xref: /openbmc/linux/mm/vmscan.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 	/* Can active folios be deactivated as part of reclaim? */
97 #define DEACTIVATE_ANON 1
98 #define DEACTIVATE_FILE 2
99 	unsigned int may_deactivate:2;
100 	unsigned int force_deactivate:1;
101 	unsigned int skipped_deactivate:1;
102 
103 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
104 	unsigned int may_writepage:1;
105 
106 	/* Can mapped folios be reclaimed? */
107 	unsigned int may_unmap:1;
108 
109 	/* Can folios be swapped as part of reclaim? */
110 	unsigned int may_swap:1;
111 
112 	/* Proactive reclaim invoked by userspace through memory.reclaim */
113 	unsigned int proactive:1;
114 
115 	/*
116 	 * Cgroup memory below memory.low is protected as long as we
117 	 * don't threaten to OOM. If any cgroup is reclaimed at
118 	 * reduced force or passed over entirely due to its memory.low
119 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
120 	 * result, then go back for one more cycle that reclaims the protected
121 	 * memory (memcg_low_reclaim) to avert OOM.
122 	 */
123 	unsigned int memcg_low_reclaim:1;
124 	unsigned int memcg_low_skipped:1;
125 
126 	unsigned int hibernation_mode:1;
127 
128 	/* One of the zones is ready for compaction */
129 	unsigned int compaction_ready:1;
130 
131 	/* There is easily reclaimable cold cache in the current node */
132 	unsigned int cache_trim_mode:1;
133 
134 	/* The file folios on the current node are dangerously low */
135 	unsigned int file_is_tiny:1;
136 
137 	/* Always discard instead of demoting to lower tier memory */
138 	unsigned int no_demotion:1;
139 
140 	/* Allocation order */
141 	s8 order;
142 
143 	/* Scan (total_size >> priority) pages at once */
144 	s8 priority;
145 
146 	/* The highest zone to isolate folios for reclaim from */
147 	s8 reclaim_idx;
148 
149 	/* This context's GFP mask */
150 	gfp_t gfp_mask;
151 
152 	/* Incremented by the number of inactive pages that were scanned */
153 	unsigned long nr_scanned;
154 
155 	/* Number of pages freed so far during a call to shrink_zones() */
156 	unsigned long nr_reclaimed;
157 
158 	struct {
159 		unsigned int dirty;
160 		unsigned int unqueued_dirty;
161 		unsigned int congested;
162 		unsigned int writeback;
163 		unsigned int immediate;
164 		unsigned int file_taken;
165 		unsigned int taken;
166 	} nr;
167 
168 	/* for recording the reclaimed slab by now */
169 	struct reclaim_state reclaim_state;
170 };
171 
172 #ifdef ARCH_HAS_PREFETCHW
173 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
174 	do {								\
175 		if ((_folio)->lru.prev != _base) {			\
176 			struct folio *prev;				\
177 									\
178 			prev = lru_to_folio(&(_folio->lru));		\
179 			prefetchw(&prev->_field);			\
180 		}							\
181 	} while (0)
182 #else
183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
184 #endif
185 
186 /*
187  * From 0 .. 200.  Higher means more swappy.
188  */
189 int vm_swappiness = 60;
190 
191 LIST_HEAD(shrinker_list);
192 DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size,
218 				    int new_nr_max)
219 {
220 	struct shrinker_info *new, *old;
221 	struct mem_cgroup_per_node *pn;
222 	int nid;
223 	int size = map_size + defer_size;
224 
225 	for_each_node(nid) {
226 		pn = memcg->nodeinfo[nid];
227 		old = shrinker_info_protected(memcg, nid);
228 		/* Not yet online memcg */
229 		if (!old)
230 			return 0;
231 
232 		/* Already expanded this shrinker_info */
233 		if (new_nr_max <= old->map_nr_max)
234 			continue;
235 
236 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
237 		if (!new)
238 			return -ENOMEM;
239 
240 		new->nr_deferred = (atomic_long_t *)(new + 1);
241 		new->map = (void *)new->nr_deferred + defer_size;
242 		new->map_nr_max = new_nr_max;
243 
244 		/* map: set all old bits, clear all new bits */
245 		memset(new->map, (int)0xff, old_map_size);
246 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
247 		/* nr_deferred: copy old values, clear all new values */
248 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
249 		memset((void *)new->nr_deferred + old_defer_size, 0,
250 		       defer_size - old_defer_size);
251 
252 		rcu_assign_pointer(pn->shrinker_info, new);
253 		kvfree_rcu(old, rcu);
254 	}
255 
256 	return 0;
257 }
258 
259 void free_shrinker_info(struct mem_cgroup *memcg)
260 {
261 	struct mem_cgroup_per_node *pn;
262 	struct shrinker_info *info;
263 	int nid;
264 
265 	for_each_node(nid) {
266 		pn = memcg->nodeinfo[nid];
267 		info = rcu_dereference_protected(pn->shrinker_info, true);
268 		kvfree(info);
269 		rcu_assign_pointer(pn->shrinker_info, NULL);
270 	}
271 }
272 
273 int alloc_shrinker_info(struct mem_cgroup *memcg)
274 {
275 	struct shrinker_info *info;
276 	int nid, size, ret = 0;
277 	int map_size, defer_size = 0;
278 
279 	down_write(&shrinker_rwsem);
280 	map_size = shrinker_map_size(shrinker_nr_max);
281 	defer_size = shrinker_defer_size(shrinker_nr_max);
282 	size = map_size + defer_size;
283 	for_each_node(nid) {
284 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
285 		if (!info) {
286 			free_shrinker_info(memcg);
287 			ret = -ENOMEM;
288 			break;
289 		}
290 		info->nr_deferred = (atomic_long_t *)(info + 1);
291 		info->map = (void *)info->nr_deferred + defer_size;
292 		info->map_nr_max = shrinker_nr_max;
293 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
294 	}
295 	up_write(&shrinker_rwsem);
296 
297 	return ret;
298 }
299 
300 static int expand_shrinker_info(int new_id)
301 {
302 	int ret = 0;
303 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
304 	int map_size, defer_size = 0;
305 	int old_map_size, old_defer_size = 0;
306 	struct mem_cgroup *memcg;
307 
308 	if (!root_mem_cgroup)
309 		goto out;
310 
311 	lockdep_assert_held(&shrinker_rwsem);
312 
313 	map_size = shrinker_map_size(new_nr_max);
314 	defer_size = shrinker_defer_size(new_nr_max);
315 	old_map_size = shrinker_map_size(shrinker_nr_max);
316 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
317 
318 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
319 	do {
320 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
321 					       old_map_size, old_defer_size,
322 					       new_nr_max);
323 		if (ret) {
324 			mem_cgroup_iter_break(NULL, memcg);
325 			goto out;
326 		}
327 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
328 out:
329 	if (!ret)
330 		shrinker_nr_max = new_nr_max;
331 
332 	return ret;
333 }
334 
335 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
336 {
337 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
338 		struct shrinker_info *info;
339 
340 		rcu_read_lock();
341 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
342 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
343 			/* Pairs with smp mb in shrink_slab() */
344 			smp_mb__before_atomic();
345 			set_bit(shrinker_id, info->map);
346 		}
347 		rcu_read_unlock();
348 	}
349 }
350 
351 static DEFINE_IDR(shrinker_idr);
352 
353 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354 {
355 	int id, ret = -ENOMEM;
356 
357 	if (mem_cgroup_disabled())
358 		return -ENOSYS;
359 
360 	down_write(&shrinker_rwsem);
361 	/* This may call shrinker, so it must use down_read_trylock() */
362 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
363 	if (id < 0)
364 		goto unlock;
365 
366 	if (id >= shrinker_nr_max) {
367 		if (expand_shrinker_info(id)) {
368 			idr_remove(&shrinker_idr, id);
369 			goto unlock;
370 		}
371 	}
372 	shrinker->id = id;
373 	ret = 0;
374 unlock:
375 	up_write(&shrinker_rwsem);
376 	return ret;
377 }
378 
379 static void unregister_memcg_shrinker(struct shrinker *shrinker)
380 {
381 	int id = shrinker->id;
382 
383 	BUG_ON(id < 0);
384 
385 	lockdep_assert_held(&shrinker_rwsem);
386 
387 	idr_remove(&shrinker_idr, id);
388 }
389 
390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391 				   struct mem_cgroup *memcg)
392 {
393 	struct shrinker_info *info;
394 
395 	info = shrinker_info_protected(memcg, nid);
396 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
397 }
398 
399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 				  struct mem_cgroup *memcg)
401 {
402 	struct shrinker_info *info;
403 
404 	info = shrinker_info_protected(memcg, nid);
405 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
406 }
407 
408 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
409 {
410 	int i, nid;
411 	long nr;
412 	struct mem_cgroup *parent;
413 	struct shrinker_info *child_info, *parent_info;
414 
415 	parent = parent_mem_cgroup(memcg);
416 	if (!parent)
417 		parent = root_mem_cgroup;
418 
419 	/* Prevent from concurrent shrinker_info expand */
420 	down_read(&shrinker_rwsem);
421 	for_each_node(nid) {
422 		child_info = shrinker_info_protected(memcg, nid);
423 		parent_info = shrinker_info_protected(parent, nid);
424 		for (i = 0; i < child_info->map_nr_max; i++) {
425 			nr = atomic_long_read(&child_info->nr_deferred[i]);
426 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
427 		}
428 	}
429 	up_read(&shrinker_rwsem);
430 }
431 
432 static bool cgroup_reclaim(struct scan_control *sc)
433 {
434 	return sc->target_mem_cgroup;
435 }
436 
437 static bool global_reclaim(struct scan_control *sc)
438 {
439 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
440 }
441 
442 /**
443  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
444  * @sc: scan_control in question
445  *
446  * The normal page dirty throttling mechanism in balance_dirty_pages() is
447  * completely broken with the legacy memcg and direct stalling in
448  * shrink_folio_list() is used for throttling instead, which lacks all the
449  * niceties such as fairness, adaptive pausing, bandwidth proportional
450  * allocation and configurability.
451  *
452  * This function tests whether the vmscan currently in progress can assume
453  * that the normal dirty throttling mechanism is operational.
454  */
455 static bool writeback_throttling_sane(struct scan_control *sc)
456 {
457 	if (!cgroup_reclaim(sc))
458 		return true;
459 #ifdef CONFIG_CGROUP_WRITEBACK
460 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
461 		return true;
462 #endif
463 	return false;
464 }
465 #else
466 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
467 {
468 	return -ENOSYS;
469 }
470 
471 static void unregister_memcg_shrinker(struct shrinker *shrinker)
472 {
473 }
474 
475 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
476 				   struct mem_cgroup *memcg)
477 {
478 	return 0;
479 }
480 
481 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
482 				  struct mem_cgroup *memcg)
483 {
484 	return 0;
485 }
486 
487 static bool cgroup_reclaim(struct scan_control *sc)
488 {
489 	return false;
490 }
491 
492 static bool global_reclaim(struct scan_control *sc)
493 {
494 	return true;
495 }
496 
497 static bool writeback_throttling_sane(struct scan_control *sc)
498 {
499 	return true;
500 }
501 #endif
502 
503 static void set_task_reclaim_state(struct task_struct *task,
504 				   struct reclaim_state *rs)
505 {
506 	/* Check for an overwrite */
507 	WARN_ON_ONCE(rs && task->reclaim_state);
508 
509 	/* Check for the nulling of an already-nulled member */
510 	WARN_ON_ONCE(!rs && !task->reclaim_state);
511 
512 	task->reclaim_state = rs;
513 }
514 
515 /*
516  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
517  * scan_control->nr_reclaimed.
518  */
519 static void flush_reclaim_state(struct scan_control *sc)
520 {
521 	/*
522 	 * Currently, reclaim_state->reclaimed includes three types of pages
523 	 * freed outside of vmscan:
524 	 * (1) Slab pages.
525 	 * (2) Clean file pages from pruned inodes (on highmem systems).
526 	 * (3) XFS freed buffer pages.
527 	 *
528 	 * For all of these cases, we cannot universally link the pages to a
529 	 * single memcg. For example, a memcg-aware shrinker can free one object
530 	 * charged to the target memcg, causing an entire page to be freed.
531 	 * If we count the entire page as reclaimed from the memcg, we end up
532 	 * overestimating the reclaimed amount (potentially under-reclaiming).
533 	 *
534 	 * Only count such pages for global reclaim to prevent under-reclaiming
535 	 * from the target memcg; preventing unnecessary retries during memcg
536 	 * charging and false positives from proactive reclaim.
537 	 *
538 	 * For uncommon cases where the freed pages were actually mostly
539 	 * charged to the target memcg, we end up underestimating the reclaimed
540 	 * amount. This should be fine. The freed pages will be uncharged
541 	 * anyway, even if they are not counted here properly, and we will be
542 	 * able to make forward progress in charging (which is usually in a
543 	 * retry loop).
544 	 *
545 	 * We can go one step further, and report the uncharged objcg pages in
546 	 * memcg reclaim, to make reporting more accurate and reduce
547 	 * underestimation, but it's probably not worth the complexity for now.
548 	 */
549 	if (current->reclaim_state && global_reclaim(sc)) {
550 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
551 		current->reclaim_state->reclaimed = 0;
552 	}
553 }
554 
555 static long xchg_nr_deferred(struct shrinker *shrinker,
556 			     struct shrink_control *sc)
557 {
558 	int nid = sc->nid;
559 
560 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
561 		nid = 0;
562 
563 	if (sc->memcg &&
564 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
565 		return xchg_nr_deferred_memcg(nid, shrinker,
566 					      sc->memcg);
567 
568 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
569 }
570 
571 
572 static long add_nr_deferred(long nr, struct shrinker *shrinker,
573 			    struct shrink_control *sc)
574 {
575 	int nid = sc->nid;
576 
577 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
578 		nid = 0;
579 
580 	if (sc->memcg &&
581 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
582 		return add_nr_deferred_memcg(nr, nid, shrinker,
583 					     sc->memcg);
584 
585 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
586 }
587 
588 static bool can_demote(int nid, struct scan_control *sc)
589 {
590 	if (!numa_demotion_enabled)
591 		return false;
592 	if (sc && sc->no_demotion)
593 		return false;
594 	if (next_demotion_node(nid) == NUMA_NO_NODE)
595 		return false;
596 
597 	return true;
598 }
599 
600 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
601 					  int nid,
602 					  struct scan_control *sc)
603 {
604 	if (memcg == NULL) {
605 		/*
606 		 * For non-memcg reclaim, is there
607 		 * space in any swap device?
608 		 */
609 		if (get_nr_swap_pages() > 0)
610 			return true;
611 	} else {
612 		/* Is the memcg below its swap limit? */
613 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
614 			return true;
615 	}
616 
617 	/*
618 	 * The page can not be swapped.
619 	 *
620 	 * Can it be reclaimed from this node via demotion?
621 	 */
622 	return can_demote(nid, sc);
623 }
624 
625 /*
626  * This misses isolated folios which are not accounted for to save counters.
627  * As the data only determines if reclaim or compaction continues, it is
628  * not expected that isolated folios will be a dominating factor.
629  */
630 unsigned long zone_reclaimable_pages(struct zone *zone)
631 {
632 	unsigned long nr;
633 
634 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
635 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
636 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
637 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
638 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
639 
640 	return nr;
641 }
642 
643 /**
644  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
645  * @lruvec: lru vector
646  * @lru: lru to use
647  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
648  */
649 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
650 				     int zone_idx)
651 {
652 	unsigned long size = 0;
653 	int zid;
654 
655 	for (zid = 0; zid <= zone_idx; zid++) {
656 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
657 
658 		if (!managed_zone(zone))
659 			continue;
660 
661 		if (!mem_cgroup_disabled())
662 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
663 		else
664 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
665 	}
666 	return size;
667 }
668 
669 /*
670  * Add a shrinker callback to be called from the vm.
671  */
672 static int __prealloc_shrinker(struct shrinker *shrinker)
673 {
674 	unsigned int size;
675 	int err;
676 
677 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
678 		err = prealloc_memcg_shrinker(shrinker);
679 		if (err != -ENOSYS)
680 			return err;
681 
682 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
683 	}
684 
685 	size = sizeof(*shrinker->nr_deferred);
686 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
687 		size *= nr_node_ids;
688 
689 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
690 	if (!shrinker->nr_deferred)
691 		return -ENOMEM;
692 
693 	return 0;
694 }
695 
696 #ifdef CONFIG_SHRINKER_DEBUG
697 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
698 {
699 	va_list ap;
700 	int err;
701 
702 	va_start(ap, fmt);
703 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
704 	va_end(ap);
705 	if (!shrinker->name)
706 		return -ENOMEM;
707 
708 	err = __prealloc_shrinker(shrinker);
709 	if (err) {
710 		kfree_const(shrinker->name);
711 		shrinker->name = NULL;
712 	}
713 
714 	return err;
715 }
716 #else
717 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
718 {
719 	return __prealloc_shrinker(shrinker);
720 }
721 #endif
722 
723 void free_prealloced_shrinker(struct shrinker *shrinker)
724 {
725 #ifdef CONFIG_SHRINKER_DEBUG
726 	kfree_const(shrinker->name);
727 	shrinker->name = NULL;
728 #endif
729 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
730 		down_write(&shrinker_rwsem);
731 		unregister_memcg_shrinker(shrinker);
732 		up_write(&shrinker_rwsem);
733 		return;
734 	}
735 
736 	kfree(shrinker->nr_deferred);
737 	shrinker->nr_deferred = NULL;
738 }
739 
740 void register_shrinker_prepared(struct shrinker *shrinker)
741 {
742 	down_write(&shrinker_rwsem);
743 	list_add_tail(&shrinker->list, &shrinker_list);
744 	shrinker->flags |= SHRINKER_REGISTERED;
745 	shrinker_debugfs_add(shrinker);
746 	up_write(&shrinker_rwsem);
747 }
748 
749 static int __register_shrinker(struct shrinker *shrinker)
750 {
751 	int err = __prealloc_shrinker(shrinker);
752 
753 	if (err)
754 		return err;
755 	register_shrinker_prepared(shrinker);
756 	return 0;
757 }
758 
759 #ifdef CONFIG_SHRINKER_DEBUG
760 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
761 {
762 	va_list ap;
763 	int err;
764 
765 	va_start(ap, fmt);
766 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
767 	va_end(ap);
768 	if (!shrinker->name)
769 		return -ENOMEM;
770 
771 	err = __register_shrinker(shrinker);
772 	if (err) {
773 		kfree_const(shrinker->name);
774 		shrinker->name = NULL;
775 	}
776 	return err;
777 }
778 #else
779 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
780 {
781 	return __register_shrinker(shrinker);
782 }
783 #endif
784 EXPORT_SYMBOL(register_shrinker);
785 
786 /*
787  * Remove one
788  */
789 void unregister_shrinker(struct shrinker *shrinker)
790 {
791 	struct dentry *debugfs_entry;
792 	int debugfs_id;
793 
794 	if (!(shrinker->flags & SHRINKER_REGISTERED))
795 		return;
796 
797 	down_write(&shrinker_rwsem);
798 	list_del(&shrinker->list);
799 	shrinker->flags &= ~SHRINKER_REGISTERED;
800 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
801 		unregister_memcg_shrinker(shrinker);
802 	debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
803 	up_write(&shrinker_rwsem);
804 
805 	shrinker_debugfs_remove(debugfs_entry, debugfs_id);
806 
807 	kfree(shrinker->nr_deferred);
808 	shrinker->nr_deferred = NULL;
809 }
810 EXPORT_SYMBOL(unregister_shrinker);
811 
812 /**
813  * synchronize_shrinkers - Wait for all running shrinkers to complete.
814  *
815  * This is equivalent to calling unregister_shrink() and register_shrinker(),
816  * but atomically and with less overhead. This is useful to guarantee that all
817  * shrinker invocations have seen an update, before freeing memory, similar to
818  * rcu.
819  */
820 void synchronize_shrinkers(void)
821 {
822 	down_write(&shrinker_rwsem);
823 	up_write(&shrinker_rwsem);
824 }
825 EXPORT_SYMBOL(synchronize_shrinkers);
826 
827 #define SHRINK_BATCH 128
828 
829 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
830 				    struct shrinker *shrinker, int priority)
831 {
832 	unsigned long freed = 0;
833 	unsigned long long delta;
834 	long total_scan;
835 	long freeable;
836 	long nr;
837 	long new_nr;
838 	long batch_size = shrinker->batch ? shrinker->batch
839 					  : SHRINK_BATCH;
840 	long scanned = 0, next_deferred;
841 
842 	freeable = shrinker->count_objects(shrinker, shrinkctl);
843 	if (freeable == 0 || freeable == SHRINK_EMPTY)
844 		return freeable;
845 
846 	/*
847 	 * copy the current shrinker scan count into a local variable
848 	 * and zero it so that other concurrent shrinker invocations
849 	 * don't also do this scanning work.
850 	 */
851 	nr = xchg_nr_deferred(shrinker, shrinkctl);
852 
853 	if (shrinker->seeks) {
854 		delta = freeable >> priority;
855 		delta *= 4;
856 		do_div(delta, shrinker->seeks);
857 	} else {
858 		/*
859 		 * These objects don't require any IO to create. Trim
860 		 * them aggressively under memory pressure to keep
861 		 * them from causing refetches in the IO caches.
862 		 */
863 		delta = freeable / 2;
864 	}
865 
866 	total_scan = nr >> priority;
867 	total_scan += delta;
868 	total_scan = min(total_scan, (2 * freeable));
869 
870 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
871 				   freeable, delta, total_scan, priority);
872 
873 	/*
874 	 * Normally, we should not scan less than batch_size objects in one
875 	 * pass to avoid too frequent shrinker calls, but if the slab has less
876 	 * than batch_size objects in total and we are really tight on memory,
877 	 * we will try to reclaim all available objects, otherwise we can end
878 	 * up failing allocations although there are plenty of reclaimable
879 	 * objects spread over several slabs with usage less than the
880 	 * batch_size.
881 	 *
882 	 * We detect the "tight on memory" situations by looking at the total
883 	 * number of objects we want to scan (total_scan). If it is greater
884 	 * than the total number of objects on slab (freeable), we must be
885 	 * scanning at high prio and therefore should try to reclaim as much as
886 	 * possible.
887 	 */
888 	while (total_scan >= batch_size ||
889 	       total_scan >= freeable) {
890 		unsigned long ret;
891 		unsigned long nr_to_scan = min(batch_size, total_scan);
892 
893 		shrinkctl->nr_to_scan = nr_to_scan;
894 		shrinkctl->nr_scanned = nr_to_scan;
895 		ret = shrinker->scan_objects(shrinker, shrinkctl);
896 		if (ret == SHRINK_STOP)
897 			break;
898 		freed += ret;
899 
900 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
901 		total_scan -= shrinkctl->nr_scanned;
902 		scanned += shrinkctl->nr_scanned;
903 
904 		cond_resched();
905 	}
906 
907 	/*
908 	 * The deferred work is increased by any new work (delta) that wasn't
909 	 * done, decreased by old deferred work that was done now.
910 	 *
911 	 * And it is capped to two times of the freeable items.
912 	 */
913 	next_deferred = max_t(long, (nr + delta - scanned), 0);
914 	next_deferred = min(next_deferred, (2 * freeable));
915 
916 	/*
917 	 * move the unused scan count back into the shrinker in a
918 	 * manner that handles concurrent updates.
919 	 */
920 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
921 
922 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
923 	return freed;
924 }
925 
926 #ifdef CONFIG_MEMCG
927 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
928 			struct mem_cgroup *memcg, int priority)
929 {
930 	struct shrinker_info *info;
931 	unsigned long ret, freed = 0;
932 	int i;
933 
934 	if (!mem_cgroup_online(memcg))
935 		return 0;
936 
937 	if (!down_read_trylock(&shrinker_rwsem))
938 		return 0;
939 
940 	info = shrinker_info_protected(memcg, nid);
941 	if (unlikely(!info))
942 		goto unlock;
943 
944 	for_each_set_bit(i, info->map, info->map_nr_max) {
945 		struct shrink_control sc = {
946 			.gfp_mask = gfp_mask,
947 			.nid = nid,
948 			.memcg = memcg,
949 		};
950 		struct shrinker *shrinker;
951 
952 		shrinker = idr_find(&shrinker_idr, i);
953 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
954 			if (!shrinker)
955 				clear_bit(i, info->map);
956 			continue;
957 		}
958 
959 		/* Call non-slab shrinkers even though kmem is disabled */
960 		if (!memcg_kmem_online() &&
961 		    !(shrinker->flags & SHRINKER_NONSLAB))
962 			continue;
963 
964 		ret = do_shrink_slab(&sc, shrinker, priority);
965 		if (ret == SHRINK_EMPTY) {
966 			clear_bit(i, info->map);
967 			/*
968 			 * After the shrinker reported that it had no objects to
969 			 * free, but before we cleared the corresponding bit in
970 			 * the memcg shrinker map, a new object might have been
971 			 * added. To make sure, we have the bit set in this
972 			 * case, we invoke the shrinker one more time and reset
973 			 * the bit if it reports that it is not empty anymore.
974 			 * The memory barrier here pairs with the barrier in
975 			 * set_shrinker_bit():
976 			 *
977 			 * list_lru_add()     shrink_slab_memcg()
978 			 *   list_add_tail()    clear_bit()
979 			 *   <MB>               <MB>
980 			 *   set_bit()          do_shrink_slab()
981 			 */
982 			smp_mb__after_atomic();
983 			ret = do_shrink_slab(&sc, shrinker, priority);
984 			if (ret == SHRINK_EMPTY)
985 				ret = 0;
986 			else
987 				set_shrinker_bit(memcg, nid, i);
988 		}
989 		freed += ret;
990 
991 		if (rwsem_is_contended(&shrinker_rwsem)) {
992 			freed = freed ? : 1;
993 			break;
994 		}
995 	}
996 unlock:
997 	up_read(&shrinker_rwsem);
998 	return freed;
999 }
1000 #else /* CONFIG_MEMCG */
1001 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1002 			struct mem_cgroup *memcg, int priority)
1003 {
1004 	return 0;
1005 }
1006 #endif /* CONFIG_MEMCG */
1007 
1008 /**
1009  * shrink_slab - shrink slab caches
1010  * @gfp_mask: allocation context
1011  * @nid: node whose slab caches to target
1012  * @memcg: memory cgroup whose slab caches to target
1013  * @priority: the reclaim priority
1014  *
1015  * Call the shrink functions to age shrinkable caches.
1016  *
1017  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1018  * unaware shrinkers will receive a node id of 0 instead.
1019  *
1020  * @memcg specifies the memory cgroup to target. Unaware shrinkers
1021  * are called only if it is the root cgroup.
1022  *
1023  * @priority is sc->priority, we take the number of objects and >> by priority
1024  * in order to get the scan target.
1025  *
1026  * Returns the number of reclaimed slab objects.
1027  */
1028 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1029 				 struct mem_cgroup *memcg,
1030 				 int priority)
1031 {
1032 	unsigned long ret, freed = 0;
1033 	struct shrinker *shrinker;
1034 
1035 	/*
1036 	 * The root memcg might be allocated even though memcg is disabled
1037 	 * via "cgroup_disable=memory" boot parameter.  This could make
1038 	 * mem_cgroup_is_root() return false, then just run memcg slab
1039 	 * shrink, but skip global shrink.  This may result in premature
1040 	 * oom.
1041 	 */
1042 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1043 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1044 
1045 	if (!down_read_trylock(&shrinker_rwsem))
1046 		goto out;
1047 
1048 	list_for_each_entry(shrinker, &shrinker_list, list) {
1049 		struct shrink_control sc = {
1050 			.gfp_mask = gfp_mask,
1051 			.nid = nid,
1052 			.memcg = memcg,
1053 		};
1054 
1055 		ret = do_shrink_slab(&sc, shrinker, priority);
1056 		if (ret == SHRINK_EMPTY)
1057 			ret = 0;
1058 		freed += ret;
1059 		/*
1060 		 * Bail out if someone want to register a new shrinker to
1061 		 * prevent the registration from being stalled for long periods
1062 		 * by parallel ongoing shrinking.
1063 		 */
1064 		if (rwsem_is_contended(&shrinker_rwsem)) {
1065 			freed = freed ? : 1;
1066 			break;
1067 		}
1068 	}
1069 
1070 	up_read(&shrinker_rwsem);
1071 out:
1072 	cond_resched();
1073 	return freed;
1074 }
1075 
1076 static unsigned long drop_slab_node(int nid)
1077 {
1078 	unsigned long freed = 0;
1079 	struct mem_cgroup *memcg = NULL;
1080 
1081 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1082 	do {
1083 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1084 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1085 
1086 	return freed;
1087 }
1088 
1089 void drop_slab(void)
1090 {
1091 	int nid;
1092 	int shift = 0;
1093 	unsigned long freed;
1094 
1095 	do {
1096 		freed = 0;
1097 		for_each_online_node(nid) {
1098 			if (fatal_signal_pending(current))
1099 				return;
1100 
1101 			freed += drop_slab_node(nid);
1102 		}
1103 	} while ((freed >> shift++) > 1);
1104 }
1105 
1106 static int reclaimer_offset(void)
1107 {
1108 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1109 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1110 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1111 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1112 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1113 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1114 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1115 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1116 
1117 	if (current_is_kswapd())
1118 		return 0;
1119 	if (current_is_khugepaged())
1120 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1121 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1122 }
1123 
1124 static inline int is_page_cache_freeable(struct folio *folio)
1125 {
1126 	/*
1127 	 * A freeable page cache folio is referenced only by the caller
1128 	 * that isolated the folio, the page cache and optional filesystem
1129 	 * private data at folio->private.
