1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/rwsem.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 #include <linux/rculist_nulls.h> 59 #include <linux/random.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 64 #include <linux/swapops.h> 65 #include <linux/balloon_compaction.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 /* Can active folios be deactivated as part of reclaim? */ 97 #define DEACTIVATE_ANON 1 98 #define DEACTIVATE_FILE 2 99 unsigned int may_deactivate:2; 100 unsigned int force_deactivate:1; 101 unsigned int skipped_deactivate:1; 102 103 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 104 unsigned int may_writepage:1; 105 106 /* Can mapped folios be reclaimed? */ 107 unsigned int may_unmap:1; 108 109 /* Can folios be swapped as part of reclaim? */ 110 unsigned int may_swap:1; 111 112 /* Proactive reclaim invoked by userspace through memory.reclaim */ 113 unsigned int proactive:1; 114 115 /* 116 * Cgroup memory below memory.low is protected as long as we 117 * don't threaten to OOM. If any cgroup is reclaimed at 118 * reduced force or passed over entirely due to its memory.low 119 * setting (memcg_low_skipped), and nothing is reclaimed as a 120 * result, then go back for one more cycle that reclaims the protected 121 * memory (memcg_low_reclaim) to avert OOM. 122 */ 123 unsigned int memcg_low_reclaim:1; 124 unsigned int memcg_low_skipped:1; 125 126 unsigned int hibernation_mode:1; 127 128 /* One of the zones is ready for compaction */ 129 unsigned int compaction_ready:1; 130 131 /* There is easily reclaimable cold cache in the current node */ 132 unsigned int cache_trim_mode:1; 133 134 /* The file folios on the current node are dangerously low */ 135 unsigned int file_is_tiny:1; 136 137 /* Always discard instead of demoting to lower tier memory */ 138 unsigned int no_demotion:1; 139 140 /* Allocation order */ 141 s8 order; 142 143 /* Scan (total_size >> priority) pages at once */ 144 s8 priority; 145 146 /* The highest zone to isolate folios for reclaim from */ 147 s8 reclaim_idx; 148 149 /* This context's GFP mask */ 150 gfp_t gfp_mask; 151 152 /* Incremented by the number of inactive pages that were scanned */ 153 unsigned long nr_scanned; 154 155 /* Number of pages freed so far during a call to shrink_zones() */ 156 unsigned long nr_reclaimed; 157 158 struct { 159 unsigned int dirty; 160 unsigned int unqueued_dirty; 161 unsigned int congested; 162 unsigned int writeback; 163 unsigned int immediate; 164 unsigned int file_taken; 165 unsigned int taken; 166 } nr; 167 168 /* for recording the reclaimed slab by now */ 169 struct reclaim_state reclaim_state; 170 }; 171 172 #ifdef ARCH_HAS_PREFETCHW 173 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 174 do { \ 175 if ((_folio)->lru.prev != _base) { \ 176 struct folio *prev; \ 177 \ 178 prev = lru_to_folio(&(_folio->lru)); \ 179 prefetchw(&prev->_field); \ 180 } \ 181 } while (0) 182 #else 183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 184 #endif 185 186 /* 187 * From 0 .. 200. Higher means more swappy. 188 */ 189 int vm_swappiness = 60; 190 191 LIST_HEAD(shrinker_list); 192 DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size, 218 int new_nr_max) 219 { 220 struct shrinker_info *new, *old; 221 struct mem_cgroup_per_node *pn; 222 int nid; 223 int size = map_size + defer_size; 224 225 for_each_node(nid) { 226 pn = memcg->nodeinfo[nid]; 227 old = shrinker_info_protected(memcg, nid); 228 /* Not yet online memcg */ 229 if (!old) 230 return 0; 231 232 /* Already expanded this shrinker_info */ 233 if (new_nr_max <= old->map_nr_max) 234 continue; 235 236 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 237 if (!new) 238 return -ENOMEM; 239 240 new->nr_deferred = (atomic_long_t *)(new + 1); 241 new->map = (void *)new->nr_deferred + defer_size; 242 new->map_nr_max = new_nr_max; 243 244 /* map: set all old bits, clear all new bits */ 245 memset(new->map, (int)0xff, old_map_size); 246 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 247 /* nr_deferred: copy old values, clear all new values */ 248 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 249 memset((void *)new->nr_deferred + old_defer_size, 0, 250 defer_size - old_defer_size); 251 252 rcu_assign_pointer(pn->shrinker_info, new); 253 kvfree_rcu(old, rcu); 254 } 255 256 return 0; 257 } 258 259 void free_shrinker_info(struct mem_cgroup *memcg) 260 { 261 struct mem_cgroup_per_node *pn; 262 struct shrinker_info *info; 263 int nid; 264 265 for_each_node(nid) { 266 pn = memcg->nodeinfo[nid]; 267 info = rcu_dereference_protected(pn->shrinker_info, true); 268 kvfree(info); 269 rcu_assign_pointer(pn->shrinker_info, NULL); 270 } 271 } 272 273 int alloc_shrinker_info(struct mem_cgroup *memcg) 274 { 275 struct shrinker_info *info; 276 int nid, size, ret = 0; 277 int map_size, defer_size = 0; 278 279 down_write(&shrinker_rwsem); 280 map_size = shrinker_map_size(shrinker_nr_max); 281 defer_size = shrinker_defer_size(shrinker_nr_max); 282 size = map_size + defer_size; 283 for_each_node(nid) { 284 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 285 if (!info) { 286 free_shrinker_info(memcg); 287 ret = -ENOMEM; 288 break; 289 } 290 info->nr_deferred = (atomic_long_t *)(info + 1); 291 info->map = (void *)info->nr_deferred + defer_size; 292 info->map_nr_max = shrinker_nr_max; 293 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 294 } 295 up_write(&shrinker_rwsem); 296 297 return ret; 298 } 299 300 static int expand_shrinker_info(int new_id) 301 { 302 int ret = 0; 303 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG); 304 int map_size, defer_size = 0; 305 int old_map_size, old_defer_size = 0; 306 struct mem_cgroup *memcg; 307 308 if (!root_mem_cgroup) 309 goto out; 310 311 lockdep_assert_held(&shrinker_rwsem); 312 313 map_size = shrinker_map_size(new_nr_max); 314 defer_size = shrinker_defer_size(new_nr_max); 315 old_map_size = shrinker_map_size(shrinker_nr_max); 316 old_defer_size = shrinker_defer_size(shrinker_nr_max); 317 318 memcg = mem_cgroup_iter(NULL, NULL, NULL); 319 do { 320 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 321 old_map_size, old_defer_size, 322 new_nr_max); 323 if (ret) { 324 mem_cgroup_iter_break(NULL, memcg); 325 goto out; 326 } 327 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 328 out: 329 if (!ret) 330 shrinker_nr_max = new_nr_max; 331 332 return ret; 333 } 334 335 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 336 { 337 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 338 struct shrinker_info *info; 339 340 rcu_read_lock(); 341 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 342 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) { 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 } 347 rcu_read_unlock(); 348 } 349 } 350 351 static DEFINE_IDR(shrinker_idr); 352 353 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 354 { 355 int id, ret = -ENOMEM; 356 357 if (mem_cgroup_disabled()) 358 return -ENOSYS; 359 360 down_write(&shrinker_rwsem); 361 /* This may call shrinker, so it must use down_read_trylock() */ 362 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 363 if (id < 0) 364 goto unlock; 365 366 if (id >= shrinker_nr_max) { 367 if (expand_shrinker_info(id)) { 368 idr_remove(&shrinker_idr, id); 369 goto unlock; 370 } 371 } 372 shrinker->id = id; 373 ret = 0; 374 unlock: 375 up_write(&shrinker_rwsem); 376 return ret; 377 } 378 379 static void unregister_memcg_shrinker(struct shrinker *shrinker) 380 { 381 int id = shrinker->id; 382 383 BUG_ON(id < 0); 384 385 lockdep_assert_held(&shrinker_rwsem); 386 387 idr_remove(&shrinker_idr, id); 388 } 389 390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 391 struct mem_cgroup *memcg) 392 { 393 struct shrinker_info *info; 394 395 info = shrinker_info_protected(memcg, nid); 396 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 397 } 398 399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 400 struct mem_cgroup *memcg) 401 { 402 struct shrinker_info *info; 403 404 info = shrinker_info_protected(memcg, nid); 405 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 406 } 407 408 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 409 { 410 int i, nid; 411 long nr; 412 struct mem_cgroup *parent; 413 struct shrinker_info *child_info, *parent_info; 414 415 parent = parent_mem_cgroup(memcg); 416 if (!parent) 417 parent = root_mem_cgroup; 418 419 /* Prevent from concurrent shrinker_info expand */ 420 down_read(&shrinker_rwsem); 421 for_each_node(nid) { 422 child_info = shrinker_info_protected(memcg, nid); 423 parent_info = shrinker_info_protected(parent, nid); 424 for (i = 0; i < child_info->map_nr_max; i++) { 425 nr = atomic_long_read(&child_info->nr_deferred[i]); 426 atomic_long_add(nr, &parent_info->nr_deferred[i]); 427 } 428 } 429 up_read(&shrinker_rwsem); 430 } 431 432 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 433 static bool cgroup_reclaim(struct scan_control *sc) 434 { 435 return sc->target_mem_cgroup; 436 } 437 438 /* 439 * Returns true for reclaim on the root cgroup. This is true for direct 440 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 441 */ 442 static bool root_reclaim(struct scan_control *sc) 443 { 444 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 445 } 446 447 /** 448 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 449 * @sc: scan_control in question 450 * 451 * The normal page dirty throttling mechanism in balance_dirty_pages() is 452 * completely broken with the legacy memcg and direct stalling in 453 * shrink_folio_list() is used for throttling instead, which lacks all the 454 * niceties such as fairness, adaptive pausing, bandwidth proportional 455 * allocation and configurability. 456 * 457 * This function tests whether the vmscan currently in progress can assume 458 * that the normal dirty throttling mechanism is operational. 459 */ 460 static bool writeback_throttling_sane(struct scan_control *sc) 461 { 462 if (!cgroup_reclaim(sc)) 463 return true; 464 #ifdef CONFIG_CGROUP_WRITEBACK 465 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 466 return true; 467 #endif 468 return false; 469 } 470 #else 471 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 472 { 473 return -ENOSYS; 474 } 475 476 static void unregister_memcg_shrinker(struct shrinker *shrinker) 477 { 478 } 479 480 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 481 struct mem_cgroup *memcg) 482 { 483 return 0; 484 } 485 486 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 487 struct mem_cgroup *memcg) 488 { 489 return 0; 490 } 491 492 static bool cgroup_reclaim(struct scan_control *sc) 493 { 494 return false; 495 } 496 497 static bool root_reclaim(struct scan_control *sc) 498 { 499 return true; 500 } 501 502 static bool writeback_throttling_sane(struct scan_control *sc) 503 { 504 return true; 505 } 506 #endif 507 508 static void set_task_reclaim_state(struct task_struct *task, 509 struct reclaim_state *rs) 510 { 511 /* Check for an overwrite */ 512 WARN_ON_ONCE(rs && task->reclaim_state); 513 514 /* Check for the nulling of an already-nulled member */ 515 WARN_ON_ONCE(!rs && !task->reclaim_state); 516 517 task->reclaim_state = rs; 518 } 519 520 /* 521 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 522 * scan_control->nr_reclaimed. 523 */ 524 static void flush_reclaim_state(struct scan_control *sc) 525 { 526 /* 527 * Currently, reclaim_state->reclaimed includes three types of pages 528 * freed outside of vmscan: 529 * (1) Slab pages. 530 * (2) Clean file pages from pruned inodes (on highmem systems). 531 * (3) XFS freed buffer pages. 532 * 533 * For all of these cases, we cannot universally link the pages to a 534 * single memcg. For example, a memcg-aware shrinker can free one object 535 * charged to the target memcg, causing an entire page to be freed. 536 * If we count the entire page as reclaimed from the memcg, we end up 537 * overestimating the reclaimed amount (potentially under-reclaiming). 538 * 539 * Only count such pages for global reclaim to prevent under-reclaiming 540 * from the target memcg; preventing unnecessary retries during memcg 541 * charging and false positives from proactive reclaim. 542 * 543 * For uncommon cases where the freed pages were actually mostly 544 * charged to the target memcg, we end up underestimating the reclaimed 545 * amount. This should be fine. The freed pages will be uncharged 546 * anyway, even if they are not counted here properly, and we will be 547 * able to make forward progress in charging (which is usually in a 548 * retry loop). 549 * 550 * We can go one step further, and report the uncharged objcg pages in 551 * memcg reclaim, to make reporting more accurate and reduce 552 * underestimation, but it's probably not worth the complexity for now. 553 */ 554 if (current->reclaim_state && root_reclaim(sc)) { 555 sc->nr_reclaimed += current->reclaim_state->reclaimed; 556 current->reclaim_state->reclaimed = 0; 557 } 558 } 559 560 static long xchg_nr_deferred(struct shrinker *shrinker, 561 struct shrink_control *sc) 562 { 563 int nid = sc->nid; 564 565 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 566 nid = 0; 567 568 if (sc->memcg && 569 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 570 return xchg_nr_deferred_memcg(nid, shrinker, 571 sc->memcg); 572 573 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 574 } 575 576 577 static long add_nr_deferred(long nr, struct shrinker *shrinker, 578 struct shrink_control *sc) 579 { 580 int nid = sc->nid; 581 582 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 583 nid = 0; 584 585 if (sc->memcg && 586 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 587 return add_nr_deferred_memcg(nr, nid, shrinker, 588 sc->memcg); 589 590 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 591 } 592 593 static bool can_demote(int nid, struct scan_control *sc) 594 { 595 if (!numa_demotion_enabled) 596 return false; 597 if (sc && sc->no_demotion) 598 return false; 599 if (next_demotion_node(nid) == NUMA_NO_NODE) 600 return false; 601 602 return true; 603 } 604 605 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 606 int nid, 607 struct scan_control *sc) 608 { 609 if (memcg == NULL) { 610 /* 611 * For non-memcg reclaim, is there 612 * space in any swap device? 613 */ 614 if (get_nr_swap_pages() > 0) 615 return true; 616 } else { 617 /* Is the memcg below its swap limit? */ 618 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 619 return true; 620 } 621 622 /* 623 * The page can not be swapped. 624 * 625 * Can it be reclaimed from this node via demotion? 626 */ 627 return can_demote(nid, sc); 628 } 629 630 /* 631 * This misses isolated folios which are not accounted for to save counters. 632 * As the data only determines if reclaim or compaction continues, it is 633 * not expected that isolated folios will be a dominating factor. 634 */ 635 unsigned long zone_reclaimable_pages(struct zone *zone) 636 { 637 unsigned long nr; 638 639 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 640 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 641 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 642 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 643 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 644 645 return nr; 646 } 647 648 /** 649 * lruvec_lru_size - Returns the number of pages on the given LRU list. 650 * @lruvec: lru vector 651 * @lru: lru to use 652 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 653 */ 654 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 655 int zone_idx) 656 { 657 unsigned long size = 0; 658 int zid; 659 660 for (zid = 0; zid <= zone_idx; zid++) { 661 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 662 663 if (!managed_zone(zone)) 664 continue; 665 666 if (!mem_cgroup_disabled()) 667 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 668 else 669 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 670 } 671 return size; 672 } 673 674 /* 675 * Add a shrinker callback to be called from the vm. 676 */ 677 static int __prealloc_shrinker(struct shrinker *shrinker) 678 { 679 unsigned int size; 680 int err; 681 682 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 683 err = prealloc_memcg_shrinker(shrinker); 684 if (err != -ENOSYS) 685 return err; 686 687 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 688 } 689 690 size = sizeof(*shrinker->nr_deferred); 691 if (shrinker->flags & SHRINKER_NUMA_AWARE) 692 size *= nr_node_ids; 693 694 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 695 if (!shrinker->nr_deferred) 696 return -ENOMEM; 697 698 return 0; 699 } 700 701 #ifdef CONFIG_SHRINKER_DEBUG 702 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 703 { 704 va_list ap; 705 int err; 706 707 va_start(ap, fmt); 708 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 709 va_end(ap); 710 if (!shrinker->name) 711 return -ENOMEM; 712 713 err = __prealloc_shrinker(shrinker); 714 if (err) { 715 kfree_const(shrinker->name); 716 shrinker->name = NULL; 717 } 718 719 return err; 720 } 721 #else 722 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 723 { 724 return __prealloc_shrinker(shrinker); 725 } 726 #endif 727 728 void free_prealloced_shrinker(struct shrinker *shrinker) 729 { 730 #ifdef CONFIG_SHRINKER_DEBUG 731 kfree_const(shrinker->name); 732 shrinker->name = NULL; 733 #endif 734 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 735 down_write(&shrinker_rwsem); 736 unregister_memcg_shrinker(shrinker); 737 up_write(&shrinker_rwsem); 738 return; 739 } 740 741 kfree(shrinker->nr_deferred); 742 shrinker->nr_deferred = NULL; 743 } 744 745 void register_shrinker_prepared(struct shrinker *shrinker) 746 { 747 down_write(&shrinker_rwsem); 748 list_add_tail(&shrinker->list, &shrinker_list); 749 shrinker->flags |= SHRINKER_REGISTERED; 750 shrinker_debugfs_add(shrinker); 751 up_write(&shrinker_rwsem); 752 } 753 754 static int __register_shrinker(struct shrinker *shrinker) 755 { 756 int err = __prealloc_shrinker(shrinker); 757 758 if (err) 759 return err; 760 register_shrinker_prepared(shrinker); 761 return 0; 762 } 763 764 #ifdef CONFIG_SHRINKER_DEBUG 765 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 766 { 767 va_list ap; 768 int err; 769 770 va_start(ap, fmt); 771 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 772 va_end(ap); 773 if (!shrinker->name) 774 return -ENOMEM; 775 776 err = __register_shrinker(shrinker); 777 if (err) { 778 kfree_const(shrinker->name); 779 shrinker->name = NULL; 780 } 781 return err; 782 } 783 #else 784 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 785 { 786 return __register_shrinker(shrinker); 787 } 788 #endif 789 EXPORT_SYMBOL(register_shrinker); 790 791 /* 792 * Remove one 793 */ 794 void unregister_shrinker(struct shrinker *shrinker) 795 { 796 struct dentry *debugfs_entry; 797 int debugfs_id; 798 799 if (!(shrinker->flags & SHRINKER_REGISTERED)) 800 return; 801 802 down_write(&shrinker_rwsem); 803 list_del(&shrinker->list); 804 shrinker->flags &= ~SHRINKER_REGISTERED; 805 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 806 unregister_memcg_shrinker(shrinker); 807 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id); 808 up_write(&shrinker_rwsem); 809 810 shrinker_debugfs_remove(debugfs_entry, debugfs_id); 811 812 kfree(shrinker->nr_deferred); 813 shrinker->nr_deferred = NULL; 814 } 815 EXPORT_SYMBOL(unregister_shrinker); 816 817 /** 818 * synchronize_shrinkers - Wait for all running shrinkers to complete. 819 * 820 * This is equivalent to calling unregister_shrink() and register_shrinker(), 821 * but atomically and with less overhead. This is useful to guarantee that all 822 * shrinker invocations have seen an update, before freeing memory, similar to 823 * rcu. 824 */ 825 void synchronize_shrinkers(void) 826 { 827 down_write(&shrinker_rwsem); 828 up_write(&shrinker_rwsem); 829 } 830 EXPORT_SYMBOL(synchronize_shrinkers); 831 832 #define SHRINK_BATCH 128 833 834 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 835 struct shrinker *shrinker, int priority) 836 { 837 unsigned long freed = 0; 838 unsigned long long delta; 839 long total_scan; 840 long freeable; 841 long nr; 842 long new_nr; 843 long batch_size = shrinker->batch ? shrinker->batch 844 : SHRINK_BATCH; 845 long scanned = 0, next_deferred; 846 847 freeable = shrinker->count_objects(shrinker, shrinkctl); 848 if (freeable == 0 || freeable == SHRINK_EMPTY) 849 return freeable; 850 851 /* 852 * copy the current shrinker scan count into a local variable 853 * and zero it so that other concurrent shrinker invocations 854 * don't also do this scanning work. 855 */ 856 nr = xchg_nr_deferred(shrinker, shrinkctl); 857 858 if (shrinker->seeks) { 859 delta = freeable >> priority; 860 delta *= 4; 861 do_div(delta, shrinker->seeks); 862 } else { 863 /* 864 * These objects don't require any IO to create. Trim 865 * them aggressively under memory pressure to keep 866 * them from causing refetches in the IO caches. 867 */ 868 delta = freeable / 2; 869 } 870 871 total_scan = nr >> priority; 872 total_scan += delta; 873 total_scan = min(total_scan, (2 * freeable)); 874 875 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 876 freeable, delta, total_scan, priority); 877 878 /* 879 * Normally, we should not scan less than batch_size objects in one 880 * pass to avoid too frequent shrinker calls, but if the slab has less 881 * than batch_size objects in total and we are really tight on memory, 882 * we will try to reclaim all available objects, otherwise we can end 883 * up failing allocations although there are plenty of reclaimable 884 * objects spread over several slabs with usage less than the 885 * batch_size. 886 * 887 * We detect the "tight on memory" situations by looking at the total 888 * number of objects we want to scan (total_scan). If it is greater 889 * than the total number of objects on slab (freeable), we must be 890 * scanning at high prio and therefore should try to reclaim as much as 891 * possible. 892 */ 893 while (total_scan >= batch_size || 894 total_scan >= freeable) { 895 unsigned long ret; 896 unsigned long nr_to_scan = min(batch_size, total_scan); 897 898 shrinkctl->nr_to_scan = nr_to_scan; 899 shrinkctl->nr_scanned = nr_to_scan; 900 ret = shrinker->scan_objects(shrinker, shrinkctl); 901 if (ret == SHRINK_STOP) 902 break; 903 freed += ret; 904 905 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 906 total_scan -= shrinkctl->nr_scanned; 907 scanned += shrinkctl->nr_scanned; 908 909 cond_resched(); 910 } 911 912 /* 913 * The deferred work is increased by any new work (delta) that wasn't 914 * done, decreased by old deferred work that was done now. 915 * 916 * And it is capped to two times of the freeable items. 917 */ 918 next_deferred = max_t(long, (nr + delta - scanned), 0); 919 next_deferred = min(next_deferred, (2 * freeable)); 920 921 /* 922 * move the unused scan count back into the shrinker in a 923 * manner that handles concurrent updates. 924 */ 925 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 926 927 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 928 return freed; 929 } 930 931 #ifdef CONFIG_MEMCG 932 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 933 struct mem_cgroup *memcg, int priority) 934 { 935 struct shrinker_info *info; 936 unsigned long ret, freed = 0; 937 int i; 938 939 if (!mem_cgroup_online(memcg)) 940 return 0; 941 942 if (!down_read_trylock(&shrinker_rwsem)) 943 return 0; 944 945 info = shrinker_info_protected(memcg, nid); 946 if (unlikely(!info)) 947 goto unlock; 948 949 for_each_set_bit(i, info->map, info->map_nr_max) { 950 struct shrink_control sc = { 951 .gfp_mask = gfp_mask, 952 .nid = nid, 953 .memcg = memcg, 954 }; 955 struct shrinker *shrinker; 956 957 shrinker = idr_find(&shrinker_idr, i); 958 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 959 if (!shrinker) 960 clear_bit(i, info->map); 961 continue; 962 } 963 964 /* Call non-slab shrinkers even though kmem is disabled */ 965 if (!memcg_kmem_online() && 966 !(shrinker->flags & SHRINKER_NONSLAB)) 967 continue; 968 969 ret = do_shrink_slab(&sc, shrinker, priority); 970 if (ret == SHRINK_EMPTY) { 971 clear_bit(i, info->map); 972 /* 973 * After the shrinker reported that it had no objects to 974 * free, but before we cleared the corresponding bit in 975 * the memcg shrinker map, a new object might have been 976 * added. To make sure, we have the bit set in this 977 * case, we invoke the shrinker one more time and reset 978 * the bit if it reports that it is not empty anymore. 979 * The memory barrier here pairs with the barrier in 980 * set_shrinker_bit(): 981 * 982 * list_lru_add() shrink_slab_memcg() 983 * list_add_tail() clear_bit() 984 * <MB> <MB> 985 * set_bit() do_shrink_slab() 986 */ 987 smp_mb__after_atomic(); 988 ret = do_shrink_slab(&sc, shrinker, priority); 989 if (ret == SHRINK_EMPTY) 990 ret = 0; 991 else 992 set_shrinker_bit(memcg, nid, i); 993 } 994 freed += ret; 995 996 if (rwsem_is_contended(&shrinker_rwsem)) { 997 freed = freed ? : 1; 998 break; 999 } 1000 } 1001 unlock: 1002 up_read(&shrinker_rwsem); 1003 return freed; 1004 } 1005 #else /* CONFIG_MEMCG */ 1006 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 1007 struct mem_cgroup *memcg, int priority) 1008 { 1009 return 0; 1010 } 1011 #endif /* CONFIG_MEMCG */ 1012 1013 /** 1014 * shrink_slab - shrink slab caches 1015 * @gfp_mask: allocation context 1016 * @nid: node whose slab caches to target 1017 * @memcg: memory cgroup whose slab caches to target 1018 * @priority: the reclaim priority 1019 * 1020 * Call the shrink functions to age shrinkable caches. 1021 * 1022 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 1023 * unaware shrinkers will receive a node id of 0 instead. 1024 * 1025 * @memcg specifies the memory cgroup to target. Unaware shrinkers 1026 * are called only if it is the root cgroup. 1027 * 1028 * @priority is sc->priority, we take the number of objects and >> by priority 1029 * in order to get the scan target. 1030 * 1031 * Returns the number of reclaimed slab objects. 1032 */ 1033 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 1034 struct mem_cgroup *memcg, 1035 int priority) 1036 { 1037 unsigned long ret, freed = 0; 1038 struct shrinker *shrinker; 1039 1040 /* 1041 * The root memcg might be allocated even though memcg is disabled 1042 * via "cgroup_disable=memory" boot parameter. This could make 1043 * mem_cgroup_is_root() return false, then just run memcg slab 1044 * shrink, but skip global shrink. This may result in premature 1045 * oom. 1046 */ 1047 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 1048 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 1049 1050 if (!down_read_trylock(&shrinker_rwsem)) 1051 goto out; 1052 1053 list_for_each_entry(shrinker, &shrinker_list, list) { 1054 struct shrink_control sc = { 1055 .gfp_mask = gfp_mask, 1056 .nid = nid, 1057 .memcg = memcg, 1058 }; 1059 1060 ret = do_shrink_slab(&sc, shrinker, priority); 1061 if (ret == SHRINK_EMPTY) 1062 ret = 0; 1063 freed += ret; 1064 /* 1065 * Bail out if someone want to register a new shrinker to 1066 * prevent the registration from being stalled for long periods 1067 * by parallel ongoing shrinking. 1068 */ 1069 if (rwsem_is_contended(&shrinker_rwsem)) { 1070 freed = freed ? : 1; 1071 break; 1072 } 1073 } 1074 1075 up_read(&shrinker_rwsem); 1076 out: 1077 cond_resched(); 1078 return freed; 1079 } 1080 1081 static unsigned long drop_slab_node(int nid) 1082 { 1083 unsigned long freed = 0; 1084 struct mem_cgroup *memcg = NULL; 1085 1086 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1087 do { 1088 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1089 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1090 1091 return freed; 1092 } 1093 1094 void drop_slab(void) 1095 { 1096 int nid; 1097 int shift = 0; 1098 unsigned long freed; 1099 1100 do { 1101 freed = 0; 1102 for_each_online_node(nid) { 1103 if (fatal_signal_pending(current)) 1104 return; 1105 1106 freed += drop_slab_node(nid); 1107 } 1108 } while ((freed >> shift++) > 1); 1109 } 1110 1111 static int reclaimer_offset(void) 1112 { 1113 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1114 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1115 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1116 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1117 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1118 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1119 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1120 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1121 1122 if (current_is_kswapd()) 1123 return 0; 1124 if (current_is_khugepaged()) 1125 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1126 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1127 } 1128 1129 static inline int is_page_cache_freeable(struct folio *folio) 1130 { 1131 /* 1132 * A freeable page cache folio is referenced only by the caller 1133 * that isolated the folio, the page cache and optional filesystem 1134 * private data at folio->private. 1135 */ 1136 return folio_ref_count(folio) - folio_test_private(folio) == 1137 1 + folio_nr_pages(folio); 1138 } 1139 1140 /* 1141 * We detected a synchronous write error writing a folio out. Probably 1142 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1143 * fsync(), msync() or close(). 1144 * 1145 * The tricky part is that after writepage we cannot touch the mapping: nothing 1146 * prevents it from being freed up. But we have a ref on the folio and once 1147 * that folio is locked, the mapping is pinned. 1148 * 1149 * We're allowed to run sleeping folio_lock() here because we know the caller has 1150 * __GFP_FS. 1151 */ 1152 static void handle_write_error(struct address_space *mapping, 1153 struct folio *folio, int error) 1154 { 1155 folio_lock(folio); 1156 if (folio_mapping(folio) == mapping) 1157 mapping_set_error(mapping, error); 1158 folio_unlock(folio); 1159 } 1160 1161 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1162 { 1163 int reclaimable = 0, write_pending = 0; 1164 int i; 1165 1166 /* 1167 * If kswapd is disabled, reschedule if necessary but do not 1168 * throttle as the system is likely near OOM. 1169 */ 1170 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1171 return true; 1172 1173 /* 1174 * If there are a lot of dirty/writeback folios then do not 1175 * throttle as throttling will occur when the folios cycle 1176 * towards the end of the LRU if still under writeback. 