xref: /openbmc/linux/mm/vmscan.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 	unsigned int may_writepage:1;
82 
83 	/* Can mapped pages be reclaimed? */
84 	unsigned int may_unmap:1;
85 
86 	/* Can pages be swapped as part of reclaim? */
87 	unsigned int may_swap:1;
88 
89 	/*
90 	 * Cgroups are not reclaimed below their configured memory.low,
91 	 * unless we threaten to OOM. If any cgroups are skipped due to
92 	 * memory.low and nothing was reclaimed, go back for memory.low.
93 	 */
94 	unsigned int memcg_low_reclaim:1;
95 	unsigned int memcg_low_skipped:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Allocation order */
103 	s8 order;
104 
105 	/* Scan (total_size >> priority) pages at once */
106 	s8 priority;
107 
108 	/* The highest zone to isolate pages for reclaim from */
109 	s8 reclaim_idx;
110 
111 	/* This context's GFP mask */
112 	gfp_t gfp_mask;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 
120 	struct {
121 		unsigned int dirty;
122 		unsigned int unqueued_dirty;
123 		unsigned int congested;
124 		unsigned int writeback;
125 		unsigned int immediate;
126 		unsigned int file_taken;
127 		unsigned int taken;
128 	} nr;
129 };
130 
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)			\
133 	do {								\
134 		if ((_page)->lru.prev != _base) {			\
135 			struct page *prev;				\
136 									\
137 			prev = lru_to_page(&(_page->lru));		\
138 			prefetch(&prev->_field);			\
139 		}							\
140 	} while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144 
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)			\
147 	do {								\
148 		if ((_page)->lru.prev != _base) {			\
149 			struct page *prev;				\
150 									\
151 			prev = lru_to_page(&(_page->lru));		\
152 			prefetchw(&prev->_field);			\
153 		}							\
154 	} while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158 
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168 
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171 
172 #ifdef CONFIG_MEMCG_KMEM
173 
174 /*
175  * We allow subsystems to populate their shrinker-related
176  * LRU lists before register_shrinker_prepared() is called
177  * for the shrinker, since we don't want to impose
178  * restrictions on their internal registration order.
179  * In this case shrink_slab_memcg() may find corresponding
180  * bit is set in the shrinkers map.
181  *
182  * This value is used by the function to detect registering
183  * shrinkers and to skip do_shrink_slab() calls for them.
184  */
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186 
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
189 
190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191 {
192 	int id, ret = -ENOMEM;
193 
194 	down_write(&shrinker_rwsem);
195 	/* This may call shrinker, so it must use down_read_trylock() */
196 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 	if (id < 0)
198 		goto unlock;
199 
200 	if (id >= shrinker_nr_max) {
201 		if (memcg_expand_shrinker_maps(id)) {
202 			idr_remove(&shrinker_idr, id);
203 			goto unlock;
204 		}
205 
206 		shrinker_nr_max = id + 1;
207 	}
208 	shrinker->id = id;
209 	ret = 0;
210 unlock:
211 	up_write(&shrinker_rwsem);
212 	return ret;
213 }
214 
215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
216 {
217 	int id = shrinker->id;
218 
219 	BUG_ON(id < 0);
220 
221 	down_write(&shrinker_rwsem);
222 	idr_remove(&shrinker_idr, id);
223 	up_write(&shrinker_rwsem);
224 }
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227 {
228 	return 0;
229 }
230 
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 }
234 #endif /* CONFIG_MEMCG_KMEM */
235 
236 #ifdef CONFIG_MEMCG
237 static bool global_reclaim(struct scan_control *sc)
238 {
239 	return !sc->target_mem_cgroup;
240 }
241 
242 /**
243  * sane_reclaim - is the usual dirty throttling mechanism operational?
244  * @sc: scan_control in question
245  *
246  * The normal page dirty throttling mechanism in balance_dirty_pages() is
247  * completely broken with the legacy memcg and direct stalling in
248  * shrink_page_list() is used for throttling instead, which lacks all the
249  * niceties such as fairness, adaptive pausing, bandwidth proportional
250  * allocation and configurability.
251  *
252  * This function tests whether the vmscan currently in progress can assume
253  * that the normal dirty throttling mechanism is operational.
254  */
255 static bool sane_reclaim(struct scan_control *sc)
256 {
257 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
258 
259 	if (!memcg)
260 		return true;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 		return true;
264 #endif
265 	return false;
266 }
267 
268 static void set_memcg_congestion(pg_data_t *pgdat,
269 				struct mem_cgroup *memcg,
270 				bool congested)
271 {
272 	struct mem_cgroup_per_node *mn;
273 
274 	if (!memcg)
275 		return;
276 
277 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 	WRITE_ONCE(mn->congested, congested);
279 }
280 
281 static bool memcg_congested(pg_data_t *pgdat,
282 			struct mem_cgroup *memcg)
283 {
284 	struct mem_cgroup_per_node *mn;
285 
286 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 	return READ_ONCE(mn->congested);
288 
289 }
290 #else
291 static bool global_reclaim(struct scan_control *sc)
292 {
293 	return true;
294 }
295 
296 static bool sane_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 				struct mem_cgroup *memcg, bool congested)
303 {
304 }
305 
306 static inline bool memcg_congested(struct pglist_data *pgdat,
307 			struct mem_cgroup *memcg)
308 {
309 	return false;
310 
311 }
312 #endif
313 
314 /*
315  * This misses isolated pages which are not accounted for to save counters.
316  * As the data only determines if reclaim or compaction continues, it is
317  * not expected that isolated pages will be a dominating factor.
318  */
319 unsigned long zone_reclaimable_pages(struct zone *zone)
320 {
321 	unsigned long nr;
322 
323 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 	if (get_nr_swap_pages() > 0)
326 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328 
329 	return nr;
330 }
331 
332 /**
333  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
334  * @lruvec: lru vector
335  * @lru: lru to use
336  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337  */
338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339 {
340 	unsigned long lru_size;
341 	int zid;
342 
343 	if (!mem_cgroup_disabled())
344 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345 	else
346 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347 
348 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350 		unsigned long size;
351 
352 		if (!managed_zone(zone))
353 			continue;
354 
355 		if (!mem_cgroup_disabled())
356 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357 		else
358 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 				       NR_ZONE_LRU_BASE + lru);
360 		lru_size -= min(size, lru_size);
361 	}
362 
363 	return lru_size;
364 
365 }
366 
367 /*
368  * Add a shrinker callback to be called from the vm.
369  */
370 int prealloc_shrinker(struct shrinker *shrinker)
371 {
372 	size_t size = sizeof(*shrinker->nr_deferred);
373 
374 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
375 		size *= nr_node_ids;
376 
377 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 	if (!shrinker->nr_deferred)
379 		return -ENOMEM;
380 
381 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 		if (prealloc_memcg_shrinker(shrinker))
383 			goto free_deferred;
384 	}
385 
386 	return 0;
387 
388 free_deferred:
389 	kfree(shrinker->nr_deferred);
390 	shrinker->nr_deferred = NULL;
391 	return -ENOMEM;
392 }
393 
394 void free_prealloced_shrinker(struct shrinker *shrinker)
395 {
396 	if (!shrinker->nr_deferred)
397 		return;
398 
399 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 		unregister_memcg_shrinker(shrinker);
401 
402 	kfree(shrinker->nr_deferred);
403 	shrinker->nr_deferred = NULL;
404 }
405 
406 void register_shrinker_prepared(struct shrinker *shrinker)
407 {
408 	down_write(&shrinker_rwsem);
409 	list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
413 #endif
414 	up_write(&shrinker_rwsem);
415 }
416 
417 int register_shrinker(struct shrinker *shrinker)
418 {
419 	int err = prealloc_shrinker(shrinker);
420 
421 	if (err)
422 		return err;
423 	register_shrinker_prepared(shrinker);
424 	return 0;
425 }
426 EXPORT_SYMBOL(register_shrinker);
427 
428 /*
429  * Remove one
430  */
431 void unregister_shrinker(struct shrinker *shrinker)
432 {
433 	if (!shrinker->nr_deferred)
434 		return;
435 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436 		unregister_memcg_shrinker(shrinker);
437 	down_write(&shrinker_rwsem);
438 	list_del(&shrinker->list);
439 	up_write(&shrinker_rwsem);
440 	kfree(shrinker->nr_deferred);
441 	shrinker->nr_deferred = NULL;
442 }
443 EXPORT_SYMBOL(unregister_shrinker);
444 
445 #define SHRINK_BATCH 128
446 
447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448 				    struct shrinker *shrinker, int priority)
449 {
450 	unsigned long freed = 0;
451 	unsigned long long delta;
452 	long total_scan;
453 	long freeable;
454 	long nr;
455 	long new_nr;
456 	int nid = shrinkctl->nid;
457 	long batch_size = shrinker->batch ? shrinker->batch
458 					  : SHRINK_BATCH;
459 	long scanned = 0, next_deferred;
460 
461 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462 		nid = 0;
463 
464 	freeable = shrinker->count_objects(shrinker, shrinkctl);
465 	if (freeable == 0 || freeable == SHRINK_EMPTY)
466 		return freeable;
467 
468 	/*
469 	 * copy the current shrinker scan count into a local variable
470 	 * and zero it so that other concurrent shrinker invocations
471 	 * don't also do this scanning work.
472 	 */
473 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
474 
475 	total_scan = nr;
476 	delta = freeable >> priority;
477 	delta *= 4;
478 	do_div(delta, shrinker->seeks);
479 	total_scan += delta;
480 	if (total_scan < 0) {
481 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
482 		       shrinker->scan_objects, total_scan);
483 		total_scan = freeable;
484 		next_deferred = nr;
485 	} else
486 		next_deferred = total_scan;
487 
488 	/*
489 	 * We need to avoid excessive windup on filesystem shrinkers
490 	 * due to large numbers of GFP_NOFS allocations causing the
491 	 * shrinkers to return -1 all the time. This results in a large
492 	 * nr being built up so when a shrink that can do some work
493 	 * comes along it empties the entire cache due to nr >>>
494 	 * freeable. This is bad for sustaining a working set in
495 	 * memory.
496 	 *
497 	 * Hence only allow the shrinker to scan the entire cache when
498 	 * a large delta change is calculated directly.
499 	 */
500 	if (delta < freeable / 4)
501 		total_scan = min(total_scan, freeable / 2);
502 
503 	/*
504 	 * Avoid risking looping forever due to too large nr value:
505 	 * never try to free more than twice the estimate number of
506 	 * freeable entries.
507 	 */
508 	if (total_scan > freeable * 2)
509 		total_scan = freeable * 2;
510 
511 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
512 				   freeable, delta, total_scan, priority);
513 
514 	/*
515 	 * Normally, we should not scan less than batch_size objects in one
516 	 * pass to avoid too frequent shrinker calls, but if the slab has less
517 	 * than batch_size objects in total and we are really tight on memory,
518 	 * we will try to reclaim all available objects, otherwise we can end
519 	 * up failing allocations although there are plenty of reclaimable
520 	 * objects spread over several slabs with usage less than the
521 	 * batch_size.
522 	 *
523 	 * We detect the "tight on memory" situations by looking at the total
524 	 * number of objects we want to scan (total_scan). If it is greater
525 	 * than the total number of objects on slab (freeable), we must be
526 	 * scanning at high prio and therefore should try to reclaim as much as
527 	 * possible.
528 	 */
529 	while (total_scan >= batch_size ||
530 	       total_scan >= freeable) {
531 		unsigned long ret;
532 		unsigned long nr_to_scan = min(batch_size, total_scan);
533 
534 		shrinkctl->nr_to_scan = nr_to_scan;
535 		shrinkctl->nr_scanned = nr_to_scan;
536 		ret = shrinker->scan_objects(shrinker, shrinkctl);
537 		if (ret == SHRINK_STOP)
538 			break;
539 		freed += ret;
540 
541 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
542 		total_scan -= shrinkctl->nr_scanned;
543 		scanned += shrinkctl->nr_scanned;
544 
545 		cond_resched();
546 	}
547 
548 	if (next_deferred >= scanned)
549 		next_deferred -= scanned;
550 	else
551 		next_deferred = 0;
552 	/*
553 	 * move the unused scan count back into the shrinker in a
554 	 * manner that handles concurrent updates. If we exhausted the
555 	 * scan, there is no need to do an update.
556 	 */
557 	if (next_deferred > 0)
558 		new_nr = atomic_long_add_return(next_deferred,
559 						&shrinker->nr_deferred[nid]);
560 	else
561 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
562 
563 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
564 	return freed;
565 }
566 
567 #ifdef CONFIG_MEMCG_KMEM
568 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
569 			struct mem_cgroup *memcg, int priority)
570 {
571 	struct memcg_shrinker_map *map;
572 	unsigned long freed = 0;
573 	int ret, i;
574 
575 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
576 		return 0;
577 
578 	if (!down_read_trylock(&shrinker_rwsem))
579 		return 0;
580 
581 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
582 					true);
583 	if (unlikely(!map))
584 		goto unlock;
585 
586 	for_each_set_bit(i, map->map, shrinker_nr_max) {
587 		struct shrink_control sc = {
588 			.gfp_mask = gfp_mask,
589 			.nid = nid,
590 			.memcg = memcg,
591 		};
592 		struct shrinker *shrinker;
593 
594 		shrinker = idr_find(&shrinker_idr, i);
595 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
596 			if (!shrinker)
597 				clear_bit(i, map->map);
598 			continue;
599 		}
600 
601 		ret = do_shrink_slab(&sc, shrinker, priority);
602 		if (ret == SHRINK_EMPTY) {
603 			clear_bit(i, map->map);
604 			/*
605 			 * After the shrinker reported that it had no objects to
606 			 * free, but before we cleared the corresponding bit in
607 			 * the memcg shrinker map, a new object might have been
608 			 * added. To make sure, we have the bit set in this
609 			 * case, we invoke the shrinker one more time and reset
610 			 * the bit if it reports that it is not empty anymore.
611 			 * The memory barrier here pairs with the barrier in
612 			 * memcg_set_shrinker_bit():
613 			 *
614 			 * list_lru_add()     shrink_slab_memcg()
615 			 *   list_add_tail()    clear_bit()
616 			 *   <MB>               <MB>
617 			 *   set_bit()          do_shrink_slab()
618 			 */
619 			smp_mb__after_atomic();
620 			ret = do_shrink_slab(&sc, shrinker, priority);
621 			if (ret == SHRINK_EMPTY)
622 				ret = 0;
623 			else
624 				memcg_set_shrinker_bit(memcg, nid, i);
625 		}
626 		freed += ret;
627 
628 		if (rwsem_is_contended(&shrinker_rwsem)) {
629 			freed = freed ? : 1;
630 			break;
631 		}
632 	}
633 unlock:
634 	up_read(&shrinker_rwsem);
635 	return freed;
636 }
637 #else /* CONFIG_MEMCG_KMEM */
638 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
639 			struct mem_cgroup *memcg, int priority)
640 {
641 	return 0;
642 }
643 #endif /* CONFIG_MEMCG_KMEM */
644 
645 /**
646  * shrink_slab - shrink slab caches
647  * @gfp_mask: allocation context
648  * @nid: node whose slab caches to target
649  * @memcg: memory cgroup whose slab caches to target
650  * @priority: the reclaim priority
651  *
652  * Call the shrink functions to age shrinkable caches.
653  *
654  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
655  * unaware shrinkers will receive a node id of 0 instead.
656  *
657  * @memcg specifies the memory cgroup to target. Unaware shrinkers
658  * are called only if it is the root cgroup.
659  *
660  * @priority is sc->priority, we take the number of objects and >> by priority
661  * in order to get the scan target.
662  *
663  * Returns the number of reclaimed slab objects.
664  */
665 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
666 				 struct mem_cgroup *memcg,
667 				 int priority)
668 {
669 	struct shrinker *shrinker;
670 	unsigned long freed = 0;
671 	int ret;
672 
673 	if (!mem_cgroup_is_root(memcg))
674 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
675 
676 	if (!down_read_trylock(&shrinker_rwsem))
677 		goto out;
678 
679 	list_for_each_entry(shrinker, &shrinker_list, list) {
680 		struct shrink_control sc = {
681 			.gfp_mask = gfp_mask,
682 			.nid = nid,
683 			.memcg = memcg,
684 		};
685 
686 		ret = do_shrink_slab(&sc, shrinker, priority);
687 		if (ret == SHRINK_EMPTY)
688 			ret = 0;
689 		freed += ret;
690 		/*
691 		 * Bail out if someone want to register a new shrinker to
692 		 * prevent the regsitration from being stalled for long periods
693 		 * by parallel ongoing shrinking.
