1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 53 #include <linux/swapops.h> 54 #include <linux/balloon_compaction.h> 55 56 #include "internal.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/vmscan.h> 60 61 struct scan_control { 62 /* How many pages shrink_list() should reclaim */ 63 unsigned long nr_to_reclaim; 64 65 /* This context's GFP mask */ 66 gfp_t gfp_mask; 67 68 /* Allocation order */ 69 int order; 70 71 /* 72 * Nodemask of nodes allowed by the caller. If NULL, all nodes 73 * are scanned. 74 */ 75 nodemask_t *nodemask; 76 77 /* 78 * The memory cgroup that hit its limit and as a result is the 79 * primary target of this reclaim invocation. 80 */ 81 struct mem_cgroup *target_mem_cgroup; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 unsigned int may_writepage:1; 87 88 /* Can mapped pages be reclaimed? */ 89 unsigned int may_unmap:1; 90 91 /* Can pages be swapped as part of reclaim? */ 92 unsigned int may_swap:1; 93 94 unsigned int hibernation_mode:1; 95 96 /* One of the zones is ready for compaction */ 97 unsigned int compaction_ready:1; 98 99 /* Incremented by the number of inactive pages that were scanned */ 100 unsigned long nr_scanned; 101 102 /* Number of pages freed so far during a call to shrink_zones() */ 103 unsigned long nr_reclaimed; 104 }; 105 106 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 107 108 #ifdef ARCH_HAS_PREFETCH 109 #define prefetch_prev_lru_page(_page, _base, _field) \ 110 do { \ 111 if ((_page)->lru.prev != _base) { \ 112 struct page *prev; \ 113 \ 114 prev = lru_to_page(&(_page->lru)); \ 115 prefetch(&prev->_field); \ 116 } \ 117 } while (0) 118 #else 119 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 120 #endif 121 122 #ifdef ARCH_HAS_PREFETCHW 123 #define prefetchw_prev_lru_page(_page, _base, _field) \ 124 do { \ 125 if ((_page)->lru.prev != _base) { \ 126 struct page *prev; \ 127 \ 128 prev = lru_to_page(&(_page->lru)); \ 129 prefetchw(&prev->_field); \ 130 } \ 131 } while (0) 132 #else 133 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 134 #endif 135 136 /* 137 * From 0 .. 100. Higher means more swappy. 138 */ 139 int vm_swappiness = 60; 140 /* 141 * The total number of pages which are beyond the high watermark within all 142 * zones. 143 */ 144 unsigned long vm_total_pages; 145 146 static LIST_HEAD(shrinker_list); 147 static DECLARE_RWSEM(shrinker_rwsem); 148 149 #ifdef CONFIG_MEMCG 150 static bool global_reclaim(struct scan_control *sc) 151 { 152 return !sc->target_mem_cgroup; 153 } 154 #else 155 static bool global_reclaim(struct scan_control *sc) 156 { 157 return true; 158 } 159 #endif 160 161 static unsigned long zone_reclaimable_pages(struct zone *zone) 162 { 163 int nr; 164 165 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 166 zone_page_state(zone, NR_INACTIVE_FILE); 167 168 if (get_nr_swap_pages() > 0) 169 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 170 zone_page_state(zone, NR_INACTIVE_ANON); 171 172 return nr; 173 } 174 175 bool zone_reclaimable(struct zone *zone) 176 { 177 return zone_page_state(zone, NR_PAGES_SCANNED) < 178 zone_reclaimable_pages(zone) * 6; 179 } 180 181 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 182 { 183 if (!mem_cgroup_disabled()) 184 return mem_cgroup_get_lru_size(lruvec, lru); 185 186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 187 } 188 189 /* 190 * Add a shrinker callback to be called from the vm. 191 */ 192 int register_shrinker(struct shrinker *shrinker) 193 { 194 size_t size = sizeof(*shrinker->nr_deferred); 195 196 /* 197 * If we only have one possible node in the system anyway, save 198 * ourselves the trouble and disable NUMA aware behavior. This way we 199 * will save memory and some small loop time later. 200 */ 201 if (nr_node_ids == 1) 202 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 203 204 if (shrinker->flags & SHRINKER_NUMA_AWARE) 205 size *= nr_node_ids; 206 207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 208 if (!shrinker->nr_deferred) 209 return -ENOMEM; 210 211 down_write(&shrinker_rwsem); 212 list_add_tail(&shrinker->list, &shrinker_list); 213 up_write(&shrinker_rwsem); 214 return 0; 215 } 216 EXPORT_SYMBOL(register_shrinker); 217 218 /* 219 * Remove one 220 */ 221 void unregister_shrinker(struct shrinker *shrinker) 222 { 223 down_write(&shrinker_rwsem); 224 list_del(&shrinker->list); 225 up_write(&shrinker_rwsem); 226 kfree(shrinker->nr_deferred); 227 } 228 EXPORT_SYMBOL(unregister_shrinker); 229 230 #define SHRINK_BATCH 128 231 232 static unsigned long 233 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, 234 unsigned long nr_pages_scanned, unsigned long lru_pages) 235 { 236 unsigned long freed = 0; 237 unsigned long long delta; 238 long total_scan; 239 long freeable; 240 long nr; 241 long new_nr; 242 int nid = shrinkctl->nid; 243 long batch_size = shrinker->batch ? shrinker->batch 244 : SHRINK_BATCH; 245 246 freeable = shrinker->count_objects(shrinker, shrinkctl); 247 if (freeable == 0) 248 return 0; 249 250 /* 251 * copy the current shrinker scan count into a local variable 252 * and zero it so that other concurrent shrinker invocations 253 * don't also do this scanning work. 254 */ 255 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 256 257 total_scan = nr; 258 delta = (4 * nr_pages_scanned) / shrinker->seeks; 259 delta *= freeable; 260 do_div(delta, lru_pages + 1); 261 total_scan += delta; 262 if (total_scan < 0) { 263 printk(KERN_ERR 264 "shrink_slab: %pF negative objects to delete nr=%ld\n", 265 shrinker->scan_objects, total_scan); 266 total_scan = freeable; 267 } 268 269 /* 270 * We need to avoid excessive windup on filesystem shrinkers 271 * due to large numbers of GFP_NOFS allocations causing the 272 * shrinkers to return -1 all the time. This results in a large 273 * nr being built up so when a shrink that can do some work 274 * comes along it empties the entire cache due to nr >>> 275 * freeable. This is bad for sustaining a working set in 276 * memory. 277 * 278 * Hence only allow the shrinker to scan the entire cache when 279 * a large delta change is calculated directly. 280 */ 281 if (delta < freeable / 4) 282 total_scan = min(total_scan, freeable / 2); 283 284 /* 285 * Avoid risking looping forever due to too large nr value: 286 * never try to free more than twice the estimate number of 287 * freeable entries. 288 */ 289 if (total_scan > freeable * 2) 290 total_scan = freeable * 2; 291 292 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 293 nr_pages_scanned, lru_pages, 294 freeable, delta, total_scan); 295 296 /* 297 * Normally, we should not scan less than batch_size objects in one 298 * pass to avoid too frequent shrinker calls, but if the slab has less 299 * than batch_size objects in total and we are really tight on memory, 300 * we will try to reclaim all available objects, otherwise we can end 301 * up failing allocations although there are plenty of reclaimable 302 * objects spread over several slabs with usage less than the 303 * batch_size. 304 * 305 * We detect the "tight on memory" situations by looking at the total 306 * number of objects we want to scan (total_scan). If it is greater 307 * than the total number of objects on slab (freeable), we must be 308 * scanning at high prio and therefore should try to reclaim as much as 309 * possible. 310 */ 311 while (total_scan >= batch_size || 312 total_scan >= freeable) { 313 unsigned long ret; 314 unsigned long nr_to_scan = min(batch_size, total_scan); 315 316 shrinkctl->nr_to_scan = nr_to_scan; 317 ret = shrinker->scan_objects(shrinker, shrinkctl); 318 if (ret == SHRINK_STOP) 319 break; 320 freed += ret; 321 322 count_vm_events(SLABS_SCANNED, nr_to_scan); 323 total_scan -= nr_to_scan; 324 325 cond_resched(); 326 } 327 328 /* 329 * move the unused scan count back into the shrinker in a 330 * manner that handles concurrent updates. If we exhausted the 331 * scan, there is no need to do an update. 332 */ 333 if (total_scan > 0) 334 new_nr = atomic_long_add_return(total_scan, 335 &shrinker->nr_deferred[nid]); 336 else 337 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 338 339 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 340 return freed; 341 } 342 343 /* 344 * Call the shrink functions to age shrinkable caches 345 * 346 * Here we assume it costs one seek to replace a lru page and that it also 347 * takes a seek to recreate a cache object. With this in mind we age equal 348 * percentages of the lru and ageable caches. This should balance the seeks 349 * generated by these structures. 350 * 351 * If the vm encountered mapped pages on the LRU it increase the pressure on 352 * slab to avoid swapping. 353 * 354 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 355 * 356 * `lru_pages' represents the number of on-LRU pages in all the zones which 357 * are eligible for the caller's allocation attempt. It is used for balancing 358 * slab reclaim versus page reclaim. 359 * 360 * Returns the number of slab objects which we shrunk. 361 */ 362 unsigned long shrink_slab(struct shrink_control *shrinkctl, 363 unsigned long nr_pages_scanned, 364 unsigned long lru_pages) 365 { 366 struct shrinker *shrinker; 367 unsigned long freed = 0; 368 369 if (nr_pages_scanned == 0) 370 nr_pages_scanned = SWAP_CLUSTER_MAX; 371 372 if (!down_read_trylock(&shrinker_rwsem)) { 373 /* 374 * If we would return 0, our callers would understand that we 375 * have nothing else to shrink and give up trying. By returning 376 * 1 we keep it going and assume we'll be able to shrink next 377 * time. 378 */ 379 freed = 1; 380 goto out; 381 } 382 383 list_for_each_entry(shrinker, &shrinker_list, list) { 384 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) { 385 shrinkctl->nid = 0; 386 freed += shrink_slab_node(shrinkctl, shrinker, 387 nr_pages_scanned, lru_pages); 388 continue; 389 } 390 391 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { 392 if (node_online(shrinkctl->nid)) 393 freed += shrink_slab_node(shrinkctl, shrinker, 394 nr_pages_scanned, lru_pages); 395 396 } 397 } 398 up_read(&shrinker_rwsem); 399 out: 400 cond_resched(); 401 return freed; 402 } 403 404 static inline int is_page_cache_freeable(struct page *page) 405 { 406 /* 407 * A freeable page cache page is referenced only by the caller 408 * that isolated the page, the page cache radix tree and 409 * optional buffer heads at page->private. 410 */ 411 return page_count(page) - page_has_private(page) == 2; 412 } 413 414 static int may_write_to_queue(struct backing_dev_info *bdi, 415 struct scan_control *sc) 416 { 417 if (current->flags & PF_SWAPWRITE) 418 return 1; 419 if (!bdi_write_congested(bdi)) 420 return 1; 421 if (bdi == current->backing_dev_info) 422 return 1; 423 return 0; 424 } 425 426 /* 427 * We detected a synchronous write error writing a page out. Probably 428 * -ENOSPC. We need to propagate that into the address_space for a subsequent 429 * fsync(), msync() or close(). 430 * 431 * The tricky part is that after writepage we cannot touch the mapping: nothing 432 * prevents it from being freed up. But we have a ref on the page and once 433 * that page is locked, the mapping is pinned. 434 * 435 * We're allowed to run sleeping lock_page() here because we know the caller has 436 * __GFP_FS. 437 */ 438 static void handle_write_error(struct address_space *mapping, 439 struct page *page, int error) 440 { 441 lock_page(page); 442 if (page_mapping(page) == mapping) 443 mapping_set_error(mapping, error); 444 unlock_page(page); 445 } 446 447 /* possible outcome of pageout() */ 448 typedef enum { 449 /* failed to write page out, page is locked */ 450 PAGE_KEEP, 451 /* move page to the active list, page is locked */ 452 PAGE_ACTIVATE, 453 /* page has been sent to the disk successfully, page is unlocked */ 454 PAGE_SUCCESS, 455 /* page is clean and locked */ 456 PAGE_CLEAN, 457 } pageout_t; 458 459 /* 460 * pageout is called by shrink_page_list() for each dirty page. 461 * Calls ->writepage(). 462 */ 463 static pageout_t pageout(struct page *page, struct address_space *mapping, 464 struct scan_control *sc) 465 { 466 /* 467 * If the page is dirty, only perform writeback if that write 468 * will be non-blocking. To prevent this allocation from being 469 * stalled by pagecache activity. But note that there may be 470 * stalls if we need to run get_block(). We could test 471 * PagePrivate for that. 472 * 473 * If this process is currently in __generic_file_write_iter() against 474 * this page's queue, we can perform writeback even if that 475 * will block. 476 * 477 * If the page is swapcache, write it back even if that would 478 * block, for some throttling. This happens by accident, because 479 * swap_backing_dev_info is bust: it doesn't reflect the 480 * congestion state of the swapdevs. Easy to fix, if needed. 481 */ 482 if (!is_page_cache_freeable(page)) 483 return PAGE_KEEP; 484 if (!mapping) { 485 /* 486 * Some data journaling orphaned pages can have 487 * page->mapping == NULL while being dirty with clean buffers. 488 */ 489 if (page_has_private(page)) { 490 if (try_to_free_buffers(page)) { 491 ClearPageDirty(page); 492 pr_info("%s: orphaned page\n", __func__); 493 return PAGE_CLEAN; 494 } 495 } 496 return PAGE_KEEP; 497 } 498 if (mapping->a_ops->writepage == NULL) 499 return PAGE_ACTIVATE; 500 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 501 return PAGE_KEEP; 502 503 if (clear_page_dirty_for_io(page)) { 504 int res; 505 struct writeback_control wbc = { 506 .sync_mode = WB_SYNC_NONE, 507 .nr_to_write = SWAP_CLUSTER_MAX, 508 .range_start = 0, 509 .range_end = LLONG_MAX, 510 .for_reclaim = 1, 511 }; 512 513 SetPageReclaim(page); 514 res = mapping->a_ops->writepage(page, &wbc); 515 if (res < 0) 516 handle_write_error(mapping, page, res); 517 if (res == AOP_WRITEPAGE_ACTIVATE) { 518 ClearPageReclaim(page); 519 return PAGE_ACTIVATE; 520 } 521 522 if (!PageWriteback(page)) { 523 /* synchronous write or broken a_ops? */ 524 ClearPageReclaim(page); 525 } 526 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 527 inc_zone_page_state(page, NR_VMSCAN_WRITE); 528 return PAGE_SUCCESS; 529 } 530 531 return PAGE_CLEAN; 532 } 533 534 /* 535 * Same as remove_mapping, but if the page is removed from the mapping, it 536 * gets returned with a refcount of 0. 537 */ 538 static int __remove_mapping(struct address_space *mapping, struct page *page, 539 bool reclaimed) 540 { 541 BUG_ON(!PageLocked(page)); 542 BUG_ON(mapping != page_mapping(page)); 543 544 spin_lock_irq(&mapping->tree_lock); 545 /* 546 * The non racy check for a busy page. 547 * 548 * Must be careful with the order of the tests. When someone has 549 * a ref to the page, it may be possible that they dirty it then 550 * drop the reference. So if PageDirty is tested before page_count 551 * here, then the following race may occur: 552 * 553 * get_user_pages(&page); 554 * [user mapping goes away] 555 * write_to(page); 556 * !PageDirty(page) [good] 557 * SetPageDirty(page); 558 * put_page(page); 559 * !page_count(page) [good, discard it] 560 * 561 * [oops, our write_to data is lost] 562 * 563 * Reversing the order of the tests ensures such a situation cannot 564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 565 * load is not satisfied before that of page->_count. 