xref: /openbmc/linux/mm/vmscan.c (revision 69fad28c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176 
177 #ifdef CONFIG_MEMCG_KMEM
178 
179 /*
180  * We allow subsystems to populate their shrinker-related
181  * LRU lists before register_shrinker_prepared() is called
182  * for the shrinker, since we don't want to impose
183  * restrictions on their internal registration order.
184  * In this case shrink_slab_memcg() may find corresponding
185  * bit is set in the shrinkers map.
186  *
187  * This value is used by the function to detect registering
188  * shrinkers and to skip do_shrink_slab() calls for them.
189  */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191 
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194 
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 	int id, ret = -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	/* This may call shrinker, so it must use down_read_trylock() */
201 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 	if (id < 0)
203 		goto unlock;
204 
205 	if (id >= shrinker_nr_max) {
206 		if (memcg_expand_shrinker_maps(id)) {
207 			idr_remove(&shrinker_idr, id);
208 			goto unlock;
209 		}
210 
211 		shrinker_nr_max = id + 1;
212 	}
213 	shrinker->id = id;
214 	ret = 0;
215 unlock:
216 	up_write(&shrinker_rwsem);
217 	return ret;
218 }
219 
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 	int id = shrinker->id;
223 
224 	BUG_ON(id < 0);
225 
226 	down_write(&shrinker_rwsem);
227 	idr_remove(&shrinker_idr, id);
228 	up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	return 0;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240 
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static bool global_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static bool sane_reclaim(struct scan_control *sc)
302 {
303 	return true;
304 }
305 
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 				struct mem_cgroup *memcg, bool congested)
308 {
309 }
310 
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 			struct mem_cgroup *memcg)
313 {
314 	return false;
315 
316 }
317 #endif
318 
319 /*
320  * This misses isolated pages which are not accounted for to save counters.
321  * As the data only determines if reclaim or compaction continues, it is
322  * not expected that isolated pages will be a dominating factor.
323  */
324 unsigned long zone_reclaimable_pages(struct zone *zone)
325 {
326 	unsigned long nr;
327 
328 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 	if (get_nr_swap_pages() > 0)
331 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 
334 	return nr;
335 }
336 
337 /**
338  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
339  * @lruvec: lru vector
340  * @lru: lru to use
341  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342  */
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344 {
345 	unsigned long lru_size;
346 	int zid;
347 
348 	if (!mem_cgroup_disabled())
349 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
350 	else
351 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352 
353 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 		unsigned long size;
356 
357 		if (!managed_zone(zone))
358 			continue;
359 
360 		if (!mem_cgroup_disabled())
361 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 		else
363 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 				       NR_ZONE_LRU_BASE + lru);
365 		lru_size -= min(size, lru_size);
366 	}
367 
368 	return lru_size;
369 
370 }
371 
372 /*
373  * Add a shrinker callback to be called from the vm.
374  */
375 int prealloc_shrinker(struct shrinker *shrinker)
376 {
377 	size_t size = sizeof(*shrinker->nr_deferred);
378 
379 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 		size *= nr_node_ids;
381 
382 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 	if (!shrinker->nr_deferred)
384 		return -ENOMEM;
385 
386 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 		if (prealloc_memcg_shrinker(shrinker))
388 			goto free_deferred;
389 	}
390 
391 	return 0;
392 
393 free_deferred:
394 	kfree(shrinker->nr_deferred);
395 	shrinker->nr_deferred = NULL;
396 	return -ENOMEM;
397 }
398 
399 void free_prealloced_shrinker(struct shrinker *shrinker)
400 {
401 	if (!shrinker->nr_deferred)
402 		return;
403 
404 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 		unregister_memcg_shrinker(shrinker);
406 
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 
411 void register_shrinker_prepared(struct shrinker *shrinker)
412 {
413 	down_write(&shrinker_rwsem);
414 	list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 	up_write(&shrinker_rwsem);
420 }
421 
422 int register_shrinker(struct shrinker *shrinker)
423 {
424 	int err = prealloc_shrinker(shrinker);
425 
426 	if (err)
427 		return err;
428 	register_shrinker_prepared(shrinker);
429 	return 0;
430 }
431 EXPORT_SYMBOL(register_shrinker);
432 
433 /*
434  * Remove one
435  */
436 void unregister_shrinker(struct shrinker *shrinker)
437 {
438 	if (!shrinker->nr_deferred)
439 		return;
440 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 		unregister_memcg_shrinker(shrinker);
442 	down_write(&shrinker_rwsem);
443 	list_del(&shrinker->list);
444 	up_write(&shrinker_rwsem);
445 	kfree(shrinker->nr_deferred);
446 	shrinker->nr_deferred = NULL;
447 }
448 EXPORT_SYMBOL(unregister_shrinker);
449 
450 #define SHRINK_BATCH 128
451 
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 				    struct shrinker *shrinker, int priority)
454 {
455 	unsigned long freed = 0;
456 	unsigned long long delta;
457 	long total_scan;
458 	long freeable;
459 	long nr;
460 	long new_nr;
461 	int nid = shrinkctl->nid;
462 	long batch_size = shrinker->batch ? shrinker->batch
463 					  : SHRINK_BATCH;
464 	long scanned = 0, next_deferred;
465 
466 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 		nid = 0;
468 
469 	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 	if (freeable == 0 || freeable == SHRINK_EMPTY)
471 		return freeable;
472 
473 	/*
474 	 * copy the current shrinker scan count into a local variable
475 	 * and zero it so that other concurrent shrinker invocations
476 	 * don't also do this scanning work.
477 	 */
478 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479 
480 	total_scan = nr;
481 	if (shrinker->seeks) {
482 		delta = freeable >> priority;
483 		delta *= 4;
484 		do_div(delta, shrinker->seeks);
485 	} else {
486 		/*
487 		 * These objects don't require any IO to create. Trim
488 		 * them aggressively under memory pressure to keep
489 		 * them from causing refetches in the IO caches.
490 		 */
491 		delta = freeable / 2;
492 	}
493 
494 	/*
495 	 * Make sure we apply some minimal pressure on default priority
496 	 * even on small cgroups. Stale objects are not only consuming memory
497 	 * by themselves, but can also hold a reference to a dying cgroup,
498 	 * preventing it from being reclaimed. A dying cgroup with all
499 	 * corresponding structures like per-cpu stats and kmem caches
500 	 * can be really big, so it may lead to a significant waste of memory.
501 	 */
502 	delta = max_t(unsigned long long, delta, min(freeable, batch_size));
503 
504 	total_scan += delta;
505 	if (total_scan < 0) {
506 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
507 		       shrinker->scan_objects, total_scan);
508 		total_scan = freeable;
509 		next_deferred = nr;
510 	} else
511 		next_deferred = total_scan;
512 
513 	/*
514 	 * We need to avoid excessive windup on filesystem shrinkers
515 	 * due to large numbers of GFP_NOFS allocations causing the
516 	 * shrinkers to return -1 all the time. This results in a large
517 	 * nr being built up so when a shrink that can do some work
518 	 * comes along it empties the entire cache due to nr >>>
519 	 * freeable. This is bad for sustaining a working set in
520 	 * memory.
521 	 *
522 	 * Hence only allow the shrinker to scan the entire cache when
523 	 * a large delta change is calculated directly.
524 	 */
525 	if (delta < freeable / 4)
526 		total_scan = min(total_scan, freeable / 2);
527 
528 	/*
529 	 * Avoid risking looping forever due to too large nr value:
530 	 * never try to free more than twice the estimate number of
531 	 * freeable entries.
532 	 */
533 	if (total_scan > freeable * 2)
534 		total_scan = freeable * 2;
535 
536 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
537 				   freeable, delta, total_scan, priority);
538 
539 	/*
540 	 * Normally, we should not scan less than batch_size objects in one
541 	 * pass to avoid too frequent shrinker calls, but if the slab has less
542 	 * than batch_size objects in total and we are really tight on memory,
543 	 * we will try to reclaim all available objects, otherwise we can end
544 	 * up failing allocations although there are plenty of reclaimable
545 	 * objects spread over several slabs with usage less than the
546 	 * batch_size.
547 	 *
548 	 * We detect the "tight on memory" situations by looking at the total
549 	 * number of objects we want to scan (total_scan). If it is greater
550 	 * than the total number of objects on slab (freeable), we must be
551 	 * scanning at high prio and therefore should try to reclaim as much as
552 	 * possible.
553 	 */
554 	while (total_scan >= batch_size ||
555 	       total_scan >= freeable) {
556 		unsigned long ret;
557 		unsigned long nr_to_scan = min(batch_size, total_scan);
558 
559 		shrinkctl->nr_to_scan = nr_to_scan;
560 		shrinkctl->nr_scanned = nr_to_scan;
561 		ret = shrinker->scan_objects(shrinker, shrinkctl);
562 		if (ret == SHRINK_STOP)
563 			break;
564 		freed += ret;
565 
566 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
567 		total_scan -= shrinkctl->nr_scanned;
568 		scanned += shrinkctl->nr_scanned;
569 
570 		cond_resched();
571 	}
572 
573 	if (next_deferred >= scanned)
574 		next_deferred -= scanned;
575 	else
576 		next_deferred = 0;
577 	/*
578 	 * move the unused scan count back into the shrinker in a
579 	 * manner that handles concurrent updates. If we exhausted the
580 	 * scan, there is no need to do an update.
581 	 */
582 	if (next_deferred > 0)
583 		new_nr = atomic_long_add_return(next_deferred,
584 						&shrinker->nr_deferred[nid]);
585 	else
586 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
587 
588 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
589 	return freed;
590 }
591 
592 #ifdef CONFIG_MEMCG_KMEM
593 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
594 			struct mem_cgroup *memcg, int priority)
595 {
596 	struct memcg_shrinker_map *map;
597 	unsigned long ret, freed = 0;
598 	int i;
599 
600 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
601 		return 0;
602 
603 	if (!down_read_trylock(&shrinker_rwsem))
604 		return 0;
605 
606 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
607 					true);
608 	if (unlikely(!map))
609 		goto unlock;
610 
611 	for_each_set_bit(i, map->map, shrinker_nr_max) {
612 		struct shrink_control sc = {
613 			.gfp_mask = gfp_mask,
614 			.nid = nid,
615 			.memcg = memcg,
616 		};
617 		struct shrinker *shrinker;
618 
619 		shrinker = idr_find(&shrinker_idr, i);
620 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
621 			if (!shrinker)
622 				clear_bit(i, map->map);
623 			continue;
624 		}
625 
626 		ret = do_shrink_slab(&sc, shrinker, priority);
627 		if (ret == SHRINK_EMPTY) {
628 			clear_bit(i, map->map);
629 			/*
630 			 * After the shrinker reported that it had no objects to
631 			 * free, but before we cleared the corresponding bit in
632 			 * the memcg shrinker map, a new object might have been
633 			 * added. To make sure, we have the bit set in this
634 			 * case, we invoke the shrinker one more time and reset
635 			 * the bit if it reports that it is not empty anymore.
636 			 * The memory barrier here pairs with the barrier in
637 			 * memcg_set_shrinker_bit():
638 			 *
639 			 * list_lru_add()     shrink_slab_memcg()
640 			 *   list_add_tail()    clear_bit()
641 			 *   <MB>               <MB>
642 			 *   set_bit()          do_shrink_slab()
643 			 */
644 			smp_mb__after_atomic();
645 			ret = do_shrink_slab(&sc, shrinker, priority);
646 			if (ret == SHRINK_EMPTY)
647 				ret = 0;
648 			else
649 				memcg_set_shrinker_bit(memcg, nid, i);
650 		}
651 		freed += ret;
652 
653 		if (rwsem_is_contended(&shrinker_rwsem)) {
654 			freed = freed ? : 1;
655 			break;
656 		}
657 	}
658 unlock:
659 	up_read(&shrinker_rwsem);
660 	return freed;
661 }
662 #else /* CONFIG_MEMCG_KMEM */
663 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
664 			struct mem_cgroup *memcg, int priority)
665 {
666 	return 0;
667 }
668 #endif /* CONFIG_MEMCG_KMEM */
669 
670 /**
671  * shrink_slab - shrink slab caches
672  * @gfp_mask: allocation context
673  * @nid: node whose slab caches to target
674  * @memcg: memory cgroup whose slab caches to target
675  * @priority: the reclaim priority
676  *
677  * Call the shrink functions to age shrinkable caches.
678  *
679  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
680  * unaware shrinkers will receive a node id of 0 instead.
681  *
682  * @memcg specifies the memory cgroup to target. Unaware shrinkers
683  * are called only if it is the root cgroup.
684  *
685  * @priority is sc->priority, we take the number of objects and >> by priority
686  * in order to get the scan target.
687  *
688  * Returns the number of reclaimed slab objects.
689  */
690 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
691 				 struct mem_cgroup *memcg,
692 				 int priority)
693 {
694 	unsigned long ret, freed = 0;
695 	struct shrinker *shrinker;
696 
697 	if (!mem_cgroup_is_root(memcg))
698 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
699 
700 	if (!down_read_trylock(&shrinker_rwsem))
701 		goto out;
702 
703 	list_for_each_entry(shrinker, &shrinker_list, list) {
704 		struct shrink_control sc = {
705 			.gfp_mask = gfp_mask,
706 			.nid = nid,
707 			.memcg = memcg,
708 		};
709 
710 		ret = do_shrink_slab(&sc, shrinker, priority);
711 		if (ret == SHRINK_EMPTY)
712 			ret = 0;
713 		freed += ret;
714 		/*
715 		 * Bail out if someone want to register a new shrinker to
716 		 * prevent the regsitration from being stalled for long periods
717 		 * by parallel ongoing shrinking.
718 		 */
719 		if (rwsem_is_contended(&shrinker_rwsem)) {
720 			freed = freed ? : 1;
721 			break;
722 		}
723 	}
724 
725 	up_read(&shrinker_rwsem);
726 out:
727 	cond_resched();
728 	return freed;
729 }
730 
731 void drop_slab_node(int nid)
732 {
733 	unsigned long freed;
734 
735 	do {
736 		struct mem_cgroup *memcg = NULL;
737 
738 		freed = 0;
739 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
740 		do {
741 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
742 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
743 	} while (freed > 10);
744 }
745 
746 void drop_slab(void)
747 {
748 	int nid;
749 
750 	for_each_online_node(nid)
751 		drop_slab_node(nid);
752 }
753 
754 static inline int is_page_cache_freeable(struct page *page)
755 {
756 	/*
757 	 * A freeable page cache page is referenced only by the caller
758 	 * that isolated the page, the page cache and optional buffer
759 	 * heads at page->private.
760 	 */
761 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
762 		HPAGE_PMD_NR : 1;
763 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
764 }
765 
766 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
767 {
768 	if (current->flags & PF_SWAPWRITE)
769 		return 1;
770 	if (!inode_write_congested(inode))
771 		return 1;
772 	if (inode_to_bdi(inode) == current->backing_dev_info)
773 		return 1;
774 	return 0;
775 }
776 
777 /*
778  * We detected a synchronous write error writing a page out.  Probably
779  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
780  * fsync(), msync() or close().
781  *
782  * The tricky part is that after writepage we cannot touch the mapping: nothing
783  * prevents it from being freed up.  But we have a ref on the page and once
784  * that page is locked, the mapping is pinned.
785  *
786  * We're allowed to run sleeping lock_page() here because we know the caller has
787  * __GFP_FS.
788  */
789 static void handle_write_error(struct address_space *mapping,
790 				struct page *page, int error)
791 {
792 	lock_page(page);
793 	if (page_mapping(page) == mapping)
794 		mapping_set_error(mapping, error);
795 	unlock_page(page);
796 }
797 
798 /* possible outcome of pageout() */
799 typedef enum {
800 	/* failed to write page out, page is locked */
801 	PAGE_KEEP,
802 	/* move page to the active list, page is locked */
803 	PAGE_ACTIVATE,
804 	/* page has been sent to the disk successfully, page is unlocked */
805 	PAGE_SUCCESS,
806 	/* page is clean and locked */
807 	PAGE_CLEAN,
808 } pageout_t;
809 
810 /*
811  * pageout is called by shrink_page_list() for each dirty page.
812  * Calls ->writepage().
813  */
814 static pageout_t pageout(struct page *page, struct address_space *mapping,
815 			 struct scan_control *sc)
816 {
817 	/*
818 	 * If the page is dirty, only perform writeback if that write
819 	 * will be non-blocking.  To prevent this allocation from being
820 	 * stalled by pagecache activity.  But note that there may be
821 	 * stalls if we need to run get_block().  We could test
822 	 * PagePrivate for that.