1130 	 */
1131 	return folio_ref_count(folio) - folio_test_private(folio) ==
1132 		1 + folio_nr_pages(folio);
1133 }
1134 
1135 /*
1136  * We detected a synchronous write error writing a folio out.  Probably
1137  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1138  * fsync(), msync() or close().
1139  *
1140  * The tricky part is that after writepage we cannot touch the mapping: nothing
1141  * prevents it from being freed up.  But we have a ref on the folio and once
1142  * that folio is locked, the mapping is pinned.
1143  *
1144  * We're allowed to run sleeping folio_lock() here because we know the caller has
1145  * __GFP_FS.
1146  */
1147 static void handle_write_error(struct address_space *mapping,
1148 				struct folio *folio, int error)
1149 {
1150 	folio_lock(folio);
1151 	if (folio_mapping(folio) == mapping)
1152 		mapping_set_error(mapping, error);
1153 	folio_unlock(folio);
1154 }
1155 
1156 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1157 {
1158 	int reclaimable = 0, write_pending = 0;
1159 	int i;
1160 
1161 	/*
1162 	 * If kswapd is disabled, reschedule if necessary but do not
1163 	 * throttle as the system is likely near OOM.
1164 	 */
1165 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1166 		return true;
1167 
1168 	/*
1169 	 * If there are a lot of dirty/writeback folios then do not
1170 	 * throttle as throttling will occur when the folios cycle
1171 	 * towards the end of the LRU if still under writeback.
1172 	 */
1173 	for (i = 0; i < MAX_NR_ZONES; i++) {
1174 		struct zone *zone = pgdat->node_zones + i;
1175 
1176 		if (!managed_zone(zone))
1177 			continue;
1178 
1179 		reclaimable += zone_reclaimable_pages(zone);
1180 		write_pending += zone_page_state_snapshot(zone,
1181 						  NR_ZONE_WRITE_PENDING);
1182 	}
1183 	if (2 * write_pending <= reclaimable)
1184 		return true;
1185 
1186 	return false;
1187 }
1188 
1189 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1190 {
1191 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1192 	long timeout, ret;
1193 	DEFINE_WAIT(wait);
1194 
1195 	/*
1196 	 * Do not throttle user workers, kthreads other than kswapd or
1197 	 * workqueues. They may be required for reclaim to make
1198 	 * forward progress (e.g. journalling workqueues or kthreads).
1199 	 */
1200 	if (!current_is_kswapd() &&
1201 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1202 		cond_resched();
1203 		return;
1204 	}
1205 
1206 	/*
1207 	 * These figures are pulled out of thin air.
1208 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1209 	 * parallel reclaimers which is a short-lived event so the timeout is
1210 	 * short. Failing to make progress or waiting on writeback are
1211 	 * potentially long-lived events so use a longer timeout. This is shaky
1212 	 * logic as a failure to make progress could be due to anything from
1213 	 * writeback to a slow device to excessive referenced folios at the tail
1214 	 * of the inactive LRU.
1215 	 */
1216 	switch(reason) {
1217 	case VMSCAN_THROTTLE_WRITEBACK:
1218 		timeout = HZ/10;
1219 
1220 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1221 			WRITE_ONCE(pgdat->nr_reclaim_start,
1222 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1223 		}
1224 
1225 		break;
1226 	case VMSCAN_THROTTLE_CONGESTED:
1227 		fallthrough;
1228 	case VMSCAN_THROTTLE_NOPROGRESS:
1229 		if (skip_throttle_noprogress(pgdat)) {
1230 			cond_resched();
1231 			return;
1232 		}
1233 
1234 		timeout = 1;
1235 
1236 		break;
1237 	case VMSCAN_THROTTLE_ISOLATED:
1238 		timeout = HZ/50;
1239 		break;
1240 	default:
1241 		WARN_ON_ONCE(1);
1242 		timeout = HZ;
1243 		break;
1244 	}
1245 
1246 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1247 	ret = schedule_timeout(timeout);
1248 	finish_wait(wqh, &wait);
1249 
1250 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1251 		atomic_dec(&pgdat->nr_writeback_throttled);
1252 
1253 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1254 				jiffies_to_usecs(timeout - ret),
1255 				reason);
1256 }
1257 
1258 /*
1259  * Account for folios written if tasks are throttled waiting on dirty
1260  * folios to clean. If enough folios have been cleaned since throttling
1261  * started then wakeup the throttled tasks.
1262  */
1263 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1264 							int nr_throttled)
1265 {
1266 	unsigned long nr_written;
1267 
1268 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1269 
1270 	/*
1271 	 * This is an inaccurate read as the per-cpu deltas may not
1272 	 * be synchronised. However, given that the system is
1273 	 * writeback throttled, it is not worth taking the penalty
1274 	 * of getting an accurate count. At worst, the throttle
1275 	 * timeout guarantees forward progress.
1276 	 */
1277 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1278 		READ_ONCE(pgdat->nr_reclaim_start);
1279 
1280 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1281 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1282 }
1283 
1284 /* possible outcome of pageout() */
1285 typedef enum {
1286 	/* failed to write folio out, folio is locked */
1287 	PAGE_KEEP,
1288 	/* move folio to the active list, folio is locked */
1289 	PAGE_ACTIVATE,
1290 	/* folio has been sent to the disk successfully, folio is unlocked */
1291 	PAGE_SUCCESS,
1292 	/* folio is clean and locked */
1293 	PAGE_CLEAN,
1294 } pageout_t;
1295 
1296 /*
1297  * pageout is called by shrink_folio_list() for each dirty folio.
1298  * Calls ->writepage().
1299  */
1300 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1301 			 struct swap_iocb **plug)
1302 {
1303 	/*
1304 	 * If the folio is dirty, only perform writeback if that write
1305 	 * will be non-blocking.  To prevent this allocation from being
1306 	 * stalled by pagecache activity.  But note that there may be
1307 	 * stalls if we need to run get_block().  We could test
1308 	 * PagePrivate for that.
1309 	 *
1310 	 * If this process is currently in __generic_file_write_iter() against
1311 	 * this folio's queue, we can perform writeback even if that
1312 	 * will block.
1313 	 *
1314 	 * If the folio is swapcache, write it back even if that would
1315 	 * block, for some throttling. This happens by accident, because
1316 	 * swap_backing_dev_info is bust: it doesn't reflect the
1317 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1318 	 */
1319 	if (!is_page_cache_freeable(folio))
1320 		return PAGE_KEEP;
1321 	if (!mapping) {
1322 		/*
1323 		 * Some data journaling orphaned folios can have
1324 		 * folio->mapping == NULL while being dirty with clean buffers.
1325 		 */
1326 		if (folio_test_private(folio)) {
1327 			if (try_to_free_buffers(folio)) {
1328 				folio_clear_dirty(folio);
1329 				pr_info("%s: orphaned folio\n", __func__);
1330 				return PAGE_CLEAN;
1331 			}
1332 		}
1333 		return PAGE_KEEP;
1334 	}
1335 	if (mapping->a_ops->writepage == NULL)
1336 		return PAGE_ACTIVATE;
1337 
1338 	if (folio_clear_dirty_for_io(folio)) {
1339 		int res;
1340 		struct writeback_control wbc = {
1341 			.sync_mode = WB_SYNC_NONE,
1342 			.nr_to_write = SWAP_CLUSTER_MAX,
1343 			.range_start = 0,
1344 			.range_end = LLONG_MAX,
1345 			.for_reclaim = 1,
1346 			.swap_plug = plug,
1347 		};
1348 
1349 		folio_set_reclaim(folio);
1350 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1351 		if (res < 0)
1352 			handle_write_error(mapping, folio, res);
1353 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1354 			folio_clear_reclaim(folio);
1355 			return PAGE_ACTIVATE;
1356 		}
1357 
1358 		if (!folio_test_writeback(folio)) {
1359 			/* synchronous write or broken a_ops? */
1360 			folio_clear_reclaim(folio);
1361 		}
1362 		trace_mm_vmscan_write_folio(folio);
1363 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1364 		return PAGE_SUCCESS;
1365 	}
1366 
1367 	return PAGE_CLEAN;
1368 }
1369 
1370 /*
1371  * Same as remove_mapping, but if the folio is removed from the mapping, it
1372  * gets returned with a refcount of 0.
1373  */
1374 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1375 			    bool reclaimed, struct mem_cgroup *target_memcg)
1376 {
1377 	int refcount;
1378 	void *shadow = NULL;
1379 
1380 	BUG_ON(!folio_test_locked(folio));
1381 	BUG_ON(mapping != folio_mapping(folio));
1382 
1383 	if (!folio_test_swapcache(folio))
1384 		spin_lock(&mapping->host->i_lock);
1385 	xa_lock_irq(&mapping->i_pages);
1386 	/*
1387 	 * The non racy check for a busy folio.
1388 	 *
1389 	 * Must be careful with the order of the tests. When someone has
1390 	 * a ref to the folio, it may be possible that they dirty it then
1391 	 * drop the reference. So if the dirty flag is tested before the
1392 	 * refcount here, then the following race may occur:
1393 	 *
1394 	 * get_user_pages(&page);
1395 	 * [user mapping goes away]
1396 	 * write_to(page);
1397 	 *				!folio_test_dirty(folio)    [good]
1398 	 * folio_set_dirty(folio);
1399 	 * folio_put(folio);
1400 	 *				!refcount(folio)   [good, discard it]
1401 	 *
1402 	 * [oops, our write_to data is lost]
1403 	 *
1404 	 * Reversing the order of the tests ensures such a situation cannot
1405 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1406 	 * load is not satisfied before that of folio->_refcount.
1407 	 *
1408 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1409 	 * and thus under the i_pages lock, then this ordering is not required.
1410 	 */
1411 	refcount = 1 + folio_nr_pages(folio);
1412 	if (!folio_ref_freeze(folio, refcount))
1413 		goto cannot_free;
1414 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1415 	if (unlikely(folio_test_dirty(folio))) {
1416 		folio_ref_unfreeze(folio, refcount);
1417 		goto cannot_free;
1418 	}
1419 
1420 	if (folio_test_swapcache(folio)) {
1421 		swp_entry_t swap = folio_swap_entry(folio);
1422 
1423 		if (reclaimed && !mapping_exiting(mapping))
1424 			shadow = workingset_eviction(folio, target_memcg);
1425 		__delete_from_swap_cache(folio, swap, shadow);
1426 		mem_cgroup_swapout(folio, swap);
1427 		xa_unlock_irq(&mapping->i_pages);
1428 		put_swap_folio(folio, swap);
1429 	} else {
1430 		void (*free_folio)(struct folio *);
1431 
1432 		free_folio = mapping->a_ops->free_folio;
1433 		/*
1434 		 * Remember a shadow entry for reclaimed file cache in
1435 		 * order to detect refaults, thus thrashing, later on.
1436 		 *
1437 		 * But don't store shadows in an address space that is
1438 		 * already exiting.  This is not just an optimization,
1439 		 * inode reclaim needs to empty out the radix tree or
1440 		 * the nodes are lost.  Don't plant shadows behind its
1441 		 * back.
1442 		 *
1443 		 * We also don't store shadows for DAX mappings because the
1444 		 * only page cache folios found in these are zero pages
1445 		 * covering holes, and because we don't want to mix DAX
1446 		 * exceptional entries and shadow exceptional entries in the
1447 		 * same address_space.
1448 		 */
1449 		if (reclaimed && folio_is_file_lru(folio) &&
1450 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1451 			shadow = workingset_eviction(folio, target_memcg);
1452 		__filemap_remove_folio(folio, shadow);
1453 		xa_unlock_irq(&mapping->i_pages);
1454 		if (mapping_shrinkable(mapping))
1455 			inode_add_lru(mapping->host);
1456 		spin_unlock(&mapping->host->i_lock);
1457 
1458 		if (free_folio)
1459 			free_folio(folio);
1460 	}
1461 
1462 	return 1;
1463 
1464 cannot_free:
1465 	xa_unlock_irq(&mapping->i_pages);
1466 	if (!folio_test_swapcache(folio))
1467 		spin_unlock(&mapping->host->i_lock);
1468 	return 0;
1469 }
1470 
1471 /**
1472  * remove_mapping() - Attempt to remove a folio from its mapping.
1473  * @mapping: The address space.
1474  * @folio: The folio to remove.
1475  *
1476  * If the folio is dirty, under writeback or if someone else has a ref
1477  * on it, removal will fail.
1478  * Return: The number of pages removed from the mapping.  0 if the folio
1479  * could not be removed.
1480  * Context: The caller should have a single refcount on the folio and
1481  * hold its lock.
1482  */
1483 long remove_mapping(struct address_space *mapping, struct folio *folio)
1484 {
1485 	if (__remove_mapping(mapping, folio, false, NULL)) {
1486 		/*
1487 		 * Unfreezing the refcount with 1 effectively
1488 		 * drops the pagecache ref for us without requiring another
1489 		 * atomic operation.
1490 		 */
1491 		folio_ref_unfreeze(folio, 1);
1492 		return folio_nr_pages(folio);
1493 	}
1494 	return 0;
1495 }
1496 
1497 /**
1498  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1499  * @folio: Folio to be returned to an LRU list.
1500  *
1501  * Add previously isolated @folio to appropriate LRU list.
1502  * The folio may still be unevictable for other reasons.
1503  *
1504  * Context: lru_lock must not be held, interrupts must be enabled.
1505  */
1506 void folio_putback_lru(struct folio *folio)
1507 {
1508 	folio_add_lru(folio);
1509 	folio_put(folio);		/* drop ref from isolate */
1510 }
1511 
1512 enum folio_references {
1513 	FOLIOREF_RECLAIM,
1514 	FOLIOREF_RECLAIM_CLEAN,
1515 	FOLIOREF_KEEP,
1516 	FOLIOREF_ACTIVATE,
1517 };
1518 
1519 static enum folio_references folio_check_references(struct folio *folio,
1520 						  struct scan_control *sc)
1521 {
1522 	int referenced_ptes, referenced_folio;
1523 	unsigned long vm_flags;
1524 
1525 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1526 					   &vm_flags);
1527 	referenced_folio = folio_test_clear_referenced(folio);
1528 
1529 	/*
1530 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1531 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1532 	 */
1533 	if (vm_flags & VM_LOCKED)
1534 		return FOLIOREF_ACTIVATE;
1535 
1536 	/* rmap lock contention: rotate */
1537 	if (referenced_ptes == -1)
1538 		return FOLIOREF_KEEP;
1539 
1540 	if (referenced_ptes) {
1541 		/*
1542 		 * All mapped folios start out with page table
1543 		 * references from the instantiating fault, so we need
1544 		 * to look twice if a mapped file/anon folio is used more
1545 		 * than once.
1546 		 *
1547 		 * Mark it and spare it for another trip around the
1548 		 * inactive list.  Another page table reference will
1549 		 * lead to its activation.
1550 		 *
1551 		 * Note: the mark is set for activated folios as well
1552 		 * so that recently deactivated but used folios are
1553 		 * quickly recovered.
1554 		 */
1555 		folio_set_referenced(folio);
1556 
1557 		if (referenced_folio || referenced_ptes > 1)
1558 			return FOLIOREF_ACTIVATE;
1559 
1560 		/*
1561 		 * Activate file-backed executable folios after first usage.
1562 		 */
1563 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1564 			return FOLIOREF_ACTIVATE;
1565 
1566 		return FOLIOREF_KEEP;
1567 	}
1568 
1569 	/* Reclaim if clean, defer dirty folios to writeback */
1570 	if (referenced_folio && folio_is_file_lru(folio))
1571 		return FOLIOREF_RECLAIM_CLEAN;
1572 
1573 	return FOLIOREF_RECLAIM;
1574 }
1575 
1576 /* Check if a folio is dirty or under writeback */
1577 static void folio_check_dirty_writeback(struct folio *folio,
1578 				       bool *dirty, bool *writeback)
1579 {
1580 	struct address_space *mapping;
1581 
1582 	/*
1583 	 * Anonymous folios are not handled by flushers and must be written
1584 	 * from reclaim context. Do not stall reclaim based on them.
1585 	 * MADV_FREE anonymous folios are put into inactive file list too.
1586 	 * They could be mistakenly treated as file lru. So further anon
1587 	 * test is needed.
1588 	 */
1589 	if (!folio_is_file_lru(folio) ||
1590 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1591 		*dirty = false;
1592 		*writeback = false;
1593 		return;
1594 	}
1595 
1596 	/* By default assume that the folio flags are accurate */
1597 	*dirty = folio_test_dirty(folio);
1598 	*writeback = folio_test_writeback(folio);
1599 
1600 	/* Verify dirty/writeback state if the filesystem supports it */
1601 	if (!folio_test_private(folio))
1602 		return;
1603 
1604 	mapping = folio_mapping(folio);
1605 	if (mapping && mapping->a_ops->is_dirty_writeback)
1606 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1607 }
1608 
1609 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1610 {
1611 	struct page *target_page;
1612 	nodemask_t *allowed_mask;
1613 	struct migration_target_control *mtc;
1614 
1615 	mtc = (struct migration_target_control *)private;
1616 
1617 	allowed_mask = mtc->nmask;
1618 	/*
1619 	 * make sure we allocate from the target node first also trying to
1620 	 * demote or reclaim pages from the target node via kswapd if we are
1621 	 * low on free memory on target node. If we don't do this and if
1622 	 * we have free memory on the slower(lower) memtier, we would start
1623 	 * allocating pages from slower(lower) memory tiers without even forcing
1624 	 * a demotion of cold pages from the target memtier. This can result
1625 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1626 	 */
1627 	mtc->nmask = NULL;
1628 	mtc->gfp_mask |= __GFP_THISNODE;
1629 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1630 	if (target_page)
1631 		return target_page;
1632 
1633 	mtc->gfp_mask &= ~__GFP_THISNODE;
1634 	mtc->nmask = allowed_mask;
1635 
1636 	return alloc_migration_target(page, (unsigned long)mtc);
1637 }
1638 
1639 /*
1640  * Take folios on @demote_folios and attempt to demote them to another node.
1641  * Folios which are not demoted are left on @demote_folios.
1642  */
1643 static unsigned int demote_folio_list(struct list_head *demote_folios,
1644 				     struct pglist_data *pgdat)
1645 {
1646 	int target_nid = next_demotion_node(pgdat->node_id);
1647 	unsigned int nr_succeeded;
1648 	nodemask_t allowed_mask;
1649 
1650 	struct migration_target_control mtc = {
1651 		/*
1652 		 * Allocate from 'node', or fail quickly and quietly.
1653 		 * When this happens, 'page' will likely just be discarded
1654 		 * instead of migrated.
1655 		 */
1656 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1657 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1658 		.nid = target_nid,
1659 		.nmask = &allowed_mask
1660 	};
1661 
1662 	if (list_empty(demote_folios))
1663 		return 0;
1664 
1665 	if (target_nid == NUMA_NO_NODE)
1666 		return 0;
1667 
1668 	node_get_allowed_targets(pgdat, &allowed_mask);
1669 
1670 	/* Demotion ignores all cpuset and mempolicy settings */
1671 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1672 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1673 		      &nr_succeeded);
1674 
1675 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1676 
1677 	return nr_succeeded;
1678 }
1679 
1680 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1681 {
1682 	if (gfp_mask & __GFP_FS)
1683 		return true;
1684 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1685 		return false;
1686 	/*
1687 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1688 	 * providing this isn't SWP_FS_OPS.
1689 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1690 	 * but that will never affect SWP_FS_OPS, so the data_race
1691 	 * is safe.
1692 	 */
1693 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1694 }
1695 
1696 /*
1697  * shrink_folio_list() returns the number of reclaimed pages
1698  */
1699 static unsigned int shrink_folio_list(struct list_head *folio_list,
1700 		struct pglist_data *pgdat, struct scan_control *sc,
1701 		struct reclaim_stat *stat, bool ignore_references)
1702 {
1703 	LIST_HEAD(ret_folios);
1704 	LIST_HEAD(free_folios);
1705 	LIST_HEAD(demote_folios);
1706 	unsigned int nr_reclaimed = 0;
1707 	unsigned int pgactivate = 0;
1708 	bool do_demote_pass;
1709 	struct swap_iocb *plug = NULL;
1710 
1711 	memset(stat, 0, sizeof(*stat));
1712 	cond_resched();
1713 	do_demote_pass = can_demote(pgdat->node_id, sc);
1714 
1715 retry:
1716 	while (!list_empty(folio_list)) {
1717 		struct address_space *mapping;
1718 		struct folio *folio;
1719 		enum folio_references references = FOLIOREF_RECLAIM;
1720 		bool dirty, writeback;
1721 		unsigned int nr_pages;
1722 
1723 		cond_resched();
1724 
1725 		folio = lru_to_folio(folio_list);
1726 		list_del(&folio->lru);
1727 
1728 		if (!folio_trylock(folio))
1729 			goto keep;
1730 
1731 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1732 
1733 		nr_pages = folio_nr_pages(folio);
1734 
1735 		/* Account the number of base pages */
1736 		sc->nr_scanned += nr_pages;
1737 
1738 		if (unlikely(!folio_evictable(folio)))
1739 			goto activate_locked;
1740 
1741 		if (!sc->may_unmap && folio_mapped(folio))
1742 			goto keep_locked;
1743 
1744 		/* folio_update_gen() tried to promote this page? */
1745 		if (lru_gen_enabled() && !ignore_references &&
1746 		    folio_mapped(folio) && folio_test_referenced(folio))
1747 			goto keep_locked;
1748 
1749 		/*
1750 		 * The number of dirty pages determines if a node is marked
1751 		 * reclaim_congested. kswapd will stall and start writing
1752 		 * folios if the tail of the LRU is all dirty unqueued folios.
1753 		 */
1754 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1755 		if (dirty || writeback)
1756 			stat->nr_dirty += nr_pages;
1757 
1758 		if (dirty && !writeback)
1759 			stat->nr_unqueued_dirty += nr_pages;
1760 
1761 		/*
1762 		 * Treat this folio as congested if folios are cycling
1763 		 * through the LRU so quickly that the folios marked
1764 		 * for immediate reclaim are making it to the end of
1765 		 * the LRU a second time.
1766 		 */
1767 		if (writeback && folio_test_reclaim(folio))
1768 			stat->nr_congested += nr_pages;
1769 
1770 		/*
1771 		 * If a folio at the tail of the LRU is under writeback, there
1772 		 * are three cases to consider.
1773 		 *
1774 		 * 1) If reclaim is encountering an excessive number
1775 		 *    of folios under writeback and this folio has both
1776 		 *    the writeback and reclaim flags set, then it
1777 		 *    indicates that folios are being queued for I/O but
1778 		 *    are being recycled through the LRU before the I/O
1779 		 *    can complete. Waiting on the folio itself risks an
1780 		 *    indefinite stall if it is impossible to writeback
1781 		 *    the folio due to I/O error or disconnected storage
1782 		 *    so instead note that the LRU is being scanned too
1783 		 *    quickly and the caller can stall after the folio
1784 		 *    list has been processed.
1785 		 *
1786 		 * 2) Global or new memcg reclaim encounters a folio that is
1787 		 *    not marked for immediate reclaim, or the caller does not
1788 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1789 		 *    not to fs). In this case mark the folio for immediate
1790 		 *    reclaim and continue scanning.
1791 		 *
1792 		 *    Require may_enter_fs() because we would wait on fs, which
1793 		 *    may not have submitted I/O yet. And the loop driver might
1794 		 *    enter reclaim, and deadlock if it waits on a folio for
1795 		 *    which it is needed to do the write (loop masks off
1796 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1797 		 *    would probably show more reasons.
1798 		 *
1799 		 * 3) Legacy memcg encounters a folio that already has the
1800 		 *    reclaim flag set. memcg does not have any dirty folio
1801 		 *    throttling so we could easily OOM just because too many
1802 		 *    folios are in writeback and there is nothing else to
1803 		 *    reclaim. Wait for the writeback to complete.
1804 		 *
1805 		 * In cases 1) and 2) we activate the folios to get them out of
1806 		 * the way while we continue scanning for clean folios on the
1807 		 * inactive list and refilling from the active list. The
1808 		 * observation here is that waiting for disk writes is more
1809 		 * expensive than potentially causing reloads down the line.
1810 		 * Since they're marked for immediate reclaim, they won't put
1811 		 * memory pressure on the cache working set any longer than it
1812 		 * takes to write them to disk.
1813 		 */
1814 		if (folio_test_writeback(folio)) {
1815 			/* Case 1 above */
1816 			if (current_is_kswapd() &&
1817 			    folio_test_reclaim(folio) &&
1818 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1819 				stat->nr_immediate += nr_pages;
1820 				goto activate_locked;
1821 
1822 			/* Case 2 above */
1823 			} else if (writeback_throttling_sane(sc) ||
1824 			    !folio_test_reclaim(folio) ||
1825 			    !may_enter_fs(folio, sc->gfp_mask)) {
1826 				/*
1827 				 * This is slightly racy -
1828 				 * folio_end_writeback() might have
1829 				 * just cleared the reclaim flag, then
1830 				 * setting the reclaim flag here ends up
1831 				 * interpreted as the readahead flag - but
1832 				 * that does not matter enough to care.
1833 				 * What we do want is for this folio to
1834 				 * have the reclaim flag set next time
1835 				 * memcg reclaim reaches the tests above,
1836 				 * so it will then wait for writeback to
1837 				 * avoid OOM; and it's also appropriate
1838 				 * in global reclaim.
1839 				 */
1840 				folio_set_reclaim(folio);
1841 				stat->nr_writeback += nr_pages;
1842 				goto activate_locked;
1843 
1844 			/* Case 3 above */
1845 			} else {
1846 				folio_unlock(folio);
1847 				folio_wait_writeback(folio);
1848 				/* then go back and try same folio again */
1849 				list_add_tail(&folio->lru, folio_list);
1850 				continue;
1851 			}
1852 		}
1853 
1854 		if (!ignore_references)
1855 			references = folio_check_references(folio, sc);
1856 
1857 		switch (references) {
1858 		case FOLIOREF_ACTIVATE:
1859 			goto activate_locked;
1860 		case FOLIOREF_KEEP:
1861 			stat->nr_ref_keep += nr_pages;
1862 			goto keep_locked;
1863 		case FOLIOREF_RECLAIM:
1864 		case FOLIOREF_RECLAIM_CLEAN:
1865 			; /* try to reclaim the folio below */
1866 		}
1867 
1868 		/*
1869 		 * Before reclaiming the folio, try to relocate
1870 		 * its contents to another node.
1871 		 */
1872 		if (do_demote_pass &&
1873 		    (thp_migration_supported() || !folio_test_large(folio))) {
1874 			list_add(&folio->lru, &demote_folios);
1875 			folio_unlock(folio);
1876 			continue;
1877 		}
1878 
1879 		/*
1880 		 * Anonymous process memory has backing store?
1881 		 * Try to allocate it some swap space here.
1882 		 * Lazyfree folio could be freed directly
1883 		 */
1884 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1885 			if (!folio_test_swapcache(folio)) {
1886 				if (!(sc->gfp_mask & __GFP_IO))
1887 					goto keep_locked;
1888 				if (folio_maybe_dma_pinned(folio))
1889 					goto keep_locked;
1890 				if (folio_test_large(folio)) {
1891 					/* cannot split folio, skip it */
1892 					if (!can_split_folio(folio, NULL))
1893 						goto activate_locked;
1894 					/*
1895 					 * Split folios without a PMD map right
1896 					 * away. Chances are some or all of the
1897 					 * tail pages can be freed without IO.
1898 					 */
1899 					if (!folio_entire_mapcount(folio) &&
1900 					    split_folio_to_list(folio,
1901 								folio_list))
1902 						goto activate_locked;
1903 				}
1904 				if (!add_to_swap(folio)) {
1905 					if (!folio_test_large(folio))
1906 						goto activate_locked_split;
1907 					/* Fallback to swap normal pages */
1908 					if (split_folio_to_list(folio,
1909 								folio_list))
1910 						goto activate_locked;
1911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1912 					count_vm_event(THP_SWPOUT_FALLBACK);
1913 #endif
1914 					if (!add_to_swap(folio))
1915 						goto activate_locked_split;
1916 				}
1917 			}
1918 		} else if (folio_test_swapbacked(folio) &&
1919 			   folio_test_large(folio)) {
1920 			/* Split shmem folio */
1921 			if (split_folio_to_list(folio, folio_list))
1922 				goto keep_locked;
1923 		}
1924 
1925 		/*
1926 		 * If the folio was split above, the tail pages will make
1927 		 * their own pass through this function and be accounted
1928 		 * then.
1929 		 */
1930 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1931 			sc->nr_scanned -= (nr_pages - 1);
1932 			nr_pages = 1;
1933 		}
1934 
1935 		/*
1936 		 * The folio is mapped into the page tables of one or more
1937 		 * processes. Try to unmap it here.
1938 		 */
1939 		if (folio_mapped(folio)) {
1940 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1941 			bool was_swapbacked = folio_test_swapbacked(folio);
1942 
1943 			if (folio_test_pmd_mappable(folio))
1944 				flags |= TTU_SPLIT_HUGE_PMD;
1945 
1946 			try_to_unmap(folio, flags);
1947 			if (folio_mapped(folio)) {
1948 				stat->nr_unmap_fail += nr_pages;
1949 				if (!was_swapbacked &&
1950 				    folio_test_swapbacked(folio))
1951 					stat->nr_lazyfree_fail += nr_pages;
1952 				goto activate_locked;
1953 			}
1954 		}
1955 
1956 		/*
1957 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1958 		 * No point in trying to reclaim folio if it is pinned.
1959 		 * Furthermore we don't want to reclaim underlying fs metadata
1960 		 * if the folio is pinned and thus potentially modified by the
1961 		 * pinning process as that may upset the filesystem.
