
967 	 * mem_cgroup_is_root() return false, then just run memcg slab
968 	 * shrink, but skip global shrink.  This may result in premature
969 	 * oom.
970 	 */
971 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
972 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
973 
974 	if (!down_read_trylock(&shrinker_rwsem))
975 		goto out;
976 
977 	list_for_each_entry(shrinker, &shrinker_list, list) {
978 		struct shrink_control sc = {
979 			.gfp_mask = gfp_mask,
980 			.nid = nid,
981 			.memcg = memcg,
982 		};
983 
984 		ret = do_shrink_slab(&sc, shrinker, priority);
985 		if (ret == SHRINK_EMPTY)
986 			ret = 0;
987 		freed += ret;
988 		/*
989 		 * Bail out if someone want to register a new shrinker to
990 		 * prevent the registration from being stalled for long periods
991 		 * by parallel ongoing shrinking.
992 		 */
993 		if (rwsem_is_contended(&shrinker_rwsem)) {
994 			freed = freed ? : 1;
995 			break;
996 		}
997 	}
998 
999 	up_read(&shrinker_rwsem);
1000 out:
1001 	cond_resched();
1002 	return freed;
1003 }
1004 
1005 static void drop_slab_node(int nid)
1006 {
1007 	unsigned long freed;
1008 	int shift = 0;
1009 
1010 	do {
1011 		struct mem_cgroup *memcg = NULL;
1012 
1013 		if (fatal_signal_pending(current))
1014 			return;
1015 
1016 		freed = 0;
1017 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
1018 		do {
1019 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1020 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1021 	} while ((freed >> shift++) > 1);
1022 }
1023 
1024 void drop_slab(void)
1025 {
1026 	int nid;
1027 
1028 	for_each_online_node(nid)
1029 		drop_slab_node(nid);
1030 }
1031 
1032 static inline int is_page_cache_freeable(struct folio *folio)
1033 {
1034 	/*
1035 	 * A freeable page cache page is referenced only by the caller
1036 	 * that isolated the page, the page cache and optional buffer
1037 	 * heads at page->private.
1038 	 */
1039 	return folio_ref_count(folio) - folio_test_private(folio) ==
1040 		1 + folio_nr_pages(folio);
1041 }
1042 
1043 /*
1044  * We detected a synchronous write error writing a folio out.  Probably
1045  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1046  * fsync(), msync() or close().
1047  *
1048  * The tricky part is that after writepage we cannot touch the mapping: nothing
1049  * prevents it from being freed up.  But we have a ref on the folio and once
1050  * that folio is locked, the mapping is pinned.
1051  *
1052  * We're allowed to run sleeping folio_lock() here because we know the caller has
1053  * __GFP_FS.
1054  */
1055 static void handle_write_error(struct address_space *mapping,
1056 				struct folio *folio, int error)
1057 {
1058 	folio_lock(folio);
1059 	if (folio_mapping(folio) == mapping)
1060 		mapping_set_error(mapping, error);
1061 	folio_unlock(folio);
1062 }
1063 
1064 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1065 {
1066 	int reclaimable = 0, write_pending = 0;
1067 	int i;
1068 
1069 	/*
1070 	 * If kswapd is disabled, reschedule if necessary but do not
1071 	 * throttle as the system is likely near OOM.
1072 	 */
1073 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1074 		return true;
1075 
1076 	/*
1077 	 * If there are a lot of dirty/writeback pages then do not
1078 	 * throttle as throttling will occur when the pages cycle
1079 	 * towards the end of the LRU if still under writeback.
1080 	 */
1081 	for (i = 0; i < MAX_NR_ZONES; i++) {
1082 		struct zone *zone = pgdat->node_zones + i;
1083 
1084 		if (!managed_zone(zone))
1085 			continue;
1086 
1087 		reclaimable += zone_reclaimable_pages(zone);
1088 		write_pending += zone_page_state_snapshot(zone,
1089 						  NR_ZONE_WRITE_PENDING);
1090 	}
1091 	if (2 * write_pending <= reclaimable)
1092 		return true;
1093 
1094 	return false;
1095 }
1096 
1097 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1098 {
1099 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1100 	long timeout, ret;
1101 	DEFINE_WAIT(wait);
1102 
1103 	/*
1104 	 * Do not throttle IO workers, kthreads other than kswapd or
1105 	 * workqueues. They may be required for reclaim to make
1106 	 * forward progress (e.g. journalling workqueues or kthreads).
1107 	 */
1108 	if (!current_is_kswapd() &&
1109 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1110 		cond_resched();
1111 		return;
1112 	}
1113 
1114 	/*
1115 	 * These figures are pulled out of thin air.
1116 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1117 	 * parallel reclaimers which is a short-lived event so the timeout is
1118 	 * short. Failing to make progress or waiting on writeback are
1119 	 * potentially long-lived events so use a longer timeout. This is shaky
1120 	 * logic as a failure to make progress could be due to anything from
1121 	 * writeback to a slow device to excessive references pages at the tail
1122 	 * of the inactive LRU.
1123 	 */
1124 	switch(reason) {
1125 	case VMSCAN_THROTTLE_WRITEBACK:
1126 		timeout = HZ/10;
1127 
1128 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1129 			WRITE_ONCE(pgdat->nr_reclaim_start,
1130 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1131 		}
1132 
1133 		break;
1134 	case VMSCAN_THROTTLE_CONGESTED:
1135 		fallthrough;
1136 	case VMSCAN_THROTTLE_NOPROGRESS:
1137 		if (skip_throttle_noprogress(pgdat)) {
1138 			cond_resched();
1139 			return;
1140 		}
1141 
1142 		timeout = 1;
1143 
1144 		break;
1145 	case VMSCAN_THROTTLE_ISOLATED:
1146 		timeout = HZ/50;
1147 		break;
1148 	default:
1149 		WARN_ON_ONCE(1);
1150 		timeout = HZ;
1151 		break;
1152 	}
1153 
1154 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1155 	ret = schedule_timeout(timeout);
1156 	finish_wait(wqh, &wait);
1157 
1158 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1159 		atomic_dec(&pgdat->nr_writeback_throttled);
1160 
1161 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1162 				jiffies_to_usecs(timeout - ret),
1163 				reason);
1164 }
1165 
1166 /*
1167  * Account for pages written if tasks are throttled waiting on dirty
1168  * pages to clean. If enough pages have been cleaned since throttling
1169  * started then wakeup the throttled tasks.
1170  */
1171 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1172 							int nr_throttled)
1173 {
1174 	unsigned long nr_written;
1175 
1176 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1177 
1178 	/*
1179 	 * This is an inaccurate read as the per-cpu deltas may not
1180 	 * be synchronised. However, given that the system is
1181 	 * writeback throttled, it is not worth taking the penalty
1182 	 * of getting an accurate count. At worst, the throttle
1183 	 * timeout guarantees forward progress.
1184 	 */
1185 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1186 		READ_ONCE(pgdat->nr_reclaim_start);
1187 
1188 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1189 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1190 }
1191 
1192 /* possible outcome of pageout() */
1193 typedef enum {
1194 	/* failed to write page out, page is locked */
1195 	PAGE_KEEP,
1196 	/* move page to the active list, page is locked */
1197 	PAGE_ACTIVATE,
1198 	/* page has been sent to the disk successfully, page is unlocked */
1199 	PAGE_SUCCESS,
1200 	/* page is clean and locked */
1201 	PAGE_CLEAN,
1202 } pageout_t;
1203 
1204 /*
1205  * pageout is called by shrink_page_list() for each dirty page.
1206  * Calls ->writepage().
1207  */
1208 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1209 			 struct swap_iocb **plug)
1210 {
1211 	/*
1212 	 * If the folio is dirty, only perform writeback if that write
1213 	 * will be non-blocking.  To prevent this allocation from being
1214 	 * stalled by pagecache activity.  But note that there may be
1215 	 * stalls if we need to run get_block().  We could test
1216 	 * PagePrivate for that.
1217 	 *
1218 	 * If this process is currently in __generic_file_write_iter() against
1219 	 * this folio's queue, we can perform writeback even if that
1220 	 * will block.
1221 	 *
1222 	 * If the folio is swapcache, write it back even if that would
1223 	 * block, for some throttling. This happens by accident, because
1224 	 * swap_backing_dev_info is bust: it doesn't reflect the
1225 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1226 	 */
1227 	if (!is_page_cache_freeable(folio))
1228 		return PAGE_KEEP;
1229 	if (!mapping) {
1230 		/*
1231 		 * Some data journaling orphaned folios can have
1232 		 * folio->mapping == NULL while being dirty with clean buffers.
1233 		 */
1234 		if (folio_test_private(folio)) {
1235 			if (try_to_free_buffers(folio)) {
1236 				folio_clear_dirty(folio);
1237 				pr_info("%s: orphaned folio\n", __func__);
1238 				return PAGE_CLEAN;
1239 			}
1240 		}
1241 		return PAGE_KEEP;
1242 	}
1243 	if (mapping->a_ops->writepage == NULL)
1244 		return PAGE_ACTIVATE;
1245 
1246 	if (folio_clear_dirty_for_io(folio)) {
1247 		int res;
1248 		struct writeback_control wbc = {
1249 			.sync_mode = WB_SYNC_NONE,
1250 			.nr_to_write = SWAP_CLUSTER_MAX,
1251 			.range_start = 0,
1252 			.range_end = LLONG_MAX,
1253 			.for_reclaim = 1,
1254 			.swap_plug = plug,
1255 		};
1256 
1257 		folio_set_reclaim(folio);
1258 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1259 		if (res < 0)
1260 			handle_write_error(mapping, folio, res);
1261 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1262 			folio_clear_reclaim(folio);
1263 			return PAGE_ACTIVATE;
1264 		}
1265 
1266 		if (!folio_test_writeback(folio)) {
1267 			/* synchronous write or broken a_ops? */
1268 			folio_clear_reclaim(folio);
1269 		}
1270 		trace_mm_vmscan_write_folio(folio);
1271 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1272 		return PAGE_SUCCESS;
1273 	}
1274 
1275 	return PAGE_CLEAN;
1276 }
1277 
1278 /*
1279  * Same as remove_mapping, but if the page is removed from the mapping, it
1280  * gets returned with a refcount of 0.
1281  */
1282 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1283 			    bool reclaimed, struct mem_cgroup *target_memcg)
1284 {
1285 	int refcount;
1286 	void *shadow = NULL;
1287 
1288 	BUG_ON(!folio_test_locked(folio));
1289 	BUG_ON(mapping != folio_mapping(folio));
1290 
1291 	if (!folio_test_swapcache(folio))
1292 		spin_lock(&mapping->host->i_lock);
1293 	xa_lock_irq(&mapping->i_pages);
1294 	/*
1295 	 * The non racy check for a busy page.
1296 	 *
1297 	 * Must be careful with the order of the tests. When someone has
1298 	 * a ref to the page, it may be possible that they dirty it then
1299 	 * drop the reference. So if PageDirty is tested before page_count
1300 	 * here, then the following race may occur:
1301 	 *
1302 	 * get_user_pages(&page);
1303 	 * [user mapping goes away]
1304 	 * write_to(page);
1305 	 *				!PageDirty(page)    [good]
1306 	 * SetPageDirty(page);
1307 	 * put_page(page);
1308 	 *				!page_count(page)   [good, discard it]
1309 	 *
1310 	 * [oops, our write_to data is lost]
1311 	 *
1312 	 * Reversing the order of the tests ensures such a situation cannot
1313 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1314 	 * load is not satisfied before that of page->_refcount.
1315 	 *
1316 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1317 	 * and thus under the i_pages lock, then this ordering is not required.
1318 	 */
1319 	refcount = 1 + folio_nr_pages(folio);
1320 	if (!folio_ref_freeze(folio, refcount))
1321 		goto cannot_free;
1322 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1323 	if (unlikely(folio_test_dirty(folio))) {
1324 		folio_ref_unfreeze(folio, refcount);
1325 		goto cannot_free;
1326 	}
1327 
1328 	if (folio_test_swapcache(folio)) {
1329 		swp_entry_t swap = folio_swap_entry(folio);
1330 		mem_cgroup_swapout(folio, swap);
1331 		if (reclaimed && !mapping_exiting(mapping))
1332 			shadow = workingset_eviction(folio, target_memcg);
1333 		__delete_from_swap_cache(&folio->page, swap, shadow);
1334 		xa_unlock_irq(&mapping->i_pages);
1335 		put_swap_page(&folio->page, swap);
1336 	} else {
1337 		void (*free_folio)(struct folio *);
1338 
1339 		free_folio = mapping->a_ops->free_folio;
1340 		/*
1341 		 * Remember a shadow entry for reclaimed file cache in
1342 		 * order to detect refaults, thus thrashing, later on.
1343 		 *
1344 		 * But don't store shadows in an address space that is
1345 		 * already exiting.  This is not just an optimization,
1346 		 * inode reclaim needs to empty out the radix tree or
1347 		 * the nodes are lost.  Don't plant shadows behind its
1348 		 * back.
1349 		 *
1350 		 * We also don't store shadows for DAX mappings because the
1351 		 * only page cache pages found in these are zero pages
1352 		 * covering holes, and because we don't want to mix DAX
1353 		 * exceptional entries and shadow exceptional entries in the
1354 		 * same address_space.
1355 		 */
1356 		if (reclaimed && folio_is_file_lru(folio) &&
1357 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1358 			shadow = workingset_eviction(folio, target_memcg);
1359 		__filemap_remove_folio(folio, shadow);
1360 		xa_unlock_irq(&mapping->i_pages);
1361 		if (mapping_shrinkable(mapping))
1362 			inode_add_lru(mapping->host);
1363 		spin_unlock(&mapping->host->i_lock);
1364 
1365 		if (free_folio)
1366 			free_folio(folio);
1367 	}
1368 
1369 	return 1;
1370 
1371 cannot_free:
1372 	xa_unlock_irq(&mapping->i_pages);
1373 	if (!folio_test_swapcache(folio))
1374 		spin_unlock(&mapping->host->i_lock);
1375 	return 0;
1376 }
1377 
1378 /**
1379  * remove_mapping() - Attempt to remove a folio from its mapping.
1380  * @mapping: The address space.
1381  * @folio: The folio to remove.
1382  *
1383  * If the folio is dirty, under writeback or if someone else has a ref
1384  * on it, removal will fail.
1385  * Return: The number of pages removed from the mapping.  0 if the folio
1386  * could not be removed.
1387  * Context: The caller should have a single refcount on the folio and
1388  * hold its lock.
1389  */
1390 long remove_mapping(struct address_space *mapping, struct folio *folio)
1391 {
1392 	if (__remove_mapping(mapping, folio, false, NULL)) {
1393 		/*
1394 		 * Unfreezing the refcount with 1 effectively
1395 		 * drops the pagecache ref for us without requiring another
1396 		 * atomic operation.
1397 		 */
1398 		folio_ref_unfreeze(folio, 1);
1399 		return folio_nr_pages(folio);
1400 	}
1401 	return 0;
1402 }
1403 
1404 /**
1405  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1406  * @folio: Folio to be returned to an LRU list.
1407  *
1408  * Add previously isolated @folio to appropriate LRU list.
1409  * The folio may still be unevictable for other reasons.
1410  *
1411  * Context: lru_lock must not be held, interrupts must be enabled.
1412  */
1413 void folio_putback_lru(struct folio *folio)
1414 {
1415 	folio_add_lru(folio);
1416 	folio_put(folio);		/* drop ref from isolate */
1417 }
1418 
1419 enum page_references {
1420 	PAGEREF_RECLAIM,
1421 	PAGEREF_RECLAIM_CLEAN,
1422 	PAGEREF_KEEP,
1423 	PAGEREF_ACTIVATE,
1424 };
1425 
1426 static enum page_references folio_check_references(struct folio *folio,
1427 						  struct scan_control *sc)
1428 {
1429 	int referenced_ptes, referenced_folio;
1430 	unsigned long vm_flags;
1431 
1432 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1433 					   &vm_flags);
1434 	referenced_folio = folio_test_clear_referenced(folio);
1435 
1436 	/*
1437 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1438 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1439 	 */
1440 	if (vm_flags & VM_LOCKED)
1441 		return PAGEREF_ACTIVATE;
1442 
1443 	/* rmap lock contention: rotate */
1444 	if (referenced_ptes == -1)
1445 		return PAGEREF_KEEP;
1446 
1447 	if (referenced_ptes) {
1448 		/*
1449 		 * All mapped folios start out with page table
1450 		 * references from the instantiating fault, so we need
1451 		 * to look twice if a mapped file/anon folio is used more
1452 		 * than once.
