xref: /openbmc/linux/mm/vmscan.c (revision 6189f1b0)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* How many pages shrink_list() should reclaim */
63 	unsigned long nr_to_reclaim;
64 
65 	/* This context's GFP mask */
66 	gfp_t gfp_mask;
67 
68 	/* Allocation order */
69 	int order;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	unsigned int may_writepage:1;
87 
88 	/* Can mapped pages be reclaimed? */
89 	unsigned int may_unmap:1;
90 
91 	/* Can pages be swapped as part of reclaim? */
92 	unsigned int may_swap:1;
93 
94 	/* Can cgroups be reclaimed below their normal consumption range? */
95 	unsigned int may_thrash:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Incremented by the number of inactive pages that were scanned */
103 	unsigned long nr_scanned;
104 
105 	/* Number of pages freed so far during a call to shrink_zones() */
106 	unsigned long nr_reclaimed;
107 };
108 
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110 
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetch(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field)			\
127 	do {								\
128 		if ((_page)->lru.prev != _base) {			\
129 			struct page *prev;				\
130 									\
131 			prev = lru_to_page(&(_page->lru));		\
132 			prefetchw(&prev->_field);			\
133 		}							\
134 	} while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138 
139 /*
140  * From 0 .. 100.  Higher means more swappy.
141  */
142 int vm_swappiness = 60;
143 /*
144  * The total number of pages which are beyond the high watermark within all
145  * zones.
146  */
147 unsigned long vm_total_pages;
148 
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151 
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 	return !sc->target_mem_cgroup;
156 }
157 
158 /**
159  * sane_reclaim - is the usual dirty throttling mechanism operational?
160  * @sc: scan_control in question
161  *
162  * The normal page dirty throttling mechanism in balance_dirty_pages() is
163  * completely broken with the legacy memcg and direct stalling in
164  * shrink_page_list() is used for throttling instead, which lacks all the
165  * niceties such as fairness, adaptive pausing, bandwidth proportional
166  * allocation and configurability.
167  *
168  * This function tests whether the vmscan currently in progress can assume
169  * that the normal dirty throttling mechanism is operational.
170  */
171 static bool sane_reclaim(struct scan_control *sc)
172 {
173 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
174 
175 	if (!memcg)
176 		return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 	if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup))
179 		return true;
180 #endif
181 	return false;
182 }
183 #else
184 static bool global_reclaim(struct scan_control *sc)
185 {
186 	return true;
187 }
188 
189 static bool sane_reclaim(struct scan_control *sc)
190 {
191 	return true;
192 }
193 #endif
194 
195 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 {
197 	int nr;
198 
199 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 	     zone_page_state(zone, NR_INACTIVE_FILE);
201 
202 	if (get_nr_swap_pages() > 0)
203 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 		      zone_page_state(zone, NR_INACTIVE_ANON);
205 
206 	return nr;
207 }
208 
209 bool zone_reclaimable(struct zone *zone)
210 {
211 	return zone_page_state(zone, NR_PAGES_SCANNED) <
212 		zone_reclaimable_pages(zone) * 6;
213 }
214 
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 	if (!mem_cgroup_disabled())
218 		return mem_cgroup_get_lru_size(lruvec, lru);
219 
220 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222 
223 /*
224  * Add a shrinker callback to be called from the vm.
225  */
226 int register_shrinker(struct shrinker *shrinker)
227 {
228 	size_t size = sizeof(*shrinker->nr_deferred);
229 
230 	/*
231 	 * If we only have one possible node in the system anyway, save
232 	 * ourselves the trouble and disable NUMA aware behavior. This way we
233 	 * will save memory and some small loop time later.
234 	 */
235 	if (nr_node_ids == 1)
236 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237 
238 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 		size *= nr_node_ids;
240 
241 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 	if (!shrinker->nr_deferred)
243 		return -ENOMEM;
244 
245 	down_write(&shrinker_rwsem);
246 	list_add_tail(&shrinker->list, &shrinker_list);
247 	up_write(&shrinker_rwsem);
248 	return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251 
252 /*
253  * Remove one
254  */
255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 	down_write(&shrinker_rwsem);
258 	list_del(&shrinker->list);
259 	up_write(&shrinker_rwsem);
260 	kfree(shrinker->nr_deferred);
261 }
262 EXPORT_SYMBOL(unregister_shrinker);
263 
264 #define SHRINK_BATCH 128
265 
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 				    struct shrinker *shrinker,
268 				    unsigned long nr_scanned,
269 				    unsigned long nr_eligible)
270 {
271 	unsigned long freed = 0;
272 	unsigned long long delta;
273 	long total_scan;
274 	long freeable;
275 	long nr;
276 	long new_nr;
277 	int nid = shrinkctl->nid;
278 	long batch_size = shrinker->batch ? shrinker->batch
279 					  : SHRINK_BATCH;
280 
281 	freeable = shrinker->count_objects(shrinker, shrinkctl);
282 	if (freeable == 0)
283 		return 0;
284 
285 	/*
286 	 * copy the current shrinker scan count into a local variable
287 	 * and zero it so that other concurrent shrinker invocations
288 	 * don't also do this scanning work.
289 	 */
290 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291 
292 	total_scan = nr;
293 	delta = (4 * nr_scanned) / shrinker->seeks;
294 	delta *= freeable;
295 	do_div(delta, nr_eligible + 1);
296 	total_scan += delta;
297 	if (total_scan < 0) {
298 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
299 		       shrinker->scan_objects, total_scan);
300 		total_scan = freeable;
301 	}
302 
303 	/*
304 	 * We need to avoid excessive windup on filesystem shrinkers
305 	 * due to large numbers of GFP_NOFS allocations causing the
306 	 * shrinkers to return -1 all the time. This results in a large
307 	 * nr being built up so when a shrink that can do some work
308 	 * comes along it empties the entire cache due to nr >>>
309 	 * freeable. This is bad for sustaining a working set in
310 	 * memory.
311 	 *
312 	 * Hence only allow the shrinker to scan the entire cache when
313 	 * a large delta change is calculated directly.
314 	 */
315 	if (delta < freeable / 4)
316 		total_scan = min(total_scan, freeable / 2);
317 
318 	/*
319 	 * Avoid risking looping forever due to too large nr value:
320 	 * never try to free more than twice the estimate number of
321 	 * freeable entries.
322 	 */
323 	if (total_scan > freeable * 2)
324 		total_scan = freeable * 2;
325 
326 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 				   nr_scanned, nr_eligible,
328 				   freeable, delta, total_scan);
329 
330 	/*
331 	 * Normally, we should not scan less than batch_size objects in one
332 	 * pass to avoid too frequent shrinker calls, but if the slab has less
333 	 * than batch_size objects in total and we are really tight on memory,
334 	 * we will try to reclaim all available objects, otherwise we can end
335 	 * up failing allocations although there are plenty of reclaimable
336 	 * objects spread over several slabs with usage less than the
337 	 * batch_size.
338 	 *
339 	 * We detect the "tight on memory" situations by looking at the total
340 	 * number of objects we want to scan (total_scan). If it is greater
341 	 * than the total number of objects on slab (freeable), we must be
342 	 * scanning at high prio and therefore should try to reclaim as much as
343 	 * possible.
344 	 */
345 	while (total_scan >= batch_size ||
346 	       total_scan >= freeable) {
347 		unsigned long ret;
348 		unsigned long nr_to_scan = min(batch_size, total_scan);
349 
350 		shrinkctl->nr_to_scan = nr_to_scan;
351 		ret = shrinker->scan_objects(shrinker, shrinkctl);
352 		if (ret == SHRINK_STOP)
353 			break;
354 		freed += ret;
355 
356 		count_vm_events(SLABS_SCANNED, nr_to_scan);
357 		total_scan -= nr_to_scan;
358 
359 		cond_resched();
360 	}
361 
362 	/*
363 	 * move the unused scan count back into the shrinker in a
364 	 * manner that handles concurrent updates. If we exhausted the
365 	 * scan, there is no need to do an update.
366 	 */
367 	if (total_scan > 0)
368 		new_nr = atomic_long_add_return(total_scan,
369 						&shrinker->nr_deferred[nid]);
370 	else
371 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372 
373 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
374 	return freed;
375 }
376 
377 /**
378  * shrink_slab - shrink slab caches
379  * @gfp_mask: allocation context
380  * @nid: node whose slab caches to target
381  * @memcg: memory cgroup whose slab caches to target
382  * @nr_scanned: pressure numerator
383  * @nr_eligible: pressure denominator
384  *
385  * Call the shrink functions to age shrinkable caches.
386  *
387  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388  * unaware shrinkers will receive a node id of 0 instead.
389  *
390  * @memcg specifies the memory cgroup to target. If it is not NULL,
391  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392  * objects from the memory cgroup specified. Otherwise all shrinkers
393  * are called, and memcg aware shrinkers are supposed to scan the
394  * global list then.
395  *
396  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397  * the available objects should be scanned.  Page reclaim for example
398  * passes the number of pages scanned and the number of pages on the
399  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400  * when it encountered mapped pages.  The ratio is further biased by
401  * the ->seeks setting of the shrink function, which indicates the
402  * cost to recreate an object relative to that of an LRU page.
403  *
404  * Returns the number of reclaimed slab objects.
405  */
406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 				 struct mem_cgroup *memcg,
408 				 unsigned long nr_scanned,
409 				 unsigned long nr_eligible)
410 {
411 	struct shrinker *shrinker;
412 	unsigned long freed = 0;
413 
414 	if (memcg && !memcg_kmem_is_active(memcg))
415 		return 0;
416 
417 	if (nr_scanned == 0)
418 		nr_scanned = SWAP_CLUSTER_MAX;
419 
420 	if (!down_read_trylock(&shrinker_rwsem)) {
421 		/*
422 		 * If we would return 0, our callers would understand that we
423 		 * have nothing else to shrink and give up trying. By returning
424 		 * 1 we keep it going and assume we'll be able to shrink next
425 		 * time.
426 		 */
427 		freed = 1;
428 		goto out;
429 	}
430 
431 	list_for_each_entry(shrinker, &shrinker_list, list) {
432 		struct shrink_control sc = {
433 			.gfp_mask = gfp_mask,
434 			.nid = nid,
435 			.memcg = memcg,
436 		};
437 
438 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 			continue;
440 
441 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 			sc.nid = 0;
443 
444 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
445 	}
446 
447 	up_read(&shrinker_rwsem);
448 out:
449 	cond_resched();
450 	return freed;
451 }
452 
453 void drop_slab_node(int nid)
454 {
455 	unsigned long freed;
456 
457 	do {
458 		struct mem_cgroup *memcg = NULL;
459 
460 		freed = 0;
461 		do {
462 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 					     1000, 1000);
464 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 	} while (freed > 10);
466 }
467 
468 void drop_slab(void)
469 {
470 	int nid;
471 
472 	for_each_online_node(nid)
473 		drop_slab_node(nid);
474 }
475 
476 static inline int is_page_cache_freeable(struct page *page)
477 {
478 	/*
479 	 * A freeable page cache page is referenced only by the caller
480 	 * that isolated the page, the page cache radix tree and
481 	 * optional buffer heads at page->private.
482 	 */
483 	return page_count(page) - page_has_private(page) == 2;
484 }
485 
486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
487 {
488 	if (current->flags & PF_SWAPWRITE)
489 		return 1;
490 	if (!inode_write_congested(inode))
491 		return 1;
492 	if (inode_to_bdi(inode) == current->backing_dev_info)
493 		return 1;
494 	return 0;
495 }
496 
497 /*
498  * We detected a synchronous write error writing a page out.  Probably
499  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
500  * fsync(), msync() or close().
501  *
502  * The tricky part is that after writepage we cannot touch the mapping: nothing
503  * prevents it from being freed up.  But we have a ref on the page and once
504  * that page is locked, the mapping is pinned.
505  *
506  * We're allowed to run sleeping lock_page() here because we know the caller has
507  * __GFP_FS.
508  */
509 static void handle_write_error(struct address_space *mapping,
510 				struct page *page, int error)
511 {
512 	lock_page(page);
513 	if (page_mapping(page) == mapping)
514 		mapping_set_error(mapping, error);
515 	unlock_page(page);
516 }
517 
518 /* possible outcome of pageout() */
519 typedef enum {
520 	/* failed to write page out, page is locked */
521 	PAGE_KEEP,
522 	/* move page to the active list, page is locked */
523 	PAGE_ACTIVATE,
524 	/* page has been sent to the disk successfully, page is unlocked */
525 	PAGE_SUCCESS,
526 	/* page is clean and locked */
527 	PAGE_CLEAN,
528 } pageout_t;
529 
530 /*
531  * pageout is called by shrink_page_list() for each dirty page.
532  * Calls ->writepage().
533  */
534 static pageout_t pageout(struct page *page, struct address_space *mapping,
535 			 struct scan_control *sc)
536 {
537 	/*
538 	 * If the page is dirty, only perform writeback if that write
539 	 * will be non-blocking.  To prevent this allocation from being
540 	 * stalled by pagecache activity.  But note that there may be
541 	 * stalls if we need to run get_block().  We could test
542 	 * PagePrivate for that.
543 	 *
544 	 * If this process is currently in __generic_file_write_iter() against
545 	 * this page's queue, we can perform writeback even if that
546 	 * will block.
547 	 *
548 	 * If the page is swapcache, write it back even if that would
549 	 * block, for some throttling. This happens by accident, because
550 	 * swap_backing_dev_info is bust: it doesn't reflect the
551 	 * congestion state of the swapdevs.  Easy to fix, if needed.
552 	 */
553 	if (!is_page_cache_freeable(page))
554 		return PAGE_KEEP;
555 	if (!mapping) {
556 		/*
557 		 * Some data journaling orphaned pages can have
558 		 * page->mapping == NULL while being dirty with clean buffers.
559 		 */
560 		if (page_has_private(page)) {
561 			if (try_to_free_buffers(page)) {
562 				ClearPageDirty(page);
563 				pr_info("%s: orphaned page\n", __func__);
564 				return PAGE_CLEAN;
565 			}
566 		}
567 		return PAGE_KEEP;
568 	}
569 	if (mapping->a_ops->writepage == NULL)
570 		return PAGE_ACTIVATE;
571 	if (!may_write_to_inode(mapping->host, sc))
572 		return PAGE_KEEP;
573 
574 	if (clear_page_dirty_for_io(page)) {
575 		int res;
576 		struct writeback_control wbc = {
577 			.sync_mode = WB_SYNC_NONE,
578 			.nr_to_write = SWAP_CLUSTER_MAX,
579 			.range_start = 0,
580 			.range_end = LLONG_MAX,
581 			.for_reclaim = 1,
582 		};
583 
584 		SetPageReclaim(page);
585 		res = mapping->a_ops->writepage(page, &wbc);
586 		if (res < 0)
587 			handle_write_error(mapping, page, res);
588 		if (res == AOP_WRITEPAGE_ACTIVATE) {
589 			ClearPageReclaim(page);
590 			return PAGE_ACTIVATE;
591 		}
592 
593 		if (!PageWriteback(page)) {
594 			/* synchronous write or broken a_ops? */
595 			ClearPageReclaim(page);
596 		}
597 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
598 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
599 		return PAGE_SUCCESS;
600 	}
601 
602 	return PAGE_CLEAN;
603 }
604 
605 /*
606  * Same as remove_mapping, but if the page is removed from the mapping, it
607  * gets returned with a refcount of 0.
