1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* This context's GFP mask */ 69 gfp_t gfp_mask; 70 71 /* Allocation order */ 72 int order; 73 74 /* 75 * Nodemask of nodes allowed by the caller. If NULL, all nodes 76 * are scanned. 77 */ 78 nodemask_t *nodemask; 79 80 /* 81 * The memory cgroup that hit its limit and as a result is the 82 * primary target of this reclaim invocation. 83 */ 84 struct mem_cgroup *target_mem_cgroup; 85 86 /* Scan (total_size >> priority) pages at once */ 87 int priority; 88 89 /* The highest zone to isolate pages for reclaim from */ 90 enum zone_type reclaim_idx; 91 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 93 unsigned int may_writepage:1; 94 95 /* Can mapped pages be reclaimed? */ 96 unsigned int may_unmap:1; 97 98 /* Can pages be swapped as part of reclaim? */ 99 unsigned int may_swap:1; 100 101 /* 102 * Cgroups are not reclaimed below their configured memory.low, 103 * unless we threaten to OOM. If any cgroups are skipped due to 104 * memory.low and nothing was reclaimed, go back for memory.low. 105 */ 106 unsigned int memcg_low_reclaim:1; 107 unsigned int memcg_low_skipped:1; 108 109 unsigned int hibernation_mode:1; 110 111 /* One of the zones is ready for compaction */ 112 unsigned int compaction_ready:1; 113 114 /* Incremented by the number of inactive pages that were scanned */ 115 unsigned long nr_scanned; 116 117 /* Number of pages freed so far during a call to shrink_zones() */ 118 unsigned long nr_reclaimed; 119 }; 120 121 #ifdef ARCH_HAS_PREFETCH 122 #define prefetch_prev_lru_page(_page, _base, _field) \ 123 do { \ 124 if ((_page)->lru.prev != _base) { \ 125 struct page *prev; \ 126 \ 127 prev = lru_to_page(&(_page->lru)); \ 128 prefetch(&prev->_field); \ 129 } \ 130 } while (0) 131 #else 132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 133 #endif 134 135 #ifdef ARCH_HAS_PREFETCHW 136 #define prefetchw_prev_lru_page(_page, _base, _field) \ 137 do { \ 138 if ((_page)->lru.prev != _base) { \ 139 struct page *prev; \ 140 \ 141 prev = lru_to_page(&(_page->lru)); \ 142 prefetchw(&prev->_field); \ 143 } \ 144 } while (0) 145 #else 146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 147 #endif 148 149 /* 150 * From 0 .. 100. Higher means more swappy. 151 */ 152 int vm_swappiness = 60; 153 /* 154 * The total number of pages which are beyond the high watermark within all 155 * zones. 156 */ 157 unsigned long vm_total_pages; 158 159 static LIST_HEAD(shrinker_list); 160 static DECLARE_RWSEM(shrinker_rwsem); 161 162 #ifdef CONFIG_MEMCG 163 static bool global_reclaim(struct scan_control *sc) 164 { 165 return !sc->target_mem_cgroup; 166 } 167 168 /** 169 * sane_reclaim - is the usual dirty throttling mechanism operational? 170 * @sc: scan_control in question 171 * 172 * The normal page dirty throttling mechanism in balance_dirty_pages() is 173 * completely broken with the legacy memcg and direct stalling in 174 * shrink_page_list() is used for throttling instead, which lacks all the 175 * niceties such as fairness, adaptive pausing, bandwidth proportional 176 * allocation and configurability. 177 * 178 * This function tests whether the vmscan currently in progress can assume 179 * that the normal dirty throttling mechanism is operational. 180 */ 181 static bool sane_reclaim(struct scan_control *sc) 182 { 183 struct mem_cgroup *memcg = sc->target_mem_cgroup; 184 185 if (!memcg) 186 return true; 187 #ifdef CONFIG_CGROUP_WRITEBACK 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 189 return true; 190 #endif 191 return false; 192 } 193 #else 194 static bool global_reclaim(struct scan_control *sc) 195 { 196 return true; 197 } 198 199 static bool sane_reclaim(struct scan_control *sc) 200 { 201 return true; 202 } 203 #endif 204 205 /* 206 * This misses isolated pages which are not accounted for to save counters. 207 * As the data only determines if reclaim or compaction continues, it is 208 * not expected that isolated pages will be a dominating factor. 209 */ 210 unsigned long zone_reclaimable_pages(struct zone *zone) 211 { 212 unsigned long nr; 213 214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 216 if (get_nr_swap_pages() > 0) 217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 219 220 return nr; 221 } 222 223 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 224 { 225 unsigned long nr; 226 227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 230 231 if (get_nr_swap_pages() > 0) 232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 235 236 return nr; 237 } 238 239 /** 240 * lruvec_lru_size - Returns the number of pages on the given LRU list. 241 * @lruvec: lru vector 242 * @lru: lru to use 243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 244 */ 245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 246 { 247 unsigned long lru_size; 248 int zid; 249 250 if (!mem_cgroup_disabled()) 251 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 252 else 253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 254 255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 257 unsigned long size; 258 259 if (!managed_zone(zone)) 260 continue; 261 262 if (!mem_cgroup_disabled()) 263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 264 else 265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 266 NR_ZONE_LRU_BASE + lru); 267 lru_size -= min(size, lru_size); 268 } 269 270 return lru_size; 271 272 } 273 274 /* 275 * Add a shrinker callback to be called from the vm. 276 */ 277 int register_shrinker(struct shrinker *shrinker) 278 { 279 size_t size = sizeof(*shrinker->nr_deferred); 280 281 if (shrinker->flags & SHRINKER_NUMA_AWARE) 282 size *= nr_node_ids; 283 284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 285 if (!shrinker->nr_deferred) 286 return -ENOMEM; 287 288 down_write(&shrinker_rwsem); 289 list_add_tail(&shrinker->list, &shrinker_list); 290 up_write(&shrinker_rwsem); 291 return 0; 292 } 293 EXPORT_SYMBOL(register_shrinker); 294 295 /* 296 * Remove one 297 */ 298 void unregister_shrinker(struct shrinker *shrinker) 299 { 300 down_write(&shrinker_rwsem); 301 list_del(&shrinker->list); 302 up_write(&shrinker_rwsem); 303 kfree(shrinker->nr_deferred); 304 } 305 EXPORT_SYMBOL(unregister_shrinker); 306 307 #define SHRINK_BATCH 128 308 309 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 310 struct shrinker *shrinker, 311 unsigned long nr_scanned, 312 unsigned long nr_eligible) 313 { 314 unsigned long freed = 0; 315 unsigned long long delta; 316 long total_scan; 317 long freeable; 318 long nr; 319 long new_nr; 320 int nid = shrinkctl->nid; 321 long batch_size = shrinker->batch ? shrinker->batch 322 : SHRINK_BATCH; 323 long scanned = 0, next_deferred; 324 325 freeable = shrinker->count_objects(shrinker, shrinkctl); 326 if (freeable == 0) 327 return 0; 328 329 /* 330 * copy the current shrinker scan count into a local variable 331 * and zero it so that other concurrent shrinker invocations 332 * don't also do this scanning work. 333 */ 334 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 335 336 total_scan = nr; 337 delta = (4 * nr_scanned) / shrinker->seeks; 338 delta *= freeable; 339 do_div(delta, nr_eligible + 1); 340 total_scan += delta; 341 if (total_scan < 0) { 342 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 343 shrinker->scan_objects, total_scan); 344 total_scan = freeable; 345 next_deferred = nr; 346 } else 347 next_deferred = total_scan; 348 349 /* 350 * We need to avoid excessive windup on filesystem shrinkers 351 * due to large numbers of GFP_NOFS allocations causing the 352 * shrinkers to return -1 all the time. This results in a large 353 * nr being built up so when a shrink that can do some work 354 * comes along it empties the entire cache due to nr >>> 355 * freeable. This is bad for sustaining a working set in 356 * memory. 357 * 358 * Hence only allow the shrinker to scan the entire cache when 359 * a large delta change is calculated directly. 360 */ 361 if (delta < freeable / 4) 362 total_scan = min(total_scan, freeable / 2); 363 364 /* 365 * Avoid risking looping forever due to too large nr value: 366 * never try to free more than twice the estimate number of 367 * freeable entries. 368 */ 369 if (total_scan > freeable * 2) 370 total_scan = freeable * 2; 371 372 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 373 nr_scanned, nr_eligible, 374 freeable, delta, total_scan); 375 376 /* 377 * Normally, we should not scan less than batch_size objects in one 378 * pass to avoid too frequent shrinker calls, but if the slab has less 379 * than batch_size objects in total and we are really tight on memory, 380 * we will try to reclaim all available objects, otherwise we can end 381 * up failing allocations although there are plenty of reclaimable 382 * objects spread over several slabs with usage less than the 383 * batch_size. 384 * 385 * We detect the "tight on memory" situations by looking at the total 386 * number of objects we want to scan (total_scan). If it is greater 387 * than the total number of objects on slab (freeable), we must be 388 * scanning at high prio and therefore should try to reclaim as much as 389 * possible. 390 */ 391 while (total_scan >= batch_size || 392 total_scan >= freeable) { 393 unsigned long ret; 394 unsigned long nr_to_scan = min(batch_size, total_scan); 395 396 shrinkctl->nr_to_scan = nr_to_scan; 397 shrinkctl->nr_scanned = nr_to_scan; 398 ret = shrinker->scan_objects(shrinker, shrinkctl); 399 if (ret == SHRINK_STOP) 400 break; 401 freed += ret; 402 403 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 404 total_scan -= shrinkctl->nr_scanned; 405 scanned += shrinkctl->nr_scanned; 406 407 cond_resched(); 408 } 409 410 if (next_deferred >= scanned) 411 next_deferred -= scanned; 412 else 413 next_deferred = 0; 414 /* 415 * move the unused scan count back into the shrinker in a 416 * manner that handles concurrent updates. If we exhausted the 417 * scan, there is no need to do an update. 418 */ 419 if (next_deferred > 0) 420 new_nr = atomic_long_add_return(next_deferred, 421 &shrinker->nr_deferred[nid]); 422 else 423 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 424 425 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 426 return freed; 427 } 428 429 /** 430 * shrink_slab - shrink slab caches 431 * @gfp_mask: allocation context 432 * @nid: node whose slab caches to target 433 * @memcg: memory cgroup whose slab caches to target 434 * @nr_scanned: pressure numerator 435 * @nr_eligible: pressure denominator 436 * 437 * Call the shrink functions to age shrinkable caches. 438 * 439 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 440 * unaware shrinkers will receive a node id of 0 instead. 441 * 442 * @memcg specifies the memory cgroup to target. If it is not NULL, 443 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 444 * objects from the memory cgroup specified. Otherwise, only unaware 445 * shrinkers are called. 446 * 447 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 448 * the available objects should be scanned. Page reclaim for example 449 * passes the number of pages scanned and the number of pages on the 450 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 451 * when it encountered mapped pages. The ratio is further biased by 452 * the ->seeks setting of the shrink function, which indicates the 453 * cost to recreate an object relative to that of an LRU page. 454 * 455 * Returns the number of reclaimed slab objects. 456 */ 457 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 458 struct mem_cgroup *memcg, 459 unsigned long nr_scanned, 460 unsigned long nr_eligible) 461 { 462 struct shrinker *shrinker; 463 unsigned long freed = 0; 464 465 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 466 return 0; 467 468 if (nr_scanned == 0) 469 nr_scanned = SWAP_CLUSTER_MAX; 470 471 if (!down_read_trylock(&shrinker_rwsem)) { 472 /* 473 * If we would return 0, our callers would understand that we 474 * have nothing else to shrink and give up trying. By returning 475 * 1 we keep it going and assume we'll be able to shrink next 476 * time. 477 */ 478 freed = 1; 479 goto out; 480 } 481 482 list_for_each_entry(shrinker, &shrinker_list, list) { 483 struct shrink_control sc = { 484 .gfp_mask = gfp_mask, 485 .nid = nid, 486 .memcg = memcg, 487 }; 488 489 /* 490 * If kernel memory accounting is disabled, we ignore 491 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 492 * passing NULL for memcg. 493 */ 494 if (memcg_kmem_enabled() && 495 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 496 continue; 497 498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 499 sc.nid = 0; 500 501 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 502 } 503 504 up_read(&shrinker_rwsem); 505 out: 506 cond_resched(); 507 return freed; 508 } 509 510 void drop_slab_node(int nid) 511 { 512 unsigned long freed; 513 514 do { 515 struct mem_cgroup *memcg = NULL; 516 517 freed = 0; 518 do { 519 freed += shrink_slab(GFP_KERNEL, nid, memcg, 520 1000, 1000); 521 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 522 } while (freed > 10); 523 } 524 525 void drop_slab(void) 526 { 527 int nid; 528 529 for_each_online_node(nid) 530 drop_slab_node(nid); 531 } 532 533 static inline int is_page_cache_freeable(struct page *page) 534 { 535 /* 536 * A freeable page cache page is referenced only by the caller 537 * that isolated the page, the page cache radix tree and 538 * optional buffer heads at page->private. 539 */ 540 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 541 HPAGE_PMD_NR : 1; 542 return page_count(page) - page_has_private(page) == 1 + radix_pins; 543 } 544 545 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 546 { 547 if (current->flags & PF_SWAPWRITE) 548 return 1; 549 if (!inode_write_congested(inode)) 550 return 1; 551 if (inode_to_bdi(inode) == current->backing_dev_info) 552 return 1; 553 return 0; 554 } 555 556 /* 557 * We detected a synchronous write error writing a page out. Probably 558 * -ENOSPC. We need to propagate that into the address_space for a subsequent 559 * fsync(), msync() or close(). 560 * 561 * The tricky part is that after writepage we cannot touch the mapping: nothing 562 * prevents it from being freed up. But we have a ref on the page and once 563 * that page is locked, the mapping is pinned. 564 * 565 * We're allowed to run sleeping lock_page() here because we know the caller has 566 * __GFP_FS. 567 */ 568 static void handle_write_error(struct address_space *mapping, 569 struct page *page, int error) 570 { 571 lock_page(page); 572 if (page_mapping(page) == mapping) 573 mapping_set_error(mapping, error); 574 unlock_page(page); 575 } 576 577 /* possible outcome of pageout() */ 578 typedef enum { 579 /* failed to write page out, page is locked */ 580 PAGE_KEEP, 581 /* move page to the active list, page is locked */ 582 PAGE_ACTIVATE, 583 /* page has been sent to the disk successfully, page is unlocked */ 584 PAGE_SUCCESS, 585 /* page is clean and locked */ 586 PAGE_CLEAN, 587 } pageout_t; 588 589 /* 590 * pageout is called by shrink_page_list() for each dirty page. 591 * Calls ->writepage(). 592 */ 593 static pageout_t pageout(struct page *page, struct address_space *mapping, 594 struct scan_control *sc) 595 { 596 /* 597 * If the page is dirty, only perform writeback if that write 598 * will be non-blocking. To prevent this allocation from being 599 * stalled by pagecache activity. But note that there may be 600 * stalls if we need to run get_block(). We could test 601 * PagePrivate for that. 602 * 603 * If this process is currently in __generic_file_write_iter() against 604 * this page's queue, we can perform writeback even if that 605 * will block. 