566 * 567 * Note that if SetPageDirty is always performed via set_page_dirty, 568 * and thus under tree_lock, then this ordering is not required. 569 */ 570 if (!page_freeze_refs(page, 2)) 571 goto cannot_free; 572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 573 if (unlikely(PageDirty(page))) { 574 page_unfreeze_refs(page, 2); 575 goto cannot_free; 576 } 577 578 if (PageSwapCache(page)) { 579 swp_entry_t swap = { .val = page_private(page) }; 580 mem_cgroup_swapout(page, swap); 581 __delete_from_swap_cache(page); 582 spin_unlock_irq(&mapping->tree_lock); 583 swapcache_free(swap); 584 } else { 585 void (*freepage)(struct page *); 586 void *shadow = NULL; 587 588 freepage = mapping->a_ops->freepage; 589 /* 590 * Remember a shadow entry for reclaimed file cache in 591 * order to detect refaults, thus thrashing, later on. 592 * 593 * But don't store shadows in an address space that is 594 * already exiting. This is not just an optizimation, 595 * inode reclaim needs to empty out the radix tree or 596 * the nodes are lost. Don't plant shadows behind its 597 * back. 598 */ 599 if (reclaimed && page_is_file_cache(page) && 600 !mapping_exiting(mapping)) 601 shadow = workingset_eviction(mapping, page); 602 __delete_from_page_cache(page, shadow); 603 spin_unlock_irq(&mapping->tree_lock); 604 605 if (freepage != NULL) 606 freepage(page); 607 } 608 609 return 1; 610 611 cannot_free: 612 spin_unlock_irq(&mapping->tree_lock); 613 return 0; 614 } 615 616 /* 617 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 618 * someone else has a ref on the page, abort and return 0. If it was 619 * successfully detached, return 1. Assumes the caller has a single ref on 620 * this page. 621 */ 622 int remove_mapping(struct address_space *mapping, struct page *page) 623 { 624 if (__remove_mapping(mapping, page, false)) { 625 /* 626 * Unfreezing the refcount with 1 rather than 2 effectively 627 * drops the pagecache ref for us without requiring another 628 * atomic operation. 629 */ 630 page_unfreeze_refs(page, 1); 631 return 1; 632 } 633 return 0; 634 } 635 636 /** 637 * putback_lru_page - put previously isolated page onto appropriate LRU list 638 * @page: page to be put back to appropriate lru list 639 * 640 * Add previously isolated @page to appropriate LRU list. 641 * Page may still be unevictable for other reasons. 642 * 643 * lru_lock must not be held, interrupts must be enabled. 644 */ 645 void putback_lru_page(struct page *page) 646 { 647 bool is_unevictable; 648 int was_unevictable = PageUnevictable(page); 649 650 VM_BUG_ON_PAGE(PageLRU(page), page); 651 652 redo: 653 ClearPageUnevictable(page); 654 655 if (page_evictable(page)) { 656 /* 657 * For evictable pages, we can use the cache. 658 * In event of a race, worst case is we end up with an 659 * unevictable page on [in]active list. 660 * We know how to handle that. 661 */ 662 is_unevictable = false; 663 lru_cache_add(page); 664 } else { 665 /* 666 * Put unevictable pages directly on zone's unevictable 667 * list. 668 */ 669 is_unevictable = true; 670 add_page_to_unevictable_list(page); 671 /* 672 * When racing with an mlock or AS_UNEVICTABLE clearing 673 * (page is unlocked) make sure that if the other thread 674 * does not observe our setting of PG_lru and fails 675 * isolation/check_move_unevictable_pages, 676 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 677 * the page back to the evictable list. 678 * 679 * The other side is TestClearPageMlocked() or shmem_lock(). 680 */ 681 smp_mb(); 682 } 683 684 /* 685 * page's status can change while we move it among lru. If an evictable 686 * page is on unevictable list, it never be freed. To avoid that, 687 * check after we added it to the list, again. 688 */ 689 if (is_unevictable && page_evictable(page)) { 690 if (!isolate_lru_page(page)) { 691 put_page(page); 692 goto redo; 693 } 694 /* This means someone else dropped this page from LRU 695 * So, it will be freed or putback to LRU again. There is 696 * nothing to do here. 697 */ 698 } 699 700 if (was_unevictable && !is_unevictable) 701 count_vm_event(UNEVICTABLE_PGRESCUED); 702 else if (!was_unevictable && is_unevictable) 703 count_vm_event(UNEVICTABLE_PGCULLED); 704 705 put_page(page); /* drop ref from isolate */ 706 } 707 708 enum page_references { 709 PAGEREF_RECLAIM, 710 PAGEREF_RECLAIM_CLEAN, 711 PAGEREF_KEEP, 712 PAGEREF_ACTIVATE, 713 }; 714 715 static enum page_references page_check_references(struct page *page, 716 struct scan_control *sc) 717 { 718 int referenced_ptes, referenced_page; 719 unsigned long vm_flags; 720 721 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 722 &vm_flags); 723 referenced_page = TestClearPageReferenced(page); 724 725 /* 726 * Mlock lost the isolation race with us. Let try_to_unmap() 727 * move the page to the unevictable list. 728 */ 729 if (vm_flags & VM_LOCKED) 730 return PAGEREF_RECLAIM; 731 732 if (referenced_ptes) { 733 if (PageSwapBacked(page)) 734 return PAGEREF_ACTIVATE; 735 /* 736 * All mapped pages start out with page table 737 * references from the instantiating fault, so we need 738 * to look twice if a mapped file page is used more 739 * than once. 740 * 741 * Mark it and spare it for another trip around the 742 * inactive list. Another page table reference will 743 * lead to its activation. 744 * 745 * Note: the mark is set for activated pages as well 746 * so that recently deactivated but used pages are 747 * quickly recovered. 748 */ 749 SetPageReferenced(page); 750 751 if (referenced_page || referenced_ptes > 1) 752 return PAGEREF_ACTIVATE; 753 754 /* 755 * Activate file-backed executable pages after first usage. 756 */ 757 if (vm_flags & VM_EXEC) 758 return PAGEREF_ACTIVATE; 759 760 return PAGEREF_KEEP; 761 } 762 763 /* Reclaim if clean, defer dirty pages to writeback */ 764 if (referenced_page && !PageSwapBacked(page)) 765 return PAGEREF_RECLAIM_CLEAN; 766 767 return PAGEREF_RECLAIM; 768 } 769 770 /* Check if a page is dirty or under writeback */ 771 static void page_check_dirty_writeback(struct page *page, 772 bool *dirty, bool *writeback) 773 { 774 struct address_space *mapping; 775 776 /* 777 * Anonymous pages are not handled by flushers and must be written 778 * from reclaim context. Do not stall reclaim based on them 779 */ 780 if (!page_is_file_cache(page)) { 781 *dirty = false; 782 *writeback = false; 783 return; 784 } 785 786 /* By default assume that the page flags are accurate */ 787 *dirty = PageDirty(page); 788 *writeback = PageWriteback(page); 789 790 /* Verify dirty/writeback state if the filesystem supports it */ 791 if (!page_has_private(page)) 792 return; 793 794 mapping = page_mapping(page); 795 if (mapping && mapping->a_ops->is_dirty_writeback) 796 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 797 } 798 799 /* 800 * shrink_page_list() returns the number of reclaimed pages 801 */ 802 static unsigned long shrink_page_list(struct list_head *page_list, 803 struct zone *zone, 804 struct scan_control *sc, 805 enum ttu_flags ttu_flags, 806 unsigned long *ret_nr_dirty, 807 unsigned long *ret_nr_unqueued_dirty, 808 unsigned long *ret_nr_congested, 809 unsigned long *ret_nr_writeback, 810 unsigned long *ret_nr_immediate, 811 bool force_reclaim) 812 { 813 LIST_HEAD(ret_pages); 814 LIST_HEAD(free_pages); 815 int pgactivate = 0; 816 unsigned long nr_unqueued_dirty = 0; 817 unsigned long nr_dirty = 0; 818 unsigned long nr_congested = 0; 819 unsigned long nr_reclaimed = 0; 820 unsigned long nr_writeback = 0; 821 unsigned long nr_immediate = 0; 822 823 cond_resched(); 824 825 while (!list_empty(page_list)) { 826 struct address_space *mapping; 827 struct page *page; 828 int may_enter_fs; 829 enum page_references references = PAGEREF_RECLAIM_CLEAN; 830 bool dirty, writeback; 831 832 cond_resched(); 833 834 page = lru_to_page(page_list); 835 list_del(&page->lru); 836 837 if (!trylock_page(page)) 838 goto keep; 839 840 VM_BUG_ON_PAGE(PageActive(page), page); 841 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 842 843 sc->nr_scanned++; 844 845 if (unlikely(!page_evictable(page))) 846 goto cull_mlocked; 847 848 if (!sc->may_unmap && page_mapped(page)) 849 goto keep_locked; 850 851 /* Double the slab pressure for mapped and swapcache pages */ 852 if (page_mapped(page) || PageSwapCache(page)) 853 sc->nr_scanned++; 854 855 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 856 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 857 858 /* 859 * The number of dirty pages determines if a zone is marked 860 * reclaim_congested which affects wait_iff_congested. kswapd 861 * will stall and start writing pages if the tail of the LRU 862 * is all dirty unqueued pages. 863 */ 864 page_check_dirty_writeback(page, &dirty, &writeback); 865 if (dirty || writeback) 866 nr_dirty++; 867 868 if (dirty && !writeback) 869 nr_unqueued_dirty++; 870 871 /* 872 * Treat this page as congested if the underlying BDI is or if 873 * pages are cycling through the LRU so quickly that the 874 * pages marked for immediate reclaim are making it to the 875 * end of the LRU a second time. 876 */ 877 mapping = page_mapping(page); 878 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 879 (writeback && PageReclaim(page))) 880 nr_congested++; 881 882 /* 883 * If a page at the tail of the LRU is under writeback, there 884 * are three cases to consider. 885 * 886 * 1) If reclaim is encountering an excessive number of pages 887 * under writeback and this page is both under writeback and 888 * PageReclaim then it indicates that pages are being queued 889 * for IO but are being recycled through the LRU before the 890 * IO can complete. Waiting on the page itself risks an 891 * indefinite stall if it is impossible to writeback the 892 * page due to IO error or disconnected storage so instead 893 * note that the LRU is being scanned too quickly and the 894 * caller can stall after page list has been processed. 895 * 896 * 2) Global reclaim encounters a page, memcg encounters a 897 * page that is not marked for immediate reclaim or 898 * the caller does not have __GFP_IO. In this case mark 899 * the page for immediate reclaim and continue scanning. 900 * 901 * __GFP_IO is checked because a loop driver thread might 902 * enter reclaim, and deadlock if it waits on a page for 903 * which it is needed to do the write (loop masks off 904 * __GFP_IO|__GFP_FS for this reason); but more thought 905 * would probably show more reasons. 906 * 907 * Don't require __GFP_FS, since we're not going into the 908 * FS, just waiting on its writeback completion. Worryingly, 909 * ext4 gfs2 and xfs allocate pages with 910 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 911 * may_enter_fs here is liable to OOM on them. 912 * 913 * 3) memcg encounters a page that is not already marked 914 * PageReclaim. memcg does not have any dirty pages 915 * throttling so we could easily OOM just because too many 916 * pages are in writeback and there is nothing else to 917 * reclaim. Wait for the writeback to complete. 918 */ 919 if (PageWriteback(page)) { 920 /* Case 1 above */ 921 if (current_is_kswapd() && 922 PageReclaim(page) && 923 test_bit(ZONE_WRITEBACK, &zone->flags)) { 924 nr_immediate++; 925 goto keep_locked; 926 927 /* Case 2 above */ 928 } else if (global_reclaim(sc) || 929 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 930 /* 931 * This is slightly racy - end_page_writeback() 932 * might have just cleared PageReclaim, then 933 * setting PageReclaim here end up interpreted 934 * as PageReadahead - but that does not matter 935 * enough to care. What we do want is for this 936 * page to have PageReclaim set next time memcg 937 * reclaim reaches the tests above, so it will 938 * then wait_on_page_writeback() to avoid OOM; 939 * and it's also appropriate in global reclaim. 940 */ 941 SetPageReclaim(page); 942 nr_writeback++; 943 944 goto keep_locked; 945 946 /* Case 3 above */ 947 } else { 948 wait_on_page_writeback(page); 949 } 950 } 951 952 if (!force_reclaim) 953 references = page_check_references(page, sc); 954 955 switch (references) { 956 case PAGEREF_ACTIVATE: 957 goto activate_locked; 958 case PAGEREF_KEEP: 959 goto keep_locked; 960 case PAGEREF_RECLAIM: 961 case PAGEREF_RECLAIM_CLEAN: 962 ; /* try to reclaim the page below */ 963 } 964 965 /* 966 * Anonymous process memory has backing store? 967 * Try to allocate it some swap space here. 968 */ 969 if (PageAnon(page) && !PageSwapCache(page)) { 970 if (!(sc->gfp_mask & __GFP_IO)) 971 goto keep_locked; 972 if (!add_to_swap(page, page_list)) 973 goto activate_locked; 974 may_enter_fs = 1; 975 976 /* Adding to swap updated mapping */ 977 mapping = page_mapping(page); 978 } 979 980 /* 981 * The page is mapped into the page tables of one or more 982 * processes. Try to unmap it here. 983 */ 984 if (page_mapped(page) && mapping) { 985 switch (try_to_unmap(page, ttu_flags)) { 986 case SWAP_FAIL: 987 goto activate_locked; 988 case SWAP_AGAIN: 989 goto keep_locked; 990 case SWAP_MLOCK: 991 goto cull_mlocked; 992 case SWAP_SUCCESS: 993 ; /* try to free the page below */ 994 } 995 } 996 997 if (PageDirty(page)) { 998 /* 999 * Only kswapd can writeback filesystem pages to 1000 * avoid risk of stack overflow but only writeback 1001 * if many dirty pages have been encountered. 1002 */ 1003 if (page_is_file_cache(page) && 1004 (!current_is_kswapd() || 1005 !test_bit(ZONE_DIRTY, &zone->flags))) { 1006 /* 1007 * Immediately reclaim when written back. 1008 * Similar in principal to deactivate_page() 1009 * except we already have the page isolated 1010 * and know it's dirty 1011 */ 1012 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1013 SetPageReclaim(page); 1014 1015 goto keep_locked; 1016 } 1017 1018 if (references == PAGEREF_RECLAIM_CLEAN) 1019 goto keep_locked; 1020 if (!may_enter_fs) 1021 goto keep_locked; 1022 if (!sc->may_writepage) 1023 goto keep_locked; 1024 1025 /* Page is dirty, try to write it out here */ 1026 switch (pageout(page, mapping, sc)) { 1027 case PAGE_KEEP: 1028 goto keep_locked; 1029 case PAGE_ACTIVATE: 1030 goto activate_locked; 1031 case PAGE_SUCCESS: 1032 if (PageWriteback(page)) 1033 goto keep; 1034 if (PageDirty(page)) 1035 goto keep; 1036 1037 /* 1038 * A synchronous write - probably a ramdisk. Go 1039 * ahead and try to reclaim the page. 1040 */ 1041 if (!trylock_page(page)) 1042 goto keep; 1043 if (PageDirty(page) || PageWriteback(page)) 1044 goto keep_locked; 1045 mapping = page_mapping(page); 1046 case PAGE_CLEAN: 1047 ; /* try to free the page below */ 1048 } 1049 } 1050 1051 /* 1052 * If the page has buffers, try to free the buffer mappings 1053 * associated with this page. If we succeed we try to free 1054 * the page as well. 1055 * 1056 * We do this even if the page is PageDirty(). 