823 	 *
824 	 * If this process is currently in __generic_file_write_iter() against
825 	 * this page's queue, we can perform writeback even if that
826 	 * will block.
827 	 *
828 	 * If the page is swapcache, write it back even if that would
829 	 * block, for some throttling. This happens by accident, because
830 	 * swap_backing_dev_info is bust: it doesn't reflect the
831 	 * congestion state of the swapdevs.  Easy to fix, if needed.
832 	 */
833 	if (!is_page_cache_freeable(page))
834 		return PAGE_KEEP;
835 	if (!mapping) {
836 		/*
837 		 * Some data journaling orphaned pages can have
838 		 * page->mapping == NULL while being dirty with clean buffers.
839 		 */
840 		if (page_has_private(page)) {
841 			if (try_to_free_buffers(page)) {
842 				ClearPageDirty(page);
843 				pr_info("%s: orphaned page\n", __func__);
844 				return PAGE_CLEAN;
845 			}
846 		}
847 		return PAGE_KEEP;
848 	}
849 	if (mapping->a_ops->writepage == NULL)
850 		return PAGE_ACTIVATE;
851 	if (!may_write_to_inode(mapping->host, sc))
852 		return PAGE_KEEP;
853 
854 	if (clear_page_dirty_for_io(page)) {
855 		int res;
856 		struct writeback_control wbc = {
857 			.sync_mode = WB_SYNC_NONE,
858 			.nr_to_write = SWAP_CLUSTER_MAX,
859 			.range_start = 0,
860 			.range_end = LLONG_MAX,
861 			.for_reclaim = 1,
862 		};
863 
864 		SetPageReclaim(page);
865 		res = mapping->a_ops->writepage(page, &wbc);
866 		if (res < 0)
867 			handle_write_error(mapping, page, res);
868 		if (res == AOP_WRITEPAGE_ACTIVATE) {
869 			ClearPageReclaim(page);
870 			return PAGE_ACTIVATE;
871 		}
872 
873 		if (!PageWriteback(page)) {
874 			/* synchronous write or broken a_ops? */
875 			ClearPageReclaim(page);
876 		}
877 		trace_mm_vmscan_writepage(page);
878 		inc_node_page_state(page, NR_VMSCAN_WRITE);
879 		return PAGE_SUCCESS;
880 	}
881 
882 	return PAGE_CLEAN;
883 }
884 
885 /*
886  * Same as remove_mapping, but if the page is removed from the mapping, it
887  * gets returned with a refcount of 0.
888  */
889 static int __remove_mapping(struct address_space *mapping, struct page *page,
890 			    bool reclaimed)
891 {
892 	unsigned long flags;
893 	int refcount;
894 
895 	BUG_ON(!PageLocked(page));
896 	BUG_ON(mapping != page_mapping(page));
897 
898 	xa_lock_irqsave(&mapping->i_pages, flags);
899 	/*
900 	 * The non racy check for a busy page.
901 	 *
902 	 * Must be careful with the order of the tests. When someone has
903 	 * a ref to the page, it may be possible that they dirty it then
904 	 * drop the reference. So if PageDirty is tested before page_count
905 	 * here, then the following race may occur:
906 	 *
907 	 * get_user_pages(&page);
908 	 * [user mapping goes away]
909 	 * write_to(page);
910 	 *				!PageDirty(page)    [good]
911 	 * SetPageDirty(page);
912 	 * put_page(page);
913 	 *				!page_count(page)   [good, discard it]
914 	 *
915 	 * [oops, our write_to data is lost]
916 	 *
917 	 * Reversing the order of the tests ensures such a situation cannot
918 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
919 	 * load is not satisfied before that of page->_refcount.
920 	 *
921 	 * Note that if SetPageDirty is always performed via set_page_dirty,
922 	 * and thus under the i_pages lock, then this ordering is not required.
923 	 */
924 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
925 		refcount = 1 + HPAGE_PMD_NR;
926 	else
927 		refcount = 2;
928 	if (!page_ref_freeze(page, refcount))
929 		goto cannot_free;
930 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
931 	if (unlikely(PageDirty(page))) {
932 		page_ref_unfreeze(page, refcount);
933 		goto cannot_free;
934 	}
935 
936 	if (PageSwapCache(page)) {
937 		swp_entry_t swap = { .val = page_private(page) };
938 		mem_cgroup_swapout(page, swap);
939 		__delete_from_swap_cache(page, swap);
940 		xa_unlock_irqrestore(&mapping->i_pages, flags);
941 		put_swap_page(page, swap);
942 	} else {
943 		void (*freepage)(struct page *);
944 		void *shadow = NULL;
945 
946 		freepage = mapping->a_ops->freepage;
947 		/*
948 		 * Remember a shadow entry for reclaimed file cache in
949 		 * order to detect refaults, thus thrashing, later on.
950 		 *
951 		 * But don't store shadows in an address space that is
952 		 * already exiting.  This is not just an optizimation,
953 		 * inode reclaim needs to empty out the radix tree or
954 		 * the nodes are lost.  Don't plant shadows behind its
955 		 * back.
956 		 *
957 		 * We also don't store shadows for DAX mappings because the
958 		 * only page cache pages found in these are zero pages
959 		 * covering holes, and because we don't want to mix DAX
960 		 * exceptional entries and shadow exceptional entries in the
961 		 * same address_space.
962 		 */
963 		if (reclaimed && page_is_file_cache(page) &&
964 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
965 			shadow = workingset_eviction(mapping, page);
966 		__delete_from_page_cache(page, shadow);
967 		xa_unlock_irqrestore(&mapping->i_pages, flags);
968 
969 		if (freepage != NULL)
970 			freepage(page);
971 	}
972 
973 	return 1;
974 
975 cannot_free:
976 	xa_unlock_irqrestore(&mapping->i_pages, flags);
977 	return 0;
978 }
979 
980 /*
981  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
982  * someone else has a ref on the page, abort and return 0.  If it was
983  * successfully detached, return 1.  Assumes the caller has a single ref on
984  * this page.
985  */
986 int remove_mapping(struct address_space *mapping, struct page *page)
987 {
988 	if (__remove_mapping(mapping, page, false)) {
989 		/*
990 		 * Unfreezing the refcount with 1 rather than 2 effectively
991 		 * drops the pagecache ref for us without requiring another
992 		 * atomic operation.
993 		 */
994 		page_ref_unfreeze(page, 1);
995 		return 1;
996 	}
997 	return 0;
998 }
999 
1000 /**
1001  * putback_lru_page - put previously isolated page onto appropriate LRU list
1002  * @page: page to be put back to appropriate lru list
1003  *
1004  * Add previously isolated @page to appropriate LRU list.
1005  * Page may still be unevictable for other reasons.
1006  *
1007  * lru_lock must not be held, interrupts must be enabled.
1008  */
1009 void putback_lru_page(struct page *page)
1010 {
1011 	lru_cache_add(page);
1012 	put_page(page);		/* drop ref from isolate */
1013 }
1014 
1015 enum page_references {
1016 	PAGEREF_RECLAIM,
1017 	PAGEREF_RECLAIM_CLEAN,
1018 	PAGEREF_KEEP,
1019 	PAGEREF_ACTIVATE,
1020 };
1021 
1022 static enum page_references page_check_references(struct page *page,
1023 						  struct scan_control *sc)
1024 {
1025 	int referenced_ptes, referenced_page;
1026 	unsigned long vm_flags;
1027 
1028 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1029 					  &vm_flags);
1030 	referenced_page = TestClearPageReferenced(page);
1031 
1032 	/*
1033 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1034 	 * move the page to the unevictable list.
1035 	 */
1036 	if (vm_flags & VM_LOCKED)
1037 		return PAGEREF_RECLAIM;
1038 
1039 	if (referenced_ptes) {
1040 		if (PageSwapBacked(page))
1041 			return PAGEREF_ACTIVATE;
1042 		/*
1043 		 * All mapped pages start out with page table
1044 		 * references from the instantiating fault, so we need
1045 		 * to look twice if a mapped file page is used more
1046 		 * than once.
1047 		 *
1048 		 * Mark it and spare it for another trip around the
1049 		 * inactive list.  Another page table reference will
1050 		 * lead to its activation.
1051 		 *
1052 		 * Note: the mark is set for activated pages as well
1053 		 * so that recently deactivated but used pages are
1054 		 * quickly recovered.
1055 		 */
1056 		SetPageReferenced(page);
1057 
1058 		if (referenced_page || referenced_ptes > 1)
1059 			return PAGEREF_ACTIVATE;
1060 
1061 		/*
1062 		 * Activate file-backed executable pages after first usage.
1063 		 */
1064 		if (vm_flags & VM_EXEC)
1065 			return PAGEREF_ACTIVATE;
1066 
1067 		return PAGEREF_KEEP;
1068 	}
1069 
1070 	/* Reclaim if clean, defer dirty pages to writeback */
1071 	if (referenced_page && !PageSwapBacked(page))
1072 		return PAGEREF_RECLAIM_CLEAN;
1073 
1074 	return PAGEREF_RECLAIM;
1075 }
1076 
1077 /* Check if a page is dirty or under writeback */
1078 static void page_check_dirty_writeback(struct page *page,
1079 				       bool *dirty, bool *writeback)
1080 {
1081 	struct address_space *mapping;
1082 
1083 	/*
1084 	 * Anonymous pages are not handled by flushers and must be written
1085 	 * from reclaim context. Do not stall reclaim based on them
1086 	 */
1087 	if (!page_is_file_cache(page) ||
1088 	    (PageAnon(page) && !PageSwapBacked(page))) {
1089 		*dirty = false;
1090 		*writeback = false;
1091 		return;
1092 	}
1093 
1094 	/* By default assume that the page flags are accurate */
1095 	*dirty = PageDirty(page);
1096 	*writeback = PageWriteback(page);
1097 
1098 	/* Verify dirty/writeback state if the filesystem supports it */
1099 	if (!page_has_private(page))
1100 		return;
1101 
1102 	mapping = page_mapping(page);
1103 	if (mapping && mapping->a_ops->is_dirty_writeback)
1104 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1105 }
1106 
1107 /*
1108  * shrink_page_list() returns the number of reclaimed pages
1109  */
1110 static unsigned long shrink_page_list(struct list_head *page_list,
1111 				      struct pglist_data *pgdat,
1112 				      struct scan_control *sc,
1113 				      enum ttu_flags ttu_flags,
1114 				      struct reclaim_stat *stat,
1115 				      bool force_reclaim)
1116 {
1117 	LIST_HEAD(ret_pages);
1118 	LIST_HEAD(free_pages);
1119 	int pgactivate = 0;
1120 	unsigned nr_unqueued_dirty = 0;
1121 	unsigned nr_dirty = 0;
1122 	unsigned nr_congested = 0;
1123 	unsigned nr_reclaimed = 0;
1124 	unsigned nr_writeback = 0;
1125 	unsigned nr_immediate = 0;
1126 	unsigned nr_ref_keep = 0;
1127 	unsigned nr_unmap_fail = 0;
1128 
1129 	cond_resched();
1130 
1131 	while (!list_empty(page_list)) {
1132 		struct address_space *mapping;
1133 		struct page *page;
1134 		int may_enter_fs;
1135 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1136 		bool dirty, writeback;
1137 
1138 		cond_resched();
1139 
1140 		page = lru_to_page(page_list);
1141 		list_del(&page->lru);
1142 
1143 		if (!trylock_page(page))
1144 			goto keep;
1145 
1146 		VM_BUG_ON_PAGE(PageActive(page), page);
1147 
1148 		sc->nr_scanned++;
1149 
1150 		if (unlikely(!page_evictable(page)))
1151 			goto activate_locked;
1152 
1153 		if (!sc->may_unmap && page_mapped(page))
1154 			goto keep_locked;
1155 
1156 		/* Double the slab pressure for mapped and swapcache pages */
1157 		if ((page_mapped(page) || PageSwapCache(page)) &&
1158 		    !(PageAnon(page) && !PageSwapBacked(page)))
1159 			sc->nr_scanned++;
1160 
1161 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1162 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1163 
1164 		/*
1165 		 * The number of dirty pages determines if a node is marked
1166 		 * reclaim_congested which affects wait_iff_congested. kswapd
1167 		 * will stall and start writing pages if the tail of the LRU
1168 		 * is all dirty unqueued pages.
1169 		 */
1170 		page_check_dirty_writeback(page, &dirty, &writeback);
1171 		if (dirty || writeback)
1172 			nr_dirty++;
1173 
1174 		if (dirty && !writeback)
1175 			nr_unqueued_dirty++;
1176 
1177 		/*
1178 		 * Treat this page as congested if the underlying BDI is or if
1179 		 * pages are cycling through the LRU so quickly that the
1180 		 * pages marked for immediate reclaim are making it to the
1181 		 * end of the LRU a second time.
1182 		 */
1183 		mapping = page_mapping(page);
1184 		if (((dirty || writeback) && mapping &&
1185 		     inode_write_congested(mapping->host)) ||
1186 		    (writeback && PageReclaim(page)))
1187 			nr_congested++;
1188 
1189 		/*
1190 		 * If a page at the tail of the LRU is under writeback, there
1191 		 * are three cases to consider.
1192 		 *
1193 		 * 1) If reclaim is encountering an excessive number of pages
1194 		 *    under writeback and this page is both under writeback and
1195 		 *    PageReclaim then it indicates that pages are being queued
1196 		 *    for IO but are being recycled through the LRU before the
1197 		 *    IO can complete. Waiting on the page itself risks an
1198 		 *    indefinite stall if it is impossible to writeback the
1199 		 *    page due to IO error or disconnected storage so instead
1200 		 *    note that the LRU is being scanned too quickly and the
1201 		 *    caller can stall after page list has been processed.
1202 		 *
1203 		 * 2) Global or new memcg reclaim encounters a page that is
1204 		 *    not marked for immediate reclaim, or the caller does not
1205 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1206 		 *    not to fs). In this case mark the page for immediate
1207 		 *    reclaim and continue scanning.
1208 		 *
1209 		 *    Require may_enter_fs because we would wait on fs, which
1210 		 *    may not have submitted IO yet. And the loop driver might
1211 		 *    enter reclaim, and deadlock if it waits on a page for
1212 		 *    which it is needed to do the write (loop masks off
1213 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1214 		 *    would probably show more reasons.
1215 		 *
1216 		 * 3) Legacy memcg encounters a page that is already marked
1217 		 *    PageReclaim. memcg does not have any dirty pages
1218 		 *    throttling so we could easily OOM just because too many
1219 		 *    pages are in writeback and there is nothing else to
1220 		 *    reclaim. Wait for the writeback to complete.
1221 		 *
1222 		 * In cases 1) and 2) we activate the pages to get them out of
1223 		 * the way while we continue scanning for clean pages on the
1224 		 * inactive list and refilling from the active list. The
1225 		 * observation here is that waiting for disk writes is more
1226 		 * expensive than potentially causing reloads down the line.
1227 		 * Since they're marked for immediate reclaim, they won't put
1228 		 * memory pressure on the cache working set any longer than it
1229 		 * takes to write them to disk.
1230 		 */
1231 		if (PageWriteback(page)) {
1232 			/* Case 1 above */
1233 			if (current_is_kswapd() &&
1234 			    PageReclaim(page) &&
1235 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1236 				nr_immediate++;
1237 				goto activate_locked;
1238 
1239 			/* Case 2 above */
1240 			} else if (sane_reclaim(sc) ||
1241 			    !PageReclaim(page) || !may_enter_fs) {
1242 				/*
1243 				 * This is slightly racy - end_page_writeback()
1244 				 * might have just cleared PageReclaim, then
1245 				 * setting PageReclaim here end up interpreted
1246 				 * as PageReadahead - but that does not matter
1247 				 * enough to care.  What we do want is for this
1248 				 * page to have PageReclaim set next time memcg
1249 				 * reclaim reaches the tests above, so it will
1250 				 * then wait_on_page_writeback() to avoid OOM;
1251 				 * and it's also appropriate in global reclaim.
1252 				 */
1253 				SetPageReclaim(page);
1254 				nr_writeback++;
1255 				goto activate_locked;
1256 
1257 			/* Case 3 above */
1258 			} else {
1259 				unlock_page(page);
1260 				wait_on_page_writeback(page);
1261 				/* then go back and try same page again */
1262 				list_add_tail(&page->lru, page_list);
1263 				continue;
1264 			}
1265 		}
1266 
1267 		if (!force_reclaim)
1268 			references = page_check_references(page, sc);
1269 
1270 		switch (references) {
1271 		case PAGEREF_ACTIVATE:
1272 			goto activate_locked;
1273 		case PAGEREF_KEEP:
1274 			nr_ref_keep++;
1275 			goto keep_locked;
1276 		case PAGEREF_RECLAIM:
1277 		case PAGEREF_RECLAIM_CLEAN:
1278 			; /* try to reclaim the page below */
1279 		}
1280 
1281 		/*
1282 		 * Anonymous process memory has backing store?