1177 */ 1178 for (i = 0; i < MAX_NR_ZONES; i++) { 1179 struct zone *zone = pgdat->node_zones + i; 1180 1181 if (!managed_zone(zone)) 1182 continue; 1183 1184 reclaimable += zone_reclaimable_pages(zone); 1185 write_pending += zone_page_state_snapshot(zone, 1186 NR_ZONE_WRITE_PENDING); 1187 } 1188 if (2 * write_pending <= reclaimable) 1189 return true; 1190 1191 return false; 1192 } 1193 1194 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1195 { 1196 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1197 long timeout, ret; 1198 DEFINE_WAIT(wait); 1199 1200 /* 1201 * Do not throttle user workers, kthreads other than kswapd or 1202 * workqueues. They may be required for reclaim to make 1203 * forward progress (e.g. journalling workqueues or kthreads). 1204 */ 1205 if (!current_is_kswapd() && 1206 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 1207 cond_resched(); 1208 return; 1209 } 1210 1211 /* 1212 * These figures are pulled out of thin air. 1213 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1214 * parallel reclaimers which is a short-lived event so the timeout is 1215 * short. Failing to make progress or waiting on writeback are 1216 * potentially long-lived events so use a longer timeout. This is shaky 1217 * logic as a failure to make progress could be due to anything from 1218 * writeback to a slow device to excessive referenced folios at the tail 1219 * of the inactive LRU. 1220 */ 1221 switch(reason) { 1222 case VMSCAN_THROTTLE_WRITEBACK: 1223 timeout = HZ/10; 1224 1225 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1226 WRITE_ONCE(pgdat->nr_reclaim_start, 1227 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1228 } 1229 1230 break; 1231 case VMSCAN_THROTTLE_CONGESTED: 1232 fallthrough; 1233 case VMSCAN_THROTTLE_NOPROGRESS: 1234 if (skip_throttle_noprogress(pgdat)) { 1235 cond_resched(); 1236 return; 1237 } 1238 1239 timeout = 1; 1240 1241 break; 1242 case VMSCAN_THROTTLE_ISOLATED: 1243 timeout = HZ/50; 1244 break; 1245 default: 1246 WARN_ON_ONCE(1); 1247 timeout = HZ; 1248 break; 1249 } 1250 1251 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1252 ret = schedule_timeout(timeout); 1253 finish_wait(wqh, &wait); 1254 1255 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1256 atomic_dec(&pgdat->nr_writeback_throttled); 1257 1258 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1259 jiffies_to_usecs(timeout - ret), 1260 reason); 1261 } 1262 1263 /* 1264 * Account for folios written if tasks are throttled waiting on dirty 1265 * folios to clean. If enough folios have been cleaned since throttling 1266 * started then wakeup the throttled tasks. 1267 */ 1268 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1269 int nr_throttled) 1270 { 1271 unsigned long nr_written; 1272 1273 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1274 1275 /* 1276 * This is an inaccurate read as the per-cpu deltas may not 1277 * be synchronised. However, given that the system is 1278 * writeback throttled, it is not worth taking the penalty 1279 * of getting an accurate count. At worst, the throttle 1280 * timeout guarantees forward progress. 1281 */ 1282 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1283 READ_ONCE(pgdat->nr_reclaim_start); 1284 1285 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1286 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1287 } 1288 1289 /* possible outcome of pageout() */ 1290 typedef enum { 1291 /* failed to write folio out, folio is locked */ 1292 PAGE_KEEP, 1293 /* move folio to the active list, folio is locked */ 1294 PAGE_ACTIVATE, 1295 /* folio has been sent to the disk successfully, folio is unlocked */ 1296 PAGE_SUCCESS, 1297 /* folio is clean and locked */ 1298 PAGE_CLEAN, 1299 } pageout_t; 1300 1301 /* 1302 * pageout is called by shrink_folio_list() for each dirty folio. 1303 * Calls ->writepage(). 1304 */ 1305 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1306 struct swap_iocb **plug) 1307 { 1308 /* 1309 * If the folio is dirty, only perform writeback if that write 1310 * will be non-blocking. To prevent this allocation from being 1311 * stalled by pagecache activity. But note that there may be 1312 * stalls if we need to run get_block(). We could test 1313 * PagePrivate for that. 1314 * 1315 * If this process is currently in __generic_file_write_iter() against 1316 * this folio's queue, we can perform writeback even if that 1317 * will block. 1318 * 1319 * If the folio is swapcache, write it back even if that would 1320 * block, for some throttling. This happens by accident, because 1321 * swap_backing_dev_info is bust: it doesn't reflect the 1322 * congestion state of the swapdevs. Easy to fix, if needed. 1323 */ 1324 if (!is_page_cache_freeable(folio)) 1325 return PAGE_KEEP; 1326 if (!mapping) { 1327 /* 1328 * Some data journaling orphaned folios can have 1329 * folio->mapping == NULL while being dirty with clean buffers. 1330 */ 1331 if (folio_test_private(folio)) { 1332 if (try_to_free_buffers(folio)) { 1333 folio_clear_dirty(folio); 1334 pr_info("%s: orphaned folio\n", __func__); 1335 return PAGE_CLEAN; 1336 } 1337 } 1338 return PAGE_KEEP; 1339 } 1340 if (mapping->a_ops->writepage == NULL) 1341 return PAGE_ACTIVATE; 1342 1343 if (folio_clear_dirty_for_io(folio)) { 1344 int res; 1345 struct writeback_control wbc = { 1346 .sync_mode = WB_SYNC_NONE, 1347 .nr_to_write = SWAP_CLUSTER_MAX, 1348 .range_start = 0, 1349 .range_end = LLONG_MAX, 1350 .for_reclaim = 1, 1351 .swap_plug = plug, 1352 }; 1353 1354 folio_set_reclaim(folio); 1355 res = mapping->a_ops->writepage(&folio->page, &wbc); 1356 if (res < 0) 1357 handle_write_error(mapping, folio, res); 1358 if (res == AOP_WRITEPAGE_ACTIVATE) { 1359 folio_clear_reclaim(folio); 1360 return PAGE_ACTIVATE; 1361 } 1362 1363 if (!folio_test_writeback(folio)) { 1364 /* synchronous write or broken a_ops? */ 1365 folio_clear_reclaim(folio); 1366 } 1367 trace_mm_vmscan_write_folio(folio); 1368 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1369 return PAGE_SUCCESS; 1370 } 1371 1372 return PAGE_CLEAN; 1373 } 1374 1375 /* 1376 * Same as remove_mapping, but if the folio is removed from the mapping, it 1377 * gets returned with a refcount of 0. 1378 */ 1379 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1380 bool reclaimed, struct mem_cgroup *target_memcg) 1381 { 1382 int refcount; 1383 void *shadow = NULL; 1384 1385 BUG_ON(!folio_test_locked(folio)); 1386 BUG_ON(mapping != folio_mapping(folio)); 1387 1388 if (!folio_test_swapcache(folio)) 1389 spin_lock(&mapping->host->i_lock); 1390 xa_lock_irq(&mapping->i_pages); 1391 /* 1392 * The non racy check for a busy folio. 1393 * 1394 * Must be careful with the order of the tests. When someone has 1395 * a ref to the folio, it may be possible that they dirty it then 1396 * drop the reference. So if the dirty flag is tested before the 1397 * refcount here, then the following race may occur: 1398 * 1399 * get_user_pages(&page); 1400 * [user mapping goes away] 1401 * write_to(page); 1402 * !folio_test_dirty(folio) [good] 1403 * folio_set_dirty(folio); 1404 * folio_put(folio); 1405 * !refcount(folio) [good, discard it] 1406 * 1407 * [oops, our write_to data is lost] 1408 * 1409 * Reversing the order of the tests ensures such a situation cannot 1410 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1411 * load is not satisfied before that of folio->_refcount. 1412 * 1413 * Note that if the dirty flag is always set via folio_mark_dirty, 1414 * and thus under the i_pages lock, then this ordering is not required. 1415 */ 1416 refcount = 1 + folio_nr_pages(folio); 1417 if (!folio_ref_freeze(folio, refcount)) 1418 goto cannot_free; 1419 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1420 if (unlikely(folio_test_dirty(folio))) { 1421 folio_ref_unfreeze(folio, refcount); 1422 goto cannot_free; 1423 } 1424 1425 if (folio_test_swapcache(folio)) { 1426 swp_entry_t swap = folio->swap; 1427 1428 if (reclaimed && !mapping_exiting(mapping)) 1429 shadow = workingset_eviction(folio, target_memcg); 1430 __delete_from_swap_cache(folio, swap, shadow); 1431 mem_cgroup_swapout(folio, swap); 1432 xa_unlock_irq(&mapping->i_pages); 1433 put_swap_folio(folio, swap); 1434 } else { 1435 void (*free_folio)(struct folio *); 1436 1437 free_folio = mapping->a_ops->free_folio; 1438 /* 1439 * Remember a shadow entry for reclaimed file cache in 1440 * order to detect refaults, thus thrashing, later on. 1441 * 1442 * But don't store shadows in an address space that is 1443 * already exiting. This is not just an optimization, 1444 * inode reclaim needs to empty out the radix tree or 1445 * the nodes are lost. Don't plant shadows behind its 1446 * back. 1447 * 1448 * We also don't store shadows for DAX mappings because the 1449 * only page cache folios found in these are zero pages 1450 * covering holes, and because we don't want to mix DAX 1451 * exceptional entries and shadow exceptional entries in the 1452 * same address_space. 1453 */ 1454 if (reclaimed && folio_is_file_lru(folio) && 1455 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1456 shadow = workingset_eviction(folio, target_memcg); 1457 __filemap_remove_folio(folio, shadow); 1458 xa_unlock_irq(&mapping->i_pages); 1459 if (mapping_shrinkable(mapping)) 1460 inode_add_lru(mapping->host); 1461 spin_unlock(&mapping->host->i_lock); 1462 1463 if (free_folio) 1464 free_folio(folio); 1465 } 1466 1467 return 1; 1468 1469 cannot_free: 1470 xa_unlock_irq(&mapping->i_pages); 1471 if (!folio_test_swapcache(folio)) 1472 spin_unlock(&mapping->host->i_lock); 1473 return 0; 1474 } 1475 1476 /** 1477 * remove_mapping() - Attempt to remove a folio from its mapping. 1478 * @mapping: The address space. 1479 * @folio: The folio to remove. 1480 * 1481 * If the folio is dirty, under writeback or if someone else has a ref 1482 * on it, removal will fail. 1483 * Return: The number of pages removed from the mapping. 0 if the folio 1484 * could not be removed. 1485 * Context: The caller should have a single refcount on the folio and 1486 * hold its lock. 1487 */ 1488 long remove_mapping(struct address_space *mapping, struct folio *folio) 1489 { 1490 if (__remove_mapping(mapping, folio, false, NULL)) { 1491 /* 1492 * Unfreezing the refcount with 1 effectively 1493 * drops the pagecache ref for us without requiring another 1494 * atomic operation. 1495 */ 1496 folio_ref_unfreeze(folio, 1); 1497 return folio_nr_pages(folio); 1498 } 1499 return 0; 1500 } 1501 1502 /** 1503 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1504 * @folio: Folio to be returned to an LRU list. 1505 * 1506 * Add previously isolated @folio to appropriate LRU list. 1507 * The folio may still be unevictable for other reasons. 1508 * 1509 * Context: lru_lock must not be held, interrupts must be enabled. 1510 */ 1511 void folio_putback_lru(struct folio *folio) 1512 { 1513 folio_add_lru(folio); 1514 folio_put(folio); /* drop ref from isolate */ 1515 } 1516 1517 enum folio_references { 1518 FOLIOREF_RECLAIM, 1519 FOLIOREF_RECLAIM_CLEAN, 1520 FOLIOREF_KEEP, 1521 FOLIOREF_ACTIVATE, 1522 }; 1523 1524 static enum folio_references folio_check_references(struct folio *folio, 1525 struct scan_control *sc) 1526 { 1527 int referenced_ptes, referenced_folio; 1528 unsigned long vm_flags; 1529 1530 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1531 &vm_flags); 1532 referenced_folio = folio_test_clear_referenced(folio); 1533 1534 /* 1535 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1536 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1537 */ 1538 if (vm_flags & VM_LOCKED) 1539 return FOLIOREF_ACTIVATE; 1540 1541 /* rmap lock contention: rotate */ 1542 if (referenced_ptes == -1) 1543 return FOLIOREF_KEEP; 1544 1545 if (referenced_ptes) { 1546 /* 1547 * All mapped folios start out with page table 1548 * references from the instantiating fault, so we need 1549 * to look twice if a mapped file/anon folio is used more 1550 * than once. 1551 * 1552 * Mark it and spare it for another trip around the 1553 * inactive list. Another page table reference will 1554 * lead to its activation. 1555 * 1556 * Note: the mark is set for activated folios as well 1557 * so that recently deactivated but used folios are 1558 * quickly recovered. 1559 */ 1560 folio_set_referenced(folio); 1561 1562 if (referenced_folio || referenced_ptes > 1) 1563 return FOLIOREF_ACTIVATE; 1564 1565 /* 1566 * Activate file-backed executable folios after first usage. 1567 */ 1568 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1569 return FOLIOREF_ACTIVATE; 1570 1571 return FOLIOREF_KEEP; 1572 } 1573 1574 /* Reclaim if clean, defer dirty folios to writeback */ 1575 if (referenced_folio && folio_is_file_lru(folio)) 1576 return FOLIOREF_RECLAIM_CLEAN; 1577 1578 return FOLIOREF_RECLAIM; 1579 } 1580 1581 /* Check if a folio is dirty or under writeback */ 1582 static void folio_check_dirty_writeback(struct folio *folio, 1583 bool *dirty, bool *writeback) 1584 { 1585 struct address_space *mapping; 1586 1587 /* 1588 * Anonymous folios are not handled by flushers and must be written 1589 * from reclaim context. Do not stall reclaim based on them. 1590 * MADV_FREE anonymous folios are put into inactive file list too. 1591 * They could be mistakenly treated as file lru. So further anon 1592 * test is needed. 1593 */ 1594 if (!folio_is_file_lru(folio) || 1595 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1596 *dirty = false; 1597 *writeback = false; 1598 return; 1599 } 1600 1601 /* By default assume that the folio flags are accurate */ 1602 *dirty = folio_test_dirty(folio); 1603 *writeback = folio_test_writeback(folio); 1604 1605 /* Verify dirty/writeback state if the filesystem supports it */ 1606 if (!folio_test_private(folio)) 1607 return; 1608 1609 mapping = folio_mapping(folio); 1610 if (mapping && mapping->a_ops->is_dirty_writeback) 1611 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1612 } 1613 1614 static struct folio *alloc_demote_folio(struct folio *src, 1615 unsigned long private) 1616 { 1617 struct folio *dst; 1618 nodemask_t *allowed_mask; 1619 struct migration_target_control *mtc; 1620 1621 mtc = (struct migration_target_control *)private; 1622 1623 allowed_mask = mtc->nmask; 1624 /* 1625 * make sure we allocate from the target node first also trying to 1626 * demote or reclaim pages from the target node via kswapd if we are 1627 * low on free memory on target node. If we don't do this and if 1628 * we have free memory on the slower(lower) memtier, we would start 1629 * allocating pages from slower(lower) memory tiers without even forcing 1630 * a demotion of cold pages from the target memtier. This can result 1631 * in the kernel placing hot pages in slower(lower) memory tiers. 1632 */ 1633 mtc->nmask = NULL; 1634 mtc->gfp_mask |= __GFP_THISNODE; 1635 dst = alloc_migration_target(src, (unsigned long)mtc); 1636 if (dst) 1637 return dst; 1638 1639 mtc->gfp_mask &= ~__GFP_THISNODE; 1640 mtc->nmask = allowed_mask; 1641 1642 return alloc_migration_target(src, (unsigned long)mtc); 1643 } 1644 1645 /* 1646 * Take folios on @demote_folios and attempt to demote them to another node. 1647 * Folios which are not demoted are left on @demote_folios. 1648 */ 1649 static unsigned int demote_folio_list(struct list_head *demote_folios, 1650 struct pglist_data *pgdat) 1651 { 1652 int target_nid = next_demotion_node(pgdat->node_id); 1653 unsigned int nr_succeeded; 1654 nodemask_t allowed_mask; 1655 1656 struct migration_target_control mtc = { 1657 /* 1658 * Allocate from 'node', or fail quickly and quietly. 1659 * When this happens, 'page' will likely just be discarded 1660 * instead of migrated. 1661 */ 1662 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1663 __GFP_NOMEMALLOC | GFP_NOWAIT, 1664 .nid = target_nid, 1665 .nmask = &allowed_mask 1666 }; 1667 1668 if (list_empty(demote_folios)) 1669 return 0; 1670 1671 if (target_nid == NUMA_NO_NODE) 1672 return 0; 1673 1674 node_get_allowed_targets(pgdat, &allowed_mask); 1675 1676 /* Demotion ignores all cpuset and mempolicy settings */ 1677 migrate_pages(demote_folios, alloc_demote_folio, NULL, 1678 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1679 &nr_succeeded); 1680 1681 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1682 1683 return nr_succeeded; 1684 } 1685 1686 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1687 { 1688 if (gfp_mask & __GFP_FS) 1689 return true; 1690 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1691 return false; 1692 /* 1693 * We can "enter_fs" for swap-cache with only __GFP_IO 1694 * providing this isn't SWP_FS_OPS. 1695 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1696 * but that will never affect SWP_FS_OPS, so the data_race 1697 * is safe. 1698 */ 1699 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1700 } 1701 1702 /* 1703 * shrink_folio_list() returns the number of reclaimed pages 1704 */ 1705 static unsigned int shrink_folio_list(struct list_head *folio_list, 1706 struct pglist_data *pgdat, struct scan_control *sc, 1707 struct reclaim_stat *stat, bool ignore_references) 1708 { 1709 LIST_HEAD(ret_folios); 1710 LIST_HEAD(free_folios); 1711 LIST_HEAD(demote_folios); 1712 unsigned int nr_reclaimed = 0; 1713 unsigned int pgactivate = 0; 1714 bool do_demote_pass; 1715 struct swap_iocb *plug = NULL; 1716 1717 memset(stat, 0, sizeof(*stat)); 1718 cond_resched(); 1719 do_demote_pass = can_demote(pgdat->node_id, sc); 1720 1721 retry: 1722 while (!list_empty(folio_list)) { 1723 struct address_space *mapping; 1724 struct folio *folio; 1725 enum folio_references references = FOLIOREF_RECLAIM; 1726 bool dirty, writeback; 1727 unsigned int nr_pages; 1728 1729 cond_resched(); 1730 1731 folio = lru_to_folio(folio_list); 1732 list_del(&folio->lru); 1733 1734 if (!folio_trylock(folio)) 1735 goto keep; 1736 1737 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1738 1739 nr_pages = folio_nr_pages(folio); 1740 1741 /* Account the number of base pages */ 1742 sc->nr_scanned += nr_pages; 1743 1744 if (unlikely(!folio_evictable(folio))) 1745 goto activate_locked; 1746 1747 if (!sc->may_unmap && folio_mapped(folio)) 1748 goto keep_locked; 1749 1750 /* folio_update_gen() tried to promote this page? */ 1751 if (lru_gen_enabled() && !ignore_references && 1752 folio_mapped(folio) && folio_test_referenced(folio)) 1753 goto keep_locked; 1754 1755 /* 1756 * The number of dirty pages determines if a node is marked 1757 * reclaim_congested. kswapd will stall and start writing 1758 * folios if the tail of the LRU is all dirty unqueued folios. 1759 */ 1760 folio_check_dirty_writeback(folio, &dirty, &writeback); 1761 if (dirty || writeback) 1762 stat->nr_dirty += nr_pages; 1763 1764 if (dirty && !writeback) 1765 stat->nr_unqueued_dirty += nr_pages; 1766 1767 /* 1768 * Treat this folio as congested if folios are cycling 1769 * through the LRU so quickly that the folios marked 1770 * for immediate reclaim are making it to the end of 1771 * the LRU a second time. 1772 */ 1773 if (writeback && folio_test_reclaim(folio)) 1774 stat->nr_congested += nr_pages; 1775 1776 /* 1777 * If a folio at the tail of the LRU is under writeback, there 1778 * are three cases to consider. 1779 * 1780 * 1) If reclaim is encountering an excessive number 1781 * of folios under writeback and this folio has both 1782 * the writeback and reclaim flags set, then it 1783 * indicates that folios are being queued for I/O but 1784 * are being recycled through the LRU before the I/O 1785 * can complete. Waiting on the folio itself risks an 1786 * indefinite stall if it is impossible to writeback 1787 * the folio due to I/O error or disconnected storage 1788 * so instead note that the LRU is being scanned too 1789 * quickly and the caller can stall after the folio 1790 * list has been processed. 1791 * 1792 * 2) Global or new memcg reclaim encounters a folio that is 1793 * not marked for immediate reclaim, or the caller does not 1794 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1795 * not to fs). In this case mark the folio for immediate 1796 * reclaim and continue scanning. 1797 * 1798 * Require may_enter_fs() because we would wait on fs, which 1799 * may not have submitted I/O yet. And the loop driver might 1800 * enter reclaim, and deadlock if it waits on a folio for 1801 * which it is needed to do the write (loop masks off 1802 * __GFP_IO|__GFP_FS for this reason); but more thought 1803 * would probably show more reasons. 1804 * 1805 * 3) Legacy memcg encounters a folio that already has the 1806 * reclaim flag set. memcg does not have any dirty folio 1807 * throttling so we could easily OOM just because too many 1808 * folios are in writeback and there is nothing else to 1809 * reclaim. Wait for the writeback to complete. 1810 * 1811 * In cases 1) and 2) we activate the folios to get them out of 1812 * the way while we continue scanning for clean folios on the 1813 * inactive list and refilling from the active list. The 1814 * observation here is that waiting for disk writes is more 1815 * expensive than potentially causing reloads down the line. 1816 * Since they're marked for immediate reclaim, they won't put 1817 * memory pressure on the cache working set any longer than it 1818 * takes to write them to disk. 1819 */ 1820 if (folio_test_writeback(folio)) { 1821 /* Case 1 above */ 1822 if (current_is_kswapd() && 1823 folio_test_reclaim(folio) && 1824 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1825 stat->nr_immediate += nr_pages; 1826 goto activate_locked; 1827 1828 /* Case 2 above */ 1829 } else if (writeback_throttling_sane(sc) || 1830 !folio_test_reclaim(folio) || 1831 !may_enter_fs(folio, sc->gfp_mask)) { 1832 /* 1833 * This is slightly racy - 1834 * folio_end_writeback() might have 1835 * just cleared the reclaim flag, then 1836 * setting the reclaim flag here ends up 1837 * interpreted as the readahead flag - but 1838 * that does not matter enough to care. 1839 * What we do want is for this folio to 1840 * have the reclaim flag set next time 1841 * memcg reclaim reaches the tests above, 1842 * so it will then wait for writeback to 1843 * avoid OOM; and it's also appropriate 1844 * in global reclaim. 1845 */ 1846 folio_set_reclaim(folio); 1847 stat->nr_writeback += nr_pages; 1848 goto activate_locked; 1849 1850 /* Case 3 above */ 1851 } else { 1852 folio_unlock(folio); 1853 folio_wait_writeback(folio); 1854 /* then go back and try same folio again */ 1855 list_add_tail(&folio->lru, folio_list); 1856 continue; 1857 } 1858 } 1859 1860 if (!ignore_references) 1861 references = folio_check_references(folio, sc); 1862 1863 switch (references) { 1864 case FOLIOREF_ACTIVATE: 1865 goto activate_locked; 1866 case FOLIOREF_KEEP: 1867 stat->nr_ref_keep += nr_pages; 1868 goto keep_locked; 1869 case FOLIOREF_RECLAIM: 1870 case FOLIOREF_RECLAIM_CLEAN: 1871 ; /* try to reclaim the folio below */ 1872 } 1873 1874 /* 1875 * Before reclaiming the folio, try to relocate 1876 * its contents to another node. 1877 */ 1878 if (do_demote_pass && 1879 (thp_migration_supported() || !folio_test_large(folio))) { 1880 list_add(&folio->lru, &demote_folios); 1881 folio_unlock(folio); 1882 continue; 1883 } 1884 1885 /* 1886 * Anonymous process memory has backing store? 1887 * Try to allocate it some swap space here. 1888 * Lazyfree folio could be freed directly 1889 */ 1890 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1891 if (!folio_test_swapcache(folio)) { 1892 if (!(sc->gfp_mask & __GFP_IO)) 1893 goto keep_locked; 1894 if (folio_maybe_dma_pinned(folio)) 1895 goto keep_locked; 1896 if (folio_test_large(folio)) { 1897 /* cannot split folio, skip it */ 1898 if (!can_split_folio(folio, NULL)) 1899 goto activate_locked; 1900 /* 1901 * Split folios without a PMD map right 1902 * away. Chances are some or all of the 1903 * tail pages can be freed without IO. 1904 */ 1905 if (!folio_entire_mapcount(folio) && 1906 split_folio_to_list(folio, 1907 folio_list)) 1908 goto activate_locked; 1909 } 1910 if (!add_to_swap(folio)) { 1911 if (!folio_test_large(folio)) 1912 goto activate_locked_split; 1913 /* Fallback to swap normal pages */ 1914 if (split_folio_to_list(folio, 1915 folio_list)) 1916 goto activate_locked; 1917 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1918 count_vm_event(THP_SWPOUT_FALLBACK); 1919 #endif 1920 if (!add_to_swap(folio)) 1921 goto activate_locked_split; 1922 } 1923 } 1924 } else if (folio_test_swapbacked(folio) && 1925 folio_test_large(folio)) { 1926 /* Split shmem folio */ 1927 if (split_folio_to_list(folio, folio_list)) 1928 goto keep_locked; 1929 } 1930 1931 /* 1932 * If the folio was split above, the tail pages will make 1933 * their own pass through this function and be accounted 1934 * then. 1935 */ 1936 if ((nr_pages > 1) && !folio_test_large(folio)) { 1937 sc->nr_scanned -= (nr_pages - 1); 1938 nr_pages = 1; 1939 } 1940 1941 /* 1942 * The folio is mapped into the page tables of one or more 1943 * processes. Try to unmap it here. 1944 */ 1945 if (folio_mapped(folio)) { 1946 enum ttu_flags flags = TTU_BATCH_FLUSH; 1947 bool was_swapbacked = folio_test_swapbacked(folio); 1948 1949 if (folio_test_pmd_mappable(folio)) 1950 flags |= TTU_SPLIT_HUGE_PMD; 1951 1952 try_to_unmap(folio, flags); 1953 if (folio_mapped(folio)) { 1954 stat->nr_unmap_fail += nr_pages; 1955 if (!was_swapbacked && 1956 folio_test_swapbacked(folio)) 1957 stat->nr_lazyfree_fail += nr_pages; 1958 goto activate_locked; 1959 } 1960 } 1961 1962 /* 1963 * Folio is unmapped now so it cannot be newly pinned anymore. 1964 * No point in trying to reclaim folio if it is pinned. 1965 * Furthermore we don't want to reclaim underlying fs metadata 1966 * if the folio is pinned and thus potentially modified by the 1967 * pinning process as that may upset the filesystem. 1968 */ 1969 if (folio_maybe_dma_pinned(folio)) 1970 goto activate_locked; 1971 1972 mapping = folio_mapping(folio); 1973 if (folio_test_dirty(folio)) { 1974 /* 1975 * Only kswapd can writeback filesystem folios 1976 * to avoid risk of stack overflow. But avoid 1977 * injecting inefficient single-folio I/O into 1978 * flusher writeback as much as possible: only 1979 * write folios when we've encountered many 1980 * dirty folios, and when we've already scanned 1981 * the rest of the LRU for clean folios and see 1982 * the same dirty folios again (with the reclaim 1983 * flag set). 1984 */ 1985 if (folio_is_file_lru(folio) && 1986 (!current_is_kswapd() || 1987 !folio_test_reclaim(folio) || 1988 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1989 /* 1990 * Immediately reclaim when written back. 1991 * Similar in principle to folio_deactivate() 1992 * except we already have the folio isolated 1993 * and know it's dirty 1994 */ 1995 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1996 nr_pages); 1997 folio_set_reclaim(folio); 1998 1999 goto activate_locked; 2000 } 2001 2002 if (references == FOLIOREF_RECLAIM_CLEAN) 2003 goto keep_locked; 2004 if (!may_enter_fs(folio, sc->gfp_mask)) 2005 goto keep_locked; 2006 if (!sc->may_writepage) 2007 goto keep_locked; 2008 2009 /* 2010 * Folio is dirty. Flush the TLB if a writable entry 2011 * potentially exists to avoid CPU writes after I/O 2012 * starts and then write it out here. 2013 */ 2014 try_to_unmap_flush_dirty(); 2015 switch (pageout(folio, mapping, &plug)) { 2016 case PAGE_KEEP: 2017 goto keep_locked; 2018 case PAGE_ACTIVATE: 2019 goto activate_locked; 2020 case PAGE_SUCCESS: 2021 stat->nr_pageout += nr_pages; 2022 2023 if (folio_test_writeback(folio)) 2024 goto keep; 2025 if (folio_test_dirty(folio)) 2026 goto keep; 2027 2028 /* 2029 * A synchronous write - probably a ramdisk. Go 2030 * ahead and try to reclaim the folio. 2031 */ 2032 if (!folio_trylock(folio)) 2033 goto keep; 2034 if (folio_test_dirty(folio) || 2035 folio_test_writeback(folio)) 2036 goto keep_locked; 2037 mapping = folio_mapping(folio); 2038 fallthrough; 2039 case PAGE_CLEAN: 2040 ; /* try to free the folio below */ 2041 } 2042 } 2043 2044 /* 2045 * If the folio has buffers, try to free the buffer 2046 * mappings associated with this folio. If we succeed 2047 * we try to free the folio as well. 2048 * 2049 * We do this even if the folio is dirty. 2050 * filemap_release_folio() does not perform I/O, but it 2051 * is possible for a folio to have the dirty flag set, 2052 * but it is actually clean (all its buffers are clean). 2053 * This happens if the buffers were written out directly, 2054 * with submit_bh(). ext3 will do this, as well as 2055 * the blockdev mapping. filemap_release_folio() will 2056 * discover that cleanness and will drop the buffers 2057 * and mark the folio clean - it can be freed. 2058 * 2059 * Rarely, folios can have buffers and no ->mapping. 2060 * These are the folios which were not successfully 2061 * invalidated in truncate_cleanup_folio(). We try to 2062 * drop those buffers here and if that worked, and the 2063 * folio is no longer mapped into process address space 2064 * (refcount == 1) it can be freed. Otherwise, leave 2065 * the folio on the LRU so it is swappable. 2066 */ 2067 if (folio_needs_release(folio)) { 2068 if (!filemap_release_folio(folio, sc->gfp_mask)) 2069 goto activate_locked; 2070 if (!mapping && folio_ref_count(folio) == 1) { 2071 folio_unlock(folio); 2072 if (folio_put_testzero(folio)) 2073 goto free_it; 2074 else { 2075 /* 2076 * rare race with speculative reference. 2077 * the speculative reference will free 2078 * this folio shortly, so we may 2079 * increment nr_reclaimed here (and 2080 * leave it off the LRU). 2081 */ 2082 nr_reclaimed += nr_pages; 2083 continue; 2084 } 2085 } 2086 } 2087 2088 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2089 /* follow __remove_mapping for reference */ 2090 if (!folio_ref_freeze(folio, 1)) 2091 goto keep_locked; 2092 /* 2093 * The folio has only one reference left, which is 2094 * from the isolation. After the caller puts the 2095 * folio back on the lru and drops the reference, the 2096 * folio will be freed anyway. It doesn't matter 2097 * which lru it goes on. So we don't bother checking 2098 * the dirty flag here. 2099 */ 2100 count_vm_events(PGLAZYFREED, nr_pages); 2101 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2102 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2103 sc->target_mem_cgroup)) 2104 goto keep_locked; 2105 2106 folio_unlock(folio); 2107 free_it: 2108 /* 2109 * Folio may get swapped out as a whole, need to account 2110 * all pages in it. 2111 */ 2112 nr_reclaimed += nr_pages; 2113 2114 /* 2115 * Is there need to periodically free_folio_list? It would 2116 * appear not as the counts should be low 2117 */ 2118 if (unlikely(folio_test_large(folio))) 2119 destroy_large_folio(folio); 2120 else 2121 list_add(&folio->lru, &free_folios); 2122 continue; 2123 2124 activate_locked_split: 2125 /* 2126 * The tail pages that are failed to add into swap cache 2127 * reach here. Fixup nr_scanned and nr_pages. 