1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/mutex.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 #include <linux/rculist_nulls.h> 59 #include <linux/random.h> 60 #include <linux/srcu.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 65 #include <linux/swapops.h> 66 #include <linux/balloon_compaction.h> 67 #include <linux/sched/sysctl.h> 68 69 #include "internal.h" 70 #include "swap.h" 71 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/vmscan.h> 74 75 struct scan_control { 76 /* How many pages shrink_list() should reclaim */ 77 unsigned long nr_to_reclaim; 78 79 /* 80 * Nodemask of nodes allowed by the caller. If NULL, all nodes 81 * are scanned. 82 */ 83 nodemask_t *nodemask; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Scan pressure balancing between anon and file LRUs 93 */ 94 unsigned long anon_cost; 95 unsigned long file_cost; 96 97 /* Can active folios be deactivated as part of reclaim? */ 98 #define DEACTIVATE_ANON 1 99 #define DEACTIVATE_FILE 2 100 unsigned int may_deactivate:2; 101 unsigned int force_deactivate:1; 102 unsigned int skipped_deactivate:1; 103 104 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 105 unsigned int may_writepage:1; 106 107 /* Can mapped folios be reclaimed? */ 108 unsigned int may_unmap:1; 109 110 /* Can folios be swapped as part of reclaim? */ 111 unsigned int may_swap:1; 112 113 /* Proactive reclaim invoked by userspace through memory.reclaim */ 114 unsigned int proactive:1; 115 116 /* 117 * Cgroup memory below memory.low is protected as long as we 118 * don't threaten to OOM. If any cgroup is reclaimed at 119 * reduced force or passed over entirely due to its memory.low 120 * setting (memcg_low_skipped), and nothing is reclaimed as a 121 * result, then go back for one more cycle that reclaims the protected 122 * memory (memcg_low_reclaim) to avert OOM. 123 */ 124 unsigned int memcg_low_reclaim:1; 125 unsigned int memcg_low_skipped:1; 126 127 unsigned int hibernation_mode:1; 128 129 /* One of the zones is ready for compaction */ 130 unsigned int compaction_ready:1; 131 132 /* There is easily reclaimable cold cache in the current node */ 133 unsigned int cache_trim_mode:1; 134 135 /* The file folios on the current node are dangerously low */ 136 unsigned int file_is_tiny:1; 137 138 /* Always discard instead of demoting to lower tier memory */ 139 unsigned int no_demotion:1; 140 141 /* Allocation order */ 142 s8 order; 143 144 /* Scan (total_size >> priority) pages at once */ 145 s8 priority; 146 147 /* The highest zone to isolate folios for reclaim from */ 148 s8 reclaim_idx; 149 150 /* This context's GFP mask */ 151 gfp_t gfp_mask; 152 153 /* Incremented by the number of inactive pages that were scanned */ 154 unsigned long nr_scanned; 155 156 /* Number of pages freed so far during a call to shrink_zones() */ 157 unsigned long nr_reclaimed; 158 159 struct { 160 unsigned int dirty; 161 unsigned int unqueued_dirty; 162 unsigned int congested; 163 unsigned int writeback; 164 unsigned int immediate; 165 unsigned int file_taken; 166 unsigned int taken; 167 } nr; 168 169 /* for recording the reclaimed slab by now */ 170 struct reclaim_state reclaim_state; 171 }; 172 173 #ifdef ARCH_HAS_PREFETCHW 174 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 175 do { \ 176 if ((_folio)->lru.prev != _base) { \ 177 struct folio *prev; \ 178 \ 179 prev = lru_to_folio(&(_folio->lru)); \ 180 prefetchw(&prev->_field); \ 181 } \ 182 } while (0) 183 #else 184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 185 #endif 186 187 /* 188 * From 0 .. 200. Higher means more swappy. 189 */ 190 int vm_swappiness = 60; 191 192 LIST_HEAD(shrinker_list); 193 DEFINE_MUTEX(shrinker_mutex); 194 DEFINE_SRCU(shrinker_srcu); 195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0); 196 197 #ifdef CONFIG_MEMCG 198 static int shrinker_nr_max; 199 200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 201 static inline int shrinker_map_size(int nr_items) 202 { 203 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 204 } 205 206 static inline int shrinker_defer_size(int nr_items) 207 { 208 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 209 } 210 211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 212 int nid) 213 { 214 return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info, 215 &shrinker_srcu, 216 lockdep_is_held(&shrinker_mutex)); 217 } 218 219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg, 220 int nid) 221 { 222 return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info, 223 &shrinker_srcu); 224 } 225 226 static void free_shrinker_info_rcu(struct rcu_head *head) 227 { 228 kvfree(container_of(head, struct shrinker_info, rcu)); 229 } 230 231 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 232 int map_size, int defer_size, 233 int old_map_size, int old_defer_size, 234 int new_nr_max) 235 { 236 struct shrinker_info *new, *old; 237 struct mem_cgroup_per_node *pn; 238 int nid; 239 int size = map_size + defer_size; 240 241 for_each_node(nid) { 242 pn = memcg->nodeinfo[nid]; 243 old = shrinker_info_protected(memcg, nid); 244 /* Not yet online memcg */ 245 if (!old) 246 return 0; 247 248 /* Already expanded this shrinker_info */ 249 if (new_nr_max <= old->map_nr_max) 250 continue; 251 252 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 253 if (!new) 254 return -ENOMEM; 255 256 new->nr_deferred = (atomic_long_t *)(new + 1); 257 new->map = (void *)new->nr_deferred + defer_size; 258 new->map_nr_max = new_nr_max; 259 260 /* map: set all old bits, clear all new bits */ 261 memset(new->map, (int)0xff, old_map_size); 262 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 263 /* nr_deferred: copy old values, clear all new values */ 264 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 265 memset((void *)new->nr_deferred + old_defer_size, 0, 266 defer_size - old_defer_size); 267 268 rcu_assign_pointer(pn->shrinker_info, new); 269 call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu); 270 } 271 272 return 0; 273 } 274 275 void free_shrinker_info(struct mem_cgroup *memcg) 276 { 277 struct mem_cgroup_per_node *pn; 278 struct shrinker_info *info; 279 int nid; 280 281 for_each_node(nid) { 282 pn = memcg->nodeinfo[nid]; 283 info = rcu_dereference_protected(pn->shrinker_info, true); 284 kvfree(info); 285 rcu_assign_pointer(pn->shrinker_info, NULL); 286 } 287 } 288 289 int alloc_shrinker_info(struct mem_cgroup *memcg) 290 { 291 struct shrinker_info *info; 292 int nid, size, ret = 0; 293 int map_size, defer_size = 0; 294 295 mutex_lock(&shrinker_mutex); 296 map_size = shrinker_map_size(shrinker_nr_max); 297 defer_size = shrinker_defer_size(shrinker_nr_max); 298 size = map_size + defer_size; 299 for_each_node(nid) { 300 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 301 if (!info) { 302 free_shrinker_info(memcg); 303 ret = -ENOMEM; 304 break; 305 } 306 info->nr_deferred = (atomic_long_t *)(info + 1); 307 info->map = (void *)info->nr_deferred + defer_size; 308 info->map_nr_max = shrinker_nr_max; 309 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 310 } 311 mutex_unlock(&shrinker_mutex); 312 313 return ret; 314 } 315 316 static int expand_shrinker_info(int new_id) 317 { 318 int ret = 0; 319 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG); 320 int map_size, defer_size = 0; 321 int old_map_size, old_defer_size = 0; 322 struct mem_cgroup *memcg; 323 324 if (!root_mem_cgroup) 325 goto out; 326 327 lockdep_assert_held(&shrinker_mutex); 328 329 map_size = shrinker_map_size(new_nr_max); 330 defer_size = shrinker_defer_size(new_nr_max); 331 old_map_size = shrinker_map_size(shrinker_nr_max); 332 old_defer_size = shrinker_defer_size(shrinker_nr_max); 333 334 memcg = mem_cgroup_iter(NULL, NULL, NULL); 335 do { 336 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 337 old_map_size, old_defer_size, 338 new_nr_max); 339 if (ret) { 340 mem_cgroup_iter_break(NULL, memcg); 341 goto out; 342 } 343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 344 out: 345 if (!ret) 346 shrinker_nr_max = new_nr_max; 347 348 return ret; 349 } 350 351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 352 { 353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 354 struct shrinker_info *info; 355 int srcu_idx; 356 357 srcu_idx = srcu_read_lock(&shrinker_srcu); 358 info = shrinker_info_srcu(memcg, nid); 359 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) { 360 /* Pairs with smp mb in shrink_slab() */ 361 smp_mb__before_atomic(); 362 set_bit(shrinker_id, info->map); 363 } 364 srcu_read_unlock(&shrinker_srcu, srcu_idx); 365 } 366 } 367 368 static DEFINE_IDR(shrinker_idr); 369 370 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 371 { 372 int id, ret = -ENOMEM; 373 374 if (mem_cgroup_disabled()) 375 return -ENOSYS; 376 377 mutex_lock(&shrinker_mutex); 378 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 379 if (id < 0) 380 goto unlock; 381 382 if (id >= shrinker_nr_max) { 383 if (expand_shrinker_info(id)) { 384 idr_remove(&shrinker_idr, id); 385 goto unlock; 386 } 387 } 388 shrinker->id = id; 389 ret = 0; 390 unlock: 391 mutex_unlock(&shrinker_mutex); 392 return ret; 393 } 394 395 static void unregister_memcg_shrinker(struct shrinker *shrinker) 396 { 397 int id = shrinker->id; 398 399 BUG_ON(id < 0); 400 401 lockdep_assert_held(&shrinker_mutex); 402 403 idr_remove(&shrinker_idr, id); 404 } 405 406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 407 struct mem_cgroup *memcg) 408 { 409 struct shrinker_info *info; 410 411 info = shrinker_info_srcu(memcg, nid); 412 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 413 } 414 415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 416 struct mem_cgroup *memcg) 417 { 418 struct shrinker_info *info; 419 420 info = shrinker_info_srcu(memcg, nid); 421 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 422 } 423 424 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 425 { 426 int i, nid; 427 long nr; 428 struct mem_cgroup *parent; 429 struct shrinker_info *child_info, *parent_info; 430 431 parent = parent_mem_cgroup(memcg); 432 if (!parent) 433 parent = root_mem_cgroup; 434 435 /* Prevent from concurrent shrinker_info expand */ 436 mutex_lock(&shrinker_mutex); 437 for_each_node(nid) { 438 child_info = shrinker_info_protected(memcg, nid); 439 parent_info = shrinker_info_protected(parent, nid); 440 for (i = 0; i < child_info->map_nr_max; i++) { 441 nr = atomic_long_read(&child_info->nr_deferred[i]); 442 atomic_long_add(nr, &parent_info->nr_deferred[i]); 443 } 444 } 445 mutex_unlock(&shrinker_mutex); 446 } 447 448 static bool cgroup_reclaim(struct scan_control *sc) 449 { 450 return sc->target_mem_cgroup; 451 } 452 453 static bool global_reclaim(struct scan_control *sc) 454 { 455 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 456 } 457 458 /** 459 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 460 * @sc: scan_control in question 461 * 462 * The normal page dirty throttling mechanism in balance_dirty_pages() is 463 * completely broken with the legacy memcg and direct stalling in 464 * shrink_folio_list() is used for throttling instead, which lacks all the 465 * niceties such as fairness, adaptive pausing, bandwidth proportional 466 * allocation and configurability. 467 * 468 * This function tests whether the vmscan currently in progress can assume 469 * that the normal dirty throttling mechanism is operational. 470 */ 471 static bool writeback_throttling_sane(struct scan_control *sc) 472 { 473 if (!cgroup_reclaim(sc)) 474 return true; 475 #ifdef CONFIG_CGROUP_WRITEBACK 476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 477 return true; 478 #endif 479 return false; 480 } 481 #else 482 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 483 { 484 return -ENOSYS; 485 } 486 487 static void unregister_memcg_shrinker(struct shrinker *shrinker) 488 { 489 } 490 491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 492 struct mem_cgroup *memcg) 493 { 494 return 0; 495 } 496 497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 498 struct mem_cgroup *memcg) 499 { 500 return 0; 501 } 502 503 static bool cgroup_reclaim(struct scan_control *sc) 504 { 505 return false; 506 } 507 508 static bool global_reclaim(struct scan_control *sc) 509 { 510 return true; 511 } 512 513 static bool writeback_throttling_sane(struct scan_control *sc) 514 { 515 return true; 516 } 517 #endif 518 519 static void set_task_reclaim_state(struct task_struct *task, 520 struct reclaim_state *rs) 521 { 522 /* Check for an overwrite */ 523 WARN_ON_ONCE(rs && task->reclaim_state); 524 525 /* Check for the nulling of an already-nulled member */ 526 WARN_ON_ONCE(!rs && !task->reclaim_state); 527 528 task->reclaim_state = rs; 529 } 530 531 /* 532 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 533 * scan_control->nr_reclaimed. 534 */ 535 static void flush_reclaim_state(struct scan_control *sc) 536 { 537 /* 538 * Currently, reclaim_state->reclaimed includes three types of pages 539 * freed outside of vmscan: 540 * (1) Slab pages. 541 * (2) Clean file pages from pruned inodes (on highmem systems). 542 * (3) XFS freed buffer pages. 543 * 544 * For all of these cases, we cannot universally link the pages to a 545 * single memcg. For example, a memcg-aware shrinker can free one object 546 * charged to the target memcg, causing an entire page to be freed. 547 * If we count the entire page as reclaimed from the memcg, we end up 548 * overestimating the reclaimed amount (potentially under-reclaiming). 549 * 550 * Only count such pages for global reclaim to prevent under-reclaiming 551 * from the target memcg; preventing unnecessary retries during memcg 552 * charging and false positives from proactive reclaim. 553 * 554 * For uncommon cases where the freed pages were actually mostly 555 * charged to the target memcg, we end up underestimating the reclaimed 556 * amount. This should be fine. The freed pages will be uncharged 557 * anyway, even if they are not counted here properly, and we will be 558 * able to make forward progress in charging (which is usually in a 559 * retry loop). 560 * 561 * We can go one step further, and report the uncharged objcg pages in 562 * memcg reclaim, to make reporting more accurate and reduce 563 * underestimation, but it's probably not worth the complexity for now. 564 */ 565 if (current->reclaim_state && global_reclaim(sc)) { 566 sc->nr_reclaimed += current->reclaim_state->reclaimed; 567 current->reclaim_state->reclaimed = 0; 568 } 569 } 570 571 static long xchg_nr_deferred(struct shrinker *shrinker, 572 struct shrink_control *sc) 573 { 574 int nid = sc->nid; 575 576 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 577 nid = 0; 578 579 if (sc->memcg && 580 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 581 return xchg_nr_deferred_memcg(nid, shrinker, 582 sc->memcg); 583 584 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 585 } 586 587 588 static long add_nr_deferred(long nr, struct shrinker *shrinker, 589 struct shrink_control *sc) 590 { 591 int nid = sc->nid; 592 593 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 594 nid = 0; 595 596 if (sc->memcg && 597 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 598 return add_nr_deferred_memcg(nr, nid, shrinker, 599 sc->memcg); 600 601 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 602 } 603 604 static bool can_demote(int nid, struct scan_control *sc) 605 { 606 if (!numa_demotion_enabled) 607 return false; 608 if (sc && sc->no_demotion) 609 return false; 610 if (next_demotion_node(nid) == NUMA_NO_NODE) 611 return false; 612 613 return true; 614 } 615 616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 617 int nid, 618 struct scan_control *sc) 619 { 620 if (memcg == NULL) { 621 /* 622 * For non-memcg reclaim, is there 623 * space in any swap device? 624 */ 625 if (get_nr_swap_pages() > 0) 626 return true; 627 } else { 628 /* Is the memcg below its swap limit? */ 629 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 630 return true; 631 } 632 633 /* 634 * The page can not be swapped. 635 * 636 * Can it be reclaimed from this node via demotion? 637 */ 638 return can_demote(nid, sc); 639 } 640 641 /* 642 * This misses isolated folios which are not accounted for to save counters. 643 * As the data only determines if reclaim or compaction continues, it is 644 * not expected that isolated folios will be a dominating factor. 645 */ 646 unsigned long zone_reclaimable_pages(struct zone *zone) 647 { 648 unsigned long nr; 649 650 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 651 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 652 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 653 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 654 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 655 656 return nr; 657 } 658 659 /** 660 * lruvec_lru_size - Returns the number of pages on the given LRU list. 661 * @lruvec: lru vector 662 * @lru: lru to use 663 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 664 */ 665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 666 int zone_idx) 667 { 668 unsigned long size = 0; 669 int zid; 670 671 for (zid = 0; zid <= zone_idx; zid++) { 672 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 673 674 if (!managed_zone(zone)) 675 continue; 676 677 if (!mem_cgroup_disabled()) 678 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 679 else 680 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 681 } 682 return size; 683 } 684 685 /* 686 * Add a shrinker callback to be called from the vm. 687 */ 688 static int __prealloc_shrinker(struct shrinker *shrinker) 689 { 690 unsigned int size; 691 int err; 692 693 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 694 err = prealloc_memcg_shrinker(shrinker); 695 if (err != -ENOSYS) 696 return err; 697 698 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 699 } 700 701 size = sizeof(*shrinker->nr_deferred); 702 if (shrinker->flags & SHRINKER_NUMA_AWARE) 703 size *= nr_node_ids; 704 705 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 706 if (!shrinker->nr_deferred) 707 return -ENOMEM; 708 709 return 0; 710 } 711 712 #ifdef CONFIG_SHRINKER_DEBUG 713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 714 { 715 va_list ap; 716 int err; 717 718 va_start(ap, fmt); 719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 720 va_end(ap); 721 if (!shrinker->name) 722 return -ENOMEM; 723 724 err = __prealloc_shrinker(shrinker); 725 if (err) { 726 kfree_const(shrinker->name); 727 shrinker->name = NULL; 728 } 729 730 return err; 731 } 732 #else 733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 734 { 735 return __prealloc_shrinker(shrinker); 736 } 737 #endif 738 739 void free_prealloced_shrinker(struct shrinker *shrinker) 740 { 741 #ifdef CONFIG_SHRINKER_DEBUG 742 kfree_const(shrinker->name); 743 shrinker->name = NULL; 744 #endif 745 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 746 mutex_lock(&shrinker_mutex); 747 unregister_memcg_shrinker(shrinker); 748 mutex_unlock(&shrinker_mutex); 749 return; 750 } 751 752 kfree(shrinker->nr_deferred); 753 shrinker->nr_deferred = NULL; 754 } 755 756 void register_shrinker_prepared(struct shrinker *shrinker) 757 { 758 mutex_lock(&shrinker_mutex); 759 list_add_tail_rcu(&shrinker->list, &shrinker_list); 760 shrinker->flags |= SHRINKER_REGISTERED; 761 shrinker_debugfs_add(shrinker); 762 mutex_unlock(&shrinker_mutex); 763 } 764 765 static int __register_shrinker(struct shrinker *shrinker) 766 { 767 int err = __prealloc_shrinker(shrinker); 768 769 if (err) 770 return err; 771 register_shrinker_prepared(shrinker); 772 return 0; 773 } 774 775 #ifdef CONFIG_SHRINKER_DEBUG 776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 777 { 778 va_list ap; 779 int err; 780 781 va_start(ap, fmt); 782 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 783 va_end(ap); 784 if (!shrinker->name) 785 return -ENOMEM; 786 787 err = __register_shrinker(shrinker); 788 if (err) { 789 kfree_const(shrinker->name); 790 shrinker->name = NULL; 791 } 792 return err; 793 } 794 #else 795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 796 { 797 return __register_shrinker(shrinker); 798 } 799 #endif 800 EXPORT_SYMBOL(register_shrinker); 801 802 /* 803 * Remove one 804 */ 805 void unregister_shrinker(struct shrinker *shrinker) 806 { 807 struct dentry *debugfs_entry; 808 int debugfs_id; 809 810 if (!(shrinker->flags & SHRINKER_REGISTERED)) 811 return; 812 813 mutex_lock(&shrinker_mutex); 814 list_del_rcu(&shrinker->list); 815 shrinker->flags &= ~SHRINKER_REGISTERED; 816 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 817 unregister_memcg_shrinker(shrinker); 818 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id); 819 mutex_unlock(&shrinker_mutex); 820 821 atomic_inc(&shrinker_srcu_generation); 822 synchronize_srcu(&shrinker_srcu); 823 824 shrinker_debugfs_remove(debugfs_entry, debugfs_id); 825 826 kfree(shrinker->nr_deferred); 827 shrinker->nr_deferred = NULL; 828 } 829 EXPORT_SYMBOL(unregister_shrinker); 830 831 /** 832 * synchronize_shrinkers - Wait for all running shrinkers to complete. 833 * 834 * This is useful to guarantee that all shrinker invocations have seen an 835 * update, before freeing memory. 836 */ 837 void synchronize_shrinkers(void) 838 { 839 atomic_inc(&shrinker_srcu_generation); 840 synchronize_srcu(&shrinker_srcu); 841 } 842 EXPORT_SYMBOL(synchronize_shrinkers); 843 844 #define SHRINK_BATCH 128 845 846 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 847 struct shrinker *shrinker, int priority) 848 { 849 unsigned long freed = 0; 850 unsigned long long delta; 851 long total_scan; 852 long freeable; 853 long nr; 854 long new_nr; 855 long batch_size = shrinker->batch ? shrinker->batch 856 : SHRINK_BATCH; 857 long scanned = 0, next_deferred; 858 859 freeable = shrinker->count_objects(shrinker, shrinkctl); 860 if (freeable == 0 || freeable == SHRINK_EMPTY) 861 return freeable; 862 863 /* 864 * copy the current shrinker scan count into a local variable 865 * and zero it so that other concurrent shrinker invocations 866 * don't also do this scanning work. 867 */ 868 nr = xchg_nr_deferred(shrinker, shrinkctl); 869 870 if (shrinker->seeks) { 871 delta = freeable >> priority; 872 delta *= 4; 873 do_div(delta, shrinker->seeks); 874 } else { 875 /* 876 * These objects don't require any IO to create. Trim 877 * them aggressively under memory pressure to keep 878 * them from causing refetches in the IO caches. 879 */ 880 delta = freeable / 2; 881 } 882 883 total_scan = nr >> priority; 884 total_scan += delta; 885 total_scan = min(total_scan, (2 * freeable)); 886 887 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 888 freeable, delta, total_scan, priority); 889 890 /* 891 * Normally, we should not scan less than batch_size objects in one 892 * pass to avoid too frequent shrinker calls, but if the slab has less 893 * than batch_size objects in total and we are really tight on memory, 894 * we will try to reclaim all available objects, otherwise we can end 895 * up failing allocations although there are plenty of reclaimable 896 * objects spread over several slabs with usage less than the 897 * batch_size. 898 * 899 * We detect the "tight on memory" situations by looking at the total 900 * number of objects we want to scan (total_scan). If it is greater 901 * than the total number of objects on slab (freeable), we must be 902 * scanning at high prio and therefore should try to reclaim as much as 903 * possible. 904 */ 905 while (total_scan >= batch_size || 906 total_scan >= freeable) { 907 unsigned long ret; 908 unsigned long nr_to_scan = min(batch_size, total_scan); 909 910 shrinkctl->nr_to_scan = nr_to_scan; 911 shrinkctl->nr_scanned = nr_to_scan; 912 ret = shrinker->scan_objects(shrinker, shrinkctl); 913 if (ret == SHRINK_STOP) 914 break; 915 freed += ret; 916 917 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 918 total_scan -= shrinkctl->nr_scanned; 919 scanned += shrinkctl->nr_scanned; 920 921 cond_resched(); 922 } 923 924 /* 925 * The deferred work is increased by any new work (delta) that wasn't 926 * done, decreased by old deferred work that was done now. 927 * 928 * And it is capped to two times of the freeable items. 929 */ 930 next_deferred = max_t(long, (nr + delta - scanned), 0); 931 next_deferred = min(next_deferred, (2 * freeable)); 932 933 /* 934 * move the unused scan count back into the shrinker in a 935 * manner that handles concurrent updates. 936 */ 937 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 938 939 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 940 return freed; 941 } 942 943 #ifdef CONFIG_MEMCG 944 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 945 struct mem_cgroup *memcg, int priority) 946 { 947 struct shrinker_info *info; 948 unsigned long ret, freed = 0; 949 int srcu_idx, generation; 950 int i = 0; 951 952 if (!mem_cgroup_online(memcg)) 953 return 0; 954 955 again: 956 srcu_idx = srcu_read_lock(&shrinker_srcu); 957 info = shrinker_info_srcu(memcg, nid); 958 if (unlikely(!info)) 959 goto unlock; 960 961 generation = atomic_read(&shrinker_srcu_generation); 962 for_each_set_bit_from(i, info->map, info->map_nr_max) { 963 struct shrink_control sc = { 964 .gfp_mask = gfp_mask, 965 .nid = nid, 966 .memcg = memcg, 967 }; 968 struct shrinker *shrinker; 969 970 shrinker = idr_find(&shrinker_idr, i); 971 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 972 if (!shrinker) 973 clear_bit(i, info->map); 974 continue; 975 } 976 977 /* Call non-slab shrinkers even though kmem is disabled */ 978 if (!memcg_kmem_online() && 979 !(shrinker->flags & SHRINKER_NONSLAB)) 980 continue; 981 982 ret = do_shrink_slab(&sc, shrinker, priority); 983 if (ret == SHRINK_EMPTY) { 984 clear_bit(i, info->map); 985 /* 986 * After the shrinker reported that it had no objects to 987 * free, but before we cleared the corresponding bit in 988 * the memcg shrinker map, a new object might have been 989 * added. To make sure, we have the bit set in this 990 * case, we invoke the shrinker one more time and reset 991 * the bit if it reports that it is not empty anymore. 992 * The memory barrier here pairs with the barrier in 993 * set_shrinker_bit(): 994 * 995 * list_lru_add() shrink_slab_memcg() 996 * list_add_tail() clear_bit() 997 * <MB> <MB> 998 * set_bit() do_shrink_slab() 999 */ 1000 smp_mb__after_atomic(); 1001 ret = do_shrink_slab(&sc, shrinker, priority); 1002 if (ret == SHRINK_EMPTY) 1003 ret = 0; 1004 else 1005 set_shrinker_bit(memcg, nid, i); 1006 } 1007 freed += ret; 1008 if (atomic_read(&shrinker_srcu_generation) != generation) { 1009 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1010 i++; 1011 goto again; 1012 } 1013 } 1014 unlock: 1015 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1016 return freed; 1017 } 1018 #else /* CONFIG_MEMCG */ 1019 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 1020 struct mem_cgroup *memcg, int priority) 1021 { 1022 return 0; 1023 } 1024 #endif /* CONFIG_MEMCG */ 1025 1026 /** 1027 * shrink_slab - shrink slab caches 1028 * @gfp_mask: allocation context 1029 * @nid: node whose slab caches to target 1030 * @memcg: memory cgroup whose slab caches to target 1031 * @priority: the reclaim priority 1032 * 1033 * Call the shrink functions to age shrinkable caches. 1034 * 1035 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 1036 * unaware shrinkers will receive a node id of 0 instead. 1037 * 1038 * @memcg specifies the memory cgroup to target. Unaware shrinkers 1039 * are called only if it is the root cgroup. 1040 * 1041 * @priority is sc->priority, we take the number of objects and >> by priority 1042 * in order to get the scan target. 1043 * 1044 * Returns the number of reclaimed slab objects. 1045 */ 1046 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 1047 struct mem_cgroup *memcg, 1048 int priority) 1049 { 1050 unsigned long ret, freed = 0; 1051 struct shrinker *shrinker; 1052 int srcu_idx, generation; 1053 1054 /* 1055 * The root memcg might be allocated even though memcg is disabled 1056 * via "cgroup_disable=memory" boot parameter. This could make 1057 * mem_cgroup_is_root() return false, then just run memcg slab 1058 * shrink, but skip global shrink. This may result in premature 1059 * oom. 1060 */ 1061 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 1062 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 1063 1064 srcu_idx = srcu_read_lock(&shrinker_srcu); 1065 1066 generation = atomic_read(&shrinker_srcu_generation); 1067 list_for_each_entry_srcu(shrinker, &shrinker_list, list, 1068 srcu_read_lock_held(&shrinker_srcu)) { 1069 struct shrink_control sc = { 1070 .gfp_mask = gfp_mask, 1071 .nid = nid, 1072 .memcg = memcg, 1073 }; 1074 1075 ret = do_shrink_slab(&sc, shrinker, priority); 1076 if (ret == SHRINK_EMPTY) 1077 ret = 0; 1078 freed += ret; 1079 1080 if (atomic_read(&shrinker_srcu_generation) != generation) { 1081 freed = freed ? : 1; 1082 break; 1083 } 1084 } 1085 1086 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1087 cond_resched(); 1088 return freed; 1089 } 1090 1091 static unsigned long drop_slab_node(int nid) 1092 { 1093 unsigned long freed = 0; 1094 struct mem_cgroup *memcg = NULL; 1095 1096 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1097 do { 1098 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1099 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1100 1101 return freed; 1102 } 1103 1104 void drop_slab(void) 1105 { 1106 int nid; 1107 int shift = 0; 1108 unsigned long freed; 1109 1110 do { 1111 freed = 0; 1112 for_each_online_node(nid) { 1113 if (fatal_signal_pending(current)) 1114 return; 1115 1116 freed += drop_slab_node(nid); 1117 } 1118 } while ((freed >> shift++) > 1); 1119 } 1120 1121 static int reclaimer_offset(void) 1122 { 1123 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1124 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1125 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1126 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1127 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1128 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1129 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1130 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1131 1132 if (current_is_kswapd()) 1133 return 0; 1134 if (current_is_khugepaged()) 1135 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1136 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1137 } 1138 1139 static inline int is_page_cache_freeable(struct folio *folio) 1140 { 1141 /* 1142 * A freeable page cache folio is referenced only by the caller 1143 * that isolated the folio, the page cache and optional filesystem 1144 * private data at folio->private. 