xref: /openbmc/linux/mm/vmscan.c (revision 62e59c4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176 
177 #ifdef CONFIG_MEMCG_KMEM
178 
179 /*
180  * We allow subsystems to populate their shrinker-related
181  * LRU lists before register_shrinker_prepared() is called
182  * for the shrinker, since we don't want to impose
183  * restrictions on their internal registration order.
184  * In this case shrink_slab_memcg() may find corresponding
185  * bit is set in the shrinkers map.
186  *
187  * This value is used by the function to detect registering
188  * shrinkers and to skip do_shrink_slab() calls for them.
189  */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191 
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194 
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 	int id, ret = -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	/* This may call shrinker, so it must use down_read_trylock() */
201 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 	if (id < 0)
203 		goto unlock;
204 
205 	if (id >= shrinker_nr_max) {
206 		if (memcg_expand_shrinker_maps(id)) {
207 			idr_remove(&shrinker_idr, id);
208 			goto unlock;
209 		}
210 
211 		shrinker_nr_max = id + 1;
212 	}
213 	shrinker->id = id;
214 	ret = 0;
215 unlock:
216 	up_write(&shrinker_rwsem);
217 	return ret;
218 }
219 
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 	int id = shrinker->id;
223 
224 	BUG_ON(id < 0);
225 
226 	down_write(&shrinker_rwsem);
227 	idr_remove(&shrinker_idr, id);
228 	up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	return 0;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240 
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static bool global_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static bool sane_reclaim(struct scan_control *sc)
302 {
303 	return true;
304 }
305 
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 				struct mem_cgroup *memcg, bool congested)
308 {
309 }
310 
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 			struct mem_cgroup *memcg)
313 {
314 	return false;
315 
316 }
317 #endif
318 
319 /*
320  * This misses isolated pages which are not accounted for to save counters.
321  * As the data only determines if reclaim or compaction continues, it is
322  * not expected that isolated pages will be a dominating factor.
323  */
324 unsigned long zone_reclaimable_pages(struct zone *zone)
325 {
326 	unsigned long nr;
327 
328 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 	if (get_nr_swap_pages() > 0)
331 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 
334 	return nr;
335 }
336 
337 /**
338  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
339  * @lruvec: lru vector
340  * @lru: lru to use
341  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342  */
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344 {
345 	unsigned long lru_size;
346 	int zid;
347 
348 	if (!mem_cgroup_disabled())
349 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
350 	else
351 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352 
353 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 		unsigned long size;
356 
357 		if (!managed_zone(zone))
358 			continue;
359 
360 		if (!mem_cgroup_disabled())
361 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 		else
363 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 				       NR_ZONE_LRU_BASE + lru);
365 		lru_size -= min(size, lru_size);
366 	}
367 
368 	return lru_size;
369 
370 }
371 
372 /*
373  * Add a shrinker callback to be called from the vm.
374  */
375 int prealloc_shrinker(struct shrinker *shrinker)
376 {
377 	unsigned int size = sizeof(*shrinker->nr_deferred);
378 
379 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 		size *= nr_node_ids;
381 
382 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 	if (!shrinker->nr_deferred)
384 		return -ENOMEM;
385 
386 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 		if (prealloc_memcg_shrinker(shrinker))
388 			goto free_deferred;
389 	}
390 
391 	return 0;
392 
393 free_deferred:
394 	kfree(shrinker->nr_deferred);
395 	shrinker->nr_deferred = NULL;
396 	return -ENOMEM;
397 }
398 
399 void free_prealloced_shrinker(struct shrinker *shrinker)
400 {
401 	if (!shrinker->nr_deferred)
402 		return;
403 
404 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 		unregister_memcg_shrinker(shrinker);
406 
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 
411 void register_shrinker_prepared(struct shrinker *shrinker)
412 {
413 	down_write(&shrinker_rwsem);
414 	list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 	up_write(&shrinker_rwsem);
420 }
421 
422 int register_shrinker(struct shrinker *shrinker)
423 {
424 	int err = prealloc_shrinker(shrinker);
425 
426 	if (err)
427 		return err;
428 	register_shrinker_prepared(shrinker);
429 	return 0;
430 }
431 EXPORT_SYMBOL(register_shrinker);
432 
433 /*
434  * Remove one
435  */
436 void unregister_shrinker(struct shrinker *shrinker)
437 {
438 	if (!shrinker->nr_deferred)
439 		return;
440 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 		unregister_memcg_shrinker(shrinker);
442 	down_write(&shrinker_rwsem);
443 	list_del(&shrinker->list);
444 	up_write(&shrinker_rwsem);
445 	kfree(shrinker->nr_deferred);
446 	shrinker->nr_deferred = NULL;
447 }
448 EXPORT_SYMBOL(unregister_shrinker);
449 
450 #define SHRINK_BATCH 128
451 
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 				    struct shrinker *shrinker, int priority)
454 {
455 	unsigned long freed = 0;
456 	unsigned long long delta;
457 	long total_scan;
458 	long freeable;
459 	long nr;
460 	long new_nr;
461 	int nid = shrinkctl->nid;
462 	long batch_size = shrinker->batch ? shrinker->batch
463 					  : SHRINK_BATCH;
464 	long scanned = 0, next_deferred;
465 
466 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 		nid = 0;
468 
469 	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 	if (freeable == 0 || freeable == SHRINK_EMPTY)
471 		return freeable;
472 
473 	/*
474 	 * copy the current shrinker scan count into a local variable
475 	 * and zero it so that other concurrent shrinker invocations
476 	 * don't also do this scanning work.
477 	 */
478 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479 
480 	total_scan = nr;
481 	if (shrinker->seeks) {
482 		delta = freeable >> priority;
483 		delta *= 4;
484 		do_div(delta, shrinker->seeks);
485 	} else {
486 		/*
487 		 * These objects don't require any IO to create. Trim
488 		 * them aggressively under memory pressure to keep
489 		 * them from causing refetches in the IO caches.
490 		 */
491 		delta = freeable / 2;
492 	}
493 
494 	total_scan += delta;
495 	if (total_scan < 0) {
496 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
497 		       shrinker->scan_objects, total_scan);
498 		total_scan = freeable;
499 		next_deferred = nr;
500 	} else
501 		next_deferred = total_scan;
502 
503 	/*
504 	 * We need to avoid excessive windup on filesystem shrinkers
505 	 * due to large numbers of GFP_NOFS allocations causing the
506 	 * shrinkers to return -1 all the time. This results in a large
507 	 * nr being built up so when a shrink that can do some work
508 	 * comes along it empties the entire cache due to nr >>>
509 	 * freeable. This is bad for sustaining a working set in
510 	 * memory.
511 	 *
512 	 * Hence only allow the shrinker to scan the entire cache when
513 	 * a large delta change is calculated directly.
514 	 */
515 	if (delta < freeable / 4)
516 		total_scan = min(total_scan, freeable / 2);
517 
518 	/*
519 	 * Avoid risking looping forever due to too large nr value:
520 	 * never try to free more than twice the estimate number of
521 	 * freeable entries.
522 	 */
523 	if (total_scan > freeable * 2)
524 		total_scan = freeable * 2;
525 
526 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 				   freeable, delta, total_scan, priority);
528 
529 	/*
530 	 * Normally, we should not scan less than batch_size objects in one
531 	 * pass to avoid too frequent shrinker calls, but if the slab has less
532 	 * than batch_size objects in total and we are really tight on memory,
533 	 * we will try to reclaim all available objects, otherwise we can end
534 	 * up failing allocations although there are plenty of reclaimable
535 	 * objects spread over several slabs with usage less than the
536 	 * batch_size.
537 	 *
538 	 * We detect the "tight on memory" situations by looking at the total
539 	 * number of objects we want to scan (total_scan). If it is greater
540 	 * than the total number of objects on slab (freeable), we must be
541 	 * scanning at high prio and therefore should try to reclaim as much as
542 	 * possible.
543 	 */
544 	while (total_scan >= batch_size ||
545 	       total_scan >= freeable) {
546 		unsigned long ret;
547 		unsigned long nr_to_scan = min(batch_size, total_scan);
548 
549 		shrinkctl->nr_to_scan = nr_to_scan;
550 		shrinkctl->nr_scanned = nr_to_scan;
551 		ret = shrinker->scan_objects(shrinker, shrinkctl);
552 		if (ret == SHRINK_STOP)
553 			break;
554 		freed += ret;
555 
556 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 		total_scan -= shrinkctl->nr_scanned;
558 		scanned += shrinkctl->nr_scanned;
559 
560 		cond_resched();
561 	}
562 
563 	if (next_deferred >= scanned)
564 		next_deferred -= scanned;
565 	else
566 		next_deferred = 0;
567 	/*
568 	 * move the unused scan count back into the shrinker in a
569 	 * manner that handles concurrent updates. If we exhausted the
570 	 * scan, there is no need to do an update.
571 	 */
572 	if (next_deferred > 0)
573 		new_nr = atomic_long_add_return(next_deferred,
574 						&shrinker->nr_deferred[nid]);
575 	else
576 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577 
578 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 	return freed;
580 }
581 
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 			struct mem_cgroup *memcg, int priority)
585 {
586 	struct memcg_shrinker_map *map;
587 	unsigned long ret, freed = 0;
588 	int i;
589 
590 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 		return 0;
592 
593 	if (!down_read_trylock(&shrinker_rwsem))
594 		return 0;
595 
596 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 					true);
598 	if (unlikely(!map))
599 		goto unlock;
600 
601 	for_each_set_bit(i, map->map, shrinker_nr_max) {
602 		struct shrink_control sc = {
603 			.gfp_mask = gfp_mask,
604 			.nid = nid,
605 			.memcg = memcg,
606 		};
607 		struct shrinker *shrinker;
608 
609 		shrinker = idr_find(&shrinker_idr, i);
610 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 			if (!shrinker)
612 				clear_bit(i, map->map);
613 			continue;
614 		}
615 
616 		ret = do_shrink_slab(&sc, shrinker, priority);
617 		if (ret == SHRINK_EMPTY) {
618 			clear_bit(i, map->map);
619 			/*
620 			 * After the shrinker reported that it had no objects to
621 			 * free, but before we cleared the corresponding bit in
622 			 * the memcg shrinker map, a new object might have been
623 			 * added. To make sure, we have the bit set in this
624 			 * case, we invoke the shrinker one more time and reset
625 			 * the bit if it reports that it is not empty anymore.
626 			 * The memory barrier here pairs with the barrier in
627 			 * memcg_set_shrinker_bit():
628 			 *
629 			 * list_lru_add()     shrink_slab_memcg()
630 			 *   list_add_tail()    clear_bit()
631 			 *   <MB>               <MB>
632 			 *   set_bit()          do_shrink_slab()
633 			 */
634 			smp_mb__after_atomic();
635 			ret = do_shrink_slab(&sc, shrinker, priority);
636 			if (ret == SHRINK_EMPTY)
637 				ret = 0;
638 			else
639 				memcg_set_shrinker_bit(memcg, nid, i);
640 		}
641 		freed += ret;
642 
643 		if (rwsem_is_contended(&shrinker_rwsem)) {
644 			freed = freed ? : 1;
645 			break;
646 		}
647 	}
648 unlock:
649 	up_read(&shrinker_rwsem);
650 	return freed;
651 }
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 			struct mem_cgroup *memcg, int priority)
655 {
656 	return 0;
657 }
658 #endif /* CONFIG_MEMCG_KMEM */
659 
660 /**
661  * shrink_slab - shrink slab caches
662  * @gfp_mask: allocation context
663  * @nid: node whose slab caches to target
664  * @memcg: memory cgroup whose slab caches to target
665  * @priority: the reclaim priority
666  *
667  * Call the shrink functions to age shrinkable caches.
668  *
669  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670  * unaware shrinkers will receive a node id of 0 instead.
671  *
672  * @memcg specifies the memory cgroup to target. Unaware shrinkers
673  * are called only if it is the root cgroup.
674  *
675  * @priority is sc->priority, we take the number of objects and >> by priority
676  * in order to get the scan target.
677  *
678  * Returns the number of reclaimed slab objects.
679  */
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 				 struct mem_cgroup *memcg,
682 				 int priority)
683 {
684 	unsigned long ret, freed = 0;
685 	struct shrinker *shrinker;
686 
687 	if (!mem_cgroup_is_root(memcg))
688 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689 
690 	if (!down_read_trylock(&shrinker_rwsem))
691 		goto out;
692 
693 	list_for_each_entry(shrinker, &shrinker_list, list) {
694 		struct shrink_control sc = {
695 			.gfp_mask = gfp_mask,
696 			.nid = nid,
697 			.memcg = memcg,
698 		};
699 
700 		ret = do_shrink_slab(&sc, shrinker, priority);
701 		if (ret == SHRINK_EMPTY)
702 			ret = 0;
703 		freed += ret;
704 		/*
705 		 * Bail out if someone want to register a new shrinker to
706 		 * prevent the regsitration from being stalled for long periods
707 		 * by parallel ongoing shrinking.
708 		 */
709 		if (rwsem_is_contended(&shrinker_rwsem)) {
710 			freed = freed ? : 1;
711 			break;
712 		}
713 	}
714 
715 	up_read(&shrinker_rwsem);
716 out:
717 	cond_resched();
718 	return freed;
719 }
720 
721 void drop_slab_node(int nid)
722 {
723 	unsigned long freed;
724 
725 	do {
726 		struct mem_cgroup *memcg = NULL;
727 
728 		freed = 0;
729 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730 		do {
731 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 	} while (freed > 10);
734 }
735 
736 void drop_slab(void)
737 {
738 	int nid;
739 
740 	for_each_online_node(nid)
741 		drop_slab_node(nid);
742 }
743 
744 static inline int is_page_cache_freeable(struct page *page)
745 {
746 	/*
747 	 * A freeable page cache page is referenced only by the caller
748 	 * that isolated the page, the page cache and optional buffer
749 	 * heads at page->private.
750 	 */
751 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752 		HPAGE_PMD_NR : 1;
753 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
754 }
755 
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
757 {
758 	if (current->flags & PF_SWAPWRITE)
759 		return 1;
760 	if (!inode_write_congested(inode))
761 		return 1;
762 	if (inode_to_bdi(inode) == current->backing_dev_info)
763 		return 1;
764 	return 0;
765 }
766 
767 /*
768  * We detected a synchronous write error writing a page out.  Probably
769  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
770  * fsync(), msync() or close().
771  *
772  * The tricky part is that after writepage we cannot touch the mapping: nothing
773  * prevents it from being freed up.  But we have a ref on the page and once
774  * that page is locked, the mapping is pinned.
775  *
776  * We're allowed to run sleeping lock_page() here because we know the caller has
777  * __GFP_FS.
778  */
779 static void handle_write_error(struct address_space *mapping,
780 				struct page *page, int error)
781 {
782 	lock_page(page);
783 	if (page_mapping(page) == mapping)
784 		mapping_set_error(mapping, error);
785 	unlock_page(page);
786 }
787 
788 /* possible outcome of pageout() */
789 typedef enum {
790 	/* failed to write page out, page is locked */
791 	PAGE_KEEP,
792 	/* move page to the active list, page is locked */
793 	PAGE_ACTIVATE,
794 	/* page has been sent to the disk successfully, page is unlocked */
795 	PAGE_SUCCESS,
796 	/* page is clean and locked */
797 	PAGE_CLEAN,
798 } pageout_t;
799 
800 /*
801  * pageout is called by shrink_page_list() for each dirty page.
802  * Calls ->writepage().
803  */
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 			 struct scan_control *sc)
806 {
807 	/*
808 	 * If the page is dirty, only perform writeback if that write
809 	 * will be non-blocking.  To prevent this allocation from being
810 	 * stalled by pagecache activity.  But note that there may be
811 	 * stalls if we need to run get_block().  We could test
812 	 * PagePrivate for that.
813 	 *
814 	 * If this process is currently in __generic_file_write_iter() against
815 	 * this page's queue, we can perform writeback even if that
816 	 * will block.
817 	 *
818 	 * If the page is swapcache, write it back even if that would
819 	 * block, for some throttling. This happens by accident, because
820 	 * swap_backing_dev_info is bust: it doesn't reflect the
821 	 * congestion state of the swapdevs.  Easy to fix, if needed.