1962 		 */
1963 		if (folio_maybe_dma_pinned(folio))
1964 			goto activate_locked;
1965 
1966 		mapping = folio_mapping(folio);
1967 		if (folio_test_dirty(folio)) {
1968 			/*
1969 			 * Only kswapd can writeback filesystem folios
1970 			 * to avoid risk of stack overflow. But avoid
1971 			 * injecting inefficient single-folio I/O into
1972 			 * flusher writeback as much as possible: only
1973 			 * write folios when we've encountered many
1974 			 * dirty folios, and when we've already scanned
1975 			 * the rest of the LRU for clean folios and see
1976 			 * the same dirty folios again (with the reclaim
1977 			 * flag set).
1978 			 */
1979 			if (folio_is_file_lru(folio) &&
1980 			    (!current_is_kswapd() ||
1981 			     !folio_test_reclaim(folio) ||
1982 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1983 				/*
1984 				 * Immediately reclaim when written back.
1985 				 * Similar in principle to folio_deactivate()
1986 				 * except we already have the folio isolated
1987 				 * and know it's dirty
1988 				 */
1989 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1990 						nr_pages);
1991 				folio_set_reclaim(folio);
1992 
1993 				goto activate_locked;
1994 			}
1995 
1996 			if (references == FOLIOREF_RECLAIM_CLEAN)
1997 				goto keep_locked;
1998 			if (!may_enter_fs(folio, sc->gfp_mask))
1999 				goto keep_locked;
2000 			if (!sc->may_writepage)
2001 				goto keep_locked;
2002 
2003 			/*
2004 			 * Folio is dirty. Flush the TLB if a writable entry
2005 			 * potentially exists to avoid CPU writes after I/O
2006 			 * starts and then write it out here.
2007 			 */
2008 			try_to_unmap_flush_dirty();
2009 			switch (pageout(folio, mapping, &plug)) {
2010 			case PAGE_KEEP:
2011 				goto keep_locked;
2012 			case PAGE_ACTIVATE:
2013 				goto activate_locked;
2014 			case PAGE_SUCCESS:
2015 				stat->nr_pageout += nr_pages;
2016 
2017 				if (folio_test_writeback(folio))
2018 					goto keep;
2019 				if (folio_test_dirty(folio))
2020 					goto keep;
2021 
2022 				/*
2023 				 * A synchronous write - probably a ramdisk.  Go
2024 				 * ahead and try to reclaim the folio.
2025 				 */
2026 				if (!folio_trylock(folio))
2027 					goto keep;
2028 				if (folio_test_dirty(folio) ||
2029 				    folio_test_writeback(folio))
2030 					goto keep_locked;
2031 				mapping = folio_mapping(folio);
2032 				fallthrough;
2033 			case PAGE_CLEAN:
2034 				; /* try to free the folio below */
2035 			}
2036 		}
2037 
2038 		/*
2039 		 * If the folio has buffers, try to free the buffer
2040 		 * mappings associated with this folio. If we succeed
2041 		 * we try to free the folio as well.
2042 		 *
2043 		 * We do this even if the folio is dirty.
2044 		 * filemap_release_folio() does not perform I/O, but it
2045 		 * is possible for a folio to have the dirty flag set,
2046 		 * but it is actually clean (all its buffers are clean).
2047 		 * This happens if the buffers were written out directly,
2048 		 * with submit_bh(). ext3 will do this, as well as
2049 		 * the blockdev mapping.  filemap_release_folio() will
2050 		 * discover that cleanness and will drop the buffers
2051 		 * and mark the folio clean - it can be freed.
2052 		 *
2053 		 * Rarely, folios can have buffers and no ->mapping.
2054 		 * These are the folios which were not successfully
2055 		 * invalidated in truncate_cleanup_folio().  We try to
2056 		 * drop those buffers here and if that worked, and the
2057 		 * folio is no longer mapped into process address space
2058 		 * (refcount == 1) it can be freed.  Otherwise, leave
2059 		 * the folio on the LRU so it is swappable.
2060 		 */
2061 		if (folio_has_private(folio)) {
2062 			if (!filemap_release_folio(folio, sc->gfp_mask))
2063 				goto activate_locked;
2064 			if (!mapping && folio_ref_count(folio) == 1) {
2065 				folio_unlock(folio);
2066 				if (folio_put_testzero(folio))
2067 					goto free_it;
2068 				else {
2069 					/*
2070 					 * rare race with speculative reference.
2071 					 * the speculative reference will free
2072 					 * this folio shortly, so we may
2073 					 * increment nr_reclaimed here (and
2074 					 * leave it off the LRU).
2075 					 */
2076 					nr_reclaimed += nr_pages;
2077 					continue;
2078 				}
2079 			}
2080 		}
2081 
2082 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2083 			/* follow __remove_mapping for reference */
2084 			if (!folio_ref_freeze(folio, 1))
2085 				goto keep_locked;
2086 			/*
2087 			 * The folio has only one reference left, which is
2088 			 * from the isolation. After the caller puts the
2089 			 * folio back on the lru and drops the reference, the
2090 			 * folio will be freed anyway. It doesn't matter
2091 			 * which lru it goes on. So we don't bother checking
2092 			 * the dirty flag here.
2093 			 */
2094 			count_vm_events(PGLAZYFREED, nr_pages);
2095 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2096 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2097 							 sc->target_mem_cgroup))
2098 			goto keep_locked;
2099 
2100 		folio_unlock(folio);
2101 free_it:
2102 		/*
2103 		 * Folio may get swapped out as a whole, need to account
2104 		 * all pages in it.
2105 		 */
2106 		nr_reclaimed += nr_pages;
2107 
2108 		/*
2109 		 * Is there need to periodically free_folio_list? It would
2110 		 * appear not as the counts should be low
2111 		 */
2112 		if (unlikely(folio_test_large(folio)))
2113 			destroy_large_folio(folio);
2114 		else
2115 			list_add(&folio->lru, &free_folios);
2116 		continue;
2117 
2118 activate_locked_split:
2119 		/*
2120 		 * The tail pages that are failed to add into swap cache
2121 		 * reach here.  Fixup nr_scanned and nr_pages.
2122 		 */
2123 		if (nr_pages > 1) {
2124 			sc->nr_scanned -= (nr_pages - 1);
2125 			nr_pages = 1;
2126 		}
2127 activate_locked:
2128 		/* Not a candidate for swapping, so reclaim swap space. */
2129 		if (folio_test_swapcache(folio) &&
2130 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2131 			folio_free_swap(folio);
2132 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2133 		if (!folio_test_mlocked(folio)) {
2134 			int type = folio_is_file_lru(folio);
2135 			folio_set_active(folio);
2136 			stat->nr_activate[type] += nr_pages;
2137 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2138 		}
2139 keep_locked:
2140 		folio_unlock(folio);
2141 keep:
2142 		list_add(&folio->lru, &ret_folios);
2143 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2144 				folio_test_unevictable(folio), folio);
2145 	}
2146 	/* 'folio_list' is always empty here */
2147 
2148 	/* Migrate folios selected for demotion */
2149 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2150 	/* Folios that could not be demoted are still in @demote_folios */
2151 	if (!list_empty(&demote_folios)) {
2152 		/* Folios which weren't demoted go back on @folio_list */
2153 		list_splice_init(&demote_folios, folio_list);
2154 
2155 		/*
2156 		 * goto retry to reclaim the undemoted folios in folio_list if
2157 		 * desired.
2158 		 *
2159 		 * Reclaiming directly from top tier nodes is not often desired
2160 		 * due to it breaking the LRU ordering: in general memory
2161 		 * should be reclaimed from lower tier nodes and demoted from
2162 		 * top tier nodes.
2163 		 *
2164 		 * However, disabling reclaim from top tier nodes entirely
2165 		 * would cause ooms in edge scenarios where lower tier memory
2166 		 * is unreclaimable for whatever reason, eg memory being
2167 		 * mlocked or too hot to reclaim. We can disable reclaim
2168 		 * from top tier nodes in proactive reclaim though as that is
2169 		 * not real memory pressure.
2170 		 */
2171 		if (!sc->proactive) {
2172 			do_demote_pass = false;
2173 			goto retry;
2174 		}
2175 	}
2176 
2177 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2178 
2179 	mem_cgroup_uncharge_list(&free_folios);
2180 	try_to_unmap_flush();
2181 	free_unref_page_list(&free_folios);
2182 
2183 	list_splice(&ret_folios, folio_list);
2184 	count_vm_events(PGACTIVATE, pgactivate);
2185 
2186 	if (plug)
2187 		swap_write_unplug(plug);
2188 	return nr_reclaimed;
2189 }
2190 
2191 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2192 					   struct list_head *folio_list)
2193 {
2194 	struct scan_control sc = {
2195 		.gfp_mask = GFP_KERNEL,
2196 		.may_unmap = 1,
2197 	};
2198 	struct reclaim_stat stat;
2199 	unsigned int nr_reclaimed;
2200 	struct folio *folio, *next;
2201 	LIST_HEAD(clean_folios);
2202 	unsigned int noreclaim_flag;
2203 
2204 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2205 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2206 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2207 		    !folio_test_unevictable(folio)) {
2208 			folio_clear_active(folio);
2209 			list_move(&folio->lru, &clean_folios);
2210 		}
2211 	}
2212 
2213 	/*
2214 	 * We should be safe here since we are only dealing with file pages and
2215 	 * we are not kswapd and therefore cannot write dirty file pages. But
2216 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2217 	 * change in the future.
2218 	 */
2219 	noreclaim_flag = memalloc_noreclaim_save();
2220 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2221 					&stat, true);
2222 	memalloc_noreclaim_restore(noreclaim_flag);
2223 
2224 	list_splice(&clean_folios, folio_list);
2225 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2226 			    -(long)nr_reclaimed);
2227 	/*
2228 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2229 	 * they will rotate back to anonymous LRU in the end if it failed to
2230 	 * discard so isolated count will be mismatched.
2231 	 * Compensate the isolated count for both LRU lists.
2232 	 */
2233 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2234 			    stat.nr_lazyfree_fail);
2235 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2236 			    -(long)stat.nr_lazyfree_fail);
2237 	return nr_reclaimed;
2238 }
2239 
2240 /*
2241  * Update LRU sizes after isolating pages. The LRU size updates must
2242  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2243  */
2244 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2245 			enum lru_list lru, unsigned long *nr_zone_taken)
2246 {
2247 	int zid;
2248 
2249 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2250 		if (!nr_zone_taken[zid])
2251 			continue;
2252 
2253 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2254 	}
2255 
2256 }
2257 
2258 /*
2259  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2260  *
2261  * lruvec->lru_lock is heavily contended.  Some of the functions that
2262  * shrink the lists perform better by taking out a batch of pages
2263  * and working on them outside the LRU lock.
2264  *
2265  * For pagecache intensive workloads, this function is the hottest
2266  * spot in the kernel (apart from copy_*_user functions).
2267  *
2268  * Lru_lock must be held before calling this function.
2269  *
2270  * @nr_to_scan:	The number of eligible pages to look through on the list.
2271  * @lruvec:	The LRU vector to pull pages from.
2272  * @dst:	The temp list to put pages on to.
2273  * @nr_scanned:	The number of pages that were scanned.
2274  * @sc:		The scan_control struct for this reclaim session
2275  * @lru:	LRU list id for isolating
2276  *
2277  * returns how many pages were moved onto *@dst.
2278  */
2279 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2280 		struct lruvec *lruvec, struct list_head *dst,
2281 		unsigned long *nr_scanned, struct scan_control *sc,
2282 		enum lru_list lru)
2283 {
2284 	struct list_head *src = &lruvec->lists[lru];
2285 	unsigned long nr_taken = 0;
2286 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2287 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2288 	unsigned long skipped = 0;
2289 	unsigned long scan, total_scan, nr_pages;
2290 	LIST_HEAD(folios_skipped);
2291 
2292 	total_scan = 0;
2293 	scan = 0;
2294 	while (scan < nr_to_scan && !list_empty(src)) {
2295 		struct list_head *move_to = src;
2296 		struct folio *folio;
2297 
2298 		folio = lru_to_folio(src);
2299 		prefetchw_prev_lru_folio(folio, src, flags);
2300 
2301 		nr_pages = folio_nr_pages(folio);
2302 		total_scan += nr_pages;
2303 
2304 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2305 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2306 			move_to = &folios_skipped;
2307 			goto move;
2308 		}
2309 
2310 		/*
2311 		 * Do not count skipped folios because that makes the function
2312 		 * return with no isolated folios if the LRU mostly contains
2313 		 * ineligible folios.  This causes the VM to not reclaim any
2314 		 * folios, triggering a premature OOM.
2315 		 * Account all pages in a folio.
2316 		 */
2317 		scan += nr_pages;
2318 
2319 		if (!folio_test_lru(folio))
2320 			goto move;
2321 		if (!sc->may_unmap && folio_mapped(folio))
2322 			goto move;
2323 
2324 		/*
2325 		 * Be careful not to clear the lru flag until after we're
2326 		 * sure the folio is not being freed elsewhere -- the
2327 		 * folio release code relies on it.
2328 		 */
2329 		if (unlikely(!folio_try_get(folio)))
2330 			goto move;
2331 
2332 		if (!folio_test_clear_lru(folio)) {
2333 			/* Another thread is already isolating this folio */
2334 			folio_put(folio);
2335 			goto move;
2336 		}
2337 
2338 		nr_taken += nr_pages;
2339 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2340 		move_to = dst;
2341 move:
2342 		list_move(&folio->lru, move_to);
2343 	}
2344 
2345 	/*
2346 	 * Splice any skipped folios to the start of the LRU list. Note that
2347 	 * this disrupts the LRU order when reclaiming for lower zones but
2348 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2349 	 * scanning would soon rescan the same folios to skip and waste lots
2350 	 * of cpu cycles.
2351 	 */
2352 	if (!list_empty(&folios_skipped)) {
2353 		int zid;
2354 
2355 		list_splice(&folios_skipped, src);
2356 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2357 			if (!nr_skipped[zid])
2358 				continue;
2359 
2360 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2361 			skipped += nr_skipped[zid];
2362 		}
2363 	}
2364 	*nr_scanned = total_scan;
2365 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2366 				    total_scan, skipped, nr_taken,
2367 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2368 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2369 	return nr_taken;
2370 }
2371 
2372 /**
2373  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2374  * @folio: Folio to isolate from its LRU list.
2375  *
2376  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2377  * corresponding to whatever LRU list the folio was on.
2378  *
2379  * The folio will have its LRU flag cleared.  If it was found on the
2380  * active list, it will have the Active flag set.  If it was found on the
2381  * unevictable list, it will have the Unevictable flag set.  These flags
2382  * may need to be cleared by the caller before letting the page go.
2383  *
2384  * Context:
2385  *
2386  * (1) Must be called with an elevated refcount on the folio. This is a
2387  *     fundamental difference from isolate_lru_folios() (which is called
2388  *     without a stable reference).
2389  * (2) The lru_lock must not be held.
2390  * (3) Interrupts must be enabled.
2391  *
2392  * Return: true if the folio was removed from an LRU list.
2393  * false if the folio was not on an LRU list.
2394  */
2395 bool folio_isolate_lru(struct folio *folio)
2396 {
2397 	bool ret = false;
2398 
2399 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2400 
2401 	if (folio_test_clear_lru(folio)) {
2402 		struct lruvec *lruvec;
2403 
2404 		folio_get(folio);
2405 		lruvec = folio_lruvec_lock_irq(folio);
2406 		lruvec_del_folio(lruvec, folio);
2407 		unlock_page_lruvec_irq(lruvec);
2408 		ret = true;
2409 	}
2410 
2411 	return ret;
2412 }
2413 
2414 /*
2415  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2416  * then get rescheduled. When there are massive number of tasks doing page
2417  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2418  * the LRU list will go small and be scanned faster than necessary, leading to
2419  * unnecessary swapping, thrashing and OOM.
2420  */
2421 static int too_many_isolated(struct pglist_data *pgdat, int file,
2422 		struct scan_control *sc)
2423 {
2424 	unsigned long inactive, isolated;
2425 	bool too_many;
2426 
2427 	if (current_is_kswapd())
2428 		return 0;
2429 
2430 	if (!writeback_throttling_sane(sc))
2431 		return 0;
2432 
2433 	if (file) {
2434 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2435 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2436 	} else {
2437 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2438 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2439 	}
2440 
2441 	/*
2442 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2443 	 * won't get blocked by normal direct-reclaimers, forming a circular
2444 	 * deadlock.
2445 	 */
2446 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2447 		inactive >>= 3;
2448 
2449 	too_many = isolated > inactive;
2450 
2451 	/* Wake up tasks throttled due to too_many_isolated. */
2452 	if (!too_many)
2453 		wake_throttle_isolated(pgdat);
2454 
2455 	return too_many;
2456 }
2457 
2458 /*
2459  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2460  * On return, @list is reused as a list of folios to be freed by the caller.
2461  *
2462  * Returns the number of pages moved to the given lruvec.
2463  */
2464 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2465 		struct list_head *list)
2466 {
2467 	int nr_pages, nr_moved = 0;
2468 	LIST_HEAD(folios_to_free);
2469 
2470 	while (!list_empty(list)) {
2471 		struct folio *folio = lru_to_folio(list);
2472 
2473 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2474 		list_del(&folio->lru);
2475 		if (unlikely(!folio_evictable(folio))) {
2476 			spin_unlock_irq(&lruvec->lru_lock);
2477 			folio_putback_lru(folio);
2478 			spin_lock_irq(&lruvec->lru_lock);
2479 			continue;
2480 		}
2481 
2482 		/*
2483 		 * The folio_set_lru needs to be kept here for list integrity.
2484 		 * Otherwise:
2485 		 *   #0 move_folios_to_lru             #1 release_pages
2486 		 *   if (!folio_put_testzero())
2487 		 *				      if (folio_put_testzero())
2488 		 *				        !lru //skip lru_lock
2489 		 *     folio_set_lru()
2490 		 *     list_add(&folio->lru,)
2491 		 *                                        list_add(&folio->lru,)
2492 		 */
2493 		folio_set_lru(folio);
2494 
2495 		if (unlikely(folio_put_testzero(folio))) {
2496 			__folio_clear_lru_flags(folio);
2497 
2498 			if (unlikely(folio_test_large(folio))) {
2499 				spin_unlock_irq(&lruvec->lru_lock);
2500 				destroy_large_folio(folio);
2501 				spin_lock_irq(&lruvec->lru_lock);
2502 			} else
2503 				list_add(&folio->lru, &folios_to_free);
2504 
2505 			continue;
2506 		}
2507 
2508 		/*
2509 		 * All pages were isolated from the same lruvec (and isolation
2510 		 * inhibits memcg migration).
2511 		 */
2512 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2513 		lruvec_add_folio(lruvec, folio);
2514 		nr_pages = folio_nr_pages(folio);
2515 		nr_moved += nr_pages;
2516 		if (folio_test_active(folio))
2517 			workingset_age_nonresident(lruvec, nr_pages);
2518 	}
2519 
2520 	/*
2521 	 * To save our caller's stack, now use input list for pages to free.
2522 	 */
2523 	list_splice(&folios_to_free, list);
2524 
2525 	return nr_moved;
2526 }
2527 
2528 /*
2529  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2530  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2531  * we should not throttle.  Otherwise it is safe to do so.
2532  */
2533 static int current_may_throttle(void)
2534 {
2535 	return !(current->flags & PF_LOCAL_THROTTLE);
2536 }
2537 
2538 /*
2539  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2540  * of reclaimed pages
2541  */
2542 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2543 		struct lruvec *lruvec, struct scan_control *sc,
2544 		enum lru_list lru)
2545 {
2546 	LIST_HEAD(folio_list);
2547 	unsigned long nr_scanned;
2548 	unsigned int nr_reclaimed = 0;
2549 	unsigned long nr_taken;
2550 	struct reclaim_stat stat;
2551 	bool file = is_file_lru(lru);
2552 	enum vm_event_item item;
2553 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2554 	bool stalled = false;
2555 
2556 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2557 		if (stalled)
2558 			return 0;
2559 
2560 		/* wait a bit for the reclaimer. */
2561 		stalled = true;
2562 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2563 
2564 		/* We are about to die and free our memory. Return now. */
2565 		if (fatal_signal_pending(current))
2566 			return SWAP_CLUSTER_MAX;
2567 	}
2568 
2569 	lru_add_drain();
2570 
2571 	spin_lock_irq(&lruvec->lru_lock);
2572 
2573 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2574 				     &nr_scanned, sc, lru);
2575 
2576 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2577 	item = PGSCAN_KSWAPD + reclaimer_offset();
2578 	if (!cgroup_reclaim(sc))
2579 		__count_vm_events(item, nr_scanned);
2580 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2581 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2582 
2583 	spin_unlock_irq(&lruvec->lru_lock);
2584 
2585 	if (nr_taken == 0)
2586 		return 0;
2587 
2588 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2589 
2590 	spin_lock_irq(&lruvec->lru_lock);
2591 	move_folios_to_lru(lruvec, &folio_list);
2592 
2593 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2594 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2595 	if (!cgroup_reclaim(sc))
2596 		__count_vm_events(item, nr_reclaimed);
2597 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2598 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2599 	spin_unlock_irq(&lruvec->lru_lock);
2600 
2601 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2602 	mem_cgroup_uncharge_list(&folio_list);
2603 	free_unref_page_list(&folio_list);
2604 
2605 	/*
2606 	 * If dirty folios are scanned that are not queued for IO, it
2607 	 * implies that flushers are not doing their job. This can
2608 	 * happen when memory pressure pushes dirty folios to the end of
2609 	 * the LRU before the dirty limits are breached and the dirty
2610 	 * data has expired. It can also happen when the proportion of
2611 	 * dirty folios grows not through writes but through memory
2612 	 * pressure reclaiming all the clean cache. And in some cases,
2613 	 * the flushers simply cannot keep up with the allocation
2614 	 * rate. Nudge the flusher threads in case they are asleep.
2615 	 */
2616 	if (stat.nr_unqueued_dirty == nr_taken) {
2617 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2618 		/*
2619 		 * For cgroupv1 dirty throttling is achieved by waking up
2620 		 * the kernel flusher here and later waiting on folios
2621 		 * which are in writeback to finish (see shrink_folio_list()).
2622 		 *
2623 		 * Flusher may not be able to issue writeback quickly
2624 		 * enough for cgroupv1 writeback throttling to work
2625 		 * on a large system.
2626 		 */
2627 		if (!writeback_throttling_sane(sc))
2628 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2629 	}
2630 
2631 	sc->nr.dirty += stat.nr_dirty;
2632 	sc->nr.congested += stat.nr_congested;
2633 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2634 	sc->nr.writeback += stat.nr_writeback;
2635 	sc->nr.immediate += stat.nr_immediate;
2636 	sc->nr.taken += nr_taken;
2637 	if (file)
2638 		sc->nr.file_taken += nr_taken;
2639 
2640 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2641 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2642 	return nr_reclaimed;
2643 }
2644 
2645 /*
2646  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2647  *
2648  * We move them the other way if the folio is referenced by one or more
2649  * processes.
2650  *
2651  * If the folios are mostly unmapped, the processing is fast and it is
2652  * appropriate to hold lru_lock across the whole operation.  But if
2653  * the folios are mapped, the processing is slow (folio_referenced()), so
2654  * we should drop lru_lock around each folio.  It's impossible to balance
2655  * this, so instead we remove the folios from the LRU while processing them.
2656  * It is safe to rely on the active flag against the non-LRU folios in here
2657  * because nobody will play with that bit on a non-LRU folio.
2658  *
2659  * The downside is that we have to touch folio->_refcount against each folio.
2660  * But we had to alter folio->flags anyway.
2661  */
2662 static void shrink_active_list(unsigned long nr_to_scan,
2663 			       struct lruvec *lruvec,
2664 			       struct scan_control *sc,
2665 			       enum lru_list lru)
2666 {
2667 	unsigned long nr_taken;
2668 	unsigned long nr_scanned;
2669 	unsigned long vm_flags;
2670 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2671 	LIST_HEAD(l_active);
2672 	LIST_HEAD(l_inactive);
2673 	unsigned nr_deactivate, nr_activate;
2674 	unsigned nr_rotated = 0;
2675 	int file = is_file_lru(lru);
2676 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2677 
2678 	lru_add_drain();
2679 
2680 	spin_lock_irq(&lruvec->lru_lock);
2681 
2682 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2683 				     &nr_scanned, sc, lru);
2684 
2685 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2686 
2687 	if (!cgroup_reclaim(sc))
2688 		__count_vm_events(PGREFILL, nr_scanned);
2689 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2690 
2691 	spin_unlock_irq(&lruvec->lru_lock);
2692 
2693 	while (!list_empty(&l_hold)) {
2694 		struct folio *folio;
2695 
2696 		cond_resched();
2697 		folio = lru_to_folio(&l_hold);
2698 		list_del(&folio->lru);
2699 
2700 		if (unlikely(!folio_evictable(folio))) {
2701 			folio_putback_lru(folio);
2702 			continue;
2703 		}
2704 
2705 		if (unlikely(buffer_heads_over_limit)) {
2706 			if (folio_test_private(folio) && folio_trylock(folio)) {
2707 				if (folio_test_private(folio))
2708 					filemap_release_folio(folio, 0);
2709 				folio_unlock(folio);
2710 			}
2711 		}
2712 
2713 		/* Referenced or rmap lock contention: rotate */
2714 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2715 				     &vm_flags) != 0) {
2716 			/*
2717 			 * Identify referenced, file-backed active folios and
2718 			 * give them one more trip around the active list. So
2719 			 * that executable code get better chances to stay in
2720 			 * memory under moderate memory pressure.  Anon folios
2721 			 * are not likely to be evicted by use-once streaming
2722 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2723 			 * so we ignore them here.
2724 			 */
2725 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2726 				nr_rotated += folio_nr_pages(folio);
2727 				list_add(&folio->lru, &l_active);
2728 				continue;
2729 			}
2730 		}
2731 
2732 		folio_clear_active(folio);	/* we are de-activating */
2733 		folio_set_workingset(folio);
2734 		list_add(&folio->lru, &l_inactive);
2735 	}
2736 
2737 	/*
2738 	 * Move folios back to the lru list.
2739 	 */
2740 	spin_lock_irq(&lruvec->lru_lock);
2741 
2742 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2743 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2744 	/* Keep all free folios in l_active list */
2745 	list_splice(&l_inactive, &l_active);
2746 
2747 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2748 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2749 
2750 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2751 	spin_unlock_irq(&lruvec->lru_lock);
2752 
2753 	if (nr_rotated)
2754 		lru_note_cost(lruvec, file, 0, nr_rotated);
2755 	mem_cgroup_uncharge_list(&l_active);
2756 	free_unref_page_list(&l_active);
2757 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2758 			nr_deactivate, nr_rotated, sc->priority, file);
2759 }
2760 
2761 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2762 				      struct pglist_data *pgdat)
2763 {
2764 	struct reclaim_stat dummy_stat;
2765 	unsigned int nr_reclaimed;
2766 	struct folio *folio;
2767 	struct scan_control sc = {
2768 		.gfp_mask = GFP_KERNEL,
2769 		.may_writepage = 1,
2770 		.may_unmap = 1,
2771 		.may_swap = 1,
2772 		.no_demotion = 1,
2773 	};
2774 
2775 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2776 	while (!list_empty(folio_list)) {
2777 		folio = lru_to_folio(folio_list);
2778 		list_del(&folio->lru);
2779 		folio_putback_lru(folio);
2780 	}
2781 
2782 	return nr_reclaimed;
2783 }
2784 
2785 unsigned long reclaim_pages(struct list_head *folio_list)
2786 {
2787 	int nid;
2788 	unsigned int nr_reclaimed = 0;
2789 	LIST_HEAD(node_folio_list);
2790 	unsigned int noreclaim_flag;
2791 
2792 	if (list_empty(folio_list))
2793 		return nr_reclaimed;
2794 
2795 	noreclaim_flag = memalloc_noreclaim_save();
2796 
2797 	nid = folio_nid(lru_to_folio(folio_list));
2798 	do {
2799 		struct folio *folio = lru_to_folio(folio_list);
2800 
2801 		if (nid == folio_nid(folio)) {
2802 			folio_clear_active(folio);
2803 			list_move(&folio->lru, &node_folio_list);
2804 			continue;
2805 		}
2806 
2807 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2808 		nid = folio_nid(lru_to_folio(folio_list));
2809 	} while (!list_empty(folio_list));
2810 
2811 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2812 
2813 	memalloc_noreclaim_restore(noreclaim_flag);
2814 
2815 	return nr_reclaimed;
2816 }
2817 
2818 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2819 				 struct lruvec *lruvec, struct scan_control *sc)
2820 {
2821 	if (is_active_lru(lru)) {
2822 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2823 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2824 		else
2825 			sc->skipped_deactivate = 1;
2826 		return 0;
2827 	}
2828 
2829 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2830 }
2831 
2832 /*
2833  * The inactive anon list should be small enough that the VM never has
2834  * to do too much work.
2835  *
2836  * The inactive file list should be small enough to leave most memory
2837  * to the established workingset on the scan-resistant active list,
2838  * but large enough to avoid thrashing the aggregate readahead window.
2839  *
2840  * Both inactive lists should also be large enough that each inactive
2841  * folio has a chance to be referenced again before it is reclaimed.
2842  *
2843  * If that fails and refaulting is observed, the inactive list grows.