606 * 607 * If the page is swapcache, write it back even if that would 608 * block, for some throttling. This happens by accident, because 609 * swap_backing_dev_info is bust: it doesn't reflect the 610 * congestion state of the swapdevs. Easy to fix, if needed. 611 */ 612 if (!is_page_cache_freeable(page)) 613 return PAGE_KEEP; 614 if (!mapping) { 615 /* 616 * Some data journaling orphaned pages can have 617 * page->mapping == NULL while being dirty with clean buffers. 618 */ 619 if (page_has_private(page)) { 620 if (try_to_free_buffers(page)) { 621 ClearPageDirty(page); 622 pr_info("%s: orphaned page\n", __func__); 623 return PAGE_CLEAN; 624 } 625 } 626 return PAGE_KEEP; 627 } 628 if (mapping->a_ops->writepage == NULL) 629 return PAGE_ACTIVATE; 630 if (!may_write_to_inode(mapping->host, sc)) 631 return PAGE_KEEP; 632 633 if (clear_page_dirty_for_io(page)) { 634 int res; 635 struct writeback_control wbc = { 636 .sync_mode = WB_SYNC_NONE, 637 .nr_to_write = SWAP_CLUSTER_MAX, 638 .range_start = 0, 639 .range_end = LLONG_MAX, 640 .for_reclaim = 1, 641 }; 642 643 SetPageReclaim(page); 644 res = mapping->a_ops->writepage(page, &wbc); 645 if (res < 0) 646 handle_write_error(mapping, page, res); 647 if (res == AOP_WRITEPAGE_ACTIVATE) { 648 ClearPageReclaim(page); 649 return PAGE_ACTIVATE; 650 } 651 652 if (!PageWriteback(page)) { 653 /* synchronous write or broken a_ops? */ 654 ClearPageReclaim(page); 655 } 656 trace_mm_vmscan_writepage(page); 657 inc_node_page_state(page, NR_VMSCAN_WRITE); 658 return PAGE_SUCCESS; 659 } 660 661 return PAGE_CLEAN; 662 } 663 664 /* 665 * Same as remove_mapping, but if the page is removed from the mapping, it 666 * gets returned with a refcount of 0. 667 */ 668 static int __remove_mapping(struct address_space *mapping, struct page *page, 669 bool reclaimed) 670 { 671 unsigned long flags; 672 int refcount; 673 674 BUG_ON(!PageLocked(page)); 675 BUG_ON(mapping != page_mapping(page)); 676 677 spin_lock_irqsave(&mapping->tree_lock, flags); 678 /* 679 * The non racy check for a busy page. 680 * 681 * Must be careful with the order of the tests. When someone has 682 * a ref to the page, it may be possible that they dirty it then 683 * drop the reference. So if PageDirty is tested before page_count 684 * here, then the following race may occur: 685 * 686 * get_user_pages(&page); 687 * [user mapping goes away] 688 * write_to(page); 689 * !PageDirty(page) [good] 690 * SetPageDirty(page); 691 * put_page(page); 692 * !page_count(page) [good, discard it] 693 * 694 * [oops, our write_to data is lost] 695 * 696 * Reversing the order of the tests ensures such a situation cannot 697 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 698 * load is not satisfied before that of page->_refcount. 699 * 700 * Note that if SetPageDirty is always performed via set_page_dirty, 701 * and thus under tree_lock, then this ordering is not required. 702 */ 703 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 704 refcount = 1 + HPAGE_PMD_NR; 705 else 706 refcount = 2; 707 if (!page_ref_freeze(page, refcount)) 708 goto cannot_free; 709 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 710 if (unlikely(PageDirty(page))) { 711 page_ref_unfreeze(page, refcount); 712 goto cannot_free; 713 } 714 715 if (PageSwapCache(page)) { 716 swp_entry_t swap = { .val = page_private(page) }; 717 mem_cgroup_swapout(page, swap); 718 __delete_from_swap_cache(page); 719 spin_unlock_irqrestore(&mapping->tree_lock, flags); 720 put_swap_page(page, swap); 721 } else { 722 void (*freepage)(struct page *); 723 void *shadow = NULL; 724 725 freepage = mapping->a_ops->freepage; 726 /* 727 * Remember a shadow entry for reclaimed file cache in 728 * order to detect refaults, thus thrashing, later on. 729 * 730 * But don't store shadows in an address space that is 731 * already exiting. This is not just an optizimation, 732 * inode reclaim needs to empty out the radix tree or 733 * the nodes are lost. Don't plant shadows behind its 734 * back. 735 * 736 * We also don't store shadows for DAX mappings because the 737 * only page cache pages found in these are zero pages 738 * covering holes, and because we don't want to mix DAX 739 * exceptional entries and shadow exceptional entries in the 740 * same page_tree. 741 */ 742 if (reclaimed && page_is_file_cache(page) && 743 !mapping_exiting(mapping) && !dax_mapping(mapping)) 744 shadow = workingset_eviction(mapping, page); 745 __delete_from_page_cache(page, shadow); 746 spin_unlock_irqrestore(&mapping->tree_lock, flags); 747 748 if (freepage != NULL) 749 freepage(page); 750 } 751 752 return 1; 753 754 cannot_free: 755 spin_unlock_irqrestore(&mapping->tree_lock, flags); 756 return 0; 757 } 758 759 /* 760 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 761 * someone else has a ref on the page, abort and return 0. If it was 762 * successfully detached, return 1. Assumes the caller has a single ref on 763 * this page. 764 */ 765 int remove_mapping(struct address_space *mapping, struct page *page) 766 { 767 if (__remove_mapping(mapping, page, false)) { 768 /* 769 * Unfreezing the refcount with 1 rather than 2 effectively 770 * drops the pagecache ref for us without requiring another 771 * atomic operation. 772 */ 773 page_ref_unfreeze(page, 1); 774 return 1; 775 } 776 return 0; 777 } 778 779 /** 780 * putback_lru_page - put previously isolated page onto appropriate LRU list 781 * @page: page to be put back to appropriate lru list 782 * 783 * Add previously isolated @page to appropriate LRU list. 784 * Page may still be unevictable for other reasons. 785 * 786 * lru_lock must not be held, interrupts must be enabled. 787 */ 788 void putback_lru_page(struct page *page) 789 { 790 bool is_unevictable; 791 int was_unevictable = PageUnevictable(page); 792 793 VM_BUG_ON_PAGE(PageLRU(page), page); 794 795 redo: 796 ClearPageUnevictable(page); 797 798 if (page_evictable(page)) { 799 /* 800 * For evictable pages, we can use the cache. 801 * In event of a race, worst case is we end up with an 802 * unevictable page on [in]active list. 803 * We know how to handle that. 804 */ 805 is_unevictable = false; 806 lru_cache_add(page); 807 } else { 808 /* 809 * Put unevictable pages directly on zone's unevictable 810 * list. 811 */ 812 is_unevictable = true; 813 add_page_to_unevictable_list(page); 814 /* 815 * When racing with an mlock or AS_UNEVICTABLE clearing 816 * (page is unlocked) make sure that if the other thread 817 * does not observe our setting of PG_lru and fails 818 * isolation/check_move_unevictable_pages, 819 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 820 * the page back to the evictable list. 821 * 822 * The other side is TestClearPageMlocked() or shmem_lock(). 823 */ 824 smp_mb(); 825 } 826 827 /* 828 * page's status can change while we move it among lru. If an evictable 829 * page is on unevictable list, it never be freed. To avoid that, 830 * check after we added it to the list, again. 831 */ 832 if (is_unevictable && page_evictable(page)) { 833 if (!isolate_lru_page(page)) { 834 put_page(page); 835 goto redo; 836 } 837 /* This means someone else dropped this page from LRU 838 * So, it will be freed or putback to LRU again. There is 839 * nothing to do here. 840 */ 841 } 842 843 if (was_unevictable && !is_unevictable) 844 count_vm_event(UNEVICTABLE_PGRESCUED); 845 else if (!was_unevictable && is_unevictable) 846 count_vm_event(UNEVICTABLE_PGCULLED); 847 848 put_page(page); /* drop ref from isolate */ 849 } 850 851 enum page_references { 852 PAGEREF_RECLAIM, 853 PAGEREF_RECLAIM_CLEAN, 854 PAGEREF_KEEP, 855 PAGEREF_ACTIVATE, 856 }; 857 858 static enum page_references page_check_references(struct page *page, 859 struct scan_control *sc) 860 { 861 int referenced_ptes, referenced_page; 862 unsigned long vm_flags; 863 864 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 865 &vm_flags); 866 referenced_page = TestClearPageReferenced(page); 867 868 /* 869 * Mlock lost the isolation race with us. Let try_to_unmap() 870 * move the page to the unevictable list. 871 */ 872 if (vm_flags & VM_LOCKED) 873 return PAGEREF_RECLAIM; 874 875 if (referenced_ptes) { 876 if (PageSwapBacked(page)) 877 return PAGEREF_ACTIVATE; 878 /* 879 * All mapped pages start out with page table 880 * references from the instantiating fault, so we need 881 * to look twice if a mapped file page is used more 882 * than once. 883 * 884 * Mark it and spare it for another trip around the 885 * inactive list. Another page table reference will 886 * lead to its activation. 887 * 888 * Note: the mark is set for activated pages as well 889 * so that recently deactivated but used pages are 890 * quickly recovered. 891 */ 892 SetPageReferenced(page); 893 894 if (referenced_page || referenced_ptes > 1) 895 return PAGEREF_ACTIVATE; 896 897 /* 898 * Activate file-backed executable pages after first usage. 899 */ 900 if (vm_flags & VM_EXEC) 901 return PAGEREF_ACTIVATE; 902 903 return PAGEREF_KEEP; 904 } 905 906 /* Reclaim if clean, defer dirty pages to writeback */ 907 if (referenced_page && !PageSwapBacked(page)) 908 return PAGEREF_RECLAIM_CLEAN; 909 910 return PAGEREF_RECLAIM; 911 } 912 913 /* Check if a page is dirty or under writeback */ 914 static void page_check_dirty_writeback(struct page *page, 915 bool *dirty, bool *writeback) 916 { 917 struct address_space *mapping; 918 919 /* 920 * Anonymous pages are not handled by flushers and must be written 921 * from reclaim context. Do not stall reclaim based on them 922 */ 923 if (!page_is_file_cache(page) || 924 (PageAnon(page) && !PageSwapBacked(page))) { 925 *dirty = false; 926 *writeback = false; 927 return; 928 } 929 930 /* By default assume that the page flags are accurate */ 931 *dirty = PageDirty(page); 932 *writeback = PageWriteback(page); 933 934 /* Verify dirty/writeback state if the filesystem supports it */ 935 if (!page_has_private(page)) 936 return; 937 938 mapping = page_mapping(page); 939 if (mapping && mapping->a_ops->is_dirty_writeback) 940 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 941 } 942 943 struct reclaim_stat { 944 unsigned nr_dirty; 945 unsigned nr_unqueued_dirty; 946 unsigned nr_congested; 947 unsigned nr_writeback; 948 unsigned nr_immediate; 949 unsigned nr_activate; 950 unsigned nr_ref_keep; 951 unsigned nr_unmap_fail; 952 }; 953 954 /* 955 * shrink_page_list() returns the number of reclaimed pages 956 */ 957 static unsigned long shrink_page_list(struct list_head *page_list, 958 struct pglist_data *pgdat, 959 struct scan_control *sc, 960 enum ttu_flags ttu_flags, 961 struct reclaim_stat *stat, 962 bool force_reclaim) 963 { 964 LIST_HEAD(ret_pages); 965 LIST_HEAD(free_pages); 966 int pgactivate = 0; 967 unsigned nr_unqueued_dirty = 0; 968 unsigned nr_dirty = 0; 969 unsigned nr_congested = 0; 970 unsigned nr_reclaimed = 0; 971 unsigned nr_writeback = 0; 972 unsigned nr_immediate = 0; 973 unsigned nr_ref_keep = 0; 974 unsigned nr_unmap_fail = 0; 975 976 cond_resched(); 977 978 while (!list_empty(page_list)) { 979 struct address_space *mapping; 980 struct page *page; 981 int may_enter_fs; 982 enum page_references references = PAGEREF_RECLAIM_CLEAN; 983 bool dirty, writeback; 984 985 cond_resched(); 986 987 page = lru_to_page(page_list); 988 list_del(&page->lru); 989 990 if (!trylock_page(page)) 991 goto keep; 992 993 VM_BUG_ON_PAGE(PageActive(page), page); 994 995 sc->nr_scanned++; 996 997 if (unlikely(!page_evictable(page))) 998 goto activate_locked; 999 1000 if (!sc->may_unmap && page_mapped(page)) 1001 goto keep_locked; 1002 1003 /* Double the slab pressure for mapped and swapcache pages */ 1004 if ((page_mapped(page) || PageSwapCache(page)) && 1005 !(PageAnon(page) && !PageSwapBacked(page))) 1006 sc->nr_scanned++; 1007 1008 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1009 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1010 1011 /* 1012 * The number of dirty pages determines if a zone is marked 1013 * reclaim_congested which affects wait_iff_congested. kswapd 1014 * will stall and start writing pages if the tail of the LRU 1015 * is all dirty unqueued pages. 1016 */ 1017 page_check_dirty_writeback(page, &dirty, &writeback); 1018 if (dirty || writeback) 1019 nr_dirty++; 1020 1021 if (dirty && !writeback) 1022 nr_unqueued_dirty++; 1023 1024 /* 1025 * Treat this page as congested if the underlying BDI is or if 1026 * pages are cycling through the LRU so quickly that the 1027 * pages marked for immediate reclaim are making it to the 1028 * end of the LRU a second time. 1029 */ 1030 mapping = page_mapping(page); 1031 if (((dirty || writeback) && mapping && 1032 inode_write_congested(mapping->host)) || 1033 (writeback && PageReclaim(page))) 1034 nr_congested++; 1035 1036 /* 1037 * If a page at the tail of the LRU is under writeback, there 1038 * are three cases to consider. 1039 * 1040 * 1) If reclaim is encountering an excessive number of pages 1041 * under writeback and this page is both under writeback and 1042 * PageReclaim then it indicates that pages are being queued 1043 * for IO but are being recycled through the LRU before the 1044 * IO can complete. Waiting on the page itself risks an 1045 * indefinite stall if it is impossible to writeback the 1046 * page due to IO error or disconnected storage so instead 1047 * note that the LRU is being scanned too quickly and the 1048 * caller can stall after page list has been processed. 1049 * 1050 * 2) Global or new memcg reclaim encounters a page that is 1051 * not marked for immediate reclaim, or the caller does not 1052 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1053 * not to fs). In this case mark the page for immediate 1054 * reclaim and continue scanning. 1055 * 1056 * Require may_enter_fs because we would wait on fs, which 1057 * may not have submitted IO yet. And the loop driver might 1058 * enter reclaim, and deadlock if it waits on a page for 1059 * which it is needed to do the write (loop masks off 1060 * __GFP_IO|__GFP_FS for this reason); but more thought 1061 * would probably show more reasons. 1062 * 1063 * 3) Legacy memcg encounters a page that is already marked 1064 * PageReclaim. memcg does not have any dirty pages 1065 * throttling so we could easily OOM just because too many 1066 * pages are in writeback and there is nothing else to 1067 * reclaim. Wait for the writeback to complete. 1068 * 1069 * In cases 1) and 2) we activate the pages to get them out of 1070 * the way while we continue scanning for clean pages on the 1071 * inactive list and refilling from the active list. The 1072 * observation here is that waiting for disk writes is more 1073 * expensive than potentially causing reloads down the line. 1074 * Since they're marked for immediate reclaim, they won't put 1075 * memory pressure on the cache working set any longer than it 1076 * takes to write them to disk. 1077 */ 1078 if (PageWriteback(page)) { 1079 /* Case 1 above */ 1080 if (current_is_kswapd() && 1081 PageReclaim(page) && 1082 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1083 nr_immediate++; 1084 goto activate_locked; 1085 1086 /* Case 2 above */ 1087 } else if (sane_reclaim(sc) || 1088 !PageReclaim(page) || !may_enter_fs) { 1089 /* 1090 * This is slightly racy - end_page_writeback() 1091 * might have just cleared PageReclaim, then 1092 * setting PageReclaim here end up interpreted 1093 * as PageReadahead - but that does not matter 1094 * enough to care. What we do want is for this 1095 * page to have PageReclaim set next time memcg 1096 * reclaim reaches the tests above, so it will 1097 * then wait_on_page_writeback() to avoid OOM; 1098 * and it's also appropriate in global reclaim. 