1145 */ 1146 return folio_ref_count(folio) - folio_test_private(folio) == 1147 1 + folio_nr_pages(folio); 1148 } 1149 1150 /* 1151 * We detected a synchronous write error writing a folio out. Probably 1152 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1153 * fsync(), msync() or close(). 1154 * 1155 * The tricky part is that after writepage we cannot touch the mapping: nothing 1156 * prevents it from being freed up. But we have a ref on the folio and once 1157 * that folio is locked, the mapping is pinned. 1158 * 1159 * We're allowed to run sleeping folio_lock() here because we know the caller has 1160 * __GFP_FS. 1161 */ 1162 static void handle_write_error(struct address_space *mapping, 1163 struct folio *folio, int error) 1164 { 1165 folio_lock(folio); 1166 if (folio_mapping(folio) == mapping) 1167 mapping_set_error(mapping, error); 1168 folio_unlock(folio); 1169 } 1170 1171 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1172 { 1173 int reclaimable = 0, write_pending = 0; 1174 int i; 1175 1176 /* 1177 * If kswapd is disabled, reschedule if necessary but do not 1178 * throttle as the system is likely near OOM. 1179 */ 1180 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1181 return true; 1182 1183 /* 1184 * If there are a lot of dirty/writeback folios then do not 1185 * throttle as throttling will occur when the folios cycle 1186 * towards the end of the LRU if still under writeback. 1187 */ 1188 for (i = 0; i < MAX_NR_ZONES; i++) { 1189 struct zone *zone = pgdat->node_zones + i; 1190 1191 if (!managed_zone(zone)) 1192 continue; 1193 1194 reclaimable += zone_reclaimable_pages(zone); 1195 write_pending += zone_page_state_snapshot(zone, 1196 NR_ZONE_WRITE_PENDING); 1197 } 1198 if (2 * write_pending <= reclaimable) 1199 return true; 1200 1201 return false; 1202 } 1203 1204 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1205 { 1206 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1207 long timeout, ret; 1208 DEFINE_WAIT(wait); 1209 1210 /* 1211 * Do not throttle user workers, kthreads other than kswapd or 1212 * workqueues. They may be required for reclaim to make 1213 * forward progress (e.g. journalling workqueues or kthreads). 1214 */ 1215 if (!current_is_kswapd() && 1216 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 1217 cond_resched(); 1218 return; 1219 } 1220 1221 /* 1222 * These figures are pulled out of thin air. 1223 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1224 * parallel reclaimers which is a short-lived event so the timeout is 1225 * short. Failing to make progress or waiting on writeback are 1226 * potentially long-lived events so use a longer timeout. This is shaky 1227 * logic as a failure to make progress could be due to anything from 1228 * writeback to a slow device to excessive referenced folios at the tail 1229 * of the inactive LRU. 1230 */ 1231 switch(reason) { 1232 case VMSCAN_THROTTLE_WRITEBACK: 1233 timeout = HZ/10; 1234 1235 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1236 WRITE_ONCE(pgdat->nr_reclaim_start, 1237 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1238 } 1239 1240 break; 1241 case VMSCAN_THROTTLE_CONGESTED: 1242 fallthrough; 1243 case VMSCAN_THROTTLE_NOPROGRESS: 1244 if (skip_throttle_noprogress(pgdat)) { 1245 cond_resched(); 1246 return; 1247 } 1248 1249 timeout = 1; 1250 1251 break; 1252 case VMSCAN_THROTTLE_ISOLATED: 1253 timeout = HZ/50; 1254 break; 1255 default: 1256 WARN_ON_ONCE(1); 1257 timeout = HZ; 1258 break; 1259 } 1260 1261 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1262 ret = schedule_timeout(timeout); 1263 finish_wait(wqh, &wait); 1264 1265 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1266 atomic_dec(&pgdat->nr_writeback_throttled); 1267 1268 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1269 jiffies_to_usecs(timeout - ret), 1270 reason); 1271 } 1272 1273 /* 1274 * Account for folios written if tasks are throttled waiting on dirty 1275 * folios to clean. If enough folios have been cleaned since throttling 1276 * started then wakeup the throttled tasks. 1277 */ 1278 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1279 int nr_throttled) 1280 { 1281 unsigned long nr_written; 1282 1283 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1284 1285 /* 1286 * This is an inaccurate read as the per-cpu deltas may not 1287 * be synchronised. However, given that the system is 1288 * writeback throttled, it is not worth taking the penalty 1289 * of getting an accurate count. At worst, the throttle 1290 * timeout guarantees forward progress. 1291 */ 1292 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1293 READ_ONCE(pgdat->nr_reclaim_start); 1294 1295 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1296 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1297 } 1298 1299 /* possible outcome of pageout() */ 1300 typedef enum { 1301 /* failed to write folio out, folio is locked */ 1302 PAGE_KEEP, 1303 /* move folio to the active list, folio is locked */ 1304 PAGE_ACTIVATE, 1305 /* folio has been sent to the disk successfully, folio is unlocked */ 1306 PAGE_SUCCESS, 1307 /* folio is clean and locked */ 1308 PAGE_CLEAN, 1309 } pageout_t; 1310 1311 /* 1312 * pageout is called by shrink_folio_list() for each dirty folio. 1313 * Calls ->writepage(). 1314 */ 1315 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1316 struct swap_iocb **plug) 1317 { 1318 /* 1319 * If the folio is dirty, only perform writeback if that write 1320 * will be non-blocking. To prevent this allocation from being 1321 * stalled by pagecache activity. But note that there may be 1322 * stalls if we need to run get_block(). We could test 1323 * PagePrivate for that. 1324 * 1325 * If this process is currently in __generic_file_write_iter() against 1326 * this folio's queue, we can perform writeback even if that 1327 * will block. 1328 * 1329 * If the folio is swapcache, write it back even if that would 1330 * block, for some throttling. This happens by accident, because 1331 * swap_backing_dev_info is bust: it doesn't reflect the 1332 * congestion state of the swapdevs. Easy to fix, if needed. 1333 */ 1334 if (!is_page_cache_freeable(folio)) 1335 return PAGE_KEEP; 1336 if (!mapping) { 1337 /* 1338 * Some data journaling orphaned folios can have 1339 * folio->mapping == NULL while being dirty with clean buffers. 1340 */ 1341 if (folio_test_private(folio)) { 1342 if (try_to_free_buffers(folio)) { 1343 folio_clear_dirty(folio); 1344 pr_info("%s: orphaned folio\n", __func__); 1345 return PAGE_CLEAN; 1346 } 1347 } 1348 return PAGE_KEEP; 1349 } 1350 if (mapping->a_ops->writepage == NULL) 1351 return PAGE_ACTIVATE; 1352 1353 if (folio_clear_dirty_for_io(folio)) { 1354 int res; 1355 struct writeback_control wbc = { 1356 .sync_mode = WB_SYNC_NONE, 1357 .nr_to_write = SWAP_CLUSTER_MAX, 1358 .range_start = 0, 1359 .range_end = LLONG_MAX, 1360 .for_reclaim = 1, 1361 .swap_plug = plug, 1362 }; 1363 1364 folio_set_reclaim(folio); 1365 res = mapping->a_ops->writepage(&folio->page, &wbc); 1366 if (res < 0) 1367 handle_write_error(mapping, folio, res); 1368 if (res == AOP_WRITEPAGE_ACTIVATE) { 1369 folio_clear_reclaim(folio); 1370 return PAGE_ACTIVATE; 1371 } 1372 1373 if (!folio_test_writeback(folio)) { 1374 /* synchronous write or broken a_ops? */ 1375 folio_clear_reclaim(folio); 1376 } 1377 trace_mm_vmscan_write_folio(folio); 1378 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1379 return PAGE_SUCCESS; 1380 } 1381 1382 return PAGE_CLEAN; 1383 } 1384 1385 /* 1386 * Same as remove_mapping, but if the folio is removed from the mapping, it 1387 * gets returned with a refcount of 0. 1388 */ 1389 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1390 bool reclaimed, struct mem_cgroup *target_memcg) 1391 { 1392 int refcount; 1393 void *shadow = NULL; 1394 1395 BUG_ON(!folio_test_locked(folio)); 1396 BUG_ON(mapping != folio_mapping(folio)); 1397 1398 if (!folio_test_swapcache(folio)) 1399 spin_lock(&mapping->host->i_lock); 1400 xa_lock_irq(&mapping->i_pages); 1401 /* 1402 * The non racy check for a busy folio. 1403 * 1404 * Must be careful with the order of the tests. When someone has 1405 * a ref to the folio, it may be possible that they dirty it then 1406 * drop the reference. So if the dirty flag is tested before the 1407 * refcount here, then the following race may occur: 1408 * 1409 * get_user_pages(&page); 1410 * [user mapping goes away] 1411 * write_to(page); 1412 * !folio_test_dirty(folio) [good] 1413 * folio_set_dirty(folio); 1414 * folio_put(folio); 1415 * !refcount(folio) [good, discard it] 1416 * 1417 * [oops, our write_to data is lost] 1418 * 1419 * Reversing the order of the tests ensures such a situation cannot 1420 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1421 * load is not satisfied before that of folio->_refcount. 1422 * 1423 * Note that if the dirty flag is always set via folio_mark_dirty, 1424 * and thus under the i_pages lock, then this ordering is not required. 1425 */ 1426 refcount = 1 + folio_nr_pages(folio); 1427 if (!folio_ref_freeze(folio, refcount)) 1428 goto cannot_free; 1429 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1430 if (unlikely(folio_test_dirty(folio))) { 1431 folio_ref_unfreeze(folio, refcount); 1432 goto cannot_free; 1433 } 1434 1435 if (folio_test_swapcache(folio)) { 1436 swp_entry_t swap = folio_swap_entry(folio); 1437 1438 if (reclaimed && !mapping_exiting(mapping)) 1439 shadow = workingset_eviction(folio, target_memcg); 1440 __delete_from_swap_cache(folio, swap, shadow); 1441 mem_cgroup_swapout(folio, swap); 1442 xa_unlock_irq(&mapping->i_pages); 1443 put_swap_folio(folio, swap); 1444 } else { 1445 void (*free_folio)(struct folio *); 1446 1447 free_folio = mapping->a_ops->free_folio; 1448 /* 1449 * Remember a shadow entry for reclaimed file cache in 1450 * order to detect refaults, thus thrashing, later on. 1451 * 1452 * But don't store shadows in an address space that is 1453 * already exiting. This is not just an optimization, 1454 * inode reclaim needs to empty out the radix tree or 1455 * the nodes are lost. Don't plant shadows behind its 1456 * back. 1457 * 1458 * We also don't store shadows for DAX mappings because the 1459 * only page cache folios found in these are zero pages 1460 * covering holes, and because we don't want to mix DAX 1461 * exceptional entries and shadow exceptional entries in the 1462 * same address_space. 1463 */ 1464 if (reclaimed && folio_is_file_lru(folio) && 1465 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1466 shadow = workingset_eviction(folio, target_memcg); 1467 __filemap_remove_folio(folio, shadow); 1468 xa_unlock_irq(&mapping->i_pages); 1469 if (mapping_shrinkable(mapping)) 1470 inode_add_lru(mapping->host); 1471 spin_unlock(&mapping->host->i_lock); 1472 1473 if (free_folio) 1474 free_folio(folio); 1475 } 1476 1477 return 1; 1478 1479 cannot_free: 1480 xa_unlock_irq(&mapping->i_pages); 1481 if (!folio_test_swapcache(folio)) 1482 spin_unlock(&mapping->host->i_lock); 1483 return 0; 1484 } 1485 1486 /** 1487 * remove_mapping() - Attempt to remove a folio from its mapping. 1488 * @mapping: The address space. 1489 * @folio: The folio to remove. 1490 * 1491 * If the folio is dirty, under writeback or if someone else has a ref 1492 * on it, removal will fail. 1493 * Return: The number of pages removed from the mapping. 0 if the folio 1494 * could not be removed. 1495 * Context: The caller should have a single refcount on the folio and 1496 * hold its lock. 1497 */ 1498 long remove_mapping(struct address_space *mapping, struct folio *folio) 1499 { 1500 if (__remove_mapping(mapping, folio, false, NULL)) { 1501 /* 1502 * Unfreezing the refcount with 1 effectively 1503 * drops the pagecache ref for us without requiring another 1504 * atomic operation. 1505 */ 1506 folio_ref_unfreeze(folio, 1); 1507 return folio_nr_pages(folio); 1508 } 1509 return 0; 1510 } 1511 1512 /** 1513 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1514 * @folio: Folio to be returned to an LRU list. 1515 * 1516 * Add previously isolated @folio to appropriate LRU list. 1517 * The folio may still be unevictable for other reasons. 1518 * 1519 * Context: lru_lock must not be held, interrupts must be enabled. 1520 */ 1521 void folio_putback_lru(struct folio *folio) 1522 { 1523 folio_add_lru(folio); 1524 folio_put(folio); /* drop ref from isolate */ 1525 } 1526 1527 enum folio_references { 1528 FOLIOREF_RECLAIM, 1529 FOLIOREF_RECLAIM_CLEAN, 1530 FOLIOREF_KEEP, 1531 FOLIOREF_ACTIVATE, 1532 }; 1533 1534 static enum folio_references folio_check_references(struct folio *folio, 1535 struct scan_control *sc) 1536 { 1537 int referenced_ptes, referenced_folio; 1538 unsigned long vm_flags; 1539 1540 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1541 &vm_flags); 1542 referenced_folio = folio_test_clear_referenced(folio); 1543 1544 /* 1545 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1546 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1547 */ 1548 if (vm_flags & VM_LOCKED) 1549 return FOLIOREF_ACTIVATE; 1550 1551 /* rmap lock contention: rotate */ 1552 if (referenced_ptes == -1) 1553 return FOLIOREF_KEEP; 1554 1555 if (referenced_ptes) { 1556 /* 1557 * All mapped folios start out with page table 1558 * references from the instantiating fault, so we need 1559 * to look twice if a mapped file/anon folio is used more 1560 * than once. 1561 * 1562 * Mark it and spare it for another trip around the 1563 * inactive list. Another page table reference will 1564 * lead to its activation. 1565 * 1566 * Note: the mark is set for activated folios as well 1567 * so that recently deactivated but used folios are 1568 * quickly recovered. 1569 */ 1570 folio_set_referenced(folio); 1571 1572 if (referenced_folio || referenced_ptes > 1) 1573 return FOLIOREF_ACTIVATE; 1574 1575 /* 1576 * Activate file-backed executable folios after first usage. 1577 */ 1578 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1579 return FOLIOREF_ACTIVATE; 1580 1581 return FOLIOREF_KEEP; 1582 } 1583 1584 /* Reclaim if clean, defer dirty folios to writeback */ 1585 if (referenced_folio && folio_is_file_lru(folio)) 1586 return FOLIOREF_RECLAIM_CLEAN; 1587 1588 return FOLIOREF_RECLAIM; 1589 } 1590 1591 /* Check if a folio is dirty or under writeback */ 1592 static void folio_check_dirty_writeback(struct folio *folio, 1593 bool *dirty, bool *writeback) 1594 { 1595 struct address_space *mapping; 1596 1597 /* 1598 * Anonymous folios are not handled by flushers and must be written 1599 * from reclaim context. Do not stall reclaim based on them. 1600 * MADV_FREE anonymous folios are put into inactive file list too. 1601 * They could be mistakenly treated as file lru. So further anon 1602 * test is needed. 1603 */ 1604 if (!folio_is_file_lru(folio) || 1605 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1606 *dirty = false; 1607 *writeback = false; 1608 return; 1609 } 1610 1611 /* By default assume that the folio flags are accurate */ 1612 *dirty = folio_test_dirty(folio); 1613 *writeback = folio_test_writeback(folio); 1614 1615 /* Verify dirty/writeback state if the filesystem supports it */ 1616 if (!folio_test_private(folio)) 1617 return; 1618 1619 mapping = folio_mapping(folio); 1620 if (mapping && mapping->a_ops->is_dirty_writeback) 1621 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1622 } 1623 1624 static struct folio *alloc_demote_folio(struct folio *src, 1625 unsigned long private) 1626 { 1627 struct folio *dst; 1628 nodemask_t *allowed_mask; 1629 struct migration_target_control *mtc; 1630 1631 mtc = (struct migration_target_control *)private; 1632 1633 allowed_mask = mtc->nmask; 1634 /* 1635 * make sure we allocate from the target node first also trying to 1636 * demote or reclaim pages from the target node via kswapd if we are 1637 * low on free memory on target node. If we don't do this and if 1638 * we have free memory on the slower(lower) memtier, we would start 1639 * allocating pages from slower(lower) memory tiers without even forcing 1640 * a demotion of cold pages from the target memtier. This can result 1641 * in the kernel placing hot pages in slower(lower) memory tiers. 1642 */ 1643 mtc->nmask = NULL; 1644 mtc->gfp_mask |= __GFP_THISNODE; 1645 dst = alloc_migration_target(src, (unsigned long)mtc); 1646 if (dst) 1647 return dst; 1648 1649 mtc->gfp_mask &= ~__GFP_THISNODE; 1650 mtc->nmask = allowed_mask; 1651 1652 return alloc_migration_target(src, (unsigned long)mtc); 1653 } 1654 1655 /* 1656 * Take folios on @demote_folios and attempt to demote them to another node. 1657 * Folios which are not demoted are left on @demote_folios. 1658 */ 1659 static unsigned int demote_folio_list(struct list_head *demote_folios, 1660 struct pglist_data *pgdat) 1661 { 1662 int target_nid = next_demotion_node(pgdat->node_id); 1663 unsigned int nr_succeeded; 1664 nodemask_t allowed_mask; 1665 1666 struct migration_target_control mtc = { 1667 /* 1668 * Allocate from 'node', or fail quickly and quietly. 1669 * When this happens, 'page' will likely just be discarded 1670 * instead of migrated. 1671 */ 1672 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1673 __GFP_NOMEMALLOC | GFP_NOWAIT, 1674 .nid = target_nid, 1675 .nmask = &allowed_mask 1676 }; 1677 1678 if (list_empty(demote_folios)) 1679 return 0; 1680 1681 if (target_nid == NUMA_NO_NODE) 1682 return 0; 1683 1684 node_get_allowed_targets(pgdat, &allowed_mask); 1685 1686 /* Demotion ignores all cpuset and mempolicy settings */ 1687 migrate_pages(demote_folios, alloc_demote_folio, NULL, 1688 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1689 &nr_succeeded); 1690 1691 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1692 1693 return nr_succeeded; 1694 } 1695 1696 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1697 { 1698 if (gfp_mask & __GFP_FS) 1699 return true; 1700 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1701 return false; 1702 /* 1703 * We can "enter_fs" for swap-cache with only __GFP_IO 1704 * providing this isn't SWP_FS_OPS. 1705 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1706 * but that will never affect SWP_FS_OPS, so the data_race 1707 * is safe. 1708 */ 1709 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1710 } 1711 1712 /* 1713 * shrink_folio_list() returns the number of reclaimed pages 1714 */ 1715 static unsigned int shrink_folio_list(struct list_head *folio_list, 1716 struct pglist_data *pgdat, struct scan_control *sc, 1717 struct reclaim_stat *stat, bool ignore_references) 1718 { 1719 LIST_HEAD(ret_folios); 1720 LIST_HEAD(free_folios); 1721 LIST_HEAD(demote_folios); 1722 unsigned int nr_reclaimed = 0; 1723 unsigned int pgactivate = 0; 1724 bool do_demote_pass; 1725 struct swap_iocb *plug = NULL; 1726 1727 memset(stat, 0, sizeof(*stat)); 1728 cond_resched(); 1729 do_demote_pass = can_demote(pgdat->node_id, sc); 1730 1731 retry: 1732 while (!list_empty(folio_list)) { 1733 struct address_space *mapping; 1734 struct folio *folio; 1735 enum folio_references references = FOLIOREF_RECLAIM; 1736 bool dirty, writeback; 1737 unsigned int nr_pages; 1738 1739 cond_resched(); 1740 1741 folio = lru_to_folio(folio_list); 1742 list_del(&folio->lru); 1743 1744 if (!folio_trylock(folio)) 1745 goto keep; 1746 1747 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1748 1749 nr_pages = folio_nr_pages(folio); 1750 1751 /* Account the number of base pages */ 1752 sc->nr_scanned += nr_pages; 1753 1754 if (unlikely(!folio_evictable(folio))) 1755 goto activate_locked; 1756 1757 if (!sc->may_unmap && folio_mapped(folio)) 1758 goto keep_locked; 1759 1760 /* folio_update_gen() tried to promote this page? */ 1761 if (lru_gen_enabled() && !ignore_references && 1762 folio_mapped(folio) && folio_test_referenced(folio)) 1763 goto keep_locked; 1764 1765 /* 1766 * The number of dirty pages determines if a node is marked 1767 * reclaim_congested. kswapd will stall and start writing 1768 * folios if the tail of the LRU is all dirty unqueued folios. 1769 */ 1770 folio_check_dirty_writeback(folio, &dirty, &writeback); 1771 if (dirty || writeback) 1772 stat->nr_dirty += nr_pages; 1773 1774 if (dirty && !writeback) 1775 stat->nr_unqueued_dirty += nr_pages; 1776 1777 /* 1778 * Treat this folio as congested if folios are cycling 1779 * through the LRU so quickly that the folios marked 1780 * for immediate reclaim are making it to the end of 1781 * the LRU a second time. 1782 */ 1783 if (writeback && folio_test_reclaim(folio)) 1784 stat->nr_congested += nr_pages; 1785 1786 /* 1787 * If a folio at the tail of the LRU is under writeback, there 1788 * are three cases to consider. 1789 * 1790 * 1) If reclaim is encountering an excessive number 1791 * of folios under writeback and this folio has both 1792 * the writeback and reclaim flags set, then it 1793 * indicates that folios are being queued for I/O but 1794 * are being recycled through the LRU before the I/O 1795 * can complete. Waiting on the folio itself risks an 1796 * indefinite stall if it is impossible to writeback 1797 * the folio due to I/O error or disconnected storage 1798 * so instead note that the LRU is being scanned too 1799 * quickly and the caller can stall after the folio 1800 * list has been processed. 1801 * 1802 * 2) Global or new memcg reclaim encounters a folio that is 1803 * not marked for immediate reclaim, or the caller does not 1804 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1805 * not to fs). In this case mark the folio for immediate 1806 * reclaim and continue scanning. 1807 * 1808 * Require may_enter_fs() because we would wait on fs, which 1809 * may not have submitted I/O yet. And the loop driver might 1810 * enter reclaim, and deadlock if it waits on a folio for 1811 * which it is needed to do the write (loop masks off 1812 * __GFP_IO|__GFP_FS for this reason); but more thought 1813 * would probably show more reasons. 1814 * 1815 * 3) Legacy memcg encounters a folio that already has the 1816 * reclaim flag set. memcg does not have any dirty folio 1817 * throttling so we could easily OOM just because too many 1818 * folios are in writeback and there is nothing else to 1819 * reclaim. Wait for the writeback to complete. 1820 * 1821 * In cases 1) and 2) we activate the folios to get them out of 1822 * the way while we continue scanning for clean folios on the 1823 * inactive list and refilling from the active list. The 1824 * observation here is that waiting for disk writes is more 1825 * expensive than potentially causing reloads down the line. 1826 * Since they're marked for immediate reclaim, they won't put 1827 * memory pressure on the cache working set any longer than it 1828 * takes to write them to disk. 1829 */ 1830 if (folio_test_writeback(folio)) { 1831 /* Case 1 above */ 1832 if (current_is_kswapd() && 1833 folio_test_reclaim(folio) && 1834 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1835 stat->nr_immediate += nr_pages; 1836 goto activate_locked; 1837 1838 /* Case 2 above */ 1839 } else if (writeback_throttling_sane(sc) || 1840 !folio_test_reclaim(folio) || 1841 !may_enter_fs(folio, sc->gfp_mask)) { 1842 /* 1843 * This is slightly racy - 1844 * folio_end_writeback() might have 1845 * just cleared the reclaim flag, then 1846 * setting the reclaim flag here ends up 1847 * interpreted as the readahead flag - but 1848 * that does not matter enough to care. 1849 * What we do want is for this folio to 1850 * have the reclaim flag set next time 1851 * memcg reclaim reaches the tests above, 1852 * so it will then wait for writeback to 1853 * avoid OOM; and it's also appropriate 1854 * in global reclaim. 1855 */ 1856 folio_set_reclaim(folio); 1857 stat->nr_writeback += nr_pages; 1858 goto activate_locked; 1859 1860 /* Case 3 above */ 1861 } else { 1862 folio_unlock(folio); 1863 folio_wait_writeback(folio); 1864 /* then go back and try same folio again */ 1865 list_add_tail(&folio->lru, folio_list); 1866 continue; 1867 } 1868 } 1869 1870 if (!ignore_references) 1871 references = folio_check_references(folio, sc); 1872 1873 switch (references) { 1874 case FOLIOREF_ACTIVATE: 1875 goto activate_locked; 1876 case FOLIOREF_KEEP: 1877 stat->nr_ref_keep += nr_pages; 1878 goto keep_locked; 1879 case FOLIOREF_RECLAIM: 1880 case FOLIOREF_RECLAIM_CLEAN: 1881 ; /* try to reclaim the folio below */ 1882 } 1883 1884 /* 1885 * Before reclaiming the folio, try to relocate 1886 * its contents to another node. 1887 */ 1888 if (do_demote_pass && 1889 (thp_migration_supported() || !folio_test_large(folio))) { 1890 list_add(&folio->lru, &demote_folios); 1891 folio_unlock(folio); 1892 continue; 1893 } 1894 1895 /* 1896 * Anonymous process memory has backing store? 1897 * Try to allocate it some swap space here. 1898 * Lazyfree folio could be freed directly 1899 */ 1900 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1901 if (!folio_test_swapcache(folio)) { 1902 if (!(sc->gfp_mask & __GFP_IO)) 1903 goto keep_locked; 1904 if (folio_maybe_dma_pinned(folio)) 1905 goto keep_locked; 1906 if (folio_test_large(folio)) { 1907 /* cannot split folio, skip it */ 1908 if (!can_split_folio(folio, NULL)) 1909 goto activate_locked; 1910 /* 1911 * Split folios without a PMD map right 1912 * away. Chances are some or all of the 1913 * tail pages can be freed without IO. 1914 */ 1915 if (!folio_entire_mapcount(folio) && 1916 split_folio_to_list(folio, 1917 folio_list)) 1918 goto activate_locked; 1919 } 1920 if (!add_to_swap(folio)) { 1921 if (!folio_test_large(folio)) 1922 goto activate_locked_split; 1923 /* Fallback to swap normal pages */ 1924 if (split_folio_to_list(folio, 1925 folio_list)) 1926 goto activate_locked; 1927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1928 count_vm_event(THP_SWPOUT_FALLBACK); 1929 #endif 1930 if (!add_to_swap(folio)) 1931 goto activate_locked_split; 1932 } 1933 } 1934 } else if (folio_test_swapbacked(folio) && 1935 folio_test_large(folio)) { 1936 /* Split shmem folio */ 1937 if (split_folio_to_list(folio, folio_list)) 1938 goto keep_locked; 1939 } 1940 1941 /* 1942 * If the folio was split above, the tail pages will make 1943 * their own pass through this function and be accounted 1944 * then. 1945 */ 1946 if ((nr_pages > 1) && !folio_test_large(folio)) { 1947 sc->nr_scanned -= (nr_pages - 1); 1948 nr_pages = 1; 1949 } 1950 1951 /* 1952 * The folio is mapped into the page tables of one or more 1953 * processes. Try to unmap it here. 1954 */ 1955 if (folio_mapped(folio)) { 1956 enum ttu_flags flags = TTU_BATCH_FLUSH; 1957 bool was_swapbacked = folio_test_swapbacked(folio); 1958 1959 if (folio_test_pmd_mappable(folio)) 1960 flags |= TTU_SPLIT_HUGE_PMD; 1961 1962 try_to_unmap(folio, flags); 1963 if (folio_mapped(folio)) { 1964 stat->nr_unmap_fail += nr_pages; 1965 if (!was_swapbacked && 1966 folio_test_swapbacked(folio)) 1967 stat->nr_lazyfree_fail += nr_pages; 1968 goto activate_locked; 1969 } 1970 } 1971 1972 /* 1973 * Folio is unmapped now so it cannot be newly pinned anymore. 1974 * No point in trying to reclaim folio if it is pinned. 1975 * Furthermore we don't want to reclaim underlying fs metadata 1976 * if the folio is pinned and thus potentially modified by the 1977 * pinning process as that may upset the filesystem. 1978 */ 1979 if (folio_maybe_dma_pinned(folio)) 1980 goto activate_locked; 1981 1982 mapping = folio_mapping(folio); 1983 if (folio_test_dirty(folio)) { 1984 /* 1985 * Only kswapd can writeback filesystem folios 1986 * to avoid risk of stack overflow. But avoid 1987 * injecting inefficient single-folio I/O into 1988 * flusher writeback as much as possible: only 1989 * write folios when we've encountered many 1990 * dirty folios, and when we've already scanned 1991 * the rest of the LRU for clean folios and see 1992 * the same dirty folios again (with the reclaim 1993 * flag set). 1994 */ 1995 if (folio_is_file_lru(folio) && 1996 (!current_is_kswapd() || 1997 !folio_test_reclaim(folio) || 1998 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1999 /* 2000 * Immediately reclaim when written back. 2001 * Similar in principle to folio_deactivate() 2002 * except we already have the folio isolated 2003 * and know it's dirty 2004 */ 2005 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 2006 nr_pages); 2007 folio_set_reclaim(folio); 2008 2009 goto activate_locked; 2010 } 2011 2012 if (references == FOLIOREF_RECLAIM_CLEAN) 2013 goto keep_locked; 2014 if (!may_enter_fs(folio, sc->gfp_mask)) 2015 goto keep_locked; 2016 if (!sc->may_writepage) 2017 goto keep_locked; 2018 2019 /* 2020 * Folio is dirty. Flush the TLB if a writable entry 2021 * potentially exists to avoid CPU writes after I/O 2022 * starts and then write it out here. 2023 */ 2024 try_to_unmap_flush_dirty(); 2025 switch (pageout(folio, mapping, &plug)) { 2026 case PAGE_KEEP: 2027 goto keep_locked; 2028 case PAGE_ACTIVATE: 2029 goto activate_locked; 2030 case PAGE_SUCCESS: 2031 stat->nr_pageout += nr_pages; 2032 2033 if (folio_test_writeback(folio)) 2034 goto keep; 2035 if (folio_test_dirty(folio)) 2036 goto keep; 2037 2038 /* 2039 * A synchronous write - probably a ramdisk. Go 2040 * ahead and try to reclaim the folio. 2041 */ 2042 if (!folio_trylock(folio)) 2043 goto keep; 2044 if (folio_test_dirty(folio) || 2045 folio_test_writeback(folio)) 2046 goto keep_locked; 2047 mapping = folio_mapping(folio); 2048 fallthrough; 2049 case PAGE_CLEAN: 2050 ; /* try to free the folio below */ 2051 } 2052 } 2053 2054 /* 2055 * If the folio has buffers, try to free the buffer 2056 * mappings associated with this folio. If we succeed 2057 * we try to free the folio as well. 2058 * 2059 * We do this even if the folio is dirty. 2060 * filemap_release_folio() does not perform I/O, but it 2061 * is possible for a folio to have the dirty flag set, 2062 * but it is actually clean (all its buffers are clean). 2063 * This happens if the buffers were written out directly, 2064 * with submit_bh(). ext3 will do this, as well as 2065 * the blockdev mapping. filemap_release_folio() will 2066 * discover that cleanness and will drop the buffers 2067 * and mark the folio clean - it can be freed. 2068 * 2069 * Rarely, folios can have buffers and no ->mapping. 2070 * These are the folios which were not successfully 2071 * invalidated in truncate_cleanup_folio(). We try to 2072 * drop those buffers here and if that worked, and the 2073 * folio is no longer mapped into process address space 2074 * (refcount == 1) it can be freed. Otherwise, leave 2075 * the folio on the LRU so it is swappable. 2076 */ 2077 if (folio_has_private(folio)) { 2078 if (!filemap_release_folio(folio, sc->gfp_mask)) 2079 goto activate_locked; 2080 if (!mapping && folio_ref_count(folio) == 1) { 2081 folio_unlock(folio); 2082 if (folio_put_testzero(folio)) 2083 goto free_it; 2084 else { 2085 /* 2086 * rare race with speculative reference. 