608  */
609 static int __remove_mapping(struct address_space *mapping, struct page *page,
610 			    bool reclaimed)
611 {
612 	unsigned long flags;
613 	struct mem_cgroup *memcg;
614 
615 	BUG_ON(!PageLocked(page));
616 	BUG_ON(mapping != page_mapping(page));
617 
618 	memcg = mem_cgroup_begin_page_stat(page);
619 	spin_lock_irqsave(&mapping->tree_lock, flags);
620 	/*
621 	 * The non racy check for a busy page.
622 	 *
623 	 * Must be careful with the order of the tests. When someone has
624 	 * a ref to the page, it may be possible that they dirty it then
625 	 * drop the reference. So if PageDirty is tested before page_count
626 	 * here, then the following race may occur:
627 	 *
628 	 * get_user_pages(&page);
629 	 * [user mapping goes away]
630 	 * write_to(page);
631 	 *				!PageDirty(page)    [good]
632 	 * SetPageDirty(page);
633 	 * put_page(page);
634 	 *				!page_count(page)   [good, discard it]
635 	 *
636 	 * [oops, our write_to data is lost]
637 	 *
638 	 * Reversing the order of the tests ensures such a situation cannot
639 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 	 * load is not satisfied before that of page->_count.
641 	 *
642 	 * Note that if SetPageDirty is always performed via set_page_dirty,
643 	 * and thus under tree_lock, then this ordering is not required.
644 	 */
645 	if (!page_freeze_refs(page, 2))
646 		goto cannot_free;
647 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 	if (unlikely(PageDirty(page))) {
649 		page_unfreeze_refs(page, 2);
650 		goto cannot_free;
651 	}
652 
653 	if (PageSwapCache(page)) {
654 		swp_entry_t swap = { .val = page_private(page) };
655 		mem_cgroup_swapout(page, swap);
656 		__delete_from_swap_cache(page);
657 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 		mem_cgroup_end_page_stat(memcg);
659 		swapcache_free(swap);
660 	} else {
661 		void (*freepage)(struct page *);
662 		void *shadow = NULL;
663 
664 		freepage = mapping->a_ops->freepage;
665 		/*
666 		 * Remember a shadow entry for reclaimed file cache in
667 		 * order to detect refaults, thus thrashing, later on.
668 		 *
669 		 * But don't store shadows in an address space that is
670 		 * already exiting.  This is not just an optizimation,
671 		 * inode reclaim needs to empty out the radix tree or
672 		 * the nodes are lost.  Don't plant shadows behind its
673 		 * back.
674 		 */
675 		if (reclaimed && page_is_file_cache(page) &&
676 		    !mapping_exiting(mapping))
677 			shadow = workingset_eviction(mapping, page);
678 		__delete_from_page_cache(page, shadow, memcg);
679 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 		mem_cgroup_end_page_stat(memcg);
681 
682 		if (freepage != NULL)
683 			freepage(page);
684 	}
685 
686 	return 1;
687 
688 cannot_free:
689 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 	mem_cgroup_end_page_stat(memcg);
691 	return 0;
692 }
693 
694 /*
695  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
696  * someone else has a ref on the page, abort and return 0.  If it was
697  * successfully detached, return 1.  Assumes the caller has a single ref on
698  * this page.
699  */
700 int remove_mapping(struct address_space *mapping, struct page *page)
701 {
702 	if (__remove_mapping(mapping, page, false)) {
703 		/*
704 		 * Unfreezing the refcount with 1 rather than 2 effectively
705 		 * drops the pagecache ref for us without requiring another
706 		 * atomic operation.
707 		 */
708 		page_unfreeze_refs(page, 1);
709 		return 1;
710 	}
711 	return 0;
712 }
713 
714 /**
715  * putback_lru_page - put previously isolated page onto appropriate LRU list
716  * @page: page to be put back to appropriate lru list
717  *
718  * Add previously isolated @page to appropriate LRU list.
719  * Page may still be unevictable for other reasons.
720  *
721  * lru_lock must not be held, interrupts must be enabled.
722  */
723 void putback_lru_page(struct page *page)
724 {
725 	bool is_unevictable;
726 	int was_unevictable = PageUnevictable(page);
727 
728 	VM_BUG_ON_PAGE(PageLRU(page), page);
729 
730 redo:
731 	ClearPageUnevictable(page);
732 
733 	if (page_evictable(page)) {
734 		/*
735 		 * For evictable pages, we can use the cache.
736 		 * In event of a race, worst case is we end up with an
737 		 * unevictable page on [in]active list.
738 		 * We know how to handle that.
739 		 */
740 		is_unevictable = false;
741 		lru_cache_add(page);
742 	} else {
743 		/*
744 		 * Put unevictable pages directly on zone's unevictable
745 		 * list.
746 		 */
747 		is_unevictable = true;
748 		add_page_to_unevictable_list(page);
749 		/*
750 		 * When racing with an mlock or AS_UNEVICTABLE clearing
751 		 * (page is unlocked) make sure that if the other thread
752 		 * does not observe our setting of PG_lru and fails
753 		 * isolation/check_move_unevictable_pages,
754 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 		 * the page back to the evictable list.
756 		 *
757 		 * The other side is TestClearPageMlocked() or shmem_lock().
758 		 */
759 		smp_mb();
760 	}
761 
762 	/*
763 	 * page's status can change while we move it among lru. If an evictable
764 	 * page is on unevictable list, it never be freed. To avoid that,
765 	 * check after we added it to the list, again.
766 	 */
767 	if (is_unevictable && page_evictable(page)) {
768 		if (!isolate_lru_page(page)) {
769 			put_page(page);
770 			goto redo;
771 		}
772 		/* This means someone else dropped this page from LRU
773 		 * So, it will be freed or putback to LRU again. There is
774 		 * nothing to do here.
775 		 */
776 	}
777 
778 	if (was_unevictable && !is_unevictable)
779 		count_vm_event(UNEVICTABLE_PGRESCUED);
780 	else if (!was_unevictable && is_unevictable)
781 		count_vm_event(UNEVICTABLE_PGCULLED);
782 
783 	put_page(page);		/* drop ref from isolate */
784 }
785 
786 enum page_references {
787 	PAGEREF_RECLAIM,
788 	PAGEREF_RECLAIM_CLEAN,
789 	PAGEREF_KEEP,
790 	PAGEREF_ACTIVATE,
791 };
792 
793 static enum page_references page_check_references(struct page *page,
794 						  struct scan_control *sc)
795 {
796 	int referenced_ptes, referenced_page;
797 	unsigned long vm_flags;
798 
799 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 					  &vm_flags);
801 	referenced_page = TestClearPageReferenced(page);
802 
803 	/*
804 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
805 	 * move the page to the unevictable list.
806 	 */
807 	if (vm_flags & VM_LOCKED)
808 		return PAGEREF_RECLAIM;
809 
810 	if (referenced_ptes) {
811 		if (PageSwapBacked(page))
812 			return PAGEREF_ACTIVATE;
813 		/*
814 		 * All mapped pages start out with page table
815 		 * references from the instantiating fault, so we need
816 		 * to look twice if a mapped file page is used more
817 		 * than once.
818 		 *
819 		 * Mark it and spare it for another trip around the
820 		 * inactive list.  Another page table reference will
821 		 * lead to its activation.
822 		 *
823 		 * Note: the mark is set for activated pages as well
824 		 * so that recently deactivated but used pages are
825 		 * quickly recovered.
826 		 */
827 		SetPageReferenced(page);
828 
829 		if (referenced_page || referenced_ptes > 1)
830 			return PAGEREF_ACTIVATE;
831 
832 		/*
833 		 * Activate file-backed executable pages after first usage.
834 		 */
835 		if (vm_flags & VM_EXEC)
836 			return PAGEREF_ACTIVATE;
837 
838 		return PAGEREF_KEEP;
839 	}
840 
841 	/* Reclaim if clean, defer dirty pages to writeback */
842 	if (referenced_page && !PageSwapBacked(page))
843 		return PAGEREF_RECLAIM_CLEAN;
844 
845 	return PAGEREF_RECLAIM;
846 }
847 
848 /* Check if a page is dirty or under writeback */
849 static void page_check_dirty_writeback(struct page *page,
850 				       bool *dirty, bool *writeback)
851 {
852 	struct address_space *mapping;
853 
854 	/*
855 	 * Anonymous pages are not handled by flushers and must be written
856 	 * from reclaim context. Do not stall reclaim based on them
857 	 */
858 	if (!page_is_file_cache(page)) {
859 		*dirty = false;
860 		*writeback = false;
861 		return;
862 	}
863 
864 	/* By default assume that the page flags are accurate */
865 	*dirty = PageDirty(page);
866 	*writeback = PageWriteback(page);
867 
868 	/* Verify dirty/writeback state if the filesystem supports it */
869 	if (!page_has_private(page))
870 		return;
871 
872 	mapping = page_mapping(page);
873 	if (mapping && mapping->a_ops->is_dirty_writeback)
874 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 }
876 
877 /*
878  * shrink_page_list() returns the number of reclaimed pages
879  */
880 static unsigned long shrink_page_list(struct list_head *page_list,
881 				      struct zone *zone,
882 				      struct scan_control *sc,
883 				      enum ttu_flags ttu_flags,
884 				      unsigned long *ret_nr_dirty,
885 				      unsigned long *ret_nr_unqueued_dirty,
886 				      unsigned long *ret_nr_congested,
887 				      unsigned long *ret_nr_writeback,
888 				      unsigned long *ret_nr_immediate,
889 				      bool force_reclaim)
890 {
891 	LIST_HEAD(ret_pages);
892 	LIST_HEAD(free_pages);
893 	int pgactivate = 0;
894 	unsigned long nr_unqueued_dirty = 0;
895 	unsigned long nr_dirty = 0;
896 	unsigned long nr_congested = 0;
897 	unsigned long nr_reclaimed = 0;
898 	unsigned long nr_writeback = 0;
899 	unsigned long nr_immediate = 0;
900 
901 	cond_resched();
902 
903 	while (!list_empty(page_list)) {
904 		struct address_space *mapping;
905 		struct page *page;
906 		int may_enter_fs;
907 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 		bool dirty, writeback;
909 
910 		cond_resched();
911 
912 		page = lru_to_page(page_list);
913 		list_del(&page->lru);
914 
915 		if (!trylock_page(page))
916 			goto keep;
917 
918 		VM_BUG_ON_PAGE(PageActive(page), page);
919 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
920 
921 		sc->nr_scanned++;
922 
923 		if (unlikely(!page_evictable(page)))
924 			goto cull_mlocked;
925 
926 		if (!sc->may_unmap && page_mapped(page))
927 			goto keep_locked;
928 
929 		/* Double the slab pressure for mapped and swapcache pages */
930 		if (page_mapped(page) || PageSwapCache(page))
931 			sc->nr_scanned++;
932 
933 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935 
936 		/*
937 		 * The number of dirty pages determines if a zone is marked
938 		 * reclaim_congested which affects wait_iff_congested. kswapd
939 		 * will stall and start writing pages if the tail of the LRU
940 		 * is all dirty unqueued pages.
941 		 */
942 		page_check_dirty_writeback(page, &dirty, &writeback);
943 		if (dirty || writeback)
944 			nr_dirty++;
945 
946 		if (dirty && !writeback)
947 			nr_unqueued_dirty++;
948 
949 		/*
950 		 * Treat this page as congested if the underlying BDI is or if
951 		 * pages are cycling through the LRU so quickly that the
952 		 * pages marked for immediate reclaim are making it to the
953 		 * end of the LRU a second time.
954 		 */
955 		mapping = page_mapping(page);
956 		if (((dirty || writeback) && mapping &&
957 		     inode_write_congested(mapping->host)) ||
958 		    (writeback && PageReclaim(page)))
959 			nr_congested++;
960 
961 		/*
962 		 * If a page at the tail of the LRU is under writeback, there
963 		 * are three cases to consider.
964 		 *
965 		 * 1) If reclaim is encountering an excessive number of pages
966 		 *    under writeback and this page is both under writeback and
967 		 *    PageReclaim then it indicates that pages are being queued
968 		 *    for IO but are being recycled through the LRU before the
969 		 *    IO can complete. Waiting on the page itself risks an
970 		 *    indefinite stall if it is impossible to writeback the
971 		 *    page due to IO error or disconnected storage so instead
972 		 *    note that the LRU is being scanned too quickly and the
973 		 *    caller can stall after page list has been processed.
974 		 *
975 		 * 2) Global or new memcg reclaim encounters a page that is
976 		 *    not marked for immediate reclaim, or the caller does not
977 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 		 *    not to fs). In this case mark the page for immediate
979 		 *    reclaim and continue scanning.
980 		 *
981 		 *    Require may_enter_fs because we would wait on fs, which
982 		 *    may not have submitted IO yet. And the loop driver might
983 		 *    enter reclaim, and deadlock if it waits on a page for
984 		 *    which it is needed to do the write (loop masks off
985 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
986 		 *    would probably show more reasons.
987 		 *
988 		 * 3) Legacy memcg encounters a page that is not already marked
989 		 *    PageReclaim. memcg does not have any dirty pages
990 		 *    throttling so we could easily OOM just because too many
991 		 *    pages are in writeback and there is nothing else to
992 		 *    reclaim. Wait for the writeback to complete.
993 		 */
994 		if (PageWriteback(page)) {
995 			/* Case 1 above */
996 			if (current_is_kswapd() &&
997 			    PageReclaim(page) &&
998 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
999 				nr_immediate++;
1000 				goto keep_locked;
1001 
1002 			/* Case 2 above */
1003 			} else if (sane_reclaim(sc) ||
1004 			    !PageReclaim(page) || !may_enter_fs) {
1005 				/*
1006 				 * This is slightly racy - end_page_writeback()
1007 				 * might have just cleared PageReclaim, then
1008 				 * setting PageReclaim here end up interpreted
1009 				 * as PageReadahead - but that does not matter
1010 				 * enough to care.  What we do want is for this
1011 				 * page to have PageReclaim set next time memcg
1012 				 * reclaim reaches the tests above, so it will
1013 				 * then wait_on_page_writeback() to avoid OOM;
1014 				 * and it's also appropriate in global reclaim.
1015 				 */
1016 				SetPageReclaim(page);
1017 				nr_writeback++;
1018 
1019 				goto keep_locked;
1020 
1021 			/* Case 3 above */
1022 			} else {
1023 				wait_on_page_writeback(page);
1024 			}
1025 		}
1026 
1027 		if (!force_reclaim)
1028 			references = page_check_references(page, sc);
1029 
1030 		switch (references) {
1031 		case PAGEREF_ACTIVATE:
1032 			goto activate_locked;
1033 		case PAGEREF_KEEP:
1034 			goto keep_locked;
1035 		case PAGEREF_RECLAIM:
1036 		case PAGEREF_RECLAIM_CLEAN:
1037 			; /* try to reclaim the page below */
1038 		}
1039 
1040 		/*
1041 		 * Anonymous process memory has backing store?
1042 		 * Try to allocate it some swap space here.