1453 		 *
1454 		 * Mark it and spare it for another trip around the
1455 		 * inactive list.  Another page table reference will
1456 		 * lead to its activation.
1457 		 *
1458 		 * Note: the mark is set for activated folios as well
1459 		 * so that recently deactivated but used folios are
1460 		 * quickly recovered.
1461 		 */
1462 		folio_set_referenced(folio);
1463 
1464 		if (referenced_folio || referenced_ptes > 1)
1465 			return PAGEREF_ACTIVATE;
1466 
1467 		/*
1468 		 * Activate file-backed executable folios after first usage.
1469 		 */
1470 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1471 			return PAGEREF_ACTIVATE;
1472 
1473 		return PAGEREF_KEEP;
1474 	}
1475 
1476 	/* Reclaim if clean, defer dirty folios to writeback */
1477 	if (referenced_folio && folio_is_file_lru(folio))
1478 		return PAGEREF_RECLAIM_CLEAN;
1479 
1480 	return PAGEREF_RECLAIM;
1481 }
1482 
1483 /* Check if a page is dirty or under writeback */
1484 static void folio_check_dirty_writeback(struct folio *folio,
1485 				       bool *dirty, bool *writeback)
1486 {
1487 	struct address_space *mapping;
1488 
1489 	/*
1490 	 * Anonymous pages are not handled by flushers and must be written
1491 	 * from reclaim context. Do not stall reclaim based on them.
1492 	 * MADV_FREE anonymous pages are put into inactive file list too.
1493 	 * They could be mistakenly treated as file lru. So further anon
1494 	 * test is needed.
1495 	 */
1496 	if (!folio_is_file_lru(folio) ||
1497 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1498 		*dirty = false;
1499 		*writeback = false;
1500 		return;
1501 	}
1502 
1503 	/* By default assume that the folio flags are accurate */
1504 	*dirty = folio_test_dirty(folio);
1505 	*writeback = folio_test_writeback(folio);
1506 
1507 	/* Verify dirty/writeback state if the filesystem supports it */
1508 	if (!folio_test_private(folio))
1509 		return;
1510 
1511 	mapping = folio_mapping(folio);
1512 	if (mapping && mapping->a_ops->is_dirty_writeback)
1513 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1514 }
1515 
1516 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1517 {
1518 	struct migration_target_control mtc = {
1519 		/*
1520 		 * Allocate from 'node', or fail quickly and quietly.
1521 		 * When this happens, 'page' will likely just be discarded
1522 		 * instead of migrated.
1523 		 */
1524 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1525 			    __GFP_THISNODE  | __GFP_NOWARN |
1526 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1527 		.nid = node
1528 	};
1529 
1530 	return alloc_migration_target(page, (unsigned long)&mtc);
1531 }
1532 
1533 /*
1534  * Take pages on @demote_list and attempt to demote them to
1535  * another node.  Pages which are not demoted are left on
1536  * @demote_pages.
1537  */
1538 static unsigned int demote_page_list(struct list_head *demote_pages,
1539 				     struct pglist_data *pgdat)
1540 {
1541 	int target_nid = next_demotion_node(pgdat->node_id);
1542 	unsigned int nr_succeeded;
1543 
1544 	if (list_empty(demote_pages))
1545 		return 0;
1546 
1547 	if (target_nid == NUMA_NO_NODE)
1548 		return 0;
1549 
1550 	/* Demotion ignores all cpuset and mempolicy settings */
1551 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1552 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1553 			    &nr_succeeded);
1554 
1555 	if (current_is_kswapd())
1556 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1557 	else
1558 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1559 
1560 	return nr_succeeded;
1561 }
1562 
1563 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1564 {
1565 	if (gfp_mask & __GFP_FS)
1566 		return true;
1567 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1568 		return false;
1569 	/*
1570 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1571 	 * providing this isn't SWP_FS_OPS.
1572 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1573 	 * but that will never affect SWP_FS_OPS, so the data_race
1574 	 * is safe.
1575 	 */
1576 	return !data_race(page_swap_flags(&folio->page) & SWP_FS_OPS);
1577 }
1578 
1579 /*
1580  * shrink_page_list() returns the number of reclaimed pages
1581  */
1582 static unsigned int shrink_page_list(struct list_head *page_list,
1583 				     struct pglist_data *pgdat,
1584 				     struct scan_control *sc,
1585 				     struct reclaim_stat *stat,
1586 				     bool ignore_references)
1587 {
1588 	LIST_HEAD(ret_pages);
1589 	LIST_HEAD(free_pages);
1590 	LIST_HEAD(demote_pages);
1591 	unsigned int nr_reclaimed = 0;
1592 	unsigned int pgactivate = 0;
1593 	bool do_demote_pass;
1594 	struct swap_iocb *plug = NULL;
1595 
1596 	memset(stat, 0, sizeof(*stat));
1597 	cond_resched();
1598 	do_demote_pass = can_demote(pgdat->node_id, sc);
1599 
1600 retry:
1601 	while (!list_empty(page_list)) {
1602 		struct address_space *mapping;
1603 		struct folio *folio;
1604 		enum page_references references = PAGEREF_RECLAIM;
1605 		bool dirty, writeback;
1606 		unsigned int nr_pages;
1607 
1608 		cond_resched();
1609 
1610 		folio = lru_to_folio(page_list);
1611 		list_del(&folio->lru);
1612 
1613 		if (!folio_trylock(folio))
1614 			goto keep;
1615 
1616 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1617 
1618 		nr_pages = folio_nr_pages(folio);
1619 
1620 		/* Account the number of base pages */
1621 		sc->nr_scanned += nr_pages;
1622 
1623 		if (unlikely(!folio_evictable(folio)))
1624 			goto activate_locked;
1625 
1626 		if (!sc->may_unmap && folio_mapped(folio))
1627 			goto keep_locked;
1628 
1629 		/*
1630 		 * The number of dirty pages determines if a node is marked
1631 		 * reclaim_congested. kswapd will stall and start writing
1632 		 * folios if the tail of the LRU is all dirty unqueued folios.
1633 		 */
1634 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1635 		if (dirty || writeback)
1636 			stat->nr_dirty += nr_pages;
1637 
1638 		if (dirty && !writeback)
1639 			stat->nr_unqueued_dirty += nr_pages;
1640 
1641 		/*
1642 		 * Treat this folio as congested if folios are cycling
1643 		 * through the LRU so quickly that the folios marked
1644 		 * for immediate reclaim are making it to the end of
1645 		 * the LRU a second time.
1646 		 */
1647 		if (writeback && folio_test_reclaim(folio))
1648 			stat->nr_congested += nr_pages;
1649 
1650 		/*
1651 		 * If a folio at the tail of the LRU is under writeback, there
1652 		 * are three cases to consider.
1653 		 *
1654 		 * 1) If reclaim is encountering an excessive number
1655 		 *    of folios under writeback and this folio has both
1656 		 *    the writeback and reclaim flags set, then it
1657 		 *    indicates that folios are being queued for I/O but
1658 		 *    are being recycled through the LRU before the I/O
1659 		 *    can complete. Waiting on the folio itself risks an
1660 		 *    indefinite stall if it is impossible to writeback
1661 		 *    the folio due to I/O error or disconnected storage
1662 		 *    so instead note that the LRU is being scanned too
1663 		 *    quickly and the caller can stall after the folio
1664 		 *    list has been processed.
1665 		 *
1666 		 * 2) Global or new memcg reclaim encounters a folio that is
1667 		 *    not marked for immediate reclaim, or the caller does not
1668 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1669 		 *    not to fs). In this case mark the folio for immediate
1670 		 *    reclaim and continue scanning.
1671 		 *
1672 		 *    Require may_enter_fs() because we would wait on fs, which
1673 		 *    may not have submitted I/O yet. And the loop driver might
1674 		 *    enter reclaim, and deadlock if it waits on a folio for
1675 		 *    which it is needed to do the write (loop masks off
1676 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1677 		 *    would probably show more reasons.
1678 		 *
1679 		 * 3) Legacy memcg encounters a folio that already has the
1680 		 *    reclaim flag set. memcg does not have any dirty folio
1681 		 *    throttling so we could easily OOM just because too many
1682 		 *    folios are in writeback and there is nothing else to
1683 		 *    reclaim. Wait for the writeback to complete.
1684 		 *
1685 		 * In cases 1) and 2) we activate the folios to get them out of
1686 		 * the way while we continue scanning for clean folios on the
1687 		 * inactive list and refilling from the active list. The
1688 		 * observation here is that waiting for disk writes is more
1689 		 * expensive than potentially causing reloads down the line.
1690 		 * Since they're marked for immediate reclaim, they won't put
1691 		 * memory pressure on the cache working set any longer than it
1692 		 * takes to write them to disk.
1693 		 */
1694 		if (folio_test_writeback(folio)) {
1695 			/* Case 1 above */
1696 			if (current_is_kswapd() &&
1697 			    folio_test_reclaim(folio) &&
1698 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1699 				stat->nr_immediate += nr_pages;
1700 				goto activate_locked;
1701 
1702 			/* Case 2 above */
1703 			} else if (writeback_throttling_sane(sc) ||
1704 			    !folio_test_reclaim(folio) ||
1705 			    !may_enter_fs(folio, sc->gfp_mask)) {
1706 				/*
1707 				 * This is slightly racy -
1708 				 * folio_end_writeback() might have
1709 				 * just cleared the reclaim flag, then
1710 				 * setting the reclaim flag here ends up
1711 				 * interpreted as the readahead flag - but
1712 				 * that does not matter enough to care.
1713 				 * What we do want is for this folio to
1714 				 * have the reclaim flag set next time
1715 				 * memcg reclaim reaches the tests above,
1716 				 * so it will then wait for writeback to
1717 				 * avoid OOM; and it's also appropriate
1718 				 * in global reclaim.
1719 				 */
1720 				folio_set_reclaim(folio);
1721 				stat->nr_writeback += nr_pages;
1722 				goto activate_locked;
1723 
1724 			/* Case 3 above */
1725 			} else {
1726 				folio_unlock(folio);
1727 				folio_wait_writeback(folio);
1728 				/* then go back and try same folio again */
1729 				list_add_tail(&folio->lru, page_list);
1730 				continue;
1731 			}
1732 		}
1733 
1734 		if (!ignore_references)
1735 			references = folio_check_references(folio, sc);
1736 
1737 		switch (references) {
1738 		case PAGEREF_ACTIVATE:
1739 			goto activate_locked;
1740 		case PAGEREF_KEEP:
1741 			stat->nr_ref_keep += nr_pages;
1742 			goto keep_locked;
1743 		case PAGEREF_RECLAIM:
1744 		case PAGEREF_RECLAIM_CLEAN:
1745 			; /* try to reclaim the folio below */
1746 		}
1747 
1748 		/*
1749 		 * Before reclaiming the folio, try to relocate
1750 		 * its contents to another node.
1751 		 */
1752 		if (do_demote_pass &&
1753 		    (thp_migration_supported() || !folio_test_large(folio))) {
1754 			list_add(&folio->lru, &demote_pages);
1755 			folio_unlock(folio);
1756 			continue;
1757 		}
1758 
1759 		/*
1760 		 * Anonymous process memory has backing store?
1761 		 * Try to allocate it some swap space here.
1762 		 * Lazyfree folio could be freed directly
1763 		 */
1764 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1765 			if (!folio_test_swapcache(folio)) {
1766 				if (!(sc->gfp_mask & __GFP_IO))
1767 					goto keep_locked;
1768 				if (folio_maybe_dma_pinned(folio))
1769 					goto keep_locked;
1770 				if (folio_test_large(folio)) {
1771 					/* cannot split folio, skip it */
1772 					if (!can_split_folio(folio, NULL))
1773 						goto activate_locked;
1774 					/*
1775 					 * Split folios without a PMD map right
1776 					 * away. Chances are some or all of the
1777 					 * tail pages can be freed without IO.
1778 					 */
1779 					if (!folio_entire_mapcount(folio) &&
1780 					    split_folio_to_list(folio,
1781 								page_list))
1782 						goto activate_locked;
1783 				}
1784 				if (!add_to_swap(folio)) {
1785 					if (!folio_test_large(folio))
1786 						goto activate_locked_split;
1787 					/* Fallback to swap normal pages */
1788 					if (split_folio_to_list(folio,
1789 								page_list))
1790 						goto activate_locked;
1791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1792 					count_vm_event(THP_SWPOUT_FALLBACK);
1793 #endif
1794 					if (!add_to_swap(folio))
1795 						goto activate_locked_split;
1796 				}
1797 			}
1798 		} else if (folio_test_swapbacked(folio) &&
1799 			   folio_test_large(folio)) {
1800 			/* Split shmem folio */
1801 			if (split_folio_to_list(folio, page_list))
1802 				goto keep_locked;
1803 		}
1804 
1805 		/*
1806 		 * If the folio was split above, the tail pages will make
1807 		 * their own pass through this function and be accounted
1808 		 * then.
1809 		 */
1810 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1811 			sc->nr_scanned -= (nr_pages - 1);
1812 			nr_pages = 1;
1813 		}
1814 
1815 		/*
1816 		 * The folio is mapped into the page tables of one or more
1817 		 * processes. Try to unmap it here.
1818 		 */
1819 		if (folio_mapped(folio)) {
1820 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1821 			bool was_swapbacked = folio_test_swapbacked(folio);
1822 
1823 			if (folio_test_pmd_mappable(folio))
1824 				flags |= TTU_SPLIT_HUGE_PMD;
1825 
1826 			try_to_unmap(folio, flags);
1827 			if (folio_mapped(folio)) {
1828 				stat->nr_unmap_fail += nr_pages;
1829 				if (!was_swapbacked &&
1830 				    folio_test_swapbacked(folio))
1831 					stat->nr_lazyfree_fail += nr_pages;
1832 				goto activate_locked;
1833 			}
1834 		}
1835 
1836 		mapping = folio_mapping(folio);
1837 		if (folio_test_dirty(folio)) {
1838 			/*
1839 			 * Only kswapd can writeback filesystem folios
1840 			 * to avoid risk of stack overflow. But avoid
1841 			 * injecting inefficient single-folio I/O into
1842 			 * flusher writeback as much as possible: only
1843 			 * write folios when we've encountered many
1844 			 * dirty folios, and when we've already scanned
1845 			 * the rest of the LRU for clean folios and see
1846 			 * the same dirty folios again (with the reclaim
1847 			 * flag set).
1848 			 */
1849 			if (folio_is_file_lru(folio) &&
1850 			    (!current_is_kswapd() ||
1851 			     !folio_test_reclaim(folio) ||
1852 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1853 				/*
1854 				 * Immediately reclaim when written back.
1855 				 * Similar in principle to deactivate_page()
1856 				 * except we already have the folio isolated
1857 				 * and know it's dirty
1858 				 */
1859 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1860 						nr_pages);
1861 				folio_set_reclaim(folio);
1862 
1863 				goto activate_locked;
1864 			}
1865 
1866 			if (references == PAGEREF_RECLAIM_CLEAN)
1867 				goto keep_locked;
1868 			if (!may_enter_fs(folio, sc->gfp_mask))
1869 				goto keep_locked;
1870 			if (!sc->may_writepage)
1871 				goto keep_locked;
1872 
1873 			/*
1874 			 * Folio is dirty. Flush the TLB if a writable entry
1875 			 * potentially exists to avoid CPU writes after I/O
1876 			 * starts and then write it out here.
1877 			 */
1878 			try_to_unmap_flush_dirty();
1879 			switch (pageout(folio, mapping, &plug)) {
1880 			case PAGE_KEEP:
1881 				goto keep_locked;
1882 			case PAGE_ACTIVATE:
1883 				goto activate_locked;
1884 			case PAGE_SUCCESS:
1885 				stat->nr_pageout += nr_pages;
1886 
1887 				if (folio_test_writeback(folio))
1888 					goto keep;
1889 				if (folio_test_dirty(folio))
1890 					goto keep;
1891 
1892 				/*
1893 				 * A synchronous write - probably a ramdisk.  Go
1894 				 * ahead and try to reclaim the folio.