694 		 */
695 		if (rwsem_is_contended(&shrinker_rwsem)) {
696 			freed = freed ? : 1;
697 			break;
698 		}
699 	}
700 
701 	up_read(&shrinker_rwsem);
702 out:
703 	cond_resched();
704 	return freed;
705 }
706 
707 void drop_slab_node(int nid)
708 {
709 	unsigned long freed;
710 
711 	do {
712 		struct mem_cgroup *memcg = NULL;
713 
714 		freed = 0;
715 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
716 		do {
717 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
718 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
719 	} while (freed > 10);
720 }
721 
722 void drop_slab(void)
723 {
724 	int nid;
725 
726 	for_each_online_node(nid)
727 		drop_slab_node(nid);
728 }
729 
730 static inline int is_page_cache_freeable(struct page *page)
731 {
732 	/*
733 	 * A freeable page cache page is referenced only by the caller
734 	 * that isolated the page, the page cache radix tree and
735 	 * optional buffer heads at page->private.
736 	 */
737 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
738 		HPAGE_PMD_NR : 1;
739 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
740 }
741 
742 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
743 {
744 	if (current->flags & PF_SWAPWRITE)
745 		return 1;
746 	if (!inode_write_congested(inode))
747 		return 1;
748 	if (inode_to_bdi(inode) == current->backing_dev_info)
749 		return 1;
750 	return 0;
751 }
752 
753 /*
754  * We detected a synchronous write error writing a page out.  Probably
755  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
756  * fsync(), msync() or close().
757  *
758  * The tricky part is that after writepage we cannot touch the mapping: nothing
759  * prevents it from being freed up.  But we have a ref on the page and once
760  * that page is locked, the mapping is pinned.
761  *
762  * We're allowed to run sleeping lock_page() here because we know the caller has
763  * __GFP_FS.
764  */
765 static void handle_write_error(struct address_space *mapping,
766 				struct page *page, int error)
767 {
768 	lock_page(page);
769 	if (page_mapping(page) == mapping)
770 		mapping_set_error(mapping, error);
771 	unlock_page(page);
772 }
773 
774 /* possible outcome of pageout() */
775 typedef enum {
776 	/* failed to write page out, page is locked */
777 	PAGE_KEEP,
778 	/* move page to the active list, page is locked */
779 	PAGE_ACTIVATE,
780 	/* page has been sent to the disk successfully, page is unlocked */
781 	PAGE_SUCCESS,
782 	/* page is clean and locked */
783 	PAGE_CLEAN,
784 } pageout_t;
785 
786 /*
787  * pageout is called by shrink_page_list() for each dirty page.
788  * Calls ->writepage().
789  */
790 static pageout_t pageout(struct page *page, struct address_space *mapping,
791 			 struct scan_control *sc)
792 {
793 	/*
794 	 * If the page is dirty, only perform writeback if that write
795 	 * will be non-blocking.  To prevent this allocation from being
796 	 * stalled by pagecache activity.  But note that there may be
797 	 * stalls if we need to run get_block().  We could test
798 	 * PagePrivate for that.
799 	 *
800 	 * If this process is currently in __generic_file_write_iter() against
801 	 * this page's queue, we can perform writeback even if that
802 	 * will block.
803 	 *
804 	 * If the page is swapcache, write it back even if that would
805 	 * block, for some throttling. This happens by accident, because
806 	 * swap_backing_dev_info is bust: it doesn't reflect the
807 	 * congestion state of the swapdevs.  Easy to fix, if needed.
808 	 */
809 	if (!is_page_cache_freeable(page))
810 		return PAGE_KEEP;
811 	if (!mapping) {
812 		/*
813 		 * Some data journaling orphaned pages can have
814 		 * page->mapping == NULL while being dirty with clean buffers.
815 		 */
816 		if (page_has_private(page)) {
817 			if (try_to_free_buffers(page)) {
818 				ClearPageDirty(page);
819 				pr_info("%s: orphaned page\n", __func__);
820 				return PAGE_CLEAN;
821 			}
822 		}
823 		return PAGE_KEEP;
824 	}
825 	if (mapping->a_ops->writepage == NULL)
826 		return PAGE_ACTIVATE;
827 	if (!may_write_to_inode(mapping->host, sc))
828 		return PAGE_KEEP;
829 
830 	if (clear_page_dirty_for_io(page)) {
831 		int res;
832 		struct writeback_control wbc = {
833 			.sync_mode = WB_SYNC_NONE,
834 			.nr_to_write = SWAP_CLUSTER_MAX,
835 			.range_start = 0,
836 			.range_end = LLONG_MAX,
837 			.for_reclaim = 1,
838 		};
839 
840 		SetPageReclaim(page);
841 		res = mapping->a_ops->writepage(page, &wbc);
842 		if (res < 0)
843 			handle_write_error(mapping, page, res);
844 		if (res == AOP_WRITEPAGE_ACTIVATE) {
845 			ClearPageReclaim(page);
846 			return PAGE_ACTIVATE;
847 		}
848 
849 		if (!PageWriteback(page)) {
850 			/* synchronous write or broken a_ops? */
851 			ClearPageReclaim(page);
852 		}
853 		trace_mm_vmscan_writepage(page);
854 		inc_node_page_state(page, NR_VMSCAN_WRITE);
855 		return PAGE_SUCCESS;
856 	}
857 
858 	return PAGE_CLEAN;
859 }
860 
861 /*
862  * Same as remove_mapping, but if the page is removed from the mapping, it
863  * gets returned with a refcount of 0.
864  */
865 static int __remove_mapping(struct address_space *mapping, struct page *page,
866 			    bool reclaimed)
867 {
868 	unsigned long flags;
869 	int refcount;
870 
871 	BUG_ON(!PageLocked(page));
872 	BUG_ON(mapping != page_mapping(page));
873 
874 	xa_lock_irqsave(&mapping->i_pages, flags);
875 	/*
876 	 * The non racy check for a busy page.
877 	 *
878 	 * Must be careful with the order of the tests. When someone has
879 	 * a ref to the page, it may be possible that they dirty it then
880 	 * drop the reference. So if PageDirty is tested before page_count
881 	 * here, then the following race may occur:
882 	 *
883 	 * get_user_pages(&page);
884 	 * [user mapping goes away]
885 	 * write_to(page);
886 	 *				!PageDirty(page)    [good]
887 	 * SetPageDirty(page);
888 	 * put_page(page);
889 	 *				!page_count(page)   [good, discard it]
890 	 *
891 	 * [oops, our write_to data is lost]
892 	 *
893 	 * Reversing the order of the tests ensures such a situation cannot
894 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
895 	 * load is not satisfied before that of page->_refcount.
896 	 *
897 	 * Note that if SetPageDirty is always performed via set_page_dirty,
898 	 * and thus under the i_pages lock, then this ordering is not required.
899 	 */
900 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
901 		refcount = 1 + HPAGE_PMD_NR;
902 	else
903 		refcount = 2;
904 	if (!page_ref_freeze(page, refcount))
905 		goto cannot_free;
906 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
907 	if (unlikely(PageDirty(page))) {
908 		page_ref_unfreeze(page, refcount);
909 		goto cannot_free;
910 	}
911 
912 	if (PageSwapCache(page)) {
913 		swp_entry_t swap = { .val = page_private(page) };
914 		mem_cgroup_swapout(page, swap);
915 		__delete_from_swap_cache(page);
916 		xa_unlock_irqrestore(&mapping->i_pages, flags);
917 		put_swap_page(page, swap);
918 	} else {
919 		void (*freepage)(struct page *);
920 		void *shadow = NULL;
921 
922 		freepage = mapping->a_ops->freepage;
923 		/*
924 		 * Remember a shadow entry for reclaimed file cache in
925 		 * order to detect refaults, thus thrashing, later on.
926 		 *
927 		 * But don't store shadows in an address space that is
928 		 * already exiting.  This is not just an optizimation,
929 		 * inode reclaim needs to empty out the radix tree or
930 		 * the nodes are lost.  Don't plant shadows behind its
931 		 * back.
932 		 *
933 		 * We also don't store shadows for DAX mappings because the
934 		 * only page cache pages found in these are zero pages
935 		 * covering holes, and because we don't want to mix DAX
936 		 * exceptional entries and shadow exceptional entries in the
937 		 * same address_space.
938 		 */
939 		if (reclaimed && page_is_file_cache(page) &&
940 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
941 			shadow = workingset_eviction(mapping, page);
942 		__delete_from_page_cache(page, shadow);
943 		xa_unlock_irqrestore(&mapping->i_pages, flags);
944 
945 		if (freepage != NULL)
946 			freepage(page);
947 	}
948 
949 	return 1;
950 
951 cannot_free:
952 	xa_unlock_irqrestore(&mapping->i_pages, flags);
953 	return 0;
954 }
955 
956 /*
957  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
958  * someone else has a ref on the page, abort and return 0.  If it was
959  * successfully detached, return 1.  Assumes the caller has a single ref on
960  * this page.
961  */
962 int remove_mapping(struct address_space *mapping, struct page *page)
963 {
964 	if (__remove_mapping(mapping, page, false)) {
965 		/*
966 		 * Unfreezing the refcount with 1 rather than 2 effectively
967 		 * drops the pagecache ref for us without requiring another
968 		 * atomic operation.
969 		 */
970 		page_ref_unfreeze(page, 1);
971 		return 1;
972 	}
973 	return 0;
974 }
975 
976 /**
977  * putback_lru_page - put previously isolated page onto appropriate LRU list
978  * @page: page to be put back to appropriate lru list
979  *
980  * Add previously isolated @page to appropriate LRU list.
981  * Page may still be unevictable for other reasons.
982  *
983  * lru_lock must not be held, interrupts must be enabled.
984  */
985 void putback_lru_page(struct page *page)
986 {
987 	lru_cache_add(page);
988 	put_page(page);		/* drop ref from isolate */
989 }
990 
991 enum page_references {
992 	PAGEREF_RECLAIM,
993 	PAGEREF_RECLAIM_CLEAN,
994 	PAGEREF_KEEP,
995 	PAGEREF_ACTIVATE,
996 };
997 
998 static enum page_references page_check_references(struct page *page,
999 						  struct scan_control *sc)
1000 {
1001 	int referenced_ptes, referenced_page;
1002 	unsigned long vm_flags;
1003 
1004 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1005 					  &vm_flags);
1006 	referenced_page = TestClearPageReferenced(page);
1007 
1008 	/*
1009 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1010 	 * move the page to the unevictable list.
1011 	 */
1012 	if (vm_flags & VM_LOCKED)
1013 		return PAGEREF_RECLAIM;
1014 
1015 	if (referenced_ptes) {
1016 		if (PageSwapBacked(page))
1017 			return PAGEREF_ACTIVATE;
1018 		/*
1019 		 * All mapped pages start out with page table
1020 		 * references from the instantiating fault, so we need
1021 		 * to look twice if a mapped file page is used more
1022 		 * than once.
1023 		 *
1024 		 * Mark it and spare it for another trip around the
1025 		 * inactive list.  Another page table reference will
1026 		 * lead to its activation.
1027 		 *
1028 		 * Note: the mark is set for activated pages as well
1029 		 * so that recently deactivated but used pages are
1030 		 * quickly recovered.
1031 		 */
1032 		SetPageReferenced(page);
1033 
1034 		if (referenced_page || referenced_ptes > 1)
1035 			return PAGEREF_ACTIVATE;
1036 
1037 		/*
1038 		 * Activate file-backed executable pages after first usage.
1039 		 */
1040 		if (vm_flags & VM_EXEC)
1041 			return PAGEREF_ACTIVATE;
1042 
1043 		return PAGEREF_KEEP;
1044 	}
1045 
1046 	/* Reclaim if clean, defer dirty pages to writeback */
1047 	if (referenced_page && !PageSwapBacked(page))
1048 		return PAGEREF_RECLAIM_CLEAN;
1049 
1050 	return PAGEREF_RECLAIM;
1051 }
1052 
1053 /* Check if a page is dirty or under writeback */
1054 static void page_check_dirty_writeback(struct page *page,
1055 				       bool *dirty, bool *writeback)
1056 {
1057 	struct address_space *mapping;
1058 
1059 	/*
1060 	 * Anonymous pages are not handled by flushers and must be written
1061 	 * from reclaim context. Do not stall reclaim based on them
1062 	 */
1063 	if (!page_is_file_cache(page) ||
1064 	    (PageAnon(page) && !PageSwapBacked(page))) {
1065 		*dirty = false;
1066 		*writeback = false;
1067 		return;
1068 	}
1069 
1070 	/* By default assume that the page flags are accurate */
1071 	*dirty = PageDirty(page);
1072 	*writeback = PageWriteback(page);
1073 
1074 	/* Verify dirty/writeback state if the filesystem supports it */
1075 	if (!page_has_private(page))
1076 		return;
1077 
1078 	mapping = page_mapping(page);
1079 	if (mapping && mapping->a_ops->is_dirty_writeback)
1080 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1081 }
1082 
1083 /*
1084  * shrink_page_list() returns the number of reclaimed pages
1085  */
1086 static unsigned long shrink_page_list(struct list_head *page_list,
1087 				      struct pglist_data *pgdat,
1088 				      struct scan_control *sc,
1089 				      enum ttu_flags ttu_flags,
1090 				      struct reclaim_stat *stat,
1091 				      bool force_reclaim)
1092 {
1093 	LIST_HEAD(ret_pages);
1094 	LIST_HEAD(free_pages);
1095 	int pgactivate = 0;
1096 	unsigned nr_unqueued_dirty = 0;
1097 	unsigned nr_dirty = 0;
1098 	unsigned nr_congested = 0;
1099 	unsigned nr_reclaimed = 0;
1100 	unsigned nr_writeback = 0;
1101 	unsigned nr_immediate = 0;
1102 	unsigned nr_ref_keep = 0;
1103 	unsigned nr_unmap_fail = 0;
1104 
1105 	cond_resched();
1106 
1107 	while (!list_empty(page_list)) {
1108 		struct address_space *mapping;
1109 		struct page *page;
1110 		int may_enter_fs;
1111 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1112 		bool dirty, writeback;
1113 
1114 		cond_resched();
1115 
1116 		page = lru_to_page(page_list);
1117 		list_del(&page->lru);
1118 
1119 		if (!trylock_page(page))
1120 			goto keep;
1121 
1122 		VM_BUG_ON_PAGE(PageActive(page), page);
1123 
1124 		sc->nr_scanned++;
1125 
1126 		if (unlikely(!page_evictable(page)))
1127 			goto activate_locked;
1128 
1129 		if (!sc->may_unmap && page_mapped(page))
1130 			goto keep_locked;
1131 
1132 		/* Double the slab pressure for mapped and swapcache pages */
1133 		if ((page_mapped(page) || PageSwapCache(page)) &&
1134 		    !(PageAnon(page) && !PageSwapBacked(page)))
1135 			sc->nr_scanned++;
1136 
1137 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1138 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1139 
1140 		/*
1141 		 * The number of dirty pages determines if a node is marked
1142 		 * reclaim_congested which affects wait_iff_congested. kswapd
1143 		 * will stall and start writing pages if the tail of the LRU
1144 		 * is all dirty unqueued pages.
1145 		 */
1146 		page_check_dirty_writeback(page, &dirty, &writeback);
1147 		if (dirty || writeback)
1148 			nr_dirty++;
1149 
1150 		if (dirty && !writeback)
1151 			nr_unqueued_dirty++;
1152 
1153 		/*
1154 		 * Treat this page as congested if the underlying BDI is or if
1155 		 * pages are cycling through the LRU so quickly that the
1156 		 * pages marked for immediate reclaim are making it to the
1157 		 * end of the LRU a second time.
1158 		 */
1159 		mapping = page_mapping(page);
1160 		if (((dirty || writeback) && mapping &&
1161 		     inode_write_congested(mapping->host)) ||
1162 		    (writeback && PageReclaim(page)))
1163 			nr_congested++;
1164 
1165 		/*
1166 		 * If a page at the tail of the LRU is under writeback, there
1167 		 * are three cases to consider.
1168 		 *
1169 		 * 1) If reclaim is encountering an excessive number of pages
1170 		 *    under writeback and this page is both under writeback and
1171 		 *    PageReclaim then it indicates that pages are being queued
1172 		 *    for IO but are being recycled through the LRU before the
1173 		 *    IO can complete. Waiting on the page itself risks an
1174 		 *    indefinite stall if it is impossible to writeback the
1175 		 *    page due to IO error or disconnected storage so instead
1176 		 *    note that the LRU is being scanned too quickly and the
1177 		 *    caller can stall after page list has been processed.