1283 		 * Try to allocate it some swap space here.
1284 		 * Lazyfree page could be freed directly
1285 		 */
1286 		if (PageAnon(page) && PageSwapBacked(page)) {
1287 			if (!PageSwapCache(page)) {
1288 				if (!(sc->gfp_mask & __GFP_IO))
1289 					goto keep_locked;
1290 				if (PageTransHuge(page)) {
1291 					/* cannot split THP, skip it */
1292 					if (!can_split_huge_page(page, NULL))
1293 						goto activate_locked;
1294 					/*
1295 					 * Split pages without a PMD map right
1296 					 * away. Chances are some or all of the
1297 					 * tail pages can be freed without IO.
1298 					 */
1299 					if (!compound_mapcount(page) &&
1300 					    split_huge_page_to_list(page,
1301 								    page_list))
1302 						goto activate_locked;
1303 				}
1304 				if (!add_to_swap(page)) {
1305 					if (!PageTransHuge(page))
1306 						goto activate_locked;
1307 					/* Fallback to swap normal pages */
1308 					if (split_huge_page_to_list(page,
1309 								    page_list))
1310 						goto activate_locked;
1311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312 					count_vm_event(THP_SWPOUT_FALLBACK);
1313 #endif
1314 					if (!add_to_swap(page))
1315 						goto activate_locked;
1316 				}
1317 
1318 				may_enter_fs = 1;
1319 
1320 				/* Adding to swap updated mapping */
1321 				mapping = page_mapping(page);
1322 			}
1323 		} else if (unlikely(PageTransHuge(page))) {
1324 			/* Split file THP */
1325 			if (split_huge_page_to_list(page, page_list))
1326 				goto keep_locked;
1327 		}
1328 
1329 		/*
1330 		 * The page is mapped into the page tables of one or more
1331 		 * processes. Try to unmap it here.
1332 		 */
1333 		if (page_mapped(page)) {
1334 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1335 
1336 			if (unlikely(PageTransHuge(page)))
1337 				flags |= TTU_SPLIT_HUGE_PMD;
1338 			if (!try_to_unmap(page, flags)) {
1339 				nr_unmap_fail++;
1340 				goto activate_locked;
1341 			}
1342 		}
1343 
1344 		if (PageDirty(page)) {
1345 			/*
1346 			 * Only kswapd can writeback filesystem pages
1347 			 * to avoid risk of stack overflow. But avoid
1348 			 * injecting inefficient single-page IO into
1349 			 * flusher writeback as much as possible: only
1350 			 * write pages when we've encountered many
1351 			 * dirty pages, and when we've already scanned
1352 			 * the rest of the LRU for clean pages and see
1353 			 * the same dirty pages again (PageReclaim).
1354 			 */
1355 			if (page_is_file_cache(page) &&
1356 			    (!current_is_kswapd() || !PageReclaim(page) ||
1357 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1358 				/*
1359 				 * Immediately reclaim when written back.
1360 				 * Similar in principal to deactivate_page()
1361 				 * except we already have the page isolated
1362 				 * and know it's dirty
1363 				 */
1364 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1365 				SetPageReclaim(page);
1366 
1367 				goto activate_locked;
1368 			}
1369 
1370 			if (references == PAGEREF_RECLAIM_CLEAN)
1371 				goto keep_locked;
1372 			if (!may_enter_fs)
1373 				goto keep_locked;
1374 			if (!sc->may_writepage)
1375 				goto keep_locked;
1376 
1377 			/*
1378 			 * Page is dirty. Flush the TLB if a writable entry
1379 			 * potentially exists to avoid CPU writes after IO
1380 			 * starts and then write it out here.
1381 			 */
1382 			try_to_unmap_flush_dirty();
1383 			switch (pageout(page, mapping, sc)) {
1384 			case PAGE_KEEP:
1385 				goto keep_locked;
1386 			case PAGE_ACTIVATE:
1387 				goto activate_locked;
1388 			case PAGE_SUCCESS:
1389 				if (PageWriteback(page))
1390 					goto keep;
1391 				if (PageDirty(page))
1392 					goto keep;
1393 
1394 				/*
1395 				 * A synchronous write - probably a ramdisk.  Go
1396 				 * ahead and try to reclaim the page.
1397 				 */
1398 				if (!trylock_page(page))
1399 					goto keep;
1400 				if (PageDirty(page) || PageWriteback(page))
1401 					goto keep_locked;
1402 				mapping = page_mapping(page);
1403 			case PAGE_CLEAN:
1404 				; /* try to free the page below */
1405 			}
1406 		}
1407 
1408 		/*
1409 		 * If the page has buffers, try to free the buffer mappings
1410 		 * associated with this page. If we succeed we try to free
1411 		 * the page as well.
1412 		 *
1413 		 * We do this even if the page is PageDirty().
1414 		 * try_to_release_page() does not perform I/O, but it is
1415 		 * possible for a page to have PageDirty set, but it is actually
1416 		 * clean (all its buffers are clean).  This happens if the
1417 		 * buffers were written out directly, with submit_bh(). ext3
1418 		 * will do this, as well as the blockdev mapping.
1419 		 * try_to_release_page() will discover that cleanness and will
1420 		 * drop the buffers and mark the page clean - it can be freed.
1421 		 *
1422 		 * Rarely, pages can have buffers and no ->mapping.  These are
1423 		 * the pages which were not successfully invalidated in
1424 		 * truncate_complete_page().  We try to drop those buffers here
1425 		 * and if that worked, and the page is no longer mapped into
1426 		 * process address space (page_count == 1) it can be freed.
1427 		 * Otherwise, leave the page on the LRU so it is swappable.
1428 		 */
1429 		if (page_has_private(page)) {
1430 			if (!try_to_release_page(page, sc->gfp_mask))
1431 				goto activate_locked;
1432 			if (!mapping && page_count(page) == 1) {
1433 				unlock_page(page);
1434 				if (put_page_testzero(page))
1435 					goto free_it;
1436 				else {
1437 					/*
1438 					 * rare race with speculative reference.
1439 					 * the speculative reference will free
1440 					 * this page shortly, so we may
1441 					 * increment nr_reclaimed here (and
1442 					 * leave it off the LRU).
1443 					 */
1444 					nr_reclaimed++;
1445 					continue;
1446 				}
1447 			}
1448 		}
1449 
1450 		if (PageAnon(page) && !PageSwapBacked(page)) {
1451 			/* follow __remove_mapping for reference */
1452 			if (!page_ref_freeze(page, 1))
1453 				goto keep_locked;
1454 			if (PageDirty(page)) {
1455 				page_ref_unfreeze(page, 1);
1456 				goto keep_locked;
1457 			}
1458 
1459 			count_vm_event(PGLAZYFREED);
1460 			count_memcg_page_event(page, PGLAZYFREED);
1461 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1462 			goto keep_locked;
1463 
1464 		unlock_page(page);
1465 free_it:
1466 		nr_reclaimed++;
1467 
1468 		/*
1469 		 * Is there need to periodically free_page_list? It would
1470 		 * appear not as the counts should be low
1471 		 */
1472 		if (unlikely(PageTransHuge(page))) {
1473 			mem_cgroup_uncharge(page);
1474 			(*get_compound_page_dtor(page))(page);
1475 		} else
1476 			list_add(&page->lru, &free_pages);
1477 		continue;
1478 
1479 activate_locked:
1480 		/* Not a candidate for swapping, so reclaim swap space. */
1481 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1482 						PageMlocked(page)))
1483 			try_to_free_swap(page);
1484 		VM_BUG_ON_PAGE(PageActive(page), page);
1485 		if (!PageMlocked(page)) {
1486 			SetPageActive(page);
1487 			pgactivate++;
1488 			count_memcg_page_event(page, PGACTIVATE);
1489 		}
1490 keep_locked:
1491 		unlock_page(page);
1492 keep:
1493 		list_add(&page->lru, &ret_pages);
1494 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1495 	}
1496 
1497 	mem_cgroup_uncharge_list(&free_pages);
1498 	try_to_unmap_flush();
1499 	free_unref_page_list(&free_pages);
1500 
1501 	list_splice(&ret_pages, page_list);
1502 	count_vm_events(PGACTIVATE, pgactivate);
1503 
1504 	if (stat) {
1505 		stat->nr_dirty = nr_dirty;
1506 		stat->nr_congested = nr_congested;
1507 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1508 		stat->nr_writeback = nr_writeback;
1509 		stat->nr_immediate = nr_immediate;
1510 		stat->nr_activate = pgactivate;
1511 		stat->nr_ref_keep = nr_ref_keep;
1512 		stat->nr_unmap_fail = nr_unmap_fail;
1513 	}
1514 	return nr_reclaimed;
1515 }
1516 
1517 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1518 					    struct list_head *page_list)
1519 {
1520 	struct scan_control sc = {
1521 		.gfp_mask = GFP_KERNEL,
1522 		.priority = DEF_PRIORITY,
1523 		.may_unmap = 1,
1524 	};
1525 	unsigned long ret;
1526 	struct page *page, *next;
1527 	LIST_HEAD(clean_pages);
1528 
1529 	list_for_each_entry_safe(page, next, page_list, lru) {
1530 		if (page_is_file_cache(page) && !PageDirty(page) &&
1531 		    !__PageMovable(page)) {
1532 			ClearPageActive(page);
1533 			list_move(&page->lru, &clean_pages);
1534 		}
1535 	}
1536 
1537 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1538 			TTU_IGNORE_ACCESS, NULL, true);
1539 	list_splice(&clean_pages, page_list);
1540 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1541 	return ret;
1542 }
1543 
1544 /*
1545  * Attempt to remove the specified page from its LRU.  Only take this page
1546  * if it is of the appropriate PageActive status.  Pages which are being
1547  * freed elsewhere are also ignored.
1548  *
1549  * page:	page to consider
1550  * mode:	one of the LRU isolation modes defined above
1551  *
1552  * returns 0 on success, -ve errno on failure.
1553  */
1554 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1555 {
1556 	int ret = -EINVAL;
1557 
1558 	/* Only take pages on the LRU. */
1559 	if (!PageLRU(page))
1560 		return ret;
1561 
1562 	/* Compaction should not handle unevictable pages but CMA can do so */
1563 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1564 		return ret;
1565 
1566 	ret = -EBUSY;
1567 
1568 	/*
1569 	 * To minimise LRU disruption, the caller can indicate that it only
1570 	 * wants to isolate pages it will be able to operate on without
1571 	 * blocking - clean pages for the most part.
1572 	 *
1573 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1574 	 * that it is possible to migrate without blocking
1575 	 */
1576 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1577 		/* All the caller can do on PageWriteback is block */
1578 		if (PageWriteback(page))
1579 			return ret;
1580 
1581 		if (PageDirty(page)) {
1582 			struct address_space *mapping;
1583 			bool migrate_dirty;
1584 
1585 			/*
1586 			 * Only pages without mappings or that have a
1587 			 * ->migratepage callback are possible to migrate
1588 			 * without blocking. However, we can be racing with
1589 			 * truncation so it's necessary to lock the page
1590 			 * to stabilise the mapping as truncation holds
1591 			 * the page lock until after the page is removed
1592 			 * from the page cache.
1593 			 */
1594 			if (!trylock_page(page))
1595 				return ret;
1596 
1597 			mapping = page_mapping(page);
1598 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1599 			unlock_page(page);
1600 			if (!migrate_dirty)
1601 				return ret;
1602 		}
1603 	}
1604 
1605 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1606 		return ret;
1607 
1608 	if (likely(get_page_unless_zero(page))) {
1609 		/*
1610 		 * Be careful not to clear PageLRU until after we're
1611 		 * sure the page is not being freed elsewhere -- the
1612 		 * page release code relies on it.
1613 		 */
1614 		ClearPageLRU(page);
1615 		ret = 0;
1616 	}
1617 
1618 	return ret;
1619 }
1620 
1621 
1622 /*
1623  * Update LRU sizes after isolating pages. The LRU size updates must
1624  * be complete before mem_cgroup_update_lru_size due to a santity check.
1625  */
1626 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1627 			enum lru_list lru, unsigned long *nr_zone_taken)
1628 {
1629 	int zid;
1630 
1631 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1632 		if (!nr_zone_taken[zid])
1633 			continue;
1634 
1635 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1636 #ifdef CONFIG_MEMCG
1637 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1638 #endif
1639 	}
1640 
1641 }
1642 
1643 /*
1644  * zone_lru_lock is heavily contended.  Some of the functions that
1645  * shrink the lists perform better by taking out a batch of pages
1646  * and working on them outside the LRU lock.
1647  *
1648  * For pagecache intensive workloads, this function is the hottest
1649  * spot in the kernel (apart from copy_*_user functions).
1650  *
1651  * Appropriate locks must be held before calling this function.
1652  *
1653  * @nr_to_scan:	The number of eligible pages to look through on the list.
1654  * @lruvec:	The LRU vector to pull pages from.
1655  * @dst:	The temp list to put pages on to.
1656  * @nr_scanned:	The number of pages that were scanned.
1657  * @sc:		The scan_control struct for this reclaim session
1658  * @mode:	One of the LRU isolation modes
1659  * @lru:	LRU list id for isolating
1660  *
1661  * returns how many pages were moved onto *@dst.
1662  */
1663 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1664 		struct lruvec *lruvec, struct list_head *dst,
1665 		unsigned long *nr_scanned, struct scan_control *sc,
1666 		isolate_mode_t mode, enum lru_list lru)
1667 {
1668 	struct list_head *src = &lruvec->lists[lru];
1669 	unsigned long nr_taken = 0;
1670 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1671 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1672 	unsigned long skipped = 0;
1673 	unsigned long scan, total_scan, nr_pages;
1674 	LIST_HEAD(pages_skipped);
1675 
1676 	scan = 0;
1677 	for (total_scan = 0;
1678 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1679 	     total_scan++) {
1680 		struct page *page;
1681 
1682 		page = lru_to_page(src);
1683 		prefetchw_prev_lru_page(page, src, flags);
1684 
1685 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1686 
1687 		if (page_zonenum(page) > sc->reclaim_idx) {
1688 			list_move(&page->lru, &pages_skipped);
1689 			nr_skipped[page_zonenum(page)]++;
1690 			continue;
1691 		}
1692 
1693 		/*
1694 		 * Do not count skipped pages because that makes the function
1695 		 * return with no isolated pages if the LRU mostly contains
1696 		 * ineligible pages.  This causes the VM to not reclaim any
1697 		 * pages, triggering a premature OOM.
1698 		 */
1699 		scan++;
1700 		switch (__isolate_lru_page(page, mode)) {
1701 		case 0:
1702 			nr_pages = hpage_nr_pages(page);
1703 			nr_taken += nr_pages;
1704 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1705 			list_move(&page->lru, dst);
1706 			break;
1707 
1708 		case -EBUSY:
1709 			/* else it is being freed elsewhere */
1710 			list_move(&page->lru, src);
1711 			continue;
1712 
1713 		default:
1714 			BUG();
1715 		}
1716 	}
1717 
1718 	/*
1719 	 * Splice any skipped pages to the start of the LRU list. Note that
1720 	 * this disrupts the LRU order when reclaiming for lower zones but
1721 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1722 	 * scanning would soon rescan the same pages to skip and put the
1723 	 * system at risk of premature OOM.
1724 	 */
1725 	if (!list_empty(&pages_skipped)) {
1726 		int zid;
1727 
1728 		list_splice(&pages_skipped, src);
1729 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1730 			if (!nr_skipped[zid])
1731 				continue;
1732 
1733 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1734 			skipped += nr_skipped[zid];
1735 		}
1736 	}
1737 	*nr_scanned = total_scan;
1738 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1739 				    total_scan, skipped, nr_taken, mode, lru);
1740 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1741 	return nr_taken;
1742 }
1743 
1744 /**
1745  * isolate_lru_page - tries to isolate a page from its LRU list
1746  * @page: page to isolate from its LRU list
1747  *
1748  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1749  * vmstat statistic corresponding to whatever LRU list the page was on.
1750  *
1751  * Returns 0 if the page was removed from an LRU list.
1752  * Returns -EBUSY if the page was not on an LRU list.
1753  *
1754  * The returned page will have PageLRU() cleared.  If it was found on
1755  * the active list, it will have PageActive set.  If it was found on
1756  * the unevictable list, it will have the PageUnevictable bit set. That flag
1757  * may need to be cleared by the caller before letting the page go.