822 	 */
823 	if (!is_page_cache_freeable(page))
824 		return PAGE_KEEP;
825 	if (!mapping) {
826 		/*
827 		 * Some data journaling orphaned pages can have
828 		 * page->mapping == NULL while being dirty with clean buffers.
829 		 */
830 		if (page_has_private(page)) {
831 			if (try_to_free_buffers(page)) {
832 				ClearPageDirty(page);
833 				pr_info("%s: orphaned page\n", __func__);
834 				return PAGE_CLEAN;
835 			}
836 		}
837 		return PAGE_KEEP;
838 	}
839 	if (mapping->a_ops->writepage == NULL)
840 		return PAGE_ACTIVATE;
841 	if (!may_write_to_inode(mapping->host, sc))
842 		return PAGE_KEEP;
843 
844 	if (clear_page_dirty_for_io(page)) {
845 		int res;
846 		struct writeback_control wbc = {
847 			.sync_mode = WB_SYNC_NONE,
848 			.nr_to_write = SWAP_CLUSTER_MAX,
849 			.range_start = 0,
850 			.range_end = LLONG_MAX,
851 			.for_reclaim = 1,
852 		};
853 
854 		SetPageReclaim(page);
855 		res = mapping->a_ops->writepage(page, &wbc);
856 		if (res < 0)
857 			handle_write_error(mapping, page, res);
858 		if (res == AOP_WRITEPAGE_ACTIVATE) {
859 			ClearPageReclaim(page);
860 			return PAGE_ACTIVATE;
861 		}
862 
863 		if (!PageWriteback(page)) {
864 			/* synchronous write or broken a_ops? */
865 			ClearPageReclaim(page);
866 		}
867 		trace_mm_vmscan_writepage(page);
868 		inc_node_page_state(page, NR_VMSCAN_WRITE);
869 		return PAGE_SUCCESS;
870 	}
871 
872 	return PAGE_CLEAN;
873 }
874 
875 /*
876  * Same as remove_mapping, but if the page is removed from the mapping, it
877  * gets returned with a refcount of 0.
878  */
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
880 			    bool reclaimed)
881 {
882 	unsigned long flags;
883 	int refcount;
884 
885 	BUG_ON(!PageLocked(page));
886 	BUG_ON(mapping != page_mapping(page));
887 
888 	xa_lock_irqsave(&mapping->i_pages, flags);
889 	/*
890 	 * The non racy check for a busy page.
891 	 *
892 	 * Must be careful with the order of the tests. When someone has
893 	 * a ref to the page, it may be possible that they dirty it then
894 	 * drop the reference. So if PageDirty is tested before page_count
895 	 * here, then the following race may occur:
896 	 *
897 	 * get_user_pages(&page);
898 	 * [user mapping goes away]
899 	 * write_to(page);
900 	 *				!PageDirty(page)    [good]
901 	 * SetPageDirty(page);
902 	 * put_page(page);
903 	 *				!page_count(page)   [good, discard it]
904 	 *
905 	 * [oops, our write_to data is lost]
906 	 *
907 	 * Reversing the order of the tests ensures such a situation cannot
908 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 	 * load is not satisfied before that of page->_refcount.
910 	 *
911 	 * Note that if SetPageDirty is always performed via set_page_dirty,
912 	 * and thus under the i_pages lock, then this ordering is not required.
913 	 */
914 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 		refcount = 1 + HPAGE_PMD_NR;
916 	else
917 		refcount = 2;
918 	if (!page_ref_freeze(page, refcount))
919 		goto cannot_free;
920 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 	if (unlikely(PageDirty(page))) {
922 		page_ref_unfreeze(page, refcount);
923 		goto cannot_free;
924 	}
925 
926 	if (PageSwapCache(page)) {
927 		swp_entry_t swap = { .val = page_private(page) };
928 		mem_cgroup_swapout(page, swap);
929 		__delete_from_swap_cache(page, swap);
930 		xa_unlock_irqrestore(&mapping->i_pages, flags);
931 		put_swap_page(page, swap);
932 	} else {
933 		void (*freepage)(struct page *);
934 		void *shadow = NULL;
935 
936 		freepage = mapping->a_ops->freepage;
937 		/*
938 		 * Remember a shadow entry for reclaimed file cache in
939 		 * order to detect refaults, thus thrashing, later on.
940 		 *
941 		 * But don't store shadows in an address space that is
942 		 * already exiting.  This is not just an optizimation,
943 		 * inode reclaim needs to empty out the radix tree or
944 		 * the nodes are lost.  Don't plant shadows behind its
945 		 * back.
946 		 *
947 		 * We also don't store shadows for DAX mappings because the
948 		 * only page cache pages found in these are zero pages
949 		 * covering holes, and because we don't want to mix DAX
950 		 * exceptional entries and shadow exceptional entries in the
951 		 * same address_space.
952 		 */
953 		if (reclaimed && page_is_file_cache(page) &&
954 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955 			shadow = workingset_eviction(page);
956 		__delete_from_page_cache(page, shadow);
957 		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 
959 		if (freepage != NULL)
960 			freepage(page);
961 	}
962 
963 	return 1;
964 
965 cannot_free:
966 	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 	return 0;
968 }
969 
970 /*
971  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
972  * someone else has a ref on the page, abort and return 0.  If it was
973  * successfully detached, return 1.  Assumes the caller has a single ref on
974  * this page.
975  */
976 int remove_mapping(struct address_space *mapping, struct page *page)
977 {
978 	if (__remove_mapping(mapping, page, false)) {
979 		/*
980 		 * Unfreezing the refcount with 1 rather than 2 effectively
981 		 * drops the pagecache ref for us without requiring another
982 		 * atomic operation.
983 		 */
984 		page_ref_unfreeze(page, 1);
985 		return 1;
986 	}
987 	return 0;
988 }
989 
990 /**
991  * putback_lru_page - put previously isolated page onto appropriate LRU list
992  * @page: page to be put back to appropriate lru list
993  *
994  * Add previously isolated @page to appropriate LRU list.
995  * Page may still be unevictable for other reasons.
996  *
997  * lru_lock must not be held, interrupts must be enabled.
998  */
999 void putback_lru_page(struct page *page)
1000 {
1001 	lru_cache_add(page);
1002 	put_page(page);		/* drop ref from isolate */
1003 }
1004 
1005 enum page_references {
1006 	PAGEREF_RECLAIM,
1007 	PAGEREF_RECLAIM_CLEAN,
1008 	PAGEREF_KEEP,
1009 	PAGEREF_ACTIVATE,
1010 };
1011 
1012 static enum page_references page_check_references(struct page *page,
1013 						  struct scan_control *sc)
1014 {
1015 	int referenced_ptes, referenced_page;
1016 	unsigned long vm_flags;
1017 
1018 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 					  &vm_flags);
1020 	referenced_page = TestClearPageReferenced(page);
1021 
1022 	/*
1023 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1024 	 * move the page to the unevictable list.
1025 	 */
1026 	if (vm_flags & VM_LOCKED)
1027 		return PAGEREF_RECLAIM;
1028 
1029 	if (referenced_ptes) {
1030 		if (PageSwapBacked(page))
1031 			return PAGEREF_ACTIVATE;
1032 		/*
1033 		 * All mapped pages start out with page table
1034 		 * references from the instantiating fault, so we need
1035 		 * to look twice if a mapped file page is used more
1036 		 * than once.
1037 		 *
1038 		 * Mark it and spare it for another trip around the
1039 		 * inactive list.  Another page table reference will
1040 		 * lead to its activation.
1041 		 *
1042 		 * Note: the mark is set for activated pages as well
1043 		 * so that recently deactivated but used pages are
1044 		 * quickly recovered.
1045 		 */
1046 		SetPageReferenced(page);
1047 
1048 		if (referenced_page || referenced_ptes > 1)
1049 			return PAGEREF_ACTIVATE;
1050 
1051 		/*
1052 		 * Activate file-backed executable pages after first usage.
1053 		 */
1054 		if (vm_flags & VM_EXEC)
1055 			return PAGEREF_ACTIVATE;
1056 
1057 		return PAGEREF_KEEP;
1058 	}
1059 
1060 	/* Reclaim if clean, defer dirty pages to writeback */
1061 	if (referenced_page && !PageSwapBacked(page))
1062 		return PAGEREF_RECLAIM_CLEAN;
1063 
1064 	return PAGEREF_RECLAIM;
1065 }
1066 
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 				       bool *dirty, bool *writeback)
1070 {
1071 	struct address_space *mapping;
1072 
1073 	/*
1074 	 * Anonymous pages are not handled by flushers and must be written
1075 	 * from reclaim context. Do not stall reclaim based on them
1076 	 */
1077 	if (!page_is_file_cache(page) ||
1078 	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 		*dirty = false;
1080 		*writeback = false;
1081 		return;
1082 	}
1083 
1084 	/* By default assume that the page flags are accurate */
1085 	*dirty = PageDirty(page);
1086 	*writeback = PageWriteback(page);
1087 
1088 	/* Verify dirty/writeback state if the filesystem supports it */
1089 	if (!page_has_private(page))
1090 		return;
1091 
1092 	mapping = page_mapping(page);
1093 	if (mapping && mapping->a_ops->is_dirty_writeback)
1094 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 }
1096 
1097 /*
1098  * shrink_page_list() returns the number of reclaimed pages
1099  */
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 				      struct pglist_data *pgdat,
1102 				      struct scan_control *sc,
1103 				      enum ttu_flags ttu_flags,
1104 				      struct reclaim_stat *stat,
1105 				      bool force_reclaim)
1106 {
1107 	LIST_HEAD(ret_pages);
1108 	LIST_HEAD(free_pages);
1109 	unsigned nr_reclaimed = 0;
1110 
1111 	memset(stat, 0, sizeof(*stat));
1112 	cond_resched();
1113 
1114 	while (!list_empty(page_list)) {
1115 		struct address_space *mapping;
1116 		struct page *page;
1117 		int may_enter_fs;
1118 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1119 		bool dirty, writeback;
1120 
1121 		cond_resched();
1122 
1123 		page = lru_to_page(page_list);
1124 		list_del(&page->lru);
1125 
1126 		if (!trylock_page(page))
1127 			goto keep;
1128 
1129 		VM_BUG_ON_PAGE(PageActive(page), page);
1130 
1131 		sc->nr_scanned++;
1132 
1133 		if (unlikely(!page_evictable(page)))
1134 			goto activate_locked;
1135 
1136 		if (!sc->may_unmap && page_mapped(page))
1137 			goto keep_locked;
1138 
1139 		/* Double the slab pressure for mapped and swapcache pages */
1140 		if ((page_mapped(page) || PageSwapCache(page)) &&
1141 		    !(PageAnon(page) && !PageSwapBacked(page)))
1142 			sc->nr_scanned++;
1143 
1144 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1145 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1146 
1147 		/*
1148 		 * The number of dirty pages determines if a node is marked
1149 		 * reclaim_congested which affects wait_iff_congested. kswapd
1150 		 * will stall and start writing pages if the tail of the LRU
1151 		 * is all dirty unqueued pages.
1152 		 */
1153 		page_check_dirty_writeback(page, &dirty, &writeback);
1154 		if (dirty || writeback)
1155 			stat->nr_dirty++;
1156 
1157 		if (dirty && !writeback)
1158 			stat->nr_unqueued_dirty++;
1159 
1160 		/*
1161 		 * Treat this page as congested if the underlying BDI is or if
1162 		 * pages are cycling through the LRU so quickly that the
1163 		 * pages marked for immediate reclaim are making it to the
1164 		 * end of the LRU a second time.
1165 		 */
1166 		mapping = page_mapping(page);
1167 		if (((dirty || writeback) && mapping &&
1168 		     inode_write_congested(mapping->host)) ||
1169 		    (writeback && PageReclaim(page)))
1170 			stat->nr_congested++;
1171 
1172 		/*
1173 		 * If a page at the tail of the LRU is under writeback, there
1174 		 * are three cases to consider.
1175 		 *
1176 		 * 1) If reclaim is encountering an excessive number of pages
1177 		 *    under writeback and this page is both under writeback and
1178 		 *    PageReclaim then it indicates that pages are being queued
1179 		 *    for IO but are being recycled through the LRU before the
1180 		 *    IO can complete. Waiting on the page itself risks an
1181 		 *    indefinite stall if it is impossible to writeback the
1182 		 *    page due to IO error or disconnected storage so instead
1183 		 *    note that the LRU is being scanned too quickly and the
1184 		 *    caller can stall after page list has been processed.
1185 		 *
1186 		 * 2) Global or new memcg reclaim encounters a page that is
1187 		 *    not marked for immediate reclaim, or the caller does not
1188 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189 		 *    not to fs). In this case mark the page for immediate
1190 		 *    reclaim and continue scanning.
1191 		 *
1192 		 *    Require may_enter_fs because we would wait on fs, which
1193 		 *    may not have submitted IO yet. And the loop driver might
1194 		 *    enter reclaim, and deadlock if it waits on a page for
1195 		 *    which it is needed to do the write (loop masks off
1196 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1197 		 *    would probably show more reasons.
1198 		 *
1199 		 * 3) Legacy memcg encounters a page that is already marked
1200 		 *    PageReclaim. memcg does not have any dirty pages
1201 		 *    throttling so we could easily OOM just because too many
1202 		 *    pages are in writeback and there is nothing else to
1203 		 *    reclaim. Wait for the writeback to complete.
1204 		 *
1205 		 * In cases 1) and 2) we activate the pages to get them out of
1206 		 * the way while we continue scanning for clean pages on the
1207 		 * inactive list and refilling from the active list. The
1208 		 * observation here is that waiting for disk writes is more
1209 		 * expensive than potentially causing reloads down the line.
1210 		 * Since they're marked for immediate reclaim, they won't put
1211 		 * memory pressure on the cache working set any longer than it
1212 		 * takes to write them to disk.
1213 		 */
1214 		if (PageWriteback(page)) {
1215 			/* Case 1 above */
1216 			if (current_is_kswapd() &&
1217 			    PageReclaim(page) &&
1218 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219 				stat->nr_immediate++;
1220 				goto activate_locked;
1221 
1222 			/* Case 2 above */
1223 			} else if (sane_reclaim(sc) ||
1224 			    !PageReclaim(page) || !may_enter_fs) {
1225 				/*
1226 				 * This is slightly racy - end_page_writeback()
1227 				 * might have just cleared PageReclaim, then
1228 				 * setting PageReclaim here end up interpreted
1229 				 * as PageReadahead - but that does not matter
1230 				 * enough to care.  What we do want is for this
1231 				 * page to have PageReclaim set next time memcg
1232 				 * reclaim reaches the tests above, so it will
1233 				 * then wait_on_page_writeback() to avoid OOM;
1234 				 * and it's also appropriate in global reclaim.
1235 				 */
1236 				SetPageReclaim(page);
1237 				stat->nr_writeback++;
1238 				goto activate_locked;
1239 
1240 			/* Case 3 above */
1241 			} else {
1242 				unlock_page(page);
1243 				wait_on_page_writeback(page);
1244 				/* then go back and try same page again */
1245 				list_add_tail(&page->lru, page_list);
1246 				continue;
1247 			}
1248 		}
1249 
1250 		if (!force_reclaim)
1251 			references = page_check_references(page, sc);
1252 
1253 		switch (references) {
1254 		case PAGEREF_ACTIVATE:
1255 			goto activate_locked;
1256 		case PAGEREF_KEEP:
1257 			stat->nr_ref_keep++;
1258 			goto keep_locked;
1259 		case PAGEREF_RECLAIM:
1260 		case PAGEREF_RECLAIM_CLEAN:
1261 			; /* try to reclaim the page below */
1262 		}
1263 
1264 		/*
1265 		 * Anonymous process memory has backing store?
1266 		 * Try to allocate it some swap space here.
1267 		 * Lazyfree page could be freed directly
1268 		 */
1269 		if (PageAnon(page) && PageSwapBacked(page)) {
1270 			if (!PageSwapCache(page)) {
1271 				if (!(sc->gfp_mask & __GFP_IO))
1272 					goto keep_locked;
1273 				if (PageTransHuge(page)) {
1274 					/* cannot split THP, skip it */
1275 					if (!can_split_huge_page(page, NULL))
1276 						goto activate_locked;
1277 					/*
1278 					 * Split pages without a PMD map right
1279 					 * away. Chances are some or all of the
1280 					 * tail pages can be freed without IO.