1099 */ 1100 SetPageReclaim(page); 1101 nr_writeback++; 1102 goto activate_locked; 1103 1104 /* Case 3 above */ 1105 } else { 1106 unlock_page(page); 1107 wait_on_page_writeback(page); 1108 /* then go back and try same page again */ 1109 list_add_tail(&page->lru, page_list); 1110 continue; 1111 } 1112 } 1113 1114 if (!force_reclaim) 1115 references = page_check_references(page, sc); 1116 1117 switch (references) { 1118 case PAGEREF_ACTIVATE: 1119 goto activate_locked; 1120 case PAGEREF_KEEP: 1121 nr_ref_keep++; 1122 goto keep_locked; 1123 case PAGEREF_RECLAIM: 1124 case PAGEREF_RECLAIM_CLEAN: 1125 ; /* try to reclaim the page below */ 1126 } 1127 1128 /* 1129 * Anonymous process memory has backing store? 1130 * Try to allocate it some swap space here. 1131 * Lazyfree page could be freed directly 1132 */ 1133 if (PageAnon(page) && PageSwapBacked(page)) { 1134 if (!PageSwapCache(page)) { 1135 if (!(sc->gfp_mask & __GFP_IO)) 1136 goto keep_locked; 1137 if (PageTransHuge(page)) { 1138 /* cannot split THP, skip it */ 1139 if (!can_split_huge_page(page, NULL)) 1140 goto activate_locked; 1141 /* 1142 * Split pages without a PMD map right 1143 * away. Chances are some or all of the 1144 * tail pages can be freed without IO. 1145 */ 1146 if (!compound_mapcount(page) && 1147 split_huge_page_to_list(page, 1148 page_list)) 1149 goto activate_locked; 1150 } 1151 if (!add_to_swap(page)) { 1152 if (!PageTransHuge(page)) 1153 goto activate_locked; 1154 /* Fallback to swap normal pages */ 1155 if (split_huge_page_to_list(page, 1156 page_list)) 1157 goto activate_locked; 1158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1159 count_vm_event(THP_SWPOUT_FALLBACK); 1160 #endif 1161 if (!add_to_swap(page)) 1162 goto activate_locked; 1163 } 1164 1165 may_enter_fs = 1; 1166 1167 /* Adding to swap updated mapping */ 1168 mapping = page_mapping(page); 1169 } 1170 } else if (unlikely(PageTransHuge(page))) { 1171 /* Split file THP */ 1172 if (split_huge_page_to_list(page, page_list)) 1173 goto keep_locked; 1174 } 1175 1176 /* 1177 * The page is mapped into the page tables of one or more 1178 * processes. Try to unmap it here. 1179 */ 1180 if (page_mapped(page)) { 1181 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1182 1183 if (unlikely(PageTransHuge(page))) 1184 flags |= TTU_SPLIT_HUGE_PMD; 1185 if (!try_to_unmap(page, flags)) { 1186 nr_unmap_fail++; 1187 goto activate_locked; 1188 } 1189 } 1190 1191 if (PageDirty(page)) { 1192 /* 1193 * Only kswapd can writeback filesystem pages 1194 * to avoid risk of stack overflow. But avoid 1195 * injecting inefficient single-page IO into 1196 * flusher writeback as much as possible: only 1197 * write pages when we've encountered many 1198 * dirty pages, and when we've already scanned 1199 * the rest of the LRU for clean pages and see 1200 * the same dirty pages again (PageReclaim). 1201 */ 1202 if (page_is_file_cache(page) && 1203 (!current_is_kswapd() || !PageReclaim(page) || 1204 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1205 /* 1206 * Immediately reclaim when written back. 1207 * Similar in principal to deactivate_page() 1208 * except we already have the page isolated 1209 * and know it's dirty 1210 */ 1211 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1212 SetPageReclaim(page); 1213 1214 goto activate_locked; 1215 } 1216 1217 if (references == PAGEREF_RECLAIM_CLEAN) 1218 goto keep_locked; 1219 if (!may_enter_fs) 1220 goto keep_locked; 1221 if (!sc->may_writepage) 1222 goto keep_locked; 1223 1224 /* 1225 * Page is dirty. Flush the TLB if a writable entry 1226 * potentially exists to avoid CPU writes after IO 1227 * starts and then write it out here. 1228 */ 1229 try_to_unmap_flush_dirty(); 1230 switch (pageout(page, mapping, sc)) { 1231 case PAGE_KEEP: 1232 goto keep_locked; 1233 case PAGE_ACTIVATE: 1234 goto activate_locked; 1235 case PAGE_SUCCESS: 1236 if (PageWriteback(page)) 1237 goto keep; 1238 if (PageDirty(page)) 1239 goto keep; 1240 1241 /* 1242 * A synchronous write - probably a ramdisk. Go 1243 * ahead and try to reclaim the page. 1244 */ 1245 if (!trylock_page(page)) 1246 goto keep; 1247 if (PageDirty(page) || PageWriteback(page)) 1248 goto keep_locked; 1249 mapping = page_mapping(page); 1250 case PAGE_CLEAN: 1251 ; /* try to free the page below */ 1252 } 1253 } 1254 1255 /* 1256 * If the page has buffers, try to free the buffer mappings 1257 * associated with this page. If we succeed we try to free 1258 * the page as well. 1259 * 1260 * We do this even if the page is PageDirty(). 1261 * try_to_release_page() does not perform I/O, but it is 1262 * possible for a page to have PageDirty set, but it is actually 1263 * clean (all its buffers are clean). This happens if the 1264 * buffers were written out directly, with submit_bh(). ext3 1265 * will do this, as well as the blockdev mapping. 1266 * try_to_release_page() will discover that cleanness and will 1267 * drop the buffers and mark the page clean - it can be freed. 1268 * 1269 * Rarely, pages can have buffers and no ->mapping. These are 1270 * the pages which were not successfully invalidated in 1271 * truncate_complete_page(). We try to drop those buffers here 1272 * and if that worked, and the page is no longer mapped into 1273 * process address space (page_count == 1) it can be freed. 1274 * Otherwise, leave the page on the LRU so it is swappable. 1275 */ 1276 if (page_has_private(page)) { 1277 if (!try_to_release_page(page, sc->gfp_mask)) 1278 goto activate_locked; 1279 if (!mapping && page_count(page) == 1) { 1280 unlock_page(page); 1281 if (put_page_testzero(page)) 1282 goto free_it; 1283 else { 1284 /* 1285 * rare race with speculative reference. 1286 * the speculative reference will free 1287 * this page shortly, so we may 1288 * increment nr_reclaimed here (and 1289 * leave it off the LRU). 1290 */ 1291 nr_reclaimed++; 1292 continue; 1293 } 1294 } 1295 } 1296 1297 if (PageAnon(page) && !PageSwapBacked(page)) { 1298 /* follow __remove_mapping for reference */ 1299 if (!page_ref_freeze(page, 1)) 1300 goto keep_locked; 1301 if (PageDirty(page)) { 1302 page_ref_unfreeze(page, 1); 1303 goto keep_locked; 1304 } 1305 1306 count_vm_event(PGLAZYFREED); 1307 count_memcg_page_event(page, PGLAZYFREED); 1308 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1309 goto keep_locked; 1310 /* 1311 * At this point, we have no other references and there is 1312 * no way to pick any more up (removed from LRU, removed 1313 * from pagecache). Can use non-atomic bitops now (and 1314 * we obviously don't have to worry about waking up a process 1315 * waiting on the page lock, because there are no references. 1316 */ 1317 __ClearPageLocked(page); 1318 free_it: 1319 nr_reclaimed++; 1320 1321 /* 1322 * Is there need to periodically free_page_list? It would 1323 * appear not as the counts should be low 1324 */ 1325 if (unlikely(PageTransHuge(page))) { 1326 mem_cgroup_uncharge(page); 1327 (*get_compound_page_dtor(page))(page); 1328 } else 1329 list_add(&page->lru, &free_pages); 1330 continue; 1331 1332 activate_locked: 1333 /* Not a candidate for swapping, so reclaim swap space. */ 1334 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1335 PageMlocked(page))) 1336 try_to_free_swap(page); 1337 VM_BUG_ON_PAGE(PageActive(page), page); 1338 if (!PageMlocked(page)) { 1339 SetPageActive(page); 1340 pgactivate++; 1341 count_memcg_page_event(page, PGACTIVATE); 1342 } 1343 keep_locked: 1344 unlock_page(page); 1345 keep: 1346 list_add(&page->lru, &ret_pages); 1347 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1348 } 1349 1350 mem_cgroup_uncharge_list(&free_pages); 1351 try_to_unmap_flush(); 1352 free_unref_page_list(&free_pages); 1353 1354 list_splice(&ret_pages, page_list); 1355 count_vm_events(PGACTIVATE, pgactivate); 1356 1357 if (stat) { 1358 stat->nr_dirty = nr_dirty; 1359 stat->nr_congested = nr_congested; 1360 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1361 stat->nr_writeback = nr_writeback; 1362 stat->nr_immediate = nr_immediate; 1363 stat->nr_activate = pgactivate; 1364 stat->nr_ref_keep = nr_ref_keep; 1365 stat->nr_unmap_fail = nr_unmap_fail; 1366 } 1367 return nr_reclaimed; 1368 } 1369 1370 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1371 struct list_head *page_list) 1372 { 1373 struct scan_control sc = { 1374 .gfp_mask = GFP_KERNEL, 1375 .priority = DEF_PRIORITY, 1376 .may_unmap = 1, 1377 }; 1378 unsigned long ret; 1379 struct page *page, *next; 1380 LIST_HEAD(clean_pages); 1381 1382 list_for_each_entry_safe(page, next, page_list, lru) { 1383 if (page_is_file_cache(page) && !PageDirty(page) && 1384 !__PageMovable(page)) { 1385 ClearPageActive(page); 1386 list_move(&page->lru, &clean_pages); 1387 } 1388 } 1389 1390 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1391 TTU_IGNORE_ACCESS, NULL, true); 1392 list_splice(&clean_pages, page_list); 1393 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1394 return ret; 1395 } 1396 1397 /* 1398 * Attempt to remove the specified page from its LRU. Only take this page 1399 * if it is of the appropriate PageActive status. Pages which are being 1400 * freed elsewhere are also ignored. 1401 * 1402 * page: page to consider 1403 * mode: one of the LRU isolation modes defined above 1404 * 1405 * returns 0 on success, -ve errno on failure. 1406 */ 1407 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1408 { 1409 int ret = -EINVAL; 1410 1411 /* Only take pages on the LRU. */ 1412 if (!PageLRU(page)) 1413 return ret; 1414 1415 /* Compaction should not handle unevictable pages but CMA can do so */ 1416 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1417 return ret; 1418 1419 ret = -EBUSY; 1420 1421 /* 1422 * To minimise LRU disruption, the caller can indicate that it only 1423 * wants to isolate pages it will be able to operate on without 1424 * blocking - clean pages for the most part. 1425 * 1426 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1427 * that it is possible to migrate without blocking 1428 */ 1429 if (mode & ISOLATE_ASYNC_MIGRATE) { 1430 /* All the caller can do on PageWriteback is block */ 1431 if (PageWriteback(page)) 1432 return ret; 1433 1434 if (PageDirty(page)) { 1435 struct address_space *mapping; 1436 1437 /* 1438 * Only pages without mappings or that have a 1439 * ->migratepage callback are possible to migrate 1440 * without blocking 1441 */ 1442 mapping = page_mapping(page); 1443 if (mapping && !mapping->a_ops->migratepage) 1444 return ret; 1445 } 1446 } 1447 1448 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1449 return ret; 1450 1451 if (likely(get_page_unless_zero(page))) { 1452 /* 1453 * Be careful not to clear PageLRU until after we're 1454 * sure the page is not being freed elsewhere -- the 1455 * page release code relies on it. 1456 */ 1457 ClearPageLRU(page); 1458 ret = 0; 1459 } 1460 1461 return ret; 1462 } 1463 1464 1465 /* 1466 * Update LRU sizes after isolating pages. The LRU size updates must 1467 * be complete before mem_cgroup_update_lru_size due to a santity check. 1468 */ 1469 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1470 enum lru_list lru, unsigned long *nr_zone_taken) 1471 { 1472 int zid; 1473 1474 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1475 if (!nr_zone_taken[zid]) 1476 continue; 1477 1478 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1479 #ifdef CONFIG_MEMCG 1480 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1481 #endif 1482 } 1483 1484 } 1485 1486 /* 1487 * zone_lru_lock is heavily contended. Some of the functions that 1488 * shrink the lists perform better by taking out a batch of pages 1489 * and working on them outside the LRU lock. 1490 * 1491 * For pagecache intensive workloads, this function is the hottest 1492 * spot in the kernel (apart from copy_*_user functions). 1493 * 1494 * Appropriate locks must be held before calling this function. 1495 * 1496 * @nr_to_scan: The number of eligible pages to look through on the list. 1497 * @lruvec: The LRU vector to pull pages from. 1498 * @dst: The temp list to put pages on to. 1499 * @nr_scanned: The number of pages that were scanned. 1500 * @sc: The scan_control struct for this reclaim session 1501 * @mode: One of the LRU isolation modes 1502 * @lru: LRU list id for isolating 1503 * 1504 * returns how many pages were moved onto *@dst. 1505 */ 1506 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1507 struct lruvec *lruvec, struct list_head *dst, 1508 unsigned long *nr_scanned, struct scan_control *sc, 1509 isolate_mode_t mode, enum lru_list lru) 1510 { 1511 struct list_head *src = &lruvec->lists[lru]; 1512 unsigned long nr_taken = 0; 1513 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1514 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1515 unsigned long skipped = 0; 1516 unsigned long scan, total_scan, nr_pages; 1517 LIST_HEAD(pages_skipped); 1518 1519 scan = 0; 1520 for (total_scan = 0; 1521 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1522 total_scan++) { 1523 struct page *page; 1524 1525 page = lru_to_page(src); 1526 prefetchw_prev_lru_page(page, src, flags); 1527 1528 VM_BUG_ON_PAGE(!PageLRU(page), page); 1529 1530 if (page_zonenum(page) > sc->reclaim_idx) { 1531 list_move(&page->lru, &pages_skipped); 1532 nr_skipped[page_zonenum(page)]++; 1533 continue; 1534 } 1535 1536 /* 1537 * Do not count skipped pages because that makes the function 1538 * return with no isolated pages if the LRU mostly contains 1539 * ineligible pages. This causes the VM to not reclaim any 1540 * pages, triggering a premature OOM. 1541 */ 1542 scan++; 1543 switch (__isolate_lru_page(page, mode)) { 1544 case 0: 1545 nr_pages = hpage_nr_pages(page); 1546 nr_taken += nr_pages; 1547 nr_zone_taken[page_zonenum(page)] += nr_pages; 1548 list_move(&page->lru, dst); 1549 break; 1550 1551 case -EBUSY: 1552 /* else it is being freed elsewhere */ 1553 list_move(&page->lru, src); 1554 continue; 1555 1556 default: 1557 BUG(); 1558 } 1559 } 1560 1561 /* 1562 * Splice any skipped pages to the start of the LRU list. Note that 1563 * this disrupts the LRU order when reclaiming for lower zones but 1564 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1565 * scanning would soon rescan the same pages to skip and put the 1566 * system at risk of premature OOM. 1567 */ 1568 if (!list_empty(&pages_skipped)) { 1569 int zid; 1570 1571 list_splice(&pages_skipped, src); 1572 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1573 if (!nr_skipped[zid]) 1574 continue; 1575 1576 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1577 skipped += nr_skipped[zid]; 1578 } 1579 } 1580 *nr_scanned = total_scan; 1581 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1582 total_scan, skipped, nr_taken, mode, lru); 1583 update_lru_sizes(lruvec, lru, nr_zone_taken); 1584 return nr_taken; 1585 } 1586 1587 /** 1588 * isolate_lru_page - tries to isolate a page from its LRU list 1589 * @page: page to isolate from its LRU list 1590 * 1591 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1592 * vmstat statistic corresponding to whatever LRU list the page was on. 1593 * 1594 * Returns 0 if the page was removed from an LRU list. 1595 * Returns -EBUSY if the page was not on an LRU list. 1596 * 1597 * The returned page will have PageLRU() cleared. If it was found on 1598 * the active list, it will have PageActive set. If it was found on 1599 * the unevictable list, it will have the PageUnevictable bit set. That flag 1600 * may need to be cleared by the caller before letting the page go. 1601 * 1602 * The vmstat statistic corresponding to the list on which the page was 1603 * found will be decremented. 