xref: /openbmc/linux/mm/vmscan.c (revision 60eb644b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 	unsigned int may_deactivate:2;
101 	unsigned int force_deactivate:1;
102 	unsigned int skipped_deactivate:1;
103 
104 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
105 	unsigned int may_writepage:1;
106 
107 	/* Can mapped folios be reclaimed? */
108 	unsigned int may_unmap:1;
109 
110 	/* Can folios be swapped as part of reclaim? */
111 	unsigned int may_swap:1;
112 
113 	/* Proactive reclaim invoked by userspace through memory.reclaim */
114 	unsigned int proactive:1;
115 
116 	/*
117 	 * Cgroup memory below memory.low is protected as long as we
118 	 * don't threaten to OOM. If any cgroup is reclaimed at
119 	 * reduced force or passed over entirely due to its memory.low
120 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 	 * result, then go back for one more cycle that reclaims the protected
122 	 * memory (memcg_low_reclaim) to avert OOM.
123 	 */
124 	unsigned int memcg_low_reclaim:1;
125 	unsigned int memcg_low_skipped:1;
126 
127 	unsigned int hibernation_mode:1;
128 
129 	/* One of the zones is ready for compaction */
130 	unsigned int compaction_ready:1;
131 
132 	/* There is easily reclaimable cold cache in the current node */
133 	unsigned int cache_trim_mode:1;
134 
135 	/* The file folios on the current node are dangerously low */
136 	unsigned int file_is_tiny:1;
137 
138 	/* Always discard instead of demoting to lower tier memory */
139 	unsigned int no_demotion:1;
140 
141 	/* Allocation order */
142 	s8 order;
143 
144 	/* Scan (total_size >> priority) pages at once */
145 	s8 priority;
146 
147 	/* The highest zone to isolate folios for reclaim from */
148 	s8 reclaim_idx;
149 
150 	/* This context's GFP mask */
151 	gfp_t gfp_mask;
152 
153 	/* Incremented by the number of inactive pages that were scanned */
154 	unsigned long nr_scanned;
155 
156 	/* Number of pages freed so far during a call to shrink_zones() */
157 	unsigned long nr_reclaimed;
158 
159 	struct {
160 		unsigned int dirty;
161 		unsigned int unqueued_dirty;
162 		unsigned int congested;
163 		unsigned int writeback;
164 		unsigned int immediate;
165 		unsigned int file_taken;
166 		unsigned int taken;
167 	} nr;
168 
169 	/* for recording the reclaimed slab by now */
170 	struct reclaim_state reclaim_state;
171 };
172 
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
175 	do {								\
176 		if ((_folio)->lru.prev != _base) {			\
177 			struct folio *prev;				\
178 									\
179 			prev = lru_to_folio(&(_folio->lru));		\
180 			prefetchw(&prev->_field);			\
181 		}							\
182 	} while (0)
183 #else
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
185 #endif
186 
187 /*
188  * From 0 .. 200.  Higher means more swappy.
189  */
190 int vm_swappiness = 60;
191 
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
196 
197 #ifdef CONFIG_MEMCG
198 static int shrinker_nr_max;
199 
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
202 {
203 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
204 }
205 
206 static inline int shrinker_defer_size(int nr_items)
207 {
208 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
209 }
210 
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
212 						     int nid)
213 {
214 	return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
215 				      &shrinker_srcu,
216 				      lockdep_is_held(&shrinker_mutex));
217 }
218 
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
220 						     int nid)
221 {
222 	return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
223 				&shrinker_srcu);
224 }
225 
226 static void free_shrinker_info_rcu(struct rcu_head *head)
227 {
228 	kvfree(container_of(head, struct shrinker_info, rcu));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size,
234 				    int new_nr_max)
235 {
236 	struct shrinker_info *new, *old;
237 	struct mem_cgroup_per_node *pn;
238 	int nid;
239 	int size = map_size + defer_size;
240 
241 	for_each_node(nid) {
242 		pn = memcg->nodeinfo[nid];
243 		old = shrinker_info_protected(memcg, nid);
244 		/* Not yet online memcg */
245 		if (!old)
246 			return 0;
247 
248 		/* Already expanded this shrinker_info */
249 		if (new_nr_max <= old->map_nr_max)
250 			continue;
251 
252 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
253 		if (!new)
254 			return -ENOMEM;
255 
256 		new->nr_deferred = (atomic_long_t *)(new + 1);
257 		new->map = (void *)new->nr_deferred + defer_size;
258 		new->map_nr_max = new_nr_max;
259 
260 		/* map: set all old bits, clear all new bits */
261 		memset(new->map, (int)0xff, old_map_size);
262 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 		/* nr_deferred: copy old values, clear all new values */
264 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 		memset((void *)new->nr_deferred + old_defer_size, 0,
266 		       defer_size - old_defer_size);
267 
268 		rcu_assign_pointer(pn->shrinker_info, new);
269 		call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
270 	}
271 
272 	return 0;
273 }
274 
275 void free_shrinker_info(struct mem_cgroup *memcg)
276 {
277 	struct mem_cgroup_per_node *pn;
278 	struct shrinker_info *info;
279 	int nid;
280 
281 	for_each_node(nid) {
282 		pn = memcg->nodeinfo[nid];
283 		info = rcu_dereference_protected(pn->shrinker_info, true);
284 		kvfree(info);
285 		rcu_assign_pointer(pn->shrinker_info, NULL);
286 	}
287 }
288 
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
290 {
291 	struct shrinker_info *info;
292 	int nid, size, ret = 0;
293 	int map_size, defer_size = 0;
294 
295 	mutex_lock(&shrinker_mutex);
296 	map_size = shrinker_map_size(shrinker_nr_max);
297 	defer_size = shrinker_defer_size(shrinker_nr_max);
298 	size = map_size + defer_size;
299 	for_each_node(nid) {
300 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
301 		if (!info) {
302 			free_shrinker_info(memcg);
303 			ret = -ENOMEM;
304 			break;
305 		}
306 		info->nr_deferred = (atomic_long_t *)(info + 1);
307 		info->map = (void *)info->nr_deferred + defer_size;
308 		info->map_nr_max = shrinker_nr_max;
309 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
310 	}
311 	mutex_unlock(&shrinker_mutex);
312 
313 	return ret;
314 }
315 
316 static int expand_shrinker_info(int new_id)
317 {
318 	int ret = 0;
319 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 	int map_size, defer_size = 0;
321 	int old_map_size, old_defer_size = 0;
322 	struct mem_cgroup *memcg;
323 
324 	if (!root_mem_cgroup)
325 		goto out;
326 
327 	lockdep_assert_held(&shrinker_mutex);
328 
329 	map_size = shrinker_map_size(new_nr_max);
330 	defer_size = shrinker_defer_size(new_nr_max);
331 	old_map_size = shrinker_map_size(shrinker_nr_max);
332 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
333 
334 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
335 	do {
336 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 					       old_map_size, old_defer_size,
338 					       new_nr_max);
339 		if (ret) {
340 			mem_cgroup_iter_break(NULL, memcg);
341 			goto out;
342 		}
343 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
344 out:
345 	if (!ret)
346 		shrinker_nr_max = new_nr_max;
347 
348 	return ret;
349 }
350 
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352 {
353 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 		struct shrinker_info *info;
355 		int srcu_idx;
356 
357 		srcu_idx = srcu_read_lock(&shrinker_srcu);
358 		info = shrinker_info_srcu(memcg, nid);
359 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 			/* Pairs with smp mb in shrink_slab() */
361 			smp_mb__before_atomic();
362 			set_bit(shrinker_id, info->map);
363 		}
364 		srcu_read_unlock(&shrinker_srcu, srcu_idx);
365 	}
366 }
367 
368 static DEFINE_IDR(shrinker_idr);
369 
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
371 {
372 	int id, ret = -ENOMEM;
373 
374 	if (mem_cgroup_disabled())
375 		return -ENOSYS;
376 
377 	mutex_lock(&shrinker_mutex);
378 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
379 	if (id < 0)
380 		goto unlock;
381 
382 	if (id >= shrinker_nr_max) {
383 		if (expand_shrinker_info(id)) {
384 			idr_remove(&shrinker_idr, id);
385 			goto unlock;
386 		}
387 	}
388 	shrinker->id = id;
389 	ret = 0;
390 unlock:
391 	mutex_unlock(&shrinker_mutex);
392 	return ret;
393 }
394 
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
396 {
397 	int id = shrinker->id;
398 
399 	BUG_ON(id < 0);
400 
401 	lockdep_assert_held(&shrinker_mutex);
402 
403 	idr_remove(&shrinker_idr, id);
404 }
405 
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 				   struct mem_cgroup *memcg)
408 {
409 	struct shrinker_info *info;
410 
411 	info = shrinker_info_srcu(memcg, nid);
412 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
413 }
414 
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 				  struct mem_cgroup *memcg)
417 {
418 	struct shrinker_info *info;
419 
420 	info = shrinker_info_srcu(memcg, nid);
421 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
422 }
423 
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
425 {
426 	int i, nid;
427 	long nr;
428 	struct mem_cgroup *parent;
429 	struct shrinker_info *child_info, *parent_info;
430 
431 	parent = parent_mem_cgroup(memcg);
432 	if (!parent)
433 		parent = root_mem_cgroup;
434 
435 	/* Prevent from concurrent shrinker_info expand */
436 	mutex_lock(&shrinker_mutex);
437 	for_each_node(nid) {
438 		child_info = shrinker_info_protected(memcg, nid);
439 		parent_info = shrinker_info_protected(parent, nid);
440 		for (i = 0; i < child_info->map_nr_max; i++) {
441 			nr = atomic_long_read(&child_info->nr_deferred[i]);
442 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
443 		}
444 	}
445 	mutex_unlock(&shrinker_mutex);
446 }
447 
448 static bool cgroup_reclaim(struct scan_control *sc)
449 {
450 	return sc->target_mem_cgroup;
451 }
452 
453 static bool global_reclaim(struct scan_control *sc)
454 {
455 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
456 }
457 
458 /**
459  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460  * @sc: scan_control in question
461  *
462  * The normal page dirty throttling mechanism in balance_dirty_pages() is
463  * completely broken with the legacy memcg and direct stalling in
464  * shrink_folio_list() is used for throttling instead, which lacks all the
465  * niceties such as fairness, adaptive pausing, bandwidth proportional
466  * allocation and configurability.
467  *
468  * This function tests whether the vmscan currently in progress can assume
469  * that the normal dirty throttling mechanism is operational.
470  */
471 static bool writeback_throttling_sane(struct scan_control *sc)
472 {
473 	if (!cgroup_reclaim(sc))
474 		return true;
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
477 		return true;
478 #endif
479 	return false;
480 }
481 #else
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
483 {
484 	return -ENOSYS;
485 }
486 
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
488 {
489 }
490 
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 				   struct mem_cgroup *memcg)
493 {
494 	return 0;
495 }
496 
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 				  struct mem_cgroup *memcg)
499 {
500 	return 0;
501 }
502 
503 static bool cgroup_reclaim(struct scan_control *sc)
504 {
505 	return false;
506 }
507 
508 static bool global_reclaim(struct scan_control *sc)
509 {
510 	return true;
511 }
512 
513 static bool writeback_throttling_sane(struct scan_control *sc)
514 {
515 	return true;
516 }
517 #endif
518 
519 static void set_task_reclaim_state(struct task_struct *task,
520 				   struct reclaim_state *rs)
521 {
522 	/* Check for an overwrite */
523 	WARN_ON_ONCE(rs && task->reclaim_state);
524 
525 	/* Check for the nulling of an already-nulled member */
526 	WARN_ON_ONCE(!rs && !task->reclaim_state);
527 
528 	task->reclaim_state = rs;
529 }
530 
531 /*
532  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533  * scan_control->nr_reclaimed.
534  */
535 static void flush_reclaim_state(struct scan_control *sc)
536 {
537 	/*
538 	 * Currently, reclaim_state->reclaimed includes three types of pages
539 	 * freed outside of vmscan:
540 	 * (1) Slab pages.
541 	 * (2) Clean file pages from pruned inodes (on highmem systems).
542 	 * (3) XFS freed buffer pages.
543 	 *
544 	 * For all of these cases, we cannot universally link the pages to a
545 	 * single memcg. For example, a memcg-aware shrinker can free one object
546 	 * charged to the target memcg, causing an entire page to be freed.
547 	 * If we count the entire page as reclaimed from the memcg, we end up
548 	 * overestimating the reclaimed amount (potentially under-reclaiming).
549 	 *
550 	 * Only count such pages for global reclaim to prevent under-reclaiming
551 	 * from the target memcg; preventing unnecessary retries during memcg
552 	 * charging and false positives from proactive reclaim.
553 	 *
554 	 * For uncommon cases where the freed pages were actually mostly
555 	 * charged to the target memcg, we end up underestimating the reclaimed
556 	 * amount. This should be fine. The freed pages will be uncharged
557 	 * anyway, even if they are not counted here properly, and we will be
558 	 * able to make forward progress in charging (which is usually in a
559 	 * retry loop).
560 	 *
561 	 * We can go one step further, and report the uncharged objcg pages in
562 	 * memcg reclaim, to make reporting more accurate and reduce
563 	 * underestimation, but it's probably not worth the complexity for now.
564 	 */
565 	if (current->reclaim_state && global_reclaim(sc)) {
566 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 		current->reclaim_state->reclaimed = 0;
568 	}
569 }
570 
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 			     struct shrink_control *sc)
573 {
574 	int nid = sc->nid;
575 
576 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
577 		nid = 0;
578 
579 	if (sc->memcg &&
580 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 		return xchg_nr_deferred_memcg(nid, shrinker,
582 					      sc->memcg);
583 
584 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
585 }
586 
587 
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 			    struct shrink_control *sc)
590 {
591 	int nid = sc->nid;
592 
593 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
594 		nid = 0;
595 
596 	if (sc->memcg &&
597 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 		return add_nr_deferred_memcg(nr, nid, shrinker,
599 					     sc->memcg);
600 
601 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
602 }
603 
604 static bool can_demote(int nid, struct scan_control *sc)
605 {
606 	if (!numa_demotion_enabled)
607 		return false;
608 	if (sc && sc->no_demotion)
609 		return false;
610 	if (next_demotion_node(nid) == NUMA_NO_NODE)
611 		return false;
612 
613 	return true;
614 }
615 
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
617 					  int nid,
618 					  struct scan_control *sc)
619 {
620 	if (memcg == NULL) {
621 		/*
622 		 * For non-memcg reclaim, is there
623 		 * space in any swap device?
624 		 */
625 		if (get_nr_swap_pages() > 0)
626 			return true;
627 	} else {
628 		/* Is the memcg below its swap limit? */
629 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
630 			return true;
631 	}
632 
633 	/*
634 	 * The page can not be swapped.
635 	 *
636 	 * Can it be reclaimed from this node via demotion?
637 	 */
638 	return can_demote(nid, sc);
639 }
640 
641 /*
642  * This misses isolated folios which are not accounted for to save counters.
643  * As the data only determines if reclaim or compaction continues, it is
644  * not expected that isolated folios will be a dominating factor.
645  */
646 unsigned long zone_reclaimable_pages(struct zone *zone)
647 {
648 	unsigned long nr;
649 
650 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
655 
656 	return nr;
657 }
658 
659 /**
660  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
661  * @lruvec: lru vector
662  * @lru: lru to use
663  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
664  */
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
666 				     int zone_idx)
667 {
668 	unsigned long size = 0;
669 	int zid;
670 
671 	for (zid = 0; zid <= zone_idx; zid++) {
672 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
673 
674 		if (!managed_zone(zone))
675 			continue;
676 
677 		if (!mem_cgroup_disabled())
678 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
679 		else
680 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
681 	}
682 	return size;
683 }
684 
685 /*
686  * Add a shrinker callback to be called from the vm.
687  */
688 static int __prealloc_shrinker(struct shrinker *shrinker)
689 {
690 	unsigned int size;
691 	int err;
692 
693 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 		err = prealloc_memcg_shrinker(shrinker);
695 		if (err != -ENOSYS)
696 			return err;
697 
698 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
699 	}
700 
701 	size = sizeof(*shrinker->nr_deferred);
702 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
703 		size *= nr_node_ids;
704 
705 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 	if (!shrinker->nr_deferred)
707 		return -ENOMEM;
708 
709 	return 0;
710 }
711 
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	va_list ap;
716 	int err;
717 
718 	va_start(ap, fmt);
719 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
720 	va_end(ap);
721 	if (!shrinker->name)
722 		return -ENOMEM;
723 
724 	err = __prealloc_shrinker(shrinker);
725 	if (err) {
726 		kfree_const(shrinker->name);
727 		shrinker->name = NULL;
728 	}
729 
730 	return err;
731 }
732 #else
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
734 {
735 	return __prealloc_shrinker(shrinker);
736 }
737 #endif
738 
739 void free_prealloced_shrinker(struct shrinker *shrinker)
740 {
741 #ifdef CONFIG_SHRINKER_DEBUG
742 	kfree_const(shrinker->name);
743 	shrinker->name = NULL;
744 #endif
745 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 		mutex_lock(&shrinker_mutex);
747 		unregister_memcg_shrinker(shrinker);
748 		mutex_unlock(&shrinker_mutex);
749 		return;
750 	}
751 
752 	kfree(shrinker->nr_deferred);
753 	shrinker->nr_deferred = NULL;
754 }
755 
756 void register_shrinker_prepared(struct shrinker *shrinker)
757 {
758 	mutex_lock(&shrinker_mutex);
759 	list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 	shrinker->flags |= SHRINKER_REGISTERED;
761 	shrinker_debugfs_add(shrinker);
762 	mutex_unlock(&shrinker_mutex);
763 }
764 
765 static int __register_shrinker(struct shrinker *shrinker)
766 {
767 	int err = __prealloc_shrinker(shrinker);
768 
769 	if (err)
770 		return err;
771 	register_shrinker_prepared(shrinker);
772 	return 0;
773 }
774 
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
777 {
778 	va_list ap;
779 	int err;
780 
781 	va_start(ap, fmt);
782 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
783 	va_end(ap);
784 	if (!shrinker->name)
785 		return -ENOMEM;
786 
787 	err = __register_shrinker(shrinker);
788 	if (err) {
789 		kfree_const(shrinker->name);
790 		shrinker->name = NULL;
791 	}
792 	return err;
793 }
794 #else
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
796 {
797 	return __register_shrinker(shrinker);
798 }
799 #endif
800 EXPORT_SYMBOL(register_shrinker);
801 
802 /*
803  * Remove one
804  */
805 void unregister_shrinker(struct shrinker *shrinker)
806 {
807 	struct dentry *debugfs_entry;
808 	int debugfs_id;
809 
810 	if (!(shrinker->flags & SHRINKER_REGISTERED))
811 		return;
812 
813 	mutex_lock(&shrinker_mutex);
814 	list_del_rcu(&shrinker->list);
815 	shrinker->flags &= ~SHRINKER_REGISTERED;
816 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
817 		unregister_memcg_shrinker(shrinker);
818 	debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
819 	mutex_unlock(&shrinker_mutex);
820 
821 	atomic_inc(&shrinker_srcu_generation);
822 	synchronize_srcu(&shrinker_srcu);
823 
824 	shrinker_debugfs_remove(debugfs_entry, debugfs_id);
825 
826 	kfree(shrinker->nr_deferred);
827 	shrinker->nr_deferred = NULL;
828 }
829 EXPORT_SYMBOL(unregister_shrinker);
830 
831 /**
832  * synchronize_shrinkers - Wait for all running shrinkers to complete.