1895 				 */
1896 				if (!folio_trylock(folio))
1897 					goto keep;
1898 				if (folio_test_dirty(folio) ||
1899 				    folio_test_writeback(folio))
1900 					goto keep_locked;
1901 				mapping = folio_mapping(folio);
1902 				fallthrough;
1903 			case PAGE_CLEAN:
1904 				; /* try to free the folio below */
1905 			}
1906 		}
1907 
1908 		/*
1909 		 * If the folio has buffers, try to free the buffer
1910 		 * mappings associated with this folio. If we succeed
1911 		 * we try to free the folio as well.
1912 		 *
1913 		 * We do this even if the folio is dirty.
1914 		 * filemap_release_folio() does not perform I/O, but it
1915 		 * is possible for a folio to have the dirty flag set,
1916 		 * but it is actually clean (all its buffers are clean).
1917 		 * This happens if the buffers were written out directly,
1918 		 * with submit_bh(). ext3 will do this, as well as
1919 		 * the blockdev mapping.  filemap_release_folio() will
1920 		 * discover that cleanness and will drop the buffers
1921 		 * and mark the folio clean - it can be freed.
1922 		 *
1923 		 * Rarely, folios can have buffers and no ->mapping.
1924 		 * These are the folios which were not successfully
1925 		 * invalidated in truncate_cleanup_folio().  We try to
1926 		 * drop those buffers here and if that worked, and the
1927 		 * folio is no longer mapped into process address space
1928 		 * (refcount == 1) it can be freed.  Otherwise, leave
1929 		 * the folio on the LRU so it is swappable.
1930 		 */
1931 		if (folio_has_private(folio)) {
1932 			if (!filemap_release_folio(folio, sc->gfp_mask))
1933 				goto activate_locked;
1934 			if (!mapping && folio_ref_count(folio) == 1) {
1935 				folio_unlock(folio);
1936 				if (folio_put_testzero(folio))
1937 					goto free_it;
1938 				else {
1939 					/*
1940 					 * rare race with speculative reference.
1941 					 * the speculative reference will free
1942 					 * this folio shortly, so we may
1943 					 * increment nr_reclaimed here (and
1944 					 * leave it off the LRU).
1945 					 */
1946 					nr_reclaimed += nr_pages;
1947 					continue;
1948 				}
1949 			}
1950 		}
1951 
1952 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1953 			/* follow __remove_mapping for reference */
1954 			if (!folio_ref_freeze(folio, 1))
1955 				goto keep_locked;
1956 			/*
1957 			 * The folio has only one reference left, which is
1958 			 * from the isolation. After the caller puts the
1959 			 * folio back on the lru and drops the reference, the
1960 			 * folio will be freed anyway. It doesn't matter
1961 			 * which lru it goes on. So we don't bother checking
1962 			 * the dirty flag here.
1963 			 */
1964 			count_vm_events(PGLAZYFREED, nr_pages);
1965 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1966 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1967 							 sc->target_mem_cgroup))
1968 			goto keep_locked;
1969 
1970 		folio_unlock(folio);
1971 free_it:
1972 		/*
1973 		 * Folio may get swapped out as a whole, need to account
1974 		 * all pages in it.
1975 		 */
1976 		nr_reclaimed += nr_pages;
1977 
1978 		/*
1979 		 * Is there need to periodically free_page_list? It would
1980 		 * appear not as the counts should be low
1981 		 */
1982 		if (unlikely(folio_test_large(folio)))
1983 			destroy_compound_page(&folio->page);
1984 		else
1985 			list_add(&folio->lru, &free_pages);
1986 		continue;
1987 
1988 activate_locked_split:
1989 		/*
1990 		 * The tail pages that are failed to add into swap cache
1991 		 * reach here.  Fixup nr_scanned and nr_pages.
1992 		 */
1993 		if (nr_pages > 1) {
1994 			sc->nr_scanned -= (nr_pages - 1);
1995 			nr_pages = 1;
1996 		}
1997 activate_locked:
1998 		/* Not a candidate for swapping, so reclaim swap space. */
1999 		if (folio_test_swapcache(folio) &&
2000 		    (mem_cgroup_swap_full(&folio->page) ||
2001 		     folio_test_mlocked(folio)))
2002 			try_to_free_swap(&folio->page);
2003 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2004 		if (!folio_test_mlocked(folio)) {
2005 			int type = folio_is_file_lru(folio);
2006 			folio_set_active(folio);
2007 			stat->nr_activate[type] += nr_pages;
2008 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2009 		}
2010 keep_locked:
2011 		folio_unlock(folio);
2012 keep:
2013 		list_add(&folio->lru, &ret_pages);
2014 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2015 				folio_test_unevictable(folio), folio);
2016 	}
2017 	/* 'page_list' is always empty here */
2018 
2019 	/* Migrate folios selected for demotion */
2020 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
2021 	/* Folios that could not be demoted are still in @demote_pages */
2022 	if (!list_empty(&demote_pages)) {
2023 		/* Folios which weren't demoted go back on @page_list for retry: */
2024 		list_splice_init(&demote_pages, page_list);
2025 		do_demote_pass = false;
2026 		goto retry;
2027 	}
2028 
2029 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2030 
2031 	mem_cgroup_uncharge_list(&free_pages);
2032 	try_to_unmap_flush();
2033 	free_unref_page_list(&free_pages);
2034 
2035 	list_splice(&ret_pages, page_list);
2036 	count_vm_events(PGACTIVATE, pgactivate);
2037 
2038 	if (plug)
2039 		swap_write_unplug(plug);
2040 	return nr_reclaimed;
2041 }
2042 
2043 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2044 					    struct list_head *page_list)
2045 {
2046 	struct scan_control sc = {
2047 		.gfp_mask = GFP_KERNEL,
2048 		.may_unmap = 1,
2049 	};
2050 	struct reclaim_stat stat;
2051 	unsigned int nr_reclaimed;
2052 	struct page *page, *next;
2053 	LIST_HEAD(clean_pages);
2054 	unsigned int noreclaim_flag;
2055 
2056 	list_for_each_entry_safe(page, next, page_list, lru) {
2057 		if (!PageHuge(page) && page_is_file_lru(page) &&
2058 		    !PageDirty(page) && !__PageMovable(page) &&
2059 		    !PageUnevictable(page)) {
2060 			ClearPageActive(page);
2061 			list_move(&page->lru, &clean_pages);
2062 		}
2063 	}
2064 
2065 	/*
2066 	 * We should be safe here since we are only dealing with file pages and
2067 	 * we are not kswapd and therefore cannot write dirty file pages. But
2068 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2069 	 * change in the future.
2070 	 */
2071 	noreclaim_flag = memalloc_noreclaim_save();
2072 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
2073 					&stat, true);
2074 	memalloc_noreclaim_restore(noreclaim_flag);
2075 
2076 	list_splice(&clean_pages, page_list);
2077 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2078 			    -(long)nr_reclaimed);
2079 	/*
2080 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2081 	 * they will rotate back to anonymous LRU in the end if it failed to
2082 	 * discard so isolated count will be mismatched.
2083 	 * Compensate the isolated count for both LRU lists.
2084 	 */
2085 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2086 			    stat.nr_lazyfree_fail);
2087 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2088 			    -(long)stat.nr_lazyfree_fail);
2089 	return nr_reclaimed;
2090 }
2091 
2092 /*
2093  * Update LRU sizes after isolating pages. The LRU size updates must
2094  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2095  */
2096 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2097 			enum lru_list lru, unsigned long *nr_zone_taken)
2098 {
2099 	int zid;
2100 
2101 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2102 		if (!nr_zone_taken[zid])
2103 			continue;
2104 
2105 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2106 	}
2107 
2108 }
2109 
2110 /*
2111  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2112  *
2113  * lruvec->lru_lock is heavily contended.  Some of the functions that
2114  * shrink the lists perform better by taking out a batch of pages
2115  * and working on them outside the LRU lock.
2116  *
2117  * For pagecache intensive workloads, this function is the hottest
2118  * spot in the kernel (apart from copy_*_user functions).
2119  *
2120  * Lru_lock must be held before calling this function.
2121  *
2122  * @nr_to_scan:	The number of eligible pages to look through on the list.
2123  * @lruvec:	The LRU vector to pull pages from.
2124  * @dst:	The temp list to put pages on to.
2125  * @nr_scanned:	The number of pages that were scanned.
2126  * @sc:		The scan_control struct for this reclaim session
2127  * @lru:	LRU list id for isolating
2128  *
2129  * returns how many pages were moved onto *@dst.
2130  */
2131 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2132 		struct lruvec *lruvec, struct list_head *dst,
2133 		unsigned long *nr_scanned, struct scan_control *sc,
2134 		enum lru_list lru)
2135 {
2136 	struct list_head *src = &lruvec->lists[lru];
2137 	unsigned long nr_taken = 0;
2138 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2139 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2140 	unsigned long skipped = 0;
2141 	unsigned long scan, total_scan, nr_pages;
2142 	LIST_HEAD(pages_skipped);
2143 
2144 	total_scan = 0;
2145 	scan = 0;
2146 	while (scan < nr_to_scan && !list_empty(src)) {
2147 		struct list_head *move_to = src;
2148 		struct page *page;
2149 
2150 		page = lru_to_page(src);
2151 		prefetchw_prev_lru_page(page, src, flags);
2152 
2153 		nr_pages = compound_nr(page);
2154 		total_scan += nr_pages;
2155 
2156 		if (page_zonenum(page) > sc->reclaim_idx) {
2157 			nr_skipped[page_zonenum(page)] += nr_pages;
2158 			move_to = &pages_skipped;
2159 			goto move;
2160 		}
2161 
2162 		/*
2163 		 * Do not count skipped pages because that makes the function
2164 		 * return with no isolated pages if the LRU mostly contains
2165 		 * ineligible pages.  This causes the VM to not reclaim any
2166 		 * pages, triggering a premature OOM.
2167 		 * Account all tail pages of THP.
2168 		 */
2169 		scan += nr_pages;
2170 
2171 		if (!PageLRU(page))
2172 			goto move;
2173 		if (!sc->may_unmap && page_mapped(page))
2174 			goto move;
2175 
2176 		/*
2177 		 * Be careful not to clear PageLRU until after we're
2178 		 * sure the page is not being freed elsewhere -- the
2179 		 * page release code relies on it.
2180 		 */
2181 		if (unlikely(!get_page_unless_zero(page)))
2182 			goto move;
2183 
2184 		if (!TestClearPageLRU(page)) {
2185 			/* Another thread is already isolating this page */
2186 			put_page(page);
2187 			goto move;
2188 		}
2189 
2190 		nr_taken += nr_pages;
2191 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2192 		move_to = dst;
2193 move:
2194 		list_move(&page->lru, move_to);
2195 	}
2196 
2197 	/*
2198 	 * Splice any skipped pages to the start of the LRU list. Note that
2199 	 * this disrupts the LRU order when reclaiming for lower zones but
2200 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2201 	 * scanning would soon rescan the same pages to skip and waste lots
2202 	 * of cpu cycles.
2203 	 */
2204 	if (!list_empty(&pages_skipped)) {
2205 		int zid;
2206 
2207 		list_splice(&pages_skipped, src);
2208 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2209 			if (!nr_skipped[zid])
2210 				continue;
2211 
2212 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2213 			skipped += nr_skipped[zid];
2214 		}
2215 	}
2216 	*nr_scanned = total_scan;
2217 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2218 				    total_scan, skipped, nr_taken,
2219 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2220 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2221 	return nr_taken;
2222 }
2223 
2224 /**
2225  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2226  * @folio: Folio to isolate from its LRU list.
2227  *
2228  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2229  * corresponding to whatever LRU list the folio was on.
2230  *
2231  * The folio will have its LRU flag cleared.  If it was found on the
2232  * active list, it will have the Active flag set.  If it was found on the
2233  * unevictable list, it will have the Unevictable flag set.  These flags
2234  * may need to be cleared by the caller before letting the page go.
2235  *
2236  * Context:
2237  *
2238  * (1) Must be called with an elevated refcount on the page. This is a
2239  *     fundamental difference from isolate_lru_pages() (which is called
2240  *     without a stable reference).
2241  * (2) The lru_lock must not be held.
2242  * (3) Interrupts must be enabled.
2243  *
2244  * Return: 0 if the folio was removed from an LRU list.
2245  * -EBUSY if the folio was not on an LRU list.
2246  */
2247 int folio_isolate_lru(struct folio *folio)
2248 {
2249 	int ret = -EBUSY;
2250 
2251 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2252 
2253 	if (folio_test_clear_lru(folio)) {
2254 		struct lruvec *lruvec;
2255 
2256 		folio_get(folio);
2257 		lruvec = folio_lruvec_lock_irq(folio);
2258 		lruvec_del_folio(lruvec, folio);
2259 		unlock_page_lruvec_irq(lruvec);
2260 		ret = 0;
2261 	}
2262 
2263 	return ret;
2264 }
2265 
2266 /*
2267  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2268  * then get rescheduled. When there are massive number of tasks doing page
2269  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2270  * the LRU list will go small and be scanned faster than necessary, leading to
2271  * unnecessary swapping, thrashing and OOM.
2272  */
2273 static int too_many_isolated(struct pglist_data *pgdat, int file,
2274 		struct scan_control *sc)
2275 {
2276 	unsigned long inactive, isolated;
2277 	bool too_many;
2278 
2279 	if (current_is_kswapd())
2280 		return 0;
2281 
2282 	if (!writeback_throttling_sane(sc))
2283 		return 0;
2284 
2285 	if (file) {
2286 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2287 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2288 	} else {
2289 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2290 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2291 	}
2292 
2293 	/*
2294 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2295 	 * won't get blocked by normal direct-reclaimers, forming a circular
2296 	 * deadlock.
2297 	 */
2298 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2299 		inactive >>= 3;
2300 
2301 	too_many = isolated > inactive;
2302 
2303 	/* Wake up tasks throttled due to too_many_isolated. */
2304 	if (!too_many)
2305 		wake_throttle_isolated(pgdat);
2306 
2307 	return too_many;
2308 }
2309 
2310 /*
2311  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2312  * On return, @list is reused as a list of pages to be freed by the caller.
2313  *
2314  * Returns the number of pages moved to the given lruvec.
2315  */
2316 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2317 				      struct list_head *list)
2318 {
2319 	int nr_pages, nr_moved = 0;
2320 	LIST_HEAD(pages_to_free);
2321 	struct page *page;
2322 
2323 	while (!list_empty(list)) {
2324 		page = lru_to_page(list);
2325 		VM_BUG_ON_PAGE(PageLRU(page), page);
2326 		list_del(&page->lru);
2327 		if (unlikely(!page_evictable(page))) {
2328 			spin_unlock_irq(&lruvec->lru_lock);
2329 			putback_lru_page(page);
2330 			spin_lock_irq(&lruvec->lru_lock);
2331 			continue;
2332 		}
2333 
2334 		/*
2335 		 * The SetPageLRU needs to be kept here for list integrity.
2336 		 * Otherwise:
2337 		 *   #0 move_pages_to_lru             #1 release_pages
2338 		 *   if !put_page_testzero
2339 		 *				      if (put_page_testzero())
2340 		 *				        !PageLRU //skip lru_lock
2341 		 *     SetPageLRU()
2342 		 *     list_add(&page->lru,)
2343 		 *                                        list_add(&page->lru,)
2344 		 */
2345 		SetPageLRU(page);
2346 
2347 		if (unlikely(put_page_testzero(page))) {
2348 			__clear_page_lru_flags(page);
2349 
2350 			if (unlikely(PageCompound(page))) {
2351 				spin_unlock_irq(&lruvec->lru_lock);
2352 				destroy_compound_page(page);
2353 				spin_lock_irq(&lruvec->lru_lock);
2354 			} else
2355 				list_add(&page->lru, &pages_to_free);
2356 
2357 			continue;
2358 		}
2359 
2360 		/*
2361 		 * All pages were isolated from the same lruvec (and isolation
2362 		 * inhibits memcg migration).
2363 		 */
2364 		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2365 		add_page_to_lru_list(page, lruvec);
2366 		nr_pages = thp_nr_pages(page);
2367 		nr_moved += nr_pages;
2368 		if (PageActive(page))
2369 			workingset_age_nonresident(lruvec, nr_pages);
2370 	}
2371 
2372 	/*
2373 	 * To save our caller's stack, now use input list for pages to free.