2128 */ 2129 if (nr_pages > 1) { 2130 sc->nr_scanned -= (nr_pages - 1); 2131 nr_pages = 1; 2132 } 2133 activate_locked: 2134 /* Not a candidate for swapping, so reclaim swap space. */ 2135 if (folio_test_swapcache(folio) && 2136 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2137 folio_free_swap(folio); 2138 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2139 if (!folio_test_mlocked(folio)) { 2140 int type = folio_is_file_lru(folio); 2141 folio_set_active(folio); 2142 stat->nr_activate[type] += nr_pages; 2143 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2144 } 2145 keep_locked: 2146 folio_unlock(folio); 2147 keep: 2148 list_add(&folio->lru, &ret_folios); 2149 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2150 folio_test_unevictable(folio), folio); 2151 } 2152 /* 'folio_list' is always empty here */ 2153 2154 /* Migrate folios selected for demotion */ 2155 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2156 /* Folios that could not be demoted are still in @demote_folios */ 2157 if (!list_empty(&demote_folios)) { 2158 /* Folios which weren't demoted go back on @folio_list */ 2159 list_splice_init(&demote_folios, folio_list); 2160 2161 /* 2162 * goto retry to reclaim the undemoted folios in folio_list if 2163 * desired. 2164 * 2165 * Reclaiming directly from top tier nodes is not often desired 2166 * due to it breaking the LRU ordering: in general memory 2167 * should be reclaimed from lower tier nodes and demoted from 2168 * top tier nodes. 2169 * 2170 * However, disabling reclaim from top tier nodes entirely 2171 * would cause ooms in edge scenarios where lower tier memory 2172 * is unreclaimable for whatever reason, eg memory being 2173 * mlocked or too hot to reclaim. We can disable reclaim 2174 * from top tier nodes in proactive reclaim though as that is 2175 * not real memory pressure. 2176 */ 2177 if (!sc->proactive) { 2178 do_demote_pass = false; 2179 goto retry; 2180 } 2181 } 2182 2183 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2184 2185 mem_cgroup_uncharge_list(&free_folios); 2186 try_to_unmap_flush(); 2187 free_unref_page_list(&free_folios); 2188 2189 list_splice(&ret_folios, folio_list); 2190 count_vm_events(PGACTIVATE, pgactivate); 2191 2192 if (plug) 2193 swap_write_unplug(plug); 2194 return nr_reclaimed; 2195 } 2196 2197 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2198 struct list_head *folio_list) 2199 { 2200 struct scan_control sc = { 2201 .gfp_mask = GFP_KERNEL, 2202 .may_unmap = 1, 2203 }; 2204 struct reclaim_stat stat; 2205 unsigned int nr_reclaimed; 2206 struct folio *folio, *next; 2207 LIST_HEAD(clean_folios); 2208 unsigned int noreclaim_flag; 2209 2210 list_for_each_entry_safe(folio, next, folio_list, lru) { 2211 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2212 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2213 !folio_test_unevictable(folio)) { 2214 folio_clear_active(folio); 2215 list_move(&folio->lru, &clean_folios); 2216 } 2217 } 2218 2219 /* 2220 * We should be safe here since we are only dealing with file pages and 2221 * we are not kswapd and therefore cannot write dirty file pages. But 2222 * call memalloc_noreclaim_save() anyway, just in case these conditions 2223 * change in the future. 2224 */ 2225 noreclaim_flag = memalloc_noreclaim_save(); 2226 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2227 &stat, true); 2228 memalloc_noreclaim_restore(noreclaim_flag); 2229 2230 list_splice(&clean_folios, folio_list); 2231 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2232 -(long)nr_reclaimed); 2233 /* 2234 * Since lazyfree pages are isolated from file LRU from the beginning, 2235 * they will rotate back to anonymous LRU in the end if it failed to 2236 * discard so isolated count will be mismatched. 2237 * Compensate the isolated count for both LRU lists. 2238 */ 2239 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2240 stat.nr_lazyfree_fail); 2241 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2242 -(long)stat.nr_lazyfree_fail); 2243 return nr_reclaimed; 2244 } 2245 2246 /* 2247 * Update LRU sizes after isolating pages. The LRU size updates must 2248 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2249 */ 2250 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2251 enum lru_list lru, unsigned long *nr_zone_taken) 2252 { 2253 int zid; 2254 2255 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2256 if (!nr_zone_taken[zid]) 2257 continue; 2258 2259 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2260 } 2261 2262 } 2263 2264 /* 2265 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2266 * 2267 * lruvec->lru_lock is heavily contended. Some of the functions that 2268 * shrink the lists perform better by taking out a batch of pages 2269 * and working on them outside the LRU lock. 2270 * 2271 * For pagecache intensive workloads, this function is the hottest 2272 * spot in the kernel (apart from copy_*_user functions). 2273 * 2274 * Lru_lock must be held before calling this function. 2275 * 2276 * @nr_to_scan: The number of eligible pages to look through on the list. 2277 * @lruvec: The LRU vector to pull pages from. 2278 * @dst: The temp list to put pages on to. 2279 * @nr_scanned: The number of pages that were scanned. 2280 * @sc: The scan_control struct for this reclaim session 2281 * @lru: LRU list id for isolating 2282 * 2283 * returns how many pages were moved onto *@dst. 2284 */ 2285 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2286 struct lruvec *lruvec, struct list_head *dst, 2287 unsigned long *nr_scanned, struct scan_control *sc, 2288 enum lru_list lru) 2289 { 2290 struct list_head *src = &lruvec->lists[lru]; 2291 unsigned long nr_taken = 0; 2292 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2293 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2294 unsigned long skipped = 0; 2295 unsigned long scan, total_scan, nr_pages; 2296 LIST_HEAD(folios_skipped); 2297 2298 total_scan = 0; 2299 scan = 0; 2300 while (scan < nr_to_scan && !list_empty(src)) { 2301 struct list_head *move_to = src; 2302 struct folio *folio; 2303 2304 folio = lru_to_folio(src); 2305 prefetchw_prev_lru_folio(folio, src, flags); 2306 2307 nr_pages = folio_nr_pages(folio); 2308 total_scan += nr_pages; 2309 2310 if (folio_zonenum(folio) > sc->reclaim_idx) { 2311 nr_skipped[folio_zonenum(folio)] += nr_pages; 2312 move_to = &folios_skipped; 2313 goto move; 2314 } 2315 2316 /* 2317 * Do not count skipped folios because that makes the function 2318 * return with no isolated folios if the LRU mostly contains 2319 * ineligible folios. This causes the VM to not reclaim any 2320 * folios, triggering a premature OOM. 2321 * Account all pages in a folio. 2322 */ 2323 scan += nr_pages; 2324 2325 if (!folio_test_lru(folio)) 2326 goto move; 2327 if (!sc->may_unmap && folio_mapped(folio)) 2328 goto move; 2329 2330 /* 2331 * Be careful not to clear the lru flag until after we're 2332 * sure the folio is not being freed elsewhere -- the 2333 * folio release code relies on it. 2334 */ 2335 if (unlikely(!folio_try_get(folio))) 2336 goto move; 2337 2338 if (!folio_test_clear_lru(folio)) { 2339 /* Another thread is already isolating this folio */ 2340 folio_put(folio); 2341 goto move; 2342 } 2343 2344 nr_taken += nr_pages; 2345 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2346 move_to = dst; 2347 move: 2348 list_move(&folio->lru, move_to); 2349 } 2350 2351 /* 2352 * Splice any skipped folios to the start of the LRU list. Note that 2353 * this disrupts the LRU order when reclaiming for lower zones but 2354 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2355 * scanning would soon rescan the same folios to skip and waste lots 2356 * of cpu cycles. 2357 */ 2358 if (!list_empty(&folios_skipped)) { 2359 int zid; 2360 2361 list_splice(&folios_skipped, src); 2362 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2363 if (!nr_skipped[zid]) 2364 continue; 2365 2366 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2367 skipped += nr_skipped[zid]; 2368 } 2369 } 2370 *nr_scanned = total_scan; 2371 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2372 total_scan, skipped, nr_taken, 2373 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2374 update_lru_sizes(lruvec, lru, nr_zone_taken); 2375 return nr_taken; 2376 } 2377 2378 /** 2379 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2380 * @folio: Folio to isolate from its LRU list. 2381 * 2382 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2383 * corresponding to whatever LRU list the folio was on. 2384 * 2385 * The folio will have its LRU flag cleared. If it was found on the 2386 * active list, it will have the Active flag set. If it was found on the 2387 * unevictable list, it will have the Unevictable flag set. These flags 2388 * may need to be cleared by the caller before letting the page go. 2389 * 2390 * Context: 2391 * 2392 * (1) Must be called with an elevated refcount on the folio. This is a 2393 * fundamental difference from isolate_lru_folios() (which is called 2394 * without a stable reference). 2395 * (2) The lru_lock must not be held. 2396 * (3) Interrupts must be enabled. 2397 * 2398 * Return: true if the folio was removed from an LRU list. 2399 * false if the folio was not on an LRU list. 2400 */ 2401 bool folio_isolate_lru(struct folio *folio) 2402 { 2403 bool ret = false; 2404 2405 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2406 2407 if (folio_test_clear_lru(folio)) { 2408 struct lruvec *lruvec; 2409 2410 folio_get(folio); 2411 lruvec = folio_lruvec_lock_irq(folio); 2412 lruvec_del_folio(lruvec, folio); 2413 unlock_page_lruvec_irq(lruvec); 2414 ret = true; 2415 } 2416 2417 return ret; 2418 } 2419 2420 /* 2421 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2422 * then get rescheduled. When there are massive number of tasks doing page 2423 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2424 * the LRU list will go small and be scanned faster than necessary, leading to 2425 * unnecessary swapping, thrashing and OOM. 2426 */ 2427 static int too_many_isolated(struct pglist_data *pgdat, int file, 2428 struct scan_control *sc) 2429 { 2430 unsigned long inactive, isolated; 2431 bool too_many; 2432 2433 if (current_is_kswapd()) 2434 return 0; 2435 2436 if (!writeback_throttling_sane(sc)) 2437 return 0; 2438 2439 if (file) { 2440 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2441 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2442 } else { 2443 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2444 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2445 } 2446 2447 /* 2448 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2449 * won't get blocked by normal direct-reclaimers, forming a circular 2450 * deadlock. 2451 */ 2452 if (gfp_has_io_fs(sc->gfp_mask)) 2453 inactive >>= 3; 2454 2455 too_many = isolated > inactive; 2456 2457 /* Wake up tasks throttled due to too_many_isolated. */ 2458 if (!too_many) 2459 wake_throttle_isolated(pgdat); 2460 2461 return too_many; 2462 } 2463 2464 /* 2465 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2466 * On return, @list is reused as a list of folios to be freed by the caller. 2467 * 2468 * Returns the number of pages moved to the given lruvec. 2469 */ 2470 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2471 struct list_head *list) 2472 { 2473 int nr_pages, nr_moved = 0; 2474 LIST_HEAD(folios_to_free); 2475 2476 while (!list_empty(list)) { 2477 struct folio *folio = lru_to_folio(list); 2478 2479 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2480 list_del(&folio->lru); 2481 if (unlikely(!folio_evictable(folio))) { 2482 spin_unlock_irq(&lruvec->lru_lock); 2483 folio_putback_lru(folio); 2484 spin_lock_irq(&lruvec->lru_lock); 2485 continue; 2486 } 2487 2488 /* 2489 * The folio_set_lru needs to be kept here for list integrity. 2490 * Otherwise: 2491 * #0 move_folios_to_lru #1 release_pages 2492 * if (!folio_put_testzero()) 2493 * if (folio_put_testzero()) 2494 * !lru //skip lru_lock 2495 * folio_set_lru() 2496 * list_add(&folio->lru,) 2497 * list_add(&folio->lru,) 2498 */ 2499 folio_set_lru(folio); 2500 2501 if (unlikely(folio_put_testzero(folio))) { 2502 __folio_clear_lru_flags(folio); 2503 2504 if (unlikely(folio_test_large(folio))) { 2505 spin_unlock_irq(&lruvec->lru_lock); 2506 destroy_large_folio(folio); 2507 spin_lock_irq(&lruvec->lru_lock); 2508 } else 2509 list_add(&folio->lru, &folios_to_free); 2510 2511 continue; 2512 } 2513 2514 /* 2515 * All pages were isolated from the same lruvec (and isolation 2516 * inhibits memcg migration). 2517 */ 2518 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2519 lruvec_add_folio(lruvec, folio); 2520 nr_pages = folio_nr_pages(folio); 2521 nr_moved += nr_pages; 2522 if (folio_test_active(folio)) 2523 workingset_age_nonresident(lruvec, nr_pages); 2524 } 2525 2526 /* 2527 * To save our caller's stack, now use input list for pages to free. 2528 */ 2529 list_splice(&folios_to_free, list); 2530 2531 return nr_moved; 2532 } 2533 2534 /* 2535 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2536 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2537 * we should not throttle. Otherwise it is safe to do so. 2538 */ 2539 static int current_may_throttle(void) 2540 { 2541 return !(current->flags & PF_LOCAL_THROTTLE); 2542 } 2543 2544 /* 2545 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2546 * of reclaimed pages 2547 */ 2548 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2549 struct lruvec *lruvec, struct scan_control *sc, 2550 enum lru_list lru) 2551 { 2552 LIST_HEAD(folio_list); 2553 unsigned long nr_scanned; 2554 unsigned int nr_reclaimed = 0; 2555 unsigned long nr_taken; 2556 struct reclaim_stat stat; 2557 bool file = is_file_lru(lru); 2558 enum vm_event_item item; 2559 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2560 bool stalled = false; 2561 2562 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2563 if (stalled) 2564 return 0; 2565 2566 /* wait a bit for the reclaimer. */ 2567 stalled = true; 2568 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2569 2570 /* We are about to die and free our memory. Return now. */ 2571 if (fatal_signal_pending(current)) 2572 return SWAP_CLUSTER_MAX; 2573 } 2574 2575 lru_add_drain(); 2576 2577 spin_lock_irq(&lruvec->lru_lock); 2578 2579 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2580 &nr_scanned, sc, lru); 2581 2582 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2583 item = PGSCAN_KSWAPD + reclaimer_offset(); 2584 if (!cgroup_reclaim(sc)) 2585 __count_vm_events(item, nr_scanned); 2586 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2587 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2588 2589 spin_unlock_irq(&lruvec->lru_lock); 2590 2591 if (nr_taken == 0) 2592 return 0; 2593 2594 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2595 2596 spin_lock_irq(&lruvec->lru_lock); 2597 move_folios_to_lru(lruvec, &folio_list); 2598 2599 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2600 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2601 if (!cgroup_reclaim(sc)) 2602 __count_vm_events(item, nr_reclaimed); 2603 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2604 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2605 spin_unlock_irq(&lruvec->lru_lock); 2606 2607 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2608 mem_cgroup_uncharge_list(&folio_list); 2609 free_unref_page_list(&folio_list); 2610 2611 /* 2612 * If dirty folios are scanned that are not queued for IO, it 2613 * implies that flushers are not doing their job. This can 2614 * happen when memory pressure pushes dirty folios to the end of 2615 * the LRU before the dirty limits are breached and the dirty 2616 * data has expired. It can also happen when the proportion of 2617 * dirty folios grows not through writes but through memory 2618 * pressure reclaiming all the clean cache. And in some cases, 2619 * the flushers simply cannot keep up with the allocation 2620 * rate. Nudge the flusher threads in case they are asleep. 2621 */ 2622 if (stat.nr_unqueued_dirty == nr_taken) { 2623 wakeup_flusher_threads(WB_REASON_VMSCAN); 2624 /* 2625 * For cgroupv1 dirty throttling is achieved by waking up 2626 * the kernel flusher here and later waiting on folios 2627 * which are in writeback to finish (see shrink_folio_list()). 2628 * 2629 * Flusher may not be able to issue writeback quickly 2630 * enough for cgroupv1 writeback throttling to work 2631 * on a large system. 2632 */ 2633 if (!writeback_throttling_sane(sc)) 2634 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2635 } 2636 2637 sc->nr.dirty += stat.nr_dirty; 2638 sc->nr.congested += stat.nr_congested; 2639 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2640 sc->nr.writeback += stat.nr_writeback; 2641 sc->nr.immediate += stat.nr_immediate; 2642 sc->nr.taken += nr_taken; 2643 if (file) 2644 sc->nr.file_taken += nr_taken; 2645 2646 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2647 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2648 return nr_reclaimed; 2649 } 2650 2651 /* 2652 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2653 * 2654 * We move them the other way if the folio is referenced by one or more 2655 * processes. 2656 * 2657 * If the folios are mostly unmapped, the processing is fast and it is 2658 * appropriate to hold lru_lock across the whole operation. But if 2659 * the folios are mapped, the processing is slow (folio_referenced()), so 2660 * we should drop lru_lock around each folio. It's impossible to balance 2661 * this, so instead we remove the folios from the LRU while processing them. 2662 * It is safe to rely on the active flag against the non-LRU folios in here 2663 * because nobody will play with that bit on a non-LRU folio. 2664 * 2665 * The downside is that we have to touch folio->_refcount against each folio. 2666 * But we had to alter folio->flags anyway. 2667 */ 2668 static void shrink_active_list(unsigned long nr_to_scan, 2669 struct lruvec *lruvec, 2670 struct scan_control *sc, 2671 enum lru_list lru) 2672 { 2673 unsigned long nr_taken; 2674 unsigned long nr_scanned; 2675 unsigned long vm_flags; 2676 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2677 LIST_HEAD(l_active); 2678 LIST_HEAD(l_inactive); 2679 unsigned nr_deactivate, nr_activate; 2680 unsigned nr_rotated = 0; 2681 int file = is_file_lru(lru); 2682 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2683 2684 lru_add_drain(); 2685 2686 spin_lock_irq(&lruvec->lru_lock); 2687 2688 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2689 &nr_scanned, sc, lru); 2690 2691 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2692 2693 if (!cgroup_reclaim(sc)) 2694 __count_vm_events(PGREFILL, nr_scanned); 2695 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2696 2697 spin_unlock_irq(&lruvec->lru_lock); 2698 2699 while (!list_empty(&l_hold)) { 2700 struct folio *folio; 2701 2702 cond_resched(); 2703 folio = lru_to_folio(&l_hold); 2704 list_del(&folio->lru); 2705 2706 if (unlikely(!folio_evictable(folio))) { 2707 folio_putback_lru(folio); 2708 continue; 2709 } 2710 2711 if (unlikely(buffer_heads_over_limit)) { 2712 if (folio_needs_release(folio) && 2713 folio_trylock(folio)) { 2714 filemap_release_folio(folio, 0); 2715 folio_unlock(folio); 2716 } 2717 } 2718 2719 /* Referenced or rmap lock contention: rotate */ 2720 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2721 &vm_flags) != 0) { 2722 /* 2723 * Identify referenced, file-backed active folios and 2724 * give them one more trip around the active list. So 2725 * that executable code get better chances to stay in 2726 * memory under moderate memory pressure. Anon folios 2727 * are not likely to be evicted by use-once streaming 2728 * IO, plus JVM can create lots of anon VM_EXEC folios, 2729 * so we ignore them here. 2730 */ 2731 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2732 nr_rotated += folio_nr_pages(folio); 2733 list_add(&folio->lru, &l_active); 2734 continue; 2735 } 2736 } 2737 2738 folio_clear_active(folio); /* we are de-activating */ 2739 folio_set_workingset(folio); 2740 list_add(&folio->lru, &l_inactive); 2741 } 2742 2743 /* 2744 * Move folios back to the lru list. 2745 */ 2746 spin_lock_irq(&lruvec->lru_lock); 2747 2748 nr_activate = move_folios_to_lru(lruvec, &l_active); 2749 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2750 /* Keep all free folios in l_active list */ 2751 list_splice(&l_inactive, &l_active); 2752 2753 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2754 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2755 2756 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2757 spin_unlock_irq(&lruvec->lru_lock); 2758 2759 if (nr_rotated) 2760 lru_note_cost(lruvec, file, 0, nr_rotated); 2761 mem_cgroup_uncharge_list(&l_active); 2762 free_unref_page_list(&l_active); 2763 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2764 nr_deactivate, nr_rotated, sc->priority, file); 2765 } 2766 2767 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2768 struct pglist_data *pgdat) 2769 { 2770 struct reclaim_stat dummy_stat; 2771 unsigned int nr_reclaimed; 2772 struct folio *folio; 2773 struct scan_control sc = { 2774 .gfp_mask = GFP_KERNEL, 2775 .may_writepage = 1, 2776 .may_unmap = 1, 2777 .may_swap = 1, 2778 .no_demotion = 1, 2779 }; 2780 2781 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2782 while (!list_empty(folio_list)) { 2783 folio = lru_to_folio(folio_list); 2784 list_del(&folio->lru); 2785 folio_putback_lru(folio); 2786 } 2787 2788 return nr_reclaimed; 2789 } 2790 2791 unsigned long reclaim_pages(struct list_head *folio_list) 2792 { 2793 int nid; 2794 unsigned int nr_reclaimed = 0; 2795 LIST_HEAD(node_folio_list); 2796 unsigned int noreclaim_flag; 2797 2798 if (list_empty(folio_list)) 2799 return nr_reclaimed; 2800 2801 noreclaim_flag = memalloc_noreclaim_save(); 2802 2803 nid = folio_nid(lru_to_folio(folio_list)); 2804 do { 2805 struct folio *folio = lru_to_folio(folio_list); 2806 2807 if (nid == folio_nid(folio)) { 2808 folio_clear_active(folio); 2809 list_move(&folio->lru, &node_folio_list); 2810 continue; 2811 } 2812 2813 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2814 nid = folio_nid(lru_to_folio(folio_list)); 2815 } while (!list_empty(folio_list)); 2816 2817 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2818 2819 memalloc_noreclaim_restore(noreclaim_flag); 2820 2821 return nr_reclaimed; 2822 } 2823 2824 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2825 struct lruvec *lruvec, struct scan_control *sc) 2826 { 2827 if (is_active_lru(lru)) { 2828 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2829 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2830 else 2831 sc->skipped_deactivate = 1; 2832 return 0; 2833 } 2834 2835 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2836 } 2837 2838 /* 2839 * The inactive anon list should be small enough that the VM never has 2840 * to do too much work. 2841 * 2842 * The inactive file list should be small enough to leave most memory 2843 * to the established workingset on the scan-resistant active list, 2844 * but large enough to avoid thrashing the aggregate readahead window. 2845 * 2846 * Both inactive lists should also be large enough that each inactive 2847 * folio has a chance to be referenced again before it is reclaimed. 2848 * 2849 * If that fails and refaulting is observed, the inactive list grows. 2850 * 2851 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2852 * on this LRU, maintained by the pageout code. An inactive_ratio 2853 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2854 * 2855 * total target max 2856 * memory ratio inactive 2857 * ------------------------------------- 2858 * 10MB 1 5MB 2859 * 100MB 1 50MB 2860 * 1GB 3 250MB 2861 * 10GB 10 0.9GB 2862 * 100GB 31 3GB 2863 * 1TB 101 10GB 2864 * 10TB 320 32GB 2865 */ 2866 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2867 { 2868 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2869 unsigned long inactive, active; 2870 unsigned long inactive_ratio; 2871 unsigned long gb; 2872 2873 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2874 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2875 2876 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2877 if (gb) 2878 inactive_ratio = int_sqrt(10 * gb); 2879 else 2880 inactive_ratio = 1; 2881 2882 return inactive * inactive_ratio < active; 2883 } 2884 2885 enum scan_balance { 2886 SCAN_EQUAL, 2887 SCAN_FRACT, 2888 SCAN_ANON, 2889 SCAN_FILE, 2890 }; 2891 2892 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2893 { 2894 unsigned long file; 2895 struct lruvec *target_lruvec; 2896 2897 if (lru_gen_enabled()) 2898 return; 2899 2900 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2901 2902 /* 2903 * Flush the memory cgroup stats, so that we read accurate per-memcg 2904 * lruvec stats for heuristics. 2905 */ 2906 mem_cgroup_flush_stats(); 2907 2908 /* 2909 * Determine the scan balance between anon and file LRUs. 2910 */ 2911 spin_lock_irq(&target_lruvec->lru_lock); 2912 sc->anon_cost = target_lruvec->anon_cost; 2913 sc->file_cost = target_lruvec->file_cost; 2914 spin_unlock_irq(&target_lruvec->lru_lock); 2915 2916 /* 2917 * Target desirable inactive:active list ratios for the anon 2918 * and file LRU lists. 2919 */ 2920 if (!sc->force_deactivate) { 2921 unsigned long refaults; 2922 2923 /* 2924 * When refaults are being observed, it means a new 2925 * workingset is being established. Deactivate to get 2926 * rid of any stale active pages quickly. 2927 */ 2928 refaults = lruvec_page_state(target_lruvec, 2929 WORKINGSET_ACTIVATE_ANON); 2930 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2931 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2932 sc->may_deactivate |= DEACTIVATE_ANON; 2933 else 2934 sc->may_deactivate &= ~DEACTIVATE_ANON; 2935 2936 refaults = lruvec_page_state(target_lruvec, 2937 WORKINGSET_ACTIVATE_FILE); 2938 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2939 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2940 sc->may_deactivate |= DEACTIVATE_FILE; 2941 else 2942 sc->may_deactivate &= ~DEACTIVATE_FILE; 2943 } else 2944 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2945 2946 /* 2947 * If we have plenty of inactive file pages that aren't 2948 * thrashing, try to reclaim those first before touching 2949 * anonymous pages. 2950 */ 2951 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2952 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2953 sc->cache_trim_mode = 1; 2954 else 2955 sc->cache_trim_mode = 0; 2956 2957 /* 2958 * Prevent the reclaimer from falling into the cache trap: as 2959 * cache pages start out inactive, every cache fault will tip 2960 * the scan balance towards the file LRU. And as the file LRU 2961 * shrinks, so does the window for rotation from references. 2962 * This means we have a runaway feedback loop where a tiny 2963 * thrashing file LRU becomes infinitely more attractive than 2964 * anon pages. Try to detect this based on file LRU size. 2965 */ 2966 if (!cgroup_reclaim(sc)) { 2967 unsigned long total_high_wmark = 0; 2968 unsigned long free, anon; 2969 int z; 2970 2971 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2972 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2973 node_page_state(pgdat, NR_INACTIVE_FILE); 2974 2975 for (z = 0; z < MAX_NR_ZONES; z++) { 2976 struct zone *zone = &pgdat->node_zones[z]; 2977 2978 if (!managed_zone(zone)) 2979 continue; 2980 2981 total_high_wmark += high_wmark_pages(zone); 2982 } 2983 2984 /* 2985 * Consider anon: if that's low too, this isn't a 2986 * runaway file reclaim problem, but rather just 2987 * extreme pressure. Reclaim as per usual then. 2988 */ 2989 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2990 2991 sc->file_is_tiny = 2992 file + free <= total_high_wmark && 2993 !(sc->may_deactivate & DEACTIVATE_ANON) && 2994 anon >> sc->priority; 2995 } 2996 } 2997 2998 /* 2999 * Determine how aggressively the anon and file LRU lists should be 3000 * scanned. 3001 * 3002 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 3003 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 3004 */ 3005 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 3006 unsigned long *nr) 3007 { 3008 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3009 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3010 unsigned long anon_cost, file_cost, total_cost; 3011 int swappiness = mem_cgroup_swappiness(memcg); 3012 u64 fraction[ANON_AND_FILE]; 3013 u64 denominator = 0; /* gcc */ 3014 enum scan_balance scan_balance; 3015 unsigned long ap, fp; 3016 enum lru_list lru; 3017 3018 /* If we have no swap space, do not bother scanning anon folios. */ 3019 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 3020 scan_balance = SCAN_FILE; 3021 goto out; 3022 } 3023 3024 /* 3025 * Global reclaim will swap to prevent OOM even with no 3026 * swappiness, but memcg users want to use this knob to 3027 * disable swapping for individual groups completely when 3028 * using the memory controller's swap limit feature would be 3029 * too expensive. 3030 */ 3031 if (cgroup_reclaim(sc) && !swappiness) { 3032 scan_balance = SCAN_FILE; 3033 goto out; 3034 } 3035 3036 /* 3037 * Do not apply any pressure balancing cleverness when the 3038 * system is close to OOM, scan both anon and file equally 3039 * (unless the swappiness setting disagrees with swapping). 3040 */ 3041 if (!sc->priority && swappiness) { 3042 scan_balance = SCAN_EQUAL; 3043 goto out; 3044 } 3045 3046 /* 3047 * If the system is almost out of file pages, force-scan anon. 3048 */ 3049 if (sc->file_is_tiny) { 3050 scan_balance = SCAN_ANON; 3051 goto out; 3052 } 3053 3054 /* 3055 * If there is enough inactive page cache, we do not reclaim 3056 * anything from the anonymous working right now. 3057 */ 3058 if (sc->cache_trim_mode) { 3059 scan_balance = SCAN_FILE; 3060 goto out; 3061 } 3062 3063 scan_balance = SCAN_FRACT; 3064 /* 3065 * Calculate the pressure balance between anon and file pages. 3066 * 3067 * The amount of pressure we put on each LRU is inversely 3068 * proportional to the cost of reclaiming each list, as 3069 * determined by the share of pages that are refaulting, times 3070 * the relative IO cost of bringing back a swapped out 3071 * anonymous page vs reloading a filesystem page (swappiness). 