1758  *
1759  * The vmstat statistic corresponding to the list on which the page was
1760  * found will be decremented.
1761  *
1762  * Restrictions:
1763  *
1764  * (1) Must be called with an elevated refcount on the page. This is a
1765  *     fundamentnal difference from isolate_lru_pages (which is called
1766  *     without a stable reference).
1767  * (2) the lru_lock must not be held.
1768  * (3) interrupts must be enabled.
1769  */
1770 int isolate_lru_page(struct page *page)
1771 {
1772 	int ret = -EBUSY;
1773 
1774 	VM_BUG_ON_PAGE(!page_count(page), page);
1775 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1776 
1777 	if (PageLRU(page)) {
1778 		struct zone *zone = page_zone(page);
1779 		struct lruvec *lruvec;
1780 
1781 		spin_lock_irq(zone_lru_lock(zone));
1782 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1783 		if (PageLRU(page)) {
1784 			int lru = page_lru(page);
1785 			get_page(page);
1786 			ClearPageLRU(page);
1787 			del_page_from_lru_list(page, lruvec, lru);
1788 			ret = 0;
1789 		}
1790 		spin_unlock_irq(zone_lru_lock(zone));
1791 	}
1792 	return ret;
1793 }
1794 
1795 /*
1796  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1797  * then get resheduled. When there are massive number of tasks doing page
1798  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1799  * the LRU list will go small and be scanned faster than necessary, leading to
1800  * unnecessary swapping, thrashing and OOM.
1801  */
1802 static int too_many_isolated(struct pglist_data *pgdat, int file,
1803 		struct scan_control *sc)
1804 {
1805 	unsigned long inactive, isolated;
1806 
1807 	if (current_is_kswapd())
1808 		return 0;
1809 
1810 	if (!sane_reclaim(sc))
1811 		return 0;
1812 
1813 	if (file) {
1814 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1815 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1816 	} else {
1817 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1818 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1819 	}
1820 
1821 	/*
1822 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1823 	 * won't get blocked by normal direct-reclaimers, forming a circular
1824 	 * deadlock.
1825 	 */
1826 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1827 		inactive >>= 3;
1828 
1829 	return isolated > inactive;
1830 }
1831 
1832 static noinline_for_stack void
1833 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1834 {
1835 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1836 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1837 	LIST_HEAD(pages_to_free);
1838 
1839 	/*
1840 	 * Put back any unfreeable pages.
1841 	 */
1842 	while (!list_empty(page_list)) {
1843 		struct page *page = lru_to_page(page_list);
1844 		int lru;
1845 
1846 		VM_BUG_ON_PAGE(PageLRU(page), page);
1847 		list_del(&page->lru);
1848 		if (unlikely(!page_evictable(page))) {
1849 			spin_unlock_irq(&pgdat->lru_lock);
1850 			putback_lru_page(page);
1851 			spin_lock_irq(&pgdat->lru_lock);
1852 			continue;
1853 		}
1854 
1855 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1856 
1857 		SetPageLRU(page);
1858 		lru = page_lru(page);
1859 		add_page_to_lru_list(page, lruvec, lru);
1860 
1861 		if (is_active_lru(lru)) {
1862 			int file = is_file_lru(lru);
1863 			int numpages = hpage_nr_pages(page);
1864 			reclaim_stat->recent_rotated[file] += numpages;
1865 		}
1866 		if (put_page_testzero(page)) {
1867 			__ClearPageLRU(page);
1868 			__ClearPageActive(page);
1869 			del_page_from_lru_list(page, lruvec, lru);
1870 
1871 			if (unlikely(PageCompound(page))) {
1872 				spin_unlock_irq(&pgdat->lru_lock);
1873 				mem_cgroup_uncharge(page);
1874 				(*get_compound_page_dtor(page))(page);
1875 				spin_lock_irq(&pgdat->lru_lock);
1876 			} else
1877 				list_add(&page->lru, &pages_to_free);
1878 		}
1879 	}
1880 
1881 	/*
1882 	 * To save our caller's stack, now use input list for pages to free.
1883 	 */
1884 	list_splice(&pages_to_free, page_list);
1885 }
1886 
1887 /*
1888  * If a kernel thread (such as nfsd for loop-back mounts) services
1889  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1890  * In that case we should only throttle if the backing device it is
1891  * writing to is congested.  In other cases it is safe to throttle.
1892  */
1893 static int current_may_throttle(void)
1894 {
1895 	return !(current->flags & PF_LESS_THROTTLE) ||
1896 		current->backing_dev_info == NULL ||
1897 		bdi_write_congested(current->backing_dev_info);
1898 }
1899 
1900 /*
1901  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1902  * of reclaimed pages
1903  */
1904 static noinline_for_stack unsigned long
1905 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1906 		     struct scan_control *sc, enum lru_list lru)
1907 {
1908 	LIST_HEAD(page_list);
1909 	unsigned long nr_scanned;
1910 	unsigned long nr_reclaimed = 0;
1911 	unsigned long nr_taken;
1912 	struct reclaim_stat stat = {};
1913 	isolate_mode_t isolate_mode = 0;
1914 	int file = is_file_lru(lru);
1915 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1916 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1917 	bool stalled = false;
1918 
1919 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1920 		if (stalled)
1921 			return 0;
1922 
1923 		/* wait a bit for the reclaimer. */
1924 		msleep(100);
1925 		stalled = true;
1926 
1927 		/* We are about to die and free our memory. Return now. */
1928 		if (fatal_signal_pending(current))
1929 			return SWAP_CLUSTER_MAX;
1930 	}
1931 
1932 	lru_add_drain();
1933 
1934 	if (!sc->may_unmap)
1935 		isolate_mode |= ISOLATE_UNMAPPED;
1936 
1937 	spin_lock_irq(&pgdat->lru_lock);
1938 
1939 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1940 				     &nr_scanned, sc, isolate_mode, lru);
1941 
1942 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1943 	reclaim_stat->recent_scanned[file] += nr_taken;
1944 
1945 	if (current_is_kswapd()) {
1946 		if (global_reclaim(sc))
1947 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1948 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1949 				   nr_scanned);
1950 	} else {
1951 		if (global_reclaim(sc))
1952 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1953 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1954 				   nr_scanned);
1955 	}
1956 	spin_unlock_irq(&pgdat->lru_lock);
1957 
1958 	if (nr_taken == 0)
1959 		return 0;
1960 
1961 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1962 				&stat, false);
1963 
1964 	spin_lock_irq(&pgdat->lru_lock);
1965 
1966 	if (current_is_kswapd()) {
1967 		if (global_reclaim(sc))
1968 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1969 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1970 				   nr_reclaimed);
1971 	} else {
1972 		if (global_reclaim(sc))
1973 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1974 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1975 				   nr_reclaimed);
1976 	}
1977 
1978 	putback_inactive_pages(lruvec, &page_list);
1979 
1980 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1981 
1982 	spin_unlock_irq(&pgdat->lru_lock);
1983 
1984 	mem_cgroup_uncharge_list(&page_list);
1985 	free_unref_page_list(&page_list);
1986 
1987 	/*
1988 	 * If dirty pages are scanned that are not queued for IO, it
1989 	 * implies that flushers are not doing their job. This can
1990 	 * happen when memory pressure pushes dirty pages to the end of
1991 	 * the LRU before the dirty limits are breached and the dirty
1992 	 * data has expired. It can also happen when the proportion of
1993 	 * dirty pages grows not through writes but through memory
1994 	 * pressure reclaiming all the clean cache. And in some cases,
1995 	 * the flushers simply cannot keep up with the allocation
1996 	 * rate. Nudge the flusher threads in case they are asleep.
1997 	 */
1998 	if (stat.nr_unqueued_dirty == nr_taken)
1999 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2000 
2001 	sc->nr.dirty += stat.nr_dirty;
2002 	sc->nr.congested += stat.nr_congested;
2003 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2004 	sc->nr.writeback += stat.nr_writeback;
2005 	sc->nr.immediate += stat.nr_immediate;
2006 	sc->nr.taken += nr_taken;
2007 	if (file)
2008 		sc->nr.file_taken += nr_taken;
2009 
2010 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2011 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2012 	return nr_reclaimed;
2013 }
2014 
2015 /*
2016  * This moves pages from the active list to the inactive list.
2017  *
2018  * We move them the other way if the page is referenced by one or more
2019  * processes, from rmap.
2020  *
2021  * If the pages are mostly unmapped, the processing is fast and it is
2022  * appropriate to hold zone_lru_lock across the whole operation.  But if
2023  * the pages are mapped, the processing is slow (page_referenced()) so we
2024  * should drop zone_lru_lock around each page.  It's impossible to balance
2025  * this, so instead we remove the pages from the LRU while processing them.
2026  * It is safe to rely on PG_active against the non-LRU pages in here because
2027  * nobody will play with that bit on a non-LRU page.
2028  *
2029  * The downside is that we have to touch page->_refcount against each page.
2030  * But we had to alter page->flags anyway.
2031  *
2032  * Returns the number of pages moved to the given lru.
2033  */
2034 
2035 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2036 				     struct list_head *list,
2037 				     struct list_head *pages_to_free,
2038 				     enum lru_list lru)
2039 {
2040 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2041 	struct page *page;
2042 	int nr_pages;
2043 	int nr_moved = 0;
2044 
2045 	while (!list_empty(list)) {
2046 		page = lru_to_page(list);
2047 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2048 
2049 		VM_BUG_ON_PAGE(PageLRU(page), page);
2050 		SetPageLRU(page);
2051 
2052 		nr_pages = hpage_nr_pages(page);
2053 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2054 		list_move(&page->lru, &lruvec->lists[lru]);
2055 
2056 		if (put_page_testzero(page)) {
2057 			__ClearPageLRU(page);
2058 			__ClearPageActive(page);
2059 			del_page_from_lru_list(page, lruvec, lru);
2060 
2061 			if (unlikely(PageCompound(page))) {
2062 				spin_unlock_irq(&pgdat->lru_lock);
2063 				mem_cgroup_uncharge(page);
2064 				(*get_compound_page_dtor(page))(page);
2065 				spin_lock_irq(&pgdat->lru_lock);
2066 			} else
2067 				list_add(&page->lru, pages_to_free);
2068 		} else {
2069 			nr_moved += nr_pages;
2070 		}
2071 	}
2072 
2073 	if (!is_active_lru(lru)) {
2074 		__count_vm_events(PGDEACTIVATE, nr_moved);
2075 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2076 				   nr_moved);
2077 	}
2078 
2079 	return nr_moved;
2080 }
2081 
2082 static void shrink_active_list(unsigned long nr_to_scan,
2083 			       struct lruvec *lruvec,
2084 			       struct scan_control *sc,
2085 			       enum lru_list lru)
2086 {
2087 	unsigned long nr_taken;
2088 	unsigned long nr_scanned;
2089 	unsigned long vm_flags;
2090 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2091 	LIST_HEAD(l_active);
2092 	LIST_HEAD(l_inactive);
2093 	struct page *page;
2094 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2095 	unsigned nr_deactivate, nr_activate;
2096 	unsigned nr_rotated = 0;
2097 	isolate_mode_t isolate_mode = 0;
2098 	int file = is_file_lru(lru);
2099 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2100 
2101 	lru_add_drain();
2102 
2103 	if (!sc->may_unmap)
2104 		isolate_mode |= ISOLATE_UNMAPPED;
2105 
2106 	spin_lock_irq(&pgdat->lru_lock);
2107 
2108 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2109 				     &nr_scanned, sc, isolate_mode, lru);
2110 
2111 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2112 	reclaim_stat->recent_scanned[file] += nr_taken;
2113 
2114 	__count_vm_events(PGREFILL, nr_scanned);
2115 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2116 
2117 	spin_unlock_irq(&pgdat->lru_lock);
2118 
2119 	while (!list_empty(&l_hold)) {
2120 		cond_resched();
2121 		page = lru_to_page(&l_hold);
2122 		list_del(&page->lru);
2123 
2124 		if (unlikely(!page_evictable(page))) {
2125 			putback_lru_page(page);
2126 			continue;
2127 		}
2128 
2129 		if (unlikely(buffer_heads_over_limit)) {
2130 			if (page_has_private(page) && trylock_page(page)) {
2131 				if (page_has_private(page))
2132 					try_to_release_page(page, 0);
2133 				unlock_page(page);
2134 			}
2135 		}
2136 
2137 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2138 				    &vm_flags)) {
2139 			nr_rotated += hpage_nr_pages(page);
2140 			/*
2141 			 * Identify referenced, file-backed active pages and
2142 			 * give them one more trip around the active list. So
2143 			 * that executable code get better chances to stay in
2144 			 * memory under moderate memory pressure.  Anon pages
2145 			 * are not likely to be evicted by use-once streaming
2146 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2147 			 * so we ignore them here.
2148 			 */
2149 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2150 				list_add(&page->lru, &l_active);
2151 				continue;
2152 			}
2153 		}
2154 
2155 		ClearPageActive(page);	/* we are de-activating */
2156 		SetPageWorkingset(page);
2157 		list_add(&page->lru, &l_inactive);
2158 	}
2159 
2160 	/*
2161 	 * Move pages back to the lru list.
2162 	 */
2163 	spin_lock_irq(&pgdat->lru_lock);
2164 	/*
2165 	 * Count referenced pages from currently used mappings as rotated,
2166 	 * even though only some of them are actually re-activated.  This
2167 	 * helps balance scan pressure between file and anonymous pages in
2168 	 * get_scan_count.
2169 	 */
2170 	reclaim_stat->recent_rotated[file] += nr_rotated;
2171 
2172 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2173 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2174 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2175 	spin_unlock_irq(&pgdat->lru_lock);
2176 
2177 	mem_cgroup_uncharge_list(&l_hold);
2178 	free_unref_page_list(&l_hold);
2179 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2180 			nr_deactivate, nr_rotated, sc->priority, file);
2181 }
2182 
2183 /*
2184  * The inactive anon list should be small enough that the VM never has
2185  * to do too much work.
2186  *
2187  * The inactive file list should be small enough to leave most memory
2188  * to the established workingset on the scan-resistant active list,
2189  * but large enough to avoid thrashing the aggregate readahead window.
2190  *
2191  * Both inactive lists should also be large enough that each inactive
2192  * page has a chance to be referenced again before it is reclaimed.
2193  *
2194  * If that fails and refaulting is observed, the inactive list grows.
2195  *
2196  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2197  * on this LRU, maintained by the pageout code. An inactive_ratio
2198  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2199  *
2200  * total     target    max
2201  * memory    ratio     inactive
2202  * -------------------------------------
2203  *   10MB       1         5MB
2204  *  100MB       1        50MB
2205  *    1GB       3       250MB
2206  *   10GB      10       0.9GB
2207  *  100GB      31         3GB
2208  *    1TB     101        10GB
2209  *   10TB     320        32GB
2210  */
2211 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2212 				 struct mem_cgroup *memcg,
2213 				 struct scan_control *sc, bool actual_reclaim)
2214 {
2215 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2216 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2217 	enum lru_list inactive_lru = file * LRU_FILE;
2218 	unsigned long inactive, active;
2219 	unsigned long inactive_ratio;
2220 	unsigned long refaults;
2221 	unsigned long gb;
2222 
2223 	/*
2224 	 * If we don't have swap space, anonymous page deactivation
2225 	 * is pointless.
2226 	 */
2227 	if (!file && !total_swap_pages)
2228 		return false;
2229 
2230 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2231 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2232 
2233 	if (memcg)
2234 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2235 	else
2236 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2237 
2238 	/*
2239 	 * When refaults are being observed, it means a new workingset
2240 	 * is being established. Disable active list protection to get
2241 	 * rid of the stale workingset quickly.
2242 	 */
2243 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2244 		inactive_ratio = 0;
2245 	} else {
2246 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2247 		if (gb)
2248 			inactive_ratio = int_sqrt(10 * gb);
2249 		else
2250 			inactive_ratio = 1;
2251 	}
2252 
2253 	if (actual_reclaim)
2254 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2255 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2256 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2257 			inactive_ratio, file);
2258 
2259 	return inactive * inactive_ratio < active;
2260 }
2261 
2262 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2263 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2264 				 struct scan_control *sc)
2265 {
2266 	if (is_active_lru(lru)) {
2267 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2268 					 memcg, sc, true))
2269 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2270 		return 0;
2271 	}
2272 
2273 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2274 }
2275 
2276 enum scan_balance {
2277 	SCAN_EQUAL,
2278 	SCAN_FRACT,
2279 	SCAN_ANON,
2280 	SCAN_FILE,
2281 };
2282 
2283 /*
2284  * Determine how aggressively the anon and file LRU lists should be
2285  * scanned.  The relative value of each set of LRU lists is determined
2286  * by looking at the fraction of the pages scanned we did rotate back
2287  * onto the active list instead of evict.