1178 		 *
1179 		 * 2) Global or new memcg reclaim encounters a page that is
1180 		 *    not marked for immediate reclaim, or the caller does not
1181 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1182 		 *    not to fs). In this case mark the page for immediate
1183 		 *    reclaim and continue scanning.
1184 		 *
1185 		 *    Require may_enter_fs because we would wait on fs, which
1186 		 *    may not have submitted IO yet. And the loop driver might
1187 		 *    enter reclaim, and deadlock if it waits on a page for
1188 		 *    which it is needed to do the write (loop masks off
1189 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1190 		 *    would probably show more reasons.
1191 		 *
1192 		 * 3) Legacy memcg encounters a page that is already marked
1193 		 *    PageReclaim. memcg does not have any dirty pages
1194 		 *    throttling so we could easily OOM just because too many
1195 		 *    pages are in writeback and there is nothing else to
1196 		 *    reclaim. Wait for the writeback to complete.
1197 		 *
1198 		 * In cases 1) and 2) we activate the pages to get them out of
1199 		 * the way while we continue scanning for clean pages on the
1200 		 * inactive list and refilling from the active list. The
1201 		 * observation here is that waiting for disk writes is more
1202 		 * expensive than potentially causing reloads down the line.
1203 		 * Since they're marked for immediate reclaim, they won't put
1204 		 * memory pressure on the cache working set any longer than it
1205 		 * takes to write them to disk.
1206 		 */
1207 		if (PageWriteback(page)) {
1208 			/* Case 1 above */
1209 			if (current_is_kswapd() &&
1210 			    PageReclaim(page) &&
1211 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1212 				nr_immediate++;
1213 				goto activate_locked;
1214 
1215 			/* Case 2 above */
1216 			} else if (sane_reclaim(sc) ||
1217 			    !PageReclaim(page) || !may_enter_fs) {
1218 				/*
1219 				 * This is slightly racy - end_page_writeback()
1220 				 * might have just cleared PageReclaim, then
1221 				 * setting PageReclaim here end up interpreted
1222 				 * as PageReadahead - but that does not matter
1223 				 * enough to care.  What we do want is for this
1224 				 * page to have PageReclaim set next time memcg
1225 				 * reclaim reaches the tests above, so it will
1226 				 * then wait_on_page_writeback() to avoid OOM;
1227 				 * and it's also appropriate in global reclaim.
1228 				 */
1229 				SetPageReclaim(page);
1230 				nr_writeback++;
1231 				goto activate_locked;
1232 
1233 			/* Case 3 above */
1234 			} else {
1235 				unlock_page(page);
1236 				wait_on_page_writeback(page);
1237 				/* then go back and try same page again */
1238 				list_add_tail(&page->lru, page_list);
1239 				continue;
1240 			}
1241 		}
1242 
1243 		if (!force_reclaim)
1244 			references = page_check_references(page, sc);
1245 
1246 		switch (references) {
1247 		case PAGEREF_ACTIVATE:
1248 			goto activate_locked;
1249 		case PAGEREF_KEEP:
1250 			nr_ref_keep++;
1251 			goto keep_locked;
1252 		case PAGEREF_RECLAIM:
1253 		case PAGEREF_RECLAIM_CLEAN:
1254 			; /* try to reclaim the page below */
1255 		}
1256 
1257 		/*
1258 		 * Anonymous process memory has backing store?
1259 		 * Try to allocate it some swap space here.
1260 		 * Lazyfree page could be freed directly
1261 		 */
1262 		if (PageAnon(page) && PageSwapBacked(page)) {
1263 			if (!PageSwapCache(page)) {
1264 				if (!(sc->gfp_mask & __GFP_IO))
1265 					goto keep_locked;
1266 				if (PageTransHuge(page)) {
1267 					/* cannot split THP, skip it */
1268 					if (!can_split_huge_page(page, NULL))
1269 						goto activate_locked;
1270 					/*
1271 					 * Split pages without a PMD map right
1272 					 * away. Chances are some or all of the
1273 					 * tail pages can be freed without IO.
1274 					 */
1275 					if (!compound_mapcount(page) &&
1276 					    split_huge_page_to_list(page,
1277 								    page_list))
1278 						goto activate_locked;
1279 				}
1280 				if (!add_to_swap(page)) {
1281 					if (!PageTransHuge(page))
1282 						goto activate_locked;
1283 					/* Fallback to swap normal pages */
1284 					if (split_huge_page_to_list(page,
1285 								    page_list))
1286 						goto activate_locked;
1287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1288 					count_vm_event(THP_SWPOUT_FALLBACK);
1289 #endif
1290 					if (!add_to_swap(page))
1291 						goto activate_locked;
1292 				}
1293 
1294 				may_enter_fs = 1;
1295 
1296 				/* Adding to swap updated mapping */
1297 				mapping = page_mapping(page);
1298 			}
1299 		} else if (unlikely(PageTransHuge(page))) {
1300 			/* Split file THP */
1301 			if (split_huge_page_to_list(page, page_list))
1302 				goto keep_locked;
1303 		}
1304 
1305 		/*
1306 		 * The page is mapped into the page tables of one or more
1307 		 * processes. Try to unmap it here.
1308 		 */
1309 		if (page_mapped(page)) {
1310 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1311 
1312 			if (unlikely(PageTransHuge(page)))
1313 				flags |= TTU_SPLIT_HUGE_PMD;
1314 			if (!try_to_unmap(page, flags)) {
1315 				nr_unmap_fail++;
1316 				goto activate_locked;
1317 			}
1318 		}
1319 
1320 		if (PageDirty(page)) {
1321 			/*
1322 			 * Only kswapd can writeback filesystem pages
1323 			 * to avoid risk of stack overflow. But avoid
1324 			 * injecting inefficient single-page IO into
1325 			 * flusher writeback as much as possible: only
1326 			 * write pages when we've encountered many
1327 			 * dirty pages, and when we've already scanned
1328 			 * the rest of the LRU for clean pages and see
1329 			 * the same dirty pages again (PageReclaim).
1330 			 */
1331 			if (page_is_file_cache(page) &&
1332 			    (!current_is_kswapd() || !PageReclaim(page) ||
1333 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1334 				/*
1335 				 * Immediately reclaim when written back.
1336 				 * Similar in principal to deactivate_page()
1337 				 * except we already have the page isolated
1338 				 * and know it's dirty
1339 				 */
1340 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1341 				SetPageReclaim(page);
1342 
1343 				goto activate_locked;
1344 			}
1345 
1346 			if (references == PAGEREF_RECLAIM_CLEAN)
1347 				goto keep_locked;
1348 			if (!may_enter_fs)
1349 				goto keep_locked;
1350 			if (!sc->may_writepage)
1351 				goto keep_locked;
1352 
1353 			/*
1354 			 * Page is dirty. Flush the TLB if a writable entry
1355 			 * potentially exists to avoid CPU writes after IO
1356 			 * starts and then write it out here.
1357 			 */
1358 			try_to_unmap_flush_dirty();
1359 			switch (pageout(page, mapping, sc)) {
1360 			case PAGE_KEEP:
1361 				goto keep_locked;
1362 			case PAGE_ACTIVATE:
1363 				goto activate_locked;
1364 			case PAGE_SUCCESS:
1365 				if (PageWriteback(page))
1366 					goto keep;
1367 				if (PageDirty(page))
1368 					goto keep;
1369 
1370 				/*
1371 				 * A synchronous write - probably a ramdisk.  Go
1372 				 * ahead and try to reclaim the page.
1373 				 */
1374 				if (!trylock_page(page))
1375 					goto keep;
1376 				if (PageDirty(page) || PageWriteback(page))
1377 					goto keep_locked;
1378 				mapping = page_mapping(page);
1379 			case PAGE_CLEAN:
1380 				; /* try to free the page below */
1381 			}
1382 		}
1383 
1384 		/*
1385 		 * If the page has buffers, try to free the buffer mappings
1386 		 * associated with this page. If we succeed we try to free
1387 		 * the page as well.
1388 		 *
1389 		 * We do this even if the page is PageDirty().
1390 		 * try_to_release_page() does not perform I/O, but it is
1391 		 * possible for a page to have PageDirty set, but it is actually
1392 		 * clean (all its buffers are clean).  This happens if the
1393 		 * buffers were written out directly, with submit_bh(). ext3
1394 		 * will do this, as well as the blockdev mapping.
1395 		 * try_to_release_page() will discover that cleanness and will
1396 		 * drop the buffers and mark the page clean - it can be freed.
1397 		 *
1398 		 * Rarely, pages can have buffers and no ->mapping.  These are
1399 		 * the pages which were not successfully invalidated in
1400 		 * truncate_complete_page().  We try to drop those buffers here
1401 		 * and if that worked, and the page is no longer mapped into
1402 		 * process address space (page_count == 1) it can be freed.
1403 		 * Otherwise, leave the page on the LRU so it is swappable.
1404 		 */
1405 		if (page_has_private(page)) {
1406 			if (!try_to_release_page(page, sc->gfp_mask))
1407 				goto activate_locked;
1408 			if (!mapping && page_count(page) == 1) {
1409 				unlock_page(page);
1410 				if (put_page_testzero(page))
1411 					goto free_it;
1412 				else {
1413 					/*
1414 					 * rare race with speculative reference.
1415 					 * the speculative reference will free
1416 					 * this page shortly, so we may
1417 					 * increment nr_reclaimed here (and
1418 					 * leave it off the LRU).
1419 					 */
1420 					nr_reclaimed++;
1421 					continue;
1422 				}
1423 			}
1424 		}
1425 
1426 		if (PageAnon(page) && !PageSwapBacked(page)) {
1427 			/* follow __remove_mapping for reference */
1428 			if (!page_ref_freeze(page, 1))
1429 				goto keep_locked;
1430 			if (PageDirty(page)) {
1431 				page_ref_unfreeze(page, 1);
1432 				goto keep_locked;
1433 			}
1434 
1435 			count_vm_event(PGLAZYFREED);
1436 			count_memcg_page_event(page, PGLAZYFREED);
1437 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1438 			goto keep_locked;
1439 		/*
1440 		 * At this point, we have no other references and there is
1441 		 * no way to pick any more up (removed from LRU, removed
1442 		 * from pagecache). Can use non-atomic bitops now (and
1443 		 * we obviously don't have to worry about waking up a process
1444 		 * waiting on the page lock, because there are no references.
1445 		 */
1446 		__ClearPageLocked(page);
1447 free_it:
1448 		nr_reclaimed++;
1449 
1450 		/*
1451 		 * Is there need to periodically free_page_list? It would
1452 		 * appear not as the counts should be low
1453 		 */
1454 		if (unlikely(PageTransHuge(page))) {
1455 			mem_cgroup_uncharge(page);
1456 			(*get_compound_page_dtor(page))(page);
1457 		} else
1458 			list_add(&page->lru, &free_pages);
1459 		continue;
1460 
1461 activate_locked:
1462 		/* Not a candidate for swapping, so reclaim swap space. */
1463 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1464 						PageMlocked(page)))
1465 			try_to_free_swap(page);
1466 		VM_BUG_ON_PAGE(PageActive(page), page);
1467 		if (!PageMlocked(page)) {
1468 			SetPageActive(page);
1469 			pgactivate++;
1470 			count_memcg_page_event(page, PGACTIVATE);
1471 		}
1472 keep_locked:
1473 		unlock_page(page);
1474 keep:
1475 		list_add(&page->lru, &ret_pages);
1476 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1477 	}
1478 
1479 	mem_cgroup_uncharge_list(&free_pages);
1480 	try_to_unmap_flush();
1481 	free_unref_page_list(&free_pages);
1482 
1483 	list_splice(&ret_pages, page_list);
1484 	count_vm_events(PGACTIVATE, pgactivate);
1485 
1486 	if (stat) {
1487 		stat->nr_dirty = nr_dirty;
1488 		stat->nr_congested = nr_congested;
1489 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1490 		stat->nr_writeback = nr_writeback;
1491 		stat->nr_immediate = nr_immediate;
1492 		stat->nr_activate = pgactivate;
1493 		stat->nr_ref_keep = nr_ref_keep;
1494 		stat->nr_unmap_fail = nr_unmap_fail;
1495 	}
1496 	return nr_reclaimed;
1497 }
1498 
1499 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1500 					    struct list_head *page_list)
1501 {
1502 	struct scan_control sc = {
1503 		.gfp_mask = GFP_KERNEL,
1504 		.priority = DEF_PRIORITY,
1505 		.may_unmap = 1,
1506 	};
1507 	unsigned long ret;
1508 	struct page *page, *next;
1509 	LIST_HEAD(clean_pages);
1510 
1511 	list_for_each_entry_safe(page, next, page_list, lru) {
1512 		if (page_is_file_cache(page) && !PageDirty(page) &&
1513 		    !__PageMovable(page)) {
1514 			ClearPageActive(page);
1515 			list_move(&page->lru, &clean_pages);
1516 		}
1517 	}
1518 
1519 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1520 			TTU_IGNORE_ACCESS, NULL, true);
1521 	list_splice(&clean_pages, page_list);
1522 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1523 	return ret;
1524 }
1525 
1526 /*
1527  * Attempt to remove the specified page from its LRU.  Only take this page
1528  * if it is of the appropriate PageActive status.  Pages which are being
1529  * freed elsewhere are also ignored.
1530  *
1531  * page:	page to consider
1532  * mode:	one of the LRU isolation modes defined above
1533  *
1534  * returns 0 on success, -ve errno on failure.
1535  */
1536 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1537 {
1538 	int ret = -EINVAL;
1539 
1540 	/* Only take pages on the LRU. */
1541 	if (!PageLRU(page))
1542 		return ret;
1543 
1544 	/* Compaction should not handle unevictable pages but CMA can do so */
1545 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1546 		return ret;
1547 
1548 	ret = -EBUSY;
1549 
1550 	/*
1551 	 * To minimise LRU disruption, the caller can indicate that it only
1552 	 * wants to isolate pages it will be able to operate on without
1553 	 * blocking - clean pages for the most part.
1554 	 *
1555 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1556 	 * that it is possible to migrate without blocking
1557 	 */
1558 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1559 		/* All the caller can do on PageWriteback is block */
1560 		if (PageWriteback(page))
1561 			return ret;
1562 
1563 		if (PageDirty(page)) {
1564 			struct address_space *mapping;
1565 			bool migrate_dirty;
1566 
1567 			/*
1568 			 * Only pages without mappings or that have a
1569 			 * ->migratepage callback are possible to migrate
1570 			 * without blocking. However, we can be racing with
1571 			 * truncation so it's necessary to lock the page
1572 			 * to stabilise the mapping as truncation holds
1573 			 * the page lock until after the page is removed
1574 			 * from the page cache.
1575 			 */
1576 			if (!trylock_page(page))
1577 				return ret;
1578 
1579 			mapping = page_mapping(page);
1580 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1581 			unlock_page(page);
1582 			if (!migrate_dirty)
1583 				return ret;
1584 		}
1585 	}
1586 
1587 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1588 		return ret;
1589 
1590 	if (likely(get_page_unless_zero(page))) {
1591 		/*
1592 		 * Be careful not to clear PageLRU until after we're
1593 		 * sure the page is not being freed elsewhere -- the
1594 		 * page release code relies on it.
1595 		 */
1596 		ClearPageLRU(page);
1597 		ret = 0;
1598 	}
1599 
1600 	return ret;
1601 }
1602 
1603 
1604 /*
1605  * Update LRU sizes after isolating pages. The LRU size updates must
1606  * be complete before mem_cgroup_update_lru_size due to a santity check.
1607  */
1608 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1609 			enum lru_list lru, unsigned long *nr_zone_taken)
1610 {
1611 	int zid;
1612 
1613 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1614 		if (!nr_zone_taken[zid])
1615 			continue;
1616 
1617 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1618 #ifdef CONFIG_MEMCG
1619 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1620 #endif
1621 	}
1622 
1623 }
1624 
1625 /*
1626  * zone_lru_lock is heavily contended.  Some of the functions that
1627  * shrink the lists perform better by taking out a batch of pages
1628  * and working on them outside the LRU lock.
1629  *
1630  * For pagecache intensive workloads, this function is the hottest
1631  * spot in the kernel (apart from copy_*_user functions).
1632  *
1633  * Appropriate locks must be held before calling this function.