1057 * try_to_release_page() does not perform I/O, but it is 1058 * possible for a page to have PageDirty set, but it is actually 1059 * clean (all its buffers are clean). This happens if the 1060 * buffers were written out directly, with submit_bh(). ext3 1061 * will do this, as well as the blockdev mapping. 1062 * try_to_release_page() will discover that cleanness and will 1063 * drop the buffers and mark the page clean - it can be freed. 1064 * 1065 * Rarely, pages can have buffers and no ->mapping. These are 1066 * the pages which were not successfully invalidated in 1067 * truncate_complete_page(). We try to drop those buffers here 1068 * and if that worked, and the page is no longer mapped into 1069 * process address space (page_count == 1) it can be freed. 1070 * Otherwise, leave the page on the LRU so it is swappable. 1071 */ 1072 if (page_has_private(page)) { 1073 if (!try_to_release_page(page, sc->gfp_mask)) 1074 goto activate_locked; 1075 if (!mapping && page_count(page) == 1) { 1076 unlock_page(page); 1077 if (put_page_testzero(page)) 1078 goto free_it; 1079 else { 1080 /* 1081 * rare race with speculative reference. 1082 * the speculative reference will free 1083 * this page shortly, so we may 1084 * increment nr_reclaimed here (and 1085 * leave it off the LRU). 1086 */ 1087 nr_reclaimed++; 1088 continue; 1089 } 1090 } 1091 } 1092 1093 if (!mapping || !__remove_mapping(mapping, page, true)) 1094 goto keep_locked; 1095 1096 /* 1097 * At this point, we have no other references and there is 1098 * no way to pick any more up (removed from LRU, removed 1099 * from pagecache). Can use non-atomic bitops now (and 1100 * we obviously don't have to worry about waking up a process 1101 * waiting on the page lock, because there are no references. 1102 */ 1103 __clear_page_locked(page); 1104 free_it: 1105 nr_reclaimed++; 1106 1107 /* 1108 * Is there need to periodically free_page_list? It would 1109 * appear not as the counts should be low 1110 */ 1111 list_add(&page->lru, &free_pages); 1112 continue; 1113 1114 cull_mlocked: 1115 if (PageSwapCache(page)) 1116 try_to_free_swap(page); 1117 unlock_page(page); 1118 putback_lru_page(page); 1119 continue; 1120 1121 activate_locked: 1122 /* Not a candidate for swapping, so reclaim swap space. */ 1123 if (PageSwapCache(page) && vm_swap_full()) 1124 try_to_free_swap(page); 1125 VM_BUG_ON_PAGE(PageActive(page), page); 1126 SetPageActive(page); 1127 pgactivate++; 1128 keep_locked: 1129 unlock_page(page); 1130 keep: 1131 list_add(&page->lru, &ret_pages); 1132 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1133 } 1134 1135 mem_cgroup_uncharge_list(&free_pages); 1136 free_hot_cold_page_list(&free_pages, true); 1137 1138 list_splice(&ret_pages, page_list); 1139 count_vm_events(PGACTIVATE, pgactivate); 1140 1141 *ret_nr_dirty += nr_dirty; 1142 *ret_nr_congested += nr_congested; 1143 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1144 *ret_nr_writeback += nr_writeback; 1145 *ret_nr_immediate += nr_immediate; 1146 return nr_reclaimed; 1147 } 1148 1149 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1150 struct list_head *page_list) 1151 { 1152 struct scan_control sc = { 1153 .gfp_mask = GFP_KERNEL, 1154 .priority = DEF_PRIORITY, 1155 .may_unmap = 1, 1156 }; 1157 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1158 struct page *page, *next; 1159 LIST_HEAD(clean_pages); 1160 1161 list_for_each_entry_safe(page, next, page_list, lru) { 1162 if (page_is_file_cache(page) && !PageDirty(page) && 1163 !isolated_balloon_page(page)) { 1164 ClearPageActive(page); 1165 list_move(&page->lru, &clean_pages); 1166 } 1167 } 1168 1169 ret = shrink_page_list(&clean_pages, zone, &sc, 1170 TTU_UNMAP|TTU_IGNORE_ACCESS, 1171 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1172 list_splice(&clean_pages, page_list); 1173 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1174 return ret; 1175 } 1176 1177 /* 1178 * Attempt to remove the specified page from its LRU. Only take this page 1179 * if it is of the appropriate PageActive status. Pages which are being 1180 * freed elsewhere are also ignored. 1181 * 1182 * page: page to consider 1183 * mode: one of the LRU isolation modes defined above 1184 * 1185 * returns 0 on success, -ve errno on failure. 1186 */ 1187 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1188 { 1189 int ret = -EINVAL; 1190 1191 /* Only take pages on the LRU. */ 1192 if (!PageLRU(page)) 1193 return ret; 1194 1195 /* Compaction should not handle unevictable pages but CMA can do so */ 1196 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1197 return ret; 1198 1199 ret = -EBUSY; 1200 1201 /* 1202 * To minimise LRU disruption, the caller can indicate that it only 1203 * wants to isolate pages it will be able to operate on without 1204 * blocking - clean pages for the most part. 1205 * 1206 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1207 * is used by reclaim when it is cannot write to backing storage 1208 * 1209 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1210 * that it is possible to migrate without blocking 1211 */ 1212 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1213 /* All the caller can do on PageWriteback is block */ 1214 if (PageWriteback(page)) 1215 return ret; 1216 1217 if (PageDirty(page)) { 1218 struct address_space *mapping; 1219 1220 /* ISOLATE_CLEAN means only clean pages */ 1221 if (mode & ISOLATE_CLEAN) 1222 return ret; 1223 1224 /* 1225 * Only pages without mappings or that have a 1226 * ->migratepage callback are possible to migrate 1227 * without blocking 1228 */ 1229 mapping = page_mapping(page); 1230 if (mapping && !mapping->a_ops->migratepage) 1231 return ret; 1232 } 1233 } 1234 1235 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1236 return ret; 1237 1238 if (likely(get_page_unless_zero(page))) { 1239 /* 1240 * Be careful not to clear PageLRU until after we're 1241 * sure the page is not being freed elsewhere -- the 1242 * page release code relies on it. 1243 */ 1244 ClearPageLRU(page); 1245 ret = 0; 1246 } 1247 1248 return ret; 1249 } 1250 1251 /* 1252 * zone->lru_lock is heavily contended. Some of the functions that 1253 * shrink the lists perform better by taking out a batch of pages 1254 * and working on them outside the LRU lock. 1255 * 1256 * For pagecache intensive workloads, this function is the hottest 1257 * spot in the kernel (apart from copy_*_user functions). 1258 * 1259 * Appropriate locks must be held before calling this function. 1260 * 1261 * @nr_to_scan: The number of pages to look through on the list. 1262 * @lruvec: The LRU vector to pull pages from. 1263 * @dst: The temp list to put pages on to. 1264 * @nr_scanned: The number of pages that were scanned. 1265 * @sc: The scan_control struct for this reclaim session 1266 * @mode: One of the LRU isolation modes 1267 * @lru: LRU list id for isolating 1268 * 1269 * returns how many pages were moved onto *@dst. 1270 */ 1271 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1272 struct lruvec *lruvec, struct list_head *dst, 1273 unsigned long *nr_scanned, struct scan_control *sc, 1274 isolate_mode_t mode, enum lru_list lru) 1275 { 1276 struct list_head *src = &lruvec->lists[lru]; 1277 unsigned long nr_taken = 0; 1278 unsigned long scan; 1279 1280 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1281 struct page *page; 1282 int nr_pages; 1283 1284 page = lru_to_page(src); 1285 prefetchw_prev_lru_page(page, src, flags); 1286 1287 VM_BUG_ON_PAGE(!PageLRU(page), page); 1288 1289 switch (__isolate_lru_page(page, mode)) { 1290 case 0: 1291 nr_pages = hpage_nr_pages(page); 1292 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1293 list_move(&page->lru, dst); 1294 nr_taken += nr_pages; 1295 break; 1296 1297 case -EBUSY: 1298 /* else it is being freed elsewhere */ 1299 list_move(&page->lru, src); 1300 continue; 1301 1302 default: 1303 BUG(); 1304 } 1305 } 1306 1307 *nr_scanned = scan; 1308 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1309 nr_taken, mode, is_file_lru(lru)); 1310 return nr_taken; 1311 } 1312 1313 /** 1314 * isolate_lru_page - tries to isolate a page from its LRU list 1315 * @page: page to isolate from its LRU list 1316 * 1317 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1318 * vmstat statistic corresponding to whatever LRU list the page was on. 1319 * 1320 * Returns 0 if the page was removed from an LRU list. 1321 * Returns -EBUSY if the page was not on an LRU list. 1322 * 1323 * The returned page will have PageLRU() cleared. If it was found on 1324 * the active list, it will have PageActive set. If it was found on 1325 * the unevictable list, it will have the PageUnevictable bit set. That flag 1326 * may need to be cleared by the caller before letting the page go. 1327 * 1328 * The vmstat statistic corresponding to the list on which the page was 1329 * found will be decremented. 1330 * 1331 * Restrictions: 1332 * (1) Must be called with an elevated refcount on the page. This is a 1333 * fundamentnal difference from isolate_lru_pages (which is called 1334 * without a stable reference). 1335 * (2) the lru_lock must not be held. 1336 * (3) interrupts must be enabled. 1337 */ 1338 int isolate_lru_page(struct page *page) 1339 { 1340 int ret = -EBUSY; 1341 1342 VM_BUG_ON_PAGE(!page_count(page), page); 1343 1344 if (PageLRU(page)) { 1345 struct zone *zone = page_zone(page); 1346 struct lruvec *lruvec; 1347 1348 spin_lock_irq(&zone->lru_lock); 1349 lruvec = mem_cgroup_page_lruvec(page, zone); 1350 if (PageLRU(page)) { 1351 int lru = page_lru(page); 1352 get_page(page); 1353 ClearPageLRU(page); 1354 del_page_from_lru_list(page, lruvec, lru); 1355 ret = 0; 1356 } 1357 spin_unlock_irq(&zone->lru_lock); 1358 } 1359 return ret; 1360 } 1361 1362 /* 1363 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1364 * then get resheduled. When there are massive number of tasks doing page 1365 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1366 * the LRU list will go small and be scanned faster than necessary, leading to 1367 * unnecessary swapping, thrashing and OOM. 1368 */ 1369 static int too_many_isolated(struct zone *zone, int file, 1370 struct scan_control *sc) 1371 { 1372 unsigned long inactive, isolated; 1373 1374 if (current_is_kswapd()) 1375 return 0; 1376 1377 if (!global_reclaim(sc)) 1378 return 0; 1379 1380 if (file) { 1381 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1382 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1383 } else { 1384 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1385 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1386 } 1387 1388 /* 1389 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1390 * won't get blocked by normal direct-reclaimers, forming a circular 1391 * deadlock. 1392 */ 1393 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1394 inactive >>= 3; 1395 1396 return isolated > inactive; 1397 } 1398 1399 static noinline_for_stack void 1400 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1401 { 1402 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1403 struct zone *zone = lruvec_zone(lruvec); 1404 LIST_HEAD(pages_to_free); 1405 1406 /* 1407 * Put back any unfreeable pages. 1408 */ 1409 while (!list_empty(page_list)) { 1410 struct page *page = lru_to_page(page_list); 1411 int lru; 1412 1413 VM_BUG_ON_PAGE(PageLRU(page), page); 1414 list_del(&page->lru); 1415 if (unlikely(!page_evictable(page))) { 1416 spin_unlock_irq(&zone->lru_lock); 1417 putback_lru_page(page); 1418 spin_lock_irq(&zone->lru_lock); 1419 continue; 1420 } 1421 1422 lruvec = mem_cgroup_page_lruvec(page, zone); 1423 1424 SetPageLRU(page); 1425 lru = page_lru(page); 1426 add_page_to_lru_list(page, lruvec, lru); 1427 1428 if (is_active_lru(lru)) { 1429 int file = is_file_lru(lru); 1430 int numpages = hpage_nr_pages(page); 1431 reclaim_stat->recent_rotated[file] += numpages; 1432 } 1433 if (put_page_testzero(page)) { 1434 __ClearPageLRU(page); 1435 __ClearPageActive(page); 1436 del_page_from_lru_list(page, lruvec, lru); 1437 1438 if (unlikely(PageCompound(page))) { 1439 spin_unlock_irq(&zone->lru_lock); 1440 mem_cgroup_uncharge(page); 1441 (*get_compound_page_dtor(page))(page); 1442 spin_lock_irq(&zone->lru_lock); 1443 } else 1444 list_add(&page->lru, &pages_to_free); 1445 } 1446 } 1447 1448 /* 1449 * To save our caller's stack, now use input list for pages to free. 1450 */ 1451 list_splice(&pages_to_free, page_list); 1452 } 1453 1454 /* 1455 * If a kernel thread (such as nfsd for loop-back mounts) services 1456 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1457 * In that case we should only throttle if the backing device it is 1458 * writing to is congested. In other cases it is safe to throttle. 1459 */ 1460 static int current_may_throttle(void) 1461 { 1462 return !(current->flags & PF_LESS_THROTTLE) || 1463 current->backing_dev_info == NULL || 1464 bdi_write_congested(current->backing_dev_info); 1465 } 1466 1467 /* 1468 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1469 * of reclaimed pages 1470 */ 1471 static noinline_for_stack unsigned long 1472 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1473 struct scan_control *sc, enum lru_list lru) 1474 { 1475 LIST_HEAD(page_list); 1476 unsigned long nr_scanned; 1477 unsigned long nr_reclaimed = 0; 1478 unsigned long nr_taken; 1479 unsigned long nr_dirty = 0; 1480 unsigned long nr_congested = 0; 1481 unsigned long nr_unqueued_dirty = 0; 1482 unsigned long nr_writeback = 0; 1483 unsigned long nr_immediate = 0; 1484 isolate_mode_t isolate_mode = 0; 1485 int file = is_file_lru(lru); 1486 struct zone *zone = lruvec_zone(lruvec); 1487 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1488 1489 while (unlikely(too_many_isolated(zone, file, sc))) { 1490 congestion_wait(BLK_RW_ASYNC, HZ/10); 1491 1492 /* We are about to die and free our memory. Return now. */ 1493 if (fatal_signal_pending(current)) 1494 return SWAP_CLUSTER_MAX; 1495 } 1496 1497 lru_add_drain(); 1498 1499 if (!sc->may_unmap) 1500 isolate_mode |= ISOLATE_UNMAPPED; 1501 if (!sc->may_writepage) 1502 isolate_mode |= ISOLATE_CLEAN; 1503 1504 spin_lock_irq(&zone->lru_lock); 1505 1506 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1507 &nr_scanned, sc, isolate_mode, lru); 1508 1509 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1510 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1511 1512 if (global_reclaim(sc)) { 1513 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1514 if (current_is_kswapd()) 1515 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1516 else 1517 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1518 } 1519 spin_unlock_irq(&zone->lru_lock); 1520 1521 if (nr_taken == 0) 1522 return 0; 1523 1524 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1525 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1526 &nr_writeback, &nr_immediate, 1527 false); 1528 1529 spin_lock_irq(&zone->lru_lock); 1530 1531 reclaim_stat->recent_scanned[file] += nr_taken; 1532 1533 if (global_reclaim(sc)) { 1534 if (current_is_kswapd()) 1535 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1536 nr_reclaimed); 1537 else 1538 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1539 nr_reclaimed); 1540 } 1541 1542 putback_inactive_pages(lruvec, &page_list); 1543 1544 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1545 1546 spin_unlock_irq(&zone->lru_lock); 1547 1548 mem_cgroup_uncharge_list(&page_list); 1549 free_hot_cold_page_list(&page_list, true); 1550 1551 /* 1552 * If reclaim is isolating dirty pages under writeback, it implies 1553 * that the long-lived page allocation rate is exceeding the page 1554 * laundering rate. Either the global limits are not being effective 1555 * at throttling processes due to the page distribution throughout 1556 * zones or there is heavy usage of a slow backing device. The 1557 * only option is to throttle from reclaim context which is not ideal 1558 * as there is no guarantee the dirtying process is throttled in the 1559 * same way balance_dirty_pages() manages. 