2374 	 */
2375 	list_splice(&pages_to_free, list);
2376 
2377 	return nr_moved;
2378 }
2379 
2380 /*
2381  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2382  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2383  * we should not throttle.  Otherwise it is safe to do so.
2384  */
2385 static int current_may_throttle(void)
2386 {
2387 	return !(current->flags & PF_LOCAL_THROTTLE);
2388 }
2389 
2390 /*
2391  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2392  * of reclaimed pages
2393  */
2394 static unsigned long
2395 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2396 		     struct scan_control *sc, enum lru_list lru)
2397 {
2398 	LIST_HEAD(page_list);
2399 	unsigned long nr_scanned;
2400 	unsigned int nr_reclaimed = 0;
2401 	unsigned long nr_taken;
2402 	struct reclaim_stat stat;
2403 	bool file = is_file_lru(lru);
2404 	enum vm_event_item item;
2405 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2406 	bool stalled = false;
2407 
2408 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2409 		if (stalled)
2410 			return 0;
2411 
2412 		/* wait a bit for the reclaimer. */
2413 		stalled = true;
2414 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2415 
2416 		/* We are about to die and free our memory. Return now. */
2417 		if (fatal_signal_pending(current))
2418 			return SWAP_CLUSTER_MAX;
2419 	}
2420 
2421 	lru_add_drain();
2422 
2423 	spin_lock_irq(&lruvec->lru_lock);
2424 
2425 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2426 				     &nr_scanned, sc, lru);
2427 
2428 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2429 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2430 	if (!cgroup_reclaim(sc))
2431 		__count_vm_events(item, nr_scanned);
2432 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2433 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2434 
2435 	spin_unlock_irq(&lruvec->lru_lock);
2436 
2437 	if (nr_taken == 0)
2438 		return 0;
2439 
2440 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2441 
2442 	spin_lock_irq(&lruvec->lru_lock);
2443 	move_pages_to_lru(lruvec, &page_list);
2444 
2445 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2446 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2447 	if (!cgroup_reclaim(sc))
2448 		__count_vm_events(item, nr_reclaimed);
2449 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2450 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2451 	spin_unlock_irq(&lruvec->lru_lock);
2452 
2453 	lru_note_cost(lruvec, file, stat.nr_pageout);
2454 	mem_cgroup_uncharge_list(&page_list);
2455 	free_unref_page_list(&page_list);
2456 
2457 	/*
2458 	 * If dirty pages are scanned that are not queued for IO, it
2459 	 * implies that flushers are not doing their job. This can
2460 	 * happen when memory pressure pushes dirty pages to the end of
2461 	 * the LRU before the dirty limits are breached and the dirty
2462 	 * data has expired. It can also happen when the proportion of
2463 	 * dirty pages grows not through writes but through memory
2464 	 * pressure reclaiming all the clean cache. And in some cases,
2465 	 * the flushers simply cannot keep up with the allocation
2466 	 * rate. Nudge the flusher threads in case they are asleep.
2467 	 */
2468 	if (stat.nr_unqueued_dirty == nr_taken)
2469 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2470 
2471 	sc->nr.dirty += stat.nr_dirty;
2472 	sc->nr.congested += stat.nr_congested;
2473 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2474 	sc->nr.writeback += stat.nr_writeback;
2475 	sc->nr.immediate += stat.nr_immediate;
2476 	sc->nr.taken += nr_taken;
2477 	if (file)
2478 		sc->nr.file_taken += nr_taken;
2479 
2480 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2481 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2482 	return nr_reclaimed;
2483 }
2484 
2485 /*
2486  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2487  *
2488  * We move them the other way if the page is referenced by one or more
2489  * processes.
2490  *
2491  * If the pages are mostly unmapped, the processing is fast and it is
2492  * appropriate to hold lru_lock across the whole operation.  But if
2493  * the pages are mapped, the processing is slow (folio_referenced()), so
2494  * we should drop lru_lock around each page.  It's impossible to balance
2495  * this, so instead we remove the pages from the LRU while processing them.
2496  * It is safe to rely on PG_active against the non-LRU pages in here because
2497  * nobody will play with that bit on a non-LRU page.
2498  *
2499  * The downside is that we have to touch page->_refcount against each page.
2500  * But we had to alter page->flags anyway.
2501  */
2502 static void shrink_active_list(unsigned long nr_to_scan,
2503 			       struct lruvec *lruvec,
2504 			       struct scan_control *sc,
2505 			       enum lru_list lru)
2506 {
2507 	unsigned long nr_taken;
2508 	unsigned long nr_scanned;
2509 	unsigned long vm_flags;
2510 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2511 	LIST_HEAD(l_active);
2512 	LIST_HEAD(l_inactive);
2513 	unsigned nr_deactivate, nr_activate;
2514 	unsigned nr_rotated = 0;
2515 	int file = is_file_lru(lru);
2516 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2517 
2518 	lru_add_drain();
2519 
2520 	spin_lock_irq(&lruvec->lru_lock);
2521 
2522 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2523 				     &nr_scanned, sc, lru);
2524 
2525 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2526 
2527 	if (!cgroup_reclaim(sc))
2528 		__count_vm_events(PGREFILL, nr_scanned);
2529 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2530 
2531 	spin_unlock_irq(&lruvec->lru_lock);
2532 
2533 	while (!list_empty(&l_hold)) {
2534 		struct folio *folio;
2535 		struct page *page;
2536 
2537 		cond_resched();
2538 		folio = lru_to_folio(&l_hold);
2539 		list_del(&folio->lru);
2540 		page = &folio->page;
2541 
2542 		if (unlikely(!page_evictable(page))) {
2543 			putback_lru_page(page);
2544 			continue;
2545 		}
2546 
2547 		if (unlikely(buffer_heads_over_limit)) {
2548 			if (page_has_private(page) && trylock_page(page)) {
2549 				if (page_has_private(page))
2550 					try_to_release_page(page, 0);
2551 				unlock_page(page);
2552 			}
2553 		}
2554 
2555 		/* Referenced or rmap lock contention: rotate */
2556 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2557 				     &vm_flags) != 0) {
2558 			/*
2559 			 * Identify referenced, file-backed active pages and
2560 			 * give them one more trip around the active list. So
2561 			 * that executable code get better chances to stay in
2562 			 * memory under moderate memory pressure.  Anon pages
2563 			 * are not likely to be evicted by use-once streaming
2564 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2565 			 * so we ignore them here.
2566 			 */
2567 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2568 				nr_rotated += thp_nr_pages(page);
2569 				list_add(&page->lru, &l_active);
2570 				continue;
2571 			}
2572 		}
2573 
2574 		ClearPageActive(page);	/* we are de-activating */
2575 		SetPageWorkingset(page);
2576 		list_add(&page->lru, &l_inactive);
2577 	}
2578 
2579 	/*
2580 	 * Move pages back to the lru list.
2581 	 */
2582 	spin_lock_irq(&lruvec->lru_lock);
2583 
2584 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2585 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2586 	/* Keep all free pages in l_active list */
2587 	list_splice(&l_inactive, &l_active);
2588 
2589 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2590 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2591 
2592 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2593 	spin_unlock_irq(&lruvec->lru_lock);
2594 
2595 	mem_cgroup_uncharge_list(&l_active);
2596 	free_unref_page_list(&l_active);
2597 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2598 			nr_deactivate, nr_rotated, sc->priority, file);
2599 }
2600 
2601 static unsigned int reclaim_page_list(struct list_head *page_list,
2602 				      struct pglist_data *pgdat)
2603 {
2604 	struct reclaim_stat dummy_stat;
2605 	unsigned int nr_reclaimed;
2606 	struct folio *folio;
2607 	struct scan_control sc = {
2608 		.gfp_mask = GFP_KERNEL,
2609 		.may_writepage = 1,
2610 		.may_unmap = 1,
2611 		.may_swap = 1,
2612 		.no_demotion = 1,
2613 	};
2614 
2615 	nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2616 	while (!list_empty(page_list)) {
2617 		folio = lru_to_folio(page_list);
2618 		list_del(&folio->lru);
2619 		folio_putback_lru(folio);
2620 	}
2621 
2622 	return nr_reclaimed;
2623 }
2624 
2625 unsigned long reclaim_pages(struct list_head *page_list)
2626 {
2627 	int nid;
2628 	unsigned int nr_reclaimed = 0;
2629 	LIST_HEAD(node_page_list);
2630 	struct page *page;
2631 	unsigned int noreclaim_flag;
2632 
2633 	if (list_empty(page_list))
2634 		return nr_reclaimed;
2635 
2636 	noreclaim_flag = memalloc_noreclaim_save();
2637 
2638 	nid = page_to_nid(lru_to_page(page_list));
2639 	do {
2640 		page = lru_to_page(page_list);
2641 
2642 		if (nid == page_to_nid(page)) {
2643 			ClearPageActive(page);
2644 			list_move(&page->lru, &node_page_list);
2645 			continue;
2646 		}
2647 
2648 		nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
2649 		nid = page_to_nid(lru_to_page(page_list));
2650 	} while (!list_empty(page_list));
2651 
2652 	nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
2653 
2654 	memalloc_noreclaim_restore(noreclaim_flag);
2655 
2656 	return nr_reclaimed;
2657 }
2658 
2659 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2660 				 struct lruvec *lruvec, struct scan_control *sc)
2661 {
2662 	if (is_active_lru(lru)) {
2663 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2664 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2665 		else
2666 			sc->skipped_deactivate = 1;
2667 		return 0;
2668 	}
2669 
2670 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2671 }
2672 
2673 /*
2674  * The inactive anon list should be small enough that the VM never has
2675  * to do too much work.
2676  *
2677  * The inactive file list should be small enough to leave most memory
2678  * to the established workingset on the scan-resistant active list,
2679  * but large enough to avoid thrashing the aggregate readahead window.
2680  *
2681  * Both inactive lists should also be large enough that each inactive
2682  * page has a chance to be referenced again before it is reclaimed.
2683  *
2684  * If that fails and refaulting is observed, the inactive list grows.
2685  *
2686  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2687  * on this LRU, maintained by the pageout code. An inactive_ratio
2688  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2689  *
2690  * total     target    max
2691  * memory    ratio     inactive
2692  * -------------------------------------
2693  *   10MB       1         5MB
2694  *  100MB       1        50MB
2695  *    1GB       3       250MB
2696  *   10GB      10       0.9GB
2697  *  100GB      31         3GB
2698  *    1TB     101        10GB
2699  *   10TB     320        32GB
2700  */
2701 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2702 {
2703 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2704 	unsigned long inactive, active;
2705 	unsigned long inactive_ratio;
2706 	unsigned long gb;
2707 
2708 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2709 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2710 
2711 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2712 	if (gb)
2713 		inactive_ratio = int_sqrt(10 * gb);
2714 	else
2715 		inactive_ratio = 1;
2716 
2717 	return inactive * inactive_ratio < active;
2718 }
2719 
2720 enum scan_balance {
2721 	SCAN_EQUAL,
2722 	SCAN_FRACT,
2723 	SCAN_ANON,
2724 	SCAN_FILE,
2725 };
2726 
2727 /*
2728  * Determine how aggressively the anon and file LRU lists should be
2729  * scanned.
2730  *
2731  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2732  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2733  */
2734 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2735 			   unsigned long *nr)
2736 {
2737 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2738 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2739 	unsigned long anon_cost, file_cost, total_cost;
2740 	int swappiness = mem_cgroup_swappiness(memcg);
2741 	u64 fraction[ANON_AND_FILE];
2742 	u64 denominator = 0;	/* gcc */
2743 	enum scan_balance scan_balance;
2744 	unsigned long ap, fp;
2745 	enum lru_list lru;
2746 
2747 	/* If we have no swap space, do not bother scanning anon pages. */
2748 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2749 		scan_balance = SCAN_FILE;
2750 		goto out;
2751 	}
2752 
2753 	/*
2754 	 * Global reclaim will swap to prevent OOM even with no
2755 	 * swappiness, but memcg users want to use this knob to
2756 	 * disable swapping for individual groups completely when
2757 	 * using the memory controller's swap limit feature would be
2758 	 * too expensive.
2759 	 */
2760 	if (cgroup_reclaim(sc) && !swappiness) {
2761 		scan_balance = SCAN_FILE;
2762 		goto out;
2763 	}
2764 
2765 	/*
2766 	 * Do not apply any pressure balancing cleverness when the
2767 	 * system is close to OOM, scan both anon and file equally
2768 	 * (unless the swappiness setting disagrees with swapping).
2769 	 */
2770 	if (!sc->priority && swappiness) {
2771 		scan_balance = SCAN_EQUAL;
2772 		goto out;
2773 	}
2774 
2775 	/*
2776 	 * If the system is almost out of file pages, force-scan anon.
2777 	 */
2778 	if (sc->file_is_tiny) {
2779 		scan_balance = SCAN_ANON;
2780 		goto out;
2781 	}
2782 
2783 	/*
2784 	 * If there is enough inactive page cache, we do not reclaim
2785 	 * anything from the anonymous working right now.
2786 	 */
2787 	if (sc->cache_trim_mode) {
2788 		scan_balance = SCAN_FILE;
2789 		goto out;
2790 	}
2791 
2792 	scan_balance = SCAN_FRACT;
2793 	/*
2794 	 * Calculate the pressure balance between anon and file pages.
2795 	 *
2796 	 * The amount of pressure we put on each LRU is inversely
2797 	 * proportional to the cost of reclaiming each list, as
2798 	 * determined by the share of pages that are refaulting, times
2799 	 * the relative IO cost of bringing back a swapped out
2800 	 * anonymous page vs reloading a filesystem page (swappiness).
2801 	 *
2802 	 * Although we limit that influence to ensure no list gets
2803 	 * left behind completely: at least a third of the pressure is
2804 	 * applied, before swappiness.
2805 	 *
2806 	 * With swappiness at 100, anon and file have equal IO cost.
2807 	 */
2808 	total_cost = sc->anon_cost + sc->file_cost;
2809 	anon_cost = total_cost + sc->anon_cost;
2810 	file_cost = total_cost + sc->file_cost;
2811 	total_cost = anon_cost + file_cost;
2812 
2813 	ap = swappiness * (total_cost + 1);
2814 	ap /= anon_cost + 1;
2815 
2816 	fp = (200 - swappiness) * (total_cost + 1);
2817 	fp /= file_cost + 1;
2818 
2819 	fraction[0] = ap;
2820 	fraction[1] = fp;
2821 	denominator = ap + fp;
2822 out:
2823 	for_each_evictable_lru(lru) {
2824 		int file = is_file_lru(lru);
2825 		unsigned long lruvec_size;
2826 		unsigned long low, min;
2827 		unsigned long scan;
2828 
2829 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2830 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2831 				      &min, &low);
2832 
2833 		if (min || low) {
2834 			/*
2835 			 * Scale a cgroup's reclaim pressure by proportioning
2836 			 * its current usage to its memory.low or memory.min
2837 			 * setting.
2838 			 *
2839 			 * This is important, as otherwise scanning aggression
2840 			 * becomes extremely binary -- from nothing as we
2841 			 * approach the memory protection threshold, to totally
2842 			 * nominal as we exceed it.  This results in requiring
2843 			 * setting extremely liberal protection thresholds. It
2844 			 * also means we simply get no protection at all if we
2845 			 * set it too low, which is not ideal.
2846 			 *
2847 			 * If there is any protection in place, we reduce scan
2848 			 * pressure by how much of the total memory used is
2849 			 * within protection thresholds.
2850 			 *
2851 			 * There is one special case: in the first reclaim pass,
2852 			 * we skip over all groups that are within their low
2853 			 * protection. If that fails to reclaim enough pages to
2854 			 * satisfy the reclaim goal, we come back and override
2855 			 * the best-effort low protection. However, we still
2856 			 * ideally want to honor how well-behaved groups are in
2857 			 * that case instead of simply punishing them all
2858 			 * equally. As such, we reclaim them based on how much
2859 			 * memory they are using, reducing the scan pressure
2860 			 * again by how much of the total memory used is under
2861 			 * hard protection.