1634  *
1635  * @nr_to_scan:	The number of eligible pages to look through on the list.
1636  * @lruvec:	The LRU vector to pull pages from.
1637  * @dst:	The temp list to put pages on to.
1638  * @nr_scanned:	The number of pages that were scanned.
1639  * @sc:		The scan_control struct for this reclaim session
1640  * @mode:	One of the LRU isolation modes
1641  * @lru:	LRU list id for isolating
1642  *
1643  * returns how many pages were moved onto *@dst.
1644  */
1645 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1646 		struct lruvec *lruvec, struct list_head *dst,
1647 		unsigned long *nr_scanned, struct scan_control *sc,
1648 		isolate_mode_t mode, enum lru_list lru)
1649 {
1650 	struct list_head *src = &lruvec->lists[lru];
1651 	unsigned long nr_taken = 0;
1652 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1653 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1654 	unsigned long skipped = 0;
1655 	unsigned long scan, total_scan, nr_pages;
1656 	LIST_HEAD(pages_skipped);
1657 
1658 	scan = 0;
1659 	for (total_scan = 0;
1660 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1661 	     total_scan++) {
1662 		struct page *page;
1663 
1664 		page = lru_to_page(src);
1665 		prefetchw_prev_lru_page(page, src, flags);
1666 
1667 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1668 
1669 		if (page_zonenum(page) > sc->reclaim_idx) {
1670 			list_move(&page->lru, &pages_skipped);
1671 			nr_skipped[page_zonenum(page)]++;
1672 			continue;
1673 		}
1674 
1675 		/*
1676 		 * Do not count skipped pages because that makes the function
1677 		 * return with no isolated pages if the LRU mostly contains
1678 		 * ineligible pages.  This causes the VM to not reclaim any
1679 		 * pages, triggering a premature OOM.
1680 		 */
1681 		scan++;
1682 		switch (__isolate_lru_page(page, mode)) {
1683 		case 0:
1684 			nr_pages = hpage_nr_pages(page);
1685 			nr_taken += nr_pages;
1686 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1687 			list_move(&page->lru, dst);
1688 			break;
1689 
1690 		case -EBUSY:
1691 			/* else it is being freed elsewhere */
1692 			list_move(&page->lru, src);
1693 			continue;
1694 
1695 		default:
1696 			BUG();
1697 		}
1698 	}
1699 
1700 	/*
1701 	 * Splice any skipped pages to the start of the LRU list. Note that
1702 	 * this disrupts the LRU order when reclaiming for lower zones but
1703 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1704 	 * scanning would soon rescan the same pages to skip and put the
1705 	 * system at risk of premature OOM.
1706 	 */
1707 	if (!list_empty(&pages_skipped)) {
1708 		int zid;
1709 
1710 		list_splice(&pages_skipped, src);
1711 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1712 			if (!nr_skipped[zid])
1713 				continue;
1714 
1715 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1716 			skipped += nr_skipped[zid];
1717 		}
1718 	}
1719 	*nr_scanned = total_scan;
1720 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1721 				    total_scan, skipped, nr_taken, mode, lru);
1722 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1723 	return nr_taken;
1724 }
1725 
1726 /**
1727  * isolate_lru_page - tries to isolate a page from its LRU list
1728  * @page: page to isolate from its LRU list
1729  *
1730  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1731  * vmstat statistic corresponding to whatever LRU list the page was on.
1732  *
1733  * Returns 0 if the page was removed from an LRU list.
1734  * Returns -EBUSY if the page was not on an LRU list.
1735  *
1736  * The returned page will have PageLRU() cleared.  If it was found on
1737  * the active list, it will have PageActive set.  If it was found on
1738  * the unevictable list, it will have the PageUnevictable bit set. That flag
1739  * may need to be cleared by the caller before letting the page go.
1740  *
1741  * The vmstat statistic corresponding to the list on which the page was
1742  * found will be decremented.
1743  *
1744  * Restrictions:
1745  *
1746  * (1) Must be called with an elevated refcount on the page. This is a
1747  *     fundamentnal difference from isolate_lru_pages (which is called
1748  *     without a stable reference).
1749  * (2) the lru_lock must not be held.
1750  * (3) interrupts must be enabled.
1751  */
1752 int isolate_lru_page(struct page *page)
1753 {
1754 	int ret = -EBUSY;
1755 
1756 	VM_BUG_ON_PAGE(!page_count(page), page);
1757 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1758 
1759 	if (PageLRU(page)) {
1760 		struct zone *zone = page_zone(page);
1761 		struct lruvec *lruvec;
1762 
1763 		spin_lock_irq(zone_lru_lock(zone));
1764 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1765 		if (PageLRU(page)) {
1766 			int lru = page_lru(page);
1767 			get_page(page);
1768 			ClearPageLRU(page);
1769 			del_page_from_lru_list(page, lruvec, lru);
1770 			ret = 0;
1771 		}
1772 		spin_unlock_irq(zone_lru_lock(zone));
1773 	}
1774 	return ret;
1775 }
1776 
1777 /*
1778  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1779  * then get resheduled. When there are massive number of tasks doing page
1780  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1781  * the LRU list will go small and be scanned faster than necessary, leading to
1782  * unnecessary swapping, thrashing and OOM.
1783  */
1784 static int too_many_isolated(struct pglist_data *pgdat, int file,
1785 		struct scan_control *sc)
1786 {
1787 	unsigned long inactive, isolated;
1788 
1789 	if (current_is_kswapd())
1790 		return 0;
1791 
1792 	if (!sane_reclaim(sc))
1793 		return 0;
1794 
1795 	if (file) {
1796 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1797 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1798 	} else {
1799 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1800 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1801 	}
1802 
1803 	/*
1804 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1805 	 * won't get blocked by normal direct-reclaimers, forming a circular
1806 	 * deadlock.
1807 	 */
1808 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1809 		inactive >>= 3;
1810 
1811 	return isolated > inactive;
1812 }
1813 
1814 static noinline_for_stack void
1815 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1816 {
1817 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1818 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1819 	LIST_HEAD(pages_to_free);
1820 
1821 	/*
1822 	 * Put back any unfreeable pages.
1823 	 */
1824 	while (!list_empty(page_list)) {
1825 		struct page *page = lru_to_page(page_list);
1826 		int lru;
1827 
1828 		VM_BUG_ON_PAGE(PageLRU(page), page);
1829 		list_del(&page->lru);
1830 		if (unlikely(!page_evictable(page))) {
1831 			spin_unlock_irq(&pgdat->lru_lock);
1832 			putback_lru_page(page);
1833 			spin_lock_irq(&pgdat->lru_lock);
1834 			continue;
1835 		}
1836 
1837 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1838 
1839 		SetPageLRU(page);
1840 		lru = page_lru(page);
1841 		add_page_to_lru_list(page, lruvec, lru);
1842 
1843 		if (is_active_lru(lru)) {
1844 			int file = is_file_lru(lru);
1845 			int numpages = hpage_nr_pages(page);
1846 			reclaim_stat->recent_rotated[file] += numpages;
1847 		}
1848 		if (put_page_testzero(page)) {
1849 			__ClearPageLRU(page);
1850 			__ClearPageActive(page);
1851 			del_page_from_lru_list(page, lruvec, lru);
1852 
1853 			if (unlikely(PageCompound(page))) {
1854 				spin_unlock_irq(&pgdat->lru_lock);
1855 				mem_cgroup_uncharge(page);
1856 				(*get_compound_page_dtor(page))(page);
1857 				spin_lock_irq(&pgdat->lru_lock);
1858 			} else
1859 				list_add(&page->lru, &pages_to_free);
1860 		}
1861 	}
1862 
1863 	/*
1864 	 * To save our caller's stack, now use input list for pages to free.
1865 	 */
1866 	list_splice(&pages_to_free, page_list);
1867 }
1868 
1869 /*
1870  * If a kernel thread (such as nfsd for loop-back mounts) services
1871  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1872  * In that case we should only throttle if the backing device it is
1873  * writing to is congested.  In other cases it is safe to throttle.
1874  */
1875 static int current_may_throttle(void)
1876 {
1877 	return !(current->flags & PF_LESS_THROTTLE) ||
1878 		current->backing_dev_info == NULL ||
1879 		bdi_write_congested(current->backing_dev_info);
1880 }
1881 
1882 /*
1883  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1884  * of reclaimed pages
1885  */
1886 static noinline_for_stack unsigned long
1887 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1888 		     struct scan_control *sc, enum lru_list lru)
1889 {
1890 	LIST_HEAD(page_list);
1891 	unsigned long nr_scanned;
1892 	unsigned long nr_reclaimed = 0;
1893 	unsigned long nr_taken;
1894 	struct reclaim_stat stat = {};
1895 	isolate_mode_t isolate_mode = 0;
1896 	int file = is_file_lru(lru);
1897 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1898 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1899 	bool stalled = false;
1900 
1901 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1902 		if (stalled)
1903 			return 0;
1904 
1905 		/* wait a bit for the reclaimer. */
1906 		msleep(100);
1907 		stalled = true;
1908 
1909 		/* We are about to die and free our memory. Return now. */
1910 		if (fatal_signal_pending(current))
1911 			return SWAP_CLUSTER_MAX;
1912 	}
1913 
1914 	lru_add_drain();
1915 
1916 	if (!sc->may_unmap)
1917 		isolate_mode |= ISOLATE_UNMAPPED;
1918 
1919 	spin_lock_irq(&pgdat->lru_lock);
1920 
1921 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1922 				     &nr_scanned, sc, isolate_mode, lru);
1923 
1924 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1925 	reclaim_stat->recent_scanned[file] += nr_taken;
1926 
1927 	if (current_is_kswapd()) {
1928 		if (global_reclaim(sc))
1929 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1930 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1931 				   nr_scanned);
1932 	} else {
1933 		if (global_reclaim(sc))
1934 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1935 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1936 				   nr_scanned);
1937 	}
1938 	spin_unlock_irq(&pgdat->lru_lock);
1939 
1940 	if (nr_taken == 0)
1941 		return 0;
1942 
1943 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1944 				&stat, false);
1945 
1946 	spin_lock_irq(&pgdat->lru_lock);
1947 
1948 	if (current_is_kswapd()) {
1949 		if (global_reclaim(sc))
1950 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1951 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1952 				   nr_reclaimed);
1953 	} else {
1954 		if (global_reclaim(sc))
1955 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1956 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1957 				   nr_reclaimed);
1958 	}
1959 
1960 	putback_inactive_pages(lruvec, &page_list);
1961 
1962 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1963 
1964 	spin_unlock_irq(&pgdat->lru_lock);
1965 
1966 	mem_cgroup_uncharge_list(&page_list);
1967 	free_unref_page_list(&page_list);
1968 
1969 	/*
1970 	 * If dirty pages are scanned that are not queued for IO, it
1971 	 * implies that flushers are not doing their job. This can
1972 	 * happen when memory pressure pushes dirty pages to the end of
1973 	 * the LRU before the dirty limits are breached and the dirty
1974 	 * data has expired. It can also happen when the proportion of
1975 	 * dirty pages grows not through writes but through memory
1976 	 * pressure reclaiming all the clean cache. And in some cases,
1977 	 * the flushers simply cannot keep up with the allocation
1978 	 * rate. Nudge the flusher threads in case they are asleep.
1979 	 */
1980 	if (stat.nr_unqueued_dirty == nr_taken)
1981 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1982 
1983 	sc->nr.dirty += stat.nr_dirty;
1984 	sc->nr.congested += stat.nr_congested;
1985 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1986 	sc->nr.writeback += stat.nr_writeback;
1987 	sc->nr.immediate += stat.nr_immediate;
1988 	sc->nr.taken += nr_taken;
1989 	if (file)
1990 		sc->nr.file_taken += nr_taken;
1991 
1992 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1993 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1994 	return nr_reclaimed;
1995 }
1996 
1997 /*
1998  * This moves pages from the active list to the inactive list.
1999  *
2000  * We move them the other way if the page is referenced by one or more
2001  * processes, from rmap.
2002  *
2003  * If the pages are mostly unmapped, the processing is fast and it is
2004  * appropriate to hold zone_lru_lock across the whole operation.  But if
2005  * the pages are mapped, the processing is slow (page_referenced()) so we
2006  * should drop zone_lru_lock around each page.  It's impossible to balance
2007  * this, so instead we remove the pages from the LRU while processing them.
2008  * It is safe to rely on PG_active against the non-LRU pages in here because
2009  * nobody will play with that bit on a non-LRU page.
2010  *
2011  * The downside is that we have to touch page->_refcount against each page.
2012  * But we had to alter page->flags anyway.
2013  *
2014  * Returns the number of pages moved to the given lru.
2015  */
2016 
2017 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2018 				     struct list_head *list,
2019 				     struct list_head *pages_to_free,
2020 				     enum lru_list lru)
2021 {
2022 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2023 	struct page *page;
2024 	int nr_pages;
2025 	int nr_moved = 0;
2026 
2027 	while (!list_empty(list)) {
2028 		page = lru_to_page(list);
2029 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2030 
2031 		VM_BUG_ON_PAGE(PageLRU(page), page);
2032 		SetPageLRU(page);
2033 
2034 		nr_pages = hpage_nr_pages(page);
2035 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2036 		list_move(&page->lru, &lruvec->lists[lru]);
2037 
2038 		if (put_page_testzero(page)) {
2039 			__ClearPageLRU(page);
2040 			__ClearPageActive(page);
2041 			del_page_from_lru_list(page, lruvec, lru);
2042 
2043 			if (unlikely(PageCompound(page))) {
2044 				spin_unlock_irq(&pgdat->lru_lock);
2045 				mem_cgroup_uncharge(page);
2046 				(*get_compound_page_dtor(page))(page);
2047 				spin_lock_irq(&pgdat->lru_lock);
2048 			} else
2049 				list_add(&page->lru, pages_to_free);
2050 		} else {
2051 			nr_moved += nr_pages;
2052 		}
2053 	}
2054 
2055 	if (!is_active_lru(lru)) {
2056 		__count_vm_events(PGDEACTIVATE, nr_moved);
2057 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2058 				   nr_moved);
2059 	}
2060 
2061 	return nr_moved;
2062 }
2063 
2064 static void shrink_active_list(unsigned long nr_to_scan,
2065 			       struct lruvec *lruvec,
2066 			       struct scan_control *sc,
2067 			       enum lru_list lru)
2068 {
2069 	unsigned long nr_taken;
2070 	unsigned long nr_scanned;
2071 	unsigned long vm_flags;
2072 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2073 	LIST_HEAD(l_active);
2074 	LIST_HEAD(l_inactive);
2075 	struct page *page;
2076 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2077 	unsigned nr_deactivate, nr_activate;
2078 	unsigned nr_rotated = 0;
2079 	isolate_mode_t isolate_mode = 0;
2080 	int file = is_file_lru(lru);
2081 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2082 
2083 	lru_add_drain();
2084 
2085 	if (!sc->may_unmap)
2086 		isolate_mode |= ISOLATE_UNMAPPED;
2087 
2088 	spin_lock_irq(&pgdat->lru_lock);
2089 
2090 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2091 				     &nr_scanned, sc, isolate_mode, lru);
2092 
2093 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2094 	reclaim_stat->recent_scanned[file] += nr_taken;
2095 
2096 	__count_vm_events(PGREFILL, nr_scanned);
2097 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2098 
2099 	spin_unlock_irq(&pgdat->lru_lock);
2100 
2101 	while (!list_empty(&l_hold)) {
2102 		cond_resched();
2103 		page = lru_to_page(&l_hold);
2104 		list_del(&page->lru);
2105 
2106 		if (unlikely(!page_evictable(page))) {
2107 			putback_lru_page(page);
2108 			continue;
2109 		}
2110 
2111 		if (unlikely(buffer_heads_over_limit)) {
2112 			if (page_has_private(page) && trylock_page(page)) {
2113 				if (page_has_private(page))
2114 					try_to_release_page(page, 0);
2115 				unlock_page(page);
2116 			}
2117 		}
2118 
2119 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2120 				    &vm_flags)) {
2121 			nr_rotated += hpage_nr_pages(page);
2122 			/*
2123 			 * Identify referenced, file-backed active pages and
2124 			 * give them one more trip around the active list. So
2125 			 * that executable code get better chances to stay in
2126 			 * memory under moderate memory pressure.  Anon pages
2127 			 * are not likely to be evicted by use-once streaming
2128 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2129 			 * so we ignore them here.