1043 		 */
1044 		if (PageAnon(page) && !PageSwapCache(page)) {
1045 			if (!(sc->gfp_mask & __GFP_IO))
1046 				goto keep_locked;
1047 			if (!add_to_swap(page, page_list))
1048 				goto activate_locked;
1049 			may_enter_fs = 1;
1050 
1051 			/* Adding to swap updated mapping */
1052 			mapping = page_mapping(page);
1053 		}
1054 
1055 		/*
1056 		 * The page is mapped into the page tables of one or more
1057 		 * processes. Try to unmap it here.
1058 		 */
1059 		if (page_mapped(page) && mapping) {
1060 			switch (try_to_unmap(page, ttu_flags)) {
1061 			case SWAP_FAIL:
1062 				goto activate_locked;
1063 			case SWAP_AGAIN:
1064 				goto keep_locked;
1065 			case SWAP_MLOCK:
1066 				goto cull_mlocked;
1067 			case SWAP_SUCCESS:
1068 				; /* try to free the page below */
1069 			}
1070 		}
1071 
1072 		if (PageDirty(page)) {
1073 			/*
1074 			 * Only kswapd can writeback filesystem pages to
1075 			 * avoid risk of stack overflow but only writeback
1076 			 * if many dirty pages have been encountered.
1077 			 */
1078 			if (page_is_file_cache(page) &&
1079 					(!current_is_kswapd() ||
1080 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1081 				/*
1082 				 * Immediately reclaim when written back.
1083 				 * Similar in principal to deactivate_page()
1084 				 * except we already have the page isolated
1085 				 * and know it's dirty
1086 				 */
1087 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1088 				SetPageReclaim(page);
1089 
1090 				goto keep_locked;
1091 			}
1092 
1093 			if (references == PAGEREF_RECLAIM_CLEAN)
1094 				goto keep_locked;
1095 			if (!may_enter_fs)
1096 				goto keep_locked;
1097 			if (!sc->may_writepage)
1098 				goto keep_locked;
1099 
1100 			/* Page is dirty, try to write it out here */
1101 			switch (pageout(page, mapping, sc)) {
1102 			case PAGE_KEEP:
1103 				goto keep_locked;
1104 			case PAGE_ACTIVATE:
1105 				goto activate_locked;
1106 			case PAGE_SUCCESS:
1107 				if (PageWriteback(page))
1108 					goto keep;
1109 				if (PageDirty(page))
1110 					goto keep;
1111 
1112 				/*
1113 				 * A synchronous write - probably a ramdisk.  Go
1114 				 * ahead and try to reclaim the page.
1115 				 */
1116 				if (!trylock_page(page))
1117 					goto keep;
1118 				if (PageDirty(page) || PageWriteback(page))
1119 					goto keep_locked;
1120 				mapping = page_mapping(page);
1121 			case PAGE_CLEAN:
1122 				; /* try to free the page below */
1123 			}
1124 		}
1125 
1126 		/*
1127 		 * If the page has buffers, try to free the buffer mappings
1128 		 * associated with this page. If we succeed we try to free
1129 		 * the page as well.
1130 		 *
1131 		 * We do this even if the page is PageDirty().
1132 		 * try_to_release_page() does not perform I/O, but it is
1133 		 * possible for a page to have PageDirty set, but it is actually
1134 		 * clean (all its buffers are clean).  This happens if the
1135 		 * buffers were written out directly, with submit_bh(). ext3
1136 		 * will do this, as well as the blockdev mapping.
1137 		 * try_to_release_page() will discover that cleanness and will
1138 		 * drop the buffers and mark the page clean - it can be freed.
1139 		 *
1140 		 * Rarely, pages can have buffers and no ->mapping.  These are
1141 		 * the pages which were not successfully invalidated in
1142 		 * truncate_complete_page().  We try to drop those buffers here
1143 		 * and if that worked, and the page is no longer mapped into
1144 		 * process address space (page_count == 1) it can be freed.
1145 		 * Otherwise, leave the page on the LRU so it is swappable.
1146 		 */
1147 		if (page_has_private(page)) {
1148 			if (!try_to_release_page(page, sc->gfp_mask))
1149 				goto activate_locked;
1150 			if (!mapping && page_count(page) == 1) {
1151 				unlock_page(page);
1152 				if (put_page_testzero(page))
1153 					goto free_it;
1154 				else {
1155 					/*
1156 					 * rare race with speculative reference.
1157 					 * the speculative reference will free
1158 					 * this page shortly, so we may
1159 					 * increment nr_reclaimed here (and
1160 					 * leave it off the LRU).
1161 					 */
1162 					nr_reclaimed++;
1163 					continue;
1164 				}
1165 			}
1166 		}
1167 
1168 		if (!mapping || !__remove_mapping(mapping, page, true))
1169 			goto keep_locked;
1170 
1171 		/*
1172 		 * At this point, we have no other references and there is
1173 		 * no way to pick any more up (removed from LRU, removed
1174 		 * from pagecache). Can use non-atomic bitops now (and
1175 		 * we obviously don't have to worry about waking up a process
1176 		 * waiting on the page lock, because there are no references.
1177 		 */
1178 		__clear_page_locked(page);
1179 free_it:
1180 		nr_reclaimed++;
1181 
1182 		/*
1183 		 * Is there need to periodically free_page_list? It would
1184 		 * appear not as the counts should be low
1185 		 */
1186 		list_add(&page->lru, &free_pages);
1187 		continue;
1188 
1189 cull_mlocked:
1190 		if (PageSwapCache(page))
1191 			try_to_free_swap(page);
1192 		unlock_page(page);
1193 		putback_lru_page(page);
1194 		continue;
1195 
1196 activate_locked:
1197 		/* Not a candidate for swapping, so reclaim swap space. */
1198 		if (PageSwapCache(page) && vm_swap_full())
1199 			try_to_free_swap(page);
1200 		VM_BUG_ON_PAGE(PageActive(page), page);
1201 		SetPageActive(page);
1202 		pgactivate++;
1203 keep_locked:
1204 		unlock_page(page);
1205 keep:
1206 		list_add(&page->lru, &ret_pages);
1207 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1208 	}
1209 
1210 	mem_cgroup_uncharge_list(&free_pages);
1211 	free_hot_cold_page_list(&free_pages, true);
1212 
1213 	list_splice(&ret_pages, page_list);
1214 	count_vm_events(PGACTIVATE, pgactivate);
1215 
1216 	*ret_nr_dirty += nr_dirty;
1217 	*ret_nr_congested += nr_congested;
1218 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1219 	*ret_nr_writeback += nr_writeback;
1220 	*ret_nr_immediate += nr_immediate;
1221 	return nr_reclaimed;
1222 }
1223 
1224 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1225 					    struct list_head *page_list)
1226 {
1227 	struct scan_control sc = {
1228 		.gfp_mask = GFP_KERNEL,
1229 		.priority = DEF_PRIORITY,
1230 		.may_unmap = 1,
1231 	};
1232 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1233 	struct page *page, *next;
1234 	LIST_HEAD(clean_pages);
1235 
1236 	list_for_each_entry_safe(page, next, page_list, lru) {
1237 		if (page_is_file_cache(page) && !PageDirty(page) &&
1238 		    !isolated_balloon_page(page)) {
1239 			ClearPageActive(page);
1240 			list_move(&page->lru, &clean_pages);
1241 		}
1242 	}
1243 
1244 	ret = shrink_page_list(&clean_pages, zone, &sc,
1245 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1246 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1247 	list_splice(&clean_pages, page_list);
1248 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1249 	return ret;
1250 }
1251 
1252 /*
1253  * Attempt to remove the specified page from its LRU.  Only take this page
1254  * if it is of the appropriate PageActive status.  Pages which are being
1255  * freed elsewhere are also ignored.
1256  *
1257  * page:	page to consider
1258  * mode:	one of the LRU isolation modes defined above
1259  *
1260  * returns 0 on success, -ve errno on failure.
1261  */
1262 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1263 {
1264 	int ret = -EINVAL;
1265 
1266 	/* Only take pages on the LRU. */
1267 	if (!PageLRU(page))
1268 		return ret;
1269 
1270 	/* Compaction should not handle unevictable pages but CMA can do so */
1271 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1272 		return ret;
1273 
1274 	ret = -EBUSY;
1275 
1276 	/*
1277 	 * To minimise LRU disruption, the caller can indicate that it only
1278 	 * wants to isolate pages it will be able to operate on without
1279 	 * blocking - clean pages for the most part.
1280 	 *
1281 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1282 	 * is used by reclaim when it is cannot write to backing storage
1283 	 *
1284 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1285 	 * that it is possible to migrate without blocking
1286 	 */
1287 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1288 		/* All the caller can do on PageWriteback is block */
1289 		if (PageWriteback(page))
1290 			return ret;
1291 
1292 		if (PageDirty(page)) {
1293 			struct address_space *mapping;
1294 
1295 			/* ISOLATE_CLEAN means only clean pages */
1296 			if (mode & ISOLATE_CLEAN)
1297 				return ret;
1298 
1299 			/*
1300 			 * Only pages without mappings or that have a
1301 			 * ->migratepage callback are possible to migrate
1302 			 * without blocking
1303 			 */
1304 			mapping = page_mapping(page);
1305 			if (mapping && !mapping->a_ops->migratepage)
1306 				return ret;
1307 		}
1308 	}
1309 
1310 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1311 		return ret;
1312 
1313 	if (likely(get_page_unless_zero(page))) {
1314 		/*
1315 		 * Be careful not to clear PageLRU until after we're
1316 		 * sure the page is not being freed elsewhere -- the
1317 		 * page release code relies on it.
1318 		 */
1319 		ClearPageLRU(page);
1320 		ret = 0;
1321 	}
1322 
1323 	return ret;
1324 }
1325 
1326 /*
1327  * zone->lru_lock is heavily contended.  Some of the functions that
1328  * shrink the lists perform better by taking out a batch of pages
1329  * and working on them outside the LRU lock.
1330  *
1331  * For pagecache intensive workloads, this function is the hottest
1332  * spot in the kernel (apart from copy_*_user functions).
1333  *
1334  * Appropriate locks must be held before calling this function.
1335  *
1336  * @nr_to_scan:	The number of pages to look through on the list.
1337  * @lruvec:	The LRU vector to pull pages from.
1338  * @dst:	The temp list to put pages on to.
1339  * @nr_scanned:	The number of pages that were scanned.
1340  * @sc:		The scan_control struct for this reclaim session
1341  * @mode:	One of the LRU isolation modes
1342  * @lru:	LRU list id for isolating
1343  *
1344  * returns how many pages were moved onto *@dst.
1345  */
1346 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1347 		struct lruvec *lruvec, struct list_head *dst,
1348 		unsigned long *nr_scanned, struct scan_control *sc,
1349 		isolate_mode_t mode, enum lru_list lru)
1350 {
1351 	struct list_head *src = &lruvec->lists[lru];
1352 	unsigned long nr_taken = 0;
1353 	unsigned long scan;
1354 
1355 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1356 		struct page *page;
1357 		int nr_pages;
1358 
1359 		page = lru_to_page(src);
1360 		prefetchw_prev_lru_page(page, src, flags);
1361 
1362 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1363 
1364 		switch (__isolate_lru_page(page, mode)) {
1365 		case 0:
1366 			nr_pages = hpage_nr_pages(page);
1367 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1368 			list_move(&page->lru, dst);
1369 			nr_taken += nr_pages;
1370 			break;
1371 
1372 		case -EBUSY:
1373 			/* else it is being freed elsewhere */
1374 			list_move(&page->lru, src);
1375 			continue;
1376 
1377 		default:
1378 			BUG();
1379 		}
1380 	}
1381 
1382 	*nr_scanned = scan;
1383 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1384 				    nr_taken, mode, is_file_lru(lru));
1385 	return nr_taken;
1386 }
1387 
1388 /**
1389  * isolate_lru_page - tries to isolate a page from its LRU list
1390  * @page: page to isolate from its LRU list
1391  *
1392  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1393  * vmstat statistic corresponding to whatever LRU list the page was on.
1394  *
1395  * Returns 0 if the page was removed from an LRU list.
1396  * Returns -EBUSY if the page was not on an LRU list.
1397  *
1398  * The returned page will have PageLRU() cleared.  If it was found on
1399  * the active list, it will have PageActive set.  If it was found on
1400  * the unevictable list, it will have the PageUnevictable bit set. That flag
1401  * may need to be cleared by the caller before letting the page go.
1402  *
1403  * The vmstat statistic corresponding to the list on which the page was
1404  * found will be decremented.
1405  *
1406  * Restrictions:
1407  * (1) Must be called with an elevated refcount on the page. This is a
1408  *     fundamentnal difference from isolate_lru_pages (which is called
1409  *     without a stable reference).
1410  * (2) the lru_lock must not be held.
1411  * (3) interrupts must be enabled.
1412  */
1413 int isolate_lru_page(struct page *page)
1414 {
1415 	int ret = -EBUSY;
1416 
1417 	VM_BUG_ON_PAGE(!page_count(page), page);
1418 
1419 	if (PageLRU(page)) {
1420 		struct zone *zone = page_zone(page);
1421 		struct lruvec *lruvec;
1422 
1423 		spin_lock_irq(&zone->lru_lock);
1424 		lruvec = mem_cgroup_page_lruvec(page, zone);
1425 		if (PageLRU(page)) {
1426 			int lru = page_lru(page);
1427 			get_page(page);
1428 			ClearPageLRU(page);
1429 			del_page_from_lru_list(page, lruvec, lru);
1430 			ret = 0;
1431 		}
1432 		spin_unlock_irq(&zone->lru_lock);
1433 	}
1434 	return ret;
1435 }
1436 
1437 /*
1438  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1439  * then get resheduled. When there are massive number of tasks doing page
1440  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1441  * the LRU list will go small and be scanned faster than necessary, leading to
1442  * unnecessary swapping, thrashing and OOM.
1443  */
1444 static int too_many_isolated(struct zone *zone, int file,
1445 		struct scan_control *sc)
1446 {
1447 	unsigned long inactive, isolated;
1448 
1449 	if (current_is_kswapd())
1450 		return 0;
1451 
1452 	if (!sane_reclaim(sc))
1453 		return 0;
1454 
1455 	if (file) {
1456 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1457 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1458 	} else {
1459 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1460 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1461 	}
1462 
1463 	/*
1464 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1465 	 * won't get blocked by normal direct-reclaimers, forming a circular
1466 	 * deadlock.
1467 	 */
1468 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1469 		inactive >>= 3;
1470 
1471 	return isolated > inactive;
1472 }
1473 
1474 static noinline_for_stack void
1475 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1476 {
1477 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1478 	struct zone *zone = lruvec_zone(lruvec);
1479 	LIST_HEAD(pages_to_free);
1480 
1481 	/*
1482 	 * Put back any unfreeable pages.
