1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 #include <linux/sched/sysctl.h> 60 61 #include "internal.h" 62 #include "swap.h" 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/vmscan.h> 66 67 struct scan_control { 68 /* How many pages shrink_list() should reclaim */ 69 unsigned long nr_to_reclaim; 70 71 /* 72 * Nodemask of nodes allowed by the caller. If NULL, all nodes 73 * are scanned. 74 */ 75 nodemask_t *nodemask; 76 77 /* 78 * The memory cgroup that hit its limit and as a result is the 79 * primary target of this reclaim invocation. 80 */ 81 struct mem_cgroup *target_mem_cgroup; 82 83 /* 84 * Scan pressure balancing between anon and file LRUs 85 */ 86 unsigned long anon_cost; 87 unsigned long file_cost; 88 89 /* Can active pages be deactivated as part of reclaim? */ 90 #define DEACTIVATE_ANON 1 91 #define DEACTIVATE_FILE 2 92 unsigned int may_deactivate:2; 93 unsigned int force_deactivate:1; 94 unsigned int skipped_deactivate:1; 95 96 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 97 unsigned int may_writepage:1; 98 99 /* Can mapped pages be reclaimed? */ 100 unsigned int may_unmap:1; 101 102 /* Can pages be swapped as part of reclaim? */ 103 unsigned int may_swap:1; 104 105 /* 106 * Cgroup memory below memory.low is protected as long as we 107 * don't threaten to OOM. If any cgroup is reclaimed at 108 * reduced force or passed over entirely due to its memory.low 109 * setting (memcg_low_skipped), and nothing is reclaimed as a 110 * result, then go back for one more cycle that reclaims the protected 111 * memory (memcg_low_reclaim) to avert OOM. 112 */ 113 unsigned int memcg_low_reclaim:1; 114 unsigned int memcg_low_skipped:1; 115 116 unsigned int hibernation_mode:1; 117 118 /* One of the zones is ready for compaction */ 119 unsigned int compaction_ready:1; 120 121 /* There is easily reclaimable cold cache in the current node */ 122 unsigned int cache_trim_mode:1; 123 124 /* The file pages on the current node are dangerously low */ 125 unsigned int file_is_tiny:1; 126 127 /* Always discard instead of demoting to lower tier memory */ 128 unsigned int no_demotion:1; 129 130 /* Allocation order */ 131 s8 order; 132 133 /* Scan (total_size >> priority) pages at once */ 134 s8 priority; 135 136 /* The highest zone to isolate pages for reclaim from */ 137 s8 reclaim_idx; 138 139 /* This context's GFP mask */ 140 gfp_t gfp_mask; 141 142 /* Incremented by the number of inactive pages that were scanned */ 143 unsigned long nr_scanned; 144 145 /* Number of pages freed so far during a call to shrink_zones() */ 146 unsigned long nr_reclaimed; 147 148 struct { 149 unsigned int dirty; 150 unsigned int unqueued_dirty; 151 unsigned int congested; 152 unsigned int writeback; 153 unsigned int immediate; 154 unsigned int file_taken; 155 unsigned int taken; 156 } nr; 157 158 /* for recording the reclaimed slab by now */ 159 struct reclaim_state reclaim_state; 160 }; 161 162 #ifdef ARCH_HAS_PREFETCHW 163 #define prefetchw_prev_lru_page(_page, _base, _field) \ 164 do { \ 165 if ((_page)->lru.prev != _base) { \ 166 struct page *prev; \ 167 \ 168 prev = lru_to_page(&(_page->lru)); \ 169 prefetchw(&prev->_field); \ 170 } \ 171 } while (0) 172 #else 173 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 174 #endif 175 176 /* 177 * From 0 .. 200. Higher means more swappy. 178 */ 179 int vm_swappiness = 60; 180 181 static void set_task_reclaim_state(struct task_struct *task, 182 struct reclaim_state *rs) 183 { 184 /* Check for an overwrite */ 185 WARN_ON_ONCE(rs && task->reclaim_state); 186 187 /* Check for the nulling of an already-nulled member */ 188 WARN_ON_ONCE(!rs && !task->reclaim_state); 189 190 task->reclaim_state = rs; 191 } 192 193 static LIST_HEAD(shrinker_list); 194 static DECLARE_RWSEM(shrinker_rwsem); 195 196 #ifdef CONFIG_MEMCG 197 static int shrinker_nr_max; 198 199 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 200 static inline int shrinker_map_size(int nr_items) 201 { 202 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 203 } 204 205 static inline int shrinker_defer_size(int nr_items) 206 { 207 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 208 } 209 210 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 211 int nid) 212 { 213 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 214 lockdep_is_held(&shrinker_rwsem)); 215 } 216 217 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 218 int map_size, int defer_size, 219 int old_map_size, int old_defer_size) 220 { 221 struct shrinker_info *new, *old; 222 struct mem_cgroup_per_node *pn; 223 int nid; 224 int size = map_size + defer_size; 225 226 for_each_node(nid) { 227 pn = memcg->nodeinfo[nid]; 228 old = shrinker_info_protected(memcg, nid); 229 /* Not yet online memcg */ 230 if (!old) 231 return 0; 232 233 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 234 if (!new) 235 return -ENOMEM; 236 237 new->nr_deferred = (atomic_long_t *)(new + 1); 238 new->map = (void *)new->nr_deferred + defer_size; 239 240 /* map: set all old bits, clear all new bits */ 241 memset(new->map, (int)0xff, old_map_size); 242 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 243 /* nr_deferred: copy old values, clear all new values */ 244 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 245 memset((void *)new->nr_deferred + old_defer_size, 0, 246 defer_size - old_defer_size); 247 248 rcu_assign_pointer(pn->shrinker_info, new); 249 kvfree_rcu(old, rcu); 250 } 251 252 return 0; 253 } 254 255 void free_shrinker_info(struct mem_cgroup *memcg) 256 { 257 struct mem_cgroup_per_node *pn; 258 struct shrinker_info *info; 259 int nid; 260 261 for_each_node(nid) { 262 pn = memcg->nodeinfo[nid]; 263 info = rcu_dereference_protected(pn->shrinker_info, true); 264 kvfree(info); 265 rcu_assign_pointer(pn->shrinker_info, NULL); 266 } 267 } 268 269 int alloc_shrinker_info(struct mem_cgroup *memcg) 270 { 271 struct shrinker_info *info; 272 int nid, size, ret = 0; 273 int map_size, defer_size = 0; 274 275 down_write(&shrinker_rwsem); 276 map_size = shrinker_map_size(shrinker_nr_max); 277 defer_size = shrinker_defer_size(shrinker_nr_max); 278 size = map_size + defer_size; 279 for_each_node(nid) { 280 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 281 if (!info) { 282 free_shrinker_info(memcg); 283 ret = -ENOMEM; 284 break; 285 } 286 info->nr_deferred = (atomic_long_t *)(info + 1); 287 info->map = (void *)info->nr_deferred + defer_size; 288 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 289 } 290 up_write(&shrinker_rwsem); 291 292 return ret; 293 } 294 295 static inline bool need_expand(int nr_max) 296 { 297 return round_up(nr_max, BITS_PER_LONG) > 298 round_up(shrinker_nr_max, BITS_PER_LONG); 299 } 300 301 static int expand_shrinker_info(int new_id) 302 { 303 int ret = 0; 304 int new_nr_max = new_id + 1; 305 int map_size, defer_size = 0; 306 int old_map_size, old_defer_size = 0; 307 struct mem_cgroup *memcg; 308 309 if (!need_expand(new_nr_max)) 310 goto out; 311 312 if (!root_mem_cgroup) 313 goto out; 314 315 lockdep_assert_held(&shrinker_rwsem); 316 317 map_size = shrinker_map_size(new_nr_max); 318 defer_size = shrinker_defer_size(new_nr_max); 319 old_map_size = shrinker_map_size(shrinker_nr_max); 320 old_defer_size = shrinker_defer_size(shrinker_nr_max); 321 322 memcg = mem_cgroup_iter(NULL, NULL, NULL); 323 do { 324 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 325 old_map_size, old_defer_size); 326 if (ret) { 327 mem_cgroup_iter_break(NULL, memcg); 328 goto out; 329 } 330 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 331 out: 332 if (!ret) 333 shrinker_nr_max = new_nr_max; 334 335 return ret; 336 } 337 338 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 339 { 340 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 341 struct shrinker_info *info; 342 343 rcu_read_lock(); 344 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 345 /* Pairs with smp mb in shrink_slab() */ 346 smp_mb__before_atomic(); 347 set_bit(shrinker_id, info->map); 348 rcu_read_unlock(); 349 } 350 } 351 352 static DEFINE_IDR(shrinker_idr); 353 354 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 355 { 356 int id, ret = -ENOMEM; 357 358 if (mem_cgroup_disabled()) 359 return -ENOSYS; 360 361 down_write(&shrinker_rwsem); 362 /* This may call shrinker, so it must use down_read_trylock() */ 363 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 364 if (id < 0) 365 goto unlock; 366 367 if (id >= shrinker_nr_max) { 368 if (expand_shrinker_info(id)) { 369 idr_remove(&shrinker_idr, id); 370 goto unlock; 371 } 372 } 373 shrinker->id = id; 374 ret = 0; 375 unlock: 376 up_write(&shrinker_rwsem); 377 return ret; 378 } 379 380 static void unregister_memcg_shrinker(struct shrinker *shrinker) 381 { 382 int id = shrinker->id; 383 384 BUG_ON(id < 0); 385 386 lockdep_assert_held(&shrinker_rwsem); 387 388 idr_remove(&shrinker_idr, id); 389 } 390 391 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 392 struct mem_cgroup *memcg) 393 { 394 struct shrinker_info *info; 395 396 info = shrinker_info_protected(memcg, nid); 397 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 398 } 399 400 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 401 struct mem_cgroup *memcg) 402 { 403 struct shrinker_info *info; 404 405 info = shrinker_info_protected(memcg, nid); 406 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 407 } 408 409 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 410 { 411 int i, nid; 412 long nr; 413 struct mem_cgroup *parent; 414 struct shrinker_info *child_info, *parent_info; 415 416 parent = parent_mem_cgroup(memcg); 417 if (!parent) 418 parent = root_mem_cgroup; 419 420 /* Prevent from concurrent shrinker_info expand */ 421 down_read(&shrinker_rwsem); 422 for_each_node(nid) { 423 child_info = shrinker_info_protected(memcg, nid); 424 parent_info = shrinker_info_protected(parent, nid); 425 for (i = 0; i < shrinker_nr_max; i++) { 426 nr = atomic_long_read(&child_info->nr_deferred[i]); 427 atomic_long_add(nr, &parent_info->nr_deferred[i]); 428 } 429 } 430 up_read(&shrinker_rwsem); 431 } 432 433 static bool cgroup_reclaim(struct scan_control *sc) 434 { 435 return sc->target_mem_cgroup; 436 } 437 438 /** 439 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 440 * @sc: scan_control in question 441 * 442 * The normal page dirty throttling mechanism in balance_dirty_pages() is 443 * completely broken with the legacy memcg and direct stalling in 444 * shrink_page_list() is used for throttling instead, which lacks all the 445 * niceties such as fairness, adaptive pausing, bandwidth proportional 446 * allocation and configurability. 447 * 448 * This function tests whether the vmscan currently in progress can assume 449 * that the normal dirty throttling mechanism is operational. 450 */ 451 static bool writeback_throttling_sane(struct scan_control *sc) 452 { 453 if (!cgroup_reclaim(sc)) 454 return true; 455 #ifdef CONFIG_CGROUP_WRITEBACK 456 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 457 return true; 458 #endif 459 return false; 460 } 461 #else 462 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 463 { 464 return -ENOSYS; 465 } 466 467 static void unregister_memcg_shrinker(struct shrinker *shrinker) 468 { 469 } 470 471 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 472 struct mem_cgroup *memcg) 473 { 474 return 0; 475 } 476 477 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 478 struct mem_cgroup *memcg) 479 { 480 return 0; 481 } 482 483 static bool cgroup_reclaim(struct scan_control *sc) 484 { 485 return false; 486 } 487 488 static bool writeback_throttling_sane(struct scan_control *sc) 489 { 490 return true; 491 } 492 #endif 493 494 static long xchg_nr_deferred(struct shrinker *shrinker, 495 struct shrink_control *sc) 496 { 497 int nid = sc->nid; 498 499 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 500 nid = 0; 501 502 if (sc->memcg && 503 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 504 return xchg_nr_deferred_memcg(nid, shrinker, 505 sc->memcg); 506 507 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 508 } 509 510 511 static long add_nr_deferred(long nr, struct shrinker *shrinker, 512 struct shrink_control *sc) 513 { 514 int nid = sc->nid; 515 516 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 517 nid = 0; 518 519 if (sc->memcg && 520 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 521 return add_nr_deferred_memcg(nr, nid, shrinker, 522 sc->memcg); 523 524 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 525 } 526 527 static bool can_demote(int nid, struct scan_control *sc) 528 { 529 if (!numa_demotion_enabled) 530 return false; 531 if (sc && sc->no_demotion) 532 return false; 533 if (next_demotion_node(nid) == NUMA_NO_NODE) 534 return false; 535 536 return true; 537 } 538 539 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 540 int nid, 541 struct scan_control *sc) 542 { 543 if (memcg == NULL) { 544 /* 545 * For non-memcg reclaim, is there 546 * space in any swap device? 547 */ 548 if (get_nr_swap_pages() > 0) 549 return true; 550 } else { 551 /* Is the memcg below its swap limit? */ 552 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 553 return true; 554 } 555 556 /* 557 * The page can not be swapped. 558 * 559 * Can it be reclaimed from this node via demotion? 560 */ 561 return can_demote(nid, sc); 562 } 563 564 /* 565 * This misses isolated pages which are not accounted for to save counters. 566 * As the data only determines if reclaim or compaction continues, it is 567 * not expected that isolated pages will be a dominating factor. 568 */ 569 unsigned long zone_reclaimable_pages(struct zone *zone) 570 { 571 unsigned long nr; 572 573 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 574 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 575 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 576 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 578 579 return nr; 580 } 581 582 /** 583 * lruvec_lru_size - Returns the number of pages on the given LRU list. 584 * @lruvec: lru vector 585 * @lru: lru to use 586 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 587 */ 588 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 589 int zone_idx) 590 { 591 unsigned long size = 0; 592 int zid; 593 594 for (zid = 0; zid <= zone_idx; zid++) { 595 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 596 597 if (!managed_zone(zone)) 598 continue; 599 600 if (!mem_cgroup_disabled()) 601 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 602 else 603 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 604 } 605 return size; 606 } 607 608 /* 609 * Add a shrinker callback to be called from the vm. 610 */ 611 int prealloc_shrinker(struct shrinker *shrinker) 612 { 613 unsigned int size; 614 int err; 615 616 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 617 err = prealloc_memcg_shrinker(shrinker); 618 if (err != -ENOSYS) 619 return err; 620 621 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 622 } 623 624 size = sizeof(*shrinker->nr_deferred); 625 if (shrinker->flags & SHRINKER_NUMA_AWARE) 626 size *= nr_node_ids; 627 628 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 629 if (!shrinker->nr_deferred) 630 return -ENOMEM; 631 632 return 0; 633 } 634 635 void free_prealloced_shrinker(struct shrinker *shrinker) 636 { 637 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 638 down_write(&shrinker_rwsem); 639 unregister_memcg_shrinker(shrinker); 640 up_write(&shrinker_rwsem); 641 return; 642 } 643 644 kfree(shrinker->nr_deferred); 645 shrinker->nr_deferred = NULL; 646 } 647 648 void register_shrinker_prepared(struct shrinker *shrinker) 649 { 650 down_write(&shrinker_rwsem); 651 list_add_tail(&shrinker->list, &shrinker_list); 652 shrinker->flags |= SHRINKER_REGISTERED; 653 up_write(&shrinker_rwsem); 654 } 655 656 int register_shrinker(struct shrinker *shrinker) 657 { 658 int err = prealloc_shrinker(shrinker); 659 660 if (err) 661 return err; 662 register_shrinker_prepared(shrinker); 663 return 0; 664 } 665 EXPORT_SYMBOL(register_shrinker); 666 667 /* 668 * Remove one 669 */ 670 void unregister_shrinker(struct shrinker *shrinker) 671 { 672 if (!(shrinker->flags & SHRINKER_REGISTERED)) 673 return; 674 675 down_write(&shrinker_rwsem); 676 list_del(&shrinker->list); 677 shrinker->flags &= ~SHRINKER_REGISTERED; 678 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 679 unregister_memcg_shrinker(shrinker); 680 up_write(&shrinker_rwsem); 681 682 kfree(shrinker->nr_deferred); 683 shrinker->nr_deferred = NULL; 684 } 685 EXPORT_SYMBOL(unregister_shrinker); 686 687 /** 688 * synchronize_shrinkers - Wait for all running shrinkers to complete. 689 * 690 * This is equivalent to calling unregister_shrink() and register_shrinker(), 691 * but atomically and with less overhead. This is useful to guarantee that all 692 * shrinker invocations have seen an update, before freeing memory, similar to 693 * rcu. 694 */ 695 void synchronize_shrinkers(void) 696 { 697 down_write(&shrinker_rwsem); 698 up_write(&shrinker_rwsem); 699 } 700 EXPORT_SYMBOL(synchronize_shrinkers); 701 702 #define SHRINK_BATCH 128 703 704 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 705 struct shrinker *shrinker, int priority) 706 { 707 unsigned long freed = 0; 708 unsigned long long delta; 709 long total_scan; 710 long freeable; 711 long nr; 712 long new_nr; 713 long batch_size = shrinker->batch ? shrinker->batch 714 : SHRINK_BATCH; 715 long scanned = 0, next_deferred; 716 717 freeable = shrinker->count_objects(shrinker, shrinkctl); 718 if (freeable == 0 || freeable == SHRINK_EMPTY) 719 return freeable; 720 721 /* 722 * copy the current shrinker scan count into a local variable 723 * and zero it so that other concurrent shrinker invocations 724 * don't also do this scanning work. 725 */ 726 nr = xchg_nr_deferred(shrinker, shrinkctl); 727 728 if (shrinker->seeks) { 729 delta = freeable >> priority; 730 delta *= 4; 731 do_div(delta, shrinker->seeks); 732 } else { 733 /* 734 * These objects don't require any IO to create. Trim 735 * them aggressively under memory pressure to keep 736 * them from causing refetches in the IO caches. 737 */ 738 delta = freeable / 2; 739 } 740 741 total_scan = nr >> priority; 742 total_scan += delta; 743 total_scan = min(total_scan, (2 * freeable)); 744 745 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 746 freeable, delta, total_scan, priority); 747 748 /* 749 * Normally, we should not scan less than batch_size objects in one 750 * pass to avoid too frequent shrinker calls, but if the slab has less 751 * than batch_size objects in total and we are really tight on memory, 752 * we will try to reclaim all available objects, otherwise we can end 753 * up failing allocations although there are plenty of reclaimable 754 * objects spread over several slabs with usage less than the 755 * batch_size. 756 * 757 * We detect the "tight on memory" situations by looking at the total 758 * number of objects we want to scan (total_scan). If it is greater 759 * than the total number of objects on slab (freeable), we must be 760 * scanning at high prio and therefore should try to reclaim as much as 761 * possible. 