2288  *
2289  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2290  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2291  */
2292 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2293 			   struct scan_control *sc, unsigned long *nr,
2294 			   unsigned long *lru_pages)
2295 {
2296 	int swappiness = mem_cgroup_swappiness(memcg);
2297 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2298 	u64 fraction[2];
2299 	u64 denominator = 0;	/* gcc */
2300 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2301 	unsigned long anon_prio, file_prio;
2302 	enum scan_balance scan_balance;
2303 	unsigned long anon, file;
2304 	unsigned long ap, fp;
2305 	enum lru_list lru;
2306 
2307 	/* If we have no swap space, do not bother scanning anon pages. */
2308 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2309 		scan_balance = SCAN_FILE;
2310 		goto out;
2311 	}
2312 
2313 	/*
2314 	 * Global reclaim will swap to prevent OOM even with no
2315 	 * swappiness, but memcg users want to use this knob to
2316 	 * disable swapping for individual groups completely when
2317 	 * using the memory controller's swap limit feature would be
2318 	 * too expensive.
2319 	 */
2320 	if (!global_reclaim(sc) && !swappiness) {
2321 		scan_balance = SCAN_FILE;
2322 		goto out;
2323 	}
2324 
2325 	/*
2326 	 * Do not apply any pressure balancing cleverness when the
2327 	 * system is close to OOM, scan both anon and file equally
2328 	 * (unless the swappiness setting disagrees with swapping).
2329 	 */
2330 	if (!sc->priority && swappiness) {
2331 		scan_balance = SCAN_EQUAL;
2332 		goto out;
2333 	}
2334 
2335 	/*
2336 	 * Prevent the reclaimer from falling into the cache trap: as
2337 	 * cache pages start out inactive, every cache fault will tip
2338 	 * the scan balance towards the file LRU.  And as the file LRU
2339 	 * shrinks, so does the window for rotation from references.
2340 	 * This means we have a runaway feedback loop where a tiny
2341 	 * thrashing file LRU becomes infinitely more attractive than
2342 	 * anon pages.  Try to detect this based on file LRU size.
2343 	 */
2344 	if (global_reclaim(sc)) {
2345 		unsigned long pgdatfile;
2346 		unsigned long pgdatfree;
2347 		int z;
2348 		unsigned long total_high_wmark = 0;
2349 
2350 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2351 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2352 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2353 
2354 		for (z = 0; z < MAX_NR_ZONES; z++) {
2355 			struct zone *zone = &pgdat->node_zones[z];
2356 			if (!managed_zone(zone))
2357 				continue;
2358 
2359 			total_high_wmark += high_wmark_pages(zone);
2360 		}
2361 
2362 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2363 			/*
2364 			 * Force SCAN_ANON if there are enough inactive
2365 			 * anonymous pages on the LRU in eligible zones.
2366 			 * Otherwise, the small LRU gets thrashed.
2367 			 */
2368 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2369 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2370 					>> sc->priority) {
2371 				scan_balance = SCAN_ANON;
2372 				goto out;
2373 			}
2374 		}
2375 	}
2376 
2377 	/*
2378 	 * If there is enough inactive page cache, i.e. if the size of the
2379 	 * inactive list is greater than that of the active list *and* the
2380 	 * inactive list actually has some pages to scan on this priority, we
2381 	 * do not reclaim anything from the anonymous working set right now.
2382 	 * Without the second condition we could end up never scanning an
2383 	 * lruvec even if it has plenty of old anonymous pages unless the
2384 	 * system is under heavy pressure.
2385 	 */
2386 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2387 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2388 		scan_balance = SCAN_FILE;
2389 		goto out;
2390 	}
2391 
2392 	scan_balance = SCAN_FRACT;
2393 
2394 	/*
2395 	 * With swappiness at 100, anonymous and file have the same priority.
2396 	 * This scanning priority is essentially the inverse of IO cost.
2397 	 */
2398 	anon_prio = swappiness;
2399 	file_prio = 200 - anon_prio;
2400 
2401 	/*
2402 	 * OK, so we have swap space and a fair amount of page cache
2403 	 * pages.  We use the recently rotated / recently scanned
2404 	 * ratios to determine how valuable each cache is.
2405 	 *
2406 	 * Because workloads change over time (and to avoid overflow)
2407 	 * we keep these statistics as a floating average, which ends
2408 	 * up weighing recent references more than old ones.
2409 	 *
2410 	 * anon in [0], file in [1]
2411 	 */
2412 
2413 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2414 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2415 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2416 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2417 
2418 	spin_lock_irq(&pgdat->lru_lock);
2419 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2420 		reclaim_stat->recent_scanned[0] /= 2;
2421 		reclaim_stat->recent_rotated[0] /= 2;
2422 	}
2423 
2424 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2425 		reclaim_stat->recent_scanned[1] /= 2;
2426 		reclaim_stat->recent_rotated[1] /= 2;
2427 	}
2428 
2429 	/*
2430 	 * The amount of pressure on anon vs file pages is inversely
2431 	 * proportional to the fraction of recently scanned pages on
2432 	 * each list that were recently referenced and in active use.
2433 	 */
2434 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2435 	ap /= reclaim_stat->recent_rotated[0] + 1;
2436 
2437 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2438 	fp /= reclaim_stat->recent_rotated[1] + 1;
2439 	spin_unlock_irq(&pgdat->lru_lock);
2440 
2441 	fraction[0] = ap;
2442 	fraction[1] = fp;
2443 	denominator = ap + fp + 1;
2444 out:
2445 	*lru_pages = 0;
2446 	for_each_evictable_lru(lru) {
2447 		int file = is_file_lru(lru);
2448 		unsigned long size;
2449 		unsigned long scan;
2450 
2451 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2452 		scan = size >> sc->priority;
2453 		/*
2454 		 * If the cgroup's already been deleted, make sure to
2455 		 * scrape out the remaining cache.
2456 		 */
2457 		if (!scan && !mem_cgroup_online(memcg))
2458 			scan = min(size, SWAP_CLUSTER_MAX);
2459 
2460 		switch (scan_balance) {
2461 		case SCAN_EQUAL:
2462 			/* Scan lists relative to size */
2463 			break;
2464 		case SCAN_FRACT:
2465 			/*
2466 			 * Scan types proportional to swappiness and
2467 			 * their relative recent reclaim efficiency.
2468 			 * Make sure we don't miss the last page
2469 			 * because of a round-off error.
2470 			 */
2471 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2472 						  denominator);
2473 			break;
2474 		case SCAN_FILE:
2475 		case SCAN_ANON:
2476 			/* Scan one type exclusively */
2477 			if ((scan_balance == SCAN_FILE) != file) {
2478 				size = 0;
2479 				scan = 0;
2480 			}
2481 			break;
2482 		default:
2483 			/* Look ma, no brain */
2484 			BUG();
2485 		}
2486 
2487 		*lru_pages += size;
2488 		nr[lru] = scan;
2489 	}
2490 }
2491 
2492 /*
2493  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2494  */
2495 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2496 			      struct scan_control *sc, unsigned long *lru_pages)
2497 {
2498 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2499 	unsigned long nr[NR_LRU_LISTS];
2500 	unsigned long targets[NR_LRU_LISTS];
2501 	unsigned long nr_to_scan;
2502 	enum lru_list lru;
2503 	unsigned long nr_reclaimed = 0;
2504 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2505 	struct blk_plug plug;
2506 	bool scan_adjusted;
2507 
2508 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2509 
2510 	/* Record the original scan target for proportional adjustments later */
2511 	memcpy(targets, nr, sizeof(nr));
2512 
2513 	/*
2514 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2515 	 * event that can occur when there is little memory pressure e.g.
2516 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2517 	 * when the requested number of pages are reclaimed when scanning at
2518 	 * DEF_PRIORITY on the assumption that the fact we are direct
2519 	 * reclaiming implies that kswapd is not keeping up and it is best to
2520 	 * do a batch of work at once. For memcg reclaim one check is made to
2521 	 * abort proportional reclaim if either the file or anon lru has already
2522 	 * dropped to zero at the first pass.
2523 	 */
2524 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2525 			 sc->priority == DEF_PRIORITY);
2526 
2527 	blk_start_plug(&plug);
2528 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2529 					nr[LRU_INACTIVE_FILE]) {
2530 		unsigned long nr_anon, nr_file, percentage;
2531 		unsigned long nr_scanned;
2532 
2533 		for_each_evictable_lru(lru) {
2534 			if (nr[lru]) {
2535 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2536 				nr[lru] -= nr_to_scan;
2537 
2538 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2539 							    lruvec, memcg, sc);
2540 			}
2541 		}
2542 
2543 		cond_resched();
2544 
2545 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2546 			continue;
2547 
2548 		/*
2549 		 * For kswapd and memcg, reclaim at least the number of pages
2550 		 * requested. Ensure that the anon and file LRUs are scanned
2551 		 * proportionally what was requested by get_scan_count(). We
2552 		 * stop reclaiming one LRU and reduce the amount scanning
2553 		 * proportional to the original scan target.
2554 		 */
2555 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2556 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2557 
2558 		/*
2559 		 * It's just vindictive to attack the larger once the smaller
2560 		 * has gone to zero.  And given the way we stop scanning the
2561 		 * smaller below, this makes sure that we only make one nudge
2562 		 * towards proportionality once we've got nr_to_reclaim.
2563 		 */
2564 		if (!nr_file || !nr_anon)
2565 			break;
2566 
2567 		if (nr_file > nr_anon) {
2568 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2569 						targets[LRU_ACTIVE_ANON] + 1;
2570 			lru = LRU_BASE;
2571 			percentage = nr_anon * 100 / scan_target;
2572 		} else {
2573 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2574 						targets[LRU_ACTIVE_FILE] + 1;
2575 			lru = LRU_FILE;
2576 			percentage = nr_file * 100 / scan_target;
2577 		}
2578 
2579 		/* Stop scanning the smaller of the LRU */
2580 		nr[lru] = 0;
2581 		nr[lru + LRU_ACTIVE] = 0;
2582 
2583 		/*
2584 		 * Recalculate the other LRU scan count based on its original
2585 		 * scan target and the percentage scanning already complete
2586 		 */
2587 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2588 		nr_scanned = targets[lru] - nr[lru];
2589 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2590 		nr[lru] -= min(nr[lru], nr_scanned);
2591 
2592 		lru += LRU_ACTIVE;
2593 		nr_scanned = targets[lru] - nr[lru];
2594 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2595 		nr[lru] -= min(nr[lru], nr_scanned);
2596 
2597 		scan_adjusted = true;
2598 	}
2599 	blk_finish_plug(&plug);
2600 	sc->nr_reclaimed += nr_reclaimed;
2601 
2602 	/*
2603 	 * Even if we did not try to evict anon pages at all, we want to
2604 	 * rebalance the anon lru active/inactive ratio.
2605 	 */
2606 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2607 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2608 				   sc, LRU_ACTIVE_ANON);
2609 }
2610 
2611 /* Use reclaim/compaction for costly allocs or under memory pressure */
2612 static bool in_reclaim_compaction(struct scan_control *sc)
2613 {
2614 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2615 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2616 			 sc->priority < DEF_PRIORITY - 2))
2617 		return true;
2618 
2619 	return false;
2620 }
2621 
2622 /*
2623  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2624  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2625  * true if more pages should be reclaimed such that when the page allocator
2626  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2627  * It will give up earlier than that if there is difficulty reclaiming pages.
2628  */
2629 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2630 					unsigned long nr_reclaimed,
2631 					unsigned long nr_scanned,
2632 					struct scan_control *sc)
2633 {
2634 	unsigned long pages_for_compaction;
2635 	unsigned long inactive_lru_pages;
2636 	int z;
2637 
2638 	/* If not in reclaim/compaction mode, stop */
2639 	if (!in_reclaim_compaction(sc))
2640 		return false;
2641 
2642 	/* Consider stopping depending on scan and reclaim activity */
2643 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2644 		/*
2645 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2646 		 * full LRU list has been scanned and we are still failing
2647 		 * to reclaim pages. This full LRU scan is potentially
2648 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2649 		 */
2650 		if (!nr_reclaimed && !nr_scanned)
2651 			return false;
2652 	} else {
2653 		/*
2654 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2655 		 * fail without consequence, stop if we failed to reclaim
2656 		 * any pages from the last SWAP_CLUSTER_MAX number of
2657 		 * pages that were scanned. This will return to the
2658 		 * caller faster at the risk reclaim/compaction and
2659 		 * the resulting allocation attempt fails
2660 		 */
2661 		if (!nr_reclaimed)
2662 			return false;
2663 	}
2664 
2665 	/*
2666 	 * If we have not reclaimed enough pages for compaction and the
2667 	 * inactive lists are large enough, continue reclaiming
2668 	 */
2669 	pages_for_compaction = compact_gap(sc->order);
2670 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2671 	if (get_nr_swap_pages() > 0)
2672 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2673 	if (sc->nr_reclaimed < pages_for_compaction &&
2674 			inactive_lru_pages > pages_for_compaction)
2675 		return true;
2676 
2677 	/* If compaction would go ahead or the allocation would succeed, stop */
2678 	for (z = 0; z <= sc->reclaim_idx; z++) {
2679 		struct zone *zone = &pgdat->node_zones[z];
2680 		if (!managed_zone(zone))
2681 			continue;
2682 
2683 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2684 		case COMPACT_SUCCESS:
2685 		case COMPACT_CONTINUE:
2686 			return false;
2687 		default:
2688 			/* check next zone */
2689 			;
2690 		}
2691 	}
2692 	return true;
2693 }
2694 
2695 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2696 {
2697 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2698 		(memcg && memcg_congested(pgdat, memcg));
2699 }
2700 
2701 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2702 {
2703 	struct reclaim_state *reclaim_state = current->reclaim_state;
2704 	unsigned long nr_reclaimed, nr_scanned;
2705 	bool reclaimable = false;
2706 
2707 	do {
2708 		struct mem_cgroup *root = sc->target_mem_cgroup;
2709 		struct mem_cgroup_reclaim_cookie reclaim = {
2710 			.pgdat = pgdat,
2711 			.priority = sc->priority,
2712 		};
2713 		unsigned long node_lru_pages = 0;
2714 		struct mem_cgroup *memcg;
2715 
2716 		memset(&sc->nr, 0, sizeof(sc->nr));
2717 
2718 		nr_reclaimed = sc->nr_reclaimed;
2719 		nr_scanned = sc->nr_scanned;
2720 
2721 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2722 		do {
2723 			unsigned long lru_pages;
2724 			unsigned long reclaimed;
2725 			unsigned long scanned;
2726 
2727 			switch (mem_cgroup_protected(root, memcg)) {
2728 			case MEMCG_PROT_MIN:
2729 				/*
2730 				 * Hard protection.
2731 				 * If there is no reclaimable memory, OOM.
2732 				 */
2733 				continue;
2734 			case MEMCG_PROT_LOW:
2735 				/*
2736 				 * Soft protection.
2737 				 * Respect the protection only as long as
2738 				 * there is an unprotected supply
2739 				 * of reclaimable memory from other cgroups.
2740 				 */
2741 				if (!sc->memcg_low_reclaim) {
2742 					sc->memcg_low_skipped = 1;
2743 					continue;
2744 				}
2745 				memcg_memory_event(memcg, MEMCG_LOW);
2746 				break;
2747 			case MEMCG_PROT_NONE:
2748 				break;
2749 			}
2750 
2751 			reclaimed = sc->nr_reclaimed;
2752 			scanned = sc->nr_scanned;
2753 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2754 			node_lru_pages += lru_pages;
2755 
2756 			if (sc->may_shrinkslab) {
2757 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2758 				    memcg, sc->priority);
2759 			}
2760 
2761 			/* Record the group's reclaim efficiency */
2762 			vmpressure(sc->gfp_mask, memcg, false,
2763 				   sc->nr_scanned - scanned,
2764 				   sc->nr_reclaimed - reclaimed);
2765 
2766 			/*
2767 			 * Direct reclaim and kswapd have to scan all memory
2768 			 * cgroups to fulfill the overall scan target for the
2769 			 * node.
2770 			 *
2771 			 * Limit reclaim, on the other hand, only cares about
2772 			 * nr_to_reclaim pages to be reclaimed and it will
2773 			 * retry with decreasing priority if one round over the
2774 			 * whole hierarchy is not sufficient.