1483 	 */
1484 	while (!list_empty(page_list)) {
1485 		struct page *page = lru_to_page(page_list);
1486 		int lru;
1487 
1488 		VM_BUG_ON_PAGE(PageLRU(page), page);
1489 		list_del(&page->lru);
1490 		if (unlikely(!page_evictable(page))) {
1491 			spin_unlock_irq(&zone->lru_lock);
1492 			putback_lru_page(page);
1493 			spin_lock_irq(&zone->lru_lock);
1494 			continue;
1495 		}
1496 
1497 		lruvec = mem_cgroup_page_lruvec(page, zone);
1498 
1499 		SetPageLRU(page);
1500 		lru = page_lru(page);
1501 		add_page_to_lru_list(page, lruvec, lru);
1502 
1503 		if (is_active_lru(lru)) {
1504 			int file = is_file_lru(lru);
1505 			int numpages = hpage_nr_pages(page);
1506 			reclaim_stat->recent_rotated[file] += numpages;
1507 		}
1508 		if (put_page_testzero(page)) {
1509 			__ClearPageLRU(page);
1510 			__ClearPageActive(page);
1511 			del_page_from_lru_list(page, lruvec, lru);
1512 
1513 			if (unlikely(PageCompound(page))) {
1514 				spin_unlock_irq(&zone->lru_lock);
1515 				mem_cgroup_uncharge(page);
1516 				(*get_compound_page_dtor(page))(page);
1517 				spin_lock_irq(&zone->lru_lock);
1518 			} else
1519 				list_add(&page->lru, &pages_to_free);
1520 		}
1521 	}
1522 
1523 	/*
1524 	 * To save our caller's stack, now use input list for pages to free.
1525 	 */
1526 	list_splice(&pages_to_free, page_list);
1527 }
1528 
1529 /*
1530  * If a kernel thread (such as nfsd for loop-back mounts) services
1531  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1532  * In that case we should only throttle if the backing device it is
1533  * writing to is congested.  In other cases it is safe to throttle.
1534  */
1535 static int current_may_throttle(void)
1536 {
1537 	return !(current->flags & PF_LESS_THROTTLE) ||
1538 		current->backing_dev_info == NULL ||
1539 		bdi_write_congested(current->backing_dev_info);
1540 }
1541 
1542 /*
1543  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1544  * of reclaimed pages
1545  */
1546 static noinline_for_stack unsigned long
1547 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1548 		     struct scan_control *sc, enum lru_list lru)
1549 {
1550 	LIST_HEAD(page_list);
1551 	unsigned long nr_scanned;
1552 	unsigned long nr_reclaimed = 0;
1553 	unsigned long nr_taken;
1554 	unsigned long nr_dirty = 0;
1555 	unsigned long nr_congested = 0;
1556 	unsigned long nr_unqueued_dirty = 0;
1557 	unsigned long nr_writeback = 0;
1558 	unsigned long nr_immediate = 0;
1559 	isolate_mode_t isolate_mode = 0;
1560 	int file = is_file_lru(lru);
1561 	struct zone *zone = lruvec_zone(lruvec);
1562 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1563 
1564 	while (unlikely(too_many_isolated(zone, file, sc))) {
1565 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1566 
1567 		/* We are about to die and free our memory. Return now. */
1568 		if (fatal_signal_pending(current))
1569 			return SWAP_CLUSTER_MAX;
1570 	}
1571 
1572 	lru_add_drain();
1573 
1574 	if (!sc->may_unmap)
1575 		isolate_mode |= ISOLATE_UNMAPPED;
1576 	if (!sc->may_writepage)
1577 		isolate_mode |= ISOLATE_CLEAN;
1578 
1579 	spin_lock_irq(&zone->lru_lock);
1580 
1581 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1582 				     &nr_scanned, sc, isolate_mode, lru);
1583 
1584 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1585 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1586 
1587 	if (global_reclaim(sc)) {
1588 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1589 		if (current_is_kswapd())
1590 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1591 		else
1592 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1593 	}
1594 	spin_unlock_irq(&zone->lru_lock);
1595 
1596 	if (nr_taken == 0)
1597 		return 0;
1598 
1599 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1600 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1601 				&nr_writeback, &nr_immediate,
1602 				false);
1603 
1604 	spin_lock_irq(&zone->lru_lock);
1605 
1606 	reclaim_stat->recent_scanned[file] += nr_taken;
1607 
1608 	if (global_reclaim(sc)) {
1609 		if (current_is_kswapd())
1610 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1611 					       nr_reclaimed);
1612 		else
1613 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1614 					       nr_reclaimed);
1615 	}
1616 
1617 	putback_inactive_pages(lruvec, &page_list);
1618 
1619 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1620 
1621 	spin_unlock_irq(&zone->lru_lock);
1622 
1623 	mem_cgroup_uncharge_list(&page_list);
1624 	free_hot_cold_page_list(&page_list, true);
1625 
1626 	/*
1627 	 * If reclaim is isolating dirty pages under writeback, it implies
1628 	 * that the long-lived page allocation rate is exceeding the page
1629 	 * laundering rate. Either the global limits are not being effective
1630 	 * at throttling processes due to the page distribution throughout
1631 	 * zones or there is heavy usage of a slow backing device. The
1632 	 * only option is to throttle from reclaim context which is not ideal
1633 	 * as there is no guarantee the dirtying process is throttled in the
1634 	 * same way balance_dirty_pages() manages.
1635 	 *
1636 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1637 	 * of pages under pages flagged for immediate reclaim and stall if any
1638 	 * are encountered in the nr_immediate check below.
1639 	 */
1640 	if (nr_writeback && nr_writeback == nr_taken)
1641 		set_bit(ZONE_WRITEBACK, &zone->flags);
1642 
1643 	/*
1644 	 * Legacy memcg will stall in page writeback so avoid forcibly
1645 	 * stalling here.
1646 	 */
1647 	if (sane_reclaim(sc)) {
1648 		/*
1649 		 * Tag a zone as congested if all the dirty pages scanned were
1650 		 * backed by a congested BDI and wait_iff_congested will stall.
1651 		 */
1652 		if (nr_dirty && nr_dirty == nr_congested)
1653 			set_bit(ZONE_CONGESTED, &zone->flags);
1654 
1655 		/*
1656 		 * If dirty pages are scanned that are not queued for IO, it
1657 		 * implies that flushers are not keeping up. In this case, flag
1658 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1659 		 * reclaim context.
1660 		 */
1661 		if (nr_unqueued_dirty == nr_taken)
1662 			set_bit(ZONE_DIRTY, &zone->flags);
1663 
1664 		/*
1665 		 * If kswapd scans pages marked marked for immediate
1666 		 * reclaim and under writeback (nr_immediate), it implies
1667 		 * that pages are cycling through the LRU faster than
1668 		 * they are written so also forcibly stall.
1669 		 */
1670 		if (nr_immediate && current_may_throttle())
1671 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1672 	}
1673 
1674 	/*
1675 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1676 	 * is congested. Allow kswapd to continue until it starts encountering
1677 	 * unqueued dirty pages or cycling through the LRU too quickly.
1678 	 */
1679 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1680 	    current_may_throttle())
1681 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1682 
1683 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1684 		zone_idx(zone),
1685 		nr_scanned, nr_reclaimed,
1686 		sc->priority,
1687 		trace_shrink_flags(file));
1688 	return nr_reclaimed;
1689 }
1690 
1691 /*
1692  * This moves pages from the active list to the inactive list.
1693  *
1694  * We move them the other way if the page is referenced by one or more
1695  * processes, from rmap.
1696  *
1697  * If the pages are mostly unmapped, the processing is fast and it is
1698  * appropriate to hold zone->lru_lock across the whole operation.  But if
1699  * the pages are mapped, the processing is slow (page_referenced()) so we
1700  * should drop zone->lru_lock around each page.  It's impossible to balance
1701  * this, so instead we remove the pages from the LRU while processing them.
1702  * It is safe to rely on PG_active against the non-LRU pages in here because
1703  * nobody will play with that bit on a non-LRU page.
1704  *
1705  * The downside is that we have to touch page->_count against each page.
1706  * But we had to alter page->flags anyway.
1707  */
1708 
1709 static void move_active_pages_to_lru(struct lruvec *lruvec,
1710 				     struct list_head *list,
1711 				     struct list_head *pages_to_free,
1712 				     enum lru_list lru)
1713 {
1714 	struct zone *zone = lruvec_zone(lruvec);
1715 	unsigned long pgmoved = 0;
1716 	struct page *page;
1717 	int nr_pages;
1718 
1719 	while (!list_empty(list)) {
1720 		page = lru_to_page(list);
1721 		lruvec = mem_cgroup_page_lruvec(page, zone);
1722 
1723 		VM_BUG_ON_PAGE(PageLRU(page), page);
1724 		SetPageLRU(page);
1725 
1726 		nr_pages = hpage_nr_pages(page);
1727 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1728 		list_move(&page->lru, &lruvec->lists[lru]);
1729 		pgmoved += nr_pages;
1730 
1731 		if (put_page_testzero(page)) {
1732 			__ClearPageLRU(page);
1733 			__ClearPageActive(page);
1734 			del_page_from_lru_list(page, lruvec, lru);
1735 
1736 			if (unlikely(PageCompound(page))) {
1737 				spin_unlock_irq(&zone->lru_lock);
1738 				mem_cgroup_uncharge(page);
1739 				(*get_compound_page_dtor(page))(page);
1740 				spin_lock_irq(&zone->lru_lock);
1741 			} else
1742 				list_add(&page->lru, pages_to_free);
1743 		}
1744 	}
1745 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1746 	if (!is_active_lru(lru))
1747 		__count_vm_events(PGDEACTIVATE, pgmoved);
1748 }
1749 
1750 static void shrink_active_list(unsigned long nr_to_scan,
1751 			       struct lruvec *lruvec,
1752 			       struct scan_control *sc,
1753 			       enum lru_list lru)
1754 {
1755 	unsigned long nr_taken;
1756 	unsigned long nr_scanned;
1757 	unsigned long vm_flags;
1758 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1759 	LIST_HEAD(l_active);
1760 	LIST_HEAD(l_inactive);
1761 	struct page *page;
1762 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1763 	unsigned long nr_rotated = 0;
1764 	isolate_mode_t isolate_mode = 0;
1765 	int file = is_file_lru(lru);
1766 	struct zone *zone = lruvec_zone(lruvec);
1767 
1768 	lru_add_drain();
1769 
1770 	if (!sc->may_unmap)
1771 		isolate_mode |= ISOLATE_UNMAPPED;
1772 	if (!sc->may_writepage)
1773 		isolate_mode |= ISOLATE_CLEAN;
1774 
1775 	spin_lock_irq(&zone->lru_lock);
1776 
1777 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1778 				     &nr_scanned, sc, isolate_mode, lru);
1779 	if (global_reclaim(sc))
1780 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1781 
1782 	reclaim_stat->recent_scanned[file] += nr_taken;
1783 
1784 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1785 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1786 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1787 	spin_unlock_irq(&zone->lru_lock);
1788 
1789 	while (!list_empty(&l_hold)) {
1790 		cond_resched();
1791 		page = lru_to_page(&l_hold);
1792 		list_del(&page->lru);
1793 
1794 		if (unlikely(!page_evictable(page))) {
1795 			putback_lru_page(page);
1796 			continue;
1797 		}
1798 
1799 		if (unlikely(buffer_heads_over_limit)) {
1800 			if (page_has_private(page) && trylock_page(page)) {
1801 				if (page_has_private(page))
1802 					try_to_release_page(page, 0);
1803 				unlock_page(page);
1804 			}
1805 		}
1806 
1807 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1808 				    &vm_flags)) {
1809 			nr_rotated += hpage_nr_pages(page);
1810 			/*
1811 			 * Identify referenced, file-backed active pages and
1812 			 * give them one more trip around the active list. So
1813 			 * that executable code get better chances to stay in
1814 			 * memory under moderate memory pressure.  Anon pages
1815 			 * are not likely to be evicted by use-once streaming
1816 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1817 			 * so we ignore them here.
1818 			 */
1819 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1820 				list_add(&page->lru, &l_active);
1821 				continue;
1822 			}
1823 		}
1824 
1825 		ClearPageActive(page);	/* we are de-activating */
1826 		list_add(&page->lru, &l_inactive);
1827 	}
1828 
1829 	/*
1830 	 * Move pages back to the lru list.
1831 	 */
1832 	spin_lock_irq(&zone->lru_lock);
1833 	/*
1834 	 * Count referenced pages from currently used mappings as rotated,
1835 	 * even though only some of them are actually re-activated.  This
1836 	 * helps balance scan pressure between file and anonymous pages in
1837 	 * get_scan_count.
1838 	 */
1839 	reclaim_stat->recent_rotated[file] += nr_rotated;
1840 
1841 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1842 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1843 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1844 	spin_unlock_irq(&zone->lru_lock);
1845 
1846 	mem_cgroup_uncharge_list(&l_hold);
1847 	free_hot_cold_page_list(&l_hold, true);
1848 }
1849 
1850 #ifdef CONFIG_SWAP
1851 static int inactive_anon_is_low_global(struct zone *zone)
1852 {
1853 	unsigned long active, inactive;
1854 
1855 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1856 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1857 
1858 	if (inactive * zone->inactive_ratio < active)
1859 		return 1;
1860 
1861 	return 0;
1862 }
1863 
1864 /**
1865  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1866  * @lruvec: LRU vector to check
1867  *
1868  * Returns true if the zone does not have enough inactive anon pages,
1869  * meaning some active anon pages need to be deactivated.
1870  */
1871 static int inactive_anon_is_low(struct lruvec *lruvec)
1872 {
1873 	/*
1874 	 * If we don't have swap space, anonymous page deactivation
1875 	 * is pointless.
1876 	 */
1877 	if (!total_swap_pages)
1878 		return 0;
1879 
1880 	if (!mem_cgroup_disabled())
1881 		return mem_cgroup_inactive_anon_is_low(lruvec);
1882 
1883 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1884 }
1885 #else
1886 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1887 {
1888 	return 0;
1889 }
1890 #endif
1891 
1892 /**
1893  * inactive_file_is_low - check if file pages need to be deactivated
1894  * @lruvec: LRU vector to check
1895  *
1896  * When the system is doing streaming IO, memory pressure here
1897  * ensures that active file pages get deactivated, until more
1898  * than half of the file pages are on the inactive list.
1899  *
1900  * Once we get to that situation, protect the system's working
1901  * set from being evicted by disabling active file page aging.
1902  *
1903  * This uses a different ratio than the anonymous pages, because
1904  * the page cache uses a use-once replacement algorithm.
1905  */
1906 static int inactive_file_is_low(struct lruvec *lruvec)
1907 {
1908 	unsigned long inactive;
1909 	unsigned long active;
1910 
1911 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1912 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1913 
1914 	return active > inactive;
1915 }
1916 
1917 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1918 {
1919 	if (is_file_lru(lru))
1920 		return inactive_file_is_low(lruvec);
1921 	else
1922 		return inactive_anon_is_low(lruvec);
1923 }
1924 
1925 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1926 				 struct lruvec *lruvec, struct scan_control *sc)
1927 {
1928 	if (is_active_lru(lru)) {
1929 		if (inactive_list_is_low(lruvec, lru))
1930 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1931 		return 0;
1932 	}
1933 
1934 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1935 }
1936 
1937 enum scan_balance {
1938 	SCAN_EQUAL,
1939 	SCAN_FRACT,
1940 	SCAN_ANON,
1941 	SCAN_FILE,
1942 };
1943 
1944 /*
1945  * Determine how aggressively the anon and file LRU lists should be
1946  * scanned.  The relative value of each set of LRU lists is determined
1947  * by looking at the fraction of the pages scanned we did rotate back
1948  * onto the active list instead of evict.