762 */ 763 while (total_scan >= batch_size || 764 total_scan >= freeable) { 765 unsigned long ret; 766 unsigned long nr_to_scan = min(batch_size, total_scan); 767 768 shrinkctl->nr_to_scan = nr_to_scan; 769 shrinkctl->nr_scanned = nr_to_scan; 770 ret = shrinker->scan_objects(shrinker, shrinkctl); 771 if (ret == SHRINK_STOP) 772 break; 773 freed += ret; 774 775 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 776 total_scan -= shrinkctl->nr_scanned; 777 scanned += shrinkctl->nr_scanned; 778 779 cond_resched(); 780 } 781 782 /* 783 * The deferred work is increased by any new work (delta) that wasn't 784 * done, decreased by old deferred work that was done now. 785 * 786 * And it is capped to two times of the freeable items. 787 */ 788 next_deferred = max_t(long, (nr + delta - scanned), 0); 789 next_deferred = min(next_deferred, (2 * freeable)); 790 791 /* 792 * move the unused scan count back into the shrinker in a 793 * manner that handles concurrent updates. 794 */ 795 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 796 797 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 798 return freed; 799 } 800 801 #ifdef CONFIG_MEMCG 802 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 803 struct mem_cgroup *memcg, int priority) 804 { 805 struct shrinker_info *info; 806 unsigned long ret, freed = 0; 807 int i; 808 809 if (!mem_cgroup_online(memcg)) 810 return 0; 811 812 if (!down_read_trylock(&shrinker_rwsem)) 813 return 0; 814 815 info = shrinker_info_protected(memcg, nid); 816 if (unlikely(!info)) 817 goto unlock; 818 819 for_each_set_bit(i, info->map, shrinker_nr_max) { 820 struct shrink_control sc = { 821 .gfp_mask = gfp_mask, 822 .nid = nid, 823 .memcg = memcg, 824 }; 825 struct shrinker *shrinker; 826 827 shrinker = idr_find(&shrinker_idr, i); 828 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 829 if (!shrinker) 830 clear_bit(i, info->map); 831 continue; 832 } 833 834 /* Call non-slab shrinkers even though kmem is disabled */ 835 if (!memcg_kmem_enabled() && 836 !(shrinker->flags & SHRINKER_NONSLAB)) 837 continue; 838 839 ret = do_shrink_slab(&sc, shrinker, priority); 840 if (ret == SHRINK_EMPTY) { 841 clear_bit(i, info->map); 842 /* 843 * After the shrinker reported that it had no objects to 844 * free, but before we cleared the corresponding bit in 845 * the memcg shrinker map, a new object might have been 846 * added. To make sure, we have the bit set in this 847 * case, we invoke the shrinker one more time and reset 848 * the bit if it reports that it is not empty anymore. 849 * The memory barrier here pairs with the barrier in 850 * set_shrinker_bit(): 851 * 852 * list_lru_add() shrink_slab_memcg() 853 * list_add_tail() clear_bit() 854 * <MB> <MB> 855 * set_bit() do_shrink_slab() 856 */ 857 smp_mb__after_atomic(); 858 ret = do_shrink_slab(&sc, shrinker, priority); 859 if (ret == SHRINK_EMPTY) 860 ret = 0; 861 else 862 set_shrinker_bit(memcg, nid, i); 863 } 864 freed += ret; 865 866 if (rwsem_is_contended(&shrinker_rwsem)) { 867 freed = freed ? : 1; 868 break; 869 } 870 } 871 unlock: 872 up_read(&shrinker_rwsem); 873 return freed; 874 } 875 #else /* CONFIG_MEMCG */ 876 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 877 struct mem_cgroup *memcg, int priority) 878 { 879 return 0; 880 } 881 #endif /* CONFIG_MEMCG */ 882 883 /** 884 * shrink_slab - shrink slab caches 885 * @gfp_mask: allocation context 886 * @nid: node whose slab caches to target 887 * @memcg: memory cgroup whose slab caches to target 888 * @priority: the reclaim priority 889 * 890 * Call the shrink functions to age shrinkable caches. 891 * 892 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 893 * unaware shrinkers will receive a node id of 0 instead. 894 * 895 * @memcg specifies the memory cgroup to target. Unaware shrinkers 896 * are called only if it is the root cgroup. 897 * 898 * @priority is sc->priority, we take the number of objects and >> by priority 899 * in order to get the scan target. 900 * 901 * Returns the number of reclaimed slab objects. 902 */ 903 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 904 struct mem_cgroup *memcg, 905 int priority) 906 { 907 unsigned long ret, freed = 0; 908 struct shrinker *shrinker; 909 910 /* 911 * The root memcg might be allocated even though memcg is disabled 912 * via "cgroup_disable=memory" boot parameter. This could make 913 * mem_cgroup_is_root() return false, then just run memcg slab 914 * shrink, but skip global shrink. This may result in premature 915 * oom. 916 */ 917 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 918 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 919 920 if (!down_read_trylock(&shrinker_rwsem)) 921 goto out; 922 923 list_for_each_entry(shrinker, &shrinker_list, list) { 924 struct shrink_control sc = { 925 .gfp_mask = gfp_mask, 926 .nid = nid, 927 .memcg = memcg, 928 }; 929 930 ret = do_shrink_slab(&sc, shrinker, priority); 931 if (ret == SHRINK_EMPTY) 932 ret = 0; 933 freed += ret; 934 /* 935 * Bail out if someone want to register a new shrinker to 936 * prevent the registration from being stalled for long periods 937 * by parallel ongoing shrinking. 938 */ 939 if (rwsem_is_contended(&shrinker_rwsem)) { 940 freed = freed ? : 1; 941 break; 942 } 943 } 944 945 up_read(&shrinker_rwsem); 946 out: 947 cond_resched(); 948 return freed; 949 } 950 951 static void drop_slab_node(int nid) 952 { 953 unsigned long freed; 954 int shift = 0; 955 956 do { 957 struct mem_cgroup *memcg = NULL; 958 959 if (fatal_signal_pending(current)) 960 return; 961 962 freed = 0; 963 memcg = mem_cgroup_iter(NULL, NULL, NULL); 964 do { 965 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 966 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 967 } while ((freed >> shift++) > 1); 968 } 969 970 void drop_slab(void) 971 { 972 int nid; 973 974 for_each_online_node(nid) 975 drop_slab_node(nid); 976 } 977 978 static inline int is_page_cache_freeable(struct folio *folio) 979 { 980 /* 981 * A freeable page cache page is referenced only by the caller 982 * that isolated the page, the page cache and optional buffer 983 * heads at page->private. 984 */ 985 return folio_ref_count(folio) - folio_test_private(folio) == 986 1 + folio_nr_pages(folio); 987 } 988 989 /* 990 * We detected a synchronous write error writing a folio out. Probably 991 * -ENOSPC. We need to propagate that into the address_space for a subsequent 992 * fsync(), msync() or close(). 993 * 994 * The tricky part is that after writepage we cannot touch the mapping: nothing 995 * prevents it from being freed up. But we have a ref on the folio and once 996 * that folio is locked, the mapping is pinned. 997 * 998 * We're allowed to run sleeping folio_lock() here because we know the caller has 999 * __GFP_FS. 1000 */ 1001 static void handle_write_error(struct address_space *mapping, 1002 struct folio *folio, int error) 1003 { 1004 folio_lock(folio); 1005 if (folio_mapping(folio) == mapping) 1006 mapping_set_error(mapping, error); 1007 folio_unlock(folio); 1008 } 1009 1010 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1011 { 1012 int reclaimable = 0, write_pending = 0; 1013 int i; 1014 1015 /* 1016 * If kswapd is disabled, reschedule if necessary but do not 1017 * throttle as the system is likely near OOM. 1018 */ 1019 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1020 return true; 1021 1022 /* 1023 * If there are a lot of dirty/writeback pages then do not 1024 * throttle as throttling will occur when the pages cycle 1025 * towards the end of the LRU if still under writeback. 1026 */ 1027 for (i = 0; i < MAX_NR_ZONES; i++) { 1028 struct zone *zone = pgdat->node_zones + i; 1029 1030 if (!managed_zone(zone)) 1031 continue; 1032 1033 reclaimable += zone_reclaimable_pages(zone); 1034 write_pending += zone_page_state_snapshot(zone, 1035 NR_ZONE_WRITE_PENDING); 1036 } 1037 if (2 * write_pending <= reclaimable) 1038 return true; 1039 1040 return false; 1041 } 1042 1043 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1044 { 1045 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1046 long timeout, ret; 1047 DEFINE_WAIT(wait); 1048 1049 /* 1050 * Do not throttle IO workers, kthreads other than kswapd or 1051 * workqueues. They may be required for reclaim to make 1052 * forward progress (e.g. journalling workqueues or kthreads). 1053 */ 1054 if (!current_is_kswapd() && 1055 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1056 cond_resched(); 1057 return; 1058 } 1059 1060 /* 1061 * These figures are pulled out of thin air. 1062 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1063 * parallel reclaimers which is a short-lived event so the timeout is 1064 * short. Failing to make progress or waiting on writeback are 1065 * potentially long-lived events so use a longer timeout. This is shaky 1066 * logic as a failure to make progress could be due to anything from 1067 * writeback to a slow device to excessive references pages at the tail 1068 * of the inactive LRU. 1069 */ 1070 switch(reason) { 1071 case VMSCAN_THROTTLE_WRITEBACK: 1072 timeout = HZ/10; 1073 1074 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1075 WRITE_ONCE(pgdat->nr_reclaim_start, 1076 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1077 } 1078 1079 break; 1080 case VMSCAN_THROTTLE_CONGESTED: 1081 fallthrough; 1082 case VMSCAN_THROTTLE_NOPROGRESS: 1083 if (skip_throttle_noprogress(pgdat)) { 1084 cond_resched(); 1085 return; 1086 } 1087 1088 timeout = 1; 1089 1090 break; 1091 case VMSCAN_THROTTLE_ISOLATED: 1092 timeout = HZ/50; 1093 break; 1094 default: 1095 WARN_ON_ONCE(1); 1096 timeout = HZ; 1097 break; 1098 } 1099 1100 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1101 ret = schedule_timeout(timeout); 1102 finish_wait(wqh, &wait); 1103 1104 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1105 atomic_dec(&pgdat->nr_writeback_throttled); 1106 1107 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1108 jiffies_to_usecs(timeout - ret), 1109 reason); 1110 } 1111 1112 /* 1113 * Account for pages written if tasks are throttled waiting on dirty 1114 * pages to clean. If enough pages have been cleaned since throttling 1115 * started then wakeup the throttled tasks. 1116 */ 1117 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1118 int nr_throttled) 1119 { 1120 unsigned long nr_written; 1121 1122 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1123 1124 /* 1125 * This is an inaccurate read as the per-cpu deltas may not 1126 * be synchronised. However, given that the system is 1127 * writeback throttled, it is not worth taking the penalty 1128 * of getting an accurate count. At worst, the throttle 1129 * timeout guarantees forward progress. 1130 */ 1131 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1132 READ_ONCE(pgdat->nr_reclaim_start); 1133 1134 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1135 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1136 } 1137 1138 /* possible outcome of pageout() */ 1139 typedef enum { 1140 /* failed to write page out, page is locked */ 1141 PAGE_KEEP, 1142 /* move page to the active list, page is locked */ 1143 PAGE_ACTIVATE, 1144 /* page has been sent to the disk successfully, page is unlocked */ 1145 PAGE_SUCCESS, 1146 /* page is clean and locked */ 1147 PAGE_CLEAN, 1148 } pageout_t; 1149 1150 /* 1151 * pageout is called by shrink_page_list() for each dirty page. 1152 * Calls ->writepage(). 1153 */ 1154 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1155 struct swap_iocb **plug) 1156 { 1157 /* 1158 * If the folio is dirty, only perform writeback if that write 1159 * will be non-blocking. To prevent this allocation from being 1160 * stalled by pagecache activity. But note that there may be 1161 * stalls if we need to run get_block(). We could test 1162 * PagePrivate for that. 1163 * 1164 * If this process is currently in __generic_file_write_iter() against 1165 * this folio's queue, we can perform writeback even if that 1166 * will block. 1167 * 1168 * If the folio is swapcache, write it back even if that would 1169 * block, for some throttling. This happens by accident, because 1170 * swap_backing_dev_info is bust: it doesn't reflect the 1171 * congestion state of the swapdevs. Easy to fix, if needed. 1172 */ 1173 if (!is_page_cache_freeable(folio)) 1174 return PAGE_KEEP; 1175 if (!mapping) { 1176 /* 1177 * Some data journaling orphaned folios can have 1178 * folio->mapping == NULL while being dirty with clean buffers. 1179 */ 1180 if (folio_test_private(folio)) { 1181 if (try_to_free_buffers(folio)) { 1182 folio_clear_dirty(folio); 1183 pr_info("%s: orphaned folio\n", __func__); 1184 return PAGE_CLEAN; 1185 } 1186 } 1187 return PAGE_KEEP; 1188 } 1189 if (mapping->a_ops->writepage == NULL) 1190 return PAGE_ACTIVATE; 1191 1192 if (folio_clear_dirty_for_io(folio)) { 1193 int res; 1194 struct writeback_control wbc = { 1195 .sync_mode = WB_SYNC_NONE, 1196 .nr_to_write = SWAP_CLUSTER_MAX, 1197 .range_start = 0, 1198 .range_end = LLONG_MAX, 1199 .for_reclaim = 1, 1200 .swap_plug = plug, 1201 }; 1202 1203 folio_set_reclaim(folio); 1204 res = mapping->a_ops->writepage(&folio->page, &wbc); 1205 if (res < 0) 1206 handle_write_error(mapping, folio, res); 1207 if (res == AOP_WRITEPAGE_ACTIVATE) { 1208 folio_clear_reclaim(folio); 1209 return PAGE_ACTIVATE; 1210 } 1211 1212 if (!folio_test_writeback(folio)) { 1213 /* synchronous write or broken a_ops? */ 1214 folio_clear_reclaim(folio); 1215 } 1216 trace_mm_vmscan_write_folio(folio); 1217 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1218 return PAGE_SUCCESS; 1219 } 1220 1221 return PAGE_CLEAN; 1222 } 1223 1224 /* 1225 * Same as remove_mapping, but if the page is removed from the mapping, it 1226 * gets returned with a refcount of 0. 1227 */ 1228 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1229 bool reclaimed, struct mem_cgroup *target_memcg) 1230 { 1231 int refcount; 1232 void *shadow = NULL; 1233 1234 BUG_ON(!folio_test_locked(folio)); 1235 BUG_ON(mapping != folio_mapping(folio)); 1236 1237 if (!folio_test_swapcache(folio)) 1238 spin_lock(&mapping->host->i_lock); 1239 xa_lock_irq(&mapping->i_pages); 1240 /* 1241 * The non racy check for a busy page. 1242 * 1243 * Must be careful with the order of the tests. When someone has 1244 * a ref to the page, it may be possible that they dirty it then 1245 * drop the reference. So if PageDirty is tested before page_count 1246 * here, then the following race may occur: 1247 * 1248 * get_user_pages(&page); 1249 * [user mapping goes away] 1250 * write_to(page); 1251 * !PageDirty(page) [good] 1252 * SetPageDirty(page); 1253 * put_page(page); 1254 * !page_count(page) [good, discard it] 1255 * 1256 * [oops, our write_to data is lost] 1257 * 1258 * Reversing the order of the tests ensures such a situation cannot 1259 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1260 * load is not satisfied before that of page->_refcount. 1261 * 1262 * Note that if SetPageDirty is always performed via set_page_dirty, 1263 * and thus under the i_pages lock, then this ordering is not required. 1264 */ 1265 refcount = 1 + folio_nr_pages(folio); 1266 if (!folio_ref_freeze(folio, refcount)) 1267 goto cannot_free; 1268 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1269 if (unlikely(folio_test_dirty(folio))) { 1270 folio_ref_unfreeze(folio, refcount); 1271 goto cannot_free; 1272 } 1273 1274 if (folio_test_swapcache(folio)) { 1275 swp_entry_t swap = folio_swap_entry(folio); 1276 mem_cgroup_swapout(folio, swap); 1277 if (reclaimed && !mapping_exiting(mapping)) 1278 shadow = workingset_eviction(folio, target_memcg); 1279 __delete_from_swap_cache(&folio->page, swap, shadow); 1280 xa_unlock_irq(&mapping->i_pages); 1281 put_swap_page(&folio->page, swap); 1282 } else { 1283 void (*free_folio)(struct folio *); 1284 1285 free_folio = mapping->a_ops->free_folio; 1286 /* 1287 * Remember a shadow entry for reclaimed file cache in 1288 * order to detect refaults, thus thrashing, later on. 1289 * 1290 * But don't store shadows in an address space that is 1291 * already exiting. This is not just an optimization, 1292 * inode reclaim needs to empty out the radix tree or 1293 * the nodes are lost. Don't plant shadows behind its 1294 * back. 1295 * 1296 * We also don't store shadows for DAX mappings because the 1297 * only page cache pages found in these are zero pages 1298 * covering holes, and because we don't want to mix DAX 1299 * exceptional entries and shadow exceptional entries in the 1300 * same address_space. 1301 */ 1302 if (reclaimed && folio_is_file_lru(folio) && 1303 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1304 shadow = workingset_eviction(folio, target_memcg); 1305 __filemap_remove_folio(folio, shadow); 1306 xa_unlock_irq(&mapping->i_pages); 1307 if (mapping_shrinkable(mapping)) 1308 inode_add_lru(mapping->host); 1309 spin_unlock(&mapping->host->i_lock); 1310 1311 if (free_folio) 1312 free_folio(folio); 1313 } 1314 1315 return 1; 1316 1317 cannot_free: 1318 xa_unlock_irq(&mapping->i_pages); 1319 if (!folio_test_swapcache(folio)) 1320 spin_unlock(&mapping->host->i_lock); 1321 return 0; 1322 } 1323 1324 /** 1325 * remove_mapping() - Attempt to remove a folio from its mapping. 1326 * @mapping: The address space. 1327 * @folio: The folio to remove. 1328 * 1329 * If the folio is dirty, under writeback or if someone else has a ref 1330 * on it, removal will fail. 1331 * Return: The number of pages removed from the mapping. 0 if the folio 1332 * could not be removed. 1333 * Context: The caller should have a single refcount on the folio and 1334 * hold its lock. 1335 */ 1336 long remove_mapping(struct address_space *mapping, struct folio *folio) 1337 { 1338 if (__remove_mapping(mapping, folio, false, NULL)) { 1339 /* 1340 * Unfreezing the refcount with 1 effectively 1341 * drops the pagecache ref for us without requiring another 1342 * atomic operation. 1343 */ 1344 folio_ref_unfreeze(folio, 1); 1345 return folio_nr_pages(folio); 1346 } 1347 return 0; 1348 } 1349 1350 /** 1351 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1352 * @folio: Folio to be returned to an LRU list. 1353 * 1354 * Add previously isolated @folio to appropriate LRU list. 1355 * The folio may still be unevictable for other reasons. 1356 * 1357 * Context: lru_lock must not be held, interrupts must be enabled. 