3072 * 3073 * Although we limit that influence to ensure no list gets 3074 * left behind completely: at least a third of the pressure is 3075 * applied, before swappiness. 3076 * 3077 * With swappiness at 100, anon and file have equal IO cost. 3078 */ 3079 total_cost = sc->anon_cost + sc->file_cost; 3080 anon_cost = total_cost + sc->anon_cost; 3081 file_cost = total_cost + sc->file_cost; 3082 total_cost = anon_cost + file_cost; 3083 3084 ap = swappiness * (total_cost + 1); 3085 ap /= anon_cost + 1; 3086 3087 fp = (200 - swappiness) * (total_cost + 1); 3088 fp /= file_cost + 1; 3089 3090 fraction[0] = ap; 3091 fraction[1] = fp; 3092 denominator = ap + fp; 3093 out: 3094 for_each_evictable_lru(lru) { 3095 int file = is_file_lru(lru); 3096 unsigned long lruvec_size; 3097 unsigned long low, min; 3098 unsigned long scan; 3099 3100 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3101 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3102 &min, &low); 3103 3104 if (min || low) { 3105 /* 3106 * Scale a cgroup's reclaim pressure by proportioning 3107 * its current usage to its memory.low or memory.min 3108 * setting. 3109 * 3110 * This is important, as otherwise scanning aggression 3111 * becomes extremely binary -- from nothing as we 3112 * approach the memory protection threshold, to totally 3113 * nominal as we exceed it. This results in requiring 3114 * setting extremely liberal protection thresholds. It 3115 * also means we simply get no protection at all if we 3116 * set it too low, which is not ideal. 3117 * 3118 * If there is any protection in place, we reduce scan 3119 * pressure by how much of the total memory used is 3120 * within protection thresholds. 3121 * 3122 * There is one special case: in the first reclaim pass, 3123 * we skip over all groups that are within their low 3124 * protection. If that fails to reclaim enough pages to 3125 * satisfy the reclaim goal, we come back and override 3126 * the best-effort low protection. However, we still 3127 * ideally want to honor how well-behaved groups are in 3128 * that case instead of simply punishing them all 3129 * equally. As such, we reclaim them based on how much 3130 * memory they are using, reducing the scan pressure 3131 * again by how much of the total memory used is under 3132 * hard protection. 3133 */ 3134 unsigned long cgroup_size = mem_cgroup_size(memcg); 3135 unsigned long protection; 3136 3137 /* memory.low scaling, make sure we retry before OOM */ 3138 if (!sc->memcg_low_reclaim && low > min) { 3139 protection = low; 3140 sc->memcg_low_skipped = 1; 3141 } else { 3142 protection = min; 3143 } 3144 3145 /* Avoid TOCTOU with earlier protection check */ 3146 cgroup_size = max(cgroup_size, protection); 3147 3148 scan = lruvec_size - lruvec_size * protection / 3149 (cgroup_size + 1); 3150 3151 /* 3152 * Minimally target SWAP_CLUSTER_MAX pages to keep 3153 * reclaim moving forwards, avoiding decrementing 3154 * sc->priority further than desirable. 3155 */ 3156 scan = max(scan, SWAP_CLUSTER_MAX); 3157 } else { 3158 scan = lruvec_size; 3159 } 3160 3161 scan >>= sc->priority; 3162 3163 /* 3164 * If the cgroup's already been deleted, make sure to 3165 * scrape out the remaining cache. 3166 */ 3167 if (!scan && !mem_cgroup_online(memcg)) 3168 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3169 3170 switch (scan_balance) { 3171 case SCAN_EQUAL: 3172 /* Scan lists relative to size */ 3173 break; 3174 case SCAN_FRACT: 3175 /* 3176 * Scan types proportional to swappiness and 3177 * their relative recent reclaim efficiency. 3178 * Make sure we don't miss the last page on 3179 * the offlined memory cgroups because of a 3180 * round-off error. 3181 */ 3182 scan = mem_cgroup_online(memcg) ? 3183 div64_u64(scan * fraction[file], denominator) : 3184 DIV64_U64_ROUND_UP(scan * fraction[file], 3185 denominator); 3186 break; 3187 case SCAN_FILE: 3188 case SCAN_ANON: 3189 /* Scan one type exclusively */ 3190 if ((scan_balance == SCAN_FILE) != file) 3191 scan = 0; 3192 break; 3193 default: 3194 /* Look ma, no brain */ 3195 BUG(); 3196 } 3197 3198 nr[lru] = scan; 3199 } 3200 } 3201 3202 /* 3203 * Anonymous LRU management is a waste if there is 3204 * ultimately no way to reclaim the memory. 3205 */ 3206 static bool can_age_anon_pages(struct pglist_data *pgdat, 3207 struct scan_control *sc) 3208 { 3209 /* Aging the anon LRU is valuable if swap is present: */ 3210 if (total_swap_pages > 0) 3211 return true; 3212 3213 /* Also valuable if anon pages can be demoted: */ 3214 return can_demote(pgdat->node_id, sc); 3215 } 3216 3217 #ifdef CONFIG_LRU_GEN 3218 3219 #ifdef CONFIG_LRU_GEN_ENABLED 3220 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3221 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3222 #else 3223 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3224 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3225 #endif 3226 3227 static bool should_walk_mmu(void) 3228 { 3229 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 3230 } 3231 3232 static bool should_clear_pmd_young(void) 3233 { 3234 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 3235 } 3236 3237 /****************************************************************************** 3238 * shorthand helpers 3239 ******************************************************************************/ 3240 3241 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3242 3243 #define DEFINE_MAX_SEQ(lruvec) \ 3244 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3245 3246 #define DEFINE_MIN_SEQ(lruvec) \ 3247 unsigned long min_seq[ANON_AND_FILE] = { \ 3248 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3249 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3250 } 3251 3252 #define for_each_gen_type_zone(gen, type, zone) \ 3253 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3254 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3255 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3256 3257 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 3258 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 3259 3260 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3261 { 3262 struct pglist_data *pgdat = NODE_DATA(nid); 3263 3264 #ifdef CONFIG_MEMCG 3265 if (memcg) { 3266 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3267 3268 /* see the comment in mem_cgroup_lruvec() */ 3269 if (!lruvec->pgdat) 3270 lruvec->pgdat = pgdat; 3271 3272 return lruvec; 3273 } 3274 #endif 3275 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3276 3277 return &pgdat->__lruvec; 3278 } 3279 3280 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3281 { 3282 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3283 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3284 3285 if (!sc->may_swap) 3286 return 0; 3287 3288 if (!can_demote(pgdat->node_id, sc) && 3289 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3290 return 0; 3291 3292 return mem_cgroup_swappiness(memcg); 3293 } 3294 3295 static int get_nr_gens(struct lruvec *lruvec, int type) 3296 { 3297 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3298 } 3299 3300 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3301 { 3302 /* see the comment on lru_gen_folio */ 3303 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3304 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3305 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3306 } 3307 3308 /****************************************************************************** 3309 * Bloom filters 3310 ******************************************************************************/ 3311 3312 /* 3313 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3314 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3315 * bits in a bitmap, k is the number of hash functions and n is the number of 3316 * inserted items. 3317 * 3318 * Page table walkers use one of the two filters to reduce their search space. 3319 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3320 * aging uses the double-buffering technique to flip to the other filter each 3321 * time it produces a new generation. For non-leaf entries that have enough 3322 * leaf entries, the aging carries them over to the next generation in 3323 * walk_pmd_range(); the eviction also report them when walking the rmap 3324 * in lru_gen_look_around(). 3325 * 3326 * For future optimizations: 3327 * 1. It's not necessary to keep both filters all the time. The spare one can be 3328 * freed after the RCU grace period and reallocated if needed again. 3329 * 2. And when reallocating, it's worth scaling its size according to the number 3330 * of inserted entries in the other filter, to reduce the memory overhead on 3331 * small systems and false positives on large systems. 3332 * 3. Jenkins' hash function is an alternative to Knuth's. 3333 */ 3334 #define BLOOM_FILTER_SHIFT 15 3335 3336 static inline int filter_gen_from_seq(unsigned long seq) 3337 { 3338 return seq % NR_BLOOM_FILTERS; 3339 } 3340 3341 static void get_item_key(void *item, int *key) 3342 { 3343 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3344 3345 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3346 3347 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3348 key[1] = hash >> BLOOM_FILTER_SHIFT; 3349 } 3350 3351 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3352 { 3353 int key[2]; 3354 unsigned long *filter; 3355 int gen = filter_gen_from_seq(seq); 3356 3357 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3358 if (!filter) 3359 return true; 3360 3361 get_item_key(item, key); 3362 3363 return test_bit(key[0], filter) && test_bit(key[1], filter); 3364 } 3365 3366 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3367 { 3368 int key[2]; 3369 unsigned long *filter; 3370 int gen = filter_gen_from_seq(seq); 3371 3372 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3373 if (!filter) 3374 return; 3375 3376 get_item_key(item, key); 3377 3378 if (!test_bit(key[0], filter)) 3379 set_bit(key[0], filter); 3380 if (!test_bit(key[1], filter)) 3381 set_bit(key[1], filter); 3382 } 3383 3384 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3385 { 3386 unsigned long *filter; 3387 int gen = filter_gen_from_seq(seq); 3388 3389 filter = lruvec->mm_state.filters[gen]; 3390 if (filter) { 3391 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3392 return; 3393 } 3394 3395 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3396 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3397 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3398 } 3399 3400 /****************************************************************************** 3401 * mm_struct list 3402 ******************************************************************************/ 3403 3404 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3405 { 3406 static struct lru_gen_mm_list mm_list = { 3407 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3408 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3409 }; 3410 3411 #ifdef CONFIG_MEMCG 3412 if (memcg) 3413 return &memcg->mm_list; 3414 #endif 3415 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3416 3417 return &mm_list; 3418 } 3419 3420 void lru_gen_add_mm(struct mm_struct *mm) 3421 { 3422 int nid; 3423 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3424 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3425 3426 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3427 #ifdef CONFIG_MEMCG 3428 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3429 mm->lru_gen.memcg = memcg; 3430 #endif 3431 spin_lock(&mm_list->lock); 3432 3433 for_each_node_state(nid, N_MEMORY) { 3434 struct lruvec *lruvec = get_lruvec(memcg, nid); 3435 3436 /* the first addition since the last iteration */ 3437 if (lruvec->mm_state.tail == &mm_list->fifo) 3438 lruvec->mm_state.tail = &mm->lru_gen.list; 3439 } 3440 3441 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3442 3443 spin_unlock(&mm_list->lock); 3444 } 3445 3446 void lru_gen_del_mm(struct mm_struct *mm) 3447 { 3448 int nid; 3449 struct lru_gen_mm_list *mm_list; 3450 struct mem_cgroup *memcg = NULL; 3451 3452 if (list_empty(&mm->lru_gen.list)) 3453 return; 3454 3455 #ifdef CONFIG_MEMCG 3456 memcg = mm->lru_gen.memcg; 3457 #endif 3458 mm_list = get_mm_list(memcg); 3459 3460 spin_lock(&mm_list->lock); 3461 3462 for_each_node(nid) { 3463 struct lruvec *lruvec = get_lruvec(memcg, nid); 3464 3465 /* where the current iteration continues after */ 3466 if (lruvec->mm_state.head == &mm->lru_gen.list) 3467 lruvec->mm_state.head = lruvec->mm_state.head->prev; 3468 3469 /* where the last iteration ended before */ 3470 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3471 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3472 } 3473 3474 list_del_init(&mm->lru_gen.list); 3475 3476 spin_unlock(&mm_list->lock); 3477 3478 #ifdef CONFIG_MEMCG 3479 mem_cgroup_put(mm->lru_gen.memcg); 3480 mm->lru_gen.memcg = NULL; 3481 #endif 3482 } 3483 3484 #ifdef CONFIG_MEMCG 3485 void lru_gen_migrate_mm(struct mm_struct *mm) 3486 { 3487 struct mem_cgroup *memcg; 3488 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3489 3490 VM_WARN_ON_ONCE(task->mm != mm); 3491 lockdep_assert_held(&task->alloc_lock); 3492 3493 /* for mm_update_next_owner() */ 3494 if (mem_cgroup_disabled()) 3495 return; 3496 3497 /* migration can happen before addition */ 3498 if (!mm->lru_gen.memcg) 3499 return; 3500 3501 rcu_read_lock(); 3502 memcg = mem_cgroup_from_task(task); 3503 rcu_read_unlock(); 3504 if (memcg == mm->lru_gen.memcg) 3505 return; 3506 3507 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3508 3509 lru_gen_del_mm(mm); 3510 lru_gen_add_mm(mm); 3511 } 3512 #endif 3513 3514 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3515 { 3516 int i; 3517 int hist; 3518 3519 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3520 3521 if (walk) { 3522 hist = lru_hist_from_seq(walk->max_seq); 3523 3524 for (i = 0; i < NR_MM_STATS; i++) { 3525 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3526 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3527 walk->mm_stats[i] = 0; 3528 } 3529 } 3530 3531 if (NR_HIST_GENS > 1 && last) { 3532 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3533 3534 for (i = 0; i < NR_MM_STATS; i++) 3535 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3536 } 3537 } 3538 3539 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3540 { 3541 int type; 3542 unsigned long size = 0; 3543 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3544 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3545 3546 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3547 return true; 3548 3549 clear_bit(key, &mm->lru_gen.bitmap); 3550 3551 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3552 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3553 get_mm_counter(mm, MM_ANONPAGES) + 3554 get_mm_counter(mm, MM_SHMEMPAGES); 3555 } 3556 3557 if (size < MIN_LRU_BATCH) 3558 return true; 3559 3560 return !mmget_not_zero(mm); 3561 } 3562 3563 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3564 struct mm_struct **iter) 3565 { 3566 bool first = false; 3567 bool last = false; 3568 struct mm_struct *mm = NULL; 3569 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3570 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3571 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3572 3573 /* 3574 * mm_state->seq is incremented after each iteration of mm_list. There 3575 * are three interesting cases for this page table walker: 3576 * 1. It tries to start a new iteration with a stale max_seq: there is 3577 * nothing left to do. 3578 * 2. It started the next iteration: it needs to reset the Bloom filter 3579 * so that a fresh set of PTE tables can be recorded. 3580 * 3. It ended the current iteration: it needs to reset the mm stats 3581 * counters and tell its caller to increment max_seq. 3582 */ 3583 spin_lock(&mm_list->lock); 3584 3585 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3586 3587 if (walk->max_seq <= mm_state->seq) 3588 goto done; 3589 3590 if (!mm_state->head) 3591 mm_state->head = &mm_list->fifo; 3592 3593 if (mm_state->head == &mm_list->fifo) 3594 first = true; 3595 3596 do { 3597 mm_state->head = mm_state->head->next; 3598 if (mm_state->head == &mm_list->fifo) { 3599 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3600 last = true; 3601 break; 3602 } 3603 3604 /* force scan for those added after the last iteration */ 3605 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3606 mm_state->tail = mm_state->head->next; 3607 walk->force_scan = true; 3608 } 3609 3610 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3611 if (should_skip_mm(mm, walk)) 3612 mm = NULL; 3613 } while (!mm); 3614 done: 3615 if (*iter || last) 3616 reset_mm_stats(lruvec, walk, last); 3617 3618 spin_unlock(&mm_list->lock); 3619 3620 if (mm && first) 3621 reset_bloom_filter(lruvec, walk->max_seq + 1); 3622 3623 if (*iter) 3624 mmput_async(*iter); 3625 3626 *iter = mm; 3627 3628 return last; 3629 } 3630 3631 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3632 { 3633 bool success = false; 3634 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3635 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3636 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3637 3638 spin_lock(&mm_list->lock); 3639 3640 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3641 3642 if (max_seq > mm_state->seq) { 3643 mm_state->head = NULL; 3644 mm_state->tail = NULL; 3645 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3646 reset_mm_stats(lruvec, NULL, true); 3647 success = true; 3648 } 3649 3650 spin_unlock(&mm_list->lock); 3651 3652 return success; 3653 } 3654 3655 /****************************************************************************** 3656 * PID controller 3657 ******************************************************************************/ 3658 3659 /* 3660 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3661 * 3662 * The P term is refaulted/(evicted+protected) from a tier in the generation 3663 * currently being evicted; the I term is the exponential moving average of the 3664 * P term over the generations previously evicted, using the smoothing factor 3665 * 1/2; the D term isn't supported. 3666 * 3667 * The setpoint (SP) is always the first tier of one type; the process variable 3668 * (PV) is either any tier of the other type or any other tier of the same 3669 * type. 3670 * 3671 * The error is the difference between the SP and the PV; the correction is to 3672 * turn off protection when SP>PV or turn on protection when SP<PV. 3673 * 3674 * For future optimizations: 3675 * 1. The D term may discount the other two terms over time so that long-lived 3676 * generations can resist stale information. 3677 */ 3678 struct ctrl_pos { 3679 unsigned long refaulted; 3680 unsigned long total; 3681 int gain; 3682 }; 3683 3684 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3685 struct ctrl_pos *pos) 3686 { 3687 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3688 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3689 3690 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3691 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3692 pos->total = lrugen->avg_total[type][tier] + 3693 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3694 if (tier) 3695 pos->total += lrugen->protected[hist][type][tier - 1]; 3696 pos->gain = gain; 3697 } 3698 3699 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3700 { 3701 int hist, tier; 3702 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3703 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3704 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3705 3706 lockdep_assert_held(&lruvec->lru_lock); 3707 3708 if (!carryover && !clear) 3709 return; 3710 3711 hist = lru_hist_from_seq(seq); 3712 3713 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3714 if (carryover) { 3715 unsigned long sum; 3716 3717 sum = lrugen->avg_refaulted[type][tier] + 3718 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3719 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3720 3721 sum = lrugen->avg_total[type][tier] + 3722 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3723 if (tier) 3724 sum += lrugen->protected[hist][type][tier - 1]; 3725 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3726 } 3727 3728 if (clear) { 3729 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3730 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3731 if (tier) 3732 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3733 } 3734 } 3735 } 3736 3737 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3738 { 3739 /* 3740 * Return true if the PV has a limited number of refaults or a lower 3741 * refaulted/total than the SP. 3742 */ 3743 return pv->refaulted < MIN_LRU_BATCH || 3744 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3745 (sp->refaulted + 1) * pv->total * pv->gain; 3746 } 3747 3748 /****************************************************************************** 3749 * the aging 3750 ******************************************************************************/ 3751 3752 /* promote pages accessed through page tables */ 3753 static int folio_update_gen(struct folio *folio, int gen) 3754 { 3755 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3756 3757 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3758 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3759 3760 do { 3761 /* lru_gen_del_folio() has isolated this page? */ 3762 if (!(old_flags & LRU_GEN_MASK)) { 3763 /* for shrink_folio_list() */ 3764 new_flags = old_flags | BIT(PG_referenced); 3765 continue; 3766 } 3767 3768 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3769 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3770 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3771 3772 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3773 } 3774 3775 /* protect pages accessed multiple times through file descriptors */ 3776 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3777 { 3778 int type = folio_is_file_lru(folio); 3779 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3780 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3781 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3782 3783 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3784 3785 do { 3786 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3787 /* folio_update_gen() has promoted this page? */ 3788 if (new_gen >= 0 && new_gen != old_gen) 3789 return new_gen; 3790 3791 new_gen = (old_gen + 1) % MAX_NR_GENS; 3792 3793 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3794 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3795 /* for folio_end_writeback() */ 3796 if (reclaiming) 3797 new_flags |= BIT(PG_reclaim); 3798 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3799 3800 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3801 3802 return new_gen; 3803 } 3804 3805 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3806 int old_gen, int new_gen) 3807 { 3808 int type = folio_is_file_lru(folio); 3809 int zone = folio_zonenum(folio); 3810 int delta = folio_nr_pages(folio); 3811 3812 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3813 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3814 3815 walk->batched++; 3816 3817 walk->nr_pages[old_gen][type][zone] -= delta; 3818 walk->nr_pages[new_gen][type][zone] += delta; 3819 } 3820 3821 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3822 { 3823 int gen, type, zone; 3824 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3825 3826 walk->batched = 0; 3827 3828 for_each_gen_type_zone(gen, type, zone) { 3829 enum lru_list lru = type * LRU_INACTIVE_FILE; 3830 int delta = walk->nr_pages[gen][type][zone]; 3831 3832 if (!delta) 3833 continue; 3834 3835 walk->nr_pages[gen][type][zone] = 0; 3836 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3837 lrugen->nr_pages[gen][type][zone] + delta); 3838 3839 if (lru_gen_is_active(lruvec, gen)) 3840 lru += LRU_ACTIVE; 3841 __update_lru_size(lruvec, lru, zone, delta); 3842 } 3843 } 3844 3845 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3846 { 3847 struct address_space *mapping; 3848 struct vm_area_struct *vma = args->vma; 3849 struct lru_gen_mm_walk *walk = args->private; 3850 3851 if (!vma_is_accessible(vma)) 3852 return true; 3853 3854 if (is_vm_hugetlb_page(vma)) 3855 return true; 3856 3857 if (!vma_has_recency(vma)) 3858 return true; 3859 3860 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3861 return true; 3862 3863 if (vma == get_gate_vma(vma->vm_mm)) 3864 return true; 3865 3866 if (vma_is_anonymous(vma)) 3867 return !walk->can_swap; 3868 3869 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3870 return true; 3871 3872 mapping = vma->vm_file->f_mapping; 3873 if (mapping_unevictable(mapping)) 3874 return true; 3875 3876 if (shmem_mapping(mapping)) 3877 return !walk->can_swap; 3878 3879 /* to exclude special mappings like dax, etc. */ 3880 return !mapping->a_ops->read_folio; 3881 } 3882 3883 /* 3884 * Some userspace memory allocators map many single-page VMAs. Instead of 3885 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3886 * table to reduce zigzags and improve cache performance. 3887 */ 3888 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3889 unsigned long *vm_start, unsigned long *vm_end) 3890 { 3891 unsigned long start = round_up(*vm_end, size); 3892 unsigned long end = (start | ~mask) + 1; 3893 VMA_ITERATOR(vmi, args->mm, start); 3894 3895 VM_WARN_ON_ONCE(mask & size); 3896 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3897 3898 for_each_vma(vmi, args->vma) { 3899 if (end && end <= args->vma->vm_start) 3900 return false; 3901 3902 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3903 continue; 3904 3905 *vm_start = max(start, args->vma->vm_start); 3906 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3907 3908 return true; 3909 } 3910 3911 return false; 3912 } 3913 3914 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3915 { 3916 unsigned long pfn = pte_pfn(pte); 3917 3918 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3919 3920 if (!pte_present(pte) || is_zero_pfn(pfn)) 3921 return -1; 3922 3923 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3924 return -1; 3925 3926 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3927 return -1; 3928 3929 return pfn; 3930 } 3931 3932 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3933 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3934 { 3935 unsigned long pfn = pmd_pfn(pmd); 3936 3937 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3938 3939 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3940 return -1; 3941 3942 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3943 return -1; 3944 3945 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3946 return -1; 3947 3948 return pfn; 3949 } 3950 #endif 3951 3952 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3953 struct pglist_data *pgdat, bool can_swap) 3954 { 3955 struct folio *folio; 3956 3957 /* try to avoid unnecessary memory loads */ 3958 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3959 return NULL; 3960 3961 folio = pfn_folio(pfn); 3962 if (folio_nid(folio) != pgdat->node_id) 3963 return NULL; 3964 3965 if (folio_memcg_rcu(folio) != memcg) 3966 return NULL; 3967 3968 /* file VMAs can contain anon pages from COW */ 3969 if (!folio_is_file_lru(folio) && !can_swap) 3970 return NULL; 3971 3972 return folio; 3973 } 3974 3975 static bool suitable_to_scan(int total, int young) 3976 { 3977 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3978 3979 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3980 return young * n >= total; 3981 } 3982 3983 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3984 struct mm_walk *args) 3985 { 3986 int i; 3987 pte_t *pte; 3988 spinlock_t *ptl; 3989 unsigned long addr; 3990 int total = 0; 3991 int young = 0; 3992 struct lru_gen_mm_walk *walk = args->private; 3993 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3994 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3995 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3996 3997 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3998 if (!pte) 3999 return false; 4000 if (!spin_trylock(ptl)) { 4001 pte_unmap(pte); 4002 return false; 4003 } 4004 4005 arch_enter_lazy_mmu_mode(); 4006 restart: 4007 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 4008 unsigned long pfn; 4009 struct folio *folio; 4010 pte_t ptent = ptep_get(pte + i); 4011 4012 total++; 4013 walk->mm_stats[MM_LEAF_TOTAL]++; 4014 4015 pfn = get_pte_pfn(ptent, args->vma, addr); 4016 if (pfn == -1) 4017 continue; 4018 4019 if (!pte_young(ptent)) { 4020 walk->mm_stats[MM_LEAF_OLD]++; 4021 continue; 4022 } 4023 4024 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4025 if (!folio) 4026 continue; 4027 4028 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 4029 VM_WARN_ON_ONCE(true); 4030 4031 young++; 4032 walk->mm_stats[MM_LEAF_YOUNG]++; 4033 4034 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4035 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4036 !folio_test_swapcache(folio))) 4037 folio_mark_dirty(folio); 4038 4039 old_gen = folio_update_gen(folio, new_gen); 4040 if (old_gen >= 0 && old_gen != new_gen) 4041 update_batch_size(walk, folio, old_gen, new_gen); 4042 } 4043 4044 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 4045 goto restart; 4046 4047 arch_leave_lazy_mmu_mode(); 4048 pte_unmap_unlock(pte, ptl); 4049 4050 return suitable_to_scan(total, young); 4051 } 4052 4053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 4054 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4055 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4056 { 4057 int i; 4058 pmd_t *pmd; 4059 spinlock_t *ptl; 4060 struct lru_gen_mm_walk *walk = args->private; 4061 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4062 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4063 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4064 4065 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4066 4067 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4068 if (*first == -1) { 4069 *first = addr; 4070 bitmap_zero(bitmap, MIN_LRU_BATCH); 4071 return; 4072 } 4073 4074 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 4075 if (i && i <= MIN_LRU_BATCH) { 4076 __set_bit(i - 1, bitmap); 4077 return; 4078 } 4079 4080 pmd = pmd_offset(pud, *first); 4081 4082 ptl = pmd_lockptr(args->mm, pmd); 4083 if (!spin_trylock(ptl)) 4084 goto done; 4085 4086 arch_enter_lazy_mmu_mode(); 4087 4088 do { 4089 unsigned long pfn; 4090 struct folio *folio; 4091 4092 /* don't round down the first address */ 4093 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 4094 4095 pfn = get_pmd_pfn(pmd[i], vma, addr); 4096 if (pfn == -1) 4097 goto next; 4098 4099 if (!pmd_trans_huge(pmd[i])) { 4100 if (should_clear_pmd_young()) 4101 pmdp_test_and_clear_young(vma, addr, pmd + i); 4102 goto next; 4103 } 4104 4105 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4106 if (!folio) 4107 goto next; 4108 4109 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4110 goto next; 4111 4112 walk->mm_stats[MM_LEAF_YOUNG]++; 4113 4114 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4115 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4116 !folio_test_swapcache(folio))) 4117 folio_mark_dirty(folio); 4118 4119 old_gen = folio_update_gen(folio, new_gen); 4120 if (old_gen >= 0 && old_gen != new_gen) 4121 update_batch_size(walk, folio, old_gen, new_gen); 4122 next: 4123 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4124 } while (i <= MIN_LRU_BATCH); 4125 4126 arch_leave_lazy_mmu_mode(); 4127 spin_unlock(ptl); 4128 done: 4129 *first = -1; 4130 } 4131 #else 4132 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4133 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4134 { 4135 } 4136 #endif 4137 4138 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4139 struct mm_walk *args) 4140 { 4141 int i; 4142 pmd_t *pmd; 4143 unsigned long next; 4144 unsigned long addr; 4145 struct vm_area_struct *vma; 4146 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 4147 unsigned long first = -1; 4148 struct lru_gen_mm_walk *walk = args->private; 4149 4150 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4151 4152 /* 4153 * Finish an entire PMD in two passes: the first only reaches to PTE 4154 * tables to avoid taking the PMD lock; the second, if necessary, takes 4155 * the PMD lock to clear the accessed bit in PMD entries. 