1949  *
1950  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1951  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1952  */
1953 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1954 			   struct scan_control *sc, unsigned long *nr,
1955 			   unsigned long *lru_pages)
1956 {
1957 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1958 	u64 fraction[2];
1959 	u64 denominator = 0;	/* gcc */
1960 	struct zone *zone = lruvec_zone(lruvec);
1961 	unsigned long anon_prio, file_prio;
1962 	enum scan_balance scan_balance;
1963 	unsigned long anon, file;
1964 	bool force_scan = false;
1965 	unsigned long ap, fp;
1966 	enum lru_list lru;
1967 	bool some_scanned;
1968 	int pass;
1969 
1970 	/*
1971 	 * If the zone or memcg is small, nr[l] can be 0.  This
1972 	 * results in no scanning on this priority and a potential
1973 	 * priority drop.  Global direct reclaim can go to the next
1974 	 * zone and tends to have no problems. Global kswapd is for
1975 	 * zone balancing and it needs to scan a minimum amount. When
1976 	 * reclaiming for a memcg, a priority drop can cause high
1977 	 * latencies, so it's better to scan a minimum amount there as
1978 	 * well.
1979 	 */
1980 	if (current_is_kswapd()) {
1981 		if (!zone_reclaimable(zone))
1982 			force_scan = true;
1983 		if (!mem_cgroup_lruvec_online(lruvec))
1984 			force_scan = true;
1985 	}
1986 	if (!global_reclaim(sc))
1987 		force_scan = true;
1988 
1989 	/* If we have no swap space, do not bother scanning anon pages. */
1990 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1991 		scan_balance = SCAN_FILE;
1992 		goto out;
1993 	}
1994 
1995 	/*
1996 	 * Global reclaim will swap to prevent OOM even with no
1997 	 * swappiness, but memcg users want to use this knob to
1998 	 * disable swapping for individual groups completely when
1999 	 * using the memory controller's swap limit feature would be
2000 	 * too expensive.
2001 	 */
2002 	if (!global_reclaim(sc) && !swappiness) {
2003 		scan_balance = SCAN_FILE;
2004 		goto out;
2005 	}
2006 
2007 	/*
2008 	 * Do not apply any pressure balancing cleverness when the
2009 	 * system is close to OOM, scan both anon and file equally
2010 	 * (unless the swappiness setting disagrees with swapping).
2011 	 */
2012 	if (!sc->priority && swappiness) {
2013 		scan_balance = SCAN_EQUAL;
2014 		goto out;
2015 	}
2016 
2017 	/*
2018 	 * Prevent the reclaimer from falling into the cache trap: as
2019 	 * cache pages start out inactive, every cache fault will tip
2020 	 * the scan balance towards the file LRU.  And as the file LRU
2021 	 * shrinks, so does the window for rotation from references.
2022 	 * This means we have a runaway feedback loop where a tiny
2023 	 * thrashing file LRU becomes infinitely more attractive than
2024 	 * anon pages.  Try to detect this based on file LRU size.
2025 	 */
2026 	if (global_reclaim(sc)) {
2027 		unsigned long zonefile;
2028 		unsigned long zonefree;
2029 
2030 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2031 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2032 			   zone_page_state(zone, NR_INACTIVE_FILE);
2033 
2034 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2035 			scan_balance = SCAN_ANON;
2036 			goto out;
2037 		}
2038 	}
2039 
2040 	/*
2041 	 * There is enough inactive page cache, do not reclaim
2042 	 * anything from the anonymous working set right now.
2043 	 */
2044 	if (!inactive_file_is_low(lruvec)) {
2045 		scan_balance = SCAN_FILE;
2046 		goto out;
2047 	}
2048 
2049 	scan_balance = SCAN_FRACT;
2050 
2051 	/*
2052 	 * With swappiness at 100, anonymous and file have the same priority.
2053 	 * This scanning priority is essentially the inverse of IO cost.
2054 	 */
2055 	anon_prio = swappiness;
2056 	file_prio = 200 - anon_prio;
2057 
2058 	/*
2059 	 * OK, so we have swap space and a fair amount of page cache
2060 	 * pages.  We use the recently rotated / recently scanned
2061 	 * ratios to determine how valuable each cache is.
2062 	 *
2063 	 * Because workloads change over time (and to avoid overflow)
2064 	 * we keep these statistics as a floating average, which ends
2065 	 * up weighing recent references more than old ones.
2066 	 *
2067 	 * anon in [0], file in [1]
2068 	 */
2069 
2070 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2071 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2072 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2073 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2074 
2075 	spin_lock_irq(&zone->lru_lock);
2076 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2077 		reclaim_stat->recent_scanned[0] /= 2;
2078 		reclaim_stat->recent_rotated[0] /= 2;
2079 	}
2080 
2081 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2082 		reclaim_stat->recent_scanned[1] /= 2;
2083 		reclaim_stat->recent_rotated[1] /= 2;
2084 	}
2085 
2086 	/*
2087 	 * The amount of pressure on anon vs file pages is inversely
2088 	 * proportional to the fraction of recently scanned pages on
2089 	 * each list that were recently referenced and in active use.
2090 	 */
2091 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2092 	ap /= reclaim_stat->recent_rotated[0] + 1;
2093 
2094 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2095 	fp /= reclaim_stat->recent_rotated[1] + 1;
2096 	spin_unlock_irq(&zone->lru_lock);
2097 
2098 	fraction[0] = ap;
2099 	fraction[1] = fp;
2100 	denominator = ap + fp + 1;
2101 out:
2102 	some_scanned = false;
2103 	/* Only use force_scan on second pass. */
2104 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2105 		*lru_pages = 0;
2106 		for_each_evictable_lru(lru) {
2107 			int file = is_file_lru(lru);
2108 			unsigned long size;
2109 			unsigned long scan;
2110 
2111 			size = get_lru_size(lruvec, lru);
2112 			scan = size >> sc->priority;
2113 
2114 			if (!scan && pass && force_scan)
2115 				scan = min(size, SWAP_CLUSTER_MAX);
2116 
2117 			switch (scan_balance) {
2118 			case SCAN_EQUAL:
2119 				/* Scan lists relative to size */
2120 				break;
2121 			case SCAN_FRACT:
2122 				/*
2123 				 * Scan types proportional to swappiness and
2124 				 * their relative recent reclaim efficiency.
2125 				 */
2126 				scan = div64_u64(scan * fraction[file],
2127 							denominator);
2128 				break;
2129 			case SCAN_FILE:
2130 			case SCAN_ANON:
2131 				/* Scan one type exclusively */
2132 				if ((scan_balance == SCAN_FILE) != file) {
2133 					size = 0;
2134 					scan = 0;
2135 				}
2136 				break;
2137 			default:
2138 				/* Look ma, no brain */
2139 				BUG();
2140 			}
2141 
2142 			*lru_pages += size;
2143 			nr[lru] = scan;
2144 
2145 			/*
2146 			 * Skip the second pass and don't force_scan,
2147 			 * if we found something to scan.
2148 			 */
2149 			some_scanned |= !!scan;
2150 		}
2151 	}
2152 }
2153 
2154 /*
2155  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2156  */
2157 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2158 			  struct scan_control *sc, unsigned long *lru_pages)
2159 {
2160 	unsigned long nr[NR_LRU_LISTS];
2161 	unsigned long targets[NR_LRU_LISTS];
2162 	unsigned long nr_to_scan;
2163 	enum lru_list lru;
2164 	unsigned long nr_reclaimed = 0;
2165 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2166 	struct blk_plug plug;
2167 	bool scan_adjusted;
2168 
2169 	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2170 
2171 	/* Record the original scan target for proportional adjustments later */
2172 	memcpy(targets, nr, sizeof(nr));
2173 
2174 	/*
2175 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2176 	 * event that can occur when there is little memory pressure e.g.
2177 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2178 	 * when the requested number of pages are reclaimed when scanning at
2179 	 * DEF_PRIORITY on the assumption that the fact we are direct
2180 	 * reclaiming implies that kswapd is not keeping up and it is best to
2181 	 * do a batch of work at once. For memcg reclaim one check is made to
2182 	 * abort proportional reclaim if either the file or anon lru has already
2183 	 * dropped to zero at the first pass.
2184 	 */
2185 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2186 			 sc->priority == DEF_PRIORITY);
2187 
2188 	blk_start_plug(&plug);
2189 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2190 					nr[LRU_INACTIVE_FILE]) {
2191 		unsigned long nr_anon, nr_file, percentage;
2192 		unsigned long nr_scanned;
2193 
2194 		for_each_evictable_lru(lru) {
2195 			if (nr[lru]) {
2196 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2197 				nr[lru] -= nr_to_scan;
2198 
2199 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2200 							    lruvec, sc);
2201 			}
2202 		}
2203 
2204 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2205 			continue;
2206 
2207 		/*
2208 		 * For kswapd and memcg, reclaim at least the number of pages
2209 		 * requested. Ensure that the anon and file LRUs are scanned
2210 		 * proportionally what was requested by get_scan_count(). We
2211 		 * stop reclaiming one LRU and reduce the amount scanning
2212 		 * proportional to the original scan target.
2213 		 */
2214 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2215 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2216 
2217 		/*
2218 		 * It's just vindictive to attack the larger once the smaller
2219 		 * has gone to zero.  And given the way we stop scanning the
2220 		 * smaller below, this makes sure that we only make one nudge
2221 		 * towards proportionality once we've got nr_to_reclaim.
2222 		 */
2223 		if (!nr_file || !nr_anon)
2224 			break;
2225 
2226 		if (nr_file > nr_anon) {
2227 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2228 						targets[LRU_ACTIVE_ANON] + 1;
2229 			lru = LRU_BASE;
2230 			percentage = nr_anon * 100 / scan_target;
2231 		} else {
2232 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2233 						targets[LRU_ACTIVE_FILE] + 1;
2234 			lru = LRU_FILE;
2235 			percentage = nr_file * 100 / scan_target;
2236 		}
2237 
2238 		/* Stop scanning the smaller of the LRU */
2239 		nr[lru] = 0;
2240 		nr[lru + LRU_ACTIVE] = 0;
2241 
2242 		/*
2243 		 * Recalculate the other LRU scan count based on its original
2244 		 * scan target and the percentage scanning already complete
2245 		 */
2246 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2247 		nr_scanned = targets[lru] - nr[lru];
2248 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2249 		nr[lru] -= min(nr[lru], nr_scanned);
2250 
2251 		lru += LRU_ACTIVE;
2252 		nr_scanned = targets[lru] - nr[lru];
2253 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2254 		nr[lru] -= min(nr[lru], nr_scanned);
2255 
2256 		scan_adjusted = true;
2257 	}
2258 	blk_finish_plug(&plug);
2259 	sc->nr_reclaimed += nr_reclaimed;
2260 
2261 	/*
2262 	 * Even if we did not try to evict anon pages at all, we want to
2263 	 * rebalance the anon lru active/inactive ratio.
2264 	 */
2265 	if (inactive_anon_is_low(lruvec))
2266 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2267 				   sc, LRU_ACTIVE_ANON);
2268 
2269 	throttle_vm_writeout(sc->gfp_mask);
2270 }
2271 
2272 /* Use reclaim/compaction for costly allocs or under memory pressure */
2273 static bool in_reclaim_compaction(struct scan_control *sc)
2274 {
2275 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2276 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2277 			 sc->priority < DEF_PRIORITY - 2))
2278 		return true;
2279 
2280 	return false;
2281 }
2282 
2283 /*
2284  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2285  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2286  * true if more pages should be reclaimed such that when the page allocator
2287  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2288  * It will give up earlier than that if there is difficulty reclaiming pages.
2289  */
2290 static inline bool should_continue_reclaim(struct zone *zone,
2291 					unsigned long nr_reclaimed,
2292 					unsigned long nr_scanned,
2293 					struct scan_control *sc)
2294 {
2295 	unsigned long pages_for_compaction;
2296 	unsigned long inactive_lru_pages;
2297 
2298 	/* If not in reclaim/compaction mode, stop */
2299 	if (!in_reclaim_compaction(sc))
2300 		return false;
2301 
2302 	/* Consider stopping depending on scan and reclaim activity */
2303 	if (sc->gfp_mask & __GFP_REPEAT) {
2304 		/*
2305 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2306 		 * full LRU list has been scanned and we are still failing
2307 		 * to reclaim pages. This full LRU scan is potentially
2308 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2309 		 */
2310 		if (!nr_reclaimed && !nr_scanned)
2311 			return false;
2312 	} else {
2313 		/*
2314 		 * For non-__GFP_REPEAT allocations which can presumably
2315 		 * fail without consequence, stop if we failed to reclaim
2316 		 * any pages from the last SWAP_CLUSTER_MAX number of
2317 		 * pages that were scanned. This will return to the
2318 		 * caller faster at the risk reclaim/compaction and
2319 		 * the resulting allocation attempt fails
2320 		 */
2321 		if (!nr_reclaimed)
2322 			return false;
2323 	}
2324 
2325 	/*
2326 	 * If we have not reclaimed enough pages for compaction and the
2327 	 * inactive lists are large enough, continue reclaiming
2328 	 */
2329 	pages_for_compaction = (2UL << sc->order);
2330 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2331 	if (get_nr_swap_pages() > 0)
2332 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2333 	if (sc->nr_reclaimed < pages_for_compaction &&
2334 			inactive_lru_pages > pages_for_compaction)
2335 		return true;
2336 
2337 	/* If compaction would go ahead or the allocation would succeed, stop */
2338 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2339 	case COMPACT_PARTIAL:
2340 	case COMPACT_CONTINUE:
2341 		return false;
2342 	default:
2343 		return true;
2344 	}
2345 }
2346 
2347 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2348 			bool is_classzone)
2349 {
2350 	struct reclaim_state *reclaim_state = current->reclaim_state;
2351 	unsigned long nr_reclaimed, nr_scanned;
2352 	bool reclaimable = false;
2353 
2354 	do {
2355 		struct mem_cgroup *root = sc->target_mem_cgroup;
2356 		struct mem_cgroup_reclaim_cookie reclaim = {
2357 			.zone = zone,
2358 			.priority = sc->priority,
2359 		};
2360 		unsigned long zone_lru_pages = 0;
2361 		struct mem_cgroup *memcg;
2362 
2363 		nr_reclaimed = sc->nr_reclaimed;
2364 		nr_scanned = sc->nr_scanned;
2365 
2366 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2367 		do {
2368 			unsigned long lru_pages;
2369 			unsigned long scanned;
2370 			struct lruvec *lruvec;
2371 			int swappiness;
2372 
2373 			if (mem_cgroup_low(root, memcg)) {
2374 				if (!sc->may_thrash)
2375 					continue;
2376 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2377 			}
2378 
2379 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2380 			swappiness = mem_cgroup_swappiness(memcg);
2381 			scanned = sc->nr_scanned;
2382 
2383 			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2384 			zone_lru_pages += lru_pages;
2385 
2386 			if (memcg && is_classzone)
2387 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2388 					    memcg, sc->nr_scanned - scanned,
2389 					    lru_pages);
2390 
2391 			/*
2392 			 * Direct reclaim and kswapd have to scan all memory
2393 			 * cgroups to fulfill the overall scan target for the
2394 			 * zone.
2395 			 *
2396 			 * Limit reclaim, on the other hand, only cares about
2397 			 * nr_to_reclaim pages to be reclaimed and it will
2398 			 * retry with decreasing priority if one round over the
2399 			 * whole hierarchy is not sufficient.