1358 */ 1359 void folio_putback_lru(struct folio *folio) 1360 { 1361 folio_add_lru(folio); 1362 folio_put(folio); /* drop ref from isolate */ 1363 } 1364 1365 enum page_references { 1366 PAGEREF_RECLAIM, 1367 PAGEREF_RECLAIM_CLEAN, 1368 PAGEREF_KEEP, 1369 PAGEREF_ACTIVATE, 1370 }; 1371 1372 static enum page_references folio_check_references(struct folio *folio, 1373 struct scan_control *sc) 1374 { 1375 int referenced_ptes, referenced_folio; 1376 unsigned long vm_flags; 1377 1378 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1379 &vm_flags); 1380 referenced_folio = folio_test_clear_referenced(folio); 1381 1382 /* 1383 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1384 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1385 */ 1386 if (vm_flags & VM_LOCKED) 1387 return PAGEREF_ACTIVATE; 1388 1389 /* rmap lock contention: rotate */ 1390 if (referenced_ptes == -1) 1391 return PAGEREF_KEEP; 1392 1393 if (referenced_ptes) { 1394 /* 1395 * All mapped folios start out with page table 1396 * references from the instantiating fault, so we need 1397 * to look twice if a mapped file/anon folio is used more 1398 * than once. 1399 * 1400 * Mark it and spare it for another trip around the 1401 * inactive list. Another page table reference will 1402 * lead to its activation. 1403 * 1404 * Note: the mark is set for activated folios as well 1405 * so that recently deactivated but used folios are 1406 * quickly recovered. 1407 */ 1408 folio_set_referenced(folio); 1409 1410 if (referenced_folio || referenced_ptes > 1) 1411 return PAGEREF_ACTIVATE; 1412 1413 /* 1414 * Activate file-backed executable folios after first usage. 1415 */ 1416 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1417 return PAGEREF_ACTIVATE; 1418 1419 return PAGEREF_KEEP; 1420 } 1421 1422 /* Reclaim if clean, defer dirty folios to writeback */ 1423 if (referenced_folio && folio_is_file_lru(folio)) 1424 return PAGEREF_RECLAIM_CLEAN; 1425 1426 return PAGEREF_RECLAIM; 1427 } 1428 1429 /* Check if a page is dirty or under writeback */ 1430 static void folio_check_dirty_writeback(struct folio *folio, 1431 bool *dirty, bool *writeback) 1432 { 1433 struct address_space *mapping; 1434 1435 /* 1436 * Anonymous pages are not handled by flushers and must be written 1437 * from reclaim context. Do not stall reclaim based on them. 1438 * MADV_FREE anonymous pages are put into inactive file list too. 1439 * They could be mistakenly treated as file lru. So further anon 1440 * test is needed. 1441 */ 1442 if (!folio_is_file_lru(folio) || 1443 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1444 *dirty = false; 1445 *writeback = false; 1446 return; 1447 } 1448 1449 /* By default assume that the folio flags are accurate */ 1450 *dirty = folio_test_dirty(folio); 1451 *writeback = folio_test_writeback(folio); 1452 1453 /* Verify dirty/writeback state if the filesystem supports it */ 1454 if (!folio_test_private(folio)) 1455 return; 1456 1457 mapping = folio_mapping(folio); 1458 if (mapping && mapping->a_ops->is_dirty_writeback) 1459 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1460 } 1461 1462 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1463 { 1464 struct migration_target_control mtc = { 1465 /* 1466 * Allocate from 'node', or fail quickly and quietly. 1467 * When this happens, 'page' will likely just be discarded 1468 * instead of migrated. 1469 */ 1470 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1471 __GFP_THISNODE | __GFP_NOWARN | 1472 __GFP_NOMEMALLOC | GFP_NOWAIT, 1473 .nid = node 1474 }; 1475 1476 return alloc_migration_target(page, (unsigned long)&mtc); 1477 } 1478 1479 /* 1480 * Take pages on @demote_list and attempt to demote them to 1481 * another node. Pages which are not demoted are left on 1482 * @demote_pages. 1483 */ 1484 static unsigned int demote_page_list(struct list_head *demote_pages, 1485 struct pglist_data *pgdat) 1486 { 1487 int target_nid = next_demotion_node(pgdat->node_id); 1488 unsigned int nr_succeeded; 1489 1490 if (list_empty(demote_pages)) 1491 return 0; 1492 1493 if (target_nid == NUMA_NO_NODE) 1494 return 0; 1495 1496 /* Demotion ignores all cpuset and mempolicy settings */ 1497 migrate_pages(demote_pages, alloc_demote_page, NULL, 1498 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1499 &nr_succeeded); 1500 1501 if (current_is_kswapd()) 1502 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1503 else 1504 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1505 1506 return nr_succeeded; 1507 } 1508 1509 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1510 { 1511 if (gfp_mask & __GFP_FS) 1512 return true; 1513 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1514 return false; 1515 /* 1516 * We can "enter_fs" for swap-cache with only __GFP_IO 1517 * providing this isn't SWP_FS_OPS. 1518 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1519 * but that will never affect SWP_FS_OPS, so the data_race 1520 * is safe. 1521 */ 1522 return !data_race(page_swap_flags(&folio->page) & SWP_FS_OPS); 1523 } 1524 1525 /* 1526 * shrink_page_list() returns the number of reclaimed pages 1527 */ 1528 static unsigned int shrink_page_list(struct list_head *page_list, 1529 struct pglist_data *pgdat, 1530 struct scan_control *sc, 1531 struct reclaim_stat *stat, 1532 bool ignore_references) 1533 { 1534 LIST_HEAD(ret_pages); 1535 LIST_HEAD(free_pages); 1536 LIST_HEAD(demote_pages); 1537 unsigned int nr_reclaimed = 0; 1538 unsigned int pgactivate = 0; 1539 bool do_demote_pass; 1540 struct swap_iocb *plug = NULL; 1541 1542 memset(stat, 0, sizeof(*stat)); 1543 cond_resched(); 1544 do_demote_pass = can_demote(pgdat->node_id, sc); 1545 1546 retry: 1547 while (!list_empty(page_list)) { 1548 struct address_space *mapping; 1549 struct folio *folio; 1550 enum page_references references = PAGEREF_RECLAIM; 1551 bool dirty, writeback; 1552 unsigned int nr_pages; 1553 1554 cond_resched(); 1555 1556 folio = lru_to_folio(page_list); 1557 list_del(&folio->lru); 1558 1559 if (!folio_trylock(folio)) 1560 goto keep; 1561 1562 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1563 1564 nr_pages = folio_nr_pages(folio); 1565 1566 /* Account the number of base pages */ 1567 sc->nr_scanned += nr_pages; 1568 1569 if (unlikely(!folio_evictable(folio))) 1570 goto activate_locked; 1571 1572 if (!sc->may_unmap && folio_mapped(folio)) 1573 goto keep_locked; 1574 1575 /* 1576 * The number of dirty pages determines if a node is marked 1577 * reclaim_congested. kswapd will stall and start writing 1578 * folios if the tail of the LRU is all dirty unqueued folios. 1579 */ 1580 folio_check_dirty_writeback(folio, &dirty, &writeback); 1581 if (dirty || writeback) 1582 stat->nr_dirty += nr_pages; 1583 1584 if (dirty && !writeback) 1585 stat->nr_unqueued_dirty += nr_pages; 1586 1587 /* 1588 * Treat this folio as congested if folios are cycling 1589 * through the LRU so quickly that the folios marked 1590 * for immediate reclaim are making it to the end of 1591 * the LRU a second time. 1592 */ 1593 if (writeback && folio_test_reclaim(folio)) 1594 stat->nr_congested += nr_pages; 1595 1596 /* 1597 * If a folio at the tail of the LRU is under writeback, there 1598 * are three cases to consider. 1599 * 1600 * 1) If reclaim is encountering an excessive number 1601 * of folios under writeback and this folio has both 1602 * the writeback and reclaim flags set, then it 1603 * indicates that folios are being queued for I/O but 1604 * are being recycled through the LRU before the I/O 1605 * can complete. Waiting on the folio itself risks an 1606 * indefinite stall if it is impossible to writeback 1607 * the folio due to I/O error or disconnected storage 1608 * so instead note that the LRU is being scanned too 1609 * quickly and the caller can stall after the folio 1610 * list has been processed. 1611 * 1612 * 2) Global or new memcg reclaim encounters a folio that is 1613 * not marked for immediate reclaim, or the caller does not 1614 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1615 * not to fs). In this case mark the folio for immediate 1616 * reclaim and continue scanning. 1617 * 1618 * Require may_enter_fs() because we would wait on fs, which 1619 * may not have submitted I/O yet. And the loop driver might 1620 * enter reclaim, and deadlock if it waits on a folio for 1621 * which it is needed to do the write (loop masks off 1622 * __GFP_IO|__GFP_FS for this reason); but more thought 1623 * would probably show more reasons. 1624 * 1625 * 3) Legacy memcg encounters a folio that already has the 1626 * reclaim flag set. memcg does not have any dirty folio 1627 * throttling so we could easily OOM just because too many 1628 * folios are in writeback and there is nothing else to 1629 * reclaim. Wait for the writeback to complete. 1630 * 1631 * In cases 1) and 2) we activate the folios to get them out of 1632 * the way while we continue scanning for clean folios on the 1633 * inactive list and refilling from the active list. The 1634 * observation here is that waiting for disk writes is more 1635 * expensive than potentially causing reloads down the line. 1636 * Since they're marked for immediate reclaim, they won't put 1637 * memory pressure on the cache working set any longer than it 1638 * takes to write them to disk. 1639 */ 1640 if (folio_test_writeback(folio)) { 1641 /* Case 1 above */ 1642 if (current_is_kswapd() && 1643 folio_test_reclaim(folio) && 1644 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1645 stat->nr_immediate += nr_pages; 1646 goto activate_locked; 1647 1648 /* Case 2 above */ 1649 } else if (writeback_throttling_sane(sc) || 1650 !folio_test_reclaim(folio) || 1651 !may_enter_fs(folio, sc->gfp_mask)) { 1652 /* 1653 * This is slightly racy - 1654 * folio_end_writeback() might have 1655 * just cleared the reclaim flag, then 1656 * setting the reclaim flag here ends up 1657 * interpreted as the readahead flag - but 1658 * that does not matter enough to care. 1659 * What we do want is for this folio to 1660 * have the reclaim flag set next time 1661 * memcg reclaim reaches the tests above, 1662 * so it will then wait for writeback to 1663 * avoid OOM; and it's also appropriate 1664 * in global reclaim. 1665 */ 1666 folio_set_reclaim(folio); 1667 stat->nr_writeback += nr_pages; 1668 goto activate_locked; 1669 1670 /* Case 3 above */ 1671 } else { 1672 folio_unlock(folio); 1673 folio_wait_writeback(folio); 1674 /* then go back and try same folio again */ 1675 list_add_tail(&folio->lru, page_list); 1676 continue; 1677 } 1678 } 1679 1680 if (!ignore_references) 1681 references = folio_check_references(folio, sc); 1682 1683 switch (references) { 1684 case PAGEREF_ACTIVATE: 1685 goto activate_locked; 1686 case PAGEREF_KEEP: 1687 stat->nr_ref_keep += nr_pages; 1688 goto keep_locked; 1689 case PAGEREF_RECLAIM: 1690 case PAGEREF_RECLAIM_CLEAN: 1691 ; /* try to reclaim the folio below */ 1692 } 1693 1694 /* 1695 * Before reclaiming the folio, try to relocate 1696 * its contents to another node. 1697 */ 1698 if (do_demote_pass && 1699 (thp_migration_supported() || !folio_test_large(folio))) { 1700 list_add(&folio->lru, &demote_pages); 1701 folio_unlock(folio); 1702 continue; 1703 } 1704 1705 /* 1706 * Anonymous process memory has backing store? 1707 * Try to allocate it some swap space here. 1708 * Lazyfree folio could be freed directly 1709 */ 1710 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1711 if (!folio_test_swapcache(folio)) { 1712 if (!(sc->gfp_mask & __GFP_IO)) 1713 goto keep_locked; 1714 if (folio_maybe_dma_pinned(folio)) 1715 goto keep_locked; 1716 if (folio_test_large(folio)) { 1717 /* cannot split folio, skip it */ 1718 if (!can_split_folio(folio, NULL)) 1719 goto activate_locked; 1720 /* 1721 * Split folios without a PMD map right 1722 * away. Chances are some or all of the 1723 * tail pages can be freed without IO. 1724 */ 1725 if (!folio_entire_mapcount(folio) && 1726 split_folio_to_list(folio, 1727 page_list)) 1728 goto activate_locked; 1729 } 1730 if (!add_to_swap(folio)) { 1731 if (!folio_test_large(folio)) 1732 goto activate_locked_split; 1733 /* Fallback to swap normal pages */ 1734 if (split_folio_to_list(folio, 1735 page_list)) 1736 goto activate_locked; 1737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1738 count_vm_event(THP_SWPOUT_FALLBACK); 1739 #endif 1740 if (!add_to_swap(folio)) 1741 goto activate_locked_split; 1742 } 1743 } 1744 } else if (folio_test_swapbacked(folio) && 1745 folio_test_large(folio)) { 1746 /* Split shmem folio */ 1747 if (split_folio_to_list(folio, page_list)) 1748 goto keep_locked; 1749 } 1750 1751 /* 1752 * If the folio was split above, the tail pages will make 1753 * their own pass through this function and be accounted 1754 * then. 1755 */ 1756 if ((nr_pages > 1) && !folio_test_large(folio)) { 1757 sc->nr_scanned -= (nr_pages - 1); 1758 nr_pages = 1; 1759 } 1760 1761 /* 1762 * The folio is mapped into the page tables of one or more 1763 * processes. Try to unmap it here. 1764 */ 1765 if (folio_mapped(folio)) { 1766 enum ttu_flags flags = TTU_BATCH_FLUSH; 1767 bool was_swapbacked = folio_test_swapbacked(folio); 1768 1769 if (folio_test_pmd_mappable(folio)) 1770 flags |= TTU_SPLIT_HUGE_PMD; 1771 1772 try_to_unmap(folio, flags); 1773 if (folio_mapped(folio)) { 1774 stat->nr_unmap_fail += nr_pages; 1775 if (!was_swapbacked && 1776 folio_test_swapbacked(folio)) 1777 stat->nr_lazyfree_fail += nr_pages; 1778 goto activate_locked; 1779 } 1780 } 1781 1782 mapping = folio_mapping(folio); 1783 if (folio_test_dirty(folio)) { 1784 /* 1785 * Only kswapd can writeback filesystem folios 1786 * to avoid risk of stack overflow. But avoid 1787 * injecting inefficient single-folio I/O into 1788 * flusher writeback as much as possible: only 1789 * write folios when we've encountered many 1790 * dirty folios, and when we've already scanned 1791 * the rest of the LRU for clean folios and see 1792 * the same dirty folios again (with the reclaim 1793 * flag set). 1794 */ 1795 if (folio_is_file_lru(folio) && 1796 (!current_is_kswapd() || 1797 !folio_test_reclaim(folio) || 1798 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1799 /* 1800 * Immediately reclaim when written back. 1801 * Similar in principle to deactivate_page() 1802 * except we already have the folio isolated 1803 * and know it's dirty 1804 */ 1805 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1806 nr_pages); 1807 folio_set_reclaim(folio); 1808 1809 goto activate_locked; 1810 } 1811 1812 if (references == PAGEREF_RECLAIM_CLEAN) 1813 goto keep_locked; 1814 if (!may_enter_fs(folio, sc->gfp_mask)) 1815 goto keep_locked; 1816 if (!sc->may_writepage) 1817 goto keep_locked; 1818 1819 /* 1820 * Folio is dirty. Flush the TLB if a writable entry 1821 * potentially exists to avoid CPU writes after I/O 1822 * starts and then write it out here. 1823 */ 1824 try_to_unmap_flush_dirty(); 1825 switch (pageout(folio, mapping, &plug)) { 1826 case PAGE_KEEP: 1827 goto keep_locked; 1828 case PAGE_ACTIVATE: 1829 goto activate_locked; 1830 case PAGE_SUCCESS: 1831 stat->nr_pageout += nr_pages; 1832 1833 if (folio_test_writeback(folio)) 1834 goto keep; 1835 if (folio_test_dirty(folio)) 1836 goto keep; 1837 1838 /* 1839 * A synchronous write - probably a ramdisk. Go 1840 * ahead and try to reclaim the folio. 1841 */ 1842 if (!folio_trylock(folio)) 1843 goto keep; 1844 if (folio_test_dirty(folio) || 1845 folio_test_writeback(folio)) 1846 goto keep_locked; 1847 mapping = folio_mapping(folio); 1848 fallthrough; 1849 case PAGE_CLEAN: 1850 ; /* try to free the folio below */ 1851 } 1852 } 1853 1854 /* 1855 * If the folio has buffers, try to free the buffer 1856 * mappings associated with this folio. If we succeed 1857 * we try to free the folio as well. 1858 * 1859 * We do this even if the folio is dirty. 1860 * filemap_release_folio() does not perform I/O, but it 1861 * is possible for a folio to have the dirty flag set, 1862 * but it is actually clean (all its buffers are clean). 1863 * This happens if the buffers were written out directly, 1864 * with submit_bh(). ext3 will do this, as well as 1865 * the blockdev mapping. filemap_release_folio() will 1866 * discover that cleanness and will drop the buffers 1867 * and mark the folio clean - it can be freed. 1868 * 1869 * Rarely, folios can have buffers and no ->mapping. 1870 * These are the folios which were not successfully 1871 * invalidated in truncate_cleanup_folio(). We try to 1872 * drop those buffers here and if that worked, and the 1873 * folio is no longer mapped into process address space 1874 * (refcount == 1) it can be freed. Otherwise, leave 1875 * the folio on the LRU so it is swappable. 1876 */ 1877 if (folio_has_private(folio)) { 1878 if (!filemap_release_folio(folio, sc->gfp_mask)) 1879 goto activate_locked; 1880 if (!mapping && folio_ref_count(folio) == 1) { 1881 folio_unlock(folio); 1882 if (folio_put_testzero(folio)) 1883 goto free_it; 1884 else { 1885 /* 1886 * rare race with speculative reference. 1887 * the speculative reference will free 1888 * this folio shortly, so we may 1889 * increment nr_reclaimed here (and 1890 * leave it off the LRU). 1891 */ 1892 nr_reclaimed += nr_pages; 1893 continue; 1894 } 1895 } 1896 } 1897 1898 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1899 /* follow __remove_mapping for reference */ 1900 if (!folio_ref_freeze(folio, 1)) 1901 goto keep_locked; 1902 /* 1903 * The folio has only one reference left, which is 1904 * from the isolation. After the caller puts the 1905 * folio back on the lru and drops the reference, the 1906 * folio will be freed anyway. It doesn't matter 1907 * which lru it goes on. So we don't bother checking 1908 * the dirty flag here. 1909 */ 1910 count_vm_events(PGLAZYFREED, nr_pages); 1911 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1912 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1913 sc->target_mem_cgroup)) 1914 goto keep_locked; 1915 1916 folio_unlock(folio); 1917 free_it: 1918 /* 1919 * Folio may get swapped out as a whole, need to account 1920 * all pages in it. 1921 */ 1922 nr_reclaimed += nr_pages; 1923 1924 /* 1925 * Is there need to periodically free_page_list? It would 1926 * appear not as the counts should be low 1927 */ 1928 if (unlikely(folio_test_large(folio))) 1929 destroy_compound_page(&folio->page); 1930 else 1931 list_add(&folio->lru, &free_pages); 1932 continue; 1933 1934 activate_locked_split: 1935 /* 1936 * The tail pages that are failed to add into swap cache 1937 * reach here. Fixup nr_scanned and nr_pages. 