1281 					 */
1282 					if (!compound_mapcount(page) &&
1283 					    split_huge_page_to_list(page,
1284 								    page_list))
1285 						goto activate_locked;
1286 				}
1287 				if (!add_to_swap(page)) {
1288 					if (!PageTransHuge(page))
1289 						goto activate_locked;
1290 					/* Fallback to swap normal pages */
1291 					if (split_huge_page_to_list(page,
1292 								    page_list))
1293 						goto activate_locked;
1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295 					count_vm_event(THP_SWPOUT_FALLBACK);
1296 #endif
1297 					if (!add_to_swap(page))
1298 						goto activate_locked;
1299 				}
1300 
1301 				may_enter_fs = 1;
1302 
1303 				/* Adding to swap updated mapping */
1304 				mapping = page_mapping(page);
1305 			}
1306 		} else if (unlikely(PageTransHuge(page))) {
1307 			/* Split file THP */
1308 			if (split_huge_page_to_list(page, page_list))
1309 				goto keep_locked;
1310 		}
1311 
1312 		/*
1313 		 * The page is mapped into the page tables of one or more
1314 		 * processes. Try to unmap it here.
1315 		 */
1316 		if (page_mapped(page)) {
1317 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1318 
1319 			if (unlikely(PageTransHuge(page)))
1320 				flags |= TTU_SPLIT_HUGE_PMD;
1321 			if (!try_to_unmap(page, flags)) {
1322 				stat->nr_unmap_fail++;
1323 				goto activate_locked;
1324 			}
1325 		}
1326 
1327 		if (PageDirty(page)) {
1328 			/*
1329 			 * Only kswapd can writeback filesystem pages
1330 			 * to avoid risk of stack overflow. But avoid
1331 			 * injecting inefficient single-page IO into
1332 			 * flusher writeback as much as possible: only
1333 			 * write pages when we've encountered many
1334 			 * dirty pages, and when we've already scanned
1335 			 * the rest of the LRU for clean pages and see
1336 			 * the same dirty pages again (PageReclaim).
1337 			 */
1338 			if (page_is_file_cache(page) &&
1339 			    (!current_is_kswapd() || !PageReclaim(page) ||
1340 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1341 				/*
1342 				 * Immediately reclaim when written back.
1343 				 * Similar in principal to deactivate_page()
1344 				 * except we already have the page isolated
1345 				 * and know it's dirty
1346 				 */
1347 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1348 				SetPageReclaim(page);
1349 
1350 				goto activate_locked;
1351 			}
1352 
1353 			if (references == PAGEREF_RECLAIM_CLEAN)
1354 				goto keep_locked;
1355 			if (!may_enter_fs)
1356 				goto keep_locked;
1357 			if (!sc->may_writepage)
1358 				goto keep_locked;
1359 
1360 			/*
1361 			 * Page is dirty. Flush the TLB if a writable entry
1362 			 * potentially exists to avoid CPU writes after IO
1363 			 * starts and then write it out here.
1364 			 */
1365 			try_to_unmap_flush_dirty();
1366 			switch (pageout(page, mapping, sc)) {
1367 			case PAGE_KEEP:
1368 				goto keep_locked;
1369 			case PAGE_ACTIVATE:
1370 				goto activate_locked;
1371 			case PAGE_SUCCESS:
1372 				if (PageWriteback(page))
1373 					goto keep;
1374 				if (PageDirty(page))
1375 					goto keep;
1376 
1377 				/*
1378 				 * A synchronous write - probably a ramdisk.  Go
1379 				 * ahead and try to reclaim the page.
1380 				 */
1381 				if (!trylock_page(page))
1382 					goto keep;
1383 				if (PageDirty(page) || PageWriteback(page))
1384 					goto keep_locked;
1385 				mapping = page_mapping(page);
1386 			case PAGE_CLEAN:
1387 				; /* try to free the page below */
1388 			}
1389 		}
1390 
1391 		/*
1392 		 * If the page has buffers, try to free the buffer mappings
1393 		 * associated with this page. If we succeed we try to free
1394 		 * the page as well.
1395 		 *
1396 		 * We do this even if the page is PageDirty().
1397 		 * try_to_release_page() does not perform I/O, but it is
1398 		 * possible for a page to have PageDirty set, but it is actually
1399 		 * clean (all its buffers are clean).  This happens if the
1400 		 * buffers were written out directly, with submit_bh(). ext3
1401 		 * will do this, as well as the blockdev mapping.
1402 		 * try_to_release_page() will discover that cleanness and will
1403 		 * drop the buffers and mark the page clean - it can be freed.
1404 		 *
1405 		 * Rarely, pages can have buffers and no ->mapping.  These are
1406 		 * the pages which were not successfully invalidated in
1407 		 * truncate_complete_page().  We try to drop those buffers here
1408 		 * and if that worked, and the page is no longer mapped into
1409 		 * process address space (page_count == 1) it can be freed.
1410 		 * Otherwise, leave the page on the LRU so it is swappable.
1411 		 */
1412 		if (page_has_private(page)) {
1413 			if (!try_to_release_page(page, sc->gfp_mask))
1414 				goto activate_locked;
1415 			if (!mapping && page_count(page) == 1) {
1416 				unlock_page(page);
1417 				if (put_page_testzero(page))
1418 					goto free_it;
1419 				else {
1420 					/*
1421 					 * rare race with speculative reference.
1422 					 * the speculative reference will free
1423 					 * this page shortly, so we may
1424 					 * increment nr_reclaimed here (and
1425 					 * leave it off the LRU).
1426 					 */
1427 					nr_reclaimed++;
1428 					continue;
1429 				}
1430 			}
1431 		}
1432 
1433 		if (PageAnon(page) && !PageSwapBacked(page)) {
1434 			/* follow __remove_mapping for reference */
1435 			if (!page_ref_freeze(page, 1))
1436 				goto keep_locked;
1437 			if (PageDirty(page)) {
1438 				page_ref_unfreeze(page, 1);
1439 				goto keep_locked;
1440 			}
1441 
1442 			count_vm_event(PGLAZYFREED);
1443 			count_memcg_page_event(page, PGLAZYFREED);
1444 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1445 			goto keep_locked;
1446 
1447 		unlock_page(page);
1448 free_it:
1449 		nr_reclaimed++;
1450 
1451 		/*
1452 		 * Is there need to periodically free_page_list? It would
1453 		 * appear not as the counts should be low
1454 		 */
1455 		if (unlikely(PageTransHuge(page))) {
1456 			mem_cgroup_uncharge(page);
1457 			(*get_compound_page_dtor(page))(page);
1458 		} else
1459 			list_add(&page->lru, &free_pages);
1460 		continue;
1461 
1462 activate_locked:
1463 		/* Not a candidate for swapping, so reclaim swap space. */
1464 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465 						PageMlocked(page)))
1466 			try_to_free_swap(page);
1467 		VM_BUG_ON_PAGE(PageActive(page), page);
1468 		if (!PageMlocked(page)) {
1469 			SetPageActive(page);
1470 			stat->nr_activate++;
1471 			count_memcg_page_event(page, PGACTIVATE);
1472 		}
1473 keep_locked:
1474 		unlock_page(page);
1475 keep:
1476 		list_add(&page->lru, &ret_pages);
1477 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1478 	}
1479 
1480 	mem_cgroup_uncharge_list(&free_pages);
1481 	try_to_unmap_flush();
1482 	free_unref_page_list(&free_pages);
1483 
1484 	list_splice(&ret_pages, page_list);
1485 	count_vm_events(PGACTIVATE, stat->nr_activate);
1486 
1487 	return nr_reclaimed;
1488 }
1489 
1490 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1491 					    struct list_head *page_list)
1492 {
1493 	struct scan_control sc = {
1494 		.gfp_mask = GFP_KERNEL,
1495 		.priority = DEF_PRIORITY,
1496 		.may_unmap = 1,
1497 	};
1498 	struct reclaim_stat dummy_stat;
1499 	unsigned long ret;
1500 	struct page *page, *next;
1501 	LIST_HEAD(clean_pages);
1502 
1503 	list_for_each_entry_safe(page, next, page_list, lru) {
1504 		if (page_is_file_cache(page) && !PageDirty(page) &&
1505 		    !__PageMovable(page)) {
1506 			ClearPageActive(page);
1507 			list_move(&page->lru, &clean_pages);
1508 		}
1509 	}
1510 
1511 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1512 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1513 	list_splice(&clean_pages, page_list);
1514 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1515 	return ret;
1516 }
1517 
1518 /*
1519  * Attempt to remove the specified page from its LRU.  Only take this page
1520  * if it is of the appropriate PageActive status.  Pages which are being
1521  * freed elsewhere are also ignored.
1522  *
1523  * page:	page to consider
1524  * mode:	one of the LRU isolation modes defined above
1525  *
1526  * returns 0 on success, -ve errno on failure.
1527  */
1528 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1529 {
1530 	int ret = -EINVAL;
1531 
1532 	/* Only take pages on the LRU. */
1533 	if (!PageLRU(page))
1534 		return ret;
1535 
1536 	/* Compaction should not handle unevictable pages but CMA can do so */
1537 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1538 		return ret;
1539 
1540 	ret = -EBUSY;
1541 
1542 	/*
1543 	 * To minimise LRU disruption, the caller can indicate that it only
1544 	 * wants to isolate pages it will be able to operate on without
1545 	 * blocking - clean pages for the most part.
1546 	 *
1547 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1548 	 * that it is possible to migrate without blocking
1549 	 */
1550 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1551 		/* All the caller can do on PageWriteback is block */
1552 		if (PageWriteback(page))
1553 			return ret;
1554 
1555 		if (PageDirty(page)) {
1556 			struct address_space *mapping;
1557 			bool migrate_dirty;
1558 
1559 			/*
1560 			 * Only pages without mappings or that have a
1561 			 * ->migratepage callback are possible to migrate
1562 			 * without blocking. However, we can be racing with
1563 			 * truncation so it's necessary to lock the page
1564 			 * to stabilise the mapping as truncation holds
1565 			 * the page lock until after the page is removed
1566 			 * from the page cache.
1567 			 */
1568 			if (!trylock_page(page))
1569 				return ret;
1570 
1571 			mapping = page_mapping(page);
1572 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1573 			unlock_page(page);
1574 			if (!migrate_dirty)
1575 				return ret;
1576 		}
1577 	}
1578 
1579 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1580 		return ret;
1581 
1582 	if (likely(get_page_unless_zero(page))) {
1583 		/*
1584 		 * Be careful not to clear PageLRU until after we're
1585 		 * sure the page is not being freed elsewhere -- the
1586 		 * page release code relies on it.
1587 		 */
1588 		ClearPageLRU(page);
1589 		ret = 0;
1590 	}
1591 
1592 	return ret;
1593 }
1594 
1595 
1596 /*
1597  * Update LRU sizes after isolating pages. The LRU size updates must
1598  * be complete before mem_cgroup_update_lru_size due to a santity check.
1599  */
1600 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1601 			enum lru_list lru, unsigned long *nr_zone_taken)
1602 {
1603 	int zid;
1604 
1605 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1606 		if (!nr_zone_taken[zid])
1607 			continue;
1608 
1609 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1610 #ifdef CONFIG_MEMCG
1611 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1612 #endif
1613 	}
1614 
1615 }
1616 
1617 /**
1618  * pgdat->lru_lock is heavily contended.  Some of the functions that
1619  * shrink the lists perform better by taking out a batch of pages
1620  * and working on them outside the LRU lock.
1621  *
1622  * For pagecache intensive workloads, this function is the hottest
1623  * spot in the kernel (apart from copy_*_user functions).
1624  *
1625  * Appropriate locks must be held before calling this function.
1626  *
1627  * @nr_to_scan:	The number of eligible pages to look through on the list.
1628  * @lruvec:	The LRU vector to pull pages from.
1629  * @dst:	The temp list to put pages on to.
1630  * @nr_scanned:	The number of pages that were scanned.
1631  * @sc:		The scan_control struct for this reclaim session
1632  * @mode:	One of the LRU isolation modes
1633  * @lru:	LRU list id for isolating
1634  *
1635  * returns how many pages were moved onto *@dst.
1636  */
1637 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1638 		struct lruvec *lruvec, struct list_head *dst,
1639 		unsigned long *nr_scanned, struct scan_control *sc,
1640 		enum lru_list lru)
1641 {
1642 	struct list_head *src = &lruvec->lists[lru];
1643 	unsigned long nr_taken = 0;
1644 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1645 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1646 	unsigned long skipped = 0;
1647 	unsigned long scan, total_scan, nr_pages;
1648 	LIST_HEAD(pages_skipped);
1649 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1650 
1651 	scan = 0;
1652 	for (total_scan = 0;
1653 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1654 	     total_scan++) {
1655 		struct page *page;
1656 
1657 		page = lru_to_page(src);
1658 		prefetchw_prev_lru_page(page, src, flags);
1659 
1660 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1661 
1662 		if (page_zonenum(page) > sc->reclaim_idx) {
1663 			list_move(&page->lru, &pages_skipped);
1664 			nr_skipped[page_zonenum(page)]++;
1665 			continue;
1666 		}
1667 
1668 		/*
1669 		 * Do not count skipped pages because that makes the function
1670 		 * return with no isolated pages if the LRU mostly contains
1671 		 * ineligible pages.  This causes the VM to not reclaim any
1672 		 * pages, triggering a premature OOM.
1673 		 */
1674 		scan++;
1675 		switch (__isolate_lru_page(page, mode)) {
1676 		case 0:
1677 			nr_pages = hpage_nr_pages(page);
1678 			nr_taken += nr_pages;
1679 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1680 			list_move(&page->lru, dst);
1681 			break;
1682 
1683 		case -EBUSY:
1684 			/* else it is being freed elsewhere */
1685 			list_move(&page->lru, src);
1686 			continue;
1687 
1688 		default:
1689 			BUG();
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * Splice any skipped pages to the start of the LRU list. Note that
1695 	 * this disrupts the LRU order when reclaiming for lower zones but
1696 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1697 	 * scanning would soon rescan the same pages to skip and put the
1698 	 * system at risk of premature OOM.
1699 	 */
1700 	if (!list_empty(&pages_skipped)) {
1701 		int zid;
1702 
1703 		list_splice(&pages_skipped, src);
1704 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1705 			if (!nr_skipped[zid])
1706 				continue;
1707 
1708 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1709 			skipped += nr_skipped[zid];
1710 		}
1711 	}
1712 	*nr_scanned = total_scan;
1713 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1714 				    total_scan, skipped, nr_taken, mode, lru);
1715 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1716 	return nr_taken;
1717 }
1718 
1719 /**
1720  * isolate_lru_page - tries to isolate a page from its LRU list
1721  * @page: page to isolate from its LRU list
1722  *
1723  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1724  * vmstat statistic corresponding to whatever LRU list the page was on.
1725  *
1726  * Returns 0 if the page was removed from an LRU list.
1727  * Returns -EBUSY if the page was not on an LRU list.
1728  *
1729  * The returned page will have PageLRU() cleared.  If it was found on
1730  * the active list, it will have PageActive set.  If it was found on
1731  * the unevictable list, it will have the PageUnevictable bit set. That flag
1732  * may need to be cleared by the caller before letting the page go.
1733  *
1734  * The vmstat statistic corresponding to the list on which the page was
1735  * found will be decremented.
1736  *
1737  * Restrictions:
1738  *
1739  * (1) Must be called with an elevated refcount on the page. This is a
1740  *     fundamentnal difference from isolate_lru_pages (which is called
1741  *     without a stable reference).
1742  * (2) the lru_lock must not be held.
1743  * (3) interrupts must be enabled.
1744  */
1745 int isolate_lru_page(struct page *page)
1746 {
1747 	int ret = -EBUSY;
1748 
1749 	VM_BUG_ON_PAGE(!page_count(page), page);
1750 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1751 
1752 	if (PageLRU(page)) {
1753 		pg_data_t *pgdat = page_pgdat(page);
1754 		struct lruvec *lruvec;
1755 
1756 		spin_lock_irq(&pgdat->lru_lock);
1757 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1758 		if (PageLRU(page)) {
1759 			int lru = page_lru(page);
1760 			get_page(page);
1761 			ClearPageLRU(page);
1762 			del_page_from_lru_list(page, lruvec, lru);
1763 			ret = 0;
1764 		}
1765 		spin_unlock_irq(&pgdat->lru_lock);
1766 	}
1767 	return ret;
1768 }
1769 
1770 /*
1771  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1772  * then get resheduled. When there are massive number of tasks doing page
1773  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1774  * the LRU list will go small and be scanned faster than necessary, leading to
1775  * unnecessary swapping, thrashing and OOM.