2400 			 */
2401 			if (!global_reclaim(sc) &&
2402 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2403 				mem_cgroup_iter_break(root, memcg);
2404 				break;
2405 			}
2406 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2407 
2408 		/*
2409 		 * Shrink the slab caches in the same proportion that
2410 		 * the eligible LRU pages were scanned.
2411 		 */
2412 		if (global_reclaim(sc) && is_classzone)
2413 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2414 				    sc->nr_scanned - nr_scanned,
2415 				    zone_lru_pages);
2416 
2417 		if (reclaim_state) {
2418 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2419 			reclaim_state->reclaimed_slab = 0;
2420 		}
2421 
2422 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2423 			   sc->nr_scanned - nr_scanned,
2424 			   sc->nr_reclaimed - nr_reclaimed);
2425 
2426 		if (sc->nr_reclaimed - nr_reclaimed)
2427 			reclaimable = true;
2428 
2429 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2430 					 sc->nr_scanned - nr_scanned, sc));
2431 
2432 	return reclaimable;
2433 }
2434 
2435 /*
2436  * Returns true if compaction should go ahead for a high-order request, or
2437  * the high-order allocation would succeed without compaction.
2438  */
2439 static inline bool compaction_ready(struct zone *zone, int order)
2440 {
2441 	unsigned long balance_gap, watermark;
2442 	bool watermark_ok;
2443 
2444 	/*
2445 	 * Compaction takes time to run and there are potentially other
2446 	 * callers using the pages just freed. Continue reclaiming until
2447 	 * there is a buffer of free pages available to give compaction
2448 	 * a reasonable chance of completing and allocating the page
2449 	 */
2450 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2451 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2452 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2453 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2454 
2455 	/*
2456 	 * If compaction is deferred, reclaim up to a point where
2457 	 * compaction will have a chance of success when re-enabled
2458 	 */
2459 	if (compaction_deferred(zone, order))
2460 		return watermark_ok;
2461 
2462 	/*
2463 	 * If compaction is not ready to start and allocation is not likely
2464 	 * to succeed without it, then keep reclaiming.
2465 	 */
2466 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2467 		return false;
2468 
2469 	return watermark_ok;
2470 }
2471 
2472 /*
2473  * This is the direct reclaim path, for page-allocating processes.  We only
2474  * try to reclaim pages from zones which will satisfy the caller's allocation
2475  * request.
2476  *
2477  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2478  * Because:
2479  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2480  *    allocation or
2481  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2482  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2483  *    zone defense algorithm.
2484  *
2485  * If a zone is deemed to be full of pinned pages then just give it a light
2486  * scan then give up on it.
2487  *
2488  * Returns true if a zone was reclaimable.
2489  */
2490 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2491 {
2492 	struct zoneref *z;
2493 	struct zone *zone;
2494 	unsigned long nr_soft_reclaimed;
2495 	unsigned long nr_soft_scanned;
2496 	gfp_t orig_mask;
2497 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2498 	bool reclaimable = false;
2499 
2500 	/*
2501 	 * If the number of buffer_heads in the machine exceeds the maximum
2502 	 * allowed level, force direct reclaim to scan the highmem zone as
2503 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2504 	 */
2505 	orig_mask = sc->gfp_mask;
2506 	if (buffer_heads_over_limit)
2507 		sc->gfp_mask |= __GFP_HIGHMEM;
2508 
2509 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2510 					requested_highidx, sc->nodemask) {
2511 		enum zone_type classzone_idx;
2512 
2513 		if (!populated_zone(zone))
2514 			continue;
2515 
2516 		classzone_idx = requested_highidx;
2517 		while (!populated_zone(zone->zone_pgdat->node_zones +
2518 							classzone_idx))
2519 			classzone_idx--;
2520 
2521 		/*
2522 		 * Take care memory controller reclaiming has small influence
2523 		 * to global LRU.
2524 		 */
2525 		if (global_reclaim(sc)) {
2526 			if (!cpuset_zone_allowed(zone,
2527 						 GFP_KERNEL | __GFP_HARDWALL))
2528 				continue;
2529 
2530 			if (sc->priority != DEF_PRIORITY &&
2531 			    !zone_reclaimable(zone))
2532 				continue;	/* Let kswapd poll it */
2533 
2534 			/*
2535 			 * If we already have plenty of memory free for
2536 			 * compaction in this zone, don't free any more.
2537 			 * Even though compaction is invoked for any
2538 			 * non-zero order, only frequent costly order
2539 			 * reclamation is disruptive enough to become a
2540 			 * noticeable problem, like transparent huge
2541 			 * page allocations.
2542 			 */
2543 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2544 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2545 			    zonelist_zone_idx(z) <= requested_highidx &&
2546 			    compaction_ready(zone, sc->order)) {
2547 				sc->compaction_ready = true;
2548 				continue;
2549 			}
2550 
2551 			/*
2552 			 * This steals pages from memory cgroups over softlimit
2553 			 * and returns the number of reclaimed pages and
2554 			 * scanned pages. This works for global memory pressure
2555 			 * and balancing, not for a memcg's limit.
2556 			 */
2557 			nr_soft_scanned = 0;
2558 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2559 						sc->order, sc->gfp_mask,
2560 						&nr_soft_scanned);
2561 			sc->nr_reclaimed += nr_soft_reclaimed;
2562 			sc->nr_scanned += nr_soft_scanned;
2563 			if (nr_soft_reclaimed)
2564 				reclaimable = true;
2565 			/* need some check for avoid more shrink_zone() */
2566 		}
2567 
2568 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2569 			reclaimable = true;
2570 
2571 		if (global_reclaim(sc) &&
2572 		    !reclaimable && zone_reclaimable(zone))
2573 			reclaimable = true;
2574 	}
2575 
2576 	/*
2577 	 * Restore to original mask to avoid the impact on the caller if we
2578 	 * promoted it to __GFP_HIGHMEM.
2579 	 */
2580 	sc->gfp_mask = orig_mask;
2581 
2582 	return reclaimable;
2583 }
2584 
2585 /*
2586  * This is the main entry point to direct page reclaim.
2587  *
2588  * If a full scan of the inactive list fails to free enough memory then we
2589  * are "out of memory" and something needs to be killed.
2590  *
2591  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2592  * high - the zone may be full of dirty or under-writeback pages, which this
2593  * caller can't do much about.  We kick the writeback threads and take explicit
2594  * naps in the hope that some of these pages can be written.  But if the
2595  * allocating task holds filesystem locks which prevent writeout this might not
2596  * work, and the allocation attempt will fail.
2597  *
2598  * returns:	0, if no pages reclaimed
2599  * 		else, the number of pages reclaimed
2600  */
2601 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2602 					  struct scan_control *sc)
2603 {
2604 	int initial_priority = sc->priority;
2605 	unsigned long total_scanned = 0;
2606 	unsigned long writeback_threshold;
2607 	bool zones_reclaimable;
2608 retry:
2609 	delayacct_freepages_start();
2610 
2611 	if (global_reclaim(sc))
2612 		count_vm_event(ALLOCSTALL);
2613 
2614 	do {
2615 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2616 				sc->priority);
2617 		sc->nr_scanned = 0;
2618 		zones_reclaimable = shrink_zones(zonelist, sc);
2619 
2620 		total_scanned += sc->nr_scanned;
2621 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2622 			break;
2623 
2624 		if (sc->compaction_ready)
2625 			break;
2626 
2627 		/*
2628 		 * If we're getting trouble reclaiming, start doing
2629 		 * writepage even in laptop mode.
2630 		 */
2631 		if (sc->priority < DEF_PRIORITY - 2)
2632 			sc->may_writepage = 1;
2633 
2634 		/*
2635 		 * Try to write back as many pages as we just scanned.  This
2636 		 * tends to cause slow streaming writers to write data to the
2637 		 * disk smoothly, at the dirtying rate, which is nice.   But
2638 		 * that's undesirable in laptop mode, where we *want* lumpy
2639 		 * writeout.  So in laptop mode, write out the whole world.
2640 		 */
2641 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2642 		if (total_scanned > writeback_threshold) {
2643 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2644 						WB_REASON_TRY_TO_FREE_PAGES);
2645 			sc->may_writepage = 1;
2646 		}
2647 	} while (--sc->priority >= 0);
2648 
2649 	delayacct_freepages_end();
2650 
2651 	if (sc->nr_reclaimed)
2652 		return sc->nr_reclaimed;
2653 
2654 	/* Aborted reclaim to try compaction? don't OOM, then */
2655 	if (sc->compaction_ready)
2656 		return 1;
2657 
2658 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2659 	if (!sc->may_thrash) {
2660 		sc->priority = initial_priority;
2661 		sc->may_thrash = 1;
2662 		goto retry;
2663 	}
2664 
2665 	/* Any of the zones still reclaimable?  Don't OOM. */
2666 	if (zones_reclaimable)
2667 		return 1;
2668 
2669 	return 0;
2670 }
2671 
2672 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2673 {
2674 	struct zone *zone;
2675 	unsigned long pfmemalloc_reserve = 0;
2676 	unsigned long free_pages = 0;
2677 	int i;
2678 	bool wmark_ok;
2679 
2680 	for (i = 0; i <= ZONE_NORMAL; i++) {
2681 		zone = &pgdat->node_zones[i];
2682 		if (!populated_zone(zone) ||
2683 		    zone_reclaimable_pages(zone) == 0)
2684 			continue;
2685 
2686 		pfmemalloc_reserve += min_wmark_pages(zone);
2687 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2688 	}
2689 
2690 	/* If there are no reserves (unexpected config) then do not throttle */
2691 	if (!pfmemalloc_reserve)
2692 		return true;
2693 
2694 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2695 
2696 	/* kswapd must be awake if processes are being throttled */
2697 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2698 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2699 						(enum zone_type)ZONE_NORMAL);
2700 		wake_up_interruptible(&pgdat->kswapd_wait);
2701 	}
2702 
2703 	return wmark_ok;
2704 }
2705 
2706 /*
2707  * Throttle direct reclaimers if backing storage is backed by the network
2708  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2709  * depleted. kswapd will continue to make progress and wake the processes
2710  * when the low watermark is reached.
2711  *
2712  * Returns true if a fatal signal was delivered during throttling. If this
2713  * happens, the page allocator should not consider triggering the OOM killer.
2714  */
2715 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2716 					nodemask_t *nodemask)
2717 {
2718 	struct zoneref *z;
2719 	struct zone *zone;
2720 	pg_data_t *pgdat = NULL;
2721 
2722 	/*
2723 	 * Kernel threads should not be throttled as they may be indirectly
2724 	 * responsible for cleaning pages necessary for reclaim to make forward
2725 	 * progress. kjournald for example may enter direct reclaim while
2726 	 * committing a transaction where throttling it could forcing other
2727 	 * processes to block on log_wait_commit().
2728 	 */
2729 	if (current->flags & PF_KTHREAD)
2730 		goto out;
2731 
2732 	/*
2733 	 * If a fatal signal is pending, this process should not throttle.
2734 	 * It should return quickly so it can exit and free its memory
2735 	 */
2736 	if (fatal_signal_pending(current))
2737 		goto out;
2738 
2739 	/*
2740 	 * Check if the pfmemalloc reserves are ok by finding the first node
2741 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2742 	 * GFP_KERNEL will be required for allocating network buffers when
2743 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2744 	 *
2745 	 * Throttling is based on the first usable node and throttled processes
2746 	 * wait on a queue until kswapd makes progress and wakes them. There
2747 	 * is an affinity then between processes waking up and where reclaim
2748 	 * progress has been made assuming the process wakes on the same node.
2749 	 * More importantly, processes running on remote nodes will not compete
2750 	 * for remote pfmemalloc reserves and processes on different nodes
2751 	 * should make reasonable progress.
2752 	 */
2753 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2754 					gfp_zone(gfp_mask), nodemask) {
2755 		if (zone_idx(zone) > ZONE_NORMAL)
2756 			continue;
2757 
2758 		/* Throttle based on the first usable node */
2759 		pgdat = zone->zone_pgdat;
2760 		if (pfmemalloc_watermark_ok(pgdat))
2761 			goto out;
2762 		break;
2763 	}
2764 
2765 	/* If no zone was usable by the allocation flags then do not throttle */
2766 	if (!pgdat)
2767 		goto out;
2768 
2769 	/* Account for the throttling */
2770 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2771 
2772 	/*
2773 	 * If the caller cannot enter the filesystem, it's possible that it
2774 	 * is due to the caller holding an FS lock or performing a journal
2775 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2776 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2777 	 * blocked waiting on the same lock. Instead, throttle for up to a
2778 	 * second before continuing.
2779 	 */
2780 	if (!(gfp_mask & __GFP_FS)) {
2781 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2782 			pfmemalloc_watermark_ok(pgdat), HZ);
2783 
2784 		goto check_pending;
2785 	}
2786 
2787 	/* Throttle until kswapd wakes the process */
2788 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2789 		pfmemalloc_watermark_ok(pgdat));
2790 
2791 check_pending:
2792 	if (fatal_signal_pending(current))
2793 		return true;
2794 
2795 out:
2796 	return false;
2797 }
2798 
2799 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2800 				gfp_t gfp_mask, nodemask_t *nodemask)
2801 {
2802 	unsigned long nr_reclaimed;
2803 	struct scan_control sc = {
2804 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2805 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2806 		.order = order,
2807 		.nodemask = nodemask,
2808 		.priority = DEF_PRIORITY,
2809 		.may_writepage = !laptop_mode,
2810 		.may_unmap = 1,
2811 		.may_swap = 1,
2812 	};
2813 
2814 	/*
2815 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2816 	 * 1 is returned so that the page allocator does not OOM kill at this
2817 	 * point.
2818 	 */
2819 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2820 		return 1;
2821 
2822 	trace_mm_vmscan_direct_reclaim_begin(order,
2823 				sc.may_writepage,
2824 				gfp_mask);
2825 
2826 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2827 
2828 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2829 
2830 	return nr_reclaimed;
2831 }
2832 
2833 #ifdef CONFIG_MEMCG
2834 
2835 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2836 						gfp_t gfp_mask, bool noswap,
2837 						struct zone *zone,
2838 						unsigned long *nr_scanned)
2839 {
2840 	struct scan_control sc = {
2841 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2842 		.target_mem_cgroup = memcg,
2843 		.may_writepage = !laptop_mode,
2844 		.may_unmap = 1,
2845 		.may_swap = !noswap,
2846 	};
2847 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2848 	int swappiness = mem_cgroup_swappiness(memcg);
2849 	unsigned long lru_pages;
2850 
2851 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2852 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2853 
2854 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2855 						      sc.may_writepage,
2856 						      sc.gfp_mask);
2857 
2858 	/*
2859 	 * NOTE: Although we can get the priority field, using it
2860 	 * here is not a good idea, since it limits the pages we can scan.
2861 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2862 	 * will pick up pages from other mem cgroup's as well. We hack
2863 	 * the priority and make it zero.
2864 	 */
2865 	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2866 
2867 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2868 
2869 	*nr_scanned = sc.nr_scanned;
2870 	return sc.nr_reclaimed;
2871 }
2872 
2873 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2874 					   unsigned long nr_pages,
2875 					   gfp_t gfp_mask,
2876 					   bool may_swap)
2877 {
2878 	struct zonelist *zonelist;
2879 	unsigned long nr_reclaimed;
2880 	int nid;
2881 	struct scan_control sc = {
2882 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2883 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2884 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2885 		.target_mem_cgroup = memcg,
2886 		.priority = DEF_PRIORITY,
2887 		.may_writepage = !laptop_mode,
2888 		.may_unmap = 1,
2889 		.may_swap = may_swap,
2890 	};
2891 
2892 	/*
2893 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2894 	 * take care of from where we get pages. So the node where we start the
2895 	 * scan does not need to be the current node.