1938 */ 1939 if (nr_pages > 1) { 1940 sc->nr_scanned -= (nr_pages - 1); 1941 nr_pages = 1; 1942 } 1943 activate_locked: 1944 /* Not a candidate for swapping, so reclaim swap space. */ 1945 if (folio_test_swapcache(folio) && 1946 (mem_cgroup_swap_full(&folio->page) || 1947 folio_test_mlocked(folio))) 1948 try_to_free_swap(&folio->page); 1949 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1950 if (!folio_test_mlocked(folio)) { 1951 int type = folio_is_file_lru(folio); 1952 folio_set_active(folio); 1953 stat->nr_activate[type] += nr_pages; 1954 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1955 } 1956 keep_locked: 1957 folio_unlock(folio); 1958 keep: 1959 list_add(&folio->lru, &ret_pages); 1960 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1961 folio_test_unevictable(folio), folio); 1962 } 1963 /* 'page_list' is always empty here */ 1964 1965 /* Migrate folios selected for demotion */ 1966 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1967 /* Folios that could not be demoted are still in @demote_pages */ 1968 if (!list_empty(&demote_pages)) { 1969 /* Folios which weren't demoted go back on @page_list for retry: */ 1970 list_splice_init(&demote_pages, page_list); 1971 do_demote_pass = false; 1972 goto retry; 1973 } 1974 1975 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1976 1977 mem_cgroup_uncharge_list(&free_pages); 1978 try_to_unmap_flush(); 1979 free_unref_page_list(&free_pages); 1980 1981 list_splice(&ret_pages, page_list); 1982 count_vm_events(PGACTIVATE, pgactivate); 1983 1984 if (plug) 1985 swap_write_unplug(plug); 1986 return nr_reclaimed; 1987 } 1988 1989 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1990 struct list_head *page_list) 1991 { 1992 struct scan_control sc = { 1993 .gfp_mask = GFP_KERNEL, 1994 .may_unmap = 1, 1995 }; 1996 struct reclaim_stat stat; 1997 unsigned int nr_reclaimed; 1998 struct page *page, *next; 1999 LIST_HEAD(clean_pages); 2000 unsigned int noreclaim_flag; 2001 2002 list_for_each_entry_safe(page, next, page_list, lru) { 2003 if (!PageHuge(page) && page_is_file_lru(page) && 2004 !PageDirty(page) && !__PageMovable(page) && 2005 !PageUnevictable(page)) { 2006 ClearPageActive(page); 2007 list_move(&page->lru, &clean_pages); 2008 } 2009 } 2010 2011 /* 2012 * We should be safe here since we are only dealing with file pages and 2013 * we are not kswapd and therefore cannot write dirty file pages. But 2014 * call memalloc_noreclaim_save() anyway, just in case these conditions 2015 * change in the future. 2016 */ 2017 noreclaim_flag = memalloc_noreclaim_save(); 2018 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 2019 &stat, true); 2020 memalloc_noreclaim_restore(noreclaim_flag); 2021 2022 list_splice(&clean_pages, page_list); 2023 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2024 -(long)nr_reclaimed); 2025 /* 2026 * Since lazyfree pages are isolated from file LRU from the beginning, 2027 * they will rotate back to anonymous LRU in the end if it failed to 2028 * discard so isolated count will be mismatched. 2029 * Compensate the isolated count for both LRU lists. 2030 */ 2031 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2032 stat.nr_lazyfree_fail); 2033 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2034 -(long)stat.nr_lazyfree_fail); 2035 return nr_reclaimed; 2036 } 2037 2038 /* 2039 * Update LRU sizes after isolating pages. The LRU size updates must 2040 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2041 */ 2042 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2043 enum lru_list lru, unsigned long *nr_zone_taken) 2044 { 2045 int zid; 2046 2047 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2048 if (!nr_zone_taken[zid]) 2049 continue; 2050 2051 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2052 } 2053 2054 } 2055 2056 /* 2057 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2058 * 2059 * lruvec->lru_lock is heavily contended. Some of the functions that 2060 * shrink the lists perform better by taking out a batch of pages 2061 * and working on them outside the LRU lock. 2062 * 2063 * For pagecache intensive workloads, this function is the hottest 2064 * spot in the kernel (apart from copy_*_user functions). 2065 * 2066 * Lru_lock must be held before calling this function. 2067 * 2068 * @nr_to_scan: The number of eligible pages to look through on the list. 2069 * @lruvec: The LRU vector to pull pages from. 2070 * @dst: The temp list to put pages on to. 2071 * @nr_scanned: The number of pages that were scanned. 2072 * @sc: The scan_control struct for this reclaim session 2073 * @lru: LRU list id for isolating 2074 * 2075 * returns how many pages were moved onto *@dst. 2076 */ 2077 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 2078 struct lruvec *lruvec, struct list_head *dst, 2079 unsigned long *nr_scanned, struct scan_control *sc, 2080 enum lru_list lru) 2081 { 2082 struct list_head *src = &lruvec->lists[lru]; 2083 unsigned long nr_taken = 0; 2084 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2085 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2086 unsigned long skipped = 0; 2087 unsigned long scan, total_scan, nr_pages; 2088 LIST_HEAD(pages_skipped); 2089 2090 total_scan = 0; 2091 scan = 0; 2092 while (scan < nr_to_scan && !list_empty(src)) { 2093 struct list_head *move_to = src; 2094 struct page *page; 2095 2096 page = lru_to_page(src); 2097 prefetchw_prev_lru_page(page, src, flags); 2098 2099 nr_pages = compound_nr(page); 2100 total_scan += nr_pages; 2101 2102 if (page_zonenum(page) > sc->reclaim_idx) { 2103 nr_skipped[page_zonenum(page)] += nr_pages; 2104 move_to = &pages_skipped; 2105 goto move; 2106 } 2107 2108 /* 2109 * Do not count skipped pages because that makes the function 2110 * return with no isolated pages if the LRU mostly contains 2111 * ineligible pages. This causes the VM to not reclaim any 2112 * pages, triggering a premature OOM. 2113 * Account all tail pages of THP. 2114 */ 2115 scan += nr_pages; 2116 2117 if (!PageLRU(page)) 2118 goto move; 2119 if (!sc->may_unmap && page_mapped(page)) 2120 goto move; 2121 2122 /* 2123 * Be careful not to clear PageLRU until after we're 2124 * sure the page is not being freed elsewhere -- the 2125 * page release code relies on it. 2126 */ 2127 if (unlikely(!get_page_unless_zero(page))) 2128 goto move; 2129 2130 if (!TestClearPageLRU(page)) { 2131 /* Another thread is already isolating this page */ 2132 put_page(page); 2133 goto move; 2134 } 2135 2136 nr_taken += nr_pages; 2137 nr_zone_taken[page_zonenum(page)] += nr_pages; 2138 move_to = dst; 2139 move: 2140 list_move(&page->lru, move_to); 2141 } 2142 2143 /* 2144 * Splice any skipped pages to the start of the LRU list. Note that 2145 * this disrupts the LRU order when reclaiming for lower zones but 2146 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2147 * scanning would soon rescan the same pages to skip and waste lots 2148 * of cpu cycles. 2149 */ 2150 if (!list_empty(&pages_skipped)) { 2151 int zid; 2152 2153 list_splice(&pages_skipped, src); 2154 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2155 if (!nr_skipped[zid]) 2156 continue; 2157 2158 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2159 skipped += nr_skipped[zid]; 2160 } 2161 } 2162 *nr_scanned = total_scan; 2163 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2164 total_scan, skipped, nr_taken, 2165 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2166 update_lru_sizes(lruvec, lru, nr_zone_taken); 2167 return nr_taken; 2168 } 2169 2170 /** 2171 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2172 * @folio: Folio to isolate from its LRU list. 2173 * 2174 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2175 * corresponding to whatever LRU list the folio was on. 2176 * 2177 * The folio will have its LRU flag cleared. If it was found on the 2178 * active list, it will have the Active flag set. If it was found on the 2179 * unevictable list, it will have the Unevictable flag set. These flags 2180 * may need to be cleared by the caller before letting the page go. 2181 * 2182 * Context: 2183 * 2184 * (1) Must be called with an elevated refcount on the page. This is a 2185 * fundamental difference from isolate_lru_pages() (which is called 2186 * without a stable reference). 2187 * (2) The lru_lock must not be held. 2188 * (3) Interrupts must be enabled. 2189 * 2190 * Return: 0 if the folio was removed from an LRU list. 2191 * -EBUSY if the folio was not on an LRU list. 2192 */ 2193 int folio_isolate_lru(struct folio *folio) 2194 { 2195 int ret = -EBUSY; 2196 2197 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2198 2199 if (folio_test_clear_lru(folio)) { 2200 struct lruvec *lruvec; 2201 2202 folio_get(folio); 2203 lruvec = folio_lruvec_lock_irq(folio); 2204 lruvec_del_folio(lruvec, folio); 2205 unlock_page_lruvec_irq(lruvec); 2206 ret = 0; 2207 } 2208 2209 return ret; 2210 } 2211 2212 /* 2213 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2214 * then get rescheduled. When there are massive number of tasks doing page 2215 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2216 * the LRU list will go small and be scanned faster than necessary, leading to 2217 * unnecessary swapping, thrashing and OOM. 2218 */ 2219 static int too_many_isolated(struct pglist_data *pgdat, int file, 2220 struct scan_control *sc) 2221 { 2222 unsigned long inactive, isolated; 2223 bool too_many; 2224 2225 if (current_is_kswapd()) 2226 return 0; 2227 2228 if (!writeback_throttling_sane(sc)) 2229 return 0; 2230 2231 if (file) { 2232 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2233 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2234 } else { 2235 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2236 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2237 } 2238 2239 /* 2240 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2241 * won't get blocked by normal direct-reclaimers, forming a circular 2242 * deadlock. 2243 */ 2244 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2245 inactive >>= 3; 2246 2247 too_many = isolated > inactive; 2248 2249 /* Wake up tasks throttled due to too_many_isolated. */ 2250 if (!too_many) 2251 wake_throttle_isolated(pgdat); 2252 2253 return too_many; 2254 } 2255 2256 /* 2257 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2258 * On return, @list is reused as a list of pages to be freed by the caller. 2259 * 2260 * Returns the number of pages moved to the given lruvec. 2261 */ 2262 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2263 struct list_head *list) 2264 { 2265 int nr_pages, nr_moved = 0; 2266 LIST_HEAD(pages_to_free); 2267 struct page *page; 2268 2269 while (!list_empty(list)) { 2270 page = lru_to_page(list); 2271 VM_BUG_ON_PAGE(PageLRU(page), page); 2272 list_del(&page->lru); 2273 if (unlikely(!page_evictable(page))) { 2274 spin_unlock_irq(&lruvec->lru_lock); 2275 putback_lru_page(page); 2276 spin_lock_irq(&lruvec->lru_lock); 2277 continue; 2278 } 2279 2280 /* 2281 * The SetPageLRU needs to be kept here for list integrity. 2282 * Otherwise: 2283 * #0 move_pages_to_lru #1 release_pages 2284 * if !put_page_testzero 2285 * if (put_page_testzero()) 2286 * !PageLRU //skip lru_lock 2287 * SetPageLRU() 2288 * list_add(&page->lru,) 2289 * list_add(&page->lru,) 2290 */ 2291 SetPageLRU(page); 2292 2293 if (unlikely(put_page_testzero(page))) { 2294 __clear_page_lru_flags(page); 2295 2296 if (unlikely(PageCompound(page))) { 2297 spin_unlock_irq(&lruvec->lru_lock); 2298 destroy_compound_page(page); 2299 spin_lock_irq(&lruvec->lru_lock); 2300 } else 2301 list_add(&page->lru, &pages_to_free); 2302 2303 continue; 2304 } 2305 2306 /* 2307 * All pages were isolated from the same lruvec (and isolation 2308 * inhibits memcg migration). 2309 */ 2310 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page); 2311 add_page_to_lru_list(page, lruvec); 2312 nr_pages = thp_nr_pages(page); 2313 nr_moved += nr_pages; 2314 if (PageActive(page)) 2315 workingset_age_nonresident(lruvec, nr_pages); 2316 } 2317 2318 /* 2319 * To save our caller's stack, now use input list for pages to free. 2320 */ 2321 list_splice(&pages_to_free, list); 2322 2323 return nr_moved; 2324 } 2325 2326 /* 2327 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2328 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2329 * we should not throttle. Otherwise it is safe to do so. 2330 */ 2331 static int current_may_throttle(void) 2332 { 2333 return !(current->flags & PF_LOCAL_THROTTLE); 2334 } 2335 2336 /* 2337 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2338 * of reclaimed pages 2339 */ 2340 static unsigned long 2341 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2342 struct scan_control *sc, enum lru_list lru) 2343 { 2344 LIST_HEAD(page_list); 2345 unsigned long nr_scanned; 2346 unsigned int nr_reclaimed = 0; 2347 unsigned long nr_taken; 2348 struct reclaim_stat stat; 2349 bool file = is_file_lru(lru); 2350 enum vm_event_item item; 2351 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2352 bool stalled = false; 2353 2354 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2355 if (stalled) 2356 return 0; 2357 2358 /* wait a bit for the reclaimer. */ 2359 stalled = true; 2360 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2361 2362 /* We are about to die and free our memory. Return now. */ 2363 if (fatal_signal_pending(current)) 2364 return SWAP_CLUSTER_MAX; 2365 } 2366 2367 lru_add_drain(); 2368 2369 spin_lock_irq(&lruvec->lru_lock); 2370 2371 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2372 &nr_scanned, sc, lru); 2373 2374 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2375 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2376 if (!cgroup_reclaim(sc)) 2377 __count_vm_events(item, nr_scanned); 2378 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2379 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2380 2381 spin_unlock_irq(&lruvec->lru_lock); 2382 2383 if (nr_taken == 0) 2384 return 0; 2385 2386 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2387 2388 spin_lock_irq(&lruvec->lru_lock); 2389 move_pages_to_lru(lruvec, &page_list); 2390 2391 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2392 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2393 if (!cgroup_reclaim(sc)) 2394 __count_vm_events(item, nr_reclaimed); 2395 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2396 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2397 spin_unlock_irq(&lruvec->lru_lock); 2398 2399 lru_note_cost(lruvec, file, stat.nr_pageout); 2400 mem_cgroup_uncharge_list(&page_list); 2401 free_unref_page_list(&page_list); 2402 2403 /* 2404 * If dirty pages are scanned that are not queued for IO, it 2405 * implies that flushers are not doing their job. This can 2406 * happen when memory pressure pushes dirty pages to the end of 2407 * the LRU before the dirty limits are breached and the dirty 2408 * data has expired. It can also happen when the proportion of 2409 * dirty pages grows not through writes but through memory 2410 * pressure reclaiming all the clean cache. And in some cases, 2411 * the flushers simply cannot keep up with the allocation 2412 * rate. Nudge the flusher threads in case they are asleep. 2413 */ 2414 if (stat.nr_unqueued_dirty == nr_taken) 2415 wakeup_flusher_threads(WB_REASON_VMSCAN); 2416 2417 sc->nr.dirty += stat.nr_dirty; 2418 sc->nr.congested += stat.nr_congested; 2419 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2420 sc->nr.writeback += stat.nr_writeback; 2421 sc->nr.immediate += stat.nr_immediate; 2422 sc->nr.taken += nr_taken; 2423 if (file) 2424 sc->nr.file_taken += nr_taken; 2425 2426 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2427 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2428 return nr_reclaimed; 2429 } 2430 2431 /* 2432 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2433 * 2434 * We move them the other way if the page is referenced by one or more 2435 * processes. 2436 * 2437 * If the pages are mostly unmapped, the processing is fast and it is 2438 * appropriate to hold lru_lock across the whole operation. But if 2439 * the pages are mapped, the processing is slow (folio_referenced()), so 2440 * we should drop lru_lock around each page. It's impossible to balance 2441 * this, so instead we remove the pages from the LRU while processing them. 2442 * It is safe to rely on PG_active against the non-LRU pages in here because 2443 * nobody will play with that bit on a non-LRU page. 2444 * 2445 * The downside is that we have to touch page->_refcount against each page. 2446 * But we had to alter page->flags anyway. 2447 */ 2448 static void shrink_active_list(unsigned long nr_to_scan, 2449 struct lruvec *lruvec, 2450 struct scan_control *sc, 2451 enum lru_list lru) 2452 { 2453 unsigned long nr_taken; 2454 unsigned long nr_scanned; 2455 unsigned long vm_flags; 2456 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2457 LIST_HEAD(l_active); 2458 LIST_HEAD(l_inactive); 2459 unsigned nr_deactivate, nr_activate; 2460 unsigned nr_rotated = 0; 2461 int file = is_file_lru(lru); 2462 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2463 2464 lru_add_drain(); 2465 2466 spin_lock_irq(&lruvec->lru_lock); 2467 2468 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2469 &nr_scanned, sc, lru); 2470 2471 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2472 2473 if (!cgroup_reclaim(sc)) 2474 __count_vm_events(PGREFILL, nr_scanned); 2475 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2476 2477 spin_unlock_irq(&lruvec->lru_lock); 2478 2479 while (!list_empty(&l_hold)) { 2480 struct folio *folio; 2481 struct page *page; 2482 2483 cond_resched(); 2484 folio = lru_to_folio(&l_hold); 2485 list_del(&folio->lru); 2486 page = &folio->page; 2487 2488 if (unlikely(!page_evictable(page))) { 2489 putback_lru_page(page); 2490 continue; 2491 } 2492 2493 if (unlikely(buffer_heads_over_limit)) { 2494 if (page_has_private(page) && trylock_page(page)) { 2495 if (page_has_private(page)) 2496 try_to_release_page(page, 0); 2497 unlock_page(page); 2498 } 2499 } 2500 2501 /* Referenced or rmap lock contention: rotate */ 2502 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2503 &vm_flags) != 0) { 2504 /* 2505 * Identify referenced, file-backed active pages and 2506 * give them one more trip around the active list. So 2507 * that executable code get better chances to stay in 2508 * memory under moderate memory pressure. Anon pages 2509 * are not likely to be evicted by use-once streaming 2510 * IO, plus JVM can create lots of anon VM_EXEC pages, 2511 * so we ignore them here. 2512 */ 2513 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2514 nr_rotated += thp_nr_pages(page); 2515 list_add(&page->lru, &l_active); 2516 continue; 2517 } 2518 } 2519 2520 ClearPageActive(page); /* we are de-activating */ 2521 SetPageWorkingset(page); 2522 list_add(&page->lru, &l_inactive); 2523 } 2524 2525 /* 2526 * Move pages back to the lru list. 2527 */ 2528 spin_lock_irq(&lruvec->lru_lock); 2529 2530 nr_activate = move_pages_to_lru(lruvec, &l_active); 2531 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2532 /* Keep all free pages in l_active list */ 2533 list_splice(&l_inactive, &l_active); 2534 2535 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2536 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2537 2538 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2539 spin_unlock_irq(&lruvec->lru_lock); 2540 2541 mem_cgroup_uncharge_list(&l_active); 2542 free_unref_page_list(&l_active); 2543 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2544 nr_deactivate, nr_rotated, sc->priority, file); 2545 } 2546 2547 static unsigned int reclaim_page_list(struct list_head *page_list, 2548 struct pglist_data *pgdat) 2549 { 2550 struct reclaim_stat dummy_stat; 2551 unsigned int nr_reclaimed; 2552 struct folio *folio; 2553 struct scan_control sc = { 2554 .gfp_mask = GFP_KERNEL, 2555 .may_writepage = 1, 2556 .may_unmap = 1, 2557 .may_swap = 1, 2558 .no_demotion = 1, 2559 }; 2560 2561 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false); 2562 while (!list_empty(page_list)) { 2563 folio = lru_to_folio(page_list); 2564 list_del(&folio->lru); 2565 folio_putback_lru(folio); 2566 } 2567 2568 return nr_reclaimed; 2569 } 2570 2571 unsigned long reclaim_pages(struct list_head *page_list) 2572 { 2573 int nid; 2574 unsigned int nr_reclaimed = 0; 2575 LIST_HEAD(node_page_list); 2576 struct page *page; 2577 unsigned int noreclaim_flag; 2578 2579 if (list_empty(page_list)) 2580 return nr_reclaimed; 2581 2582 noreclaim_flag = memalloc_noreclaim_save(); 2583 2584 nid = page_to_nid(lru_to_page(page_list)); 2585 do { 2586 page = lru_to_page(page_list); 2587 2588 if (nid == page_to_nid(page)) { 2589 ClearPageActive(page); 2590 list_move(&page->lru, &node_page_list); 2591 continue; 2592 } 2593 2594 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid)); 2595 nid = page_to_nid(lru_to_page(page_list)); 2596 } while (!list_empty(page_list)); 2597 2598 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid)); 2599 2600 memalloc_noreclaim_restore(noreclaim_flag); 2601 2602 return nr_reclaimed; 2603 } 2604 2605 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2606 struct lruvec *lruvec, struct scan_control *sc) 2607 { 2608 if (is_active_lru(lru)) { 2609 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2610 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2611 else 2612 sc->skipped_deactivate = 1; 2613 return 0; 2614 } 2615 2616 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2617 } 2618 2619 /* 2620 * The inactive anon list should be small enough that the VM never has 2621 * to do too much work. 2622 * 2623 * The inactive file list should be small enough to leave most memory 2624 * to the established workingset on the scan-resistant active list, 2625 * but large enough to avoid thrashing the aggregate readahead window. 