1776  */
1777 static int too_many_isolated(struct pglist_data *pgdat, int file,
1778 		struct scan_control *sc)
1779 {
1780 	unsigned long inactive, isolated;
1781 
1782 	if (current_is_kswapd())
1783 		return 0;
1784 
1785 	if (!sane_reclaim(sc))
1786 		return 0;
1787 
1788 	if (file) {
1789 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1790 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1791 	} else {
1792 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1793 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1794 	}
1795 
1796 	/*
1797 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1798 	 * won't get blocked by normal direct-reclaimers, forming a circular
1799 	 * deadlock.
1800 	 */
1801 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1802 		inactive >>= 3;
1803 
1804 	return isolated > inactive;
1805 }
1806 
1807 static noinline_for_stack void
1808 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1809 {
1810 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1811 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1812 	LIST_HEAD(pages_to_free);
1813 
1814 	/*
1815 	 * Put back any unfreeable pages.
1816 	 */
1817 	while (!list_empty(page_list)) {
1818 		struct page *page = lru_to_page(page_list);
1819 		int lru;
1820 
1821 		VM_BUG_ON_PAGE(PageLRU(page), page);
1822 		list_del(&page->lru);
1823 		if (unlikely(!page_evictable(page))) {
1824 			spin_unlock_irq(&pgdat->lru_lock);
1825 			putback_lru_page(page);
1826 			spin_lock_irq(&pgdat->lru_lock);
1827 			continue;
1828 		}
1829 
1830 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1831 
1832 		SetPageLRU(page);
1833 		lru = page_lru(page);
1834 		add_page_to_lru_list(page, lruvec, lru);
1835 
1836 		if (is_active_lru(lru)) {
1837 			int file = is_file_lru(lru);
1838 			int numpages = hpage_nr_pages(page);
1839 			reclaim_stat->recent_rotated[file] += numpages;
1840 		}
1841 		if (put_page_testzero(page)) {
1842 			__ClearPageLRU(page);
1843 			__ClearPageActive(page);
1844 			del_page_from_lru_list(page, lruvec, lru);
1845 
1846 			if (unlikely(PageCompound(page))) {
1847 				spin_unlock_irq(&pgdat->lru_lock);
1848 				mem_cgroup_uncharge(page);
1849 				(*get_compound_page_dtor(page))(page);
1850 				spin_lock_irq(&pgdat->lru_lock);
1851 			} else
1852 				list_add(&page->lru, &pages_to_free);
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * To save our caller's stack, now use input list for pages to free.
1858 	 */
1859 	list_splice(&pages_to_free, page_list);
1860 }
1861 
1862 /*
1863  * If a kernel thread (such as nfsd for loop-back mounts) services
1864  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1865  * In that case we should only throttle if the backing device it is
1866  * writing to is congested.  In other cases it is safe to throttle.
1867  */
1868 static int current_may_throttle(void)
1869 {
1870 	return !(current->flags & PF_LESS_THROTTLE) ||
1871 		current->backing_dev_info == NULL ||
1872 		bdi_write_congested(current->backing_dev_info);
1873 }
1874 
1875 /*
1876  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1877  * of reclaimed pages
1878  */
1879 static noinline_for_stack unsigned long
1880 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1881 		     struct scan_control *sc, enum lru_list lru)
1882 {
1883 	LIST_HEAD(page_list);
1884 	unsigned long nr_scanned;
1885 	unsigned long nr_reclaimed = 0;
1886 	unsigned long nr_taken;
1887 	struct reclaim_stat stat;
1888 	int file = is_file_lru(lru);
1889 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1890 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1891 	bool stalled = false;
1892 
1893 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1894 		if (stalled)
1895 			return 0;
1896 
1897 		/* wait a bit for the reclaimer. */
1898 		msleep(100);
1899 		stalled = true;
1900 
1901 		/* We are about to die and free our memory. Return now. */
1902 		if (fatal_signal_pending(current))
1903 			return SWAP_CLUSTER_MAX;
1904 	}
1905 
1906 	lru_add_drain();
1907 
1908 	spin_lock_irq(&pgdat->lru_lock);
1909 
1910 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1911 				     &nr_scanned, sc, lru);
1912 
1913 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1914 	reclaim_stat->recent_scanned[file] += nr_taken;
1915 
1916 	if (current_is_kswapd()) {
1917 		if (global_reclaim(sc))
1918 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1919 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1920 				   nr_scanned);
1921 	} else {
1922 		if (global_reclaim(sc))
1923 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1924 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1925 				   nr_scanned);
1926 	}
1927 	spin_unlock_irq(&pgdat->lru_lock);
1928 
1929 	if (nr_taken == 0)
1930 		return 0;
1931 
1932 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1933 				&stat, false);
1934 
1935 	spin_lock_irq(&pgdat->lru_lock);
1936 
1937 	if (current_is_kswapd()) {
1938 		if (global_reclaim(sc))
1939 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1940 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1941 				   nr_reclaimed);
1942 	} else {
1943 		if (global_reclaim(sc))
1944 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1945 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1946 				   nr_reclaimed);
1947 	}
1948 
1949 	putback_inactive_pages(lruvec, &page_list);
1950 
1951 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1952 
1953 	spin_unlock_irq(&pgdat->lru_lock);
1954 
1955 	mem_cgroup_uncharge_list(&page_list);
1956 	free_unref_page_list(&page_list);
1957 
1958 	/*
1959 	 * If dirty pages are scanned that are not queued for IO, it
1960 	 * implies that flushers are not doing their job. This can
1961 	 * happen when memory pressure pushes dirty pages to the end of
1962 	 * the LRU before the dirty limits are breached and the dirty
1963 	 * data has expired. It can also happen when the proportion of
1964 	 * dirty pages grows not through writes but through memory
1965 	 * pressure reclaiming all the clean cache. And in some cases,
1966 	 * the flushers simply cannot keep up with the allocation
1967 	 * rate. Nudge the flusher threads in case they are asleep.
1968 	 */
1969 	if (stat.nr_unqueued_dirty == nr_taken)
1970 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1971 
1972 	sc->nr.dirty += stat.nr_dirty;
1973 	sc->nr.congested += stat.nr_congested;
1974 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1975 	sc->nr.writeback += stat.nr_writeback;
1976 	sc->nr.immediate += stat.nr_immediate;
1977 	sc->nr.taken += nr_taken;
1978 	if (file)
1979 		sc->nr.file_taken += nr_taken;
1980 
1981 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1982 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1983 	return nr_reclaimed;
1984 }
1985 
1986 /*
1987  * This moves pages from the active list to the inactive list.
1988  *
1989  * We move them the other way if the page is referenced by one or more
1990  * processes, from rmap.
1991  *
1992  * If the pages are mostly unmapped, the processing is fast and it is
1993  * appropriate to hold pgdat->lru_lock across the whole operation.  But if
1994  * the pages are mapped, the processing is slow (page_referenced()) so we
1995  * should drop pgdat->lru_lock around each page.  It's impossible to balance
1996  * this, so instead we remove the pages from the LRU while processing them.
1997  * It is safe to rely on PG_active against the non-LRU pages in here because
1998  * nobody will play with that bit on a non-LRU page.
1999  *
2000  * The downside is that we have to touch page->_refcount against each page.
2001  * But we had to alter page->flags anyway.
2002  *
2003  * Returns the number of pages moved to the given lru.
2004  */
2005 
2006 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2007 				     struct list_head *list,
2008 				     struct list_head *pages_to_free,
2009 				     enum lru_list lru)
2010 {
2011 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2012 	struct page *page;
2013 	int nr_pages;
2014 	int nr_moved = 0;
2015 
2016 	while (!list_empty(list)) {
2017 		page = lru_to_page(list);
2018 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2019 
2020 		VM_BUG_ON_PAGE(PageLRU(page), page);
2021 		SetPageLRU(page);
2022 
2023 		nr_pages = hpage_nr_pages(page);
2024 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2025 		list_move(&page->lru, &lruvec->lists[lru]);
2026 
2027 		if (put_page_testzero(page)) {
2028 			__ClearPageLRU(page);
2029 			__ClearPageActive(page);
2030 			del_page_from_lru_list(page, lruvec, lru);
2031 
2032 			if (unlikely(PageCompound(page))) {
2033 				spin_unlock_irq(&pgdat->lru_lock);
2034 				mem_cgroup_uncharge(page);
2035 				(*get_compound_page_dtor(page))(page);
2036 				spin_lock_irq(&pgdat->lru_lock);
2037 			} else
2038 				list_add(&page->lru, pages_to_free);
2039 		} else {
2040 			nr_moved += nr_pages;
2041 		}
2042 	}
2043 
2044 	if (!is_active_lru(lru)) {
2045 		__count_vm_events(PGDEACTIVATE, nr_moved);
2046 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2047 				   nr_moved);
2048 	}
2049 
2050 	return nr_moved;
2051 }
2052 
2053 static void shrink_active_list(unsigned long nr_to_scan,
2054 			       struct lruvec *lruvec,
2055 			       struct scan_control *sc,
2056 			       enum lru_list lru)
2057 {
2058 	unsigned long nr_taken;
2059 	unsigned long nr_scanned;
2060 	unsigned long vm_flags;
2061 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2062 	LIST_HEAD(l_active);
2063 	LIST_HEAD(l_inactive);
2064 	struct page *page;
2065 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2066 	unsigned nr_deactivate, nr_activate;
2067 	unsigned nr_rotated = 0;
2068 	int file = is_file_lru(lru);
2069 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2070 
2071 	lru_add_drain();
2072 
2073 	spin_lock_irq(&pgdat->lru_lock);
2074 
2075 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2076 				     &nr_scanned, sc, lru);
2077 
2078 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2079 	reclaim_stat->recent_scanned[file] += nr_taken;
2080 
2081 	__count_vm_events(PGREFILL, nr_scanned);
2082 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2083 
2084 	spin_unlock_irq(&pgdat->lru_lock);
2085 
2086 	while (!list_empty(&l_hold)) {
2087 		cond_resched();
2088 		page = lru_to_page(&l_hold);
2089 		list_del(&page->lru);
2090 
2091 		if (unlikely(!page_evictable(page))) {
2092 			putback_lru_page(page);
2093 			continue;
2094 		}
2095 
2096 		if (unlikely(buffer_heads_over_limit)) {
2097 			if (page_has_private(page) && trylock_page(page)) {
2098 				if (page_has_private(page))
2099 					try_to_release_page(page, 0);
2100 				unlock_page(page);
2101 			}
2102 		}
2103 
2104 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2105 				    &vm_flags)) {
2106 			nr_rotated += hpage_nr_pages(page);
2107 			/*
2108 			 * Identify referenced, file-backed active pages and
2109 			 * give them one more trip around the active list. So
2110 			 * that executable code get better chances to stay in
2111 			 * memory under moderate memory pressure.  Anon pages
2112 			 * are not likely to be evicted by use-once streaming
2113 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2114 			 * so we ignore them here.
2115 			 */
2116 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2117 				list_add(&page->lru, &l_active);
2118 				continue;
2119 			}
2120 		}
2121 
2122 		ClearPageActive(page);	/* we are de-activating */
2123 		SetPageWorkingset(page);
2124 		list_add(&page->lru, &l_inactive);
2125 	}
2126 
2127 	/*
2128 	 * Move pages back to the lru list.
2129 	 */
2130 	spin_lock_irq(&pgdat->lru_lock);
2131 	/*
2132 	 * Count referenced pages from currently used mappings as rotated,
2133 	 * even though only some of them are actually re-activated.  This
2134 	 * helps balance scan pressure between file and anonymous pages in
2135 	 * get_scan_count.
2136 	 */
2137 	reclaim_stat->recent_rotated[file] += nr_rotated;
2138 
2139 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2140 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2141 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2142 	spin_unlock_irq(&pgdat->lru_lock);
2143 
2144 	mem_cgroup_uncharge_list(&l_hold);
2145 	free_unref_page_list(&l_hold);
2146 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2147 			nr_deactivate, nr_rotated, sc->priority, file);
2148 }
2149 
2150 /*
2151  * The inactive anon list should be small enough that the VM never has
2152  * to do too much work.
2153  *
2154  * The inactive file list should be small enough to leave most memory
2155  * to the established workingset on the scan-resistant active list,
2156  * but large enough to avoid thrashing the aggregate readahead window.
2157  *
2158  * Both inactive lists should also be large enough that each inactive
2159  * page has a chance to be referenced again before it is reclaimed.
2160  *
2161  * If that fails and refaulting is observed, the inactive list grows.
2162  *
2163  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2164  * on this LRU, maintained by the pageout code. An inactive_ratio
2165  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2166  *
2167  * total     target    max
2168  * memory    ratio     inactive
2169  * -------------------------------------
2170  *   10MB       1         5MB
2171  *  100MB       1        50MB
2172  *    1GB       3       250MB
2173  *   10GB      10       0.9GB
2174  *  100GB      31         3GB
2175  *    1TB     101        10GB
2176  *   10TB     320        32GB
2177  */
2178 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2179 				 struct scan_control *sc, bool actual_reclaim)
2180 {
2181 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2182 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2183 	enum lru_list inactive_lru = file * LRU_FILE;
2184 	unsigned long inactive, active;
2185 	unsigned long inactive_ratio;
2186 	unsigned long refaults;
2187 	unsigned long gb;
2188 
2189 	/*
2190 	 * If we don't have swap space, anonymous page deactivation
2191 	 * is pointless.
2192 	 */
2193 	if (!file && !total_swap_pages)
2194 		return false;
2195 
2196 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2197 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2198 
2199 	/*
2200 	 * When refaults are being observed, it means a new workingset
2201 	 * is being established. Disable active list protection to get
2202 	 * rid of the stale workingset quickly.
2203 	 */
2204 	refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2205 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2206 		inactive_ratio = 0;
2207 	} else {
2208 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2209 		if (gb)
2210 			inactive_ratio = int_sqrt(10 * gb);
2211 		else
2212 			inactive_ratio = 1;
2213 	}
2214 
2215 	if (actual_reclaim)
2216 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2217 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2218 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2219 			inactive_ratio, file);
2220 
2221 	return inactive * inactive_ratio < active;
2222 }
2223 
2224 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2225 				 struct lruvec *lruvec, struct scan_control *sc)
2226 {
2227 	if (is_active_lru(lru)) {
2228 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2229 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2230 		return 0;
2231 	}
2232 
2233 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2234 }
2235 
2236 enum scan_balance {
2237 	SCAN_EQUAL,
2238 	SCAN_FRACT,
2239 	SCAN_ANON,
2240 	SCAN_FILE,
2241 };
2242 
2243 /*
2244  * Determine how aggressively the anon and file LRU lists should be
2245  * scanned.  The relative value of each set of LRU lists is determined
2246  * by looking at the fraction of the pages scanned we did rotate back
2247  * onto the active list instead of evict.
2248  *
2249  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2250  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2251  */
2252 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2253 			   struct scan_control *sc, unsigned long *nr,
2254 			   unsigned long *lru_pages)
2255 {
2256 	int swappiness = mem_cgroup_swappiness(memcg);
2257 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2258 	u64 fraction[2];
2259 	u64 denominator = 0;	/* gcc */
2260 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2261 	unsigned long anon_prio, file_prio;
2262 	enum scan_balance scan_balance;
2263 	unsigned long anon, file;
2264 	unsigned long ap, fp;
2265 	enum lru_list lru;
2266 
2267 	/* If we have no swap space, do not bother scanning anon pages. */
2268 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2269 		scan_balance = SCAN_FILE;
2270 		goto out;
2271 	}
2272 
2273 	/*
2274 	 * Global reclaim will swap to prevent OOM even with no
2275 	 * swappiness, but memcg users want to use this knob to
2276 	 * disable swapping for individual groups completely when
2277 	 * using the memory controller's swap limit feature would be
2278 	 * too expensive.