2775 			 */
2776 			if (!global_reclaim(sc) &&
2777 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2778 				mem_cgroup_iter_break(root, memcg);
2779 				break;
2780 			}
2781 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2782 
2783 		if (reclaim_state) {
2784 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2785 			reclaim_state->reclaimed_slab = 0;
2786 		}
2787 
2788 		/* Record the subtree's reclaim efficiency */
2789 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2790 			   sc->nr_scanned - nr_scanned,
2791 			   sc->nr_reclaimed - nr_reclaimed);
2792 
2793 		if (sc->nr_reclaimed - nr_reclaimed)
2794 			reclaimable = true;
2795 
2796 		if (current_is_kswapd()) {
2797 			/*
2798 			 * If reclaim is isolating dirty pages under writeback,
2799 			 * it implies that the long-lived page allocation rate
2800 			 * is exceeding the page laundering rate. Either the
2801 			 * global limits are not being effective at throttling
2802 			 * processes due to the page distribution throughout
2803 			 * zones or there is heavy usage of a slow backing
2804 			 * device. The only option is to throttle from reclaim
2805 			 * context which is not ideal as there is no guarantee
2806 			 * the dirtying process is throttled in the same way
2807 			 * balance_dirty_pages() manages.
2808 			 *
2809 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2810 			 * count the number of pages under pages flagged for
2811 			 * immediate reclaim and stall if any are encountered
2812 			 * in the nr_immediate check below.
2813 			 */
2814 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2815 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2816 
2817 			/*
2818 			 * Tag a node as congested if all the dirty pages
2819 			 * scanned were backed by a congested BDI and
2820 			 * wait_iff_congested will stall.
2821 			 */
2822 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2823 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2824 
2825 			/* Allow kswapd to start writing pages during reclaim.*/
2826 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2827 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2828 
2829 			/*
2830 			 * If kswapd scans pages marked marked for immediate
2831 			 * reclaim and under writeback (nr_immediate), it
2832 			 * implies that pages are cycling through the LRU
2833 			 * faster than they are written so also forcibly stall.
2834 			 */
2835 			if (sc->nr.immediate)
2836 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2837 		}
2838 
2839 		/*
2840 		 * Legacy memcg will stall in page writeback so avoid forcibly
2841 		 * stalling in wait_iff_congested().
2842 		 */
2843 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2844 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2845 			set_memcg_congestion(pgdat, root, true);
2846 
2847 		/*
2848 		 * Stall direct reclaim for IO completions if underlying BDIs
2849 		 * and node is congested. Allow kswapd to continue until it
2850 		 * starts encountering unqueued dirty pages or cycling through
2851 		 * the LRU too quickly.
2852 		 */
2853 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2854 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2855 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2856 
2857 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2858 					 sc->nr_scanned - nr_scanned, sc));
2859 
2860 	/*
2861 	 * Kswapd gives up on balancing particular nodes after too
2862 	 * many failures to reclaim anything from them and goes to
2863 	 * sleep. On reclaim progress, reset the failure counter. A
2864 	 * successful direct reclaim run will revive a dormant kswapd.
2865 	 */
2866 	if (reclaimable)
2867 		pgdat->kswapd_failures = 0;
2868 
2869 	return reclaimable;
2870 }
2871 
2872 /*
2873  * Returns true if compaction should go ahead for a costly-order request, or
2874  * the allocation would already succeed without compaction. Return false if we
2875  * should reclaim first.
2876  */
2877 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2878 {
2879 	unsigned long watermark;
2880 	enum compact_result suitable;
2881 
2882 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2883 	if (suitable == COMPACT_SUCCESS)
2884 		/* Allocation should succeed already. Don't reclaim. */
2885 		return true;
2886 	if (suitable == COMPACT_SKIPPED)
2887 		/* Compaction cannot yet proceed. Do reclaim. */
2888 		return false;
2889 
2890 	/*
2891 	 * Compaction is already possible, but it takes time to run and there
2892 	 * are potentially other callers using the pages just freed. So proceed
2893 	 * with reclaim to make a buffer of free pages available to give
2894 	 * compaction a reasonable chance of completing and allocating the page.
2895 	 * Note that we won't actually reclaim the whole buffer in one attempt
2896 	 * as the target watermark in should_continue_reclaim() is lower. But if
2897 	 * we are already above the high+gap watermark, don't reclaim at all.
2898 	 */
2899 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2900 
2901 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2902 }
2903 
2904 /*
2905  * This is the direct reclaim path, for page-allocating processes.  We only
2906  * try to reclaim pages from zones which will satisfy the caller's allocation
2907  * request.
2908  *
2909  * If a zone is deemed to be full of pinned pages then just give it a light
2910  * scan then give up on it.
2911  */
2912 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2913 {
2914 	struct zoneref *z;
2915 	struct zone *zone;
2916 	unsigned long nr_soft_reclaimed;
2917 	unsigned long nr_soft_scanned;
2918 	gfp_t orig_mask;
2919 	pg_data_t *last_pgdat = NULL;
2920 
2921 	/*
2922 	 * If the number of buffer_heads in the machine exceeds the maximum
2923 	 * allowed level, force direct reclaim to scan the highmem zone as
2924 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2925 	 */
2926 	orig_mask = sc->gfp_mask;
2927 	if (buffer_heads_over_limit) {
2928 		sc->gfp_mask |= __GFP_HIGHMEM;
2929 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2930 	}
2931 
2932 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2933 					sc->reclaim_idx, sc->nodemask) {
2934 		/*
2935 		 * Take care memory controller reclaiming has small influence
2936 		 * to global LRU.
2937 		 */
2938 		if (global_reclaim(sc)) {
2939 			if (!cpuset_zone_allowed(zone,
2940 						 GFP_KERNEL | __GFP_HARDWALL))
2941 				continue;
2942 
2943 			/*
2944 			 * If we already have plenty of memory free for
2945 			 * compaction in this zone, don't free any more.
2946 			 * Even though compaction is invoked for any
2947 			 * non-zero order, only frequent costly order
2948 			 * reclamation is disruptive enough to become a
2949 			 * noticeable problem, like transparent huge
2950 			 * page allocations.
2951 			 */
2952 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2953 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2954 			    compaction_ready(zone, sc)) {
2955 				sc->compaction_ready = true;
2956 				continue;
2957 			}
2958 
2959 			/*
2960 			 * Shrink each node in the zonelist once. If the
2961 			 * zonelist is ordered by zone (not the default) then a
2962 			 * node may be shrunk multiple times but in that case
2963 			 * the user prefers lower zones being preserved.
2964 			 */
2965 			if (zone->zone_pgdat == last_pgdat)
2966 				continue;
2967 
2968 			/*
2969 			 * This steals pages from memory cgroups over softlimit
2970 			 * and returns the number of reclaimed pages and
2971 			 * scanned pages. This works for global memory pressure
2972 			 * and balancing, not for a memcg's limit.
2973 			 */
2974 			nr_soft_scanned = 0;
2975 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2976 						sc->order, sc->gfp_mask,
2977 						&nr_soft_scanned);
2978 			sc->nr_reclaimed += nr_soft_reclaimed;
2979 			sc->nr_scanned += nr_soft_scanned;
2980 			/* need some check for avoid more shrink_zone() */
2981 		}
2982 
2983 		/* See comment about same check for global reclaim above */
2984 		if (zone->zone_pgdat == last_pgdat)
2985 			continue;
2986 		last_pgdat = zone->zone_pgdat;
2987 		shrink_node(zone->zone_pgdat, sc);
2988 	}
2989 
2990 	/*
2991 	 * Restore to original mask to avoid the impact on the caller if we
2992 	 * promoted it to __GFP_HIGHMEM.
2993 	 */
2994 	sc->gfp_mask = orig_mask;
2995 }
2996 
2997 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2998 {
2999 	struct mem_cgroup *memcg;
3000 
3001 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3002 	do {
3003 		unsigned long refaults;
3004 		struct lruvec *lruvec;
3005 
3006 		if (memcg)
3007 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
3008 		else
3009 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
3010 
3011 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3012 		lruvec->refaults = refaults;
3013 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3014 }
3015 
3016 /*
3017  * This is the main entry point to direct page reclaim.
3018  *
3019  * If a full scan of the inactive list fails to free enough memory then we
3020  * are "out of memory" and something needs to be killed.
3021  *
3022  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3023  * high - the zone may be full of dirty or under-writeback pages, which this
3024  * caller can't do much about.  We kick the writeback threads and take explicit
3025  * naps in the hope that some of these pages can be written.  But if the
3026  * allocating task holds filesystem locks which prevent writeout this might not
3027  * work, and the allocation attempt will fail.
3028  *
3029  * returns:	0, if no pages reclaimed
3030  * 		else, the number of pages reclaimed
3031  */
3032 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3033 					  struct scan_control *sc)
3034 {
3035 	int initial_priority = sc->priority;
3036 	pg_data_t *last_pgdat;
3037 	struct zoneref *z;
3038 	struct zone *zone;
3039 retry:
3040 	delayacct_freepages_start();
3041 
3042 	if (global_reclaim(sc))
3043 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3044 
3045 	do {
3046 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3047 				sc->priority);
3048 		sc->nr_scanned = 0;
3049 		shrink_zones(zonelist, sc);
3050 
3051 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3052 			break;
3053 
3054 		if (sc->compaction_ready)
3055 			break;
3056 
3057 		/*
3058 		 * If we're getting trouble reclaiming, start doing
3059 		 * writepage even in laptop mode.
3060 		 */
3061 		if (sc->priority < DEF_PRIORITY - 2)
3062 			sc->may_writepage = 1;
3063 	} while (--sc->priority >= 0);
3064 
3065 	last_pgdat = NULL;
3066 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3067 					sc->nodemask) {
3068 		if (zone->zone_pgdat == last_pgdat)
3069 			continue;
3070 		last_pgdat = zone->zone_pgdat;
3071 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3072 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3073 	}
3074 
3075 	delayacct_freepages_end();
3076 
3077 	if (sc->nr_reclaimed)
3078 		return sc->nr_reclaimed;
3079 
3080 	/* Aborted reclaim to try compaction? don't OOM, then */
3081 	if (sc->compaction_ready)
3082 		return 1;
3083 
3084 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3085 	if (sc->memcg_low_skipped) {
3086 		sc->priority = initial_priority;
3087 		sc->memcg_low_reclaim = 1;
3088 		sc->memcg_low_skipped = 0;
3089 		goto retry;
3090 	}
3091 
3092 	return 0;
3093 }
3094 
3095 static bool allow_direct_reclaim(pg_data_t *pgdat)
3096 {
3097 	struct zone *zone;
3098 	unsigned long pfmemalloc_reserve = 0;
3099 	unsigned long free_pages = 0;
3100 	int i;
3101 	bool wmark_ok;
3102 
3103 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3104 		return true;
3105 
3106 	for (i = 0; i <= ZONE_NORMAL; i++) {
3107 		zone = &pgdat->node_zones[i];
3108 		if (!managed_zone(zone))
3109 			continue;
3110 
3111 		if (!zone_reclaimable_pages(zone))
3112 			continue;
3113 
3114 		pfmemalloc_reserve += min_wmark_pages(zone);
3115 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3116 	}
3117 
3118 	/* If there are no reserves (unexpected config) then do not throttle */
3119 	if (!pfmemalloc_reserve)
3120 		return true;
3121 
3122 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3123 
3124 	/* kswapd must be awake if processes are being throttled */
3125 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3126 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3127 						(enum zone_type)ZONE_NORMAL);
3128 		wake_up_interruptible(&pgdat->kswapd_wait);
3129 	}
3130 
3131 	return wmark_ok;
3132 }
3133 
3134 /*
3135  * Throttle direct reclaimers if backing storage is backed by the network
3136  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3137  * depleted. kswapd will continue to make progress and wake the processes
3138  * when the low watermark is reached.
3139  *
3140  * Returns true if a fatal signal was delivered during throttling. If this
3141  * happens, the page allocator should not consider triggering the OOM killer.
3142  */
3143 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3144 					nodemask_t *nodemask)
3145 {
3146 	struct zoneref *z;
3147 	struct zone *zone;
3148 	pg_data_t *pgdat = NULL;
3149 
3150 	/*
3151 	 * Kernel threads should not be throttled as they may be indirectly
3152 	 * responsible for cleaning pages necessary for reclaim to make forward
3153 	 * progress. kjournald for example may enter direct reclaim while
3154 	 * committing a transaction where throttling it could forcing other
3155 	 * processes to block on log_wait_commit().
3156 	 */
3157 	if (current->flags & PF_KTHREAD)
3158 		goto out;
3159 
3160 	/*
3161 	 * If a fatal signal is pending, this process should not throttle.
3162 	 * It should return quickly so it can exit and free its memory
3163 	 */
3164 	if (fatal_signal_pending(current))
3165 		goto out;
3166 
3167 	/*
3168 	 * Check if the pfmemalloc reserves are ok by finding the first node
3169 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3170 	 * GFP_KERNEL will be required for allocating network buffers when
3171 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3172 	 *
3173 	 * Throttling is based on the first usable node and throttled processes
3174 	 * wait on a queue until kswapd makes progress and wakes them. There
3175 	 * is an affinity then between processes waking up and where reclaim
3176 	 * progress has been made assuming the process wakes on the same node.
3177 	 * More importantly, processes running on remote nodes will not compete
3178 	 * for remote pfmemalloc reserves and processes on different nodes
3179 	 * should make reasonable progress.
3180 	 */
3181 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3182 					gfp_zone(gfp_mask), nodemask) {
3183 		if (zone_idx(zone) > ZONE_NORMAL)
3184 			continue;
3185 
3186 		/* Throttle based on the first usable node */
3187 		pgdat = zone->zone_pgdat;
3188 		if (allow_direct_reclaim(pgdat))
3189 			goto out;
3190 		break;
3191 	}
3192 
3193 	/* If no zone was usable by the allocation flags then do not throttle */
3194 	if (!pgdat)
3195 		goto out;
3196 
3197 	/* Account for the throttling */
3198 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3199 
3200 	/*
3201 	 * If the caller cannot enter the filesystem, it's possible that it
3202 	 * is due to the caller holding an FS lock or performing a journal
3203 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3204 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3205 	 * blocked waiting on the same lock. Instead, throttle for up to a
3206 	 * second before continuing.
3207 	 */
3208 	if (!(gfp_mask & __GFP_FS)) {
3209 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3210 			allow_direct_reclaim(pgdat), HZ);
3211 
3212 		goto check_pending;
3213 	}
3214 
3215 	/* Throttle until kswapd wakes the process */
3216 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3217 		allow_direct_reclaim(pgdat));
3218 
3219 check_pending:
3220 	if (fatal_signal_pending(current))
3221 		return true;
3222 
3223 out:
3224 	return false;
3225 }
3226 
3227 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3228 				gfp_t gfp_mask, nodemask_t *nodemask)
3229 {
3230 	unsigned long nr_reclaimed;
3231 	struct scan_control sc = {
3232 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3233 		.gfp_mask = current_gfp_context(gfp_mask),
3234 		.reclaim_idx = gfp_zone(gfp_mask),
3235 		.order = order,
3236 		.nodemask = nodemask,
3237 		.priority = DEF_PRIORITY,
3238 		.may_writepage = !laptop_mode,
3239 		.may_unmap = 1,
3240 		.may_swap = 1,
3241 		.may_shrinkslab = 1,
3242 	};
3243 
3244 	/*
3245 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3246 	 * Confirm they are large enough for max values.
3247 	 */
3248 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3249 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3250 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3251 
3252 	/*
3253 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3254 	 * 1 is returned so that the page allocator does not OOM kill at this
3255 	 * point.
3256 	 */
3257 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3258 		return 1;
3259 
3260 	trace_mm_vmscan_direct_reclaim_begin(order,
3261 				sc.may_writepage,
3262 				sc.gfp_mask,
3263 				sc.reclaim_idx);
3264 
3265 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3266 
3267 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3268 
3269 	return nr_reclaimed;
3270 }
3271 
3272 #ifdef CONFIG_MEMCG
3273 
3274 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3275 						gfp_t gfp_mask, bool noswap,
3276 						pg_data_t *pgdat,
3277 						unsigned long *nr_scanned)
3278 {
3279 	struct scan_control sc = {
3280 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3281 		.target_mem_cgroup = memcg,
3282 		.may_writepage = !laptop_mode,
3283 		.may_unmap = 1,
3284 		.reclaim_idx = MAX_NR_ZONES - 1,
3285 		.may_swap = !noswap,
3286 		.may_shrinkslab = 1,
3287 	};
3288 	unsigned long lru_pages;
3289 
3290 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3291 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3292 
3293 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3294 						      sc.may_writepage,
3295 						      sc.gfp_mask,
3296 						      sc.reclaim_idx);
3297 
3298 	/*
3299 	 * NOTE: Although we can get the priority field, using it
3300 	 * here is not a good idea, since it limits the pages we can scan.