1604 * 1605 * Restrictions: 1606 * (1) Must be called with an elevated refcount on the page. This is a 1607 * fundamentnal difference from isolate_lru_pages (which is called 1608 * without a stable reference). 1609 * (2) the lru_lock must not be held. 1610 * (3) interrupts must be enabled. 1611 */ 1612 int isolate_lru_page(struct page *page) 1613 { 1614 int ret = -EBUSY; 1615 1616 VM_BUG_ON_PAGE(!page_count(page), page); 1617 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1618 1619 if (PageLRU(page)) { 1620 struct zone *zone = page_zone(page); 1621 struct lruvec *lruvec; 1622 1623 spin_lock_irq(zone_lru_lock(zone)); 1624 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1625 if (PageLRU(page)) { 1626 int lru = page_lru(page); 1627 get_page(page); 1628 ClearPageLRU(page); 1629 del_page_from_lru_list(page, lruvec, lru); 1630 ret = 0; 1631 } 1632 spin_unlock_irq(zone_lru_lock(zone)); 1633 } 1634 return ret; 1635 } 1636 1637 /* 1638 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1639 * then get resheduled. When there are massive number of tasks doing page 1640 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1641 * the LRU list will go small and be scanned faster than necessary, leading to 1642 * unnecessary swapping, thrashing and OOM. 1643 */ 1644 static int too_many_isolated(struct pglist_data *pgdat, int file, 1645 struct scan_control *sc) 1646 { 1647 unsigned long inactive, isolated; 1648 1649 if (current_is_kswapd()) 1650 return 0; 1651 1652 if (!sane_reclaim(sc)) 1653 return 0; 1654 1655 if (file) { 1656 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1657 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1658 } else { 1659 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1660 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1661 } 1662 1663 /* 1664 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1665 * won't get blocked by normal direct-reclaimers, forming a circular 1666 * deadlock. 1667 */ 1668 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1669 inactive >>= 3; 1670 1671 return isolated > inactive; 1672 } 1673 1674 static noinline_for_stack void 1675 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1676 { 1677 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1678 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1679 LIST_HEAD(pages_to_free); 1680 1681 /* 1682 * Put back any unfreeable pages. 1683 */ 1684 while (!list_empty(page_list)) { 1685 struct page *page = lru_to_page(page_list); 1686 int lru; 1687 1688 VM_BUG_ON_PAGE(PageLRU(page), page); 1689 list_del(&page->lru); 1690 if (unlikely(!page_evictable(page))) { 1691 spin_unlock_irq(&pgdat->lru_lock); 1692 putback_lru_page(page); 1693 spin_lock_irq(&pgdat->lru_lock); 1694 continue; 1695 } 1696 1697 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1698 1699 SetPageLRU(page); 1700 lru = page_lru(page); 1701 add_page_to_lru_list(page, lruvec, lru); 1702 1703 if (is_active_lru(lru)) { 1704 int file = is_file_lru(lru); 1705 int numpages = hpage_nr_pages(page); 1706 reclaim_stat->recent_rotated[file] += numpages; 1707 } 1708 if (put_page_testzero(page)) { 1709 __ClearPageLRU(page); 1710 __ClearPageActive(page); 1711 del_page_from_lru_list(page, lruvec, lru); 1712 1713 if (unlikely(PageCompound(page))) { 1714 spin_unlock_irq(&pgdat->lru_lock); 1715 mem_cgroup_uncharge(page); 1716 (*get_compound_page_dtor(page))(page); 1717 spin_lock_irq(&pgdat->lru_lock); 1718 } else 1719 list_add(&page->lru, &pages_to_free); 1720 } 1721 } 1722 1723 /* 1724 * To save our caller's stack, now use input list for pages to free. 1725 */ 1726 list_splice(&pages_to_free, page_list); 1727 } 1728 1729 /* 1730 * If a kernel thread (such as nfsd for loop-back mounts) services 1731 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1732 * In that case we should only throttle if the backing device it is 1733 * writing to is congested. In other cases it is safe to throttle. 1734 */ 1735 static int current_may_throttle(void) 1736 { 1737 return !(current->flags & PF_LESS_THROTTLE) || 1738 current->backing_dev_info == NULL || 1739 bdi_write_congested(current->backing_dev_info); 1740 } 1741 1742 /* 1743 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1744 * of reclaimed pages 1745 */ 1746 static noinline_for_stack unsigned long 1747 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1748 struct scan_control *sc, enum lru_list lru) 1749 { 1750 LIST_HEAD(page_list); 1751 unsigned long nr_scanned; 1752 unsigned long nr_reclaimed = 0; 1753 unsigned long nr_taken; 1754 struct reclaim_stat stat = {}; 1755 isolate_mode_t isolate_mode = 0; 1756 int file = is_file_lru(lru); 1757 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1758 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1759 bool stalled = false; 1760 1761 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1762 if (stalled) 1763 return 0; 1764 1765 /* wait a bit for the reclaimer. */ 1766 msleep(100); 1767 stalled = true; 1768 1769 /* We are about to die and free our memory. Return now. */ 1770 if (fatal_signal_pending(current)) 1771 return SWAP_CLUSTER_MAX; 1772 } 1773 1774 lru_add_drain(); 1775 1776 if (!sc->may_unmap) 1777 isolate_mode |= ISOLATE_UNMAPPED; 1778 1779 spin_lock_irq(&pgdat->lru_lock); 1780 1781 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1782 &nr_scanned, sc, isolate_mode, lru); 1783 1784 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1785 reclaim_stat->recent_scanned[file] += nr_taken; 1786 1787 if (current_is_kswapd()) { 1788 if (global_reclaim(sc)) 1789 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1790 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1791 nr_scanned); 1792 } else { 1793 if (global_reclaim(sc)) 1794 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1795 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1796 nr_scanned); 1797 } 1798 spin_unlock_irq(&pgdat->lru_lock); 1799 1800 if (nr_taken == 0) 1801 return 0; 1802 1803 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1804 &stat, false); 1805 1806 spin_lock_irq(&pgdat->lru_lock); 1807 1808 if (current_is_kswapd()) { 1809 if (global_reclaim(sc)) 1810 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1811 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1812 nr_reclaimed); 1813 } else { 1814 if (global_reclaim(sc)) 1815 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1816 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1817 nr_reclaimed); 1818 } 1819 1820 putback_inactive_pages(lruvec, &page_list); 1821 1822 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1823 1824 spin_unlock_irq(&pgdat->lru_lock); 1825 1826 mem_cgroup_uncharge_list(&page_list); 1827 free_unref_page_list(&page_list); 1828 1829 /* 1830 * If reclaim is isolating dirty pages under writeback, it implies 1831 * that the long-lived page allocation rate is exceeding the page 1832 * laundering rate. Either the global limits are not being effective 1833 * at throttling processes due to the page distribution throughout 1834 * zones or there is heavy usage of a slow backing device. The 1835 * only option is to throttle from reclaim context which is not ideal 1836 * as there is no guarantee the dirtying process is throttled in the 1837 * same way balance_dirty_pages() manages. 1838 * 1839 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1840 * of pages under pages flagged for immediate reclaim and stall if any 1841 * are encountered in the nr_immediate check below. 1842 */ 1843 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1844 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1845 1846 /* 1847 * Legacy memcg will stall in page writeback so avoid forcibly 1848 * stalling here. 1849 */ 1850 if (sane_reclaim(sc)) { 1851 /* 1852 * Tag a zone as congested if all the dirty pages scanned were 1853 * backed by a congested BDI and wait_iff_congested will stall. 1854 */ 1855 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1856 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1857 1858 /* 1859 * If dirty pages are scanned that are not queued for IO, it 1860 * implies that flushers are not doing their job. This can 1861 * happen when memory pressure pushes dirty pages to the end of 1862 * the LRU before the dirty limits are breached and the dirty 1863 * data has expired. It can also happen when the proportion of 1864 * dirty pages grows not through writes but through memory 1865 * pressure reclaiming all the clean cache. And in some cases, 1866 * the flushers simply cannot keep up with the allocation 1867 * rate. Nudge the flusher threads in case they are asleep, but 1868 * also allow kswapd to start writing pages during reclaim. 1869 */ 1870 if (stat.nr_unqueued_dirty == nr_taken) { 1871 wakeup_flusher_threads(WB_REASON_VMSCAN); 1872 set_bit(PGDAT_DIRTY, &pgdat->flags); 1873 } 1874 1875 /* 1876 * If kswapd scans pages marked marked for immediate 1877 * reclaim and under writeback (nr_immediate), it implies 1878 * that pages are cycling through the LRU faster than 1879 * they are written so also forcibly stall. 1880 */ 1881 if (stat.nr_immediate && current_may_throttle()) 1882 congestion_wait(BLK_RW_ASYNC, HZ/10); 1883 } 1884 1885 /* 1886 * Stall direct reclaim for IO completions if underlying BDIs or zone 1887 * is congested. Allow kswapd to continue until it starts encountering 1888 * unqueued dirty pages or cycling through the LRU too quickly. 1889 */ 1890 if (!sc->hibernation_mode && !current_is_kswapd() && 1891 current_may_throttle()) 1892 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1893 1894 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1895 nr_scanned, nr_reclaimed, 1896 stat.nr_dirty, stat.nr_writeback, 1897 stat.nr_congested, stat.nr_immediate, 1898 stat.nr_activate, stat.nr_ref_keep, 1899 stat.nr_unmap_fail, 1900 sc->priority, file); 1901 return nr_reclaimed; 1902 } 1903 1904 /* 1905 * This moves pages from the active list to the inactive list. 1906 * 1907 * We move them the other way if the page is referenced by one or more 1908 * processes, from rmap. 1909 * 1910 * If the pages are mostly unmapped, the processing is fast and it is 1911 * appropriate to hold zone_lru_lock across the whole operation. But if 1912 * the pages are mapped, the processing is slow (page_referenced()) so we 1913 * should drop zone_lru_lock around each page. It's impossible to balance 1914 * this, so instead we remove the pages from the LRU while processing them. 1915 * It is safe to rely on PG_active against the non-LRU pages in here because 1916 * nobody will play with that bit on a non-LRU page. 1917 * 1918 * The downside is that we have to touch page->_refcount against each page. 1919 * But we had to alter page->flags anyway. 1920 * 1921 * Returns the number of pages moved to the given lru. 1922 */ 1923 1924 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1925 struct list_head *list, 1926 struct list_head *pages_to_free, 1927 enum lru_list lru) 1928 { 1929 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1930 struct page *page; 1931 int nr_pages; 1932 int nr_moved = 0; 1933 1934 while (!list_empty(list)) { 1935 page = lru_to_page(list); 1936 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1937 1938 VM_BUG_ON_PAGE(PageLRU(page), page); 1939 SetPageLRU(page); 1940 1941 nr_pages = hpage_nr_pages(page); 1942 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1943 list_move(&page->lru, &lruvec->lists[lru]); 1944 1945 if (put_page_testzero(page)) { 1946 __ClearPageLRU(page); 1947 __ClearPageActive(page); 1948 del_page_from_lru_list(page, lruvec, lru); 1949 1950 if (unlikely(PageCompound(page))) { 1951 spin_unlock_irq(&pgdat->lru_lock); 1952 mem_cgroup_uncharge(page); 1953 (*get_compound_page_dtor(page))(page); 1954 spin_lock_irq(&pgdat->lru_lock); 1955 } else 1956 list_add(&page->lru, pages_to_free); 1957 } else { 1958 nr_moved += nr_pages; 1959 } 1960 } 1961 1962 if (!is_active_lru(lru)) { 1963 __count_vm_events(PGDEACTIVATE, nr_moved); 1964 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 1965 nr_moved); 1966 } 1967 1968 return nr_moved; 1969 } 1970 1971 static void shrink_active_list(unsigned long nr_to_scan, 1972 struct lruvec *lruvec, 1973 struct scan_control *sc, 1974 enum lru_list lru) 1975 { 1976 unsigned long nr_taken; 1977 unsigned long nr_scanned; 1978 unsigned long vm_flags; 1979 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1980 LIST_HEAD(l_active); 1981 LIST_HEAD(l_inactive); 1982 struct page *page; 1983 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1984 unsigned nr_deactivate, nr_activate; 1985 unsigned nr_rotated = 0; 1986 isolate_mode_t isolate_mode = 0; 1987 int file = is_file_lru(lru); 1988 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1989 1990 lru_add_drain(); 1991 1992 if (!sc->may_unmap) 1993 isolate_mode |= ISOLATE_UNMAPPED; 1994 1995 spin_lock_irq(&pgdat->lru_lock); 1996 1997 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1998 &nr_scanned, sc, isolate_mode, lru); 1999 2000 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2001 reclaim_stat->recent_scanned[file] += nr_taken; 2002 2003 __count_vm_events(PGREFILL, nr_scanned); 2004 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2005 2006 spin_unlock_irq(&pgdat->lru_lock); 2007 2008 while (!list_empty(&l_hold)) { 2009 cond_resched(); 2010 page = lru_to_page(&l_hold); 2011 list_del(&page->lru); 2012 2013 if (unlikely(!page_evictable(page))) { 2014 putback_lru_page(page); 2015 continue; 2016 } 2017 2018 if (unlikely(buffer_heads_over_limit)) { 2019 if (page_has_private(page) && trylock_page(page)) { 2020 if (page_has_private(page)) 2021 try_to_release_page(page, 0); 2022 unlock_page(page); 2023 } 2024 } 2025 2026 if (page_referenced(page, 0, sc->target_mem_cgroup, 2027 &vm_flags)) { 2028 nr_rotated += hpage_nr_pages(page); 2029 /* 2030 * Identify referenced, file-backed active pages and 2031 * give them one more trip around the active list. So 2032 * that executable code get better chances to stay in 2033 * memory under moderate memory pressure. Anon pages 2034 * are not likely to be evicted by use-once streaming 2035 * IO, plus JVM can create lots of anon VM_EXEC pages, 2036 * so we ignore them here. 2037 */ 2038 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2039 list_add(&page->lru, &l_active); 2040 continue; 2041 } 2042 } 2043 2044 ClearPageActive(page); /* we are de-activating */ 2045 list_add(&page->lru, &l_inactive); 2046 } 2047 2048 /* 2049 * Move pages back to the lru list. 2050 */ 2051 spin_lock_irq(&pgdat->lru_lock); 2052 /* 2053 * Count referenced pages from currently used mappings as rotated, 2054 * even though only some of them are actually re-activated. This 2055 * helps balance scan pressure between file and anonymous pages in 2056 * get_scan_count. 2057 */ 2058 reclaim_stat->recent_rotated[file] += nr_rotated; 2059 2060 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2061 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2062 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2063 spin_unlock_irq(&pgdat->lru_lock); 2064 2065 mem_cgroup_uncharge_list(&l_hold); 2066 free_unref_page_list(&l_hold); 2067 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2068 nr_deactivate, nr_rotated, sc->priority, file); 2069 } 2070 2071 /* 2072 * The inactive anon list should be small enough that the VM never has 2073 * to do too much work. 2074 * 2075 * The inactive file list should be small enough to leave most memory 2076 * to the established workingset on the scan-resistant active list, 2077 * but large enough to avoid thrashing the aggregate readahead window. 