2130 			 */
2131 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2132 				list_add(&page->lru, &l_active);
2133 				continue;
2134 			}
2135 		}
2136 
2137 		ClearPageActive(page);	/* we are de-activating */
2138 		list_add(&page->lru, &l_inactive);
2139 	}
2140 
2141 	/*
2142 	 * Move pages back to the lru list.
2143 	 */
2144 	spin_lock_irq(&pgdat->lru_lock);
2145 	/*
2146 	 * Count referenced pages from currently used mappings as rotated,
2147 	 * even though only some of them are actually re-activated.  This
2148 	 * helps balance scan pressure between file and anonymous pages in
2149 	 * get_scan_count.
2150 	 */
2151 	reclaim_stat->recent_rotated[file] += nr_rotated;
2152 
2153 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2154 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2155 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2156 	spin_unlock_irq(&pgdat->lru_lock);
2157 
2158 	mem_cgroup_uncharge_list(&l_hold);
2159 	free_unref_page_list(&l_hold);
2160 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2161 			nr_deactivate, nr_rotated, sc->priority, file);
2162 }
2163 
2164 /*
2165  * The inactive anon list should be small enough that the VM never has
2166  * to do too much work.
2167  *
2168  * The inactive file list should be small enough to leave most memory
2169  * to the established workingset on the scan-resistant active list,
2170  * but large enough to avoid thrashing the aggregate readahead window.
2171  *
2172  * Both inactive lists should also be large enough that each inactive
2173  * page has a chance to be referenced again before it is reclaimed.
2174  *
2175  * If that fails and refaulting is observed, the inactive list grows.
2176  *
2177  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2178  * on this LRU, maintained by the pageout code. An inactive_ratio
2179  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2180  *
2181  * total     target    max
2182  * memory    ratio     inactive
2183  * -------------------------------------
2184  *   10MB       1         5MB
2185  *  100MB       1        50MB
2186  *    1GB       3       250MB
2187  *   10GB      10       0.9GB
2188  *  100GB      31         3GB
2189  *    1TB     101        10GB
2190  *   10TB     320        32GB
2191  */
2192 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2193 				 struct mem_cgroup *memcg,
2194 				 struct scan_control *sc, bool actual_reclaim)
2195 {
2196 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2197 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2198 	enum lru_list inactive_lru = file * LRU_FILE;
2199 	unsigned long inactive, active;
2200 	unsigned long inactive_ratio;
2201 	unsigned long refaults;
2202 	unsigned long gb;
2203 
2204 	/*
2205 	 * If we don't have swap space, anonymous page deactivation
2206 	 * is pointless.
2207 	 */
2208 	if (!file && !total_swap_pages)
2209 		return false;
2210 
2211 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2212 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2213 
2214 	if (memcg)
2215 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2216 	else
2217 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2218 
2219 	/*
2220 	 * When refaults are being observed, it means a new workingset
2221 	 * is being established. Disable active list protection to get
2222 	 * rid of the stale workingset quickly.
2223 	 */
2224 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2225 		inactive_ratio = 0;
2226 	} else {
2227 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2228 		if (gb)
2229 			inactive_ratio = int_sqrt(10 * gb);
2230 		else
2231 			inactive_ratio = 1;
2232 	}
2233 
2234 	if (actual_reclaim)
2235 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2236 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2237 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2238 			inactive_ratio, file);
2239 
2240 	return inactive * inactive_ratio < active;
2241 }
2242 
2243 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2244 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2245 				 struct scan_control *sc)
2246 {
2247 	if (is_active_lru(lru)) {
2248 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2249 					 memcg, sc, true))
2250 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2251 		return 0;
2252 	}
2253 
2254 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2255 }
2256 
2257 enum scan_balance {
2258 	SCAN_EQUAL,
2259 	SCAN_FRACT,
2260 	SCAN_ANON,
2261 	SCAN_FILE,
2262 };
2263 
2264 /*
2265  * Determine how aggressively the anon and file LRU lists should be
2266  * scanned.  The relative value of each set of LRU lists is determined
2267  * by looking at the fraction of the pages scanned we did rotate back
2268  * onto the active list instead of evict.
2269  *
2270  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2271  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2272  */
2273 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2274 			   struct scan_control *sc, unsigned long *nr,
2275 			   unsigned long *lru_pages)
2276 {
2277 	int swappiness = mem_cgroup_swappiness(memcg);
2278 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2279 	u64 fraction[2];
2280 	u64 denominator = 0;	/* gcc */
2281 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2282 	unsigned long anon_prio, file_prio;
2283 	enum scan_balance scan_balance;
2284 	unsigned long anon, file;
2285 	unsigned long ap, fp;
2286 	enum lru_list lru;
2287 
2288 	/* If we have no swap space, do not bother scanning anon pages. */
2289 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2290 		scan_balance = SCAN_FILE;
2291 		goto out;
2292 	}
2293 
2294 	/*
2295 	 * Global reclaim will swap to prevent OOM even with no
2296 	 * swappiness, but memcg users want to use this knob to
2297 	 * disable swapping for individual groups completely when
2298 	 * using the memory controller's swap limit feature would be
2299 	 * too expensive.
2300 	 */
2301 	if (!global_reclaim(sc) && !swappiness) {
2302 		scan_balance = SCAN_FILE;
2303 		goto out;
2304 	}
2305 
2306 	/*
2307 	 * Do not apply any pressure balancing cleverness when the
2308 	 * system is close to OOM, scan both anon and file equally
2309 	 * (unless the swappiness setting disagrees with swapping).
2310 	 */
2311 	if (!sc->priority && swappiness) {
2312 		scan_balance = SCAN_EQUAL;
2313 		goto out;
2314 	}
2315 
2316 	/*
2317 	 * Prevent the reclaimer from falling into the cache trap: as
2318 	 * cache pages start out inactive, every cache fault will tip
2319 	 * the scan balance towards the file LRU.  And as the file LRU
2320 	 * shrinks, so does the window for rotation from references.
2321 	 * This means we have a runaway feedback loop where a tiny
2322 	 * thrashing file LRU becomes infinitely more attractive than
2323 	 * anon pages.  Try to detect this based on file LRU size.
2324 	 */
2325 	if (global_reclaim(sc)) {
2326 		unsigned long pgdatfile;
2327 		unsigned long pgdatfree;
2328 		int z;
2329 		unsigned long total_high_wmark = 0;
2330 
2331 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2332 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2333 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2334 
2335 		for (z = 0; z < MAX_NR_ZONES; z++) {
2336 			struct zone *zone = &pgdat->node_zones[z];
2337 			if (!managed_zone(zone))
2338 				continue;
2339 
2340 			total_high_wmark += high_wmark_pages(zone);
2341 		}
2342 
2343 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2344 			/*
2345 			 * Force SCAN_ANON if there are enough inactive
2346 			 * anonymous pages on the LRU in eligible zones.
2347 			 * Otherwise, the small LRU gets thrashed.
2348 			 */
2349 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2350 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2351 					>> sc->priority) {
2352 				scan_balance = SCAN_ANON;
2353 				goto out;
2354 			}
2355 		}
2356 	}
2357 
2358 	/*
2359 	 * If there is enough inactive page cache, i.e. if the size of the
2360 	 * inactive list is greater than that of the active list *and* the
2361 	 * inactive list actually has some pages to scan on this priority, we
2362 	 * do not reclaim anything from the anonymous working set right now.
2363 	 * Without the second condition we could end up never scanning an
2364 	 * lruvec even if it has plenty of old anonymous pages unless the
2365 	 * system is under heavy pressure.
2366 	 */
2367 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2368 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2369 		scan_balance = SCAN_FILE;
2370 		goto out;
2371 	}
2372 
2373 	scan_balance = SCAN_FRACT;
2374 
2375 	/*
2376 	 * With swappiness at 100, anonymous and file have the same priority.
2377 	 * This scanning priority is essentially the inverse of IO cost.
2378 	 */
2379 	anon_prio = swappiness;
2380 	file_prio = 200 - anon_prio;
2381 
2382 	/*
2383 	 * OK, so we have swap space and a fair amount of page cache
2384 	 * pages.  We use the recently rotated / recently scanned
2385 	 * ratios to determine how valuable each cache is.
2386 	 *
2387 	 * Because workloads change over time (and to avoid overflow)
2388 	 * we keep these statistics as a floating average, which ends
2389 	 * up weighing recent references more than old ones.
2390 	 *
2391 	 * anon in [0], file in [1]
2392 	 */
2393 
2394 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2395 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2396 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2397 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2398 
2399 	spin_lock_irq(&pgdat->lru_lock);
2400 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2401 		reclaim_stat->recent_scanned[0] /= 2;
2402 		reclaim_stat->recent_rotated[0] /= 2;
2403 	}
2404 
2405 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2406 		reclaim_stat->recent_scanned[1] /= 2;
2407 		reclaim_stat->recent_rotated[1] /= 2;
2408 	}
2409 
2410 	/*
2411 	 * The amount of pressure on anon vs file pages is inversely
2412 	 * proportional to the fraction of recently scanned pages on
2413 	 * each list that were recently referenced and in active use.
2414 	 */
2415 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2416 	ap /= reclaim_stat->recent_rotated[0] + 1;
2417 
2418 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2419 	fp /= reclaim_stat->recent_rotated[1] + 1;
2420 	spin_unlock_irq(&pgdat->lru_lock);
2421 
2422 	fraction[0] = ap;
2423 	fraction[1] = fp;
2424 	denominator = ap + fp + 1;
2425 out:
2426 	*lru_pages = 0;
2427 	for_each_evictable_lru(lru) {
2428 		int file = is_file_lru(lru);
2429 		unsigned long size;
2430 		unsigned long scan;
2431 
2432 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2433 		scan = size >> sc->priority;
2434 		/*
2435 		 * If the cgroup's already been deleted, make sure to
2436 		 * scrape out the remaining cache.
2437 		 */
2438 		if (!scan && !mem_cgroup_online(memcg))
2439 			scan = min(size, SWAP_CLUSTER_MAX);
2440 
2441 		switch (scan_balance) {
2442 		case SCAN_EQUAL:
2443 			/* Scan lists relative to size */
2444 			break;
2445 		case SCAN_FRACT:
2446 			/*
2447 			 * Scan types proportional to swappiness and
2448 			 * their relative recent reclaim efficiency.
2449 			 */
2450 			scan = div64_u64(scan * fraction[file],
2451 					 denominator);
2452 			break;
2453 		case SCAN_FILE:
2454 		case SCAN_ANON:
2455 			/* Scan one type exclusively */
2456 			if ((scan_balance == SCAN_FILE) != file) {
2457 				size = 0;
2458 				scan = 0;
2459 			}
2460 			break;
2461 		default:
2462 			/* Look ma, no brain */
2463 			BUG();
2464 		}
2465 
2466 		*lru_pages += size;
2467 		nr[lru] = scan;
2468 	}
2469 }
2470 
2471 /*
2472  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2473  */
2474 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2475 			      struct scan_control *sc, unsigned long *lru_pages)
2476 {
2477 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2478 	unsigned long nr[NR_LRU_LISTS];
2479 	unsigned long targets[NR_LRU_LISTS];
2480 	unsigned long nr_to_scan;
2481 	enum lru_list lru;
2482 	unsigned long nr_reclaimed = 0;
2483 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2484 	struct blk_plug plug;
2485 	bool scan_adjusted;
2486 
2487 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2488 
2489 	/* Record the original scan target for proportional adjustments later */
2490 	memcpy(targets, nr, sizeof(nr));
2491 
2492 	/*
2493 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2494 	 * event that can occur when there is little memory pressure e.g.
2495 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2496 	 * when the requested number of pages are reclaimed when scanning at
2497 	 * DEF_PRIORITY on the assumption that the fact we are direct
2498 	 * reclaiming implies that kswapd is not keeping up and it is best to
2499 	 * do a batch of work at once. For memcg reclaim one check is made to
2500 	 * abort proportional reclaim if either the file or anon lru has already
2501 	 * dropped to zero at the first pass.
2502 	 */
2503 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2504 			 sc->priority == DEF_PRIORITY);
2505 
2506 	blk_start_plug(&plug);
2507 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2508 					nr[LRU_INACTIVE_FILE]) {
2509 		unsigned long nr_anon, nr_file, percentage;
2510 		unsigned long nr_scanned;
2511 
2512 		for_each_evictable_lru(lru) {
2513 			if (nr[lru]) {
2514 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2515 				nr[lru] -= nr_to_scan;
2516 
2517 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2518 							    lruvec, memcg, sc);
2519 			}
2520 		}
2521 
2522 		cond_resched();
2523 
2524 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2525 			continue;
2526 
2527 		/*
2528 		 * For kswapd and memcg, reclaim at least the number of pages
2529 		 * requested. Ensure that the anon and file LRUs are scanned
2530 		 * proportionally what was requested by get_scan_count(). We
2531 		 * stop reclaiming one LRU and reduce the amount scanning
2532 		 * proportional to the original scan target.
2533 		 */
2534 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2535 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2536 
2537 		/*
2538 		 * It's just vindictive to attack the larger once the smaller
2539 		 * has gone to zero.  And given the way we stop scanning the
2540 		 * smaller below, this makes sure that we only make one nudge
2541 		 * towards proportionality once we've got nr_to_reclaim.
2542 		 */
2543 		if (!nr_file || !nr_anon)
2544 			break;
2545 
2546 		if (nr_file > nr_anon) {
2547 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2548 						targets[LRU_ACTIVE_ANON] + 1;
2549 			lru = LRU_BASE;
2550 			percentage = nr_anon * 100 / scan_target;
2551 		} else {
2552 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2553 						targets[LRU_ACTIVE_FILE] + 1;
2554 			lru = LRU_FILE;
2555 			percentage = nr_file * 100 / scan_target;
2556 		}
2557 
2558 		/* Stop scanning the smaller of the LRU */
2559 		nr[lru] = 0;
2560 		nr[lru + LRU_ACTIVE] = 0;
2561 
2562 		/*
2563 		 * Recalculate the other LRU scan count based on its original
2564 		 * scan target and the percentage scanning already complete
2565 		 */
2566 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2567 		nr_scanned = targets[lru] - nr[lru];
2568 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2569 		nr[lru] -= min(nr[lru], nr_scanned);
2570 
2571 		lru += LRU_ACTIVE;
2572 		nr_scanned = targets[lru] - nr[lru];
2573 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2574 		nr[lru] -= min(nr[lru], nr_scanned);
2575 
2576 		scan_adjusted = true;
2577 	}
2578 	blk_finish_plug(&plug);
2579 	sc->nr_reclaimed += nr_reclaimed;
2580 
2581 	/*
2582 	 * Even if we did not try to evict anon pages at all, we want to
2583 	 * rebalance the anon lru active/inactive ratio.
2584 	 */
2585 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2586 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2587 				   sc, LRU_ACTIVE_ANON);
2588 }
2589 
2590 /* Use reclaim/compaction for costly allocs or under memory pressure */
2591 static bool in_reclaim_compaction(struct scan_control *sc)
2592 {
2593 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2594 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2595 			 sc->priority < DEF_PRIORITY - 2))
2596 		return true;
2597 
2598 	return false;
2599 }
2600 
2601 /*
2602  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2603  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2604  * true if more pages should be reclaimed such that when the page allocator
2605  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2606  * It will give up earlier than that if there is difficulty reclaiming pages.