2896 	 */
2897 	nid = mem_cgroup_select_victim_node(memcg);
2898 
2899 	zonelist = NODE_DATA(nid)->node_zonelists;
2900 
2901 	trace_mm_vmscan_memcg_reclaim_begin(0,
2902 					    sc.may_writepage,
2903 					    sc.gfp_mask);
2904 
2905 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2906 
2907 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2908 
2909 	return nr_reclaimed;
2910 }
2911 #endif
2912 
2913 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2914 {
2915 	struct mem_cgroup *memcg;
2916 
2917 	if (!total_swap_pages)
2918 		return;
2919 
2920 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2921 	do {
2922 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2923 
2924 		if (inactive_anon_is_low(lruvec))
2925 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2926 					   sc, LRU_ACTIVE_ANON);
2927 
2928 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2929 	} while (memcg);
2930 }
2931 
2932 static bool zone_balanced(struct zone *zone, int order,
2933 			  unsigned long balance_gap, int classzone_idx)
2934 {
2935 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2936 				    balance_gap, classzone_idx, 0))
2937 		return false;
2938 
2939 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2940 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2941 		return false;
2942 
2943 	return true;
2944 }
2945 
2946 /*
2947  * pgdat_balanced() is used when checking if a node is balanced.
2948  *
2949  * For order-0, all zones must be balanced!
2950  *
2951  * For high-order allocations only zones that meet watermarks and are in a
2952  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2953  * total of balanced pages must be at least 25% of the zones allowed by
2954  * classzone_idx for the node to be considered balanced. Forcing all zones to
2955  * be balanced for high orders can cause excessive reclaim when there are
2956  * imbalanced zones.
2957  * The choice of 25% is due to
2958  *   o a 16M DMA zone that is balanced will not balance a zone on any
2959  *     reasonable sized machine
2960  *   o On all other machines, the top zone must be at least a reasonable
2961  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2962  *     would need to be at least 256M for it to be balance a whole node.
2963  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2964  *     to balance a node on its own. These seemed like reasonable ratios.
2965  */
2966 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2967 {
2968 	unsigned long managed_pages = 0;
2969 	unsigned long balanced_pages = 0;
2970 	int i;
2971 
2972 	/* Check the watermark levels */
2973 	for (i = 0; i <= classzone_idx; i++) {
2974 		struct zone *zone = pgdat->node_zones + i;
2975 
2976 		if (!populated_zone(zone))
2977 			continue;
2978 
2979 		managed_pages += zone->managed_pages;
2980 
2981 		/*
2982 		 * A special case here:
2983 		 *
2984 		 * balance_pgdat() skips over all_unreclaimable after
2985 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2986 		 * they must be considered balanced here as well!
2987 		 */
2988 		if (!zone_reclaimable(zone)) {
2989 			balanced_pages += zone->managed_pages;
2990 			continue;
2991 		}
2992 
2993 		if (zone_balanced(zone, order, 0, i))
2994 			balanced_pages += zone->managed_pages;
2995 		else if (!order)
2996 			return false;
2997 	}
2998 
2999 	if (order)
3000 		return balanced_pages >= (managed_pages >> 2);
3001 	else
3002 		return true;
3003 }
3004 
3005 /*
3006  * Prepare kswapd for sleeping. This verifies that there are no processes
3007  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3008  *
3009  * Returns true if kswapd is ready to sleep
3010  */
3011 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3012 					int classzone_idx)
3013 {
3014 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3015 	if (remaining)
3016 		return false;
3017 
3018 	/*
3019 	 * The throttled processes are normally woken up in balance_pgdat() as
3020 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3021 	 * race between when kswapd checks the watermarks and a process gets
3022 	 * throttled. There is also a potential race if processes get
3023 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3024 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3025 	 * the wake up checks. If kswapd is going to sleep, no process should
3026 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3027 	 * the wake up is premature, processes will wake kswapd and get
3028 	 * throttled again. The difference from wake ups in balance_pgdat() is
3029 	 * that here we are under prepare_to_wait().
3030 	 */
3031 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3032 		wake_up_all(&pgdat->pfmemalloc_wait);
3033 
3034 	return pgdat_balanced(pgdat, order, classzone_idx);
3035 }
3036 
3037 /*
3038  * kswapd shrinks the zone by the number of pages required to reach
3039  * the high watermark.
3040  *
3041  * Returns true if kswapd scanned at least the requested number of pages to
3042  * reclaim or if the lack of progress was due to pages under writeback.
3043  * This is used to determine if the scanning priority needs to be raised.
3044  */
3045 static bool kswapd_shrink_zone(struct zone *zone,
3046 			       int classzone_idx,
3047 			       struct scan_control *sc,
3048 			       unsigned long *nr_attempted)
3049 {
3050 	int testorder = sc->order;
3051 	unsigned long balance_gap;
3052 	bool lowmem_pressure;
3053 
3054 	/* Reclaim above the high watermark. */
3055 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3056 
3057 	/*
3058 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3059 	 * too hard to reclaim until contiguous free pages have become
3060 	 * available can hurt performance by evicting too much useful data
3061 	 * from memory. Do not reclaim more than needed for compaction.
3062 	 */
3063 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3064 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3065 							!= COMPACT_SKIPPED)
3066 		testorder = 0;
3067 
3068 	/*
3069 	 * We put equal pressure on every zone, unless one zone has way too
3070 	 * many pages free already. The "too many pages" is defined as the
3071 	 * high wmark plus a "gap" where the gap is either the low
3072 	 * watermark or 1% of the zone, whichever is smaller.
3073 	 */
3074 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3075 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3076 
3077 	/*
3078 	 * If there is no low memory pressure or the zone is balanced then no
3079 	 * reclaim is necessary
3080 	 */
3081 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3082 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3083 						balance_gap, classzone_idx))
3084 		return true;
3085 
3086 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3087 
3088 	/* Account for the number of pages attempted to reclaim */
3089 	*nr_attempted += sc->nr_to_reclaim;
3090 
3091 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3092 
3093 	/*
3094 	 * If a zone reaches its high watermark, consider it to be no longer
3095 	 * congested. It's possible there are dirty pages backed by congested
3096 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3097 	 * waits.
3098 	 */
3099 	if (zone_reclaimable(zone) &&
3100 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3101 		clear_bit(ZONE_CONGESTED, &zone->flags);
3102 		clear_bit(ZONE_DIRTY, &zone->flags);
3103 	}
3104 
3105 	return sc->nr_scanned >= sc->nr_to_reclaim;
3106 }
3107 
3108 /*
3109  * For kswapd, balance_pgdat() will work across all this node's zones until
3110  * they are all at high_wmark_pages(zone).
3111  *
3112  * Returns the final order kswapd was reclaiming at
3113  *
3114  * There is special handling here for zones which are full of pinned pages.
3115  * This can happen if the pages are all mlocked, or if they are all used by
3116  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3117  * What we do is to detect the case where all pages in the zone have been
3118  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3119  * dead and from now on, only perform a short scan.  Basically we're polling
3120  * the zone for when the problem goes away.
3121  *
3122  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3123  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3124  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3125  * lower zones regardless of the number of free pages in the lower zones. This
3126  * interoperates with the page allocator fallback scheme to ensure that aging
3127  * of pages is balanced across the zones.
3128  */
3129 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3130 							int *classzone_idx)
3131 {
3132 	int i;
3133 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3134 	unsigned long nr_soft_reclaimed;
3135 	unsigned long nr_soft_scanned;
3136 	struct scan_control sc = {
3137 		.gfp_mask = GFP_KERNEL,
3138 		.order = order,
3139 		.priority = DEF_PRIORITY,
3140 		.may_writepage = !laptop_mode,
3141 		.may_unmap = 1,
3142 		.may_swap = 1,
3143 	};
3144 	count_vm_event(PAGEOUTRUN);
3145 
3146 	do {
3147 		unsigned long nr_attempted = 0;
3148 		bool raise_priority = true;
3149 		bool pgdat_needs_compaction = (order > 0);
3150 
3151 		sc.nr_reclaimed = 0;
3152 
3153 		/*
3154 		 * Scan in the highmem->dma direction for the highest
3155 		 * zone which needs scanning
3156 		 */
3157 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3158 			struct zone *zone = pgdat->node_zones + i;
3159 
3160 			if (!populated_zone(zone))
3161 				continue;
3162 
3163 			if (sc.priority != DEF_PRIORITY &&
3164 			    !zone_reclaimable(zone))
3165 				continue;
3166 
3167 			/*
3168 			 * Do some background aging of the anon list, to give
3169 			 * pages a chance to be referenced before reclaiming.
3170 			 */
3171 			age_active_anon(zone, &sc);
3172 
3173 			/*
3174 			 * If the number of buffer_heads in the machine
3175 			 * exceeds the maximum allowed level and this node
3176 			 * has a highmem zone, force kswapd to reclaim from
3177 			 * it to relieve lowmem pressure.
3178 			 */
3179 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3180 				end_zone = i;
3181 				break;
3182 			}
3183 
3184 			if (!zone_balanced(zone, order, 0, 0)) {
3185 				end_zone = i;
3186 				break;
3187 			} else {
3188 				/*
3189 				 * If balanced, clear the dirty and congested
3190 				 * flags
3191 				 */
3192 				clear_bit(ZONE_CONGESTED, &zone->flags);
3193 				clear_bit(ZONE_DIRTY, &zone->flags);
3194 			}
3195 		}
3196 
3197 		if (i < 0)
3198 			goto out;
3199 
3200 		for (i = 0; i <= end_zone; i++) {
3201 			struct zone *zone = pgdat->node_zones + i;
3202 
3203 			if (!populated_zone(zone))
3204 				continue;
3205 
3206 			/*
3207 			 * If any zone is currently balanced then kswapd will
3208 			 * not call compaction as it is expected that the
3209 			 * necessary pages are already available.
3210 			 */
3211 			if (pgdat_needs_compaction &&
3212 					zone_watermark_ok(zone, order,
3213 						low_wmark_pages(zone),
3214 						*classzone_idx, 0))
3215 				pgdat_needs_compaction = false;
3216 		}
3217 
3218 		/*
3219 		 * If we're getting trouble reclaiming, start doing writepage
3220 		 * even in laptop mode.
3221 		 */
3222 		if (sc.priority < DEF_PRIORITY - 2)
3223 			sc.may_writepage = 1;
3224 
3225 		/*
3226 		 * Now scan the zone in the dma->highmem direction, stopping
3227 		 * at the last zone which needs scanning.
3228 		 *
3229 		 * We do this because the page allocator works in the opposite
3230 		 * direction.  This prevents the page allocator from allocating
3231 		 * pages behind kswapd's direction of progress, which would
3232 		 * cause too much scanning of the lower zones.
3233 		 */
3234 		for (i = 0; i <= end_zone; i++) {
3235 			struct zone *zone = pgdat->node_zones + i;
3236 
3237 			if (!populated_zone(zone))
3238 				continue;
3239 
3240 			if (sc.priority != DEF_PRIORITY &&
3241 			    !zone_reclaimable(zone))
3242 				continue;
3243 
3244 			sc.nr_scanned = 0;
3245 
3246 			nr_soft_scanned = 0;
3247 			/*
3248 			 * Call soft limit reclaim before calling shrink_zone.
3249 			 */
3250 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3251 							order, sc.gfp_mask,
3252 							&nr_soft_scanned);
3253 			sc.nr_reclaimed += nr_soft_reclaimed;
3254 
3255 			/*
3256 			 * There should be no need to raise the scanning
3257 			 * priority if enough pages are already being scanned
3258 			 * that that high watermark would be met at 100%
3259 			 * efficiency.
3260 			 */
3261 			if (kswapd_shrink_zone(zone, end_zone,
3262 					       &sc, &nr_attempted))
3263 				raise_priority = false;
3264 		}
3265 
3266 		/*
3267 		 * If the low watermark is met there is no need for processes
3268 		 * to be throttled on pfmemalloc_wait as they should not be
3269 		 * able to safely make forward progress. Wake them
3270 		 */
3271 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3272 				pfmemalloc_watermark_ok(pgdat))
3273 			wake_up_all(&pgdat->pfmemalloc_wait);
3274 
3275 		/*
3276 		 * Fragmentation may mean that the system cannot be rebalanced
3277 		 * for high-order allocations in all zones. If twice the
3278 		 * allocation size has been reclaimed and the zones are still
3279 		 * not balanced then recheck the watermarks at order-0 to
3280 		 * prevent kswapd reclaiming excessively. Assume that a
3281 		 * process requested a high-order can direct reclaim/compact.
3282 		 */
3283 		if (order && sc.nr_reclaimed >= 2UL << order)
3284 			order = sc.order = 0;
3285 
3286 		/* Check if kswapd should be suspending */
3287 		if (try_to_freeze() || kthread_should_stop())
3288 			break;
3289 
3290 		/*
3291 		 * Compact if necessary and kswapd is reclaiming at least the
3292 		 * high watermark number of pages as requsted
3293 		 */
3294 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3295 			compact_pgdat(pgdat, order);
3296 
3297 		/*
3298 		 * Raise priority if scanning rate is too low or there was no
3299 		 * progress in reclaiming pages
3300 		 */
3301 		if (raise_priority || !sc.nr_reclaimed)
3302 			sc.priority--;
3303 	} while (sc.priority >= 1 &&
3304 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3305 
3306 out:
3307 	/*
3308 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3309 	 * makes a decision on the order we were last reclaiming at. However,
3310 	 * if another caller entered the allocator slow path while kswapd
3311 	 * was awake, order will remain at the higher level
3312 	 */
3313 	*classzone_idx = end_zone;
3314 	return order;
3315 }
3316 
3317 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3318 {
3319 	long remaining = 0;
3320 	DEFINE_WAIT(wait);
3321 
3322 	if (freezing(current) || kthread_should_stop())
3323 		return;
3324 
3325 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3326 
3327 	/* Try to sleep for a short interval */
3328 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3329 		remaining = schedule_timeout(HZ/10);
3330 		finish_wait(&pgdat->kswapd_wait, &wait);
3331 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3332 	}
3333 
3334 	/*
3335 	 * After a short sleep, check if it was a premature sleep. If not, then
3336 	 * go fully to sleep until explicitly woken up.
3337 	 */
3338 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3339 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3340 
3341 		/*
3342 		 * vmstat counters are not perfectly accurate and the estimated
3343 		 * value for counters such as NR_FREE_PAGES can deviate from the
3344 		 * true value by nr_online_cpus * threshold. To avoid the zone
3345 		 * watermarks being breached while under pressure, we reduce the
3346 		 * per-cpu vmstat threshold while kswapd is awake and restore
3347 		 * them before going back to sleep.
3348 		 */
3349 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3350 
3351 		/*
3352 		 * Compaction records what page blocks it recently failed to
3353 		 * isolate pages from and skips them in the future scanning.
3354 		 * When kswapd is going to sleep, it is reasonable to assume
3355 		 * that pages and compaction may succeed so reset the cache.