3301 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3302 	 * will pick up pages from other mem cgroup's as well. We hack
3303 	 * the priority and make it zero.
3304 	 */
3305 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3306 
3307 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3308 
3309 	*nr_scanned = sc.nr_scanned;
3310 	return sc.nr_reclaimed;
3311 }
3312 
3313 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3314 					   unsigned long nr_pages,
3315 					   gfp_t gfp_mask,
3316 					   bool may_swap)
3317 {
3318 	struct zonelist *zonelist;
3319 	unsigned long nr_reclaimed;
3320 	unsigned long pflags;
3321 	int nid;
3322 	unsigned int noreclaim_flag;
3323 	struct scan_control sc = {
3324 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3325 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3326 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3327 		.reclaim_idx = MAX_NR_ZONES - 1,
3328 		.target_mem_cgroup = memcg,
3329 		.priority = DEF_PRIORITY,
3330 		.may_writepage = !laptop_mode,
3331 		.may_unmap = 1,
3332 		.may_swap = may_swap,
3333 		.may_shrinkslab = 1,
3334 	};
3335 
3336 	/*
3337 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3338 	 * take care of from where we get pages. So the node where we start the
3339 	 * scan does not need to be the current node.
3340 	 */
3341 	nid = mem_cgroup_select_victim_node(memcg);
3342 
3343 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3344 
3345 	trace_mm_vmscan_memcg_reclaim_begin(0,
3346 					    sc.may_writepage,
3347 					    sc.gfp_mask,
3348 					    sc.reclaim_idx);
3349 
3350 	psi_memstall_enter(&pflags);
3351 	noreclaim_flag = memalloc_noreclaim_save();
3352 
3353 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3354 
3355 	memalloc_noreclaim_restore(noreclaim_flag);
3356 	psi_memstall_leave(&pflags);
3357 
3358 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3359 
3360 	return nr_reclaimed;
3361 }
3362 #endif
3363 
3364 static void age_active_anon(struct pglist_data *pgdat,
3365 				struct scan_control *sc)
3366 {
3367 	struct mem_cgroup *memcg;
3368 
3369 	if (!total_swap_pages)
3370 		return;
3371 
3372 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3373 	do {
3374 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3375 
3376 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3377 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3378 					   sc, LRU_ACTIVE_ANON);
3379 
3380 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3381 	} while (memcg);
3382 }
3383 
3384 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3385 {
3386 	int i;
3387 	struct zone *zone;
3388 
3389 	/*
3390 	 * Check for watermark boosts top-down as the higher zones
3391 	 * are more likely to be boosted. Both watermarks and boosts
3392 	 * should not be checked at the time time as reclaim would
3393 	 * start prematurely when there is no boosting and a lower
3394 	 * zone is balanced.
3395 	 */
3396 	for (i = classzone_idx; i >= 0; i--) {
3397 		zone = pgdat->node_zones + i;
3398 		if (!managed_zone(zone))
3399 			continue;
3400 
3401 		if (zone->watermark_boost)
3402 			return true;
3403 	}
3404 
3405 	return false;
3406 }
3407 
3408 /*
3409  * Returns true if there is an eligible zone balanced for the request order
3410  * and classzone_idx
3411  */
3412 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3413 {
3414 	int i;
3415 	unsigned long mark = -1;
3416 	struct zone *zone;
3417 
3418 	/*
3419 	 * Check watermarks bottom-up as lower zones are more likely to
3420 	 * meet watermarks.
3421 	 */
3422 	for (i = 0; i <= classzone_idx; i++) {
3423 		zone = pgdat->node_zones + i;
3424 
3425 		if (!managed_zone(zone))
3426 			continue;
3427 
3428 		mark = high_wmark_pages(zone);
3429 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3430 			return true;
3431 	}
3432 
3433 	/*
3434 	 * If a node has no populated zone within classzone_idx, it does not
3435 	 * need balancing by definition. This can happen if a zone-restricted
3436 	 * allocation tries to wake a remote kswapd.
3437 	 */
3438 	if (mark == -1)
3439 		return true;
3440 
3441 	return false;
3442 }
3443 
3444 /* Clear pgdat state for congested, dirty or under writeback. */
3445 static void clear_pgdat_congested(pg_data_t *pgdat)
3446 {
3447 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3448 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3449 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3450 }
3451 
3452 /*
3453  * Prepare kswapd for sleeping. This verifies that there are no processes
3454  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3455  *
3456  * Returns true if kswapd is ready to sleep
3457  */
3458 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3459 {
3460 	/*
3461 	 * The throttled processes are normally woken up in balance_pgdat() as
3462 	 * soon as allow_direct_reclaim() is true. But there is a potential
3463 	 * race between when kswapd checks the watermarks and a process gets
3464 	 * throttled. There is also a potential race if processes get
3465 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3466 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3467 	 * the wake up checks. If kswapd is going to sleep, no process should
3468 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3469 	 * the wake up is premature, processes will wake kswapd and get
3470 	 * throttled again. The difference from wake ups in balance_pgdat() is
3471 	 * that here we are under prepare_to_wait().
3472 	 */
3473 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3474 		wake_up_all(&pgdat->pfmemalloc_wait);
3475 
3476 	/* Hopeless node, leave it to direct reclaim */
3477 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3478 		return true;
3479 
3480 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3481 		clear_pgdat_congested(pgdat);
3482 		return true;
3483 	}
3484 
3485 	return false;
3486 }
3487 
3488 /*
3489  * kswapd shrinks a node of pages that are at or below the highest usable
3490  * zone that is currently unbalanced.
3491  *
3492  * Returns true if kswapd scanned at least the requested number of pages to
3493  * reclaim or if the lack of progress was due to pages under writeback.
3494  * This is used to determine if the scanning priority needs to be raised.
3495  */
3496 static bool kswapd_shrink_node(pg_data_t *pgdat,
3497 			       struct scan_control *sc)
3498 {
3499 	struct zone *zone;
3500 	int z;
3501 
3502 	/* Reclaim a number of pages proportional to the number of zones */
3503 	sc->nr_to_reclaim = 0;
3504 	for (z = 0; z <= sc->reclaim_idx; z++) {
3505 		zone = pgdat->node_zones + z;
3506 		if (!managed_zone(zone))
3507 			continue;
3508 
3509 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3510 	}
3511 
3512 	/*
3513 	 * Historically care was taken to put equal pressure on all zones but
3514 	 * now pressure is applied based on node LRU order.
3515 	 */
3516 	shrink_node(pgdat, sc);
3517 
3518 	/*
3519 	 * Fragmentation may mean that the system cannot be rebalanced for
3520 	 * high-order allocations. If twice the allocation size has been
3521 	 * reclaimed then recheck watermarks only at order-0 to prevent
3522 	 * excessive reclaim. Assume that a process requested a high-order
3523 	 * can direct reclaim/compact.
3524 	 */
3525 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3526 		sc->order = 0;
3527 
3528 	return sc->nr_scanned >= sc->nr_to_reclaim;
3529 }
3530 
3531 /*
3532  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3533  * that are eligible for use by the caller until at least one zone is
3534  * balanced.
3535  *
3536  * Returns the order kswapd finished reclaiming at.
3537  *
3538  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3539  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3540  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3541  * or lower is eligible for reclaim until at least one usable zone is
3542  * balanced.
3543  */
3544 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3545 {
3546 	int i;
3547 	unsigned long nr_soft_reclaimed;
3548 	unsigned long nr_soft_scanned;
3549 	unsigned long pflags;
3550 	unsigned long nr_boost_reclaim;
3551 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3552 	bool boosted;
3553 	struct zone *zone;
3554 	struct scan_control sc = {
3555 		.gfp_mask = GFP_KERNEL,
3556 		.order = order,
3557 		.may_unmap = 1,
3558 	};
3559 
3560 	psi_memstall_enter(&pflags);
3561 	__fs_reclaim_acquire();
3562 
3563 	count_vm_event(PAGEOUTRUN);
3564 
3565 	/*
3566 	 * Account for the reclaim boost. Note that the zone boost is left in
3567 	 * place so that parallel allocations that are near the watermark will
3568 	 * stall or direct reclaim until kswapd is finished.
3569 	 */
3570 	nr_boost_reclaim = 0;
3571 	for (i = 0; i <= classzone_idx; i++) {
3572 		zone = pgdat->node_zones + i;
3573 		if (!managed_zone(zone))
3574 			continue;
3575 
3576 		nr_boost_reclaim += zone->watermark_boost;
3577 		zone_boosts[i] = zone->watermark_boost;
3578 	}
3579 	boosted = nr_boost_reclaim;
3580 
3581 restart:
3582 	sc.priority = DEF_PRIORITY;
3583 	do {
3584 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3585 		bool raise_priority = true;
3586 		bool balanced;
3587 		bool ret;
3588 
3589 		sc.reclaim_idx = classzone_idx;
3590 
3591 		/*
3592 		 * If the number of buffer_heads exceeds the maximum allowed
3593 		 * then consider reclaiming from all zones. This has a dual
3594 		 * purpose -- on 64-bit systems it is expected that
3595 		 * buffer_heads are stripped during active rotation. On 32-bit
3596 		 * systems, highmem pages can pin lowmem memory and shrinking
3597 		 * buffers can relieve lowmem pressure. Reclaim may still not
3598 		 * go ahead if all eligible zones for the original allocation
3599 		 * request are balanced to avoid excessive reclaim from kswapd.
3600 		 */
3601 		if (buffer_heads_over_limit) {
3602 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3603 				zone = pgdat->node_zones + i;
3604 				if (!managed_zone(zone))
3605 					continue;
3606 
3607 				sc.reclaim_idx = i;
3608 				break;
3609 			}
3610 		}
3611 
3612 		/*
3613 		 * If the pgdat is imbalanced then ignore boosting and preserve
3614 		 * the watermarks for a later time and restart. Note that the
3615 		 * zone watermarks will be still reset at the end of balancing
3616 		 * on the grounds that the normal reclaim should be enough to
3617 		 * re-evaluate if boosting is required when kswapd next wakes.
3618 		 */
3619 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3620 		if (!balanced && nr_boost_reclaim) {
3621 			nr_boost_reclaim = 0;
3622 			goto restart;
3623 		}
3624 
3625 		/*
3626 		 * If boosting is not active then only reclaim if there are no
3627 		 * eligible zones. Note that sc.reclaim_idx is not used as
3628 		 * buffer_heads_over_limit may have adjusted it.
3629 		 */
3630 		if (!nr_boost_reclaim && balanced)
3631 			goto out;
3632 
3633 		/* Limit the priority of boosting to avoid reclaim writeback */
3634 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3635 			raise_priority = false;
3636 
3637 		/*
3638 		 * Do not writeback or swap pages for boosted reclaim. The
3639 		 * intent is to relieve pressure not issue sub-optimal IO
3640 		 * from reclaim context. If no pages are reclaimed, the
3641 		 * reclaim will be aborted.
3642 		 */
3643 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3644 		sc.may_swap = !nr_boost_reclaim;
3645 		sc.may_shrinkslab = !nr_boost_reclaim;
3646 
3647 		/*
3648 		 * Do some background aging of the anon list, to give
3649 		 * pages a chance to be referenced before reclaiming. All
3650 		 * pages are rotated regardless of classzone as this is
3651 		 * about consistent aging.
3652 		 */
3653 		age_active_anon(pgdat, &sc);
3654 
3655 		/*
3656 		 * If we're getting trouble reclaiming, start doing writepage
3657 		 * even in laptop mode.
3658 		 */
3659 		if (sc.priority < DEF_PRIORITY - 2)
3660 			sc.may_writepage = 1;
3661 
3662 		/* Call soft limit reclaim before calling shrink_node. */
3663 		sc.nr_scanned = 0;
3664 		nr_soft_scanned = 0;
3665 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3666 						sc.gfp_mask, &nr_soft_scanned);
3667 		sc.nr_reclaimed += nr_soft_reclaimed;
3668 
3669 		/*
3670 		 * There should be no need to raise the scanning priority if
3671 		 * enough pages are already being scanned that that high
3672 		 * watermark would be met at 100% efficiency.
3673 		 */
3674 		if (kswapd_shrink_node(pgdat, &sc))
3675 			raise_priority = false;
3676 
3677 		/*
3678 		 * If the low watermark is met there is no need for processes
3679 		 * to be throttled on pfmemalloc_wait as they should not be
3680 		 * able to safely make forward progress. Wake them
3681 		 */
3682 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3683 				allow_direct_reclaim(pgdat))
3684 			wake_up_all(&pgdat->pfmemalloc_wait);
3685 
3686 		/* Check if kswapd should be suspending */
3687 		__fs_reclaim_release();
3688 		ret = try_to_freeze();
3689 		__fs_reclaim_acquire();
3690 		if (ret || kthread_should_stop())
3691 			break;
3692 
3693 		/*
3694 		 * Raise priority if scanning rate is too low or there was no
3695 		 * progress in reclaiming pages
3696 		 */
3697 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3698 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3699 
3700 		/*
3701 		 * If reclaim made no progress for a boost, stop reclaim as
3702 		 * IO cannot be queued and it could be an infinite loop in
3703 		 * extreme circumstances.
3704 		 */
3705 		if (nr_boost_reclaim && !nr_reclaimed)
3706 			break;
3707 
3708 		if (raise_priority || !nr_reclaimed)
3709 			sc.priority--;
3710 	} while (sc.priority >= 1);
3711 
3712 	if (!sc.nr_reclaimed)
3713 		pgdat->kswapd_failures++;
3714 
3715 out:
3716 	/* If reclaim was boosted, account for the reclaim done in this pass */
3717 	if (boosted) {
3718 		unsigned long flags;
3719 
3720 		for (i = 0; i <= classzone_idx; i++) {
3721 			if (!zone_boosts[i])
3722 				continue;
3723 
3724 			/* Increments are under the zone lock */
3725 			zone = pgdat->node_zones + i;
3726 			spin_lock_irqsave(&zone->lock, flags);
3727 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3728 			spin_unlock_irqrestore(&zone->lock, flags);
3729 		}
3730 
3731 		/*
3732 		 * As there is now likely space, wakeup kcompact to defragment
3733 		 * pageblocks.
3734 		 */
3735 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3736 	}
3737 
3738 	snapshot_refaults(NULL, pgdat);
3739 	__fs_reclaim_release();
3740 	psi_memstall_leave(&pflags);
3741 	/*
3742 	 * Return the order kswapd stopped reclaiming at as
3743 	 * prepare_kswapd_sleep() takes it into account. If another caller
3744 	 * entered the allocator slow path while kswapd was awake, order will
3745 	 * remain at the higher level.
3746 	 */
3747 	return sc.order;
3748 }
3749 
3750 /*
3751  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3752  * allocation request woke kswapd for. When kswapd has not woken recently,
3753  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3754  * given classzone and returns it or the highest classzone index kswapd
3755  * was recently woke for.
3756  */
3757 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3758 					   enum zone_type classzone_idx)
3759 {
3760 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3761 		return classzone_idx;
3762 
3763 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3764 }
3765 
3766 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3767 				unsigned int classzone_idx)
3768 {
3769 	long remaining = 0;
3770 	DEFINE_WAIT(wait);
3771 
3772 	if (freezing(current) || kthread_should_stop())
3773 		return;
3774 
3775 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3776 
3777 	/*
3778 	 * Try to sleep for a short interval. Note that kcompactd will only be
3779 	 * woken if it is possible to sleep for a short interval. This is
3780 	 * deliberate on the assumption that if reclaim cannot keep an
3781 	 * eligible zone balanced that it's also unlikely that compaction will
3782 	 * succeed.
3783 	 */
3784 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3785 		/*
3786 		 * Compaction records what page blocks it recently failed to
3787 		 * isolate pages from and skips them in the future scanning.
3788 		 * When kswapd is going to sleep, it is reasonable to assume
3789 		 * that pages and compaction may succeed so reset the cache.
3790 		 */
3791 		reset_isolation_suitable(pgdat);
3792 
3793 		/*
3794 		 * We have freed the memory, now we should compact it to make
3795 		 * allocation of the requested order possible.
3796 		 */
3797 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3798 
3799 		remaining = schedule_timeout(HZ/10);
3800 
3801 		/*
3802 		 * If woken prematurely then reset kswapd_classzone_idx and
3803 		 * order. The values will either be from a wakeup request or
3804 		 * the previous request that slept prematurely.