2844  *
2845  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2846  * on this LRU, maintained by the pageout code. An inactive_ratio
2847  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2848  *
2849  * total     target    max
2850  * memory    ratio     inactive
2851  * -------------------------------------
2852  *   10MB       1         5MB
2853  *  100MB       1        50MB
2854  *    1GB       3       250MB
2855  *   10GB      10       0.9GB
2856  *  100GB      31         3GB
2857  *    1TB     101        10GB
2858  *   10TB     320        32GB
2859  */
2860 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2861 {
2862 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2863 	unsigned long inactive, active;
2864 	unsigned long inactive_ratio;
2865 	unsigned long gb;
2866 
2867 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2868 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2869 
2870 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2871 	if (gb)
2872 		inactive_ratio = int_sqrt(10 * gb);
2873 	else
2874 		inactive_ratio = 1;
2875 
2876 	return inactive * inactive_ratio < active;
2877 }
2878 
2879 enum scan_balance {
2880 	SCAN_EQUAL,
2881 	SCAN_FRACT,
2882 	SCAN_ANON,
2883 	SCAN_FILE,
2884 };
2885 
2886 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2887 {
2888 	unsigned long file;
2889 	struct lruvec *target_lruvec;
2890 
2891 	if (lru_gen_enabled())
2892 		return;
2893 
2894 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2895 
2896 	/*
2897 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2898 	 * lruvec stats for heuristics.
2899 	 */
2900 	mem_cgroup_flush_stats();
2901 
2902 	/*
2903 	 * Determine the scan balance between anon and file LRUs.
2904 	 */
2905 	spin_lock_irq(&target_lruvec->lru_lock);
2906 	sc->anon_cost = target_lruvec->anon_cost;
2907 	sc->file_cost = target_lruvec->file_cost;
2908 	spin_unlock_irq(&target_lruvec->lru_lock);
2909 
2910 	/*
2911 	 * Target desirable inactive:active list ratios for the anon
2912 	 * and file LRU lists.
2913 	 */
2914 	if (!sc->force_deactivate) {
2915 		unsigned long refaults;
2916 
2917 		/*
2918 		 * When refaults are being observed, it means a new
2919 		 * workingset is being established. Deactivate to get
2920 		 * rid of any stale active pages quickly.
2921 		 */
2922 		refaults = lruvec_page_state(target_lruvec,
2923 				WORKINGSET_ACTIVATE_ANON);
2924 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2925 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2926 			sc->may_deactivate |= DEACTIVATE_ANON;
2927 		else
2928 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2929 
2930 		refaults = lruvec_page_state(target_lruvec,
2931 				WORKINGSET_ACTIVATE_FILE);
2932 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2933 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2934 			sc->may_deactivate |= DEACTIVATE_FILE;
2935 		else
2936 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2937 	} else
2938 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2939 
2940 	/*
2941 	 * If we have plenty of inactive file pages that aren't
2942 	 * thrashing, try to reclaim those first before touching
2943 	 * anonymous pages.
2944 	 */
2945 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2946 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2947 		sc->cache_trim_mode = 1;
2948 	else
2949 		sc->cache_trim_mode = 0;
2950 
2951 	/*
2952 	 * Prevent the reclaimer from falling into the cache trap: as
2953 	 * cache pages start out inactive, every cache fault will tip
2954 	 * the scan balance towards the file LRU.  And as the file LRU
2955 	 * shrinks, so does the window for rotation from references.
2956 	 * This means we have a runaway feedback loop where a tiny
2957 	 * thrashing file LRU becomes infinitely more attractive than
2958 	 * anon pages.  Try to detect this based on file LRU size.
2959 	 */
2960 	if (!cgroup_reclaim(sc)) {
2961 		unsigned long total_high_wmark = 0;
2962 		unsigned long free, anon;
2963 		int z;
2964 
2965 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2966 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2967 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2968 
2969 		for (z = 0; z < MAX_NR_ZONES; z++) {
2970 			struct zone *zone = &pgdat->node_zones[z];
2971 
2972 			if (!managed_zone(zone))
2973 				continue;
2974 
2975 			total_high_wmark += high_wmark_pages(zone);
2976 		}
2977 
2978 		/*
2979 		 * Consider anon: if that's low too, this isn't a
2980 		 * runaway file reclaim problem, but rather just
2981 		 * extreme pressure. Reclaim as per usual then.
2982 		 */
2983 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2984 
2985 		sc->file_is_tiny =
2986 			file + free <= total_high_wmark &&
2987 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2988 			anon >> sc->priority;
2989 	}
2990 }
2991 
2992 /*
2993  * Determine how aggressively the anon and file LRU lists should be
2994  * scanned.
2995  *
2996  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2997  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2998  */
2999 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3000 			   unsigned long *nr)
3001 {
3002 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3003 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3004 	unsigned long anon_cost, file_cost, total_cost;
3005 	int swappiness = mem_cgroup_swappiness(memcg);
3006 	u64 fraction[ANON_AND_FILE];
3007 	u64 denominator = 0;	/* gcc */
3008 	enum scan_balance scan_balance;
3009 	unsigned long ap, fp;
3010 	enum lru_list lru;
3011 
3012 	/* If we have no swap space, do not bother scanning anon folios. */
3013 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3014 		scan_balance = SCAN_FILE;
3015 		goto out;
3016 	}
3017 
3018 	/*
3019 	 * Global reclaim will swap to prevent OOM even with no
3020 	 * swappiness, but memcg users want to use this knob to
3021 	 * disable swapping for individual groups completely when
3022 	 * using the memory controller's swap limit feature would be
3023 	 * too expensive.
3024 	 */
3025 	if (cgroup_reclaim(sc) && !swappiness) {
3026 		scan_balance = SCAN_FILE;
3027 		goto out;
3028 	}
3029 
3030 	/*
3031 	 * Do not apply any pressure balancing cleverness when the
3032 	 * system is close to OOM, scan both anon and file equally
3033 	 * (unless the swappiness setting disagrees with swapping).
3034 	 */
3035 	if (!sc->priority && swappiness) {
3036 		scan_balance = SCAN_EQUAL;
3037 		goto out;
3038 	}
3039 
3040 	/*
3041 	 * If the system is almost out of file pages, force-scan anon.
3042 	 */
3043 	if (sc->file_is_tiny) {
3044 		scan_balance = SCAN_ANON;
3045 		goto out;
3046 	}
3047 
3048 	/*
3049 	 * If there is enough inactive page cache, we do not reclaim
3050 	 * anything from the anonymous working right now.
3051 	 */
3052 	if (sc->cache_trim_mode) {
3053 		scan_balance = SCAN_FILE;
3054 		goto out;
3055 	}
3056 
3057 	scan_balance = SCAN_FRACT;
3058 	/*
3059 	 * Calculate the pressure balance between anon and file pages.
3060 	 *
3061 	 * The amount of pressure we put on each LRU is inversely
3062 	 * proportional to the cost of reclaiming each list, as
3063 	 * determined by the share of pages that are refaulting, times
3064 	 * the relative IO cost of bringing back a swapped out
3065 	 * anonymous page vs reloading a filesystem page (swappiness).
3066 	 *
3067 	 * Although we limit that influence to ensure no list gets
3068 	 * left behind completely: at least a third of the pressure is
3069 	 * applied, before swappiness.
3070 	 *
3071 	 * With swappiness at 100, anon and file have equal IO cost.
3072 	 */
3073 	total_cost = sc->anon_cost + sc->file_cost;
3074 	anon_cost = total_cost + sc->anon_cost;
3075 	file_cost = total_cost + sc->file_cost;
3076 	total_cost = anon_cost + file_cost;
3077 
3078 	ap = swappiness * (total_cost + 1);
3079 	ap /= anon_cost + 1;
3080 
3081 	fp = (200 - swappiness) * (total_cost + 1);
3082 	fp /= file_cost + 1;
3083 
3084 	fraction[0] = ap;
3085 	fraction[1] = fp;
3086 	denominator = ap + fp;
3087 out:
3088 	for_each_evictable_lru(lru) {
3089 		int file = is_file_lru(lru);
3090 		unsigned long lruvec_size;
3091 		unsigned long low, min;
3092 		unsigned long scan;
3093 
3094 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3095 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3096 				      &min, &low);
3097 
3098 		if (min || low) {
3099 			/*
3100 			 * Scale a cgroup's reclaim pressure by proportioning
3101 			 * its current usage to its memory.low or memory.min
3102 			 * setting.
3103 			 *
3104 			 * This is important, as otherwise scanning aggression
3105 			 * becomes extremely binary -- from nothing as we
3106 			 * approach the memory protection threshold, to totally
3107 			 * nominal as we exceed it.  This results in requiring
3108 			 * setting extremely liberal protection thresholds. It
3109 			 * also means we simply get no protection at all if we
3110 			 * set it too low, which is not ideal.
3111 			 *
3112 			 * If there is any protection in place, we reduce scan
3113 			 * pressure by how much of the total memory used is
3114 			 * within protection thresholds.
3115 			 *
3116 			 * There is one special case: in the first reclaim pass,
3117 			 * we skip over all groups that are within their low
3118 			 * protection. If that fails to reclaim enough pages to
3119 			 * satisfy the reclaim goal, we come back and override
3120 			 * the best-effort low protection. However, we still
3121 			 * ideally want to honor how well-behaved groups are in
3122 			 * that case instead of simply punishing them all
3123 			 * equally. As such, we reclaim them based on how much
3124 			 * memory they are using, reducing the scan pressure
3125 			 * again by how much of the total memory used is under
3126 			 * hard protection.
3127 			 */
3128 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3129 			unsigned long protection;
3130 
3131 			/* memory.low scaling, make sure we retry before OOM */
3132 			if (!sc->memcg_low_reclaim && low > min) {
3133 				protection = low;
3134 				sc->memcg_low_skipped = 1;
3135 			} else {
3136 				protection = min;
3137 			}
3138 
3139 			/* Avoid TOCTOU with earlier protection check */
3140 			cgroup_size = max(cgroup_size, protection);
3141 
3142 			scan = lruvec_size - lruvec_size * protection /
3143 				(cgroup_size + 1);
3144 
3145 			/*
3146 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3147 			 * reclaim moving forwards, avoiding decrementing
3148 			 * sc->priority further than desirable.
3149 			 */
3150 			scan = max(scan, SWAP_CLUSTER_MAX);
3151 		} else {
3152 			scan = lruvec_size;
3153 		}
3154 
3155 		scan >>= sc->priority;
3156 
3157 		/*
3158 		 * If the cgroup's already been deleted, make sure to
3159 		 * scrape out the remaining cache.
3160 		 */
3161 		if (!scan && !mem_cgroup_online(memcg))
3162 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3163 
3164 		switch (scan_balance) {
3165 		case SCAN_EQUAL:
3166 			/* Scan lists relative to size */
3167 			break;
3168 		case SCAN_FRACT:
3169 			/*
3170 			 * Scan types proportional to swappiness and
3171 			 * their relative recent reclaim efficiency.
3172 			 * Make sure we don't miss the last page on
3173 			 * the offlined memory cgroups because of a
3174 			 * round-off error.
3175 			 */
3176 			scan = mem_cgroup_online(memcg) ?
3177 			       div64_u64(scan * fraction[file], denominator) :
3178 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3179 						  denominator);
3180 			break;
3181 		case SCAN_FILE:
3182 		case SCAN_ANON:
3183 			/* Scan one type exclusively */
3184 			if ((scan_balance == SCAN_FILE) != file)
3185 				scan = 0;
3186 			break;
3187 		default:
3188 			/* Look ma, no brain */
3189 			BUG();
3190 		}
3191 
3192 		nr[lru] = scan;
3193 	}
3194 }
3195 
3196 /*
3197  * Anonymous LRU management is a waste if there is
3198  * ultimately no way to reclaim the memory.
3199  */
3200 static bool can_age_anon_pages(struct pglist_data *pgdat,
3201 			       struct scan_control *sc)
3202 {
3203 	/* Aging the anon LRU is valuable if swap is present: */
3204 	if (total_swap_pages > 0)
3205 		return true;
3206 
3207 	/* Also valuable if anon pages can be demoted: */
3208 	return can_demote(pgdat->node_id, sc);
3209 }
3210 
3211 #ifdef CONFIG_LRU_GEN
3212 
3213 #ifdef CONFIG_LRU_GEN_ENABLED
3214 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3215 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3216 #else
3217 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3218 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3219 #endif
3220 
3221 /******************************************************************************
3222  *                          shorthand helpers
3223  ******************************************************************************/
3224 
3225 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3226 
3227 #define DEFINE_MAX_SEQ(lruvec)						\
3228 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3229 
3230 #define DEFINE_MIN_SEQ(lruvec)						\
3231 	unsigned long min_seq[ANON_AND_FILE] = {			\
3232 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3233 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3234 	}
3235 
3236 #define for_each_gen_type_zone(gen, type, zone)				\
3237 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3238 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3239 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3240 
3241 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3242 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3243 
3244 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3245 {
3246 	struct pglist_data *pgdat = NODE_DATA(nid);
3247 
3248 #ifdef CONFIG_MEMCG
3249 	if (memcg) {
3250 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3251 
3252 		/* see the comment in mem_cgroup_lruvec() */
3253 		if (!lruvec->pgdat)
3254 			lruvec->pgdat = pgdat;
3255 
3256 		return lruvec;
3257 	}
3258 #endif
3259 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3260 
3261 	return &pgdat->__lruvec;
3262 }
3263 
3264 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3265 {
3266 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3267 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3268 
3269 	if (!sc->may_swap)
3270 		return 0;
3271 
3272 	if (!can_demote(pgdat->node_id, sc) &&
3273 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3274 		return 0;
3275 
3276 	return mem_cgroup_swappiness(memcg);
3277 }
3278 
3279 static int get_nr_gens(struct lruvec *lruvec, int type)
3280 {
3281 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3282 }
3283 
3284 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3285 {
3286 	/* see the comment on lru_gen_folio */
3287 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3288 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3289 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3290 }
3291 
3292 /******************************************************************************
3293  *                          Bloom filters
3294  ******************************************************************************/
3295 
3296 /*
3297  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3298  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3299  * bits in a bitmap, k is the number of hash functions and n is the number of
3300  * inserted items.
3301  *
3302  * Page table walkers use one of the two filters to reduce their search space.
3303  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3304  * aging uses the double-buffering technique to flip to the other filter each
3305  * time it produces a new generation. For non-leaf entries that have enough
3306  * leaf entries, the aging carries them over to the next generation in
3307  * walk_pmd_range(); the eviction also report them when walking the rmap
3308  * in lru_gen_look_around().
3309  *
3310  * For future optimizations:
3311  * 1. It's not necessary to keep both filters all the time. The spare one can be
3312  *    freed after the RCU grace period and reallocated if needed again.
3313  * 2. And when reallocating, it's worth scaling its size according to the number
3314  *    of inserted entries in the other filter, to reduce the memory overhead on
3315  *    small systems and false positives on large systems.
3316  * 3. Jenkins' hash function is an alternative to Knuth's.
3317  */
3318 #define BLOOM_FILTER_SHIFT	15
3319 
3320 static inline int filter_gen_from_seq(unsigned long seq)
3321 {
3322 	return seq % NR_BLOOM_FILTERS;
3323 }
3324 
3325 static void get_item_key(void *item, int *key)
3326 {
3327 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3328 
3329 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3330 
3331 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3332 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3333 }
3334 
3335 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3336 {
3337 	int key[2];
3338 	unsigned long *filter;
3339 	int gen = filter_gen_from_seq(seq);
3340 
3341 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3342 	if (!filter)
3343 		return true;
3344 
3345 	get_item_key(item, key);
3346 
3347 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3348 }
3349 
3350 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3351 {
3352 	int key[2];
3353 	unsigned long *filter;
3354 	int gen = filter_gen_from_seq(seq);
3355 
3356 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3357 	if (!filter)
3358 		return;
3359 
3360 	get_item_key(item, key);
3361 
3362 	if (!test_bit(key[0], filter))
3363 		set_bit(key[0], filter);
3364 	if (!test_bit(key[1], filter))
3365 		set_bit(key[1], filter);
3366 }
3367 
3368 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3369 {
3370 	unsigned long *filter;
3371 	int gen = filter_gen_from_seq(seq);
3372 
3373 	filter = lruvec->mm_state.filters[gen];
3374 	if (filter) {
3375 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3376 		return;
3377 	}
3378 
3379 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3380 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3381 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3382 }
3383 
3384 /******************************************************************************
3385  *                          mm_struct list
3386  ******************************************************************************/
3387 
3388 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3389 {
3390 	static struct lru_gen_mm_list mm_list = {
3391 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3392 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3393 	};
3394 
3395 #ifdef CONFIG_MEMCG
3396 	if (memcg)
3397 		return &memcg->mm_list;
3398 #endif
3399 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3400 
3401 	return &mm_list;
3402 }
3403 
3404 void lru_gen_add_mm(struct mm_struct *mm)
3405 {
3406 	int nid;
3407 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3408 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3409 
3410 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3411 #ifdef CONFIG_MEMCG
3412 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3413 	mm->lru_gen.memcg = memcg;
3414 #endif
3415 	spin_lock(&mm_list->lock);
3416 
3417 	for_each_node_state(nid, N_MEMORY) {
3418 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3419 
3420 		/* the first addition since the last iteration */
3421 		if (lruvec->mm_state.tail == &mm_list->fifo)
3422 			lruvec->mm_state.tail = &mm->lru_gen.list;
3423 	}
3424 
3425 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3426 
3427 	spin_unlock(&mm_list->lock);
3428 }
3429 
3430 void lru_gen_del_mm(struct mm_struct *mm)
3431 {
3432 	int nid;
3433 	struct lru_gen_mm_list *mm_list;
3434 	struct mem_cgroup *memcg = NULL;
3435 
3436 	if (list_empty(&mm->lru_gen.list))
3437 		return;
3438 
3439 #ifdef CONFIG_MEMCG
3440 	memcg = mm->lru_gen.memcg;
3441 #endif
3442 	mm_list = get_mm_list(memcg);
3443 
3444 	spin_lock(&mm_list->lock);
3445 
3446 	for_each_node(nid) {
3447 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3448 
3449 		/* where the current iteration continues after */
3450 		if (lruvec->mm_state.head == &mm->lru_gen.list)
3451 			lruvec->mm_state.head = lruvec->mm_state.head->prev;
3452 
3453 		/* where the last iteration ended before */
3454 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3455 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3456 	}
3457 
3458 	list_del_init(&mm->lru_gen.list);
3459 
3460 	spin_unlock(&mm_list->lock);
3461 
3462 #ifdef CONFIG_MEMCG
3463 	mem_cgroup_put(mm->lru_gen.memcg);
3464 	mm->lru_gen.memcg = NULL;
3465 #endif
3466 }
3467 
3468 #ifdef CONFIG_MEMCG
3469 void lru_gen_migrate_mm(struct mm_struct *mm)
3470 {
3471 	struct mem_cgroup *memcg;
3472 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3473 
3474 	VM_WARN_ON_ONCE(task->mm != mm);
3475 	lockdep_assert_held(&task->alloc_lock);
3476 
3477 	/* for mm_update_next_owner() */
3478 	if (mem_cgroup_disabled())
3479 		return;
3480 
3481 	/* migration can happen before addition */
3482 	if (!mm->lru_gen.memcg)
3483 		return;
3484 
3485 	rcu_read_lock();
3486 	memcg = mem_cgroup_from_task(task);
3487 	rcu_read_unlock();
3488 	if (memcg == mm->lru_gen.memcg)
3489 		return;
3490 
3491 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3492 
3493 	lru_gen_del_mm(mm);
3494 	lru_gen_add_mm(mm);
3495 }
3496 #endif
3497 
3498 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3499 {
3500 	int i;
3501 	int hist;
3502 
3503 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3504 
3505 	if (walk) {
3506 		hist = lru_hist_from_seq(walk->max_seq);
3507 
3508 		for (i = 0; i < NR_MM_STATS; i++) {
3509 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3510 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3511 			walk->mm_stats[i] = 0;
3512 		}
3513 	}
3514 
3515 	if (NR_HIST_GENS > 1 && last) {
3516 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3517 
3518 		for (i = 0; i < NR_MM_STATS; i++)
3519 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3520 	}
3521 }
3522 
3523 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3524 {
3525 	int type;
3526 	unsigned long size = 0;
3527 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3528 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3529 
3530 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3531 		return true;
3532 
3533 	clear_bit(key, &mm->lru_gen.bitmap);
3534 
3535 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3536 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3537 			       get_mm_counter(mm, MM_ANONPAGES) +
3538 			       get_mm_counter(mm, MM_SHMEMPAGES);
3539 	}
3540 
3541 	if (size < MIN_LRU_BATCH)
3542 		return true;
3543 
3544 	return !mmget_not_zero(mm);
3545 }
3546 
3547 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3548 			    struct mm_struct **iter)
3549 {
3550 	bool first = false;
3551 	bool last = false;
3552 	struct mm_struct *mm = NULL;
3553 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3554 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3555 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3556 
3557 	/*
3558 	 * mm_state->seq is incremented after each iteration of mm_list. There
3559 	 * are three interesting cases for this page table walker:
3560 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3561 	 *    nothing left to do.
3562 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3563 	 *    so that a fresh set of PTE tables can be recorded.
3564 	 * 3. It ended the current iteration: it needs to reset the mm stats
3565 	 *    counters and tell its caller to increment max_seq.
3566 	 */
3567 	spin_lock(&mm_list->lock);
3568 
3569 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3570 
3571 	if (walk->max_seq <= mm_state->seq)
3572 		goto done;
3573 
3574 	if (!mm_state->head)
3575 		mm_state->head = &mm_list->fifo;
3576 
3577 	if (mm_state->head == &mm_list->fifo)
3578 		first = true;
3579 
3580 	do {
3581 		mm_state->head = mm_state->head->next;
3582 		if (mm_state->head == &mm_list->fifo) {
3583 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3584 			last = true;
3585 			break;
3586 		}
3587 
3588 		/* force scan for those added after the last iteration */
3589 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3590 			mm_state->tail = mm_state->head->next;
3591 			walk->force_scan = true;
3592 		}
3593 
3594 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3595 		if (should_skip_mm(mm, walk))
3596 			mm = NULL;
3597 	} while (!mm);
3598 done:
3599 	if (*iter || last)
3600 		reset_mm_stats(lruvec, walk, last);
3601 
3602 	spin_unlock(&mm_list->lock);
3603 
3604 	if (mm && first)
3605 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3606 
3607 	if (*iter)
3608 		mmput_async(*iter);
3609 
3610 	*iter = mm;
3611 
3612 	return last;
3613 }
3614 
3615 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3616 {
3617 	bool success = false;
3618 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3619 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3620 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3621 
3622 	spin_lock(&mm_list->lock);
3623 
3624 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3625 
3626 	if (max_seq > mm_state->seq) {
3627 		mm_state->head = NULL;
3628 		mm_state->tail = NULL;
3629 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3630 		reset_mm_stats(lruvec, NULL, true);
3631 		success = true;
3632 	}
3633 
3634 	spin_unlock(&mm_list->lock);
3635 
3636 	return success;
3637 }
3638 
3639 /******************************************************************************
3640  *                          PID controller
3641  ******************************************************************************/
3642 
3643 /*
3644  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3645  *
3646  * The P term is refaulted/(evicted+protected) from a tier in the generation
3647  * currently being evicted; the I term is the exponential moving average of the
3648  * P term over the generations previously evicted, using the smoothing factor
3649  * 1/2; the D term isn't supported.
3650  *
3651  * The setpoint (SP) is always the first tier of one type; the process variable
3652  * (PV) is either any tier of the other type or any other tier of the same
3653  * type.
3654  *
3655  * The error is the difference between the SP and the PV; the correction is to
3656  * turn off protection when SP>PV or turn on protection when SP<PV.
3657  *
3658  * For future optimizations:
3659  * 1. The D term may discount the other two terms over time so that long-lived
3660  *    generations can resist stale information.
3661  */
3662 struct ctrl_pos {
3663 	unsigned long refaulted;
3664 	unsigned long total;
3665 	int gain;
3666 };
3667 
3668 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3669 			  struct ctrl_pos *pos)
3670 {
3671 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3672 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3673 
3674 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3675 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3676 	pos->total = lrugen->avg_total[type][tier] +
3677 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3678 	if (tier)
3679 		pos->total += lrugen->protected[hist][type][tier - 1];
3680 	pos->gain = gain;
3681 }
3682 
3683 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3684 {
3685 	int hist, tier;
3686 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3687 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3688 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3689 
3690 	lockdep_assert_held(&lruvec->lru_lock);
3691 
3692 	if (!carryover && !clear)
3693 		return;
3694 
3695 	hist = lru_hist_from_seq(seq);
3696 
3697 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3698 		if (carryover) {
3699 			unsigned long sum;
3700 
3701 			sum = lrugen->avg_refaulted[type][tier] +
3702 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3703 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3704 
3705 			sum = lrugen->avg_total[type][tier] +
3706 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3707 			if (tier)
3708 				sum += lrugen->protected[hist][type][tier - 1];
3709 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3710 		}
3711 
3712 		if (clear) {
3713 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3714 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3715 			if (tier)
3716 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3717 		}
3718 	}
3719 }
3720 
3721 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3722 {
3723 	/*
3724 	 * Return true if the PV has a limited number of refaults or a lower
3725 	 * refaulted/total than the SP.
3726 	 */
3727 	return pv->refaulted < MIN_LRU_BATCH ||
3728 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3729 	       (sp->refaulted + 1) * pv->total * pv->gain;
3730 }
3731 
3732 /******************************************************************************
3733  *                          the aging
3734  ******************************************************************************/
3735 
3736 /* promote pages accessed through page tables */
3737 static int folio_update_gen(struct folio *folio, int gen)
3738 {
3739 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3740 
3741 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3742 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3743 
3744 	do {
3745 		/* lru_gen_del_folio() has isolated this page? */
3746 		if (!(old_flags & LRU_GEN_MASK)) {
3747 			/* for shrink_folio_list() */
3748 			new_flags = old_flags | BIT(PG_referenced);
3749 			continue;
3750 		}
3751 
3752 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3753 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3754 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3755 
3756 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3757 }
3758 
3759 /* protect pages accessed multiple times through file descriptors */
3760 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3761 {
3762 	int type = folio_is_file_lru(folio);
3763 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3764 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3765 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3766 
3767 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3768 
3769 	do {
3770 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3771 		/* folio_update_gen() has promoted this page? */
3772 		if (new_gen >= 0 && new_gen != old_gen)
3773 			return new_gen;
3774 
3775 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3776 
3777 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3778 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3779 		/* for folio_end_writeback() */
3780 		if (reclaiming)
3781 			new_flags |= BIT(PG_reclaim);
3782 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3783 
3784 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3785 
3786 	return new_gen;
3787 }
3788 
3789 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3790 			      int old_gen, int new_gen)
3791 {
3792 	int type = folio_is_file_lru(folio);
3793 	int zone = folio_zonenum(folio);
3794 	int delta = folio_nr_pages(folio);
3795 
3796 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3797 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3798 
3799 	walk->batched++;
3800 
3801 	walk->nr_pages[old_gen][type][zone] -= delta;
3802 	walk->nr_pages[new_gen][type][zone] += delta;
3803 }
3804 
3805 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3806 {
3807 	int gen, type, zone;
3808 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3809 
3810 	walk->batched = 0;
3811 
3812 	for_each_gen_type_zone(gen, type, zone) {
3813 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3814 		int delta = walk->nr_pages[gen][type][zone];
3815 
3816 		if (!delta)
3817 			continue;
3818 
3819 		walk->nr_pages[gen][type][zone] = 0;
3820 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3821 			   lrugen->nr_pages[gen][type][zone] + delta);
3822 
3823 		if (lru_gen_is_active(lruvec, gen))
3824 			lru += LRU_ACTIVE;
3825 		__update_lru_size(lruvec, lru, zone, delta);
3826 	}
3827 }
3828 
3829 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3830 {
3831 	struct address_space *mapping;
3832 	struct vm_area_struct *vma = args->vma;
3833 	struct lru_gen_mm_walk *walk = args->private;
3834 
3835 	if (!vma_is_accessible(vma))
3836 		return true;
3837 
3838 	if (is_vm_hugetlb_page(vma))
3839 		return true;
3840 
3841 	if (!vma_has_recency(vma))
3842 		return true;
3843 
3844 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3845 		return true;
3846 
3847 	if (vma == get_gate_vma(vma->vm_mm))
3848 		return true;
3849 
3850 	if (vma_is_anonymous(vma))
3851 		return !walk->can_swap;
3852 
3853 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3854 		return true;
3855 
3856 	mapping = vma->vm_file->f_mapping;
3857 	if (mapping_unevictable(mapping))
3858 		return true;
3859 
3860 	if (shmem_mapping(mapping))
3861 		return !walk->can_swap;
3862 
3863 	/* to exclude special mappings like dax, etc. */
3864 	return !mapping->a_ops->read_folio;
3865 }
3866 
3867 /*
3868  * Some userspace memory allocators map many single-page VMAs. Instead of
3869  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3870  * table to reduce zigzags and improve cache performance.