2279 	 */
2280 	if (!global_reclaim(sc) && !swappiness) {
2281 		scan_balance = SCAN_FILE;
2282 		goto out;
2283 	}
2284 
2285 	/*
2286 	 * Do not apply any pressure balancing cleverness when the
2287 	 * system is close to OOM, scan both anon and file equally
2288 	 * (unless the swappiness setting disagrees with swapping).
2289 	 */
2290 	if (!sc->priority && swappiness) {
2291 		scan_balance = SCAN_EQUAL;
2292 		goto out;
2293 	}
2294 
2295 	/*
2296 	 * Prevent the reclaimer from falling into the cache trap: as
2297 	 * cache pages start out inactive, every cache fault will tip
2298 	 * the scan balance towards the file LRU.  And as the file LRU
2299 	 * shrinks, so does the window for rotation from references.
2300 	 * This means we have a runaway feedback loop where a tiny
2301 	 * thrashing file LRU becomes infinitely more attractive than
2302 	 * anon pages.  Try to detect this based on file LRU size.
2303 	 */
2304 	if (global_reclaim(sc)) {
2305 		unsigned long pgdatfile;
2306 		unsigned long pgdatfree;
2307 		int z;
2308 		unsigned long total_high_wmark = 0;
2309 
2310 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2311 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2312 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2313 
2314 		for (z = 0; z < MAX_NR_ZONES; z++) {
2315 			struct zone *zone = &pgdat->node_zones[z];
2316 			if (!managed_zone(zone))
2317 				continue;
2318 
2319 			total_high_wmark += high_wmark_pages(zone);
2320 		}
2321 
2322 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2323 			/*
2324 			 * Force SCAN_ANON if there are enough inactive
2325 			 * anonymous pages on the LRU in eligible zones.
2326 			 * Otherwise, the small LRU gets thrashed.
2327 			 */
2328 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2329 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2330 					>> sc->priority) {
2331 				scan_balance = SCAN_ANON;
2332 				goto out;
2333 			}
2334 		}
2335 	}
2336 
2337 	/*
2338 	 * If there is enough inactive page cache, i.e. if the size of the
2339 	 * inactive list is greater than that of the active list *and* the
2340 	 * inactive list actually has some pages to scan on this priority, we
2341 	 * do not reclaim anything from the anonymous working set right now.
2342 	 * Without the second condition we could end up never scanning an
2343 	 * lruvec even if it has plenty of old anonymous pages unless the
2344 	 * system is under heavy pressure.
2345 	 */
2346 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2347 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2348 		scan_balance = SCAN_FILE;
2349 		goto out;
2350 	}
2351 
2352 	scan_balance = SCAN_FRACT;
2353 
2354 	/*
2355 	 * With swappiness at 100, anonymous and file have the same priority.
2356 	 * This scanning priority is essentially the inverse of IO cost.
2357 	 */
2358 	anon_prio = swappiness;
2359 	file_prio = 200 - anon_prio;
2360 
2361 	/*
2362 	 * OK, so we have swap space and a fair amount of page cache
2363 	 * pages.  We use the recently rotated / recently scanned
2364 	 * ratios to determine how valuable each cache is.
2365 	 *
2366 	 * Because workloads change over time (and to avoid overflow)
2367 	 * we keep these statistics as a floating average, which ends
2368 	 * up weighing recent references more than old ones.
2369 	 *
2370 	 * anon in [0], file in [1]
2371 	 */
2372 
2373 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2374 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2375 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2376 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2377 
2378 	spin_lock_irq(&pgdat->lru_lock);
2379 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2380 		reclaim_stat->recent_scanned[0] /= 2;
2381 		reclaim_stat->recent_rotated[0] /= 2;
2382 	}
2383 
2384 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2385 		reclaim_stat->recent_scanned[1] /= 2;
2386 		reclaim_stat->recent_rotated[1] /= 2;
2387 	}
2388 
2389 	/*
2390 	 * The amount of pressure on anon vs file pages is inversely
2391 	 * proportional to the fraction of recently scanned pages on
2392 	 * each list that were recently referenced and in active use.
2393 	 */
2394 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2395 	ap /= reclaim_stat->recent_rotated[0] + 1;
2396 
2397 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2398 	fp /= reclaim_stat->recent_rotated[1] + 1;
2399 	spin_unlock_irq(&pgdat->lru_lock);
2400 
2401 	fraction[0] = ap;
2402 	fraction[1] = fp;
2403 	denominator = ap + fp + 1;
2404 out:
2405 	*lru_pages = 0;
2406 	for_each_evictable_lru(lru) {
2407 		int file = is_file_lru(lru);
2408 		unsigned long size;
2409 		unsigned long scan;
2410 
2411 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2412 		scan = size >> sc->priority;
2413 		/*
2414 		 * If the cgroup's already been deleted, make sure to
2415 		 * scrape out the remaining cache.
2416 		 */
2417 		if (!scan && !mem_cgroup_online(memcg))
2418 			scan = min(size, SWAP_CLUSTER_MAX);
2419 
2420 		switch (scan_balance) {
2421 		case SCAN_EQUAL:
2422 			/* Scan lists relative to size */
2423 			break;
2424 		case SCAN_FRACT:
2425 			/*
2426 			 * Scan types proportional to swappiness and
2427 			 * their relative recent reclaim efficiency.
2428 			 * Make sure we don't miss the last page
2429 			 * because of a round-off error.
2430 			 */
2431 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2432 						  denominator);
2433 			break;
2434 		case SCAN_FILE:
2435 		case SCAN_ANON:
2436 			/* Scan one type exclusively */
2437 			if ((scan_balance == SCAN_FILE) != file) {
2438 				size = 0;
2439 				scan = 0;
2440 			}
2441 			break;
2442 		default:
2443 			/* Look ma, no brain */
2444 			BUG();
2445 		}
2446 
2447 		*lru_pages += size;
2448 		nr[lru] = scan;
2449 	}
2450 }
2451 
2452 /*
2453  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2454  */
2455 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2456 			      struct scan_control *sc, unsigned long *lru_pages)
2457 {
2458 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2459 	unsigned long nr[NR_LRU_LISTS];
2460 	unsigned long targets[NR_LRU_LISTS];
2461 	unsigned long nr_to_scan;
2462 	enum lru_list lru;
2463 	unsigned long nr_reclaimed = 0;
2464 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2465 	struct blk_plug plug;
2466 	bool scan_adjusted;
2467 
2468 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2469 
2470 	/* Record the original scan target for proportional adjustments later */
2471 	memcpy(targets, nr, sizeof(nr));
2472 
2473 	/*
2474 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2475 	 * event that can occur when there is little memory pressure e.g.
2476 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2477 	 * when the requested number of pages are reclaimed when scanning at
2478 	 * DEF_PRIORITY on the assumption that the fact we are direct
2479 	 * reclaiming implies that kswapd is not keeping up and it is best to
2480 	 * do a batch of work at once. For memcg reclaim one check is made to
2481 	 * abort proportional reclaim if either the file or anon lru has already
2482 	 * dropped to zero at the first pass.
2483 	 */
2484 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2485 			 sc->priority == DEF_PRIORITY);
2486 
2487 	blk_start_plug(&plug);
2488 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2489 					nr[LRU_INACTIVE_FILE]) {
2490 		unsigned long nr_anon, nr_file, percentage;
2491 		unsigned long nr_scanned;
2492 
2493 		for_each_evictable_lru(lru) {
2494 			if (nr[lru]) {
2495 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2496 				nr[lru] -= nr_to_scan;
2497 
2498 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2499 							    lruvec, sc);
2500 			}
2501 		}
2502 
2503 		cond_resched();
2504 
2505 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2506 			continue;
2507 
2508 		/*
2509 		 * For kswapd and memcg, reclaim at least the number of pages
2510 		 * requested. Ensure that the anon and file LRUs are scanned
2511 		 * proportionally what was requested by get_scan_count(). We
2512 		 * stop reclaiming one LRU and reduce the amount scanning
2513 		 * proportional to the original scan target.
2514 		 */
2515 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2516 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2517 
2518 		/*
2519 		 * It's just vindictive to attack the larger once the smaller
2520 		 * has gone to zero.  And given the way we stop scanning the
2521 		 * smaller below, this makes sure that we only make one nudge
2522 		 * towards proportionality once we've got nr_to_reclaim.
2523 		 */
2524 		if (!nr_file || !nr_anon)
2525 			break;
2526 
2527 		if (nr_file > nr_anon) {
2528 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2529 						targets[LRU_ACTIVE_ANON] + 1;
2530 			lru = LRU_BASE;
2531 			percentage = nr_anon * 100 / scan_target;
2532 		} else {
2533 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2534 						targets[LRU_ACTIVE_FILE] + 1;
2535 			lru = LRU_FILE;
2536 			percentage = nr_file * 100 / scan_target;
2537 		}
2538 
2539 		/* Stop scanning the smaller of the LRU */
2540 		nr[lru] = 0;
2541 		nr[lru + LRU_ACTIVE] = 0;
2542 
2543 		/*
2544 		 * Recalculate the other LRU scan count based on its original
2545 		 * scan target and the percentage scanning already complete
2546 		 */
2547 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2548 		nr_scanned = targets[lru] - nr[lru];
2549 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2550 		nr[lru] -= min(nr[lru], nr_scanned);
2551 
2552 		lru += LRU_ACTIVE;
2553 		nr_scanned = targets[lru] - nr[lru];
2554 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2555 		nr[lru] -= min(nr[lru], nr_scanned);
2556 
2557 		scan_adjusted = true;
2558 	}
2559 	blk_finish_plug(&plug);
2560 	sc->nr_reclaimed += nr_reclaimed;
2561 
2562 	/*
2563 	 * Even if we did not try to evict anon pages at all, we want to
2564 	 * rebalance the anon lru active/inactive ratio.
2565 	 */
2566 	if (inactive_list_is_low(lruvec, false, sc, true))
2567 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2568 				   sc, LRU_ACTIVE_ANON);
2569 }
2570 
2571 /* Use reclaim/compaction for costly allocs or under memory pressure */
2572 static bool in_reclaim_compaction(struct scan_control *sc)
2573 {
2574 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2575 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2576 			 sc->priority < DEF_PRIORITY - 2))
2577 		return true;
2578 
2579 	return false;
2580 }
2581 
2582 /*
2583  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2584  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2585  * true if more pages should be reclaimed such that when the page allocator
2586  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2587  * It will give up earlier than that if there is difficulty reclaiming pages.
2588  */
2589 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2590 					unsigned long nr_reclaimed,
2591 					unsigned long nr_scanned,
2592 					struct scan_control *sc)
2593 {
2594 	unsigned long pages_for_compaction;
2595 	unsigned long inactive_lru_pages;
2596 	int z;
2597 
2598 	/* If not in reclaim/compaction mode, stop */
2599 	if (!in_reclaim_compaction(sc))
2600 		return false;
2601 
2602 	/* Consider stopping depending on scan and reclaim activity */
2603 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2604 		/*
2605 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2606 		 * full LRU list has been scanned and we are still failing
2607 		 * to reclaim pages. This full LRU scan is potentially
2608 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2609 		 */
2610 		if (!nr_reclaimed && !nr_scanned)
2611 			return false;
2612 	} else {
2613 		/*
2614 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2615 		 * fail without consequence, stop if we failed to reclaim
2616 		 * any pages from the last SWAP_CLUSTER_MAX number of
2617 		 * pages that were scanned. This will return to the
2618 		 * caller faster at the risk reclaim/compaction and
2619 		 * the resulting allocation attempt fails
2620 		 */
2621 		if (!nr_reclaimed)
2622 			return false;
2623 	}
2624 
2625 	/*
2626 	 * If we have not reclaimed enough pages for compaction and the
2627 	 * inactive lists are large enough, continue reclaiming
2628 	 */
2629 	pages_for_compaction = compact_gap(sc->order);
2630 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2631 	if (get_nr_swap_pages() > 0)
2632 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2633 	if (sc->nr_reclaimed < pages_for_compaction &&
2634 			inactive_lru_pages > pages_for_compaction)
2635 		return true;
2636 
2637 	/* If compaction would go ahead or the allocation would succeed, stop */
2638 	for (z = 0; z <= sc->reclaim_idx; z++) {
2639 		struct zone *zone = &pgdat->node_zones[z];
2640 		if (!managed_zone(zone))
2641 			continue;
2642 
2643 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2644 		case COMPACT_SUCCESS:
2645 		case COMPACT_CONTINUE:
2646 			return false;
2647 		default:
2648 			/* check next zone */
2649 			;
2650 		}
2651 	}
2652 	return true;
2653 }
2654 
2655 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2656 {
2657 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2658 		(memcg && memcg_congested(pgdat, memcg));
2659 }
2660 
2661 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2662 {
2663 	struct reclaim_state *reclaim_state = current->reclaim_state;
2664 	unsigned long nr_reclaimed, nr_scanned;
2665 	bool reclaimable = false;
2666 
2667 	do {
2668 		struct mem_cgroup *root = sc->target_mem_cgroup;
2669 		struct mem_cgroup_reclaim_cookie reclaim = {
2670 			.pgdat = pgdat,
2671 			.priority = sc->priority,
2672 		};
2673 		unsigned long node_lru_pages = 0;
2674 		struct mem_cgroup *memcg;
2675 
2676 		memset(&sc->nr, 0, sizeof(sc->nr));
2677 
2678 		nr_reclaimed = sc->nr_reclaimed;
2679 		nr_scanned = sc->nr_scanned;
2680 
2681 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2682 		do {
2683 			unsigned long lru_pages;
2684 			unsigned long reclaimed;
2685 			unsigned long scanned;
2686 
2687 			switch (mem_cgroup_protected(root, memcg)) {
2688 			case MEMCG_PROT_MIN:
2689 				/*
2690 				 * Hard protection.
2691 				 * If there is no reclaimable memory, OOM.
2692 				 */
2693 				continue;
2694 			case MEMCG_PROT_LOW:
2695 				/*
2696 				 * Soft protection.
2697 				 * Respect the protection only as long as
2698 				 * there is an unprotected supply
2699 				 * of reclaimable memory from other cgroups.
2700 				 */
2701 				if (!sc->memcg_low_reclaim) {
2702 					sc->memcg_low_skipped = 1;
2703 					continue;
2704 				}
2705 				memcg_memory_event(memcg, MEMCG_LOW);
2706 				break;
2707 			case MEMCG_PROT_NONE:
2708 				break;
2709 			}
2710 
2711 			reclaimed = sc->nr_reclaimed;
2712 			scanned = sc->nr_scanned;
2713 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2714 			node_lru_pages += lru_pages;
2715 
2716 			if (sc->may_shrinkslab) {
2717 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2718 				    memcg, sc->priority);
2719 			}
2720 
2721 			/* Record the group's reclaim efficiency */
2722 			vmpressure(sc->gfp_mask, memcg, false,
2723 				   sc->nr_scanned - scanned,
2724 				   sc->nr_reclaimed - reclaimed);
2725 
2726 			/*
2727 			 * Kswapd have to scan all memory cgroups to fulfill
2728 			 * the overall scan target for the node.
2729 			 *
2730 			 * Limit reclaim, on the other hand, only cares about
2731 			 * nr_to_reclaim pages to be reclaimed and it will
2732 			 * retry with decreasing priority if one round over the
2733 			 * whole hierarchy is not sufficient.
2734 			 */
2735 			if (!current_is_kswapd() &&
2736 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2737 				mem_cgroup_iter_break(root, memcg);
2738 				break;
2739 			}
2740 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2741 
2742 		if (reclaim_state) {
2743 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2744 			reclaim_state->reclaimed_slab = 0;
2745 		}
2746 
2747 		/* Record the subtree's reclaim efficiency */
2748 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2749 			   sc->nr_scanned - nr_scanned,
2750 			   sc->nr_reclaimed - nr_reclaimed);
2751 
2752 		if (sc->nr_reclaimed - nr_reclaimed)
2753 			reclaimable = true;
2754 
2755 		if (current_is_kswapd()) {
2756 			/*
2757 			 * If reclaim is isolating dirty pages under writeback,
2758 			 * it implies that the long-lived page allocation rate
2759 			 * is exceeding the page laundering rate. Either the
2760 			 * global limits are not being effective at throttling
2761 			 * processes due to the page distribution throughout
2762 			 * zones or there is heavy usage of a slow backing
2763 			 * device. The only option is to throttle from reclaim
2764 			 * context which is not ideal as there is no guarantee
2765 			 * the dirtying process is throttled in the same way
2766 			 * balance_dirty_pages() manages.