833  *
834  * This is useful to guarantee that all shrinker invocations have seen an
835  * update, before freeing memory.
836  */
837 void synchronize_shrinkers(void)
838 {
839 	atomic_inc(&shrinker_srcu_generation);
840 	synchronize_srcu(&shrinker_srcu);
841 }
842 EXPORT_SYMBOL(synchronize_shrinkers);
843 
844 #define SHRINK_BATCH 128
845 
846 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
847 				    struct shrinker *shrinker, int priority)
848 {
849 	unsigned long freed = 0;
850 	unsigned long long delta;
851 	long total_scan;
852 	long freeable;
853 	long nr;
854 	long new_nr;
855 	long batch_size = shrinker->batch ? shrinker->batch
856 					  : SHRINK_BATCH;
857 	long scanned = 0, next_deferred;
858 
859 	freeable = shrinker->count_objects(shrinker, shrinkctl);
860 	if (freeable == 0 || freeable == SHRINK_EMPTY)
861 		return freeable;
862 
863 	/*
864 	 * copy the current shrinker scan count into a local variable
865 	 * and zero it so that other concurrent shrinker invocations
866 	 * don't also do this scanning work.
867 	 */
868 	nr = xchg_nr_deferred(shrinker, shrinkctl);
869 
870 	if (shrinker->seeks) {
871 		delta = freeable >> priority;
872 		delta *= 4;
873 		do_div(delta, shrinker->seeks);
874 	} else {
875 		/*
876 		 * These objects don't require any IO to create. Trim
877 		 * them aggressively under memory pressure to keep
878 		 * them from causing refetches in the IO caches.
879 		 */
880 		delta = freeable / 2;
881 	}
882 
883 	total_scan = nr >> priority;
884 	total_scan += delta;
885 	total_scan = min(total_scan, (2 * freeable));
886 
887 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
888 				   freeable, delta, total_scan, priority);
889 
890 	/*
891 	 * Normally, we should not scan less than batch_size objects in one
892 	 * pass to avoid too frequent shrinker calls, but if the slab has less
893 	 * than batch_size objects in total and we are really tight on memory,
894 	 * we will try to reclaim all available objects, otherwise we can end
895 	 * up failing allocations although there are plenty of reclaimable
896 	 * objects spread over several slabs with usage less than the
897 	 * batch_size.
898 	 *
899 	 * We detect the "tight on memory" situations by looking at the total
900 	 * number of objects we want to scan (total_scan). If it is greater
901 	 * than the total number of objects on slab (freeable), we must be
902 	 * scanning at high prio and therefore should try to reclaim as much as
903 	 * possible.
904 	 */
905 	while (total_scan >= batch_size ||
906 	       total_scan >= freeable) {
907 		unsigned long ret;
908 		unsigned long nr_to_scan = min(batch_size, total_scan);
909 
910 		shrinkctl->nr_to_scan = nr_to_scan;
911 		shrinkctl->nr_scanned = nr_to_scan;
912 		ret = shrinker->scan_objects(shrinker, shrinkctl);
913 		if (ret == SHRINK_STOP)
914 			break;
915 		freed += ret;
916 
917 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
918 		total_scan -= shrinkctl->nr_scanned;
919 		scanned += shrinkctl->nr_scanned;
920 
921 		cond_resched();
922 	}
923 
924 	/*
925 	 * The deferred work is increased by any new work (delta) that wasn't
926 	 * done, decreased by old deferred work that was done now.
927 	 *
928 	 * And it is capped to two times of the freeable items.
929 	 */
930 	next_deferred = max_t(long, (nr + delta - scanned), 0);
931 	next_deferred = min(next_deferred, (2 * freeable));
932 
933 	/*
934 	 * move the unused scan count back into the shrinker in a
935 	 * manner that handles concurrent updates.
936 	 */
937 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
938 
939 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
940 	return freed;
941 }
942 
943 #ifdef CONFIG_MEMCG
944 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
945 			struct mem_cgroup *memcg, int priority)
946 {
947 	struct shrinker_info *info;
948 	unsigned long ret, freed = 0;
949 	int srcu_idx, generation;
950 	int i = 0;
951 
952 	if (!mem_cgroup_online(memcg))
953 		return 0;
954 
955 again:
956 	srcu_idx = srcu_read_lock(&shrinker_srcu);
957 	info = shrinker_info_srcu(memcg, nid);
958 	if (unlikely(!info))
959 		goto unlock;
960 
961 	generation = atomic_read(&shrinker_srcu_generation);
962 	for_each_set_bit_from(i, info->map, info->map_nr_max) {
963 		struct shrink_control sc = {
964 			.gfp_mask = gfp_mask,
965 			.nid = nid,
966 			.memcg = memcg,
967 		};
968 		struct shrinker *shrinker;
969 
970 		shrinker = idr_find(&shrinker_idr, i);
971 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
972 			if (!shrinker)
973 				clear_bit(i, info->map);
974 			continue;
975 		}
976 
977 		/* Call non-slab shrinkers even though kmem is disabled */
978 		if (!memcg_kmem_online() &&
979 		    !(shrinker->flags & SHRINKER_NONSLAB))
980 			continue;
981 
982 		ret = do_shrink_slab(&sc, shrinker, priority);
983 		if (ret == SHRINK_EMPTY) {
984 			clear_bit(i, info->map);
985 			/*
986 			 * After the shrinker reported that it had no objects to
987 			 * free, but before we cleared the corresponding bit in
988 			 * the memcg shrinker map, a new object might have been
989 			 * added. To make sure, we have the bit set in this
990 			 * case, we invoke the shrinker one more time and reset
991 			 * the bit if it reports that it is not empty anymore.
992 			 * The memory barrier here pairs with the barrier in
993 			 * set_shrinker_bit():
994 			 *
995 			 * list_lru_add()     shrink_slab_memcg()
996 			 *   list_add_tail()    clear_bit()
997 			 *   <MB>               <MB>
998 			 *   set_bit()          do_shrink_slab()
999 			 */
1000 			smp_mb__after_atomic();
1001 			ret = do_shrink_slab(&sc, shrinker, priority);
1002 			if (ret == SHRINK_EMPTY)
1003 				ret = 0;
1004 			else
1005 				set_shrinker_bit(memcg, nid, i);
1006 		}
1007 		freed += ret;
1008 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1009 			srcu_read_unlock(&shrinker_srcu, srcu_idx);
1010 			i++;
1011 			goto again;
1012 		}
1013 	}
1014 unlock:
1015 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1016 	return freed;
1017 }
1018 #else /* CONFIG_MEMCG */
1019 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1020 			struct mem_cgroup *memcg, int priority)
1021 {
1022 	return 0;
1023 }
1024 #endif /* CONFIG_MEMCG */
1025 
1026 /**
1027  * shrink_slab - shrink slab caches
1028  * @gfp_mask: allocation context
1029  * @nid: node whose slab caches to target
1030  * @memcg: memory cgroup whose slab caches to target
1031  * @priority: the reclaim priority
1032  *
1033  * Call the shrink functions to age shrinkable caches.
1034  *
1035  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1036  * unaware shrinkers will receive a node id of 0 instead.
1037  *
1038  * @memcg specifies the memory cgroup to target. Unaware shrinkers
1039  * are called only if it is the root cgroup.
1040  *
1041  * @priority is sc->priority, we take the number of objects and >> by priority
1042  * in order to get the scan target.
1043  *
1044  * Returns the number of reclaimed slab objects.
1045  */
1046 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1047 				 struct mem_cgroup *memcg,
1048 				 int priority)
1049 {
1050 	unsigned long ret, freed = 0;
1051 	struct shrinker *shrinker;
1052 	int srcu_idx, generation;
1053 
1054 	/*
1055 	 * The root memcg might be allocated even though memcg is disabled
1056 	 * via "cgroup_disable=memory" boot parameter.  This could make
1057 	 * mem_cgroup_is_root() return false, then just run memcg slab
1058 	 * shrink, but skip global shrink.  This may result in premature
1059 	 * oom.
1060 	 */
1061 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1062 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1063 
1064 	srcu_idx = srcu_read_lock(&shrinker_srcu);
1065 
1066 	generation = atomic_read(&shrinker_srcu_generation);
1067 	list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1068 				 srcu_read_lock_held(&shrinker_srcu)) {
1069 		struct shrink_control sc = {
1070 			.gfp_mask = gfp_mask,
1071 			.nid = nid,
1072 			.memcg = memcg,
1073 		};
1074 
1075 		ret = do_shrink_slab(&sc, shrinker, priority);
1076 		if (ret == SHRINK_EMPTY)
1077 			ret = 0;
1078 		freed += ret;
1079 
1080 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1081 			freed = freed ? : 1;
1082 			break;
1083 		}
1084 	}
1085 
1086 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1087 	cond_resched();
1088 	return freed;
1089 }
1090 
1091 static unsigned long drop_slab_node(int nid)
1092 {
1093 	unsigned long freed = 0;
1094 	struct mem_cgroup *memcg = NULL;
1095 
1096 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1097 	do {
1098 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1099 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1100 
1101 	return freed;
1102 }
1103 
1104 void drop_slab(void)
1105 {
1106 	int nid;
1107 	int shift = 0;
1108 	unsigned long freed;
1109 
1110 	do {
1111 		freed = 0;
1112 		for_each_online_node(nid) {
1113 			if (fatal_signal_pending(current))
1114 				return;
1115 
1116 			freed += drop_slab_node(nid);
1117 		}
1118 	} while ((freed >> shift++) > 1);
1119 }
1120 
1121 static int reclaimer_offset(void)
1122 {
1123 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1124 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1125 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1126 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1127 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1128 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1129 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1130 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1131 
1132 	if (current_is_kswapd())
1133 		return 0;
1134 	if (current_is_khugepaged())
1135 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1136 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1137 }
1138 
1139 static inline int is_page_cache_freeable(struct folio *folio)
1140 {
1141 	/*
1142 	 * A freeable page cache folio is referenced only by the caller
1143 	 * that isolated the folio, the page cache and optional filesystem
1144 	 * private data at folio->private.
1145 	 */
1146 	return folio_ref_count(folio) - folio_test_private(folio) ==
1147 		1 + folio_nr_pages(folio);
1148 }
1149 
1150 /*
1151  * We detected a synchronous write error writing a folio out.  Probably
1152  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1153  * fsync(), msync() or close().
1154  *
1155  * The tricky part is that after writepage we cannot touch the mapping: nothing
1156  * prevents it from being freed up.  But we have a ref on the folio and once
1157  * that folio is locked, the mapping is pinned.
1158  *
1159  * We're allowed to run sleeping folio_lock() here because we know the caller has
1160  * __GFP_FS.
1161  */
1162 static void handle_write_error(struct address_space *mapping,
1163 				struct folio *folio, int error)
1164 {
1165 	folio_lock(folio);
1166 	if (folio_mapping(folio) == mapping)
1167 		mapping_set_error(mapping, error);
1168 	folio_unlock(folio);
1169 }
1170 
1171 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1172 {
1173 	int reclaimable = 0, write_pending = 0;
1174 	int i;
1175 
1176 	/*
1177 	 * If kswapd is disabled, reschedule if necessary but do not
1178 	 * throttle as the system is likely near OOM.
1179 	 */
1180 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1181 		return true;
1182 
1183 	/*
1184 	 * If there are a lot of dirty/writeback folios then do not
1185 	 * throttle as throttling will occur when the folios cycle
1186 	 * towards the end of the LRU if still under writeback.
1187 	 */
1188 	for (i = 0; i < MAX_NR_ZONES; i++) {
1189 		struct zone *zone = pgdat->node_zones + i;
1190 
1191 		if (!managed_zone(zone))
1192 			continue;
1193 
1194 		reclaimable += zone_reclaimable_pages(zone);
1195 		write_pending += zone_page_state_snapshot(zone,
1196 						  NR_ZONE_WRITE_PENDING);
1197 	}
1198 	if (2 * write_pending <= reclaimable)
1199 		return true;
1200 
1201 	return false;
1202 }
1203 
1204 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1205 {
1206 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1207 	long timeout, ret;
1208 	DEFINE_WAIT(wait);
1209 
1210 	/*
1211 	 * Do not throttle user workers, kthreads other than kswapd or
1212 	 * workqueues. They may be required for reclaim to make
1213 	 * forward progress (e.g. journalling workqueues or kthreads).
1214 	 */
1215 	if (!current_is_kswapd() &&
1216 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1217 		cond_resched();
1218 		return;
1219 	}
1220 
1221 	/*
1222 	 * These figures are pulled out of thin air.
1223 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1224 	 * parallel reclaimers which is a short-lived event so the timeout is
1225 	 * short. Failing to make progress or waiting on writeback are
1226 	 * potentially long-lived events so use a longer timeout. This is shaky
1227 	 * logic as a failure to make progress could be due to anything from
1228 	 * writeback to a slow device to excessive referenced folios at the tail
1229 	 * of the inactive LRU.
1230 	 */
1231 	switch(reason) {
1232 	case VMSCAN_THROTTLE_WRITEBACK:
1233 		timeout = HZ/10;
1234 
1235 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1236 			WRITE_ONCE(pgdat->nr_reclaim_start,
1237 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1238 		}
1239 
1240 		break;
1241 	case VMSCAN_THROTTLE_CONGESTED:
1242 		fallthrough;
1243 	case VMSCAN_THROTTLE_NOPROGRESS:
1244 		if (skip_throttle_noprogress(pgdat)) {
1245 			cond_resched();
1246 			return;
1247 		}
1248 
1249 		timeout = 1;
1250 
1251 		break;
1252 	case VMSCAN_THROTTLE_ISOLATED:
1253 		timeout = HZ/50;
1254 		break;
1255 	default:
1256 		WARN_ON_ONCE(1);
1257 		timeout = HZ;
1258 		break;
1259 	}
1260 
1261 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1262 	ret = schedule_timeout(timeout);
1263 	finish_wait(wqh, &wait);
1264 
1265 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1266 		atomic_dec(&pgdat->nr_writeback_throttled);
1267 
1268 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1269 				jiffies_to_usecs(timeout - ret),
1270 				reason);
1271 }
1272 
1273 /*
1274  * Account for folios written if tasks are throttled waiting on dirty
1275  * folios to clean. If enough folios have been cleaned since throttling
1276  * started then wakeup the throttled tasks.
1277  */
1278 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1279 							int nr_throttled)
1280 {
1281 	unsigned long nr_written;
1282 
1283 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1284 
1285 	/*
1286 	 * This is an inaccurate read as the per-cpu deltas may not
1287 	 * be synchronised. However, given that the system is
1288 	 * writeback throttled, it is not worth taking the penalty
1289 	 * of getting an accurate count. At worst, the throttle
1290 	 * timeout guarantees forward progress.
1291 	 */
1292 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1293 		READ_ONCE(pgdat->nr_reclaim_start);
1294 
1295 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1296 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1297 }
1298 
1299 /* possible outcome of pageout() */
1300 typedef enum {
1301 	/* failed to write folio out, folio is locked */
1302 	PAGE_KEEP,
1303 	/* move folio to the active list, folio is locked */
1304 	PAGE_ACTIVATE,
1305 	/* folio has been sent to the disk successfully, folio is unlocked */
1306 	PAGE_SUCCESS,
1307 	/* folio is clean and locked */
1308 	PAGE_CLEAN,
1309 } pageout_t;
1310 
1311 /*
1312  * pageout is called by shrink_folio_list() for each dirty folio.
1313  * Calls ->writepage().
1314  */
1315 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1316 			 struct swap_iocb **plug)
1317 {
1318 	/*
1319 	 * If the folio is dirty, only perform writeback if that write
1320 	 * will be non-blocking.  To prevent this allocation from being
1321 	 * stalled by pagecache activity.  But note that there may be
1322 	 * stalls if we need to run get_block().  We could test
1323 	 * PagePrivate for that.
1324 	 *
1325 	 * If this process is currently in __generic_file_write_iter() against
1326 	 * this folio's queue, we can perform writeback even if that
1327 	 * will block.
1328 	 *
1329 	 * If the folio is swapcache, write it back even if that would
1330 	 * block, for some throttling. This happens by accident, because
1331 	 * swap_backing_dev_info is bust: it doesn't reflect the
1332 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1333 	 */
1334 	if (!is_page_cache_freeable(folio))
1335 		return PAGE_KEEP;
1336 	if (!mapping) {
1337 		/*
1338 		 * Some data journaling orphaned folios can have
1339 		 * folio->mapping == NULL while being dirty with clean buffers.
1340 		 */
1341 		if (folio_test_private(folio)) {
1342 			if (try_to_free_buffers(folio)) {
1343 				folio_clear_dirty(folio);
1344 				pr_info("%s: orphaned folio\n", __func__);
1345 				return PAGE_CLEAN;
1346 			}
1347 		}
1348 		return PAGE_KEEP;
1349 	}
1350 	if (mapping->a_ops->writepage == NULL)
1351 		return PAGE_ACTIVATE;
1352 
1353 	if (folio_clear_dirty_for_io(folio)) {
1354 		int res;
1355 		struct writeback_control wbc = {
1356 			.sync_mode = WB_SYNC_NONE,
1357 			.nr_to_write = SWAP_CLUSTER_MAX,
1358 			.range_start = 0,
1359 			.range_end = LLONG_MAX,
1360 			.for_reclaim = 1,
1361 			.swap_plug = plug,
1362 		};
1363 
1364 		folio_set_reclaim(folio);
1365 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1366 		if (res < 0)
1367 			handle_write_error(mapping, folio, res);
1368 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1369 			folio_clear_reclaim(folio);
1370 			return PAGE_ACTIVATE;
1371 		}
1372 
1373 		if (!folio_test_writeback(folio)) {
1374 			/* synchronous write or broken a_ops? */
1375 			folio_clear_reclaim(folio);
1376 		}
1377 		trace_mm_vmscan_write_folio(folio);
1378 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1379 		return PAGE_SUCCESS;
1380 	}
1381 
1382 	return PAGE_CLEAN;
1383 }
1384 
1385 /*
1386  * Same as remove_mapping, but if the folio is removed from the mapping, it
1387  * gets returned with a refcount of 0.