1560 * 1561 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1562 * of pages under pages flagged for immediate reclaim and stall if any 1563 * are encountered in the nr_immediate check below. 1564 */ 1565 if (nr_writeback && nr_writeback == nr_taken) 1566 set_bit(ZONE_WRITEBACK, &zone->flags); 1567 1568 /* 1569 * memcg will stall in page writeback so only consider forcibly 1570 * stalling for global reclaim 1571 */ 1572 if (global_reclaim(sc)) { 1573 /* 1574 * Tag a zone as congested if all the dirty pages scanned were 1575 * backed by a congested BDI and wait_iff_congested will stall. 1576 */ 1577 if (nr_dirty && nr_dirty == nr_congested) 1578 set_bit(ZONE_CONGESTED, &zone->flags); 1579 1580 /* 1581 * If dirty pages are scanned that are not queued for IO, it 1582 * implies that flushers are not keeping up. In this case, flag 1583 * the zone ZONE_DIRTY and kswapd will start writing pages from 1584 * reclaim context. 1585 */ 1586 if (nr_unqueued_dirty == nr_taken) 1587 set_bit(ZONE_DIRTY, &zone->flags); 1588 1589 /* 1590 * If kswapd scans pages marked marked for immediate 1591 * reclaim and under writeback (nr_immediate), it implies 1592 * that pages are cycling through the LRU faster than 1593 * they are written so also forcibly stall. 1594 */ 1595 if (nr_immediate && current_may_throttle()) 1596 congestion_wait(BLK_RW_ASYNC, HZ/10); 1597 } 1598 1599 /* 1600 * Stall direct reclaim for IO completions if underlying BDIs or zone 1601 * is congested. Allow kswapd to continue until it starts encountering 1602 * unqueued dirty pages or cycling through the LRU too quickly. 1603 */ 1604 if (!sc->hibernation_mode && !current_is_kswapd() && 1605 current_may_throttle()) 1606 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1607 1608 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1609 zone_idx(zone), 1610 nr_scanned, nr_reclaimed, 1611 sc->priority, 1612 trace_shrink_flags(file)); 1613 return nr_reclaimed; 1614 } 1615 1616 /* 1617 * This moves pages from the active list to the inactive list. 1618 * 1619 * We move them the other way if the page is referenced by one or more 1620 * processes, from rmap. 1621 * 1622 * If the pages are mostly unmapped, the processing is fast and it is 1623 * appropriate to hold zone->lru_lock across the whole operation. But if 1624 * the pages are mapped, the processing is slow (page_referenced()) so we 1625 * should drop zone->lru_lock around each page. It's impossible to balance 1626 * this, so instead we remove the pages from the LRU while processing them. 1627 * It is safe to rely on PG_active against the non-LRU pages in here because 1628 * nobody will play with that bit on a non-LRU page. 1629 * 1630 * The downside is that we have to touch page->_count against each page. 1631 * But we had to alter page->flags anyway. 1632 */ 1633 1634 static void move_active_pages_to_lru(struct lruvec *lruvec, 1635 struct list_head *list, 1636 struct list_head *pages_to_free, 1637 enum lru_list lru) 1638 { 1639 struct zone *zone = lruvec_zone(lruvec); 1640 unsigned long pgmoved = 0; 1641 struct page *page; 1642 int nr_pages; 1643 1644 while (!list_empty(list)) { 1645 page = lru_to_page(list); 1646 lruvec = mem_cgroup_page_lruvec(page, zone); 1647 1648 VM_BUG_ON_PAGE(PageLRU(page), page); 1649 SetPageLRU(page); 1650 1651 nr_pages = hpage_nr_pages(page); 1652 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1653 list_move(&page->lru, &lruvec->lists[lru]); 1654 pgmoved += nr_pages; 1655 1656 if (put_page_testzero(page)) { 1657 __ClearPageLRU(page); 1658 __ClearPageActive(page); 1659 del_page_from_lru_list(page, lruvec, lru); 1660 1661 if (unlikely(PageCompound(page))) { 1662 spin_unlock_irq(&zone->lru_lock); 1663 mem_cgroup_uncharge(page); 1664 (*get_compound_page_dtor(page))(page); 1665 spin_lock_irq(&zone->lru_lock); 1666 } else 1667 list_add(&page->lru, pages_to_free); 1668 } 1669 } 1670 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1671 if (!is_active_lru(lru)) 1672 __count_vm_events(PGDEACTIVATE, pgmoved); 1673 } 1674 1675 static void shrink_active_list(unsigned long nr_to_scan, 1676 struct lruvec *lruvec, 1677 struct scan_control *sc, 1678 enum lru_list lru) 1679 { 1680 unsigned long nr_taken; 1681 unsigned long nr_scanned; 1682 unsigned long vm_flags; 1683 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1684 LIST_HEAD(l_active); 1685 LIST_HEAD(l_inactive); 1686 struct page *page; 1687 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1688 unsigned long nr_rotated = 0; 1689 isolate_mode_t isolate_mode = 0; 1690 int file = is_file_lru(lru); 1691 struct zone *zone = lruvec_zone(lruvec); 1692 1693 lru_add_drain(); 1694 1695 if (!sc->may_unmap) 1696 isolate_mode |= ISOLATE_UNMAPPED; 1697 if (!sc->may_writepage) 1698 isolate_mode |= ISOLATE_CLEAN; 1699 1700 spin_lock_irq(&zone->lru_lock); 1701 1702 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1703 &nr_scanned, sc, isolate_mode, lru); 1704 if (global_reclaim(sc)) 1705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1706 1707 reclaim_stat->recent_scanned[file] += nr_taken; 1708 1709 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1710 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1711 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1712 spin_unlock_irq(&zone->lru_lock); 1713 1714 while (!list_empty(&l_hold)) { 1715 cond_resched(); 1716 page = lru_to_page(&l_hold); 1717 list_del(&page->lru); 1718 1719 if (unlikely(!page_evictable(page))) { 1720 putback_lru_page(page); 1721 continue; 1722 } 1723 1724 if (unlikely(buffer_heads_over_limit)) { 1725 if (page_has_private(page) && trylock_page(page)) { 1726 if (page_has_private(page)) 1727 try_to_release_page(page, 0); 1728 unlock_page(page); 1729 } 1730 } 1731 1732 if (page_referenced(page, 0, sc->target_mem_cgroup, 1733 &vm_flags)) { 1734 nr_rotated += hpage_nr_pages(page); 1735 /* 1736 * Identify referenced, file-backed active pages and 1737 * give them one more trip around the active list. So 1738 * that executable code get better chances to stay in 1739 * memory under moderate memory pressure. Anon pages 1740 * are not likely to be evicted by use-once streaming 1741 * IO, plus JVM can create lots of anon VM_EXEC pages, 1742 * so we ignore them here. 1743 */ 1744 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1745 list_add(&page->lru, &l_active); 1746 continue; 1747 } 1748 } 1749 1750 ClearPageActive(page); /* we are de-activating */ 1751 list_add(&page->lru, &l_inactive); 1752 } 1753 1754 /* 1755 * Move pages back to the lru list. 1756 */ 1757 spin_lock_irq(&zone->lru_lock); 1758 /* 1759 * Count referenced pages from currently used mappings as rotated, 1760 * even though only some of them are actually re-activated. This 1761 * helps balance scan pressure between file and anonymous pages in 1762 * get_scan_count. 1763 */ 1764 reclaim_stat->recent_rotated[file] += nr_rotated; 1765 1766 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1767 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1768 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1769 spin_unlock_irq(&zone->lru_lock); 1770 1771 mem_cgroup_uncharge_list(&l_hold); 1772 free_hot_cold_page_list(&l_hold, true); 1773 } 1774 1775 #ifdef CONFIG_SWAP 1776 static int inactive_anon_is_low_global(struct zone *zone) 1777 { 1778 unsigned long active, inactive; 1779 1780 active = zone_page_state(zone, NR_ACTIVE_ANON); 1781 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1782 1783 if (inactive * zone->inactive_ratio < active) 1784 return 1; 1785 1786 return 0; 1787 } 1788 1789 /** 1790 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1791 * @lruvec: LRU vector to check 1792 * 1793 * Returns true if the zone does not have enough inactive anon pages, 1794 * meaning some active anon pages need to be deactivated. 1795 */ 1796 static int inactive_anon_is_low(struct lruvec *lruvec) 1797 { 1798 /* 1799 * If we don't have swap space, anonymous page deactivation 1800 * is pointless. 1801 */ 1802 if (!total_swap_pages) 1803 return 0; 1804 1805 if (!mem_cgroup_disabled()) 1806 return mem_cgroup_inactive_anon_is_low(lruvec); 1807 1808 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1809 } 1810 #else 1811 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1812 { 1813 return 0; 1814 } 1815 #endif 1816 1817 /** 1818 * inactive_file_is_low - check if file pages need to be deactivated 1819 * @lruvec: LRU vector to check 1820 * 1821 * When the system is doing streaming IO, memory pressure here 1822 * ensures that active file pages get deactivated, until more 1823 * than half of the file pages are on the inactive list. 1824 * 1825 * Once we get to that situation, protect the system's working 1826 * set from being evicted by disabling active file page aging. 1827 * 1828 * This uses a different ratio than the anonymous pages, because 1829 * the page cache uses a use-once replacement algorithm. 1830 */ 1831 static int inactive_file_is_low(struct lruvec *lruvec) 1832 { 1833 unsigned long inactive; 1834 unsigned long active; 1835 1836 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1837 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1838 1839 return active > inactive; 1840 } 1841 1842 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1843 { 1844 if (is_file_lru(lru)) 1845 return inactive_file_is_low(lruvec); 1846 else 1847 return inactive_anon_is_low(lruvec); 1848 } 1849 1850 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1851 struct lruvec *lruvec, struct scan_control *sc) 1852 { 1853 if (is_active_lru(lru)) { 1854 if (inactive_list_is_low(lruvec, lru)) 1855 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1856 return 0; 1857 } 1858 1859 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1860 } 1861 1862 enum scan_balance { 1863 SCAN_EQUAL, 1864 SCAN_FRACT, 1865 SCAN_ANON, 1866 SCAN_FILE, 1867 }; 1868 1869 /* 1870 * Determine how aggressively the anon and file LRU lists should be 1871 * scanned. The relative value of each set of LRU lists is determined 1872 * by looking at the fraction of the pages scanned we did rotate back 1873 * onto the active list instead of evict. 1874 * 1875 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1876 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1877 */ 1878 static void get_scan_count(struct lruvec *lruvec, int swappiness, 1879 struct scan_control *sc, unsigned long *nr) 1880 { 1881 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1882 u64 fraction[2]; 1883 u64 denominator = 0; /* gcc */ 1884 struct zone *zone = lruvec_zone(lruvec); 1885 unsigned long anon_prio, file_prio; 1886 enum scan_balance scan_balance; 1887 unsigned long anon, file; 1888 bool force_scan = false; 1889 unsigned long ap, fp; 1890 enum lru_list lru; 1891 bool some_scanned; 1892 int pass; 1893 1894 /* 1895 * If the zone or memcg is small, nr[l] can be 0. This 1896 * results in no scanning on this priority and a potential 1897 * priority drop. Global direct reclaim can go to the next 1898 * zone and tends to have no problems. Global kswapd is for 1899 * zone balancing and it needs to scan a minimum amount. When 1900 * reclaiming for a memcg, a priority drop can cause high 1901 * latencies, so it's better to scan a minimum amount there as 1902 * well. 1903 */ 1904 if (current_is_kswapd() && !zone_reclaimable(zone)) 1905 force_scan = true; 1906 if (!global_reclaim(sc)) 1907 force_scan = true; 1908 1909 /* If we have no swap space, do not bother scanning anon pages. */ 1910 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1911 scan_balance = SCAN_FILE; 1912 goto out; 1913 } 1914 1915 /* 1916 * Global reclaim will swap to prevent OOM even with no 1917 * swappiness, but memcg users want to use this knob to 1918 * disable swapping for individual groups completely when 1919 * using the memory controller's swap limit feature would be 1920 * too expensive. 1921 */ 1922 if (!global_reclaim(sc) && !swappiness) { 1923 scan_balance = SCAN_FILE; 1924 goto out; 1925 } 1926 1927 /* 1928 * Do not apply any pressure balancing cleverness when the 1929 * system is close to OOM, scan both anon and file equally 1930 * (unless the swappiness setting disagrees with swapping). 1931 */ 1932 if (!sc->priority && swappiness) { 1933 scan_balance = SCAN_EQUAL; 1934 goto out; 1935 } 1936 1937 /* 1938 * Prevent the reclaimer from falling into the cache trap: as 1939 * cache pages start out inactive, every cache fault will tip 1940 * the scan balance towards the file LRU. And as the file LRU 1941 * shrinks, so does the window for rotation from references. 1942 * This means we have a runaway feedback loop where a tiny 1943 * thrashing file LRU becomes infinitely more attractive than 1944 * anon pages. Try to detect this based on file LRU size. 1945 */ 1946 if (global_reclaim(sc)) { 1947 unsigned long zonefile; 1948 unsigned long zonefree; 1949 1950 zonefree = zone_page_state(zone, NR_FREE_PAGES); 1951 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 1952 zone_page_state(zone, NR_INACTIVE_FILE); 1953 1954 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 1955 scan_balance = SCAN_ANON; 1956 goto out; 1957 } 1958 } 1959 1960 /* 1961 * There is enough inactive page cache, do not reclaim 1962 * anything from the anonymous working set right now. 1963 */ 1964 if (!inactive_file_is_low(lruvec)) { 1965 scan_balance = SCAN_FILE; 1966 goto out; 1967 } 1968 1969 scan_balance = SCAN_FRACT; 1970 1971 /* 1972 * With swappiness at 100, anonymous and file have the same priority. 