2767 			 *
2768 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2769 			 * count the number of pages under pages flagged for
2770 			 * immediate reclaim and stall if any are encountered
2771 			 * in the nr_immediate check below.
2772 			 */
2773 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2774 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2775 
2776 			/*
2777 			 * Tag a node as congested if all the dirty pages
2778 			 * scanned were backed by a congested BDI and
2779 			 * wait_iff_congested will stall.
2780 			 */
2781 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2782 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2783 
2784 			/* Allow kswapd to start writing pages during reclaim.*/
2785 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2786 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2787 
2788 			/*
2789 			 * If kswapd scans pages marked marked for immediate
2790 			 * reclaim and under writeback (nr_immediate), it
2791 			 * implies that pages are cycling through the LRU
2792 			 * faster than they are written so also forcibly stall.
2793 			 */
2794 			if (sc->nr.immediate)
2795 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2796 		}
2797 
2798 		/*
2799 		 * Legacy memcg will stall in page writeback so avoid forcibly
2800 		 * stalling in wait_iff_congested().
2801 		 */
2802 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2803 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2804 			set_memcg_congestion(pgdat, root, true);
2805 
2806 		/*
2807 		 * Stall direct reclaim for IO completions if underlying BDIs
2808 		 * and node is congested. Allow kswapd to continue until it
2809 		 * starts encountering unqueued dirty pages or cycling through
2810 		 * the LRU too quickly.
2811 		 */
2812 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2813 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2814 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2815 
2816 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2817 					 sc->nr_scanned - nr_scanned, sc));
2818 
2819 	/*
2820 	 * Kswapd gives up on balancing particular nodes after too
2821 	 * many failures to reclaim anything from them and goes to
2822 	 * sleep. On reclaim progress, reset the failure counter. A
2823 	 * successful direct reclaim run will revive a dormant kswapd.
2824 	 */
2825 	if (reclaimable)
2826 		pgdat->kswapd_failures = 0;
2827 
2828 	return reclaimable;
2829 }
2830 
2831 /*
2832  * Returns true if compaction should go ahead for a costly-order request, or
2833  * the allocation would already succeed without compaction. Return false if we
2834  * should reclaim first.
2835  */
2836 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2837 {
2838 	unsigned long watermark;
2839 	enum compact_result suitable;
2840 
2841 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2842 	if (suitable == COMPACT_SUCCESS)
2843 		/* Allocation should succeed already. Don't reclaim. */
2844 		return true;
2845 	if (suitable == COMPACT_SKIPPED)
2846 		/* Compaction cannot yet proceed. Do reclaim. */
2847 		return false;
2848 
2849 	/*
2850 	 * Compaction is already possible, but it takes time to run and there
2851 	 * are potentially other callers using the pages just freed. So proceed
2852 	 * with reclaim to make a buffer of free pages available to give
2853 	 * compaction a reasonable chance of completing and allocating the page.
2854 	 * Note that we won't actually reclaim the whole buffer in one attempt
2855 	 * as the target watermark in should_continue_reclaim() is lower. But if
2856 	 * we are already above the high+gap watermark, don't reclaim at all.
2857 	 */
2858 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2859 
2860 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2861 }
2862 
2863 /*
2864  * This is the direct reclaim path, for page-allocating processes.  We only
2865  * try to reclaim pages from zones which will satisfy the caller's allocation
2866  * request.
2867  *
2868  * If a zone is deemed to be full of pinned pages then just give it a light
2869  * scan then give up on it.
2870  */
2871 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2872 {
2873 	struct zoneref *z;
2874 	struct zone *zone;
2875 	unsigned long nr_soft_reclaimed;
2876 	unsigned long nr_soft_scanned;
2877 	gfp_t orig_mask;
2878 	pg_data_t *last_pgdat = NULL;
2879 
2880 	/*
2881 	 * If the number of buffer_heads in the machine exceeds the maximum
2882 	 * allowed level, force direct reclaim to scan the highmem zone as
2883 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2884 	 */
2885 	orig_mask = sc->gfp_mask;
2886 	if (buffer_heads_over_limit) {
2887 		sc->gfp_mask |= __GFP_HIGHMEM;
2888 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2889 	}
2890 
2891 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2892 					sc->reclaim_idx, sc->nodemask) {
2893 		/*
2894 		 * Take care memory controller reclaiming has small influence
2895 		 * to global LRU.
2896 		 */
2897 		if (global_reclaim(sc)) {
2898 			if (!cpuset_zone_allowed(zone,
2899 						 GFP_KERNEL | __GFP_HARDWALL))
2900 				continue;
2901 
2902 			/*
2903 			 * If we already have plenty of memory free for
2904 			 * compaction in this zone, don't free any more.
2905 			 * Even though compaction is invoked for any
2906 			 * non-zero order, only frequent costly order
2907 			 * reclamation is disruptive enough to become a
2908 			 * noticeable problem, like transparent huge
2909 			 * page allocations.
2910 			 */
2911 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2912 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2913 			    compaction_ready(zone, sc)) {
2914 				sc->compaction_ready = true;
2915 				continue;
2916 			}
2917 
2918 			/*
2919 			 * Shrink each node in the zonelist once. If the
2920 			 * zonelist is ordered by zone (not the default) then a
2921 			 * node may be shrunk multiple times but in that case
2922 			 * the user prefers lower zones being preserved.
2923 			 */
2924 			if (zone->zone_pgdat == last_pgdat)
2925 				continue;
2926 
2927 			/*
2928 			 * This steals pages from memory cgroups over softlimit
2929 			 * and returns the number of reclaimed pages and
2930 			 * scanned pages. This works for global memory pressure
2931 			 * and balancing, not for a memcg's limit.
2932 			 */
2933 			nr_soft_scanned = 0;
2934 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2935 						sc->order, sc->gfp_mask,
2936 						&nr_soft_scanned);
2937 			sc->nr_reclaimed += nr_soft_reclaimed;
2938 			sc->nr_scanned += nr_soft_scanned;
2939 			/* need some check for avoid more shrink_zone() */
2940 		}
2941 
2942 		/* See comment about same check for global reclaim above */
2943 		if (zone->zone_pgdat == last_pgdat)
2944 			continue;
2945 		last_pgdat = zone->zone_pgdat;
2946 		shrink_node(zone->zone_pgdat, sc);
2947 	}
2948 
2949 	/*
2950 	 * Restore to original mask to avoid the impact on the caller if we
2951 	 * promoted it to __GFP_HIGHMEM.
2952 	 */
2953 	sc->gfp_mask = orig_mask;
2954 }
2955 
2956 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2957 {
2958 	struct mem_cgroup *memcg;
2959 
2960 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2961 	do {
2962 		unsigned long refaults;
2963 		struct lruvec *lruvec;
2964 
2965 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2966 		refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2967 		lruvec->refaults = refaults;
2968 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2969 }
2970 
2971 /*
2972  * This is the main entry point to direct page reclaim.
2973  *
2974  * If a full scan of the inactive list fails to free enough memory then we
2975  * are "out of memory" and something needs to be killed.
2976  *
2977  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2978  * high - the zone may be full of dirty or under-writeback pages, which this
2979  * caller can't do much about.  We kick the writeback threads and take explicit
2980  * naps in the hope that some of these pages can be written.  But if the
2981  * allocating task holds filesystem locks which prevent writeout this might not
2982  * work, and the allocation attempt will fail.
2983  *
2984  * returns:	0, if no pages reclaimed
2985  * 		else, the number of pages reclaimed
2986  */
2987 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2988 					  struct scan_control *sc)
2989 {
2990 	int initial_priority = sc->priority;
2991 	pg_data_t *last_pgdat;
2992 	struct zoneref *z;
2993 	struct zone *zone;
2994 retry:
2995 	delayacct_freepages_start();
2996 
2997 	if (global_reclaim(sc))
2998 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2999 
3000 	do {
3001 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3002 				sc->priority);
3003 		sc->nr_scanned = 0;
3004 		shrink_zones(zonelist, sc);
3005 
3006 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3007 			break;
3008 
3009 		if (sc->compaction_ready)
3010 			break;
3011 
3012 		/*
3013 		 * If we're getting trouble reclaiming, start doing
3014 		 * writepage even in laptop mode.
3015 		 */
3016 		if (sc->priority < DEF_PRIORITY - 2)
3017 			sc->may_writepage = 1;
3018 	} while (--sc->priority >= 0);
3019 
3020 	last_pgdat = NULL;
3021 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3022 					sc->nodemask) {
3023 		if (zone->zone_pgdat == last_pgdat)
3024 			continue;
3025 		last_pgdat = zone->zone_pgdat;
3026 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3027 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3028 	}
3029 
3030 	delayacct_freepages_end();
3031 
3032 	if (sc->nr_reclaimed)
3033 		return sc->nr_reclaimed;
3034 
3035 	/* Aborted reclaim to try compaction? don't OOM, then */
3036 	if (sc->compaction_ready)
3037 		return 1;
3038 
3039 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3040 	if (sc->memcg_low_skipped) {
3041 		sc->priority = initial_priority;
3042 		sc->memcg_low_reclaim = 1;
3043 		sc->memcg_low_skipped = 0;
3044 		goto retry;
3045 	}
3046 
3047 	return 0;
3048 }
3049 
3050 static bool allow_direct_reclaim(pg_data_t *pgdat)
3051 {
3052 	struct zone *zone;
3053 	unsigned long pfmemalloc_reserve = 0;
3054 	unsigned long free_pages = 0;
3055 	int i;
3056 	bool wmark_ok;
3057 
3058 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3059 		return true;
3060 
3061 	for (i = 0; i <= ZONE_NORMAL; i++) {
3062 		zone = &pgdat->node_zones[i];
3063 		if (!managed_zone(zone))
3064 			continue;
3065 
3066 		if (!zone_reclaimable_pages(zone))
3067 			continue;
3068 
3069 		pfmemalloc_reserve += min_wmark_pages(zone);
3070 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3071 	}
3072 
3073 	/* If there are no reserves (unexpected config) then do not throttle */
3074 	if (!pfmemalloc_reserve)
3075 		return true;
3076 
3077 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3078 
3079 	/* kswapd must be awake if processes are being throttled */
3080 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3081 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3082 						(enum zone_type)ZONE_NORMAL);
3083 		wake_up_interruptible(&pgdat->kswapd_wait);
3084 	}
3085 
3086 	return wmark_ok;
3087 }
3088 
3089 /*
3090  * Throttle direct reclaimers if backing storage is backed by the network
3091  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3092  * depleted. kswapd will continue to make progress and wake the processes
3093  * when the low watermark is reached.
3094  *
3095  * Returns true if a fatal signal was delivered during throttling. If this
3096  * happens, the page allocator should not consider triggering the OOM killer.
3097  */
3098 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3099 					nodemask_t *nodemask)
3100 {
3101 	struct zoneref *z;
3102 	struct zone *zone;
3103 	pg_data_t *pgdat = NULL;
3104 
3105 	/*
3106 	 * Kernel threads should not be throttled as they may be indirectly
3107 	 * responsible for cleaning pages necessary for reclaim to make forward
3108 	 * progress. kjournald for example may enter direct reclaim while
3109 	 * committing a transaction where throttling it could forcing other
3110 	 * processes to block on log_wait_commit().
3111 	 */
3112 	if (current->flags & PF_KTHREAD)
3113 		goto out;
3114 
3115 	/*
3116 	 * If a fatal signal is pending, this process should not throttle.
3117 	 * It should return quickly so it can exit and free its memory
3118 	 */
3119 	if (fatal_signal_pending(current))
3120 		goto out;
3121 
3122 	/*
3123 	 * Check if the pfmemalloc reserves are ok by finding the first node
3124 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3125 	 * GFP_KERNEL will be required for allocating network buffers when
3126 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3127 	 *
3128 	 * Throttling is based on the first usable node and throttled processes
3129 	 * wait on a queue until kswapd makes progress and wakes them. There
3130 	 * is an affinity then between processes waking up and where reclaim
3131 	 * progress has been made assuming the process wakes on the same node.
3132 	 * More importantly, processes running on remote nodes will not compete
3133 	 * for remote pfmemalloc reserves and processes on different nodes
3134 	 * should make reasonable progress.
3135 	 */
3136 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3137 					gfp_zone(gfp_mask), nodemask) {
3138 		if (zone_idx(zone) > ZONE_NORMAL)
3139 			continue;
3140 
3141 		/* Throttle based on the first usable node */
3142 		pgdat = zone->zone_pgdat;
3143 		if (allow_direct_reclaim(pgdat))
3144 			goto out;
3145 		break;
3146 	}
3147 
3148 	/* If no zone was usable by the allocation flags then do not throttle */
3149 	if (!pgdat)
3150 		goto out;
3151 
3152 	/* Account for the throttling */
3153 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3154 
3155 	/*
3156 	 * If the caller cannot enter the filesystem, it's possible that it
3157 	 * is due to the caller holding an FS lock or performing a journal
3158 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3159 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3160 	 * blocked waiting on the same lock. Instead, throttle for up to a
3161 	 * second before continuing.
3162 	 */
3163 	if (!(gfp_mask & __GFP_FS)) {
3164 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3165 			allow_direct_reclaim(pgdat), HZ);
3166 
3167 		goto check_pending;
3168 	}
3169 
3170 	/* Throttle until kswapd wakes the process */
3171 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3172 		allow_direct_reclaim(pgdat));
3173 
3174 check_pending:
3175 	if (fatal_signal_pending(current))
3176 		return true;
3177 
3178 out:
3179 	return false;
3180 }
3181 
3182 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3183 				gfp_t gfp_mask, nodemask_t *nodemask)
3184 {
3185 	unsigned long nr_reclaimed;
3186 	struct scan_control sc = {
3187 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3188 		.gfp_mask = current_gfp_context(gfp_mask),
3189 		.reclaim_idx = gfp_zone(gfp_mask),
3190 		.order = order,
3191 		.nodemask = nodemask,
3192 		.priority = DEF_PRIORITY,
3193 		.may_writepage = !laptop_mode,
3194 		.may_unmap = 1,
3195 		.may_swap = 1,
3196 		.may_shrinkslab = 1,
3197 	};
3198 
3199 	/*
3200 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3201 	 * Confirm they are large enough for max values.
3202 	 */
3203 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3204 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3205 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3206 
3207 	/*
3208 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3209 	 * 1 is returned so that the page allocator does not OOM kill at this
3210 	 * point.
3211 	 */
3212 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3213 		return 1;
3214 
3215 	trace_mm_vmscan_direct_reclaim_begin(order,
3216 				sc.may_writepage,
3217 				sc.gfp_mask,
3218 				sc.reclaim_idx);
3219 
3220 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3221 
3222 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3223 
3224 	return nr_reclaimed;
3225 }
3226 
3227 #ifdef CONFIG_MEMCG
3228 
3229 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3230 						gfp_t gfp_mask, bool noswap,
3231 						pg_data_t *pgdat,
3232 						unsigned long *nr_scanned)
3233 {
3234 	struct scan_control sc = {
3235 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3236 		.target_mem_cgroup = memcg,
3237 		.may_writepage = !laptop_mode,
3238 		.may_unmap = 1,
3239 		.reclaim_idx = MAX_NR_ZONES - 1,
3240 		.may_swap = !noswap,
3241 		.may_shrinkslab = 1,
3242 	};
3243 	unsigned long lru_pages;
3244 
3245 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3246 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3247 
3248 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3249 						      sc.may_writepage,
3250 						      sc.gfp_mask,
3251 						      sc.reclaim_idx);
3252 
3253 	/*
3254 	 * NOTE: Although we can get the priority field, using it
3255 	 * here is not a good idea, since it limits the pages we can scan.
3256 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3257 	 * will pick up pages from other mem cgroup's as well. We hack
3258 	 * the priority and make it zero.