1388  */
1389 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1390 			    bool reclaimed, struct mem_cgroup *target_memcg)
1391 {
1392 	int refcount;
1393 	void *shadow = NULL;
1394 
1395 	BUG_ON(!folio_test_locked(folio));
1396 	BUG_ON(mapping != folio_mapping(folio));
1397 
1398 	if (!folio_test_swapcache(folio))
1399 		spin_lock(&mapping->host->i_lock);
1400 	xa_lock_irq(&mapping->i_pages);
1401 	/*
1402 	 * The non racy check for a busy folio.
1403 	 *
1404 	 * Must be careful with the order of the tests. When someone has
1405 	 * a ref to the folio, it may be possible that they dirty it then
1406 	 * drop the reference. So if the dirty flag is tested before the
1407 	 * refcount here, then the following race may occur:
1408 	 *
1409 	 * get_user_pages(&page);
1410 	 * [user mapping goes away]
1411 	 * write_to(page);
1412 	 *				!folio_test_dirty(folio)    [good]
1413 	 * folio_set_dirty(folio);
1414 	 * folio_put(folio);
1415 	 *				!refcount(folio)   [good, discard it]
1416 	 *
1417 	 * [oops, our write_to data is lost]
1418 	 *
1419 	 * Reversing the order of the tests ensures such a situation cannot
1420 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1421 	 * load is not satisfied before that of folio->_refcount.
1422 	 *
1423 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1424 	 * and thus under the i_pages lock, then this ordering is not required.
1425 	 */
1426 	refcount = 1 + folio_nr_pages(folio);
1427 	if (!folio_ref_freeze(folio, refcount))
1428 		goto cannot_free;
1429 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1430 	if (unlikely(folio_test_dirty(folio))) {
1431 		folio_ref_unfreeze(folio, refcount);
1432 		goto cannot_free;
1433 	}
1434 
1435 	if (folio_test_swapcache(folio)) {
1436 		swp_entry_t swap = folio_swap_entry(folio);
1437 
1438 		if (reclaimed && !mapping_exiting(mapping))
1439 			shadow = workingset_eviction(folio, target_memcg);
1440 		__delete_from_swap_cache(folio, swap, shadow);
1441 		mem_cgroup_swapout(folio, swap);
1442 		xa_unlock_irq(&mapping->i_pages);
1443 		put_swap_folio(folio, swap);
1444 	} else {
1445 		void (*free_folio)(struct folio *);
1446 
1447 		free_folio = mapping->a_ops->free_folio;
1448 		/*
1449 		 * Remember a shadow entry for reclaimed file cache in
1450 		 * order to detect refaults, thus thrashing, later on.
1451 		 *
1452 		 * But don't store shadows in an address space that is
1453 		 * already exiting.  This is not just an optimization,
1454 		 * inode reclaim needs to empty out the radix tree or
1455 		 * the nodes are lost.  Don't plant shadows behind its
1456 		 * back.
1457 		 *
1458 		 * We also don't store shadows for DAX mappings because the
1459 		 * only page cache folios found in these are zero pages
1460 		 * covering holes, and because we don't want to mix DAX
1461 		 * exceptional entries and shadow exceptional entries in the
1462 		 * same address_space.
1463 		 */
1464 		if (reclaimed && folio_is_file_lru(folio) &&
1465 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1466 			shadow = workingset_eviction(folio, target_memcg);
1467 		__filemap_remove_folio(folio, shadow);
1468 		xa_unlock_irq(&mapping->i_pages);
1469 		if (mapping_shrinkable(mapping))
1470 			inode_add_lru(mapping->host);
1471 		spin_unlock(&mapping->host->i_lock);
1472 
1473 		if (free_folio)
1474 			free_folio(folio);
1475 	}
1476 
1477 	return 1;
1478 
1479 cannot_free:
1480 	xa_unlock_irq(&mapping->i_pages);
1481 	if (!folio_test_swapcache(folio))
1482 		spin_unlock(&mapping->host->i_lock);
1483 	return 0;
1484 }
1485 
1486 /**
1487  * remove_mapping() - Attempt to remove a folio from its mapping.
1488  * @mapping: The address space.
1489  * @folio: The folio to remove.
1490  *
1491  * If the folio is dirty, under writeback or if someone else has a ref
1492  * on it, removal will fail.
1493  * Return: The number of pages removed from the mapping.  0 if the folio
1494  * could not be removed.
1495  * Context: The caller should have a single refcount on the folio and
1496  * hold its lock.
1497  */
1498 long remove_mapping(struct address_space *mapping, struct folio *folio)
1499 {
1500 	if (__remove_mapping(mapping, folio, false, NULL)) {
1501 		/*
1502 		 * Unfreezing the refcount with 1 effectively
1503 		 * drops the pagecache ref for us without requiring another
1504 		 * atomic operation.
1505 		 */
1506 		folio_ref_unfreeze(folio, 1);
1507 		return folio_nr_pages(folio);
1508 	}
1509 	return 0;
1510 }
1511 
1512 /**
1513  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1514  * @folio: Folio to be returned to an LRU list.
1515  *
1516  * Add previously isolated @folio to appropriate LRU list.
1517  * The folio may still be unevictable for other reasons.
1518  *
1519  * Context: lru_lock must not be held, interrupts must be enabled.
1520  */
1521 void folio_putback_lru(struct folio *folio)
1522 {
1523 	folio_add_lru(folio);
1524 	folio_put(folio);		/* drop ref from isolate */
1525 }
1526 
1527 enum folio_references {
1528 	FOLIOREF_RECLAIM,
1529 	FOLIOREF_RECLAIM_CLEAN,
1530 	FOLIOREF_KEEP,
1531 	FOLIOREF_ACTIVATE,
1532 };
1533 
1534 static enum folio_references folio_check_references(struct folio *folio,
1535 						  struct scan_control *sc)
1536 {
1537 	int referenced_ptes, referenced_folio;
1538 	unsigned long vm_flags;
1539 
1540 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1541 					   &vm_flags);
1542 	referenced_folio = folio_test_clear_referenced(folio);
1543 
1544 	/*
1545 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1546 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1547 	 */
1548 	if (vm_flags & VM_LOCKED)
1549 		return FOLIOREF_ACTIVATE;
1550 
1551 	/* rmap lock contention: rotate */
1552 	if (referenced_ptes == -1)
1553 		return FOLIOREF_KEEP;
1554 
1555 	if (referenced_ptes) {
1556 		/*
1557 		 * All mapped folios start out with page table
1558 		 * references from the instantiating fault, so we need
1559 		 * to look twice if a mapped file/anon folio is used more
1560 		 * than once.
1561 		 *
1562 		 * Mark it and spare it for another trip around the
1563 		 * inactive list.  Another page table reference will
1564 		 * lead to its activation.
1565 		 *
1566 		 * Note: the mark is set for activated folios as well
1567 		 * so that recently deactivated but used folios are
1568 		 * quickly recovered.
1569 		 */
1570 		folio_set_referenced(folio);
1571 
1572 		if (referenced_folio || referenced_ptes > 1)
1573 			return FOLIOREF_ACTIVATE;
1574 
1575 		/*
1576 		 * Activate file-backed executable folios after first usage.
1577 		 */
1578 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1579 			return FOLIOREF_ACTIVATE;
1580 
1581 		return FOLIOREF_KEEP;
1582 	}
1583 
1584 	/* Reclaim if clean, defer dirty folios to writeback */
1585 	if (referenced_folio && folio_is_file_lru(folio))
1586 		return FOLIOREF_RECLAIM_CLEAN;
1587 
1588 	return FOLIOREF_RECLAIM;
1589 }
1590 
1591 /* Check if a folio is dirty or under writeback */
1592 static void folio_check_dirty_writeback(struct folio *folio,
1593 				       bool *dirty, bool *writeback)
1594 {
1595 	struct address_space *mapping;
1596 
1597 	/*
1598 	 * Anonymous folios are not handled by flushers and must be written
1599 	 * from reclaim context. Do not stall reclaim based on them.
1600 	 * MADV_FREE anonymous folios are put into inactive file list too.
1601 	 * They could be mistakenly treated as file lru. So further anon
1602 	 * test is needed.
1603 	 */
1604 	if (!folio_is_file_lru(folio) ||
1605 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1606 		*dirty = false;
1607 		*writeback = false;
1608 		return;
1609 	}
1610 
1611 	/* By default assume that the folio flags are accurate */
1612 	*dirty = folio_test_dirty(folio);
1613 	*writeback = folio_test_writeback(folio);
1614 
1615 	/* Verify dirty/writeback state if the filesystem supports it */
1616 	if (!folio_test_private(folio))
1617 		return;
1618 
1619 	mapping = folio_mapping(folio);
1620 	if (mapping && mapping->a_ops->is_dirty_writeback)
1621 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1622 }
1623 
1624 static struct folio *alloc_demote_folio(struct folio *src,
1625 		unsigned long private)
1626 {
1627 	struct folio *dst;
1628 	nodemask_t *allowed_mask;
1629 	struct migration_target_control *mtc;
1630 
1631 	mtc = (struct migration_target_control *)private;
1632 
1633 	allowed_mask = mtc->nmask;
1634 	/*
1635 	 * make sure we allocate from the target node first also trying to
1636 	 * demote or reclaim pages from the target node via kswapd if we are
1637 	 * low on free memory on target node. If we don't do this and if
1638 	 * we have free memory on the slower(lower) memtier, we would start
1639 	 * allocating pages from slower(lower) memory tiers without even forcing
1640 	 * a demotion of cold pages from the target memtier. This can result
1641 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1642 	 */
1643 	mtc->nmask = NULL;
1644 	mtc->gfp_mask |= __GFP_THISNODE;
1645 	dst = alloc_migration_target(src, (unsigned long)mtc);
1646 	if (dst)
1647 		return dst;
1648 
1649 	mtc->gfp_mask &= ~__GFP_THISNODE;
1650 	mtc->nmask = allowed_mask;
1651 
1652 	return alloc_migration_target(src, (unsigned long)mtc);
1653 }
1654 
1655 /*
1656  * Take folios on @demote_folios and attempt to demote them to another node.
1657  * Folios which are not demoted are left on @demote_folios.
1658  */
1659 static unsigned int demote_folio_list(struct list_head *demote_folios,
1660 				     struct pglist_data *pgdat)
1661 {
1662 	int target_nid = next_demotion_node(pgdat->node_id);
1663 	unsigned int nr_succeeded;
1664 	nodemask_t allowed_mask;
1665 
1666 	struct migration_target_control mtc = {
1667 		/*
1668 		 * Allocate from 'node', or fail quickly and quietly.
1669 		 * When this happens, 'page' will likely just be discarded
1670 		 * instead of migrated.
1671 		 */
1672 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1673 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1674 		.nid = target_nid,
1675 		.nmask = &allowed_mask
1676 	};
1677 
1678 	if (list_empty(demote_folios))
1679 		return 0;
1680 
1681 	if (target_nid == NUMA_NO_NODE)
1682 		return 0;
1683 
1684 	node_get_allowed_targets(pgdat, &allowed_mask);
1685 
1686 	/* Demotion ignores all cpuset and mempolicy settings */
1687 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
1688 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1689 		      &nr_succeeded);
1690 
1691 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1692 
1693 	return nr_succeeded;
1694 }
1695 
1696 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1697 {
1698 	if (gfp_mask & __GFP_FS)
1699 		return true;
1700 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1701 		return false;
1702 	/*
1703 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1704 	 * providing this isn't SWP_FS_OPS.
1705 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1706 	 * but that will never affect SWP_FS_OPS, so the data_race
1707 	 * is safe.
1708 	 */
1709 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1710 }
1711 
1712 /*
1713  * shrink_folio_list() returns the number of reclaimed pages
1714  */
1715 static unsigned int shrink_folio_list(struct list_head *folio_list,
1716 		struct pglist_data *pgdat, struct scan_control *sc,
1717 		struct reclaim_stat *stat, bool ignore_references)
1718 {
1719 	LIST_HEAD(ret_folios);
1720 	LIST_HEAD(free_folios);
1721 	LIST_HEAD(demote_folios);
1722 	unsigned int nr_reclaimed = 0;
1723 	unsigned int pgactivate = 0;
1724 	bool do_demote_pass;
1725 	struct swap_iocb *plug = NULL;
1726 
1727 	memset(stat, 0, sizeof(*stat));
1728 	cond_resched();
1729 	do_demote_pass = can_demote(pgdat->node_id, sc);
1730 
1731 retry:
1732 	while (!list_empty(folio_list)) {
1733 		struct address_space *mapping;
1734 		struct folio *folio;
1735 		enum folio_references references = FOLIOREF_RECLAIM;
1736 		bool dirty, writeback;
1737 		unsigned int nr_pages;
1738 
1739 		cond_resched();
1740 
1741 		folio = lru_to_folio(folio_list);
1742 		list_del(&folio->lru);
1743 
1744 		if (!folio_trylock(folio))
1745 			goto keep;
1746 
1747 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1748 
1749 		nr_pages = folio_nr_pages(folio);
1750 
1751 		/* Account the number of base pages */
1752 		sc->nr_scanned += nr_pages;
1753 
1754 		if (unlikely(!folio_evictable(folio)))
1755 			goto activate_locked;
1756 
1757 		if (!sc->may_unmap && folio_mapped(folio))
1758 			goto keep_locked;
1759 
1760 		/* folio_update_gen() tried to promote this page? */
1761 		if (lru_gen_enabled() && !ignore_references &&
1762 		    folio_mapped(folio) && folio_test_referenced(folio))
1763 			goto keep_locked;
1764 
1765 		/*
1766 		 * The number of dirty pages determines if a node is marked
1767 		 * reclaim_congested. kswapd will stall and start writing
1768 		 * folios if the tail of the LRU is all dirty unqueued folios.
1769 		 */
1770 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1771 		if (dirty || writeback)
1772 			stat->nr_dirty += nr_pages;
1773 
1774 		if (dirty && !writeback)
1775 			stat->nr_unqueued_dirty += nr_pages;
1776 
1777 		/*
1778 		 * Treat this folio as congested if folios are cycling
1779 		 * through the LRU so quickly that the folios marked
1780 		 * for immediate reclaim are making it to the end of
1781 		 * the LRU a second time.
1782 		 */
1783 		if (writeback && folio_test_reclaim(folio))
1784 			stat->nr_congested += nr_pages;
1785 
1786 		/*
1787 		 * If a folio at the tail of the LRU is under writeback, there
1788 		 * are three cases to consider.
1789 		 *
1790 		 * 1) If reclaim is encountering an excessive number
1791 		 *    of folios under writeback and this folio has both
1792 		 *    the writeback and reclaim flags set, then it
1793 		 *    indicates that folios are being queued for I/O but
1794 		 *    are being recycled through the LRU before the I/O
1795 		 *    can complete. Waiting on the folio itself risks an
1796 		 *    indefinite stall if it is impossible to writeback
1797 		 *    the folio due to I/O error or disconnected storage
1798 		 *    so instead note that the LRU is being scanned too
1799 		 *    quickly and the caller can stall after the folio
1800 		 *    list has been processed.
1801 		 *
1802 		 * 2) Global or new memcg reclaim encounters a folio that is
1803 		 *    not marked for immediate reclaim, or the caller does not
1804 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1805 		 *    not to fs). In this case mark the folio for immediate
1806 		 *    reclaim and continue scanning.
1807 		 *
1808 		 *    Require may_enter_fs() because we would wait on fs, which
1809 		 *    may not have submitted I/O yet. And the loop driver might
1810 		 *    enter reclaim, and deadlock if it waits on a folio for
1811 		 *    which it is needed to do the write (loop masks off
1812 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1813 		 *    would probably show more reasons.
1814 		 *
1815 		 * 3) Legacy memcg encounters a folio that already has the
1816 		 *    reclaim flag set. memcg does not have any dirty folio
1817 		 *    throttling so we could easily OOM just because too many
1818 		 *    folios are in writeback and there is nothing else to
1819 		 *    reclaim. Wait for the writeback to complete.
1820 		 *
1821 		 * In cases 1) and 2) we activate the folios to get them out of
1822 		 * the way while we continue scanning for clean folios on the
1823 		 * inactive list and refilling from the active list. The
1824 		 * observation here is that waiting for disk writes is more
1825 		 * expensive than potentially causing reloads down the line.
1826 		 * Since they're marked for immediate reclaim, they won't put
1827 		 * memory pressure on the cache working set any longer than it
1828 		 * takes to write them to disk.
1829 		 */
1830 		if (folio_test_writeback(folio)) {
1831 			/* Case 1 above */
1832 			if (current_is_kswapd() &&
1833 			    folio_test_reclaim(folio) &&
1834 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1835 				stat->nr_immediate += nr_pages;
1836 				goto activate_locked;
1837 
1838 			/* Case 2 above */
1839 			} else if (writeback_throttling_sane(sc) ||
1840 			    !folio_test_reclaim(folio) ||
1841 			    !may_enter_fs(folio, sc->gfp_mask)) {
1842 				/*
1843 				 * This is slightly racy -
1844 				 * folio_end_writeback() might have
1845 				 * just cleared the reclaim flag, then
1846 				 * setting the reclaim flag here ends up
1847 				 * interpreted as the readahead flag - but
1848 				 * that does not matter enough to care.
1849 				 * What we do want is for this folio to
1850 				 * have the reclaim flag set next time
1851 				 * memcg reclaim reaches the tests above,
1852 				 * so it will then wait for writeback to
1853 				 * avoid OOM; and it's also appropriate
1854 				 * in global reclaim.
1855 				 */
1856 				folio_set_reclaim(folio);
1857 				stat->nr_writeback += nr_pages;
1858 				goto activate_locked;
1859 
1860 			/* Case 3 above */
1861 			} else {
1862 				folio_unlock(folio);
1863 				folio_wait_writeback(folio);
1864 				/* then go back and try same folio again */
1865 				list_add_tail(&folio->lru, folio_list);
1866 				continue;
1867 			}
1868 		}
1869 
1870 		if (!ignore_references)
1871 			references = folio_check_references(folio, sc);
1872 
1873 		switch (references) {
1874 		case FOLIOREF_ACTIVATE:
1875 			goto activate_locked;
1876 		case FOLIOREF_KEEP:
1877 			stat->nr_ref_keep += nr_pages;
1878 			goto keep_locked;
1879 		case FOLIOREF_RECLAIM:
1880 		case FOLIOREF_RECLAIM_CLEAN:
1881 			; /* try to reclaim the folio below */
1882 		}
1883 
1884 		/*
1885 		 * Before reclaiming the folio, try to relocate
1886 		 * its contents to another node.