2626 * 2627 * Both inactive lists should also be large enough that each inactive 2628 * page has a chance to be referenced again before it is reclaimed. 2629 * 2630 * If that fails and refaulting is observed, the inactive list grows. 2631 * 2632 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2633 * on this LRU, maintained by the pageout code. An inactive_ratio 2634 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2635 * 2636 * total target max 2637 * memory ratio inactive 2638 * ------------------------------------- 2639 * 10MB 1 5MB 2640 * 100MB 1 50MB 2641 * 1GB 3 250MB 2642 * 10GB 10 0.9GB 2643 * 100GB 31 3GB 2644 * 1TB 101 10GB 2645 * 10TB 320 32GB 2646 */ 2647 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2648 { 2649 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2650 unsigned long inactive, active; 2651 unsigned long inactive_ratio; 2652 unsigned long gb; 2653 2654 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2655 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2656 2657 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2658 if (gb) 2659 inactive_ratio = int_sqrt(10 * gb); 2660 else 2661 inactive_ratio = 1; 2662 2663 return inactive * inactive_ratio < active; 2664 } 2665 2666 enum scan_balance { 2667 SCAN_EQUAL, 2668 SCAN_FRACT, 2669 SCAN_ANON, 2670 SCAN_FILE, 2671 }; 2672 2673 /* 2674 * Determine how aggressively the anon and file LRU lists should be 2675 * scanned. 2676 * 2677 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2678 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2679 */ 2680 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2681 unsigned long *nr) 2682 { 2683 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2684 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2685 unsigned long anon_cost, file_cost, total_cost; 2686 int swappiness = mem_cgroup_swappiness(memcg); 2687 u64 fraction[ANON_AND_FILE]; 2688 u64 denominator = 0; /* gcc */ 2689 enum scan_balance scan_balance; 2690 unsigned long ap, fp; 2691 enum lru_list lru; 2692 2693 /* If we have no swap space, do not bother scanning anon pages. */ 2694 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2695 scan_balance = SCAN_FILE; 2696 goto out; 2697 } 2698 2699 /* 2700 * Global reclaim will swap to prevent OOM even with no 2701 * swappiness, but memcg users want to use this knob to 2702 * disable swapping for individual groups completely when 2703 * using the memory controller's swap limit feature would be 2704 * too expensive. 2705 */ 2706 if (cgroup_reclaim(sc) && !swappiness) { 2707 scan_balance = SCAN_FILE; 2708 goto out; 2709 } 2710 2711 /* 2712 * Do not apply any pressure balancing cleverness when the 2713 * system is close to OOM, scan both anon and file equally 2714 * (unless the swappiness setting disagrees with swapping). 2715 */ 2716 if (!sc->priority && swappiness) { 2717 scan_balance = SCAN_EQUAL; 2718 goto out; 2719 } 2720 2721 /* 2722 * If the system is almost out of file pages, force-scan anon. 2723 */ 2724 if (sc->file_is_tiny) { 2725 scan_balance = SCAN_ANON; 2726 goto out; 2727 } 2728 2729 /* 2730 * If there is enough inactive page cache, we do not reclaim 2731 * anything from the anonymous working right now. 2732 */ 2733 if (sc->cache_trim_mode) { 2734 scan_balance = SCAN_FILE; 2735 goto out; 2736 } 2737 2738 scan_balance = SCAN_FRACT; 2739 /* 2740 * Calculate the pressure balance between anon and file pages. 2741 * 2742 * The amount of pressure we put on each LRU is inversely 2743 * proportional to the cost of reclaiming each list, as 2744 * determined by the share of pages that are refaulting, times 2745 * the relative IO cost of bringing back a swapped out 2746 * anonymous page vs reloading a filesystem page (swappiness). 2747 * 2748 * Although we limit that influence to ensure no list gets 2749 * left behind completely: at least a third of the pressure is 2750 * applied, before swappiness. 2751 * 2752 * With swappiness at 100, anon and file have equal IO cost. 2753 */ 2754 total_cost = sc->anon_cost + sc->file_cost; 2755 anon_cost = total_cost + sc->anon_cost; 2756 file_cost = total_cost + sc->file_cost; 2757 total_cost = anon_cost + file_cost; 2758 2759 ap = swappiness * (total_cost + 1); 2760 ap /= anon_cost + 1; 2761 2762 fp = (200 - swappiness) * (total_cost + 1); 2763 fp /= file_cost + 1; 2764 2765 fraction[0] = ap; 2766 fraction[1] = fp; 2767 denominator = ap + fp; 2768 out: 2769 for_each_evictable_lru(lru) { 2770 int file = is_file_lru(lru); 2771 unsigned long lruvec_size; 2772 unsigned long low, min; 2773 unsigned long scan; 2774 2775 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2776 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2777 &min, &low); 2778 2779 if (min || low) { 2780 /* 2781 * Scale a cgroup's reclaim pressure by proportioning 2782 * its current usage to its memory.low or memory.min 2783 * setting. 2784 * 2785 * This is important, as otherwise scanning aggression 2786 * becomes extremely binary -- from nothing as we 2787 * approach the memory protection threshold, to totally 2788 * nominal as we exceed it. This results in requiring 2789 * setting extremely liberal protection thresholds. It 2790 * also means we simply get no protection at all if we 2791 * set it too low, which is not ideal. 2792 * 2793 * If there is any protection in place, we reduce scan 2794 * pressure by how much of the total memory used is 2795 * within protection thresholds. 2796 * 2797 * There is one special case: in the first reclaim pass, 2798 * we skip over all groups that are within their low 2799 * protection. If that fails to reclaim enough pages to 2800 * satisfy the reclaim goal, we come back and override 2801 * the best-effort low protection. However, we still 2802 * ideally want to honor how well-behaved groups are in 2803 * that case instead of simply punishing them all 2804 * equally. As such, we reclaim them based on how much 2805 * memory they are using, reducing the scan pressure 2806 * again by how much of the total memory used is under 2807 * hard protection. 2808 */ 2809 unsigned long cgroup_size = mem_cgroup_size(memcg); 2810 unsigned long protection; 2811 2812 /* memory.low scaling, make sure we retry before OOM */ 2813 if (!sc->memcg_low_reclaim && low > min) { 2814 protection = low; 2815 sc->memcg_low_skipped = 1; 2816 } else { 2817 protection = min; 2818 } 2819 2820 /* Avoid TOCTOU with earlier protection check */ 2821 cgroup_size = max(cgroup_size, protection); 2822 2823 scan = lruvec_size - lruvec_size * protection / 2824 (cgroup_size + 1); 2825 2826 /* 2827 * Minimally target SWAP_CLUSTER_MAX pages to keep 2828 * reclaim moving forwards, avoiding decrementing 2829 * sc->priority further than desirable. 2830 */ 2831 scan = max(scan, SWAP_CLUSTER_MAX); 2832 } else { 2833 scan = lruvec_size; 2834 } 2835 2836 scan >>= sc->priority; 2837 2838 /* 2839 * If the cgroup's already been deleted, make sure to 2840 * scrape out the remaining cache. 2841 */ 2842 if (!scan && !mem_cgroup_online(memcg)) 2843 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2844 2845 switch (scan_balance) { 2846 case SCAN_EQUAL: 2847 /* Scan lists relative to size */ 2848 break; 2849 case SCAN_FRACT: 2850 /* 2851 * Scan types proportional to swappiness and 2852 * their relative recent reclaim efficiency. 2853 * Make sure we don't miss the last page on 2854 * the offlined memory cgroups because of a 2855 * round-off error. 2856 */ 2857 scan = mem_cgroup_online(memcg) ? 2858 div64_u64(scan * fraction[file], denominator) : 2859 DIV64_U64_ROUND_UP(scan * fraction[file], 2860 denominator); 2861 break; 2862 case SCAN_FILE: 2863 case SCAN_ANON: 2864 /* Scan one type exclusively */ 2865 if ((scan_balance == SCAN_FILE) != file) 2866 scan = 0; 2867 break; 2868 default: 2869 /* Look ma, no brain */ 2870 BUG(); 2871 } 2872 2873 nr[lru] = scan; 2874 } 2875 } 2876 2877 /* 2878 * Anonymous LRU management is a waste if there is 2879 * ultimately no way to reclaim the memory. 2880 */ 2881 static bool can_age_anon_pages(struct pglist_data *pgdat, 2882 struct scan_control *sc) 2883 { 2884 /* Aging the anon LRU is valuable if swap is present: */ 2885 if (total_swap_pages > 0) 2886 return true; 2887 2888 /* Also valuable if anon pages can be demoted: */ 2889 return can_demote(pgdat->node_id, sc); 2890 } 2891 2892 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2893 { 2894 unsigned long nr[NR_LRU_LISTS]; 2895 unsigned long targets[NR_LRU_LISTS]; 2896 unsigned long nr_to_scan; 2897 enum lru_list lru; 2898 unsigned long nr_reclaimed = 0; 2899 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2900 struct blk_plug plug; 2901 bool scan_adjusted; 2902 2903 get_scan_count(lruvec, sc, nr); 2904 2905 /* Record the original scan target for proportional adjustments later */ 2906 memcpy(targets, nr, sizeof(nr)); 2907 2908 /* 2909 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2910 * event that can occur when there is little memory pressure e.g. 2911 * multiple streaming readers/writers. Hence, we do not abort scanning 2912 * when the requested number of pages are reclaimed when scanning at 2913 * DEF_PRIORITY on the assumption that the fact we are direct 2914 * reclaiming implies that kswapd is not keeping up and it is best to 2915 * do a batch of work at once. For memcg reclaim one check is made to 2916 * abort proportional reclaim if either the file or anon lru has already 2917 * dropped to zero at the first pass. 2918 */ 2919 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2920 sc->priority == DEF_PRIORITY); 2921 2922 blk_start_plug(&plug); 2923 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2924 nr[LRU_INACTIVE_FILE]) { 2925 unsigned long nr_anon, nr_file, percentage; 2926 unsigned long nr_scanned; 2927 2928 for_each_evictable_lru(lru) { 2929 if (nr[lru]) { 2930 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2931 nr[lru] -= nr_to_scan; 2932 2933 nr_reclaimed += shrink_list(lru, nr_to_scan, 2934 lruvec, sc); 2935 } 2936 } 2937 2938 cond_resched(); 2939 2940 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2941 continue; 2942 2943 /* 2944 * For kswapd and memcg, reclaim at least the number of pages 2945 * requested. Ensure that the anon and file LRUs are scanned 2946 * proportionally what was requested by get_scan_count(). We 2947 * stop reclaiming one LRU and reduce the amount scanning 2948 * proportional to the original scan target. 2949 */ 2950 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2951 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2952 2953 /* 2954 * It's just vindictive to attack the larger once the smaller 2955 * has gone to zero. And given the way we stop scanning the 2956 * smaller below, this makes sure that we only make one nudge 2957 * towards proportionality once we've got nr_to_reclaim. 2958 */ 2959 if (!nr_file || !nr_anon) 2960 break; 2961 2962 if (nr_file > nr_anon) { 2963 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2964 targets[LRU_ACTIVE_ANON] + 1; 2965 lru = LRU_BASE; 2966 percentage = nr_anon * 100 / scan_target; 2967 } else { 2968 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2969 targets[LRU_ACTIVE_FILE] + 1; 2970 lru = LRU_FILE; 2971 percentage = nr_file * 100 / scan_target; 2972 } 2973 2974 /* Stop scanning the smaller of the LRU */ 2975 nr[lru] = 0; 2976 nr[lru + LRU_ACTIVE] = 0; 2977 2978 /* 2979 * Recalculate the other LRU scan count based on its original 2980 * scan target and the percentage scanning already complete 2981 */ 2982 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2983 nr_scanned = targets[lru] - nr[lru]; 2984 nr[lru] = targets[lru] * (100 - percentage) / 100; 2985 nr[lru] -= min(nr[lru], nr_scanned); 2986 2987 lru += LRU_ACTIVE; 2988 nr_scanned = targets[lru] - nr[lru]; 2989 nr[lru] = targets[lru] * (100 - percentage) / 100; 2990 nr[lru] -= min(nr[lru], nr_scanned); 2991 2992 scan_adjusted = true; 2993 } 2994 blk_finish_plug(&plug); 2995 sc->nr_reclaimed += nr_reclaimed; 2996 2997 /* 2998 * Even if we did not try to evict anon pages at all, we want to 2999 * rebalance the anon lru active/inactive ratio. 3000 */ 3001 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 3002 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3003 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3004 sc, LRU_ACTIVE_ANON); 3005 } 3006 3007 /* Use reclaim/compaction for costly allocs or under memory pressure */ 3008 static bool in_reclaim_compaction(struct scan_control *sc) 3009 { 3010 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3011 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 3012 sc->priority < DEF_PRIORITY - 2)) 3013 return true; 3014 3015 return false; 3016 } 3017 3018 /* 3019 * Reclaim/compaction is used for high-order allocation requests. It reclaims 3020 * order-0 pages before compacting the zone. should_continue_reclaim() returns 3021 * true if more pages should be reclaimed such that when the page allocator 3022 * calls try_to_compact_pages() that it will have enough free pages to succeed. 3023 * It will give up earlier than that if there is difficulty reclaiming pages. 3024 */ 3025 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 3026 unsigned long nr_reclaimed, 3027 struct scan_control *sc) 3028 { 3029 unsigned long pages_for_compaction; 3030 unsigned long inactive_lru_pages; 3031 int z; 3032 3033 /* If not in reclaim/compaction mode, stop */ 3034 if (!in_reclaim_compaction(sc)) 3035 return false; 3036 3037 /* 3038 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 3039 * number of pages that were scanned. This will return to the caller 3040 * with the risk reclaim/compaction and the resulting allocation attempt 3041 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 3042 * allocations through requiring that the full LRU list has been scanned 3043 * first, by assuming that zero delta of sc->nr_scanned means full LRU 3044 * scan, but that approximation was wrong, and there were corner cases 3045 * where always a non-zero amount of pages were scanned. 3046 */ 3047 if (!nr_reclaimed) 3048 return false; 3049 3050 /* If compaction would go ahead or the allocation would succeed, stop */ 3051 for (z = 0; z <= sc->reclaim_idx; z++) { 3052 struct zone *zone = &pgdat->node_zones[z]; 3053 if (!managed_zone(zone)) 3054 continue; 3055 3056 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 3057 case COMPACT_SUCCESS: 3058 case COMPACT_CONTINUE: 3059 return false; 3060 default: 3061 /* check next zone */ 3062 ; 3063 } 3064 } 3065 3066 /* 3067 * If we have not reclaimed enough pages for compaction and the 3068 * inactive lists are large enough, continue reclaiming 3069 */ 3070 pages_for_compaction = compact_gap(sc->order); 3071 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 3072 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3073 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 3074 3075 return inactive_lru_pages > pages_for_compaction; 3076 } 3077 3078 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 3079 { 3080 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 3081 struct mem_cgroup *memcg; 3082 3083 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 3084 do { 3085 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3086 unsigned long reclaimed; 3087 unsigned long scanned; 3088 3089 /* 3090 * This loop can become CPU-bound when target memcgs 3091 * aren't eligible for reclaim - either because they 3092 * don't have any reclaimable pages, or because their 3093 * memory is explicitly protected. Avoid soft lockups. 3094 */ 3095 cond_resched(); 3096 3097 mem_cgroup_calculate_protection(target_memcg, memcg); 3098 3099 if (mem_cgroup_below_min(memcg)) { 3100 /* 3101 * Hard protection. 3102 * If there is no reclaimable memory, OOM. 3103 */ 3104 continue; 3105 } else if (mem_cgroup_below_low(memcg)) { 3106 /* 3107 * Soft protection. 3108 * Respect the protection only as long as 3109 * there is an unprotected supply 3110 * of reclaimable memory from other cgroups. 