2087 * the speculative reference will free 2088 * this folio shortly, so we may 2089 * increment nr_reclaimed here (and 2090 * leave it off the LRU). 2091 */ 2092 nr_reclaimed += nr_pages; 2093 continue; 2094 } 2095 } 2096 } 2097 2098 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2099 /* follow __remove_mapping for reference */ 2100 if (!folio_ref_freeze(folio, 1)) 2101 goto keep_locked; 2102 /* 2103 * The folio has only one reference left, which is 2104 * from the isolation. After the caller puts the 2105 * folio back on the lru and drops the reference, the 2106 * folio will be freed anyway. It doesn't matter 2107 * which lru it goes on. So we don't bother checking 2108 * the dirty flag here. 2109 */ 2110 count_vm_events(PGLAZYFREED, nr_pages); 2111 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2112 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2113 sc->target_mem_cgroup)) 2114 goto keep_locked; 2115 2116 folio_unlock(folio); 2117 free_it: 2118 /* 2119 * Folio may get swapped out as a whole, need to account 2120 * all pages in it. 2121 */ 2122 nr_reclaimed += nr_pages; 2123 2124 /* 2125 * Is there need to periodically free_folio_list? It would 2126 * appear not as the counts should be low 2127 */ 2128 if (unlikely(folio_test_large(folio))) 2129 destroy_large_folio(folio); 2130 else 2131 list_add(&folio->lru, &free_folios); 2132 continue; 2133 2134 activate_locked_split: 2135 /* 2136 * The tail pages that are failed to add into swap cache 2137 * reach here. Fixup nr_scanned and nr_pages. 2138 */ 2139 if (nr_pages > 1) { 2140 sc->nr_scanned -= (nr_pages - 1); 2141 nr_pages = 1; 2142 } 2143 activate_locked: 2144 /* Not a candidate for swapping, so reclaim swap space. */ 2145 if (folio_test_swapcache(folio) && 2146 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2147 folio_free_swap(folio); 2148 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2149 if (!folio_test_mlocked(folio)) { 2150 int type = folio_is_file_lru(folio); 2151 folio_set_active(folio); 2152 stat->nr_activate[type] += nr_pages; 2153 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2154 } 2155 keep_locked: 2156 folio_unlock(folio); 2157 keep: 2158 list_add(&folio->lru, &ret_folios); 2159 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2160 folio_test_unevictable(folio), folio); 2161 } 2162 /* 'folio_list' is always empty here */ 2163 2164 /* Migrate folios selected for demotion */ 2165 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2166 /* Folios that could not be demoted are still in @demote_folios */ 2167 if (!list_empty(&demote_folios)) { 2168 /* Folios which weren't demoted go back on @folio_list */ 2169 list_splice_init(&demote_folios, folio_list); 2170 2171 /* 2172 * goto retry to reclaim the undemoted folios in folio_list if 2173 * desired. 2174 * 2175 * Reclaiming directly from top tier nodes is not often desired 2176 * due to it breaking the LRU ordering: in general memory 2177 * should be reclaimed from lower tier nodes and demoted from 2178 * top tier nodes. 2179 * 2180 * However, disabling reclaim from top tier nodes entirely 2181 * would cause ooms in edge scenarios where lower tier memory 2182 * is unreclaimable for whatever reason, eg memory being 2183 * mlocked or too hot to reclaim. We can disable reclaim 2184 * from top tier nodes in proactive reclaim though as that is 2185 * not real memory pressure. 2186 */ 2187 if (!sc->proactive) { 2188 do_demote_pass = false; 2189 goto retry; 2190 } 2191 } 2192 2193 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2194 2195 mem_cgroup_uncharge_list(&free_folios); 2196 try_to_unmap_flush(); 2197 free_unref_page_list(&free_folios); 2198 2199 list_splice(&ret_folios, folio_list); 2200 count_vm_events(PGACTIVATE, pgactivate); 2201 2202 if (plug) 2203 swap_write_unplug(plug); 2204 return nr_reclaimed; 2205 } 2206 2207 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2208 struct list_head *folio_list) 2209 { 2210 struct scan_control sc = { 2211 .gfp_mask = GFP_KERNEL, 2212 .may_unmap = 1, 2213 }; 2214 struct reclaim_stat stat; 2215 unsigned int nr_reclaimed; 2216 struct folio *folio, *next; 2217 LIST_HEAD(clean_folios); 2218 unsigned int noreclaim_flag; 2219 2220 list_for_each_entry_safe(folio, next, folio_list, lru) { 2221 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2222 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2223 !folio_test_unevictable(folio)) { 2224 folio_clear_active(folio); 2225 list_move(&folio->lru, &clean_folios); 2226 } 2227 } 2228 2229 /* 2230 * We should be safe here since we are only dealing with file pages and 2231 * we are not kswapd and therefore cannot write dirty file pages. But 2232 * call memalloc_noreclaim_save() anyway, just in case these conditions 2233 * change in the future. 2234 */ 2235 noreclaim_flag = memalloc_noreclaim_save(); 2236 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2237 &stat, true); 2238 memalloc_noreclaim_restore(noreclaim_flag); 2239 2240 list_splice(&clean_folios, folio_list); 2241 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2242 -(long)nr_reclaimed); 2243 /* 2244 * Since lazyfree pages are isolated from file LRU from the beginning, 2245 * they will rotate back to anonymous LRU in the end if it failed to 2246 * discard so isolated count will be mismatched. 2247 * Compensate the isolated count for both LRU lists. 2248 */ 2249 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2250 stat.nr_lazyfree_fail); 2251 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2252 -(long)stat.nr_lazyfree_fail); 2253 return nr_reclaimed; 2254 } 2255 2256 /* 2257 * Update LRU sizes after isolating pages. The LRU size updates must 2258 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2259 */ 2260 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2261 enum lru_list lru, unsigned long *nr_zone_taken) 2262 { 2263 int zid; 2264 2265 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2266 if (!nr_zone_taken[zid]) 2267 continue; 2268 2269 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2270 } 2271 2272 } 2273 2274 #ifdef CONFIG_CMA 2275 /* 2276 * It is waste of effort to scan and reclaim CMA pages if it is not available 2277 * for current allocation context. Kswapd can not be enrolled as it can not 2278 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 2279 */ 2280 static bool skip_cma(struct folio *folio, struct scan_control *sc) 2281 { 2282 return !current_is_kswapd() && 2283 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 2284 get_pageblock_migratetype(&folio->page) == MIGRATE_CMA; 2285 } 2286 #else 2287 static bool skip_cma(struct folio *folio, struct scan_control *sc) 2288 { 2289 return false; 2290 } 2291 #endif 2292 2293 /* 2294 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2295 * 2296 * lruvec->lru_lock is heavily contended. Some of the functions that 2297 * shrink the lists perform better by taking out a batch of pages 2298 * and working on them outside the LRU lock. 2299 * 2300 * For pagecache intensive workloads, this function is the hottest 2301 * spot in the kernel (apart from copy_*_user functions). 2302 * 2303 * Lru_lock must be held before calling this function. 2304 * 2305 * @nr_to_scan: The number of eligible pages to look through on the list. 2306 * @lruvec: The LRU vector to pull pages from. 2307 * @dst: The temp list to put pages on to. 2308 * @nr_scanned: The number of pages that were scanned. 2309 * @sc: The scan_control struct for this reclaim session 2310 * @lru: LRU list id for isolating 2311 * 2312 * returns how many pages were moved onto *@dst. 2313 */ 2314 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2315 struct lruvec *lruvec, struct list_head *dst, 2316 unsigned long *nr_scanned, struct scan_control *sc, 2317 enum lru_list lru) 2318 { 2319 struct list_head *src = &lruvec->lists[lru]; 2320 unsigned long nr_taken = 0; 2321 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2322 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2323 unsigned long skipped = 0; 2324 unsigned long scan, total_scan, nr_pages; 2325 LIST_HEAD(folios_skipped); 2326 2327 total_scan = 0; 2328 scan = 0; 2329 while (scan < nr_to_scan && !list_empty(src)) { 2330 struct list_head *move_to = src; 2331 struct folio *folio; 2332 2333 folio = lru_to_folio(src); 2334 prefetchw_prev_lru_folio(folio, src, flags); 2335 2336 nr_pages = folio_nr_pages(folio); 2337 total_scan += nr_pages; 2338 2339 if (folio_zonenum(folio) > sc->reclaim_idx || 2340 skip_cma(folio, sc)) { 2341 nr_skipped[folio_zonenum(folio)] += nr_pages; 2342 move_to = &folios_skipped; 2343 goto move; 2344 } 2345 2346 /* 2347 * Do not count skipped folios because that makes the function 2348 * return with no isolated folios if the LRU mostly contains 2349 * ineligible folios. This causes the VM to not reclaim any 2350 * folios, triggering a premature OOM. 2351 * Account all pages in a folio. 2352 */ 2353 scan += nr_pages; 2354 2355 if (!folio_test_lru(folio)) 2356 goto move; 2357 if (!sc->may_unmap && folio_mapped(folio)) 2358 goto move; 2359 2360 /* 2361 * Be careful not to clear the lru flag until after we're 2362 * sure the folio is not being freed elsewhere -- the 2363 * folio release code relies on it. 2364 */ 2365 if (unlikely(!folio_try_get(folio))) 2366 goto move; 2367 2368 if (!folio_test_clear_lru(folio)) { 2369 /* Another thread is already isolating this folio */ 2370 folio_put(folio); 2371 goto move; 2372 } 2373 2374 nr_taken += nr_pages; 2375 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2376 move_to = dst; 2377 move: 2378 list_move(&folio->lru, move_to); 2379 } 2380 2381 /* 2382 * Splice any skipped folios to the start of the LRU list. Note that 2383 * this disrupts the LRU order when reclaiming for lower zones but 2384 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2385 * scanning would soon rescan the same folios to skip and waste lots 2386 * of cpu cycles. 2387 */ 2388 if (!list_empty(&folios_skipped)) { 2389 int zid; 2390 2391 list_splice(&folios_skipped, src); 2392 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2393 if (!nr_skipped[zid]) 2394 continue; 2395 2396 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2397 skipped += nr_skipped[zid]; 2398 } 2399 } 2400 *nr_scanned = total_scan; 2401 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2402 total_scan, skipped, nr_taken, 2403 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2404 update_lru_sizes(lruvec, lru, nr_zone_taken); 2405 return nr_taken; 2406 } 2407 2408 /** 2409 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2410 * @folio: Folio to isolate from its LRU list. 2411 * 2412 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2413 * corresponding to whatever LRU list the folio was on. 2414 * 2415 * The folio will have its LRU flag cleared. If it was found on the 2416 * active list, it will have the Active flag set. If it was found on the 2417 * unevictable list, it will have the Unevictable flag set. These flags 2418 * may need to be cleared by the caller before letting the page go. 2419 * 2420 * Context: 2421 * 2422 * (1) Must be called with an elevated refcount on the folio. This is a 2423 * fundamental difference from isolate_lru_folios() (which is called 2424 * without a stable reference). 2425 * (2) The lru_lock must not be held. 2426 * (3) Interrupts must be enabled. 2427 * 2428 * Return: true if the folio was removed from an LRU list. 2429 * false if the folio was not on an LRU list. 2430 */ 2431 bool folio_isolate_lru(struct folio *folio) 2432 { 2433 bool ret = false; 2434 2435 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2436 2437 if (folio_test_clear_lru(folio)) { 2438 struct lruvec *lruvec; 2439 2440 folio_get(folio); 2441 lruvec = folio_lruvec_lock_irq(folio); 2442 lruvec_del_folio(lruvec, folio); 2443 unlock_page_lruvec_irq(lruvec); 2444 ret = true; 2445 } 2446 2447 return ret; 2448 } 2449 2450 /* 2451 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2452 * then get rescheduled. When there are massive number of tasks doing page 2453 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2454 * the LRU list will go small and be scanned faster than necessary, leading to 2455 * unnecessary swapping, thrashing and OOM. 2456 */ 2457 static int too_many_isolated(struct pglist_data *pgdat, int file, 2458 struct scan_control *sc) 2459 { 2460 unsigned long inactive, isolated; 2461 bool too_many; 2462 2463 if (current_is_kswapd()) 2464 return 0; 2465 2466 if (!writeback_throttling_sane(sc)) 2467 return 0; 2468 2469 if (file) { 2470 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2471 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2472 } else { 2473 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2474 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2475 } 2476 2477 /* 2478 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2479 * won't get blocked by normal direct-reclaimers, forming a circular 2480 * deadlock. 2481 */ 2482 if (gfp_has_io_fs(sc->gfp_mask)) 2483 inactive >>= 3; 2484 2485 too_many = isolated > inactive; 2486 2487 /* Wake up tasks throttled due to too_many_isolated. */ 2488 if (!too_many) 2489 wake_throttle_isolated(pgdat); 2490 2491 return too_many; 2492 } 2493 2494 /* 2495 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2496 * On return, @list is reused as a list of folios to be freed by the caller. 2497 * 2498 * Returns the number of pages moved to the given lruvec. 2499 */ 2500 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2501 struct list_head *list) 2502 { 2503 int nr_pages, nr_moved = 0; 2504 LIST_HEAD(folios_to_free); 2505 2506 while (!list_empty(list)) { 2507 struct folio *folio = lru_to_folio(list); 2508 2509 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2510 list_del(&folio->lru); 2511 if (unlikely(!folio_evictable(folio))) { 2512 spin_unlock_irq(&lruvec->lru_lock); 2513 folio_putback_lru(folio); 2514 spin_lock_irq(&lruvec->lru_lock); 2515 continue; 2516 } 2517 2518 /* 2519 * The folio_set_lru needs to be kept here for list integrity. 2520 * Otherwise: 2521 * #0 move_folios_to_lru #1 release_pages 2522 * if (!folio_put_testzero()) 2523 * if (folio_put_testzero()) 2524 * !lru //skip lru_lock 2525 * folio_set_lru() 2526 * list_add(&folio->lru,) 2527 * list_add(&folio->lru,) 2528 */ 2529 folio_set_lru(folio); 2530 2531 if (unlikely(folio_put_testzero(folio))) { 2532 __folio_clear_lru_flags(folio); 2533 2534 if (unlikely(folio_test_large(folio))) { 2535 spin_unlock_irq(&lruvec->lru_lock); 2536 destroy_large_folio(folio); 2537 spin_lock_irq(&lruvec->lru_lock); 2538 } else 2539 list_add(&folio->lru, &folios_to_free); 2540 2541 continue; 2542 } 2543 2544 /* 2545 * All pages were isolated from the same lruvec (and isolation 2546 * inhibits memcg migration). 2547 */ 2548 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2549 lruvec_add_folio(lruvec, folio); 2550 nr_pages = folio_nr_pages(folio); 2551 nr_moved += nr_pages; 2552 if (folio_test_active(folio)) 2553 workingset_age_nonresident(lruvec, nr_pages); 2554 } 2555 2556 /* 2557 * To save our caller's stack, now use input list for pages to free. 2558 */ 2559 list_splice(&folios_to_free, list); 2560 2561 return nr_moved; 2562 } 2563 2564 /* 2565 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2566 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2567 * we should not throttle. Otherwise it is safe to do so. 2568 */ 2569 static int current_may_throttle(void) 2570 { 2571 return !(current->flags & PF_LOCAL_THROTTLE); 2572 } 2573 2574 /* 2575 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2576 * of reclaimed pages 2577 */ 2578 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2579 struct lruvec *lruvec, struct scan_control *sc, 2580 enum lru_list lru) 2581 { 2582 LIST_HEAD(folio_list); 2583 unsigned long nr_scanned; 2584 unsigned int nr_reclaimed = 0; 2585 unsigned long nr_taken; 2586 struct reclaim_stat stat; 2587 bool file = is_file_lru(lru); 2588 enum vm_event_item item; 2589 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2590 bool stalled = false; 2591 2592 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2593 if (stalled) 2594 return 0; 2595 2596 /* wait a bit for the reclaimer. */ 2597 stalled = true; 2598 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2599 2600 /* We are about to die and free our memory. Return now. */ 2601 if (fatal_signal_pending(current)) 2602 return SWAP_CLUSTER_MAX; 2603 } 2604 2605 lru_add_drain(); 2606 2607 spin_lock_irq(&lruvec->lru_lock); 2608 2609 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2610 &nr_scanned, sc, lru); 2611 2612 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2613 item = PGSCAN_KSWAPD + reclaimer_offset(); 2614 if (!cgroup_reclaim(sc)) 2615 __count_vm_events(item, nr_scanned); 2616 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2617 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2618 2619 spin_unlock_irq(&lruvec->lru_lock); 2620 2621 if (nr_taken == 0) 2622 return 0; 2623 2624 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2625 2626 spin_lock_irq(&lruvec->lru_lock); 2627 move_folios_to_lru(lruvec, &folio_list); 2628 2629 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2630 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2631 if (!cgroup_reclaim(sc)) 2632 __count_vm_events(item, nr_reclaimed); 2633 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2634 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2635 spin_unlock_irq(&lruvec->lru_lock); 2636 2637 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2638 mem_cgroup_uncharge_list(&folio_list); 2639 free_unref_page_list(&folio_list); 2640 2641 /* 2642 * If dirty folios are scanned that are not queued for IO, it 2643 * implies that flushers are not doing their job. This can 2644 * happen when memory pressure pushes dirty folios to the end of 2645 * the LRU before the dirty limits are breached and the dirty 2646 * data has expired. It can also happen when the proportion of 2647 * dirty folios grows not through writes but through memory 2648 * pressure reclaiming all the clean cache. And in some cases, 2649 * the flushers simply cannot keep up with the allocation 2650 * rate. Nudge the flusher threads in case they are asleep. 2651 */ 2652 if (stat.nr_unqueued_dirty == nr_taken) { 2653 wakeup_flusher_threads(WB_REASON_VMSCAN); 2654 /* 2655 * For cgroupv1 dirty throttling is achieved by waking up 2656 * the kernel flusher here and later waiting on folios 2657 * which are in writeback to finish (see shrink_folio_list()). 2658 * 2659 * Flusher may not be able to issue writeback quickly 2660 * enough for cgroupv1 writeback throttling to work 2661 * on a large system. 2662 */ 2663 if (!writeback_throttling_sane(sc)) 2664 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2665 } 2666 2667 sc->nr.dirty += stat.nr_dirty; 2668 sc->nr.congested += stat.nr_congested; 2669 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2670 sc->nr.writeback += stat.nr_writeback; 2671 sc->nr.immediate += stat.nr_immediate; 2672 sc->nr.taken += nr_taken; 2673 if (file) 2674 sc->nr.file_taken += nr_taken; 2675 2676 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2677 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2678 return nr_reclaimed; 2679 } 2680 2681 /* 2682 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2683 * 2684 * We move them the other way if the folio is referenced by one or more 2685 * processes. 2686 * 2687 * If the folios are mostly unmapped, the processing is fast and it is 2688 * appropriate to hold lru_lock across the whole operation. But if 2689 * the folios are mapped, the processing is slow (folio_referenced()), so 2690 * we should drop lru_lock around each folio. It's impossible to balance 2691 * this, so instead we remove the folios from the LRU while processing them. 2692 * It is safe to rely on the active flag against the non-LRU folios in here 2693 * because nobody will play with that bit on a non-LRU folio. 2694 * 2695 * The downside is that we have to touch folio->_refcount against each folio. 2696 * But we had to alter folio->flags anyway. 2697 */ 2698 static void shrink_active_list(unsigned long nr_to_scan, 2699 struct lruvec *lruvec, 2700 struct scan_control *sc, 2701 enum lru_list lru) 2702 { 2703 unsigned long nr_taken; 2704 unsigned long nr_scanned; 2705 unsigned long vm_flags; 2706 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2707 LIST_HEAD(l_active); 2708 LIST_HEAD(l_inactive); 2709 unsigned nr_deactivate, nr_activate; 2710 unsigned nr_rotated = 0; 2711 int file = is_file_lru(lru); 2712 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2713 2714 lru_add_drain(); 2715 2716 spin_lock_irq(&lruvec->lru_lock); 2717 2718 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2719 &nr_scanned, sc, lru); 2720 2721 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2722 2723 if (!cgroup_reclaim(sc)) 2724 __count_vm_events(PGREFILL, nr_scanned); 2725 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2726 2727 spin_unlock_irq(&lruvec->lru_lock); 2728 2729 while (!list_empty(&l_hold)) { 2730 struct folio *folio; 2731 2732 cond_resched(); 2733 folio = lru_to_folio(&l_hold); 2734 list_del(&folio->lru); 2735 2736 if (unlikely(!folio_evictable(folio))) { 2737 folio_putback_lru(folio); 2738 continue; 2739 } 2740 2741 if (unlikely(buffer_heads_over_limit)) { 2742 if (folio_test_private(folio) && folio_trylock(folio)) { 2743 if (folio_test_private(folio)) 2744 filemap_release_folio(folio, 0); 2745 folio_unlock(folio); 2746 } 2747 } 2748 2749 /* Referenced or rmap lock contention: rotate */ 2750 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2751 &vm_flags) != 0) { 2752 /* 2753 * Identify referenced, file-backed active folios and 2754 * give them one more trip around the active list. So 2755 * that executable code get better chances to stay in 2756 * memory under moderate memory pressure. Anon folios 2757 * are not likely to be evicted by use-once streaming 2758 * IO, plus JVM can create lots of anon VM_EXEC folios, 2759 * so we ignore them here. 2760 */ 2761 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2762 nr_rotated += folio_nr_pages(folio); 2763 list_add(&folio->lru, &l_active); 2764 continue; 2765 } 2766 } 2767 2768 folio_clear_active(folio); /* we are de-activating */ 2769 folio_set_workingset(folio); 2770 list_add(&folio->lru, &l_inactive); 2771 } 2772 2773 /* 2774 * Move folios back to the lru list. 2775 */ 2776 spin_lock_irq(&lruvec->lru_lock); 2777 2778 nr_activate = move_folios_to_lru(lruvec, &l_active); 2779 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2780 /* Keep all free folios in l_active list */ 2781 list_splice(&l_inactive, &l_active); 2782 2783 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2784 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2785 2786 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2787 spin_unlock_irq(&lruvec->lru_lock); 2788 2789 if (nr_rotated) 2790 lru_note_cost(lruvec, file, 0, nr_rotated); 2791 mem_cgroup_uncharge_list(&l_active); 2792 free_unref_page_list(&l_active); 2793 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2794 nr_deactivate, nr_rotated, sc->priority, file); 2795 } 2796 2797 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2798 struct pglist_data *pgdat) 2799 { 2800 struct reclaim_stat dummy_stat; 2801 unsigned int nr_reclaimed; 2802 struct folio *folio; 2803 struct scan_control sc = { 2804 .gfp_mask = GFP_KERNEL, 2805 .may_writepage = 1, 2806 .may_unmap = 1, 2807 .may_swap = 1, 2808 .no_demotion = 1, 2809 }; 2810 2811 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2812 while (!list_empty(folio_list)) { 2813 folio = lru_to_folio(folio_list); 2814 list_del(&folio->lru); 2815 folio_putback_lru(folio); 2816 } 2817 2818 return nr_reclaimed; 2819 } 2820 2821 unsigned long reclaim_pages(struct list_head *folio_list) 2822 { 2823 int nid; 2824 unsigned int nr_reclaimed = 0; 2825 LIST_HEAD(node_folio_list); 2826 unsigned int noreclaim_flag; 2827 2828 if (list_empty(folio_list)) 2829 return nr_reclaimed; 2830 2831 noreclaim_flag = memalloc_noreclaim_save(); 2832 2833 nid = folio_nid(lru_to_folio(folio_list)); 2834 do { 2835 struct folio *folio = lru_to_folio(folio_list); 2836 2837 if (nid == folio_nid(folio)) { 2838 folio_clear_active(folio); 2839 list_move(&folio->lru, &node_folio_list); 2840 continue; 2841 } 2842 2843 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2844 nid = folio_nid(lru_to_folio(folio_list)); 2845 } while (!list_empty(folio_list)); 2846 2847 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2848 2849 memalloc_noreclaim_restore(noreclaim_flag); 2850 2851 return nr_reclaimed; 2852 } 2853 2854 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2855 struct lruvec *lruvec, struct scan_control *sc) 2856 { 2857 if (is_active_lru(lru)) { 2858 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2859 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2860 else 2861 sc->skipped_deactivate = 1; 2862 return 0; 2863 } 2864 2865 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2866 } 2867 2868 /* 2869 * The inactive anon list should be small enough that the VM never has 2870 * to do too much work. 2871 * 2872 * The inactive file list should be small enough to leave most memory 2873 * to the established workingset on the scan-resistant active list, 2874 * but large enough to avoid thrashing the aggregate readahead window. 2875 * 2876 * Both inactive lists should also be large enough that each inactive 2877 * folio has a chance to be referenced again before it is reclaimed. 2878 * 2879 * If that fails and refaulting is observed, the inactive list grows. 2880 * 2881 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2882 * on this LRU, maintained by the pageout code. An inactive_ratio 2883 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2884 * 2885 * total target max 2886 * memory ratio inactive 2887 * ------------------------------------- 2888 * 10MB 1 5MB 2889 * 100MB 1 50MB 2890 * 1GB 3 250MB 2891 * 10GB 10 0.9GB 2892 * 100GB 31 3GB 2893 * 1TB 101 10GB 2894 * 10TB 320 32GB 2895 */ 2896 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2897 { 2898 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2899 unsigned long inactive, active; 2900 unsigned long inactive_ratio; 2901 unsigned long gb; 2902 2903 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2904 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2905 2906 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2907 if (gb) 2908 inactive_ratio = int_sqrt(10 * gb); 2909 else 2910 inactive_ratio = 1; 2911 2912 return inactive * inactive_ratio < active; 2913 } 2914 2915 enum scan_balance { 2916 SCAN_EQUAL, 2917 SCAN_FRACT, 2918 SCAN_ANON, 2919 SCAN_FILE, 2920 }; 2921 2922 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2923 { 2924 unsigned long file; 2925 struct lruvec *target_lruvec; 2926 2927 if (lru_gen_enabled()) 2928 return; 2929 2930 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2931 2932 /* 2933 * Flush the memory cgroup stats, so that we read accurate per-memcg 2934 * lruvec stats for heuristics. 2935 */ 2936 mem_cgroup_flush_stats(); 2937 2938 /* 2939 * Determine the scan balance between anon and file LRUs. 2940 */ 2941 spin_lock_irq(&target_lruvec->lru_lock); 2942 sc->anon_cost = target_lruvec->anon_cost; 2943 sc->file_cost = target_lruvec->file_cost; 2944 spin_unlock_irq(&target_lruvec->lru_lock); 2945 2946 /* 2947 * Target desirable inactive:active list ratios for the anon 2948 * and file LRU lists. 2949 */ 2950 if (!sc->force_deactivate) { 2951 unsigned long refaults; 2952 2953 /* 2954 * When refaults are being observed, it means a new 2955 * workingset is being established. Deactivate to get 2956 * rid of any stale active pages quickly. 2957 */ 2958 refaults = lruvec_page_state(target_lruvec, 2959 WORKINGSET_ACTIVATE_ANON); 2960 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2961 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2962 sc->may_deactivate |= DEACTIVATE_ANON; 2963 else 2964 sc->may_deactivate &= ~DEACTIVATE_ANON; 2965 2966 refaults = lruvec_page_state(target_lruvec, 2967 WORKINGSET_ACTIVATE_FILE); 2968 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2969 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2970 sc->may_deactivate |= DEACTIVATE_FILE; 2971 else 2972 sc->may_deactivate &= ~DEACTIVATE_FILE; 2973 } else 2974 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2975 2976 /* 2977 * If we have plenty of inactive file pages that aren't 2978 * thrashing, try to reclaim those first before touching 2979 * anonymous pages. 2980 */ 2981 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2982 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2983 sc->cache_trim_mode = 1; 2984 else 2985 sc->cache_trim_mode = 0; 2986 2987 /* 2988 * Prevent the reclaimer from falling into the cache trap: as 2989 * cache pages start out inactive, every cache fault will tip 2990 * the scan balance towards the file LRU. And as the file LRU 2991 * shrinks, so does the window for rotation from references. 2992 * This means we have a runaway feedback loop where a tiny 2993 * thrashing file LRU becomes infinitely more attractive than 2994 * anon pages. Try to detect this based on file LRU size. 2995 */ 2996 if (!cgroup_reclaim(sc)) { 2997 unsigned long total_high_wmark = 0; 2998 unsigned long free, anon; 2999 int z; 3000 3001 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3002 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3003 node_page_state(pgdat, NR_INACTIVE_FILE); 3004 3005 for (z = 0; z < MAX_NR_ZONES; z++) { 3006 struct zone *zone = &pgdat->node_zones[z]; 3007 3008 if (!managed_zone(zone)) 3009 continue; 3010 3011 total_high_wmark += high_wmark_pages(zone); 3012 } 3013 3014 /* 3015 * Consider anon: if that's low too, this isn't a 3016 * runaway file reclaim problem, but rather just 3017 * extreme pressure. Reclaim as per usual then. 3018 */ 3019 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3020 3021 sc->file_is_tiny = 3022 file + free <= total_high_wmark && 3023 !(sc->may_deactivate & DEACTIVATE_ANON) && 3024 anon >> sc->priority; 3025 } 3026 } 3027 3028 /* 3029 * Determine how aggressively the anon and file LRU lists should be 3030 * scanned. 