1973 * This scanning priority is essentially the inverse of IO cost. 1974 */ 1975 anon_prio = swappiness; 1976 file_prio = 200 - anon_prio; 1977 1978 /* 1979 * OK, so we have swap space and a fair amount of page cache 1980 * pages. We use the recently rotated / recently scanned 1981 * ratios to determine how valuable each cache is. 1982 * 1983 * Because workloads change over time (and to avoid overflow) 1984 * we keep these statistics as a floating average, which ends 1985 * up weighing recent references more than old ones. 1986 * 1987 * anon in [0], file in [1] 1988 */ 1989 1990 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1991 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1992 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1993 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1994 1995 spin_lock_irq(&zone->lru_lock); 1996 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1997 reclaim_stat->recent_scanned[0] /= 2; 1998 reclaim_stat->recent_rotated[0] /= 2; 1999 } 2000 2001 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2002 reclaim_stat->recent_scanned[1] /= 2; 2003 reclaim_stat->recent_rotated[1] /= 2; 2004 } 2005 2006 /* 2007 * The amount of pressure on anon vs file pages is inversely 2008 * proportional to the fraction of recently scanned pages on 2009 * each list that were recently referenced and in active use. 2010 */ 2011 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2012 ap /= reclaim_stat->recent_rotated[0] + 1; 2013 2014 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2015 fp /= reclaim_stat->recent_rotated[1] + 1; 2016 spin_unlock_irq(&zone->lru_lock); 2017 2018 fraction[0] = ap; 2019 fraction[1] = fp; 2020 denominator = ap + fp + 1; 2021 out: 2022 some_scanned = false; 2023 /* Only use force_scan on second pass. */ 2024 for (pass = 0; !some_scanned && pass < 2; pass++) { 2025 for_each_evictable_lru(lru) { 2026 int file = is_file_lru(lru); 2027 unsigned long size; 2028 unsigned long scan; 2029 2030 size = get_lru_size(lruvec, lru); 2031 scan = size >> sc->priority; 2032 2033 if (!scan && pass && force_scan) 2034 scan = min(size, SWAP_CLUSTER_MAX); 2035 2036 switch (scan_balance) { 2037 case SCAN_EQUAL: 2038 /* Scan lists relative to size */ 2039 break; 2040 case SCAN_FRACT: 2041 /* 2042 * Scan types proportional to swappiness and 2043 * their relative recent reclaim efficiency. 2044 */ 2045 scan = div64_u64(scan * fraction[file], 2046 denominator); 2047 break; 2048 case SCAN_FILE: 2049 case SCAN_ANON: 2050 /* Scan one type exclusively */ 2051 if ((scan_balance == SCAN_FILE) != file) 2052 scan = 0; 2053 break; 2054 default: 2055 /* Look ma, no brain */ 2056 BUG(); 2057 } 2058 nr[lru] = scan; 2059 /* 2060 * Skip the second pass and don't force_scan, 2061 * if we found something to scan. 2062 */ 2063 some_scanned |= !!scan; 2064 } 2065 } 2066 } 2067 2068 /* 2069 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2070 */ 2071 static void shrink_lruvec(struct lruvec *lruvec, int swappiness, 2072 struct scan_control *sc) 2073 { 2074 unsigned long nr[NR_LRU_LISTS]; 2075 unsigned long targets[NR_LRU_LISTS]; 2076 unsigned long nr_to_scan; 2077 enum lru_list lru; 2078 unsigned long nr_reclaimed = 0; 2079 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2080 struct blk_plug plug; 2081 bool scan_adjusted; 2082 2083 get_scan_count(lruvec, swappiness, sc, nr); 2084 2085 /* Record the original scan target for proportional adjustments later */ 2086 memcpy(targets, nr, sizeof(nr)); 2087 2088 /* 2089 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2090 * event that can occur when there is little memory pressure e.g. 2091 * multiple streaming readers/writers. Hence, we do not abort scanning 2092 * when the requested number of pages are reclaimed when scanning at 2093 * DEF_PRIORITY on the assumption that the fact we are direct 2094 * reclaiming implies that kswapd is not keeping up and it is best to 2095 * do a batch of work at once. For memcg reclaim one check is made to 2096 * abort proportional reclaim if either the file or anon lru has already 2097 * dropped to zero at the first pass. 2098 */ 2099 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2100 sc->priority == DEF_PRIORITY); 2101 2102 blk_start_plug(&plug); 2103 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2104 nr[LRU_INACTIVE_FILE]) { 2105 unsigned long nr_anon, nr_file, percentage; 2106 unsigned long nr_scanned; 2107 2108 for_each_evictable_lru(lru) { 2109 if (nr[lru]) { 2110 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2111 nr[lru] -= nr_to_scan; 2112 2113 nr_reclaimed += shrink_list(lru, nr_to_scan, 2114 lruvec, sc); 2115 } 2116 } 2117 2118 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2119 continue; 2120 2121 /* 2122 * For kswapd and memcg, reclaim at least the number of pages 2123 * requested. Ensure that the anon and file LRUs are scanned 2124 * proportionally what was requested by get_scan_count(). We 2125 * stop reclaiming one LRU and reduce the amount scanning 2126 * proportional to the original scan target. 2127 */ 2128 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2129 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2130 2131 /* 2132 * It's just vindictive to attack the larger once the smaller 2133 * has gone to zero. And given the way we stop scanning the 2134 * smaller below, this makes sure that we only make one nudge 2135 * towards proportionality once we've got nr_to_reclaim. 2136 */ 2137 if (!nr_file || !nr_anon) 2138 break; 2139 2140 if (nr_file > nr_anon) { 2141 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2142 targets[LRU_ACTIVE_ANON] + 1; 2143 lru = LRU_BASE; 2144 percentage = nr_anon * 100 / scan_target; 2145 } else { 2146 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2147 targets[LRU_ACTIVE_FILE] + 1; 2148 lru = LRU_FILE; 2149 percentage = nr_file * 100 / scan_target; 2150 } 2151 2152 /* Stop scanning the smaller of the LRU */ 2153 nr[lru] = 0; 2154 nr[lru + LRU_ACTIVE] = 0; 2155 2156 /* 2157 * Recalculate the other LRU scan count based on its original 2158 * scan target and the percentage scanning already complete 2159 */ 2160 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2161 nr_scanned = targets[lru] - nr[lru]; 2162 nr[lru] = targets[lru] * (100 - percentage) / 100; 2163 nr[lru] -= min(nr[lru], nr_scanned); 2164 2165 lru += LRU_ACTIVE; 2166 nr_scanned = targets[lru] - nr[lru]; 2167 nr[lru] = targets[lru] * (100 - percentage) / 100; 2168 nr[lru] -= min(nr[lru], nr_scanned); 2169 2170 scan_adjusted = true; 2171 } 2172 blk_finish_plug(&plug); 2173 sc->nr_reclaimed += nr_reclaimed; 2174 2175 /* 2176 * Even if we did not try to evict anon pages at all, we want to 2177 * rebalance the anon lru active/inactive ratio. 2178 */ 2179 if (inactive_anon_is_low(lruvec)) 2180 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2181 sc, LRU_ACTIVE_ANON); 2182 2183 throttle_vm_writeout(sc->gfp_mask); 2184 } 2185 2186 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2187 static bool in_reclaim_compaction(struct scan_control *sc) 2188 { 2189 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2190 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2191 sc->priority < DEF_PRIORITY - 2)) 2192 return true; 2193 2194 return false; 2195 } 2196 2197 /* 2198 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2199 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2200 * true if more pages should be reclaimed such that when the page allocator 2201 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2202 * It will give up earlier than that if there is difficulty reclaiming pages. 2203 */ 2204 static inline bool should_continue_reclaim(struct zone *zone, 2205 unsigned long nr_reclaimed, 2206 unsigned long nr_scanned, 2207 struct scan_control *sc) 2208 { 2209 unsigned long pages_for_compaction; 2210 unsigned long inactive_lru_pages; 2211 2212 /* If not in reclaim/compaction mode, stop */ 2213 if (!in_reclaim_compaction(sc)) 2214 return false; 2215 2216 /* Consider stopping depending on scan and reclaim activity */ 2217 if (sc->gfp_mask & __GFP_REPEAT) { 2218 /* 2219 * For __GFP_REPEAT allocations, stop reclaiming if the 2220 * full LRU list has been scanned and we are still failing 2221 * to reclaim pages. This full LRU scan is potentially 2222 * expensive but a __GFP_REPEAT caller really wants to succeed 2223 */ 2224 if (!nr_reclaimed && !nr_scanned) 2225 return false; 2226 } else { 2227 /* 2228 * For non-__GFP_REPEAT allocations which can presumably 2229 * fail without consequence, stop if we failed to reclaim 2230 * any pages from the last SWAP_CLUSTER_MAX number of 2231 * pages that were scanned. This will return to the 2232 * caller faster at the risk reclaim/compaction and 2233 * the resulting allocation attempt fails 2234 */ 2235 if (!nr_reclaimed) 2236 return false; 2237 } 2238 2239 /* 2240 * If we have not reclaimed enough pages for compaction and the 2241 * inactive lists are large enough, continue reclaiming 2242 */ 2243 pages_for_compaction = (2UL << sc->order); 2244 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2245 if (get_nr_swap_pages() > 0) 2246 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2247 if (sc->nr_reclaimed < pages_for_compaction && 2248 inactive_lru_pages > pages_for_compaction) 2249 return true; 2250 2251 /* If compaction would go ahead or the allocation would succeed, stop */ 2252 switch (compaction_suitable(zone, sc->order)) { 2253 case COMPACT_PARTIAL: 2254 case COMPACT_CONTINUE: 2255 return false; 2256 default: 2257 return true; 2258 } 2259 } 2260 2261 static bool shrink_zone(struct zone *zone, struct scan_control *sc) 2262 { 2263 unsigned long nr_reclaimed, nr_scanned; 2264 bool reclaimable = false; 2265 2266 do { 2267 struct mem_cgroup *root = sc->target_mem_cgroup; 2268 struct mem_cgroup_reclaim_cookie reclaim = { 2269 .zone = zone, 2270 .priority = sc->priority, 2271 }; 2272 struct mem_cgroup *memcg; 2273 2274 nr_reclaimed = sc->nr_reclaimed; 2275 nr_scanned = sc->nr_scanned; 2276 2277 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2278 do { 2279 struct lruvec *lruvec; 2280 int swappiness; 2281 2282 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2283 swappiness = mem_cgroup_swappiness(memcg); 2284 2285 shrink_lruvec(lruvec, swappiness, sc); 2286 2287 /* 2288 * Direct reclaim and kswapd have to scan all memory 2289 * cgroups to fulfill the overall scan target for the 2290 * zone. 2291 * 2292 * Limit reclaim, on the other hand, only cares about 2293 * nr_to_reclaim pages to be reclaimed and it will 2294 * retry with decreasing priority if one round over the 2295 * whole hierarchy is not sufficient. 2296 */ 2297 if (!global_reclaim(sc) && 2298 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2299 mem_cgroup_iter_break(root, memcg); 2300 break; 2301 } 2302 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2303 } while (memcg); 2304 2305 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2306 sc->nr_scanned - nr_scanned, 2307 sc->nr_reclaimed - nr_reclaimed); 2308 2309 if (sc->nr_reclaimed - nr_reclaimed) 2310 reclaimable = true; 2311 2312 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2313 sc->nr_scanned - nr_scanned, sc)); 2314 2315 return reclaimable; 2316 } 2317 2318 /* 2319 * Returns true if compaction should go ahead for a high-order request, or 2320 * the high-order allocation would succeed without compaction. 2321 */ 2322 static inline bool compaction_ready(struct zone *zone, int order) 2323 { 2324 unsigned long balance_gap, watermark; 2325 bool watermark_ok; 2326 2327 /* 2328 * Compaction takes time to run and there are potentially other 2329 * callers using the pages just freed. Continue reclaiming until 2330 * there is a buffer of free pages available to give compaction 2331 * a reasonable chance of completing and allocating the page 2332 */ 2333 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2334 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2335 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2336 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2337 2338 /* 2339 * If compaction is deferred, reclaim up to a point where 2340 * compaction will have a chance of success when re-enabled 2341 */ 2342 if (compaction_deferred(zone, order)) 2343 return watermark_ok; 2344 2345 /* 2346 * If compaction is not ready to start and allocation is not likely 2347 * to succeed without it, then keep reclaiming. 2348 */ 2349 if (compaction_suitable(zone, order) == COMPACT_SKIPPED) 2350 return false; 2351 2352 return watermark_ok; 2353 } 2354 2355 /* 2356 * This is the direct reclaim path, for page-allocating processes. We only 2357 * try to reclaim pages from zones which will satisfy the caller's allocation 2358 * request. 2359 * 2360 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2361 * Because: 2362 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2363 * allocation or 2364 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2365 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2366 * zone defense algorithm. 2367 * 2368 * If a zone is deemed to be full of pinned pages then just give it a light 2369 * scan then give up on it. 2370 * 2371 * Returns true if a zone was reclaimable. 2372 */ 2373 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2374 { 2375 struct zoneref *z; 2376 struct zone *zone; 2377 unsigned long nr_soft_reclaimed; 2378 unsigned long nr_soft_scanned; 2379 unsigned long lru_pages = 0; 2380 struct reclaim_state *reclaim_state = current->reclaim_state; 2381 gfp_t orig_mask; 2382 struct shrink_control shrink = { 2383 .gfp_mask = sc->gfp_mask, 2384 }; 2385 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2386 bool reclaimable = false; 2387 2388 /* 2389 * If the number of buffer_heads in the machine exceeds the maximum 2390 * allowed level, force direct reclaim to scan the highmem zone as 2391 * highmem pages could be pinning lowmem pages storing buffer_heads 2392 */ 2393 orig_mask = sc->gfp_mask; 2394 if (buffer_heads_over_limit) 2395 sc->gfp_mask |= __GFP_HIGHMEM; 2396 2397 nodes_clear(shrink.nodes_to_scan); 2398 2399 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2400 gfp_zone(sc->gfp_mask), sc->nodemask) { 2401 if (!populated_zone(zone)) 2402 continue; 2403 /* 2404 * Take care memory controller reclaiming has small influence 2405 * to global LRU. 2406 */ 2407 if (global_reclaim(sc)) { 2408 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2409 continue; 2410 2411 lru_pages += zone_reclaimable_pages(zone); 2412 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2413 2414 if (sc->priority != DEF_PRIORITY && 2415 !zone_reclaimable(zone)) 2416 continue; /* Let kswapd poll it */ 2417 2418 /* 2419 * If we already have plenty of memory free for 2420 * compaction in this zone, don't free any more. 2421 * Even though compaction is invoked for any 2422 * non-zero order, only frequent costly order 2423 * reclamation is disruptive enough to become a 2424 * noticeable problem, like transparent huge 2425 * page allocations. 