1887 		 */
1888 		if (do_demote_pass &&
1889 		    (thp_migration_supported() || !folio_test_large(folio))) {
1890 			list_add(&folio->lru, &demote_folios);
1891 			folio_unlock(folio);
1892 			continue;
1893 		}
1894 
1895 		/*
1896 		 * Anonymous process memory has backing store?
1897 		 * Try to allocate it some swap space here.
1898 		 * Lazyfree folio could be freed directly
1899 		 */
1900 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1901 			if (!folio_test_swapcache(folio)) {
1902 				if (!(sc->gfp_mask & __GFP_IO))
1903 					goto keep_locked;
1904 				if (folio_maybe_dma_pinned(folio))
1905 					goto keep_locked;
1906 				if (folio_test_large(folio)) {
1907 					/* cannot split folio, skip it */
1908 					if (!can_split_folio(folio, NULL))
1909 						goto activate_locked;
1910 					/*
1911 					 * Split folios without a PMD map right
1912 					 * away. Chances are some or all of the
1913 					 * tail pages can be freed without IO.
1914 					 */
1915 					if (!folio_entire_mapcount(folio) &&
1916 					    split_folio_to_list(folio,
1917 								folio_list))
1918 						goto activate_locked;
1919 				}
1920 				if (!add_to_swap(folio)) {
1921 					if (!folio_test_large(folio))
1922 						goto activate_locked_split;
1923 					/* Fallback to swap normal pages */
1924 					if (split_folio_to_list(folio,
1925 								folio_list))
1926 						goto activate_locked;
1927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1928 					count_vm_event(THP_SWPOUT_FALLBACK);
1929 #endif
1930 					if (!add_to_swap(folio))
1931 						goto activate_locked_split;
1932 				}
1933 			}
1934 		} else if (folio_test_swapbacked(folio) &&
1935 			   folio_test_large(folio)) {
1936 			/* Split shmem folio */
1937 			if (split_folio_to_list(folio, folio_list))
1938 				goto keep_locked;
1939 		}
1940 
1941 		/*
1942 		 * If the folio was split above, the tail pages will make
1943 		 * their own pass through this function and be accounted
1944 		 * then.
1945 		 */
1946 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1947 			sc->nr_scanned -= (nr_pages - 1);
1948 			nr_pages = 1;
1949 		}
1950 
1951 		/*
1952 		 * The folio is mapped into the page tables of one or more
1953 		 * processes. Try to unmap it here.
1954 		 */
1955 		if (folio_mapped(folio)) {
1956 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1957 			bool was_swapbacked = folio_test_swapbacked(folio);
1958 
1959 			if (folio_test_pmd_mappable(folio))
1960 				flags |= TTU_SPLIT_HUGE_PMD;
1961 
1962 			try_to_unmap(folio, flags);
1963 			if (folio_mapped(folio)) {
1964 				stat->nr_unmap_fail += nr_pages;
1965 				if (!was_swapbacked &&
1966 				    folio_test_swapbacked(folio))
1967 					stat->nr_lazyfree_fail += nr_pages;
1968 				goto activate_locked;
1969 			}
1970 		}
1971 
1972 		/*
1973 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1974 		 * No point in trying to reclaim folio if it is pinned.
1975 		 * Furthermore we don't want to reclaim underlying fs metadata
1976 		 * if the folio is pinned and thus potentially modified by the
1977 		 * pinning process as that may upset the filesystem.
1978 		 */
1979 		if (folio_maybe_dma_pinned(folio))
1980 			goto activate_locked;
1981 
1982 		mapping = folio_mapping(folio);
1983 		if (folio_test_dirty(folio)) {
1984 			/*
1985 			 * Only kswapd can writeback filesystem folios
1986 			 * to avoid risk of stack overflow. But avoid
1987 			 * injecting inefficient single-folio I/O into
1988 			 * flusher writeback as much as possible: only
1989 			 * write folios when we've encountered many
1990 			 * dirty folios, and when we've already scanned
1991 			 * the rest of the LRU for clean folios and see
1992 			 * the same dirty folios again (with the reclaim
1993 			 * flag set).
1994 			 */
1995 			if (folio_is_file_lru(folio) &&
1996 			    (!current_is_kswapd() ||
1997 			     !folio_test_reclaim(folio) ||
1998 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1999 				/*
2000 				 * Immediately reclaim when written back.
2001 				 * Similar in principle to folio_deactivate()
2002 				 * except we already have the folio isolated
2003 				 * and know it's dirty
2004 				 */
2005 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2006 						nr_pages);
2007 				folio_set_reclaim(folio);
2008 
2009 				goto activate_locked;
2010 			}
2011 
2012 			if (references == FOLIOREF_RECLAIM_CLEAN)
2013 				goto keep_locked;
2014 			if (!may_enter_fs(folio, sc->gfp_mask))
2015 				goto keep_locked;
2016 			if (!sc->may_writepage)
2017 				goto keep_locked;
2018 
2019 			/*
2020 			 * Folio is dirty. Flush the TLB if a writable entry
2021 			 * potentially exists to avoid CPU writes after I/O
2022 			 * starts and then write it out here.
2023 			 */
2024 			try_to_unmap_flush_dirty();
2025 			switch (pageout(folio, mapping, &plug)) {
2026 			case PAGE_KEEP:
2027 				goto keep_locked;
2028 			case PAGE_ACTIVATE:
2029 				goto activate_locked;
2030 			case PAGE_SUCCESS:
2031 				stat->nr_pageout += nr_pages;
2032 
2033 				if (folio_test_writeback(folio))
2034 					goto keep;
2035 				if (folio_test_dirty(folio))
2036 					goto keep;
2037 
2038 				/*
2039 				 * A synchronous write - probably a ramdisk.  Go
2040 				 * ahead and try to reclaim the folio.
2041 				 */
2042 				if (!folio_trylock(folio))
2043 					goto keep;
2044 				if (folio_test_dirty(folio) ||
2045 				    folio_test_writeback(folio))
2046 					goto keep_locked;
2047 				mapping = folio_mapping(folio);
2048 				fallthrough;
2049 			case PAGE_CLEAN:
2050 				; /* try to free the folio below */
2051 			}
2052 		}
2053 
2054 		/*
2055 		 * If the folio has buffers, try to free the buffer
2056 		 * mappings associated with this folio. If we succeed
2057 		 * we try to free the folio as well.
2058 		 *
2059 		 * We do this even if the folio is dirty.
2060 		 * filemap_release_folio() does not perform I/O, but it
2061 		 * is possible for a folio to have the dirty flag set,
2062 		 * but it is actually clean (all its buffers are clean).
2063 		 * This happens if the buffers were written out directly,
2064 		 * with submit_bh(). ext3 will do this, as well as
2065 		 * the blockdev mapping.  filemap_release_folio() will
2066 		 * discover that cleanness and will drop the buffers
2067 		 * and mark the folio clean - it can be freed.
2068 		 *
2069 		 * Rarely, folios can have buffers and no ->mapping.
2070 		 * These are the folios which were not successfully
2071 		 * invalidated in truncate_cleanup_folio().  We try to
2072 		 * drop those buffers here and if that worked, and the
2073 		 * folio is no longer mapped into process address space
2074 		 * (refcount == 1) it can be freed.  Otherwise, leave
2075 		 * the folio on the LRU so it is swappable.
2076 		 */
2077 		if (folio_has_private(folio)) {
2078 			if (!filemap_release_folio(folio, sc->gfp_mask))
2079 				goto activate_locked;
2080 			if (!mapping && folio_ref_count(folio) == 1) {
2081 				folio_unlock(folio);
2082 				if (folio_put_testzero(folio))
2083 					goto free_it;
2084 				else {
2085 					/*
2086 					 * rare race with speculative reference.
2087 					 * the speculative reference will free
2088 					 * this folio shortly, so we may
2089 					 * increment nr_reclaimed here (and
2090 					 * leave it off the LRU).
2091 					 */
2092 					nr_reclaimed += nr_pages;
2093 					continue;
2094 				}
2095 			}
2096 		}
2097 
2098 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2099 			/* follow __remove_mapping for reference */
2100 			if (!folio_ref_freeze(folio, 1))
2101 				goto keep_locked;
2102 			/*
2103 			 * The folio has only one reference left, which is
2104 			 * from the isolation. After the caller puts the
2105 			 * folio back on the lru and drops the reference, the
2106 			 * folio will be freed anyway. It doesn't matter
2107 			 * which lru it goes on. So we don't bother checking
2108 			 * the dirty flag here.
2109 			 */
2110 			count_vm_events(PGLAZYFREED, nr_pages);
2111 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2112 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2113 							 sc->target_mem_cgroup))
2114 			goto keep_locked;
2115 
2116 		folio_unlock(folio);
2117 free_it:
2118 		/*
2119 		 * Folio may get swapped out as a whole, need to account
2120 		 * all pages in it.
2121 		 */
2122 		nr_reclaimed += nr_pages;
2123 
2124 		/*
2125 		 * Is there need to periodically free_folio_list? It would
2126 		 * appear not as the counts should be low
2127 		 */
2128 		if (unlikely(folio_test_large(folio)))
2129 			destroy_large_folio(folio);
2130 		else
2131 			list_add(&folio->lru, &free_folios);
2132 		continue;
2133 
2134 activate_locked_split:
2135 		/*
2136 		 * The tail pages that are failed to add into swap cache
2137 		 * reach here.  Fixup nr_scanned and nr_pages.
2138 		 */
2139 		if (nr_pages > 1) {
2140 			sc->nr_scanned -= (nr_pages - 1);
2141 			nr_pages = 1;
2142 		}
2143 activate_locked:
2144 		/* Not a candidate for swapping, so reclaim swap space. */
2145 		if (folio_test_swapcache(folio) &&
2146 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2147 			folio_free_swap(folio);
2148 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2149 		if (!folio_test_mlocked(folio)) {
2150 			int type = folio_is_file_lru(folio);
2151 			folio_set_active(folio);
2152 			stat->nr_activate[type] += nr_pages;
2153 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2154 		}
2155 keep_locked:
2156 		folio_unlock(folio);
2157 keep:
2158 		list_add(&folio->lru, &ret_folios);
2159 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2160 				folio_test_unevictable(folio), folio);
2161 	}
2162 	/* 'folio_list' is always empty here */
2163 
2164 	/* Migrate folios selected for demotion */
2165 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2166 	/* Folios that could not be demoted are still in @demote_folios */
2167 	if (!list_empty(&demote_folios)) {
2168 		/* Folios which weren't demoted go back on @folio_list */
2169 		list_splice_init(&demote_folios, folio_list);
2170 
2171 		/*
2172 		 * goto retry to reclaim the undemoted folios in folio_list if
2173 		 * desired.
2174 		 *
2175 		 * Reclaiming directly from top tier nodes is not often desired
2176 		 * due to it breaking the LRU ordering: in general memory
2177 		 * should be reclaimed from lower tier nodes and demoted from
2178 		 * top tier nodes.
2179 		 *
2180 		 * However, disabling reclaim from top tier nodes entirely
2181 		 * would cause ooms in edge scenarios where lower tier memory
2182 		 * is unreclaimable for whatever reason, eg memory being
2183 		 * mlocked or too hot to reclaim. We can disable reclaim
2184 		 * from top tier nodes in proactive reclaim though as that is
2185 		 * not real memory pressure.
2186 		 */
2187 		if (!sc->proactive) {
2188 			do_demote_pass = false;
2189 			goto retry;
2190 		}
2191 	}
2192 
2193 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2194 
2195 	mem_cgroup_uncharge_list(&free_folios);
2196 	try_to_unmap_flush();
2197 	free_unref_page_list(&free_folios);
2198 
2199 	list_splice(&ret_folios, folio_list);
2200 	count_vm_events(PGACTIVATE, pgactivate);
2201 
2202 	if (plug)
2203 		swap_write_unplug(plug);
2204 	return nr_reclaimed;
2205 }
2206 
2207 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2208 					   struct list_head *folio_list)
2209 {
2210 	struct scan_control sc = {
2211 		.gfp_mask = GFP_KERNEL,
2212 		.may_unmap = 1,
2213 	};
2214 	struct reclaim_stat stat;
2215 	unsigned int nr_reclaimed;
2216 	struct folio *folio, *next;
2217 	LIST_HEAD(clean_folios);
2218 	unsigned int noreclaim_flag;
2219 
2220 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2221 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2222 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2223 		    !folio_test_unevictable(folio)) {
2224 			folio_clear_active(folio);
2225 			list_move(&folio->lru, &clean_folios);
2226 		}
2227 	}
2228 
2229 	/*
2230 	 * We should be safe here since we are only dealing with file pages and
2231 	 * we are not kswapd and therefore cannot write dirty file pages. But
2232 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2233 	 * change in the future.
2234 	 */
2235 	noreclaim_flag = memalloc_noreclaim_save();
2236 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2237 					&stat, true);
2238 	memalloc_noreclaim_restore(noreclaim_flag);
2239 
2240 	list_splice(&clean_folios, folio_list);
2241 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2242 			    -(long)nr_reclaimed);
2243 	/*
2244 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2245 	 * they will rotate back to anonymous LRU in the end if it failed to
2246 	 * discard so isolated count will be mismatched.
2247 	 * Compensate the isolated count for both LRU lists.
2248 	 */
2249 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2250 			    stat.nr_lazyfree_fail);
2251 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2252 			    -(long)stat.nr_lazyfree_fail);
2253 	return nr_reclaimed;
2254 }
2255 
2256 /*
2257  * Update LRU sizes after isolating pages. The LRU size updates must
2258  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2259  */
2260 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2261 			enum lru_list lru, unsigned long *nr_zone_taken)
2262 {
2263 	int zid;
2264 
2265 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2266 		if (!nr_zone_taken[zid])
2267 			continue;
2268 
2269 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2270 	}
2271 
2272 }
2273 
2274 #ifdef CONFIG_CMA
2275 /*
2276  * It is waste of effort to scan and reclaim CMA pages if it is not available
2277  * for current allocation context. Kswapd can not be enrolled as it can not
2278  * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
2279  */
2280 static bool skip_cma(struct folio *folio, struct scan_control *sc)
2281 {
2282 	return !current_is_kswapd() &&
2283 			gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
2284 			get_pageblock_migratetype(&folio->page) == MIGRATE_CMA;
2285 }
2286 #else
2287 static bool skip_cma(struct folio *folio, struct scan_control *sc)
2288 {
2289 	return false;
2290 }
2291 #endif
2292 
2293 /*
2294  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2295  *
2296  * lruvec->lru_lock is heavily contended.  Some of the functions that
2297  * shrink the lists perform better by taking out a batch of pages
2298  * and working on them outside the LRU lock.
2299  *
2300  * For pagecache intensive workloads, this function is the hottest
2301  * spot in the kernel (apart from copy_*_user functions).
2302  *
2303  * Lru_lock must be held before calling this function.
2304  *
2305  * @nr_to_scan:	The number of eligible pages to look through on the list.
2306  * @lruvec:	The LRU vector to pull pages from.
2307  * @dst:	The temp list to put pages on to.
2308  * @nr_scanned:	The number of pages that were scanned.
2309  * @sc:		The scan_control struct for this reclaim session
2310  * @lru:	LRU list id for isolating
2311  *
2312  * returns how many pages were moved onto *@dst.
2313  */
2314 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2315 		struct lruvec *lruvec, struct list_head *dst,
2316 		unsigned long *nr_scanned, struct scan_control *sc,
2317 		enum lru_list lru)
2318 {
2319 	struct list_head *src = &lruvec->lists[lru];
2320 	unsigned long nr_taken = 0;
2321 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2322 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2323 	unsigned long skipped = 0;
2324 	unsigned long scan, total_scan, nr_pages;
2325 	LIST_HEAD(folios_skipped);
2326 
2327 	total_scan = 0;
2328 	scan = 0;
2329 	while (scan < nr_to_scan && !list_empty(src)) {
2330 		struct list_head *move_to = src;
2331 		struct folio *folio;
2332 
2333 		folio = lru_to_folio(src);
2334 		prefetchw_prev_lru_folio(folio, src, flags);
2335 
2336 		nr_pages = folio_nr_pages(folio);
2337 		total_scan += nr_pages;
2338 
2339 		if (folio_zonenum(folio) > sc->reclaim_idx ||
2340 				skip_cma(folio, sc)) {
2341 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2342 			move_to = &folios_skipped;
2343 			goto move;
2344 		}
2345 
2346 		/*
2347 		 * Do not count skipped folios because that makes the function
2348 		 * return with no isolated folios if the LRU mostly contains
2349 		 * ineligible folios.  This causes the VM to not reclaim any
2350 		 * folios, triggering a premature OOM.
2351 		 * Account all pages in a folio.
2352 		 */
2353 		scan += nr_pages;
2354 
2355 		if (!folio_test_lru(folio))
2356 			goto move;
2357 		if (!sc->may_unmap && folio_mapped(folio))
2358 			goto move;
2359 
2360 		/*
2361 		 * Be careful not to clear the lru flag until after we're
2362 		 * sure the folio is not being freed elsewhere -- the
2363 		 * folio release code relies on it.
2364 		 */
2365 		if (unlikely(!folio_try_get(folio)))
2366 			goto move;
2367 
2368 		if (!folio_test_clear_lru(folio)) {
2369 			/* Another thread is already isolating this folio */
2370 			folio_put(folio);
2371 			goto move;
2372 		}
2373 
2374 		nr_taken += nr_pages;
2375 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2376 		move_to = dst;
2377 move:
2378 		list_move(&folio->lru, move_to);
2379 	}
2380 
2381 	/*
2382 	 * Splice any skipped folios to the start of the LRU list. Note that
2383 	 * this disrupts the LRU order when reclaiming for lower zones but
2384 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2385 	 * scanning would soon rescan the same folios to skip and waste lots
2386 	 * of cpu cycles.
2387 	 */
2388 	if (!list_empty(&folios_skipped)) {
2389 		int zid;
2390 
2391 		list_splice(&folios_skipped, src);
2392 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2393 			if (!nr_skipped[zid])
2394 				continue;
2395 
2396 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2397 			skipped += nr_skipped[zid];
2398 		}
2399 	}
2400 	*nr_scanned = total_scan;
2401 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2402 				    total_scan, skipped, nr_taken,
2403 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2404 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2405 	return nr_taken;
2406 }
2407 
2408 /**
2409  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2410  * @folio: Folio to isolate from its LRU list.
2411  *
2412  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2413  * corresponding to whatever LRU list the folio was on.
2414  *
2415  * The folio will have its LRU flag cleared.  If it was found on the
2416  * active list, it will have the Active flag set.  If it was found on the
2417  * unevictable list, it will have the Unevictable flag set.  These flags
2418  * may need to be cleared by the caller before letting the page go.