3031 * 3032 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 3033 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 3034 */ 3035 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 3036 unsigned long *nr) 3037 { 3038 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3039 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3040 unsigned long anon_cost, file_cost, total_cost; 3041 int swappiness = mem_cgroup_swappiness(memcg); 3042 u64 fraction[ANON_AND_FILE]; 3043 u64 denominator = 0; /* gcc */ 3044 enum scan_balance scan_balance; 3045 unsigned long ap, fp; 3046 enum lru_list lru; 3047 3048 /* If we have no swap space, do not bother scanning anon folios. */ 3049 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 3050 scan_balance = SCAN_FILE; 3051 goto out; 3052 } 3053 3054 /* 3055 * Global reclaim will swap to prevent OOM even with no 3056 * swappiness, but memcg users want to use this knob to 3057 * disable swapping for individual groups completely when 3058 * using the memory controller's swap limit feature would be 3059 * too expensive. 3060 */ 3061 if (cgroup_reclaim(sc) && !swappiness) { 3062 scan_balance = SCAN_FILE; 3063 goto out; 3064 } 3065 3066 /* 3067 * Do not apply any pressure balancing cleverness when the 3068 * system is close to OOM, scan both anon and file equally 3069 * (unless the swappiness setting disagrees with swapping). 3070 */ 3071 if (!sc->priority && swappiness) { 3072 scan_balance = SCAN_EQUAL; 3073 goto out; 3074 } 3075 3076 /* 3077 * If the system is almost out of file pages, force-scan anon. 3078 */ 3079 if (sc->file_is_tiny) { 3080 scan_balance = SCAN_ANON; 3081 goto out; 3082 } 3083 3084 /* 3085 * If there is enough inactive page cache, we do not reclaim 3086 * anything from the anonymous working right now. 3087 */ 3088 if (sc->cache_trim_mode) { 3089 scan_balance = SCAN_FILE; 3090 goto out; 3091 } 3092 3093 scan_balance = SCAN_FRACT; 3094 /* 3095 * Calculate the pressure balance between anon and file pages. 3096 * 3097 * The amount of pressure we put on each LRU is inversely 3098 * proportional to the cost of reclaiming each list, as 3099 * determined by the share of pages that are refaulting, times 3100 * the relative IO cost of bringing back a swapped out 3101 * anonymous page vs reloading a filesystem page (swappiness). 3102 * 3103 * Although we limit that influence to ensure no list gets 3104 * left behind completely: at least a third of the pressure is 3105 * applied, before swappiness. 3106 * 3107 * With swappiness at 100, anon and file have equal IO cost. 3108 */ 3109 total_cost = sc->anon_cost + sc->file_cost; 3110 anon_cost = total_cost + sc->anon_cost; 3111 file_cost = total_cost + sc->file_cost; 3112 total_cost = anon_cost + file_cost; 3113 3114 ap = swappiness * (total_cost + 1); 3115 ap /= anon_cost + 1; 3116 3117 fp = (200 - swappiness) * (total_cost + 1); 3118 fp /= file_cost + 1; 3119 3120 fraction[0] = ap; 3121 fraction[1] = fp; 3122 denominator = ap + fp; 3123 out: 3124 for_each_evictable_lru(lru) { 3125 int file = is_file_lru(lru); 3126 unsigned long lruvec_size; 3127 unsigned long low, min; 3128 unsigned long scan; 3129 3130 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3131 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3132 &min, &low); 3133 3134 if (min || low) { 3135 /* 3136 * Scale a cgroup's reclaim pressure by proportioning 3137 * its current usage to its memory.low or memory.min 3138 * setting. 3139 * 3140 * This is important, as otherwise scanning aggression 3141 * becomes extremely binary -- from nothing as we 3142 * approach the memory protection threshold, to totally 3143 * nominal as we exceed it. This results in requiring 3144 * setting extremely liberal protection thresholds. It 3145 * also means we simply get no protection at all if we 3146 * set it too low, which is not ideal. 3147 * 3148 * If there is any protection in place, we reduce scan 3149 * pressure by how much of the total memory used is 3150 * within protection thresholds. 3151 * 3152 * There is one special case: in the first reclaim pass, 3153 * we skip over all groups that are within their low 3154 * protection. If that fails to reclaim enough pages to 3155 * satisfy the reclaim goal, we come back and override 3156 * the best-effort low protection. However, we still 3157 * ideally want to honor how well-behaved groups are in 3158 * that case instead of simply punishing them all 3159 * equally. As such, we reclaim them based on how much 3160 * memory they are using, reducing the scan pressure 3161 * again by how much of the total memory used is under 3162 * hard protection. 3163 */ 3164 unsigned long cgroup_size = mem_cgroup_size(memcg); 3165 unsigned long protection; 3166 3167 /* memory.low scaling, make sure we retry before OOM */ 3168 if (!sc->memcg_low_reclaim && low > min) { 3169 protection = low; 3170 sc->memcg_low_skipped = 1; 3171 } else { 3172 protection = min; 3173 } 3174 3175 /* Avoid TOCTOU with earlier protection check */ 3176 cgroup_size = max(cgroup_size, protection); 3177 3178 scan = lruvec_size - lruvec_size * protection / 3179 (cgroup_size + 1); 3180 3181 /* 3182 * Minimally target SWAP_CLUSTER_MAX pages to keep 3183 * reclaim moving forwards, avoiding decrementing 3184 * sc->priority further than desirable. 3185 */ 3186 scan = max(scan, SWAP_CLUSTER_MAX); 3187 } else { 3188 scan = lruvec_size; 3189 } 3190 3191 scan >>= sc->priority; 3192 3193 /* 3194 * If the cgroup's already been deleted, make sure to 3195 * scrape out the remaining cache. 3196 */ 3197 if (!scan && !mem_cgroup_online(memcg)) 3198 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3199 3200 switch (scan_balance) { 3201 case SCAN_EQUAL: 3202 /* Scan lists relative to size */ 3203 break; 3204 case SCAN_FRACT: 3205 /* 3206 * Scan types proportional to swappiness and 3207 * their relative recent reclaim efficiency. 3208 * Make sure we don't miss the last page on 3209 * the offlined memory cgroups because of a 3210 * round-off error. 3211 */ 3212 scan = mem_cgroup_online(memcg) ? 3213 div64_u64(scan * fraction[file], denominator) : 3214 DIV64_U64_ROUND_UP(scan * fraction[file], 3215 denominator); 3216 break; 3217 case SCAN_FILE: 3218 case SCAN_ANON: 3219 /* Scan one type exclusively */ 3220 if ((scan_balance == SCAN_FILE) != file) 3221 scan = 0; 3222 break; 3223 default: 3224 /* Look ma, no brain */ 3225 BUG(); 3226 } 3227 3228 nr[lru] = scan; 3229 } 3230 } 3231 3232 /* 3233 * Anonymous LRU management is a waste if there is 3234 * ultimately no way to reclaim the memory. 3235 */ 3236 static bool can_age_anon_pages(struct pglist_data *pgdat, 3237 struct scan_control *sc) 3238 { 3239 /* Aging the anon LRU is valuable if swap is present: */ 3240 if (total_swap_pages > 0) 3241 return true; 3242 3243 /* Also valuable if anon pages can be demoted: */ 3244 return can_demote(pgdat->node_id, sc); 3245 } 3246 3247 #ifdef CONFIG_LRU_GEN 3248 3249 #ifdef CONFIG_LRU_GEN_ENABLED 3250 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3251 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3252 #else 3253 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3254 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3255 #endif 3256 3257 static bool should_walk_mmu(void) 3258 { 3259 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 3260 } 3261 3262 static bool should_clear_pmd_young(void) 3263 { 3264 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 3265 } 3266 3267 /****************************************************************************** 3268 * shorthand helpers 3269 ******************************************************************************/ 3270 3271 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3272 3273 #define DEFINE_MAX_SEQ(lruvec) \ 3274 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3275 3276 #define DEFINE_MIN_SEQ(lruvec) \ 3277 unsigned long min_seq[ANON_AND_FILE] = { \ 3278 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3279 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3280 } 3281 3282 #define for_each_gen_type_zone(gen, type, zone) \ 3283 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3284 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3285 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3286 3287 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 3288 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 3289 3290 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3291 { 3292 struct pglist_data *pgdat = NODE_DATA(nid); 3293 3294 #ifdef CONFIG_MEMCG 3295 if (memcg) { 3296 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3297 3298 /* see the comment in mem_cgroup_lruvec() */ 3299 if (!lruvec->pgdat) 3300 lruvec->pgdat = pgdat; 3301 3302 return lruvec; 3303 } 3304 #endif 3305 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3306 3307 return &pgdat->__lruvec; 3308 } 3309 3310 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3311 { 3312 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3313 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3314 3315 if (!sc->may_swap) 3316 return 0; 3317 3318 if (!can_demote(pgdat->node_id, sc) && 3319 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3320 return 0; 3321 3322 return mem_cgroup_swappiness(memcg); 3323 } 3324 3325 static int get_nr_gens(struct lruvec *lruvec, int type) 3326 { 3327 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3328 } 3329 3330 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3331 { 3332 /* see the comment on lru_gen_folio */ 3333 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3334 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3335 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3336 } 3337 3338 /****************************************************************************** 3339 * Bloom filters 3340 ******************************************************************************/ 3341 3342 /* 3343 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3344 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3345 * bits in a bitmap, k is the number of hash functions and n is the number of 3346 * inserted items. 3347 * 3348 * Page table walkers use one of the two filters to reduce their search space. 3349 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3350 * aging uses the double-buffering technique to flip to the other filter each 3351 * time it produces a new generation. For non-leaf entries that have enough 3352 * leaf entries, the aging carries them over to the next generation in 3353 * walk_pmd_range(); the eviction also report them when walking the rmap 3354 * in lru_gen_look_around(). 3355 * 3356 * For future optimizations: 3357 * 1. It's not necessary to keep both filters all the time. The spare one can be 3358 * freed after the RCU grace period and reallocated if needed again. 3359 * 2. And when reallocating, it's worth scaling its size according to the number 3360 * of inserted entries in the other filter, to reduce the memory overhead on 3361 * small systems and false positives on large systems. 3362 * 3. Jenkins' hash function is an alternative to Knuth's. 3363 */ 3364 #define BLOOM_FILTER_SHIFT 15 3365 3366 static inline int filter_gen_from_seq(unsigned long seq) 3367 { 3368 return seq % NR_BLOOM_FILTERS; 3369 } 3370 3371 static void get_item_key(void *item, int *key) 3372 { 3373 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3374 3375 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3376 3377 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3378 key[1] = hash >> BLOOM_FILTER_SHIFT; 3379 } 3380 3381 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3382 { 3383 int key[2]; 3384 unsigned long *filter; 3385 int gen = filter_gen_from_seq(seq); 3386 3387 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3388 if (!filter) 3389 return true; 3390 3391 get_item_key(item, key); 3392 3393 return test_bit(key[0], filter) && test_bit(key[1], filter); 3394 } 3395 3396 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3397 { 3398 int key[2]; 3399 unsigned long *filter; 3400 int gen = filter_gen_from_seq(seq); 3401 3402 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3403 if (!filter) 3404 return; 3405 3406 get_item_key(item, key); 3407 3408 if (!test_bit(key[0], filter)) 3409 set_bit(key[0], filter); 3410 if (!test_bit(key[1], filter)) 3411 set_bit(key[1], filter); 3412 } 3413 3414 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3415 { 3416 unsigned long *filter; 3417 int gen = filter_gen_from_seq(seq); 3418 3419 filter = lruvec->mm_state.filters[gen]; 3420 if (filter) { 3421 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3422 return; 3423 } 3424 3425 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3426 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3427 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3428 } 3429 3430 /****************************************************************************** 3431 * mm_struct list 3432 ******************************************************************************/ 3433 3434 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3435 { 3436 static struct lru_gen_mm_list mm_list = { 3437 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3438 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3439 }; 3440 3441 #ifdef CONFIG_MEMCG 3442 if (memcg) 3443 return &memcg->mm_list; 3444 #endif 3445 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3446 3447 return &mm_list; 3448 } 3449 3450 void lru_gen_add_mm(struct mm_struct *mm) 3451 { 3452 int nid; 3453 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3454 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3455 3456 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3457 #ifdef CONFIG_MEMCG 3458 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3459 mm->lru_gen.memcg = memcg; 3460 #endif 3461 spin_lock(&mm_list->lock); 3462 3463 for_each_node_state(nid, N_MEMORY) { 3464 struct lruvec *lruvec = get_lruvec(memcg, nid); 3465 3466 /* the first addition since the last iteration */ 3467 if (lruvec->mm_state.tail == &mm_list->fifo) 3468 lruvec->mm_state.tail = &mm->lru_gen.list; 3469 } 3470 3471 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3472 3473 spin_unlock(&mm_list->lock); 3474 } 3475 3476 void lru_gen_del_mm(struct mm_struct *mm) 3477 { 3478 int nid; 3479 struct lru_gen_mm_list *mm_list; 3480 struct mem_cgroup *memcg = NULL; 3481 3482 if (list_empty(&mm->lru_gen.list)) 3483 return; 3484 3485 #ifdef CONFIG_MEMCG 3486 memcg = mm->lru_gen.memcg; 3487 #endif 3488 mm_list = get_mm_list(memcg); 3489 3490 spin_lock(&mm_list->lock); 3491 3492 for_each_node(nid) { 3493 struct lruvec *lruvec = get_lruvec(memcg, nid); 3494 3495 /* where the current iteration continues after */ 3496 if (lruvec->mm_state.head == &mm->lru_gen.list) 3497 lruvec->mm_state.head = lruvec->mm_state.head->prev; 3498 3499 /* where the last iteration ended before */ 3500 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3501 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3502 } 3503 3504 list_del_init(&mm->lru_gen.list); 3505 3506 spin_unlock(&mm_list->lock); 3507 3508 #ifdef CONFIG_MEMCG 3509 mem_cgroup_put(mm->lru_gen.memcg); 3510 mm->lru_gen.memcg = NULL; 3511 #endif 3512 } 3513 3514 #ifdef CONFIG_MEMCG 3515 void lru_gen_migrate_mm(struct mm_struct *mm) 3516 { 3517 struct mem_cgroup *memcg; 3518 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3519 3520 VM_WARN_ON_ONCE(task->mm != mm); 3521 lockdep_assert_held(&task->alloc_lock); 3522 3523 /* for mm_update_next_owner() */ 3524 if (mem_cgroup_disabled()) 3525 return; 3526 3527 /* migration can happen before addition */ 3528 if (!mm->lru_gen.memcg) 3529 return; 3530 3531 rcu_read_lock(); 3532 memcg = mem_cgroup_from_task(task); 3533 rcu_read_unlock(); 3534 if (memcg == mm->lru_gen.memcg) 3535 return; 3536 3537 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3538 3539 lru_gen_del_mm(mm); 3540 lru_gen_add_mm(mm); 3541 } 3542 #endif 3543 3544 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3545 { 3546 int i; 3547 int hist; 3548 3549 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3550 3551 if (walk) { 3552 hist = lru_hist_from_seq(walk->max_seq); 3553 3554 for (i = 0; i < NR_MM_STATS; i++) { 3555 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3556 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3557 walk->mm_stats[i] = 0; 3558 } 3559 } 3560 3561 if (NR_HIST_GENS > 1 && last) { 3562 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3563 3564 for (i = 0; i < NR_MM_STATS; i++) 3565 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3566 } 3567 } 3568 3569 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3570 { 3571 int type; 3572 unsigned long size = 0; 3573 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3574 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3575 3576 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3577 return true; 3578 3579 clear_bit(key, &mm->lru_gen.bitmap); 3580 3581 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3582 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3583 get_mm_counter(mm, MM_ANONPAGES) + 3584 get_mm_counter(mm, MM_SHMEMPAGES); 3585 } 3586 3587 if (size < MIN_LRU_BATCH) 3588 return true; 3589 3590 return !mmget_not_zero(mm); 3591 } 3592 3593 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3594 struct mm_struct **iter) 3595 { 3596 bool first = false; 3597 bool last = false; 3598 struct mm_struct *mm = NULL; 3599 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3600 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3601 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3602 3603 /* 3604 * mm_state->seq is incremented after each iteration of mm_list. There 3605 * are three interesting cases for this page table walker: 3606 * 1. It tries to start a new iteration with a stale max_seq: there is 3607 * nothing left to do. 3608 * 2. It started the next iteration: it needs to reset the Bloom filter 3609 * so that a fresh set of PTE tables can be recorded. 3610 * 3. It ended the current iteration: it needs to reset the mm stats 3611 * counters and tell its caller to increment max_seq. 3612 */ 3613 spin_lock(&mm_list->lock); 3614 3615 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3616 3617 if (walk->max_seq <= mm_state->seq) 3618 goto done; 3619 3620 if (!mm_state->head) 3621 mm_state->head = &mm_list->fifo; 3622 3623 if (mm_state->head == &mm_list->fifo) 3624 first = true; 3625 3626 do { 3627 mm_state->head = mm_state->head->next; 3628 if (mm_state->head == &mm_list->fifo) { 3629 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3630 last = true; 3631 break; 3632 } 3633 3634 /* force scan for those added after the last iteration */ 3635 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3636 mm_state->tail = mm_state->head->next; 3637 walk->force_scan = true; 3638 } 3639 3640 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3641 if (should_skip_mm(mm, walk)) 3642 mm = NULL; 3643 } while (!mm); 3644 done: 3645 if (*iter || last) 3646 reset_mm_stats(lruvec, walk, last); 3647 3648 spin_unlock(&mm_list->lock); 3649 3650 if (mm && first) 3651 reset_bloom_filter(lruvec, walk->max_seq + 1); 3652 3653 if (*iter) 3654 mmput_async(*iter); 3655 3656 *iter = mm; 3657 3658 return last; 3659 } 3660 3661 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3662 { 3663 bool success = false; 3664 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3665 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3666 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3667 3668 spin_lock(&mm_list->lock); 3669 3670 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3671 3672 if (max_seq > mm_state->seq) { 3673 mm_state->head = NULL; 3674 mm_state->tail = NULL; 3675 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3676 reset_mm_stats(lruvec, NULL, true); 3677 success = true; 3678 } 3679 3680 spin_unlock(&mm_list->lock); 3681 3682 return success; 3683 } 3684 3685 /****************************************************************************** 3686 * PID controller 3687 ******************************************************************************/ 3688 3689 /* 3690 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3691 * 3692 * The P term is refaulted/(evicted+protected) from a tier in the generation 3693 * currently being evicted; the I term is the exponential moving average of the 3694 * P term over the generations previously evicted, using the smoothing factor 3695 * 1/2; the D term isn't supported. 3696 * 3697 * The setpoint (SP) is always the first tier of one type; the process variable 3698 * (PV) is either any tier of the other type or any other tier of the same 3699 * type. 3700 * 3701 * The error is the difference between the SP and the PV; the correction is to 3702 * turn off protection when SP>PV or turn on protection when SP<PV. 3703 * 3704 * For future optimizations: 3705 * 1. The D term may discount the other two terms over time so that long-lived 3706 * generations can resist stale information. 3707 */ 3708 struct ctrl_pos { 3709 unsigned long refaulted; 3710 unsigned long total; 3711 int gain; 3712 }; 3713 3714 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3715 struct ctrl_pos *pos) 3716 { 3717 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3718 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3719 3720 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3721 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3722 pos->total = lrugen->avg_total[type][tier] + 3723 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3724 if (tier) 3725 pos->total += lrugen->protected[hist][type][tier - 1]; 3726 pos->gain = gain; 3727 } 3728 3729 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3730 { 3731 int hist, tier; 3732 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3733 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3734 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3735 3736 lockdep_assert_held(&lruvec->lru_lock); 3737 3738 if (!carryover && !clear) 3739 return; 3740 3741 hist = lru_hist_from_seq(seq); 3742 3743 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3744 if (carryover) { 3745 unsigned long sum; 3746 3747 sum = lrugen->avg_refaulted[type][tier] + 3748 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3749 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3750 3751 sum = lrugen->avg_total[type][tier] + 3752 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3753 if (tier) 3754 sum += lrugen->protected[hist][type][tier - 1]; 3755 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3756 } 3757 3758 if (clear) { 3759 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3760 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3761 if (tier) 3762 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3763 } 3764 } 3765 } 3766 3767 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3768 { 3769 /* 3770 * Return true if the PV has a limited number of refaults or a lower 3771 * refaulted/total than the SP. 3772 */ 3773 return pv->refaulted < MIN_LRU_BATCH || 3774 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3775 (sp->refaulted + 1) * pv->total * pv->gain; 3776 } 3777 3778 /****************************************************************************** 3779 * the aging 3780 ******************************************************************************/ 3781 3782 /* promote pages accessed through page tables */ 3783 static int folio_update_gen(struct folio *folio, int gen) 3784 { 3785 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3786 3787 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3788 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3789 3790 do { 3791 /* lru_gen_del_folio() has isolated this page? */ 3792 if (!(old_flags & LRU_GEN_MASK)) { 3793 /* for shrink_folio_list() */ 3794 new_flags = old_flags | BIT(PG_referenced); 3795 continue; 3796 } 3797 3798 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3799 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3800 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3801 3802 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3803 } 3804 3805 /* protect pages accessed multiple times through file descriptors */ 3806 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3807 { 3808 int type = folio_is_file_lru(folio); 3809 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3810 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3811 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3812 3813 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3814 3815 do { 3816 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3817 /* folio_update_gen() has promoted this page? */ 3818 if (new_gen >= 0 && new_gen != old_gen) 3819 return new_gen; 3820 3821 new_gen = (old_gen + 1) % MAX_NR_GENS; 3822 3823 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3824 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3825 /* for folio_end_writeback() */ 3826 if (reclaiming) 3827 new_flags |= BIT(PG_reclaim); 3828 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3829 3830 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3831 3832 return new_gen; 3833 } 3834 3835 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3836 int old_gen, int new_gen) 3837 { 3838 int type = folio_is_file_lru(folio); 3839 int zone = folio_zonenum(folio); 3840 int delta = folio_nr_pages(folio); 3841 3842 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3843 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3844 3845 walk->batched++; 3846 3847 walk->nr_pages[old_gen][type][zone] -= delta; 3848 walk->nr_pages[new_gen][type][zone] += delta; 3849 } 3850 3851 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3852 { 3853 int gen, type, zone; 3854 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3855 3856 walk->batched = 0; 3857 3858 for_each_gen_type_zone(gen, type, zone) { 3859 enum lru_list lru = type * LRU_INACTIVE_FILE; 3860 int delta = walk->nr_pages[gen][type][zone]; 3861 3862 if (!delta) 3863 continue; 3864 3865 walk->nr_pages[gen][type][zone] = 0; 3866 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3867 lrugen->nr_pages[gen][type][zone] + delta); 3868 3869 if (lru_gen_is_active(lruvec, gen)) 3870 lru += LRU_ACTIVE; 3871 __update_lru_size(lruvec, lru, zone, delta); 3872 } 3873 } 3874 3875 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3876 { 3877 struct address_space *mapping; 3878 struct vm_area_struct *vma = args->vma; 3879 struct lru_gen_mm_walk *walk = args->private; 3880 3881 if (!vma_is_accessible(vma)) 3882 return true; 3883 3884 if (is_vm_hugetlb_page(vma)) 3885 return true; 3886 3887 if (!vma_has_recency(vma)) 3888 return true; 3889 3890 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3891 return true; 3892 3893 if (vma == get_gate_vma(vma->vm_mm)) 3894 return true; 3895 3896 if (vma_is_anonymous(vma)) 3897 return !walk->can_swap; 3898 3899 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3900 return true; 3901 3902 mapping = vma->vm_file->f_mapping; 3903 if (mapping_unevictable(mapping)) 3904 return true; 3905 3906 if (shmem_mapping(mapping)) 3907 return !walk->can_swap; 3908 3909 /* to exclude special mappings like dax, etc. */ 3910 return !mapping->a_ops->read_folio; 3911 } 3912 3913 /* 3914 * Some userspace memory allocators map many single-page VMAs. Instead of 3915 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3916 * table to reduce zigzags and improve cache performance. 