2607  */
2608 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2609 					unsigned long nr_reclaimed,
2610 					unsigned long nr_scanned,
2611 					struct scan_control *sc)
2612 {
2613 	unsigned long pages_for_compaction;
2614 	unsigned long inactive_lru_pages;
2615 	int z;
2616 
2617 	/* If not in reclaim/compaction mode, stop */
2618 	if (!in_reclaim_compaction(sc))
2619 		return false;
2620 
2621 	/* Consider stopping depending on scan and reclaim activity */
2622 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2623 		/*
2624 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2625 		 * full LRU list has been scanned and we are still failing
2626 		 * to reclaim pages. This full LRU scan is potentially
2627 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2628 		 */
2629 		if (!nr_reclaimed && !nr_scanned)
2630 			return false;
2631 	} else {
2632 		/*
2633 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2634 		 * fail without consequence, stop if we failed to reclaim
2635 		 * any pages from the last SWAP_CLUSTER_MAX number of
2636 		 * pages that were scanned. This will return to the
2637 		 * caller faster at the risk reclaim/compaction and
2638 		 * the resulting allocation attempt fails
2639 		 */
2640 		if (!nr_reclaimed)
2641 			return false;
2642 	}
2643 
2644 	/*
2645 	 * If we have not reclaimed enough pages for compaction and the
2646 	 * inactive lists are large enough, continue reclaiming
2647 	 */
2648 	pages_for_compaction = compact_gap(sc->order);
2649 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2650 	if (get_nr_swap_pages() > 0)
2651 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2652 	if (sc->nr_reclaimed < pages_for_compaction &&
2653 			inactive_lru_pages > pages_for_compaction)
2654 		return true;
2655 
2656 	/* If compaction would go ahead or the allocation would succeed, stop */
2657 	for (z = 0; z <= sc->reclaim_idx; z++) {
2658 		struct zone *zone = &pgdat->node_zones[z];
2659 		if (!managed_zone(zone))
2660 			continue;
2661 
2662 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2663 		case COMPACT_SUCCESS:
2664 		case COMPACT_CONTINUE:
2665 			return false;
2666 		default:
2667 			/* check next zone */
2668 			;
2669 		}
2670 	}
2671 	return true;
2672 }
2673 
2674 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2675 {
2676 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2677 		(memcg && memcg_congested(pgdat, memcg));
2678 }
2679 
2680 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2681 {
2682 	struct reclaim_state *reclaim_state = current->reclaim_state;
2683 	unsigned long nr_reclaimed, nr_scanned;
2684 	bool reclaimable = false;
2685 
2686 	do {
2687 		struct mem_cgroup *root = sc->target_mem_cgroup;
2688 		struct mem_cgroup_reclaim_cookie reclaim = {
2689 			.pgdat = pgdat,
2690 			.priority = sc->priority,
2691 		};
2692 		unsigned long node_lru_pages = 0;
2693 		struct mem_cgroup *memcg;
2694 
2695 		memset(&sc->nr, 0, sizeof(sc->nr));
2696 
2697 		nr_reclaimed = sc->nr_reclaimed;
2698 		nr_scanned = sc->nr_scanned;
2699 
2700 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2701 		do {
2702 			unsigned long lru_pages;
2703 			unsigned long reclaimed;
2704 			unsigned long scanned;
2705 
2706 			switch (mem_cgroup_protected(root, memcg)) {
2707 			case MEMCG_PROT_MIN:
2708 				/*
2709 				 * Hard protection.
2710 				 * If there is no reclaimable memory, OOM.
2711 				 */
2712 				continue;
2713 			case MEMCG_PROT_LOW:
2714 				/*
2715 				 * Soft protection.
2716 				 * Respect the protection only as long as
2717 				 * there is an unprotected supply
2718 				 * of reclaimable memory from other cgroups.
2719 				 */
2720 				if (!sc->memcg_low_reclaim) {
2721 					sc->memcg_low_skipped = 1;
2722 					continue;
2723 				}
2724 				memcg_memory_event(memcg, MEMCG_LOW);
2725 				break;
2726 			case MEMCG_PROT_NONE:
2727 				break;
2728 			}
2729 
2730 			reclaimed = sc->nr_reclaimed;
2731 			scanned = sc->nr_scanned;
2732 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2733 			node_lru_pages += lru_pages;
2734 
2735 			shrink_slab(sc->gfp_mask, pgdat->node_id,
2736 				    memcg, sc->priority);
2737 
2738 			/* Record the group's reclaim efficiency */
2739 			vmpressure(sc->gfp_mask, memcg, false,
2740 				   sc->nr_scanned - scanned,
2741 				   sc->nr_reclaimed - reclaimed);
2742 
2743 			/*
2744 			 * Direct reclaim and kswapd have to scan all memory
2745 			 * cgroups to fulfill the overall scan target for the
2746 			 * node.
2747 			 *
2748 			 * Limit reclaim, on the other hand, only cares about
2749 			 * nr_to_reclaim pages to be reclaimed and it will
2750 			 * retry with decreasing priority if one round over the
2751 			 * whole hierarchy is not sufficient.
2752 			 */
2753 			if (!global_reclaim(sc) &&
2754 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2755 				mem_cgroup_iter_break(root, memcg);
2756 				break;
2757 			}
2758 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2759 
2760 		if (reclaim_state) {
2761 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2762 			reclaim_state->reclaimed_slab = 0;
2763 		}
2764 
2765 		/* Record the subtree's reclaim efficiency */
2766 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2767 			   sc->nr_scanned - nr_scanned,
2768 			   sc->nr_reclaimed - nr_reclaimed);
2769 
2770 		if (sc->nr_reclaimed - nr_reclaimed)
2771 			reclaimable = true;
2772 
2773 		if (current_is_kswapd()) {
2774 			/*
2775 			 * If reclaim is isolating dirty pages under writeback,
2776 			 * it implies that the long-lived page allocation rate
2777 			 * is exceeding the page laundering rate. Either the
2778 			 * global limits are not being effective at throttling
2779 			 * processes due to the page distribution throughout
2780 			 * zones or there is heavy usage of a slow backing
2781 			 * device. The only option is to throttle from reclaim
2782 			 * context which is not ideal as there is no guarantee
2783 			 * the dirtying process is throttled in the same way
2784 			 * balance_dirty_pages() manages.
2785 			 *
2786 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2787 			 * count the number of pages under pages flagged for
2788 			 * immediate reclaim and stall if any are encountered
2789 			 * in the nr_immediate check below.
2790 			 */
2791 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2792 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2793 
2794 			/*
2795 			 * Tag a node as congested if all the dirty pages
2796 			 * scanned were backed by a congested BDI and
2797 			 * wait_iff_congested will stall.
2798 			 */
2799 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2800 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2801 
2802 			/* Allow kswapd to start writing pages during reclaim.*/
2803 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2804 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2805 
2806 			/*
2807 			 * If kswapd scans pages marked marked for immediate
2808 			 * reclaim and under writeback (nr_immediate), it
2809 			 * implies that pages are cycling through the LRU
2810 			 * faster than they are written so also forcibly stall.
2811 			 */
2812 			if (sc->nr.immediate)
2813 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2814 		}
2815 
2816 		/*
2817 		 * Legacy memcg will stall in page writeback so avoid forcibly
2818 		 * stalling in wait_iff_congested().
2819 		 */
2820 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2821 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2822 			set_memcg_congestion(pgdat, root, true);
2823 
2824 		/*
2825 		 * Stall direct reclaim for IO completions if underlying BDIs
2826 		 * and node is congested. Allow kswapd to continue until it
2827 		 * starts encountering unqueued dirty pages or cycling through
2828 		 * the LRU too quickly.
2829 		 */
2830 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2831 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2832 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2833 
2834 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2835 					 sc->nr_scanned - nr_scanned, sc));
2836 
2837 	/*
2838 	 * Kswapd gives up on balancing particular nodes after too
2839 	 * many failures to reclaim anything from them and goes to
2840 	 * sleep. On reclaim progress, reset the failure counter. A
2841 	 * successful direct reclaim run will revive a dormant kswapd.
2842 	 */
2843 	if (reclaimable)
2844 		pgdat->kswapd_failures = 0;
2845 
2846 	return reclaimable;
2847 }
2848 
2849 /*
2850  * Returns true if compaction should go ahead for a costly-order request, or
2851  * the allocation would already succeed without compaction. Return false if we
2852  * should reclaim first.
2853  */
2854 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2855 {
2856 	unsigned long watermark;
2857 	enum compact_result suitable;
2858 
2859 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2860 	if (suitable == COMPACT_SUCCESS)
2861 		/* Allocation should succeed already. Don't reclaim. */
2862 		return true;
2863 	if (suitable == COMPACT_SKIPPED)
2864 		/* Compaction cannot yet proceed. Do reclaim. */
2865 		return false;
2866 
2867 	/*
2868 	 * Compaction is already possible, but it takes time to run and there
2869 	 * are potentially other callers using the pages just freed. So proceed
2870 	 * with reclaim to make a buffer of free pages available to give
2871 	 * compaction a reasonable chance of completing and allocating the page.
2872 	 * Note that we won't actually reclaim the whole buffer in one attempt
2873 	 * as the target watermark in should_continue_reclaim() is lower. But if
2874 	 * we are already above the high+gap watermark, don't reclaim at all.
2875 	 */
2876 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2877 
2878 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2879 }
2880 
2881 /*
2882  * This is the direct reclaim path, for page-allocating processes.  We only
2883  * try to reclaim pages from zones which will satisfy the caller's allocation
2884  * request.
2885  *
2886  * If a zone is deemed to be full of pinned pages then just give it a light
2887  * scan then give up on it.
2888  */
2889 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2890 {
2891 	struct zoneref *z;
2892 	struct zone *zone;
2893 	unsigned long nr_soft_reclaimed;
2894 	unsigned long nr_soft_scanned;
2895 	gfp_t orig_mask;
2896 	pg_data_t *last_pgdat = NULL;
2897 
2898 	/*
2899 	 * If the number of buffer_heads in the machine exceeds the maximum
2900 	 * allowed level, force direct reclaim to scan the highmem zone as
2901 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2902 	 */
2903 	orig_mask = sc->gfp_mask;
2904 	if (buffer_heads_over_limit) {
2905 		sc->gfp_mask |= __GFP_HIGHMEM;
2906 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2907 	}
2908 
2909 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2910 					sc->reclaim_idx, sc->nodemask) {
2911 		/*
2912 		 * Take care memory controller reclaiming has small influence
2913 		 * to global LRU.
2914 		 */
2915 		if (global_reclaim(sc)) {
2916 			if (!cpuset_zone_allowed(zone,
2917 						 GFP_KERNEL | __GFP_HARDWALL))
2918 				continue;
2919 
2920 			/*
2921 			 * If we already have plenty of memory free for
2922 			 * compaction in this zone, don't free any more.
2923 			 * Even though compaction is invoked for any
2924 			 * non-zero order, only frequent costly order
2925 			 * reclamation is disruptive enough to become a
2926 			 * noticeable problem, like transparent huge
2927 			 * page allocations.
2928 			 */
2929 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2930 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2931 			    compaction_ready(zone, sc)) {
2932 				sc->compaction_ready = true;
2933 				continue;
2934 			}
2935 
2936 			/*
2937 			 * Shrink each node in the zonelist once. If the
2938 			 * zonelist is ordered by zone (not the default) then a
2939 			 * node may be shrunk multiple times but in that case
2940 			 * the user prefers lower zones being preserved.
2941 			 */
2942 			if (zone->zone_pgdat == last_pgdat)
2943 				continue;
2944 
2945 			/*
2946 			 * This steals pages from memory cgroups over softlimit
2947 			 * and returns the number of reclaimed pages and
2948 			 * scanned pages. This works for global memory pressure
2949 			 * and balancing, not for a memcg's limit.
2950 			 */
2951 			nr_soft_scanned = 0;
2952 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2953 						sc->order, sc->gfp_mask,
2954 						&nr_soft_scanned);
2955 			sc->nr_reclaimed += nr_soft_reclaimed;
2956 			sc->nr_scanned += nr_soft_scanned;
2957 			/* need some check for avoid more shrink_zone() */
2958 		}
2959 
2960 		/* See comment about same check for global reclaim above */
2961 		if (zone->zone_pgdat == last_pgdat)
2962 			continue;
2963 		last_pgdat = zone->zone_pgdat;
2964 		shrink_node(zone->zone_pgdat, sc);
2965 	}
2966 
2967 	/*
2968 	 * Restore to original mask to avoid the impact on the caller if we
2969 	 * promoted it to __GFP_HIGHMEM.
2970 	 */
2971 	sc->gfp_mask = orig_mask;
2972 }
2973 
2974 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2975 {
2976 	struct mem_cgroup *memcg;
2977 
2978 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2979 	do {
2980 		unsigned long refaults;
2981 		struct lruvec *lruvec;
2982 
2983 		if (memcg)
2984 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2985 		else
2986 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2987 
2988 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2989 		lruvec->refaults = refaults;
2990 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2991 }
2992 
2993 /*
2994  * This is the main entry point to direct page reclaim.
2995  *
2996  * If a full scan of the inactive list fails to free enough memory then we
2997  * are "out of memory" and something needs to be killed.
2998  *
2999  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3000  * high - the zone may be full of dirty or under-writeback pages, which this
3001  * caller can't do much about.  We kick the writeback threads and take explicit
3002  * naps in the hope that some of these pages can be written.  But if the
3003  * allocating task holds filesystem locks which prevent writeout this might not
3004  * work, and the allocation attempt will fail.
3005  *
3006  * returns:	0, if no pages reclaimed
3007  * 		else, the number of pages reclaimed
3008  */
3009 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3010 					  struct scan_control *sc)
3011 {
3012 	int initial_priority = sc->priority;
3013 	pg_data_t *last_pgdat;
3014 	struct zoneref *z;
3015 	struct zone *zone;
3016 retry:
3017 	delayacct_freepages_start();
3018 
3019 	if (global_reclaim(sc))
3020 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021 
3022 	do {
3023 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3024 				sc->priority);
3025 		sc->nr_scanned = 0;
3026 		shrink_zones(zonelist, sc);
3027 
3028 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3029 			break;
3030 
3031 		if (sc->compaction_ready)
3032 			break;
3033 
3034 		/*
3035 		 * If we're getting trouble reclaiming, start doing
3036 		 * writepage even in laptop mode.
3037 		 */
3038 		if (sc->priority < DEF_PRIORITY - 2)
3039 			sc->may_writepage = 1;
3040 	} while (--sc->priority >= 0);
3041 
3042 	last_pgdat = NULL;
3043 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044 					sc->nodemask) {
3045 		if (zone->zone_pgdat == last_pgdat)
3046 			continue;
3047 		last_pgdat = zone->zone_pgdat;
3048 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3049 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3050 	}
3051 
3052 	delayacct_freepages_end();
3053 
3054 	if (sc->nr_reclaimed)
3055 		return sc->nr_reclaimed;
3056 
3057 	/* Aborted reclaim to try compaction? don't OOM, then */
3058 	if (sc->compaction_ready)
3059 		return 1;
3060 
3061 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3062 	if (sc->memcg_low_skipped) {
3063 		sc->priority = initial_priority;
3064 		sc->memcg_low_reclaim = 1;
3065 		sc->memcg_low_skipped = 0;
3066 		goto retry;
3067 	}
3068 
3069 	return 0;
3070 }
3071 
3072 static bool allow_direct_reclaim(pg_data_t *pgdat)
3073 {
3074 	struct zone *zone;
3075 	unsigned long pfmemalloc_reserve = 0;
3076 	unsigned long free_pages = 0;
3077 	int i;
3078 	bool wmark_ok;
3079 
3080 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3081 		return true;
3082 
3083 	for (i = 0; i <= ZONE_NORMAL; i++) {
3084 		zone = &pgdat->node_zones[i];
3085 		if (!managed_zone(zone))
3086 			continue;
3087 
3088 		if (!zone_reclaimable_pages(zone))
3089 			continue;
3090 
3091 		pfmemalloc_reserve += min_wmark_pages(zone);
3092 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3093 	}
3094 
3095 	/* If there are no reserves (unexpected config) then do not throttle */
3096 	if (!pfmemalloc_reserve)
3097 		return true;
3098 
3099 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3100 
3101 	/* kswapd must be awake if processes are being throttled */
3102 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3103 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3104 						(enum zone_type)ZONE_NORMAL);
3105 		wake_up_interruptible(&pgdat->kswapd_wait);
3106 	}
3107 
3108 	return wmark_ok;
3109 }
3110 
3111 /*
3112  * Throttle direct reclaimers if backing storage is backed by the network
3113  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3114  * depleted. kswapd will continue to make progress and wake the processes
3115  * when the low watermark is reached.
3116  *
3117  * Returns true if a fatal signal was delivered during throttling. If this
3118  * happens, the page allocator should not consider triggering the OOM killer.
3119  */
3120 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3121 					nodemask_t *nodemask)
3122 {
3123 	struct zoneref *z;
3124 	struct zone *zone;
3125 	pg_data_t *pgdat = NULL;
3126 
3127 	/*
3128 	 * Kernel threads should not be throttled as they may be indirectly
3129 	 * responsible for cleaning pages necessary for reclaim to make forward
3130 	 * progress. kjournald for example may enter direct reclaim while
3131 	 * committing a transaction where throttling it could forcing other
3132 	 * processes to block on log_wait_commit().
3133 	 */
3134 	if (current->flags & PF_KTHREAD)
3135 		goto out;
3136 
3137 	/*
3138 	 * If a fatal signal is pending, this process should not throttle.