4156 */ 4157 pmd = pmd_offset(pud, start & PUD_MASK); 4158 restart: 4159 /* walk_pte_range() may call get_next_vma() */ 4160 vma = args->vma; 4161 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4162 pmd_t val = pmdp_get_lockless(pmd + i); 4163 4164 next = pmd_addr_end(addr, end); 4165 4166 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4167 walk->mm_stats[MM_LEAF_TOTAL]++; 4168 continue; 4169 } 4170 4171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4172 if (pmd_trans_huge(val)) { 4173 unsigned long pfn = pmd_pfn(val); 4174 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4175 4176 walk->mm_stats[MM_LEAF_TOTAL]++; 4177 4178 if (!pmd_young(val)) { 4179 walk->mm_stats[MM_LEAF_OLD]++; 4180 continue; 4181 } 4182 4183 /* try to avoid unnecessary memory loads */ 4184 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4185 continue; 4186 4187 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4188 continue; 4189 } 4190 #endif 4191 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4192 4193 if (should_clear_pmd_young()) { 4194 if (!pmd_young(val)) 4195 continue; 4196 4197 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4198 } 4199 4200 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4201 continue; 4202 4203 walk->mm_stats[MM_NONLEAF_FOUND]++; 4204 4205 if (!walk_pte_range(&val, addr, next, args)) 4206 continue; 4207 4208 walk->mm_stats[MM_NONLEAF_ADDED]++; 4209 4210 /* carry over to the next generation */ 4211 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4212 } 4213 4214 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 4215 4216 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4217 goto restart; 4218 } 4219 4220 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4221 struct mm_walk *args) 4222 { 4223 int i; 4224 pud_t *pud; 4225 unsigned long addr; 4226 unsigned long next; 4227 struct lru_gen_mm_walk *walk = args->private; 4228 4229 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4230 4231 pud = pud_offset(p4d, start & P4D_MASK); 4232 restart: 4233 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4234 pud_t val = READ_ONCE(pud[i]); 4235 4236 next = pud_addr_end(addr, end); 4237 4238 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4239 continue; 4240 4241 walk_pmd_range(&val, addr, next, args); 4242 4243 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4244 end = (addr | ~PUD_MASK) + 1; 4245 goto done; 4246 } 4247 } 4248 4249 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4250 goto restart; 4251 4252 end = round_up(end, P4D_SIZE); 4253 done: 4254 if (!end || !args->vma) 4255 return 1; 4256 4257 walk->next_addr = max(end, args->vma->vm_start); 4258 4259 return -EAGAIN; 4260 } 4261 4262 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4263 { 4264 static const struct mm_walk_ops mm_walk_ops = { 4265 .test_walk = should_skip_vma, 4266 .p4d_entry = walk_pud_range, 4267 .walk_lock = PGWALK_RDLOCK, 4268 }; 4269 4270 int err; 4271 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4272 4273 walk->next_addr = FIRST_USER_ADDRESS; 4274 4275 do { 4276 DEFINE_MAX_SEQ(lruvec); 4277 4278 err = -EBUSY; 4279 4280 /* another thread might have called inc_max_seq() */ 4281 if (walk->max_seq != max_seq) 4282 break; 4283 4284 /* folio_update_gen() requires stable folio_memcg() */ 4285 if (!mem_cgroup_trylock_pages(memcg)) 4286 break; 4287 4288 /* the caller might be holding the lock for write */ 4289 if (mmap_read_trylock(mm)) { 4290 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4291 4292 mmap_read_unlock(mm); 4293 } 4294 4295 mem_cgroup_unlock_pages(); 4296 4297 if (walk->batched) { 4298 spin_lock_irq(&lruvec->lru_lock); 4299 reset_batch_size(lruvec, walk); 4300 spin_unlock_irq(&lruvec->lru_lock); 4301 } 4302 4303 cond_resched(); 4304 } while (err == -EAGAIN); 4305 } 4306 4307 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 4308 { 4309 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4310 4311 if (pgdat && current_is_kswapd()) { 4312 VM_WARN_ON_ONCE(walk); 4313 4314 walk = &pgdat->mm_walk; 4315 } else if (!walk && force_alloc) { 4316 VM_WARN_ON_ONCE(current_is_kswapd()); 4317 4318 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4319 } 4320 4321 current->reclaim_state->mm_walk = walk; 4322 4323 return walk; 4324 } 4325 4326 static void clear_mm_walk(void) 4327 { 4328 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4329 4330 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4331 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4332 4333 current->reclaim_state->mm_walk = NULL; 4334 4335 if (!current_is_kswapd()) 4336 kfree(walk); 4337 } 4338 4339 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4340 { 4341 int zone; 4342 int remaining = MAX_LRU_BATCH; 4343 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4344 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4345 4346 if (type == LRU_GEN_ANON && !can_swap) 4347 goto done; 4348 4349 /* prevent cold/hot inversion if force_scan is true */ 4350 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4351 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4352 4353 while (!list_empty(head)) { 4354 struct folio *folio = lru_to_folio(head); 4355 4356 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4357 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4358 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4359 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4360 4361 new_gen = folio_inc_gen(lruvec, folio, false); 4362 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4363 4364 if (!--remaining) 4365 return false; 4366 } 4367 } 4368 done: 4369 reset_ctrl_pos(lruvec, type, true); 4370 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4371 4372 return true; 4373 } 4374 4375 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4376 { 4377 int gen, type, zone; 4378 bool success = false; 4379 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4380 DEFINE_MIN_SEQ(lruvec); 4381 4382 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4383 4384 /* find the oldest populated generation */ 4385 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4386 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4387 gen = lru_gen_from_seq(min_seq[type]); 4388 4389 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4390 if (!list_empty(&lrugen->folios[gen][type][zone])) 4391 goto next; 4392 } 4393 4394 min_seq[type]++; 4395 } 4396 next: 4397 ; 4398 } 4399 4400 /* see the comment on lru_gen_folio */ 4401 if (can_swap) { 4402 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4403 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4404 } 4405 4406 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4407 if (min_seq[type] == lrugen->min_seq[type]) 4408 continue; 4409 4410 reset_ctrl_pos(lruvec, type, true); 4411 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4412 success = true; 4413 } 4414 4415 return success; 4416 } 4417 4418 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4419 { 4420 int prev, next; 4421 int type, zone; 4422 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4423 restart: 4424 spin_lock_irq(&lruvec->lru_lock); 4425 4426 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4427 4428 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4429 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4430 continue; 4431 4432 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4433 4434 if (inc_min_seq(lruvec, type, can_swap)) 4435 continue; 4436 4437 spin_unlock_irq(&lruvec->lru_lock); 4438 cond_resched(); 4439 goto restart; 4440 } 4441 4442 /* 4443 * Update the active/inactive LRU sizes for compatibility. Both sides of 4444 * the current max_seq need to be covered, since max_seq+1 can overlap 4445 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4446 * overlap, cold/hot inversion happens. 4447 */ 4448 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4449 next = lru_gen_from_seq(lrugen->max_seq + 1); 4450 4451 for (type = 0; type < ANON_AND_FILE; type++) { 4452 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4453 enum lru_list lru = type * LRU_INACTIVE_FILE; 4454 long delta = lrugen->nr_pages[prev][type][zone] - 4455 lrugen->nr_pages[next][type][zone]; 4456 4457 if (!delta) 4458 continue; 4459 4460 __update_lru_size(lruvec, lru, zone, delta); 4461 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4462 } 4463 } 4464 4465 for (type = 0; type < ANON_AND_FILE; type++) 4466 reset_ctrl_pos(lruvec, type, false); 4467 4468 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4469 /* make sure preceding modifications appear */ 4470 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4471 4472 spin_unlock_irq(&lruvec->lru_lock); 4473 } 4474 4475 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4476 struct scan_control *sc, bool can_swap, bool force_scan) 4477 { 4478 bool success; 4479 struct lru_gen_mm_walk *walk; 4480 struct mm_struct *mm = NULL; 4481 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4482 4483 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4484 4485 /* see the comment in iterate_mm_list() */ 4486 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4487 success = false; 4488 goto done; 4489 } 4490 4491 /* 4492 * If the hardware doesn't automatically set the accessed bit, fallback 4493 * to lru_gen_look_around(), which only clears the accessed bit in a 4494 * handful of PTEs. Spreading the work out over a period of time usually 4495 * is less efficient, but it avoids bursty page faults. 4496 */ 4497 if (!should_walk_mmu()) { 4498 success = iterate_mm_list_nowalk(lruvec, max_seq); 4499 goto done; 4500 } 4501 4502 walk = set_mm_walk(NULL, true); 4503 if (!walk) { 4504 success = iterate_mm_list_nowalk(lruvec, max_seq); 4505 goto done; 4506 } 4507 4508 walk->lruvec = lruvec; 4509 walk->max_seq = max_seq; 4510 walk->can_swap = can_swap; 4511 walk->force_scan = force_scan; 4512 4513 do { 4514 success = iterate_mm_list(lruvec, walk, &mm); 4515 if (mm) 4516 walk_mm(lruvec, mm, walk); 4517 } while (mm); 4518 done: 4519 if (success) 4520 inc_max_seq(lruvec, can_swap, force_scan); 4521 4522 return success; 4523 } 4524 4525 /****************************************************************************** 4526 * working set protection 4527 ******************************************************************************/ 4528 4529 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4530 { 4531 int priority; 4532 unsigned long reclaimable; 4533 4534 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4535 return; 4536 /* 4537 * Determine the initial priority based on 4538 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4539 * where reclaimed_to_scanned_ratio = inactive / total. 4540 */ 4541 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4542 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4543 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4544 4545 /* round down reclaimable and round up sc->nr_to_reclaim */ 4546 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4547 4548 /* 4549 * The estimation is based on LRU pages only, so cap it to prevent 4550 * overshoots of shrinker objects by large margins. 4551 */ 4552 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 4553 } 4554 4555 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4556 { 4557 int gen, type, zone; 4558 unsigned long total = 0; 4559 bool can_swap = get_swappiness(lruvec, sc); 4560 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4561 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4562 DEFINE_MAX_SEQ(lruvec); 4563 DEFINE_MIN_SEQ(lruvec); 4564 4565 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4566 unsigned long seq; 4567 4568 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4569 gen = lru_gen_from_seq(seq); 4570 4571 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4572 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4573 } 4574 } 4575 4576 /* whether the size is big enough to be helpful */ 4577 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4578 } 4579 4580 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4581 unsigned long min_ttl) 4582 { 4583 int gen; 4584 unsigned long birth; 4585 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4586 DEFINE_MIN_SEQ(lruvec); 4587 4588 if (mem_cgroup_below_min(NULL, memcg)) 4589 return false; 4590 4591 if (!lruvec_is_sizable(lruvec, sc)) 4592 return false; 4593 4594 /* see the comment on lru_gen_folio */ 4595 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4596 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4597 4598 return time_is_before_jiffies(birth + min_ttl); 4599 } 4600 4601 /* to protect the working set of the last N jiffies */ 4602 static unsigned long lru_gen_min_ttl __read_mostly; 4603 4604 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4605 { 4606 struct mem_cgroup *memcg; 4607 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4608 bool reclaimable = !min_ttl; 4609 4610 VM_WARN_ON_ONCE(!current_is_kswapd()); 4611 4612 set_initial_priority(pgdat, sc); 4613 4614 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4615 do { 4616 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4617 4618 mem_cgroup_calculate_protection(NULL, memcg); 4619 4620 if (!reclaimable) 4621 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4622 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4623 4624 /* 4625 * The main goal is to OOM kill if every generation from all memcgs is 4626 * younger than min_ttl. However, another possibility is all memcgs are 4627 * either too small or below min. 4628 */ 4629 if (!reclaimable && mutex_trylock(&oom_lock)) { 4630 struct oom_control oc = { 4631 .gfp_mask = sc->gfp_mask, 4632 }; 4633 4634 out_of_memory(&oc); 4635 4636 mutex_unlock(&oom_lock); 4637 } 4638 } 4639 4640 /****************************************************************************** 4641 * rmap/PT walk feedback 4642 ******************************************************************************/ 4643 4644 /* 4645 * This function exploits spatial locality when shrink_folio_list() walks the 4646 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4647 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4648 * the PTE table to the Bloom filter. This forms a feedback loop between the 4649 * eviction and the aging. 4650 */ 4651 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4652 { 4653 int i; 4654 unsigned long start; 4655 unsigned long end; 4656 struct lru_gen_mm_walk *walk; 4657 int young = 0; 4658 pte_t *pte = pvmw->pte; 4659 unsigned long addr = pvmw->address; 4660 struct vm_area_struct *vma = pvmw->vma; 4661 struct folio *folio = pfn_folio(pvmw->pfn); 4662 bool can_swap = !folio_is_file_lru(folio); 4663 struct mem_cgroup *memcg = folio_memcg(folio); 4664 struct pglist_data *pgdat = folio_pgdat(folio); 4665 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4666 DEFINE_MAX_SEQ(lruvec); 4667 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4668 4669 lockdep_assert_held(pvmw->ptl); 4670 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4671 4672 if (spin_is_contended(pvmw->ptl)) 4673 return; 4674 4675 /* exclude special VMAs containing anon pages from COW */ 4676 if (vma->vm_flags & VM_SPECIAL) 4677 return; 4678 4679 /* avoid taking the LRU lock under the PTL when possible */ 4680 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4681 4682 start = max(addr & PMD_MASK, vma->vm_start); 4683 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4684 4685 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4686 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4687 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4688 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4689 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4690 else { 4691 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4692 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4693 } 4694 } 4695 4696 /* folio_update_gen() requires stable folio_memcg() */ 4697 if (!mem_cgroup_trylock_pages(memcg)) 4698 return; 4699 4700 arch_enter_lazy_mmu_mode(); 4701 4702 pte -= (addr - start) / PAGE_SIZE; 4703 4704 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4705 unsigned long pfn; 4706 pte_t ptent = ptep_get(pte + i); 4707 4708 pfn = get_pte_pfn(ptent, vma, addr); 4709 if (pfn == -1) 4710 continue; 4711 4712 if (!pte_young(ptent)) 4713 continue; 4714 4715 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4716 if (!folio) 4717 continue; 4718 4719 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4720 VM_WARN_ON_ONCE(true); 4721 4722 young++; 4723 4724 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4725 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4726 !folio_test_swapcache(folio))) 4727 folio_mark_dirty(folio); 4728 4729 if (walk) { 4730 old_gen = folio_update_gen(folio, new_gen); 4731 if (old_gen >= 0 && old_gen != new_gen) 4732 update_batch_size(walk, folio, old_gen, new_gen); 4733 4734 continue; 4735 } 4736 4737 old_gen = folio_lru_gen(folio); 4738 if (old_gen < 0) 4739 folio_set_referenced(folio); 4740 else if (old_gen != new_gen) 4741 folio_activate(folio); 4742 } 4743 4744 arch_leave_lazy_mmu_mode(); 4745 mem_cgroup_unlock_pages(); 4746 4747 /* feedback from rmap walkers to page table walkers */ 4748 if (suitable_to_scan(i, young)) 4749 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4750 } 4751 4752 /****************************************************************************** 4753 * memcg LRU 4754 ******************************************************************************/ 4755 4756 /* see the comment on MEMCG_NR_GENS */ 4757 enum { 4758 MEMCG_LRU_NOP, 4759 MEMCG_LRU_HEAD, 4760 MEMCG_LRU_TAIL, 4761 MEMCG_LRU_OLD, 4762 MEMCG_LRU_YOUNG, 4763 }; 4764 4765 #ifdef CONFIG_MEMCG 4766 4767 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4768 { 4769 return READ_ONCE(lruvec->lrugen.seg); 4770 } 4771 4772 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4773 { 4774 int seg; 4775 int old, new; 4776 unsigned long flags; 4777 int bin = get_random_u32_below(MEMCG_NR_BINS); 4778 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4779 4780 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4781 4782 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4783 4784 seg = 0; 4785 new = old = lruvec->lrugen.gen; 4786 4787 /* see the comment on MEMCG_NR_GENS */ 4788 if (op == MEMCG_LRU_HEAD) 4789 seg = MEMCG_LRU_HEAD; 4790 else if (op == MEMCG_LRU_TAIL) 4791 seg = MEMCG_LRU_TAIL; 4792 else if (op == MEMCG_LRU_OLD) 4793 new = get_memcg_gen(pgdat->memcg_lru.seq); 4794 else if (op == MEMCG_LRU_YOUNG) 4795 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4796 else 4797 VM_WARN_ON_ONCE(true); 4798 4799 WRITE_ONCE(lruvec->lrugen.seg, seg); 4800 WRITE_ONCE(lruvec->lrugen.gen, new); 4801 4802 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4803 4804 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4805 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4806 else 4807 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4808 4809 pgdat->memcg_lru.nr_memcgs[old]--; 4810 pgdat->memcg_lru.nr_memcgs[new]++; 4811 4812 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4813 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4814 4815 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4816 } 4817 4818 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4819 { 4820 int gen; 4821 int nid; 4822 int bin = get_random_u32_below(MEMCG_NR_BINS); 4823 4824 for_each_node(nid) { 4825 struct pglist_data *pgdat = NODE_DATA(nid); 4826 struct lruvec *lruvec = get_lruvec(memcg, nid); 4827 4828 spin_lock_irq(&pgdat->memcg_lru.lock); 4829 4830 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4831 4832 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4833 4834 lruvec->lrugen.gen = gen; 4835 4836 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4837 pgdat->memcg_lru.nr_memcgs[gen]++; 4838 4839 spin_unlock_irq(&pgdat->memcg_lru.lock); 4840 } 4841 } 4842 4843 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4844 { 4845 int nid; 4846 4847 for_each_node(nid) { 4848 struct lruvec *lruvec = get_lruvec(memcg, nid); 4849 4850 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4851 } 4852 } 4853 4854 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4855 { 4856 int gen; 4857 int nid; 4858 4859 for_each_node(nid) { 4860 struct pglist_data *pgdat = NODE_DATA(nid); 4861 struct lruvec *lruvec = get_lruvec(memcg, nid); 4862 4863 spin_lock_irq(&pgdat->memcg_lru.lock); 4864 4865 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4866 goto unlock; 4867 4868 gen = lruvec->lrugen.gen; 4869 4870 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4871 pgdat->memcg_lru.nr_memcgs[gen]--; 4872 4873 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4874 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4875 unlock: 4876 spin_unlock_irq(&pgdat->memcg_lru.lock); 4877 } 4878 } 4879 4880 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4881 { 4882 struct lruvec *lruvec = get_lruvec(memcg, nid); 4883 4884 /* see the comment on MEMCG_NR_GENS */ 4885 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 4886 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4887 } 4888 4889 #else /* !CONFIG_MEMCG */ 4890 4891 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4892 { 4893 return 0; 4894 } 4895 4896 #endif 4897 4898 /****************************************************************************** 4899 * the eviction 4900 ******************************************************************************/ 4901 4902 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4903 int tier_idx) 4904 { 4905 bool success; 4906 int gen = folio_lru_gen(folio); 4907 int type = folio_is_file_lru(folio); 4908 int zone = folio_zonenum(folio); 4909 int delta = folio_nr_pages(folio); 4910 int refs = folio_lru_refs(folio); 4911 int tier = lru_tier_from_refs(refs); 4912 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4913 4914 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4915 4916 /* unevictable */ 4917 if (!folio_evictable(folio)) { 4918 success = lru_gen_del_folio(lruvec, folio, true); 4919 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4920 folio_set_unevictable(folio); 4921 lruvec_add_folio(lruvec, folio); 4922 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4923 return true; 4924 } 4925 4926 /* dirty lazyfree */ 4927 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4928 success = lru_gen_del_folio(lruvec, folio, true); 4929 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4930 folio_set_swapbacked(folio); 4931 lruvec_add_folio_tail(lruvec, folio); 4932 return true; 4933 } 4934 4935 /* promoted */ 4936 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4937 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4938 return true; 4939 } 4940 4941 /* protected */ 4942 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4943 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4944 4945 gen = folio_inc_gen(lruvec, folio, false); 4946 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4947 4948 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4949 lrugen->protected[hist][type][tier - 1] + delta); 4950 return true; 4951 } 4952 4953 /* ineligible */ 4954 if (zone > sc->reclaim_idx) { 4955 gen = folio_inc_gen(lruvec, folio, false); 4956 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4957 return true; 4958 } 4959 4960 /* waiting for writeback */ 4961 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4962 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4963 gen = folio_inc_gen(lruvec, folio, true); 4964 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4965 return true; 4966 } 4967 4968 return false; 4969 } 4970 4971 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4972 { 4973 bool success; 4974 4975 /* swapping inhibited */ 4976 if (!(sc->gfp_mask & __GFP_IO) && 4977 (folio_test_dirty(folio) || 4978 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4979 return false; 4980 4981 /* raced with release_pages() */ 4982 if (!folio_try_get(folio)) 4983 return false; 4984 4985 /* raced with another isolation */ 4986 if (!folio_test_clear_lru(folio)) { 4987 folio_put(folio); 4988 return false; 4989 } 4990 4991 /* see the comment on MAX_NR_TIERS */ 4992 if (!folio_test_referenced(folio)) 4993 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4994 4995 /* for shrink_folio_list() */ 4996 folio_clear_reclaim(folio); 4997 folio_clear_referenced(folio); 4998 4999 success = lru_gen_del_folio(lruvec, folio, true); 5000 VM_WARN_ON_ONCE_FOLIO(!success, folio); 5001 5002 return true; 5003 } 5004 5005 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 5006 int type, int tier, struct list_head *list) 5007 { 5008 int i; 5009 int gen; 5010 enum vm_event_item item; 5011 int sorted = 0; 5012 int scanned = 0; 5013 int isolated = 0; 5014 int remaining = MAX_LRU_BATCH; 5015 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5016 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5017 5018 VM_WARN_ON_ONCE(!list_empty(list)); 5019 5020 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 5021 return 0; 5022 5023 gen = lru_gen_from_seq(lrugen->min_seq[type]); 5024 5025 for (i = MAX_NR_ZONES; i > 0; i--) { 5026 LIST_HEAD(moved); 5027 int skipped = 0; 5028 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 5029 struct list_head *head = &lrugen->folios[gen][type][zone]; 5030 5031 while (!list_empty(head)) { 5032 struct folio *folio = lru_to_folio(head); 5033 int delta = folio_nr_pages(folio); 5034 5035 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5036 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5037 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5038 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5039 5040 scanned += delta; 5041 5042 if (sort_folio(lruvec, folio, sc, tier)) 5043 sorted += delta; 5044 else if (isolate_folio(lruvec, folio, sc)) { 5045 list_add(&folio->lru, list); 5046 isolated += delta; 5047 } else { 5048 list_move(&folio->lru, &moved); 5049 skipped += delta; 5050 } 5051 5052 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 5053 break; 5054 } 5055 5056 if (skipped) { 5057 list_splice(&moved, head); 5058 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 5059 } 5060 5061 if (!remaining || isolated >= MIN_LRU_BATCH) 5062 break; 5063 } 5064 5065 item = PGSCAN_KSWAPD + reclaimer_offset(); 5066 if (!cgroup_reclaim(sc)) { 5067 __count_vm_events(item, isolated); 5068 __count_vm_events(PGREFILL, sorted); 5069 } 5070 __count_memcg_events(memcg, item, isolated); 5071 __count_memcg_events(memcg, PGREFILL, sorted); 5072 __count_vm_events(PGSCAN_ANON + type, isolated); 5073 5074 /* 5075 * There might not be eligible folios due to reclaim_idx. Check the 5076 * remaining to prevent livelock if it's not making progress. 5077 */ 5078 return isolated || !remaining ? scanned : 0; 5079 } 5080 5081 static int get_tier_idx(struct lruvec *lruvec, int type) 5082 { 5083 int tier; 5084 struct ctrl_pos sp, pv; 5085 5086 /* 5087 * To leave a margin for fluctuations, use a larger gain factor (1:2). 5088 * This value is chosen because any other tier would have at least twice 5089 * as many refaults as the first tier. 5090 */ 5091 read_ctrl_pos(lruvec, type, 0, 1, &sp); 5092 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5093 read_ctrl_pos(lruvec, type, tier, 2, &pv); 5094 if (!positive_ctrl_err(&sp, &pv)) 5095 break; 5096 } 5097 5098 return tier - 1; 5099 } 5100 5101 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 5102 { 5103 int type, tier; 5104 struct ctrl_pos sp, pv; 5105 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 5106 5107 /* 5108 * Compare the first tier of anon with that of file to determine which 5109 * type to scan. Also need to compare other tiers of the selected type 5110 * with the first tier of the other type to determine the last tier (of 5111 * the selected type) to evict. 5112 */ 5113 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 5114 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 5115 type = positive_ctrl_err(&sp, &pv); 5116 5117 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 5118 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5119 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 5120 if (!positive_ctrl_err(&sp, &pv)) 5121 break; 5122 } 5123 5124 *tier_idx = tier - 1; 5125 5126 return type; 5127 } 5128 5129 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 5130 int *type_scanned, struct list_head *list) 5131 { 5132 int i; 5133 int type; 5134 int scanned; 5135 int tier = -1; 5136 DEFINE_MIN_SEQ(lruvec); 5137 5138 /* 5139 * Try to make the obvious choice first. When anon and file are both 5140 * available from the same generation, interpret swappiness 1 as file 5141 * first and 200 as anon first. 