3356 		 */
3357 		reset_isolation_suitable(pgdat);
3358 
3359 		if (!kthread_should_stop())
3360 			schedule();
3361 
3362 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3363 	} else {
3364 		if (remaining)
3365 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3366 		else
3367 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3368 	}
3369 	finish_wait(&pgdat->kswapd_wait, &wait);
3370 }
3371 
3372 /*
3373  * The background pageout daemon, started as a kernel thread
3374  * from the init process.
3375  *
3376  * This basically trickles out pages so that we have _some_
3377  * free memory available even if there is no other activity
3378  * that frees anything up. This is needed for things like routing
3379  * etc, where we otherwise might have all activity going on in
3380  * asynchronous contexts that cannot page things out.
3381  *
3382  * If there are applications that are active memory-allocators
3383  * (most normal use), this basically shouldn't matter.
3384  */
3385 static int kswapd(void *p)
3386 {
3387 	unsigned long order, new_order;
3388 	unsigned balanced_order;
3389 	int classzone_idx, new_classzone_idx;
3390 	int balanced_classzone_idx;
3391 	pg_data_t *pgdat = (pg_data_t*)p;
3392 	struct task_struct *tsk = current;
3393 
3394 	struct reclaim_state reclaim_state = {
3395 		.reclaimed_slab = 0,
3396 	};
3397 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3398 
3399 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3400 
3401 	if (!cpumask_empty(cpumask))
3402 		set_cpus_allowed_ptr(tsk, cpumask);
3403 	current->reclaim_state = &reclaim_state;
3404 
3405 	/*
3406 	 * Tell the memory management that we're a "memory allocator",
3407 	 * and that if we need more memory we should get access to it
3408 	 * regardless (see "__alloc_pages()"). "kswapd" should
3409 	 * never get caught in the normal page freeing logic.
3410 	 *
3411 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3412 	 * you need a small amount of memory in order to be able to
3413 	 * page out something else, and this flag essentially protects
3414 	 * us from recursively trying to free more memory as we're
3415 	 * trying to free the first piece of memory in the first place).
3416 	 */
3417 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3418 	set_freezable();
3419 
3420 	order = new_order = 0;
3421 	balanced_order = 0;
3422 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3423 	balanced_classzone_idx = classzone_idx;
3424 	for ( ; ; ) {
3425 		bool ret;
3426 
3427 		/*
3428 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3429 		 * new request of a similar or harder type will succeed soon
3430 		 * so consider going to sleep on the basis we reclaimed at
3431 		 */
3432 		if (balanced_classzone_idx >= new_classzone_idx &&
3433 					balanced_order == new_order) {
3434 			new_order = pgdat->kswapd_max_order;
3435 			new_classzone_idx = pgdat->classzone_idx;
3436 			pgdat->kswapd_max_order =  0;
3437 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3438 		}
3439 
3440 		if (order < new_order || classzone_idx > new_classzone_idx) {
3441 			/*
3442 			 * Don't sleep if someone wants a larger 'order'
3443 			 * allocation or has tigher zone constraints
3444 			 */
3445 			order = new_order;
3446 			classzone_idx = new_classzone_idx;
3447 		} else {
3448 			kswapd_try_to_sleep(pgdat, balanced_order,
3449 						balanced_classzone_idx);
3450 			order = pgdat->kswapd_max_order;
3451 			classzone_idx = pgdat->classzone_idx;
3452 			new_order = order;
3453 			new_classzone_idx = classzone_idx;
3454 			pgdat->kswapd_max_order = 0;
3455 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3456 		}
3457 
3458 		ret = try_to_freeze();
3459 		if (kthread_should_stop())
3460 			break;
3461 
3462 		/*
3463 		 * We can speed up thawing tasks if we don't call balance_pgdat
3464 		 * after returning from the refrigerator
3465 		 */
3466 		if (!ret) {
3467 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3468 			balanced_classzone_idx = classzone_idx;
3469 			balanced_order = balance_pgdat(pgdat, order,
3470 						&balanced_classzone_idx);
3471 		}
3472 	}
3473 
3474 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3475 	current->reclaim_state = NULL;
3476 	lockdep_clear_current_reclaim_state();
3477 
3478 	return 0;
3479 }
3480 
3481 /*
3482  * A zone is low on free memory, so wake its kswapd task to service it.
3483  */
3484 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3485 {
3486 	pg_data_t *pgdat;
3487 
3488 	if (!populated_zone(zone))
3489 		return;
3490 
3491 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3492 		return;
3493 	pgdat = zone->zone_pgdat;
3494 	if (pgdat->kswapd_max_order < order) {
3495 		pgdat->kswapd_max_order = order;
3496 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3497 	}
3498 	if (!waitqueue_active(&pgdat->kswapd_wait))
3499 		return;
3500 	if (zone_balanced(zone, order, 0, 0))
3501 		return;
3502 
3503 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3504 	wake_up_interruptible(&pgdat->kswapd_wait);
3505 }
3506 
3507 #ifdef CONFIG_HIBERNATION
3508 /*
3509  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3510  * freed pages.
3511  *
3512  * Rather than trying to age LRUs the aim is to preserve the overall
3513  * LRU order by reclaiming preferentially
3514  * inactive > active > active referenced > active mapped
3515  */
3516 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3517 {
3518 	struct reclaim_state reclaim_state;
3519 	struct scan_control sc = {
3520 		.nr_to_reclaim = nr_to_reclaim,
3521 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3522 		.priority = DEF_PRIORITY,
3523 		.may_writepage = 1,
3524 		.may_unmap = 1,
3525 		.may_swap = 1,
3526 		.hibernation_mode = 1,
3527 	};
3528 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3529 	struct task_struct *p = current;
3530 	unsigned long nr_reclaimed;
3531 
3532 	p->flags |= PF_MEMALLOC;
3533 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3534 	reclaim_state.reclaimed_slab = 0;
3535 	p->reclaim_state = &reclaim_state;
3536 
3537 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3538 
3539 	p->reclaim_state = NULL;
3540 	lockdep_clear_current_reclaim_state();
3541 	p->flags &= ~PF_MEMALLOC;
3542 
3543 	return nr_reclaimed;
3544 }
3545 #endif /* CONFIG_HIBERNATION */
3546 
3547 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3548    not required for correctness.  So if the last cpu in a node goes
3549    away, we get changed to run anywhere: as the first one comes back,
3550    restore their cpu bindings. */
3551 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3552 			void *hcpu)
3553 {
3554 	int nid;
3555 
3556 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3557 		for_each_node_state(nid, N_MEMORY) {
3558 			pg_data_t *pgdat = NODE_DATA(nid);
3559 			const struct cpumask *mask;
3560 
3561 			mask = cpumask_of_node(pgdat->node_id);
3562 
3563 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3564 				/* One of our CPUs online: restore mask */
3565 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3566 		}
3567 	}
3568 	return NOTIFY_OK;
3569 }
3570 
3571 /*
3572  * This kswapd start function will be called by init and node-hot-add.
3573  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3574  */
3575 int kswapd_run(int nid)
3576 {
3577 	pg_data_t *pgdat = NODE_DATA(nid);
3578 	int ret = 0;
3579 
3580 	if (pgdat->kswapd)
3581 		return 0;
3582 
3583 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3584 	if (IS_ERR(pgdat->kswapd)) {
3585 		/* failure at boot is fatal */
3586 		BUG_ON(system_state == SYSTEM_BOOTING);
3587 		pr_err("Failed to start kswapd on node %d\n", nid);
3588 		ret = PTR_ERR(pgdat->kswapd);
3589 		pgdat->kswapd = NULL;
3590 	}
3591 	return ret;
3592 }
3593 
3594 /*
3595  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3596  * hold mem_hotplug_begin/end().
3597  */
3598 void kswapd_stop(int nid)
3599 {
3600 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3601 
3602 	if (kswapd) {
3603 		kthread_stop(kswapd);
3604 		NODE_DATA(nid)->kswapd = NULL;
3605 	}
3606 }
3607 
3608 static int __init kswapd_init(void)
3609 {
3610 	int nid;
3611 
3612 	swap_setup();
3613 	for_each_node_state(nid, N_MEMORY)
3614  		kswapd_run(nid);
3615 	hotcpu_notifier(cpu_callback, 0);
3616 	return 0;
3617 }
3618 
3619 module_init(kswapd_init)
3620 
3621 #ifdef CONFIG_NUMA
3622 /*
3623  * Zone reclaim mode
3624  *
3625  * If non-zero call zone_reclaim when the number of free pages falls below
3626  * the watermarks.
3627  */
3628 int zone_reclaim_mode __read_mostly;
3629 
3630 #define RECLAIM_OFF 0
3631 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3632 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3633 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3634 
3635 /*
3636  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3637  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3638  * a zone.
3639  */
3640 #define ZONE_RECLAIM_PRIORITY 4
3641 
3642 /*
3643  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3644  * occur.
3645  */
3646 int sysctl_min_unmapped_ratio = 1;
3647 
3648 /*
3649  * If the number of slab pages in a zone grows beyond this percentage then
3650  * slab reclaim needs to occur.
3651  */
3652 int sysctl_min_slab_ratio = 5;
3653 
3654 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3655 {
3656 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3657 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3658 		zone_page_state(zone, NR_ACTIVE_FILE);
3659 
3660 	/*
3661 	 * It's possible for there to be more file mapped pages than
3662 	 * accounted for by the pages on the file LRU lists because
3663 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3664 	 */
3665 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3666 }
3667 
3668 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3669 static long zone_pagecache_reclaimable(struct zone *zone)
3670 {
3671 	long nr_pagecache_reclaimable;
3672 	long delta = 0;
3673 
3674 	/*
3675 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3676 	 * potentially reclaimable. Otherwise, we have to worry about
3677 	 * pages like swapcache and zone_unmapped_file_pages() provides
3678 	 * a better estimate
3679 	 */
3680 	if (zone_reclaim_mode & RECLAIM_UNMAP)
3681 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3682 	else
3683 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3684 
3685 	/* If we can't clean pages, remove dirty pages from consideration */
3686 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3687 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3688 
3689 	/* Watch for any possible underflows due to delta */
3690 	if (unlikely(delta > nr_pagecache_reclaimable))
3691 		delta = nr_pagecache_reclaimable;
3692 
3693 	return nr_pagecache_reclaimable - delta;
3694 }
3695 
3696 /*
3697  * Try to free up some pages from this zone through reclaim.
3698  */
3699 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3700 {
3701 	/* Minimum pages needed in order to stay on node */
3702 	const unsigned long nr_pages = 1 << order;
3703 	struct task_struct *p = current;
3704 	struct reclaim_state reclaim_state;
3705 	struct scan_control sc = {
3706 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3707 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3708 		.order = order,
3709 		.priority = ZONE_RECLAIM_PRIORITY,
3710 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3711 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3712 		.may_swap = 1,
3713 	};
3714 
3715 	cond_resched();
3716 	/*
3717 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3718 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3719 	 * and RECLAIM_UNMAP.
3720 	 */
3721 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3722 	lockdep_set_current_reclaim_state(gfp_mask);
3723 	reclaim_state.reclaimed_slab = 0;
3724 	p->reclaim_state = &reclaim_state;
3725 
3726 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3727 		/*
3728 		 * Free memory by calling shrink zone with increasing
3729 		 * priorities until we have enough memory freed.
3730 		 */
3731 		do {
3732 			shrink_zone(zone, &sc, true);
3733 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3734 	}
3735 
3736 	p->reclaim_state = NULL;
3737 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3738 	lockdep_clear_current_reclaim_state();
3739 	return sc.nr_reclaimed >= nr_pages;
3740 }
3741 
3742 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3743 {
3744 	int node_id;
3745 	int ret;
3746 
3747 	/*
3748 	 * Zone reclaim reclaims unmapped file backed pages and
3749 	 * slab pages if we are over the defined limits.
3750 	 *
3751 	 * A small portion of unmapped file backed pages is needed for
3752 	 * file I/O otherwise pages read by file I/O will be immediately
3753 	 * thrown out if the zone is overallocated. So we do not reclaim
3754 	 * if less than a specified percentage of the zone is used by
3755 	 * unmapped file backed pages.
3756 	 */
3757 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3758 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3759 		return ZONE_RECLAIM_FULL;
3760 
3761 	if (!zone_reclaimable(zone))
3762 		return ZONE_RECLAIM_FULL;
3763 
3764 	/*
3765 	 * Do not scan if the allocation should not be delayed.
3766 	 */
3767 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3768 		return ZONE_RECLAIM_NOSCAN;
3769 
3770 	/*
3771 	 * Only run zone reclaim on the local zone or on zones that do not
3772 	 * have associated processors. This will favor the local processor
3773 	 * over remote processors and spread off node memory allocations
3774 	 * as wide as possible.
3775 	 */
3776 	node_id = zone_to_nid(zone);
3777 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3778 		return ZONE_RECLAIM_NOSCAN;
3779 
3780 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3781 		return ZONE_RECLAIM_NOSCAN;
3782 
3783 	ret = __zone_reclaim(zone, gfp_mask, order);
3784 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3785 
3786 	if (!ret)
3787 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3788 
3789 	return ret;
3790 }
3791 #endif
3792 
3793 /*
3794  * page_evictable - test whether a page is evictable
3795  * @page: the page to test
3796  *
3797  * Test whether page is evictable--i.e., should be placed on active/inactive
3798  * lists vs unevictable list.
3799  *
3800  * Reasons page might not be evictable:
3801  * (1) page's mapping marked unevictable
3802  * (2) page is part of an mlocked VMA
3803  *
3804  */
3805 int page_evictable(struct page *page)
3806 {
3807 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3808 }
3809 
3810 #ifdef CONFIG_SHMEM
3811 /**
3812  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3813  * @pages:	array of pages to check
3814  * @nr_pages:	number of pages to check
3815  *
3816  * Checks pages for evictability and moves them to the appropriate lru list.
3817  *
3818  * This function is only used for SysV IPC SHM_UNLOCK.
3819  */
3820 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3821 {
3822 	struct lruvec *lruvec;
3823 	struct zone *zone = NULL;
3824 	int pgscanned = 0;
3825 	int pgrescued = 0;
3826 	int i;
3827 
3828 	for (i = 0; i < nr_pages; i++) {
3829 		struct page *page = pages[i];
3830 		struct zone *pagezone;
3831 
3832 		pgscanned++;
3833 		pagezone = page_zone(page);
3834 		if (pagezone != zone) {
3835 			if (zone)
3836 				spin_unlock_irq(&zone->lru_lock);
3837 			zone = pagezone;
3838 			spin_lock_irq(&zone->lru_lock);
3839 		}
3840 		lruvec = mem_cgroup_page_lruvec(page, zone);
3841 
3842 		if (!PageLRU(page) || !PageUnevictable(page))
3843 			continue;
3844 
3845 		if (page_evictable(page)) {
3846 			enum lru_list lru = page_lru_base_type(page);
3847 
3848 			VM_BUG_ON_PAGE(PageActive(page), page);
3849 			ClearPageUnevictable(page);
3850 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3851 			add_page_to_lru_list(page, lruvec, lru);
3852 			pgrescued++;
3853 		}
3854 	}
3855 
3856 	if (zone) {
3857 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3858 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3859 		spin_unlock_irq(&zone->lru_lock);
3860 	}
3861 }
3862 #endif /* CONFIG_SHMEM */
3863