2862 			 */
2863 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2864 			unsigned long protection;
2865 
2866 			/* memory.low scaling, make sure we retry before OOM */
2867 			if (!sc->memcg_low_reclaim && low > min) {
2868 				protection = low;
2869 				sc->memcg_low_skipped = 1;
2870 			} else {
2871 				protection = min;
2872 			}
2873 
2874 			/* Avoid TOCTOU with earlier protection check */
2875 			cgroup_size = max(cgroup_size, protection);
2876 
2877 			scan = lruvec_size - lruvec_size * protection /
2878 				(cgroup_size + 1);
2879 
2880 			/*
2881 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2882 			 * reclaim moving forwards, avoiding decrementing
2883 			 * sc->priority further than desirable.
2884 			 */
2885 			scan = max(scan, SWAP_CLUSTER_MAX);
2886 		} else {
2887 			scan = lruvec_size;
2888 		}
2889 
2890 		scan >>= sc->priority;
2891 
2892 		/*
2893 		 * If the cgroup's already been deleted, make sure to
2894 		 * scrape out the remaining cache.
2895 		 */
2896 		if (!scan && !mem_cgroup_online(memcg))
2897 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2898 
2899 		switch (scan_balance) {
2900 		case SCAN_EQUAL:
2901 			/* Scan lists relative to size */
2902 			break;
2903 		case SCAN_FRACT:
2904 			/*
2905 			 * Scan types proportional to swappiness and
2906 			 * their relative recent reclaim efficiency.
2907 			 * Make sure we don't miss the last page on
2908 			 * the offlined memory cgroups because of a
2909 			 * round-off error.
2910 			 */
2911 			scan = mem_cgroup_online(memcg) ?
2912 			       div64_u64(scan * fraction[file], denominator) :
2913 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2914 						  denominator);
2915 			break;
2916 		case SCAN_FILE:
2917 		case SCAN_ANON:
2918 			/* Scan one type exclusively */
2919 			if ((scan_balance == SCAN_FILE) != file)
2920 				scan = 0;
2921 			break;
2922 		default:
2923 			/* Look ma, no brain */
2924 			BUG();
2925 		}
2926 
2927 		nr[lru] = scan;
2928 	}
2929 }
2930 
2931 /*
2932  * Anonymous LRU management is a waste if there is
2933  * ultimately no way to reclaim the memory.
2934  */
2935 static bool can_age_anon_pages(struct pglist_data *pgdat,
2936 			       struct scan_control *sc)
2937 {
2938 	/* Aging the anon LRU is valuable if swap is present: */
2939 	if (total_swap_pages > 0)
2940 		return true;
2941 
2942 	/* Also valuable if anon pages can be demoted: */
2943 	return can_demote(pgdat->node_id, sc);
2944 }
2945 
2946 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2947 {
2948 	unsigned long nr[NR_LRU_LISTS];
2949 	unsigned long targets[NR_LRU_LISTS];
2950 	unsigned long nr_to_scan;
2951 	enum lru_list lru;
2952 	unsigned long nr_reclaimed = 0;
2953 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2954 	struct blk_plug plug;
2955 	bool scan_adjusted;
2956 
2957 	get_scan_count(lruvec, sc, nr);
2958 
2959 	/* Record the original scan target for proportional adjustments later */
2960 	memcpy(targets, nr, sizeof(nr));
2961 
2962 	/*
2963 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2964 	 * event that can occur when there is little memory pressure e.g.
2965 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2966 	 * when the requested number of pages are reclaimed when scanning at
2967 	 * DEF_PRIORITY on the assumption that the fact we are direct
2968 	 * reclaiming implies that kswapd is not keeping up and it is best to
2969 	 * do a batch of work at once. For memcg reclaim one check is made to
2970 	 * abort proportional reclaim if either the file or anon lru has already
2971 	 * dropped to zero at the first pass.
2972 	 */
2973 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2974 			 sc->priority == DEF_PRIORITY);
2975 
2976 	blk_start_plug(&plug);
2977 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2978 					nr[LRU_INACTIVE_FILE]) {
2979 		unsigned long nr_anon, nr_file, percentage;
2980 		unsigned long nr_scanned;
2981 
2982 		for_each_evictable_lru(lru) {
2983 			if (nr[lru]) {
2984 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2985 				nr[lru] -= nr_to_scan;
2986 
2987 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2988 							    lruvec, sc);
2989 			}
2990 		}
2991 
2992 		cond_resched();
2993 
2994 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2995 			continue;
2996 
2997 		/*
2998 		 * For kswapd and memcg, reclaim at least the number of pages
2999 		 * requested. Ensure that the anon and file LRUs are scanned
3000 		 * proportionally what was requested by get_scan_count(). We
3001 		 * stop reclaiming one LRU and reduce the amount scanning
3002 		 * proportional to the original scan target.
3003 		 */
3004 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3005 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3006 
3007 		/*
3008 		 * It's just vindictive to attack the larger once the smaller
3009 		 * has gone to zero.  And given the way we stop scanning the
3010 		 * smaller below, this makes sure that we only make one nudge
3011 		 * towards proportionality once we've got nr_to_reclaim.
3012 		 */
3013 		if (!nr_file || !nr_anon)
3014 			break;
3015 
3016 		if (nr_file > nr_anon) {
3017 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3018 						targets[LRU_ACTIVE_ANON] + 1;
3019 			lru = LRU_BASE;
3020 			percentage = nr_anon * 100 / scan_target;
3021 		} else {
3022 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3023 						targets[LRU_ACTIVE_FILE] + 1;
3024 			lru = LRU_FILE;
3025 			percentage = nr_file * 100 / scan_target;
3026 		}
3027 
3028 		/* Stop scanning the smaller of the LRU */
3029 		nr[lru] = 0;
3030 		nr[lru + LRU_ACTIVE] = 0;
3031 
3032 		/*
3033 		 * Recalculate the other LRU scan count based on its original
3034 		 * scan target and the percentage scanning already complete
3035 		 */
3036 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3037 		nr_scanned = targets[lru] - nr[lru];
3038 		nr[lru] = targets[lru] * (100 - percentage) / 100;
3039 		nr[lru] -= min(nr[lru], nr_scanned);
3040 
3041 		lru += LRU_ACTIVE;
3042 		nr_scanned = targets[lru] - nr[lru];
3043 		nr[lru] = targets[lru] * (100 - percentage) / 100;
3044 		nr[lru] -= min(nr[lru], nr_scanned);
3045 
3046 		scan_adjusted = true;
3047 	}
3048 	blk_finish_plug(&plug);
3049 	sc->nr_reclaimed += nr_reclaimed;
3050 
3051 	/*
3052 	 * Even if we did not try to evict anon pages at all, we want to
3053 	 * rebalance the anon lru active/inactive ratio.
3054 	 */
3055 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3056 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3057 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3058 				   sc, LRU_ACTIVE_ANON);
3059 }
3060 
3061 /* Use reclaim/compaction for costly allocs or under memory pressure */
3062 static bool in_reclaim_compaction(struct scan_control *sc)
3063 {
3064 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3065 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3066 			 sc->priority < DEF_PRIORITY - 2))
3067 		return true;
3068 
3069 	return false;
3070 }
3071 
3072 /*
3073  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3074  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3075  * true if more pages should be reclaimed such that when the page allocator
3076  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3077  * It will give up earlier than that if there is difficulty reclaiming pages.
3078  */
3079 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3080 					unsigned long nr_reclaimed,
3081 					struct scan_control *sc)
3082 {
3083 	unsigned long pages_for_compaction;
3084 	unsigned long inactive_lru_pages;
3085 	int z;
3086 
3087 	/* If not in reclaim/compaction mode, stop */
3088 	if (!in_reclaim_compaction(sc))
3089 		return false;
3090 
3091 	/*
3092 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3093 	 * number of pages that were scanned. This will return to the caller
3094 	 * with the risk reclaim/compaction and the resulting allocation attempt
3095 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3096 	 * allocations through requiring that the full LRU list has been scanned
3097 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3098 	 * scan, but that approximation was wrong, and there were corner cases
3099 	 * where always a non-zero amount of pages were scanned.
3100 	 */
3101 	if (!nr_reclaimed)
3102 		return false;
3103 
3104 	/* If compaction would go ahead or the allocation would succeed, stop */
3105 	for (z = 0; z <= sc->reclaim_idx; z++) {
3106 		struct zone *zone = &pgdat->node_zones[z];
3107 		if (!managed_zone(zone))
3108 			continue;
3109 
3110 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3111 		case COMPACT_SUCCESS:
3112 		case COMPACT_CONTINUE:
3113 			return false;
3114 		default:
3115 			/* check next zone */
3116 			;
3117 		}
3118 	}
3119 
3120 	/*
3121 	 * If we have not reclaimed enough pages for compaction and the
3122 	 * inactive lists are large enough, continue reclaiming
3123 	 */
3124 	pages_for_compaction = compact_gap(sc->order);
3125 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3126 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3127 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3128 
3129 	return inactive_lru_pages > pages_for_compaction;
3130 }
3131 
3132 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3133 {
3134 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3135 	struct mem_cgroup *memcg;
3136 
3137 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3138 	do {
3139 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3140 		unsigned long reclaimed;
3141 		unsigned long scanned;
3142 
3143 		/*
3144 		 * This loop can become CPU-bound when target memcgs
3145 		 * aren't eligible for reclaim - either because they
3146 		 * don't have any reclaimable pages, or because their
3147 		 * memory is explicitly protected. Avoid soft lockups.
3148 		 */
3149 		cond_resched();
3150 
3151 		mem_cgroup_calculate_protection(target_memcg, memcg);
3152 
3153 		if (mem_cgroup_below_min(memcg)) {
3154 			/*
3155 			 * Hard protection.
3156 			 * If there is no reclaimable memory, OOM.
3157 			 */
3158 			continue;
3159 		} else if (mem_cgroup_below_low(memcg)) {
3160 			/*
3161 			 * Soft protection.
3162 			 * Respect the protection only as long as
3163 			 * there is an unprotected supply
3164 			 * of reclaimable memory from other cgroups.
3165 			 */
3166 			if (!sc->memcg_low_reclaim) {
3167 				sc->memcg_low_skipped = 1;
3168 				continue;
3169 			}
3170 			memcg_memory_event(memcg, MEMCG_LOW);
3171 		}
3172 
3173 		reclaimed = sc->nr_reclaimed;
3174 		scanned = sc->nr_scanned;
3175 
3176 		shrink_lruvec(lruvec, sc);
3177 
3178 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3179 			    sc->priority);
3180 
3181 		/* Record the group's reclaim efficiency */
3182 		vmpressure(sc->gfp_mask, memcg, false,
3183 			   sc->nr_scanned - scanned,
3184 			   sc->nr_reclaimed - reclaimed);
3185 
3186 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3187 }
3188 
3189 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3190 {
3191 	struct reclaim_state *reclaim_state = current->reclaim_state;
3192 	unsigned long nr_reclaimed, nr_scanned;
3193 	struct lruvec *target_lruvec;
3194 	bool reclaimable = false;
3195 	unsigned long file;
3196 
3197 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3198 
3199 again:
3200 	/*
3201 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3202 	 * lruvec stats for heuristics.
3203 	 */
3204 	mem_cgroup_flush_stats();
3205 
3206 	memset(&sc->nr, 0, sizeof(sc->nr));
3207 
3208 	nr_reclaimed = sc->nr_reclaimed;
3209 	nr_scanned = sc->nr_scanned;
3210 
3211 	/*
3212 	 * Determine the scan balance between anon and file LRUs.
3213 	 */
3214 	spin_lock_irq(&target_lruvec->lru_lock);
3215 	sc->anon_cost = target_lruvec->anon_cost;
3216 	sc->file_cost = target_lruvec->file_cost;
3217 	spin_unlock_irq(&target_lruvec->lru_lock);
3218 
3219 	/*
3220 	 * Target desirable inactive:active list ratios for the anon
3221 	 * and file LRU lists.
3222 	 */
3223 	if (!sc->force_deactivate) {
3224 		unsigned long refaults;
3225 
3226 		refaults = lruvec_page_state(target_lruvec,
3227 				WORKINGSET_ACTIVATE_ANON);
3228 		if (refaults != target_lruvec->refaults[0] ||
3229 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3230 			sc->may_deactivate |= DEACTIVATE_ANON;
3231 		else
3232 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3233 
3234 		/*
3235 		 * When refaults are being observed, it means a new
3236 		 * workingset is being established. Deactivate to get
3237 		 * rid of any stale active pages quickly.
3238 		 */
3239 		refaults = lruvec_page_state(target_lruvec,
3240 				WORKINGSET_ACTIVATE_FILE);
3241 		if (refaults != target_lruvec->refaults[1] ||
3242 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3243 			sc->may_deactivate |= DEACTIVATE_FILE;
3244 		else
3245 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3246 	} else
3247 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3248 
3249 	/*
3250 	 * If we have plenty of inactive file pages that aren't
3251 	 * thrashing, try to reclaim those first before touching
3252 	 * anonymous pages.
3253 	 */
3254 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3255 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3256 		sc->cache_trim_mode = 1;
3257 	else
3258 		sc->cache_trim_mode = 0;
3259 
3260 	/*
3261 	 * Prevent the reclaimer from falling into the cache trap: as
3262 	 * cache pages start out inactive, every cache fault will tip
3263 	 * the scan balance towards the file LRU.  And as the file LRU
3264 	 * shrinks, so does the window for rotation from references.
3265 	 * This means we have a runaway feedback loop where a tiny
3266 	 * thrashing file LRU becomes infinitely more attractive than
3267 	 * anon pages.  Try to detect this based on file LRU size.
3268 	 */
3269 	if (!cgroup_reclaim(sc)) {
3270 		unsigned long total_high_wmark = 0;
3271 		unsigned long free, anon;
3272 		int z;
3273 
3274 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3275 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3276 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3277 
3278 		for (z = 0; z < MAX_NR_ZONES; z++) {
3279 			struct zone *zone = &pgdat->node_zones[z];
3280 			if (!managed_zone(zone))
3281 				continue;
3282 
3283 			total_high_wmark += high_wmark_pages(zone);
3284 		}
3285 
3286 		/*
3287 		 * Consider anon: if that's low too, this isn't a
3288 		 * runaway file reclaim problem, but rather just
3289 		 * extreme pressure. Reclaim as per usual then.
3290 		 */
3291 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3292 
3293 		sc->file_is_tiny =
3294 			file + free <= total_high_wmark &&
3295 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3296 			anon >> sc->priority;
3297 	}
3298 
3299 	shrink_node_memcgs(pgdat, sc);
3300 
3301 	if (reclaim_state) {
3302 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3303 		reclaim_state->reclaimed_slab = 0;
3304 	}
3305 
3306 	/* Record the subtree's reclaim efficiency */
3307 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3308 		   sc->nr_scanned - nr_scanned,
3309 		   sc->nr_reclaimed - nr_reclaimed);
3310 
3311 	if (sc->nr_reclaimed - nr_reclaimed)
3312 		reclaimable = true;
3313 
3314 	if (current_is_kswapd()) {
3315 		/*
3316 		 * If reclaim is isolating dirty pages under writeback,
3317 		 * it implies that the long-lived page allocation rate
3318 		 * is exceeding the page laundering rate. Either the
3319 		 * global limits are not being effective at throttling
3320 		 * processes due to the page distribution throughout
3321 		 * zones or there is heavy usage of a slow backing
3322 		 * device. The only option is to throttle from reclaim
3323 		 * context which is not ideal as there is no guarantee
3324 		 * the dirtying process is throttled in the same way
3325 		 * balance_dirty_pages() manages.
3326 		 *
3327 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3328 		 * count the number of pages under pages flagged for
3329 		 * immediate reclaim and stall if any are encountered
3330 		 * in the nr_immediate check below.
3331 		 */
3332 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3333 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3334 
3335 		/* Allow kswapd to start writing pages during reclaim.*/
3336 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3337 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3338 
3339 		/*
3340 		 * If kswapd scans pages marked for immediate
3341 		 * reclaim and under writeback (nr_immediate), it
3342 		 * implies that pages are cycling through the LRU
3343 		 * faster than they are written so forcibly stall
3344 		 * until some pages complete writeback.
3345 		 */
3346 		if (sc->nr.immediate)
3347 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3348 	}
3349 
3350 	/*
3351 	 * Tag a node/memcg as congested if all the dirty pages were marked
3352 	 * for writeback and immediate reclaim (counted in nr.congested).