2419  *
2420  * Context:
2421  *
2422  * (1) Must be called with an elevated refcount on the folio. This is a
2423  *     fundamental difference from isolate_lru_folios() (which is called
2424  *     without a stable reference).
2425  * (2) The lru_lock must not be held.
2426  * (3) Interrupts must be enabled.
2427  *
2428  * Return: true if the folio was removed from an LRU list.
2429  * false if the folio was not on an LRU list.
2430  */
2431 bool folio_isolate_lru(struct folio *folio)
2432 {
2433 	bool ret = false;
2434 
2435 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2436 
2437 	if (folio_test_clear_lru(folio)) {
2438 		struct lruvec *lruvec;
2439 
2440 		folio_get(folio);
2441 		lruvec = folio_lruvec_lock_irq(folio);
2442 		lruvec_del_folio(lruvec, folio);
2443 		unlock_page_lruvec_irq(lruvec);
2444 		ret = true;
2445 	}
2446 
2447 	return ret;
2448 }
2449 
2450 /*
2451  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2452  * then get rescheduled. When there are massive number of tasks doing page
2453  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2454  * the LRU list will go small and be scanned faster than necessary, leading to
2455  * unnecessary swapping, thrashing and OOM.
2456  */
2457 static int too_many_isolated(struct pglist_data *pgdat, int file,
2458 		struct scan_control *sc)
2459 {
2460 	unsigned long inactive, isolated;
2461 	bool too_many;
2462 
2463 	if (current_is_kswapd())
2464 		return 0;
2465 
2466 	if (!writeback_throttling_sane(sc))
2467 		return 0;
2468 
2469 	if (file) {
2470 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2471 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2472 	} else {
2473 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2474 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2475 	}
2476 
2477 	/*
2478 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2479 	 * won't get blocked by normal direct-reclaimers, forming a circular
2480 	 * deadlock.
2481 	 */
2482 	if (gfp_has_io_fs(sc->gfp_mask))
2483 		inactive >>= 3;
2484 
2485 	too_many = isolated > inactive;
2486 
2487 	/* Wake up tasks throttled due to too_many_isolated. */
2488 	if (!too_many)
2489 		wake_throttle_isolated(pgdat);
2490 
2491 	return too_many;
2492 }
2493 
2494 /*
2495  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2496  * On return, @list is reused as a list of folios to be freed by the caller.
2497  *
2498  * Returns the number of pages moved to the given lruvec.
2499  */
2500 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2501 		struct list_head *list)
2502 {
2503 	int nr_pages, nr_moved = 0;
2504 	LIST_HEAD(folios_to_free);
2505 
2506 	while (!list_empty(list)) {
2507 		struct folio *folio = lru_to_folio(list);
2508 
2509 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2510 		list_del(&folio->lru);
2511 		if (unlikely(!folio_evictable(folio))) {
2512 			spin_unlock_irq(&lruvec->lru_lock);
2513 			folio_putback_lru(folio);
2514 			spin_lock_irq(&lruvec->lru_lock);
2515 			continue;
2516 		}
2517 
2518 		/*
2519 		 * The folio_set_lru needs to be kept here for list integrity.
2520 		 * Otherwise:
2521 		 *   #0 move_folios_to_lru             #1 release_pages
2522 		 *   if (!folio_put_testzero())
2523 		 *				      if (folio_put_testzero())
2524 		 *				        !lru //skip lru_lock
2525 		 *     folio_set_lru()
2526 		 *     list_add(&folio->lru,)
2527 		 *                                        list_add(&folio->lru,)
2528 		 */
2529 		folio_set_lru(folio);
2530 
2531 		if (unlikely(folio_put_testzero(folio))) {
2532 			__folio_clear_lru_flags(folio);
2533 
2534 			if (unlikely(folio_test_large(folio))) {
2535 				spin_unlock_irq(&lruvec->lru_lock);
2536 				destroy_large_folio(folio);
2537 				spin_lock_irq(&lruvec->lru_lock);
2538 			} else
2539 				list_add(&folio->lru, &folios_to_free);
2540 
2541 			continue;
2542 		}
2543 
2544 		/*
2545 		 * All pages were isolated from the same lruvec (and isolation
2546 		 * inhibits memcg migration).
2547 		 */
2548 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2549 		lruvec_add_folio(lruvec, folio);
2550 		nr_pages = folio_nr_pages(folio);
2551 		nr_moved += nr_pages;
2552 		if (folio_test_active(folio))
2553 			workingset_age_nonresident(lruvec, nr_pages);
2554 	}
2555 
2556 	/*
2557 	 * To save our caller's stack, now use input list for pages to free.
2558 	 */
2559 	list_splice(&folios_to_free, list);
2560 
2561 	return nr_moved;
2562 }
2563 
2564 /*
2565  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2566  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2567  * we should not throttle.  Otherwise it is safe to do so.
2568  */
2569 static int current_may_throttle(void)
2570 {
2571 	return !(current->flags & PF_LOCAL_THROTTLE);
2572 }
2573 
2574 /*
2575  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2576  * of reclaimed pages
2577  */
2578 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2579 		struct lruvec *lruvec, struct scan_control *sc,
2580 		enum lru_list lru)
2581 {
2582 	LIST_HEAD(folio_list);
2583 	unsigned long nr_scanned;
2584 	unsigned int nr_reclaimed = 0;
2585 	unsigned long nr_taken;
2586 	struct reclaim_stat stat;
2587 	bool file = is_file_lru(lru);
2588 	enum vm_event_item item;
2589 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2590 	bool stalled = false;
2591 
2592 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2593 		if (stalled)
2594 			return 0;
2595 
2596 		/* wait a bit for the reclaimer. */
2597 		stalled = true;
2598 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2599 
2600 		/* We are about to die and free our memory. Return now. */
2601 		if (fatal_signal_pending(current))
2602 			return SWAP_CLUSTER_MAX;
2603 	}
2604 
2605 	lru_add_drain();
2606 
2607 	spin_lock_irq(&lruvec->lru_lock);
2608 
2609 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2610 				     &nr_scanned, sc, lru);
2611 
2612 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2613 	item = PGSCAN_KSWAPD + reclaimer_offset();
2614 	if (!cgroup_reclaim(sc))
2615 		__count_vm_events(item, nr_scanned);
2616 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2617 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2618 
2619 	spin_unlock_irq(&lruvec->lru_lock);
2620 
2621 	if (nr_taken == 0)
2622 		return 0;
2623 
2624 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2625 
2626 	spin_lock_irq(&lruvec->lru_lock);
2627 	move_folios_to_lru(lruvec, &folio_list);
2628 
2629 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2630 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2631 	if (!cgroup_reclaim(sc))
2632 		__count_vm_events(item, nr_reclaimed);
2633 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2634 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2635 	spin_unlock_irq(&lruvec->lru_lock);
2636 
2637 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2638 	mem_cgroup_uncharge_list(&folio_list);
2639 	free_unref_page_list(&folio_list);
2640 
2641 	/*
2642 	 * If dirty folios are scanned that are not queued for IO, it
2643 	 * implies that flushers are not doing their job. This can
2644 	 * happen when memory pressure pushes dirty folios to the end of
2645 	 * the LRU before the dirty limits are breached and the dirty
2646 	 * data has expired. It can also happen when the proportion of
2647 	 * dirty folios grows not through writes but through memory
2648 	 * pressure reclaiming all the clean cache. And in some cases,
2649 	 * the flushers simply cannot keep up with the allocation
2650 	 * rate. Nudge the flusher threads in case they are asleep.
2651 	 */
2652 	if (stat.nr_unqueued_dirty == nr_taken) {
2653 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2654 		/*
2655 		 * For cgroupv1 dirty throttling is achieved by waking up
2656 		 * the kernel flusher here and later waiting on folios
2657 		 * which are in writeback to finish (see shrink_folio_list()).
2658 		 *
2659 		 * Flusher may not be able to issue writeback quickly
2660 		 * enough for cgroupv1 writeback throttling to work
2661 		 * on a large system.
2662 		 */
2663 		if (!writeback_throttling_sane(sc))
2664 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2665 	}
2666 
2667 	sc->nr.dirty += stat.nr_dirty;
2668 	sc->nr.congested += stat.nr_congested;
2669 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2670 	sc->nr.writeback += stat.nr_writeback;
2671 	sc->nr.immediate += stat.nr_immediate;
2672 	sc->nr.taken += nr_taken;
2673 	if (file)
2674 		sc->nr.file_taken += nr_taken;
2675 
2676 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2677 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2678 	return nr_reclaimed;
2679 }
2680 
2681 /*
2682  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2683  *
2684  * We move them the other way if the folio is referenced by one or more
2685  * processes.
2686  *
2687  * If the folios are mostly unmapped, the processing is fast and it is
2688  * appropriate to hold lru_lock across the whole operation.  But if
2689  * the folios are mapped, the processing is slow (folio_referenced()), so
2690  * we should drop lru_lock around each folio.  It's impossible to balance
2691  * this, so instead we remove the folios from the LRU while processing them.
2692  * It is safe to rely on the active flag against the non-LRU folios in here
2693  * because nobody will play with that bit on a non-LRU folio.
2694  *
2695  * The downside is that we have to touch folio->_refcount against each folio.
2696  * But we had to alter folio->flags anyway.
2697  */
2698 static void shrink_active_list(unsigned long nr_to_scan,
2699 			       struct lruvec *lruvec,
2700 			       struct scan_control *sc,
2701 			       enum lru_list lru)
2702 {
2703 	unsigned long nr_taken;
2704 	unsigned long nr_scanned;
2705 	unsigned long vm_flags;
2706 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2707 	LIST_HEAD(l_active);
2708 	LIST_HEAD(l_inactive);
2709 	unsigned nr_deactivate, nr_activate;
2710 	unsigned nr_rotated = 0;
2711 	int file = is_file_lru(lru);
2712 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2713 
2714 	lru_add_drain();
2715 
2716 	spin_lock_irq(&lruvec->lru_lock);
2717 
2718 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2719 				     &nr_scanned, sc, lru);
2720 
2721 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2722 
2723 	if (!cgroup_reclaim(sc))
2724 		__count_vm_events(PGREFILL, nr_scanned);
2725 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2726 
2727 	spin_unlock_irq(&lruvec->lru_lock);
2728 
2729 	while (!list_empty(&l_hold)) {
2730 		struct folio *folio;
2731 
2732 		cond_resched();
2733 		folio = lru_to_folio(&l_hold);
2734 		list_del(&folio->lru);
2735 
2736 		if (unlikely(!folio_evictable(folio))) {
2737 			folio_putback_lru(folio);
2738 			continue;
2739 		}
2740 
2741 		if (unlikely(buffer_heads_over_limit)) {
2742 			if (folio_test_private(folio) && folio_trylock(folio)) {
2743 				if (folio_test_private(folio))
2744 					filemap_release_folio(folio, 0);
2745 				folio_unlock(folio);
2746 			}
2747 		}
2748 
2749 		/* Referenced or rmap lock contention: rotate */
2750 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2751 				     &vm_flags) != 0) {
2752 			/*
2753 			 * Identify referenced, file-backed active folios and
2754 			 * give them one more trip around the active list. So
2755 			 * that executable code get better chances to stay in
2756 			 * memory under moderate memory pressure.  Anon folios
2757 			 * are not likely to be evicted by use-once streaming
2758 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2759 			 * so we ignore them here.
2760 			 */
2761 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2762 				nr_rotated += folio_nr_pages(folio);
2763 				list_add(&folio->lru, &l_active);
2764 				continue;
2765 			}
2766 		}
2767 
2768 		folio_clear_active(folio);	/* we are de-activating */
2769 		folio_set_workingset(folio);
2770 		list_add(&folio->lru, &l_inactive);
2771 	}
2772 
2773 	/*
2774 	 * Move folios back to the lru list.
2775 	 */
2776 	spin_lock_irq(&lruvec->lru_lock);
2777 
2778 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2779 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2780 	/* Keep all free folios in l_active list */
2781 	list_splice(&l_inactive, &l_active);
2782 
2783 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2784 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2785 
2786 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2787 	spin_unlock_irq(&lruvec->lru_lock);
2788 
2789 	if (nr_rotated)
2790 		lru_note_cost(lruvec, file, 0, nr_rotated);
2791 	mem_cgroup_uncharge_list(&l_active);
2792 	free_unref_page_list(&l_active);
2793 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2794 			nr_deactivate, nr_rotated, sc->priority, file);
2795 }
2796 
2797 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2798 				      struct pglist_data *pgdat)
2799 {
2800 	struct reclaim_stat dummy_stat;
2801 	unsigned int nr_reclaimed;
2802 	struct folio *folio;
2803 	struct scan_control sc = {
2804 		.gfp_mask = GFP_KERNEL,
2805 		.may_writepage = 1,
2806 		.may_unmap = 1,
2807 		.may_swap = 1,
2808 		.no_demotion = 1,
2809 	};
2810 
2811 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2812 	while (!list_empty(folio_list)) {
2813 		folio = lru_to_folio(folio_list);
2814 		list_del(&folio->lru);
2815 		folio_putback_lru(folio);
2816 	}
2817 
2818 	return nr_reclaimed;
2819 }
2820 
2821 unsigned long reclaim_pages(struct list_head *folio_list)
2822 {
2823 	int nid;
2824 	unsigned int nr_reclaimed = 0;
2825 	LIST_HEAD(node_folio_list);
2826 	unsigned int noreclaim_flag;
2827 
2828 	if (list_empty(folio_list))
2829 		return nr_reclaimed;
2830 
2831 	noreclaim_flag = memalloc_noreclaim_save();
2832 
2833 	nid = folio_nid(lru_to_folio(folio_list));
2834 	do {
2835 		struct folio *folio = lru_to_folio(folio_list);
2836 
2837 		if (nid == folio_nid(folio)) {
2838 			folio_clear_active(folio);
2839 			list_move(&folio->lru, &node_folio_list);
2840 			continue;
2841 		}
2842 
2843 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2844 		nid = folio_nid(lru_to_folio(folio_list));
2845 	} while (!list_empty(folio_list));
2846 
2847 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2848 
2849 	memalloc_noreclaim_restore(noreclaim_flag);
2850 
2851 	return nr_reclaimed;
2852 }
2853 
2854 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2855 				 struct lruvec *lruvec, struct scan_control *sc)
2856 {
2857 	if (is_active_lru(lru)) {
2858 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2859 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2860 		else
2861 			sc->skipped_deactivate = 1;
2862 		return 0;
2863 	}
2864 
2865 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2866 }
2867 
2868 /*
2869  * The inactive anon list should be small enough that the VM never has
2870  * to do too much work.
2871  *
2872  * The inactive file list should be small enough to leave most memory
2873  * to the established workingset on the scan-resistant active list,
2874  * but large enough to avoid thrashing the aggregate readahead window.
2875  *
2876  * Both inactive lists should also be large enough that each inactive
2877  * folio has a chance to be referenced again before it is reclaimed.
2878  *
2879  * If that fails and refaulting is observed, the inactive list grows.
2880  *
2881  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2882  * on this LRU, maintained by the pageout code. An inactive_ratio
2883  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2884  *
2885  * total     target    max
2886  * memory    ratio     inactive
2887  * -------------------------------------
2888  *   10MB       1         5MB
2889  *  100MB       1        50MB
2890  *    1GB       3       250MB
2891  *   10GB      10       0.9GB
2892  *  100GB      31         3GB
2893  *    1TB     101        10GB
2894  *   10TB     320        32GB
2895  */
2896 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2897 {
2898 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2899 	unsigned long inactive, active;
2900 	unsigned long inactive_ratio;
2901 	unsigned long gb;
2902 
2903 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2904 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2905 
2906 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2907 	if (gb)
2908 		inactive_ratio = int_sqrt(10 * gb);
2909 	else
2910 		inactive_ratio = 1;
2911 
2912 	return inactive * inactive_ratio < active;
2913 }
2914 
2915 enum scan_balance {
2916 	SCAN_EQUAL,
2917 	SCAN_FRACT,
2918 	SCAN_ANON,
2919 	SCAN_FILE,
2920 };
2921 
2922 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2923 {
2924 	unsigned long file;
2925 	struct lruvec *target_lruvec;
2926 
2927 	if (lru_gen_enabled())
2928 		return;
2929 
2930 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2931 
2932 	/*
2933 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2934 	 * lruvec stats for heuristics.
2935 	 */
2936 	mem_cgroup_flush_stats();
2937 
2938 	/*
2939 	 * Determine the scan balance between anon and file LRUs.
2940 	 */
2941 	spin_lock_irq(&target_lruvec->lru_lock);
2942 	sc->anon_cost = target_lruvec->anon_cost;
2943 	sc->file_cost = target_lruvec->file_cost;
2944 	spin_unlock_irq(&target_lruvec->lru_lock);
2945 
2946 	/*
2947 	 * Target desirable inactive:active list ratios for the anon
2948 	 * and file LRU lists.
2949 	 */
2950 	if (!sc->force_deactivate) {
2951 		unsigned long refaults;
2952 
2953 		/*
2954 		 * When refaults are being observed, it means a new
2955 		 * workingset is being established. Deactivate to get
2956 		 * rid of any stale active pages quickly.
2957 		 */
2958 		refaults = lruvec_page_state(target_lruvec,
2959 				WORKINGSET_ACTIVATE_ANON);
2960 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2961 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2962 			sc->may_deactivate |= DEACTIVATE_ANON;
2963 		else
2964 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2965 
2966 		refaults = lruvec_page_state(target_lruvec,
2967 				WORKINGSET_ACTIVATE_FILE);
2968 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2969 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2970 			sc->may_deactivate |= DEACTIVATE_FILE;
2971 		else
2972 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2973 	} else
2974 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2975 
2976 	/*
2977 	 * If we have plenty of inactive file pages that aren't
2978 	 * thrashing, try to reclaim those first before touching
2979 	 * anonymous pages.
2980 	 */
2981 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2982 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2983 		sc->cache_trim_mode = 1;
2984 	else
2985 		sc->cache_trim_mode = 0;
2986 
2987 	/*
2988 	 * Prevent the reclaimer from falling into the cache trap: as
2989 	 * cache pages start out inactive, every cache fault will tip
2990 	 * the scan balance towards the file LRU.  And as the file LRU
2991 	 * shrinks, so does the window for rotation from references.
2992 	 * This means we have a runaway feedback loop where a tiny
2993 	 * thrashing file LRU becomes infinitely more attractive than
2994 	 * anon pages.  Try to detect this based on file LRU size.