2078 * 2079 * Both inactive lists should also be large enough that each inactive 2080 * page has a chance to be referenced again before it is reclaimed. 2081 * 2082 * If that fails and refaulting is observed, the inactive list grows. 2083 * 2084 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2085 * on this LRU, maintained by the pageout code. An inactive_ratio 2086 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2087 * 2088 * total target max 2089 * memory ratio inactive 2090 * ------------------------------------- 2091 * 10MB 1 5MB 2092 * 100MB 1 50MB 2093 * 1GB 3 250MB 2094 * 10GB 10 0.9GB 2095 * 100GB 31 3GB 2096 * 1TB 101 10GB 2097 * 10TB 320 32GB 2098 */ 2099 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2100 struct mem_cgroup *memcg, 2101 struct scan_control *sc, bool actual_reclaim) 2102 { 2103 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2104 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2105 enum lru_list inactive_lru = file * LRU_FILE; 2106 unsigned long inactive, active; 2107 unsigned long inactive_ratio; 2108 unsigned long refaults; 2109 unsigned long gb; 2110 2111 /* 2112 * If we don't have swap space, anonymous page deactivation 2113 * is pointless. 2114 */ 2115 if (!file && !total_swap_pages) 2116 return false; 2117 2118 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2119 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2120 2121 if (memcg) 2122 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2123 else 2124 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2125 2126 /* 2127 * When refaults are being observed, it means a new workingset 2128 * is being established. Disable active list protection to get 2129 * rid of the stale workingset quickly. 2130 */ 2131 if (file && actual_reclaim && lruvec->refaults != refaults) { 2132 inactive_ratio = 0; 2133 } else { 2134 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2135 if (gb) 2136 inactive_ratio = int_sqrt(10 * gb); 2137 else 2138 inactive_ratio = 1; 2139 } 2140 2141 if (actual_reclaim) 2142 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2143 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2144 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2145 inactive_ratio, file); 2146 2147 return inactive * inactive_ratio < active; 2148 } 2149 2150 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2151 struct lruvec *lruvec, struct mem_cgroup *memcg, 2152 struct scan_control *sc) 2153 { 2154 if (is_active_lru(lru)) { 2155 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2156 memcg, sc, true)) 2157 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2158 return 0; 2159 } 2160 2161 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2162 } 2163 2164 enum scan_balance { 2165 SCAN_EQUAL, 2166 SCAN_FRACT, 2167 SCAN_ANON, 2168 SCAN_FILE, 2169 }; 2170 2171 /* 2172 * Determine how aggressively the anon and file LRU lists should be 2173 * scanned. The relative value of each set of LRU lists is determined 2174 * by looking at the fraction of the pages scanned we did rotate back 2175 * onto the active list instead of evict. 2176 * 2177 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2178 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2179 */ 2180 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2181 struct scan_control *sc, unsigned long *nr, 2182 unsigned long *lru_pages) 2183 { 2184 int swappiness = mem_cgroup_swappiness(memcg); 2185 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2186 u64 fraction[2]; 2187 u64 denominator = 0; /* gcc */ 2188 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2189 unsigned long anon_prio, file_prio; 2190 enum scan_balance scan_balance; 2191 unsigned long anon, file; 2192 unsigned long ap, fp; 2193 enum lru_list lru; 2194 2195 /* If we have no swap space, do not bother scanning anon pages. */ 2196 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2197 scan_balance = SCAN_FILE; 2198 goto out; 2199 } 2200 2201 /* 2202 * Global reclaim will swap to prevent OOM even with no 2203 * swappiness, but memcg users want to use this knob to 2204 * disable swapping for individual groups completely when 2205 * using the memory controller's swap limit feature would be 2206 * too expensive. 2207 */ 2208 if (!global_reclaim(sc) && !swappiness) { 2209 scan_balance = SCAN_FILE; 2210 goto out; 2211 } 2212 2213 /* 2214 * Do not apply any pressure balancing cleverness when the 2215 * system is close to OOM, scan both anon and file equally 2216 * (unless the swappiness setting disagrees with swapping). 2217 */ 2218 if (!sc->priority && swappiness) { 2219 scan_balance = SCAN_EQUAL; 2220 goto out; 2221 } 2222 2223 /* 2224 * Prevent the reclaimer from falling into the cache trap: as 2225 * cache pages start out inactive, every cache fault will tip 2226 * the scan balance towards the file LRU. And as the file LRU 2227 * shrinks, so does the window for rotation from references. 2228 * This means we have a runaway feedback loop where a tiny 2229 * thrashing file LRU becomes infinitely more attractive than 2230 * anon pages. Try to detect this based on file LRU size. 2231 */ 2232 if (global_reclaim(sc)) { 2233 unsigned long pgdatfile; 2234 unsigned long pgdatfree; 2235 int z; 2236 unsigned long total_high_wmark = 0; 2237 2238 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2239 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2240 node_page_state(pgdat, NR_INACTIVE_FILE); 2241 2242 for (z = 0; z < MAX_NR_ZONES; z++) { 2243 struct zone *zone = &pgdat->node_zones[z]; 2244 if (!managed_zone(zone)) 2245 continue; 2246 2247 total_high_wmark += high_wmark_pages(zone); 2248 } 2249 2250 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2251 /* 2252 * Force SCAN_ANON if there are enough inactive 2253 * anonymous pages on the LRU in eligible zones. 2254 * Otherwise, the small LRU gets thrashed. 2255 */ 2256 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2257 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2258 >> sc->priority) { 2259 scan_balance = SCAN_ANON; 2260 goto out; 2261 } 2262 } 2263 } 2264 2265 /* 2266 * If there is enough inactive page cache, i.e. if the size of the 2267 * inactive list is greater than that of the active list *and* the 2268 * inactive list actually has some pages to scan on this priority, we 2269 * do not reclaim anything from the anonymous working set right now. 2270 * Without the second condition we could end up never scanning an 2271 * lruvec even if it has plenty of old anonymous pages unless the 2272 * system is under heavy pressure. 2273 */ 2274 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2275 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2276 scan_balance = SCAN_FILE; 2277 goto out; 2278 } 2279 2280 scan_balance = SCAN_FRACT; 2281 2282 /* 2283 * With swappiness at 100, anonymous and file have the same priority. 2284 * This scanning priority is essentially the inverse of IO cost. 2285 */ 2286 anon_prio = swappiness; 2287 file_prio = 200 - anon_prio; 2288 2289 /* 2290 * OK, so we have swap space and a fair amount of page cache 2291 * pages. We use the recently rotated / recently scanned 2292 * ratios to determine how valuable each cache is. 2293 * 2294 * Because workloads change over time (and to avoid overflow) 2295 * we keep these statistics as a floating average, which ends 2296 * up weighing recent references more than old ones. 2297 * 2298 * anon in [0], file in [1] 2299 */ 2300 2301 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2302 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2303 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2304 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2305 2306 spin_lock_irq(&pgdat->lru_lock); 2307 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2308 reclaim_stat->recent_scanned[0] /= 2; 2309 reclaim_stat->recent_rotated[0] /= 2; 2310 } 2311 2312 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2313 reclaim_stat->recent_scanned[1] /= 2; 2314 reclaim_stat->recent_rotated[1] /= 2; 2315 } 2316 2317 /* 2318 * The amount of pressure on anon vs file pages is inversely 2319 * proportional to the fraction of recently scanned pages on 2320 * each list that were recently referenced and in active use. 2321 */ 2322 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2323 ap /= reclaim_stat->recent_rotated[0] + 1; 2324 2325 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2326 fp /= reclaim_stat->recent_rotated[1] + 1; 2327 spin_unlock_irq(&pgdat->lru_lock); 2328 2329 fraction[0] = ap; 2330 fraction[1] = fp; 2331 denominator = ap + fp + 1; 2332 out: 2333 *lru_pages = 0; 2334 for_each_evictable_lru(lru) { 2335 int file = is_file_lru(lru); 2336 unsigned long size; 2337 unsigned long scan; 2338 2339 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2340 scan = size >> sc->priority; 2341 /* 2342 * If the cgroup's already been deleted, make sure to 2343 * scrape out the remaining cache. 2344 */ 2345 if (!scan && !mem_cgroup_online(memcg)) 2346 scan = min(size, SWAP_CLUSTER_MAX); 2347 2348 switch (scan_balance) { 2349 case SCAN_EQUAL: 2350 /* Scan lists relative to size */ 2351 break; 2352 case SCAN_FRACT: 2353 /* 2354 * Scan types proportional to swappiness and 2355 * their relative recent reclaim efficiency. 2356 */ 2357 scan = div64_u64(scan * fraction[file], 2358 denominator); 2359 break; 2360 case SCAN_FILE: 2361 case SCAN_ANON: 2362 /* Scan one type exclusively */ 2363 if ((scan_balance == SCAN_FILE) != file) { 2364 size = 0; 2365 scan = 0; 2366 } 2367 break; 2368 default: 2369 /* Look ma, no brain */ 2370 BUG(); 2371 } 2372 2373 *lru_pages += size; 2374 nr[lru] = scan; 2375 } 2376 } 2377 2378 /* 2379 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2380 */ 2381 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2382 struct scan_control *sc, unsigned long *lru_pages) 2383 { 2384 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2385 unsigned long nr[NR_LRU_LISTS]; 2386 unsigned long targets[NR_LRU_LISTS]; 2387 unsigned long nr_to_scan; 2388 enum lru_list lru; 2389 unsigned long nr_reclaimed = 0; 2390 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2391 struct blk_plug plug; 2392 bool scan_adjusted; 2393 2394 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2395 2396 /* Record the original scan target for proportional adjustments later */ 2397 memcpy(targets, nr, sizeof(nr)); 2398 2399 /* 2400 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2401 * event that can occur when there is little memory pressure e.g. 2402 * multiple streaming readers/writers. Hence, we do not abort scanning 2403 * when the requested number of pages are reclaimed when scanning at 2404 * DEF_PRIORITY on the assumption that the fact we are direct 2405 * reclaiming implies that kswapd is not keeping up and it is best to 2406 * do a batch of work at once. For memcg reclaim one check is made to 2407 * abort proportional reclaim if either the file or anon lru has already 2408 * dropped to zero at the first pass. 2409 */ 2410 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2411 sc->priority == DEF_PRIORITY); 2412 2413 blk_start_plug(&plug); 2414 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2415 nr[LRU_INACTIVE_FILE]) { 2416 unsigned long nr_anon, nr_file, percentage; 2417 unsigned long nr_scanned; 2418 2419 for_each_evictable_lru(lru) { 2420 if (nr[lru]) { 2421 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2422 nr[lru] -= nr_to_scan; 2423 2424 nr_reclaimed += shrink_list(lru, nr_to_scan, 2425 lruvec, memcg, sc); 2426 } 2427 } 2428 2429 cond_resched(); 2430 2431 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2432 continue; 2433 2434 /* 2435 * For kswapd and memcg, reclaim at least the number of pages 2436 * requested. Ensure that the anon and file LRUs are scanned 2437 * proportionally what was requested by get_scan_count(). We 2438 * stop reclaiming one LRU and reduce the amount scanning 2439 * proportional to the original scan target. 2440 */ 2441 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2442 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2443 2444 /* 2445 * It's just vindictive to attack the larger once the smaller 2446 * has gone to zero. And given the way we stop scanning the 2447 * smaller below, this makes sure that we only make one nudge 2448 * towards proportionality once we've got nr_to_reclaim. 2449 */ 2450 if (!nr_file || !nr_anon) 2451 break; 2452 2453 if (nr_file > nr_anon) { 2454 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2455 targets[LRU_ACTIVE_ANON] + 1; 2456 lru = LRU_BASE; 2457 percentage = nr_anon * 100 / scan_target; 2458 } else { 2459 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2460 targets[LRU_ACTIVE_FILE] + 1; 2461 lru = LRU_FILE; 2462 percentage = nr_file * 100 / scan_target; 2463 } 2464 2465 /* Stop scanning the smaller of the LRU */ 2466 nr[lru] = 0; 2467 nr[lru + LRU_ACTIVE] = 0; 2468 2469 /* 2470 * Recalculate the other LRU scan count based on its original 2471 * scan target and the percentage scanning already complete 2472 */ 2473 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2474 nr_scanned = targets[lru] - nr[lru]; 2475 nr[lru] = targets[lru] * (100 - percentage) / 100; 2476 nr[lru] -= min(nr[lru], nr_scanned); 2477 2478 lru += LRU_ACTIVE; 2479 nr_scanned = targets[lru] - nr[lru]; 2480 nr[lru] = targets[lru] * (100 - percentage) / 100; 2481 nr[lru] -= min(nr[lru], nr_scanned); 2482 2483 scan_adjusted = true; 2484 } 2485 blk_finish_plug(&plug); 2486 sc->nr_reclaimed += nr_reclaimed; 2487 2488 /* 2489 * Even if we did not try to evict anon pages at all, we want to 2490 * rebalance the anon lru active/inactive ratio. 2491 */ 2492 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2493 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2494 sc, LRU_ACTIVE_ANON); 2495 } 2496 2497 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2498 static bool in_reclaim_compaction(struct scan_control *sc) 2499 { 2500 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2501 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2502 sc->priority < DEF_PRIORITY - 2)) 2503 return true; 2504 2505 return false; 2506 } 2507 2508 /* 2509 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2510 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2511 * true if more pages should be reclaimed such that when the page allocator 2512 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2513 * It will give up earlier than that if there is difficulty reclaiming pages. 