3353 	 *
3354 	 * Legacy memcg will stall in page writeback so avoid forcibly
3355 	 * stalling in reclaim_throttle().
3356 	 */
3357 	if ((current_is_kswapd() ||
3358 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3359 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3360 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3361 
3362 	/*
3363 	 * Stall direct reclaim for IO completions if the lruvec is
3364 	 * node is congested. Allow kswapd to continue until it
3365 	 * starts encountering unqueued dirty pages or cycling through
3366 	 * the LRU too quickly.
3367 	 */
3368 	if (!current_is_kswapd() && current_may_throttle() &&
3369 	    !sc->hibernation_mode &&
3370 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3371 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3372 
3373 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3374 				    sc))
3375 		goto again;
3376 
3377 	/*
3378 	 * Kswapd gives up on balancing particular nodes after too
3379 	 * many failures to reclaim anything from them and goes to
3380 	 * sleep. On reclaim progress, reset the failure counter. A
3381 	 * successful direct reclaim run will revive a dormant kswapd.
3382 	 */
3383 	if (reclaimable)
3384 		pgdat->kswapd_failures = 0;
3385 }
3386 
3387 /*
3388  * Returns true if compaction should go ahead for a costly-order request, or
3389  * the allocation would already succeed without compaction. Return false if we
3390  * should reclaim first.
3391  */
3392 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3393 {
3394 	unsigned long watermark;
3395 	enum compact_result suitable;
3396 
3397 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3398 	if (suitable == COMPACT_SUCCESS)
3399 		/* Allocation should succeed already. Don't reclaim. */
3400 		return true;
3401 	if (suitable == COMPACT_SKIPPED)
3402 		/* Compaction cannot yet proceed. Do reclaim. */
3403 		return false;
3404 
3405 	/*
3406 	 * Compaction is already possible, but it takes time to run and there
3407 	 * are potentially other callers using the pages just freed. So proceed
3408 	 * with reclaim to make a buffer of free pages available to give
3409 	 * compaction a reasonable chance of completing and allocating the page.
3410 	 * Note that we won't actually reclaim the whole buffer in one attempt
3411 	 * as the target watermark in should_continue_reclaim() is lower. But if
3412 	 * we are already above the high+gap watermark, don't reclaim at all.
3413 	 */
3414 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3415 
3416 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3417 }
3418 
3419 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3420 {
3421 	/*
3422 	 * If reclaim is making progress greater than 12% efficiency then
3423 	 * wake all the NOPROGRESS throttled tasks.
3424 	 */
3425 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3426 		wait_queue_head_t *wqh;
3427 
3428 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3429 		if (waitqueue_active(wqh))
3430 			wake_up(wqh);
3431 
3432 		return;
3433 	}
3434 
3435 	/*
3436 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3437 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3438 	 * under writeback and marked for immediate reclaim at the tail of the
3439 	 * LRU.
3440 	 */
3441 	if (current_is_kswapd() || cgroup_reclaim(sc))
3442 		return;
3443 
3444 	/* Throttle if making no progress at high prioities. */
3445 	if (sc->priority == 1 && !sc->nr_reclaimed)
3446 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3447 }
3448 
3449 /*
3450  * This is the direct reclaim path, for page-allocating processes.  We only
3451  * try to reclaim pages from zones which will satisfy the caller's allocation
3452  * request.
3453  *
3454  * If a zone is deemed to be full of pinned pages then just give it a light
3455  * scan then give up on it.
3456  */
3457 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3458 {
3459 	struct zoneref *z;
3460 	struct zone *zone;
3461 	unsigned long nr_soft_reclaimed;
3462 	unsigned long nr_soft_scanned;
3463 	gfp_t orig_mask;
3464 	pg_data_t *last_pgdat = NULL;
3465 	pg_data_t *first_pgdat = NULL;
3466 
3467 	/*
3468 	 * If the number of buffer_heads in the machine exceeds the maximum
3469 	 * allowed level, force direct reclaim to scan the highmem zone as
3470 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3471 	 */
3472 	orig_mask = sc->gfp_mask;
3473 	if (buffer_heads_over_limit) {
3474 		sc->gfp_mask |= __GFP_HIGHMEM;
3475 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3476 	}
3477 
3478 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3479 					sc->reclaim_idx, sc->nodemask) {
3480 		/*
3481 		 * Take care memory controller reclaiming has small influence
3482 		 * to global LRU.
3483 		 */
3484 		if (!cgroup_reclaim(sc)) {
3485 			if (!cpuset_zone_allowed(zone,
3486 						 GFP_KERNEL | __GFP_HARDWALL))
3487 				continue;
3488 
3489 			/*
3490 			 * If we already have plenty of memory free for
3491 			 * compaction in this zone, don't free any more.
3492 			 * Even though compaction is invoked for any
3493 			 * non-zero order, only frequent costly order
3494 			 * reclamation is disruptive enough to become a
3495 			 * noticeable problem, like transparent huge
3496 			 * page allocations.
3497 			 */
3498 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3499 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3500 			    compaction_ready(zone, sc)) {
3501 				sc->compaction_ready = true;
3502 				continue;
3503 			}
3504 
3505 			/*
3506 			 * Shrink each node in the zonelist once. If the
3507 			 * zonelist is ordered by zone (not the default) then a
3508 			 * node may be shrunk multiple times but in that case
3509 			 * the user prefers lower zones being preserved.
3510 			 */
3511 			if (zone->zone_pgdat == last_pgdat)
3512 				continue;
3513 
3514 			/*
3515 			 * This steals pages from memory cgroups over softlimit
3516 			 * and returns the number of reclaimed pages and
3517 			 * scanned pages. This works for global memory pressure
3518 			 * and balancing, not for a memcg's limit.
3519 			 */
3520 			nr_soft_scanned = 0;
3521 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3522 						sc->order, sc->gfp_mask,
3523 						&nr_soft_scanned);
3524 			sc->nr_reclaimed += nr_soft_reclaimed;
3525 			sc->nr_scanned += nr_soft_scanned;
3526 			/* need some check for avoid more shrink_zone() */
3527 		}
3528 
3529 		if (!first_pgdat)
3530 			first_pgdat = zone->zone_pgdat;
3531 
3532 		/* See comment about same check for global reclaim above */
3533 		if (zone->zone_pgdat == last_pgdat)
3534 			continue;
3535 		last_pgdat = zone->zone_pgdat;
3536 		shrink_node(zone->zone_pgdat, sc);
3537 	}
3538 
3539 	if (first_pgdat)
3540 		consider_reclaim_throttle(first_pgdat, sc);
3541 
3542 	/*
3543 	 * Restore to original mask to avoid the impact on the caller if we
3544 	 * promoted it to __GFP_HIGHMEM.
3545 	 */
3546 	sc->gfp_mask = orig_mask;
3547 }
3548 
3549 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3550 {
3551 	struct lruvec *target_lruvec;
3552 	unsigned long refaults;
3553 
3554 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3555 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3556 	target_lruvec->refaults[0] = refaults;
3557 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3558 	target_lruvec->refaults[1] = refaults;
3559 }
3560 
3561 /*
3562  * This is the main entry point to direct page reclaim.
3563  *
3564  * If a full scan of the inactive list fails to free enough memory then we
3565  * are "out of memory" and something needs to be killed.
3566  *
3567  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3568  * high - the zone may be full of dirty or under-writeback pages, which this
3569  * caller can't do much about.  We kick the writeback threads and take explicit
3570  * naps in the hope that some of these pages can be written.  But if the
3571  * allocating task holds filesystem locks which prevent writeout this might not
3572  * work, and the allocation attempt will fail.
3573  *
3574  * returns:	0, if no pages reclaimed
3575  * 		else, the number of pages reclaimed
3576  */
3577 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3578 					  struct scan_control *sc)
3579 {
3580 	int initial_priority = sc->priority;
3581 	pg_data_t *last_pgdat;
3582 	struct zoneref *z;
3583 	struct zone *zone;
3584 retry:
3585 	delayacct_freepages_start();
3586 
3587 	if (!cgroup_reclaim(sc))
3588 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3589 
3590 	do {
3591 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3592 				sc->priority);
3593 		sc->nr_scanned = 0;
3594 		shrink_zones(zonelist, sc);
3595 
3596 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3597 			break;
3598 
3599 		if (sc->compaction_ready)
3600 			break;
3601 
3602 		/*
3603 		 * If we're getting trouble reclaiming, start doing
3604 		 * writepage even in laptop mode.
3605 		 */
3606 		if (sc->priority < DEF_PRIORITY - 2)
3607 			sc->may_writepage = 1;
3608 	} while (--sc->priority >= 0);
3609 
3610 	last_pgdat = NULL;
3611 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3612 					sc->nodemask) {
3613 		if (zone->zone_pgdat == last_pgdat)
3614 			continue;
3615 		last_pgdat = zone->zone_pgdat;
3616 
3617 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3618 
3619 		if (cgroup_reclaim(sc)) {
3620 			struct lruvec *lruvec;
3621 
3622 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3623 						   zone->zone_pgdat);
3624 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3625 		}
3626 	}
3627 
3628 	delayacct_freepages_end();
3629 
3630 	if (sc->nr_reclaimed)
3631 		return sc->nr_reclaimed;
3632 
3633 	/* Aborted reclaim to try compaction? don't OOM, then */
3634 	if (sc->compaction_ready)
3635 		return 1;
3636 
3637 	/*
3638 	 * We make inactive:active ratio decisions based on the node's
3639 	 * composition of memory, but a restrictive reclaim_idx or a
3640 	 * memory.low cgroup setting can exempt large amounts of
3641 	 * memory from reclaim. Neither of which are very common, so
3642 	 * instead of doing costly eligibility calculations of the
3643 	 * entire cgroup subtree up front, we assume the estimates are
3644 	 * good, and retry with forcible deactivation if that fails.
3645 	 */
3646 	if (sc->skipped_deactivate) {
3647 		sc->priority = initial_priority;
3648 		sc->force_deactivate = 1;
3649 		sc->skipped_deactivate = 0;
3650 		goto retry;
3651 	}
3652 
3653 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3654 	if (sc->memcg_low_skipped) {
3655 		sc->priority = initial_priority;
3656 		sc->force_deactivate = 0;
3657 		sc->memcg_low_reclaim = 1;
3658 		sc->memcg_low_skipped = 0;
3659 		goto retry;
3660 	}
3661 
3662 	return 0;
3663 }
3664 
3665 static bool allow_direct_reclaim(pg_data_t *pgdat)
3666 {
3667 	struct zone *zone;
3668 	unsigned long pfmemalloc_reserve = 0;
3669 	unsigned long free_pages = 0;
3670 	int i;
3671 	bool wmark_ok;
3672 
3673 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3674 		return true;
3675 
3676 	for (i = 0; i <= ZONE_NORMAL; i++) {
3677 		zone = &pgdat->node_zones[i];
3678 		if (!managed_zone(zone))
3679 			continue;
3680 
3681 		if (!zone_reclaimable_pages(zone))
3682 			continue;
3683 
3684 		pfmemalloc_reserve += min_wmark_pages(zone);
3685 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3686 	}
3687 
3688 	/* If there are no reserves (unexpected config) then do not throttle */
3689 	if (!pfmemalloc_reserve)
3690 		return true;
3691 
3692 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3693 
3694 	/* kswapd must be awake if processes are being throttled */
3695 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3696 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3697 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3698 
3699 		wake_up_interruptible(&pgdat->kswapd_wait);
3700 	}
3701 
3702 	return wmark_ok;
3703 }
3704 
3705 /*
3706  * Throttle direct reclaimers if backing storage is backed by the network
3707  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3708  * depleted. kswapd will continue to make progress and wake the processes
3709  * when the low watermark is reached.
3710  *
3711  * Returns true if a fatal signal was delivered during throttling. If this
3712  * happens, the page allocator should not consider triggering the OOM killer.
3713  */
3714 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3715 					nodemask_t *nodemask)
3716 {
3717 	struct zoneref *z;
3718 	struct zone *zone;
3719 	pg_data_t *pgdat = NULL;
3720 
3721 	/*
3722 	 * Kernel threads should not be throttled as they may be indirectly
3723 	 * responsible for cleaning pages necessary for reclaim to make forward
3724 	 * progress. kjournald for example may enter direct reclaim while
3725 	 * committing a transaction where throttling it could forcing other
3726 	 * processes to block on log_wait_commit().
3727 	 */
3728 	if (current->flags & PF_KTHREAD)
3729 		goto out;
3730 
3731 	/*
3732 	 * If a fatal signal is pending, this process should not throttle.
3733 	 * It should return quickly so it can exit and free its memory
3734 	 */
3735 	if (fatal_signal_pending(current))
3736 		goto out;
3737 
3738 	/*
3739 	 * Check if the pfmemalloc reserves are ok by finding the first node
3740 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3741 	 * GFP_KERNEL will be required for allocating network buffers when
3742 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3743 	 *
3744 	 * Throttling is based on the first usable node and throttled processes
3745 	 * wait on a queue until kswapd makes progress and wakes them. There
3746 	 * is an affinity then between processes waking up and where reclaim
3747 	 * progress has been made assuming the process wakes on the same node.
3748 	 * More importantly, processes running on remote nodes will not compete
3749 	 * for remote pfmemalloc reserves and processes on different nodes
3750 	 * should make reasonable progress.
3751 	 */
3752 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3753 					gfp_zone(gfp_mask), nodemask) {
3754 		if (zone_idx(zone) > ZONE_NORMAL)
3755 			continue;
3756 
3757 		/* Throttle based on the first usable node */
3758 		pgdat = zone->zone_pgdat;
3759 		if (allow_direct_reclaim(pgdat))
3760 			goto out;
3761 		break;
3762 	}
3763 
3764 	/* If no zone was usable by the allocation flags then do not throttle */
3765 	if (!pgdat)
3766 		goto out;
3767 
3768 	/* Account for the throttling */
3769 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3770 
3771 	/*
3772 	 * If the caller cannot enter the filesystem, it's possible that it
3773 	 * is due to the caller holding an FS lock or performing a journal
3774 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3775 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3776 	 * blocked waiting on the same lock. Instead, throttle for up to a
3777 	 * second before continuing.
3778 	 */
3779 	if (!(gfp_mask & __GFP_FS))
3780 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3781 			allow_direct_reclaim(pgdat), HZ);
3782 	else
3783 		/* Throttle until kswapd wakes the process */
3784 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3785 			allow_direct_reclaim(pgdat));
3786 
3787 	if (fatal_signal_pending(current))
3788 		return true;
3789 
3790 out:
3791 	return false;
3792 }
3793 
3794 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3795 				gfp_t gfp_mask, nodemask_t *nodemask)
3796 {
3797 	unsigned long nr_reclaimed;
3798 	struct scan_control sc = {
3799 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3800 		.gfp_mask = current_gfp_context(gfp_mask),
3801 		.reclaim_idx = gfp_zone(gfp_mask),
3802 		.order = order,
3803 		.nodemask = nodemask,
3804 		.priority = DEF_PRIORITY,
3805 		.may_writepage = !laptop_mode,
3806 		.may_unmap = 1,
3807 		.may_swap = 1,
3808 	};
3809 
3810 	/*
3811 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3812 	 * Confirm they are large enough for max values.
3813 	 */
3814 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3815 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3816 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3817 
3818 	/*
3819 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3820 	 * 1 is returned so that the page allocator does not OOM kill at this
3821 	 * point.
3822 	 */
3823 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3824 		return 1;
3825 
3826 	set_task_reclaim_state(current, &sc.reclaim_state);
3827 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3828 
3829 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3830 
3831 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3832 	set_task_reclaim_state(current, NULL);
3833 
3834 	return nr_reclaimed;
3835 }
3836 
3837 #ifdef CONFIG_MEMCG
3838 
3839 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3840 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3841 						gfp_t gfp_mask, bool noswap,
3842 						pg_data_t *pgdat,
3843 						unsigned long *nr_scanned)
3844 {
3845 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3846 	struct scan_control sc = {
3847 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3848 		.target_mem_cgroup = memcg,
3849 		.may_writepage = !laptop_mode,
3850 		.may_unmap = 1,
3851 		.reclaim_idx = MAX_NR_ZONES - 1,
3852 		.may_swap = !noswap,
3853 	};
3854 
3855 	WARN_ON_ONCE(!current->reclaim_state);
3856 
3857 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3858 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3859 
3860 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3861 						      sc.gfp_mask);
3862 
3863 	/*
3864 	 * NOTE: Although we can get the priority field, using it
3865 	 * here is not a good idea, since it limits the pages we can scan.