3917 */ 3918 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3919 unsigned long *vm_start, unsigned long *vm_end) 3920 { 3921 unsigned long start = round_up(*vm_end, size); 3922 unsigned long end = (start | ~mask) + 1; 3923 VMA_ITERATOR(vmi, args->mm, start); 3924 3925 VM_WARN_ON_ONCE(mask & size); 3926 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3927 3928 for_each_vma(vmi, args->vma) { 3929 if (end && end <= args->vma->vm_start) 3930 return false; 3931 3932 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3933 continue; 3934 3935 *vm_start = max(start, args->vma->vm_start); 3936 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3937 3938 return true; 3939 } 3940 3941 return false; 3942 } 3943 3944 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3945 { 3946 unsigned long pfn = pte_pfn(pte); 3947 3948 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3949 3950 if (!pte_present(pte) || is_zero_pfn(pfn)) 3951 return -1; 3952 3953 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3954 return -1; 3955 3956 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3957 return -1; 3958 3959 return pfn; 3960 } 3961 3962 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3963 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3964 { 3965 unsigned long pfn = pmd_pfn(pmd); 3966 3967 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3968 3969 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3970 return -1; 3971 3972 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3973 return -1; 3974 3975 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3976 return -1; 3977 3978 return pfn; 3979 } 3980 #endif 3981 3982 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3983 struct pglist_data *pgdat, bool can_swap) 3984 { 3985 struct folio *folio; 3986 3987 /* try to avoid unnecessary memory loads */ 3988 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3989 return NULL; 3990 3991 folio = pfn_folio(pfn); 3992 if (folio_nid(folio) != pgdat->node_id) 3993 return NULL; 3994 3995 if (folio_memcg_rcu(folio) != memcg) 3996 return NULL; 3997 3998 /* file VMAs can contain anon pages from COW */ 3999 if (!folio_is_file_lru(folio) && !can_swap) 4000 return NULL; 4001 4002 return folio; 4003 } 4004 4005 static bool suitable_to_scan(int total, int young) 4006 { 4007 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 4008 4009 /* suitable if the average number of young PTEs per cacheline is >=1 */ 4010 return young * n >= total; 4011 } 4012 4013 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 4014 struct mm_walk *args) 4015 { 4016 int i; 4017 pte_t *pte; 4018 spinlock_t *ptl; 4019 unsigned long addr; 4020 int total = 0; 4021 int young = 0; 4022 struct lru_gen_mm_walk *walk = args->private; 4023 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4024 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4025 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4026 4027 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 4028 if (!pte) 4029 return false; 4030 if (!spin_trylock(ptl)) { 4031 pte_unmap(pte); 4032 return false; 4033 } 4034 4035 arch_enter_lazy_mmu_mode(); 4036 restart: 4037 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 4038 unsigned long pfn; 4039 struct folio *folio; 4040 pte_t ptent = ptep_get(pte + i); 4041 4042 total++; 4043 walk->mm_stats[MM_LEAF_TOTAL]++; 4044 4045 pfn = get_pte_pfn(ptent, args->vma, addr); 4046 if (pfn == -1) 4047 continue; 4048 4049 if (!pte_young(ptent)) { 4050 walk->mm_stats[MM_LEAF_OLD]++; 4051 continue; 4052 } 4053 4054 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4055 if (!folio) 4056 continue; 4057 4058 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 4059 VM_WARN_ON_ONCE(true); 4060 4061 young++; 4062 walk->mm_stats[MM_LEAF_YOUNG]++; 4063 4064 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4065 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4066 !folio_test_swapcache(folio))) 4067 folio_mark_dirty(folio); 4068 4069 old_gen = folio_update_gen(folio, new_gen); 4070 if (old_gen >= 0 && old_gen != new_gen) 4071 update_batch_size(walk, folio, old_gen, new_gen); 4072 } 4073 4074 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 4075 goto restart; 4076 4077 arch_leave_lazy_mmu_mode(); 4078 pte_unmap_unlock(pte, ptl); 4079 4080 return suitable_to_scan(total, young); 4081 } 4082 4083 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 4084 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4085 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4086 { 4087 int i; 4088 pmd_t *pmd; 4089 spinlock_t *ptl; 4090 struct lru_gen_mm_walk *walk = args->private; 4091 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4092 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4093 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4094 4095 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4096 4097 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4098 if (*first == -1) { 4099 *first = addr; 4100 bitmap_zero(bitmap, MIN_LRU_BATCH); 4101 return; 4102 } 4103 4104 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 4105 if (i && i <= MIN_LRU_BATCH) { 4106 __set_bit(i - 1, bitmap); 4107 return; 4108 } 4109 4110 pmd = pmd_offset(pud, *first); 4111 4112 ptl = pmd_lockptr(args->mm, pmd); 4113 if (!spin_trylock(ptl)) 4114 goto done; 4115 4116 arch_enter_lazy_mmu_mode(); 4117 4118 do { 4119 unsigned long pfn; 4120 struct folio *folio; 4121 4122 /* don't round down the first address */ 4123 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 4124 4125 pfn = get_pmd_pfn(pmd[i], vma, addr); 4126 if (pfn == -1) 4127 goto next; 4128 4129 if (!pmd_trans_huge(pmd[i])) { 4130 if (should_clear_pmd_young()) 4131 pmdp_test_and_clear_young(vma, addr, pmd + i); 4132 goto next; 4133 } 4134 4135 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4136 if (!folio) 4137 goto next; 4138 4139 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4140 goto next; 4141 4142 walk->mm_stats[MM_LEAF_YOUNG]++; 4143 4144 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4145 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4146 !folio_test_swapcache(folio))) 4147 folio_mark_dirty(folio); 4148 4149 old_gen = folio_update_gen(folio, new_gen); 4150 if (old_gen >= 0 && old_gen != new_gen) 4151 update_batch_size(walk, folio, old_gen, new_gen); 4152 next: 4153 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4154 } while (i <= MIN_LRU_BATCH); 4155 4156 arch_leave_lazy_mmu_mode(); 4157 spin_unlock(ptl); 4158 done: 4159 *first = -1; 4160 } 4161 #else 4162 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4163 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4164 { 4165 } 4166 #endif 4167 4168 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4169 struct mm_walk *args) 4170 { 4171 int i; 4172 pmd_t *pmd; 4173 unsigned long next; 4174 unsigned long addr; 4175 struct vm_area_struct *vma; 4176 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 4177 unsigned long first = -1; 4178 struct lru_gen_mm_walk *walk = args->private; 4179 4180 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4181 4182 /* 4183 * Finish an entire PMD in two passes: the first only reaches to PTE 4184 * tables to avoid taking the PMD lock; the second, if necessary, takes 4185 * the PMD lock to clear the accessed bit in PMD entries. 4186 */ 4187 pmd = pmd_offset(pud, start & PUD_MASK); 4188 restart: 4189 /* walk_pte_range() may call get_next_vma() */ 4190 vma = args->vma; 4191 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4192 pmd_t val = pmdp_get_lockless(pmd + i); 4193 4194 next = pmd_addr_end(addr, end); 4195 4196 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4197 walk->mm_stats[MM_LEAF_TOTAL]++; 4198 continue; 4199 } 4200 4201 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4202 if (pmd_trans_huge(val)) { 4203 unsigned long pfn = pmd_pfn(val); 4204 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4205 4206 walk->mm_stats[MM_LEAF_TOTAL]++; 4207 4208 if (!pmd_young(val)) { 4209 walk->mm_stats[MM_LEAF_OLD]++; 4210 continue; 4211 } 4212 4213 /* try to avoid unnecessary memory loads */ 4214 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4215 continue; 4216 4217 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4218 continue; 4219 } 4220 #endif 4221 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4222 4223 if (should_clear_pmd_young()) { 4224 if (!pmd_young(val)) 4225 continue; 4226 4227 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4228 } 4229 4230 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4231 continue; 4232 4233 walk->mm_stats[MM_NONLEAF_FOUND]++; 4234 4235 if (!walk_pte_range(&val, addr, next, args)) 4236 continue; 4237 4238 walk->mm_stats[MM_NONLEAF_ADDED]++; 4239 4240 /* carry over to the next generation */ 4241 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4242 } 4243 4244 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 4245 4246 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4247 goto restart; 4248 } 4249 4250 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4251 struct mm_walk *args) 4252 { 4253 int i; 4254 pud_t *pud; 4255 unsigned long addr; 4256 unsigned long next; 4257 struct lru_gen_mm_walk *walk = args->private; 4258 4259 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4260 4261 pud = pud_offset(p4d, start & P4D_MASK); 4262 restart: 4263 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4264 pud_t val = READ_ONCE(pud[i]); 4265 4266 next = pud_addr_end(addr, end); 4267 4268 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4269 continue; 4270 4271 walk_pmd_range(&val, addr, next, args); 4272 4273 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4274 end = (addr | ~PUD_MASK) + 1; 4275 goto done; 4276 } 4277 } 4278 4279 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4280 goto restart; 4281 4282 end = round_up(end, P4D_SIZE); 4283 done: 4284 if (!end || !args->vma) 4285 return 1; 4286 4287 walk->next_addr = max(end, args->vma->vm_start); 4288 4289 return -EAGAIN; 4290 } 4291 4292 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4293 { 4294 static const struct mm_walk_ops mm_walk_ops = { 4295 .test_walk = should_skip_vma, 4296 .p4d_entry = walk_pud_range, 4297 }; 4298 4299 int err; 4300 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4301 4302 walk->next_addr = FIRST_USER_ADDRESS; 4303 4304 do { 4305 DEFINE_MAX_SEQ(lruvec); 4306 4307 err = -EBUSY; 4308 4309 /* another thread might have called inc_max_seq() */ 4310 if (walk->max_seq != max_seq) 4311 break; 4312 4313 /* folio_update_gen() requires stable folio_memcg() */ 4314 if (!mem_cgroup_trylock_pages(memcg)) 4315 break; 4316 4317 /* the caller might be holding the lock for write */ 4318 if (mmap_read_trylock(mm)) { 4319 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4320 4321 mmap_read_unlock(mm); 4322 } 4323 4324 mem_cgroup_unlock_pages(); 4325 4326 if (walk->batched) { 4327 spin_lock_irq(&lruvec->lru_lock); 4328 reset_batch_size(lruvec, walk); 4329 spin_unlock_irq(&lruvec->lru_lock); 4330 } 4331 4332 cond_resched(); 4333 } while (err == -EAGAIN); 4334 } 4335 4336 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 4337 { 4338 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4339 4340 if (pgdat && current_is_kswapd()) { 4341 VM_WARN_ON_ONCE(walk); 4342 4343 walk = &pgdat->mm_walk; 4344 } else if (!walk && force_alloc) { 4345 VM_WARN_ON_ONCE(current_is_kswapd()); 4346 4347 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4348 } 4349 4350 current->reclaim_state->mm_walk = walk; 4351 4352 return walk; 4353 } 4354 4355 static void clear_mm_walk(void) 4356 { 4357 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4358 4359 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4360 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4361 4362 current->reclaim_state->mm_walk = NULL; 4363 4364 if (!current_is_kswapd()) 4365 kfree(walk); 4366 } 4367 4368 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4369 { 4370 int zone; 4371 int remaining = MAX_LRU_BATCH; 4372 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4373 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4374 4375 if (type == LRU_GEN_ANON && !can_swap) 4376 goto done; 4377 4378 /* prevent cold/hot inversion if force_scan is true */ 4379 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4380 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4381 4382 while (!list_empty(head)) { 4383 struct folio *folio = lru_to_folio(head); 4384 4385 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4386 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4387 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4388 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4389 4390 new_gen = folio_inc_gen(lruvec, folio, false); 4391 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4392 4393 if (!--remaining) 4394 return false; 4395 } 4396 } 4397 done: 4398 reset_ctrl_pos(lruvec, type, true); 4399 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4400 4401 return true; 4402 } 4403 4404 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4405 { 4406 int gen, type, zone; 4407 bool success = false; 4408 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4409 DEFINE_MIN_SEQ(lruvec); 4410 4411 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4412 4413 /* find the oldest populated generation */ 4414 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4415 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4416 gen = lru_gen_from_seq(min_seq[type]); 4417 4418 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4419 if (!list_empty(&lrugen->folios[gen][type][zone])) 4420 goto next; 4421 } 4422 4423 min_seq[type]++; 4424 } 4425 next: 4426 ; 4427 } 4428 4429 /* see the comment on lru_gen_folio */ 4430 if (can_swap) { 4431 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4432 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4433 } 4434 4435 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4436 if (min_seq[type] == lrugen->min_seq[type]) 4437 continue; 4438 4439 reset_ctrl_pos(lruvec, type, true); 4440 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4441 success = true; 4442 } 4443 4444 return success; 4445 } 4446 4447 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4448 { 4449 int prev, next; 4450 int type, zone; 4451 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4452 4453 spin_lock_irq(&lruvec->lru_lock); 4454 4455 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4456 4457 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4458 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4459 continue; 4460 4461 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4462 4463 while (!inc_min_seq(lruvec, type, can_swap)) { 4464 spin_unlock_irq(&lruvec->lru_lock); 4465 cond_resched(); 4466 spin_lock_irq(&lruvec->lru_lock); 4467 } 4468 } 4469 4470 /* 4471 * Update the active/inactive LRU sizes for compatibility. Both sides of 4472 * the current max_seq need to be covered, since max_seq+1 can overlap 4473 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4474 * overlap, cold/hot inversion happens. 4475 */ 4476 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4477 next = lru_gen_from_seq(lrugen->max_seq + 1); 4478 4479 for (type = 0; type < ANON_AND_FILE; type++) { 4480 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4481 enum lru_list lru = type * LRU_INACTIVE_FILE; 4482 long delta = lrugen->nr_pages[prev][type][zone] - 4483 lrugen->nr_pages[next][type][zone]; 4484 4485 if (!delta) 4486 continue; 4487 4488 __update_lru_size(lruvec, lru, zone, delta); 4489 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4490 } 4491 } 4492 4493 for (type = 0; type < ANON_AND_FILE; type++) 4494 reset_ctrl_pos(lruvec, type, false); 4495 4496 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4497 /* make sure preceding modifications appear */ 4498 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4499 4500 spin_unlock_irq(&lruvec->lru_lock); 4501 } 4502 4503 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4504 struct scan_control *sc, bool can_swap, bool force_scan) 4505 { 4506 bool success; 4507 struct lru_gen_mm_walk *walk; 4508 struct mm_struct *mm = NULL; 4509 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4510 4511 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4512 4513 /* see the comment in iterate_mm_list() */ 4514 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4515 success = false; 4516 goto done; 4517 } 4518 4519 /* 4520 * If the hardware doesn't automatically set the accessed bit, fallback 4521 * to lru_gen_look_around(), which only clears the accessed bit in a 4522 * handful of PTEs. Spreading the work out over a period of time usually 4523 * is less efficient, but it avoids bursty page faults. 4524 */ 4525 if (!should_walk_mmu()) { 4526 success = iterate_mm_list_nowalk(lruvec, max_seq); 4527 goto done; 4528 } 4529 4530 walk = set_mm_walk(NULL, true); 4531 if (!walk) { 4532 success = iterate_mm_list_nowalk(lruvec, max_seq); 4533 goto done; 4534 } 4535 4536 walk->lruvec = lruvec; 4537 walk->max_seq = max_seq; 4538 walk->can_swap = can_swap; 4539 walk->force_scan = force_scan; 4540 4541 do { 4542 success = iterate_mm_list(lruvec, walk, &mm); 4543 if (mm) 4544 walk_mm(lruvec, mm, walk); 4545 } while (mm); 4546 done: 4547 if (success) 4548 inc_max_seq(lruvec, can_swap, force_scan); 4549 4550 return success; 4551 } 4552 4553 /****************************************************************************** 4554 * working set protection 4555 ******************************************************************************/ 4556 4557 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4558 { 4559 int gen, type, zone; 4560 unsigned long total = 0; 4561 bool can_swap = get_swappiness(lruvec, sc); 4562 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4563 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4564 DEFINE_MAX_SEQ(lruvec); 4565 DEFINE_MIN_SEQ(lruvec); 4566 4567 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4568 unsigned long seq; 4569 4570 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4571 gen = lru_gen_from_seq(seq); 4572 4573 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4574 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4575 } 4576 } 4577 4578 /* whether the size is big enough to be helpful */ 4579 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4580 } 4581 4582 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4583 unsigned long min_ttl) 4584 { 4585 int gen; 4586 unsigned long birth; 4587 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4588 DEFINE_MIN_SEQ(lruvec); 4589 4590 /* see the comment on lru_gen_folio */ 4591 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4592 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4593 4594 if (time_is_after_jiffies(birth + min_ttl)) 4595 return false; 4596 4597 if (!lruvec_is_sizable(lruvec, sc)) 4598 return false; 4599 4600 mem_cgroup_calculate_protection(NULL, memcg); 4601 4602 return !mem_cgroup_below_min(NULL, memcg); 4603 } 4604 4605 /* to protect the working set of the last N jiffies */ 4606 static unsigned long lru_gen_min_ttl __read_mostly; 4607 4608 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4609 { 4610 struct mem_cgroup *memcg; 4611 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4612 4613 VM_WARN_ON_ONCE(!current_is_kswapd()); 4614 4615 /* check the order to exclude compaction-induced reclaim */ 4616 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 4617 return; 4618 4619 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4620 do { 4621 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4622 4623 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 4624 mem_cgroup_iter_break(NULL, memcg); 4625 return; 4626 } 4627 4628 cond_resched(); 4629 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4630 4631 /* 4632 * The main goal is to OOM kill if every generation from all memcgs is 4633 * younger than min_ttl. However, another possibility is all memcgs are 4634 * either too small or below min. 4635 */ 4636 if (mutex_trylock(&oom_lock)) { 4637 struct oom_control oc = { 4638 .gfp_mask = sc->gfp_mask, 4639 }; 4640 4641 out_of_memory(&oc); 4642 4643 mutex_unlock(&oom_lock); 4644 } 4645 } 4646 4647 /****************************************************************************** 4648 * rmap/PT walk feedback 4649 ******************************************************************************/ 4650 4651 /* 4652 * This function exploits spatial locality when shrink_folio_list() walks the 4653 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4654 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4655 * the PTE table to the Bloom filter. This forms a feedback loop between the 4656 * eviction and the aging. 4657 */ 4658 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4659 { 4660 int i; 4661 unsigned long start; 4662 unsigned long end; 4663 struct lru_gen_mm_walk *walk; 4664 int young = 0; 4665 pte_t *pte = pvmw->pte; 4666 unsigned long addr = pvmw->address; 4667 struct folio *folio = pfn_folio(pvmw->pfn); 4668 struct mem_cgroup *memcg = folio_memcg(folio); 4669 struct pglist_data *pgdat = folio_pgdat(folio); 4670 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4671 DEFINE_MAX_SEQ(lruvec); 4672 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4673 4674 lockdep_assert_held(pvmw->ptl); 4675 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4676 4677 if (spin_is_contended(pvmw->ptl)) 4678 return; 4679 4680 /* avoid taking the LRU lock under the PTL when possible */ 4681 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4682 4683 start = max(addr & PMD_MASK, pvmw->vma->vm_start); 4684 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4685 4686 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4687 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4688 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4689 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4690 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4691 else { 4692 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4693 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4694 } 4695 } 4696 4697 /* folio_update_gen() requires stable folio_memcg() */ 4698 if (!mem_cgroup_trylock_pages(memcg)) 4699 return; 4700 4701 arch_enter_lazy_mmu_mode(); 4702 4703 pte -= (addr - start) / PAGE_SIZE; 4704 4705 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4706 unsigned long pfn; 4707 pte_t ptent = ptep_get(pte + i); 4708 4709 pfn = get_pte_pfn(ptent, pvmw->vma, addr); 4710 if (pfn == -1) 4711 continue; 4712 4713 if (!pte_young(ptent)) 4714 continue; 4715 4716 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4717 if (!folio) 4718 continue; 4719 4720 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4721 VM_WARN_ON_ONCE(true); 4722 4723 young++; 4724 4725 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4726 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4727 !folio_test_swapcache(folio))) 4728 folio_mark_dirty(folio); 4729 4730 if (walk) { 4731 old_gen = folio_update_gen(folio, new_gen); 4732 if (old_gen >= 0 && old_gen != new_gen) 4733 update_batch_size(walk, folio, old_gen, new_gen); 4734 4735 continue; 4736 } 4737 4738 old_gen = folio_lru_gen(folio); 4739 if (old_gen < 0) 4740 folio_set_referenced(folio); 4741 else if (old_gen != new_gen) 4742 folio_activate(folio); 4743 } 4744 4745 arch_leave_lazy_mmu_mode(); 4746 mem_cgroup_unlock_pages(); 4747 4748 /* feedback from rmap walkers to page table walkers */ 4749 if (suitable_to_scan(i, young)) 4750 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4751 } 4752 4753 /****************************************************************************** 4754 * memcg LRU 4755 ******************************************************************************/ 4756 4757 /* see the comment on MEMCG_NR_GENS */ 4758 enum { 4759 MEMCG_LRU_NOP, 4760 MEMCG_LRU_HEAD, 4761 MEMCG_LRU_TAIL, 4762 MEMCG_LRU_OLD, 4763 MEMCG_LRU_YOUNG, 4764 }; 4765 4766 #ifdef CONFIG_MEMCG 4767 4768 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4769 { 4770 return READ_ONCE(lruvec->lrugen.seg); 4771 } 4772 4773 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4774 { 4775 int seg; 4776 int old, new; 4777 int bin = get_random_u32_below(MEMCG_NR_BINS); 4778 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4779 4780 spin_lock(&pgdat->memcg_lru.lock); 4781 4782 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4783 4784 seg = 0; 4785 new = old = lruvec->lrugen.gen; 4786 4787 /* see the comment on MEMCG_NR_GENS */ 4788 if (op == MEMCG_LRU_HEAD) 4789 seg = MEMCG_LRU_HEAD; 4790 else if (op == MEMCG_LRU_TAIL) 4791 seg = MEMCG_LRU_TAIL; 4792 else if (op == MEMCG_LRU_OLD) 4793 new = get_memcg_gen(pgdat->memcg_lru.seq); 4794 else if (op == MEMCG_LRU_YOUNG) 4795 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4796 else 4797 VM_WARN_ON_ONCE(true); 4798 4799 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4800 4801 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4802 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4803 else 4804 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4805 4806 pgdat->memcg_lru.nr_memcgs[old]--; 4807 pgdat->memcg_lru.nr_memcgs[new]++; 4808 4809 lruvec->lrugen.gen = new; 4810 WRITE_ONCE(lruvec->lrugen.seg, seg); 4811 4812 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4813 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4814 4815 spin_unlock(&pgdat->memcg_lru.lock); 4816 } 4817 4818 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4819 { 4820 int gen; 4821 int nid; 4822 int bin = get_random_u32_below(MEMCG_NR_BINS); 4823 4824 for_each_node(nid) { 4825 struct pglist_data *pgdat = NODE_DATA(nid); 4826 struct lruvec *lruvec = get_lruvec(memcg, nid); 4827 4828 spin_lock(&pgdat->memcg_lru.lock); 4829 4830 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4831 4832 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4833 4834 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4835 pgdat->memcg_lru.nr_memcgs[gen]++; 4836 4837 lruvec->lrugen.gen = gen; 4838 4839 spin_unlock(&pgdat->memcg_lru.lock); 4840 } 4841 } 4842 4843 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4844 { 4845 int nid; 4846 4847 for_each_node(nid) { 4848 struct lruvec *lruvec = get_lruvec(memcg, nid); 4849 4850 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4851 } 4852 } 4853 4854 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4855 { 4856 int gen; 4857 int nid; 4858 4859 for_each_node(nid) { 4860 struct pglist_data *pgdat = NODE_DATA(nid); 4861 struct lruvec *lruvec = get_lruvec(memcg, nid); 4862 4863 spin_lock(&pgdat->memcg_lru.lock); 4864 4865 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4866 4867 gen = lruvec->lrugen.gen; 4868 4869 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4870 pgdat->memcg_lru.nr_memcgs[gen]--; 4871 4872 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4873 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4874 4875 spin_unlock(&pgdat->memcg_lru.lock); 4876 } 4877 } 4878 4879 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4880 { 4881 struct lruvec *lruvec = get_lruvec(memcg, nid); 4882 4883 /* see the comment on MEMCG_NR_GENS */ 4884 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 4885 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4886 } 4887 4888 #else /* !CONFIG_MEMCG */ 4889 4890 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4891 { 4892 return 0; 4893 } 4894 4895 #endif 4896 4897 /****************************************************************************** 4898 * the eviction 4899 ******************************************************************************/ 4900 4901 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4902 { 4903 bool success; 4904 int gen = folio_lru_gen(folio); 4905 int type = folio_is_file_lru(folio); 4906 int zone = folio_zonenum(folio); 4907 int delta = folio_nr_pages(folio); 4908 int refs = folio_lru_refs(folio); 4909 int tier = lru_tier_from_refs(refs); 4910 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4911 4912 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4913 4914 /* unevictable */ 4915 if (!folio_evictable(folio)) { 4916 success = lru_gen_del_folio(lruvec, folio, true); 4917 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4918 folio_set_unevictable(folio); 4919 lruvec_add_folio(lruvec, folio); 4920 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4921 return true; 4922 } 4923 4924 /* dirty lazyfree */ 4925 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4926 success = lru_gen_del_folio(lruvec, folio, true); 4927 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4928 folio_set_swapbacked(folio); 4929 lruvec_add_folio_tail(lruvec, folio); 4930 return true; 4931 } 4932 4933 /* promoted */ 4934 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4935 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4936 return true; 4937 } 4938 4939 /* protected */ 4940 if (tier > tier_idx) { 4941 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4942 4943 gen = folio_inc_gen(lruvec, folio, false); 4944 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4945 4946 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4947 lrugen->protected[hist][type][tier - 1] + delta); 4948 return true; 4949 } 4950 4951 /* waiting for writeback */ 4952 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4953 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4954 gen = folio_inc_gen(lruvec, folio, true); 4955 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4956 return true; 4957 } 4958 4959 return false; 4960 } 4961 4962 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4963 { 4964 bool success; 4965 4966 /* swapping inhibited */ 4967 if (!(sc->gfp_mask & __GFP_IO) && 4968 (folio_test_dirty(folio) || 4969 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4970 return false; 4971 4972 /* raced with release_pages() */ 4973 if (!folio_try_get(folio)) 4974 return false; 4975 4976 /* raced with another isolation */ 4977 if (!folio_test_clear_lru(folio)) { 4978 folio_put(folio); 4979 return false; 4980 } 4981 4982 /* see the comment on MAX_NR_TIERS */ 4983 if (!folio_test_referenced(folio)) 4984 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4985 4986 /* for shrink_folio_list() */ 4987 folio_clear_reclaim(folio); 4988 folio_clear_referenced(folio); 4989 4990 success = lru_gen_del_folio(lruvec, folio, true); 4991 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4992 4993 return true; 4994 } 4995 4996 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4997 int type, int tier, struct list_head *list) 4998 { 4999 int gen, zone; 5000 enum vm_event_item item; 5001 int sorted = 0; 5002 int scanned = 0; 5003 int isolated = 0; 5004 int remaining = MAX_LRU_BATCH; 5005 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5006 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5007 5008 VM_WARN_ON_ONCE(!list_empty(list)); 5009 5010 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 5011 return 0; 5012 5013 gen = lru_gen_from_seq(lrugen->min_seq[type]); 5014 5015 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 5016 LIST_HEAD(moved); 5017 int skipped = 0; 5018 struct list_head *head = &lrugen->folios[gen][type][zone]; 5019 5020 while (!list_empty(head)) { 5021 struct folio *folio = lru_to_folio(head); 5022 int delta = folio_nr_pages(folio); 5023 5024 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5025 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5026 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5027 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5028 5029 scanned += delta; 5030 5031 if (sort_folio(lruvec, folio, tier)) 5032 sorted += delta; 5033 else if (isolate_folio(lruvec, folio, sc)) { 5034 list_add(&folio->lru, list); 5035 isolated += delta; 5036 } else { 5037 list_move(&folio->lru, &moved); 5038 skipped += delta; 5039 } 5040 5041 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 5042 break; 5043 } 5044 5045 if (skipped) { 5046 list_splice(&moved, head); 5047 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 5048 } 5049 5050 if (!remaining || isolated >= MIN_LRU_BATCH) 5051 break; 5052 } 5053 5054 item = PGSCAN_KSWAPD + reclaimer_offset(); 5055 if (!cgroup_reclaim(sc)) { 5056 __count_vm_events(item, isolated); 5057 __count_vm_events(PGREFILL, sorted); 5058 } 5059 __count_memcg_events(memcg, item, isolated); 5060 __count_memcg_events(memcg, PGREFILL, sorted); 5061 __count_vm_events(PGSCAN_ANON + type, isolated); 5062 5063 /* 5064 * There might not be eligible folios due to reclaim_idx. Check the 5065 * remaining to prevent livelock if it's not making progress. 5066 */ 5067 return isolated || !remaining ? scanned : 0; 5068 } 5069 5070 static int get_tier_idx(struct lruvec *lruvec, int type) 5071 { 5072 int tier; 5073 struct ctrl_pos sp, pv; 5074 5075 /* 5076 * To leave a margin for fluctuations, use a larger gain factor (1:2). 5077 * This value is chosen because any other tier would have at least twice 5078 * as many refaults as the first tier. 5079 */ 5080 read_ctrl_pos(lruvec, type, 0, 1, &sp); 5081 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5082 read_ctrl_pos(lruvec, type, tier, 2, &pv); 5083 if (!positive_ctrl_err(&sp, &pv)) 5084 break; 5085 } 5086 5087 return tier - 1; 5088 } 5089 5090 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 5091 { 5092 int type, tier; 5093 struct ctrl_pos sp, pv; 5094 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 5095 5096 /* 5097 * Compare the first tier of anon with that of file to determine which 5098 * type to scan. Also need to compare other tiers of the selected type 5099 * with the first tier of the other type to determine the last tier (of 5100 * the selected type) to evict. 5101 */ 5102 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 5103 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 5104 type = positive_ctrl_err(&sp, &pv); 5105 5106 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 5107 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5108 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 5109 if (!positive_ctrl_err(&sp, &pv)) 5110 break; 5111 } 5112 5113 *tier_idx = tier - 1; 5114 5115 return type; 5116 } 5117 5118 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 5119 int *type_scanned, struct list_head *list) 5120 { 5121 int i; 5122 int type; 5123 int scanned; 5124 int tier = -1; 5125 DEFINE_MIN_SEQ(lruvec); 5126 5127 /* 5128 * Try to make the obvious choice first. When anon and file are both 5129 * available from the same generation, interpret swappiness 1 as file 5130 * first and 200 as anon first. 