2426 */ 2427 if (IS_ENABLED(CONFIG_COMPACTION) && 2428 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2429 zonelist_zone_idx(z) <= requested_highidx && 2430 compaction_ready(zone, sc->order)) { 2431 sc->compaction_ready = true; 2432 continue; 2433 } 2434 2435 /* 2436 * This steals pages from memory cgroups over softlimit 2437 * and returns the number of reclaimed pages and 2438 * scanned pages. This works for global memory pressure 2439 * and balancing, not for a memcg's limit. 2440 */ 2441 nr_soft_scanned = 0; 2442 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2443 sc->order, sc->gfp_mask, 2444 &nr_soft_scanned); 2445 sc->nr_reclaimed += nr_soft_reclaimed; 2446 sc->nr_scanned += nr_soft_scanned; 2447 if (nr_soft_reclaimed) 2448 reclaimable = true; 2449 /* need some check for avoid more shrink_zone() */ 2450 } 2451 2452 if (shrink_zone(zone, sc)) 2453 reclaimable = true; 2454 2455 if (global_reclaim(sc) && 2456 !reclaimable && zone_reclaimable(zone)) 2457 reclaimable = true; 2458 } 2459 2460 /* 2461 * Don't shrink slabs when reclaiming memory from over limit cgroups 2462 * but do shrink slab at least once when aborting reclaim for 2463 * compaction to avoid unevenly scanning file/anon LRU pages over slab 2464 * pages. 2465 */ 2466 if (global_reclaim(sc)) { 2467 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2468 if (reclaim_state) { 2469 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2470 reclaim_state->reclaimed_slab = 0; 2471 } 2472 } 2473 2474 /* 2475 * Restore to original mask to avoid the impact on the caller if we 2476 * promoted it to __GFP_HIGHMEM. 2477 */ 2478 sc->gfp_mask = orig_mask; 2479 2480 return reclaimable; 2481 } 2482 2483 /* 2484 * This is the main entry point to direct page reclaim. 2485 * 2486 * If a full scan of the inactive list fails to free enough memory then we 2487 * are "out of memory" and something needs to be killed. 2488 * 2489 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2490 * high - the zone may be full of dirty or under-writeback pages, which this 2491 * caller can't do much about. We kick the writeback threads and take explicit 2492 * naps in the hope that some of these pages can be written. But if the 2493 * allocating task holds filesystem locks which prevent writeout this might not 2494 * work, and the allocation attempt will fail. 2495 * 2496 * returns: 0, if no pages reclaimed 2497 * else, the number of pages reclaimed 2498 */ 2499 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2500 struct scan_control *sc) 2501 { 2502 unsigned long total_scanned = 0; 2503 unsigned long writeback_threshold; 2504 bool zones_reclaimable; 2505 2506 delayacct_freepages_start(); 2507 2508 if (global_reclaim(sc)) 2509 count_vm_event(ALLOCSTALL); 2510 2511 do { 2512 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2513 sc->priority); 2514 sc->nr_scanned = 0; 2515 zones_reclaimable = shrink_zones(zonelist, sc); 2516 2517 total_scanned += sc->nr_scanned; 2518 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2519 break; 2520 2521 if (sc->compaction_ready) 2522 break; 2523 2524 /* 2525 * If we're getting trouble reclaiming, start doing 2526 * writepage even in laptop mode. 2527 */ 2528 if (sc->priority < DEF_PRIORITY - 2) 2529 sc->may_writepage = 1; 2530 2531 /* 2532 * Try to write back as many pages as we just scanned. This 2533 * tends to cause slow streaming writers to write data to the 2534 * disk smoothly, at the dirtying rate, which is nice. But 2535 * that's undesirable in laptop mode, where we *want* lumpy 2536 * writeout. So in laptop mode, write out the whole world. 2537 */ 2538 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2539 if (total_scanned > writeback_threshold) { 2540 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2541 WB_REASON_TRY_TO_FREE_PAGES); 2542 sc->may_writepage = 1; 2543 } 2544 } while (--sc->priority >= 0); 2545 2546 delayacct_freepages_end(); 2547 2548 if (sc->nr_reclaimed) 2549 return sc->nr_reclaimed; 2550 2551 /* Aborted reclaim to try compaction? don't OOM, then */ 2552 if (sc->compaction_ready) 2553 return 1; 2554 2555 /* Any of the zones still reclaimable? Don't OOM. */ 2556 if (zones_reclaimable) 2557 return 1; 2558 2559 return 0; 2560 } 2561 2562 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2563 { 2564 struct zone *zone; 2565 unsigned long pfmemalloc_reserve = 0; 2566 unsigned long free_pages = 0; 2567 int i; 2568 bool wmark_ok; 2569 2570 for (i = 0; i <= ZONE_NORMAL; i++) { 2571 zone = &pgdat->node_zones[i]; 2572 if (!populated_zone(zone)) 2573 continue; 2574 2575 pfmemalloc_reserve += min_wmark_pages(zone); 2576 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2577 } 2578 2579 /* If there are no reserves (unexpected config) then do not throttle */ 2580 if (!pfmemalloc_reserve) 2581 return true; 2582 2583 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2584 2585 /* kswapd must be awake if processes are being throttled */ 2586 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2587 pgdat->classzone_idx = min(pgdat->classzone_idx, 2588 (enum zone_type)ZONE_NORMAL); 2589 wake_up_interruptible(&pgdat->kswapd_wait); 2590 } 2591 2592 return wmark_ok; 2593 } 2594 2595 /* 2596 * Throttle direct reclaimers if backing storage is backed by the network 2597 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2598 * depleted. kswapd will continue to make progress and wake the processes 2599 * when the low watermark is reached. 2600 * 2601 * Returns true if a fatal signal was delivered during throttling. If this 2602 * happens, the page allocator should not consider triggering the OOM killer. 2603 */ 2604 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2605 nodemask_t *nodemask) 2606 { 2607 struct zoneref *z; 2608 struct zone *zone; 2609 pg_data_t *pgdat = NULL; 2610 2611 /* 2612 * Kernel threads should not be throttled as they may be indirectly 2613 * responsible for cleaning pages necessary for reclaim to make forward 2614 * progress. kjournald for example may enter direct reclaim while 2615 * committing a transaction where throttling it could forcing other 2616 * processes to block on log_wait_commit(). 2617 */ 2618 if (current->flags & PF_KTHREAD) 2619 goto out; 2620 2621 /* 2622 * If a fatal signal is pending, this process should not throttle. 2623 * It should return quickly so it can exit and free its memory 2624 */ 2625 if (fatal_signal_pending(current)) 2626 goto out; 2627 2628 /* 2629 * Check if the pfmemalloc reserves are ok by finding the first node 2630 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2631 * GFP_KERNEL will be required for allocating network buffers when 2632 * swapping over the network so ZONE_HIGHMEM is unusable. 2633 * 2634 * Throttling is based on the first usable node and throttled processes 2635 * wait on a queue until kswapd makes progress and wakes them. There 2636 * is an affinity then between processes waking up and where reclaim 2637 * progress has been made assuming the process wakes on the same node. 2638 * More importantly, processes running on remote nodes will not compete 2639 * for remote pfmemalloc reserves and processes on different nodes 2640 * should make reasonable progress. 2641 */ 2642 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2643 gfp_mask, nodemask) { 2644 if (zone_idx(zone) > ZONE_NORMAL) 2645 continue; 2646 2647 /* Throttle based on the first usable node */ 2648 pgdat = zone->zone_pgdat; 2649 if (pfmemalloc_watermark_ok(pgdat)) 2650 goto out; 2651 break; 2652 } 2653 2654 /* If no zone was usable by the allocation flags then do not throttle */ 2655 if (!pgdat) 2656 goto out; 2657 2658 /* Account for the throttling */ 2659 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2660 2661 /* 2662 * If the caller cannot enter the filesystem, it's possible that it 2663 * is due to the caller holding an FS lock or performing a journal 2664 * transaction in the case of a filesystem like ext[3|4]. In this case, 2665 * it is not safe to block on pfmemalloc_wait as kswapd could be 2666 * blocked waiting on the same lock. Instead, throttle for up to a 2667 * second before continuing. 2668 */ 2669 if (!(gfp_mask & __GFP_FS)) { 2670 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2671 pfmemalloc_watermark_ok(pgdat), HZ); 2672 2673 goto check_pending; 2674 } 2675 2676 /* Throttle until kswapd wakes the process */ 2677 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2678 pfmemalloc_watermark_ok(pgdat)); 2679 2680 check_pending: 2681 if (fatal_signal_pending(current)) 2682 return true; 2683 2684 out: 2685 return false; 2686 } 2687 2688 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2689 gfp_t gfp_mask, nodemask_t *nodemask) 2690 { 2691 unsigned long nr_reclaimed; 2692 struct scan_control sc = { 2693 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2694 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2695 .order = order, 2696 .nodemask = nodemask, 2697 .priority = DEF_PRIORITY, 2698 .may_writepage = !laptop_mode, 2699 .may_unmap = 1, 2700 .may_swap = 1, 2701 }; 2702 2703 /* 2704 * Do not enter reclaim if fatal signal was delivered while throttled. 2705 * 1 is returned so that the page allocator does not OOM kill at this 2706 * point. 2707 */ 2708 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2709 return 1; 2710 2711 trace_mm_vmscan_direct_reclaim_begin(order, 2712 sc.may_writepage, 2713 gfp_mask); 2714 2715 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2716 2717 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2718 2719 return nr_reclaimed; 2720 } 2721 2722 #ifdef CONFIG_MEMCG 2723 2724 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2725 gfp_t gfp_mask, bool noswap, 2726 struct zone *zone, 2727 unsigned long *nr_scanned) 2728 { 2729 struct scan_control sc = { 2730 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2731 .target_mem_cgroup = memcg, 2732 .may_writepage = !laptop_mode, 2733 .may_unmap = 1, 2734 .may_swap = !noswap, 2735 }; 2736 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2737 int swappiness = mem_cgroup_swappiness(memcg); 2738 2739 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2740 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2741 2742 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2743 sc.may_writepage, 2744 sc.gfp_mask); 2745 2746 /* 2747 * NOTE: Although we can get the priority field, using it 2748 * here is not a good idea, since it limits the pages we can scan. 2749 * if we don't reclaim here, the shrink_zone from balance_pgdat 2750 * will pick up pages from other mem cgroup's as well. We hack 2751 * the priority and make it zero. 2752 */ 2753 shrink_lruvec(lruvec, swappiness, &sc); 2754 2755 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2756 2757 *nr_scanned = sc.nr_scanned; 2758 return sc.nr_reclaimed; 2759 } 2760 2761 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2762 unsigned long nr_pages, 2763 gfp_t gfp_mask, 2764 bool may_swap) 2765 { 2766 struct zonelist *zonelist; 2767 unsigned long nr_reclaimed; 2768 int nid; 2769 struct scan_control sc = { 2770 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2771 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2772 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2773 .target_mem_cgroup = memcg, 2774 .priority = DEF_PRIORITY, 2775 .may_writepage = !laptop_mode, 2776 .may_unmap = 1, 2777 .may_swap = may_swap, 2778 }; 2779 2780 /* 2781 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2782 * take care of from where we get pages. So the node where we start the 2783 * scan does not need to be the current node. 2784 */ 2785 nid = mem_cgroup_select_victim_node(memcg); 2786 2787 zonelist = NODE_DATA(nid)->node_zonelists; 2788 2789 trace_mm_vmscan_memcg_reclaim_begin(0, 2790 sc.may_writepage, 2791 sc.gfp_mask); 2792 2793 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2794 2795 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2796 2797 return nr_reclaimed; 2798 } 2799 #endif 2800 2801 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2802 { 2803 struct mem_cgroup *memcg; 2804 2805 if (!total_swap_pages) 2806 return; 2807 2808 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2809 do { 2810 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2811 2812 if (inactive_anon_is_low(lruvec)) 2813 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2814 sc, LRU_ACTIVE_ANON); 2815 2816 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2817 } while (memcg); 2818 } 2819 2820 static bool zone_balanced(struct zone *zone, int order, 2821 unsigned long balance_gap, int classzone_idx) 2822 { 2823 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2824 balance_gap, classzone_idx, 0)) 2825 return false; 2826 2827 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2828 compaction_suitable(zone, order) == COMPACT_SKIPPED) 2829 return false; 2830 2831 return true; 2832 } 2833 2834 /* 2835 * pgdat_balanced() is used when checking if a node is balanced. 2836 * 2837 * For order-0, all zones must be balanced! 2838 * 2839 * For high-order allocations only zones that meet watermarks and are in a 2840 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2841 * total of balanced pages must be at least 25% of the zones allowed by 2842 * classzone_idx for the node to be considered balanced. Forcing all zones to 2843 * be balanced for high orders can cause excessive reclaim when there are 2844 * imbalanced zones. 2845 * The choice of 25% is due to 2846 * o a 16M DMA zone that is balanced will not balance a zone on any 2847 * reasonable sized machine 2848 * o On all other machines, the top zone must be at least a reasonable 2849 * percentage of the middle zones. For example, on 32-bit x86, highmem 2850 * would need to be at least 256M for it to be balance a whole node. 2851 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2852 * to balance a node on its own. These seemed like reasonable ratios. 