3111 */ 3112 if (!sc->memcg_low_reclaim) { 3113 sc->memcg_low_skipped = 1; 3114 continue; 3115 } 3116 memcg_memory_event(memcg, MEMCG_LOW); 3117 } 3118 3119 reclaimed = sc->nr_reclaimed; 3120 scanned = sc->nr_scanned; 3121 3122 shrink_lruvec(lruvec, sc); 3123 3124 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3125 sc->priority); 3126 3127 /* Record the group's reclaim efficiency */ 3128 vmpressure(sc->gfp_mask, memcg, false, 3129 sc->nr_scanned - scanned, 3130 sc->nr_reclaimed - reclaimed); 3131 3132 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3133 } 3134 3135 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3136 { 3137 struct reclaim_state *reclaim_state = current->reclaim_state; 3138 unsigned long nr_reclaimed, nr_scanned; 3139 struct lruvec *target_lruvec; 3140 bool reclaimable = false; 3141 unsigned long file; 3142 3143 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3144 3145 again: 3146 /* 3147 * Flush the memory cgroup stats, so that we read accurate per-memcg 3148 * lruvec stats for heuristics. 3149 */ 3150 mem_cgroup_flush_stats(); 3151 3152 memset(&sc->nr, 0, sizeof(sc->nr)); 3153 3154 nr_reclaimed = sc->nr_reclaimed; 3155 nr_scanned = sc->nr_scanned; 3156 3157 /* 3158 * Determine the scan balance between anon and file LRUs. 3159 */ 3160 spin_lock_irq(&target_lruvec->lru_lock); 3161 sc->anon_cost = target_lruvec->anon_cost; 3162 sc->file_cost = target_lruvec->file_cost; 3163 spin_unlock_irq(&target_lruvec->lru_lock); 3164 3165 /* 3166 * Target desirable inactive:active list ratios for the anon 3167 * and file LRU lists. 3168 */ 3169 if (!sc->force_deactivate) { 3170 unsigned long refaults; 3171 3172 refaults = lruvec_page_state(target_lruvec, 3173 WORKINGSET_ACTIVATE_ANON); 3174 if (refaults != target_lruvec->refaults[0] || 3175 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3176 sc->may_deactivate |= DEACTIVATE_ANON; 3177 else 3178 sc->may_deactivate &= ~DEACTIVATE_ANON; 3179 3180 /* 3181 * When refaults are being observed, it means a new 3182 * workingset is being established. Deactivate to get 3183 * rid of any stale active pages quickly. 3184 */ 3185 refaults = lruvec_page_state(target_lruvec, 3186 WORKINGSET_ACTIVATE_FILE); 3187 if (refaults != target_lruvec->refaults[1] || 3188 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3189 sc->may_deactivate |= DEACTIVATE_FILE; 3190 else 3191 sc->may_deactivate &= ~DEACTIVATE_FILE; 3192 } else 3193 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3194 3195 /* 3196 * If we have plenty of inactive file pages that aren't 3197 * thrashing, try to reclaim those first before touching 3198 * anonymous pages. 3199 */ 3200 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3201 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3202 sc->cache_trim_mode = 1; 3203 else 3204 sc->cache_trim_mode = 0; 3205 3206 /* 3207 * Prevent the reclaimer from falling into the cache trap: as 3208 * cache pages start out inactive, every cache fault will tip 3209 * the scan balance towards the file LRU. And as the file LRU 3210 * shrinks, so does the window for rotation from references. 3211 * This means we have a runaway feedback loop where a tiny 3212 * thrashing file LRU becomes infinitely more attractive than 3213 * anon pages. Try to detect this based on file LRU size. 3214 */ 3215 if (!cgroup_reclaim(sc)) { 3216 unsigned long total_high_wmark = 0; 3217 unsigned long free, anon; 3218 int z; 3219 3220 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3221 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3222 node_page_state(pgdat, NR_INACTIVE_FILE); 3223 3224 for (z = 0; z < MAX_NR_ZONES; z++) { 3225 struct zone *zone = &pgdat->node_zones[z]; 3226 if (!managed_zone(zone)) 3227 continue; 3228 3229 total_high_wmark += high_wmark_pages(zone); 3230 } 3231 3232 /* 3233 * Consider anon: if that's low too, this isn't a 3234 * runaway file reclaim problem, but rather just 3235 * extreme pressure. Reclaim as per usual then. 3236 */ 3237 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3238 3239 sc->file_is_tiny = 3240 file + free <= total_high_wmark && 3241 !(sc->may_deactivate & DEACTIVATE_ANON) && 3242 anon >> sc->priority; 3243 } 3244 3245 shrink_node_memcgs(pgdat, sc); 3246 3247 if (reclaim_state) { 3248 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3249 reclaim_state->reclaimed_slab = 0; 3250 } 3251 3252 /* Record the subtree's reclaim efficiency */ 3253 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3254 sc->nr_scanned - nr_scanned, 3255 sc->nr_reclaimed - nr_reclaimed); 3256 3257 if (sc->nr_reclaimed - nr_reclaimed) 3258 reclaimable = true; 3259 3260 if (current_is_kswapd()) { 3261 /* 3262 * If reclaim is isolating dirty pages under writeback, 3263 * it implies that the long-lived page allocation rate 3264 * is exceeding the page laundering rate. Either the 3265 * global limits are not being effective at throttling 3266 * processes due to the page distribution throughout 3267 * zones or there is heavy usage of a slow backing 3268 * device. The only option is to throttle from reclaim 3269 * context which is not ideal as there is no guarantee 3270 * the dirtying process is throttled in the same way 3271 * balance_dirty_pages() manages. 3272 * 3273 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3274 * count the number of pages under pages flagged for 3275 * immediate reclaim and stall if any are encountered 3276 * in the nr_immediate check below. 3277 */ 3278 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3279 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3280 3281 /* Allow kswapd to start writing pages during reclaim.*/ 3282 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3283 set_bit(PGDAT_DIRTY, &pgdat->flags); 3284 3285 /* 3286 * If kswapd scans pages marked for immediate 3287 * reclaim and under writeback (nr_immediate), it 3288 * implies that pages are cycling through the LRU 3289 * faster than they are written so forcibly stall 3290 * until some pages complete writeback. 3291 */ 3292 if (sc->nr.immediate) 3293 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3294 } 3295 3296 /* 3297 * Tag a node/memcg as congested if all the dirty pages were marked 3298 * for writeback and immediate reclaim (counted in nr.congested). 3299 * 3300 * Legacy memcg will stall in page writeback so avoid forcibly 3301 * stalling in reclaim_throttle(). 3302 */ 3303 if ((current_is_kswapd() || 3304 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3305 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3306 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3307 3308 /* 3309 * Stall direct reclaim for IO completions if the lruvec is 3310 * node is congested. Allow kswapd to continue until it 3311 * starts encountering unqueued dirty pages or cycling through 3312 * the LRU too quickly. 3313 */ 3314 if (!current_is_kswapd() && current_may_throttle() && 3315 !sc->hibernation_mode && 3316 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3317 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 3318 3319 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3320 sc)) 3321 goto again; 3322 3323 /* 3324 * Kswapd gives up on balancing particular nodes after too 3325 * many failures to reclaim anything from them and goes to 3326 * sleep. On reclaim progress, reset the failure counter. A 3327 * successful direct reclaim run will revive a dormant kswapd. 3328 */ 3329 if (reclaimable) 3330 pgdat->kswapd_failures = 0; 3331 } 3332 3333 /* 3334 * Returns true if compaction should go ahead for a costly-order request, or 3335 * the allocation would already succeed without compaction. Return false if we 3336 * should reclaim first. 3337 */ 3338 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3339 { 3340 unsigned long watermark; 3341 enum compact_result suitable; 3342 3343 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3344 if (suitable == COMPACT_SUCCESS) 3345 /* Allocation should succeed already. Don't reclaim. */ 3346 return true; 3347 if (suitable == COMPACT_SKIPPED) 3348 /* Compaction cannot yet proceed. Do reclaim. */ 3349 return false; 3350 3351 /* 3352 * Compaction is already possible, but it takes time to run and there 3353 * are potentially other callers using the pages just freed. So proceed 3354 * with reclaim to make a buffer of free pages available to give 3355 * compaction a reasonable chance of completing and allocating the page. 3356 * Note that we won't actually reclaim the whole buffer in one attempt 3357 * as the target watermark in should_continue_reclaim() is lower. But if 3358 * we are already above the high+gap watermark, don't reclaim at all. 3359 */ 3360 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3361 3362 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3363 } 3364 3365 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 3366 { 3367 /* 3368 * If reclaim is making progress greater than 12% efficiency then 3369 * wake all the NOPROGRESS throttled tasks. 3370 */ 3371 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 3372 wait_queue_head_t *wqh; 3373 3374 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 3375 if (waitqueue_active(wqh)) 3376 wake_up(wqh); 3377 3378 return; 3379 } 3380 3381 /* 3382 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 3383 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 3384 * under writeback and marked for immediate reclaim at the tail of the 3385 * LRU. 3386 */ 3387 if (current_is_kswapd() || cgroup_reclaim(sc)) 3388 return; 3389 3390 /* Throttle if making no progress at high prioities. */ 3391 if (sc->priority == 1 && !sc->nr_reclaimed) 3392 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 3393 } 3394 3395 /* 3396 * This is the direct reclaim path, for page-allocating processes. We only 3397 * try to reclaim pages from zones which will satisfy the caller's allocation 3398 * request. 3399 * 3400 * If a zone is deemed to be full of pinned pages then just give it a light 3401 * scan then give up on it. 3402 */ 3403 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3404 { 3405 struct zoneref *z; 3406 struct zone *zone; 3407 unsigned long nr_soft_reclaimed; 3408 unsigned long nr_soft_scanned; 3409 gfp_t orig_mask; 3410 pg_data_t *last_pgdat = NULL; 3411 pg_data_t *first_pgdat = NULL; 3412 3413 /* 3414 * If the number of buffer_heads in the machine exceeds the maximum 3415 * allowed level, force direct reclaim to scan the highmem zone as 3416 * highmem pages could be pinning lowmem pages storing buffer_heads 3417 */ 3418 orig_mask = sc->gfp_mask; 3419 if (buffer_heads_over_limit) { 3420 sc->gfp_mask |= __GFP_HIGHMEM; 3421 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3422 } 3423 3424 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3425 sc->reclaim_idx, sc->nodemask) { 3426 /* 3427 * Take care memory controller reclaiming has small influence 3428 * to global LRU. 3429 */ 3430 if (!cgroup_reclaim(sc)) { 3431 if (!cpuset_zone_allowed(zone, 3432 GFP_KERNEL | __GFP_HARDWALL)) 3433 continue; 3434 3435 /* 3436 * If we already have plenty of memory free for 3437 * compaction in this zone, don't free any more. 3438 * Even though compaction is invoked for any 3439 * non-zero order, only frequent costly order 3440 * reclamation is disruptive enough to become a 3441 * noticeable problem, like transparent huge 3442 * page allocations. 3443 */ 3444 if (IS_ENABLED(CONFIG_COMPACTION) && 3445 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3446 compaction_ready(zone, sc)) { 3447 sc->compaction_ready = true; 3448 continue; 3449 } 3450 3451 /* 3452 * Shrink each node in the zonelist once. If the 3453 * zonelist is ordered by zone (not the default) then a 3454 * node may be shrunk multiple times but in that case 3455 * the user prefers lower zones being preserved. 3456 */ 3457 if (zone->zone_pgdat == last_pgdat) 3458 continue; 3459 3460 /* 3461 * This steals pages from memory cgroups over softlimit 3462 * and returns the number of reclaimed pages and 3463 * scanned pages. This works for global memory pressure 3464 * and balancing, not for a memcg's limit. 3465 */ 3466 nr_soft_scanned = 0; 3467 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3468 sc->order, sc->gfp_mask, 3469 &nr_soft_scanned); 3470 sc->nr_reclaimed += nr_soft_reclaimed; 3471 sc->nr_scanned += nr_soft_scanned; 3472 /* need some check for avoid more shrink_zone() */ 3473 } 3474 3475 if (!first_pgdat) 3476 first_pgdat = zone->zone_pgdat; 3477 3478 /* See comment about same check for global reclaim above */ 3479 if (zone->zone_pgdat == last_pgdat) 3480 continue; 3481 last_pgdat = zone->zone_pgdat; 3482 shrink_node(zone->zone_pgdat, sc); 3483 } 3484 3485 if (first_pgdat) 3486 consider_reclaim_throttle(first_pgdat, sc); 3487 3488 /* 3489 * Restore to original mask to avoid the impact on the caller if we 3490 * promoted it to __GFP_HIGHMEM. 3491 */ 3492 sc->gfp_mask = orig_mask; 3493 } 3494 3495 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3496 { 3497 struct lruvec *target_lruvec; 3498 unsigned long refaults; 3499 3500 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3501 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3502 target_lruvec->refaults[0] = refaults; 3503 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3504 target_lruvec->refaults[1] = refaults; 3505 } 3506 3507 /* 3508 * This is the main entry point to direct page reclaim. 3509 * 3510 * If a full scan of the inactive list fails to free enough memory then we 3511 * are "out of memory" and something needs to be killed. 3512 * 3513 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3514 * high - the zone may be full of dirty or under-writeback pages, which this 3515 * caller can't do much about. We kick the writeback threads and take explicit 3516 * naps in the hope that some of these pages can be written. But if the 3517 * allocating task holds filesystem locks which prevent writeout this might not 3518 * work, and the allocation attempt will fail. 3519 * 3520 * returns: 0, if no pages reclaimed 3521 * else, the number of pages reclaimed 3522 */ 3523 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3524 struct scan_control *sc) 3525 { 3526 int initial_priority = sc->priority; 3527 pg_data_t *last_pgdat; 3528 struct zoneref *z; 3529 struct zone *zone; 3530 retry: 3531 delayacct_freepages_start(); 3532 3533 if (!cgroup_reclaim(sc)) 3534 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3535 3536 do { 3537 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3538 sc->priority); 3539 sc->nr_scanned = 0; 3540 shrink_zones(zonelist, sc); 3541 3542 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3543 break; 3544 3545 if (sc->compaction_ready) 3546 break; 3547 3548 /* 3549 * If we're getting trouble reclaiming, start doing 3550 * writepage even in laptop mode. 3551 */ 3552 if (sc->priority < DEF_PRIORITY - 2) 3553 sc->may_writepage = 1; 3554 } while (--sc->priority >= 0); 3555 3556 last_pgdat = NULL; 3557 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3558 sc->nodemask) { 3559 if (zone->zone_pgdat == last_pgdat) 3560 continue; 3561 last_pgdat = zone->zone_pgdat; 3562 3563 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3564 3565 if (cgroup_reclaim(sc)) { 3566 struct lruvec *lruvec; 3567 3568 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3569 zone->zone_pgdat); 3570 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3571 } 3572 } 3573 3574 delayacct_freepages_end(); 3575 3576 if (sc->nr_reclaimed) 3577 return sc->nr_reclaimed; 3578 3579 /* Aborted reclaim to try compaction? don't OOM, then */ 3580 if (sc->compaction_ready) 3581 return 1; 3582 3583 /* 3584 * We make inactive:active ratio decisions based on the node's 3585 * composition of memory, but a restrictive reclaim_idx or a 3586 * memory.low cgroup setting can exempt large amounts of 3587 * memory from reclaim. Neither of which are very common, so 3588 * instead of doing costly eligibility calculations of the 3589 * entire cgroup subtree up front, we assume the estimates are 3590 * good, and retry with forcible deactivation if that fails. 3591 */ 3592 if (sc->skipped_deactivate) { 3593 sc->priority = initial_priority; 3594 sc->force_deactivate = 1; 3595 sc->skipped_deactivate = 0; 3596 goto retry; 3597 } 3598 3599 /* Untapped cgroup reserves? Don't OOM, retry. */ 3600 if (sc->memcg_low_skipped) { 3601 sc->priority = initial_priority; 3602 sc->force_deactivate = 0; 3603 sc->memcg_low_reclaim = 1; 3604 sc->memcg_low_skipped = 0; 3605 goto retry; 3606 } 3607 3608 return 0; 3609 } 3610 3611 static bool allow_direct_reclaim(pg_data_t *pgdat) 3612 { 3613 struct zone *zone; 3614 unsigned long pfmemalloc_reserve = 0; 3615 unsigned long free_pages = 0; 3616 int i; 3617 bool wmark_ok; 3618 3619 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3620 return true; 3621 3622 for (i = 0; i <= ZONE_NORMAL; i++) { 3623 zone = &pgdat->node_zones[i]; 3624 if (!managed_zone(zone)) 3625 continue; 3626 3627 if (!zone_reclaimable_pages(zone)) 3628 continue; 3629 3630 pfmemalloc_reserve += min_wmark_pages(zone); 3631 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3632 } 3633 3634 /* If there are no reserves (unexpected config) then do not throttle */ 3635 if (!pfmemalloc_reserve) 3636 return true; 3637 3638 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3639 3640 /* kswapd must be awake if processes are being throttled */ 3641 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3642 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3643 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3644 3645 wake_up_interruptible(&pgdat->kswapd_wait); 3646 } 3647 3648 return wmark_ok; 3649 } 3650 3651 /* 3652 * Throttle direct reclaimers if backing storage is backed by the network 3653 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3654 * depleted. kswapd will continue to make progress and wake the processes 3655 * when the low watermark is reached. 3656 * 3657 * Returns true if a fatal signal was delivered during throttling. If this 3658 * happens, the page allocator should not consider triggering the OOM killer. 3659 */ 3660 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3661 nodemask_t *nodemask) 3662 { 3663 struct zoneref *z; 3664 struct zone *zone; 3665 pg_data_t *pgdat = NULL; 3666 3667 /* 3668 * Kernel threads should not be throttled as they may be indirectly 3669 * responsible for cleaning pages necessary for reclaim to make forward 3670 * progress. kjournald for example may enter direct reclaim while 3671 * committing a transaction where throttling it could forcing other 3672 * processes to block on log_wait_commit(). 3673 */ 3674 if (current->flags & PF_KTHREAD) 3675 goto out; 3676 3677 /* 3678 * If a fatal signal is pending, this process should not throttle. 3679 * It should return quickly so it can exit and free its memory 3680 */ 3681 if (fatal_signal_pending(current)) 3682 goto out; 3683 3684 /* 3685 * Check if the pfmemalloc reserves are ok by finding the first node 3686 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3687 * GFP_KERNEL will be required for allocating network buffers when 3688 * swapping over the network so ZONE_HIGHMEM is unusable. 