5131 */ 5132 if (!swappiness) 5133 type = LRU_GEN_FILE; 5134 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 5135 type = LRU_GEN_ANON; 5136 else if (swappiness == 1) 5137 type = LRU_GEN_FILE; 5138 else if (swappiness == 200) 5139 type = LRU_GEN_ANON; 5140 else 5141 type = get_type_to_scan(lruvec, swappiness, &tier); 5142 5143 for (i = !swappiness; i < ANON_AND_FILE; i++) { 5144 if (tier < 0) 5145 tier = get_tier_idx(lruvec, type); 5146 5147 scanned = scan_folios(lruvec, sc, type, tier, list); 5148 if (scanned) 5149 break; 5150 5151 type = !type; 5152 tier = -1; 5153 } 5154 5155 *type_scanned = type; 5156 5157 return scanned; 5158 } 5159 5160 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 5161 { 5162 int type; 5163 int scanned; 5164 int reclaimed; 5165 LIST_HEAD(list); 5166 LIST_HEAD(clean); 5167 struct folio *folio; 5168 struct folio *next; 5169 enum vm_event_item item; 5170 struct reclaim_stat stat; 5171 struct lru_gen_mm_walk *walk; 5172 bool skip_retry = false; 5173 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5174 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5175 5176 spin_lock_irq(&lruvec->lru_lock); 5177 5178 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5179 5180 scanned += try_to_inc_min_seq(lruvec, swappiness); 5181 5182 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5183 scanned = 0; 5184 5185 spin_unlock_irq(&lruvec->lru_lock); 5186 5187 if (list_empty(&list)) 5188 return scanned; 5189 retry: 5190 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5191 sc->nr_reclaimed += reclaimed; 5192 5193 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5194 if (!folio_evictable(folio)) { 5195 list_del(&folio->lru); 5196 folio_putback_lru(folio); 5197 continue; 5198 } 5199 5200 if (folio_test_reclaim(folio) && 5201 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5202 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5203 if (folio_test_workingset(folio)) 5204 folio_set_referenced(folio); 5205 continue; 5206 } 5207 5208 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5209 folio_mapped(folio) || folio_test_locked(folio) || 5210 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5211 /* don't add rejected folios to the oldest generation */ 5212 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5213 BIT(PG_active)); 5214 continue; 5215 } 5216 5217 /* retry folios that may have missed folio_rotate_reclaimable() */ 5218 list_move(&folio->lru, &clean); 5219 sc->nr_scanned -= folio_nr_pages(folio); 5220 } 5221 5222 spin_lock_irq(&lruvec->lru_lock); 5223 5224 move_folios_to_lru(lruvec, &list); 5225 5226 walk = current->reclaim_state->mm_walk; 5227 if (walk && walk->batched) 5228 reset_batch_size(lruvec, walk); 5229 5230 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5231 if (!cgroup_reclaim(sc)) 5232 __count_vm_events(item, reclaimed); 5233 __count_memcg_events(memcg, item, reclaimed); 5234 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5235 5236 spin_unlock_irq(&lruvec->lru_lock); 5237 5238 mem_cgroup_uncharge_list(&list); 5239 free_unref_page_list(&list); 5240 5241 INIT_LIST_HEAD(&list); 5242 list_splice_init(&clean, &list); 5243 5244 if (!list_empty(&list)) { 5245 skip_retry = true; 5246 goto retry; 5247 } 5248 5249 return scanned; 5250 } 5251 5252 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 5253 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 5254 { 5255 int gen, type, zone; 5256 unsigned long old = 0; 5257 unsigned long young = 0; 5258 unsigned long total = 0; 5259 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5260 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5261 DEFINE_MIN_SEQ(lruvec); 5262 5263 /* whether this lruvec is completely out of cold folios */ 5264 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 5265 *nr_to_scan = 0; 5266 return true; 5267 } 5268 5269 for (type = !can_swap; type < ANON_AND_FILE; type++) { 5270 unsigned long seq; 5271 5272 for (seq = min_seq[type]; seq <= max_seq; seq++) { 5273 unsigned long size = 0; 5274 5275 gen = lru_gen_from_seq(seq); 5276 5277 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5278 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5279 5280 total += size; 5281 if (seq == max_seq) 5282 young += size; 5283 else if (seq + MIN_NR_GENS == max_seq) 5284 old += size; 5285 } 5286 } 5287 5288 /* try to scrape all its memory if this memcg was deleted */ 5289 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 5290 5291 /* 5292 * The aging tries to be lazy to reduce the overhead, while the eviction 5293 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 5294 * ideal number of generations is MIN_NR_GENS+1. 5295 */ 5296 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 5297 return false; 5298 5299 /* 5300 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 5301 * of the total number of pages for each generation. A reasonable range 5302 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 5303 * aging cares about the upper bound of hot pages, while the eviction 5304 * cares about the lower bound of cold pages. 5305 */ 5306 if (young * MIN_NR_GENS > total) 5307 return true; 5308 if (old * (MIN_NR_GENS + 2) < total) 5309 return true; 5310 5311 return false; 5312 } 5313 5314 /* 5315 * For future optimizations: 5316 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5317 * reclaim. 5318 */ 5319 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 5320 { 5321 unsigned long nr_to_scan; 5322 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5323 DEFINE_MAX_SEQ(lruvec); 5324 5325 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 5326 return 0; 5327 5328 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5329 return nr_to_scan; 5330 5331 /* skip the aging path at the default priority */ 5332 if (sc->priority == DEF_PRIORITY) 5333 return nr_to_scan; 5334 5335 /* skip this lruvec as it's low on cold folios */ 5336 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 5337 } 5338 5339 static unsigned long get_nr_to_reclaim(struct scan_control *sc) 5340 { 5341 /* don't abort memcg reclaim to ensure fairness */ 5342 if (!global_reclaim(sc)) 5343 return -1; 5344 5345 return max(sc->nr_to_reclaim, compact_gap(sc->order)); 5346 } 5347 5348 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5349 { 5350 long nr_to_scan; 5351 unsigned long scanned = 0; 5352 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5353 int swappiness = get_swappiness(lruvec, sc); 5354 5355 /* clean file folios are more likely to exist */ 5356 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 5357 swappiness = 1; 5358 5359 while (true) { 5360 int delta; 5361 5362 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5363 if (nr_to_scan <= 0) 5364 break; 5365 5366 delta = evict_folios(lruvec, sc, swappiness); 5367 if (!delta) 5368 break; 5369 5370 scanned += delta; 5371 if (scanned >= nr_to_scan) 5372 break; 5373 5374 if (sc->nr_reclaimed >= nr_to_reclaim) 5375 break; 5376 5377 cond_resched(); 5378 } 5379 5380 /* whether try_to_inc_max_seq() was successful */ 5381 return nr_to_scan < 0; 5382 } 5383 5384 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 5385 { 5386 bool success; 5387 unsigned long scanned = sc->nr_scanned; 5388 unsigned long reclaimed = sc->nr_reclaimed; 5389 int seg = lru_gen_memcg_seg(lruvec); 5390 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5391 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5392 5393 /* see the comment on MEMCG_NR_GENS */ 5394 if (!lruvec_is_sizable(lruvec, sc)) 5395 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 5396 5397 mem_cgroup_calculate_protection(NULL, memcg); 5398 5399 if (mem_cgroup_below_min(NULL, memcg)) 5400 return MEMCG_LRU_YOUNG; 5401 5402 if (mem_cgroup_below_low(NULL, memcg)) { 5403 /* see the comment on MEMCG_NR_GENS */ 5404 if (seg != MEMCG_LRU_TAIL) 5405 return MEMCG_LRU_TAIL; 5406 5407 memcg_memory_event(memcg, MEMCG_LOW); 5408 } 5409 5410 success = try_to_shrink_lruvec(lruvec, sc); 5411 5412 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 5413 5414 if (!sc->proactive) 5415 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 5416 sc->nr_reclaimed - reclaimed); 5417 5418 flush_reclaim_state(sc); 5419 5420 return success ? MEMCG_LRU_YOUNG : 0; 5421 } 5422 5423 #ifdef CONFIG_MEMCG 5424 5425 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5426 { 5427 int op; 5428 int gen; 5429 int bin; 5430 int first_bin; 5431 struct lruvec *lruvec; 5432 struct lru_gen_folio *lrugen; 5433 struct mem_cgroup *memcg; 5434 const struct hlist_nulls_node *pos; 5435 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5436 5437 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 5438 restart: 5439 op = 0; 5440 memcg = NULL; 5441 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 5442 5443 rcu_read_lock(); 5444 5445 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 5446 if (op) 5447 lru_gen_rotate_memcg(lruvec, op); 5448 5449 mem_cgroup_put(memcg); 5450 5451 lruvec = container_of(lrugen, struct lruvec, lrugen); 5452 memcg = lruvec_memcg(lruvec); 5453 5454 if (!mem_cgroup_tryget(memcg)) { 5455 op = 0; 5456 memcg = NULL; 5457 continue; 5458 } 5459 5460 rcu_read_unlock(); 5461 5462 op = shrink_one(lruvec, sc); 5463 5464 rcu_read_lock(); 5465 5466 if (sc->nr_reclaimed >= nr_to_reclaim) 5467 break; 5468 } 5469 5470 rcu_read_unlock(); 5471 5472 if (op) 5473 lru_gen_rotate_memcg(lruvec, op); 5474 5475 mem_cgroup_put(memcg); 5476 5477 if (sc->nr_reclaimed >= nr_to_reclaim) 5478 return; 5479 5480 /* restart if raced with lru_gen_rotate_memcg() */ 5481 if (gen != get_nulls_value(pos)) 5482 goto restart; 5483 5484 /* try the rest of the bins of the current generation */ 5485 bin = get_memcg_bin(bin + 1); 5486 if (bin != first_bin) 5487 goto restart; 5488 } 5489 5490 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5491 { 5492 struct blk_plug plug; 5493 5494 VM_WARN_ON_ONCE(global_reclaim(sc)); 5495 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5496 5497 lru_add_drain(); 5498 5499 blk_start_plug(&plug); 5500 5501 set_mm_walk(NULL, sc->proactive); 5502 5503 if (try_to_shrink_lruvec(lruvec, sc)) 5504 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5505 5506 clear_mm_walk(); 5507 5508 blk_finish_plug(&plug); 5509 } 5510 5511 #else /* !CONFIG_MEMCG */ 5512 5513 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5514 { 5515 BUILD_BUG(); 5516 } 5517 5518 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5519 { 5520 BUILD_BUG(); 5521 } 5522 5523 #endif 5524 5525 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 5526 { 5527 int priority; 5528 unsigned long reclaimable; 5529 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 5530 5531 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 5532 return; 5533 /* 5534 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >> 5535 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the 5536 * estimated reclaimed_to_scanned_ratio = inactive / total. 5537 */ 5538 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 5539 if (get_swappiness(lruvec, sc)) 5540 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 5541 5542 reclaimable /= MEMCG_NR_GENS; 5543 5544 /* round down reclaimable and round up sc->nr_to_reclaim */ 5545 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 5546 5547 sc->priority = clamp(priority, 0, DEF_PRIORITY); 5548 } 5549 5550 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5551 { 5552 struct blk_plug plug; 5553 unsigned long reclaimed = sc->nr_reclaimed; 5554 5555 VM_WARN_ON_ONCE(!global_reclaim(sc)); 5556 5557 /* 5558 * Unmapped clean folios are already prioritized. Scanning for more of 5559 * them is likely futile and can cause high reclaim latency when there 5560 * is a large number of memcgs. 5561 */ 5562 if (!sc->may_writepage || !sc->may_unmap) 5563 goto done; 5564 5565 lru_add_drain(); 5566 5567 blk_start_plug(&plug); 5568 5569 set_mm_walk(pgdat, sc->proactive); 5570 5571 set_initial_priority(pgdat, sc); 5572 5573 if (current_is_kswapd()) 5574 sc->nr_reclaimed = 0; 5575 5576 if (mem_cgroup_disabled()) 5577 shrink_one(&pgdat->__lruvec, sc); 5578 else 5579 shrink_many(pgdat, sc); 5580 5581 if (current_is_kswapd()) 5582 sc->nr_reclaimed += reclaimed; 5583 5584 clear_mm_walk(); 5585 5586 blk_finish_plug(&plug); 5587 done: 5588 /* kswapd should never fail */ 5589 pgdat->kswapd_failures = 0; 5590 } 5591 5592 /****************************************************************************** 5593 * state change 5594 ******************************************************************************/ 5595 5596 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5597 { 5598 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5599 5600 if (lrugen->enabled) { 5601 enum lru_list lru; 5602 5603 for_each_evictable_lru(lru) { 5604 if (!list_empty(&lruvec->lists[lru])) 5605 return false; 5606 } 5607 } else { 5608 int gen, type, zone; 5609 5610 for_each_gen_type_zone(gen, type, zone) { 5611 if (!list_empty(&lrugen->folios[gen][type][zone])) 5612 return false; 5613 } 5614 } 5615 5616 return true; 5617 } 5618 5619 static bool fill_evictable(struct lruvec *lruvec) 5620 { 5621 enum lru_list lru; 5622 int remaining = MAX_LRU_BATCH; 5623 5624 for_each_evictable_lru(lru) { 5625 int type = is_file_lru(lru); 5626 bool active = is_active_lru(lru); 5627 struct list_head *head = &lruvec->lists[lru]; 5628 5629 while (!list_empty(head)) { 5630 bool success; 5631 struct folio *folio = lru_to_folio(head); 5632 5633 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5634 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5635 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5636 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5637 5638 lruvec_del_folio(lruvec, folio); 5639 success = lru_gen_add_folio(lruvec, folio, false); 5640 VM_WARN_ON_ONCE(!success); 5641 5642 if (!--remaining) 5643 return false; 5644 } 5645 } 5646 5647 return true; 5648 } 5649 5650 static bool drain_evictable(struct lruvec *lruvec) 5651 { 5652 int gen, type, zone; 5653 int remaining = MAX_LRU_BATCH; 5654 5655 for_each_gen_type_zone(gen, type, zone) { 5656 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5657 5658 while (!list_empty(head)) { 5659 bool success; 5660 struct folio *folio = lru_to_folio(head); 5661 5662 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5663 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5664 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5665 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5666 5667 success = lru_gen_del_folio(lruvec, folio, false); 5668 VM_WARN_ON_ONCE(!success); 5669 lruvec_add_folio(lruvec, folio); 5670 5671 if (!--remaining) 5672 return false; 5673 } 5674 } 5675 5676 return true; 5677 } 5678 5679 static void lru_gen_change_state(bool enabled) 5680 { 5681 static DEFINE_MUTEX(state_mutex); 5682 5683 struct mem_cgroup *memcg; 5684 5685 cgroup_lock(); 5686 cpus_read_lock(); 5687 get_online_mems(); 5688 mutex_lock(&state_mutex); 5689 5690 if (enabled == lru_gen_enabled()) 5691 goto unlock; 5692 5693 if (enabled) 5694 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5695 else 5696 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5697 5698 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5699 do { 5700 int nid; 5701 5702 for_each_node(nid) { 5703 struct lruvec *lruvec = get_lruvec(memcg, nid); 5704 5705 spin_lock_irq(&lruvec->lru_lock); 5706 5707 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5708 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5709 5710 lruvec->lrugen.enabled = enabled; 5711 5712 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5713 spin_unlock_irq(&lruvec->lru_lock); 5714 cond_resched(); 5715 spin_lock_irq(&lruvec->lru_lock); 5716 } 5717 5718 spin_unlock_irq(&lruvec->lru_lock); 5719 } 5720 5721 cond_resched(); 5722 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5723 unlock: 5724 mutex_unlock(&state_mutex); 5725 put_online_mems(); 5726 cpus_read_unlock(); 5727 cgroup_unlock(); 5728 } 5729 5730 /****************************************************************************** 5731 * sysfs interface 5732 ******************************************************************************/ 5733 5734 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5735 { 5736 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5737 } 5738 5739 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5740 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5741 const char *buf, size_t len) 5742 { 5743 unsigned int msecs; 5744 5745 if (kstrtouint(buf, 0, &msecs)) 5746 return -EINVAL; 5747 5748 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5749 5750 return len; 5751 } 5752 5753 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5754 5755 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5756 { 5757 unsigned int caps = 0; 5758 5759 if (get_cap(LRU_GEN_CORE)) 5760 caps |= BIT(LRU_GEN_CORE); 5761 5762 if (should_walk_mmu()) 5763 caps |= BIT(LRU_GEN_MM_WALK); 5764 5765 if (should_clear_pmd_young()) 5766 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5767 5768 return sysfs_emit(buf, "0x%04x\n", caps); 5769 } 5770 5771 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5772 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5773 const char *buf, size_t len) 5774 { 5775 int i; 5776 unsigned int caps; 5777 5778 if (tolower(*buf) == 'n') 5779 caps = 0; 5780 else if (tolower(*buf) == 'y') 5781 caps = -1; 5782 else if (kstrtouint(buf, 0, &caps)) 5783 return -EINVAL; 5784 5785 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5786 bool enabled = caps & BIT(i); 5787 5788 if (i == LRU_GEN_CORE) 5789 lru_gen_change_state(enabled); 5790 else if (enabled) 5791 static_branch_enable(&lru_gen_caps[i]); 5792 else 5793 static_branch_disable(&lru_gen_caps[i]); 5794 } 5795 5796 return len; 5797 } 5798 5799 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5800 5801 static struct attribute *lru_gen_attrs[] = { 5802 &lru_gen_min_ttl_attr.attr, 5803 &lru_gen_enabled_attr.attr, 5804 NULL 5805 }; 5806 5807 static const struct attribute_group lru_gen_attr_group = { 5808 .name = "lru_gen", 5809 .attrs = lru_gen_attrs, 5810 }; 5811 5812 /****************************************************************************** 5813 * debugfs interface 5814 ******************************************************************************/ 5815 5816 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5817 { 5818 struct mem_cgroup *memcg; 5819 loff_t nr_to_skip = *pos; 5820 5821 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5822 if (!m->private) 5823 return ERR_PTR(-ENOMEM); 5824 5825 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5826 do { 5827 int nid; 5828 5829 for_each_node_state(nid, N_MEMORY) { 5830 if (!nr_to_skip--) 5831 return get_lruvec(memcg, nid); 5832 } 5833 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5834 5835 return NULL; 5836 } 5837 5838 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5839 { 5840 if (!IS_ERR_OR_NULL(v)) 5841 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5842 5843 kvfree(m->private); 5844 m->private = NULL; 5845 } 5846 5847 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5848 { 5849 int nid = lruvec_pgdat(v)->node_id; 5850 struct mem_cgroup *memcg = lruvec_memcg(v); 5851 5852 ++*pos; 5853 5854 nid = next_memory_node(nid); 5855 if (nid == MAX_NUMNODES) { 5856 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5857 if (!memcg) 5858 return NULL; 5859 5860 nid = first_memory_node; 5861 } 5862 5863 return get_lruvec(memcg, nid); 5864 } 5865 5866 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5867 unsigned long max_seq, unsigned long *min_seq, 5868 unsigned long seq) 5869 { 5870 int i; 5871 int type, tier; 5872 int hist = lru_hist_from_seq(seq); 5873 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5874 5875 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5876 seq_printf(m, " %10d", tier); 5877 for (type = 0; type < ANON_AND_FILE; type++) { 5878 const char *s = " "; 5879 unsigned long n[3] = {}; 5880 5881 if (seq == max_seq) { 5882 s = "RT "; 5883 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5884 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5885 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5886 s = "rep"; 5887 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5888 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5889 if (tier) 5890 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5891 } 5892 5893 for (i = 0; i < 3; i++) 5894 seq_printf(m, " %10lu%c", n[i], s[i]); 5895 } 5896 seq_putc(m, '\n'); 5897 } 5898 5899 seq_puts(m, " "); 5900 for (i = 0; i < NR_MM_STATS; i++) { 5901 const char *s = " "; 5902 unsigned long n = 0; 5903 5904 if (seq == max_seq && NR_HIST_GENS == 1) { 5905 s = "LOYNFA"; 5906 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5907 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5908 s = "loynfa"; 5909 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5910 } 5911 5912 seq_printf(m, " %10lu%c", n, s[i]); 5913 } 5914 seq_putc(m, '\n'); 5915 } 5916 5917 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5918 static int lru_gen_seq_show(struct seq_file *m, void *v) 5919 { 5920 unsigned long seq; 5921 bool full = !debugfs_real_fops(m->file)->write; 5922 struct lruvec *lruvec = v; 5923 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5924 int nid = lruvec_pgdat(lruvec)->node_id; 5925 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5926 DEFINE_MAX_SEQ(lruvec); 5927 DEFINE_MIN_SEQ(lruvec); 5928 5929 if (nid == first_memory_node) { 5930 const char *path = memcg ? m->private : ""; 5931 5932 #ifdef CONFIG_MEMCG 5933 if (memcg) 5934 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5935 #endif 5936 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5937 } 5938 5939 seq_printf(m, " node %5d\n", nid); 5940 5941 if (!full) 5942 seq = min_seq[LRU_GEN_ANON]; 5943 else if (max_seq >= MAX_NR_GENS) 5944 seq = max_seq - MAX_NR_GENS + 1; 5945 else 5946 seq = 0; 5947 5948 for (; seq <= max_seq; seq++) { 5949 int type, zone; 5950 int gen = lru_gen_from_seq(seq); 5951 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5952 5953 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5954 5955 for (type = 0; type < ANON_AND_FILE; type++) { 5956 unsigned long size = 0; 5957 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5958 5959 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5960 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5961 5962 seq_printf(m, " %10lu%c", size, mark); 5963 } 5964 5965 seq_putc(m, '\n'); 5966 5967 if (full) 5968 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5969 } 5970 5971 return 0; 5972 } 5973 5974 static const struct seq_operations lru_gen_seq_ops = { 5975 .start = lru_gen_seq_start, 5976 .stop = lru_gen_seq_stop, 5977 .next = lru_gen_seq_next, 5978 .show = lru_gen_seq_show, 5979 }; 5980 5981 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5982 bool can_swap, bool force_scan) 5983 { 5984 DEFINE_MAX_SEQ(lruvec); 5985 DEFINE_MIN_SEQ(lruvec); 5986 5987 if (seq < max_seq) 5988 return 0; 5989 5990 if (seq > max_seq) 5991 return -EINVAL; 5992 5993 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5994 return -ERANGE; 5995 5996 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5997 5998 return 0; 5999 } 6000 6001 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 6002 int swappiness, unsigned long nr_to_reclaim) 6003 { 6004 DEFINE_MAX_SEQ(lruvec); 6005 6006 if (seq + MIN_NR_GENS > max_seq) 6007 return -EINVAL; 6008 6009 sc->nr_reclaimed = 0; 6010 6011 while (!signal_pending(current)) { 6012 DEFINE_MIN_SEQ(lruvec); 6013 6014 if (seq < min_seq[!swappiness]) 6015 return 0; 6016 6017 if (sc->nr_reclaimed >= nr_to_reclaim) 6018 return 0; 6019 6020 if (!evict_folios(lruvec, sc, swappiness)) 6021 return 0; 6022 6023 cond_resched(); 6024 } 6025 6026 return -EINTR; 6027 } 6028 6029 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 6030 struct scan_control *sc, int swappiness, unsigned long opt) 6031 { 6032 struct lruvec *lruvec; 6033 int err = -EINVAL; 6034 struct mem_cgroup *memcg = NULL; 6035 6036 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 6037 return -EINVAL; 6038 6039 if (!mem_cgroup_disabled()) { 6040 rcu_read_lock(); 6041 6042 memcg = mem_cgroup_from_id(memcg_id); 6043 if (!mem_cgroup_tryget(memcg)) 6044 memcg = NULL; 6045 6046 rcu_read_unlock(); 6047 6048 if (!memcg) 6049 return -EINVAL; 6050 } 6051 6052 if (memcg_id != mem_cgroup_id(memcg)) 6053 goto done; 6054 6055 lruvec = get_lruvec(memcg, nid); 6056 6057 if (swappiness < 0) 6058 swappiness = get_swappiness(lruvec, sc); 6059 else if (swappiness > 200) 6060 goto done; 6061 6062 switch (cmd) { 6063 case '+': 6064 err = run_aging(lruvec, seq, sc, swappiness, opt); 6065 break; 6066 case '-': 6067 err = run_eviction(lruvec, seq, sc, swappiness, opt); 6068 break; 6069 } 6070 done: 6071 mem_cgroup_put(memcg); 6072 6073 return err; 6074 } 6075 6076 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 6077 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 6078 size_t len, loff_t *pos) 6079 { 6080 void *buf; 6081 char *cur, *next; 6082 unsigned int flags; 6083 struct blk_plug plug; 6084 int err = -EINVAL; 6085 struct scan_control sc = { 6086 .may_writepage = true, 6087 .may_unmap = true, 6088 .may_swap = true, 6089 .reclaim_idx = MAX_NR_ZONES - 1, 6090 .gfp_mask = GFP_KERNEL, 6091 }; 6092 6093 buf = kvmalloc(len + 1, GFP_KERNEL); 6094 if (!buf) 6095 return -ENOMEM; 6096 6097 if (copy_from_user(buf, src, len)) { 6098 kvfree(buf); 6099 return -EFAULT; 6100 } 6101 6102 set_task_reclaim_state(current, &sc.reclaim_state); 6103 flags = memalloc_noreclaim_save(); 6104 blk_start_plug(&plug); 6105 if (!set_mm_walk(NULL, true)) { 6106 err = -ENOMEM; 6107 goto done; 6108 } 6109 6110 next = buf; 6111 next[len] = '\0'; 6112 6113 while ((cur = strsep(&next, ",;\n"))) { 6114 int n; 6115 int end; 6116 char cmd; 6117 unsigned int memcg_id; 6118 unsigned int nid; 6119 unsigned long seq; 6120 unsigned int swappiness = -1; 6121 unsigned long opt = -1; 6122 6123 cur = skip_spaces(cur); 6124 if (!*cur) 6125 continue; 6126 6127 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 6128 &seq, &end, &swappiness, &end, &opt, &end); 6129 if (n < 4 || cur[end]) { 6130 err = -EINVAL; 6131 break; 6132 } 6133 6134 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 6135 if (err) 6136 break; 6137 } 6138 done: 6139 clear_mm_walk(); 6140 blk_finish_plug(&plug); 6141 memalloc_noreclaim_restore(flags); 6142 set_task_reclaim_state(current, NULL); 6143 6144 kvfree(buf); 6145 6146 return err ? : len; 6147 } 6148 6149 static int lru_gen_seq_open(struct inode *inode, struct file *file) 6150 { 6151 return seq_open(file, &lru_gen_seq_ops); 6152 } 6153 6154 static const struct file_operations lru_gen_rw_fops = { 6155 .open = lru_gen_seq_open, 6156 .read = seq_read, 6157 .write = lru_gen_seq_write, 6158 .llseek = seq_lseek, 6159 .release = seq_release, 6160 }; 6161 6162 static const struct file_operations lru_gen_ro_fops = { 6163 .open = lru_gen_seq_open, 6164 .read = seq_read, 6165 .llseek = seq_lseek, 6166 .release = seq_release, 6167 }; 6168 6169 /****************************************************************************** 6170 * initialization 6171 ******************************************************************************/ 6172 6173 void lru_gen_init_lruvec(struct lruvec *lruvec) 6174 { 6175 int i; 6176 int gen, type, zone; 6177 struct lru_gen_folio *lrugen = &lruvec->lrugen; 6178 6179 lrugen->max_seq = MIN_NR_GENS + 1; 6180 lrugen->enabled = lru_gen_enabled(); 6181 6182 for (i = 0; i <= MIN_NR_GENS + 1; i++) 6183 lrugen->timestamps[i] = jiffies; 6184 6185 for_each_gen_type_zone(gen, type, zone) 6186 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 6187 6188 lruvec->mm_state.seq = MIN_NR_GENS; 6189 } 6190 6191 #ifdef CONFIG_MEMCG 6192 6193 void lru_gen_init_pgdat(struct pglist_data *pgdat) 6194 { 6195 int i, j; 6196 6197 spin_lock_init(&pgdat->memcg_lru.lock); 6198 6199 for (i = 0; i < MEMCG_NR_GENS; i++) { 6200 for (j = 0; j < MEMCG_NR_BINS; j++) 6201 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 6202 } 6203 } 6204 6205 void lru_gen_init_memcg(struct mem_cgroup *memcg) 6206 { 6207 INIT_LIST_HEAD(&memcg->mm_list.fifo); 6208 spin_lock_init(&memcg->mm_list.lock); 6209 } 6210 6211 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 6212 { 6213 int i; 6214 int nid; 6215 6216 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); 6217 6218 for_each_node(nid) { 6219 struct lruvec *lruvec = get_lruvec(memcg, nid); 6220 6221 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 6222 sizeof(lruvec->lrugen.nr_pages))); 6223 6224 lruvec->lrugen.list.next = LIST_POISON1; 6225 6226 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 6227 bitmap_free(lruvec->mm_state.filters[i]); 6228 lruvec->mm_state.filters[i] = NULL; 6229 } 6230 } 6231 } 6232 6233 #endif /* CONFIG_MEMCG */ 6234 6235 static int __init init_lru_gen(void) 6236 { 6237 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 6238 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 6239 6240 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 6241 pr_err("lru_gen: failed to create sysfs group\n"); 6242 6243 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 6244 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 6245 6246 return 0; 6247 }; 6248 late_initcall(init_lru_gen); 6249 6250 #else /* !CONFIG_LRU_GEN */ 6251 6252 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6253 { 6254 } 6255 6256 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6257 { 6258 } 6259 6260 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 6261 { 6262 } 6263 6264 #endif /* CONFIG_LRU_GEN */ 6265 6266 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6267 { 6268 unsigned long nr[NR_LRU_LISTS]; 6269 unsigned long targets[NR_LRU_LISTS]; 6270 unsigned long nr_to_scan; 6271 enum lru_list lru; 6272 unsigned long nr_reclaimed = 0; 6273 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 6274 bool proportional_reclaim; 6275 struct blk_plug plug; 6276 6277 if (lru_gen_enabled() && !global_reclaim(sc)) { 6278 lru_gen_shrink_lruvec(lruvec, sc); 6279 return; 6280 } 6281 6282 get_scan_count(lruvec, sc, nr); 6283 6284 /* Record the original scan target for proportional adjustments later */ 6285 memcpy(targets, nr, sizeof(nr)); 6286 6287 /* 6288 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 6289 * event that can occur when there is little memory pressure e.g. 6290 * multiple streaming readers/writers. Hence, we do not abort scanning 6291 * when the requested number of pages are reclaimed when scanning at 6292 * DEF_PRIORITY on the assumption that the fact we are direct 6293 * reclaiming implies that kswapd is not keeping up and it is best to 6294 * do a batch of work at once. For memcg reclaim one check is made to 6295 * abort proportional reclaim if either the file or anon lru has already 6296 * dropped to zero at the first pass. 6297 */ 6298 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 6299 sc->priority == DEF_PRIORITY); 6300 6301 blk_start_plug(&plug); 6302 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 6303 nr[LRU_INACTIVE_FILE]) { 6304 unsigned long nr_anon, nr_file, percentage; 6305 unsigned long nr_scanned; 6306 6307 for_each_evictable_lru(lru) { 6308 if (nr[lru]) { 6309 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 6310 nr[lru] -= nr_to_scan; 6311 6312 nr_reclaimed += shrink_list(lru, nr_to_scan, 6313 lruvec, sc); 6314 } 6315 } 6316 6317 cond_resched(); 6318 6319 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 6320 continue; 6321 6322 /* 6323 * For kswapd and memcg, reclaim at least the number of pages 6324 * requested. Ensure that the anon and file LRUs are scanned 6325 * proportionally what was requested by get_scan_count(). We 6326 * stop reclaiming one LRU and reduce the amount scanning 6327 * proportional to the original scan target. 