2995 	 */
2996 	if (!cgroup_reclaim(sc)) {
2997 		unsigned long total_high_wmark = 0;
2998 		unsigned long free, anon;
2999 		int z;
3000 
3001 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3002 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3003 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3004 
3005 		for (z = 0; z < MAX_NR_ZONES; z++) {
3006 			struct zone *zone = &pgdat->node_zones[z];
3007 
3008 			if (!managed_zone(zone))
3009 				continue;
3010 
3011 			total_high_wmark += high_wmark_pages(zone);
3012 		}
3013 
3014 		/*
3015 		 * Consider anon: if that's low too, this isn't a
3016 		 * runaway file reclaim problem, but rather just
3017 		 * extreme pressure. Reclaim as per usual then.
3018 		 */
3019 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3020 
3021 		sc->file_is_tiny =
3022 			file + free <= total_high_wmark &&
3023 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3024 			anon >> sc->priority;
3025 	}
3026 }
3027 
3028 /*
3029  * Determine how aggressively the anon and file LRU lists should be
3030  * scanned.
3031  *
3032  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3033  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3034  */
3035 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3036 			   unsigned long *nr)
3037 {
3038 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3039 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3040 	unsigned long anon_cost, file_cost, total_cost;
3041 	int swappiness = mem_cgroup_swappiness(memcg);
3042 	u64 fraction[ANON_AND_FILE];
3043 	u64 denominator = 0;	/* gcc */
3044 	enum scan_balance scan_balance;
3045 	unsigned long ap, fp;
3046 	enum lru_list lru;
3047 
3048 	/* If we have no swap space, do not bother scanning anon folios. */
3049 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3050 		scan_balance = SCAN_FILE;
3051 		goto out;
3052 	}
3053 
3054 	/*
3055 	 * Global reclaim will swap to prevent OOM even with no
3056 	 * swappiness, but memcg users want to use this knob to
3057 	 * disable swapping for individual groups completely when
3058 	 * using the memory controller's swap limit feature would be
3059 	 * too expensive.
3060 	 */
3061 	if (cgroup_reclaim(sc) && !swappiness) {
3062 		scan_balance = SCAN_FILE;
3063 		goto out;
3064 	}
3065 
3066 	/*
3067 	 * Do not apply any pressure balancing cleverness when the
3068 	 * system is close to OOM, scan both anon and file equally
3069 	 * (unless the swappiness setting disagrees with swapping).
3070 	 */
3071 	if (!sc->priority && swappiness) {
3072 		scan_balance = SCAN_EQUAL;
3073 		goto out;
3074 	}
3075 
3076 	/*
3077 	 * If the system is almost out of file pages, force-scan anon.
3078 	 */
3079 	if (sc->file_is_tiny) {
3080 		scan_balance = SCAN_ANON;
3081 		goto out;
3082 	}
3083 
3084 	/*
3085 	 * If there is enough inactive page cache, we do not reclaim
3086 	 * anything from the anonymous working right now.
3087 	 */
3088 	if (sc->cache_trim_mode) {
3089 		scan_balance = SCAN_FILE;
3090 		goto out;
3091 	}
3092 
3093 	scan_balance = SCAN_FRACT;
3094 	/*
3095 	 * Calculate the pressure balance between anon and file pages.
3096 	 *
3097 	 * The amount of pressure we put on each LRU is inversely
3098 	 * proportional to the cost of reclaiming each list, as
3099 	 * determined by the share of pages that are refaulting, times
3100 	 * the relative IO cost of bringing back a swapped out
3101 	 * anonymous page vs reloading a filesystem page (swappiness).
3102 	 *
3103 	 * Although we limit that influence to ensure no list gets
3104 	 * left behind completely: at least a third of the pressure is
3105 	 * applied, before swappiness.
3106 	 *
3107 	 * With swappiness at 100, anon and file have equal IO cost.
3108 	 */
3109 	total_cost = sc->anon_cost + sc->file_cost;
3110 	anon_cost = total_cost + sc->anon_cost;
3111 	file_cost = total_cost + sc->file_cost;
3112 	total_cost = anon_cost + file_cost;
3113 
3114 	ap = swappiness * (total_cost + 1);
3115 	ap /= anon_cost + 1;
3116 
3117 	fp = (200 - swappiness) * (total_cost + 1);
3118 	fp /= file_cost + 1;
3119 
3120 	fraction[0] = ap;
3121 	fraction[1] = fp;
3122 	denominator = ap + fp;
3123 out:
3124 	for_each_evictable_lru(lru) {
3125 		int file = is_file_lru(lru);
3126 		unsigned long lruvec_size;
3127 		unsigned long low, min;
3128 		unsigned long scan;
3129 
3130 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3131 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3132 				      &min, &low);
3133 
3134 		if (min || low) {
3135 			/*
3136 			 * Scale a cgroup's reclaim pressure by proportioning
3137 			 * its current usage to its memory.low or memory.min
3138 			 * setting.
3139 			 *
3140 			 * This is important, as otherwise scanning aggression
3141 			 * becomes extremely binary -- from nothing as we
3142 			 * approach the memory protection threshold, to totally
3143 			 * nominal as we exceed it.  This results in requiring
3144 			 * setting extremely liberal protection thresholds. It
3145 			 * also means we simply get no protection at all if we
3146 			 * set it too low, which is not ideal.
3147 			 *
3148 			 * If there is any protection in place, we reduce scan
3149 			 * pressure by how much of the total memory used is
3150 			 * within protection thresholds.
3151 			 *
3152 			 * There is one special case: in the first reclaim pass,
3153 			 * we skip over all groups that are within their low
3154 			 * protection. If that fails to reclaim enough pages to
3155 			 * satisfy the reclaim goal, we come back and override
3156 			 * the best-effort low protection. However, we still
3157 			 * ideally want to honor how well-behaved groups are in
3158 			 * that case instead of simply punishing them all
3159 			 * equally. As such, we reclaim them based on how much
3160 			 * memory they are using, reducing the scan pressure
3161 			 * again by how much of the total memory used is under
3162 			 * hard protection.
3163 			 */
3164 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3165 			unsigned long protection;
3166 
3167 			/* memory.low scaling, make sure we retry before OOM */
3168 			if (!sc->memcg_low_reclaim && low > min) {
3169 				protection = low;
3170 				sc->memcg_low_skipped = 1;
3171 			} else {
3172 				protection = min;
3173 			}
3174 
3175 			/* Avoid TOCTOU with earlier protection check */
3176 			cgroup_size = max(cgroup_size, protection);
3177 
3178 			scan = lruvec_size - lruvec_size * protection /
3179 				(cgroup_size + 1);
3180 
3181 			/*
3182 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3183 			 * reclaim moving forwards, avoiding decrementing
3184 			 * sc->priority further than desirable.
3185 			 */
3186 			scan = max(scan, SWAP_CLUSTER_MAX);
3187 		} else {
3188 			scan = lruvec_size;
3189 		}
3190 
3191 		scan >>= sc->priority;
3192 
3193 		/*
3194 		 * If the cgroup's already been deleted, make sure to
3195 		 * scrape out the remaining cache.
3196 		 */
3197 		if (!scan && !mem_cgroup_online(memcg))
3198 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3199 
3200 		switch (scan_balance) {
3201 		case SCAN_EQUAL:
3202 			/* Scan lists relative to size */
3203 			break;
3204 		case SCAN_FRACT:
3205 			/*
3206 			 * Scan types proportional to swappiness and
3207 			 * their relative recent reclaim efficiency.
3208 			 * Make sure we don't miss the last page on
3209 			 * the offlined memory cgroups because of a
3210 			 * round-off error.
3211 			 */
3212 			scan = mem_cgroup_online(memcg) ?
3213 			       div64_u64(scan * fraction[file], denominator) :
3214 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3215 						  denominator);
3216 			break;
3217 		case SCAN_FILE:
3218 		case SCAN_ANON:
3219 			/* Scan one type exclusively */
3220 			if ((scan_balance == SCAN_FILE) != file)
3221 				scan = 0;
3222 			break;
3223 		default:
3224 			/* Look ma, no brain */
3225 			BUG();
3226 		}
3227 
3228 		nr[lru] = scan;
3229 	}
3230 }
3231 
3232 /*
3233  * Anonymous LRU management is a waste if there is
3234  * ultimately no way to reclaim the memory.
3235  */
3236 static bool can_age_anon_pages(struct pglist_data *pgdat,
3237 			       struct scan_control *sc)
3238 {
3239 	/* Aging the anon LRU is valuable if swap is present: */
3240 	if (total_swap_pages > 0)
3241 		return true;
3242 
3243 	/* Also valuable if anon pages can be demoted: */
3244 	return can_demote(pgdat->node_id, sc);
3245 }
3246 
3247 #ifdef CONFIG_LRU_GEN
3248 
3249 #ifdef CONFIG_LRU_GEN_ENABLED
3250 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3251 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3252 #else
3253 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3254 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3255 #endif
3256 
3257 static bool should_walk_mmu(void)
3258 {
3259 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
3260 }
3261 
3262 static bool should_clear_pmd_young(void)
3263 {
3264 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
3265 }
3266 
3267 /******************************************************************************
3268  *                          shorthand helpers
3269  ******************************************************************************/
3270 
3271 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3272 
3273 #define DEFINE_MAX_SEQ(lruvec)						\
3274 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3275 
3276 #define DEFINE_MIN_SEQ(lruvec)						\
3277 	unsigned long min_seq[ANON_AND_FILE] = {			\
3278 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3279 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3280 	}
3281 
3282 #define for_each_gen_type_zone(gen, type, zone)				\
3283 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3284 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3285 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3286 
3287 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3288 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3289 
3290 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3291 {
3292 	struct pglist_data *pgdat = NODE_DATA(nid);
3293 
3294 #ifdef CONFIG_MEMCG
3295 	if (memcg) {
3296 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3297 
3298 		/* see the comment in mem_cgroup_lruvec() */
3299 		if (!lruvec->pgdat)
3300 			lruvec->pgdat = pgdat;
3301 
3302 		return lruvec;
3303 	}
3304 #endif
3305 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3306 
3307 	return &pgdat->__lruvec;
3308 }
3309 
3310 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3311 {
3312 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3313 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3314 
3315 	if (!sc->may_swap)
3316 		return 0;
3317 
3318 	if (!can_demote(pgdat->node_id, sc) &&
3319 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3320 		return 0;
3321 
3322 	return mem_cgroup_swappiness(memcg);
3323 }
3324 
3325 static int get_nr_gens(struct lruvec *lruvec, int type)
3326 {
3327 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3328 }
3329 
3330 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3331 {
3332 	/* see the comment on lru_gen_folio */
3333 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3334 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3335 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3336 }
3337 
3338 /******************************************************************************
3339  *                          Bloom filters
3340  ******************************************************************************/
3341 
3342 /*
3343  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3344  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3345  * bits in a bitmap, k is the number of hash functions and n is the number of
3346  * inserted items.
3347  *
3348  * Page table walkers use one of the two filters to reduce their search space.
3349  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3350  * aging uses the double-buffering technique to flip to the other filter each
3351  * time it produces a new generation. For non-leaf entries that have enough
3352  * leaf entries, the aging carries them over to the next generation in
3353  * walk_pmd_range(); the eviction also report them when walking the rmap
3354  * in lru_gen_look_around().
3355  *
3356  * For future optimizations:
3357  * 1. It's not necessary to keep both filters all the time. The spare one can be
3358  *    freed after the RCU grace period and reallocated if needed again.
3359  * 2. And when reallocating, it's worth scaling its size according to the number
3360  *    of inserted entries in the other filter, to reduce the memory overhead on
3361  *    small systems and false positives on large systems.
3362  * 3. Jenkins' hash function is an alternative to Knuth's.
3363  */
3364 #define BLOOM_FILTER_SHIFT	15
3365 
3366 static inline int filter_gen_from_seq(unsigned long seq)
3367 {
3368 	return seq % NR_BLOOM_FILTERS;
3369 }
3370 
3371 static void get_item_key(void *item, int *key)
3372 {
3373 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3374 
3375 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3376 
3377 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3378 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3379 }
3380 
3381 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3382 {
3383 	int key[2];
3384 	unsigned long *filter;
3385 	int gen = filter_gen_from_seq(seq);
3386 
3387 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3388 	if (!filter)
3389 		return true;
3390 
3391 	get_item_key(item, key);
3392 
3393 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3394 }
3395 
3396 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3397 {
3398 	int key[2];
3399 	unsigned long *filter;
3400 	int gen = filter_gen_from_seq(seq);
3401 
3402 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3403 	if (!filter)
3404 		return;
3405 
3406 	get_item_key(item, key);
3407 
3408 	if (!test_bit(key[0], filter))
3409 		set_bit(key[0], filter);
3410 	if (!test_bit(key[1], filter))
3411 		set_bit(key[1], filter);
3412 }
3413 
3414 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3415 {
3416 	unsigned long *filter;
3417 	int gen = filter_gen_from_seq(seq);
3418 
3419 	filter = lruvec->mm_state.filters[gen];
3420 	if (filter) {
3421 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3422 		return;
3423 	}
3424 
3425 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3426 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3427 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3428 }
3429 
3430 /******************************************************************************
3431  *                          mm_struct list
3432  ******************************************************************************/
3433 
3434 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3435 {
3436 	static struct lru_gen_mm_list mm_list = {
3437 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3438 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3439 	};
3440 
3441 #ifdef CONFIG_MEMCG
3442 	if (memcg)
3443 		return &memcg->mm_list;
3444 #endif
3445 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3446 
3447 	return &mm_list;
3448 }
3449 
3450 void lru_gen_add_mm(struct mm_struct *mm)
3451 {
3452 	int nid;
3453 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3454 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3455 
3456 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3457 #ifdef CONFIG_MEMCG
3458 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3459 	mm->lru_gen.memcg = memcg;
3460 #endif
3461 	spin_lock(&mm_list->lock);
3462 
3463 	for_each_node_state(nid, N_MEMORY) {
3464 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3465 
3466 		/* the first addition since the last iteration */
3467 		if (lruvec->mm_state.tail == &mm_list->fifo)
3468 			lruvec->mm_state.tail = &mm->lru_gen.list;
3469 	}
3470 
3471 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3472 
3473 	spin_unlock(&mm_list->lock);
3474 }
3475 
3476 void lru_gen_del_mm(struct mm_struct *mm)
3477 {
3478 	int nid;
3479 	struct lru_gen_mm_list *mm_list;
3480 	struct mem_cgroup *memcg = NULL;
3481 
3482 	if (list_empty(&mm->lru_gen.list))
3483 		return;
3484 
3485 #ifdef CONFIG_MEMCG
3486 	memcg = mm->lru_gen.memcg;
3487 #endif
3488 	mm_list = get_mm_list(memcg);
3489 
3490 	spin_lock(&mm_list->lock);
3491 
3492 	for_each_node(nid) {
3493 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3494 
3495 		/* where the current iteration continues after */
3496 		if (lruvec->mm_state.head == &mm->lru_gen.list)
3497 			lruvec->mm_state.head = lruvec->mm_state.head->prev;
3498 
3499 		/* where the last iteration ended before */
3500 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3501 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3502 	}
3503 
3504 	list_del_init(&mm->lru_gen.list);
3505 
3506 	spin_unlock(&mm_list->lock);
3507 
3508 #ifdef CONFIG_MEMCG
3509 	mem_cgroup_put(mm->lru_gen.memcg);
3510 	mm->lru_gen.memcg = NULL;
3511 #endif
3512 }
3513 
3514 #ifdef CONFIG_MEMCG
3515 void lru_gen_migrate_mm(struct mm_struct *mm)
3516 {
3517 	struct mem_cgroup *memcg;
3518 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3519 
3520 	VM_WARN_ON_ONCE(task->mm != mm);
3521 	lockdep_assert_held(&task->alloc_lock);
3522 
3523 	/* for mm_update_next_owner() */
3524 	if (mem_cgroup_disabled())
3525 		return;
3526 
3527 	/* migration can happen before addition */
3528 	if (!mm->lru_gen.memcg)
3529 		return;
3530 
3531 	rcu_read_lock();
3532 	memcg = mem_cgroup_from_task(task);
3533 	rcu_read_unlock();
3534 	if (memcg == mm->lru_gen.memcg)
3535 		return;
3536 
3537 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3538 
3539 	lru_gen_del_mm(mm);
3540 	lru_gen_add_mm(mm);
3541 }
3542 #endif
3543 
3544 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3545 {
3546 	int i;
3547 	int hist;
3548 
3549 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3550 
3551 	if (walk) {
3552 		hist = lru_hist_from_seq(walk->max_seq);
3553 
3554 		for (i = 0; i < NR_MM_STATS; i++) {
3555 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3556 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3557 			walk->mm_stats[i] = 0;
3558 		}
3559 	}
3560 
3561 	if (NR_HIST_GENS > 1 && last) {
3562 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3563 
3564 		for (i = 0; i < NR_MM_STATS; i++)
3565 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3566 	}
3567 }
3568 
3569 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3570 {
3571 	int type;
3572 	unsigned long size = 0;
3573 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3574 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3575 
3576 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3577 		return true;
3578 
3579 	clear_bit(key, &mm->lru_gen.bitmap);
3580 
3581 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3582 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3583 			       get_mm_counter(mm, MM_ANONPAGES) +
3584 			       get_mm_counter(mm, MM_SHMEMPAGES);
3585 	}
3586 
3587 	if (size < MIN_LRU_BATCH)
3588 		return true;
3589 
3590 	return !mmget_not_zero(mm);
3591 }
3592 
3593 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3594 			    struct mm_struct **iter)
3595 {
3596 	bool first = false;
3597 	bool last = false;
3598 	struct mm_struct *mm = NULL;
3599 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3600 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3601 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3602 
3603 	/*
3604 	 * mm_state->seq is incremented after each iteration of mm_list. There
3605 	 * are three interesting cases for this page table walker:
3606 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3607 	 *    nothing left to do.
3608 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3609 	 *    so that a fresh set of PTE tables can be recorded.
3610 	 * 3. It ended the current iteration: it needs to reset the mm stats
3611 	 *    counters and tell its caller to increment max_seq.