5142 */ 5143 if (!swappiness) 5144 type = LRU_GEN_FILE; 5145 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 5146 type = LRU_GEN_ANON; 5147 else if (swappiness == 1) 5148 type = LRU_GEN_FILE; 5149 else if (swappiness == 200) 5150 type = LRU_GEN_ANON; 5151 else 5152 type = get_type_to_scan(lruvec, swappiness, &tier); 5153 5154 for (i = !swappiness; i < ANON_AND_FILE; i++) { 5155 if (tier < 0) 5156 tier = get_tier_idx(lruvec, type); 5157 5158 scanned = scan_folios(lruvec, sc, type, tier, list); 5159 if (scanned) 5160 break; 5161 5162 type = !type; 5163 tier = -1; 5164 } 5165 5166 *type_scanned = type; 5167 5168 return scanned; 5169 } 5170 5171 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 5172 { 5173 int type; 5174 int scanned; 5175 int reclaimed; 5176 LIST_HEAD(list); 5177 LIST_HEAD(clean); 5178 struct folio *folio; 5179 struct folio *next; 5180 enum vm_event_item item; 5181 struct reclaim_stat stat; 5182 struct lru_gen_mm_walk *walk; 5183 bool skip_retry = false; 5184 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5185 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5186 5187 spin_lock_irq(&lruvec->lru_lock); 5188 5189 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5190 5191 scanned += try_to_inc_min_seq(lruvec, swappiness); 5192 5193 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5194 scanned = 0; 5195 5196 spin_unlock_irq(&lruvec->lru_lock); 5197 5198 if (list_empty(&list)) 5199 return scanned; 5200 retry: 5201 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5202 sc->nr_reclaimed += reclaimed; 5203 5204 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5205 if (!folio_evictable(folio)) { 5206 list_del(&folio->lru); 5207 folio_putback_lru(folio); 5208 continue; 5209 } 5210 5211 if (folio_test_reclaim(folio) && 5212 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5213 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5214 if (folio_test_workingset(folio)) 5215 folio_set_referenced(folio); 5216 continue; 5217 } 5218 5219 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5220 folio_mapped(folio) || folio_test_locked(folio) || 5221 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5222 /* don't add rejected folios to the oldest generation */ 5223 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5224 BIT(PG_active)); 5225 continue; 5226 } 5227 5228 /* retry folios that may have missed folio_rotate_reclaimable() */ 5229 list_move(&folio->lru, &clean); 5230 } 5231 5232 spin_lock_irq(&lruvec->lru_lock); 5233 5234 move_folios_to_lru(lruvec, &list); 5235 5236 walk = current->reclaim_state->mm_walk; 5237 if (walk && walk->batched) 5238 reset_batch_size(lruvec, walk); 5239 5240 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5241 if (!cgroup_reclaim(sc)) 5242 __count_vm_events(item, reclaimed); 5243 __count_memcg_events(memcg, item, reclaimed); 5244 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5245 5246 spin_unlock_irq(&lruvec->lru_lock); 5247 5248 mem_cgroup_uncharge_list(&list); 5249 free_unref_page_list(&list); 5250 5251 INIT_LIST_HEAD(&list); 5252 list_splice_init(&clean, &list); 5253 5254 if (!list_empty(&list)) { 5255 skip_retry = true; 5256 goto retry; 5257 } 5258 5259 return scanned; 5260 } 5261 5262 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 5263 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 5264 { 5265 int gen, type, zone; 5266 unsigned long old = 0; 5267 unsigned long young = 0; 5268 unsigned long total = 0; 5269 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5270 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5271 DEFINE_MIN_SEQ(lruvec); 5272 5273 /* whether this lruvec is completely out of cold folios */ 5274 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 5275 *nr_to_scan = 0; 5276 return true; 5277 } 5278 5279 for (type = !can_swap; type < ANON_AND_FILE; type++) { 5280 unsigned long seq; 5281 5282 for (seq = min_seq[type]; seq <= max_seq; seq++) { 5283 unsigned long size = 0; 5284 5285 gen = lru_gen_from_seq(seq); 5286 5287 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5288 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5289 5290 total += size; 5291 if (seq == max_seq) 5292 young += size; 5293 else if (seq + MIN_NR_GENS == max_seq) 5294 old += size; 5295 } 5296 } 5297 5298 /* try to scrape all its memory if this memcg was deleted */ 5299 if (!mem_cgroup_online(memcg)) { 5300 *nr_to_scan = total; 5301 return false; 5302 } 5303 5304 *nr_to_scan = total >> sc->priority; 5305 5306 /* 5307 * The aging tries to be lazy to reduce the overhead, while the eviction 5308 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 5309 * ideal number of generations is MIN_NR_GENS+1. 5310 */ 5311 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 5312 return false; 5313 5314 /* 5315 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 5316 * of the total number of pages for each generation. A reasonable range 5317 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 5318 * aging cares about the upper bound of hot pages, while the eviction 5319 * cares about the lower bound of cold pages. 5320 */ 5321 if (young * MIN_NR_GENS > total) 5322 return true; 5323 if (old * (MIN_NR_GENS + 2) < total) 5324 return true; 5325 5326 return false; 5327 } 5328 5329 /* 5330 * For future optimizations: 5331 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5332 * reclaim. 5333 */ 5334 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 5335 { 5336 unsigned long nr_to_scan; 5337 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5338 DEFINE_MAX_SEQ(lruvec); 5339 5340 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 5341 return -1; 5342 5343 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5344 return nr_to_scan; 5345 5346 /* skip the aging path at the default priority */ 5347 if (sc->priority == DEF_PRIORITY) 5348 return nr_to_scan; 5349 5350 /* skip this lruvec as it's low on cold folios */ 5351 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 5352 } 5353 5354 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 5355 { 5356 int i; 5357 enum zone_watermarks mark; 5358 5359 /* don't abort memcg reclaim to ensure fairness */ 5360 if (!root_reclaim(sc)) 5361 return false; 5362 5363 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 5364 return true; 5365 5366 /* check the order to exclude compaction-induced reclaim */ 5367 if (!current_is_kswapd() || sc->order) 5368 return false; 5369 5370 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 5371 WMARK_PROMO : WMARK_HIGH; 5372 5373 for (i = 0; i <= sc->reclaim_idx; i++) { 5374 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 5375 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 5376 5377 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 5378 return false; 5379 } 5380 5381 /* kswapd should abort if all eligible zones are safe */ 5382 return true; 5383 } 5384 5385 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5386 { 5387 long nr_to_scan; 5388 unsigned long scanned = 0; 5389 int swappiness = get_swappiness(lruvec, sc); 5390 5391 /* clean file folios are more likely to exist */ 5392 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 5393 swappiness = 1; 5394 5395 while (true) { 5396 int delta; 5397 5398 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5399 if (nr_to_scan <= 0) 5400 break; 5401 5402 delta = evict_folios(lruvec, sc, swappiness); 5403 if (!delta) 5404 break; 5405 5406 scanned += delta; 5407 if (scanned >= nr_to_scan) 5408 break; 5409 5410 if (should_abort_scan(lruvec, sc)) 5411 break; 5412 5413 cond_resched(); 5414 } 5415 5416 /* whether this lruvec should be rotated */ 5417 return nr_to_scan < 0; 5418 } 5419 5420 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 5421 { 5422 bool success; 5423 unsigned long scanned = sc->nr_scanned; 5424 unsigned long reclaimed = sc->nr_reclaimed; 5425 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5426 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5427 5428 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 5429 if (mem_cgroup_below_min(NULL, memcg)) 5430 return MEMCG_LRU_YOUNG; 5431 5432 if (mem_cgroup_below_low(NULL, memcg)) { 5433 /* see the comment on MEMCG_NR_GENS */ 5434 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL) 5435 return MEMCG_LRU_TAIL; 5436 5437 memcg_memory_event(memcg, MEMCG_LOW); 5438 } 5439 5440 success = try_to_shrink_lruvec(lruvec, sc); 5441 5442 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 5443 5444 if (!sc->proactive) 5445 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 5446 sc->nr_reclaimed - reclaimed); 5447 5448 flush_reclaim_state(sc); 5449 5450 if (success && mem_cgroup_online(memcg)) 5451 return MEMCG_LRU_YOUNG; 5452 5453 if (!success && lruvec_is_sizable(lruvec, sc)) 5454 return 0; 5455 5456 /* one retry if offlined or too small */ 5457 return lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL ? 5458 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 5459 } 5460 5461 #ifdef CONFIG_MEMCG 5462 5463 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5464 { 5465 int op; 5466 int gen; 5467 int bin; 5468 int first_bin; 5469 struct lruvec *lruvec; 5470 struct lru_gen_folio *lrugen; 5471 struct mem_cgroup *memcg; 5472 struct hlist_nulls_node *pos; 5473 5474 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 5475 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 5476 restart: 5477 op = 0; 5478 memcg = NULL; 5479 5480 rcu_read_lock(); 5481 5482 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 5483 if (op) { 5484 lru_gen_rotate_memcg(lruvec, op); 5485 op = 0; 5486 } 5487 5488 mem_cgroup_put(memcg); 5489 memcg = NULL; 5490 5491 if (gen != READ_ONCE(lrugen->gen)) 5492 continue; 5493 5494 lruvec = container_of(lrugen, struct lruvec, lrugen); 5495 memcg = lruvec_memcg(lruvec); 5496 5497 if (!mem_cgroup_tryget(memcg)) { 5498 lru_gen_release_memcg(memcg); 5499 memcg = NULL; 5500 continue; 5501 } 5502 5503 rcu_read_unlock(); 5504 5505 op = shrink_one(lruvec, sc); 5506 5507 rcu_read_lock(); 5508 5509 if (should_abort_scan(lruvec, sc)) 5510 break; 5511 } 5512 5513 rcu_read_unlock(); 5514 5515 if (op) 5516 lru_gen_rotate_memcg(lruvec, op); 5517 5518 mem_cgroup_put(memcg); 5519 5520 if (!is_a_nulls(pos)) 5521 return; 5522 5523 /* restart if raced with lru_gen_rotate_memcg() */ 5524 if (gen != get_nulls_value(pos)) 5525 goto restart; 5526 5527 /* try the rest of the bins of the current generation */ 5528 bin = get_memcg_bin(bin + 1); 5529 if (bin != first_bin) 5530 goto restart; 5531 } 5532 5533 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5534 { 5535 struct blk_plug plug; 5536 5537 VM_WARN_ON_ONCE(root_reclaim(sc)); 5538 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5539 5540 lru_add_drain(); 5541 5542 blk_start_plug(&plug); 5543 5544 set_mm_walk(NULL, sc->proactive); 5545 5546 if (try_to_shrink_lruvec(lruvec, sc)) 5547 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5548 5549 clear_mm_walk(); 5550 5551 blk_finish_plug(&plug); 5552 } 5553 5554 #else /* !CONFIG_MEMCG */ 5555 5556 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5557 { 5558 BUILD_BUG(); 5559 } 5560 5561 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5562 { 5563 BUILD_BUG(); 5564 } 5565 5566 #endif 5567 5568 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5569 { 5570 struct blk_plug plug; 5571 unsigned long reclaimed = sc->nr_reclaimed; 5572 5573 VM_WARN_ON_ONCE(!root_reclaim(sc)); 5574 5575 /* 5576 * Unmapped clean folios are already prioritized. Scanning for more of 5577 * them is likely futile and can cause high reclaim latency when there 5578 * is a large number of memcgs. 5579 */ 5580 if (!sc->may_writepage || !sc->may_unmap) 5581 goto done; 5582 5583 lru_add_drain(); 5584 5585 blk_start_plug(&plug); 5586 5587 set_mm_walk(pgdat, sc->proactive); 5588 5589 set_initial_priority(pgdat, sc); 5590 5591 if (current_is_kswapd()) 5592 sc->nr_reclaimed = 0; 5593 5594 if (mem_cgroup_disabled()) 5595 shrink_one(&pgdat->__lruvec, sc); 5596 else 5597 shrink_many(pgdat, sc); 5598 5599 if (current_is_kswapd()) 5600 sc->nr_reclaimed += reclaimed; 5601 5602 clear_mm_walk(); 5603 5604 blk_finish_plug(&plug); 5605 done: 5606 if (sc->nr_reclaimed > reclaimed) 5607 pgdat->kswapd_failures = 0; 5608 } 5609 5610 /****************************************************************************** 5611 * state change 5612 ******************************************************************************/ 5613 5614 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5615 { 5616 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5617 5618 if (lrugen->enabled) { 5619 enum lru_list lru; 5620 5621 for_each_evictable_lru(lru) { 5622 if (!list_empty(&lruvec->lists[lru])) 5623 return false; 5624 } 5625 } else { 5626 int gen, type, zone; 5627 5628 for_each_gen_type_zone(gen, type, zone) { 5629 if (!list_empty(&lrugen->folios[gen][type][zone])) 5630 return false; 5631 } 5632 } 5633 5634 return true; 5635 } 5636 5637 static bool fill_evictable(struct lruvec *lruvec) 5638 { 5639 enum lru_list lru; 5640 int remaining = MAX_LRU_BATCH; 5641 5642 for_each_evictable_lru(lru) { 5643 int type = is_file_lru(lru); 5644 bool active = is_active_lru(lru); 5645 struct list_head *head = &lruvec->lists[lru]; 5646 5647 while (!list_empty(head)) { 5648 bool success; 5649 struct folio *folio = lru_to_folio(head); 5650 5651 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5652 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5653 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5654 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5655 5656 lruvec_del_folio(lruvec, folio); 5657 success = lru_gen_add_folio(lruvec, folio, false); 5658 VM_WARN_ON_ONCE(!success); 5659 5660 if (!--remaining) 5661 return false; 5662 } 5663 } 5664 5665 return true; 5666 } 5667 5668 static bool drain_evictable(struct lruvec *lruvec) 5669 { 5670 int gen, type, zone; 5671 int remaining = MAX_LRU_BATCH; 5672 5673 for_each_gen_type_zone(gen, type, zone) { 5674 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5675 5676 while (!list_empty(head)) { 5677 bool success; 5678 struct folio *folio = lru_to_folio(head); 5679 5680 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5681 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5682 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5683 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5684 5685 success = lru_gen_del_folio(lruvec, folio, false); 5686 VM_WARN_ON_ONCE(!success); 5687 lruvec_add_folio(lruvec, folio); 5688 5689 if (!--remaining) 5690 return false; 5691 } 5692 } 5693 5694 return true; 5695 } 5696 5697 static void lru_gen_change_state(bool enabled) 5698 { 5699 static DEFINE_MUTEX(state_mutex); 5700 5701 struct mem_cgroup *memcg; 5702 5703 cgroup_lock(); 5704 cpus_read_lock(); 5705 get_online_mems(); 5706 mutex_lock(&state_mutex); 5707 5708 if (enabled == lru_gen_enabled()) 5709 goto unlock; 5710 5711 if (enabled) 5712 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5713 else 5714 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5715 5716 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5717 do { 5718 int nid; 5719 5720 for_each_node(nid) { 5721 struct lruvec *lruvec = get_lruvec(memcg, nid); 5722 5723 spin_lock_irq(&lruvec->lru_lock); 5724 5725 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5726 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5727 5728 lruvec->lrugen.enabled = enabled; 5729 5730 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5731 spin_unlock_irq(&lruvec->lru_lock); 5732 cond_resched(); 5733 spin_lock_irq(&lruvec->lru_lock); 5734 } 5735 5736 spin_unlock_irq(&lruvec->lru_lock); 5737 } 5738 5739 cond_resched(); 5740 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5741 unlock: 5742 mutex_unlock(&state_mutex); 5743 put_online_mems(); 5744 cpus_read_unlock(); 5745 cgroup_unlock(); 5746 } 5747 5748 /****************************************************************************** 5749 * sysfs interface 5750 ******************************************************************************/ 5751 5752 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5753 { 5754 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5755 } 5756 5757 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5758 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5759 const char *buf, size_t len) 5760 { 5761 unsigned int msecs; 5762 5763 if (kstrtouint(buf, 0, &msecs)) 5764 return -EINVAL; 5765 5766 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5767 5768 return len; 5769 } 5770 5771 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5772 5773 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5774 { 5775 unsigned int caps = 0; 5776 5777 if (get_cap(LRU_GEN_CORE)) 5778 caps |= BIT(LRU_GEN_CORE); 5779 5780 if (should_walk_mmu()) 5781 caps |= BIT(LRU_GEN_MM_WALK); 5782 5783 if (should_clear_pmd_young()) 5784 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5785 5786 return sysfs_emit(buf, "0x%04x\n", caps); 5787 } 5788 5789 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5790 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5791 const char *buf, size_t len) 5792 { 5793 int i; 5794 unsigned int caps; 5795 5796 if (tolower(*buf) == 'n') 5797 caps = 0; 5798 else if (tolower(*buf) == 'y') 5799 caps = -1; 5800 else if (kstrtouint(buf, 0, &caps)) 5801 return -EINVAL; 5802 5803 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5804 bool enabled = caps & BIT(i); 5805 5806 if (i == LRU_GEN_CORE) 5807 lru_gen_change_state(enabled); 5808 else if (enabled) 5809 static_branch_enable(&lru_gen_caps[i]); 5810 else 5811 static_branch_disable(&lru_gen_caps[i]); 5812 } 5813 5814 return len; 5815 } 5816 5817 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5818 5819 static struct attribute *lru_gen_attrs[] = { 5820 &lru_gen_min_ttl_attr.attr, 5821 &lru_gen_enabled_attr.attr, 5822 NULL 5823 }; 5824 5825 static const struct attribute_group lru_gen_attr_group = { 5826 .name = "lru_gen", 5827 .attrs = lru_gen_attrs, 5828 }; 5829 5830 /****************************************************************************** 5831 * debugfs interface 5832 ******************************************************************************/ 5833 5834 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5835 { 5836 struct mem_cgroup *memcg; 5837 loff_t nr_to_skip = *pos; 5838 5839 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5840 if (!m->private) 5841 return ERR_PTR(-ENOMEM); 5842 5843 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5844 do { 5845 int nid; 5846 5847 for_each_node_state(nid, N_MEMORY) { 5848 if (!nr_to_skip--) 5849 return get_lruvec(memcg, nid); 5850 } 5851 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5852 5853 return NULL; 5854 } 5855 5856 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5857 { 5858 if (!IS_ERR_OR_NULL(v)) 5859 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5860 5861 kvfree(m->private); 5862 m->private = NULL; 5863 } 5864 5865 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5866 { 5867 int nid = lruvec_pgdat(v)->node_id; 5868 struct mem_cgroup *memcg = lruvec_memcg(v); 5869 5870 ++*pos; 5871 5872 nid = next_memory_node(nid); 5873 if (nid == MAX_NUMNODES) { 5874 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5875 if (!memcg) 5876 return NULL; 5877 5878 nid = first_memory_node; 5879 } 5880 5881 return get_lruvec(memcg, nid); 5882 } 5883 5884 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5885 unsigned long max_seq, unsigned long *min_seq, 5886 unsigned long seq) 5887 { 5888 int i; 5889 int type, tier; 5890 int hist = lru_hist_from_seq(seq); 5891 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5892 5893 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5894 seq_printf(m, " %10d", tier); 5895 for (type = 0; type < ANON_AND_FILE; type++) { 5896 const char *s = " "; 5897 unsigned long n[3] = {}; 5898 5899 if (seq == max_seq) { 5900 s = "RT "; 5901 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5902 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5903 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5904 s = "rep"; 5905 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5906 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5907 if (tier) 5908 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5909 } 5910 5911 for (i = 0; i < 3; i++) 5912 seq_printf(m, " %10lu%c", n[i], s[i]); 5913 } 5914 seq_putc(m, '\n'); 5915 } 5916 5917 seq_puts(m, " "); 5918 for (i = 0; i < NR_MM_STATS; i++) { 5919 const char *s = " "; 5920 unsigned long n = 0; 5921 5922 if (seq == max_seq && NR_HIST_GENS == 1) { 5923 s = "LOYNFA"; 5924 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5925 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5926 s = "loynfa"; 5927 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5928 } 5929 5930 seq_printf(m, " %10lu%c", n, s[i]); 5931 } 5932 seq_putc(m, '\n'); 5933 } 5934 5935 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5936 static int lru_gen_seq_show(struct seq_file *m, void *v) 5937 { 5938 unsigned long seq; 5939 bool full = !debugfs_real_fops(m->file)->write; 5940 struct lruvec *lruvec = v; 5941 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5942 int nid = lruvec_pgdat(lruvec)->node_id; 5943 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5944 DEFINE_MAX_SEQ(lruvec); 5945 DEFINE_MIN_SEQ(lruvec); 5946 5947 if (nid == first_memory_node) { 5948 const char *path = memcg ? m->private : ""; 5949 5950 #ifdef CONFIG_MEMCG 5951 if (memcg) 5952 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5953 #endif 5954 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5955 } 5956 5957 seq_printf(m, " node %5d\n", nid); 5958 5959 if (!full) 5960 seq = min_seq[LRU_GEN_ANON]; 5961 else if (max_seq >= MAX_NR_GENS) 5962 seq = max_seq - MAX_NR_GENS + 1; 5963 else 5964 seq = 0; 5965 5966 for (; seq <= max_seq; seq++) { 5967 int type, zone; 5968 int gen = lru_gen_from_seq(seq); 5969 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5970 5971 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5972 5973 for (type = 0; type < ANON_AND_FILE; type++) { 5974 unsigned long size = 0; 5975 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5976 5977 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5978 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5979 5980 seq_printf(m, " %10lu%c", size, mark); 5981 } 5982 5983 seq_putc(m, '\n'); 5984 5985 if (full) 5986 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5987 } 5988 5989 return 0; 5990 } 5991 5992 static const struct seq_operations lru_gen_seq_ops = { 5993 .start = lru_gen_seq_start, 5994 .stop = lru_gen_seq_stop, 5995 .next = lru_gen_seq_next, 5996 .show = lru_gen_seq_show, 5997 }; 5998 5999 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 6000 bool can_swap, bool force_scan) 6001 { 6002 DEFINE_MAX_SEQ(lruvec); 6003 DEFINE_MIN_SEQ(lruvec); 6004 6005 if (seq < max_seq) 6006 return 0; 6007 6008 if (seq > max_seq) 6009 return -EINVAL; 6010 6011 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 6012 return -ERANGE; 6013 6014 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 6015 6016 return 0; 6017 } 6018 6019 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 6020 int swappiness, unsigned long nr_to_reclaim) 6021 { 6022 DEFINE_MAX_SEQ(lruvec); 6023 6024 if (seq + MIN_NR_GENS > max_seq) 6025 return -EINVAL; 6026 6027 sc->nr_reclaimed = 0; 6028 6029 while (!signal_pending(current)) { 6030 DEFINE_MIN_SEQ(lruvec); 6031 6032 if (seq < min_seq[!swappiness]) 6033 return 0; 6034 6035 if (sc->nr_reclaimed >= nr_to_reclaim) 6036 return 0; 6037 6038 if (!evict_folios(lruvec, sc, swappiness)) 6039 return 0; 6040 6041 cond_resched(); 6042 } 6043 6044 return -EINTR; 6045 } 6046 6047 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 6048 struct scan_control *sc, int swappiness, unsigned long opt) 6049 { 6050 struct lruvec *lruvec; 6051 int err = -EINVAL; 6052 struct mem_cgroup *memcg = NULL; 6053 6054 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 6055 return -EINVAL; 6056 6057 if (!mem_cgroup_disabled()) { 6058 rcu_read_lock(); 6059 6060 memcg = mem_cgroup_from_id(memcg_id); 6061 if (!mem_cgroup_tryget(memcg)) 6062 memcg = NULL; 6063 6064 rcu_read_unlock(); 6065 6066 if (!memcg) 6067 return -EINVAL; 6068 } 6069 6070 if (memcg_id != mem_cgroup_id(memcg)) 6071 goto done; 6072 6073 lruvec = get_lruvec(memcg, nid); 6074 6075 if (swappiness < 0) 6076 swappiness = get_swappiness(lruvec, sc); 6077 else if (swappiness > 200) 6078 goto done; 6079 6080 switch (cmd) { 6081 case '+': 6082 err = run_aging(lruvec, seq, sc, swappiness, opt); 6083 break; 6084 case '-': 6085 err = run_eviction(lruvec, seq, sc, swappiness, opt); 6086 break; 6087 } 6088 done: 6089 mem_cgroup_put(memcg); 6090 6091 return err; 6092 } 6093 6094 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 6095 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 6096 size_t len, loff_t *pos) 6097 { 6098 void *buf; 6099 char *cur, *next; 6100 unsigned int flags; 6101 struct blk_plug plug; 6102 int err = -EINVAL; 6103 struct scan_control sc = { 6104 .may_writepage = true, 6105 .may_unmap = true, 6106 .may_swap = true, 6107 .reclaim_idx = MAX_NR_ZONES - 1, 6108 .gfp_mask = GFP_KERNEL, 6109 }; 6110 6111 buf = kvmalloc(len + 1, GFP_KERNEL); 6112 if (!buf) 6113 return -ENOMEM; 6114 6115 if (copy_from_user(buf, src, len)) { 6116 kvfree(buf); 6117 return -EFAULT; 6118 } 6119 6120 set_task_reclaim_state(current, &sc.reclaim_state); 6121 flags = memalloc_noreclaim_save(); 6122 blk_start_plug(&plug); 6123 if (!set_mm_walk(NULL, true)) { 6124 err = -ENOMEM; 6125 goto done; 6126 } 6127 6128 next = buf; 6129 next[len] = '\0'; 6130 6131 while ((cur = strsep(&next, ",;\n"))) { 6132 int n; 6133 int end; 6134 char cmd; 6135 unsigned int memcg_id; 6136 unsigned int nid; 6137 unsigned long seq; 6138 unsigned int swappiness = -1; 6139 unsigned long opt = -1; 6140 6141 cur = skip_spaces(cur); 6142 if (!*cur) 6143 continue; 6144 6145 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 6146 &seq, &end, &swappiness, &end, &opt, &end); 6147 if (n < 4 || cur[end]) { 6148 err = -EINVAL; 6149 break; 6150 } 6151 6152 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 6153 if (err) 6154 break; 6155 } 6156 done: 6157 clear_mm_walk(); 6158 blk_finish_plug(&plug); 6159 memalloc_noreclaim_restore(flags); 6160 set_task_reclaim_state(current, NULL); 6161 6162 kvfree(buf); 6163 6164 return err ? : len; 6165 } 6166 6167 static int lru_gen_seq_open(struct inode *inode, struct file *file) 6168 { 6169 return seq_open(file, &lru_gen_seq_ops); 6170 } 6171 6172 static const struct file_operations lru_gen_rw_fops = { 6173 .open = lru_gen_seq_open, 6174 .read = seq_read, 6175 .write = lru_gen_seq_write, 6176 .llseek = seq_lseek, 6177 .release = seq_release, 6178 }; 6179 6180 static const struct file_operations lru_gen_ro_fops = { 6181 .open = lru_gen_seq_open, 6182 .read = seq_read, 6183 .llseek = seq_lseek, 6184 .release = seq_release, 6185 }; 6186 6187 /****************************************************************************** 6188 * initialization 6189 ******************************************************************************/ 6190 6191 void lru_gen_init_lruvec(struct lruvec *lruvec) 6192 { 6193 int i; 6194 int gen, type, zone; 6195 struct lru_gen_folio *lrugen = &lruvec->lrugen; 6196 6197 lrugen->max_seq = MIN_NR_GENS + 1; 6198 lrugen->enabled = lru_gen_enabled(); 6199 6200 for (i = 0; i <= MIN_NR_GENS + 1; i++) 6201 lrugen->timestamps[i] = jiffies; 6202 6203 for_each_gen_type_zone(gen, type, zone) 6204 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 6205 6206 lruvec->mm_state.seq = MIN_NR_GENS; 6207 } 6208 6209 #ifdef CONFIG_MEMCG 6210 6211 void lru_gen_init_pgdat(struct pglist_data *pgdat) 6212 { 6213 int i, j; 6214 6215 spin_lock_init(&pgdat->memcg_lru.lock); 6216 6217 for (i = 0; i < MEMCG_NR_GENS; i++) { 6218 for (j = 0; j < MEMCG_NR_BINS; j++) 6219 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 6220 } 6221 } 6222 6223 void lru_gen_init_memcg(struct mem_cgroup *memcg) 6224 { 6225 INIT_LIST_HEAD(&memcg->mm_list.fifo); 6226 spin_lock_init(&memcg->mm_list.lock); 6227 } 6228 6229 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 6230 { 6231 int i; 6232 int nid; 6233 6234 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); 6235 6236 for_each_node(nid) { 6237 struct lruvec *lruvec = get_lruvec(memcg, nid); 6238 6239 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 6240 sizeof(lruvec->lrugen.nr_pages))); 6241 6242 lruvec->lrugen.list.next = LIST_POISON1; 6243 6244 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 6245 bitmap_free(lruvec->mm_state.filters[i]); 6246 lruvec->mm_state.filters[i] = NULL; 6247 } 6248 } 6249 } 6250 6251 #endif /* CONFIG_MEMCG */ 6252 6253 static int __init init_lru_gen(void) 6254 { 6255 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 6256 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 6257 6258 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 6259 pr_err("lru_gen: failed to create sysfs group\n"); 6260 6261 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 6262 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 6263 6264 return 0; 6265 }; 6266 late_initcall(init_lru_gen); 6267 6268 #else /* !CONFIG_LRU_GEN */ 6269 6270 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6271 { 6272 } 6273 6274 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6275 { 6276 } 6277 6278 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 6279 { 6280 } 6281 6282 #endif /* CONFIG_LRU_GEN */ 6283 6284 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6285 { 6286 unsigned long nr[NR_LRU_LISTS]; 6287 unsigned long targets[NR_LRU_LISTS]; 6288 unsigned long nr_to_scan; 6289 enum lru_list lru; 6290 unsigned long nr_reclaimed = 0; 6291 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 6292 bool proportional_reclaim; 6293 struct blk_plug plug; 6294 6295 if (lru_gen_enabled() && !root_reclaim(sc)) { 6296 lru_gen_shrink_lruvec(lruvec, sc); 6297 return; 6298 } 6299 6300 get_scan_count(lruvec, sc, nr); 6301 6302 /* Record the original scan target for proportional adjustments later */ 6303 memcpy(targets, nr, sizeof(nr)); 6304 6305 /* 6306 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 6307 * event that can occur when there is little memory pressure e.g. 6308 * multiple streaming readers/writers. Hence, we do not abort scanning 6309 * when the requested number of pages are reclaimed when scanning at 6310 * DEF_PRIORITY on the assumption that the fact we are direct 6311 * reclaiming implies that kswapd is not keeping up and it is best to 6312 * do a batch of work at once. For memcg reclaim one check is made to 6313 * abort proportional reclaim if either the file or anon lru has already 6314 * dropped to zero at the first pass. 6315 */ 6316 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 6317 sc->priority == DEF_PRIORITY); 6318 6319 blk_start_plug(&plug); 6320 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 6321 nr[LRU_INACTIVE_FILE]) { 6322 unsigned long nr_anon, nr_file, percentage; 6323 unsigned long nr_scanned; 6324 6325 for_each_evictable_lru(lru) { 6326 if (nr[lru]) { 6327 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 6328 nr[lru] -= nr_to_scan; 6329 6330 nr_reclaimed += shrink_list(lru, nr_to_scan, 6331 lruvec, sc); 6332 } 6333 } 6334 6335 cond_resched(); 6336 6337 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 6338 continue; 6339 6340 /* 6341 * For kswapd and memcg, reclaim at least the number of pages 6342 * requested. Ensure that the anon and file LRUs are scanned 6343 * proportionally what was requested by get_scan_count(). We 6344 * stop reclaiming one LRU and reduce the amount scanning 6345 * proportional to the original scan target. 