3866 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3867 	 * will pick up pages from other mem cgroup's as well. We hack
3868 	 * the priority and make it zero.
3869 	 */
3870 	shrink_lruvec(lruvec, &sc);
3871 
3872 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3873 
3874 	*nr_scanned = sc.nr_scanned;
3875 
3876 	return sc.nr_reclaimed;
3877 }
3878 
3879 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3880 					   unsigned long nr_pages,
3881 					   gfp_t gfp_mask,
3882 					   bool may_swap)
3883 {
3884 	unsigned long nr_reclaimed;
3885 	unsigned int noreclaim_flag;
3886 	struct scan_control sc = {
3887 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3888 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3889 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3890 		.reclaim_idx = MAX_NR_ZONES - 1,
3891 		.target_mem_cgroup = memcg,
3892 		.priority = DEF_PRIORITY,
3893 		.may_writepage = !laptop_mode,
3894 		.may_unmap = 1,
3895 		.may_swap = may_swap,
3896 	};
3897 	/*
3898 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3899 	 * equal pressure on all the nodes. This is based on the assumption that
3900 	 * the reclaim does not bail out early.
3901 	 */
3902 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3903 
3904 	set_task_reclaim_state(current, &sc.reclaim_state);
3905 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3906 	noreclaim_flag = memalloc_noreclaim_save();
3907 
3908 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3909 
3910 	memalloc_noreclaim_restore(noreclaim_flag);
3911 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3912 	set_task_reclaim_state(current, NULL);
3913 
3914 	return nr_reclaimed;
3915 }
3916 #endif
3917 
3918 static void age_active_anon(struct pglist_data *pgdat,
3919 				struct scan_control *sc)
3920 {
3921 	struct mem_cgroup *memcg;
3922 	struct lruvec *lruvec;
3923 
3924 	if (!can_age_anon_pages(pgdat, sc))
3925 		return;
3926 
3927 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3928 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3929 		return;
3930 
3931 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3932 	do {
3933 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3934 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3935 				   sc, LRU_ACTIVE_ANON);
3936 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3937 	} while (memcg);
3938 }
3939 
3940 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3941 {
3942 	int i;
3943 	struct zone *zone;
3944 
3945 	/*
3946 	 * Check for watermark boosts top-down as the higher zones
3947 	 * are more likely to be boosted. Both watermarks and boosts
3948 	 * should not be checked at the same time as reclaim would
3949 	 * start prematurely when there is no boosting and a lower
3950 	 * zone is balanced.
3951 	 */
3952 	for (i = highest_zoneidx; i >= 0; i--) {
3953 		zone = pgdat->node_zones + i;
3954 		if (!managed_zone(zone))
3955 			continue;
3956 
3957 		if (zone->watermark_boost)
3958 			return true;
3959 	}
3960 
3961 	return false;
3962 }
3963 
3964 /*
3965  * Returns true if there is an eligible zone balanced for the request order
3966  * and highest_zoneidx
3967  */
3968 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3969 {
3970 	int i;
3971 	unsigned long mark = -1;
3972 	struct zone *zone;
3973 
3974 	/*
3975 	 * Check watermarks bottom-up as lower zones are more likely to
3976 	 * meet watermarks.
3977 	 */
3978 	for (i = 0; i <= highest_zoneidx; i++) {
3979 		zone = pgdat->node_zones + i;
3980 
3981 		if (!managed_zone(zone))
3982 			continue;
3983 
3984 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3985 			mark = wmark_pages(zone, WMARK_PROMO);
3986 		else
3987 			mark = high_wmark_pages(zone);
3988 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3989 			return true;
3990 	}
3991 
3992 	/*
3993 	 * If a node has no managed zone within highest_zoneidx, it does not
3994 	 * need balancing by definition. This can happen if a zone-restricted
3995 	 * allocation tries to wake a remote kswapd.
3996 	 */
3997 	if (mark == -1)
3998 		return true;
3999 
4000 	return false;
4001 }
4002 
4003 /* Clear pgdat state for congested, dirty or under writeback. */
4004 static void clear_pgdat_congested(pg_data_t *pgdat)
4005 {
4006 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4007 
4008 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
4009 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
4010 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4011 }
4012 
4013 /*
4014  * Prepare kswapd for sleeping. This verifies that there are no processes
4015  * waiting in throttle_direct_reclaim() and that watermarks have been met.
4016  *
4017  * Returns true if kswapd is ready to sleep
4018  */
4019 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4020 				int highest_zoneidx)
4021 {
4022 	/*
4023 	 * The throttled processes are normally woken up in balance_pgdat() as
4024 	 * soon as allow_direct_reclaim() is true. But there is a potential
4025 	 * race between when kswapd checks the watermarks and a process gets
4026 	 * throttled. There is also a potential race if processes get
4027 	 * throttled, kswapd wakes, a large process exits thereby balancing the
4028 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
4029 	 * the wake up checks. If kswapd is going to sleep, no process should
4030 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4031 	 * the wake up is premature, processes will wake kswapd and get
4032 	 * throttled again. The difference from wake ups in balance_pgdat() is
4033 	 * that here we are under prepare_to_wait().
4034 	 */
4035 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
4036 		wake_up_all(&pgdat->pfmemalloc_wait);
4037 
4038 	/* Hopeless node, leave it to direct reclaim */
4039 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4040 		return true;
4041 
4042 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4043 		clear_pgdat_congested(pgdat);
4044 		return true;
4045 	}
4046 
4047 	return false;
4048 }
4049 
4050 /*
4051  * kswapd shrinks a node of pages that are at or below the highest usable
4052  * zone that is currently unbalanced.
4053  *
4054  * Returns true if kswapd scanned at least the requested number of pages to
4055  * reclaim or if the lack of progress was due to pages under writeback.
4056  * This is used to determine if the scanning priority needs to be raised.
4057  */
4058 static bool kswapd_shrink_node(pg_data_t *pgdat,
4059 			       struct scan_control *sc)
4060 {
4061 	struct zone *zone;
4062 	int z;
4063 
4064 	/* Reclaim a number of pages proportional to the number of zones */
4065 	sc->nr_to_reclaim = 0;
4066 	for (z = 0; z <= sc->reclaim_idx; z++) {
4067 		zone = pgdat->node_zones + z;
4068 		if (!managed_zone(zone))
4069 			continue;
4070 
4071 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4072 	}
4073 
4074 	/*
4075 	 * Historically care was taken to put equal pressure on all zones but
4076 	 * now pressure is applied based on node LRU order.
4077 	 */
4078 	shrink_node(pgdat, sc);
4079 
4080 	/*
4081 	 * Fragmentation may mean that the system cannot be rebalanced for
4082 	 * high-order allocations. If twice the allocation size has been
4083 	 * reclaimed then recheck watermarks only at order-0 to prevent
4084 	 * excessive reclaim. Assume that a process requested a high-order
4085 	 * can direct reclaim/compact.
4086 	 */
4087 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4088 		sc->order = 0;
4089 
4090 	return sc->nr_scanned >= sc->nr_to_reclaim;
4091 }
4092 
4093 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4094 static inline void
4095 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4096 {
4097 	int i;
4098 	struct zone *zone;
4099 
4100 	for (i = 0; i <= highest_zoneidx; i++) {
4101 		zone = pgdat->node_zones + i;
4102 
4103 		if (!managed_zone(zone))
4104 			continue;
4105 
4106 		if (active)
4107 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4108 		else
4109 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4110 	}
4111 }
4112 
4113 static inline void
4114 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4115 {
4116 	update_reclaim_active(pgdat, highest_zoneidx, true);
4117 }
4118 
4119 static inline void
4120 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4121 {
4122 	update_reclaim_active(pgdat, highest_zoneidx, false);
4123 }
4124 
4125 /*
4126  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4127  * that are eligible for use by the caller until at least one zone is
4128  * balanced.
4129  *
4130  * Returns the order kswapd finished reclaiming at.
4131  *
4132  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4133  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4134  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4135  * or lower is eligible for reclaim until at least one usable zone is
4136  * balanced.
4137  */
4138 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4139 {
4140 	int i;
4141 	unsigned long nr_soft_reclaimed;
4142 	unsigned long nr_soft_scanned;
4143 	unsigned long pflags;
4144 	unsigned long nr_boost_reclaim;
4145 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4146 	bool boosted;
4147 	struct zone *zone;
4148 	struct scan_control sc = {
4149 		.gfp_mask = GFP_KERNEL,
4150 		.order = order,
4151 		.may_unmap = 1,
4152 	};
4153 
4154 	set_task_reclaim_state(current, &sc.reclaim_state);
4155 	psi_memstall_enter(&pflags);
4156 	__fs_reclaim_acquire(_THIS_IP_);
4157 
4158 	count_vm_event(PAGEOUTRUN);
4159 
4160 	/*
4161 	 * Account for the reclaim boost. Note that the zone boost is left in
4162 	 * place so that parallel allocations that are near the watermark will
4163 	 * stall or direct reclaim until kswapd is finished.
4164 	 */
4165 	nr_boost_reclaim = 0;
4166 	for (i = 0; i <= highest_zoneidx; i++) {
4167 		zone = pgdat->node_zones + i;
4168 		if (!managed_zone(zone))
4169 			continue;
4170 
4171 		nr_boost_reclaim += zone->watermark_boost;
4172 		zone_boosts[i] = zone->watermark_boost;
4173 	}
4174 	boosted = nr_boost_reclaim;
4175 
4176 restart:
4177 	set_reclaim_active(pgdat, highest_zoneidx);
4178 	sc.priority = DEF_PRIORITY;
4179 	do {
4180 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4181 		bool raise_priority = true;
4182 		bool balanced;
4183 		bool ret;
4184 
4185 		sc.reclaim_idx = highest_zoneidx;
4186 
4187 		/*
4188 		 * If the number of buffer_heads exceeds the maximum allowed
4189 		 * then consider reclaiming from all zones. This has a dual
4190 		 * purpose -- on 64-bit systems it is expected that
4191 		 * buffer_heads are stripped during active rotation. On 32-bit
4192 		 * systems, highmem pages can pin lowmem memory and shrinking
4193 		 * buffers can relieve lowmem pressure. Reclaim may still not
4194 		 * go ahead if all eligible zones for the original allocation
4195 		 * request are balanced to avoid excessive reclaim from kswapd.
4196 		 */
4197 		if (buffer_heads_over_limit) {
4198 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4199 				zone = pgdat->node_zones + i;
4200 				if (!managed_zone(zone))
4201 					continue;
4202 
4203 				sc.reclaim_idx = i;
4204 				break;
4205 			}
4206 		}
4207 
4208 		/*
4209 		 * If the pgdat is imbalanced then ignore boosting and preserve
4210 		 * the watermarks for a later time and restart. Note that the
4211 		 * zone watermarks will be still reset at the end of balancing
4212 		 * on the grounds that the normal reclaim should be enough to
4213 		 * re-evaluate if boosting is required when kswapd next wakes.
4214 		 */
4215 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4216 		if (!balanced && nr_boost_reclaim) {
4217 			nr_boost_reclaim = 0;
4218 			goto restart;
4219 		}
4220 
4221 		/*
4222 		 * If boosting is not active then only reclaim if there are no
4223 		 * eligible zones. Note that sc.reclaim_idx is not used as
4224 		 * buffer_heads_over_limit may have adjusted it.
4225 		 */
4226 		if (!nr_boost_reclaim && balanced)
4227 			goto out;
4228 
4229 		/* Limit the priority of boosting to avoid reclaim writeback */
4230 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4231 			raise_priority = false;
4232 
4233 		/*
4234 		 * Do not writeback or swap pages for boosted reclaim. The
4235 		 * intent is to relieve pressure not issue sub-optimal IO
4236 		 * from reclaim context. If no pages are reclaimed, the
4237 		 * reclaim will be aborted.
4238 		 */
4239 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4240 		sc.may_swap = !nr_boost_reclaim;
4241 
4242 		/*
4243 		 * Do some background aging of the anon list, to give
4244 		 * pages a chance to be referenced before reclaiming. All
4245 		 * pages are rotated regardless of classzone as this is
4246 		 * about consistent aging.
4247 		 */
4248 		age_active_anon(pgdat, &sc);
4249 
4250 		/*
4251 		 * If we're getting trouble reclaiming, start doing writepage
4252 		 * even in laptop mode.
4253 		 */
4254 		if (sc.priority < DEF_PRIORITY - 2)
4255 			sc.may_writepage = 1;
4256 
4257 		/* Call soft limit reclaim before calling shrink_node. */
4258 		sc.nr_scanned = 0;
4259 		nr_soft_scanned = 0;
4260 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4261 						sc.gfp_mask, &nr_soft_scanned);
4262 		sc.nr_reclaimed += nr_soft_reclaimed;
4263 
4264 		/*
4265 		 * There should be no need to raise the scanning priority if
4266 		 * enough pages are already being scanned that that high
4267 		 * watermark would be met at 100% efficiency.
4268 		 */
4269 		if (kswapd_shrink_node(pgdat, &sc))
4270 			raise_priority = false;
4271 
4272 		/*
4273 		 * If the low watermark is met there is no need for processes
4274 		 * to be throttled on pfmemalloc_wait as they should not be
4275 		 * able to safely make forward progress. Wake them
4276 		 */
4277 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4278 				allow_direct_reclaim(pgdat))
4279 			wake_up_all(&pgdat->pfmemalloc_wait);
4280 
4281 		/* Check if kswapd should be suspending */
4282 		__fs_reclaim_release(_THIS_IP_);
4283 		ret = try_to_freeze();
4284 		__fs_reclaim_acquire(_THIS_IP_);
4285 		if (ret || kthread_should_stop())
4286 			break;
4287 
4288 		/*
4289 		 * Raise priority if scanning rate is too low or there was no
4290 		 * progress in reclaiming pages
4291 		 */
4292 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4293 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4294 
4295 		/*
4296 		 * If reclaim made no progress for a boost, stop reclaim as
4297 		 * IO cannot be queued and it could be an infinite loop in
4298 		 * extreme circumstances.
4299 		 */
4300 		if (nr_boost_reclaim && !nr_reclaimed)
4301 			break;
4302 
4303 		if (raise_priority || !nr_reclaimed)
4304 			sc.priority--;
4305 	} while (sc.priority >= 1);
4306 
4307 	if (!sc.nr_reclaimed)
4308 		pgdat->kswapd_failures++;
4309 
4310 out:
4311 	clear_reclaim_active(pgdat, highest_zoneidx);
4312 
4313 	/* If reclaim was boosted, account for the reclaim done in this pass */
4314 	if (boosted) {
4315 		unsigned long flags;
4316 
4317 		for (i = 0; i <= highest_zoneidx; i++) {
4318 			if (!zone_boosts[i])
4319 				continue;
4320 
4321 			/* Increments are under the zone lock */
4322 			zone = pgdat->node_zones + i;
4323 			spin_lock_irqsave(&zone->lock, flags);
4324 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4325 			spin_unlock_irqrestore(&zone->lock, flags);
4326 		}
4327 
4328 		/*
4329 		 * As there is now likely space, wakeup kcompact to defragment
4330 		 * pageblocks.
4331 		 */
4332 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4333 	}
4334 
4335 	snapshot_refaults(NULL, pgdat);
4336 	__fs_reclaim_release(_THIS_IP_);
4337 	psi_memstall_leave(&pflags);
4338 	set_task_reclaim_state(current, NULL);
4339 
4340 	/*
4341 	 * Return the order kswapd stopped reclaiming at as
4342 	 * prepare_kswapd_sleep() takes it into account. If another caller
4343 	 * entered the allocator slow path while kswapd was awake, order will
4344 	 * remain at the higher level.
4345 	 */
4346 	return sc.order;
4347 }
4348 
4349 /*
4350  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4351  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4352  * not a valid index then either kswapd runs for first time or kswapd couldn't
4353  * sleep after previous reclaim attempt (node is still unbalanced). In that
4354  * case return the zone index of the previous kswapd reclaim cycle.