3871  */
3872 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3873 			 unsigned long *vm_start, unsigned long *vm_end)
3874 {
3875 	unsigned long start = round_up(*vm_end, size);
3876 	unsigned long end = (start | ~mask) + 1;
3877 	VMA_ITERATOR(vmi, args->mm, start);
3878 
3879 	VM_WARN_ON_ONCE(mask & size);
3880 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3881 
3882 	for_each_vma(vmi, args->vma) {
3883 		if (end && end <= args->vma->vm_start)
3884 			return false;
3885 
3886 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3887 			continue;
3888 
3889 		*vm_start = max(start, args->vma->vm_start);
3890 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3891 
3892 		return true;
3893 	}
3894 
3895 	return false;
3896 }
3897 
3898 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3899 {
3900 	unsigned long pfn = pte_pfn(pte);
3901 
3902 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3903 
3904 	if (!pte_present(pte) || is_zero_pfn(pfn))
3905 		return -1;
3906 
3907 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3908 		return -1;
3909 
3910 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3911 		return -1;
3912 
3913 	return pfn;
3914 }
3915 
3916 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3917 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3918 {
3919 	unsigned long pfn = pmd_pfn(pmd);
3920 
3921 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3922 
3923 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3924 		return -1;
3925 
3926 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3927 		return -1;
3928 
3929 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3930 		return -1;
3931 
3932 	return pfn;
3933 }
3934 #endif
3935 
3936 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3937 				   struct pglist_data *pgdat, bool can_swap)
3938 {
3939 	struct folio *folio;
3940 
3941 	/* try to avoid unnecessary memory loads */
3942 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3943 		return NULL;
3944 
3945 	folio = pfn_folio(pfn);
3946 	if (folio_nid(folio) != pgdat->node_id)
3947 		return NULL;
3948 
3949 	if (folio_memcg_rcu(folio) != memcg)
3950 		return NULL;
3951 
3952 	/* file VMAs can contain anon pages from COW */
3953 	if (!folio_is_file_lru(folio) && !can_swap)
3954 		return NULL;
3955 
3956 	return folio;
3957 }
3958 
3959 static bool suitable_to_scan(int total, int young)
3960 {
3961 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3962 
3963 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3964 	return young * n >= total;
3965 }
3966 
3967 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3968 			   struct mm_walk *args)
3969 {
3970 	int i;
3971 	pte_t *pte;
3972 	spinlock_t *ptl;
3973 	unsigned long addr;
3974 	int total = 0;
3975 	int young = 0;
3976 	struct lru_gen_mm_walk *walk = args->private;
3977 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3978 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3979 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3980 
3981 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3982 
3983 	ptl = pte_lockptr(args->mm, pmd);
3984 	if (!spin_trylock(ptl))
3985 		return false;
3986 
3987 	arch_enter_lazy_mmu_mode();
3988 
3989 	pte = pte_offset_map(pmd, start & PMD_MASK);
3990 restart:
3991 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3992 		unsigned long pfn;
3993 		struct folio *folio;
3994 
3995 		total++;
3996 		walk->mm_stats[MM_LEAF_TOTAL]++;
3997 
3998 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3999 		if (pfn == -1)
4000 			continue;
4001 
4002 		if (!pte_young(pte[i])) {
4003 			walk->mm_stats[MM_LEAF_OLD]++;
4004 			continue;
4005 		}
4006 
4007 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4008 		if (!folio)
4009 			continue;
4010 
4011 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4012 			VM_WARN_ON_ONCE(true);
4013 
4014 		young++;
4015 		walk->mm_stats[MM_LEAF_YOUNG]++;
4016 
4017 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4018 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4019 		      !folio_test_swapcache(folio)))
4020 			folio_mark_dirty(folio);
4021 
4022 		old_gen = folio_update_gen(folio, new_gen);
4023 		if (old_gen >= 0 && old_gen != new_gen)
4024 			update_batch_size(walk, folio, old_gen, new_gen);
4025 	}
4026 
4027 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4028 		goto restart;
4029 
4030 	pte_unmap(pte);
4031 
4032 	arch_leave_lazy_mmu_mode();
4033 	spin_unlock(ptl);
4034 
4035 	return suitable_to_scan(total, young);
4036 }
4037 
4038 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4039 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4040 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4041 {
4042 	int i;
4043 	pmd_t *pmd;
4044 	spinlock_t *ptl;
4045 	struct lru_gen_mm_walk *walk = args->private;
4046 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4047 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4048 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4049 
4050 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4051 
4052 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4053 	if (*first == -1) {
4054 		*first = addr;
4055 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4056 		return;
4057 	}
4058 
4059 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4060 	if (i && i <= MIN_LRU_BATCH) {
4061 		__set_bit(i - 1, bitmap);
4062 		return;
4063 	}
4064 
4065 	pmd = pmd_offset(pud, *first);
4066 
4067 	ptl = pmd_lockptr(args->mm, pmd);
4068 	if (!spin_trylock(ptl))
4069 		goto done;
4070 
4071 	arch_enter_lazy_mmu_mode();
4072 
4073 	do {
4074 		unsigned long pfn;
4075 		struct folio *folio;
4076 
4077 		/* don't round down the first address */
4078 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4079 
4080 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4081 		if (pfn == -1)
4082 			goto next;
4083 
4084 		if (!pmd_trans_huge(pmd[i])) {
4085 			if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4086 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4087 			goto next;
4088 		}
4089 
4090 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4091 		if (!folio)
4092 			goto next;
4093 
4094 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4095 			goto next;
4096 
4097 		walk->mm_stats[MM_LEAF_YOUNG]++;
4098 
4099 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4100 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4101 		      !folio_test_swapcache(folio)))
4102 			folio_mark_dirty(folio);
4103 
4104 		old_gen = folio_update_gen(folio, new_gen);
4105 		if (old_gen >= 0 && old_gen != new_gen)
4106 			update_batch_size(walk, folio, old_gen, new_gen);
4107 next:
4108 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4109 	} while (i <= MIN_LRU_BATCH);
4110 
4111 	arch_leave_lazy_mmu_mode();
4112 	spin_unlock(ptl);
4113 done:
4114 	*first = -1;
4115 }
4116 #else
4117 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4118 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4119 {
4120 }
4121 #endif
4122 
4123 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4124 			   struct mm_walk *args)
4125 {
4126 	int i;
4127 	pmd_t *pmd;
4128 	unsigned long next;
4129 	unsigned long addr;
4130 	struct vm_area_struct *vma;
4131 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4132 	unsigned long first = -1;
4133 	struct lru_gen_mm_walk *walk = args->private;
4134 
4135 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4136 
4137 	/*
4138 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4139 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4140 	 * the PMD lock to clear the accessed bit in PMD entries.
4141 	 */
4142 	pmd = pmd_offset(pud, start & PUD_MASK);
4143 restart:
4144 	/* walk_pte_range() may call get_next_vma() */
4145 	vma = args->vma;
4146 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4147 		pmd_t val = pmdp_get_lockless(pmd + i);
4148 
4149 		next = pmd_addr_end(addr, end);
4150 
4151 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4152 			walk->mm_stats[MM_LEAF_TOTAL]++;
4153 			continue;
4154 		}
4155 
4156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4157 		if (pmd_trans_huge(val)) {
4158 			unsigned long pfn = pmd_pfn(val);
4159 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4160 
4161 			walk->mm_stats[MM_LEAF_TOTAL]++;
4162 
4163 			if (!pmd_young(val)) {
4164 				walk->mm_stats[MM_LEAF_OLD]++;
4165 				continue;
4166 			}
4167 
4168 			/* try to avoid unnecessary memory loads */
4169 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4170 				continue;
4171 
4172 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4173 			continue;
4174 		}
4175 #endif
4176 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4177 
4178 		if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4179 			if (!pmd_young(val))
4180 				continue;
4181 
4182 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4183 		}
4184 
4185 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4186 			continue;
4187 
4188 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4189 
4190 		if (!walk_pte_range(&val, addr, next, args))
4191 			continue;
4192 
4193 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4194 
4195 		/* carry over to the next generation */
4196 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4197 	}
4198 
4199 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4200 
4201 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4202 		goto restart;
4203 }
4204 
4205 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4206 			  struct mm_walk *args)
4207 {
4208 	int i;
4209 	pud_t *pud;
4210 	unsigned long addr;
4211 	unsigned long next;
4212 	struct lru_gen_mm_walk *walk = args->private;
4213 
4214 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4215 
4216 	pud = pud_offset(p4d, start & P4D_MASK);
4217 restart:
4218 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4219 		pud_t val = READ_ONCE(pud[i]);
4220 
4221 		next = pud_addr_end(addr, end);
4222 
4223 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4224 			continue;
4225 
4226 		walk_pmd_range(&val, addr, next, args);
4227 
4228 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4229 			end = (addr | ~PUD_MASK) + 1;
4230 			goto done;
4231 		}
4232 	}
4233 
4234 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4235 		goto restart;
4236 
4237 	end = round_up(end, P4D_SIZE);
4238 done:
4239 	if (!end || !args->vma)
4240 		return 1;
4241 
4242 	walk->next_addr = max(end, args->vma->vm_start);
4243 
4244 	return -EAGAIN;
4245 }
4246 
4247 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4248 {
4249 	static const struct mm_walk_ops mm_walk_ops = {
4250 		.test_walk = should_skip_vma,
4251 		.p4d_entry = walk_pud_range,
4252 	};
4253 
4254 	int err;
4255 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4256 
4257 	walk->next_addr = FIRST_USER_ADDRESS;
4258 
4259 	do {
4260 		DEFINE_MAX_SEQ(lruvec);
4261 
4262 		err = -EBUSY;
4263 
4264 		/* another thread might have called inc_max_seq() */
4265 		if (walk->max_seq != max_seq)
4266 			break;
4267 
4268 		/* folio_update_gen() requires stable folio_memcg() */
4269 		if (!mem_cgroup_trylock_pages(memcg))
4270 			break;
4271 
4272 		/* the caller might be holding the lock for write */
4273 		if (mmap_read_trylock(mm)) {
4274 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4275 
4276 			mmap_read_unlock(mm);
4277 		}
4278 
4279 		mem_cgroup_unlock_pages();
4280 
4281 		if (walk->batched) {
4282 			spin_lock_irq(&lruvec->lru_lock);
4283 			reset_batch_size(lruvec, walk);
4284 			spin_unlock_irq(&lruvec->lru_lock);
4285 		}
4286 
4287 		cond_resched();
4288 	} while (err == -EAGAIN);
4289 }
4290 
4291 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4292 {
4293 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4294 
4295 	if (pgdat && current_is_kswapd()) {
4296 		VM_WARN_ON_ONCE(walk);
4297 
4298 		walk = &pgdat->mm_walk;
4299 	} else if (!walk && force_alloc) {
4300 		VM_WARN_ON_ONCE(current_is_kswapd());
4301 
4302 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4303 	}
4304 
4305 	current->reclaim_state->mm_walk = walk;
4306 
4307 	return walk;
4308 }
4309 
4310 static void clear_mm_walk(void)
4311 {
4312 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4313 
4314 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4315 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4316 
4317 	current->reclaim_state->mm_walk = NULL;
4318 
4319 	if (!current_is_kswapd())
4320 		kfree(walk);
4321 }
4322 
4323 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4324 {
4325 	int zone;
4326 	int remaining = MAX_LRU_BATCH;
4327 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4328 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4329 
4330 	if (type == LRU_GEN_ANON && !can_swap)
4331 		goto done;
4332 
4333 	/* prevent cold/hot inversion if force_scan is true */
4334 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4335 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4336 
4337 		while (!list_empty(head)) {
4338 			struct folio *folio = lru_to_folio(head);
4339 
4340 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4341 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4342 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4343 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4344 
4345 			new_gen = folio_inc_gen(lruvec, folio, false);
4346 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4347 
4348 			if (!--remaining)
4349 				return false;
4350 		}
4351 	}
4352 done:
4353 	reset_ctrl_pos(lruvec, type, true);
4354 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4355 
4356 	return true;
4357 }
4358 
4359 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4360 {
4361 	int gen, type, zone;
4362 	bool success = false;
4363 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4364 	DEFINE_MIN_SEQ(lruvec);
4365 
4366 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4367 
4368 	/* find the oldest populated generation */
4369 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4370 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4371 			gen = lru_gen_from_seq(min_seq[type]);
4372 
4373 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4374 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4375 					goto next;
4376 			}
4377 
4378 			min_seq[type]++;
4379 		}
4380 next:
4381 		;
4382 	}
4383 
4384 	/* see the comment on lru_gen_folio */
4385 	if (can_swap) {
4386 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4387 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4388 	}
4389 
4390 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4391 		if (min_seq[type] == lrugen->min_seq[type])
4392 			continue;
4393 
4394 		reset_ctrl_pos(lruvec, type, true);
4395 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4396 		success = true;
4397 	}
4398 
4399 	return success;
4400 }
4401 
4402 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4403 {
4404 	int prev, next;
4405 	int type, zone;
4406 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4407 
4408 	spin_lock_irq(&lruvec->lru_lock);
4409 
4410 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4411 
4412 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4413 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4414 			continue;
4415 
4416 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4417 
4418 		while (!inc_min_seq(lruvec, type, can_swap)) {
4419 			spin_unlock_irq(&lruvec->lru_lock);
4420 			cond_resched();
4421 			spin_lock_irq(&lruvec->lru_lock);
4422 		}
4423 	}
4424 
4425 	/*
4426 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4427 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4428 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4429 	 * overlap, cold/hot inversion happens.
4430 	 */
4431 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4432 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4433 
4434 	for (type = 0; type < ANON_AND_FILE; type++) {
4435 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4436 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4437 			long delta = lrugen->nr_pages[prev][type][zone] -
4438 				     lrugen->nr_pages[next][type][zone];
4439 
4440 			if (!delta)
4441 				continue;
4442 
4443 			__update_lru_size(lruvec, lru, zone, delta);
4444 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4445 		}
4446 	}
4447 
4448 	for (type = 0; type < ANON_AND_FILE; type++)
4449 		reset_ctrl_pos(lruvec, type, false);
4450 
4451 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4452 	/* make sure preceding modifications appear */
4453 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4454 
4455 	spin_unlock_irq(&lruvec->lru_lock);
4456 }
4457 
4458 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4459 			       struct scan_control *sc, bool can_swap, bool force_scan)
4460 {
4461 	bool success;
4462 	struct lru_gen_mm_walk *walk;
4463 	struct mm_struct *mm = NULL;
4464 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4465 
4466 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4467 
4468 	/* see the comment in iterate_mm_list() */
4469 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4470 		success = false;
4471 		goto done;
4472 	}
4473 
4474 	/*
4475 	 * If the hardware doesn't automatically set the accessed bit, fallback
4476 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4477 	 * handful of PTEs. Spreading the work out over a period of time usually
4478 	 * is less efficient, but it avoids bursty page faults.
4479 	 */
4480 	if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4481 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4482 		goto done;
4483 	}
4484 
4485 	walk = set_mm_walk(NULL, true);
4486 	if (!walk) {
4487 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4488 		goto done;
4489 	}
4490 
4491 	walk->lruvec = lruvec;
4492 	walk->max_seq = max_seq;
4493 	walk->can_swap = can_swap;
4494 	walk->force_scan = force_scan;
4495 
4496 	do {
4497 		success = iterate_mm_list(lruvec, walk, &mm);
4498 		if (mm)
4499 			walk_mm(lruvec, mm, walk);
4500 	} while (mm);
4501 done:
4502 	if (success)
4503 		inc_max_seq(lruvec, can_swap, force_scan);
4504 
4505 	return success;
4506 }
4507 
4508 /******************************************************************************
4509  *                          working set protection
4510  ******************************************************************************/
4511 
4512 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4513 {
4514 	int gen, type, zone;
4515 	unsigned long total = 0;
4516 	bool can_swap = get_swappiness(lruvec, sc);
4517 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4518 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4519 	DEFINE_MAX_SEQ(lruvec);
4520 	DEFINE_MIN_SEQ(lruvec);
4521 
4522 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4523 		unsigned long seq;
4524 
4525 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4526 			gen = lru_gen_from_seq(seq);
4527 
4528 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4529 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4530 		}
4531 	}
4532 
4533 	/* whether the size is big enough to be helpful */
4534 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4535 }
4536 
4537 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4538 				  unsigned long min_ttl)
4539 {
4540 	int gen;
4541 	unsigned long birth;
4542 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4543 	DEFINE_MIN_SEQ(lruvec);
4544 
4545 	/* see the comment on lru_gen_folio */
4546 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4547 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4548 
4549 	if (time_is_after_jiffies(birth + min_ttl))
4550 		return false;
4551 
4552 	if (!lruvec_is_sizable(lruvec, sc))
4553 		return false;
4554 
4555 	mem_cgroup_calculate_protection(NULL, memcg);
4556 
4557 	return !mem_cgroup_below_min(NULL, memcg);
4558 }
4559 
4560 /* to protect the working set of the last N jiffies */
4561 static unsigned long lru_gen_min_ttl __read_mostly;
4562 
4563 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4564 {
4565 	struct mem_cgroup *memcg;
4566 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4567 
4568 	VM_WARN_ON_ONCE(!current_is_kswapd());
4569 
4570 	/* check the order to exclude compaction-induced reclaim */
4571 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4572 		return;
4573 
4574 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4575 	do {
4576 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4577 
4578 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4579 			mem_cgroup_iter_break(NULL, memcg);
4580 			return;
4581 		}
4582 
4583 		cond_resched();
4584 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4585 
4586 	/*
4587 	 * The main goal is to OOM kill if every generation from all memcgs is
4588 	 * younger than min_ttl. However, another possibility is all memcgs are
4589 	 * either too small or below min.
4590 	 */
4591 	if (mutex_trylock(&oom_lock)) {
4592 		struct oom_control oc = {
4593 			.gfp_mask = sc->gfp_mask,
4594 		};
4595 
4596 		out_of_memory(&oc);
4597 
4598 		mutex_unlock(&oom_lock);
4599 	}
4600 }
4601 
4602 /******************************************************************************
4603  *                          rmap/PT walk feedback
4604  ******************************************************************************/
4605 
4606 /*
4607  * This function exploits spatial locality when shrink_folio_list() walks the
4608  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4609  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4610  * the PTE table to the Bloom filter. This forms a feedback loop between the
4611  * eviction and the aging.
4612  */
4613 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4614 {
4615 	int i;
4616 	unsigned long start;
4617 	unsigned long end;
4618 	struct lru_gen_mm_walk *walk;
4619 	int young = 0;
4620 	pte_t *pte = pvmw->pte;
4621 	unsigned long addr = pvmw->address;
4622 	struct folio *folio = pfn_folio(pvmw->pfn);
4623 	struct mem_cgroup *memcg = folio_memcg(folio);
4624 	struct pglist_data *pgdat = folio_pgdat(folio);
4625 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4626 	DEFINE_MAX_SEQ(lruvec);
4627 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4628 
4629 	lockdep_assert_held(pvmw->ptl);
4630 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4631 
4632 	if (spin_is_contended(pvmw->ptl))
4633 		return;
4634 
4635 	/* avoid taking the LRU lock under the PTL when possible */
4636 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4637 
4638 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4639 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4640 
4641 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4642 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4643 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4644 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4645 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4646 		else {
4647 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4648 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4649 		}
4650 	}
4651 
4652 	/* folio_update_gen() requires stable folio_memcg() */
4653 	if (!mem_cgroup_trylock_pages(memcg))
4654 		return;
4655 
4656 	arch_enter_lazy_mmu_mode();
4657 
4658 	pte -= (addr - start) / PAGE_SIZE;
4659 
4660 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4661 		unsigned long pfn;
4662 
4663 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4664 		if (pfn == -1)
4665 			continue;
4666 
4667 		if (!pte_young(pte[i]))
4668 			continue;
4669 
4670 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4671 		if (!folio)
4672 			continue;
4673 
4674 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4675 			VM_WARN_ON_ONCE(true);
4676 
4677 		young++;
4678 
4679 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4680 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4681 		      !folio_test_swapcache(folio)))
4682 			folio_mark_dirty(folio);
4683 
4684 		if (walk) {
4685 			old_gen = folio_update_gen(folio, new_gen);
4686 			if (old_gen >= 0 && old_gen != new_gen)
4687 				update_batch_size(walk, folio, old_gen, new_gen);
4688 
4689 			continue;
4690 		}
4691 
4692 		old_gen = folio_lru_gen(folio);
4693 		if (old_gen < 0)
4694 			folio_set_referenced(folio);
4695 		else if (old_gen != new_gen)
4696 			folio_activate(folio);
4697 	}
4698 
4699 	arch_leave_lazy_mmu_mode();
4700 	mem_cgroup_unlock_pages();
4701 
4702 	/* feedback from rmap walkers to page table walkers */
4703 	if (suitable_to_scan(i, young))
4704 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4705 }
4706 
4707 /******************************************************************************
4708  *                          memcg LRU
4709  ******************************************************************************/
4710 
4711 /* see the comment on MEMCG_NR_GENS */
4712 enum {
4713 	MEMCG_LRU_NOP,
4714 	MEMCG_LRU_HEAD,
4715 	MEMCG_LRU_TAIL,
4716 	MEMCG_LRU_OLD,
4717 	MEMCG_LRU_YOUNG,
4718 };
4719 
4720 #ifdef CONFIG_MEMCG
4721 
4722 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4723 {
4724 	return READ_ONCE(lruvec->lrugen.seg);
4725 }
4726 
4727 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4728 {
4729 	int seg;
4730 	int old, new;
4731 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4732 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4733 
4734 	spin_lock(&pgdat->memcg_lru.lock);
4735 
4736 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4737 
4738 	seg = 0;
4739 	new = old = lruvec->lrugen.gen;
4740 
4741 	/* see the comment on MEMCG_NR_GENS */
4742 	if (op == MEMCG_LRU_HEAD)
4743 		seg = MEMCG_LRU_HEAD;
4744 	else if (op == MEMCG_LRU_TAIL)
4745 		seg = MEMCG_LRU_TAIL;
4746 	else if (op == MEMCG_LRU_OLD)
4747 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4748 	else if (op == MEMCG_LRU_YOUNG)
4749 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4750 	else
4751 		VM_WARN_ON_ONCE(true);
4752 
4753 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4754 
4755 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4756 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4757 	else
4758 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4759 
4760 	pgdat->memcg_lru.nr_memcgs[old]--;
4761 	pgdat->memcg_lru.nr_memcgs[new]++;
4762 
4763 	lruvec->lrugen.gen = new;
4764 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4765 
4766 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4767 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4768 
4769 	spin_unlock(&pgdat->memcg_lru.lock);
4770 }
4771 
4772 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4773 {
4774 	int gen;
4775 	int nid;
4776 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4777 
4778 	for_each_node(nid) {
4779 		struct pglist_data *pgdat = NODE_DATA(nid);
4780 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4781 
4782 		spin_lock(&pgdat->memcg_lru.lock);
4783 
4784 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4785 
4786 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4787 
4788 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4789 		pgdat->memcg_lru.nr_memcgs[gen]++;
4790 
4791 		lruvec->lrugen.gen = gen;
4792 
4793 		spin_unlock(&pgdat->memcg_lru.lock);
4794 	}
4795 }
4796 
4797 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4798 {
4799 	int nid;
4800 
4801 	for_each_node(nid) {
4802 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4803 
4804 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4805 	}
4806 }
4807 
4808 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4809 {
4810 	int gen;
4811 	int nid;
4812 
4813 	for_each_node(nid) {
4814 		struct pglist_data *pgdat = NODE_DATA(nid);
4815 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4816 
4817 		spin_lock(&pgdat->memcg_lru.lock);
4818 
4819 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4820 
4821 		gen = lruvec->lrugen.gen;
4822 
4823 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
4824 		pgdat->memcg_lru.nr_memcgs[gen]--;
4825 
4826 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4827 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4828 
4829 		spin_unlock(&pgdat->memcg_lru.lock);
4830 	}
4831 }
4832 
4833 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4834 {
4835 	/* see the comment on MEMCG_NR_GENS */
4836 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4837 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4838 }
4839 
4840 #else /* !CONFIG_MEMCG */
4841 
4842 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4843 {
4844 	return 0;
4845 }
4846 
4847 #endif
4848 
4849 /******************************************************************************
4850  *                          the eviction
4851  ******************************************************************************/
4852 
4853 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4854 {
4855 	bool success;
4856 	int gen = folio_lru_gen(folio);
4857 	int type = folio_is_file_lru(folio);
4858 	int zone = folio_zonenum(folio);
4859 	int delta = folio_nr_pages(folio);
4860 	int refs = folio_lru_refs(folio);
4861 	int tier = lru_tier_from_refs(refs);
4862 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4863 
4864 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4865 
4866 	/* unevictable */
4867 	if (!folio_evictable(folio)) {
4868 		success = lru_gen_del_folio(lruvec, folio, true);
4869 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4870 		folio_set_unevictable(folio);
4871 		lruvec_add_folio(lruvec, folio);
4872 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4873 		return true;
4874 	}
4875 
4876 	/* dirty lazyfree */
4877 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4878 		success = lru_gen_del_folio(lruvec, folio, true);
4879 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4880 		folio_set_swapbacked(folio);
4881 		lruvec_add_folio_tail(lruvec, folio);
4882 		return true;
4883 	}
4884 
4885 	/* promoted */
4886 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4887 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4888 		return true;
4889 	}
4890 
4891 	/* protected */
4892 	if (tier > tier_idx) {
4893 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4894 
4895 		gen = folio_inc_gen(lruvec, folio, false);
4896 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4897 
4898 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4899 			   lrugen->protected[hist][type][tier - 1] + delta);
4900 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4901 		return true;
4902 	}
4903 
4904 	/* waiting for writeback */
4905 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4906 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4907 		gen = folio_inc_gen(lruvec, folio, true);
4908 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4909 		return true;
4910 	}
4911 
4912 	return false;
4913 }
4914 
4915 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4916 {
4917 	bool success;
4918 
4919 	/* swapping inhibited */
4920 	if (!(sc->gfp_mask & __GFP_IO) &&
4921 	    (folio_test_dirty(folio) ||
4922 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4923 		return false;
4924 
4925 	/* raced with release_pages() */
4926 	if (!folio_try_get(folio))
4927 		return false;
4928 
4929 	/* raced with another isolation */
4930 	if (!folio_test_clear_lru(folio)) {
4931 		folio_put(folio);
4932 		return false;
4933 	}
4934 
4935 	/* see the comment on MAX_NR_TIERS */
4936 	if (!folio_test_referenced(folio))
4937 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4938 
4939 	/* for shrink_folio_list() */
4940 	folio_clear_reclaim(folio);
4941 	folio_clear_referenced(folio);
4942 
4943 	success = lru_gen_del_folio(lruvec, folio, true);
4944 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4945 
4946 	return true;
4947 }
4948 
4949 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4950 		       int type, int tier, struct list_head *list)
4951 {
4952 	int gen, zone;
4953 	enum vm_event_item item;
4954 	int sorted = 0;
4955 	int scanned = 0;
4956 	int isolated = 0;
4957 	int remaining = MAX_LRU_BATCH;
4958 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4959 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4960 
4961 	VM_WARN_ON_ONCE(!list_empty(list));
4962 
4963 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4964 		return 0;
4965 
4966 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4967 
4968 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4969 		LIST_HEAD(moved);
4970 		int skipped = 0;
4971 		struct list_head *head = &lrugen->folios[gen][type][zone];
4972 
4973 		while (!list_empty(head)) {
4974 			struct folio *folio = lru_to_folio(head);
4975 			int delta = folio_nr_pages(folio);
4976 
4977 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4978 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4979 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4980 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4981 
4982 			scanned += delta;
4983 
4984 			if (sort_folio(lruvec, folio, tier))
4985 				sorted += delta;
4986 			else if (isolate_folio(lruvec, folio, sc)) {
4987 				list_add(&folio->lru, list);
4988 				isolated += delta;
4989 			} else {
4990 				list_move(&folio->lru, &moved);
4991 				skipped += delta;
4992 			}
4993 
4994 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4995 				break;
4996 		}
4997 
4998 		if (skipped) {
4999 			list_splice(&moved, head);
5000 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5001 		}
5002 
5003 		if (!remaining || isolated >= MIN_LRU_BATCH)
5004 			break;
5005 	}
5006 
5007 	item = PGSCAN_KSWAPD + reclaimer_offset();
5008 	if (!cgroup_reclaim(sc)) {
5009 		__count_vm_events(item, isolated);
5010 		__count_vm_events(PGREFILL, sorted);
5011 	}
5012 	__count_memcg_events(memcg, item, isolated);
5013 	__count_memcg_events(memcg, PGREFILL, sorted);
5014 	__count_vm_events(PGSCAN_ANON + type, isolated);
5015 
5016 	/*
5017 	 * There might not be eligible folios due to reclaim_idx. Check the
5018 	 * remaining to prevent livelock if it's not making progress.
5019 	 */
5020 	return isolated || !remaining ? scanned : 0;
5021 }
5022 
5023 static int get_tier_idx(struct lruvec *lruvec, int type)
5024 {
5025 	int tier;
5026 	struct ctrl_pos sp, pv;
5027 
5028 	/*
5029 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5030 	 * This value is chosen because any other tier would have at least twice
5031 	 * as many refaults as the first tier.
5032 	 */
5033 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5034 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5035 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5036 		if (!positive_ctrl_err(&sp, &pv))
5037 			break;
5038 	}
5039 
5040 	return tier - 1;
5041 }
5042 
5043 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5044 {
5045 	int type, tier;
5046 	struct ctrl_pos sp, pv;
5047 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5048 
5049 	/*
5050 	 * Compare the first tier of anon with that of file to determine which
5051 	 * type to scan. Also need to compare other tiers of the selected type
5052 	 * with the first tier of the other type to determine the last tier (of
5053 	 * the selected type) to evict.
5054 	 */
5055 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5056 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5057 	type = positive_ctrl_err(&sp, &pv);
5058 
5059 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5060 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5061 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5062 		if (!positive_ctrl_err(&sp, &pv))
5063 			break;
5064 	}
5065 
5066 	*tier_idx = tier - 1;
5067 
5068 	return type;
5069 }
5070 
5071 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5072 			  int *type_scanned, struct list_head *list)
5073 {
5074 	int i;
5075 	int type;
5076 	int scanned;
5077 	int tier = -1;
5078 	DEFINE_MIN_SEQ(lruvec);
5079 
5080 	/*
5081 	 * Try to make the obvious choice first. When anon and file are both
5082 	 * available from the same generation, interpret swappiness 1 as file
5083 	 * first and 200 as anon first.