2514 */ 2515 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2516 unsigned long nr_reclaimed, 2517 unsigned long nr_scanned, 2518 struct scan_control *sc) 2519 { 2520 unsigned long pages_for_compaction; 2521 unsigned long inactive_lru_pages; 2522 int z; 2523 2524 /* If not in reclaim/compaction mode, stop */ 2525 if (!in_reclaim_compaction(sc)) 2526 return false; 2527 2528 /* Consider stopping depending on scan and reclaim activity */ 2529 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2530 /* 2531 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2532 * full LRU list has been scanned and we are still failing 2533 * to reclaim pages. This full LRU scan is potentially 2534 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2535 */ 2536 if (!nr_reclaimed && !nr_scanned) 2537 return false; 2538 } else { 2539 /* 2540 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2541 * fail without consequence, stop if we failed to reclaim 2542 * any pages from the last SWAP_CLUSTER_MAX number of 2543 * pages that were scanned. This will return to the 2544 * caller faster at the risk reclaim/compaction and 2545 * the resulting allocation attempt fails 2546 */ 2547 if (!nr_reclaimed) 2548 return false; 2549 } 2550 2551 /* 2552 * If we have not reclaimed enough pages for compaction and the 2553 * inactive lists are large enough, continue reclaiming 2554 */ 2555 pages_for_compaction = compact_gap(sc->order); 2556 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2557 if (get_nr_swap_pages() > 0) 2558 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2559 if (sc->nr_reclaimed < pages_for_compaction && 2560 inactive_lru_pages > pages_for_compaction) 2561 return true; 2562 2563 /* If compaction would go ahead or the allocation would succeed, stop */ 2564 for (z = 0; z <= sc->reclaim_idx; z++) { 2565 struct zone *zone = &pgdat->node_zones[z]; 2566 if (!managed_zone(zone)) 2567 continue; 2568 2569 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2570 case COMPACT_SUCCESS: 2571 case COMPACT_CONTINUE: 2572 return false; 2573 default: 2574 /* check next zone */ 2575 ; 2576 } 2577 } 2578 return true; 2579 } 2580 2581 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2582 { 2583 struct reclaim_state *reclaim_state = current->reclaim_state; 2584 unsigned long nr_reclaimed, nr_scanned; 2585 bool reclaimable = false; 2586 2587 do { 2588 struct mem_cgroup *root = sc->target_mem_cgroup; 2589 struct mem_cgroup_reclaim_cookie reclaim = { 2590 .pgdat = pgdat, 2591 .priority = sc->priority, 2592 }; 2593 unsigned long node_lru_pages = 0; 2594 struct mem_cgroup *memcg; 2595 2596 nr_reclaimed = sc->nr_reclaimed; 2597 nr_scanned = sc->nr_scanned; 2598 2599 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2600 do { 2601 unsigned long lru_pages; 2602 unsigned long reclaimed; 2603 unsigned long scanned; 2604 2605 if (mem_cgroup_low(root, memcg)) { 2606 if (!sc->memcg_low_reclaim) { 2607 sc->memcg_low_skipped = 1; 2608 continue; 2609 } 2610 mem_cgroup_event(memcg, MEMCG_LOW); 2611 } 2612 2613 reclaimed = sc->nr_reclaimed; 2614 scanned = sc->nr_scanned; 2615 2616 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2617 node_lru_pages += lru_pages; 2618 2619 if (memcg) 2620 shrink_slab(sc->gfp_mask, pgdat->node_id, 2621 memcg, sc->nr_scanned - scanned, 2622 lru_pages); 2623 2624 /* Record the group's reclaim efficiency */ 2625 vmpressure(sc->gfp_mask, memcg, false, 2626 sc->nr_scanned - scanned, 2627 sc->nr_reclaimed - reclaimed); 2628 2629 /* 2630 * Direct reclaim and kswapd have to scan all memory 2631 * cgroups to fulfill the overall scan target for the 2632 * node. 2633 * 2634 * Limit reclaim, on the other hand, only cares about 2635 * nr_to_reclaim pages to be reclaimed and it will 2636 * retry with decreasing priority if one round over the 2637 * whole hierarchy is not sufficient. 2638 */ 2639 if (!global_reclaim(sc) && 2640 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2641 mem_cgroup_iter_break(root, memcg); 2642 break; 2643 } 2644 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2645 2646 /* 2647 * Shrink the slab caches in the same proportion that 2648 * the eligible LRU pages were scanned. 2649 */ 2650 if (global_reclaim(sc)) 2651 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2652 sc->nr_scanned - nr_scanned, 2653 node_lru_pages); 2654 2655 if (reclaim_state) { 2656 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2657 reclaim_state->reclaimed_slab = 0; 2658 } 2659 2660 /* Record the subtree's reclaim efficiency */ 2661 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2662 sc->nr_scanned - nr_scanned, 2663 sc->nr_reclaimed - nr_reclaimed); 2664 2665 if (sc->nr_reclaimed - nr_reclaimed) 2666 reclaimable = true; 2667 2668 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2669 sc->nr_scanned - nr_scanned, sc)); 2670 2671 /* 2672 * Kswapd gives up on balancing particular nodes after too 2673 * many failures to reclaim anything from them and goes to 2674 * sleep. On reclaim progress, reset the failure counter. A 2675 * successful direct reclaim run will revive a dormant kswapd. 2676 */ 2677 if (reclaimable) 2678 pgdat->kswapd_failures = 0; 2679 2680 return reclaimable; 2681 } 2682 2683 /* 2684 * Returns true if compaction should go ahead for a costly-order request, or 2685 * the allocation would already succeed without compaction. Return false if we 2686 * should reclaim first. 2687 */ 2688 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2689 { 2690 unsigned long watermark; 2691 enum compact_result suitable; 2692 2693 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2694 if (suitable == COMPACT_SUCCESS) 2695 /* Allocation should succeed already. Don't reclaim. */ 2696 return true; 2697 if (suitable == COMPACT_SKIPPED) 2698 /* Compaction cannot yet proceed. Do reclaim. */ 2699 return false; 2700 2701 /* 2702 * Compaction is already possible, but it takes time to run and there 2703 * are potentially other callers using the pages just freed. So proceed 2704 * with reclaim to make a buffer of free pages available to give 2705 * compaction a reasonable chance of completing and allocating the page. 2706 * Note that we won't actually reclaim the whole buffer in one attempt 2707 * as the target watermark in should_continue_reclaim() is lower. But if 2708 * we are already above the high+gap watermark, don't reclaim at all. 2709 */ 2710 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2711 2712 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2713 } 2714 2715 /* 2716 * This is the direct reclaim path, for page-allocating processes. We only 2717 * try to reclaim pages from zones which will satisfy the caller's allocation 2718 * request. 2719 * 2720 * If a zone is deemed to be full of pinned pages then just give it a light 2721 * scan then give up on it. 2722 */ 2723 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2724 { 2725 struct zoneref *z; 2726 struct zone *zone; 2727 unsigned long nr_soft_reclaimed; 2728 unsigned long nr_soft_scanned; 2729 gfp_t orig_mask; 2730 pg_data_t *last_pgdat = NULL; 2731 2732 /* 2733 * If the number of buffer_heads in the machine exceeds the maximum 2734 * allowed level, force direct reclaim to scan the highmem zone as 2735 * highmem pages could be pinning lowmem pages storing buffer_heads 2736 */ 2737 orig_mask = sc->gfp_mask; 2738 if (buffer_heads_over_limit) { 2739 sc->gfp_mask |= __GFP_HIGHMEM; 2740 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2741 } 2742 2743 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2744 sc->reclaim_idx, sc->nodemask) { 2745 /* 2746 * Take care memory controller reclaiming has small influence 2747 * to global LRU. 2748 */ 2749 if (global_reclaim(sc)) { 2750 if (!cpuset_zone_allowed(zone, 2751 GFP_KERNEL | __GFP_HARDWALL)) 2752 continue; 2753 2754 /* 2755 * If we already have plenty of memory free for 2756 * compaction in this zone, don't free any more. 2757 * Even though compaction is invoked for any 2758 * non-zero order, only frequent costly order 2759 * reclamation is disruptive enough to become a 2760 * noticeable problem, like transparent huge 2761 * page allocations. 2762 */ 2763 if (IS_ENABLED(CONFIG_COMPACTION) && 2764 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2765 compaction_ready(zone, sc)) { 2766 sc->compaction_ready = true; 2767 continue; 2768 } 2769 2770 /* 2771 * Shrink each node in the zonelist once. If the 2772 * zonelist is ordered by zone (not the default) then a 2773 * node may be shrunk multiple times but in that case 2774 * the user prefers lower zones being preserved. 2775 */ 2776 if (zone->zone_pgdat == last_pgdat) 2777 continue; 2778 2779 /* 2780 * This steals pages from memory cgroups over softlimit 2781 * and returns the number of reclaimed pages and 2782 * scanned pages. This works for global memory pressure 2783 * and balancing, not for a memcg's limit. 2784 */ 2785 nr_soft_scanned = 0; 2786 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2787 sc->order, sc->gfp_mask, 2788 &nr_soft_scanned); 2789 sc->nr_reclaimed += nr_soft_reclaimed; 2790 sc->nr_scanned += nr_soft_scanned; 2791 /* need some check for avoid more shrink_zone() */ 2792 } 2793 2794 /* See comment about same check for global reclaim above */ 2795 if (zone->zone_pgdat == last_pgdat) 2796 continue; 2797 last_pgdat = zone->zone_pgdat; 2798 shrink_node(zone->zone_pgdat, sc); 2799 } 2800 2801 /* 2802 * Restore to original mask to avoid the impact on the caller if we 2803 * promoted it to __GFP_HIGHMEM. 2804 */ 2805 sc->gfp_mask = orig_mask; 2806 } 2807 2808 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2809 { 2810 struct mem_cgroup *memcg; 2811 2812 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2813 do { 2814 unsigned long refaults; 2815 struct lruvec *lruvec; 2816 2817 if (memcg) 2818 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2819 else 2820 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2821 2822 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2823 lruvec->refaults = refaults; 2824 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2825 } 2826 2827 /* 2828 * This is the main entry point to direct page reclaim. 2829 * 2830 * If a full scan of the inactive list fails to free enough memory then we 2831 * are "out of memory" and something needs to be killed. 2832 * 2833 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2834 * high - the zone may be full of dirty or under-writeback pages, which this 2835 * caller can't do much about. We kick the writeback threads and take explicit 2836 * naps in the hope that some of these pages can be written. But if the 2837 * allocating task holds filesystem locks which prevent writeout this might not 2838 * work, and the allocation attempt will fail. 2839 * 2840 * returns: 0, if no pages reclaimed 2841 * else, the number of pages reclaimed 2842 */ 2843 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2844 struct scan_control *sc) 2845 { 2846 int initial_priority = sc->priority; 2847 pg_data_t *last_pgdat; 2848 struct zoneref *z; 2849 struct zone *zone; 2850 retry: 2851 delayacct_freepages_start(); 2852 2853 if (global_reclaim(sc)) 2854 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2855 2856 do { 2857 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2858 sc->priority); 2859 sc->nr_scanned = 0; 2860 shrink_zones(zonelist, sc); 2861 2862 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2863 break; 2864 2865 if (sc->compaction_ready) 2866 break; 2867 2868 /* 2869 * If we're getting trouble reclaiming, start doing 2870 * writepage even in laptop mode. 2871 */ 2872 if (sc->priority < DEF_PRIORITY - 2) 2873 sc->may_writepage = 1; 2874 } while (--sc->priority >= 0); 2875 2876 last_pgdat = NULL; 2877 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2878 sc->nodemask) { 2879 if (zone->zone_pgdat == last_pgdat) 2880 continue; 2881 last_pgdat = zone->zone_pgdat; 2882 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2883 } 2884 2885 delayacct_freepages_end(); 2886 2887 if (sc->nr_reclaimed) 2888 return sc->nr_reclaimed; 2889 2890 /* Aborted reclaim to try compaction? don't OOM, then */ 2891 if (sc->compaction_ready) 2892 return 1; 2893 2894 /* Untapped cgroup reserves? Don't OOM, retry. */ 2895 if (sc->memcg_low_skipped) { 2896 sc->priority = initial_priority; 2897 sc->memcg_low_reclaim = 1; 2898 sc->memcg_low_skipped = 0; 2899 goto retry; 2900 } 2901 2902 return 0; 2903 } 2904 2905 static bool allow_direct_reclaim(pg_data_t *pgdat) 2906 { 2907 struct zone *zone; 2908 unsigned long pfmemalloc_reserve = 0; 2909 unsigned long free_pages = 0; 2910 int i; 2911 bool wmark_ok; 2912 2913 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2914 return true; 2915 2916 for (i = 0; i <= ZONE_NORMAL; i++) { 2917 zone = &pgdat->node_zones[i]; 2918 if (!managed_zone(zone)) 2919 continue; 2920 2921 if (!zone_reclaimable_pages(zone)) 2922 continue; 2923 2924 pfmemalloc_reserve += min_wmark_pages(zone); 2925 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2926 } 2927 2928 /* If there are no reserves (unexpected config) then do not throttle */ 2929 if (!pfmemalloc_reserve) 2930 return true; 2931 2932 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2933 2934 /* kswapd must be awake if processes are being throttled */ 2935 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2936 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2937 (enum zone_type)ZONE_NORMAL); 2938 wake_up_interruptible(&pgdat->kswapd_wait); 2939 } 2940 2941 return wmark_ok; 2942 } 2943 2944 /* 2945 * Throttle direct reclaimers if backing storage is backed by the network 2946 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2947 * depleted. kswapd will continue to make progress and wake the processes 2948 * when the low watermark is reached. 2949 * 2950 * Returns true if a fatal signal was delivered during throttling. If this 2951 * happens, the page allocator should not consider triggering the OOM killer. 2952 */ 2953 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2954 nodemask_t *nodemask) 2955 { 2956 struct zoneref *z; 2957 struct zone *zone; 2958 pg_data_t *pgdat = NULL; 2959 2960 /* 2961 * Kernel threads should not be throttled as they may be indirectly 2962 * responsible for cleaning pages necessary for reclaim to make forward 2963 * progress. kjournald for example may enter direct reclaim while 2964 * committing a transaction where throttling it could forcing other 2965 * processes to block on log_wait_commit(). 2966 */ 2967 if (current->flags & PF_KTHREAD) 2968 goto out; 2969 2970 /* 2971 * If a fatal signal is pending, this process should not throttle. 2972 * It should return quickly so it can exit and free its memory 2973 */ 2974 if (fatal_signal_pending(current)) 2975 goto out; 2976 2977 /* 2978 * Check if the pfmemalloc reserves are ok by finding the first node 2979 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2980 * GFP_KERNEL will be required for allocating network buffers when 2981 * swapping over the network so ZONE_HIGHMEM is unusable. 2982 * 2983 * Throttling is based on the first usable node and throttled processes 2984 * wait on a queue until kswapd makes progress and wakes them. There 2985 * is an affinity then between processes waking up and where reclaim 2986 * progress has been made assuming the process wakes on the same node. 2987 * More importantly, processes running on remote nodes will not compete 2988 * for remote pfmemalloc reserves and processes on different nodes 2989 * should make reasonable progress. 2990 */ 2991 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2992 gfp_zone(gfp_mask), nodemask) { 2993 if (zone_idx(zone) > ZONE_NORMAL) 2994 continue; 2995 2996 /* Throttle based on the first usable node */ 2997 pgdat = zone->zone_pgdat; 2998 if (allow_direct_reclaim(pgdat)) 2999 goto out; 3000 break; 3001 } 3002 3003 /* If no zone was usable by the allocation flags then do not throttle */ 3004 if (!pgdat) 3005 goto out; 3006 3007 /* Account for the throttling */ 3008 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3009 3010 /* 3011 * If the caller cannot enter the filesystem, it's possible that it 3012 * is due to the caller holding an FS lock or performing a journal 3013 * transaction in the case of a filesystem like ext[3|4]. In this case, 3014 * it is not safe to block on pfmemalloc_wait as kswapd could be 3015 * blocked waiting on the same lock. Instead, throttle for up to a 3016 * second before continuing. 3017 */ 3018 if (!