4355  */
4356 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4357 					   enum zone_type prev_highest_zoneidx)
4358 {
4359 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4360 
4361 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4362 }
4363 
4364 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4365 				unsigned int highest_zoneidx)
4366 {
4367 	long remaining = 0;
4368 	DEFINE_WAIT(wait);
4369 
4370 	if (freezing(current) || kthread_should_stop())
4371 		return;
4372 
4373 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4374 
4375 	/*
4376 	 * Try to sleep for a short interval. Note that kcompactd will only be
4377 	 * woken if it is possible to sleep for a short interval. This is
4378 	 * deliberate on the assumption that if reclaim cannot keep an
4379 	 * eligible zone balanced that it's also unlikely that compaction will
4380 	 * succeed.
4381 	 */
4382 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4383 		/*
4384 		 * Compaction records what page blocks it recently failed to
4385 		 * isolate pages from and skips them in the future scanning.
4386 		 * When kswapd is going to sleep, it is reasonable to assume
4387 		 * that pages and compaction may succeed so reset the cache.
4388 		 */
4389 		reset_isolation_suitable(pgdat);
4390 
4391 		/*
4392 		 * We have freed the memory, now we should compact it to make
4393 		 * allocation of the requested order possible.
4394 		 */
4395 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4396 
4397 		remaining = schedule_timeout(HZ/10);
4398 
4399 		/*
4400 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4401 		 * order. The values will either be from a wakeup request or
4402 		 * the previous request that slept prematurely.
4403 		 */
4404 		if (remaining) {
4405 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4406 					kswapd_highest_zoneidx(pgdat,
4407 							highest_zoneidx));
4408 
4409 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4410 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4411 		}
4412 
4413 		finish_wait(&pgdat->kswapd_wait, &wait);
4414 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4415 	}
4416 
4417 	/*
4418 	 * After a short sleep, check if it was a premature sleep. If not, then
4419 	 * go fully to sleep until explicitly woken up.
4420 	 */
4421 	if (!remaining &&
4422 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4423 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4424 
4425 		/*
4426 		 * vmstat counters are not perfectly accurate and the estimated
4427 		 * value for counters such as NR_FREE_PAGES can deviate from the
4428 		 * true value by nr_online_cpus * threshold. To avoid the zone
4429 		 * watermarks being breached while under pressure, we reduce the
4430 		 * per-cpu vmstat threshold while kswapd is awake and restore
4431 		 * them before going back to sleep.
4432 		 */
4433 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4434 
4435 		if (!kthread_should_stop())
4436 			schedule();
4437 
4438 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4439 	} else {
4440 		if (remaining)
4441 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4442 		else
4443 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4444 	}
4445 	finish_wait(&pgdat->kswapd_wait, &wait);
4446 }
4447 
4448 /*
4449  * The background pageout daemon, started as a kernel thread
4450  * from the init process.
4451  *
4452  * This basically trickles out pages so that we have _some_
4453  * free memory available even if there is no other activity
4454  * that frees anything up. This is needed for things like routing
4455  * etc, where we otherwise might have all activity going on in
4456  * asynchronous contexts that cannot page things out.
4457  *
4458  * If there are applications that are active memory-allocators
4459  * (most normal use), this basically shouldn't matter.
4460  */
4461 static int kswapd(void *p)
4462 {
4463 	unsigned int alloc_order, reclaim_order;
4464 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4465 	pg_data_t *pgdat = (pg_data_t *)p;
4466 	struct task_struct *tsk = current;
4467 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4468 
4469 	if (!cpumask_empty(cpumask))
4470 		set_cpus_allowed_ptr(tsk, cpumask);
4471 
4472 	/*
4473 	 * Tell the memory management that we're a "memory allocator",
4474 	 * and that if we need more memory we should get access to it
4475 	 * regardless (see "__alloc_pages()"). "kswapd" should
4476 	 * never get caught in the normal page freeing logic.
4477 	 *
4478 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4479 	 * you need a small amount of memory in order to be able to
4480 	 * page out something else, and this flag essentially protects
4481 	 * us from recursively trying to free more memory as we're
4482 	 * trying to free the first piece of memory in the first place).
4483 	 */
4484 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4485 	set_freezable();
4486 
4487 	WRITE_ONCE(pgdat->kswapd_order, 0);
4488 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4489 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4490 	for ( ; ; ) {
4491 		bool ret;
4492 
4493 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4494 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4495 							highest_zoneidx);
4496 
4497 kswapd_try_sleep:
4498 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4499 					highest_zoneidx);
4500 
4501 		/* Read the new order and highest_zoneidx */
4502 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4503 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4504 							highest_zoneidx);
4505 		WRITE_ONCE(pgdat->kswapd_order, 0);
4506 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4507 
4508 		ret = try_to_freeze();
4509 		if (kthread_should_stop())
4510 			break;
4511 
4512 		/*
4513 		 * We can speed up thawing tasks if we don't call balance_pgdat
4514 		 * after returning from the refrigerator
4515 		 */
4516 		if (ret)
4517 			continue;
4518 
4519 		/*
4520 		 * Reclaim begins at the requested order but if a high-order
4521 		 * reclaim fails then kswapd falls back to reclaiming for
4522 		 * order-0. If that happens, kswapd will consider sleeping
4523 		 * for the order it finished reclaiming at (reclaim_order)
4524 		 * but kcompactd is woken to compact for the original
4525 		 * request (alloc_order).
4526 		 */
4527 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4528 						alloc_order);
4529 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4530 						highest_zoneidx);
4531 		if (reclaim_order < alloc_order)
4532 			goto kswapd_try_sleep;
4533 	}
4534 
4535 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4536 
4537 	return 0;
4538 }
4539 
4540 /*
4541  * A zone is low on free memory or too fragmented for high-order memory.  If
4542  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4543  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4544  * has failed or is not needed, still wake up kcompactd if only compaction is
4545  * needed.
4546  */
4547 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4548 		   enum zone_type highest_zoneidx)
4549 {
4550 	pg_data_t *pgdat;
4551 	enum zone_type curr_idx;
4552 
4553 	if (!managed_zone(zone))
4554 		return;
4555 
4556 	if (!cpuset_zone_allowed(zone, gfp_flags))
4557 		return;
4558 
4559 	pgdat = zone->zone_pgdat;
4560 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4561 
4562 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4563 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4564 
4565 	if (READ_ONCE(pgdat->kswapd_order) < order)
4566 		WRITE_ONCE(pgdat->kswapd_order, order);
4567 
4568 	if (!waitqueue_active(&pgdat->kswapd_wait))
4569 		return;
4570 
4571 	/* Hopeless node, leave it to direct reclaim if possible */
4572 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4573 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4574 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4575 		/*
4576 		 * There may be plenty of free memory available, but it's too
4577 		 * fragmented for high-order allocations.  Wake up kcompactd
4578 		 * and rely on compaction_suitable() to determine if it's
4579 		 * needed.  If it fails, it will defer subsequent attempts to
4580 		 * ratelimit its work.
4581 		 */
4582 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4583 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4584 		return;
4585 	}
4586 
4587 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4588 				      gfp_flags);
4589 	wake_up_interruptible(&pgdat->kswapd_wait);
4590 }
4591 
4592 #ifdef CONFIG_HIBERNATION
4593 /*
4594  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4595  * freed pages.
4596  *
4597  * Rather than trying to age LRUs the aim is to preserve the overall
4598  * LRU order by reclaiming preferentially
4599  * inactive > active > active referenced > active mapped
4600  */
4601 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4602 {
4603 	struct scan_control sc = {
4604 		.nr_to_reclaim = nr_to_reclaim,
4605 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4606 		.reclaim_idx = MAX_NR_ZONES - 1,
4607 		.priority = DEF_PRIORITY,
4608 		.may_writepage = 1,
4609 		.may_unmap = 1,
4610 		.may_swap = 1,
4611 		.hibernation_mode = 1,
4612 	};
4613 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4614 	unsigned long nr_reclaimed;
4615 	unsigned int noreclaim_flag;
4616 
4617 	fs_reclaim_acquire(sc.gfp_mask);
4618 	noreclaim_flag = memalloc_noreclaim_save();
4619 	set_task_reclaim_state(current, &sc.reclaim_state);
4620 
4621 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4622 
4623 	set_task_reclaim_state(current, NULL);
4624 	memalloc_noreclaim_restore(noreclaim_flag);
4625 	fs_reclaim_release(sc.gfp_mask);
4626 
4627 	return nr_reclaimed;
4628 }
4629 #endif /* CONFIG_HIBERNATION */
4630 
4631 /*
4632  * This kswapd start function will be called by init and node-hot-add.
4633  */
4634 void kswapd_run(int nid)
4635 {
4636 	pg_data_t *pgdat = NODE_DATA(nid);
4637 
4638 	if (pgdat->kswapd)
4639 		return;
4640 
4641 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4642 	if (IS_ERR(pgdat->kswapd)) {
4643 		/* failure at boot is fatal */
4644 		BUG_ON(system_state < SYSTEM_RUNNING);
4645 		pr_err("Failed to start kswapd on node %d\n", nid);
4646 		pgdat->kswapd = NULL;
4647 	}
4648 }
4649 
4650 /*
4651  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4652  * hold mem_hotplug_begin/end().
4653  */
4654 void kswapd_stop(int nid)
4655 {
4656 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4657 
4658 	if (kswapd) {
4659 		kthread_stop(kswapd);
4660 		NODE_DATA(nid)->kswapd = NULL;
4661 	}
4662 }
4663 
4664 static int __init kswapd_init(void)
4665 {
4666 	int nid;
4667 
4668 	swap_setup();
4669 	for_each_node_state(nid, N_MEMORY)
4670  		kswapd_run(nid);
4671 	return 0;
4672 }
4673 
4674 module_init(kswapd_init)
4675 
4676 #ifdef CONFIG_NUMA
4677 /*
4678  * Node reclaim mode
4679  *
4680  * If non-zero call node_reclaim when the number of free pages falls below
4681  * the watermarks.
4682  */
4683 int node_reclaim_mode __read_mostly;
4684 
4685 /*
4686  * Priority for NODE_RECLAIM. This determines the fraction of pages
4687  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4688  * a zone.
4689  */
4690 #define NODE_RECLAIM_PRIORITY 4
4691 
4692 /*
4693  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4694  * occur.
4695  */
4696 int sysctl_min_unmapped_ratio = 1;
4697 
4698 /*
4699  * If the number of slab pages in a zone grows beyond this percentage then
4700  * slab reclaim needs to occur.
4701  */
4702 int sysctl_min_slab_ratio = 5;
4703 
4704 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4705 {
4706 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4707 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4708 		node_page_state(pgdat, NR_ACTIVE_FILE);
4709 
4710 	/*
4711 	 * It's possible for there to be more file mapped pages than
4712 	 * accounted for by the pages on the file LRU lists because
4713 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4714 	 */
4715 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4716 }
4717 
4718 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4719 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4720 {
4721 	unsigned long nr_pagecache_reclaimable;
4722 	unsigned long delta = 0;
4723 
4724 	/*
4725 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4726 	 * potentially reclaimable. Otherwise, we have to worry about
4727 	 * pages like swapcache and node_unmapped_file_pages() provides
4728 	 * a better estimate
4729 	 */
4730 	if (node_reclaim_mode & RECLAIM_UNMAP)
4731 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4732 	else
4733 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4734 
4735 	/* If we can't clean pages, remove dirty pages from consideration */
4736 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4737 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4738 
4739 	/* Watch for any possible underflows due to delta */
4740 	if (unlikely(delta > nr_pagecache_reclaimable))
4741 		delta = nr_pagecache_reclaimable;
4742 
4743 	return nr_pagecache_reclaimable - delta;
4744 }
4745 
4746 /*
4747  * Try to free up some pages from this node through reclaim.
4748  */
4749 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4750 {
4751 	/* Minimum pages needed in order to stay on node */
4752 	const unsigned long nr_pages = 1 << order;
4753 	struct task_struct *p = current;
4754 	unsigned int noreclaim_flag;
4755 	struct scan_control sc = {
4756 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4757 		.gfp_mask = current_gfp_context(gfp_mask),
4758 		.order = order,
4759 		.priority = NODE_RECLAIM_PRIORITY,
4760 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4761 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4762 		.may_swap = 1,
4763 		.reclaim_idx = gfp_zone(gfp_mask),
4764 	};
4765 	unsigned long pflags;
4766 
4767 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4768 					   sc.gfp_mask);
4769 
4770 	cond_resched();
4771 	psi_memstall_enter(&pflags);
4772 	fs_reclaim_acquire(sc.gfp_mask);
4773 	/*
4774 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4775 	 */
4776 	noreclaim_flag = memalloc_noreclaim_save();
4777 	set_task_reclaim_state(p, &sc.reclaim_state);
4778 
4779 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4780 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
4781 		/*
4782 		 * Free memory by calling shrink node with increasing
4783 		 * priorities until we have enough memory freed.
4784 		 */
4785 		do {
4786 			shrink_node(pgdat, &sc);
4787 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4788 	}
4789 
4790 	set_task_reclaim_state(p, NULL);
4791 	memalloc_noreclaim_restore(noreclaim_flag);
4792 	fs_reclaim_release(sc.gfp_mask);
4793 	psi_memstall_leave(&pflags);
4794 
4795 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4796 
4797 	return sc.nr_reclaimed >= nr_pages;
4798 }
4799 
4800 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4801 {
4802 	int ret;
4803 
4804 	/*
4805 	 * Node reclaim reclaims unmapped file backed pages and
4806 	 * slab pages if we are over the defined limits.
4807 	 *
4808 	 * A small portion of unmapped file backed pages is needed for
4809 	 * file I/O otherwise pages read by file I/O will be immediately
4810 	 * thrown out if the node is overallocated. So we do not reclaim
4811 	 * if less than a specified percentage of the node is used by
4812 	 * unmapped file backed pages.
4813 	 */
4814 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4815 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4816 	    pgdat->min_slab_pages)
4817 		return NODE_RECLAIM_FULL;
4818 
4819 	/*
4820 	 * Do not scan if the allocation should not be delayed.
4821 	 */
4822 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4823 		return NODE_RECLAIM_NOSCAN;
4824 
4825 	/*
4826 	 * Only run node reclaim on the local node or on nodes that do not
4827 	 * have associated processors. This will favor the local processor
4828 	 * over remote processors and spread off node memory allocations
4829 	 * as wide as possible.
4830 	 */
4831 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4832 		return NODE_RECLAIM_NOSCAN;
4833 
4834 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4835 		return NODE_RECLAIM_NOSCAN;
4836 
4837 	ret = __node_reclaim(pgdat, gfp_mask, order);
4838 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4839 
4840 	if (!ret)
4841 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4842 
4843 	return ret;
4844 }
4845 #endif
4846 
4847 /**
4848  * check_move_unevictable_pages - check pages for evictability and move to
4849  * appropriate zone lru list
4850  * @pvec: pagevec with lru pages to check
4851  *
4852  * Checks pages for evictability, if an evictable page is in the unevictable
4853  * lru list, moves it to the appropriate evictable lru list. This function
4854  * should be only used for lru pages.
4855  */
4856 void check_move_unevictable_pages(struct pagevec *pvec)
4857 {
4858 	struct lruvec *lruvec = NULL;
4859 	int pgscanned = 0;
4860 	int pgrescued = 0;
4861 	int i;
4862 
4863 	for (i = 0; i < pvec->nr; i++) {
4864 		struct page *page = pvec->pages[i];
4865 		struct folio *folio = page_folio(page);
4866 		int nr_pages;
4867 
4868 		if (PageTransTail(page))
4869 			continue;
4870 
4871 		nr_pages = thp_nr_pages(page);
4872 		pgscanned += nr_pages;
4873 
4874 		/* block memcg migration during page moving between lru */
4875 		if (!TestClearPageLRU(page))
4876 			continue;
4877 
4878 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4879 		if (page_evictable(page) && PageUnevictable(page)) {
4880 			del_page_from_lru_list(page, lruvec);
4881 			ClearPageUnevictable(page);
4882 			add_page_to_lru_list(page, lruvec);
4883 			pgrescued += nr_pages;
4884 		}
4885 		SetPageLRU(page);
4886 	}
4887 
4888 	if (lruvec) {
4889 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4890 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4891 		unlock_page_lruvec_irq(lruvec);
4892 	} else if (pgscanned) {
4893 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4894 	}
4895 }
4896 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4897