5084 	 */
5085 	if (!swappiness)
5086 		type = LRU_GEN_FILE;
5087 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5088 		type = LRU_GEN_ANON;
5089 	else if (swappiness == 1)
5090 		type = LRU_GEN_FILE;
5091 	else if (swappiness == 200)
5092 		type = LRU_GEN_ANON;
5093 	else
5094 		type = get_type_to_scan(lruvec, swappiness, &tier);
5095 
5096 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5097 		if (tier < 0)
5098 			tier = get_tier_idx(lruvec, type);
5099 
5100 		scanned = scan_folios(lruvec, sc, type, tier, list);
5101 		if (scanned)
5102 			break;
5103 
5104 		type = !type;
5105 		tier = -1;
5106 	}
5107 
5108 	*type_scanned = type;
5109 
5110 	return scanned;
5111 }
5112 
5113 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5114 {
5115 	int type;
5116 	int scanned;
5117 	int reclaimed;
5118 	LIST_HEAD(list);
5119 	LIST_HEAD(clean);
5120 	struct folio *folio;
5121 	struct folio *next;
5122 	enum vm_event_item item;
5123 	struct reclaim_stat stat;
5124 	struct lru_gen_mm_walk *walk;
5125 	bool skip_retry = false;
5126 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5127 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5128 
5129 	spin_lock_irq(&lruvec->lru_lock);
5130 
5131 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5132 
5133 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5134 
5135 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5136 		scanned = 0;
5137 
5138 	spin_unlock_irq(&lruvec->lru_lock);
5139 
5140 	if (list_empty(&list))
5141 		return scanned;
5142 retry:
5143 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5144 	sc->nr_reclaimed += reclaimed;
5145 
5146 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5147 		if (!folio_evictable(folio)) {
5148 			list_del(&folio->lru);
5149 			folio_putback_lru(folio);
5150 			continue;
5151 		}
5152 
5153 		if (folio_test_reclaim(folio) &&
5154 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5155 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5156 			if (folio_test_workingset(folio))
5157 				folio_set_referenced(folio);
5158 			continue;
5159 		}
5160 
5161 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5162 		    folio_mapped(folio) || folio_test_locked(folio) ||
5163 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5164 			/* don't add rejected folios to the oldest generation */
5165 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5166 				      BIT(PG_active));
5167 			continue;
5168 		}
5169 
5170 		/* retry folios that may have missed folio_rotate_reclaimable() */
5171 		list_move(&folio->lru, &clean);
5172 		sc->nr_scanned -= folio_nr_pages(folio);
5173 	}
5174 
5175 	spin_lock_irq(&lruvec->lru_lock);
5176 
5177 	move_folios_to_lru(lruvec, &list);
5178 
5179 	walk = current->reclaim_state->mm_walk;
5180 	if (walk && walk->batched)
5181 		reset_batch_size(lruvec, walk);
5182 
5183 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5184 	if (!cgroup_reclaim(sc))
5185 		__count_vm_events(item, reclaimed);
5186 	__count_memcg_events(memcg, item, reclaimed);
5187 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5188 
5189 	spin_unlock_irq(&lruvec->lru_lock);
5190 
5191 	mem_cgroup_uncharge_list(&list);
5192 	free_unref_page_list(&list);
5193 
5194 	INIT_LIST_HEAD(&list);
5195 	list_splice_init(&clean, &list);
5196 
5197 	if (!list_empty(&list)) {
5198 		skip_retry = true;
5199 		goto retry;
5200 	}
5201 
5202 	return scanned;
5203 }
5204 
5205 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5206 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5207 {
5208 	int gen, type, zone;
5209 	unsigned long old = 0;
5210 	unsigned long young = 0;
5211 	unsigned long total = 0;
5212 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5213 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5214 	DEFINE_MIN_SEQ(lruvec);
5215 
5216 	/* whether this lruvec is completely out of cold folios */
5217 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5218 		*nr_to_scan = 0;
5219 		return true;
5220 	}
5221 
5222 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5223 		unsigned long seq;
5224 
5225 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5226 			unsigned long size = 0;
5227 
5228 			gen = lru_gen_from_seq(seq);
5229 
5230 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5231 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5232 
5233 			total += size;
5234 			if (seq == max_seq)
5235 				young += size;
5236 			else if (seq + MIN_NR_GENS == max_seq)
5237 				old += size;
5238 		}
5239 	}
5240 
5241 	/* try to scrape all its memory if this memcg was deleted */
5242 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5243 
5244 	/*
5245 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5246 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5247 	 * ideal number of generations is MIN_NR_GENS+1.
5248 	 */
5249 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5250 		return false;
5251 
5252 	/*
5253 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5254 	 * of the total number of pages for each generation. A reasonable range
5255 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5256 	 * aging cares about the upper bound of hot pages, while the eviction
5257 	 * cares about the lower bound of cold pages.
5258 	 */
5259 	if (young * MIN_NR_GENS > total)
5260 		return true;
5261 	if (old * (MIN_NR_GENS + 2) < total)
5262 		return true;
5263 
5264 	return false;
5265 }
5266 
5267 /*
5268  * For future optimizations:
5269  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5270  *    reclaim.
5271  */
5272 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5273 {
5274 	unsigned long nr_to_scan;
5275 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5276 	DEFINE_MAX_SEQ(lruvec);
5277 
5278 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5279 		return 0;
5280 
5281 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5282 		return nr_to_scan;
5283 
5284 	/* skip the aging path at the default priority */
5285 	if (sc->priority == DEF_PRIORITY)
5286 		return nr_to_scan;
5287 
5288 	/* skip this lruvec as it's low on cold folios */
5289 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5290 }
5291 
5292 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5293 {
5294 	/* don't abort memcg reclaim to ensure fairness */
5295 	if (!global_reclaim(sc))
5296 		return -1;
5297 
5298 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5299 }
5300 
5301 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5302 {
5303 	long nr_to_scan;
5304 	unsigned long scanned = 0;
5305 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5306 	int swappiness = get_swappiness(lruvec, sc);
5307 
5308 	/* clean file folios are more likely to exist */
5309 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5310 		swappiness = 1;
5311 
5312 	while (true) {
5313 		int delta;
5314 
5315 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5316 		if (nr_to_scan <= 0)
5317 			break;
5318 
5319 		delta = evict_folios(lruvec, sc, swappiness);
5320 		if (!delta)
5321 			break;
5322 
5323 		scanned += delta;
5324 		if (scanned >= nr_to_scan)
5325 			break;
5326 
5327 		if (sc->nr_reclaimed >= nr_to_reclaim)
5328 			break;
5329 
5330 		cond_resched();
5331 	}
5332 
5333 	/* whether try_to_inc_max_seq() was successful */
5334 	return nr_to_scan < 0;
5335 }
5336 
5337 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5338 {
5339 	bool success;
5340 	unsigned long scanned = sc->nr_scanned;
5341 	unsigned long reclaimed = sc->nr_reclaimed;
5342 	int seg = lru_gen_memcg_seg(lruvec);
5343 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5344 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5345 
5346 	/* see the comment on MEMCG_NR_GENS */
5347 	if (!lruvec_is_sizable(lruvec, sc))
5348 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5349 
5350 	mem_cgroup_calculate_protection(NULL, memcg);
5351 
5352 	if (mem_cgroup_below_min(NULL, memcg))
5353 		return MEMCG_LRU_YOUNG;
5354 
5355 	if (mem_cgroup_below_low(NULL, memcg)) {
5356 		/* see the comment on MEMCG_NR_GENS */
5357 		if (seg != MEMCG_LRU_TAIL)
5358 			return MEMCG_LRU_TAIL;
5359 
5360 		memcg_memory_event(memcg, MEMCG_LOW);
5361 	}
5362 
5363 	success = try_to_shrink_lruvec(lruvec, sc);
5364 
5365 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5366 
5367 	if (!sc->proactive)
5368 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5369 			   sc->nr_reclaimed - reclaimed);
5370 
5371 	flush_reclaim_state(sc);
5372 
5373 	return success ? MEMCG_LRU_YOUNG : 0;
5374 }
5375 
5376 #ifdef CONFIG_MEMCG
5377 
5378 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5379 {
5380 	int op;
5381 	int gen;
5382 	int bin;
5383 	int first_bin;
5384 	struct lruvec *lruvec;
5385 	struct lru_gen_folio *lrugen;
5386 	struct mem_cgroup *memcg;
5387 	const struct hlist_nulls_node *pos;
5388 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5389 
5390 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5391 restart:
5392 	op = 0;
5393 	memcg = NULL;
5394 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5395 
5396 	rcu_read_lock();
5397 
5398 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5399 		if (op)
5400 			lru_gen_rotate_memcg(lruvec, op);
5401 
5402 		mem_cgroup_put(memcg);
5403 
5404 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5405 		memcg = lruvec_memcg(lruvec);
5406 
5407 		if (!mem_cgroup_tryget(memcg)) {
5408 			op = 0;
5409 			memcg = NULL;
5410 			continue;
5411 		}
5412 
5413 		rcu_read_unlock();
5414 
5415 		op = shrink_one(lruvec, sc);
5416 
5417 		rcu_read_lock();
5418 
5419 		if (sc->nr_reclaimed >= nr_to_reclaim)
5420 			break;
5421 	}
5422 
5423 	rcu_read_unlock();
5424 
5425 	if (op)
5426 		lru_gen_rotate_memcg(lruvec, op);
5427 
5428 	mem_cgroup_put(memcg);
5429 
5430 	if (sc->nr_reclaimed >= nr_to_reclaim)
5431 		return;
5432 
5433 	/* restart if raced with lru_gen_rotate_memcg() */
5434 	if (gen != get_nulls_value(pos))
5435 		goto restart;
5436 
5437 	/* try the rest of the bins of the current generation */
5438 	bin = get_memcg_bin(bin + 1);
5439 	if (bin != first_bin)
5440 		goto restart;
5441 }
5442 
5443 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5444 {
5445 	struct blk_plug plug;
5446 
5447 	VM_WARN_ON_ONCE(global_reclaim(sc));
5448 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5449 
5450 	lru_add_drain();
5451 
5452 	blk_start_plug(&plug);
5453 
5454 	set_mm_walk(NULL, sc->proactive);
5455 
5456 	if (try_to_shrink_lruvec(lruvec, sc))
5457 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5458 
5459 	clear_mm_walk();
5460 
5461 	blk_finish_plug(&plug);
5462 }
5463 
5464 #else /* !CONFIG_MEMCG */
5465 
5466 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5467 {
5468 	BUILD_BUG();
5469 }
5470 
5471 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5472 {
5473 	BUILD_BUG();
5474 }
5475 
5476 #endif
5477 
5478 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5479 {
5480 	int priority;
5481 	unsigned long reclaimable;
5482 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5483 
5484 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5485 		return;
5486 	/*
5487 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5488 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5489 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5490 	 */
5491 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5492 	if (get_swappiness(lruvec, sc))
5493 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5494 
5495 	reclaimable /= MEMCG_NR_GENS;
5496 
5497 	/* round down reclaimable and round up sc->nr_to_reclaim */
5498 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5499 
5500 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5501 }
5502 
5503 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5504 {
5505 	struct blk_plug plug;
5506 	unsigned long reclaimed = sc->nr_reclaimed;
5507 
5508 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5509 
5510 	/*
5511 	 * Unmapped clean folios are already prioritized. Scanning for more of
5512 	 * them is likely futile and can cause high reclaim latency when there
5513 	 * is a large number of memcgs.
5514 	 */
5515 	if (!sc->may_writepage || !sc->may_unmap)
5516 		goto done;
5517 
5518 	lru_add_drain();
5519 
5520 	blk_start_plug(&plug);
5521 
5522 	set_mm_walk(pgdat, sc->proactive);
5523 
5524 	set_initial_priority(pgdat, sc);
5525 
5526 	if (current_is_kswapd())
5527 		sc->nr_reclaimed = 0;
5528 
5529 	if (mem_cgroup_disabled())
5530 		shrink_one(&pgdat->__lruvec, sc);
5531 	else
5532 		shrink_many(pgdat, sc);
5533 
5534 	if (current_is_kswapd())
5535 		sc->nr_reclaimed += reclaimed;
5536 
5537 	clear_mm_walk();
5538 
5539 	blk_finish_plug(&plug);
5540 done:
5541 	/* kswapd should never fail */
5542 	pgdat->kswapd_failures = 0;
5543 }
5544 
5545 /******************************************************************************
5546  *                          state change
5547  ******************************************************************************/
5548 
5549 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5550 {
5551 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5552 
5553 	if (lrugen->enabled) {
5554 		enum lru_list lru;
5555 
5556 		for_each_evictable_lru(lru) {
5557 			if (!list_empty(&lruvec->lists[lru]))
5558 				return false;
5559 		}
5560 	} else {
5561 		int gen, type, zone;
5562 
5563 		for_each_gen_type_zone(gen, type, zone) {
5564 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5565 				return false;
5566 		}
5567 	}
5568 
5569 	return true;
5570 }
5571 
5572 static bool fill_evictable(struct lruvec *lruvec)
5573 {
5574 	enum lru_list lru;
5575 	int remaining = MAX_LRU_BATCH;
5576 
5577 	for_each_evictable_lru(lru) {
5578 		int type = is_file_lru(lru);
5579 		bool active = is_active_lru(lru);
5580 		struct list_head *head = &lruvec->lists[lru];
5581 
5582 		while (!list_empty(head)) {
5583 			bool success;
5584 			struct folio *folio = lru_to_folio(head);
5585 
5586 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5587 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5588 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5589 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5590 
5591 			lruvec_del_folio(lruvec, folio);
5592 			success = lru_gen_add_folio(lruvec, folio, false);
5593 			VM_WARN_ON_ONCE(!success);
5594 
5595 			if (!--remaining)
5596 				return false;
5597 		}
5598 	}
5599 
5600 	return true;
5601 }
5602 
5603 static bool drain_evictable(struct lruvec *lruvec)
5604 {
5605 	int gen, type, zone;
5606 	int remaining = MAX_LRU_BATCH;
5607 
5608 	for_each_gen_type_zone(gen, type, zone) {
5609 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5610 
5611 		while (!list_empty(head)) {
5612 			bool success;
5613 			struct folio *folio = lru_to_folio(head);
5614 
5615 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5616 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5617 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5618 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5619 
5620 			success = lru_gen_del_folio(lruvec, folio, false);
5621 			VM_WARN_ON_ONCE(!success);
5622 			lruvec_add_folio(lruvec, folio);
5623 
5624 			if (!--remaining)
5625 				return false;
5626 		}
5627 	}
5628 
5629 	return true;
5630 }
5631 
5632 static void lru_gen_change_state(bool enabled)
5633 {
5634 	static DEFINE_MUTEX(state_mutex);
5635 
5636 	struct mem_cgroup *memcg;
5637 
5638 	cgroup_lock();
5639 	cpus_read_lock();
5640 	get_online_mems();
5641 	mutex_lock(&state_mutex);
5642 
5643 	if (enabled == lru_gen_enabled())
5644 		goto unlock;
5645 
5646 	if (enabled)
5647 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5648 	else
5649 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5650 
5651 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5652 	do {
5653 		int nid;
5654 
5655 		for_each_node(nid) {
5656 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5657 
5658 			spin_lock_irq(&lruvec->lru_lock);
5659 
5660 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5661 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5662 
5663 			lruvec->lrugen.enabled = enabled;
5664 
5665 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5666 				spin_unlock_irq(&lruvec->lru_lock);
5667 				cond_resched();
5668 				spin_lock_irq(&lruvec->lru_lock);
5669 			}
5670 
5671 			spin_unlock_irq(&lruvec->lru_lock);
5672 		}
5673 
5674 		cond_resched();
5675 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5676 unlock:
5677 	mutex_unlock(&state_mutex);
5678 	put_online_mems();
5679 	cpus_read_unlock();
5680 	cgroup_unlock();
5681 }
5682 
5683 /******************************************************************************
5684  *                          sysfs interface
5685  ******************************************************************************/
5686 
5687 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5688 {
5689 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5690 }
5691 
5692 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5693 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5694 				const char *buf, size_t len)
5695 {
5696 	unsigned int msecs;
5697 
5698 	if (kstrtouint(buf, 0, &msecs))
5699 		return -EINVAL;
5700 
5701 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5702 
5703 	return len;
5704 }
5705 
5706 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5707 
5708 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5709 {
5710 	unsigned int caps = 0;
5711 
5712 	if (get_cap(LRU_GEN_CORE))
5713 		caps |= BIT(LRU_GEN_CORE);
5714 
5715 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5716 		caps |= BIT(LRU_GEN_MM_WALK);
5717 
5718 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5719 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5720 
5721 	return sysfs_emit(buf, "0x%04x\n", caps);
5722 }
5723 
5724 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5725 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5726 			     const char *buf, size_t len)
5727 {
5728 	int i;
5729 	unsigned int caps;
5730 
5731 	if (tolower(*buf) == 'n')
5732 		caps = 0;
5733 	else if (tolower(*buf) == 'y')
5734 		caps = -1;
5735 	else if (kstrtouint(buf, 0, &caps))
5736 		return -EINVAL;
5737 
5738 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5739 		bool enabled = caps & BIT(i);
5740 
5741 		if (i == LRU_GEN_CORE)
5742 			lru_gen_change_state(enabled);
5743 		else if (enabled)
5744 			static_branch_enable(&lru_gen_caps[i]);
5745 		else
5746 			static_branch_disable(&lru_gen_caps[i]);
5747 	}
5748 
5749 	return len;
5750 }
5751 
5752 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5753 
5754 static struct attribute *lru_gen_attrs[] = {
5755 	&lru_gen_min_ttl_attr.attr,
5756 	&lru_gen_enabled_attr.attr,
5757 	NULL
5758 };
5759 
5760 static const struct attribute_group lru_gen_attr_group = {
5761 	.name = "lru_gen",
5762 	.attrs = lru_gen_attrs,
5763 };
5764 
5765 /******************************************************************************
5766  *                          debugfs interface
5767  ******************************************************************************/
5768 
5769 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5770 {
5771 	struct mem_cgroup *memcg;
5772 	loff_t nr_to_skip = *pos;
5773 
5774 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5775 	if (!m->private)
5776 		return ERR_PTR(-ENOMEM);
5777 
5778 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5779 	do {
5780 		int nid;
5781 
5782 		for_each_node_state(nid, N_MEMORY) {
5783 			if (!nr_to_skip--)
5784 				return get_lruvec(memcg, nid);
5785 		}
5786 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5787 
5788 	return NULL;
5789 }
5790 
5791 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5792 {
5793 	if (!IS_ERR_OR_NULL(v))
5794 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5795 
5796 	kvfree(m->private);
5797 	m->private = NULL;
5798 }
5799 
5800 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5801 {
5802 	int nid = lruvec_pgdat(v)->node_id;
5803 	struct mem_cgroup *memcg = lruvec_memcg(v);
5804 
5805 	++*pos;
5806 
5807 	nid = next_memory_node(nid);
5808 	if (nid == MAX_NUMNODES) {
5809 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5810 		if (!memcg)
5811 			return NULL;
5812 
5813 		nid = first_memory_node;
5814 	}
5815 
5816 	return get_lruvec(memcg, nid);
5817 }
5818 
5819 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5820 				  unsigned long max_seq, unsigned long *min_seq,
5821 				  unsigned long seq)
5822 {
5823 	int i;
5824 	int type, tier;
5825 	int hist = lru_hist_from_seq(seq);
5826 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5827 
5828 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5829 		seq_printf(m, "            %10d", tier);
5830 		for (type = 0; type < ANON_AND_FILE; type++) {
5831 			const char *s = "   ";
5832 			unsigned long n[3] = {};
5833 
5834 			if (seq == max_seq) {
5835 				s = "RT ";
5836 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5837 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5838 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5839 				s = "rep";
5840 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5841 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5842 				if (tier)
5843 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5844 			}
5845 
5846 			for (i = 0; i < 3; i++)
5847 				seq_printf(m, " %10lu%c", n[i], s[i]);
5848 		}
5849 		seq_putc(m, '\n');
5850 	}
5851 
5852 	seq_puts(m, "                      ");
5853 	for (i = 0; i < NR_MM_STATS; i++) {
5854 		const char *s = "      ";
5855 		unsigned long n = 0;
5856 
5857 		if (seq == max_seq && NR_HIST_GENS == 1) {
5858 			s = "LOYNFA";
5859 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5860 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5861 			s = "loynfa";
5862 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5863 		}
5864 
5865 		seq_printf(m, " %10lu%c", n, s[i]);
5866 	}
5867 	seq_putc(m, '\n');
5868 }
5869 
5870 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5871 static int lru_gen_seq_show(struct seq_file *m, void *v)
5872 {
5873 	unsigned long seq;
5874 	bool full = !debugfs_real_fops(m->file)->write;
5875 	struct lruvec *lruvec = v;
5876 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5877 	int nid = lruvec_pgdat(lruvec)->node_id;
5878 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5879 	DEFINE_MAX_SEQ(lruvec);
5880 	DEFINE_MIN_SEQ(lruvec);
5881 
5882 	if (nid == first_memory_node) {
5883 		const char *path = memcg ? m->private : "";
5884 
5885 #ifdef CONFIG_MEMCG
5886 		if (memcg)
5887 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5888 #endif
5889 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5890 	}
5891 
5892 	seq_printf(m, " node %5d\n", nid);
5893 
5894 	if (!full)
5895 		seq = min_seq[LRU_GEN_ANON];
5896 	else if (max_seq >= MAX_NR_GENS)
5897 		seq = max_seq - MAX_NR_GENS + 1;
5898 	else
5899 		seq = 0;
5900 
5901 	for (; seq <= max_seq; seq++) {
5902 		int type, zone;
5903 		int gen = lru_gen_from_seq(seq);
5904 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5905 
5906 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5907 
5908 		for (type = 0; type < ANON_AND_FILE; type++) {
5909 			unsigned long size = 0;
5910 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5911 
5912 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5913 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5914 
5915 			seq_printf(m, " %10lu%c", size, mark);
5916 		}
5917 
5918 		seq_putc(m, '\n');
5919 
5920 		if (full)
5921 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5922 	}
5923 
5924 	return 0;
5925 }
5926 
5927 static const struct seq_operations lru_gen_seq_ops = {
5928 	.start = lru_gen_seq_start,
5929 	.stop = lru_gen_seq_stop,
5930 	.next = lru_gen_seq_next,
5931 	.show = lru_gen_seq_show,
5932 };
5933 
5934 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5935 		     bool can_swap, bool force_scan)
5936 {
5937 	DEFINE_MAX_SEQ(lruvec);
5938 	DEFINE_MIN_SEQ(lruvec);
5939 
5940 	if (seq < max_seq)
5941 		return 0;
5942 
5943 	if (seq > max_seq)
5944 		return -EINVAL;
5945 
5946 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5947 		return -ERANGE;
5948 
5949 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5950 
5951 	return 0;
5952 }
5953 
5954 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5955 			int swappiness, unsigned long nr_to_reclaim)
5956 {
5957 	DEFINE_MAX_SEQ(lruvec);
5958 
5959 	if (seq + MIN_NR_GENS > max_seq)
5960 		return -EINVAL;
5961 
5962 	sc->nr_reclaimed = 0;
5963 
5964 	while (!signal_pending(current)) {
5965 		DEFINE_MIN_SEQ(lruvec);
5966 
5967 		if (seq < min_seq[!swappiness])
5968 			return 0;
5969 
5970 		if (sc->nr_reclaimed >= nr_to_reclaim)
5971 			return 0;
5972 
5973 		if (!evict_folios(lruvec, sc, swappiness))
5974 			return 0;
5975 
5976 		cond_resched();
5977 	}
5978 
5979 	return -EINTR;
5980 }
5981 
5982 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5983 		   struct scan_control *sc, int swappiness, unsigned long opt)
5984 {
5985 	struct lruvec *lruvec;
5986 	int err = -EINVAL;
5987 	struct mem_cgroup *memcg = NULL;
5988 
5989 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5990 		return -EINVAL;
5991 
5992 	if (!mem_cgroup_disabled()) {
5993 		rcu_read_lock();
5994 
5995 		memcg = mem_cgroup_from_id(memcg_id);
5996 		if (!mem_cgroup_tryget(memcg))
5997 			memcg = NULL;
5998 
5999 		rcu_read_unlock();
6000 
6001 		if (!memcg)
6002 			return -EINVAL;
6003 	}
6004 
6005 	if (memcg_id != mem_cgroup_id(memcg))
6006 		goto done;
6007 
6008 	lruvec = get_lruvec(memcg, nid);
6009 
6010 	if (swappiness < 0)
6011 		swappiness = get_swappiness(lruvec, sc);
6012 	else if (swappiness > 200)
6013 		goto done;
6014 
6015 	switch (cmd) {
6016 	case '+':
6017 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6018 		break;
6019 	case '-':
6020 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6021 		break;
6022 	}
6023 done:
6024 	mem_cgroup_put(memcg);
6025 
6026 	return err;
6027 }
6028 
6029 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6030 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6031 				 size_t len, loff_t *pos)
6032 {
6033 	void *buf;
6034 	char *cur, *next;
6035 	unsigned int flags;
6036 	struct blk_plug plug;
6037 	int err = -EINVAL;
6038 	struct scan_control sc = {
6039 		.may_writepage = true,
6040 		.may_unmap = true,
6041 		.may_swap = true,
6042 		.reclaim_idx = MAX_NR_ZONES - 1,
6043 		.gfp_mask = GFP_KERNEL,
6044 	};
6045 
6046 	buf = kvmalloc(len + 1, GFP_KERNEL);
6047 	if (!buf)
6048 		return -ENOMEM;
6049 
6050 	if (copy_from_user(buf, src, len)) {
6051 		kvfree(buf);
6052 		return -EFAULT;
6053 	}
6054 
6055 	set_task_reclaim_state(current, &sc.reclaim_state);
6056 	flags = memalloc_noreclaim_save();
6057 	blk_start_plug(&plug);
6058 	if (!set_mm_walk(NULL, true)) {
6059 		err = -ENOMEM;
6060 		goto done;
6061 	}
6062 
6063 	next = buf;
6064 	next[len] = '\0';
6065 
6066 	while ((cur = strsep(&next, ",;\n"))) {
6067 		int n;
6068 		int end;
6069 		char cmd;
6070 		unsigned int memcg_id;
6071 		unsigned int nid;
6072 		unsigned long seq;
6073 		unsigned int swappiness = -1;
6074 		unsigned long opt = -1;
6075 
6076 		cur = skip_spaces(cur);
6077 		if (!*cur)
6078 			continue;
6079 
6080 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6081 			   &seq, &end, &swappiness, &end, &opt, &end);
6082 		if (n < 4 || cur[end]) {
6083 			err = -EINVAL;
6084 			break;
6085 		}
6086 
6087 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6088 		if (err)
6089 			break;
6090 	}
6091 done:
6092 	clear_mm_walk();
6093 	blk_finish_plug(&plug);
6094 	memalloc_noreclaim_restore(flags);
6095 	set_task_reclaim_state(current, NULL);
6096 
6097 	kvfree(buf);
6098 
6099 	return err ? : len;
6100 }
6101 
6102 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6103 {
6104 	return seq_open(file, &lru_gen_seq_ops);
6105 }
6106 
6107 static const struct file_operations lru_gen_rw_fops = {
6108 	.open = lru_gen_seq_open,
6109 	.read = seq_read,
6110 	.write = lru_gen_seq_write,
6111 	.llseek = seq_lseek,
6112 	.release = seq_release,
6113 };
6114 
6115 static const struct file_operations lru_gen_ro_fops = {
6116 	.open = lru_gen_seq_open,
6117 	.read = seq_read,
6118 	.llseek = seq_lseek,
6119 	.release = seq_release,
6120 };
6121 
6122 /******************************************************************************
6123  *                          initialization
6124  ******************************************************************************/
6125 
6126 void lru_gen_init_lruvec(struct lruvec *lruvec)
6127 {
6128 	int i;
6129 	int gen, type, zone;
6130 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6131 
6132 	lrugen->max_seq = MIN_NR_GENS + 1;
6133 	lrugen->enabled = lru_gen_enabled();
6134 
6135 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6136 		lrugen->timestamps[i] = jiffies;
6137 
6138 	for_each_gen_type_zone(gen, type, zone)
6139 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6140 
6141 	lruvec->mm_state.seq = MIN_NR_GENS;
6142 }
6143 
6144 #ifdef CONFIG_MEMCG
6145 
6146 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6147 {
6148 	int i, j;
6149 
6150 	spin_lock_init(&pgdat->memcg_lru.lock);
6151 
6152 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6153 		for (j = 0; j < MEMCG_NR_BINS; j++)
6154 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6155 	}
6156 }
6157 
6158 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6159 {
6160 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6161 	spin_lock_init(&memcg->mm_list.lock);
6162 }
6163 
6164 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6165 {
6166 	int i;
6167 	int nid;
6168 
6169 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6170 
6171 	for_each_node(nid) {
6172 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6173 
6174 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6175 					   sizeof(lruvec->lrugen.nr_pages)));
6176 
6177 		lruvec->lrugen.list.next = LIST_POISON1;
6178 
6179 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6180 			bitmap_free(lruvec->mm_state.filters[i]);
6181 			lruvec->mm_state.filters[i] = NULL;
6182 		}
6183 	}
6184 }
6185 
6186 #endif /* CONFIG_MEMCG */
6187 
6188 static int __init init_lru_gen(void)
6189 {
6190 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6191 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6192 
6193 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6194 		pr_err("lru_gen: failed to create sysfs group\n");
6195 
6196 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6197 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6198 
6199 	return 0;
6200 };
6201 late_initcall(init_lru_gen);
6202 
6203 #else /* !CONFIG_LRU_GEN */
6204 
6205 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6206 {
6207 }
6208 
6209 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6210 {
6211 }
6212 
6213 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6214 {
6215 }
6216 
6217 #endif /* CONFIG_LRU_GEN */
6218 
6219 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6220 {
6221 	unsigned long nr[NR_LRU_LISTS];
6222 	unsigned long targets[NR_LRU_LISTS];
6223 	unsigned long nr_to_scan;
6224 	enum lru_list lru;
6225 	unsigned long nr_reclaimed = 0;
6226 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6227 	bool proportional_reclaim;
6228 	struct blk_plug plug;
6229 
6230 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6231 		lru_gen_shrink_lruvec(lruvec, sc);
6232 		return;
6233 	}
6234 
6235 	get_scan_count(lruvec, sc, nr);
6236 
6237 	/* Record the original scan target for proportional adjustments later */
6238 	memcpy(targets, nr, sizeof(nr));
6239 
6240 	/*
6241 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6242 	 * event that can occur when there is little memory pressure e.g.