3139 	 * It should return quickly so it can exit and free its memory
3140 	 */
3141 	if (fatal_signal_pending(current))
3142 		goto out;
3143 
3144 	/*
3145 	 * Check if the pfmemalloc reserves are ok by finding the first node
3146 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3147 	 * GFP_KERNEL will be required for allocating network buffers when
3148 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3149 	 *
3150 	 * Throttling is based on the first usable node and throttled processes
3151 	 * wait on a queue until kswapd makes progress and wakes them. There
3152 	 * is an affinity then between processes waking up and where reclaim
3153 	 * progress has been made assuming the process wakes on the same node.
3154 	 * More importantly, processes running on remote nodes will not compete
3155 	 * for remote pfmemalloc reserves and processes on different nodes
3156 	 * should make reasonable progress.
3157 	 */
3158 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3159 					gfp_zone(gfp_mask), nodemask) {
3160 		if (zone_idx(zone) > ZONE_NORMAL)
3161 			continue;
3162 
3163 		/* Throttle based on the first usable node */
3164 		pgdat = zone->zone_pgdat;
3165 		if (allow_direct_reclaim(pgdat))
3166 			goto out;
3167 		break;
3168 	}
3169 
3170 	/* If no zone was usable by the allocation flags then do not throttle */
3171 	if (!pgdat)
3172 		goto out;
3173 
3174 	/* Account for the throttling */
3175 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3176 
3177 	/*
3178 	 * If the caller cannot enter the filesystem, it's possible that it
3179 	 * is due to the caller holding an FS lock or performing a journal
3180 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3181 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3182 	 * blocked waiting on the same lock. Instead, throttle for up to a
3183 	 * second before continuing.
3184 	 */
3185 	if (!(gfp_mask & __GFP_FS)) {
3186 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3187 			allow_direct_reclaim(pgdat), HZ);
3188 
3189 		goto check_pending;
3190 	}
3191 
3192 	/* Throttle until kswapd wakes the process */
3193 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3194 		allow_direct_reclaim(pgdat));
3195 
3196 check_pending:
3197 	if (fatal_signal_pending(current))
3198 		return true;
3199 
3200 out:
3201 	return false;
3202 }
3203 
3204 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3205 				gfp_t gfp_mask, nodemask_t *nodemask)
3206 {
3207 	unsigned long nr_reclaimed;
3208 	struct scan_control sc = {
3209 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3210 		.gfp_mask = current_gfp_context(gfp_mask),
3211 		.reclaim_idx = gfp_zone(gfp_mask),
3212 		.order = order,
3213 		.nodemask = nodemask,
3214 		.priority = DEF_PRIORITY,
3215 		.may_writepage = !laptop_mode,
3216 		.may_unmap = 1,
3217 		.may_swap = 1,
3218 	};
3219 
3220 	/*
3221 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3222 	 * Confirm they are large enough for max values.
3223 	 */
3224 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3225 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3226 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3227 
3228 	/*
3229 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3230 	 * 1 is returned so that the page allocator does not OOM kill at this
3231 	 * point.
3232 	 */
3233 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3234 		return 1;
3235 
3236 	trace_mm_vmscan_direct_reclaim_begin(order,
3237 				sc.may_writepage,
3238 				sc.gfp_mask,
3239 				sc.reclaim_idx);
3240 
3241 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3242 
3243 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3244 
3245 	return nr_reclaimed;
3246 }
3247 
3248 #ifdef CONFIG_MEMCG
3249 
3250 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3251 						gfp_t gfp_mask, bool noswap,
3252 						pg_data_t *pgdat,
3253 						unsigned long *nr_scanned)
3254 {
3255 	struct scan_control sc = {
3256 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3257 		.target_mem_cgroup = memcg,
3258 		.may_writepage = !laptop_mode,
3259 		.may_unmap = 1,
3260 		.reclaim_idx = MAX_NR_ZONES - 1,
3261 		.may_swap = !noswap,
3262 	};
3263 	unsigned long lru_pages;
3264 
3265 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3266 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3267 
3268 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3269 						      sc.may_writepage,
3270 						      sc.gfp_mask,
3271 						      sc.reclaim_idx);
3272 
3273 	/*
3274 	 * NOTE: Although we can get the priority field, using it
3275 	 * here is not a good idea, since it limits the pages we can scan.
3276 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3277 	 * will pick up pages from other mem cgroup's as well. We hack
3278 	 * the priority and make it zero.
3279 	 */
3280 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3281 
3282 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3283 
3284 	*nr_scanned = sc.nr_scanned;
3285 	return sc.nr_reclaimed;
3286 }
3287 
3288 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3289 					   unsigned long nr_pages,
3290 					   gfp_t gfp_mask,
3291 					   bool may_swap)
3292 {
3293 	struct zonelist *zonelist;
3294 	unsigned long nr_reclaimed;
3295 	int nid;
3296 	unsigned int noreclaim_flag;
3297 	struct scan_control sc = {
3298 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3299 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3300 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3301 		.reclaim_idx = MAX_NR_ZONES - 1,
3302 		.target_mem_cgroup = memcg,
3303 		.priority = DEF_PRIORITY,
3304 		.may_writepage = !laptop_mode,
3305 		.may_unmap = 1,
3306 		.may_swap = may_swap,
3307 	};
3308 
3309 	/*
3310 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3311 	 * take care of from where we get pages. So the node where we start the
3312 	 * scan does not need to be the current node.
3313 	 */
3314 	nid = mem_cgroup_select_victim_node(memcg);
3315 
3316 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3317 
3318 	trace_mm_vmscan_memcg_reclaim_begin(0,
3319 					    sc.may_writepage,
3320 					    sc.gfp_mask,
3321 					    sc.reclaim_idx);
3322 
3323 	noreclaim_flag = memalloc_noreclaim_save();
3324 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3325 	memalloc_noreclaim_restore(noreclaim_flag);
3326 
3327 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3328 
3329 	return nr_reclaimed;
3330 }
3331 #endif
3332 
3333 static void age_active_anon(struct pglist_data *pgdat,
3334 				struct scan_control *sc)
3335 {
3336 	struct mem_cgroup *memcg;
3337 
3338 	if (!total_swap_pages)
3339 		return;
3340 
3341 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3342 	do {
3343 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3344 
3345 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3346 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3347 					   sc, LRU_ACTIVE_ANON);
3348 
3349 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3350 	} while (memcg);
3351 }
3352 
3353 /*
3354  * Returns true if there is an eligible zone balanced for the request order
3355  * and classzone_idx
3356  */
3357 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3358 {
3359 	int i;
3360 	unsigned long mark = -1;
3361 	struct zone *zone;
3362 
3363 	for (i = 0; i <= classzone_idx; i++) {
3364 		zone = pgdat->node_zones + i;
3365 
3366 		if (!managed_zone(zone))
3367 			continue;
3368 
3369 		mark = high_wmark_pages(zone);
3370 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3371 			return true;
3372 	}
3373 
3374 	/*
3375 	 * If a node has no populated zone within classzone_idx, it does not
3376 	 * need balancing by definition. This can happen if a zone-restricted
3377 	 * allocation tries to wake a remote kswapd.
3378 	 */
3379 	if (mark == -1)
3380 		return true;
3381 
3382 	return false;
3383 }
3384 
3385 /* Clear pgdat state for congested, dirty or under writeback. */
3386 static void clear_pgdat_congested(pg_data_t *pgdat)
3387 {
3388 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3389 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3390 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3391 }
3392 
3393 /*
3394  * Prepare kswapd for sleeping. This verifies that there are no processes
3395  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3396  *
3397  * Returns true if kswapd is ready to sleep
3398  */
3399 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3400 {
3401 	/*
3402 	 * The throttled processes are normally woken up in balance_pgdat() as
3403 	 * soon as allow_direct_reclaim() is true. But there is a potential
3404 	 * race between when kswapd checks the watermarks and a process gets
3405 	 * throttled. There is also a potential race if processes get
3406 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3407 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3408 	 * the wake up checks. If kswapd is going to sleep, no process should
3409 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3410 	 * the wake up is premature, processes will wake kswapd and get
3411 	 * throttled again. The difference from wake ups in balance_pgdat() is
3412 	 * that here we are under prepare_to_wait().
3413 	 */
3414 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3415 		wake_up_all(&pgdat->pfmemalloc_wait);
3416 
3417 	/* Hopeless node, leave it to direct reclaim */
3418 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3419 		return true;
3420 
3421 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3422 		clear_pgdat_congested(pgdat);
3423 		return true;
3424 	}
3425 
3426 	return false;
3427 }
3428 
3429 /*
3430  * kswapd shrinks a node of pages that are at or below the highest usable
3431  * zone that is currently unbalanced.
3432  *
3433  * Returns true if kswapd scanned at least the requested number of pages to
3434  * reclaim or if the lack of progress was due to pages under writeback.
3435  * This is used to determine if the scanning priority needs to be raised.
3436  */
3437 static bool kswapd_shrink_node(pg_data_t *pgdat,
3438 			       struct scan_control *sc)
3439 {
3440 	struct zone *zone;
3441 	int z;
3442 
3443 	/* Reclaim a number of pages proportional to the number of zones */
3444 	sc->nr_to_reclaim = 0;
3445 	for (z = 0; z <= sc->reclaim_idx; z++) {
3446 		zone = pgdat->node_zones + z;
3447 		if (!managed_zone(zone))
3448 			continue;
3449 
3450 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3451 	}
3452 
3453 	/*
3454 	 * Historically care was taken to put equal pressure on all zones but
3455 	 * now pressure is applied based on node LRU order.
3456 	 */
3457 	shrink_node(pgdat, sc);
3458 
3459 	/*
3460 	 * Fragmentation may mean that the system cannot be rebalanced for
3461 	 * high-order allocations. If twice the allocation size has been
3462 	 * reclaimed then recheck watermarks only at order-0 to prevent
3463 	 * excessive reclaim. Assume that a process requested a high-order
3464 	 * can direct reclaim/compact.
3465 	 */
3466 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3467 		sc->order = 0;
3468 
3469 	return sc->nr_scanned >= sc->nr_to_reclaim;
3470 }
3471 
3472 /*
3473  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3474  * that are eligible for use by the caller until at least one zone is
3475  * balanced.
3476  *
3477  * Returns the order kswapd finished reclaiming at.
3478  *
3479  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3480  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3481  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3482  * or lower is eligible for reclaim until at least one usable zone is
3483  * balanced.
3484  */
3485 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3486 {
3487 	int i;
3488 	unsigned long nr_soft_reclaimed;
3489 	unsigned long nr_soft_scanned;
3490 	struct zone *zone;
3491 	struct scan_control sc = {
3492 		.gfp_mask = GFP_KERNEL,
3493 		.order = order,
3494 		.priority = DEF_PRIORITY,
3495 		.may_writepage = !laptop_mode,
3496 		.may_unmap = 1,
3497 		.may_swap = 1,
3498 	};
3499 
3500 	__fs_reclaim_acquire();
3501 
3502 	count_vm_event(PAGEOUTRUN);
3503 
3504 	do {
3505 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3506 		bool raise_priority = true;
3507 		bool ret;
3508 
3509 		sc.reclaim_idx = classzone_idx;
3510 
3511 		/*
3512 		 * If the number of buffer_heads exceeds the maximum allowed
3513 		 * then consider reclaiming from all zones. This has a dual
3514 		 * purpose -- on 64-bit systems it is expected that
3515 		 * buffer_heads are stripped during active rotation. On 32-bit
3516 		 * systems, highmem pages can pin lowmem memory and shrinking
3517 		 * buffers can relieve lowmem pressure. Reclaim may still not
3518 		 * go ahead if all eligible zones for the original allocation
3519 		 * request are balanced to avoid excessive reclaim from kswapd.
3520 		 */
3521 		if (buffer_heads_over_limit) {
3522 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3523 				zone = pgdat->node_zones + i;
3524 				if (!managed_zone(zone))
3525 					continue;
3526 
3527 				sc.reclaim_idx = i;
3528 				break;
3529 			}
3530 		}
3531 
3532 		/*
3533 		 * Only reclaim if there are no eligible zones. Note that
3534 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3535 		 * have adjusted it.
3536 		 */
3537 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3538 			goto out;
3539 
3540 		/*
3541 		 * Do some background aging of the anon list, to give
3542 		 * pages a chance to be referenced before reclaiming. All
3543 		 * pages are rotated regardless of classzone as this is
3544 		 * about consistent aging.
3545 		 */
3546 		age_active_anon(pgdat, &sc);
3547 
3548 		/*
3549 		 * If we're getting trouble reclaiming, start doing writepage
3550 		 * even in laptop mode.
3551 		 */
3552 		if (sc.priority < DEF_PRIORITY - 2)
3553 			sc.may_writepage = 1;
3554 
3555 		/* Call soft limit reclaim before calling shrink_node. */
3556 		sc.nr_scanned = 0;
3557 		nr_soft_scanned = 0;
3558 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3559 						sc.gfp_mask, &nr_soft_scanned);
3560 		sc.nr_reclaimed += nr_soft_reclaimed;
3561 
3562 		/*
3563 		 * There should be no need to raise the scanning priority if
3564 		 * enough pages are already being scanned that that high
3565 		 * watermark would be met at 100% efficiency.
3566 		 */
3567 		if (kswapd_shrink_node(pgdat, &sc))
3568 			raise_priority = false;
3569 
3570 		/*
3571 		 * If the low watermark is met there is no need for processes
3572 		 * to be throttled on pfmemalloc_wait as they should not be
3573 		 * able to safely make forward progress. Wake them
3574 		 */
3575 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3576 				allow_direct_reclaim(pgdat))
3577 			wake_up_all(&pgdat->pfmemalloc_wait);
3578 
3579 		/* Check if kswapd should be suspending */
3580 		__fs_reclaim_release();
3581 		ret = try_to_freeze();
3582 		__fs_reclaim_acquire();
3583 		if (ret || kthread_should_stop())
3584 			break;
3585 
3586 		/*
3587 		 * Raise priority if scanning rate is too low or there was no
3588 		 * progress in reclaiming pages
3589 		 */
3590 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3591 		if (raise_priority || !nr_reclaimed)
3592 			sc.priority--;
3593 	} while (sc.priority >= 1);
3594 
3595 	if (!sc.nr_reclaimed)
3596 		pgdat->kswapd_failures++;
3597 
3598 out:
3599 	snapshot_refaults(NULL, pgdat);
3600 	__fs_reclaim_release();
3601 	/*
3602 	 * Return the order kswapd stopped reclaiming at as
3603 	 * prepare_kswapd_sleep() takes it into account. If another caller
3604 	 * entered the allocator slow path while kswapd was awake, order will
3605 	 * remain at the higher level.
3606 	 */
3607 	return sc.order;
3608 }
3609 
3610 /*
3611  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3612  * allocation request woke kswapd for. When kswapd has not woken recently,
3613  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3614  * given classzone and returns it or the highest classzone index kswapd
3615  * was recently woke for.
3616  */
3617 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3618 					   enum zone_type classzone_idx)
3619 {
3620 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3621 		return classzone_idx;
3622 
3623 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3624 }
3625 
3626 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3627 				unsigned int classzone_idx)
3628 {
3629 	long remaining = 0;
3630 	DEFINE_WAIT(wait);
3631 
3632 	if (freezing(current) || kthread_should_stop())
3633 		return;
3634 
3635 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3636 
3637 	/*
3638 	 * Try to sleep for a short interval. Note that kcompactd will only be
3639 	 * woken if it is possible to sleep for a short interval. This is
3640 	 * deliberate on the assumption that if reclaim cannot keep an
3641 	 * eligible zone balanced that it's also unlikely that compaction will
3642 	 * succeed.
3643 	 */
3644 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3645 		/*
3646 		 * Compaction records what page blocks it recently failed to
3647 		 * isolate pages from and skips them in the future scanning.
3648 		 * When kswapd is going to sleep, it is reasonable to assume
3649 		 * that pages and compaction may succeed so reset the cache.
3650 		 */
3651 		reset_isolation_suitable(pgdat);
3652 
3653 		/*
3654 		 * We have freed the memory, now we should compact it to make
3655 		 * allocation of the requested order possible.
3656 		 */
3657 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3658 
3659 		remaining = schedule_timeout(HZ/10);
3660 
3661 		/*
3662 		 * If woken prematurely then reset kswapd_classzone_idx and
3663 		 * order. The values will either be from a wakeup request or
3664 		 * the previous request that slept prematurely.
3665 		 */
3666 		if (remaining) {
3667 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3668 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3669 		}
3670 
3671 		finish_wait(&pgdat->kswapd_wait, &wait);
3672 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3673 	}
3674 
3675 	/*
3676 	 * After a short sleep, check if it was a premature sleep. If not, then
3677 	 * go fully to sleep until explicitly woken up.