(gfp_mask & __GFP_FS)) { 3019 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3020 allow_direct_reclaim(pgdat), HZ); 3021 3022 goto check_pending; 3023 } 3024 3025 /* Throttle until kswapd wakes the process */ 3026 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3027 allow_direct_reclaim(pgdat)); 3028 3029 check_pending: 3030 if (fatal_signal_pending(current)) 3031 return true; 3032 3033 out: 3034 return false; 3035 } 3036 3037 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3038 gfp_t gfp_mask, nodemask_t *nodemask) 3039 { 3040 unsigned long nr_reclaimed; 3041 struct scan_control sc = { 3042 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3043 .gfp_mask = current_gfp_context(gfp_mask), 3044 .reclaim_idx = gfp_zone(gfp_mask), 3045 .order = order, 3046 .nodemask = nodemask, 3047 .priority = DEF_PRIORITY, 3048 .may_writepage = !laptop_mode, 3049 .may_unmap = 1, 3050 .may_swap = 1, 3051 }; 3052 3053 /* 3054 * Do not enter reclaim if fatal signal was delivered while throttled. 3055 * 1 is returned so that the page allocator does not OOM kill at this 3056 * point. 3057 */ 3058 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3059 return 1; 3060 3061 trace_mm_vmscan_direct_reclaim_begin(order, 3062 sc.may_writepage, 3063 sc.gfp_mask, 3064 sc.reclaim_idx); 3065 3066 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3067 3068 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3069 3070 return nr_reclaimed; 3071 } 3072 3073 #ifdef CONFIG_MEMCG 3074 3075 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3076 gfp_t gfp_mask, bool noswap, 3077 pg_data_t *pgdat, 3078 unsigned long *nr_scanned) 3079 { 3080 struct scan_control sc = { 3081 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3082 .target_mem_cgroup = memcg, 3083 .may_writepage = !laptop_mode, 3084 .may_unmap = 1, 3085 .reclaim_idx = MAX_NR_ZONES - 1, 3086 .may_swap = !noswap, 3087 }; 3088 unsigned long lru_pages; 3089 3090 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3091 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3092 3093 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3094 sc.may_writepage, 3095 sc.gfp_mask, 3096 sc.reclaim_idx); 3097 3098 /* 3099 * NOTE: Although we can get the priority field, using it 3100 * here is not a good idea, since it limits the pages we can scan. 3101 * if we don't reclaim here, the shrink_node from balance_pgdat 3102 * will pick up pages from other mem cgroup's as well. We hack 3103 * the priority and make it zero. 3104 */ 3105 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3106 3107 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3108 3109 *nr_scanned = sc.nr_scanned; 3110 return sc.nr_reclaimed; 3111 } 3112 3113 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3114 unsigned long nr_pages, 3115 gfp_t gfp_mask, 3116 bool may_swap) 3117 { 3118 struct zonelist *zonelist; 3119 unsigned long nr_reclaimed; 3120 int nid; 3121 unsigned int noreclaim_flag; 3122 struct scan_control sc = { 3123 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3124 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3125 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3126 .reclaim_idx = MAX_NR_ZONES - 1, 3127 .target_mem_cgroup = memcg, 3128 .priority = DEF_PRIORITY, 3129 .may_writepage = !laptop_mode, 3130 .may_unmap = 1, 3131 .may_swap = may_swap, 3132 }; 3133 3134 /* 3135 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3136 * take care of from where we get pages. So the node where we start the 3137 * scan does not need to be the current node. 3138 */ 3139 nid = mem_cgroup_select_victim_node(memcg); 3140 3141 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3142 3143 trace_mm_vmscan_memcg_reclaim_begin(0, 3144 sc.may_writepage, 3145 sc.gfp_mask, 3146 sc.reclaim_idx); 3147 3148 noreclaim_flag = memalloc_noreclaim_save(); 3149 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3150 memalloc_noreclaim_restore(noreclaim_flag); 3151 3152 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3153 3154 return nr_reclaimed; 3155 } 3156 #endif 3157 3158 static void age_active_anon(struct pglist_data *pgdat, 3159 struct scan_control *sc) 3160 { 3161 struct mem_cgroup *memcg; 3162 3163 if (!total_swap_pages) 3164 return; 3165 3166 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3167 do { 3168 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3169 3170 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3171 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3172 sc, LRU_ACTIVE_ANON); 3173 3174 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3175 } while (memcg); 3176 } 3177 3178 /* 3179 * Returns true if there is an eligible zone balanced for the request order 3180 * and classzone_idx 3181 */ 3182 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3183 { 3184 int i; 3185 unsigned long mark = -1; 3186 struct zone *zone; 3187 3188 for (i = 0; i <= classzone_idx; i++) { 3189 zone = pgdat->node_zones + i; 3190 3191 if (!managed_zone(zone)) 3192 continue; 3193 3194 mark = high_wmark_pages(zone); 3195 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3196 return true; 3197 } 3198 3199 /* 3200 * If a node has no populated zone within classzone_idx, it does not 3201 * need balancing by definition. This can happen if a zone-restricted 3202 * allocation tries to wake a remote kswapd. 3203 */ 3204 if (mark == -1) 3205 return true; 3206 3207 return false; 3208 } 3209 3210 /* Clear pgdat state for congested, dirty or under writeback. */ 3211 static void clear_pgdat_congested(pg_data_t *pgdat) 3212 { 3213 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3214 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3215 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3216 } 3217 3218 /* 3219 * Prepare kswapd for sleeping. This verifies that there are no processes 3220 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3221 * 3222 * Returns true if kswapd is ready to sleep 3223 */ 3224 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3225 { 3226 /* 3227 * The throttled processes are normally woken up in balance_pgdat() as 3228 * soon as allow_direct_reclaim() is true. But there is a potential 3229 * race between when kswapd checks the watermarks and a process gets 3230 * throttled. There is also a potential race if processes get 3231 * throttled, kswapd wakes, a large process exits thereby balancing the 3232 * zones, which causes kswapd to exit balance_pgdat() before reaching 3233 * the wake up checks. If kswapd is going to sleep, no process should 3234 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3235 * the wake up is premature, processes will wake kswapd and get 3236 * throttled again. The difference from wake ups in balance_pgdat() is 3237 * that here we are under prepare_to_wait(). 3238 */ 3239 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3240 wake_up_all(&pgdat->pfmemalloc_wait); 3241 3242 /* Hopeless node, leave it to direct reclaim */ 3243 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3244 return true; 3245 3246 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3247 clear_pgdat_congested(pgdat); 3248 return true; 3249 } 3250 3251 return false; 3252 } 3253 3254 /* 3255 * kswapd shrinks a node of pages that are at or below the highest usable 3256 * zone that is currently unbalanced. 3257 * 3258 * Returns true if kswapd scanned at least the requested number of pages to 3259 * reclaim or if the lack of progress was due to pages under writeback. 3260 * This is used to determine if the scanning priority needs to be raised. 3261 */ 3262 static bool kswapd_shrink_node(pg_data_t *pgdat, 3263 struct scan_control *sc) 3264 { 3265 struct zone *zone; 3266 int z; 3267 3268 /* Reclaim a number of pages proportional to the number of zones */ 3269 sc->nr_to_reclaim = 0; 3270 for (z = 0; z <= sc->reclaim_idx; z++) { 3271 zone = pgdat->node_zones + z; 3272 if (!managed_zone(zone)) 3273 continue; 3274 3275 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3276 } 3277 3278 /* 3279 * Historically care was taken to put equal pressure on all zones but 3280 * now pressure is applied based on node LRU order. 3281 */ 3282 shrink_node(pgdat, sc); 3283 3284 /* 3285 * Fragmentation may mean that the system cannot be rebalanced for 3286 * high-order allocations. If twice the allocation size has been 3287 * reclaimed then recheck watermarks only at order-0 to prevent 3288 * excessive reclaim. Assume that a process requested a high-order 3289 * can direct reclaim/compact. 3290 */ 3291 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3292 sc->order = 0; 3293 3294 return sc->nr_scanned >= sc->nr_to_reclaim; 3295 } 3296 3297 /* 3298 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3299 * that are eligible for use by the caller until at least one zone is 3300 * balanced. 3301 * 3302 * Returns the order kswapd finished reclaiming at. 3303 * 3304 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3305 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3306 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3307 * or lower is eligible for reclaim until at least one usable zone is 3308 * balanced. 3309 */ 3310 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3311 { 3312 int i; 3313 unsigned long nr_soft_reclaimed; 3314 unsigned long nr_soft_scanned; 3315 struct zone *zone; 3316 struct scan_control sc = { 3317 .gfp_mask = GFP_KERNEL, 3318 .order = order, 3319 .priority = DEF_PRIORITY, 3320 .may_writepage = !laptop_mode, 3321 .may_unmap = 1, 3322 .may_swap = 1, 3323 }; 3324 count_vm_event(PAGEOUTRUN); 3325 3326 do { 3327 unsigned long nr_reclaimed = sc.nr_reclaimed; 3328 bool raise_priority = true; 3329 3330 sc.reclaim_idx = classzone_idx; 3331 3332 /* 3333 * If the number of buffer_heads exceeds the maximum allowed 3334 * then consider reclaiming from all zones. This has a dual 3335 * purpose -- on 64-bit systems it is expected that 3336 * buffer_heads are stripped during active rotation. On 32-bit 3337 * systems, highmem pages can pin lowmem memory and shrinking 3338 * buffers can relieve lowmem pressure. Reclaim may still not 3339 * go ahead if all eligible zones for the original allocation 3340 * request are balanced to avoid excessive reclaim from kswapd. 3341 */ 3342 if (buffer_heads_over_limit) { 3343 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3344 zone = pgdat->node_zones + i; 3345 if (!managed_zone(zone)) 3346 continue; 3347 3348 sc.reclaim_idx = i; 3349 break; 3350 } 3351 } 3352 3353 /* 3354 * Only reclaim if there are no eligible zones. Note that 3355 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3356 * have adjusted it. 3357 */ 3358 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3359 goto out; 3360 3361 /* 3362 * Do some background aging of the anon list, to give 3363 * pages a chance to be referenced before reclaiming. All 3364 * pages are rotated regardless of classzone as this is 3365 * about consistent aging. 3366 */ 3367 age_active_anon(pgdat, &sc); 3368 3369 /* 3370 * If we're getting trouble reclaiming, start doing writepage 3371 * even in laptop mode. 3372 */ 3373 if (sc.priority < DEF_PRIORITY - 2) 3374 sc.may_writepage = 1; 3375 3376 /* Call soft limit reclaim before calling shrink_node. */ 3377 sc.nr_scanned = 0; 3378 nr_soft_scanned = 0; 3379 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3380 sc.gfp_mask, &nr_soft_scanned); 3381 sc.nr_reclaimed += nr_soft_reclaimed; 3382 3383 /* 3384 * There should be no need to raise the scanning priority if 3385 * enough pages are already being scanned that that high 3386 * watermark would be met at 100% efficiency. 3387 */ 3388 if (kswapd_shrink_node(pgdat, &sc)) 3389 raise_priority = false; 3390 3391 /* 3392 * If the low watermark is met there is no need for processes 3393 * to be throttled on pfmemalloc_wait as they should not be 3394 * able to safely make forward progress. Wake them 3395 */ 3396 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3397 allow_direct_reclaim(pgdat)) 3398 wake_up_all(&pgdat->pfmemalloc_wait); 3399 3400 /* Check if kswapd should be suspending */ 3401 if (try_to_freeze() || kthread_should_stop()) 3402 break; 3403 3404 /* 3405 * Raise priority if scanning rate is too low or there was no 3406 * progress in reclaiming pages 3407 */ 3408 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3409 if (raise_priority || !nr_reclaimed) 3410 sc.priority--; 3411 } while (sc.priority >= 1); 3412 3413 if (!sc.nr_reclaimed) 3414 pgdat->kswapd_failures++; 3415 3416 out: 3417 snapshot_refaults(NULL, pgdat); 3418 /* 3419 * Return the order kswapd stopped reclaiming at as 3420 * prepare_kswapd_sleep() takes it into account. If another caller 3421 * entered the allocator slow path while kswapd was awake, order will 3422 * remain at the higher level. 3423 */ 3424 return sc.order; 3425 } 3426 3427 /* 3428 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3429 * allocation request woke kswapd for. When kswapd has not woken recently, 3430 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3431 * given classzone and returns it or the highest classzone index kswapd 3432 * was recently woke for. 3433 */ 3434 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3435 enum zone_type classzone_idx) 3436 { 3437 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3438 return classzone_idx; 3439 3440 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3441 } 3442 3443 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3444 unsigned int classzone_idx) 3445 { 3446 long remaining = 0; 3447 DEFINE_WAIT(wait); 3448 3449 if (freezing(current) || kthread_should_stop()) 3450 return; 3451 3452 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3453 3454 /* 3455 * Try to sleep for a short interval. Note that kcompactd will only be 3456 * woken if it is possible to sleep for a short interval. This is 3457 * deliberate on the assumption that if reclaim cannot keep an 3458 * eligible zone balanced that it's also unlikely that compaction will 3459 * succeed. 3460 */ 3461 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3462 /* 3463 * Compaction records what page blocks it recently failed to 3464 * isolate pages from and skips them in the future scanning. 3465 * When kswapd is going to sleep, it is reasonable to assume 3466 * that pages and compaction may succeed so reset the cache. 3467 */ 3468 reset_isolation_suitable(pgdat); 3469 3470 /* 3471 * We have freed the memory, now we should compact it to make 3472 * allocation of the requested order possible. 3473 */ 3474 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3475 3476 remaining = schedule_timeout(HZ/10); 3477 3478 /* 3479 * If woken prematurely then reset kswapd_classzone_idx and 3480 * order. The values will either be from a wakeup request or 3481 * the previous request that slept prematurely. 3482 */ 3483 if (remaining) { 3484 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3485 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3486 } 3487 3488 finish_wait(&pgdat->kswapd_wait, &wait); 3489 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3490 } 3491 3492 /* 3493 * After a short sleep, check if it was a premature sleep. If not, then 3494 * go fully to sleep until explicitly woken up. 3495 */ 3496 if (!remaining && 3497 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3498 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3499 3500 /* 3501 * vmstat counters are not perfectly accurate and the estimated 3502 * value for counters such as NR_FREE_PAGES can deviate from the 3503 * true value by nr_online_cpus * threshold. To avoid the zone 3504 * watermarks being breached while under pressure, we reduce the 3505 * per-cpu vmstat threshold while kswapd is awake and restore 3506 * them before going back to sleep. 