6243 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6244 	 * when the requested number of pages are reclaimed when scanning at
6245 	 * DEF_PRIORITY on the assumption that the fact we are direct
6246 	 * reclaiming implies that kswapd is not keeping up and it is best to
6247 	 * do a batch of work at once. For memcg reclaim one check is made to
6248 	 * abort proportional reclaim if either the file or anon lru has already
6249 	 * dropped to zero at the first pass.
6250 	 */
6251 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6252 				sc->priority == DEF_PRIORITY);
6253 
6254 	blk_start_plug(&plug);
6255 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6256 					nr[LRU_INACTIVE_FILE]) {
6257 		unsigned long nr_anon, nr_file, percentage;
6258 		unsigned long nr_scanned;
6259 
6260 		for_each_evictable_lru(lru) {
6261 			if (nr[lru]) {
6262 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6263 				nr[lru] -= nr_to_scan;
6264 
6265 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6266 							    lruvec, sc);
6267 			}
6268 		}
6269 
6270 		cond_resched();
6271 
6272 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6273 			continue;
6274 
6275 		/*
6276 		 * For kswapd and memcg, reclaim at least the number of pages
6277 		 * requested. Ensure that the anon and file LRUs are scanned
6278 		 * proportionally what was requested by get_scan_count(). We
6279 		 * stop reclaiming one LRU and reduce the amount scanning
6280 		 * proportional to the original scan target.
6281 		 */
6282 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6283 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6284 
6285 		/*
6286 		 * It's just vindictive to attack the larger once the smaller
6287 		 * has gone to zero.  And given the way we stop scanning the
6288 		 * smaller below, this makes sure that we only make one nudge
6289 		 * towards proportionality once we've got nr_to_reclaim.
6290 		 */
6291 		if (!nr_file || !nr_anon)
6292 			break;
6293 
6294 		if (nr_file > nr_anon) {
6295 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6296 						targets[LRU_ACTIVE_ANON] + 1;
6297 			lru = LRU_BASE;
6298 			percentage = nr_anon * 100 / scan_target;
6299 		} else {
6300 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6301 						targets[LRU_ACTIVE_FILE] + 1;
6302 			lru = LRU_FILE;
6303 			percentage = nr_file * 100 / scan_target;
6304 		}
6305 
6306 		/* Stop scanning the smaller of the LRU */
6307 		nr[lru] = 0;
6308 		nr[lru + LRU_ACTIVE] = 0;
6309 
6310 		/*
6311 		 * Recalculate the other LRU scan count based on its original
6312 		 * scan target and the percentage scanning already complete
6313 		 */
6314 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6315 		nr_scanned = targets[lru] - nr[lru];
6316 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6317 		nr[lru] -= min(nr[lru], nr_scanned);
6318 
6319 		lru += LRU_ACTIVE;
6320 		nr_scanned = targets[lru] - nr[lru];
6321 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6322 		nr[lru] -= min(nr[lru], nr_scanned);
6323 	}
6324 	blk_finish_plug(&plug);
6325 	sc->nr_reclaimed += nr_reclaimed;
6326 
6327 	/*
6328 	 * Even if we did not try to evict anon pages at all, we want to
6329 	 * rebalance the anon lru active/inactive ratio.
6330 	 */
6331 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6332 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6333 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6334 				   sc, LRU_ACTIVE_ANON);
6335 }
6336 
6337 /* Use reclaim/compaction for costly allocs or under memory pressure */
6338 static bool in_reclaim_compaction(struct scan_control *sc)
6339 {
6340 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6341 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6342 			 sc->priority < DEF_PRIORITY - 2))
6343 		return true;
6344 
6345 	return false;
6346 }
6347 
6348 /*
6349  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6350  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6351  * true if more pages should be reclaimed such that when the page allocator
6352  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6353  * It will give up earlier than that if there is difficulty reclaiming pages.
6354  */
6355 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6356 					unsigned long nr_reclaimed,
6357 					struct scan_control *sc)
6358 {
6359 	unsigned long pages_for_compaction;
6360 	unsigned long inactive_lru_pages;
6361 	int z;
6362 
6363 	/* If not in reclaim/compaction mode, stop */
6364 	if (!in_reclaim_compaction(sc))
6365 		return false;
6366 
6367 	/*
6368 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6369 	 * number of pages that were scanned. This will return to the caller
6370 	 * with the risk reclaim/compaction and the resulting allocation attempt
6371 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6372 	 * allocations through requiring that the full LRU list has been scanned
6373 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6374 	 * scan, but that approximation was wrong, and there were corner cases
6375 	 * where always a non-zero amount of pages were scanned.
6376 	 */
6377 	if (!nr_reclaimed)
6378 		return false;
6379 
6380 	/* If compaction would go ahead or the allocation would succeed, stop */
6381 	for (z = 0; z <= sc->reclaim_idx; z++) {
6382 		struct zone *zone = &pgdat->node_zones[z];
6383 		if (!managed_zone(zone))
6384 			continue;
6385 
6386 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6387 		case COMPACT_SUCCESS:
6388 		case COMPACT_CONTINUE:
6389 			return false;
6390 		default:
6391 			/* check next zone */
6392 			;
6393 		}
6394 	}
6395 
6396 	/*
6397 	 * If we have not reclaimed enough pages for compaction and the
6398 	 * inactive lists are large enough, continue reclaiming
6399 	 */
6400 	pages_for_compaction = compact_gap(sc->order);
6401 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6402 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6403 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6404 
6405 	return inactive_lru_pages > pages_for_compaction;
6406 }
6407 
6408 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6409 {
6410 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6411 	struct mem_cgroup *memcg;
6412 
6413 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6414 	do {
6415 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6416 		unsigned long reclaimed;
6417 		unsigned long scanned;
6418 
6419 		/*
6420 		 * This loop can become CPU-bound when target memcgs
6421 		 * aren't eligible for reclaim - either because they
6422 		 * don't have any reclaimable pages, or because their
6423 		 * memory is explicitly protected. Avoid soft lockups.
6424 		 */
6425 		cond_resched();
6426 
6427 		mem_cgroup_calculate_protection(target_memcg, memcg);
6428 
6429 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6430 			/*
6431 			 * Hard protection.
6432 			 * If there is no reclaimable memory, OOM.
6433 			 */
6434 			continue;
6435 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6436 			/*
6437 			 * Soft protection.
6438 			 * Respect the protection only as long as
6439 			 * there is an unprotected supply
6440 			 * of reclaimable memory from other cgroups.
6441 			 */
6442 			if (!sc->memcg_low_reclaim) {
6443 				sc->memcg_low_skipped = 1;
6444 				continue;
6445 			}
6446 			memcg_memory_event(memcg, MEMCG_LOW);
6447 		}
6448 
6449 		reclaimed = sc->nr_reclaimed;
6450 		scanned = sc->nr_scanned;
6451 
6452 		shrink_lruvec(lruvec, sc);
6453 
6454 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6455 			    sc->priority);
6456 
6457 		/* Record the group's reclaim efficiency */
6458 		if (!sc->proactive)
6459 			vmpressure(sc->gfp_mask, memcg, false,
6460 				   sc->nr_scanned - scanned,
6461 				   sc->nr_reclaimed - reclaimed);
6462 
6463 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6464 }
6465 
6466 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6467 {
6468 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6469 	struct lruvec *target_lruvec;
6470 	bool reclaimable = false;
6471 
6472 	if (lru_gen_enabled() && global_reclaim(sc)) {
6473 		lru_gen_shrink_node(pgdat, sc);
6474 		return;
6475 	}
6476 
6477 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6478 
6479 again:
6480 	memset(&sc->nr, 0, sizeof(sc->nr));
6481 
6482 	nr_reclaimed = sc->nr_reclaimed;
6483 	nr_scanned = sc->nr_scanned;
6484 
6485 	prepare_scan_count(pgdat, sc);
6486 
6487 	shrink_node_memcgs(pgdat, sc);
6488 
6489 	flush_reclaim_state(sc);
6490 
6491 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6492 
6493 	/* Record the subtree's reclaim efficiency */
6494 	if (!sc->proactive)
6495 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6496 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6497 
6498 	if (nr_node_reclaimed)
6499 		reclaimable = true;
6500 
6501 	if (current_is_kswapd()) {
6502 		/*
6503 		 * If reclaim is isolating dirty pages under writeback,
6504 		 * it implies that the long-lived page allocation rate
6505 		 * is exceeding the page laundering rate. Either the
6506 		 * global limits are not being effective at throttling
6507 		 * processes due to the page distribution throughout
6508 		 * zones or there is heavy usage of a slow backing
6509 		 * device. The only option is to throttle from reclaim
6510 		 * context which is not ideal as there is no guarantee
6511 		 * the dirtying process is throttled in the same way
6512 		 * balance_dirty_pages() manages.
6513 		 *
6514 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6515 		 * count the number of pages under pages flagged for
6516 		 * immediate reclaim and stall if any are encountered
6517 		 * in the nr_immediate check below.
6518 		 */
6519 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6520 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6521 
6522 		/* Allow kswapd to start writing pages during reclaim.*/
6523 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6524 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6525 
6526 		/*
6527 		 * If kswapd scans pages marked for immediate
6528 		 * reclaim and under writeback (nr_immediate), it
6529 		 * implies that pages are cycling through the LRU
6530 		 * faster than they are written so forcibly stall
6531 		 * until some pages complete writeback.
6532 		 */
6533 		if (sc->nr.immediate)
6534 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6535 	}
6536 
6537 	/*
6538 	 * Tag a node/memcg as congested if all the dirty pages were marked
6539 	 * for writeback and immediate reclaim (counted in nr.congested).
6540 	 *
6541 	 * Legacy memcg will stall in page writeback so avoid forcibly
6542 	 * stalling in reclaim_throttle().
6543 	 */
6544 	if ((current_is_kswapd() ||
6545 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6546 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6547 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6548 
6549 	/*
6550 	 * Stall direct reclaim for IO completions if the lruvec is
6551 	 * node is congested. Allow kswapd to continue until it
6552 	 * starts encountering unqueued dirty pages or cycling through
6553 	 * the LRU too quickly.
6554 	 */
6555 	if (!current_is_kswapd() && current_may_throttle() &&
6556 	    !sc->hibernation_mode &&
6557 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6558 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6559 
6560 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6561 		goto again;
6562 
6563 	/*
6564 	 * Kswapd gives up on balancing particular nodes after too
6565 	 * many failures to reclaim anything from them and goes to
6566 	 * sleep. On reclaim progress, reset the failure counter. A
6567 	 * successful direct reclaim run will revive a dormant kswapd.
6568 	 */
6569 	if (reclaimable)
6570 		pgdat->kswapd_failures = 0;
6571 }
6572 
6573 /*
6574  * Returns true if compaction should go ahead for a costly-order request, or
6575  * the allocation would already succeed without compaction. Return false if we
6576  * should reclaim first.
6577  */
6578 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6579 {
6580 	unsigned long watermark;
6581 	enum compact_result suitable;
6582 
6583 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6584 	if (suitable == COMPACT_SUCCESS)
6585 		/* Allocation should succeed already. Don't reclaim. */
6586 		return true;
6587 	if (suitable == COMPACT_SKIPPED)
6588 		/* Compaction cannot yet proceed. Do reclaim. */
6589 		return false;
6590 
6591 	/*
6592 	 * Compaction is already possible, but it takes time to run and there
6593 	 * are potentially other callers using the pages just freed. So proceed
6594 	 * with reclaim to make a buffer of free pages available to give
6595 	 * compaction a reasonable chance of completing and allocating the page.
6596 	 * Note that we won't actually reclaim the whole buffer in one attempt
6597 	 * as the target watermark in should_continue_reclaim() is lower. But if
6598 	 * we are already above the high+gap watermark, don't reclaim at all.
6599 	 */
6600 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6601 
6602 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6603 }
6604 
6605 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6606 {
6607 	/*
6608 	 * If reclaim is making progress greater than 12% efficiency then
6609 	 * wake all the NOPROGRESS throttled tasks.
6610 	 */
6611 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6612 		wait_queue_head_t *wqh;
6613 
6614 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6615 		if (waitqueue_active(wqh))
6616 			wake_up(wqh);
6617 
6618 		return;
6619 	}
6620 
6621 	/*
6622 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6623 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6624 	 * under writeback and marked for immediate reclaim at the tail of the
6625 	 * LRU.
6626 	 */
6627 	if (current_is_kswapd() || cgroup_reclaim(sc))
6628 		return;
6629 
6630 	/* Throttle if making no progress at high prioities. */
6631 	if (sc->priority == 1 && !sc->nr_reclaimed)
6632 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6633 }
6634 
6635 /*
6636  * This is the direct reclaim path, for page-allocating processes.  We only
6637  * try to reclaim pages from zones which will satisfy the caller's allocation
6638  * request.
6639  *
6640  * If a zone is deemed to be full of pinned pages then just give it a light
6641  * scan then give up on it.
6642  */
6643 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6644 {
6645 	struct zoneref *z;
6646 	struct zone *zone;
6647 	unsigned long nr_soft_reclaimed;
6648 	unsigned long nr_soft_scanned;
6649 	gfp_t orig_mask;
6650 	pg_data_t *last_pgdat = NULL;
6651 	pg_data_t *first_pgdat = NULL;
6652 
6653 	/*
6654 	 * If the number of buffer_heads in the machine exceeds the maximum
6655 	 * allowed level, force direct reclaim to scan the highmem zone as
6656 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6657 	 */
6658 	orig_mask = sc->gfp_mask;
6659 	if (buffer_heads_over_limit) {
6660 		sc->gfp_mask |= __GFP_HIGHMEM;
6661 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6662 	}
6663 
6664 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6665 					sc->reclaim_idx, sc->nodemask) {
6666 		/*
6667 		 * Take care memory controller reclaiming has small influence
6668 		 * to global LRU.
6669 		 */
6670 		if (!cgroup_reclaim(sc)) {
6671 			if (!cpuset_zone_allowed(zone,
6672 						 GFP_KERNEL | __GFP_HARDWALL))
6673 				continue;
6674 
6675 			/*
6676 			 * If we already have plenty of memory free for
6677 			 * compaction in this zone, don't free any more.
6678 			 * Even though compaction is invoked for any
6679 			 * non-zero order, only frequent costly order
6680 			 * reclamation is disruptive enough to become a
6681 			 * noticeable problem, like transparent huge
6682 			 * page allocations.
6683 			 */
6684 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6685 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6686 			    compaction_ready(zone, sc)) {
6687 				sc->compaction_ready = true;
6688 				continue;
6689 			}
6690 
6691 			/*
6692 			 * Shrink each node in the zonelist once. If the
6693 			 * zonelist is ordered by zone (not the default) then a
6694 			 * node may be shrunk multiple times but in that case
6695 			 * the user prefers lower zones being preserved.
6696 			 */
6697 			if (zone->zone_pgdat == last_pgdat)
6698 				continue;
6699 
6700 			/*
6701 			 * This steals pages from memory cgroups over softlimit
6702 			 * and returns the number of reclaimed pages and
6703 			 * scanned pages. This works for global memory pressure
6704 			 * and balancing, not for a memcg's limit.
6705 			 */
6706 			nr_soft_scanned = 0;
6707 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6708 						sc->order, sc->gfp_mask,
6709 						&nr_soft_scanned);
6710 			sc->nr_reclaimed += nr_soft_reclaimed;
6711 			sc->nr_scanned += nr_soft_scanned;
6712 			/* need some check for avoid more shrink_zone() */
6713 		}
6714 
6715 		if (!first_pgdat)
6716 			first_pgdat = zone->zone_pgdat;
6717 
6718 		/* See comment about same check for global reclaim above */
6719 		if (zone->zone_pgdat == last_pgdat)
6720 			continue;
6721 		last_pgdat = zone->zone_pgdat;
6722 		shrink_node(zone->zone_pgdat, sc);
6723 	}
6724 
6725 	if (first_pgdat)
6726 		consider_reclaim_throttle(first_pgdat, sc);
6727 
6728 	/*
6729 	 * Restore to original mask to avoid the impact on the caller if we
6730 	 * promoted it to __GFP_HIGHMEM.
6731 	 */
6732 	sc->gfp_mask = orig_mask;
6733 }
6734 
6735 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6736 {
6737 	struct lruvec *target_lruvec;
6738 	unsigned long refaults;
6739 
6740 	if (lru_gen_enabled())
6741 		return;
6742 
6743 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6744 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6745 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6746 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6747 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6748 }
6749 
6750 /*
6751  * This is the main entry point to direct page reclaim.
6752  *
6753  * If a full scan of the inactive list fails to free enough memory then we
6754  * are "out of memory" and something needs to be killed.
6755  *
6756  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6757  * high - the zone may be full of dirty or under-writeback pages, which this
6758  * caller can't do much about.  We kick the writeback threads and take explicit
6759  * naps in the hope that some of these pages can be written.  But if the
6760  * allocating task holds filesystem locks which prevent writeout this might not
6761  * work, and the allocation attempt will fail.
6762  *
6763  * returns:	0, if no pages reclaimed
6764  * 		else, the number of pages reclaimed
6765  */
6766 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6767 					  struct scan_control *sc)
6768 {
6769 	int initial_priority = sc->priority;
6770 	pg_data_t *last_pgdat;
6771 	struct zoneref *z;
6772 	struct zone *zone;
6773 retry:
6774 	delayacct_freepages_start();
6775 
6776 	if (!cgroup_reclaim(sc))
6777 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6778 
6779 	do {
6780 		if (!sc->proactive)
6781 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6782 					sc->priority);
6783 		sc->nr_scanned = 0;
6784 		shrink_zones(zonelist, sc);
6785 
6786 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6787 			break;
6788 
6789 		if (sc->compaction_ready)
6790 			break;
6791 
6792 		/*
6793 		 * If we're getting trouble reclaiming, start doing
6794 		 * writepage even in laptop mode.
6795 		 */
6796 		if (sc->priority < DEF_PRIORITY - 2)
6797 			sc->may_writepage = 1;
6798 	} while (--sc->priority >= 0);
6799 
6800 	last_pgdat = NULL;
6801 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6802 					sc->nodemask) {
6803 		if (zone->zone_pgdat == last_pgdat)
6804 			continue;
6805 		last_pgdat = zone->zone_pgdat;
6806 
6807 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6808 
6809 		if (cgroup_reclaim(sc)) {
6810 			struct lruvec *lruvec;
6811 
6812 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6813 						   zone->zone_pgdat);
6814 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6815 		}
6816 	}
6817 
6818 	delayacct_freepages_end();
6819 
6820 	if (sc->nr_reclaimed)
6821 		return sc->nr_reclaimed;
6822 
6823 	/* Aborted reclaim to try compaction? don't OOM, then */
6824 	if (sc->compaction_ready)
6825 		return 1;
6826 
6827 	/*
6828 	 * We make inactive:active ratio decisions based on the node's
6829 	 * composition of memory, but a restrictive reclaim_idx or a
6830 	 * memory.low cgroup setting can exempt large amounts of
6831 	 * memory from reclaim. Neither of which are very common, so
6832 	 * instead of doing costly eligibility calculations of the
6833 	 * entire cgroup subtree up front, we assume the estimates are
6834 	 * good, and retry with forcible deactivation if that fails.
6835 	 */
6836 	if (sc->skipped_deactivate) {
6837 		sc->priority = initial_priority;
6838 		sc->force_deactivate = 1;
6839 		sc->skipped_deactivate = 0;
6840 		goto retry;
6841 	}
6842 
6843 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6844 	if (sc->memcg_low_skipped) {
6845 		sc->priority = initial_priority;
6846 		sc->force_deactivate = 0;
6847 		sc->memcg_low_reclaim = 1;
6848 		sc->memcg_low_skipped = 0;
6849 		goto retry;
6850 	}
6851 
6852 	return 0;
6853 }
6854 
6855 static bool allow_direct_reclaim(pg_data_t *pgdat)
6856 {
6857 	struct zone *zone;
6858 	unsigned long pfmemalloc_reserve = 0;
6859 	unsigned long free_pages = 0;
6860 	int i;
6861 	bool wmark_ok;
6862 
6863 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6864 		return true;
6865 
6866 	for (i = 0; i <= ZONE_NORMAL; i++) {
6867 		zone = &pgdat->node_zones[i];
6868 		if (!managed_zone(zone))
6869 			continue;
6870 
6871 		if (!zone_reclaimable_pages(zone))
6872 			continue;
6873 
6874 		pfmemalloc_reserve += min_wmark_pages(zone);
6875 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6876 	}
6877 
6878 	/* If there are no reserves (unexpected config) then do not throttle */
6879 	if (!pfmemalloc_reserve)
6880 		return true;
6881 
6882 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6883 
6884 	/* kswapd must be awake if processes are being throttled */
6885 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6886 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6887 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6888 
6889 		wake_up_interruptible(&pgdat->kswapd_wait);
6890 	}
6891 
6892 	return wmark_ok;
6893 }
6894 
6895 /*
6896  * Throttle direct reclaimers if backing storage is backed by the network
6897  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6898  * depleted. kswapd will continue to make progress and wake the processes
6899  * when the low watermark is reached.
6900  *
6901  * Returns true if a fatal signal was delivered during throttling. If this
6902  * happens, the page allocator should not consider triggering the OOM killer.
6903  */
6904 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6905 					nodemask_t *nodemask)
6906 {
6907 	struct zoneref *z;
6908 	struct zone *zone;
6909 	pg_data_t *pgdat = NULL;
6910 
6911 	/*
6912 	 * Kernel threads should not be throttled as they may be indirectly
6913 	 * responsible for cleaning pages necessary for reclaim to make forward
6914 	 * progress. kjournald for example may enter direct reclaim while
6915 	 * committing a transaction where throttling it could forcing other
6916 	 * processes to block on log_wait_commit().
6917 	 */
6918 	if (current->flags & PF_KTHREAD)
6919 		goto out;
6920 
6921 	/*
6922 	 * If a fatal signal is pending, this process should not throttle.
6923 	 * It should return quickly so it can exit and free its memory
6924 	 */
6925 	if (fatal_signal_pending(current))
6926 		goto out;
6927 
6928 	/*
6929 	 * Check if the pfmemalloc reserves are ok by finding the first node
6930 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6931 	 * GFP_KERNEL will be required for allocating network buffers when
6932 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6933 	 *
6934 	 * Throttling is based on the first usable node and throttled processes
6935 	 * wait on a queue until kswapd makes progress and wakes them. There
6936 	 * is an affinity then between processes waking up and where reclaim
6937 	 * progress has been made assuming the process wakes on the same node.
6938 	 * More importantly, processes running on remote nodes will not compete
6939 	 * for remote pfmemalloc reserves and processes on different nodes
6940 	 * should make reasonable progress.
6941 	 */
6942 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6943 					gfp_zone(gfp_mask), nodemask) {
6944 		if (zone_idx(zone) > ZONE_NORMAL)
6945 			continue;
6946 
6947 		/* Throttle based on the first usable node */
6948 		pgdat = zone->zone_pgdat;
6949 		if (allow_direct_reclaim(pgdat))
6950 			goto out;
6951 		break;
6952 	}
6953 
6954 	/* If no zone was usable by the allocation flags then do not throttle */
6955 	if (!pgdat)
6956 		goto out;
6957 
6958 	/* Account for the throttling */
6959 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6960 
6961 	/*
6962 	 * If the caller cannot enter the filesystem, it's possible that it
6963 	 * is due to the caller holding an FS lock or performing a journal
6964 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6965 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6966 	 * blocked waiting on the same lock. Instead, throttle for up to a
6967 	 * second before continuing.
6968 	 */
6969 	if (!(gfp_mask & __GFP_FS))
6970 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6971 			allow_direct_reclaim(pgdat), HZ);
6972 	else
6973 		/* Throttle until kswapd wakes the process */
6974 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6975 			allow_direct_reclaim(pgdat));
6976 
6977 	if (fatal_signal_pending(current))
6978 		return true;
6979 
6980 out:
6981 	return false;
6982 }
6983 
6984 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6985 				gfp_t gfp_mask, nodemask_t *nodemask)
6986 {
6987 	unsigned long nr_reclaimed;
6988 	struct scan_control sc = {
6989 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6990 		.gfp_mask = current_gfp_context(gfp_mask),
6991 		.reclaim_idx = gfp_zone(gfp_mask),
6992 		.order = order,
6993 		.nodemask = nodemask,
6994 		.priority = DEF_PRIORITY,
6995 		.may_writepage = !laptop_mode,
6996 		.may_unmap = 1,
6997 		.may_swap = 1,
6998 	};
6999 
7000 	/*
7001 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7002 	 * Confirm they are large enough for max values.
7003 	 */
7004 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7005 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7006 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7007 
7008 	/*
7009 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7010 	 * 1 is returned so that the page allocator does not OOM kill at this
7011 	 * point.
7012 	 */
7013 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7014 		return 1;
7015 
7016 	set_task_reclaim_state(current, &sc.reclaim_state);
7017 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7018 
7019 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7020 
7021 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7022 	set_task_reclaim_state(current, NULL);
7023 
7024 	return nr_reclaimed;
7025 }
7026 
7027 #ifdef CONFIG_MEMCG
7028 
7029 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7030 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7031 						gfp_t gfp_mask, bool noswap,
7032 						pg_data_t *pgdat,
7033 						unsigned long *nr_scanned)
7034 {
7035 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7036 	struct scan_control sc = {
7037 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7038 		.target_mem_cgroup = memcg,
7039 		.may_writepage = !laptop_mode,
7040 		.may_unmap = 1,
7041 		.reclaim_idx = MAX_NR_ZONES - 1,
7042 		.may_swap = !noswap,
7043 	};
7044 
7045 	WARN_ON_ONCE(!current->reclaim_state);
7046 
7047 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7048 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7049 
7050 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7051 						      sc.gfp_mask);
7052 
7053 	/*
7054 	 * NOTE: Although we can get the priority field, using it
7055 	 * here is not a good idea, since it limits the pages we can scan.
7056 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7057 	 * will pick up pages from other mem cgroup's as well. We hack
7058 	 * the priority and make it zero.
7059 	 */
7060 	shrink_lruvec(lruvec, &sc);
7061 
7062 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7063 
7064 	*nr_scanned = sc.nr_scanned;
7065 
7066 	return sc.nr_reclaimed;
7067 }
7068 
7069 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7070 					   unsigned long nr_pages,
7071 					   gfp_t gfp_mask,
7072 					   unsigned int reclaim_options)
7073 {
7074 	unsigned long nr_reclaimed;
7075 	unsigned int noreclaim_flag;
7076 	struct scan_control sc = {
7077 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7078 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7079 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7080 		.reclaim_idx = MAX_NR_ZONES - 1,
7081 		.target_mem_cgroup = memcg,
7082 		.priority = DEF_PRIORITY,
7083 		.may_writepage = !laptop_mode,
7084 		.may_unmap = 1,
7085 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7086 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7087 	};
7088 	/*
7089 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7090 	 * equal pressure on all the nodes. This is based on the assumption that
7091 	 * the reclaim does not bail out early.
7092 	 */
7093 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7094 
7095 	set_task_reclaim_state(current, &sc.reclaim_state);
7096 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7097 	noreclaim_flag = memalloc_noreclaim_save();
7098 
7099 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7100 
7101 	memalloc_noreclaim_restore(noreclaim_flag);
7102 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7103 	set_task_reclaim_state(current, NULL);
7104 
7105 	return nr_reclaimed;
7106 }
7107 #endif
7108 
7109 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7110 {
7111 	struct mem_cgroup *memcg;
7112 	struct lruvec *lruvec;
7113 
7114 	if (lru_gen_enabled()) {
7115 		lru_gen_age_node(pgdat, sc);
7116 		return;
7117 	}
7118 
7119 	if (!can_age_anon_pages(pgdat, sc))
7120 		return;
7121 
7122 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7123 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7124 		return;
7125 
7126 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7127 	do {
7128 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7129 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7130 				   sc, LRU_ACTIVE_ANON);
7131 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7132 	} while (memcg);
7133 }
7134 
7135 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7136 {
7137 	int i;
7138 	struct zone *zone;
7139 
7140 	/*
7141 	 * Check for watermark boosts top-down as the higher zones
7142 	 * are more likely to be boosted. Both watermarks and boosts
7143 	 * should not be checked at the same time as reclaim would
7144 	 * start prematurely when there is no boosting and a lower
7145 	 * zone is balanced.
7146 	 */
7147 	for (i = highest_zoneidx; i >= 0; i--) {
7148 		zone = pgdat->node_zones + i;
7149 		if (!managed_zone(zone))
7150 			continue;
7151 
7152 		if (zone->watermark_boost)
7153 			return true;
7154 	}
7155 
7156 	return false;
7157 }
7158 
7159 /*
7160  * Returns true if there is an eligible zone balanced for the request order
7161  * and highest_zoneidx
7162  */
7163 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7164 {
7165 	int i;
7166 	unsigned long mark = -1;
7167 	struct zone *zone;
7168 
7169 	/*
7170 	 * Check watermarks bottom-up as lower zones are more likely to
7171 	 * meet watermarks.