3805 		 */
3806 		if (remaining) {
3807 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3808 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3809 		}
3810 
3811 		finish_wait(&pgdat->kswapd_wait, &wait);
3812 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3813 	}
3814 
3815 	/*
3816 	 * After a short sleep, check if it was a premature sleep. If not, then
3817 	 * go fully to sleep until explicitly woken up.
3818 	 */
3819 	if (!remaining &&
3820 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3821 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3822 
3823 		/*
3824 		 * vmstat counters are not perfectly accurate and the estimated
3825 		 * value for counters such as NR_FREE_PAGES can deviate from the
3826 		 * true value by nr_online_cpus * threshold. To avoid the zone
3827 		 * watermarks being breached while under pressure, we reduce the
3828 		 * per-cpu vmstat threshold while kswapd is awake and restore
3829 		 * them before going back to sleep.
3830 		 */
3831 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3832 
3833 		if (!kthread_should_stop())
3834 			schedule();
3835 
3836 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3837 	} else {
3838 		if (remaining)
3839 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3840 		else
3841 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3842 	}
3843 	finish_wait(&pgdat->kswapd_wait, &wait);
3844 }
3845 
3846 /*
3847  * The background pageout daemon, started as a kernel thread
3848  * from the init process.
3849  *
3850  * This basically trickles out pages so that we have _some_
3851  * free memory available even if there is no other activity
3852  * that frees anything up. This is needed for things like routing
3853  * etc, where we otherwise might have all activity going on in
3854  * asynchronous contexts that cannot page things out.
3855  *
3856  * If there are applications that are active memory-allocators
3857  * (most normal use), this basically shouldn't matter.
3858  */
3859 static int kswapd(void *p)
3860 {
3861 	unsigned int alloc_order, reclaim_order;
3862 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3863 	pg_data_t *pgdat = (pg_data_t*)p;
3864 	struct task_struct *tsk = current;
3865 
3866 	struct reclaim_state reclaim_state = {
3867 		.reclaimed_slab = 0,
3868 	};
3869 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3870 
3871 	if (!cpumask_empty(cpumask))
3872 		set_cpus_allowed_ptr(tsk, cpumask);
3873 	current->reclaim_state = &reclaim_state;
3874 
3875 	/*
3876 	 * Tell the memory management that we're a "memory allocator",
3877 	 * and that if we need more memory we should get access to it
3878 	 * regardless (see "__alloc_pages()"). "kswapd" should
3879 	 * never get caught in the normal page freeing logic.
3880 	 *
3881 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3882 	 * you need a small amount of memory in order to be able to
3883 	 * page out something else, and this flag essentially protects
3884 	 * us from recursively trying to free more memory as we're
3885 	 * trying to free the first piece of memory in the first place).
3886 	 */
3887 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3888 	set_freezable();
3889 
3890 	pgdat->kswapd_order = 0;
3891 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3892 	for ( ; ; ) {
3893 		bool ret;
3894 
3895 		alloc_order = reclaim_order = pgdat->kswapd_order;
3896 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3897 
3898 kswapd_try_sleep:
3899 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3900 					classzone_idx);
3901 
3902 		/* Read the new order and classzone_idx */
3903 		alloc_order = reclaim_order = pgdat->kswapd_order;
3904 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3905 		pgdat->kswapd_order = 0;
3906 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3907 
3908 		ret = try_to_freeze();
3909 		if (kthread_should_stop())
3910 			break;
3911 
3912 		/*
3913 		 * We can speed up thawing tasks if we don't call balance_pgdat
3914 		 * after returning from the refrigerator
3915 		 */
3916 		if (ret)
3917 			continue;
3918 
3919 		/*
3920 		 * Reclaim begins at the requested order but if a high-order
3921 		 * reclaim fails then kswapd falls back to reclaiming for
3922 		 * order-0. If that happens, kswapd will consider sleeping
3923 		 * for the order it finished reclaiming at (reclaim_order)
3924 		 * but kcompactd is woken to compact for the original
3925 		 * request (alloc_order).
3926 		 */
3927 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3928 						alloc_order);
3929 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3930 		if (reclaim_order < alloc_order)
3931 			goto kswapd_try_sleep;
3932 	}
3933 
3934 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3935 	current->reclaim_state = NULL;
3936 
3937 	return 0;
3938 }
3939 
3940 /*
3941  * A zone is low on free memory or too fragmented for high-order memory.  If
3942  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3943  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3944  * has failed or is not needed, still wake up kcompactd if only compaction is
3945  * needed.
3946  */
3947 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3948 		   enum zone_type classzone_idx)
3949 {
3950 	pg_data_t *pgdat;
3951 
3952 	if (!managed_zone(zone))
3953 		return;
3954 
3955 	if (!cpuset_zone_allowed(zone, gfp_flags))
3956 		return;
3957 	pgdat = zone->zone_pgdat;
3958 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3959 							   classzone_idx);
3960 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3961 	if (!waitqueue_active(&pgdat->kswapd_wait))
3962 		return;
3963 
3964 	/* Hopeless node, leave it to direct reclaim if possible */
3965 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3966 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3967 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3968 		/*
3969 		 * There may be plenty of free memory available, but it's too
3970 		 * fragmented for high-order allocations.  Wake up kcompactd
3971 		 * and rely on compaction_suitable() to determine if it's
3972 		 * needed.  If it fails, it will defer subsequent attempts to
3973 		 * ratelimit its work.
3974 		 */
3975 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3976 			wakeup_kcompactd(pgdat, order, classzone_idx);
3977 		return;
3978 	}
3979 
3980 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3981 				      gfp_flags);
3982 	wake_up_interruptible(&pgdat->kswapd_wait);
3983 }
3984 
3985 #ifdef CONFIG_HIBERNATION
3986 /*
3987  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3988  * freed pages.
3989  *
3990  * Rather than trying to age LRUs the aim is to preserve the overall
3991  * LRU order by reclaiming preferentially
3992  * inactive > active > active referenced > active mapped
3993  */
3994 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3995 {
3996 	struct reclaim_state reclaim_state;
3997 	struct scan_control sc = {
3998 		.nr_to_reclaim = nr_to_reclaim,
3999 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4000 		.reclaim_idx = MAX_NR_ZONES - 1,
4001 		.priority = DEF_PRIORITY,
4002 		.may_writepage = 1,
4003 		.may_unmap = 1,
4004 		.may_swap = 1,
4005 		.hibernation_mode = 1,
4006 	};
4007 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4008 	struct task_struct *p = current;
4009 	unsigned long nr_reclaimed;
4010 	unsigned int noreclaim_flag;
4011 
4012 	fs_reclaim_acquire(sc.gfp_mask);
4013 	noreclaim_flag = memalloc_noreclaim_save();
4014 	reclaim_state.reclaimed_slab = 0;
4015 	p->reclaim_state = &reclaim_state;
4016 
4017 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4018 
4019 	p->reclaim_state = NULL;
4020 	memalloc_noreclaim_restore(noreclaim_flag);
4021 	fs_reclaim_release(sc.gfp_mask);
4022 
4023 	return nr_reclaimed;
4024 }
4025 #endif /* CONFIG_HIBERNATION */
4026 
4027 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4028    not required for correctness.  So if the last cpu in a node goes
4029    away, we get changed to run anywhere: as the first one comes back,
4030    restore their cpu bindings. */
4031 static int kswapd_cpu_online(unsigned int cpu)
4032 {
4033 	int nid;
4034 
4035 	for_each_node_state(nid, N_MEMORY) {
4036 		pg_data_t *pgdat = NODE_DATA(nid);
4037 		const struct cpumask *mask;
4038 
4039 		mask = cpumask_of_node(pgdat->node_id);
4040 
4041 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4042 			/* One of our CPUs online: restore mask */
4043 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
4044 	}
4045 	return 0;
4046 }
4047 
4048 /*
4049  * This kswapd start function will be called by init and node-hot-add.
4050  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4051  */
4052 int kswapd_run(int nid)
4053 {
4054 	pg_data_t *pgdat = NODE_DATA(nid);
4055 	int ret = 0;
4056 
4057 	if (pgdat->kswapd)
4058 		return 0;
4059 
4060 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4061 	if (IS_ERR(pgdat->kswapd)) {
4062 		/* failure at boot is fatal */
4063 		BUG_ON(system_state < SYSTEM_RUNNING);
4064 		pr_err("Failed to start kswapd on node %d\n", nid);
4065 		ret = PTR_ERR(pgdat->kswapd);
4066 		pgdat->kswapd = NULL;
4067 	}
4068 	return ret;
4069 }
4070 
4071 /*
4072  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4073  * hold mem_hotplug_begin/end().
4074  */
4075 void kswapd_stop(int nid)
4076 {
4077 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4078 
4079 	if (kswapd) {
4080 		kthread_stop(kswapd);
4081 		NODE_DATA(nid)->kswapd = NULL;
4082 	}
4083 }
4084 
4085 static int __init kswapd_init(void)
4086 {
4087 	int nid, ret;
4088 
4089 	swap_setup();
4090 	for_each_node_state(nid, N_MEMORY)
4091  		kswapd_run(nid);
4092 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4093 					"mm/vmscan:online", kswapd_cpu_online,
4094 					NULL);
4095 	WARN_ON(ret < 0);
4096 	return 0;
4097 }
4098 
4099 module_init(kswapd_init)
4100 
4101 #ifdef CONFIG_NUMA
4102 /*
4103  * Node reclaim mode
4104  *
4105  * If non-zero call node_reclaim when the number of free pages falls below
4106  * the watermarks.
4107  */
4108 int node_reclaim_mode __read_mostly;
4109 
4110 #define RECLAIM_OFF 0
4111 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4112 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4113 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4114 
4115 /*
4116  * Priority for NODE_RECLAIM. This determines the fraction of pages
4117  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4118  * a zone.
4119  */
4120 #define NODE_RECLAIM_PRIORITY 4
4121 
4122 /*
4123  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4124  * occur.
4125  */
4126 int sysctl_min_unmapped_ratio = 1;
4127 
4128 /*
4129  * If the number of slab pages in a zone grows beyond this percentage then
4130  * slab reclaim needs to occur.
4131  */
4132 int sysctl_min_slab_ratio = 5;
4133 
4134 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4135 {
4136 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4137 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4138 		node_page_state(pgdat, NR_ACTIVE_FILE);
4139 
4140 	/*
4141 	 * It's possible for there to be more file mapped pages than
4142 	 * accounted for by the pages on the file LRU lists because
4143 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4144 	 */
4145 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4146 }
4147 
4148 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4149 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4150 {
4151 	unsigned long nr_pagecache_reclaimable;
4152 	unsigned long delta = 0;
4153 
4154 	/*
4155 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4156 	 * potentially reclaimable. Otherwise, we have to worry about
4157 	 * pages like swapcache and node_unmapped_file_pages() provides
4158 	 * a better estimate
4159 	 */
4160 	if (node_reclaim_mode & RECLAIM_UNMAP)
4161 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4162 	else
4163 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4164 
4165 	/* If we can't clean pages, remove dirty pages from consideration */
4166 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4167 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4168 
4169 	/* Watch for any possible underflows due to delta */
4170 	if (unlikely(delta > nr_pagecache_reclaimable))
4171 		delta = nr_pagecache_reclaimable;
4172 
4173 	return nr_pagecache_reclaimable - delta;
4174 }
4175 
4176 /*
4177  * Try to free up some pages from this node through reclaim.
4178  */
4179 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4180 {
4181 	/* Minimum pages needed in order to stay on node */
4182 	const unsigned long nr_pages = 1 << order;
4183 	struct task_struct *p = current;
4184 	struct reclaim_state reclaim_state;
4185 	unsigned int noreclaim_flag;
4186 	struct scan_control sc = {
4187 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4188 		.gfp_mask = current_gfp_context(gfp_mask),
4189 		.order = order,
4190 		.priority = NODE_RECLAIM_PRIORITY,
4191 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4192 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4193 		.may_swap = 1,
4194 		.reclaim_idx = gfp_zone(gfp_mask),
4195 	};
4196 
4197 	cond_resched();
4198 	fs_reclaim_acquire(sc.gfp_mask);
4199 	/*
4200 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4201 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4202 	 * and RECLAIM_UNMAP.
4203 	 */
4204 	noreclaim_flag = memalloc_noreclaim_save();
4205 	p->flags |= PF_SWAPWRITE;
4206 	reclaim_state.reclaimed_slab = 0;
4207 	p->reclaim_state = &reclaim_state;
4208 
4209 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4210 		/*
4211 		 * Free memory by calling shrink node with increasing
4212 		 * priorities until we have enough memory freed.
4213 		 */
4214 		do {
4215 			shrink_node(pgdat, &sc);
4216 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4217 	}
4218 
4219 	p->reclaim_state = NULL;
4220 	current->flags &= ~PF_SWAPWRITE;
4221 	memalloc_noreclaim_restore(noreclaim_flag);
4222 	fs_reclaim_release(sc.gfp_mask);
4223 	return sc.nr_reclaimed >= nr_pages;
4224 }
4225 
4226 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4227 {
4228 	int ret;
4229 
4230 	/*
4231 	 * Node reclaim reclaims unmapped file backed pages and
4232 	 * slab pages if we are over the defined limits.
4233 	 *
4234 	 * A small portion of unmapped file backed pages is needed for
4235 	 * file I/O otherwise pages read by file I/O will be immediately
4236 	 * thrown out if the node is overallocated. So we do not reclaim
4237 	 * if less than a specified percentage of the node is used by
4238 	 * unmapped file backed pages.
4239 	 */
4240 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4241 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4242 		return NODE_RECLAIM_FULL;
4243 
4244 	/*
4245 	 * Do not scan if the allocation should not be delayed.
4246 	 */
4247 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4248 		return NODE_RECLAIM_NOSCAN;
4249 
4250 	/*
4251 	 * Only run node reclaim on the local node or on nodes that do not
4252 	 * have associated processors. This will favor the local processor
4253 	 * over remote processors and spread off node memory allocations
4254 	 * as wide as possible.
4255 	 */
4256 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4257 		return NODE_RECLAIM_NOSCAN;
4258 
4259 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4260 		return NODE_RECLAIM_NOSCAN;
4261 
4262 	ret = __node_reclaim(pgdat, gfp_mask, order);
4263 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4264 
4265 	if (!ret)
4266 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4267 
4268 	return ret;
4269 }
4270 #endif
4271 
4272 /*
4273  * page_evictable - test whether a page is evictable
4274  * @page: the page to test
4275  *
4276  * Test whether page is evictable--i.e., should be placed on active/inactive
4277  * lists vs unevictable list.
4278  *
4279  * Reasons page might not be evictable:
4280  * (1) page's mapping marked unevictable
4281  * (2) page is part of an mlocked VMA
4282  *
4283  */
4284 int page_evictable(struct page *page)
4285 {
4286 	int ret;
4287 
4288 	/* Prevent address_space of inode and swap cache from being freed */
4289 	rcu_read_lock();
4290 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4291 	rcu_read_unlock();
4292 	return ret;
4293 }
4294 
4295 /**
4296  * check_move_unevictable_pages - check pages for evictability and move to
4297  * appropriate zone lru list
4298  * @pvec: pagevec with lru pages to check
4299  *
4300  * Checks pages for evictability, if an evictable page is in the unevictable
4301  * lru list, moves it to the appropriate evictable lru list. This function
4302  * should be only used for lru pages.
4303  */
4304 void check_move_unevictable_pages(struct pagevec *pvec)
4305 {
4306 	struct lruvec *lruvec;
4307 	struct pglist_data *pgdat = NULL;
4308 	int pgscanned = 0;
4309 	int pgrescued = 0;
4310 	int i;
4311 
4312 	for (i = 0; i < pvec->nr; i++) {
4313 		struct page *page = pvec->pages[i];
4314 		struct pglist_data *pagepgdat = page_pgdat(page);
4315 
4316 		pgscanned++;
4317 		if (pagepgdat != pgdat) {
4318 			if (pgdat)
4319 				spin_unlock_irq(&pgdat->lru_lock);
4320 			pgdat = pagepgdat;
4321 			spin_lock_irq(&pgdat->lru_lock);
4322 		}
4323 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4324 
4325 		if (!PageLRU(page) || !PageUnevictable(page))
4326 			continue;
4327 
4328 		if (page_evictable(page)) {
4329 			enum lru_list lru = page_lru_base_type(page);
4330 
4331 			VM_BUG_ON_PAGE(PageActive(page), page);
4332 			ClearPageUnevictable(page);
4333 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4334 			add_page_to_lru_list(page, lruvec, lru);
4335 			pgrescued++;
4336 		}
4337 	}
4338 
4339 	if (pgdat) {
4340 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4341 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4342 		spin_unlock_irq(&pgdat->lru_lock);
4343 	}
4344 }
4345 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4346