2853 */ 2854 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2855 { 2856 unsigned long managed_pages = 0; 2857 unsigned long balanced_pages = 0; 2858 int i; 2859 2860 /* Check the watermark levels */ 2861 for (i = 0; i <= classzone_idx; i++) { 2862 struct zone *zone = pgdat->node_zones + i; 2863 2864 if (!populated_zone(zone)) 2865 continue; 2866 2867 managed_pages += zone->managed_pages; 2868 2869 /* 2870 * A special case here: 2871 * 2872 * balance_pgdat() skips over all_unreclaimable after 2873 * DEF_PRIORITY. Effectively, it considers them balanced so 2874 * they must be considered balanced here as well! 2875 */ 2876 if (!zone_reclaimable(zone)) { 2877 balanced_pages += zone->managed_pages; 2878 continue; 2879 } 2880 2881 if (zone_balanced(zone, order, 0, i)) 2882 balanced_pages += zone->managed_pages; 2883 else if (!order) 2884 return false; 2885 } 2886 2887 if (order) 2888 return balanced_pages >= (managed_pages >> 2); 2889 else 2890 return true; 2891 } 2892 2893 /* 2894 * Prepare kswapd for sleeping. This verifies that there are no processes 2895 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2896 * 2897 * Returns true if kswapd is ready to sleep 2898 */ 2899 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2900 int classzone_idx) 2901 { 2902 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2903 if (remaining) 2904 return false; 2905 2906 /* 2907 * There is a potential race between when kswapd checks its watermarks 2908 * and a process gets throttled. There is also a potential race if 2909 * processes get throttled, kswapd wakes, a large process exits therby 2910 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2911 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2912 * so wake them now if necessary. If necessary, processes will wake 2913 * kswapd and get throttled again 2914 */ 2915 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2916 wake_up(&pgdat->pfmemalloc_wait); 2917 return false; 2918 } 2919 2920 return pgdat_balanced(pgdat, order, classzone_idx); 2921 } 2922 2923 /* 2924 * kswapd shrinks the zone by the number of pages required to reach 2925 * the high watermark. 2926 * 2927 * Returns true if kswapd scanned at least the requested number of pages to 2928 * reclaim or if the lack of progress was due to pages under writeback. 2929 * This is used to determine if the scanning priority needs to be raised. 2930 */ 2931 static bool kswapd_shrink_zone(struct zone *zone, 2932 int classzone_idx, 2933 struct scan_control *sc, 2934 unsigned long lru_pages, 2935 unsigned long *nr_attempted) 2936 { 2937 int testorder = sc->order; 2938 unsigned long balance_gap; 2939 struct reclaim_state *reclaim_state = current->reclaim_state; 2940 struct shrink_control shrink = { 2941 .gfp_mask = sc->gfp_mask, 2942 }; 2943 bool lowmem_pressure; 2944 2945 /* Reclaim above the high watermark. */ 2946 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2947 2948 /* 2949 * Kswapd reclaims only single pages with compaction enabled. Trying 2950 * too hard to reclaim until contiguous free pages have become 2951 * available can hurt performance by evicting too much useful data 2952 * from memory. Do not reclaim more than needed for compaction. 2953 */ 2954 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2955 compaction_suitable(zone, sc->order) != 2956 COMPACT_SKIPPED) 2957 testorder = 0; 2958 2959 /* 2960 * We put equal pressure on every zone, unless one zone has way too 2961 * many pages free already. The "too many pages" is defined as the 2962 * high wmark plus a "gap" where the gap is either the low 2963 * watermark or 1% of the zone, whichever is smaller. 2964 */ 2965 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2966 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2967 2968 /* 2969 * If there is no low memory pressure or the zone is balanced then no 2970 * reclaim is necessary 2971 */ 2972 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2973 if (!lowmem_pressure && zone_balanced(zone, testorder, 2974 balance_gap, classzone_idx)) 2975 return true; 2976 2977 shrink_zone(zone, sc); 2978 nodes_clear(shrink.nodes_to_scan); 2979 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2980 2981 reclaim_state->reclaimed_slab = 0; 2982 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2983 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2984 2985 /* Account for the number of pages attempted to reclaim */ 2986 *nr_attempted += sc->nr_to_reclaim; 2987 2988 clear_bit(ZONE_WRITEBACK, &zone->flags); 2989 2990 /* 2991 * If a zone reaches its high watermark, consider it to be no longer 2992 * congested. It's possible there are dirty pages backed by congested 2993 * BDIs but as pressure is relieved, speculatively avoid congestion 2994 * waits. 2995 */ 2996 if (zone_reclaimable(zone) && 2997 zone_balanced(zone, testorder, 0, classzone_idx)) { 2998 clear_bit(ZONE_CONGESTED, &zone->flags); 2999 clear_bit(ZONE_DIRTY, &zone->flags); 3000 } 3001 3002 return sc->nr_scanned >= sc->nr_to_reclaim; 3003 } 3004 3005 /* 3006 * For kswapd, balance_pgdat() will work across all this node's zones until 3007 * they are all at high_wmark_pages(zone). 3008 * 3009 * Returns the final order kswapd was reclaiming at 3010 * 3011 * There is special handling here for zones which are full of pinned pages. 3012 * This can happen if the pages are all mlocked, or if they are all used by 3013 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3014 * What we do is to detect the case where all pages in the zone have been 3015 * scanned twice and there has been zero successful reclaim. Mark the zone as 3016 * dead and from now on, only perform a short scan. Basically we're polling 3017 * the zone for when the problem goes away. 3018 * 3019 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3020 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3021 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3022 * lower zones regardless of the number of free pages in the lower zones. This 3023 * interoperates with the page allocator fallback scheme to ensure that aging 3024 * of pages is balanced across the zones. 3025 */ 3026 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3027 int *classzone_idx) 3028 { 3029 int i; 3030 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3031 unsigned long nr_soft_reclaimed; 3032 unsigned long nr_soft_scanned; 3033 struct scan_control sc = { 3034 .gfp_mask = GFP_KERNEL, 3035 .order = order, 3036 .priority = DEF_PRIORITY, 3037 .may_writepage = !laptop_mode, 3038 .may_unmap = 1, 3039 .may_swap = 1, 3040 }; 3041 count_vm_event(PAGEOUTRUN); 3042 3043 do { 3044 unsigned long lru_pages = 0; 3045 unsigned long nr_attempted = 0; 3046 bool raise_priority = true; 3047 bool pgdat_needs_compaction = (order > 0); 3048 3049 sc.nr_reclaimed = 0; 3050 3051 /* 3052 * Scan in the highmem->dma direction for the highest 3053 * zone which needs scanning 3054 */ 3055 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3056 struct zone *zone = pgdat->node_zones + i; 3057 3058 if (!populated_zone(zone)) 3059 continue; 3060 3061 if (sc.priority != DEF_PRIORITY && 3062 !zone_reclaimable(zone)) 3063 continue; 3064 3065 /* 3066 * Do some background aging of the anon list, to give 3067 * pages a chance to be referenced before reclaiming. 3068 */ 3069 age_active_anon(zone, &sc); 3070 3071 /* 3072 * If the number of buffer_heads in the machine 3073 * exceeds the maximum allowed level and this node 3074 * has a highmem zone, force kswapd to reclaim from 3075 * it to relieve lowmem pressure. 3076 */ 3077 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3078 end_zone = i; 3079 break; 3080 } 3081 3082 if (!zone_balanced(zone, order, 0, 0)) { 3083 end_zone = i; 3084 break; 3085 } else { 3086 /* 3087 * If balanced, clear the dirty and congested 3088 * flags 3089 */ 3090 clear_bit(ZONE_CONGESTED, &zone->flags); 3091 clear_bit(ZONE_DIRTY, &zone->flags); 3092 } 3093 } 3094 3095 if (i < 0) 3096 goto out; 3097 3098 for (i = 0; i <= end_zone; i++) { 3099 struct zone *zone = pgdat->node_zones + i; 3100 3101 if (!populated_zone(zone)) 3102 continue; 3103 3104 lru_pages += zone_reclaimable_pages(zone); 3105 3106 /* 3107 * If any zone is currently balanced then kswapd will 3108 * not call compaction as it is expected that the 3109 * necessary pages are already available. 3110 */ 3111 if (pgdat_needs_compaction && 3112 zone_watermark_ok(zone, order, 3113 low_wmark_pages(zone), 3114 *classzone_idx, 0)) 3115 pgdat_needs_compaction = false; 3116 } 3117 3118 /* 3119 * If we're getting trouble reclaiming, start doing writepage 3120 * even in laptop mode. 3121 */ 3122 if (sc.priority < DEF_PRIORITY - 2) 3123 sc.may_writepage = 1; 3124 3125 /* 3126 * Now scan the zone in the dma->highmem direction, stopping 3127 * at the last zone which needs scanning. 3128 * 3129 * We do this because the page allocator works in the opposite 3130 * direction. This prevents the page allocator from allocating 3131 * pages behind kswapd's direction of progress, which would 3132 * cause too much scanning of the lower zones. 3133 */ 3134 for (i = 0; i <= end_zone; i++) { 3135 struct zone *zone = pgdat->node_zones + i; 3136 3137 if (!populated_zone(zone)) 3138 continue; 3139 3140 if (sc.priority != DEF_PRIORITY && 3141 !zone_reclaimable(zone)) 3142 continue; 3143 3144 sc.nr_scanned = 0; 3145 3146 nr_soft_scanned = 0; 3147 /* 3148 * Call soft limit reclaim before calling shrink_zone. 3149 */ 3150 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3151 order, sc.gfp_mask, 3152 &nr_soft_scanned); 3153 sc.nr_reclaimed += nr_soft_reclaimed; 3154 3155 /* 3156 * There should be no need to raise the scanning 3157 * priority if enough pages are already being scanned 3158 * that that high watermark would be met at 100% 3159 * efficiency. 3160 */ 3161 if (kswapd_shrink_zone(zone, end_zone, &sc, 3162 lru_pages, &nr_attempted)) 3163 raise_priority = false; 3164 } 3165 3166 /* 3167 * If the low watermark is met there is no need for processes 3168 * to be throttled on pfmemalloc_wait as they should not be 3169 * able to safely make forward progress. Wake them 3170 */ 3171 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3172 pfmemalloc_watermark_ok(pgdat)) 3173 wake_up(&pgdat->pfmemalloc_wait); 3174 3175 /* 3176 * Fragmentation may mean that the system cannot be rebalanced 3177 * for high-order allocations in all zones. If twice the 3178 * allocation size has been reclaimed and the zones are still 3179 * not balanced then recheck the watermarks at order-0 to 3180 * prevent kswapd reclaiming excessively. Assume that a 3181 * process requested a high-order can direct reclaim/compact. 3182 */ 3183 if (order && sc.nr_reclaimed >= 2UL << order) 3184 order = sc.order = 0; 3185 3186 /* Check if kswapd should be suspending */ 3187 if (try_to_freeze() || kthread_should_stop()) 3188 break; 3189 3190 /* 3191 * Compact if necessary and kswapd is reclaiming at least the 3192 * high watermark number of pages as requsted 3193 */ 3194 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3195 compact_pgdat(pgdat, order); 3196 3197 /* 3198 * Raise priority if scanning rate is too low or there was no 3199 * progress in reclaiming pages 3200 */ 3201 if (raise_priority || !sc.nr_reclaimed) 3202 sc.priority--; 3203 } while (sc.priority >= 1 && 3204 !pgdat_balanced(pgdat, order, *classzone_idx)); 3205 3206 out: 3207 /* 3208 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3209 * makes a decision on the order we were last reclaiming at. However, 3210 * if another caller entered the allocator slow path while kswapd 3211 * was awake, order will remain at the higher level 3212 */ 3213 *classzone_idx = end_zone; 3214 return order; 3215 } 3216 3217 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3218 { 3219 long remaining = 0; 3220 DEFINE_WAIT(wait); 3221 3222 if (freezing(current) || kthread_should_stop()) 3223 return; 3224 3225 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3226 3227 /* Try to sleep for a short interval */ 3228 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3229 remaining = schedule_timeout(HZ/10); 3230 finish_wait(&pgdat->kswapd_wait, &wait); 3231 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3232 } 3233 3234 /* 3235 * After a short sleep, check if it was a premature sleep. If not, then 3236 * go fully to sleep until explicitly woken up. 3237 */ 3238 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3239 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3240 3241 /* 3242 * vmstat counters are not perfectly accurate and the estimated 3243 * value for counters such as NR_FREE_PAGES can deviate from the 3244 * true value by nr_online_cpus * threshold. To avoid the zone 3245 * watermarks being breached while under pressure, we reduce the 3246 * per-cpu vmstat threshold while kswapd is awake and restore 3247 * them before going back to sleep. 3248 */ 3249 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3250 3251 /* 3252 * Compaction records what page blocks it recently failed to 3253 * isolate pages from and skips them in the future scanning. 3254 * When kswapd is going to sleep, it is reasonable to assume 3255 * that pages and compaction may succeed so reset the cache. 3256 */ 3257 reset_isolation_suitable(pgdat); 3258 3259 if (!kthread_should_stop()) 3260 schedule(); 3261 3262 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3263 } else { 3264 if (remaining) 3265 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3266 else 3267 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3268 } 3269 finish_wait(&pgdat->kswapd_wait, &wait); 3270 } 3271 3272 /* 3273 * The background pageout daemon, started as a kernel thread 3274 * from the init process. 3275 * 3276 * This basically trickles out pages so that we have _some_ 3277 * free memory available even if there is no other activity 3278 * that frees anything up. This is needed for things like routing 3279 * etc, where we otherwise might have all activity going on in 3280 * asynchronous contexts that cannot page things out. 3281 * 3282 * If there are applications that are active memory-allocators 3283 * (most normal use), this basically shouldn't matter. 3284 */ 3285 static int kswapd(void *p) 3286 { 3287 unsigned long order, new_order; 3288 unsigned balanced_order; 3289 int classzone_idx, new_classzone_idx; 3290 int balanced_classzone_idx; 3291 pg_data_t *pgdat = (pg_data_t*)p; 3292 struct task_struct *tsk = current; 3293 3294 struct reclaim_state reclaim_state = { 3295 .reclaimed_slab = 0, 3296 }; 3297 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3298 3299 lockdep_set_current_reclaim_state(GFP_KERNEL); 3300 3301 if (!cpumask_empty(cpumask)) 3302 set_cpus_allowed_ptr(tsk, cpumask); 3303 current->reclaim_state = &reclaim_state; 3304 3305 /* 3306 * Tell the memory management that we're a "memory allocator", 3307 * and that if we need more memory we should get access to it 3308 * regardless (see "__alloc_pages()"). "kswapd" should 3309 * never get caught in the normal page freeing logic. 3310 * 3311 * (Kswapd normally doesn't need memory anyway, but sometimes 3312 * you need a small amount of memory in order to be able to 3313 * page out something else, and this flag essentially protects 3314 * us from recursively trying to free more memory as we're 3315 * trying to free the first piece of memory in the first place). 