6328 */ 6329 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 6330 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 6331 6332 /* 6333 * It's just vindictive to attack the larger once the smaller 6334 * has gone to zero. And given the way we stop scanning the 6335 * smaller below, this makes sure that we only make one nudge 6336 * towards proportionality once we've got nr_to_reclaim. 6337 */ 6338 if (!nr_file || !nr_anon) 6339 break; 6340 6341 if (nr_file > nr_anon) { 6342 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 6343 targets[LRU_ACTIVE_ANON] + 1; 6344 lru = LRU_BASE; 6345 percentage = nr_anon * 100 / scan_target; 6346 } else { 6347 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 6348 targets[LRU_ACTIVE_FILE] + 1; 6349 lru = LRU_FILE; 6350 percentage = nr_file * 100 / scan_target; 6351 } 6352 6353 /* Stop scanning the smaller of the LRU */ 6354 nr[lru] = 0; 6355 nr[lru + LRU_ACTIVE] = 0; 6356 6357 /* 6358 * Recalculate the other LRU scan count based on its original 6359 * scan target and the percentage scanning already complete 6360 */ 6361 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6362 nr_scanned = targets[lru] - nr[lru]; 6363 nr[lru] = targets[lru] * (100 - percentage) / 100; 6364 nr[lru] -= min(nr[lru], nr_scanned); 6365 6366 lru += LRU_ACTIVE; 6367 nr_scanned = targets[lru] - nr[lru]; 6368 nr[lru] = targets[lru] * (100 - percentage) / 100; 6369 nr[lru] -= min(nr[lru], nr_scanned); 6370 } 6371 blk_finish_plug(&plug); 6372 sc->nr_reclaimed += nr_reclaimed; 6373 6374 /* 6375 * Even if we did not try to evict anon pages at all, we want to 6376 * rebalance the anon lru active/inactive ratio. 6377 */ 6378 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6379 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6380 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6381 sc, LRU_ACTIVE_ANON); 6382 } 6383 6384 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6385 static bool in_reclaim_compaction(struct scan_control *sc) 6386 { 6387 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 6388 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6389 sc->priority < DEF_PRIORITY - 2)) 6390 return true; 6391 6392 return false; 6393 } 6394 6395 /* 6396 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6397 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6398 * true if more pages should be reclaimed such that when the page allocator 6399 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6400 * It will give up earlier than that if there is difficulty reclaiming pages. 6401 */ 6402 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6403 unsigned long nr_reclaimed, 6404 struct scan_control *sc) 6405 { 6406 unsigned long pages_for_compaction; 6407 unsigned long inactive_lru_pages; 6408 int z; 6409 6410 /* If not in reclaim/compaction mode, stop */ 6411 if (!in_reclaim_compaction(sc)) 6412 return false; 6413 6414 /* 6415 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6416 * number of pages that were scanned. This will return to the caller 6417 * with the risk reclaim/compaction and the resulting allocation attempt 6418 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6419 * allocations through requiring that the full LRU list has been scanned 6420 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6421 * scan, but that approximation was wrong, and there were corner cases 6422 * where always a non-zero amount of pages were scanned. 6423 */ 6424 if (!nr_reclaimed) 6425 return false; 6426 6427 /* If compaction would go ahead or the allocation would succeed, stop */ 6428 for (z = 0; z <= sc->reclaim_idx; z++) { 6429 struct zone *zone = &pgdat->node_zones[z]; 6430 if (!managed_zone(zone)) 6431 continue; 6432 6433 /* Allocation can already succeed, nothing to do */ 6434 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6435 sc->reclaim_idx, 0)) 6436 return false; 6437 6438 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6439 return false; 6440 } 6441 6442 /* 6443 * If we have not reclaimed enough pages for compaction and the 6444 * inactive lists are large enough, continue reclaiming 6445 */ 6446 pages_for_compaction = compact_gap(sc->order); 6447 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6448 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6449 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6450 6451 return inactive_lru_pages > pages_for_compaction; 6452 } 6453 6454 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6455 { 6456 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6457 struct mem_cgroup *memcg; 6458 6459 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6460 do { 6461 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6462 unsigned long reclaimed; 6463 unsigned long scanned; 6464 6465 /* 6466 * This loop can become CPU-bound when target memcgs 6467 * aren't eligible for reclaim - either because they 6468 * don't have any reclaimable pages, or because their 6469 * memory is explicitly protected. Avoid soft lockups. 6470 */ 6471 cond_resched(); 6472 6473 mem_cgroup_calculate_protection(target_memcg, memcg); 6474 6475 if (mem_cgroup_below_min(target_memcg, memcg)) { 6476 /* 6477 * Hard protection. 6478 * If there is no reclaimable memory, OOM. 6479 */ 6480 continue; 6481 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6482 /* 6483 * Soft protection. 6484 * Respect the protection only as long as 6485 * there is an unprotected supply 6486 * of reclaimable memory from other cgroups. 6487 */ 6488 if (!sc->memcg_low_reclaim) { 6489 sc->memcg_low_skipped = 1; 6490 continue; 6491 } 6492 memcg_memory_event(memcg, MEMCG_LOW); 6493 } 6494 6495 reclaimed = sc->nr_reclaimed; 6496 scanned = sc->nr_scanned; 6497 6498 shrink_lruvec(lruvec, sc); 6499 6500 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6501 sc->priority); 6502 6503 /* Record the group's reclaim efficiency */ 6504 if (!sc->proactive) 6505 vmpressure(sc->gfp_mask, memcg, false, 6506 sc->nr_scanned - scanned, 6507 sc->nr_reclaimed - reclaimed); 6508 6509 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6510 } 6511 6512 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6513 { 6514 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6515 struct lruvec *target_lruvec; 6516 bool reclaimable = false; 6517 6518 if (lru_gen_enabled() && global_reclaim(sc)) { 6519 lru_gen_shrink_node(pgdat, sc); 6520 return; 6521 } 6522 6523 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6524 6525 again: 6526 memset(&sc->nr, 0, sizeof(sc->nr)); 6527 6528 nr_reclaimed = sc->nr_reclaimed; 6529 nr_scanned = sc->nr_scanned; 6530 6531 prepare_scan_count(pgdat, sc); 6532 6533 shrink_node_memcgs(pgdat, sc); 6534 6535 flush_reclaim_state(sc); 6536 6537 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6538 6539 /* Record the subtree's reclaim efficiency */ 6540 if (!sc->proactive) 6541 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6542 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6543 6544 if (nr_node_reclaimed) 6545 reclaimable = true; 6546 6547 if (current_is_kswapd()) { 6548 /* 6549 * If reclaim is isolating dirty pages under writeback, 6550 * it implies that the long-lived page allocation rate 6551 * is exceeding the page laundering rate. Either the 6552 * global limits are not being effective at throttling 6553 * processes due to the page distribution throughout 6554 * zones or there is heavy usage of a slow backing 6555 * device. The only option is to throttle from reclaim 6556 * context which is not ideal as there is no guarantee 6557 * the dirtying process is throttled in the same way 6558 * balance_dirty_pages() manages. 6559 * 6560 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6561 * count the number of pages under pages flagged for 6562 * immediate reclaim and stall if any are encountered 6563 * in the nr_immediate check below. 6564 */ 6565 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6566 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6567 6568 /* Allow kswapd to start writing pages during reclaim.*/ 6569 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6570 set_bit(PGDAT_DIRTY, &pgdat->flags); 6571 6572 /* 6573 * If kswapd scans pages marked for immediate 6574 * reclaim and under writeback (nr_immediate), it 6575 * implies that pages are cycling through the LRU 6576 * faster than they are written so forcibly stall 6577 * until some pages complete writeback. 6578 */ 6579 if (sc->nr.immediate) 6580 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6581 } 6582 6583 /* 6584 * Tag a node/memcg as congested if all the dirty pages were marked 6585 * for writeback and immediate reclaim (counted in nr.congested). 6586 * 6587 * Legacy memcg will stall in page writeback so avoid forcibly 6588 * stalling in reclaim_throttle(). 6589 */ 6590 if ((current_is_kswapd() || 6591 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6592 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6593 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6594 6595 /* 6596 * Stall direct reclaim for IO completions if the lruvec is 6597 * node is congested. Allow kswapd to continue until it 6598 * starts encountering unqueued dirty pages or cycling through 6599 * the LRU too quickly. 6600 */ 6601 if (!current_is_kswapd() && current_may_throttle() && 6602 !sc->hibernation_mode && 6603 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6604 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6605 6606 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6607 goto again; 6608 6609 /* 6610 * Kswapd gives up on balancing particular nodes after too 6611 * many failures to reclaim anything from them and goes to 6612 * sleep. On reclaim progress, reset the failure counter. A 6613 * successful direct reclaim run will revive a dormant kswapd. 6614 */ 6615 if (reclaimable) 6616 pgdat->kswapd_failures = 0; 6617 } 6618 6619 /* 6620 * Returns true if compaction should go ahead for a costly-order request, or 6621 * the allocation would already succeed without compaction. Return false if we 6622 * should reclaim first. 6623 */ 6624 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6625 { 6626 unsigned long watermark; 6627 6628 /* Allocation can already succeed, nothing to do */ 6629 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6630 sc->reclaim_idx, 0)) 6631 return true; 6632 6633 /* Compaction cannot yet proceed. Do reclaim. */ 6634 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6635 return false; 6636 6637 /* 6638 * Compaction is already possible, but it takes time to run and there 6639 * are potentially other callers using the pages just freed. So proceed 6640 * with reclaim to make a buffer of free pages available to give 6641 * compaction a reasonable chance of completing and allocating the page. 6642 * Note that we won't actually reclaim the whole buffer in one attempt 6643 * as the target watermark in should_continue_reclaim() is lower. But if 6644 * we are already above the high+gap watermark, don't reclaim at all. 6645 */ 6646 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6647 6648 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6649 } 6650 6651 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6652 { 6653 /* 6654 * If reclaim is making progress greater than 12% efficiency then 6655 * wake all the NOPROGRESS throttled tasks. 6656 */ 6657 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6658 wait_queue_head_t *wqh; 6659 6660 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6661 if (waitqueue_active(wqh)) 6662 wake_up(wqh); 6663 6664 return; 6665 } 6666 6667 /* 6668 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6669 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6670 * under writeback and marked for immediate reclaim at the tail of the 6671 * LRU. 6672 */ 6673 if (current_is_kswapd() || cgroup_reclaim(sc)) 6674 return; 6675 6676 /* Throttle if making no progress at high prioities. */ 6677 if (sc->priority == 1 && !sc->nr_reclaimed) 6678 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6679 } 6680 6681 /* 6682 * This is the direct reclaim path, for page-allocating processes. We only 6683 * try to reclaim pages from zones which will satisfy the caller's allocation 6684 * request. 6685 * 6686 * If a zone is deemed to be full of pinned pages then just give it a light 6687 * scan then give up on it. 6688 */ 6689 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6690 { 6691 struct zoneref *z; 6692 struct zone *zone; 6693 unsigned long nr_soft_reclaimed; 6694 unsigned long nr_soft_scanned; 6695 gfp_t orig_mask; 6696 pg_data_t *last_pgdat = NULL; 6697 pg_data_t *first_pgdat = NULL; 6698 6699 /* 6700 * If the number of buffer_heads in the machine exceeds the maximum 6701 * allowed level, force direct reclaim to scan the highmem zone as 6702 * highmem pages could be pinning lowmem pages storing buffer_heads 6703 */ 6704 orig_mask = sc->gfp_mask; 6705 if (buffer_heads_over_limit) { 6706 sc->gfp_mask |= __GFP_HIGHMEM; 6707 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6708 } 6709 6710 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6711 sc->reclaim_idx, sc->nodemask) { 6712 /* 6713 * Take care memory controller reclaiming has small influence 6714 * to global LRU. 6715 */ 6716 if (!cgroup_reclaim(sc)) { 6717 if (!cpuset_zone_allowed(zone, 6718 GFP_KERNEL | __GFP_HARDWALL)) 6719 continue; 6720 6721 /* 6722 * If we already have plenty of memory free for 6723 * compaction in this zone, don't free any more. 6724 * Even though compaction is invoked for any 6725 * non-zero order, only frequent costly order 6726 * reclamation is disruptive enough to become a 6727 * noticeable problem, like transparent huge 6728 * page allocations. 6729 */ 6730 if (IS_ENABLED(CONFIG_COMPACTION) && 6731 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6732 compaction_ready(zone, sc)) { 6733 sc->compaction_ready = true; 6734 continue; 6735 } 6736 6737 /* 6738 * Shrink each node in the zonelist once. If the 6739 * zonelist is ordered by zone (not the default) then a 6740 * node may be shrunk multiple times but in that case 6741 * the user prefers lower zones being preserved. 6742 */ 6743 if (zone->zone_pgdat == last_pgdat) 6744 continue; 6745 6746 /* 6747 * This steals pages from memory cgroups over softlimit 6748 * and returns the number of reclaimed pages and 6749 * scanned pages. This works for global memory pressure 6750 * and balancing, not for a memcg's limit. 6751 */ 6752 nr_soft_scanned = 0; 6753 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6754 sc->order, sc->gfp_mask, 6755 &nr_soft_scanned); 6756 sc->nr_reclaimed += nr_soft_reclaimed; 6757 sc->nr_scanned += nr_soft_scanned; 6758 /* need some check for avoid more shrink_zone() */ 6759 } 6760 6761 if (!first_pgdat) 6762 first_pgdat = zone->zone_pgdat; 6763 6764 /* See comment about same check for global reclaim above */ 6765 if (zone->zone_pgdat == last_pgdat) 6766 continue; 6767 last_pgdat = zone->zone_pgdat; 6768 shrink_node(zone->zone_pgdat, sc); 6769 } 6770 6771 if (first_pgdat) 6772 consider_reclaim_throttle(first_pgdat, sc); 6773 6774 /* 6775 * Restore to original mask to avoid the impact on the caller if we 6776 * promoted it to __GFP_HIGHMEM. 6777 */ 6778 sc->gfp_mask = orig_mask; 6779 } 6780 6781 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6782 { 6783 struct lruvec *target_lruvec; 6784 unsigned long refaults; 6785 6786 if (lru_gen_enabled()) 6787 return; 6788 6789 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6790 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6791 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6792 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6793 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6794 } 6795 6796 /* 6797 * This is the main entry point to direct page reclaim. 6798 * 6799 * If a full scan of the inactive list fails to free enough memory then we 6800 * are "out of memory" and something needs to be killed. 6801 * 6802 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6803 * high - the zone may be full of dirty or under-writeback pages, which this 6804 * caller can't do much about. We kick the writeback threads and take explicit 6805 * naps in the hope that some of these pages can be written. But if the 6806 * allocating task holds filesystem locks which prevent writeout this might not 6807 * work, and the allocation attempt will fail. 6808 * 6809 * returns: 0, if no pages reclaimed 6810 * else, the number of pages reclaimed 6811 */ 6812 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6813 struct scan_control *sc) 6814 { 6815 int initial_priority = sc->priority; 6816 pg_data_t *last_pgdat; 6817 struct zoneref *z; 6818 struct zone *zone; 6819 retry: 6820 delayacct_freepages_start(); 6821 6822 if (!cgroup_reclaim(sc)) 6823 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6824 6825 do { 6826 if (!sc->proactive) 6827 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6828 sc->priority); 6829 sc->nr_scanned = 0; 6830 shrink_zones(zonelist, sc); 6831 6832 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6833 break; 6834 6835 if (sc->compaction_ready) 6836 break; 6837 6838 /* 6839 * If we're getting trouble reclaiming, start doing 6840 * writepage even in laptop mode. 6841 */ 6842 if (sc->priority < DEF_PRIORITY - 2) 6843 sc->may_writepage = 1; 6844 } while (--sc->priority >= 0); 6845 6846 last_pgdat = NULL; 6847 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6848 sc->nodemask) { 6849 if (zone->zone_pgdat == last_pgdat) 6850 continue; 6851 last_pgdat = zone->zone_pgdat; 6852 6853 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6854 6855 if (cgroup_reclaim(sc)) { 6856 struct lruvec *lruvec; 6857 6858 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6859 zone->zone_pgdat); 6860 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6861 } 6862 } 6863 6864 delayacct_freepages_end(); 6865 6866 if (sc->nr_reclaimed) 6867 return sc->nr_reclaimed; 6868 6869 /* Aborted reclaim to try compaction? don't OOM, then */ 6870 if (sc->compaction_ready) 6871 return 1; 6872 6873 /* 6874 * We make inactive:active ratio decisions based on the node's 6875 * composition of memory, but a restrictive reclaim_idx or a 6876 * memory.low cgroup setting can exempt large amounts of 6877 * memory from reclaim. Neither of which are very common, so 6878 * instead of doing costly eligibility calculations of the 6879 * entire cgroup subtree up front, we assume the estimates are 6880 * good, and retry with forcible deactivation if that fails. 6881 */ 6882 if (sc->skipped_deactivate) { 6883 sc->priority = initial_priority; 6884 sc->force_deactivate = 1; 6885 sc->skipped_deactivate = 0; 6886 goto retry; 6887 } 6888 6889 /* Untapped cgroup reserves? Don't OOM, retry. */ 6890 if (sc->memcg_low_skipped) { 6891 sc->priority = initial_priority; 6892 sc->force_deactivate = 0; 6893 sc->memcg_low_reclaim = 1; 6894 sc->memcg_low_skipped = 0; 6895 goto retry; 6896 } 6897 6898 return 0; 6899 } 6900 6901 static bool allow_direct_reclaim(pg_data_t *pgdat) 6902 { 6903 struct zone *zone; 6904 unsigned long pfmemalloc_reserve = 0; 6905 unsigned long free_pages = 0; 6906 int i; 6907 bool wmark_ok; 6908 6909 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6910 return true; 6911 6912 for (i = 0; i <= ZONE_NORMAL; i++) { 6913 zone = &pgdat->node_zones[i]; 6914 if (!managed_zone(zone)) 6915 continue; 6916 6917 if (!zone_reclaimable_pages(zone)) 6918 continue; 6919 6920 pfmemalloc_reserve += min_wmark_pages(zone); 6921 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6922 } 6923 6924 /* If there are no reserves (unexpected config) then do not throttle */ 6925 if (!pfmemalloc_reserve) 6926 return true; 6927 6928 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6929 6930 /* kswapd must be awake if processes are being throttled */ 6931 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6932 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6933 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6934 6935 wake_up_interruptible(&pgdat->kswapd_wait); 6936 } 6937 6938 return wmark_ok; 6939 } 6940 6941 /* 6942 * Throttle direct reclaimers if backing storage is backed by the network 6943 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6944 * depleted. kswapd will continue to make progress and wake the processes 6945 * when the low watermark is reached. 6946 * 6947 * Returns true if a fatal signal was delivered during throttling. If this 6948 * happens, the page allocator should not consider triggering the OOM killer. 6949 */ 6950 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6951 nodemask_t *nodemask) 6952 { 6953 struct zoneref *z; 6954 struct zone *zone; 6955 pg_data_t *pgdat = NULL; 6956 6957 /* 6958 * Kernel threads should not be throttled as they may be indirectly 6959 * responsible for cleaning pages necessary for reclaim to make forward 6960 * progress. kjournald for example may enter direct reclaim while 6961 * committing a transaction where throttling it could forcing other 6962 * processes to block on log_wait_commit(). 6963 */ 6964 if (current->flags & PF_KTHREAD) 6965 goto out; 6966 6967 /* 6968 * If a fatal signal is pending, this process should not throttle. 6969 * It should return quickly so it can exit and free its memory 6970 */ 6971 if (fatal_signal_pending(current)) 6972 goto out; 6973 6974 /* 6975 * Check if the pfmemalloc reserves are ok by finding the first node 6976 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6977 * GFP_KERNEL will be required for allocating network buffers when 6978 * swapping over the network so ZONE_HIGHMEM is unusable. 6979 * 6980 * Throttling is based on the first usable node and throttled processes 6981 * wait on a queue until kswapd makes progress and wakes them. There 6982 * is an affinity then between processes waking up and where reclaim 6983 * progress has been made assuming the process wakes on the same node. 6984 * More importantly, processes running on remote nodes will not compete 6985 * for remote pfmemalloc reserves and processes on different nodes 6986 * should make reasonable progress. 6987 */ 6988 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6989 gfp_zone(gfp_mask), nodemask) { 6990 if (zone_idx(zone) > ZONE_NORMAL) 6991 continue; 6992 6993 /* Throttle based on the first usable node */ 6994 pgdat = zone->zone_pgdat; 6995 if (allow_direct_reclaim(pgdat)) 6996 goto out; 6997 break; 6998 } 6999 7000 /* If no zone was usable by the allocation flags then do not throttle */ 7001 if (!pgdat) 7002 goto out; 7003 7004 /* Account for the throttling */ 7005 count_vm_event(PGSCAN_DIRECT_THROTTLE); 7006 7007 /* 7008 * If the caller cannot enter the filesystem, it's possible that it 7009 * is due to the caller holding an FS lock or performing a journal 7010 * transaction in the case of a filesystem like ext[3|4]. In this case, 7011 * it is not safe to block on pfmemalloc_wait as kswapd could be 7012 * blocked waiting on the same lock. Instead, throttle for up to a 7013 * second before continuing. 7014 */ 7015 if (!(gfp_mask & __GFP_FS)) 7016 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 7017 allow_direct_reclaim(pgdat), HZ); 7018 else 7019 /* Throttle until kswapd wakes the process */ 7020 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 7021 allow_direct_reclaim(pgdat)); 7022 7023 if (fatal_signal_pending(current)) 7024 return true; 7025 7026 out: 7027 return false; 7028 } 7029 7030 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 7031 gfp_t gfp_mask, nodemask_t *nodemask) 7032 { 7033 unsigned long nr_reclaimed; 7034 struct scan_control sc = { 7035 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7036 .gfp_mask = current_gfp_context(gfp_mask), 7037 .reclaim_idx = gfp_zone(gfp_mask), 7038 .order = order, 7039 .nodemask = nodemask, 7040 .priority = DEF_PRIORITY, 7041 .may_writepage = !laptop_mode, 7042 .may_unmap = 1, 7043 .may_swap = 1, 7044 }; 7045 7046 /* 7047 * scan_control uses s8 fields for order, priority, and reclaim_idx. 7048 * Confirm they are large enough for max values. 7049 */ 7050 BUILD_BUG_ON(MAX_ORDER >= S8_MAX); 7051 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 7052 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 7053 7054 /* 7055 * Do not enter reclaim if fatal signal was delivered while throttled. 7056 * 1 is returned so that the page allocator does not OOM kill at this 7057 * point. 7058 */ 7059 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 7060 return 1; 7061 7062 set_task_reclaim_state(current, &sc.reclaim_state); 7063 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 7064 7065 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7066 7067 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 7068 set_task_reclaim_state(current, NULL); 7069 7070 return nr_reclaimed; 7071 } 7072 7073 #ifdef CONFIG_MEMCG 7074 7075 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 7076 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 7077 gfp_t gfp_mask, bool noswap, 7078 pg_data_t *pgdat, 7079 unsigned long *nr_scanned) 7080 { 7081 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 7082 struct scan_control sc = { 7083 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7084 .target_mem_cgroup = memcg, 7085 .may_writepage = !laptop_mode, 7086 .may_unmap = 1, 7087 .reclaim_idx = MAX_NR_ZONES - 1, 7088 .may_swap = !noswap, 7089 }; 7090 7091 WARN_ON_ONCE(!current->reclaim_state); 7092 7093 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 7094 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 7095 7096 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 7097 sc.gfp_mask); 7098 7099 /* 7100 * NOTE: Although we can get the priority field, using it 7101 * here is not a good idea, since it limits the pages we can scan. 7102 * if we don't reclaim here, the shrink_node from balance_pgdat 7103 * will pick up pages from other mem cgroup's as well. We hack 7104 * the priority and make it zero. 7105 */ 7106 shrink_lruvec(lruvec, &sc); 7107 7108 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 7109 7110 *nr_scanned = sc.nr_scanned; 7111 7112 return sc.nr_reclaimed; 7113 } 7114 7115 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 7116 unsigned long nr_pages, 7117 gfp_t gfp_mask, 7118 unsigned int reclaim_options) 7119 { 7120 unsigned long nr_reclaimed; 7121 unsigned int noreclaim_flag; 7122 struct scan_control sc = { 7123 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7124 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 7125 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 7126 .reclaim_idx = MAX_NR_ZONES - 1, 7127 .target_mem_cgroup = memcg, 7128 .priority = DEF_PRIORITY, 7129 .may_writepage = !laptop_mode, 7130 .may_unmap = 1, 7131 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 7132 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 7133 }; 7134 /* 7135 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 7136 * equal pressure on all the nodes. This is based on the assumption that 7137 * the reclaim does not bail out early. 7138 */ 7139 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7140 7141 set_task_reclaim_state(current, &sc.reclaim_state); 7142 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 7143 noreclaim_flag = memalloc_noreclaim_save(); 7144 7145 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7146 7147 memalloc_noreclaim_restore(noreclaim_flag); 7148 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 7149 set_task_reclaim_state(current, NULL); 7150 7151 return nr_reclaimed; 7152 } 7153 #endif 7154 7155 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 7156 { 7157 struct mem_cgroup *memcg; 7158 struct lruvec *lruvec; 7159 7160 if (lru_gen_enabled()) { 7161 lru_gen_age_node(pgdat, sc); 7162 return; 7163 } 7164 7165 if (!can_age_anon_pages(pgdat, sc)) 7166 return; 7167 7168 lruvec = mem_cgroup_lruvec(NULL, pgdat); 7169 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 7170 return; 7171 7172 memcg = mem_cgroup_iter(NULL, NULL, NULL); 7173 do { 7174 lruvec = mem_cgroup_lruvec(memcg, pgdat); 7175 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 7176 sc, LRU_ACTIVE_ANON); 7177 memcg = mem_cgroup_iter(NULL, memcg, NULL); 7178 } while (memcg); 7179 } 7180 7181 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 7182 { 7183 int i; 7184 struct zone *zone; 7185 7186 /* 7187 * Check for watermark boosts top-down as the higher zones 7188 * are more likely to be boosted. Both watermarks and boosts 7189 * should not be checked at the same time as reclaim would 7190 * start prematurely when there is no boosting and a lower 7191 * zone is balanced. 7192 */ 7193 for (i = highest_zoneidx; i >= 0; i--) { 7194 zone = pgdat->node_zones + i; 7195 if (!managed_zone(zone)) 7196 continue; 7197 7198 if (zone->watermark_boost) 7199 return true; 7200 } 7201 7202 return false; 7203 } 7204 7205 /* 7206 * Returns true if there is an eligible zone balanced for the request order 7207 * and highest_zoneidx 7208 */ 7209 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 7210 { 7211 int i; 7212 unsigned long mark = -1; 7213 struct zone *zone; 7214 7215 /* 7216 * Check watermarks bottom-up as lower zones are more likely to 7217 * meet watermarks. 