3678 	 */
3679 	if (!remaining &&
3680 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3681 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3682 
3683 		/*
3684 		 * vmstat counters are not perfectly accurate and the estimated
3685 		 * value for counters such as NR_FREE_PAGES can deviate from the
3686 		 * true value by nr_online_cpus * threshold. To avoid the zone
3687 		 * watermarks being breached while under pressure, we reduce the
3688 		 * per-cpu vmstat threshold while kswapd is awake and restore
3689 		 * them before going back to sleep.
3690 		 */
3691 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3692 
3693 		if (!kthread_should_stop())
3694 			schedule();
3695 
3696 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3697 	} else {
3698 		if (remaining)
3699 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3700 		else
3701 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3702 	}
3703 	finish_wait(&pgdat->kswapd_wait, &wait);
3704 }
3705 
3706 /*
3707  * The background pageout daemon, started as a kernel thread
3708  * from the init process.
3709  *
3710  * This basically trickles out pages so that we have _some_
3711  * free memory available even if there is no other activity
3712  * that frees anything up. This is needed for things like routing
3713  * etc, where we otherwise might have all activity going on in
3714  * asynchronous contexts that cannot page things out.
3715  *
3716  * If there are applications that are active memory-allocators
3717  * (most normal use), this basically shouldn't matter.
3718  */
3719 static int kswapd(void *p)
3720 {
3721 	unsigned int alloc_order, reclaim_order;
3722 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3723 	pg_data_t *pgdat = (pg_data_t*)p;
3724 	struct task_struct *tsk = current;
3725 
3726 	struct reclaim_state reclaim_state = {
3727 		.reclaimed_slab = 0,
3728 	};
3729 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3730 
3731 	if (!cpumask_empty(cpumask))
3732 		set_cpus_allowed_ptr(tsk, cpumask);
3733 	current->reclaim_state = &reclaim_state;
3734 
3735 	/*
3736 	 * Tell the memory management that we're a "memory allocator",
3737 	 * and that if we need more memory we should get access to it
3738 	 * regardless (see "__alloc_pages()"). "kswapd" should
3739 	 * never get caught in the normal page freeing logic.
3740 	 *
3741 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3742 	 * you need a small amount of memory in order to be able to
3743 	 * page out something else, and this flag essentially protects
3744 	 * us from recursively trying to free more memory as we're
3745 	 * trying to free the first piece of memory in the first place).
3746 	 */
3747 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3748 	set_freezable();
3749 
3750 	pgdat->kswapd_order = 0;
3751 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3752 	for ( ; ; ) {
3753 		bool ret;
3754 
3755 		alloc_order = reclaim_order = pgdat->kswapd_order;
3756 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3757 
3758 kswapd_try_sleep:
3759 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3760 					classzone_idx);
3761 
3762 		/* Read the new order and classzone_idx */
3763 		alloc_order = reclaim_order = pgdat->kswapd_order;
3764 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3765 		pgdat->kswapd_order = 0;
3766 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3767 
3768 		ret = try_to_freeze();
3769 		if (kthread_should_stop())
3770 			break;
3771 
3772 		/*
3773 		 * We can speed up thawing tasks if we don't call balance_pgdat
3774 		 * after returning from the refrigerator
3775 		 */
3776 		if (ret)
3777 			continue;
3778 
3779 		/*
3780 		 * Reclaim begins at the requested order but if a high-order
3781 		 * reclaim fails then kswapd falls back to reclaiming for
3782 		 * order-0. If that happens, kswapd will consider sleeping
3783 		 * for the order it finished reclaiming at (reclaim_order)
3784 		 * but kcompactd is woken to compact for the original
3785 		 * request (alloc_order).
3786 		 */
3787 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3788 						alloc_order);
3789 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3790 		if (reclaim_order < alloc_order)
3791 			goto kswapd_try_sleep;
3792 	}
3793 
3794 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3795 	current->reclaim_state = NULL;
3796 
3797 	return 0;
3798 }
3799 
3800 /*
3801  * A zone is low on free memory or too fragmented for high-order memory.  If
3802  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3803  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3804  * has failed or is not needed, still wake up kcompactd if only compaction is
3805  * needed.
3806  */
3807 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3808 		   enum zone_type classzone_idx)
3809 {
3810 	pg_data_t *pgdat;
3811 
3812 	if (!managed_zone(zone))
3813 		return;
3814 
3815 	if (!cpuset_zone_allowed(zone, gfp_flags))
3816 		return;
3817 	pgdat = zone->zone_pgdat;
3818 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3819 							   classzone_idx);
3820 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3821 	if (!waitqueue_active(&pgdat->kswapd_wait))
3822 		return;
3823 
3824 	/* Hopeless node, leave it to direct reclaim if possible */
3825 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3826 	    pgdat_balanced(pgdat, order, classzone_idx)) {
3827 		/*
3828 		 * There may be plenty of free memory available, but it's too
3829 		 * fragmented for high-order allocations.  Wake up kcompactd
3830 		 * and rely on compaction_suitable() to determine if it's
3831 		 * needed.  If it fails, it will defer subsequent attempts to
3832 		 * ratelimit its work.
3833 		 */
3834 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3835 			wakeup_kcompactd(pgdat, order, classzone_idx);
3836 		return;
3837 	}
3838 
3839 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3840 				      gfp_flags);
3841 	wake_up_interruptible(&pgdat->kswapd_wait);
3842 }
3843 
3844 #ifdef CONFIG_HIBERNATION
3845 /*
3846  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3847  * freed pages.
3848  *
3849  * Rather than trying to age LRUs the aim is to preserve the overall
3850  * LRU order by reclaiming preferentially
3851  * inactive > active > active referenced > active mapped
3852  */
3853 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3854 {
3855 	struct reclaim_state reclaim_state;
3856 	struct scan_control sc = {
3857 		.nr_to_reclaim = nr_to_reclaim,
3858 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3859 		.reclaim_idx = MAX_NR_ZONES - 1,
3860 		.priority = DEF_PRIORITY,
3861 		.may_writepage = 1,
3862 		.may_unmap = 1,
3863 		.may_swap = 1,
3864 		.hibernation_mode = 1,
3865 	};
3866 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3867 	struct task_struct *p = current;
3868 	unsigned long nr_reclaimed;
3869 	unsigned int noreclaim_flag;
3870 
3871 	fs_reclaim_acquire(sc.gfp_mask);
3872 	noreclaim_flag = memalloc_noreclaim_save();
3873 	reclaim_state.reclaimed_slab = 0;
3874 	p->reclaim_state = &reclaim_state;
3875 
3876 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3877 
3878 	p->reclaim_state = NULL;
3879 	memalloc_noreclaim_restore(noreclaim_flag);
3880 	fs_reclaim_release(sc.gfp_mask);
3881 
3882 	return nr_reclaimed;
3883 }
3884 #endif /* CONFIG_HIBERNATION */
3885 
3886 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3887    not required for correctness.  So if the last cpu in a node goes
3888    away, we get changed to run anywhere: as the first one comes back,
3889    restore their cpu bindings. */
3890 static int kswapd_cpu_online(unsigned int cpu)
3891 {
3892 	int nid;
3893 
3894 	for_each_node_state(nid, N_MEMORY) {
3895 		pg_data_t *pgdat = NODE_DATA(nid);
3896 		const struct cpumask *mask;
3897 
3898 		mask = cpumask_of_node(pgdat->node_id);
3899 
3900 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3901 			/* One of our CPUs online: restore mask */
3902 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3903 	}
3904 	return 0;
3905 }
3906 
3907 /*
3908  * This kswapd start function will be called by init and node-hot-add.
3909  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3910  */
3911 int kswapd_run(int nid)
3912 {
3913 	pg_data_t *pgdat = NODE_DATA(nid);
3914 	int ret = 0;
3915 
3916 	if (pgdat->kswapd)
3917 		return 0;
3918 
3919 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3920 	if (IS_ERR(pgdat->kswapd)) {
3921 		/* failure at boot is fatal */
3922 		BUG_ON(system_state < SYSTEM_RUNNING);
3923 		pr_err("Failed to start kswapd on node %d\n", nid);
3924 		ret = PTR_ERR(pgdat->kswapd);
3925 		pgdat->kswapd = NULL;
3926 	}
3927 	return ret;
3928 }
3929 
3930 /*
3931  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3932  * hold mem_hotplug_begin/end().
3933  */
3934 void kswapd_stop(int nid)
3935 {
3936 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3937 
3938 	if (kswapd) {
3939 		kthread_stop(kswapd);
3940 		NODE_DATA(nid)->kswapd = NULL;
3941 	}
3942 }
3943 
3944 static int __init kswapd_init(void)
3945 {
3946 	int nid, ret;
3947 
3948 	swap_setup();
3949 	for_each_node_state(nid, N_MEMORY)
3950  		kswapd_run(nid);
3951 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3952 					"mm/vmscan:online", kswapd_cpu_online,
3953 					NULL);
3954 	WARN_ON(ret < 0);
3955 	return 0;
3956 }
3957 
3958 module_init(kswapd_init)
3959 
3960 #ifdef CONFIG_NUMA
3961 /*
3962  * Node reclaim mode
3963  *
3964  * If non-zero call node_reclaim when the number of free pages falls below
3965  * the watermarks.
3966  */
3967 int node_reclaim_mode __read_mostly;
3968 
3969 #define RECLAIM_OFF 0
3970 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3971 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3972 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3973 
3974 /*
3975  * Priority for NODE_RECLAIM. This determines the fraction of pages
3976  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3977  * a zone.
3978  */
3979 #define NODE_RECLAIM_PRIORITY 4
3980 
3981 /*
3982  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3983  * occur.
3984  */
3985 int sysctl_min_unmapped_ratio = 1;
3986 
3987 /*
3988  * If the number of slab pages in a zone grows beyond this percentage then
3989  * slab reclaim needs to occur.
3990  */
3991 int sysctl_min_slab_ratio = 5;
3992 
3993 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3994 {
3995 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3996 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3997 		node_page_state(pgdat, NR_ACTIVE_FILE);
3998 
3999 	/*
4000 	 * It's possible for there to be more file mapped pages than
4001 	 * accounted for by the pages on the file LRU lists because
4002 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4003 	 */
4004 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4005 }
4006 
4007 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4008 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4009 {
4010 	unsigned long nr_pagecache_reclaimable;
4011 	unsigned long delta = 0;
4012 
4013 	/*
4014 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4015 	 * potentially reclaimable. Otherwise, we have to worry about
4016 	 * pages like swapcache and node_unmapped_file_pages() provides
4017 	 * a better estimate
4018 	 */
4019 	if (node_reclaim_mode & RECLAIM_UNMAP)
4020 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4021 	else
4022 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4023 
4024 	/* If we can't clean pages, remove dirty pages from consideration */
4025 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4026 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4027 
4028 	/* Watch for any possible underflows due to delta */
4029 	if (unlikely(delta > nr_pagecache_reclaimable))
4030 		delta = nr_pagecache_reclaimable;
4031 
4032 	return nr_pagecache_reclaimable - delta;
4033 }
4034 
4035 /*
4036  * Try to free up some pages from this node through reclaim.
4037  */
4038 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4039 {
4040 	/* Minimum pages needed in order to stay on node */
4041 	const unsigned long nr_pages = 1 << order;
4042 	struct task_struct *p = current;
4043 	struct reclaim_state reclaim_state;
4044 	unsigned int noreclaim_flag;
4045 	struct scan_control sc = {
4046 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4047 		.gfp_mask = current_gfp_context(gfp_mask),
4048 		.order = order,
4049 		.priority = NODE_RECLAIM_PRIORITY,
4050 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4051 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4052 		.may_swap = 1,
4053 		.reclaim_idx = gfp_zone(gfp_mask),
4054 	};
4055 
4056 	cond_resched();
4057 	fs_reclaim_acquire(sc.gfp_mask);
4058 	/*
4059 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4060 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4061 	 * and RECLAIM_UNMAP.
4062 	 */
4063 	noreclaim_flag = memalloc_noreclaim_save();
4064 	p->flags |= PF_SWAPWRITE;
4065 	reclaim_state.reclaimed_slab = 0;
4066 	p->reclaim_state = &reclaim_state;
4067 
4068 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4069 		/*
4070 		 * Free memory by calling shrink node with increasing
4071 		 * priorities until we have enough memory freed.
4072 		 */
4073 		do {
4074 			shrink_node(pgdat, &sc);
4075 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4076 	}
4077 
4078 	p->reclaim_state = NULL;
4079 	current->flags &= ~PF_SWAPWRITE;
4080 	memalloc_noreclaim_restore(noreclaim_flag);
4081 	fs_reclaim_release(sc.gfp_mask);
4082 	return sc.nr_reclaimed >= nr_pages;
4083 }
4084 
4085 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4086 {
4087 	int ret;
4088 
4089 	/*
4090 	 * Node reclaim reclaims unmapped file backed pages and
4091 	 * slab pages if we are over the defined limits.
4092 	 *
4093 	 * A small portion of unmapped file backed pages is needed for
4094 	 * file I/O otherwise pages read by file I/O will be immediately
4095 	 * thrown out if the node is overallocated. So we do not reclaim
4096 	 * if less than a specified percentage of the node is used by
4097 	 * unmapped file backed pages.
4098 	 */
4099 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4100 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4101 		return NODE_RECLAIM_FULL;
4102 
4103 	/*
4104 	 * Do not scan if the allocation should not be delayed.
4105 	 */
4106 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4107 		return NODE_RECLAIM_NOSCAN;
4108 
4109 	/*
4110 	 * Only run node reclaim on the local node or on nodes that do not
4111 	 * have associated processors. This will favor the local processor
4112 	 * over remote processors and spread off node memory allocations
4113 	 * as wide as possible.
4114 	 */
4115 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4116 		return NODE_RECLAIM_NOSCAN;
4117 
4118 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4119 		return NODE_RECLAIM_NOSCAN;
4120 
4121 	ret = __node_reclaim(pgdat, gfp_mask, order);
4122 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4123 
4124 	if (!ret)
4125 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4126 
4127 	return ret;
4128 }
4129 #endif
4130 
4131 /*
4132  * page_evictable - test whether a page is evictable
4133  * @page: the page to test
4134  *
4135  * Test whether page is evictable--i.e., should be placed on active/inactive
4136  * lists vs unevictable list.
4137  *
4138  * Reasons page might not be evictable:
4139  * (1) page's mapping marked unevictable
4140  * (2) page is part of an mlocked VMA
4141  *
4142  */
4143 int page_evictable(struct page *page)
4144 {
4145 	int ret;
4146 
4147 	/* Prevent address_space of inode and swap cache from being freed */
4148 	rcu_read_lock();
4149 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4150 	rcu_read_unlock();
4151 	return ret;
4152 }
4153 
4154 #ifdef CONFIG_SHMEM
4155 /**
4156  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4157  * @pages:	array of pages to check
4158  * @nr_pages:	number of pages to check
4159  *
4160  * Checks pages for evictability and moves them to the appropriate lru list.
4161  *
4162  * This function is only used for SysV IPC SHM_UNLOCK.
4163  */
4164 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4165 {
4166 	struct lruvec *lruvec;
4167 	struct pglist_data *pgdat = NULL;
4168 	int pgscanned = 0;
4169 	int pgrescued = 0;
4170 	int i;
4171 
4172 	for (i = 0; i < nr_pages; i++) {
4173 		struct page *page = pages[i];
4174 		struct pglist_data *pagepgdat = page_pgdat(page);
4175 
4176 		pgscanned++;
4177 		if (pagepgdat != pgdat) {
4178 			if (pgdat)
4179 				spin_unlock_irq(&pgdat->lru_lock);
4180 			pgdat = pagepgdat;
4181 			spin_lock_irq(&pgdat->lru_lock);
4182 		}
4183 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4184 
4185 		if (!PageLRU(page) || !PageUnevictable(page))
4186 			continue;
4187 
4188 		if (page_evictable(page)) {
4189 			enum lru_list lru = page_lru_base_type(page);
4190 
4191 			VM_BUG_ON_PAGE(PageActive(page), page);
4192 			ClearPageUnevictable(page);
4193 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4194 			add_page_to_lru_list(page, lruvec, lru);
4195 			pgrescued++;
4196 		}
4197 	}
4198 
4199 	if (pgdat) {
4200 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4201 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4202 		spin_unlock_irq(&pgdat->lru_lock);
4203 	}
4204 }
4205 #endif /* CONFIG_SHMEM */
4206