3259 	 */
3260 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3261 
3262 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3263 
3264 	*nr_scanned = sc.nr_scanned;
3265 	return sc.nr_reclaimed;
3266 }
3267 
3268 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3269 					   unsigned long nr_pages,
3270 					   gfp_t gfp_mask,
3271 					   bool may_swap)
3272 {
3273 	struct zonelist *zonelist;
3274 	unsigned long nr_reclaimed;
3275 	unsigned long pflags;
3276 	int nid;
3277 	unsigned int noreclaim_flag;
3278 	struct scan_control sc = {
3279 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3280 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3281 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3282 		.reclaim_idx = MAX_NR_ZONES - 1,
3283 		.target_mem_cgroup = memcg,
3284 		.priority = DEF_PRIORITY,
3285 		.may_writepage = !laptop_mode,
3286 		.may_unmap = 1,
3287 		.may_swap = may_swap,
3288 		.may_shrinkslab = 1,
3289 	};
3290 
3291 	/*
3292 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3293 	 * take care of from where we get pages. So the node where we start the
3294 	 * scan does not need to be the current node.
3295 	 */
3296 	nid = mem_cgroup_select_victim_node(memcg);
3297 
3298 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3299 
3300 	trace_mm_vmscan_memcg_reclaim_begin(0,
3301 					    sc.may_writepage,
3302 					    sc.gfp_mask,
3303 					    sc.reclaim_idx);
3304 
3305 	psi_memstall_enter(&pflags);
3306 	noreclaim_flag = memalloc_noreclaim_save();
3307 
3308 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3309 
3310 	memalloc_noreclaim_restore(noreclaim_flag);
3311 	psi_memstall_leave(&pflags);
3312 
3313 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3314 
3315 	return nr_reclaimed;
3316 }
3317 #endif
3318 
3319 static void age_active_anon(struct pglist_data *pgdat,
3320 				struct scan_control *sc)
3321 {
3322 	struct mem_cgroup *memcg;
3323 
3324 	if (!total_swap_pages)
3325 		return;
3326 
3327 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3328 	do {
3329 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3330 
3331 		if (inactive_list_is_low(lruvec, false, sc, true))
3332 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3333 					   sc, LRU_ACTIVE_ANON);
3334 
3335 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3336 	} while (memcg);
3337 }
3338 
3339 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3340 {
3341 	int i;
3342 	struct zone *zone;
3343 
3344 	/*
3345 	 * Check for watermark boosts top-down as the higher zones
3346 	 * are more likely to be boosted. Both watermarks and boosts
3347 	 * should not be checked at the time time as reclaim would
3348 	 * start prematurely when there is no boosting and a lower
3349 	 * zone is balanced.
3350 	 */
3351 	for (i = classzone_idx; i >= 0; i--) {
3352 		zone = pgdat->node_zones + i;
3353 		if (!managed_zone(zone))
3354 			continue;
3355 
3356 		if (zone->watermark_boost)
3357 			return true;
3358 	}
3359 
3360 	return false;
3361 }
3362 
3363 /*
3364  * Returns true if there is an eligible zone balanced for the request order
3365  * and classzone_idx
3366  */
3367 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3368 {
3369 	int i;
3370 	unsigned long mark = -1;
3371 	struct zone *zone;
3372 
3373 	/*
3374 	 * Check watermarks bottom-up as lower zones are more likely to
3375 	 * meet watermarks.
3376 	 */
3377 	for (i = 0; i <= classzone_idx; i++) {
3378 		zone = pgdat->node_zones + i;
3379 
3380 		if (!managed_zone(zone))
3381 			continue;
3382 
3383 		mark = high_wmark_pages(zone);
3384 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3385 			return true;
3386 	}
3387 
3388 	/*
3389 	 * If a node has no populated zone within classzone_idx, it does not
3390 	 * need balancing by definition. This can happen if a zone-restricted
3391 	 * allocation tries to wake a remote kswapd.
3392 	 */
3393 	if (mark == -1)
3394 		return true;
3395 
3396 	return false;
3397 }
3398 
3399 /* Clear pgdat state for congested, dirty or under writeback. */
3400 static void clear_pgdat_congested(pg_data_t *pgdat)
3401 {
3402 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3403 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3404 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3405 }
3406 
3407 /*
3408  * Prepare kswapd for sleeping. This verifies that there are no processes
3409  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3410  *
3411  * Returns true if kswapd is ready to sleep
3412  */
3413 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3414 {
3415 	/*
3416 	 * The throttled processes are normally woken up in balance_pgdat() as
3417 	 * soon as allow_direct_reclaim() is true. But there is a potential
3418 	 * race between when kswapd checks the watermarks and a process gets
3419 	 * throttled. There is also a potential race if processes get
3420 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3421 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3422 	 * the wake up checks. If kswapd is going to sleep, no process should
3423 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3424 	 * the wake up is premature, processes will wake kswapd and get
3425 	 * throttled again. The difference from wake ups in balance_pgdat() is
3426 	 * that here we are under prepare_to_wait().
3427 	 */
3428 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3429 		wake_up_all(&pgdat->pfmemalloc_wait);
3430 
3431 	/* Hopeless node, leave it to direct reclaim */
3432 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3433 		return true;
3434 
3435 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3436 		clear_pgdat_congested(pgdat);
3437 		return true;
3438 	}
3439 
3440 	return false;
3441 }
3442 
3443 /*
3444  * kswapd shrinks a node of pages that are at or below the highest usable
3445  * zone that is currently unbalanced.
3446  *
3447  * Returns true if kswapd scanned at least the requested number of pages to
3448  * reclaim or if the lack of progress was due to pages under writeback.
3449  * This is used to determine if the scanning priority needs to be raised.
3450  */
3451 static bool kswapd_shrink_node(pg_data_t *pgdat,
3452 			       struct scan_control *sc)
3453 {
3454 	struct zone *zone;
3455 	int z;
3456 
3457 	/* Reclaim a number of pages proportional to the number of zones */
3458 	sc->nr_to_reclaim = 0;
3459 	for (z = 0; z <= sc->reclaim_idx; z++) {
3460 		zone = pgdat->node_zones + z;
3461 		if (!managed_zone(zone))
3462 			continue;
3463 
3464 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3465 	}
3466 
3467 	/*
3468 	 * Historically care was taken to put equal pressure on all zones but
3469 	 * now pressure is applied based on node LRU order.
3470 	 */
3471 	shrink_node(pgdat, sc);
3472 
3473 	/*
3474 	 * Fragmentation may mean that the system cannot be rebalanced for
3475 	 * high-order allocations. If twice the allocation size has been
3476 	 * reclaimed then recheck watermarks only at order-0 to prevent
3477 	 * excessive reclaim. Assume that a process requested a high-order
3478 	 * can direct reclaim/compact.
3479 	 */
3480 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3481 		sc->order = 0;
3482 
3483 	return sc->nr_scanned >= sc->nr_to_reclaim;
3484 }
3485 
3486 /*
3487  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3488  * that are eligible for use by the caller until at least one zone is
3489  * balanced.
3490  *
3491  * Returns the order kswapd finished reclaiming at.
3492  *
3493  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3494  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3495  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3496  * or lower is eligible for reclaim until at least one usable zone is
3497  * balanced.
3498  */
3499 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3500 {
3501 	int i;
3502 	unsigned long nr_soft_reclaimed;
3503 	unsigned long nr_soft_scanned;
3504 	unsigned long pflags;
3505 	unsigned long nr_boost_reclaim;
3506 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3507 	bool boosted;
3508 	struct zone *zone;
3509 	struct scan_control sc = {
3510 		.gfp_mask = GFP_KERNEL,
3511 		.order = order,
3512 		.may_unmap = 1,
3513 	};
3514 
3515 	psi_memstall_enter(&pflags);
3516 	__fs_reclaim_acquire();
3517 
3518 	count_vm_event(PAGEOUTRUN);
3519 
3520 	/*
3521 	 * Account for the reclaim boost. Note that the zone boost is left in
3522 	 * place so that parallel allocations that are near the watermark will
3523 	 * stall or direct reclaim until kswapd is finished.
3524 	 */
3525 	nr_boost_reclaim = 0;
3526 	for (i = 0; i <= classzone_idx; i++) {
3527 		zone = pgdat->node_zones + i;
3528 		if (!managed_zone(zone))
3529 			continue;
3530 
3531 		nr_boost_reclaim += zone->watermark_boost;
3532 		zone_boosts[i] = zone->watermark_boost;
3533 	}
3534 	boosted = nr_boost_reclaim;
3535 
3536 restart:
3537 	sc.priority = DEF_PRIORITY;
3538 	do {
3539 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3540 		bool raise_priority = true;
3541 		bool balanced;
3542 		bool ret;
3543 
3544 		sc.reclaim_idx = classzone_idx;
3545 
3546 		/*
3547 		 * If the number of buffer_heads exceeds the maximum allowed
3548 		 * then consider reclaiming from all zones. This has a dual
3549 		 * purpose -- on 64-bit systems it is expected that
3550 		 * buffer_heads are stripped during active rotation. On 32-bit
3551 		 * systems, highmem pages can pin lowmem memory and shrinking
3552 		 * buffers can relieve lowmem pressure. Reclaim may still not
3553 		 * go ahead if all eligible zones for the original allocation
3554 		 * request are balanced to avoid excessive reclaim from kswapd.
3555 		 */
3556 		if (buffer_heads_over_limit) {
3557 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3558 				zone = pgdat->node_zones + i;
3559 				if (!managed_zone(zone))
3560 					continue;
3561 
3562 				sc.reclaim_idx = i;
3563 				break;
3564 			}
3565 		}
3566 
3567 		/*
3568 		 * If the pgdat is imbalanced then ignore boosting and preserve
3569 		 * the watermarks for a later time and restart. Note that the
3570 		 * zone watermarks will be still reset at the end of balancing
3571 		 * on the grounds that the normal reclaim should be enough to
3572 		 * re-evaluate if boosting is required when kswapd next wakes.
3573 		 */
3574 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3575 		if (!balanced && nr_boost_reclaim) {
3576 			nr_boost_reclaim = 0;
3577 			goto restart;
3578 		}
3579 
3580 		/*
3581 		 * If boosting is not active then only reclaim if there are no
3582 		 * eligible zones. Note that sc.reclaim_idx is not used as
3583 		 * buffer_heads_over_limit may have adjusted it.
3584 		 */
3585 		if (!nr_boost_reclaim && balanced)
3586 			goto out;
3587 
3588 		/* Limit the priority of boosting to avoid reclaim writeback */
3589 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3590 			raise_priority = false;
3591 
3592 		/*
3593 		 * Do not writeback or swap pages for boosted reclaim. The
3594 		 * intent is to relieve pressure not issue sub-optimal IO
3595 		 * from reclaim context. If no pages are reclaimed, the
3596 		 * reclaim will be aborted.
3597 		 */
3598 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3599 		sc.may_swap = !nr_boost_reclaim;
3600 		sc.may_shrinkslab = !nr_boost_reclaim;
3601 
3602 		/*
3603 		 * Do some background aging of the anon list, to give
3604 		 * pages a chance to be referenced before reclaiming. All
3605 		 * pages are rotated regardless of classzone as this is
3606 		 * about consistent aging.
3607 		 */
3608 		age_active_anon(pgdat, &sc);
3609 
3610 		/*
3611 		 * If we're getting trouble reclaiming, start doing writepage
3612 		 * even in laptop mode.
3613 		 */
3614 		if (sc.priority < DEF_PRIORITY - 2)
3615 			sc.may_writepage = 1;
3616 
3617 		/* Call soft limit reclaim before calling shrink_node. */
3618 		sc.nr_scanned = 0;
3619 		nr_soft_scanned = 0;
3620 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3621 						sc.gfp_mask, &nr_soft_scanned);
3622 		sc.nr_reclaimed += nr_soft_reclaimed;
3623 
3624 		/*
3625 		 * There should be no need to raise the scanning priority if
3626 		 * enough pages are already being scanned that that high
3627 		 * watermark would be met at 100% efficiency.
3628 		 */
3629 		if (kswapd_shrink_node(pgdat, &sc))
3630 			raise_priority = false;
3631 
3632 		/*
3633 		 * If the low watermark is met there is no need for processes
3634 		 * to be throttled on pfmemalloc_wait as they should not be
3635 		 * able to safely make forward progress. Wake them
3636 		 */
3637 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3638 				allow_direct_reclaim(pgdat))
3639 			wake_up_all(&pgdat->pfmemalloc_wait);
3640 
3641 		/* Check if kswapd should be suspending */
3642 		__fs_reclaim_release();
3643 		ret = try_to_freeze();
3644 		__fs_reclaim_acquire();
3645 		if (ret || kthread_should_stop())
3646 			break;
3647 
3648 		/*
3649 		 * Raise priority if scanning rate is too low or there was no
3650 		 * progress in reclaiming pages
3651 		 */
3652 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3653 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3654 
3655 		/*
3656 		 * If reclaim made no progress for a boost, stop reclaim as
3657 		 * IO cannot be queued and it could be an infinite loop in
3658 		 * extreme circumstances.
3659 		 */
3660 		if (nr_boost_reclaim && !nr_reclaimed)
3661 			break;
3662 
3663 		if (raise_priority || !nr_reclaimed)
3664 			sc.priority--;
3665 	} while (sc.priority >= 1);
3666 
3667 	if (!sc.nr_reclaimed)
3668 		pgdat->kswapd_failures++;
3669 
3670 out:
3671 	/* If reclaim was boosted, account for the reclaim done in this pass */
3672 	if (boosted) {
3673 		unsigned long flags;
3674 
3675 		for (i = 0; i <= classzone_idx; i++) {
3676 			if (!zone_boosts[i])
3677 				continue;
3678 
3679 			/* Increments are under the zone lock */
3680 			zone = pgdat->node_zones + i;
3681 			spin_lock_irqsave(&zone->lock, flags);
3682 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3683 			spin_unlock_irqrestore(&zone->lock, flags);
3684 		}
3685 
3686 		/*
3687 		 * As there is now likely space, wakeup kcompact to defragment
3688 		 * pageblocks.
3689 		 */
3690 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3691 	}
3692 
3693 	snapshot_refaults(NULL, pgdat);
3694 	__fs_reclaim_release();
3695 	psi_memstall_leave(&pflags);
3696 	/*
3697 	 * Return the order kswapd stopped reclaiming at as
3698 	 * prepare_kswapd_sleep() takes it into account. If another caller
3699 	 * entered the allocator slow path while kswapd was awake, order will
3700 	 * remain at the higher level.
3701 	 */
3702 	return sc.order;
3703 }
3704 
3705 /*
3706  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3707  * allocation request woke kswapd for. When kswapd has not woken recently,
3708  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3709  * given classzone and returns it or the highest classzone index kswapd
3710  * was recently woke for.
3711  */
3712 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3713 					   enum zone_type classzone_idx)
3714 {
3715 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3716 		return classzone_idx;
3717 
3718 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3719 }
3720 
3721 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3722 				unsigned int classzone_idx)
3723 {
3724 	long remaining = 0;
3725 	DEFINE_WAIT(wait);
3726 
3727 	if (freezing(current) || kthread_should_stop())
3728 		return;
3729 
3730 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3731 
3732 	/*
3733 	 * Try to sleep for a short interval. Note that kcompactd will only be
3734 	 * woken if it is possible to sleep for a short interval. This is
3735 	 * deliberate on the assumption that if reclaim cannot keep an
3736 	 * eligible zone balanced that it's also unlikely that compaction will
3737 	 * succeed.
3738 	 */
3739 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3740 		/*
3741 		 * Compaction records what page blocks it recently failed to
3742 		 * isolate pages from and skips them in the future scanning.
3743 		 * When kswapd is going to sleep, it is reasonable to assume
3744 		 * that pages and compaction may succeed so reset the cache.
3745 		 */
3746 		reset_isolation_suitable(pgdat);
3747 
3748 		/*
3749 		 * We have freed the memory, now we should compact it to make
3750 		 * allocation of the requested order possible.
3751 		 */
3752 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3753 
3754 		remaining = schedule_timeout(HZ/10);
3755 
3756 		/*
3757 		 * If woken prematurely then reset kswapd_classzone_idx and
3758 		 * order. The values will either be from a wakeup request or
3759 		 * the previous request that slept prematurely.
3760 		 */
3761 		if (remaining) {
3762 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3763 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3764 		}
3765 
3766 		finish_wait(&pgdat->kswapd_wait, &wait);
3767 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3768 	}
3769 
3770 	/*
3771 	 * After a short sleep, check if it was a premature sleep. If not, then
3772 	 * go fully to sleep until explicitly woken up.