7218 */ 7219 for (i = 0; i <= highest_zoneidx; i++) { 7220 zone = pgdat->node_zones + i; 7221 7222 if (!managed_zone(zone)) 7223 continue; 7224 7225 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 7226 mark = wmark_pages(zone, WMARK_PROMO); 7227 else 7228 mark = high_wmark_pages(zone); 7229 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 7230 return true; 7231 } 7232 7233 /* 7234 * If a node has no managed zone within highest_zoneidx, it does not 7235 * need balancing by definition. This can happen if a zone-restricted 7236 * allocation tries to wake a remote kswapd. 7237 */ 7238 if (mark == -1) 7239 return true; 7240 7241 return false; 7242 } 7243 7244 /* Clear pgdat state for congested, dirty or under writeback. */ 7245 static void clear_pgdat_congested(pg_data_t *pgdat) 7246 { 7247 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 7248 7249 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 7250 clear_bit(PGDAT_DIRTY, &pgdat->flags); 7251 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 7252 } 7253 7254 /* 7255 * Prepare kswapd for sleeping. This verifies that there are no processes 7256 * waiting in throttle_direct_reclaim() and that watermarks have been met. 7257 * 7258 * Returns true if kswapd is ready to sleep 7259 */ 7260 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 7261 int highest_zoneidx) 7262 { 7263 /* 7264 * The throttled processes are normally woken up in balance_pgdat() as 7265 * soon as allow_direct_reclaim() is true. But there is a potential 7266 * race between when kswapd checks the watermarks and a process gets 7267 * throttled. There is also a potential race if processes get 7268 * throttled, kswapd wakes, a large process exits thereby balancing the 7269 * zones, which causes kswapd to exit balance_pgdat() before reaching 7270 * the wake up checks. If kswapd is going to sleep, no process should 7271 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 7272 * the wake up is premature, processes will wake kswapd and get 7273 * throttled again. The difference from wake ups in balance_pgdat() is 7274 * that here we are under prepare_to_wait(). 7275 */ 7276 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 7277 wake_up_all(&pgdat->pfmemalloc_wait); 7278 7279 /* Hopeless node, leave it to direct reclaim */ 7280 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 7281 return true; 7282 7283 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 7284 clear_pgdat_congested(pgdat); 7285 return true; 7286 } 7287 7288 return false; 7289 } 7290 7291 /* 7292 * kswapd shrinks a node of pages that are at or below the highest usable 7293 * zone that is currently unbalanced. 7294 * 7295 * Returns true if kswapd scanned at least the requested number of pages to 7296 * reclaim or if the lack of progress was due to pages under writeback. 7297 * This is used to determine if the scanning priority needs to be raised. 7298 */ 7299 static bool kswapd_shrink_node(pg_data_t *pgdat, 7300 struct scan_control *sc) 7301 { 7302 struct zone *zone; 7303 int z; 7304 7305 /* Reclaim a number of pages proportional to the number of zones */ 7306 sc->nr_to_reclaim = 0; 7307 for (z = 0; z <= sc->reclaim_idx; z++) { 7308 zone = pgdat->node_zones + z; 7309 if (!managed_zone(zone)) 7310 continue; 7311 7312 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 7313 } 7314 7315 /* 7316 * Historically care was taken to put equal pressure on all zones but 7317 * now pressure is applied based on node LRU order. 7318 */ 7319 shrink_node(pgdat, sc); 7320 7321 /* 7322 * Fragmentation may mean that the system cannot be rebalanced for 7323 * high-order allocations. If twice the allocation size has been 7324 * reclaimed then recheck watermarks only at order-0 to prevent 7325 * excessive reclaim. Assume that a process requested a high-order 7326 * can direct reclaim/compact. 7327 */ 7328 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 7329 sc->order = 0; 7330 7331 return sc->nr_scanned >= sc->nr_to_reclaim; 7332 } 7333 7334 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 7335 static inline void 7336 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 7337 { 7338 int i; 7339 struct zone *zone; 7340 7341 for (i = 0; i <= highest_zoneidx; i++) { 7342 zone = pgdat->node_zones + i; 7343 7344 if (!managed_zone(zone)) 7345 continue; 7346 7347 if (active) 7348 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7349 else 7350 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7351 } 7352 } 7353 7354 static inline void 7355 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7356 { 7357 update_reclaim_active(pgdat, highest_zoneidx, true); 7358 } 7359 7360 static inline void 7361 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7362 { 7363 update_reclaim_active(pgdat, highest_zoneidx, false); 7364 } 7365 7366 /* 7367 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7368 * that are eligible for use by the caller until at least one zone is 7369 * balanced. 7370 * 7371 * Returns the order kswapd finished reclaiming at. 7372 * 7373 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7374 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7375 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7376 * or lower is eligible for reclaim until at least one usable zone is 7377 * balanced. 7378 */ 7379 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7380 { 7381 int i; 7382 unsigned long nr_soft_reclaimed; 7383 unsigned long nr_soft_scanned; 7384 unsigned long pflags; 7385 unsigned long nr_boost_reclaim; 7386 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7387 bool boosted; 7388 struct zone *zone; 7389 struct scan_control sc = { 7390 .gfp_mask = GFP_KERNEL, 7391 .order = order, 7392 .may_unmap = 1, 7393 }; 7394 7395 set_task_reclaim_state(current, &sc.reclaim_state); 7396 psi_memstall_enter(&pflags); 7397 __fs_reclaim_acquire(_THIS_IP_); 7398 7399 count_vm_event(PAGEOUTRUN); 7400 7401 /* 7402 * Account for the reclaim boost. Note that the zone boost is left in 7403 * place so that parallel allocations that are near the watermark will 7404 * stall or direct reclaim until kswapd is finished. 7405 */ 7406 nr_boost_reclaim = 0; 7407 for (i = 0; i <= highest_zoneidx; i++) { 7408 zone = pgdat->node_zones + i; 7409 if (!managed_zone(zone)) 7410 continue; 7411 7412 nr_boost_reclaim += zone->watermark_boost; 7413 zone_boosts[i] = zone->watermark_boost; 7414 } 7415 boosted = nr_boost_reclaim; 7416 7417 restart: 7418 set_reclaim_active(pgdat, highest_zoneidx); 7419 sc.priority = DEF_PRIORITY; 7420 do { 7421 unsigned long nr_reclaimed = sc.nr_reclaimed; 7422 bool raise_priority = true; 7423 bool balanced; 7424 bool ret; 7425 7426 sc.reclaim_idx = highest_zoneidx; 7427 7428 /* 7429 * If the number of buffer_heads exceeds the maximum allowed 7430 * then consider reclaiming from all zones. This has a dual 7431 * purpose -- on 64-bit systems it is expected that 7432 * buffer_heads are stripped during active rotation. On 32-bit 7433 * systems, highmem pages can pin lowmem memory and shrinking 7434 * buffers can relieve lowmem pressure. Reclaim may still not 7435 * go ahead if all eligible zones for the original allocation 7436 * request are balanced to avoid excessive reclaim from kswapd. 7437 */ 7438 if (buffer_heads_over_limit) { 7439 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7440 zone = pgdat->node_zones + i; 7441 if (!managed_zone(zone)) 7442 continue; 7443 7444 sc.reclaim_idx = i; 7445 break; 7446 } 7447 } 7448 7449 /* 7450 * If the pgdat is imbalanced then ignore boosting and preserve 7451 * the watermarks for a later time and restart. Note that the 7452 * zone watermarks will be still reset at the end of balancing 7453 * on the grounds that the normal reclaim should be enough to 7454 * re-evaluate if boosting is required when kswapd next wakes. 7455 */ 7456 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7457 if (!balanced && nr_boost_reclaim) { 7458 nr_boost_reclaim = 0; 7459 goto restart; 7460 } 7461 7462 /* 7463 * If boosting is not active then only reclaim if there are no 7464 * eligible zones. Note that sc.reclaim_idx is not used as 7465 * buffer_heads_over_limit may have adjusted it. 7466 */ 7467 if (!nr_boost_reclaim && balanced) 7468 goto out; 7469 7470 /* Limit the priority of boosting to avoid reclaim writeback */ 7471 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7472 raise_priority = false; 7473 7474 /* 7475 * Do not writeback or swap pages for boosted reclaim. The 7476 * intent is to relieve pressure not issue sub-optimal IO 7477 * from reclaim context. If no pages are reclaimed, the 7478 * reclaim will be aborted. 7479 */ 7480 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7481 sc.may_swap = !nr_boost_reclaim; 7482 7483 /* 7484 * Do some background aging, to give pages a chance to be 7485 * referenced before reclaiming. All pages are rotated 7486 * regardless of classzone as this is about consistent aging. 7487 */ 7488 kswapd_age_node(pgdat, &sc); 7489 7490 /* 7491 * If we're getting trouble reclaiming, start doing writepage 7492 * even in laptop mode. 7493 */ 7494 if (sc.priority < DEF_PRIORITY - 2) 7495 sc.may_writepage = 1; 7496 7497 /* Call soft limit reclaim before calling shrink_node. */ 7498 sc.nr_scanned = 0; 7499 nr_soft_scanned = 0; 7500 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7501 sc.gfp_mask, &nr_soft_scanned); 7502 sc.nr_reclaimed += nr_soft_reclaimed; 7503 7504 /* 7505 * There should be no need to raise the scanning priority if 7506 * enough pages are already being scanned that that high 7507 * watermark would be met at 100% efficiency. 7508 */ 7509 if (kswapd_shrink_node(pgdat, &sc)) 7510 raise_priority = false; 7511 7512 /* 7513 * If the low watermark is met there is no need for processes 7514 * to be throttled on pfmemalloc_wait as they should not be 7515 * able to safely make forward progress. Wake them 7516 */ 7517 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7518 allow_direct_reclaim(pgdat)) 7519 wake_up_all(&pgdat->pfmemalloc_wait); 7520 7521 /* Check if kswapd should be suspending */ 7522 __fs_reclaim_release(_THIS_IP_); 7523 ret = try_to_freeze(); 7524 __fs_reclaim_acquire(_THIS_IP_); 7525 if (ret || kthread_should_stop()) 7526 break; 7527 7528 /* 7529 * Raise priority if scanning rate is too low or there was no 7530 * progress in reclaiming pages 7531 */ 7532 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7533 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7534 7535 /* 7536 * If reclaim made no progress for a boost, stop reclaim as 7537 * IO cannot be queued and it could be an infinite loop in 7538 * extreme circumstances. 7539 */ 7540 if (nr_boost_reclaim && !nr_reclaimed) 7541 break; 7542 7543 if (raise_priority || !nr_reclaimed) 7544 sc.priority--; 7545 } while (sc.priority >= 1); 7546 7547 if (!sc.nr_reclaimed) 7548 pgdat->kswapd_failures++; 7549 7550 out: 7551 clear_reclaim_active(pgdat, highest_zoneidx); 7552 7553 /* If reclaim was boosted, account for the reclaim done in this pass */ 7554 if (boosted) { 7555 unsigned long flags; 7556 7557 for (i = 0; i <= highest_zoneidx; i++) { 7558 if (!zone_boosts[i]) 7559 continue; 7560 7561 /* Increments are under the zone lock */ 7562 zone = pgdat->node_zones + i; 7563 spin_lock_irqsave(&zone->lock, flags); 7564 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7565 spin_unlock_irqrestore(&zone->lock, flags); 7566 } 7567 7568 /* 7569 * As there is now likely space, wakeup kcompact to defragment 7570 * pageblocks. 7571 */ 7572 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7573 } 7574 7575 snapshot_refaults(NULL, pgdat); 7576 __fs_reclaim_release(_THIS_IP_); 7577 psi_memstall_leave(&pflags); 7578 set_task_reclaim_state(current, NULL); 7579 7580 /* 7581 * Return the order kswapd stopped reclaiming at as 7582 * prepare_kswapd_sleep() takes it into account. If another caller 7583 * entered the allocator slow path while kswapd was awake, order will 7584 * remain at the higher level. 7585 */ 7586 return sc.order; 7587 } 7588 7589 /* 7590 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7591 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7592 * not a valid index then either kswapd runs for first time or kswapd couldn't 7593 * sleep after previous reclaim attempt (node is still unbalanced). In that 7594 * case return the zone index of the previous kswapd reclaim cycle. 7595 */ 7596 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7597 enum zone_type prev_highest_zoneidx) 7598 { 7599 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7600 7601 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7602 } 7603 7604 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7605 unsigned int highest_zoneidx) 7606 { 7607 long remaining = 0; 7608 DEFINE_WAIT(wait); 7609 7610 if (freezing(current) || kthread_should_stop()) 7611 return; 7612 7613 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7614 7615 /* 7616 * Try to sleep for a short interval. Note that kcompactd will only be 7617 * woken if it is possible to sleep for a short interval. This is 7618 * deliberate on the assumption that if reclaim cannot keep an 7619 * eligible zone balanced that it's also unlikely that compaction will 7620 * succeed. 7621 */ 7622 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7623 /* 7624 * Compaction records what page blocks it recently failed to 7625 * isolate pages from and skips them in the future scanning. 7626 * When kswapd is going to sleep, it is reasonable to assume 7627 * that pages and compaction may succeed so reset the cache. 7628 */ 7629 reset_isolation_suitable(pgdat); 7630 7631 /* 7632 * We have freed the memory, now we should compact it to make 7633 * allocation of the requested order possible. 7634 */ 7635 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7636 7637 remaining = schedule_timeout(HZ/10); 7638 7639 /* 7640 * If woken prematurely then reset kswapd_highest_zoneidx and 7641 * order. The values will either be from a wakeup request or 7642 * the previous request that slept prematurely. 7643 */ 7644 if (remaining) { 7645 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7646 kswapd_highest_zoneidx(pgdat, 7647 highest_zoneidx)); 7648 7649 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7650 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7651 } 7652 7653 finish_wait(&pgdat->kswapd_wait, &wait); 7654 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7655 } 7656 7657 /* 7658 * After a short sleep, check if it was a premature sleep. If not, then 7659 * go fully to sleep until explicitly woken up. 7660 */ 7661 if (!remaining && 7662 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7663 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7664 7665 /* 7666 * vmstat counters are not perfectly accurate and the estimated 7667 * value for counters such as NR_FREE_PAGES can deviate from the 7668 * true value by nr_online_cpus * threshold. To avoid the zone 7669 * watermarks being breached while under pressure, we reduce the 7670 * per-cpu vmstat threshold while kswapd is awake and restore 7671 * them before going back to sleep. 7672 */ 7673 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7674 7675 if (!kthread_should_stop()) 7676 schedule(); 7677 7678 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7679 } else { 7680 if (remaining) 7681 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7682 else 7683 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7684 } 7685 finish_wait(&pgdat->kswapd_wait, &wait); 7686 } 7687 7688 /* 7689 * The background pageout daemon, started as a kernel thread 7690 * from the init process. 7691 * 7692 * This basically trickles out pages so that we have _some_ 7693 * free memory available even if there is no other activity 7694 * that frees anything up. This is needed for things like routing 7695 * etc, where we otherwise might have all activity going on in 7696 * asynchronous contexts that cannot page things out. 7697 * 7698 * If there are applications that are active memory-allocators 7699 * (most normal use), this basically shouldn't matter. 7700 */ 7701 static int kswapd(void *p) 7702 { 7703 unsigned int alloc_order, reclaim_order; 7704 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7705 pg_data_t *pgdat = (pg_data_t *)p; 7706 struct task_struct *tsk = current; 7707 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7708 7709 if (!cpumask_empty(cpumask)) 7710 set_cpus_allowed_ptr(tsk, cpumask); 7711 7712 /* 7713 * Tell the memory management that we're a "memory allocator", 7714 * and that if we need more memory we should get access to it 7715 * regardless (see "__alloc_pages()"). "kswapd" should 7716 * never get caught in the normal page freeing logic. 7717 * 7718 * (Kswapd normally doesn't need memory anyway, but sometimes 7719 * you need a small amount of memory in order to be able to 7720 * page out something else, and this flag essentially protects 7721 * us from recursively trying to free more memory as we're 7722 * trying to free the first piece of memory in the first place). 7723 */ 7724 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7725 set_freezable(); 7726 7727 WRITE_ONCE(pgdat->kswapd_order, 0); 7728 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7729 atomic_set(&pgdat->nr_writeback_throttled, 0); 7730 for ( ; ; ) { 7731 bool ret; 7732 7733 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7734 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7735 highest_zoneidx); 7736 7737 kswapd_try_sleep: 7738 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7739 highest_zoneidx); 7740 7741 /* Read the new order and highest_zoneidx */ 7742 alloc_order = READ_ONCE(pgdat->kswapd_order); 7743 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7744 highest_zoneidx); 7745 WRITE_ONCE(pgdat->kswapd_order, 0); 7746 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7747 7748 ret = try_to_freeze(); 7749 if (kthread_should_stop()) 7750 break; 7751 7752 /* 7753 * We can speed up thawing tasks if we don't call balance_pgdat 7754 * after returning from the refrigerator 7755 */ 7756 if (ret) 7757 continue; 7758 7759 /* 7760 * Reclaim begins at the requested order but if a high-order 7761 * reclaim fails then kswapd falls back to reclaiming for 7762 * order-0. If that happens, kswapd will consider sleeping 7763 * for the order it finished reclaiming at (reclaim_order) 7764 * but kcompactd is woken to compact for the original 7765 * request (alloc_order). 7766 */ 7767 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7768 alloc_order); 7769 reclaim_order = balance_pgdat(pgdat, alloc_order, 7770 highest_zoneidx); 7771 if (reclaim_order < alloc_order) 7772 goto kswapd_try_sleep; 7773 } 7774 7775 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7776 7777 return 0; 7778 } 7779 7780 /* 7781 * A zone is low on free memory or too fragmented for high-order memory. If 7782 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7783 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7784 * has failed or is not needed, still wake up kcompactd if only compaction is 7785 * needed. 7786 */ 7787 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7788 enum zone_type highest_zoneidx) 7789 { 7790 pg_data_t *pgdat; 7791 enum zone_type curr_idx; 7792 7793 if (!managed_zone(zone)) 7794 return; 7795 7796 if (!cpuset_zone_allowed(zone, gfp_flags)) 7797 return; 7798 7799 pgdat = zone->zone_pgdat; 7800 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7801 7802 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7803 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7804 7805 if (READ_ONCE(pgdat->kswapd_order) < order) 7806 WRITE_ONCE(pgdat->kswapd_order, order); 7807 7808 if (!waitqueue_active(&pgdat->kswapd_wait)) 7809 return; 7810 7811 /* Hopeless node, leave it to direct reclaim if possible */ 7812 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7813 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7814 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7815 /* 7816 * There may be plenty of free memory available, but it's too 7817 * fragmented for high-order allocations. Wake up kcompactd 7818 * and rely on compaction_suitable() to determine if it's 7819 * needed. If it fails, it will defer subsequent attempts to 7820 * ratelimit its work. 7821 */ 7822 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7823 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7824 return; 7825 } 7826 7827 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7828 gfp_flags); 7829 wake_up_interruptible(&pgdat->kswapd_wait); 7830 } 7831 7832 #ifdef CONFIG_HIBERNATION 7833 /* 7834 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7835 * freed pages. 7836 * 7837 * Rather than trying to age LRUs the aim is to preserve the overall 7838 * LRU order by reclaiming preferentially 7839 * inactive > active > active referenced > active mapped 7840 */ 7841 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7842 { 7843 struct scan_control sc = { 7844 .nr_to_reclaim = nr_to_reclaim, 7845 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7846 .reclaim_idx = MAX_NR_ZONES - 1, 7847 .priority = DEF_PRIORITY, 7848 .may_writepage = 1, 7849 .may_unmap = 1, 7850 .may_swap = 1, 7851 .hibernation_mode = 1, 7852 }; 7853 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7854 unsigned long nr_reclaimed; 7855 unsigned int noreclaim_flag; 7856 7857 fs_reclaim_acquire(sc.gfp_mask); 7858 noreclaim_flag = memalloc_noreclaim_save(); 7859 set_task_reclaim_state(current, &sc.reclaim_state); 7860 7861 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7862 7863 set_task_reclaim_state(current, NULL); 7864 memalloc_noreclaim_restore(noreclaim_flag); 7865 fs_reclaim_release(sc.gfp_mask); 7866 7867 return nr_reclaimed; 7868 } 7869 #endif /* CONFIG_HIBERNATION */ 7870 7871 /* 7872 * This kswapd start function will be called by init and node-hot-add. 7873 */ 7874 void __meminit kswapd_run(int nid) 7875 { 7876 pg_data_t *pgdat = NODE_DATA(nid); 7877 7878 pgdat_kswapd_lock(pgdat); 7879 if (!pgdat->kswapd) { 7880 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7881 if (IS_ERR(pgdat->kswapd)) { 7882 /* failure at boot is fatal */ 7883 BUG_ON(system_state < SYSTEM_RUNNING); 7884 pr_err("Failed to start kswapd on node %d\n", nid); 7885 pgdat->kswapd = NULL; 7886 } 7887 } 7888 pgdat_kswapd_unlock(pgdat); 7889 } 7890 7891 /* 7892 * Called by memory hotplug when all memory in a node is offlined. Caller must 7893 * be holding mem_hotplug_begin/done(). 7894 */ 7895 void __meminit kswapd_stop(int nid) 7896 { 7897 pg_data_t *pgdat = NODE_DATA(nid); 7898 struct task_struct *kswapd; 7899 7900 pgdat_kswapd_lock(pgdat); 7901 kswapd = pgdat->kswapd; 7902 if (kswapd) { 7903 kthread_stop(kswapd); 7904 pgdat->kswapd = NULL; 7905 } 7906 pgdat_kswapd_unlock(pgdat); 7907 } 7908 7909 static int __init kswapd_init(void) 7910 { 7911 int nid; 7912 7913 swap_setup(); 7914 for_each_node_state(nid, N_MEMORY) 7915 kswapd_run(nid); 7916 return 0; 7917 } 7918 7919 module_init(kswapd_init) 7920 7921 #ifdef CONFIG_NUMA 7922 /* 7923 * Node reclaim mode 7924 * 7925 * If non-zero call node_reclaim when the number of free pages falls below 7926 * the watermarks. 7927 */ 7928 int node_reclaim_mode __read_mostly; 7929 7930 /* 7931 * Priority for NODE_RECLAIM. This determines the fraction of pages 7932 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7933 * a zone. 7934 */ 7935 #define NODE_RECLAIM_PRIORITY 4 7936 7937 /* 7938 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7939 * occur. 7940 */ 7941 int sysctl_min_unmapped_ratio = 1; 7942 7943 /* 7944 * If the number of slab pages in a zone grows beyond this percentage then 7945 * slab reclaim needs to occur. 7946 */ 7947 int sysctl_min_slab_ratio = 5; 7948 7949 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7950 { 7951 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7952 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7953 node_page_state(pgdat, NR_ACTIVE_FILE); 7954 7955 /* 7956 * It's possible for there to be more file mapped pages than 7957 * accounted for by the pages on the file LRU lists because 7958 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7959 */ 7960 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7961 } 7962 7963 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7964 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7965 { 7966 unsigned long nr_pagecache_reclaimable; 7967 unsigned long delta = 0; 7968 7969 /* 7970 * If RECLAIM_UNMAP is set, then all file pages are considered 7971 * potentially reclaimable. Otherwise, we have to worry about 7972 * pages like swapcache and node_unmapped_file_pages() provides 7973 * a better estimate 7974 */ 7975 if (node_reclaim_mode & RECLAIM_UNMAP) 7976 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7977 else 7978 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7979 7980 /* If we can't clean pages, remove dirty pages from consideration */ 7981 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7982 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7983 7984 /* Watch for any possible underflows due to delta */ 7985 if (unlikely(delta > nr_pagecache_reclaimable)) 7986 delta = nr_pagecache_reclaimable; 7987 7988 return nr_pagecache_reclaimable - delta; 7989 } 7990 7991 /* 7992 * Try to free up some pages from this node through reclaim. 7993 */ 7994 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7995 { 7996 /* Minimum pages needed in order to stay on node */ 7997 const unsigned long nr_pages = 1 << order; 7998 struct task_struct *p = current; 7999 unsigned int noreclaim_flag; 8000 struct scan_control sc = { 8001 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 8002 .gfp_mask = current_gfp_context(gfp_mask), 8003 .order = order, 8004 .priority = NODE_RECLAIM_PRIORITY, 8005 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 8006 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 8007 .may_swap = 1, 8008 .reclaim_idx = gfp_zone(gfp_mask), 8009 }; 8010 unsigned long pflags; 8011 8012 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 8013 sc.gfp_mask); 8014 8015 cond_resched(); 8016 psi_memstall_enter(&pflags); 8017 fs_reclaim_acquire(sc.gfp_mask); 8018 /* 8019 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 8020 */ 8021 noreclaim_flag = memalloc_noreclaim_save(); 8022 set_task_reclaim_state(p, &sc.reclaim_state); 8023 8024 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 8025 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 8026 /* 8027 * Free memory by calling shrink node with increasing 8028 * priorities until we have enough memory freed. 8029 */ 8030 do { 8031 shrink_node(pgdat, &sc); 8032 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 8033 } 8034 8035 set_task_reclaim_state(p, NULL); 8036 memalloc_noreclaim_restore(noreclaim_flag); 8037 fs_reclaim_release(sc.gfp_mask); 8038 psi_memstall_leave(&pflags); 8039 8040 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 8041 8042 return sc.nr_reclaimed >= nr_pages; 8043 } 8044 8045 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 8046 { 8047 int ret; 8048 8049 /* 8050 * Node reclaim reclaims unmapped file backed pages and 8051 * slab pages if we are over the defined limits. 8052 * 8053 * A small portion of unmapped file backed pages is needed for 8054 * file I/O otherwise pages read by file I/O will be immediately 8055 * thrown out if the node is overallocated. So we do not reclaim 8056 * if less than a specified percentage of the node is used by 8057 * unmapped file backed pages. 8058 */ 8059 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 8060 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 8061 pgdat->min_slab_pages) 8062 return NODE_RECLAIM_FULL; 8063 8064 /* 8065 * Do not scan if the allocation should not be delayed. 8066 */ 8067 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 8068 return NODE_RECLAIM_NOSCAN; 8069 8070 /* 8071 * Only run node reclaim on the local node or on nodes that do not 8072 * have associated processors. This will favor the local processor 8073 * over remote processors and spread off node memory allocations 8074 * as wide as possible. 8075 */ 8076 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 8077 return NODE_RECLAIM_NOSCAN; 8078 8079 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 8080 return NODE_RECLAIM_NOSCAN; 8081 8082 ret = __node_reclaim(pgdat, gfp_mask, order); 8083 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 8084 8085 if (!ret) 8086 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 8087 8088 return ret; 8089 } 8090 #endif 8091 8092 void check_move_unevictable_pages(struct pagevec *pvec) 8093 { 8094 struct folio_batch fbatch; 8095 unsigned i; 8096 8097 folio_batch_init(&fbatch); 8098 for (i = 0; i < pvec->nr; i++) { 8099 struct page *page = pvec->pages[i]; 8100 8101 if (PageTransTail(page)) 8102 continue; 8103 folio_batch_add(&fbatch, page_folio(page)); 8104 } 8105 check_move_unevictable_folios(&fbatch); 8106 } 8107 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 8108 8109 /** 8110 * check_move_unevictable_folios - Move evictable folios to appropriate zone 8111 * lru list 8112 * @fbatch: Batch of lru folios to check. 8113 * 8114 * Checks folios for evictability, if an evictable folio is in the unevictable 8115 * lru list, moves it to the appropriate evictable lru list. This function 8116 * should be only used for lru folios. 8117 */ 8118 void check_move_unevictable_folios(struct folio_batch *fbatch) 8119 { 8120 struct lruvec *lruvec = NULL; 8121 int pgscanned = 0; 8122 int pgrescued = 0; 8123 int i; 8124 8125 for (i = 0; i < fbatch->nr; i++) { 8126 struct folio *folio = fbatch->folios[i]; 8127 int nr_pages = folio_nr_pages(folio); 8128 8129 pgscanned += nr_pages; 8130 8131 /* block memcg migration while the folio moves between lrus */ 8132 if (!folio_test_clear_lru(folio)) 8133 continue; 8134 8135 lruvec = folio_lruvec_relock_irq(folio, lruvec); 8136 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 8137 lruvec_del_folio(lruvec, folio); 8138 folio_clear_unevictable(folio); 8139 lruvec_add_folio(lruvec, folio); 8140 pgrescued += nr_pages; 8141 } 8142 folio_set_lru(folio); 8143 } 8144 8145 if (lruvec) { 8146 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 8147 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8148 unlock_page_lruvec_irq(lruvec); 8149 } else if (pgscanned) { 8150 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8151 } 8152 } 8153 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 8154