3507 */ 3508 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3509 3510 if (!kthread_should_stop()) 3511 schedule(); 3512 3513 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3514 } else { 3515 if (remaining) 3516 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3517 else 3518 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3519 } 3520 finish_wait(&pgdat->kswapd_wait, &wait); 3521 } 3522 3523 /* 3524 * The background pageout daemon, started as a kernel thread 3525 * from the init process. 3526 * 3527 * This basically trickles out pages so that we have _some_ 3528 * free memory available even if there is no other activity 3529 * that frees anything up. This is needed for things like routing 3530 * etc, where we otherwise might have all activity going on in 3531 * asynchronous contexts that cannot page things out. 3532 * 3533 * If there are applications that are active memory-allocators 3534 * (most normal use), this basically shouldn't matter. 3535 */ 3536 static int kswapd(void *p) 3537 { 3538 unsigned int alloc_order, reclaim_order; 3539 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3540 pg_data_t *pgdat = (pg_data_t*)p; 3541 struct task_struct *tsk = current; 3542 3543 struct reclaim_state reclaim_state = { 3544 .reclaimed_slab = 0, 3545 }; 3546 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3547 3548 if (!cpumask_empty(cpumask)) 3549 set_cpus_allowed_ptr(tsk, cpumask); 3550 current->reclaim_state = &reclaim_state; 3551 3552 /* 3553 * Tell the memory management that we're a "memory allocator", 3554 * and that if we need more memory we should get access to it 3555 * regardless (see "__alloc_pages()"). "kswapd" should 3556 * never get caught in the normal page freeing logic. 3557 * 3558 * (Kswapd normally doesn't need memory anyway, but sometimes 3559 * you need a small amount of memory in order to be able to 3560 * page out something else, and this flag essentially protects 3561 * us from recursively trying to free more memory as we're 3562 * trying to free the first piece of memory in the first place). 3563 */ 3564 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3565 set_freezable(); 3566 3567 pgdat->kswapd_order = 0; 3568 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3569 for ( ; ; ) { 3570 bool ret; 3571 3572 alloc_order = reclaim_order = pgdat->kswapd_order; 3573 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3574 3575 kswapd_try_sleep: 3576 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3577 classzone_idx); 3578 3579 /* Read the new order and classzone_idx */ 3580 alloc_order = reclaim_order = pgdat->kswapd_order; 3581 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3582 pgdat->kswapd_order = 0; 3583 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3584 3585 ret = try_to_freeze(); 3586 if (kthread_should_stop()) 3587 break; 3588 3589 /* 3590 * We can speed up thawing tasks if we don't call balance_pgdat 3591 * after returning from the refrigerator 3592 */ 3593 if (ret) 3594 continue; 3595 3596 /* 3597 * Reclaim begins at the requested order but if a high-order 3598 * reclaim fails then kswapd falls back to reclaiming for 3599 * order-0. If that happens, kswapd will consider sleeping 3600 * for the order it finished reclaiming at (reclaim_order) 3601 * but kcompactd is woken to compact for the original 3602 * request (alloc_order). 3603 */ 3604 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3605 alloc_order); 3606 fs_reclaim_acquire(GFP_KERNEL); 3607 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3608 fs_reclaim_release(GFP_KERNEL); 3609 if (reclaim_order < alloc_order) 3610 goto kswapd_try_sleep; 3611 } 3612 3613 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3614 current->reclaim_state = NULL; 3615 3616 return 0; 3617 } 3618 3619 /* 3620 * A zone is low on free memory, so wake its kswapd task to service it. 3621 */ 3622 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3623 { 3624 pg_data_t *pgdat; 3625 3626 if (!managed_zone(zone)) 3627 return; 3628 3629 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3630 return; 3631 pgdat = zone->zone_pgdat; 3632 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3633 classzone_idx); 3634 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3635 if (!waitqueue_active(&pgdat->kswapd_wait)) 3636 return; 3637 3638 /* Hopeless node, leave it to direct reclaim */ 3639 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3640 return; 3641 3642 if (pgdat_balanced(pgdat, order, classzone_idx)) 3643 return; 3644 3645 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order); 3646 wake_up_interruptible(&pgdat->kswapd_wait); 3647 } 3648 3649 #ifdef CONFIG_HIBERNATION 3650 /* 3651 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3652 * freed pages. 3653 * 3654 * Rather than trying to age LRUs the aim is to preserve the overall 3655 * LRU order by reclaiming preferentially 3656 * inactive > active > active referenced > active mapped 3657 */ 3658 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3659 { 3660 struct reclaim_state reclaim_state; 3661 struct scan_control sc = { 3662 .nr_to_reclaim = nr_to_reclaim, 3663 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3664 .reclaim_idx = MAX_NR_ZONES - 1, 3665 .priority = DEF_PRIORITY, 3666 .may_writepage = 1, 3667 .may_unmap = 1, 3668 .may_swap = 1, 3669 .hibernation_mode = 1, 3670 }; 3671 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3672 struct task_struct *p = current; 3673 unsigned long nr_reclaimed; 3674 unsigned int noreclaim_flag; 3675 3676 noreclaim_flag = memalloc_noreclaim_save(); 3677 fs_reclaim_acquire(sc.gfp_mask); 3678 reclaim_state.reclaimed_slab = 0; 3679 p->reclaim_state = &reclaim_state; 3680 3681 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3682 3683 p->reclaim_state = NULL; 3684 fs_reclaim_release(sc.gfp_mask); 3685 memalloc_noreclaim_restore(noreclaim_flag); 3686 3687 return nr_reclaimed; 3688 } 3689 #endif /* CONFIG_HIBERNATION */ 3690 3691 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3692 not required for correctness. So if the last cpu in a node goes 3693 away, we get changed to run anywhere: as the first one comes back, 3694 restore their cpu bindings. */ 3695 static int kswapd_cpu_online(unsigned int cpu) 3696 { 3697 int nid; 3698 3699 for_each_node_state(nid, N_MEMORY) { 3700 pg_data_t *pgdat = NODE_DATA(nid); 3701 const struct cpumask *mask; 3702 3703 mask = cpumask_of_node(pgdat->node_id); 3704 3705 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3706 /* One of our CPUs online: restore mask */ 3707 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3708 } 3709 return 0; 3710 } 3711 3712 /* 3713 * This kswapd start function will be called by init and node-hot-add. 3714 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3715 */ 3716 int kswapd_run(int nid) 3717 { 3718 pg_data_t *pgdat = NODE_DATA(nid); 3719 int ret = 0; 3720 3721 if (pgdat->kswapd) 3722 return 0; 3723 3724 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3725 if (IS_ERR(pgdat->kswapd)) { 3726 /* failure at boot is fatal */ 3727 BUG_ON(system_state < SYSTEM_RUNNING); 3728 pr_err("Failed to start kswapd on node %d\n", nid); 3729 ret = PTR_ERR(pgdat->kswapd); 3730 pgdat->kswapd = NULL; 3731 } 3732 return ret; 3733 } 3734 3735 /* 3736 * Called by memory hotplug when all memory in a node is offlined. Caller must 3737 * hold mem_hotplug_begin/end(). 3738 */ 3739 void kswapd_stop(int nid) 3740 { 3741 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3742 3743 if (kswapd) { 3744 kthread_stop(kswapd); 3745 NODE_DATA(nid)->kswapd = NULL; 3746 } 3747 } 3748 3749 static int __init kswapd_init(void) 3750 { 3751 int nid, ret; 3752 3753 swap_setup(); 3754 for_each_node_state(nid, N_MEMORY) 3755 kswapd_run(nid); 3756 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3757 "mm/vmscan:online", kswapd_cpu_online, 3758 NULL); 3759 WARN_ON(ret < 0); 3760 return 0; 3761 } 3762 3763 module_init(kswapd_init) 3764 3765 #ifdef CONFIG_NUMA 3766 /* 3767 * Node reclaim mode 3768 * 3769 * If non-zero call node_reclaim when the number of free pages falls below 3770 * the watermarks. 3771 */ 3772 int node_reclaim_mode __read_mostly; 3773 3774 #define RECLAIM_OFF 0 3775 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3776 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3777 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3778 3779 /* 3780 * Priority for NODE_RECLAIM. This determines the fraction of pages 3781 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3782 * a zone. 3783 */ 3784 #define NODE_RECLAIM_PRIORITY 4 3785 3786 /* 3787 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3788 * occur. 3789 */ 3790 int sysctl_min_unmapped_ratio = 1; 3791 3792 /* 3793 * If the number of slab pages in a zone grows beyond this percentage then 3794 * slab reclaim needs to occur. 3795 */ 3796 int sysctl_min_slab_ratio = 5; 3797 3798 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3799 { 3800 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3801 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3802 node_page_state(pgdat, NR_ACTIVE_FILE); 3803 3804 /* 3805 * It's possible for there to be more file mapped pages than 3806 * accounted for by the pages on the file LRU lists because 3807 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3808 */ 3809 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3810 } 3811 3812 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3813 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3814 { 3815 unsigned long nr_pagecache_reclaimable; 3816 unsigned long delta = 0; 3817 3818 /* 3819 * If RECLAIM_UNMAP is set, then all file pages are considered 3820 * potentially reclaimable. Otherwise, we have to worry about 3821 * pages like swapcache and node_unmapped_file_pages() provides 3822 * a better estimate 3823 */ 3824 if (node_reclaim_mode & RECLAIM_UNMAP) 3825 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3826 else 3827 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3828 3829 /* If we can't clean pages, remove dirty pages from consideration */ 3830 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3831 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3832 3833 /* Watch for any possible underflows due to delta */ 3834 if (unlikely(delta > nr_pagecache_reclaimable)) 3835 delta = nr_pagecache_reclaimable; 3836 3837 return nr_pagecache_reclaimable - delta; 3838 } 3839 3840 /* 3841 * Try to free up some pages from this node through reclaim. 3842 */ 3843 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3844 { 3845 /* Minimum pages needed in order to stay on node */ 3846 const unsigned long nr_pages = 1 << order; 3847 struct task_struct *p = current; 3848 struct reclaim_state reclaim_state; 3849 unsigned int noreclaim_flag; 3850 struct scan_control sc = { 3851 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3852 .gfp_mask = current_gfp_context(gfp_mask), 3853 .order = order, 3854 .priority = NODE_RECLAIM_PRIORITY, 3855 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3856 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3857 .may_swap = 1, 3858 .reclaim_idx = gfp_zone(gfp_mask), 3859 }; 3860 3861 cond_resched(); 3862 /* 3863 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3864 * and we also need to be able to write out pages for RECLAIM_WRITE 3865 * and RECLAIM_UNMAP. 3866 */ 3867 noreclaim_flag = memalloc_noreclaim_save(); 3868 p->flags |= PF_SWAPWRITE; 3869 fs_reclaim_acquire(sc.gfp_mask); 3870 reclaim_state.reclaimed_slab = 0; 3871 p->reclaim_state = &reclaim_state; 3872 3873 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3874 /* 3875 * Free memory by calling shrink zone with increasing 3876 * priorities until we have enough memory freed. 3877 */ 3878 do { 3879 shrink_node(pgdat, &sc); 3880 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3881 } 3882 3883 p->reclaim_state = NULL; 3884 fs_reclaim_release(gfp_mask); 3885 current->flags &= ~PF_SWAPWRITE; 3886 memalloc_noreclaim_restore(noreclaim_flag); 3887 return sc.nr_reclaimed >= nr_pages; 3888 } 3889 3890 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3891 { 3892 int ret; 3893 3894 /* 3895 * Node reclaim reclaims unmapped file backed pages and 3896 * slab pages if we are over the defined limits. 3897 * 3898 * A small portion of unmapped file backed pages is needed for 3899 * file I/O otherwise pages read by file I/O will be immediately 3900 * thrown out if the node is overallocated. So we do not reclaim 3901 * if less than a specified percentage of the node is used by 3902 * unmapped file backed pages. 3903 */ 3904 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3905 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3906 return NODE_RECLAIM_FULL; 3907 3908 /* 3909 * Do not scan if the allocation should not be delayed. 3910 */ 3911 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3912 return NODE_RECLAIM_NOSCAN; 3913 3914 /* 3915 * Only run node reclaim on the local node or on nodes that do not 3916 * have associated processors. This will favor the local processor 3917 * over remote processors and spread off node memory allocations 3918 * as wide as possible. 3919 */ 3920 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3921 return NODE_RECLAIM_NOSCAN; 3922 3923 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3924 return NODE_RECLAIM_NOSCAN; 3925 3926 ret = __node_reclaim(pgdat, gfp_mask, order); 3927 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3928 3929 if (!ret) 3930 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3931 3932 return ret; 3933 } 3934 #endif 3935 3936 /* 3937 * page_evictable - test whether a page is evictable 3938 * @page: the page to test 3939 * 3940 * Test whether page is evictable--i.e., should be placed on active/inactive 3941 * lists vs unevictable list. 3942 * 3943 * Reasons page might not be evictable: 3944 * (1) page's mapping marked unevictable 3945 * (2) page is part of an mlocked VMA 3946 * 3947 */ 3948 int page_evictable(struct page *page) 3949 { 3950 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3951 } 3952 3953 #ifdef CONFIG_SHMEM 3954 /** 3955 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3956 * @pages: array of pages to check 3957 * @nr_pages: number of pages to check 3958 * 3959 * Checks pages for evictability and moves them to the appropriate lru list. 3960 * 3961 * This function is only used for SysV IPC SHM_UNLOCK. 3962 */ 3963 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3964 { 3965 struct lruvec *lruvec; 3966 struct pglist_data *pgdat = NULL; 3967 int pgscanned = 0; 3968 int pgrescued = 0; 3969 int i; 3970 3971 for (i = 0; i < nr_pages; i++) { 3972 struct page *page = pages[i]; 3973 struct pglist_data *pagepgdat = page_pgdat(page); 3974 3975 pgscanned++; 3976 if (pagepgdat != pgdat) { 3977 if (pgdat) 3978 spin_unlock_irq(&pgdat->lru_lock); 3979 pgdat = pagepgdat; 3980 spin_lock_irq(&pgdat->lru_lock); 3981 } 3982 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3983 3984 if (!PageLRU(page) || !PageUnevictable(page)) 3985 continue; 3986 3987 if (page_evictable(page)) { 3988 enum lru_list lru = page_lru_base_type(page); 3989 3990 VM_BUG_ON_PAGE(PageActive(page), page); 3991 ClearPageUnevictable(page); 3992 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3993 add_page_to_lru_list(page, lruvec, lru); 3994 pgrescued++; 3995 } 3996 } 3997 3998 if (pgdat) { 3999 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4000 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4001 spin_unlock_irq(&pgdat->lru_lock); 4002 } 4003 } 4004 #endif /* CONFIG_SHMEM */ 4005