6346 */ 6347 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 6348 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 6349 6350 /* 6351 * It's just vindictive to attack the larger once the smaller 6352 * has gone to zero. And given the way we stop scanning the 6353 * smaller below, this makes sure that we only make one nudge 6354 * towards proportionality once we've got nr_to_reclaim. 6355 */ 6356 if (!nr_file || !nr_anon) 6357 break; 6358 6359 if (nr_file > nr_anon) { 6360 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 6361 targets[LRU_ACTIVE_ANON] + 1; 6362 lru = LRU_BASE; 6363 percentage = nr_anon * 100 / scan_target; 6364 } else { 6365 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 6366 targets[LRU_ACTIVE_FILE] + 1; 6367 lru = LRU_FILE; 6368 percentage = nr_file * 100 / scan_target; 6369 } 6370 6371 /* Stop scanning the smaller of the LRU */ 6372 nr[lru] = 0; 6373 nr[lru + LRU_ACTIVE] = 0; 6374 6375 /* 6376 * Recalculate the other LRU scan count based on its original 6377 * scan target and the percentage scanning already complete 6378 */ 6379 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6380 nr_scanned = targets[lru] - nr[lru]; 6381 nr[lru] = targets[lru] * (100 - percentage) / 100; 6382 nr[lru] -= min(nr[lru], nr_scanned); 6383 6384 lru += LRU_ACTIVE; 6385 nr_scanned = targets[lru] - nr[lru]; 6386 nr[lru] = targets[lru] * (100 - percentage) / 100; 6387 nr[lru] -= min(nr[lru], nr_scanned); 6388 } 6389 blk_finish_plug(&plug); 6390 sc->nr_reclaimed += nr_reclaimed; 6391 6392 /* 6393 * Even if we did not try to evict anon pages at all, we want to 6394 * rebalance the anon lru active/inactive ratio. 6395 */ 6396 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6397 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6398 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6399 sc, LRU_ACTIVE_ANON); 6400 } 6401 6402 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6403 static bool in_reclaim_compaction(struct scan_control *sc) 6404 { 6405 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 6406 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6407 sc->priority < DEF_PRIORITY - 2)) 6408 return true; 6409 6410 return false; 6411 } 6412 6413 /* 6414 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6415 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6416 * true if more pages should be reclaimed such that when the page allocator 6417 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6418 * It will give up earlier than that if there is difficulty reclaiming pages. 6419 */ 6420 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6421 unsigned long nr_reclaimed, 6422 struct scan_control *sc) 6423 { 6424 unsigned long pages_for_compaction; 6425 unsigned long inactive_lru_pages; 6426 int z; 6427 6428 /* If not in reclaim/compaction mode, stop */ 6429 if (!in_reclaim_compaction(sc)) 6430 return false; 6431 6432 /* 6433 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6434 * number of pages that were scanned. This will return to the caller 6435 * with the risk reclaim/compaction and the resulting allocation attempt 6436 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6437 * allocations through requiring that the full LRU list has been scanned 6438 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6439 * scan, but that approximation was wrong, and there were corner cases 6440 * where always a non-zero amount of pages were scanned. 6441 */ 6442 if (!nr_reclaimed) 6443 return false; 6444 6445 /* If compaction would go ahead or the allocation would succeed, stop */ 6446 for (z = 0; z <= sc->reclaim_idx; z++) { 6447 struct zone *zone = &pgdat->node_zones[z]; 6448 if (!managed_zone(zone)) 6449 continue; 6450 6451 /* Allocation can already succeed, nothing to do */ 6452 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6453 sc->reclaim_idx, 0)) 6454 return false; 6455 6456 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6457 return false; 6458 } 6459 6460 /* 6461 * If we have not reclaimed enough pages for compaction and the 6462 * inactive lists are large enough, continue reclaiming 6463 */ 6464 pages_for_compaction = compact_gap(sc->order); 6465 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6466 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6467 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6468 6469 return inactive_lru_pages > pages_for_compaction; 6470 } 6471 6472 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6473 { 6474 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6475 struct mem_cgroup *memcg; 6476 6477 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6478 do { 6479 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6480 unsigned long reclaimed; 6481 unsigned long scanned; 6482 6483 /* 6484 * This loop can become CPU-bound when target memcgs 6485 * aren't eligible for reclaim - either because they 6486 * don't have any reclaimable pages, or because their 6487 * memory is explicitly protected. Avoid soft lockups. 6488 */ 6489 cond_resched(); 6490 6491 mem_cgroup_calculate_protection(target_memcg, memcg); 6492 6493 if (mem_cgroup_below_min(target_memcg, memcg)) { 6494 /* 6495 * Hard protection. 6496 * If there is no reclaimable memory, OOM. 6497 */ 6498 continue; 6499 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6500 /* 6501 * Soft protection. 6502 * Respect the protection only as long as 6503 * there is an unprotected supply 6504 * of reclaimable memory from other cgroups. 6505 */ 6506 if (!sc->memcg_low_reclaim) { 6507 sc->memcg_low_skipped = 1; 6508 continue; 6509 } 6510 memcg_memory_event(memcg, MEMCG_LOW); 6511 } 6512 6513 reclaimed = sc->nr_reclaimed; 6514 scanned = sc->nr_scanned; 6515 6516 shrink_lruvec(lruvec, sc); 6517 6518 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6519 sc->priority); 6520 6521 /* Record the group's reclaim efficiency */ 6522 if (!sc->proactive) 6523 vmpressure(sc->gfp_mask, memcg, false, 6524 sc->nr_scanned - scanned, 6525 sc->nr_reclaimed - reclaimed); 6526 6527 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6528 } 6529 6530 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6531 { 6532 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6533 struct lruvec *target_lruvec; 6534 bool reclaimable = false; 6535 6536 if (lru_gen_enabled() && root_reclaim(sc)) { 6537 lru_gen_shrink_node(pgdat, sc); 6538 return; 6539 } 6540 6541 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6542 6543 again: 6544 memset(&sc->nr, 0, sizeof(sc->nr)); 6545 6546 nr_reclaimed = sc->nr_reclaimed; 6547 nr_scanned = sc->nr_scanned; 6548 6549 prepare_scan_count(pgdat, sc); 6550 6551 shrink_node_memcgs(pgdat, sc); 6552 6553 flush_reclaim_state(sc); 6554 6555 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6556 6557 /* Record the subtree's reclaim efficiency */ 6558 if (!sc->proactive) 6559 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6560 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6561 6562 if (nr_node_reclaimed) 6563 reclaimable = true; 6564 6565 if (current_is_kswapd()) { 6566 /* 6567 * If reclaim is isolating dirty pages under writeback, 6568 * it implies that the long-lived page allocation rate 6569 * is exceeding the page laundering rate. Either the 6570 * global limits are not being effective at throttling 6571 * processes due to the page distribution throughout 6572 * zones or there is heavy usage of a slow backing 6573 * device. The only option is to throttle from reclaim 6574 * context which is not ideal as there is no guarantee 6575 * the dirtying process is throttled in the same way 6576 * balance_dirty_pages() manages. 6577 * 6578 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6579 * count the number of pages under pages flagged for 6580 * immediate reclaim and stall if any are encountered 6581 * in the nr_immediate check below. 6582 */ 6583 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6584 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6585 6586 /* Allow kswapd to start writing pages during reclaim.*/ 6587 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6588 set_bit(PGDAT_DIRTY, &pgdat->flags); 6589 6590 /* 6591 * If kswapd scans pages marked for immediate 6592 * reclaim and under writeback (nr_immediate), it 6593 * implies that pages are cycling through the LRU 6594 * faster than they are written so forcibly stall 6595 * until some pages complete writeback. 6596 */ 6597 if (sc->nr.immediate) 6598 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6599 } 6600 6601 /* 6602 * Tag a node/memcg as congested if all the dirty pages were marked 6603 * for writeback and immediate reclaim (counted in nr.congested). 6604 * 6605 * Legacy memcg will stall in page writeback so avoid forcibly 6606 * stalling in reclaim_throttle(). 6607 */ 6608 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6609 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6610 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6611 6612 if (current_is_kswapd()) 6613 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6614 } 6615 6616 /* 6617 * Stall direct reclaim for IO completions if the lruvec is 6618 * node is congested. Allow kswapd to continue until it 6619 * starts encountering unqueued dirty pages or cycling through 6620 * the LRU too quickly. 6621 */ 6622 if (!current_is_kswapd() && current_may_throttle() && 6623 !sc->hibernation_mode && 6624 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6625 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6626 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6627 6628 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6629 goto again; 6630 6631 /* 6632 * Kswapd gives up on balancing particular nodes after too 6633 * many failures to reclaim anything from them and goes to 6634 * sleep. On reclaim progress, reset the failure counter. A 6635 * successful direct reclaim run will revive a dormant kswapd. 6636 */ 6637 if (reclaimable) 6638 pgdat->kswapd_failures = 0; 6639 } 6640 6641 /* 6642 * Returns true if compaction should go ahead for a costly-order request, or 6643 * the allocation would already succeed without compaction. Return false if we 6644 * should reclaim first. 6645 */ 6646 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6647 { 6648 unsigned long watermark; 6649 6650 if (!gfp_compaction_allowed(sc->gfp_mask)) 6651 return false; 6652 6653 /* Allocation can already succeed, nothing to do */ 6654 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6655 sc->reclaim_idx, 0)) 6656 return true; 6657 6658 /* Compaction cannot yet proceed. Do reclaim. */ 6659 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6660 return false; 6661 6662 /* 6663 * Compaction is already possible, but it takes time to run and there 6664 * are potentially other callers using the pages just freed. So proceed 6665 * with reclaim to make a buffer of free pages available to give 6666 * compaction a reasonable chance of completing and allocating the page. 6667 * Note that we won't actually reclaim the whole buffer in one attempt 6668 * as the target watermark in should_continue_reclaim() is lower. But if 6669 * we are already above the high+gap watermark, don't reclaim at all. 6670 */ 6671 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6672 6673 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6674 } 6675 6676 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6677 { 6678 /* 6679 * If reclaim is making progress greater than 12% efficiency then 6680 * wake all the NOPROGRESS throttled tasks. 6681 */ 6682 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6683 wait_queue_head_t *wqh; 6684 6685 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6686 if (waitqueue_active(wqh)) 6687 wake_up(wqh); 6688 6689 return; 6690 } 6691 6692 /* 6693 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6694 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6695 * under writeback and marked for immediate reclaim at the tail of the 6696 * LRU. 6697 */ 6698 if (current_is_kswapd() || cgroup_reclaim(sc)) 6699 return; 6700 6701 /* Throttle if making no progress at high prioities. */ 6702 if (sc->priority == 1 && !sc->nr_reclaimed) 6703 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6704 } 6705 6706 /* 6707 * This is the direct reclaim path, for page-allocating processes. We only 6708 * try to reclaim pages from zones which will satisfy the caller's allocation 6709 * request. 6710 * 6711 * If a zone is deemed to be full of pinned pages then just give it a light 6712 * scan then give up on it. 6713 */ 6714 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6715 { 6716 struct zoneref *z; 6717 struct zone *zone; 6718 unsigned long nr_soft_reclaimed; 6719 unsigned long nr_soft_scanned; 6720 gfp_t orig_mask; 6721 pg_data_t *last_pgdat = NULL; 6722 pg_data_t *first_pgdat = NULL; 6723 6724 /* 6725 * If the number of buffer_heads in the machine exceeds the maximum 6726 * allowed level, force direct reclaim to scan the highmem zone as 6727 * highmem pages could be pinning lowmem pages storing buffer_heads 6728 */ 6729 orig_mask = sc->gfp_mask; 6730 if (buffer_heads_over_limit) { 6731 sc->gfp_mask |= __GFP_HIGHMEM; 6732 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6733 } 6734 6735 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6736 sc->reclaim_idx, sc->nodemask) { 6737 /* 6738 * Take care memory controller reclaiming has small influence 6739 * to global LRU. 6740 */ 6741 if (!cgroup_reclaim(sc)) { 6742 if (!cpuset_zone_allowed(zone, 6743 GFP_KERNEL | __GFP_HARDWALL)) 6744 continue; 6745 6746 /* 6747 * If we already have plenty of memory free for 6748 * compaction in this zone, don't free any more. 6749 * Even though compaction is invoked for any 6750 * non-zero order, only frequent costly order 6751 * reclamation is disruptive enough to become a 6752 * noticeable problem, like transparent huge 6753 * page allocations. 6754 */ 6755 if (IS_ENABLED(CONFIG_COMPACTION) && 6756 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6757 compaction_ready(zone, sc)) { 6758 sc->compaction_ready = true; 6759 continue; 6760 } 6761 6762 /* 6763 * Shrink each node in the zonelist once. If the 6764 * zonelist is ordered by zone (not the default) then a 6765 * node may be shrunk multiple times but in that case 6766 * the user prefers lower zones being preserved. 6767 */ 6768 if (zone->zone_pgdat == last_pgdat) 6769 continue; 6770 6771 /* 6772 * This steals pages from memory cgroups over softlimit 6773 * and returns the number of reclaimed pages and 6774 * scanned pages. This works for global memory pressure 6775 * and balancing, not for a memcg's limit. 6776 */ 6777 nr_soft_scanned = 0; 6778 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6779 sc->order, sc->gfp_mask, 6780 &nr_soft_scanned); 6781 sc->nr_reclaimed += nr_soft_reclaimed; 6782 sc->nr_scanned += nr_soft_scanned; 6783 /* need some check for avoid more shrink_zone() */ 6784 } 6785 6786 if (!first_pgdat) 6787 first_pgdat = zone->zone_pgdat; 6788 6789 /* See comment about same check for global reclaim above */ 6790 if (zone->zone_pgdat == last_pgdat) 6791 continue; 6792 last_pgdat = zone->zone_pgdat; 6793 shrink_node(zone->zone_pgdat, sc); 6794 } 6795 6796 if (first_pgdat) 6797 consider_reclaim_throttle(first_pgdat, sc); 6798 6799 /* 6800 * Restore to original mask to avoid the impact on the caller if we 6801 * promoted it to __GFP_HIGHMEM. 6802 */ 6803 sc->gfp_mask = orig_mask; 6804 } 6805 6806 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6807 { 6808 struct lruvec *target_lruvec; 6809 unsigned long refaults; 6810 6811 if (lru_gen_enabled()) 6812 return; 6813 6814 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6815 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6816 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6817 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6818 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6819 } 6820 6821 /* 6822 * This is the main entry point to direct page reclaim. 6823 * 6824 * If a full scan of the inactive list fails to free enough memory then we 6825 * are "out of memory" and something needs to be killed. 6826 * 6827 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6828 * high - the zone may be full of dirty or under-writeback pages, which this 6829 * caller can't do much about. We kick the writeback threads and take explicit 6830 * naps in the hope that some of these pages can be written. But if the 6831 * allocating task holds filesystem locks which prevent writeout this might not 6832 * work, and the allocation attempt will fail. 6833 * 6834 * returns: 0, if no pages reclaimed 6835 * else, the number of pages reclaimed 6836 */ 6837 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6838 struct scan_control *sc) 6839 { 6840 int initial_priority = sc->priority; 6841 pg_data_t *last_pgdat; 6842 struct zoneref *z; 6843 struct zone *zone; 6844 retry: 6845 delayacct_freepages_start(); 6846 6847 if (!cgroup_reclaim(sc)) 6848 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6849 6850 do { 6851 if (!sc->proactive) 6852 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6853 sc->priority); 6854 sc->nr_scanned = 0; 6855 shrink_zones(zonelist, sc); 6856 6857 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6858 break; 6859 6860 if (sc->compaction_ready) 6861 break; 6862 6863 /* 6864 * If we're getting trouble reclaiming, start doing 6865 * writepage even in laptop mode. 6866 */ 6867 if (sc->priority < DEF_PRIORITY - 2) 6868 sc->may_writepage = 1; 6869 } while (--sc->priority >= 0); 6870 6871 last_pgdat = NULL; 6872 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6873 sc->nodemask) { 6874 if (zone->zone_pgdat == last_pgdat) 6875 continue; 6876 last_pgdat = zone->zone_pgdat; 6877 6878 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6879 6880 if (cgroup_reclaim(sc)) { 6881 struct lruvec *lruvec; 6882 6883 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6884 zone->zone_pgdat); 6885 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6886 } 6887 } 6888 6889 delayacct_freepages_end(); 6890 6891 if (sc->nr_reclaimed) 6892 return sc->nr_reclaimed; 6893 6894 /* Aborted reclaim to try compaction? don't OOM, then */ 6895 if (sc->compaction_ready) 6896 return 1; 6897 6898 /* 6899 * We make inactive:active ratio decisions based on the node's 6900 * composition of memory, but a restrictive reclaim_idx or a 6901 * memory.low cgroup setting can exempt large amounts of 6902 * memory from reclaim. Neither of which are very common, so 6903 * instead of doing costly eligibility calculations of the 6904 * entire cgroup subtree up front, we assume the estimates are 6905 * good, and retry with forcible deactivation if that fails. 6906 */ 6907 if (sc->skipped_deactivate) { 6908 sc->priority = initial_priority; 6909 sc->force_deactivate = 1; 6910 sc->skipped_deactivate = 0; 6911 goto retry; 6912 } 6913 6914 /* Untapped cgroup reserves? Don't OOM, retry. */ 6915 if (sc->memcg_low_skipped) { 6916 sc->priority = initial_priority; 6917 sc->force_deactivate = 0; 6918 sc->memcg_low_reclaim = 1; 6919 sc->memcg_low_skipped = 0; 6920 goto retry; 6921 } 6922 6923 return 0; 6924 } 6925 6926 static bool allow_direct_reclaim(pg_data_t *pgdat) 6927 { 6928 struct zone *zone; 6929 unsigned long pfmemalloc_reserve = 0; 6930 unsigned long free_pages = 0; 6931 int i; 6932 bool wmark_ok; 6933 6934 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6935 return true; 6936 6937 for (i = 0; i <= ZONE_NORMAL; i++) { 6938 zone = &pgdat->node_zones[i]; 6939 if (!managed_zone(zone)) 6940 continue; 6941 6942 if (!zone_reclaimable_pages(zone)) 6943 continue; 6944 6945 pfmemalloc_reserve += min_wmark_pages(zone); 6946 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6947 } 6948 6949 /* If there are no reserves (unexpected config) then do not throttle */ 6950 if (!pfmemalloc_reserve) 6951 return true; 6952 6953 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6954 6955 /* kswapd must be awake if processes are being throttled */ 6956 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6957 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6958 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6959 6960 wake_up_interruptible(&pgdat->kswapd_wait); 6961 } 6962 6963 return wmark_ok; 6964 } 6965 6966 /* 6967 * Throttle direct reclaimers if backing storage is backed by the network 6968 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6969 * depleted. kswapd will continue to make progress and wake the processes 6970 * when the low watermark is reached. 6971 * 6972 * Returns true if a fatal signal was delivered during throttling. If this 6973 * happens, the page allocator should not consider triggering the OOM killer. 6974 */ 6975 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6976 nodemask_t *nodemask) 6977 { 6978 struct zoneref *z; 6979 struct zone *zone; 6980 pg_data_t *pgdat = NULL; 6981 6982 /* 6983 * Kernel threads should not be throttled as they may be indirectly 6984 * responsible for cleaning pages necessary for reclaim to make forward 6985 * progress. kjournald for example may enter direct reclaim while 6986 * committing a transaction where throttling it could forcing other 6987 * processes to block on log_wait_commit(). 6988 */ 6989 if (current->flags & PF_KTHREAD) 6990 goto out; 6991 6992 /* 6993 * If a fatal signal is pending, this process should not throttle. 6994 * It should return quickly so it can exit and free its memory 6995 */ 6996 if (fatal_signal_pending(current)) 6997 goto out; 6998 6999 /* 7000 * Check if the pfmemalloc reserves are ok by finding the first node 7001 * with a usable ZONE_NORMAL or lower zone. The expectation is that 7002 * GFP_KERNEL will be required for allocating network buffers when 7003 * swapping over the network so ZONE_HIGHMEM is unusable. 7004 * 7005 * Throttling is based on the first usable node and throttled processes 7006 * wait on a queue until kswapd makes progress and wakes them. There 7007 * is an affinity then between processes waking up and where reclaim 7008 * progress has been made assuming the process wakes on the same node. 7009 * More importantly, processes running on remote nodes will not compete 7010 * for remote pfmemalloc reserves and processes on different nodes 7011 * should make reasonable progress. 7012 */ 7013 for_each_zone_zonelist_nodemask(zone, z, zonelist, 7014 gfp_zone(gfp_mask), nodemask) { 7015 if (zone_idx(zone) > ZONE_NORMAL) 7016 continue; 7017 7018 /* Throttle based on the first usable node */ 7019 pgdat = zone->zone_pgdat; 7020 if (allow_direct_reclaim(pgdat)) 7021 goto out; 7022 break; 7023 } 7024 7025 /* If no zone was usable by the allocation flags then do not throttle */ 7026 if (!pgdat) 7027 goto out; 7028 7029 /* Account for the throttling */ 7030 count_vm_event(PGSCAN_DIRECT_THROTTLE); 7031 7032 /* 7033 * If the caller cannot enter the filesystem, it's possible that it 7034 * is due to the caller holding an FS lock or performing a journal 7035 * transaction in the case of a filesystem like ext[3|4]. In this case, 7036 * it is not safe to block on pfmemalloc_wait as kswapd could be 7037 * blocked waiting on the same lock. Instead, throttle for up to a 7038 * second before continuing. 7039 */ 7040 if (!(gfp_mask & __GFP_FS)) 7041 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 7042 allow_direct_reclaim(pgdat), HZ); 7043 else 7044 /* Throttle until kswapd wakes the process */ 7045 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 7046 allow_direct_reclaim(pgdat)); 7047 7048 if (fatal_signal_pending(current)) 7049 return true; 7050 7051 out: 7052 return false; 7053 } 7054 7055 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 7056 gfp_t gfp_mask, nodemask_t *nodemask) 7057 { 7058 unsigned long nr_reclaimed; 7059 struct scan_control sc = { 7060 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7061 .gfp_mask = current_gfp_context(gfp_mask), 7062 .reclaim_idx = gfp_zone(gfp_mask), 7063 .order = order, 7064 .nodemask = nodemask, 7065 .priority = DEF_PRIORITY, 7066 .may_writepage = !laptop_mode, 7067 .may_unmap = 1, 7068 .may_swap = 1, 7069 }; 7070 7071 /* 7072 * scan_control uses s8 fields for order, priority, and reclaim_idx. 7073 * Confirm they are large enough for max values. 7074 */ 7075 BUILD_BUG_ON(MAX_ORDER >= S8_MAX); 7076 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 7077 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 7078 7079 /* 7080 * Do not enter reclaim if fatal signal was delivered while throttled. 7081 * 1 is returned so that the page allocator does not OOM kill at this 7082 * point. 7083 */ 7084 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 7085 return 1; 7086 7087 set_task_reclaim_state(current, &sc.reclaim_state); 7088 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 7089 7090 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7091 7092 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 7093 set_task_reclaim_state(current, NULL); 7094 7095 return nr_reclaimed; 7096 } 7097 7098 #ifdef CONFIG_MEMCG 7099 7100 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 7101 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 7102 gfp_t gfp_mask, bool noswap, 7103 pg_data_t *pgdat, 7104 unsigned long *nr_scanned) 7105 { 7106 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 7107 struct scan_control sc = { 7108 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7109 .target_mem_cgroup = memcg, 7110 .may_writepage = !laptop_mode, 7111 .may_unmap = 1, 7112 .reclaim_idx = MAX_NR_ZONES - 1, 7113 .may_swap = !noswap, 7114 }; 7115 7116 WARN_ON_ONCE(!current->reclaim_state); 7117 7118 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 7119 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 7120 7121 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 7122 sc.gfp_mask); 7123 7124 /* 7125 * NOTE: Although we can get the priority field, using it 7126 * here is not a good idea, since it limits the pages we can scan. 7127 * if we don't reclaim here, the shrink_node from balance_pgdat 7128 * will pick up pages from other mem cgroup's as well. We hack 7129 * the priority and make it zero. 7130 */ 7131 shrink_lruvec(lruvec, &sc); 7132 7133 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 7134 7135 *nr_scanned = sc.nr_scanned; 7136 7137 return sc.nr_reclaimed; 7138 } 7139 7140 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 7141 unsigned long nr_pages, 7142 gfp_t gfp_mask, 7143 unsigned int reclaim_options) 7144 { 7145 unsigned long nr_reclaimed; 7146 unsigned int noreclaim_flag; 7147 struct scan_control sc = { 7148 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7149 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 7150 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 7151 .reclaim_idx = MAX_NR_ZONES - 1, 7152 .target_mem_cgroup = memcg, 7153 .priority = DEF_PRIORITY, 7154 .may_writepage = !laptop_mode, 7155 .may_unmap = 1, 7156 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 7157 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 7158 }; 7159 /* 7160 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 7161 * equal pressure on all the nodes. This is based on the assumption that 7162 * the reclaim does not bail out early. 7163 */ 7164 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7165 7166 set_task_reclaim_state(current, &sc.reclaim_state); 7167 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 7168 noreclaim_flag = memalloc_noreclaim_save(); 7169 7170 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7171 7172 memalloc_noreclaim_restore(noreclaim_flag); 7173 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 7174 set_task_reclaim_state(current, NULL); 7175 7176 return nr_reclaimed; 7177 } 7178 #endif 7179 7180 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 7181 { 7182 struct mem_cgroup *memcg; 7183 struct lruvec *lruvec; 7184 7185 if (lru_gen_enabled()) { 7186 lru_gen_age_node(pgdat, sc); 7187 return; 7188 } 7189 7190 if (!can_age_anon_pages(pgdat, sc)) 7191 return; 7192 7193 lruvec = mem_cgroup_lruvec(NULL, pgdat); 7194 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 7195 return; 7196 7197 memcg = mem_cgroup_iter(NULL, NULL, NULL); 7198 do { 7199 lruvec = mem_cgroup_lruvec(memcg, pgdat); 7200 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 7201 sc, LRU_ACTIVE_ANON); 7202 memcg = mem_cgroup_iter(NULL, memcg, NULL); 7203 } while (memcg); 7204 } 7205 7206 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 7207 { 7208 int i; 7209 struct zone *zone; 7210 7211 /* 7212 * Check for watermark boosts top-down as the higher zones 7213 * are more likely to be boosted. Both watermarks and boosts 7214 * should not be checked at the same time as reclaim would 7215 * start prematurely when there is no boosting and a lower 7216 * zone is balanced. 7217 */ 7218 for (i = highest_zoneidx; i >= 0; i--) { 7219 zone = pgdat->node_zones + i; 7220 if (!managed_zone(zone)) 7221 continue; 7222 7223 if (zone->watermark_boost) 7224 return true; 7225 } 7226 7227 return false; 7228 } 7229 7230 /* 7231 * Returns true if there is an eligible zone balanced for the request order 7232 * and highest_zoneidx 7233 */ 7234 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 7235 { 7236 int i; 7237 unsigned long mark = -1; 7238 struct zone *zone; 7239 7240 /* 7241 * Check watermarks bottom-up as lower zones are more likely to 7242 * meet watermarks. 