3773 	 */
3774 	if (!remaining &&
3775 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3776 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3777 
3778 		/*
3779 		 * vmstat counters are not perfectly accurate and the estimated
3780 		 * value for counters such as NR_FREE_PAGES can deviate from the
3781 		 * true value by nr_online_cpus * threshold. To avoid the zone
3782 		 * watermarks being breached while under pressure, we reduce the
3783 		 * per-cpu vmstat threshold while kswapd is awake and restore
3784 		 * them before going back to sleep.
3785 		 */
3786 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3787 
3788 		if (!kthread_should_stop())
3789 			schedule();
3790 
3791 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3792 	} else {
3793 		if (remaining)
3794 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3795 		else
3796 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3797 	}
3798 	finish_wait(&pgdat->kswapd_wait, &wait);
3799 }
3800 
3801 /*
3802  * The background pageout daemon, started as a kernel thread
3803  * from the init process.
3804  *
3805  * This basically trickles out pages so that we have _some_
3806  * free memory available even if there is no other activity
3807  * that frees anything up. This is needed for things like routing
3808  * etc, where we otherwise might have all activity going on in
3809  * asynchronous contexts that cannot page things out.
3810  *
3811  * If there are applications that are active memory-allocators
3812  * (most normal use), this basically shouldn't matter.
3813  */
3814 static int kswapd(void *p)
3815 {
3816 	unsigned int alloc_order, reclaim_order;
3817 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3818 	pg_data_t *pgdat = (pg_data_t*)p;
3819 	struct task_struct *tsk = current;
3820 
3821 	struct reclaim_state reclaim_state = {
3822 		.reclaimed_slab = 0,
3823 	};
3824 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3825 
3826 	if (!cpumask_empty(cpumask))
3827 		set_cpus_allowed_ptr(tsk, cpumask);
3828 	current->reclaim_state = &reclaim_state;
3829 
3830 	/*
3831 	 * Tell the memory management that we're a "memory allocator",
3832 	 * and that if we need more memory we should get access to it
3833 	 * regardless (see "__alloc_pages()"). "kswapd" should
3834 	 * never get caught in the normal page freeing logic.
3835 	 *
3836 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3837 	 * you need a small amount of memory in order to be able to
3838 	 * page out something else, and this flag essentially protects
3839 	 * us from recursively trying to free more memory as we're
3840 	 * trying to free the first piece of memory in the first place).
3841 	 */
3842 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3843 	set_freezable();
3844 
3845 	pgdat->kswapd_order = 0;
3846 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3847 	for ( ; ; ) {
3848 		bool ret;
3849 
3850 		alloc_order = reclaim_order = pgdat->kswapd_order;
3851 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3852 
3853 kswapd_try_sleep:
3854 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3855 					classzone_idx);
3856 
3857 		/* Read the new order and classzone_idx */
3858 		alloc_order = reclaim_order = pgdat->kswapd_order;
3859 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3860 		pgdat->kswapd_order = 0;
3861 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3862 
3863 		ret = try_to_freeze();
3864 		if (kthread_should_stop())
3865 			break;
3866 
3867 		/*
3868 		 * We can speed up thawing tasks if we don't call balance_pgdat
3869 		 * after returning from the refrigerator
3870 		 */
3871 		if (ret)
3872 			continue;
3873 
3874 		/*
3875 		 * Reclaim begins at the requested order but if a high-order
3876 		 * reclaim fails then kswapd falls back to reclaiming for
3877 		 * order-0. If that happens, kswapd will consider sleeping
3878 		 * for the order it finished reclaiming at (reclaim_order)
3879 		 * but kcompactd is woken to compact for the original
3880 		 * request (alloc_order).
3881 		 */
3882 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3883 						alloc_order);
3884 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3885 		if (reclaim_order < alloc_order)
3886 			goto kswapd_try_sleep;
3887 	}
3888 
3889 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3890 	current->reclaim_state = NULL;
3891 
3892 	return 0;
3893 }
3894 
3895 /*
3896  * A zone is low on free memory or too fragmented for high-order memory.  If
3897  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3898  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3899  * has failed or is not needed, still wake up kcompactd if only compaction is
3900  * needed.
3901  */
3902 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3903 		   enum zone_type classzone_idx)
3904 {
3905 	pg_data_t *pgdat;
3906 
3907 	if (!managed_zone(zone))
3908 		return;
3909 
3910 	if (!cpuset_zone_allowed(zone, gfp_flags))
3911 		return;
3912 	pgdat = zone->zone_pgdat;
3913 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3914 							   classzone_idx);
3915 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3916 	if (!waitqueue_active(&pgdat->kswapd_wait))
3917 		return;
3918 
3919 	/* Hopeless node, leave it to direct reclaim if possible */
3920 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3921 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3922 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3923 		/*
3924 		 * There may be plenty of free memory available, but it's too
3925 		 * fragmented for high-order allocations.  Wake up kcompactd
3926 		 * and rely on compaction_suitable() to determine if it's
3927 		 * needed.  If it fails, it will defer subsequent attempts to
3928 		 * ratelimit its work.
3929 		 */
3930 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3931 			wakeup_kcompactd(pgdat, order, classzone_idx);
3932 		return;
3933 	}
3934 
3935 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3936 				      gfp_flags);
3937 	wake_up_interruptible(&pgdat->kswapd_wait);
3938 }
3939 
3940 #ifdef CONFIG_HIBERNATION
3941 /*
3942  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3943  * freed pages.
3944  *
3945  * Rather than trying to age LRUs the aim is to preserve the overall
3946  * LRU order by reclaiming preferentially
3947  * inactive > active > active referenced > active mapped
3948  */
3949 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3950 {
3951 	struct reclaim_state reclaim_state;
3952 	struct scan_control sc = {
3953 		.nr_to_reclaim = nr_to_reclaim,
3954 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3955 		.reclaim_idx = MAX_NR_ZONES - 1,
3956 		.priority = DEF_PRIORITY,
3957 		.may_writepage = 1,
3958 		.may_unmap = 1,
3959 		.may_swap = 1,
3960 		.hibernation_mode = 1,
3961 	};
3962 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3963 	struct task_struct *p = current;
3964 	unsigned long nr_reclaimed;
3965 	unsigned int noreclaim_flag;
3966 
3967 	fs_reclaim_acquire(sc.gfp_mask);
3968 	noreclaim_flag = memalloc_noreclaim_save();
3969 	reclaim_state.reclaimed_slab = 0;
3970 	p->reclaim_state = &reclaim_state;
3971 
3972 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3973 
3974 	p->reclaim_state = NULL;
3975 	memalloc_noreclaim_restore(noreclaim_flag);
3976 	fs_reclaim_release(sc.gfp_mask);
3977 
3978 	return nr_reclaimed;
3979 }
3980 #endif /* CONFIG_HIBERNATION */
3981 
3982 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3983    not required for correctness.  So if the last cpu in a node goes
3984    away, we get changed to run anywhere: as the first one comes back,
3985    restore their cpu bindings. */
3986 static int kswapd_cpu_online(unsigned int cpu)
3987 {
3988 	int nid;
3989 
3990 	for_each_node_state(nid, N_MEMORY) {
3991 		pg_data_t *pgdat = NODE_DATA(nid);
3992 		const struct cpumask *mask;
3993 
3994 		mask = cpumask_of_node(pgdat->node_id);
3995 
3996 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3997 			/* One of our CPUs online: restore mask */
3998 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3999 	}
4000 	return 0;
4001 }
4002 
4003 /*
4004  * This kswapd start function will be called by init and node-hot-add.
4005  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4006  */
4007 int kswapd_run(int nid)
4008 {
4009 	pg_data_t *pgdat = NODE_DATA(nid);
4010 	int ret = 0;
4011 
4012 	if (pgdat->kswapd)
4013 		return 0;
4014 
4015 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4016 	if (IS_ERR(pgdat->kswapd)) {
4017 		/* failure at boot is fatal */
4018 		BUG_ON(system_state < SYSTEM_RUNNING);
4019 		pr_err("Failed to start kswapd on node %d\n", nid);
4020 		ret = PTR_ERR(pgdat->kswapd);
4021 		pgdat->kswapd = NULL;
4022 	}
4023 	return ret;
4024 }
4025 
4026 /*
4027  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4028  * hold mem_hotplug_begin/end().
4029  */
4030 void kswapd_stop(int nid)
4031 {
4032 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4033 
4034 	if (kswapd) {
4035 		kthread_stop(kswapd);
4036 		NODE_DATA(nid)->kswapd = NULL;
4037 	}
4038 }
4039 
4040 static int __init kswapd_init(void)
4041 {
4042 	int nid, ret;
4043 
4044 	swap_setup();
4045 	for_each_node_state(nid, N_MEMORY)
4046  		kswapd_run(nid);
4047 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4048 					"mm/vmscan:online", kswapd_cpu_online,
4049 					NULL);
4050 	WARN_ON(ret < 0);
4051 	return 0;
4052 }
4053 
4054 module_init(kswapd_init)
4055 
4056 #ifdef CONFIG_NUMA
4057 /*
4058  * Node reclaim mode
4059  *
4060  * If non-zero call node_reclaim when the number of free pages falls below
4061  * the watermarks.
4062  */
4063 int node_reclaim_mode __read_mostly;
4064 
4065 #define RECLAIM_OFF 0
4066 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4067 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4068 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4069 
4070 /*
4071  * Priority for NODE_RECLAIM. This determines the fraction of pages
4072  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4073  * a zone.
4074  */
4075 #define NODE_RECLAIM_PRIORITY 4
4076 
4077 /*
4078  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4079  * occur.
4080  */
4081 int sysctl_min_unmapped_ratio = 1;
4082 
4083 /*
4084  * If the number of slab pages in a zone grows beyond this percentage then
4085  * slab reclaim needs to occur.
4086  */
4087 int sysctl_min_slab_ratio = 5;
4088 
4089 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4090 {
4091 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4092 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4093 		node_page_state(pgdat, NR_ACTIVE_FILE);
4094 
4095 	/*
4096 	 * It's possible for there to be more file mapped pages than
4097 	 * accounted for by the pages on the file LRU lists because
4098 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4099 	 */
4100 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4101 }
4102 
4103 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4104 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4105 {
4106 	unsigned long nr_pagecache_reclaimable;
4107 	unsigned long delta = 0;
4108 
4109 	/*
4110 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4111 	 * potentially reclaimable. Otherwise, we have to worry about
4112 	 * pages like swapcache and node_unmapped_file_pages() provides
4113 	 * a better estimate
4114 	 */
4115 	if (node_reclaim_mode & RECLAIM_UNMAP)
4116 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4117 	else
4118 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4119 
4120 	/* If we can't clean pages, remove dirty pages from consideration */
4121 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4122 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4123 
4124 	/* Watch for any possible underflows due to delta */
4125 	if (unlikely(delta > nr_pagecache_reclaimable))
4126 		delta = nr_pagecache_reclaimable;
4127 
4128 	return nr_pagecache_reclaimable - delta;
4129 }
4130 
4131 /*
4132  * Try to free up some pages from this node through reclaim.
4133  */
4134 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4135 {
4136 	/* Minimum pages needed in order to stay on node */
4137 	const unsigned long nr_pages = 1 << order;
4138 	struct task_struct *p = current;
4139 	struct reclaim_state reclaim_state;
4140 	unsigned int noreclaim_flag;
4141 	struct scan_control sc = {
4142 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4143 		.gfp_mask = current_gfp_context(gfp_mask),
4144 		.order = order,
4145 		.priority = NODE_RECLAIM_PRIORITY,
4146 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4147 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4148 		.may_swap = 1,
4149 		.reclaim_idx = gfp_zone(gfp_mask),
4150 	};
4151 
4152 	cond_resched();
4153 	fs_reclaim_acquire(sc.gfp_mask);
4154 	/*
4155 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4156 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4157 	 * and RECLAIM_UNMAP.
4158 	 */
4159 	noreclaim_flag = memalloc_noreclaim_save();
4160 	p->flags |= PF_SWAPWRITE;
4161 	reclaim_state.reclaimed_slab = 0;
4162 	p->reclaim_state = &reclaim_state;
4163 
4164 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4165 		/*
4166 		 * Free memory by calling shrink node with increasing
4167 		 * priorities until we have enough memory freed.
4168 		 */
4169 		do {
4170 			shrink_node(pgdat, &sc);
4171 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4172 	}
4173 
4174 	p->reclaim_state = NULL;
4175 	current->flags &= ~PF_SWAPWRITE;
4176 	memalloc_noreclaim_restore(noreclaim_flag);
4177 	fs_reclaim_release(sc.gfp_mask);
4178 	return sc.nr_reclaimed >= nr_pages;
4179 }
4180 
4181 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4182 {
4183 	int ret;
4184 
4185 	/*
4186 	 * Node reclaim reclaims unmapped file backed pages and
4187 	 * slab pages if we are over the defined limits.
4188 	 *
4189 	 * A small portion of unmapped file backed pages is needed for
4190 	 * file I/O otherwise pages read by file I/O will be immediately
4191 	 * thrown out if the node is overallocated. So we do not reclaim
4192 	 * if less than a specified percentage of the node is used by
4193 	 * unmapped file backed pages.
4194 	 */
4195 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4196 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4197 		return NODE_RECLAIM_FULL;
4198 
4199 	/*
4200 	 * Do not scan if the allocation should not be delayed.
4201 	 */
4202 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4203 		return NODE_RECLAIM_NOSCAN;
4204 
4205 	/*
4206 	 * Only run node reclaim on the local node or on nodes that do not
4207 	 * have associated processors. This will favor the local processor
4208 	 * over remote processors and spread off node memory allocations
4209 	 * as wide as possible.
4210 	 */
4211 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4212 		return NODE_RECLAIM_NOSCAN;
4213 
4214 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4215 		return NODE_RECLAIM_NOSCAN;
4216 
4217 	ret = __node_reclaim(pgdat, gfp_mask, order);
4218 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4219 
4220 	if (!ret)
4221 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4222 
4223 	return ret;
4224 }
4225 #endif
4226 
4227 /*
4228  * page_evictable - test whether a page is evictable
4229  * @page: the page to test
4230  *
4231  * Test whether page is evictable--i.e., should be placed on active/inactive
4232  * lists vs unevictable list.
4233  *
4234  * Reasons page might not be evictable:
4235  * (1) page's mapping marked unevictable
4236  * (2) page is part of an mlocked VMA
4237  *
4238  */
4239 int page_evictable(struct page *page)
4240 {
4241 	int ret;
4242 
4243 	/* Prevent address_space of inode and swap cache from being freed */
4244 	rcu_read_lock();
4245 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4246 	rcu_read_unlock();
4247 	return ret;
4248 }
4249 
4250 /**
4251  * check_move_unevictable_pages - check pages for evictability and move to
4252  * appropriate zone lru list
4253  * @pvec: pagevec with lru pages to check
4254  *
4255  * Checks pages for evictability, if an evictable page is in the unevictable
4256  * lru list, moves it to the appropriate evictable lru list. This function
4257  * should be only used for lru pages.
4258  */
4259 void check_move_unevictable_pages(struct pagevec *pvec)
4260 {
4261 	struct lruvec *lruvec;
4262 	struct pglist_data *pgdat = NULL;
4263 	int pgscanned = 0;
4264 	int pgrescued = 0;
4265 	int i;
4266 
4267 	for (i = 0; i < pvec->nr; i++) {
4268 		struct page *page = pvec->pages[i];
4269 		struct pglist_data *pagepgdat = page_pgdat(page);
4270 
4271 		pgscanned++;
4272 		if (pagepgdat != pgdat) {
4273 			if (pgdat)
4274 				spin_unlock_irq(&pgdat->lru_lock);
4275 			pgdat = pagepgdat;
4276 			spin_lock_irq(&pgdat->lru_lock);
4277 		}
4278 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4279 
4280 		if (!PageLRU(page) || !PageUnevictable(page))
4281 			continue;
4282 
4283 		if (page_evictable(page)) {
4284 			enum lru_list lru = page_lru_base_type(page);
4285 
4286 			VM_BUG_ON_PAGE(PageActive(page), page);
4287 			ClearPageUnevictable(page);
4288 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4289 			add_page_to_lru_list(page, lruvec, lru);
4290 			pgrescued++;
4291 		}
4292 	}
4293 
4294 	if (pgdat) {
4295 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4296 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4297 		spin_unlock_irq(&pgdat->lru_lock);
4298 	}
4299 }
4300 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4301