7172 	 */
7173 	for (i = 0; i <= highest_zoneidx; i++) {
7174 		zone = pgdat->node_zones + i;
7175 
7176 		if (!managed_zone(zone))
7177 			continue;
7178 
7179 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7180 			mark = wmark_pages(zone, WMARK_PROMO);
7181 		else
7182 			mark = high_wmark_pages(zone);
7183 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7184 			return true;
7185 	}
7186 
7187 	/*
7188 	 * If a node has no managed zone within highest_zoneidx, it does not
7189 	 * need balancing by definition. This can happen if a zone-restricted
7190 	 * allocation tries to wake a remote kswapd.
7191 	 */
7192 	if (mark == -1)
7193 		return true;
7194 
7195 	return false;
7196 }
7197 
7198 /* Clear pgdat state for congested, dirty or under writeback. */
7199 static void clear_pgdat_congested(pg_data_t *pgdat)
7200 {
7201 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7202 
7203 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7204 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7205 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7206 }
7207 
7208 /*
7209  * Prepare kswapd for sleeping. This verifies that there are no processes
7210  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7211  *
7212  * Returns true if kswapd is ready to sleep
7213  */
7214 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7215 				int highest_zoneidx)
7216 {
7217 	/*
7218 	 * The throttled processes are normally woken up in balance_pgdat() as
7219 	 * soon as allow_direct_reclaim() is true. But there is a potential
7220 	 * race between when kswapd checks the watermarks and a process gets
7221 	 * throttled. There is also a potential race if processes get
7222 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7223 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7224 	 * the wake up checks. If kswapd is going to sleep, no process should
7225 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7226 	 * the wake up is premature, processes will wake kswapd and get
7227 	 * throttled again. The difference from wake ups in balance_pgdat() is
7228 	 * that here we are under prepare_to_wait().
7229 	 */
7230 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7231 		wake_up_all(&pgdat->pfmemalloc_wait);
7232 
7233 	/* Hopeless node, leave it to direct reclaim */
7234 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7235 		return true;
7236 
7237 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7238 		clear_pgdat_congested(pgdat);
7239 		return true;
7240 	}
7241 
7242 	return false;
7243 }
7244 
7245 /*
7246  * kswapd shrinks a node of pages that are at or below the highest usable
7247  * zone that is currently unbalanced.
7248  *
7249  * Returns true if kswapd scanned at least the requested number of pages to
7250  * reclaim or if the lack of progress was due to pages under writeback.
7251  * This is used to determine if the scanning priority needs to be raised.
7252  */
7253 static bool kswapd_shrink_node(pg_data_t *pgdat,
7254 			       struct scan_control *sc)
7255 {
7256 	struct zone *zone;
7257 	int z;
7258 
7259 	/* Reclaim a number of pages proportional to the number of zones */
7260 	sc->nr_to_reclaim = 0;
7261 	for (z = 0; z <= sc->reclaim_idx; z++) {
7262 		zone = pgdat->node_zones + z;
7263 		if (!managed_zone(zone))
7264 			continue;
7265 
7266 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7267 	}
7268 
7269 	/*
7270 	 * Historically care was taken to put equal pressure on all zones but
7271 	 * now pressure is applied based on node LRU order.
7272 	 */
7273 	shrink_node(pgdat, sc);
7274 
7275 	/*
7276 	 * Fragmentation may mean that the system cannot be rebalanced for
7277 	 * high-order allocations. If twice the allocation size has been
7278 	 * reclaimed then recheck watermarks only at order-0 to prevent
7279 	 * excessive reclaim. Assume that a process requested a high-order
7280 	 * can direct reclaim/compact.
7281 	 */
7282 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7283 		sc->order = 0;
7284 
7285 	return sc->nr_scanned >= sc->nr_to_reclaim;
7286 }
7287 
7288 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7289 static inline void
7290 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7291 {
7292 	int i;
7293 	struct zone *zone;
7294 
7295 	for (i = 0; i <= highest_zoneidx; i++) {
7296 		zone = pgdat->node_zones + i;
7297 
7298 		if (!managed_zone(zone))
7299 			continue;
7300 
7301 		if (active)
7302 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7303 		else
7304 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7305 	}
7306 }
7307 
7308 static inline void
7309 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7310 {
7311 	update_reclaim_active(pgdat, highest_zoneidx, true);
7312 }
7313 
7314 static inline void
7315 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7316 {
7317 	update_reclaim_active(pgdat, highest_zoneidx, false);
7318 }
7319 
7320 /*
7321  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7322  * that are eligible for use by the caller until at least one zone is
7323  * balanced.
7324  *
7325  * Returns the order kswapd finished reclaiming at.
7326  *
7327  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7328  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7329  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7330  * or lower is eligible for reclaim until at least one usable zone is
7331  * balanced.
7332  */
7333 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7334 {
7335 	int i;
7336 	unsigned long nr_soft_reclaimed;
7337 	unsigned long nr_soft_scanned;
7338 	unsigned long pflags;
7339 	unsigned long nr_boost_reclaim;
7340 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7341 	bool boosted;
7342 	struct zone *zone;
7343 	struct scan_control sc = {
7344 		.gfp_mask = GFP_KERNEL,
7345 		.order = order,
7346 		.may_unmap = 1,
7347 	};
7348 
7349 	set_task_reclaim_state(current, &sc.reclaim_state);
7350 	psi_memstall_enter(&pflags);
7351 	__fs_reclaim_acquire(_THIS_IP_);
7352 
7353 	count_vm_event(PAGEOUTRUN);
7354 
7355 	/*
7356 	 * Account for the reclaim boost. Note that the zone boost is left in
7357 	 * place so that parallel allocations that are near the watermark will
7358 	 * stall or direct reclaim until kswapd is finished.
7359 	 */
7360 	nr_boost_reclaim = 0;
7361 	for (i = 0; i <= highest_zoneidx; i++) {
7362 		zone = pgdat->node_zones + i;
7363 		if (!managed_zone(zone))
7364 			continue;
7365 
7366 		nr_boost_reclaim += zone->watermark_boost;
7367 		zone_boosts[i] = zone->watermark_boost;
7368 	}
7369 	boosted = nr_boost_reclaim;
7370 
7371 restart:
7372 	set_reclaim_active(pgdat, highest_zoneidx);
7373 	sc.priority = DEF_PRIORITY;
7374 	do {
7375 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7376 		bool raise_priority = true;
7377 		bool balanced;
7378 		bool ret;
7379 
7380 		sc.reclaim_idx = highest_zoneidx;
7381 
7382 		/*
7383 		 * If the number of buffer_heads exceeds the maximum allowed
7384 		 * then consider reclaiming from all zones. This has a dual
7385 		 * purpose -- on 64-bit systems it is expected that
7386 		 * buffer_heads are stripped during active rotation. On 32-bit
7387 		 * systems, highmem pages can pin lowmem memory and shrinking
7388 		 * buffers can relieve lowmem pressure. Reclaim may still not
7389 		 * go ahead if all eligible zones for the original allocation
7390 		 * request are balanced to avoid excessive reclaim from kswapd.
7391 		 */
7392 		if (buffer_heads_over_limit) {
7393 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7394 				zone = pgdat->node_zones + i;
7395 				if (!managed_zone(zone))
7396 					continue;
7397 
7398 				sc.reclaim_idx = i;
7399 				break;
7400 			}
7401 		}
7402 
7403 		/*
7404 		 * If the pgdat is imbalanced then ignore boosting and preserve
7405 		 * the watermarks for a later time and restart. Note that the
7406 		 * zone watermarks will be still reset at the end of balancing
7407 		 * on the grounds that the normal reclaim should be enough to
7408 		 * re-evaluate if boosting is required when kswapd next wakes.
7409 		 */
7410 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7411 		if (!balanced && nr_boost_reclaim) {
7412 			nr_boost_reclaim = 0;
7413 			goto restart;
7414 		}
7415 
7416 		/*
7417 		 * If boosting is not active then only reclaim if there are no
7418 		 * eligible zones. Note that sc.reclaim_idx is not used as
7419 		 * buffer_heads_over_limit may have adjusted it.
7420 		 */
7421 		if (!nr_boost_reclaim && balanced)
7422 			goto out;
7423 
7424 		/* Limit the priority of boosting to avoid reclaim writeback */
7425 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7426 			raise_priority = false;
7427 
7428 		/*
7429 		 * Do not writeback or swap pages for boosted reclaim. The
7430 		 * intent is to relieve pressure not issue sub-optimal IO
7431 		 * from reclaim context. If no pages are reclaimed, the
7432 		 * reclaim will be aborted.
7433 		 */
7434 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7435 		sc.may_swap = !nr_boost_reclaim;
7436 
7437 		/*
7438 		 * Do some background aging, to give pages a chance to be
7439 		 * referenced before reclaiming. All pages are rotated
7440 		 * regardless of classzone as this is about consistent aging.
7441 		 */
7442 		kswapd_age_node(pgdat, &sc);
7443 
7444 		/*
7445 		 * If we're getting trouble reclaiming, start doing writepage
7446 		 * even in laptop mode.
7447 		 */
7448 		if (sc.priority < DEF_PRIORITY - 2)
7449 			sc.may_writepage = 1;
7450 
7451 		/* Call soft limit reclaim before calling shrink_node. */
7452 		sc.nr_scanned = 0;
7453 		nr_soft_scanned = 0;
7454 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7455 						sc.gfp_mask, &nr_soft_scanned);
7456 		sc.nr_reclaimed += nr_soft_reclaimed;
7457 
7458 		/*
7459 		 * There should be no need to raise the scanning priority if
7460 		 * enough pages are already being scanned that that high
7461 		 * watermark would be met at 100% efficiency.
7462 		 */
7463 		if (kswapd_shrink_node(pgdat, &sc))
7464 			raise_priority = false;
7465 
7466 		/*
7467 		 * If the low watermark is met there is no need for processes
7468 		 * to be throttled on pfmemalloc_wait as they should not be
7469 		 * able to safely make forward progress. Wake them
7470 		 */
7471 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7472 				allow_direct_reclaim(pgdat))
7473 			wake_up_all(&pgdat->pfmemalloc_wait);
7474 
7475 		/* Check if kswapd should be suspending */
7476 		__fs_reclaim_release(_THIS_IP_);
7477 		ret = try_to_freeze();
7478 		__fs_reclaim_acquire(_THIS_IP_);
7479 		if (ret || kthread_should_stop())
7480 			break;
7481 
7482 		/*
7483 		 * Raise priority if scanning rate is too low or there was no
7484 		 * progress in reclaiming pages
7485 		 */
7486 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7487 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7488 
7489 		/*
7490 		 * If reclaim made no progress for a boost, stop reclaim as
7491 		 * IO cannot be queued and it could be an infinite loop in
7492 		 * extreme circumstances.
7493 		 */
7494 		if (nr_boost_reclaim && !nr_reclaimed)
7495 			break;
7496 
7497 		if (raise_priority || !nr_reclaimed)
7498 			sc.priority--;
7499 	} while (sc.priority >= 1);
7500 
7501 	if (!sc.nr_reclaimed)
7502 		pgdat->kswapd_failures++;
7503 
7504 out:
7505 	clear_reclaim_active(pgdat, highest_zoneidx);
7506 
7507 	/* If reclaim was boosted, account for the reclaim done in this pass */
7508 	if (boosted) {
7509 		unsigned long flags;
7510 
7511 		for (i = 0; i <= highest_zoneidx; i++) {
7512 			if (!zone_boosts[i])
7513 				continue;
7514 
7515 			/* Increments are under the zone lock */
7516 			zone = pgdat->node_zones + i;
7517 			spin_lock_irqsave(&zone->lock, flags);
7518 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7519 			spin_unlock_irqrestore(&zone->lock, flags);
7520 		}
7521 
7522 		/*
7523 		 * As there is now likely space, wakeup kcompact to defragment
7524 		 * pageblocks.
7525 		 */
7526 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7527 	}
7528 
7529 	snapshot_refaults(NULL, pgdat);
7530 	__fs_reclaim_release(_THIS_IP_);
7531 	psi_memstall_leave(&pflags);
7532 	set_task_reclaim_state(current, NULL);
7533 
7534 	/*
7535 	 * Return the order kswapd stopped reclaiming at as
7536 	 * prepare_kswapd_sleep() takes it into account. If another caller
7537 	 * entered the allocator slow path while kswapd was awake, order will
7538 	 * remain at the higher level.
7539 	 */
7540 	return sc.order;
7541 }
7542 
7543 /*
7544  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7545  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7546  * not a valid index then either kswapd runs for first time or kswapd couldn't
7547  * sleep after previous reclaim attempt (node is still unbalanced). In that
7548  * case return the zone index of the previous kswapd reclaim cycle.
7549  */
7550 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7551 					   enum zone_type prev_highest_zoneidx)
7552 {
7553 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7554 
7555 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7556 }
7557 
7558 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7559 				unsigned int highest_zoneidx)
7560 {
7561 	long remaining = 0;
7562 	DEFINE_WAIT(wait);
7563 
7564 	if (freezing(current) || kthread_should_stop())
7565 		return;
7566 
7567 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7568 
7569 	/*
7570 	 * Try to sleep for a short interval. Note that kcompactd will only be
7571 	 * woken if it is possible to sleep for a short interval. This is
7572 	 * deliberate on the assumption that if reclaim cannot keep an
7573 	 * eligible zone balanced that it's also unlikely that compaction will
7574 	 * succeed.
7575 	 */
7576 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7577 		/*
7578 		 * Compaction records what page blocks it recently failed to
7579 		 * isolate pages from and skips them in the future scanning.
7580 		 * When kswapd is going to sleep, it is reasonable to assume
7581 		 * that pages and compaction may succeed so reset the cache.
7582 		 */
7583 		reset_isolation_suitable(pgdat);
7584 
7585 		/*
7586 		 * We have freed the memory, now we should compact it to make
7587 		 * allocation of the requested order possible.
7588 		 */
7589 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7590 
7591 		remaining = schedule_timeout(HZ/10);
7592 
7593 		/*
7594 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7595 		 * order. The values will either be from a wakeup request or
7596 		 * the previous request that slept prematurely.
7597 		 */
7598 		if (remaining) {
7599 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7600 					kswapd_highest_zoneidx(pgdat,
7601 							highest_zoneidx));
7602 
7603 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7604 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7605 		}
7606 
7607 		finish_wait(&pgdat->kswapd_wait, &wait);
7608 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7609 	}
7610 
7611 	/*
7612 	 * After a short sleep, check if it was a premature sleep. If not, then
7613 	 * go fully to sleep until explicitly woken up.
7614 	 */
7615 	if (!remaining &&
7616 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7617 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7618 
7619 		/*
7620 		 * vmstat counters are not perfectly accurate and the estimated
7621 		 * value for counters such as NR_FREE_PAGES can deviate from the
7622 		 * true value by nr_online_cpus * threshold. To avoid the zone
7623 		 * watermarks being breached while under pressure, we reduce the
7624 		 * per-cpu vmstat threshold while kswapd is awake and restore
7625 		 * them before going back to sleep.
7626 		 */
7627 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7628 
7629 		if (!kthread_should_stop())
7630 			schedule();
7631 
7632 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7633 	} else {
7634 		if (remaining)
7635 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7636 		else
7637 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7638 	}
7639 	finish_wait(&pgdat->kswapd_wait, &wait);
7640 }
7641 
7642 /*
7643  * The background pageout daemon, started as a kernel thread
7644  * from the init process.
7645  *
7646  * This basically trickles out pages so that we have _some_
7647  * free memory available even if there is no other activity
7648  * that frees anything up. This is needed for things like routing
7649  * etc, where we otherwise might have all activity going on in
7650  * asynchronous contexts that cannot page things out.
7651  *
7652  * If there are applications that are active memory-allocators
7653  * (most normal use), this basically shouldn't matter.
7654  */
7655 static int kswapd(void *p)
7656 {
7657 	unsigned int alloc_order, reclaim_order;
7658 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7659 	pg_data_t *pgdat = (pg_data_t *)p;
7660 	struct task_struct *tsk = current;
7661 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7662 
7663 	if (!cpumask_empty(cpumask))
7664 		set_cpus_allowed_ptr(tsk, cpumask);
7665 
7666 	/*
7667 	 * Tell the memory management that we're a "memory allocator",
7668 	 * and that if we need more memory we should get access to it
7669 	 * regardless (see "__alloc_pages()"). "kswapd" should
7670 	 * never get caught in the normal page freeing logic.
7671 	 *
7672 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7673 	 * you need a small amount of memory in order to be able to
7674 	 * page out something else, and this flag essentially protects
7675 	 * us from recursively trying to free more memory as we're
7676 	 * trying to free the first piece of memory in the first place).
7677 	 */
7678 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7679 	set_freezable();
7680 
7681 	WRITE_ONCE(pgdat->kswapd_order, 0);
7682 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7683 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7684 	for ( ; ; ) {
7685 		bool ret;
7686 
7687 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7688 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7689 							highest_zoneidx);
7690 
7691 kswapd_try_sleep:
7692 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7693 					highest_zoneidx);
7694 
7695 		/* Read the new order and highest_zoneidx */
7696 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7697 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7698 							highest_zoneidx);
7699 		WRITE_ONCE(pgdat->kswapd_order, 0);
7700 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7701 
7702 		ret = try_to_freeze();
7703 		if (kthread_should_stop())
7704 			break;
7705 
7706 		/*
7707 		 * We can speed up thawing tasks if we don't call balance_pgdat
7708 		 * after returning from the refrigerator
7709 		 */
7710 		if (ret)
7711 			continue;
7712 
7713 		/*
7714 		 * Reclaim begins at the requested order but if a high-order
7715 		 * reclaim fails then kswapd falls back to reclaiming for
7716 		 * order-0. If that happens, kswapd will consider sleeping
7717 		 * for the order it finished reclaiming at (reclaim_order)
7718 		 * but kcompactd is woken to compact for the original
7719 		 * request (alloc_order).
7720 		 */
7721 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7722 						alloc_order);
7723 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7724 						highest_zoneidx);
7725 		if (reclaim_order < alloc_order)
7726 			goto kswapd_try_sleep;
7727 	}
7728 
7729 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7730 
7731 	return 0;
7732 }
7733 
7734 /*
7735  * A zone is low on free memory or too fragmented for high-order memory.  If
7736  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7737  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7738  * has failed or is not needed, still wake up kcompactd if only compaction is
7739  * needed.
7740  */
7741 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7742 		   enum zone_type highest_zoneidx)
7743 {
7744 	pg_data_t *pgdat;
7745 	enum zone_type curr_idx;
7746 
7747 	if (!managed_zone(zone))
7748 		return;
7749 
7750 	if (!cpuset_zone_allowed(zone, gfp_flags))
7751 		return;
7752 
7753 	pgdat = zone->zone_pgdat;
7754 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7755 
7756 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7757 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7758 
7759 	if (READ_ONCE(pgdat->kswapd_order) < order)
7760 		WRITE_ONCE(pgdat->kswapd_order, order);
7761 
7762 	if (!waitqueue_active(&pgdat->kswapd_wait))
7763 		return;
7764 
7765 	/* Hopeless node, leave it to direct reclaim if possible */
7766 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7767 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7768 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7769 		/*
7770 		 * There may be plenty of free memory available, but it's too
7771 		 * fragmented for high-order allocations.  Wake up kcompactd
7772 		 * and rely on compaction_suitable() to determine if it's
7773 		 * needed.  If it fails, it will defer subsequent attempts to
7774 		 * ratelimit its work.
7775 		 */
7776 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7777 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7778 		return;
7779 	}
7780 
7781 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7782 				      gfp_flags);
7783 	wake_up_interruptible(&pgdat->kswapd_wait);
7784 }
7785 
7786 #ifdef CONFIG_HIBERNATION
7787 /*
7788  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7789  * freed pages.
7790  *
7791  * Rather than trying to age LRUs the aim is to preserve the overall
7792  * LRU order by reclaiming preferentially
7793  * inactive > active > active referenced > active mapped
7794  */
7795 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7796 {
7797 	struct scan_control sc = {
7798 		.nr_to_reclaim = nr_to_reclaim,
7799 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7800 		.reclaim_idx = MAX_NR_ZONES - 1,
7801 		.priority = DEF_PRIORITY,
7802 		.may_writepage = 1,
7803 		.may_unmap = 1,
7804 		.may_swap = 1,
7805 		.hibernation_mode = 1,
7806 	};
7807 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7808 	unsigned long nr_reclaimed;
7809 	unsigned int noreclaim_flag;
7810 
7811 	fs_reclaim_acquire(sc.gfp_mask);
7812 	noreclaim_flag = memalloc_noreclaim_save();
7813 	set_task_reclaim_state(current, &sc.reclaim_state);
7814 
7815 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7816 
7817 	set_task_reclaim_state(current, NULL);
7818 	memalloc_noreclaim_restore(noreclaim_flag);
7819 	fs_reclaim_release(sc.gfp_mask);
7820 
7821 	return nr_reclaimed;
7822 }
7823 #endif /* CONFIG_HIBERNATION */
7824 
7825 /*
7826  * This kswapd start function will be called by init and node-hot-add.
7827  */
7828 void kswapd_run(int nid)
7829 {
7830 	pg_data_t *pgdat = NODE_DATA(nid);
7831 
7832 	pgdat_kswapd_lock(pgdat);
7833 	if (!pgdat->kswapd) {
7834 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7835 		if (IS_ERR(pgdat->kswapd)) {
7836 			/* failure at boot is fatal */
7837 			BUG_ON(system_state < SYSTEM_RUNNING);
7838 			pr_err("Failed to start kswapd on node %d\n", nid);
7839 			pgdat->kswapd = NULL;
7840 		}
7841 	}
7842 	pgdat_kswapd_unlock(pgdat);
7843 }
7844 
7845 /*
7846  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7847  * be holding mem_hotplug_begin/done().
7848  */
7849 void kswapd_stop(int nid)
7850 {
7851 	pg_data_t *pgdat = NODE_DATA(nid);
7852 	struct task_struct *kswapd;
7853 
7854 	pgdat_kswapd_lock(pgdat);
7855 	kswapd = pgdat->kswapd;
7856 	if (kswapd) {
7857 		kthread_stop(kswapd);
7858 		pgdat->kswapd = NULL;
7859 	}
7860 	pgdat_kswapd_unlock(pgdat);
7861 }
7862 
7863 static int __init kswapd_init(void)
7864 {
7865 	int nid;
7866 
7867 	swap_setup();
7868 	for_each_node_state(nid, N_MEMORY)
7869  		kswapd_run(nid);
7870 	return 0;
7871 }
7872 
7873 module_init(kswapd_init)
7874 
7875 #ifdef CONFIG_NUMA
7876 /*
7877  * Node reclaim mode
7878  *
7879  * If non-zero call node_reclaim when the number of free pages falls below
7880  * the watermarks.
7881  */
7882 int node_reclaim_mode __read_mostly;
7883 
7884 /*
7885  * Priority for NODE_RECLAIM. This determines the fraction of pages
7886  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7887  * a zone.
7888  */
7889 #define NODE_RECLAIM_PRIORITY 4
7890 
7891 /*
7892  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7893  * occur.
7894  */
7895 int sysctl_min_unmapped_ratio = 1;
7896 
7897 /*
7898  * If the number of slab pages in a zone grows beyond this percentage then
7899  * slab reclaim needs to occur.
7900  */
7901 int sysctl_min_slab_ratio = 5;
7902 
7903 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7904 {
7905 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7906 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7907 		node_page_state(pgdat, NR_ACTIVE_FILE);
7908 
7909 	/*
7910 	 * It's possible for there to be more file mapped pages than
7911 	 * accounted for by the pages on the file LRU lists because
7912 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7913 	 */
7914 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7915 }
7916 
7917 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7918 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7919 {
7920 	unsigned long nr_pagecache_reclaimable;
7921 	unsigned long delta = 0;
7922 
7923 	/*
7924 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7925 	 * potentially reclaimable. Otherwise, we have to worry about
7926 	 * pages like swapcache and node_unmapped_file_pages() provides
7927 	 * a better estimate
7928 	 */
7929 	if (node_reclaim_mode & RECLAIM_UNMAP)
7930 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7931 	else
7932 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7933 
7934 	/* If we can't clean pages, remove dirty pages from consideration */
7935 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7936 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7937 
7938 	/* Watch for any possible underflows due to delta */
7939 	if (unlikely(delta > nr_pagecache_reclaimable))
7940 		delta = nr_pagecache_reclaimable;
7941 
7942 	return nr_pagecache_reclaimable - delta;
7943 }
7944 
7945 /*
7946  * Try to free up some pages from this node through reclaim.
7947  */
7948 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7949 {
7950 	/* Minimum pages needed in order to stay on node */
7951 	const unsigned long nr_pages = 1 << order;
7952 	struct task_struct *p = current;
7953 	unsigned int noreclaim_flag;
7954 	struct scan_control sc = {
7955 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7956 		.gfp_mask = current_gfp_context(gfp_mask),
7957 		.order = order,
7958 		.priority = NODE_RECLAIM_PRIORITY,
7959 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7960 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7961 		.may_swap = 1,
7962 		.reclaim_idx = gfp_zone(gfp_mask),
7963 	};
7964 	unsigned long pflags;
7965 
7966 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7967 					   sc.gfp_mask);
7968 
7969 	cond_resched();
7970 	psi_memstall_enter(&pflags);
7971 	fs_reclaim_acquire(sc.gfp_mask);
7972 	/*
7973 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7974 	 */
7975 	noreclaim_flag = memalloc_noreclaim_save();
7976 	set_task_reclaim_state(p, &sc.reclaim_state);
7977 
7978 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7979 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7980 		/*
7981 		 * Free memory by calling shrink node with increasing
7982 		 * priorities until we have enough memory freed.
7983 		 */
7984 		do {
7985 			shrink_node(pgdat, &sc);
7986 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7987 	}
7988 
7989 	set_task_reclaim_state(p, NULL);
7990 	memalloc_noreclaim_restore(noreclaim_flag);
7991 	fs_reclaim_release(sc.gfp_mask);
7992 	psi_memstall_leave(&pflags);
7993 
7994 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7995 
7996 	return sc.nr_reclaimed >= nr_pages;
7997 }
7998 
7999 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8000 {
8001 	int ret;
8002 
8003 	/*
8004 	 * Node reclaim reclaims unmapped file backed pages and
8005 	 * slab pages if we are over the defined limits.
8006 	 *
8007 	 * A small portion of unmapped file backed pages is needed for
8008 	 * file I/O otherwise pages read by file I/O will be immediately
8009 	 * thrown out if the node is overallocated. So we do not reclaim
8010 	 * if less than a specified percentage of the node is used by
8011 	 * unmapped file backed pages.
8012 	 */
8013 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8014 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8015 	    pgdat->min_slab_pages)
8016 		return NODE_RECLAIM_FULL;
8017 
8018 	/*
8019 	 * Do not scan if the allocation should not be delayed.
8020 	 */
8021 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8022 		return NODE_RECLAIM_NOSCAN;
8023 
8024 	/*
8025 	 * Only run node reclaim on the local node or on nodes that do not
8026 	 * have associated processors. This will favor the local processor
8027 	 * over remote processors and spread off node memory allocations
8028 	 * as wide as possible.
8029 	 */
8030 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8031 		return NODE_RECLAIM_NOSCAN;
8032 
8033 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8034 		return NODE_RECLAIM_NOSCAN;
8035 
8036 	ret = __node_reclaim(pgdat, gfp_mask, order);
8037 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8038 
8039 	if (!ret)
8040 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8041 
8042 	return ret;
8043 }
8044 #endif
8045 
8046 void check_move_unevictable_pages(struct pagevec *pvec)
8047 {
8048 	struct folio_batch fbatch;
8049 	unsigned i;
8050 
8051 	folio_batch_init(&fbatch);
8052 	for (i = 0; i < pvec->nr; i++) {
8053 		struct page *page = pvec->pages[i];
8054 
8055 		if (PageTransTail(page))
8056 			continue;
8057 		folio_batch_add(&fbatch, page_folio(page));
8058 	}
8059 	check_move_unevictable_folios(&fbatch);
8060 }
8061 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8062 
8063 /**
8064  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8065  * lru list
8066  * @fbatch: Batch of lru folios to check.
8067  *
8068  * Checks folios for evictability, if an evictable folio is in the unevictable
8069  * lru list, moves it to the appropriate evictable lru list. This function
8070  * should be only used for lru folios.
8071  */
8072 void check_move_unevictable_folios(struct folio_batch *fbatch)
8073 {
8074 	struct lruvec *lruvec = NULL;
8075 	int pgscanned = 0;
8076 	int pgrescued = 0;
8077 	int i;
8078 
8079 	for (i = 0; i < fbatch->nr; i++) {
8080 		struct folio *folio = fbatch->folios[i];
8081 		int nr_pages = folio_nr_pages(folio);
8082 
8083 		pgscanned += nr_pages;
8084 
8085 		/* block memcg migration while the folio moves between lrus */
8086 		if (!folio_test_clear_lru(folio))
8087 			continue;
8088 
8089 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8090 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8091 			lruvec_del_folio(lruvec, folio);
8092 			folio_clear_unevictable(folio);
8093 			lruvec_add_folio(lruvec, folio);
8094 			pgrescued += nr_pages;
8095 		}
8096 		folio_set_lru(folio);
8097 	}
8098 
8099 	if (lruvec) {
8100 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8101 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8102 		unlock_page_lruvec_irq(lruvec);
8103 	} else if (pgscanned) {
8104 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8105 	}
8106 }
8107 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8108