7243 */ 7244 for (i = 0; i <= highest_zoneidx; i++) { 7245 zone = pgdat->node_zones + i; 7246 7247 if (!managed_zone(zone)) 7248 continue; 7249 7250 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 7251 mark = wmark_pages(zone, WMARK_PROMO); 7252 else 7253 mark = high_wmark_pages(zone); 7254 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 7255 return true; 7256 } 7257 7258 /* 7259 * If a node has no managed zone within highest_zoneidx, it does not 7260 * need balancing by definition. This can happen if a zone-restricted 7261 * allocation tries to wake a remote kswapd. 7262 */ 7263 if (mark == -1) 7264 return true; 7265 7266 return false; 7267 } 7268 7269 /* Clear pgdat state for congested, dirty or under writeback. */ 7270 static void clear_pgdat_congested(pg_data_t *pgdat) 7271 { 7272 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 7273 7274 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 7275 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 7276 clear_bit(PGDAT_DIRTY, &pgdat->flags); 7277 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 7278 } 7279 7280 /* 7281 * Prepare kswapd for sleeping. This verifies that there are no processes 7282 * waiting in throttle_direct_reclaim() and that watermarks have been met. 7283 * 7284 * Returns true if kswapd is ready to sleep 7285 */ 7286 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 7287 int highest_zoneidx) 7288 { 7289 /* 7290 * The throttled processes are normally woken up in balance_pgdat() as 7291 * soon as allow_direct_reclaim() is true. But there is a potential 7292 * race between when kswapd checks the watermarks and a process gets 7293 * throttled. There is also a potential race if processes get 7294 * throttled, kswapd wakes, a large process exits thereby balancing the 7295 * zones, which causes kswapd to exit balance_pgdat() before reaching 7296 * the wake up checks. If kswapd is going to sleep, no process should 7297 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 7298 * the wake up is premature, processes will wake kswapd and get 7299 * throttled again. The difference from wake ups in balance_pgdat() is 7300 * that here we are under prepare_to_wait(). 7301 */ 7302 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 7303 wake_up_all(&pgdat->pfmemalloc_wait); 7304 7305 /* Hopeless node, leave it to direct reclaim */ 7306 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 7307 return true; 7308 7309 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 7310 clear_pgdat_congested(pgdat); 7311 return true; 7312 } 7313 7314 return false; 7315 } 7316 7317 /* 7318 * kswapd shrinks a node of pages that are at or below the highest usable 7319 * zone that is currently unbalanced. 7320 * 7321 * Returns true if kswapd scanned at least the requested number of pages to 7322 * reclaim or if the lack of progress was due to pages under writeback. 7323 * This is used to determine if the scanning priority needs to be raised. 7324 */ 7325 static bool kswapd_shrink_node(pg_data_t *pgdat, 7326 struct scan_control *sc) 7327 { 7328 struct zone *zone; 7329 int z; 7330 unsigned long nr_reclaimed = sc->nr_reclaimed; 7331 7332 /* Reclaim a number of pages proportional to the number of zones */ 7333 sc->nr_to_reclaim = 0; 7334 for (z = 0; z <= sc->reclaim_idx; z++) { 7335 zone = pgdat->node_zones + z; 7336 if (!managed_zone(zone)) 7337 continue; 7338 7339 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 7340 } 7341 7342 /* 7343 * Historically care was taken to put equal pressure on all zones but 7344 * now pressure is applied based on node LRU order. 7345 */ 7346 shrink_node(pgdat, sc); 7347 7348 /* 7349 * Fragmentation may mean that the system cannot be rebalanced for 7350 * high-order allocations. If twice the allocation size has been 7351 * reclaimed then recheck watermarks only at order-0 to prevent 7352 * excessive reclaim. Assume that a process requested a high-order 7353 * can direct reclaim/compact. 7354 */ 7355 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 7356 sc->order = 0; 7357 7358 /* account for progress from mm_account_reclaimed_pages() */ 7359 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 7360 } 7361 7362 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 7363 static inline void 7364 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 7365 { 7366 int i; 7367 struct zone *zone; 7368 7369 for (i = 0; i <= highest_zoneidx; i++) { 7370 zone = pgdat->node_zones + i; 7371 7372 if (!managed_zone(zone)) 7373 continue; 7374 7375 if (active) 7376 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7377 else 7378 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7379 } 7380 } 7381 7382 static inline void 7383 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7384 { 7385 update_reclaim_active(pgdat, highest_zoneidx, true); 7386 } 7387 7388 static inline void 7389 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7390 { 7391 update_reclaim_active(pgdat, highest_zoneidx, false); 7392 } 7393 7394 /* 7395 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7396 * that are eligible for use by the caller until at least one zone is 7397 * balanced. 7398 * 7399 * Returns the order kswapd finished reclaiming at. 7400 * 7401 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7402 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7403 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7404 * or lower is eligible for reclaim until at least one usable zone is 7405 * balanced. 7406 */ 7407 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7408 { 7409 int i; 7410 unsigned long nr_soft_reclaimed; 7411 unsigned long nr_soft_scanned; 7412 unsigned long pflags; 7413 unsigned long nr_boost_reclaim; 7414 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7415 bool boosted; 7416 struct zone *zone; 7417 struct scan_control sc = { 7418 .gfp_mask = GFP_KERNEL, 7419 .order = order, 7420 .may_unmap = 1, 7421 }; 7422 7423 set_task_reclaim_state(current, &sc.reclaim_state); 7424 psi_memstall_enter(&pflags); 7425 __fs_reclaim_acquire(_THIS_IP_); 7426 7427 count_vm_event(PAGEOUTRUN); 7428 7429 /* 7430 * Account for the reclaim boost. Note that the zone boost is left in 7431 * place so that parallel allocations that are near the watermark will 7432 * stall or direct reclaim until kswapd is finished. 7433 */ 7434 nr_boost_reclaim = 0; 7435 for (i = 0; i <= highest_zoneidx; i++) { 7436 zone = pgdat->node_zones + i; 7437 if (!managed_zone(zone)) 7438 continue; 7439 7440 nr_boost_reclaim += zone->watermark_boost; 7441 zone_boosts[i] = zone->watermark_boost; 7442 } 7443 boosted = nr_boost_reclaim; 7444 7445 restart: 7446 set_reclaim_active(pgdat, highest_zoneidx); 7447 sc.priority = DEF_PRIORITY; 7448 do { 7449 unsigned long nr_reclaimed = sc.nr_reclaimed; 7450 bool raise_priority = true; 7451 bool balanced; 7452 bool ret; 7453 7454 sc.reclaim_idx = highest_zoneidx; 7455 7456 /* 7457 * If the number of buffer_heads exceeds the maximum allowed 7458 * then consider reclaiming from all zones. This has a dual 7459 * purpose -- on 64-bit systems it is expected that 7460 * buffer_heads are stripped during active rotation. On 32-bit 7461 * systems, highmem pages can pin lowmem memory and shrinking 7462 * buffers can relieve lowmem pressure. Reclaim may still not 7463 * go ahead if all eligible zones for the original allocation 7464 * request are balanced to avoid excessive reclaim from kswapd. 7465 */ 7466 if (buffer_heads_over_limit) { 7467 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7468 zone = pgdat->node_zones + i; 7469 if (!managed_zone(zone)) 7470 continue; 7471 7472 sc.reclaim_idx = i; 7473 break; 7474 } 7475 } 7476 7477 /* 7478 * If the pgdat is imbalanced then ignore boosting and preserve 7479 * the watermarks for a later time and restart. Note that the 7480 * zone watermarks will be still reset at the end of balancing 7481 * on the grounds that the normal reclaim should be enough to 7482 * re-evaluate if boosting is required when kswapd next wakes. 7483 */ 7484 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7485 if (!balanced && nr_boost_reclaim) { 7486 nr_boost_reclaim = 0; 7487 goto restart; 7488 } 7489 7490 /* 7491 * If boosting is not active then only reclaim if there are no 7492 * eligible zones. Note that sc.reclaim_idx is not used as 7493 * buffer_heads_over_limit may have adjusted it. 7494 */ 7495 if (!nr_boost_reclaim && balanced) 7496 goto out; 7497 7498 /* Limit the priority of boosting to avoid reclaim writeback */ 7499 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7500 raise_priority = false; 7501 7502 /* 7503 * Do not writeback or swap pages for boosted reclaim. The 7504 * intent is to relieve pressure not issue sub-optimal IO 7505 * from reclaim context. If no pages are reclaimed, the 7506 * reclaim will be aborted. 7507 */ 7508 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7509 sc.may_swap = !nr_boost_reclaim; 7510 7511 /* 7512 * Do some background aging, to give pages a chance to be 7513 * referenced before reclaiming. All pages are rotated 7514 * regardless of classzone as this is about consistent aging. 7515 */ 7516 kswapd_age_node(pgdat, &sc); 7517 7518 /* 7519 * If we're getting trouble reclaiming, start doing writepage 7520 * even in laptop mode. 7521 */ 7522 if (sc.priority < DEF_PRIORITY - 2) 7523 sc.may_writepage = 1; 7524 7525 /* Call soft limit reclaim before calling shrink_node. */ 7526 sc.nr_scanned = 0; 7527 nr_soft_scanned = 0; 7528 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7529 sc.gfp_mask, &nr_soft_scanned); 7530 sc.nr_reclaimed += nr_soft_reclaimed; 7531 7532 /* 7533 * There should be no need to raise the scanning priority if 7534 * enough pages are already being scanned that that high 7535 * watermark would be met at 100% efficiency. 7536 */ 7537 if (kswapd_shrink_node(pgdat, &sc)) 7538 raise_priority = false; 7539 7540 /* 7541 * If the low watermark is met there is no need for processes 7542 * to be throttled on pfmemalloc_wait as they should not be 7543 * able to safely make forward progress. Wake them 7544 */ 7545 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7546 allow_direct_reclaim(pgdat)) 7547 wake_up_all(&pgdat->pfmemalloc_wait); 7548 7549 /* Check if kswapd should be suspending */ 7550 __fs_reclaim_release(_THIS_IP_); 7551 ret = try_to_freeze(); 7552 __fs_reclaim_acquire(_THIS_IP_); 7553 if (ret || kthread_should_stop()) 7554 break; 7555 7556 /* 7557 * Raise priority if scanning rate is too low or there was no 7558 * progress in reclaiming pages 7559 */ 7560 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7561 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7562 7563 /* 7564 * If reclaim made no progress for a boost, stop reclaim as 7565 * IO cannot be queued and it could be an infinite loop in 7566 * extreme circumstances. 7567 */ 7568 if (nr_boost_reclaim && !nr_reclaimed) 7569 break; 7570 7571 if (raise_priority || !nr_reclaimed) 7572 sc.priority--; 7573 } while (sc.priority >= 1); 7574 7575 if (!sc.nr_reclaimed) 7576 pgdat->kswapd_failures++; 7577 7578 out: 7579 clear_reclaim_active(pgdat, highest_zoneidx); 7580 7581 /* If reclaim was boosted, account for the reclaim done in this pass */ 7582 if (boosted) { 7583 unsigned long flags; 7584 7585 for (i = 0; i <= highest_zoneidx; i++) { 7586 if (!zone_boosts[i]) 7587 continue; 7588 7589 /* Increments are under the zone lock */ 7590 zone = pgdat->node_zones + i; 7591 spin_lock_irqsave(&zone->lock, flags); 7592 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7593 spin_unlock_irqrestore(&zone->lock, flags); 7594 } 7595 7596 /* 7597 * As there is now likely space, wakeup kcompact to defragment 7598 * pageblocks. 7599 */ 7600 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7601 } 7602 7603 snapshot_refaults(NULL, pgdat); 7604 __fs_reclaim_release(_THIS_IP_); 7605 psi_memstall_leave(&pflags); 7606 set_task_reclaim_state(current, NULL); 7607 7608 /* 7609 * Return the order kswapd stopped reclaiming at as 7610 * prepare_kswapd_sleep() takes it into account. If another caller 7611 * entered the allocator slow path while kswapd was awake, order will 7612 * remain at the higher level. 7613 */ 7614 return sc.order; 7615 } 7616 7617 /* 7618 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7619 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7620 * not a valid index then either kswapd runs for first time or kswapd couldn't 7621 * sleep after previous reclaim attempt (node is still unbalanced). In that 7622 * case return the zone index of the previous kswapd reclaim cycle. 7623 */ 7624 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7625 enum zone_type prev_highest_zoneidx) 7626 { 7627 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7628 7629 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7630 } 7631 7632 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7633 unsigned int highest_zoneidx) 7634 { 7635 long remaining = 0; 7636 DEFINE_WAIT(wait); 7637 7638 if (freezing(current) || kthread_should_stop()) 7639 return; 7640 7641 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7642 7643 /* 7644 * Try to sleep for a short interval. Note that kcompactd will only be 7645 * woken if it is possible to sleep for a short interval. This is 7646 * deliberate on the assumption that if reclaim cannot keep an 7647 * eligible zone balanced that it's also unlikely that compaction will 7648 * succeed. 7649 */ 7650 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7651 /* 7652 * Compaction records what page blocks it recently failed to 7653 * isolate pages from and skips them in the future scanning. 7654 * When kswapd is going to sleep, it is reasonable to assume 7655 * that pages and compaction may succeed so reset the cache. 7656 */ 7657 reset_isolation_suitable(pgdat); 7658 7659 /* 7660 * We have freed the memory, now we should compact it to make 7661 * allocation of the requested order possible. 7662 */ 7663 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7664 7665 remaining = schedule_timeout(HZ/10); 7666 7667 /* 7668 * If woken prematurely then reset kswapd_highest_zoneidx and 7669 * order. The values will either be from a wakeup request or 7670 * the previous request that slept prematurely. 7671 */ 7672 if (remaining) { 7673 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7674 kswapd_highest_zoneidx(pgdat, 7675 highest_zoneidx)); 7676 7677 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7678 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7679 } 7680 7681 finish_wait(&pgdat->kswapd_wait, &wait); 7682 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7683 } 7684 7685 /* 7686 * After a short sleep, check if it was a premature sleep. If not, then 7687 * go fully to sleep until explicitly woken up. 7688 */ 7689 if (!remaining && 7690 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7691 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7692 7693 /* 7694 * vmstat counters are not perfectly accurate and the estimated 7695 * value for counters such as NR_FREE_PAGES can deviate from the 7696 * true value by nr_online_cpus * threshold. To avoid the zone 7697 * watermarks being breached while under pressure, we reduce the 7698 * per-cpu vmstat threshold while kswapd is awake and restore 7699 * them before going back to sleep. 7700 */ 7701 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7702 7703 if (!kthread_should_stop()) 7704 schedule(); 7705 7706 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7707 } else { 7708 if (remaining) 7709 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7710 else 7711 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7712 } 7713 finish_wait(&pgdat->kswapd_wait, &wait); 7714 } 7715 7716 /* 7717 * The background pageout daemon, started as a kernel thread 7718 * from the init process. 7719 * 7720 * This basically trickles out pages so that we have _some_ 7721 * free memory available even if there is no other activity 7722 * that frees anything up. This is needed for things like routing 7723 * etc, where we otherwise might have all activity going on in 7724 * asynchronous contexts that cannot page things out. 7725 * 7726 * If there are applications that are active memory-allocators 7727 * (most normal use), this basically shouldn't matter. 7728 */ 7729 static int kswapd(void *p) 7730 { 7731 unsigned int alloc_order, reclaim_order; 7732 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7733 pg_data_t *pgdat = (pg_data_t *)p; 7734 struct task_struct *tsk = current; 7735 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7736 7737 if (!cpumask_empty(cpumask)) 7738 set_cpus_allowed_ptr(tsk, cpumask); 7739 7740 /* 7741 * Tell the memory management that we're a "memory allocator", 7742 * and that if we need more memory we should get access to it 7743 * regardless (see "__alloc_pages()"). "kswapd" should 7744 * never get caught in the normal page freeing logic. 7745 * 7746 * (Kswapd normally doesn't need memory anyway, but sometimes 7747 * you need a small amount of memory in order to be able to 7748 * page out something else, and this flag essentially protects 7749 * us from recursively trying to free more memory as we're 7750 * trying to free the first piece of memory in the first place). 7751 */ 7752 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7753 set_freezable(); 7754 7755 WRITE_ONCE(pgdat->kswapd_order, 0); 7756 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7757 atomic_set(&pgdat->nr_writeback_throttled, 0); 7758 for ( ; ; ) { 7759 bool ret; 7760 7761 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7762 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7763 highest_zoneidx); 7764 7765 kswapd_try_sleep: 7766 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7767 highest_zoneidx); 7768 7769 /* Read the new order and highest_zoneidx */ 7770 alloc_order = READ_ONCE(pgdat->kswapd_order); 7771 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7772 highest_zoneidx); 7773 WRITE_ONCE(pgdat->kswapd_order, 0); 7774 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7775 7776 ret = try_to_freeze(); 7777 if (kthread_should_stop()) 7778 break; 7779 7780 /* 7781 * We can speed up thawing tasks if we don't call balance_pgdat 7782 * after returning from the refrigerator 7783 */ 7784 if (ret) 7785 continue; 7786 7787 /* 7788 * Reclaim begins at the requested order but if a high-order 7789 * reclaim fails then kswapd falls back to reclaiming for 7790 * order-0. If that happens, kswapd will consider sleeping 7791 * for the order it finished reclaiming at (reclaim_order) 7792 * but kcompactd is woken to compact for the original 7793 * request (alloc_order). 7794 */ 7795 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7796 alloc_order); 7797 reclaim_order = balance_pgdat(pgdat, alloc_order, 7798 highest_zoneidx); 7799 if (reclaim_order < alloc_order) 7800 goto kswapd_try_sleep; 7801 } 7802 7803 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7804 7805 return 0; 7806 } 7807 7808 /* 7809 * A zone is low on free memory or too fragmented for high-order memory. If 7810 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7811 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7812 * has failed or is not needed, still wake up kcompactd if only compaction is 7813 * needed. 7814 */ 7815 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7816 enum zone_type highest_zoneidx) 7817 { 7818 pg_data_t *pgdat; 7819 enum zone_type curr_idx; 7820 7821 if (!managed_zone(zone)) 7822 return; 7823 7824 if (!cpuset_zone_allowed(zone, gfp_flags)) 7825 return; 7826 7827 pgdat = zone->zone_pgdat; 7828 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7829 7830 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7831 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7832 7833 if (READ_ONCE(pgdat->kswapd_order) < order) 7834 WRITE_ONCE(pgdat->kswapd_order, order); 7835 7836 if (!waitqueue_active(&pgdat->kswapd_wait)) 7837 return; 7838 7839 /* Hopeless node, leave it to direct reclaim if possible */ 7840 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7841 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7842 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7843 /* 7844 * There may be plenty of free memory available, but it's too 7845 * fragmented for high-order allocations. Wake up kcompactd 7846 * and rely on compaction_suitable() to determine if it's 7847 * needed. If it fails, it will defer subsequent attempts to 7848 * ratelimit its work. 7849 */ 7850 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7851 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7852 return; 7853 } 7854 7855 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7856 gfp_flags); 7857 wake_up_interruptible(&pgdat->kswapd_wait); 7858 } 7859 7860 #ifdef CONFIG_HIBERNATION 7861 /* 7862 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7863 * freed pages. 7864 * 7865 * Rather than trying to age LRUs the aim is to preserve the overall 7866 * LRU order by reclaiming preferentially 7867 * inactive > active > active referenced > active mapped 7868 */ 7869 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7870 { 7871 struct scan_control sc = { 7872 .nr_to_reclaim = nr_to_reclaim, 7873 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7874 .reclaim_idx = MAX_NR_ZONES - 1, 7875 .priority = DEF_PRIORITY, 7876 .may_writepage = 1, 7877 .may_unmap = 1, 7878 .may_swap = 1, 7879 .hibernation_mode = 1, 7880 }; 7881 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7882 unsigned long nr_reclaimed; 7883 unsigned int noreclaim_flag; 7884 7885 fs_reclaim_acquire(sc.gfp_mask); 7886 noreclaim_flag = memalloc_noreclaim_save(); 7887 set_task_reclaim_state(current, &sc.reclaim_state); 7888 7889 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7890 7891 set_task_reclaim_state(current, NULL); 7892 memalloc_noreclaim_restore(noreclaim_flag); 7893 fs_reclaim_release(sc.gfp_mask); 7894 7895 return nr_reclaimed; 7896 } 7897 #endif /* CONFIG_HIBERNATION */ 7898 7899 /* 7900 * This kswapd start function will be called by init and node-hot-add. 7901 */ 7902 void __meminit kswapd_run(int nid) 7903 { 7904 pg_data_t *pgdat = NODE_DATA(nid); 7905 7906 pgdat_kswapd_lock(pgdat); 7907 if (!pgdat->kswapd) { 7908 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7909 if (IS_ERR(pgdat->kswapd)) { 7910 /* failure at boot is fatal */ 7911 BUG_ON(system_state < SYSTEM_RUNNING); 7912 pr_err("Failed to start kswapd on node %d\n", nid); 7913 pgdat->kswapd = NULL; 7914 } 7915 } 7916 pgdat_kswapd_unlock(pgdat); 7917 } 7918 7919 /* 7920 * Called by memory hotplug when all memory in a node is offlined. Caller must 7921 * be holding mem_hotplug_begin/done(). 7922 */ 7923 void __meminit kswapd_stop(int nid) 7924 { 7925 pg_data_t *pgdat = NODE_DATA(nid); 7926 struct task_struct *kswapd; 7927 7928 pgdat_kswapd_lock(pgdat); 7929 kswapd = pgdat->kswapd; 7930 if (kswapd) { 7931 kthread_stop(kswapd); 7932 pgdat->kswapd = NULL; 7933 } 7934 pgdat_kswapd_unlock(pgdat); 7935 } 7936 7937 static int __init kswapd_init(void) 7938 { 7939 int nid; 7940 7941 swap_setup(); 7942 for_each_node_state(nid, N_MEMORY) 7943 kswapd_run(nid); 7944 return 0; 7945 } 7946 7947 module_init(kswapd_init) 7948 7949 #ifdef CONFIG_NUMA 7950 /* 7951 * Node reclaim mode 7952 * 7953 * If non-zero call node_reclaim when the number of free pages falls below 7954 * the watermarks. 7955 */ 7956 int node_reclaim_mode __read_mostly; 7957 7958 /* 7959 * Priority for NODE_RECLAIM. This determines the fraction of pages 7960 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7961 * a zone. 7962 */ 7963 #define NODE_RECLAIM_PRIORITY 4 7964 7965 /* 7966 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7967 * occur. 7968 */ 7969 int sysctl_min_unmapped_ratio = 1; 7970 7971 /* 7972 * If the number of slab pages in a zone grows beyond this percentage then 7973 * slab reclaim needs to occur. 7974 */ 7975 int sysctl_min_slab_ratio = 5; 7976 7977 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7978 { 7979 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7980 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7981 node_page_state(pgdat, NR_ACTIVE_FILE); 7982 7983 /* 7984 * It's possible for there to be more file mapped pages than 7985 * accounted for by the pages on the file LRU lists because 7986 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7987 */ 7988 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7989 } 7990 7991 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7992 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7993 { 7994 unsigned long nr_pagecache_reclaimable; 7995 unsigned long delta = 0; 7996 7997 /* 7998 * If RECLAIM_UNMAP is set, then all file pages are considered 7999 * potentially reclaimable. Otherwise, we have to worry about 8000 * pages like swapcache and node_unmapped_file_pages() provides 8001 * a better estimate 8002 */ 8003 if (node_reclaim_mode & RECLAIM_UNMAP) 8004 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 8005 else 8006 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 8007 8008 /* If we can't clean pages, remove dirty pages from consideration */ 8009 if (!(node_reclaim_mode & RECLAIM_WRITE)) 8010 delta += node_page_state(pgdat, NR_FILE_DIRTY); 8011 8012 /* Watch for any possible underflows due to delta */ 8013 if (unlikely(delta > nr_pagecache_reclaimable)) 8014 delta = nr_pagecache_reclaimable; 8015 8016 return nr_pagecache_reclaimable - delta; 8017 } 8018 8019 /* 8020 * Try to free up some pages from this node through reclaim. 8021 */ 8022 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 8023 { 8024 /* Minimum pages needed in order to stay on node */ 8025 const unsigned long nr_pages = 1 << order; 8026 struct task_struct *p = current; 8027 unsigned int noreclaim_flag; 8028 struct scan_control sc = { 8029 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 8030 .gfp_mask = current_gfp_context(gfp_mask), 8031 .order = order, 8032 .priority = NODE_RECLAIM_PRIORITY, 8033 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 8034 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 8035 .may_swap = 1, 8036 .reclaim_idx = gfp_zone(gfp_mask), 8037 }; 8038 unsigned long pflags; 8039 8040 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 8041 sc.gfp_mask); 8042 8043 cond_resched(); 8044 psi_memstall_enter(&pflags); 8045 fs_reclaim_acquire(sc.gfp_mask); 8046 /* 8047 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 8048 */ 8049 noreclaim_flag = memalloc_noreclaim_save(); 8050 set_task_reclaim_state(p, &sc.reclaim_state); 8051 8052 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 8053 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 8054 /* 8055 * Free memory by calling shrink node with increasing 8056 * priorities until we have enough memory freed. 8057 */ 8058 do { 8059 shrink_node(pgdat, &sc); 8060 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 8061 } 8062 8063 set_task_reclaim_state(p, NULL); 8064 memalloc_noreclaim_restore(noreclaim_flag); 8065 fs_reclaim_release(sc.gfp_mask); 8066 psi_memstall_leave(&pflags); 8067 8068 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 8069 8070 return sc.nr_reclaimed >= nr_pages; 8071 } 8072 8073 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 8074 { 8075 int ret; 8076 8077 /* 8078 * Node reclaim reclaims unmapped file backed pages and 8079 * slab pages if we are over the defined limits. 8080 * 8081 * A small portion of unmapped file backed pages is needed for 8082 * file I/O otherwise pages read by file I/O will be immediately 8083 * thrown out if the node is overallocated. So we do not reclaim 8084 * if less than a specified percentage of the node is used by 8085 * unmapped file backed pages. 8086 */ 8087 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 8088 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 8089 pgdat->min_slab_pages) 8090 return NODE_RECLAIM_FULL; 8091 8092 /* 8093 * Do not scan if the allocation should not be delayed. 8094 */ 8095 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 8096 return NODE_RECLAIM_NOSCAN; 8097 8098 /* 8099 * Only run node reclaim on the local node or on nodes that do not 8100 * have associated processors. This will favor the local processor 8101 * over remote processors and spread off node memory allocations 8102 * as wide as possible. 8103 */ 8104 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 8105 return NODE_RECLAIM_NOSCAN; 8106 8107 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 8108 return NODE_RECLAIM_NOSCAN; 8109 8110 ret = __node_reclaim(pgdat, gfp_mask, order); 8111 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 8112 8113 if (!ret) 8114 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 8115 8116 return ret; 8117 } 8118 #endif 8119 8120 /** 8121 * check_move_unevictable_folios - Move evictable folios to appropriate zone 8122 * lru list 8123 * @fbatch: Batch of lru folios to check. 8124 * 8125 * Checks folios for evictability, if an evictable folio is in the unevictable 8126 * lru list, moves it to the appropriate evictable lru list. This function 8127 * should be only used for lru folios. 8128 */ 8129 void check_move_unevictable_folios(struct folio_batch *fbatch) 8130 { 8131 struct lruvec *lruvec = NULL; 8132 int pgscanned = 0; 8133 int pgrescued = 0; 8134 int i; 8135 8136 for (i = 0; i < fbatch->nr; i++) { 8137 struct folio *folio = fbatch->folios[i]; 8138 int nr_pages = folio_nr_pages(folio); 8139 8140 pgscanned += nr_pages; 8141 8142 /* block memcg migration while the folio moves between lrus */ 8143 if (!folio_test_clear_lru(folio)) 8144 continue; 8145 8146 lruvec = folio_lruvec_relock_irq(folio, lruvec); 8147 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 8148 lruvec_del_folio(lruvec, folio); 8149 folio_clear_unevictable(folio); 8150 lruvec_add_folio(lruvec, folio); 8151 pgrescued += nr_pages; 8152 } 8153 folio_set_lru(folio); 8154 } 8155 8156 if (lruvec) { 8157 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 8158 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8159 unlock_page_lruvec_irq(lruvec); 8160 } else if (pgscanned) { 8161 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8162 } 8163 } 8164 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 8165