3316 */ 3317 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3318 set_freezable(); 3319 3320 order = new_order = 0; 3321 balanced_order = 0; 3322 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3323 balanced_classzone_idx = classzone_idx; 3324 for ( ; ; ) { 3325 bool ret; 3326 3327 /* 3328 * If the last balance_pgdat was unsuccessful it's unlikely a 3329 * new request of a similar or harder type will succeed soon 3330 * so consider going to sleep on the basis we reclaimed at 3331 */ 3332 if (balanced_classzone_idx >= new_classzone_idx && 3333 balanced_order == new_order) { 3334 new_order = pgdat->kswapd_max_order; 3335 new_classzone_idx = pgdat->classzone_idx; 3336 pgdat->kswapd_max_order = 0; 3337 pgdat->classzone_idx = pgdat->nr_zones - 1; 3338 } 3339 3340 if (order < new_order || classzone_idx > new_classzone_idx) { 3341 /* 3342 * Don't sleep if someone wants a larger 'order' 3343 * allocation or has tigher zone constraints 3344 */ 3345 order = new_order; 3346 classzone_idx = new_classzone_idx; 3347 } else { 3348 kswapd_try_to_sleep(pgdat, balanced_order, 3349 balanced_classzone_idx); 3350 order = pgdat->kswapd_max_order; 3351 classzone_idx = pgdat->classzone_idx; 3352 new_order = order; 3353 new_classzone_idx = classzone_idx; 3354 pgdat->kswapd_max_order = 0; 3355 pgdat->classzone_idx = pgdat->nr_zones - 1; 3356 } 3357 3358 ret = try_to_freeze(); 3359 if (kthread_should_stop()) 3360 break; 3361 3362 /* 3363 * We can speed up thawing tasks if we don't call balance_pgdat 3364 * after returning from the refrigerator 3365 */ 3366 if (!ret) { 3367 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3368 balanced_classzone_idx = classzone_idx; 3369 balanced_order = balance_pgdat(pgdat, order, 3370 &balanced_classzone_idx); 3371 } 3372 } 3373 3374 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3375 current->reclaim_state = NULL; 3376 lockdep_clear_current_reclaim_state(); 3377 3378 return 0; 3379 } 3380 3381 /* 3382 * A zone is low on free memory, so wake its kswapd task to service it. 3383 */ 3384 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3385 { 3386 pg_data_t *pgdat; 3387 3388 if (!populated_zone(zone)) 3389 return; 3390 3391 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3392 return; 3393 pgdat = zone->zone_pgdat; 3394 if (pgdat->kswapd_max_order < order) { 3395 pgdat->kswapd_max_order = order; 3396 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3397 } 3398 if (!waitqueue_active(&pgdat->kswapd_wait)) 3399 return; 3400 if (zone_balanced(zone, order, 0, 0)) 3401 return; 3402 3403 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3404 wake_up_interruptible(&pgdat->kswapd_wait); 3405 } 3406 3407 #ifdef CONFIG_HIBERNATION 3408 /* 3409 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3410 * freed pages. 3411 * 3412 * Rather than trying to age LRUs the aim is to preserve the overall 3413 * LRU order by reclaiming preferentially 3414 * inactive > active > active referenced > active mapped 3415 */ 3416 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3417 { 3418 struct reclaim_state reclaim_state; 3419 struct scan_control sc = { 3420 .nr_to_reclaim = nr_to_reclaim, 3421 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3422 .priority = DEF_PRIORITY, 3423 .may_writepage = 1, 3424 .may_unmap = 1, 3425 .may_swap = 1, 3426 .hibernation_mode = 1, 3427 }; 3428 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3429 struct task_struct *p = current; 3430 unsigned long nr_reclaimed; 3431 3432 p->flags |= PF_MEMALLOC; 3433 lockdep_set_current_reclaim_state(sc.gfp_mask); 3434 reclaim_state.reclaimed_slab = 0; 3435 p->reclaim_state = &reclaim_state; 3436 3437 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3438 3439 p->reclaim_state = NULL; 3440 lockdep_clear_current_reclaim_state(); 3441 p->flags &= ~PF_MEMALLOC; 3442 3443 return nr_reclaimed; 3444 } 3445 #endif /* CONFIG_HIBERNATION */ 3446 3447 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3448 not required for correctness. So if the last cpu in a node goes 3449 away, we get changed to run anywhere: as the first one comes back, 3450 restore their cpu bindings. */ 3451 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3452 void *hcpu) 3453 { 3454 int nid; 3455 3456 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3457 for_each_node_state(nid, N_MEMORY) { 3458 pg_data_t *pgdat = NODE_DATA(nid); 3459 const struct cpumask *mask; 3460 3461 mask = cpumask_of_node(pgdat->node_id); 3462 3463 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3464 /* One of our CPUs online: restore mask */ 3465 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3466 } 3467 } 3468 return NOTIFY_OK; 3469 } 3470 3471 /* 3472 * This kswapd start function will be called by init and node-hot-add. 3473 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3474 */ 3475 int kswapd_run(int nid) 3476 { 3477 pg_data_t *pgdat = NODE_DATA(nid); 3478 int ret = 0; 3479 3480 if (pgdat->kswapd) 3481 return 0; 3482 3483 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3484 if (IS_ERR(pgdat->kswapd)) { 3485 /* failure at boot is fatal */ 3486 BUG_ON(system_state == SYSTEM_BOOTING); 3487 pr_err("Failed to start kswapd on node %d\n", nid); 3488 ret = PTR_ERR(pgdat->kswapd); 3489 pgdat->kswapd = NULL; 3490 } 3491 return ret; 3492 } 3493 3494 /* 3495 * Called by memory hotplug when all memory in a node is offlined. Caller must 3496 * hold mem_hotplug_begin/end(). 3497 */ 3498 void kswapd_stop(int nid) 3499 { 3500 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3501 3502 if (kswapd) { 3503 kthread_stop(kswapd); 3504 NODE_DATA(nid)->kswapd = NULL; 3505 } 3506 } 3507 3508 static int __init kswapd_init(void) 3509 { 3510 int nid; 3511 3512 swap_setup(); 3513 for_each_node_state(nid, N_MEMORY) 3514 kswapd_run(nid); 3515 hotcpu_notifier(cpu_callback, 0); 3516 return 0; 3517 } 3518 3519 module_init(kswapd_init) 3520 3521 #ifdef CONFIG_NUMA 3522 /* 3523 * Zone reclaim mode 3524 * 3525 * If non-zero call zone_reclaim when the number of free pages falls below 3526 * the watermarks. 3527 */ 3528 int zone_reclaim_mode __read_mostly; 3529 3530 #define RECLAIM_OFF 0 3531 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3532 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3533 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3534 3535 /* 3536 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3537 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3538 * a zone. 3539 */ 3540 #define ZONE_RECLAIM_PRIORITY 4 3541 3542 /* 3543 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3544 * occur. 3545 */ 3546 int sysctl_min_unmapped_ratio = 1; 3547 3548 /* 3549 * If the number of slab pages in a zone grows beyond this percentage then 3550 * slab reclaim needs to occur. 3551 */ 3552 int sysctl_min_slab_ratio = 5; 3553 3554 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3555 { 3556 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3557 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3558 zone_page_state(zone, NR_ACTIVE_FILE); 3559 3560 /* 3561 * It's possible for there to be more file mapped pages than 3562 * accounted for by the pages on the file LRU lists because 3563 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3564 */ 3565 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3566 } 3567 3568 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3569 static long zone_pagecache_reclaimable(struct zone *zone) 3570 { 3571 long nr_pagecache_reclaimable; 3572 long delta = 0; 3573 3574 /* 3575 * If RECLAIM_SWAP is set, then all file pages are considered 3576 * potentially reclaimable. Otherwise, we have to worry about 3577 * pages like swapcache and zone_unmapped_file_pages() provides 3578 * a better estimate 3579 */ 3580 if (zone_reclaim_mode & RECLAIM_SWAP) 3581 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3582 else 3583 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3584 3585 /* If we can't clean pages, remove dirty pages from consideration */ 3586 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3587 delta += zone_page_state(zone, NR_FILE_DIRTY); 3588 3589 /* Watch for any possible underflows due to delta */ 3590 if (unlikely(delta > nr_pagecache_reclaimable)) 3591 delta = nr_pagecache_reclaimable; 3592 3593 return nr_pagecache_reclaimable - delta; 3594 } 3595 3596 /* 3597 * Try to free up some pages from this zone through reclaim. 3598 */ 3599 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3600 { 3601 /* Minimum pages needed in order to stay on node */ 3602 const unsigned long nr_pages = 1 << order; 3603 struct task_struct *p = current; 3604 struct reclaim_state reclaim_state; 3605 struct scan_control sc = { 3606 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3607 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3608 .order = order, 3609 .priority = ZONE_RECLAIM_PRIORITY, 3610 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3611 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3612 .may_swap = 1, 3613 }; 3614 struct shrink_control shrink = { 3615 .gfp_mask = sc.gfp_mask, 3616 }; 3617 unsigned long nr_slab_pages0, nr_slab_pages1; 3618 3619 cond_resched(); 3620 /* 3621 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3622 * and we also need to be able to write out pages for RECLAIM_WRITE 3623 * and RECLAIM_SWAP. 3624 */ 3625 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3626 lockdep_set_current_reclaim_state(gfp_mask); 3627 reclaim_state.reclaimed_slab = 0; 3628 p->reclaim_state = &reclaim_state; 3629 3630 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3631 /* 3632 * Free memory by calling shrink zone with increasing 3633 * priorities until we have enough memory freed. 3634 */ 3635 do { 3636 shrink_zone(zone, &sc); 3637 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3638 } 3639 3640 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3641 if (nr_slab_pages0 > zone->min_slab_pages) { 3642 /* 3643 * shrink_slab() does not currently allow us to determine how 3644 * many pages were freed in this zone. So we take the current 3645 * number of slab pages and shake the slab until it is reduced 3646 * by the same nr_pages that we used for reclaiming unmapped 3647 * pages. 3648 */ 3649 nodes_clear(shrink.nodes_to_scan); 3650 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 3651 for (;;) { 3652 unsigned long lru_pages = zone_reclaimable_pages(zone); 3653 3654 /* No reclaimable slab or very low memory pressure */ 3655 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3656 break; 3657 3658 /* Freed enough memory */ 3659 nr_slab_pages1 = zone_page_state(zone, 3660 NR_SLAB_RECLAIMABLE); 3661 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3662 break; 3663 } 3664 3665 /* 3666 * Update nr_reclaimed by the number of slab pages we 3667 * reclaimed from this zone. 3668 */ 3669 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3670 if (nr_slab_pages1 < nr_slab_pages0) 3671 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3672 } 3673 3674 p->reclaim_state = NULL; 3675 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3676 lockdep_clear_current_reclaim_state(); 3677 return sc.nr_reclaimed >= nr_pages; 3678 } 3679 3680 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3681 { 3682 int node_id; 3683 int ret; 3684 3685 /* 3686 * Zone reclaim reclaims unmapped file backed pages and 3687 * slab pages if we are over the defined limits. 3688 * 3689 * A small portion of unmapped file backed pages is needed for 3690 * file I/O otherwise pages read by file I/O will be immediately 3691 * thrown out if the zone is overallocated. So we do not reclaim 3692 * if less than a specified percentage of the zone is used by 3693 * unmapped file backed pages. 3694 */ 3695 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3696 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3697 return ZONE_RECLAIM_FULL; 3698 3699 if (!zone_reclaimable(zone)) 3700 return ZONE_RECLAIM_FULL; 3701 3702 /* 3703 * Do not scan if the allocation should not be delayed. 3704 */ 3705 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3706 return ZONE_RECLAIM_NOSCAN; 3707 3708 /* 3709 * Only run zone reclaim on the local zone or on zones that do not 3710 * have associated processors. This will favor the local processor 3711 * over remote processors and spread off node memory allocations 3712 * as wide as possible. 3713 */ 3714 node_id = zone_to_nid(zone); 3715 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3716 return ZONE_RECLAIM_NOSCAN; 3717 3718 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3719 return ZONE_RECLAIM_NOSCAN; 3720 3721 ret = __zone_reclaim(zone, gfp_mask, order); 3722 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3723 3724 if (!ret) 3725 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3726 3727 return ret; 3728 } 3729 #endif 3730 3731 /* 3732 * page_evictable - test whether a page is evictable 3733 * @page: the page to test 3734 * 3735 * Test whether page is evictable--i.e., should be placed on active/inactive 3736 * lists vs unevictable list. 3737 * 3738 * Reasons page might not be evictable: 3739 * (1) page's mapping marked unevictable 3740 * (2) page is part of an mlocked VMA 3741 * 3742 */ 3743 int page_evictable(struct page *page) 3744 { 3745 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3746 } 3747 3748 #ifdef CONFIG_SHMEM 3749 /** 3750 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3751 * @pages: array of pages to check 3752 * @nr_pages: number of pages to check 3753 * 3754 * Checks pages for evictability and moves them to the appropriate lru list. 3755 * 3756 * This function is only used for SysV IPC SHM_UNLOCK. 3757 */ 3758 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3759 { 3760 struct lruvec *lruvec; 3761 struct zone *zone = NULL; 3762 int pgscanned = 0; 3763 int pgrescued = 0; 3764 int i; 3765 3766 for (i = 0; i < nr_pages; i++) { 3767 struct page *page = pages[i]; 3768 struct zone *pagezone; 3769 3770 pgscanned++; 3771 pagezone = page_zone(page); 3772 if (pagezone != zone) { 3773 if (zone) 3774 spin_unlock_irq(&zone->lru_lock); 3775 zone = pagezone; 3776 spin_lock_irq(&zone->lru_lock); 3777 } 3778 lruvec = mem_cgroup_page_lruvec(page, zone); 3779 3780 if (!PageLRU(page) || !PageUnevictable(page)) 3781 continue; 3782 3783 if (page_evictable(page)) { 3784 enum lru_list lru = page_lru_base_type(page); 3785 3786 VM_BUG_ON_PAGE(PageActive(page), page); 3787 ClearPageUnevictable(page); 3788 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3789 add_page_to_lru_list(page, lruvec, lru); 3790 pgrescued++; 3791 } 3792 } 3793 3794 if (zone) { 3795 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3796 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3797 spin_unlock_irq(&zone->lru_lock); 3798 } 3799 } 3800 #endif /* CONFIG_SHMEM */ 3801