3612 	 */
3613 	spin_lock(&mm_list->lock);
3614 
3615 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3616 
3617 	if (walk->max_seq <= mm_state->seq)
3618 		goto done;
3619 
3620 	if (!mm_state->head)
3621 		mm_state->head = &mm_list->fifo;
3622 
3623 	if (mm_state->head == &mm_list->fifo)
3624 		first = true;
3625 
3626 	do {
3627 		mm_state->head = mm_state->head->next;
3628 		if (mm_state->head == &mm_list->fifo) {
3629 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3630 			last = true;
3631 			break;
3632 		}
3633 
3634 		/* force scan for those added after the last iteration */
3635 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3636 			mm_state->tail = mm_state->head->next;
3637 			walk->force_scan = true;
3638 		}
3639 
3640 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3641 		if (should_skip_mm(mm, walk))
3642 			mm = NULL;
3643 	} while (!mm);
3644 done:
3645 	if (*iter || last)
3646 		reset_mm_stats(lruvec, walk, last);
3647 
3648 	spin_unlock(&mm_list->lock);
3649 
3650 	if (mm && first)
3651 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3652 
3653 	if (*iter)
3654 		mmput_async(*iter);
3655 
3656 	*iter = mm;
3657 
3658 	return last;
3659 }
3660 
3661 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3662 {
3663 	bool success = false;
3664 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3665 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3666 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3667 
3668 	spin_lock(&mm_list->lock);
3669 
3670 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3671 
3672 	if (max_seq > mm_state->seq) {
3673 		mm_state->head = NULL;
3674 		mm_state->tail = NULL;
3675 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3676 		reset_mm_stats(lruvec, NULL, true);
3677 		success = true;
3678 	}
3679 
3680 	spin_unlock(&mm_list->lock);
3681 
3682 	return success;
3683 }
3684 
3685 /******************************************************************************
3686  *                          PID controller
3687  ******************************************************************************/
3688 
3689 /*
3690  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3691  *
3692  * The P term is refaulted/(evicted+protected) from a tier in the generation
3693  * currently being evicted; the I term is the exponential moving average of the
3694  * P term over the generations previously evicted, using the smoothing factor
3695  * 1/2; the D term isn't supported.
3696  *
3697  * The setpoint (SP) is always the first tier of one type; the process variable
3698  * (PV) is either any tier of the other type or any other tier of the same
3699  * type.
3700  *
3701  * The error is the difference between the SP and the PV; the correction is to
3702  * turn off protection when SP>PV or turn on protection when SP<PV.
3703  *
3704  * For future optimizations:
3705  * 1. The D term may discount the other two terms over time so that long-lived
3706  *    generations can resist stale information.
3707  */
3708 struct ctrl_pos {
3709 	unsigned long refaulted;
3710 	unsigned long total;
3711 	int gain;
3712 };
3713 
3714 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3715 			  struct ctrl_pos *pos)
3716 {
3717 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3718 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3719 
3720 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3721 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3722 	pos->total = lrugen->avg_total[type][tier] +
3723 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3724 	if (tier)
3725 		pos->total += lrugen->protected[hist][type][tier - 1];
3726 	pos->gain = gain;
3727 }
3728 
3729 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3730 {
3731 	int hist, tier;
3732 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3733 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3734 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3735 
3736 	lockdep_assert_held(&lruvec->lru_lock);
3737 
3738 	if (!carryover && !clear)
3739 		return;
3740 
3741 	hist = lru_hist_from_seq(seq);
3742 
3743 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3744 		if (carryover) {
3745 			unsigned long sum;
3746 
3747 			sum = lrugen->avg_refaulted[type][tier] +
3748 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3749 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3750 
3751 			sum = lrugen->avg_total[type][tier] +
3752 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3753 			if (tier)
3754 				sum += lrugen->protected[hist][type][tier - 1];
3755 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3756 		}
3757 
3758 		if (clear) {
3759 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3760 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3761 			if (tier)
3762 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3763 		}
3764 	}
3765 }
3766 
3767 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3768 {
3769 	/*
3770 	 * Return true if the PV has a limited number of refaults or a lower
3771 	 * refaulted/total than the SP.
3772 	 */
3773 	return pv->refaulted < MIN_LRU_BATCH ||
3774 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3775 	       (sp->refaulted + 1) * pv->total * pv->gain;
3776 }
3777 
3778 /******************************************************************************
3779  *                          the aging
3780  ******************************************************************************/
3781 
3782 /* promote pages accessed through page tables */
3783 static int folio_update_gen(struct folio *folio, int gen)
3784 {
3785 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3786 
3787 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3788 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3789 
3790 	do {
3791 		/* lru_gen_del_folio() has isolated this page? */
3792 		if (!(old_flags & LRU_GEN_MASK)) {
3793 			/* for shrink_folio_list() */
3794 			new_flags = old_flags | BIT(PG_referenced);
3795 			continue;
3796 		}
3797 
3798 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3799 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3800 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3801 
3802 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3803 }
3804 
3805 /* protect pages accessed multiple times through file descriptors */
3806 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3807 {
3808 	int type = folio_is_file_lru(folio);
3809 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3810 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3811 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3812 
3813 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3814 
3815 	do {
3816 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3817 		/* folio_update_gen() has promoted this page? */
3818 		if (new_gen >= 0 && new_gen != old_gen)
3819 			return new_gen;
3820 
3821 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3822 
3823 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3824 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3825 		/* for folio_end_writeback() */
3826 		if (reclaiming)
3827 			new_flags |= BIT(PG_reclaim);
3828 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3829 
3830 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3831 
3832 	return new_gen;
3833 }
3834 
3835 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3836 			      int old_gen, int new_gen)
3837 {
3838 	int type = folio_is_file_lru(folio);
3839 	int zone = folio_zonenum(folio);
3840 	int delta = folio_nr_pages(folio);
3841 
3842 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3843 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3844 
3845 	walk->batched++;
3846 
3847 	walk->nr_pages[old_gen][type][zone] -= delta;
3848 	walk->nr_pages[new_gen][type][zone] += delta;
3849 }
3850 
3851 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3852 {
3853 	int gen, type, zone;
3854 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3855 
3856 	walk->batched = 0;
3857 
3858 	for_each_gen_type_zone(gen, type, zone) {
3859 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3860 		int delta = walk->nr_pages[gen][type][zone];
3861 
3862 		if (!delta)
3863 			continue;
3864 
3865 		walk->nr_pages[gen][type][zone] = 0;
3866 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3867 			   lrugen->nr_pages[gen][type][zone] + delta);
3868 
3869 		if (lru_gen_is_active(lruvec, gen))
3870 			lru += LRU_ACTIVE;
3871 		__update_lru_size(lruvec, lru, zone, delta);
3872 	}
3873 }
3874 
3875 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3876 {
3877 	struct address_space *mapping;
3878 	struct vm_area_struct *vma = args->vma;
3879 	struct lru_gen_mm_walk *walk = args->private;
3880 
3881 	if (!vma_is_accessible(vma))
3882 		return true;
3883 
3884 	if (is_vm_hugetlb_page(vma))
3885 		return true;
3886 
3887 	if (!vma_has_recency(vma))
3888 		return true;
3889 
3890 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3891 		return true;
3892 
3893 	if (vma == get_gate_vma(vma->vm_mm))
3894 		return true;
3895 
3896 	if (vma_is_anonymous(vma))
3897 		return !walk->can_swap;
3898 
3899 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3900 		return true;
3901 
3902 	mapping = vma->vm_file->f_mapping;
3903 	if (mapping_unevictable(mapping))
3904 		return true;
3905 
3906 	if (shmem_mapping(mapping))
3907 		return !walk->can_swap;
3908 
3909 	/* to exclude special mappings like dax, etc. */
3910 	return !mapping->a_ops->read_folio;
3911 }
3912 
3913 /*
3914  * Some userspace memory allocators map many single-page VMAs. Instead of
3915  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3916  * table to reduce zigzags and improve cache performance.
3917  */
3918 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3919 			 unsigned long *vm_start, unsigned long *vm_end)
3920 {
3921 	unsigned long start = round_up(*vm_end, size);
3922 	unsigned long end = (start | ~mask) + 1;
3923 	VMA_ITERATOR(vmi, args->mm, start);
3924 
3925 	VM_WARN_ON_ONCE(mask & size);
3926 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3927 
3928 	for_each_vma(vmi, args->vma) {
3929 		if (end && end <= args->vma->vm_start)
3930 			return false;
3931 
3932 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3933 			continue;
3934 
3935 		*vm_start = max(start, args->vma->vm_start);
3936 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3937 
3938 		return true;
3939 	}
3940 
3941 	return false;
3942 }
3943 
3944 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3945 {
3946 	unsigned long pfn = pte_pfn(pte);
3947 
3948 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3949 
3950 	if (!pte_present(pte) || is_zero_pfn(pfn))
3951 		return -1;
3952 
3953 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3954 		return -1;
3955 
3956 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3957 		return -1;
3958 
3959 	return pfn;
3960 }
3961 
3962 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3963 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3964 {
3965 	unsigned long pfn = pmd_pfn(pmd);
3966 
3967 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3968 
3969 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3970 		return -1;
3971 
3972 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3973 		return -1;
3974 
3975 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3976 		return -1;
3977 
3978 	return pfn;
3979 }
3980 #endif
3981 
3982 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3983 				   struct pglist_data *pgdat, bool can_swap)
3984 {
3985 	struct folio *folio;
3986 
3987 	/* try to avoid unnecessary memory loads */
3988 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3989 		return NULL;
3990 
3991 	folio = pfn_folio(pfn);
3992 	if (folio_nid(folio) != pgdat->node_id)
3993 		return NULL;
3994 
3995 	if (folio_memcg_rcu(folio) != memcg)
3996 		return NULL;
3997 
3998 	/* file VMAs can contain anon pages from COW */
3999 	if (!folio_is_file_lru(folio) && !can_swap)
4000 		return NULL;
4001 
4002 	return folio;
4003 }
4004 
4005 static bool suitable_to_scan(int total, int young)
4006 {
4007 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
4008 
4009 	/* suitable if the average number of young PTEs per cacheline is >=1 */
4010 	return young * n >= total;
4011 }
4012 
4013 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
4014 			   struct mm_walk *args)
4015 {
4016 	int i;
4017 	pte_t *pte;
4018 	spinlock_t *ptl;
4019 	unsigned long addr;
4020 	int total = 0;
4021 	int young = 0;
4022 	struct lru_gen_mm_walk *walk = args->private;
4023 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4024 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4025 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4026 
4027 	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
4028 	if (!pte)
4029 		return false;
4030 	if (!spin_trylock(ptl)) {
4031 		pte_unmap(pte);
4032 		return false;
4033 	}
4034 
4035 	arch_enter_lazy_mmu_mode();
4036 restart:
4037 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4038 		unsigned long pfn;
4039 		struct folio *folio;
4040 		pte_t ptent = ptep_get(pte + i);
4041 
4042 		total++;
4043 		walk->mm_stats[MM_LEAF_TOTAL]++;
4044 
4045 		pfn = get_pte_pfn(ptent, args->vma, addr);
4046 		if (pfn == -1)
4047 			continue;
4048 
4049 		if (!pte_young(ptent)) {
4050 			walk->mm_stats[MM_LEAF_OLD]++;
4051 			continue;
4052 		}
4053 
4054 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4055 		if (!folio)
4056 			continue;
4057 
4058 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4059 			VM_WARN_ON_ONCE(true);
4060 
4061 		young++;
4062 		walk->mm_stats[MM_LEAF_YOUNG]++;
4063 
4064 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4065 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4066 		      !folio_test_swapcache(folio)))
4067 			folio_mark_dirty(folio);
4068 
4069 		old_gen = folio_update_gen(folio, new_gen);
4070 		if (old_gen >= 0 && old_gen != new_gen)
4071 			update_batch_size(walk, folio, old_gen, new_gen);
4072 	}
4073 
4074 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4075 		goto restart;
4076 
4077 	arch_leave_lazy_mmu_mode();
4078 	pte_unmap_unlock(pte, ptl);
4079 
4080 	return suitable_to_scan(total, young);
4081 }
4082 
4083 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4084 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4085 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4086 {
4087 	int i;
4088 	pmd_t *pmd;
4089 	spinlock_t *ptl;
4090 	struct lru_gen_mm_walk *walk = args->private;
4091 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4092 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4093 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4094 
4095 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4096 
4097 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4098 	if (*first == -1) {
4099 		*first = addr;
4100 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4101 		return;
4102 	}
4103 
4104 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4105 	if (i && i <= MIN_LRU_BATCH) {
4106 		__set_bit(i - 1, bitmap);
4107 		return;
4108 	}
4109 
4110 	pmd = pmd_offset(pud, *first);
4111 
4112 	ptl = pmd_lockptr(args->mm, pmd);
4113 	if (!spin_trylock(ptl))
4114 		goto done;
4115 
4116 	arch_enter_lazy_mmu_mode();
4117 
4118 	do {
4119 		unsigned long pfn;
4120 		struct folio *folio;
4121 
4122 		/* don't round down the first address */
4123 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4124 
4125 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4126 		if (pfn == -1)
4127 			goto next;
4128 
4129 		if (!pmd_trans_huge(pmd[i])) {
4130 			if (should_clear_pmd_young())
4131 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4132 			goto next;
4133 		}
4134 
4135 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4136 		if (!folio)
4137 			goto next;
4138 
4139 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4140 			goto next;
4141 
4142 		walk->mm_stats[MM_LEAF_YOUNG]++;
4143 
4144 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4145 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4146 		      !folio_test_swapcache(folio)))
4147 			folio_mark_dirty(folio);
4148 
4149 		old_gen = folio_update_gen(folio, new_gen);
4150 		if (old_gen >= 0 && old_gen != new_gen)
4151 			update_batch_size(walk, folio, old_gen, new_gen);
4152 next:
4153 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4154 	} while (i <= MIN_LRU_BATCH);
4155 
4156 	arch_leave_lazy_mmu_mode();
4157 	spin_unlock(ptl);
4158 done:
4159 	*first = -1;
4160 }
4161 #else
4162 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4163 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4164 {
4165 }
4166 #endif
4167 
4168 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4169 			   struct mm_walk *args)
4170 {
4171 	int i;
4172 	pmd_t *pmd;
4173 	unsigned long next;
4174 	unsigned long addr;
4175 	struct vm_area_struct *vma;
4176 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
4177 	unsigned long first = -1;
4178 	struct lru_gen_mm_walk *walk = args->private;
4179 
4180 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4181 
4182 	/*
4183 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4184 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4185 	 * the PMD lock to clear the accessed bit in PMD entries.
4186 	 */
4187 	pmd = pmd_offset(pud, start & PUD_MASK);
4188 restart:
4189 	/* walk_pte_range() may call get_next_vma() */
4190 	vma = args->vma;
4191 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4192 		pmd_t val = pmdp_get_lockless(pmd + i);
4193 
4194 		next = pmd_addr_end(addr, end);
4195 
4196 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4197 			walk->mm_stats[MM_LEAF_TOTAL]++;
4198 			continue;
4199 		}
4200 
4201 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4202 		if (pmd_trans_huge(val)) {
4203 			unsigned long pfn = pmd_pfn(val);
4204 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4205 
4206 			walk->mm_stats[MM_LEAF_TOTAL]++;
4207 
4208 			if (!pmd_young(val)) {
4209 				walk->mm_stats[MM_LEAF_OLD]++;
4210 				continue;
4211 			}
4212 
4213 			/* try to avoid unnecessary memory loads */
4214 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4215 				continue;
4216 
4217 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4218 			continue;
4219 		}
4220 #endif
4221 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4222 
4223 		if (should_clear_pmd_young()) {
4224 			if (!pmd_young(val))
4225 				continue;
4226 
4227 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4228 		}
4229 
4230 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4231 			continue;
4232 
4233 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4234 
4235 		if (!walk_pte_range(&val, addr, next, args))
4236 			continue;
4237 
4238 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4239 
4240 		/* carry over to the next generation */
4241 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4242 	}
4243 
4244 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4245 
4246 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4247 		goto restart;
4248 }
4249 
4250 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4251 			  struct mm_walk *args)
4252 {
4253 	int i;
4254 	pud_t *pud;
4255 	unsigned long addr;
4256 	unsigned long next;
4257 	struct lru_gen_mm_walk *walk = args->private;
4258 
4259 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4260 
4261 	pud = pud_offset(p4d, start & P4D_MASK);
4262 restart:
4263 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4264 		pud_t val = READ_ONCE(pud[i]);
4265 
4266 		next = pud_addr_end(addr, end);
4267 
4268 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4269 			continue;
4270 
4271 		walk_pmd_range(&val, addr, next, args);
4272 
4273 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4274 			end = (addr | ~PUD_MASK) + 1;
4275 			goto done;
4276 		}
4277 	}
4278 
4279 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4280 		goto restart;
4281 
4282 	end = round_up(end, P4D_SIZE);
4283 done:
4284 	if (!end || !args->vma)
4285 		return 1;
4286 
4287 	walk->next_addr = max(end, args->vma->vm_start);
4288 
4289 	return -EAGAIN;
4290 }
4291 
4292 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4293 {
4294 	static const struct mm_walk_ops mm_walk_ops = {
4295 		.test_walk = should_skip_vma,
4296 		.p4d_entry = walk_pud_range,
4297 	};
4298 
4299 	int err;
4300 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4301 
4302 	walk->next_addr = FIRST_USER_ADDRESS;
4303 
4304 	do {
4305 		DEFINE_MAX_SEQ(lruvec);
4306 
4307 		err = -EBUSY;
4308 
4309 		/* another thread might have called inc_max_seq() */
4310 		if (walk->max_seq != max_seq)
4311 			break;
4312 
4313 		/* folio_update_gen() requires stable folio_memcg() */
4314 		if (!mem_cgroup_trylock_pages(memcg))
4315 			break;
4316 
4317 		/* the caller might be holding the lock for write */
4318 		if (mmap_read_trylock(mm)) {
4319 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4320 
4321 			mmap_read_unlock(mm);
4322 		}
4323 
4324 		mem_cgroup_unlock_pages();
4325 
4326 		if (walk->batched) {
4327 			spin_lock_irq(&lruvec->lru_lock);
4328 			reset_batch_size(lruvec, walk);
4329 			spin_unlock_irq(&lruvec->lru_lock);
4330 		}
4331 
4332 		cond_resched();
4333 	} while (err == -EAGAIN);
4334 }
4335 
4336 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4337 {
4338 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4339 
4340 	if (pgdat && current_is_kswapd()) {
4341 		VM_WARN_ON_ONCE(walk);
4342 
4343 		walk = &pgdat->mm_walk;
4344 	} else if (!walk && force_alloc) {
4345 		VM_WARN_ON_ONCE(current_is_kswapd());
4346 
4347 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4348 	}
4349 
4350 	current->reclaim_state->mm_walk = walk;
4351 
4352 	return walk;
4353 }
4354 
4355 static void clear_mm_walk(void)
4356 {
4357 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4358 
4359 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4360 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4361 
4362 	current->reclaim_state->mm_walk = NULL;
4363 
4364 	if (!current_is_kswapd())
4365 		kfree(walk);
4366 }
4367 
4368 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4369 {
4370 	int zone;
4371 	int remaining = MAX_LRU_BATCH;
4372 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4373 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4374 
4375 	if (type == LRU_GEN_ANON && !can_swap)
4376 		goto done;
4377 
4378 	/* prevent cold/hot inversion if force_scan is true */
4379 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4380 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4381 
4382 		while (!list_empty(head)) {
4383 			struct folio *folio = lru_to_folio(head);
4384 
4385 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4386 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4387 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4388 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4389 
4390 			new_gen = folio_inc_gen(lruvec, folio, false);
4391 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4392 
4393 			if (!--remaining)
4394 				return false;
4395 		}
4396 	}
4397 done:
4398 	reset_ctrl_pos(lruvec, type, true);
4399 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4400 
4401 	return true;
4402 }
4403 
4404 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4405 {
4406 	int gen, type, zone;
4407 	bool success = false;
4408 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4409 	DEFINE_MIN_SEQ(lruvec);
4410 
4411 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4412 
4413 	/* find the oldest populated generation */
4414 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4415 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4416 			gen = lru_gen_from_seq(min_seq[type]);
4417 
4418 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4419 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4420 					goto next;
4421 			}
4422 
4423 			min_seq[type]++;
4424 		}
4425 next:
4426 		;
4427 	}
4428 
4429 	/* see the comment on lru_gen_folio */
4430 	if (can_swap) {
4431 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4432 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4433 	}
4434 
4435 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4436 		if (min_seq[type] == lrugen->min_seq[type])
4437 			continue;
4438 
4439 		reset_ctrl_pos(lruvec, type, true);
4440 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4441 		success = true;
4442 	}
4443 
4444 	return success;
4445 }
4446 
4447 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4448 {
4449 	int prev, next;
4450 	int type, zone;
4451 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4452 
4453 	spin_lock_irq(&lruvec->lru_lock);
4454 
4455 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4456 
4457 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4458 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4459 			continue;
4460 
4461 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4462 
4463 		while (!inc_min_seq(lruvec, type, can_swap)) {
4464 			spin_unlock_irq(&lruvec->lru_lock);
4465 			cond_resched();
4466 			spin_lock_irq(&lruvec->lru_lock);
4467 		}
4468 	}
4469 
4470 	/*
4471 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4472 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4473 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4474 	 * overlap, cold/hot inversion happens.