3689 * 3690 * Throttling is based on the first usable node and throttled processes 3691 * wait on a queue until kswapd makes progress and wakes them. There 3692 * is an affinity then between processes waking up and where reclaim 3693 * progress has been made assuming the process wakes on the same node. 3694 * More importantly, processes running on remote nodes will not compete 3695 * for remote pfmemalloc reserves and processes on different nodes 3696 * should make reasonable progress. 3697 */ 3698 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3699 gfp_zone(gfp_mask), nodemask) { 3700 if (zone_idx(zone) > ZONE_NORMAL) 3701 continue; 3702 3703 /* Throttle based on the first usable node */ 3704 pgdat = zone->zone_pgdat; 3705 if (allow_direct_reclaim(pgdat)) 3706 goto out; 3707 break; 3708 } 3709 3710 /* If no zone was usable by the allocation flags then do not throttle */ 3711 if (!pgdat) 3712 goto out; 3713 3714 /* Account for the throttling */ 3715 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3716 3717 /* 3718 * If the caller cannot enter the filesystem, it's possible that it 3719 * is due to the caller holding an FS lock or performing a journal 3720 * transaction in the case of a filesystem like ext[3|4]. In this case, 3721 * it is not safe to block on pfmemalloc_wait as kswapd could be 3722 * blocked waiting on the same lock. Instead, throttle for up to a 3723 * second before continuing. 3724 */ 3725 if (!(gfp_mask & __GFP_FS)) 3726 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3727 allow_direct_reclaim(pgdat), HZ); 3728 else 3729 /* Throttle until kswapd wakes the process */ 3730 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3731 allow_direct_reclaim(pgdat)); 3732 3733 if (fatal_signal_pending(current)) 3734 return true; 3735 3736 out: 3737 return false; 3738 } 3739 3740 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3741 gfp_t gfp_mask, nodemask_t *nodemask) 3742 { 3743 unsigned long nr_reclaimed; 3744 struct scan_control sc = { 3745 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3746 .gfp_mask = current_gfp_context(gfp_mask), 3747 .reclaim_idx = gfp_zone(gfp_mask), 3748 .order = order, 3749 .nodemask = nodemask, 3750 .priority = DEF_PRIORITY, 3751 .may_writepage = !laptop_mode, 3752 .may_unmap = 1, 3753 .may_swap = 1, 3754 }; 3755 3756 /* 3757 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3758 * Confirm they are large enough for max values. 3759 */ 3760 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3761 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3762 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3763 3764 /* 3765 * Do not enter reclaim if fatal signal was delivered while throttled. 3766 * 1 is returned so that the page allocator does not OOM kill at this 3767 * point. 3768 */ 3769 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3770 return 1; 3771 3772 set_task_reclaim_state(current, &sc.reclaim_state); 3773 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3774 3775 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3776 3777 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3778 set_task_reclaim_state(current, NULL); 3779 3780 return nr_reclaimed; 3781 } 3782 3783 #ifdef CONFIG_MEMCG 3784 3785 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3786 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3787 gfp_t gfp_mask, bool noswap, 3788 pg_data_t *pgdat, 3789 unsigned long *nr_scanned) 3790 { 3791 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3792 struct scan_control sc = { 3793 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3794 .target_mem_cgroup = memcg, 3795 .may_writepage = !laptop_mode, 3796 .may_unmap = 1, 3797 .reclaim_idx = MAX_NR_ZONES - 1, 3798 .may_swap = !noswap, 3799 }; 3800 3801 WARN_ON_ONCE(!current->reclaim_state); 3802 3803 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3804 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3805 3806 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3807 sc.gfp_mask); 3808 3809 /* 3810 * NOTE: Although we can get the priority field, using it 3811 * here is not a good idea, since it limits the pages we can scan. 3812 * if we don't reclaim here, the shrink_node from balance_pgdat 3813 * will pick up pages from other mem cgroup's as well. We hack 3814 * the priority and make it zero. 3815 */ 3816 shrink_lruvec(lruvec, &sc); 3817 3818 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3819 3820 *nr_scanned = sc.nr_scanned; 3821 3822 return sc.nr_reclaimed; 3823 } 3824 3825 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3826 unsigned long nr_pages, 3827 gfp_t gfp_mask, 3828 bool may_swap) 3829 { 3830 unsigned long nr_reclaimed; 3831 unsigned int noreclaim_flag; 3832 struct scan_control sc = { 3833 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3834 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3835 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3836 .reclaim_idx = MAX_NR_ZONES - 1, 3837 .target_mem_cgroup = memcg, 3838 .priority = DEF_PRIORITY, 3839 .may_writepage = !laptop_mode, 3840 .may_unmap = 1, 3841 .may_swap = may_swap, 3842 }; 3843 /* 3844 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3845 * equal pressure on all the nodes. This is based on the assumption that 3846 * the reclaim does not bail out early. 3847 */ 3848 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3849 3850 set_task_reclaim_state(current, &sc.reclaim_state); 3851 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3852 noreclaim_flag = memalloc_noreclaim_save(); 3853 3854 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3855 3856 memalloc_noreclaim_restore(noreclaim_flag); 3857 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3858 set_task_reclaim_state(current, NULL); 3859 3860 return nr_reclaimed; 3861 } 3862 #endif 3863 3864 static void age_active_anon(struct pglist_data *pgdat, 3865 struct scan_control *sc) 3866 { 3867 struct mem_cgroup *memcg; 3868 struct lruvec *lruvec; 3869 3870 if (!can_age_anon_pages(pgdat, sc)) 3871 return; 3872 3873 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3874 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3875 return; 3876 3877 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3878 do { 3879 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3880 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3881 sc, LRU_ACTIVE_ANON); 3882 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3883 } while (memcg); 3884 } 3885 3886 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3887 { 3888 int i; 3889 struct zone *zone; 3890 3891 /* 3892 * Check for watermark boosts top-down as the higher zones 3893 * are more likely to be boosted. Both watermarks and boosts 3894 * should not be checked at the same time as reclaim would 3895 * start prematurely when there is no boosting and a lower 3896 * zone is balanced. 3897 */ 3898 for (i = highest_zoneidx; i >= 0; i--) { 3899 zone = pgdat->node_zones + i; 3900 if (!managed_zone(zone)) 3901 continue; 3902 3903 if (zone->watermark_boost) 3904 return true; 3905 } 3906 3907 return false; 3908 } 3909 3910 /* 3911 * Returns true if there is an eligible zone balanced for the request order 3912 * and highest_zoneidx 3913 */ 3914 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3915 { 3916 int i; 3917 unsigned long mark = -1; 3918 struct zone *zone; 3919 3920 /* 3921 * Check watermarks bottom-up as lower zones are more likely to 3922 * meet watermarks. 3923 */ 3924 for (i = 0; i <= highest_zoneidx; i++) { 3925 zone = pgdat->node_zones + i; 3926 3927 if (!managed_zone(zone)) 3928 continue; 3929 3930 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 3931 mark = wmark_pages(zone, WMARK_PROMO); 3932 else 3933 mark = high_wmark_pages(zone); 3934 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3935 return true; 3936 } 3937 3938 /* 3939 * If a node has no managed zone within highest_zoneidx, it does not 3940 * need balancing by definition. This can happen if a zone-restricted 3941 * allocation tries to wake a remote kswapd. 3942 */ 3943 if (mark == -1) 3944 return true; 3945 3946 return false; 3947 } 3948 3949 /* Clear pgdat state for congested, dirty or under writeback. */ 3950 static void clear_pgdat_congested(pg_data_t *pgdat) 3951 { 3952 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3953 3954 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3955 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3956 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3957 } 3958 3959 /* 3960 * Prepare kswapd for sleeping. This verifies that there are no processes 3961 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3962 * 3963 * Returns true if kswapd is ready to sleep 3964 */ 3965 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3966 int highest_zoneidx) 3967 { 3968 /* 3969 * The throttled processes are normally woken up in balance_pgdat() as 3970 * soon as allow_direct_reclaim() is true. But there is a potential 3971 * race between when kswapd checks the watermarks and a process gets 3972 * throttled. There is also a potential race if processes get 3973 * throttled, kswapd wakes, a large process exits thereby balancing the 3974 * zones, which causes kswapd to exit balance_pgdat() before reaching 3975 * the wake up checks. If kswapd is going to sleep, no process should 3976 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3977 * the wake up is premature, processes will wake kswapd and get 3978 * throttled again. The difference from wake ups in balance_pgdat() is 3979 * that here we are under prepare_to_wait(). 3980 */ 3981 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3982 wake_up_all(&pgdat->pfmemalloc_wait); 3983 3984 /* Hopeless node, leave it to direct reclaim */ 3985 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3986 return true; 3987 3988 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3989 clear_pgdat_congested(pgdat); 3990 return true; 3991 } 3992 3993 return false; 3994 } 3995 3996 /* 3997 * kswapd shrinks a node of pages that are at or below the highest usable 3998 * zone that is currently unbalanced. 3999 * 4000 * Returns true if kswapd scanned at least the requested number of pages to 4001 * reclaim or if the lack of progress was due to pages under writeback. 4002 * This is used to determine if the scanning priority needs to be raised. 4003 */ 4004 static bool kswapd_shrink_node(pg_data_t *pgdat, 4005 struct scan_control *sc) 4006 { 4007 struct zone *zone; 4008 int z; 4009 4010 /* Reclaim a number of pages proportional to the number of zones */ 4011 sc->nr_to_reclaim = 0; 4012 for (z = 0; z <= sc->reclaim_idx; z++) { 4013 zone = pgdat->node_zones + z; 4014 if (!managed_zone(zone)) 4015 continue; 4016 4017 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 4018 } 4019 4020 /* 4021 * Historically care was taken to put equal pressure on all zones but 4022 * now pressure is applied based on node LRU order. 4023 */ 4024 shrink_node(pgdat, sc); 4025 4026 /* 4027 * Fragmentation may mean that the system cannot be rebalanced for 4028 * high-order allocations. If twice the allocation size has been 4029 * reclaimed then recheck watermarks only at order-0 to prevent 4030 * excessive reclaim. Assume that a process requested a high-order 4031 * can direct reclaim/compact. 4032 */ 4033 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 4034 sc->order = 0; 4035 4036 return sc->nr_scanned >= sc->nr_to_reclaim; 4037 } 4038 4039 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 4040 static inline void 4041 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 4042 { 4043 int i; 4044 struct zone *zone; 4045 4046 for (i = 0; i <= highest_zoneidx; i++) { 4047 zone = pgdat->node_zones + i; 4048 4049 if (!managed_zone(zone)) 4050 continue; 4051 4052 if (active) 4053 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4054 else 4055 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4056 } 4057 } 4058 4059 static inline void 4060 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4061 { 4062 update_reclaim_active(pgdat, highest_zoneidx, true); 4063 } 4064 4065 static inline void 4066 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4067 { 4068 update_reclaim_active(pgdat, highest_zoneidx, false); 4069 } 4070 4071 /* 4072 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 4073 * that are eligible for use by the caller until at least one zone is 4074 * balanced. 4075 * 4076 * Returns the order kswapd finished reclaiming at. 4077 * 4078 * kswapd scans the zones in the highmem->normal->dma direction. It skips 4079 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 4080 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 4081 * or lower is eligible for reclaim until at least one usable zone is 4082 * balanced. 4083 */ 4084 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 4085 { 4086 int i; 4087 unsigned long nr_soft_reclaimed; 4088 unsigned long nr_soft_scanned; 4089 unsigned long pflags; 4090 unsigned long nr_boost_reclaim; 4091 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 4092 bool boosted; 4093 struct zone *zone; 4094 struct scan_control sc = { 4095 .gfp_mask = GFP_KERNEL, 4096 .order = order, 4097 .may_unmap = 1, 4098 }; 4099 4100 set_task_reclaim_state(current, &sc.reclaim_state); 4101 psi_memstall_enter(&pflags); 4102 __fs_reclaim_acquire(_THIS_IP_); 4103 4104 count_vm_event(PAGEOUTRUN); 4105 4106 /* 4107 * Account for the reclaim boost. Note that the zone boost is left in 4108 * place so that parallel allocations that are near the watermark will 4109 * stall or direct reclaim until kswapd is finished. 4110 */ 4111 nr_boost_reclaim = 0; 4112 for (i = 0; i <= highest_zoneidx; i++) { 4113 zone = pgdat->node_zones + i; 4114 if (!managed_zone(zone)) 4115 continue; 4116 4117 nr_boost_reclaim += zone->watermark_boost; 4118 zone_boosts[i] = zone->watermark_boost; 4119 } 4120 boosted = nr_boost_reclaim; 4121 4122 restart: 4123 set_reclaim_active(pgdat, highest_zoneidx); 4124 sc.priority = DEF_PRIORITY; 4125 do { 4126 unsigned long nr_reclaimed = sc.nr_reclaimed; 4127 bool raise_priority = true; 4128 bool balanced; 4129 bool ret; 4130 4131 sc.reclaim_idx = highest_zoneidx; 4132 4133 /* 4134 * If the number of buffer_heads exceeds the maximum allowed 4135 * then consider reclaiming from all zones. This has a dual 4136 * purpose -- on 64-bit systems it is expected that 4137 * buffer_heads are stripped during active rotation. On 32-bit 4138 * systems, highmem pages can pin lowmem memory and shrinking 4139 * buffers can relieve lowmem pressure. Reclaim may still not 4140 * go ahead if all eligible zones for the original allocation 4141 * request are balanced to avoid excessive reclaim from kswapd. 4142 */ 4143 if (buffer_heads_over_limit) { 4144 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4145 zone = pgdat->node_zones + i; 4146 if (!managed_zone(zone)) 4147 continue; 4148 4149 sc.reclaim_idx = i; 4150 break; 4151 } 4152 } 4153 4154 /* 4155 * If the pgdat is imbalanced then ignore boosting and preserve 4156 * the watermarks for a later time and restart. Note that the 4157 * zone watermarks will be still reset at the end of balancing 4158 * on the grounds that the normal reclaim should be enough to 4159 * re-evaluate if boosting is required when kswapd next wakes. 4160 */ 4161 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4162 if (!balanced && nr_boost_reclaim) { 4163 nr_boost_reclaim = 0; 4164 goto restart; 4165 } 4166 4167 /* 4168 * If boosting is not active then only reclaim if there are no 4169 * eligible zones. Note that sc.reclaim_idx is not used as 4170 * buffer_heads_over_limit may have adjusted it. 4171 */ 4172 if (!nr_boost_reclaim && balanced) 4173 goto out; 4174 4175 /* Limit the priority of boosting to avoid reclaim writeback */ 4176 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4177 raise_priority = false; 4178 4179 /* 4180 * Do not writeback or swap pages for boosted reclaim. The 4181 * intent is to relieve pressure not issue sub-optimal IO 4182 * from reclaim context. If no pages are reclaimed, the 4183 * reclaim will be aborted. 4184 */ 4185 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4186 sc.may_swap = !nr_boost_reclaim; 4187 4188 /* 4189 * Do some background aging of the anon list, to give 4190 * pages a chance to be referenced before reclaiming. All 4191 * pages are rotated regardless of classzone as this is 4192 * about consistent aging. 4193 */ 4194 age_active_anon(pgdat, &sc); 4195 4196 /* 4197 * If we're getting trouble reclaiming, start doing writepage 4198 * even in laptop mode. 4199 */ 4200 if (sc.priority < DEF_PRIORITY - 2) 4201 sc.may_writepage = 1; 4202 4203 /* Call soft limit reclaim before calling shrink_node. */ 4204 sc.nr_scanned = 0; 4205 nr_soft_scanned = 0; 4206 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4207 sc.gfp_mask, &nr_soft_scanned); 4208 sc.nr_reclaimed += nr_soft_reclaimed; 4209 4210 /* 4211 * There should be no need to raise the scanning priority if 4212 * enough pages are already being scanned that that high 4213 * watermark would be met at 100% efficiency. 4214 */ 4215 if (kswapd_shrink_node(pgdat, &sc)) 4216 raise_priority = false; 4217 4218 /* 4219 * If the low watermark is met there is no need for processes 4220 * to be throttled on pfmemalloc_wait as they should not be 4221 * able to safely make forward progress. Wake them 4222 */ 4223 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4224 allow_direct_reclaim(pgdat)) 4225 wake_up_all(&pgdat->pfmemalloc_wait); 4226 4227 /* Check if kswapd should be suspending */ 4228 __fs_reclaim_release(_THIS_IP_); 4229 ret = try_to_freeze(); 4230 __fs_reclaim_acquire(_THIS_IP_); 4231 if (ret || kthread_should_stop()) 4232 break; 4233 4234 /* 4235 * Raise priority if scanning rate is too low or there was no 4236 * progress in reclaiming pages 4237 */ 4238 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4239 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4240 4241 /* 4242 * If reclaim made no progress for a boost, stop reclaim as 4243 * IO cannot be queued and it could be an infinite loop in 4244 * extreme circumstances. 4245 */ 4246 if (nr_boost_reclaim && !nr_reclaimed) 4247 break; 4248 4249 if (raise_priority || !nr_reclaimed) 4250 sc.priority--; 4251 } while (sc.priority >= 1); 4252 4253 if (!sc.nr_reclaimed) 4254 pgdat->kswapd_failures++; 4255 4256 out: 4257 clear_reclaim_active(pgdat, highest_zoneidx); 4258 4259 /* If reclaim was boosted, account for the reclaim done in this pass */ 4260 if (boosted) { 4261 unsigned long flags; 4262 4263 for (i = 0; i <= highest_zoneidx; i++) { 4264 if (!zone_boosts[i]) 4265 continue; 4266 4267 /* Increments are under the zone lock */ 4268 zone = pgdat->node_zones + i; 4269 spin_lock_irqsave(&zone->lock, flags); 4270 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4271 spin_unlock_irqrestore(&zone->lock, flags); 4272 } 4273 4274 /* 4275 * As there is now likely space, wakeup kcompact to defragment 4276 * pageblocks. 4277 */ 4278 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4279 } 4280 4281 snapshot_refaults(NULL, pgdat); 4282 __fs_reclaim_release(_THIS_IP_); 4283 psi_memstall_leave(&pflags); 4284 set_task_reclaim_state(current, NULL); 4285 4286 /* 4287 * Return the order kswapd stopped reclaiming at as 4288 * prepare_kswapd_sleep() takes it into account. If another caller 4289 * entered the allocator slow path while kswapd was awake, order will 4290 * remain at the higher level. 4291 */ 4292 return sc.order; 4293 } 4294 4295 /* 4296 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4297 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4298 * not a valid index then either kswapd runs for first time or kswapd couldn't 4299 * sleep after previous reclaim attempt (node is still unbalanced). In that 4300 * case return the zone index of the previous kswapd reclaim cycle. 4301 */ 4302 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4303 enum zone_type prev_highest_zoneidx) 4304 { 4305 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4306 4307 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4308 } 4309 4310 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4311 unsigned int highest_zoneidx) 4312 { 4313 long remaining = 0; 4314 DEFINE_WAIT(wait); 4315 4316 if (freezing(current) || kthread_should_stop()) 4317 return; 4318 4319 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4320 4321 /* 4322 * Try to sleep for a short interval. Note that kcompactd will only be 4323 * woken if it is possible to sleep for a short interval. This is 4324 * deliberate on the assumption that if reclaim cannot keep an 4325 * eligible zone balanced that it's also unlikely that compaction will 4326 * succeed. 4327 */ 4328 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4329 /* 4330 * Compaction records what page blocks it recently failed to 4331 * isolate pages from and skips them in the future scanning. 4332 * When kswapd is going to sleep, it is reasonable to assume 4333 * that pages and compaction may succeed so reset the cache. 4334 */ 4335 reset_isolation_suitable(pgdat); 4336 4337 /* 4338 * We have freed the memory, now we should compact it to make 4339 * allocation of the requested order possible. 4340 */ 4341 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4342 4343 remaining = schedule_timeout(HZ/10); 4344 4345 /* 4346 * If woken prematurely then reset kswapd_highest_zoneidx and 4347 * order. The values will either be from a wakeup request or 4348 * the previous request that slept prematurely. 4349 */ 4350 if (remaining) { 4351 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4352 kswapd_highest_zoneidx(pgdat, 4353 highest_zoneidx)); 4354 4355 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4356 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4357 } 4358 4359 finish_wait(&pgdat->kswapd_wait, &wait); 4360 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4361 } 4362 4363 /* 4364 * After a short sleep, check if it was a premature sleep. If not, then 4365 * go fully to sleep until explicitly woken up. 4366 */ 4367 if (!remaining && 4368 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4369 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4370 4371 /* 4372 * vmstat counters are not perfectly accurate and the estimated 4373 * value for counters such as NR_FREE_PAGES can deviate from the 4374 * true value by nr_online_cpus * threshold. To avoid the zone 4375 * watermarks being breached while under pressure, we reduce the 4376 * per-cpu vmstat threshold while kswapd is awake and restore 4377 * them before going back to sleep. 4378 */ 4379 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4380 4381 if (!kthread_should_stop()) 4382 schedule(); 4383 4384 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4385 } else { 4386 if (remaining) 4387 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4388 else 4389 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4390 } 4391 finish_wait(&pgdat->kswapd_wait, &wait); 4392 } 4393 4394 /* 4395 * The background pageout daemon, started as a kernel thread 4396 * from the init process. 4397 * 4398 * This basically trickles out pages so that we have _some_ 4399 * free memory available even if there is no other activity 4400 * that frees anything up. This is needed for things like routing 4401 * etc, where we otherwise might have all activity going on in 4402 * asynchronous contexts that cannot page things out. 4403 * 4404 * If there are applications that are active memory-allocators 4405 * (most normal use), this basically shouldn't matter. 4406 */ 4407 static int kswapd(void *p) 4408 { 4409 unsigned int alloc_order, reclaim_order; 4410 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4411 pg_data_t *pgdat = (pg_data_t *)p; 4412 struct task_struct *tsk = current; 4413 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4414 4415 if (!cpumask_empty(cpumask)) 4416 set_cpus_allowed_ptr(tsk, cpumask); 4417 4418 /* 4419 * Tell the memory management that we're a "memory allocator", 4420 * and that if we need more memory we should get access to it 4421 * regardless (see "__alloc_pages()"). "kswapd" should 4422 * never get caught in the normal page freeing logic. 4423 * 4424 * (Kswapd normally doesn't need memory anyway, but sometimes 4425 * you need a small amount of memory in order to be able to 4426 * page out something else, and this flag essentially protects 4427 * us from recursively trying to free more memory as we're 4428 * trying to free the first piece of memory in the first place). 4429 */ 4430 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 4431 set_freezable(); 4432 4433 WRITE_ONCE(pgdat->kswapd_order, 0); 4434 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4435 atomic_set(&pgdat->nr_writeback_throttled, 0); 4436 for ( ; ; ) { 4437 bool ret; 4438 4439 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4440 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4441 highest_zoneidx); 4442 4443 kswapd_try_sleep: 4444 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4445 highest_zoneidx); 4446 4447 /* Read the new order and highest_zoneidx */ 4448 alloc_order = READ_ONCE(pgdat->kswapd_order); 4449 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4450 highest_zoneidx); 4451 WRITE_ONCE(pgdat->kswapd_order, 0); 4452 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4453 4454 ret = try_to_freeze(); 4455 if (kthread_should_stop()) 4456 break; 4457 4458 /* 4459 * We can speed up thawing tasks if we don't call balance_pgdat 4460 * after returning from the refrigerator 4461 */ 4462 if (ret) 4463 continue; 4464 4465 /* 4466 * Reclaim begins at the requested order but if a high-order 4467 * reclaim fails then kswapd falls back to reclaiming for 4468 * order-0. If that happens, kswapd will consider sleeping 4469 * for the order it finished reclaiming at (reclaim_order) 4470 * but kcompactd is woken to compact for the original 4471 * request (alloc_order). 4472 */ 4473 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4474 alloc_order); 4475 reclaim_order = balance_pgdat(pgdat, alloc_order, 4476 highest_zoneidx); 4477 if (reclaim_order < alloc_order) 4478 goto kswapd_try_sleep; 4479 } 4480 4481 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 4482 4483 return 0; 4484 } 4485 4486 /* 4487 * A zone is low on free memory or too fragmented for high-order memory. If 4488 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4489 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4490 * has failed or is not needed, still wake up kcompactd if only compaction is 4491 * needed. 4492 */ 4493 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4494 enum zone_type highest_zoneidx) 4495 { 4496 pg_data_t *pgdat; 4497 enum zone_type curr_idx; 4498 4499 if (!managed_zone(zone)) 4500 return; 4501 4502 if (!cpuset_zone_allowed(zone, gfp_flags)) 4503 return; 4504 4505 pgdat = zone->zone_pgdat; 4506 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4507 4508 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4509 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4510 4511 if (READ_ONCE(pgdat->kswapd_order) < order) 4512 WRITE_ONCE(pgdat->kswapd_order, order); 4513 4514 if (!waitqueue_active(&pgdat->kswapd_wait)) 4515 return; 4516 4517 /* Hopeless node, leave it to direct reclaim if possible */ 4518 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4519 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4520 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4521 /* 4522 * There may be plenty of free memory available, but it's too 4523 * fragmented for high-order allocations. Wake up kcompactd 4524 * and rely on compaction_suitable() to determine if it's 4525 * needed. If it fails, it will defer subsequent attempts to 4526 * ratelimit its work. 4527 */ 4528 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4529 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4530 return; 4531 } 4532 4533 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4534 gfp_flags); 4535 wake_up_interruptible(&pgdat->kswapd_wait); 4536 } 4537 4538 #ifdef CONFIG_HIBERNATION 4539 /* 4540 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4541 * freed pages. 4542 * 4543 * Rather than trying to age LRUs the aim is to preserve the overall 4544 * LRU order by reclaiming preferentially 4545 * inactive > active > active referenced > active mapped 4546 */ 4547 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4548 { 4549 struct scan_control sc = { 4550 .nr_to_reclaim = nr_to_reclaim, 4551 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4552 .reclaim_idx = MAX_NR_ZONES - 1, 4553 .priority = DEF_PRIORITY, 4554 .may_writepage = 1, 4555 .may_unmap = 1, 4556 .may_swap = 1, 4557 .hibernation_mode = 1, 4558 }; 4559 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4560 unsigned long nr_reclaimed; 4561 unsigned int noreclaim_flag; 4562 4563 fs_reclaim_acquire(sc.gfp_mask); 4564 noreclaim_flag = memalloc_noreclaim_save(); 4565 set_task_reclaim_state(current, &sc.reclaim_state); 4566 4567 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4568 4569 set_task_reclaim_state(current, NULL); 4570 memalloc_noreclaim_restore(noreclaim_flag); 4571 fs_reclaim_release(sc.gfp_mask); 4572 4573 return nr_reclaimed; 4574 } 4575 #endif /* CONFIG_HIBERNATION */ 4576 4577 /* 4578 * This kswapd start function will be called by init and node-hot-add. 4579 */ 4580 void kswapd_run(int nid) 4581 { 4582 pg_data_t *pgdat = NODE_DATA(nid); 4583 4584 if (pgdat->kswapd) 4585 return; 4586 4587 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4588 if (IS_ERR(pgdat->kswapd)) { 4589 /* failure at boot is fatal */ 4590 BUG_ON(system_state < SYSTEM_RUNNING); 4591 pr_err("Failed to start kswapd on node %d\n", nid); 4592 pgdat->kswapd = NULL; 4593 } 4594 } 4595 4596 /* 4597 * Called by memory hotplug when all memory in a node is offlined. Caller must 4598 * hold mem_hotplug_begin/end(). 4599 */ 4600 void kswapd_stop(int nid) 4601 { 4602 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4603 4604 if (kswapd) { 4605 kthread_stop(kswapd); 4606 NODE_DATA(nid)->kswapd = NULL; 4607 } 4608 } 4609 4610 static int __init kswapd_init(void) 4611 { 4612 int nid; 4613 4614 swap_setup(); 4615 for_each_node_state(nid, N_MEMORY) 4616 kswapd_run(nid); 4617 return 0; 4618 } 4619 4620 module_init(kswapd_init) 4621 4622 #ifdef CONFIG_NUMA 4623 /* 4624 * Node reclaim mode 4625 * 4626 * If non-zero call node_reclaim when the number of free pages falls below 4627 * the watermarks. 4628 */ 4629 int node_reclaim_mode __read_mostly; 4630 4631 /* 4632 * Priority for NODE_RECLAIM. This determines the fraction of pages 4633 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4634 * a zone. 4635 */ 4636 #define NODE_RECLAIM_PRIORITY 4 4637 4638 /* 4639 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4640 * occur. 4641 */ 4642 int sysctl_min_unmapped_ratio = 1; 4643 4644 /* 4645 * If the number of slab pages in a zone grows beyond this percentage then 4646 * slab reclaim needs to occur. 4647 */ 4648 int sysctl_min_slab_ratio = 5; 4649 4650 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4651 { 4652 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4653 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4654 node_page_state(pgdat, NR_ACTIVE_FILE); 4655 4656 /* 4657 * It's possible for there to be more file mapped pages than 4658 * accounted for by the pages on the file LRU lists because 4659 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4660 */ 4661 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4662 } 4663 4664 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4665 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4666 { 4667 unsigned long nr_pagecache_reclaimable; 4668 unsigned long delta = 0; 4669 4670 /* 4671 * If RECLAIM_UNMAP is set, then all file pages are considered 4672 * potentially reclaimable. Otherwise, we have to worry about 4673 * pages like swapcache and node_unmapped_file_pages() provides 4674 * a better estimate 4675 */ 4676 if (node_reclaim_mode & RECLAIM_UNMAP) 4677 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4678 else 4679 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4680 4681 /* If we can't clean pages, remove dirty pages from consideration */ 4682 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4683 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4684 4685 /* Watch for any possible underflows due to delta */ 4686 if (unlikely(delta > nr_pagecache_reclaimable)) 4687 delta = nr_pagecache_reclaimable; 4688 4689 return nr_pagecache_reclaimable - delta; 4690 } 4691 4692 /* 4693 * Try to free up some pages from this node through reclaim. 4694 */ 4695 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4696 { 4697 /* Minimum pages needed in order to stay on node */ 4698 const unsigned long nr_pages = 1 << order; 4699 struct task_struct *p = current; 4700 unsigned int noreclaim_flag; 4701 struct scan_control sc = { 4702 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4703 .gfp_mask = current_gfp_context(gfp_mask), 4704 .order = order, 4705 .priority = NODE_RECLAIM_PRIORITY, 4706 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4707 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4708 .may_swap = 1, 4709 .reclaim_idx = gfp_zone(gfp_mask), 4710 }; 4711 unsigned long pflags; 4712 4713 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4714 sc.gfp_mask); 4715 4716 cond_resched(); 4717 psi_memstall_enter(&pflags); 4718 fs_reclaim_acquire(sc.gfp_mask); 4719 /* 4720 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4721 */ 4722 noreclaim_flag = memalloc_noreclaim_save(); 4723 set_task_reclaim_state(p, &sc.reclaim_state); 4724 4725 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 4726 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 4727 /* 4728 * Free memory by calling shrink node with increasing 4729 * priorities until we have enough memory freed. 4730 */ 4731 do { 4732 shrink_node(pgdat, &sc); 4733 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4734 } 4735 4736 set_task_reclaim_state(p, NULL); 4737 memalloc_noreclaim_restore(noreclaim_flag); 4738 fs_reclaim_release(sc.gfp_mask); 4739 psi_memstall_leave(&pflags); 4740 4741 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4742 4743 return sc.nr_reclaimed >= nr_pages; 4744 } 4745 4746 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4747 { 4748 int ret; 4749 4750 /* 4751 * Node reclaim reclaims unmapped file backed pages and 4752 * slab pages if we are over the defined limits. 4753 * 4754 * A small portion of unmapped file backed pages is needed for 4755 * file I/O otherwise pages read by file I/O will be immediately 4756 * thrown out if the node is overallocated. So we do not reclaim 4757 * if less than a specified percentage of the node is used by 4758 * unmapped file backed pages. 4759 */ 4760 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4761 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4762 pgdat->min_slab_pages) 4763 return NODE_RECLAIM_FULL; 4764 4765 /* 4766 * Do not scan if the allocation should not be delayed. 4767 */ 4768 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4769 return NODE_RECLAIM_NOSCAN; 4770 4771 /* 4772 * Only run node reclaim on the local node or on nodes that do not 4773 * have associated processors. This will favor the local processor 4774 * over remote processors and spread off node memory allocations 4775 * as wide as possible. 4776 */ 4777 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4778 return NODE_RECLAIM_NOSCAN; 4779 4780 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4781 return NODE_RECLAIM_NOSCAN; 4782 4783 ret = __node_reclaim(pgdat, gfp_mask, order); 4784 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4785 4786 if (!ret) 4787 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4788 4789 return ret; 4790 } 4791 #endif 4792 4793 /** 4794 * check_move_unevictable_pages - check pages for evictability and move to 4795 * appropriate zone lru list 4796 * @pvec: pagevec with lru pages to check 4797 * 4798 * Checks pages for evictability, if an evictable page is in the unevictable 4799 * lru list, moves it to the appropriate evictable lru list. This function 4800 * should be only used for lru pages. 4801 */ 4802 void check_move_unevictable_pages(struct pagevec *pvec) 4803 { 4804 struct lruvec *lruvec = NULL; 4805 int pgscanned = 0; 4806 int pgrescued = 0; 4807 int i; 4808 4809 for (i = 0; i < pvec->nr; i++) { 4810 struct page *page = pvec->pages[i]; 4811 struct folio *folio = page_folio(page); 4812 int nr_pages; 4813 4814 if (PageTransTail(page)) 4815 continue; 4816 4817 nr_pages = thp_nr_pages(page); 4818 pgscanned += nr_pages; 4819 4820 /* block memcg migration during page moving between lru */ 4821 if (!TestClearPageLRU(page)) 4822 continue; 4823 4824 lruvec = folio_lruvec_relock_irq(folio, lruvec); 4825 if (page_evictable(page) && PageUnevictable(page)) { 4826 del_page_from_lru_list(page, lruvec); 4827 ClearPageUnevictable(page); 4828 add_page_to_lru_list(page, lruvec); 4829 pgrescued += nr_pages; 4830 } 4831 SetPageLRU(page); 4832 } 4833 4834 if (lruvec) { 4835 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4836 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4837 unlock_page_lruvec_irq(lruvec); 4838 } else if (pgscanned) { 4839 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4840 } 4841 } 4842 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4843