4475 	 */
4476 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4477 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4478 
4479 	for (type = 0; type < ANON_AND_FILE; type++) {
4480 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4481 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4482 			long delta = lrugen->nr_pages[prev][type][zone] -
4483 				     lrugen->nr_pages[next][type][zone];
4484 
4485 			if (!delta)
4486 				continue;
4487 
4488 			__update_lru_size(lruvec, lru, zone, delta);
4489 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4490 		}
4491 	}
4492 
4493 	for (type = 0; type < ANON_AND_FILE; type++)
4494 		reset_ctrl_pos(lruvec, type, false);
4495 
4496 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4497 	/* make sure preceding modifications appear */
4498 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4499 
4500 	spin_unlock_irq(&lruvec->lru_lock);
4501 }
4502 
4503 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4504 			       struct scan_control *sc, bool can_swap, bool force_scan)
4505 {
4506 	bool success;
4507 	struct lru_gen_mm_walk *walk;
4508 	struct mm_struct *mm = NULL;
4509 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4510 
4511 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4512 
4513 	/* see the comment in iterate_mm_list() */
4514 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4515 		success = false;
4516 		goto done;
4517 	}
4518 
4519 	/*
4520 	 * If the hardware doesn't automatically set the accessed bit, fallback
4521 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4522 	 * handful of PTEs. Spreading the work out over a period of time usually
4523 	 * is less efficient, but it avoids bursty page faults.
4524 	 */
4525 	if (!should_walk_mmu()) {
4526 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4527 		goto done;
4528 	}
4529 
4530 	walk = set_mm_walk(NULL, true);
4531 	if (!walk) {
4532 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4533 		goto done;
4534 	}
4535 
4536 	walk->lruvec = lruvec;
4537 	walk->max_seq = max_seq;
4538 	walk->can_swap = can_swap;
4539 	walk->force_scan = force_scan;
4540 
4541 	do {
4542 		success = iterate_mm_list(lruvec, walk, &mm);
4543 		if (mm)
4544 			walk_mm(lruvec, mm, walk);
4545 	} while (mm);
4546 done:
4547 	if (success)
4548 		inc_max_seq(lruvec, can_swap, force_scan);
4549 
4550 	return success;
4551 }
4552 
4553 /******************************************************************************
4554  *                          working set protection
4555  ******************************************************************************/
4556 
4557 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4558 {
4559 	int gen, type, zone;
4560 	unsigned long total = 0;
4561 	bool can_swap = get_swappiness(lruvec, sc);
4562 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4563 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4564 	DEFINE_MAX_SEQ(lruvec);
4565 	DEFINE_MIN_SEQ(lruvec);
4566 
4567 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4568 		unsigned long seq;
4569 
4570 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4571 			gen = lru_gen_from_seq(seq);
4572 
4573 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4574 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4575 		}
4576 	}
4577 
4578 	/* whether the size is big enough to be helpful */
4579 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4580 }
4581 
4582 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4583 				  unsigned long min_ttl)
4584 {
4585 	int gen;
4586 	unsigned long birth;
4587 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4588 	DEFINE_MIN_SEQ(lruvec);
4589 
4590 	/* see the comment on lru_gen_folio */
4591 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4592 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4593 
4594 	if (time_is_after_jiffies(birth + min_ttl))
4595 		return false;
4596 
4597 	if (!lruvec_is_sizable(lruvec, sc))
4598 		return false;
4599 
4600 	mem_cgroup_calculate_protection(NULL, memcg);
4601 
4602 	return !mem_cgroup_below_min(NULL, memcg);
4603 }
4604 
4605 /* to protect the working set of the last N jiffies */
4606 static unsigned long lru_gen_min_ttl __read_mostly;
4607 
4608 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4609 {
4610 	struct mem_cgroup *memcg;
4611 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4612 
4613 	VM_WARN_ON_ONCE(!current_is_kswapd());
4614 
4615 	/* check the order to exclude compaction-induced reclaim */
4616 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4617 		return;
4618 
4619 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4620 	do {
4621 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4622 
4623 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4624 			mem_cgroup_iter_break(NULL, memcg);
4625 			return;
4626 		}
4627 
4628 		cond_resched();
4629 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4630 
4631 	/*
4632 	 * The main goal is to OOM kill if every generation from all memcgs is
4633 	 * younger than min_ttl. However, another possibility is all memcgs are
4634 	 * either too small or below min.
4635 	 */
4636 	if (mutex_trylock(&oom_lock)) {
4637 		struct oom_control oc = {
4638 			.gfp_mask = sc->gfp_mask,
4639 		};
4640 
4641 		out_of_memory(&oc);
4642 
4643 		mutex_unlock(&oom_lock);
4644 	}
4645 }
4646 
4647 /******************************************************************************
4648  *                          rmap/PT walk feedback
4649  ******************************************************************************/
4650 
4651 /*
4652  * This function exploits spatial locality when shrink_folio_list() walks the
4653  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4654  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4655  * the PTE table to the Bloom filter. This forms a feedback loop between the
4656  * eviction and the aging.
4657  */
4658 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4659 {
4660 	int i;
4661 	unsigned long start;
4662 	unsigned long end;
4663 	struct lru_gen_mm_walk *walk;
4664 	int young = 0;
4665 	pte_t *pte = pvmw->pte;
4666 	unsigned long addr = pvmw->address;
4667 	struct folio *folio = pfn_folio(pvmw->pfn);
4668 	struct mem_cgroup *memcg = folio_memcg(folio);
4669 	struct pglist_data *pgdat = folio_pgdat(folio);
4670 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4671 	DEFINE_MAX_SEQ(lruvec);
4672 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4673 
4674 	lockdep_assert_held(pvmw->ptl);
4675 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4676 
4677 	if (spin_is_contended(pvmw->ptl))
4678 		return;
4679 
4680 	/* avoid taking the LRU lock under the PTL when possible */
4681 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4682 
4683 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4684 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4685 
4686 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4687 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4688 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4689 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4690 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4691 		else {
4692 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4693 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4694 		}
4695 	}
4696 
4697 	/* folio_update_gen() requires stable folio_memcg() */
4698 	if (!mem_cgroup_trylock_pages(memcg))
4699 		return;
4700 
4701 	arch_enter_lazy_mmu_mode();
4702 
4703 	pte -= (addr - start) / PAGE_SIZE;
4704 
4705 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4706 		unsigned long pfn;
4707 		pte_t ptent = ptep_get(pte + i);
4708 
4709 		pfn = get_pte_pfn(ptent, pvmw->vma, addr);
4710 		if (pfn == -1)
4711 			continue;
4712 
4713 		if (!pte_young(ptent))
4714 			continue;
4715 
4716 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4717 		if (!folio)
4718 			continue;
4719 
4720 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4721 			VM_WARN_ON_ONCE(true);
4722 
4723 		young++;
4724 
4725 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4726 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4727 		      !folio_test_swapcache(folio)))
4728 			folio_mark_dirty(folio);
4729 
4730 		if (walk) {
4731 			old_gen = folio_update_gen(folio, new_gen);
4732 			if (old_gen >= 0 && old_gen != new_gen)
4733 				update_batch_size(walk, folio, old_gen, new_gen);
4734 
4735 			continue;
4736 		}
4737 
4738 		old_gen = folio_lru_gen(folio);
4739 		if (old_gen < 0)
4740 			folio_set_referenced(folio);
4741 		else if (old_gen != new_gen)
4742 			folio_activate(folio);
4743 	}
4744 
4745 	arch_leave_lazy_mmu_mode();
4746 	mem_cgroup_unlock_pages();
4747 
4748 	/* feedback from rmap walkers to page table walkers */
4749 	if (suitable_to_scan(i, young))
4750 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4751 }
4752 
4753 /******************************************************************************
4754  *                          memcg LRU
4755  ******************************************************************************/
4756 
4757 /* see the comment on MEMCG_NR_GENS */
4758 enum {
4759 	MEMCG_LRU_NOP,
4760 	MEMCG_LRU_HEAD,
4761 	MEMCG_LRU_TAIL,
4762 	MEMCG_LRU_OLD,
4763 	MEMCG_LRU_YOUNG,
4764 };
4765 
4766 #ifdef CONFIG_MEMCG
4767 
4768 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4769 {
4770 	return READ_ONCE(lruvec->lrugen.seg);
4771 }
4772 
4773 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4774 {
4775 	int seg;
4776 	int old, new;
4777 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4778 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4779 
4780 	spin_lock(&pgdat->memcg_lru.lock);
4781 
4782 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4783 
4784 	seg = 0;
4785 	new = old = lruvec->lrugen.gen;
4786 
4787 	/* see the comment on MEMCG_NR_GENS */
4788 	if (op == MEMCG_LRU_HEAD)
4789 		seg = MEMCG_LRU_HEAD;
4790 	else if (op == MEMCG_LRU_TAIL)
4791 		seg = MEMCG_LRU_TAIL;
4792 	else if (op == MEMCG_LRU_OLD)
4793 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4794 	else if (op == MEMCG_LRU_YOUNG)
4795 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4796 	else
4797 		VM_WARN_ON_ONCE(true);
4798 
4799 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4800 
4801 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4802 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4803 	else
4804 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4805 
4806 	pgdat->memcg_lru.nr_memcgs[old]--;
4807 	pgdat->memcg_lru.nr_memcgs[new]++;
4808 
4809 	lruvec->lrugen.gen = new;
4810 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4811 
4812 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4813 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4814 
4815 	spin_unlock(&pgdat->memcg_lru.lock);
4816 }
4817 
4818 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4819 {
4820 	int gen;
4821 	int nid;
4822 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4823 
4824 	for_each_node(nid) {
4825 		struct pglist_data *pgdat = NODE_DATA(nid);
4826 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4827 
4828 		spin_lock(&pgdat->memcg_lru.lock);
4829 
4830 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4831 
4832 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4833 
4834 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4835 		pgdat->memcg_lru.nr_memcgs[gen]++;
4836 
4837 		lruvec->lrugen.gen = gen;
4838 
4839 		spin_unlock(&pgdat->memcg_lru.lock);
4840 	}
4841 }
4842 
4843 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4844 {
4845 	int nid;
4846 
4847 	for_each_node(nid) {
4848 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4849 
4850 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4851 	}
4852 }
4853 
4854 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4855 {
4856 	int gen;
4857 	int nid;
4858 
4859 	for_each_node(nid) {
4860 		struct pglist_data *pgdat = NODE_DATA(nid);
4861 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4862 
4863 		spin_lock(&pgdat->memcg_lru.lock);
4864 
4865 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4866 
4867 		gen = lruvec->lrugen.gen;
4868 
4869 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
4870 		pgdat->memcg_lru.nr_memcgs[gen]--;
4871 
4872 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4873 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4874 
4875 		spin_unlock(&pgdat->memcg_lru.lock);
4876 	}
4877 }
4878 
4879 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4880 {
4881 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4882 
4883 	/* see the comment on MEMCG_NR_GENS */
4884 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4885 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4886 }
4887 
4888 #else /* !CONFIG_MEMCG */
4889 
4890 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4891 {
4892 	return 0;
4893 }
4894 
4895 #endif
4896 
4897 /******************************************************************************
4898  *                          the eviction
4899  ******************************************************************************/
4900 
4901 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4902 {
4903 	bool success;
4904 	int gen = folio_lru_gen(folio);
4905 	int type = folio_is_file_lru(folio);
4906 	int zone = folio_zonenum(folio);
4907 	int delta = folio_nr_pages(folio);
4908 	int refs = folio_lru_refs(folio);
4909 	int tier = lru_tier_from_refs(refs);
4910 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4911 
4912 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4913 
4914 	/* unevictable */
4915 	if (!folio_evictable(folio)) {
4916 		success = lru_gen_del_folio(lruvec, folio, true);
4917 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4918 		folio_set_unevictable(folio);
4919 		lruvec_add_folio(lruvec, folio);
4920 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4921 		return true;
4922 	}
4923 
4924 	/* dirty lazyfree */
4925 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4926 		success = lru_gen_del_folio(lruvec, folio, true);
4927 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4928 		folio_set_swapbacked(folio);
4929 		lruvec_add_folio_tail(lruvec, folio);
4930 		return true;
4931 	}
4932 
4933 	/* promoted */
4934 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4935 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4936 		return true;
4937 	}
4938 
4939 	/* protected */
4940 	if (tier > tier_idx) {
4941 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4942 
4943 		gen = folio_inc_gen(lruvec, folio, false);
4944 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4945 
4946 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4947 			   lrugen->protected[hist][type][tier - 1] + delta);
4948 		return true;
4949 	}
4950 
4951 	/* waiting for writeback */
4952 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4953 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4954 		gen = folio_inc_gen(lruvec, folio, true);
4955 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4956 		return true;
4957 	}
4958 
4959 	return false;
4960 }
4961 
4962 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4963 {
4964 	bool success;
4965 
4966 	/* swapping inhibited */
4967 	if (!(sc->gfp_mask & __GFP_IO) &&
4968 	    (folio_test_dirty(folio) ||
4969 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4970 		return false;
4971 
4972 	/* raced with release_pages() */
4973 	if (!folio_try_get(folio))
4974 		return false;
4975 
4976 	/* raced with another isolation */
4977 	if (!folio_test_clear_lru(folio)) {
4978 		folio_put(folio);
4979 		return false;
4980 	}
4981 
4982 	/* see the comment on MAX_NR_TIERS */
4983 	if (!folio_test_referenced(folio))
4984 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4985 
4986 	/* for shrink_folio_list() */
4987 	folio_clear_reclaim(folio);
4988 	folio_clear_referenced(folio);
4989 
4990 	success = lru_gen_del_folio(lruvec, folio, true);
4991 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4992 
4993 	return true;
4994 }
4995 
4996 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4997 		       int type, int tier, struct list_head *list)
4998 {
4999 	int gen, zone;
5000 	enum vm_event_item item;
5001 	int sorted = 0;
5002 	int scanned = 0;
5003 	int isolated = 0;
5004 	int remaining = MAX_LRU_BATCH;
5005 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5006 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5007 
5008 	VM_WARN_ON_ONCE(!list_empty(list));
5009 
5010 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
5011 		return 0;
5012 
5013 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
5014 
5015 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
5016 		LIST_HEAD(moved);
5017 		int skipped = 0;
5018 		struct list_head *head = &lrugen->folios[gen][type][zone];
5019 
5020 		while (!list_empty(head)) {
5021 			struct folio *folio = lru_to_folio(head);
5022 			int delta = folio_nr_pages(folio);
5023 
5024 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5025 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5026 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5027 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5028 
5029 			scanned += delta;
5030 
5031 			if (sort_folio(lruvec, folio, tier))
5032 				sorted += delta;
5033 			else if (isolate_folio(lruvec, folio, sc)) {
5034 				list_add(&folio->lru, list);
5035 				isolated += delta;
5036 			} else {
5037 				list_move(&folio->lru, &moved);
5038 				skipped += delta;
5039 			}
5040 
5041 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5042 				break;
5043 		}
5044 
5045 		if (skipped) {
5046 			list_splice(&moved, head);
5047 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5048 		}
5049 
5050 		if (!remaining || isolated >= MIN_LRU_BATCH)
5051 			break;
5052 	}
5053 
5054 	item = PGSCAN_KSWAPD + reclaimer_offset();
5055 	if (!cgroup_reclaim(sc)) {
5056 		__count_vm_events(item, isolated);
5057 		__count_vm_events(PGREFILL, sorted);
5058 	}
5059 	__count_memcg_events(memcg, item, isolated);
5060 	__count_memcg_events(memcg, PGREFILL, sorted);
5061 	__count_vm_events(PGSCAN_ANON + type, isolated);
5062 
5063 	/*
5064 	 * There might not be eligible folios due to reclaim_idx. Check the
5065 	 * remaining to prevent livelock if it's not making progress.
5066 	 */
5067 	return isolated || !remaining ? scanned : 0;
5068 }
5069 
5070 static int get_tier_idx(struct lruvec *lruvec, int type)
5071 {
5072 	int tier;
5073 	struct ctrl_pos sp, pv;
5074 
5075 	/*
5076 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5077 	 * This value is chosen because any other tier would have at least twice
5078 	 * as many refaults as the first tier.
5079 	 */
5080 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5081 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5082 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5083 		if (!positive_ctrl_err(&sp, &pv))
5084 			break;
5085 	}
5086 
5087 	return tier - 1;
5088 }
5089 
5090 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5091 {
5092 	int type, tier;
5093 	struct ctrl_pos sp, pv;
5094 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5095 
5096 	/*
5097 	 * Compare the first tier of anon with that of file to determine which
5098 	 * type to scan. Also need to compare other tiers of the selected type
5099 	 * with the first tier of the other type to determine the last tier (of
5100 	 * the selected type) to evict.
5101 	 */
5102 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5103 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5104 	type = positive_ctrl_err(&sp, &pv);
5105 
5106 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5107 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5108 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5109 		if (!positive_ctrl_err(&sp, &pv))
5110 			break;
5111 	}
5112 
5113 	*tier_idx = tier - 1;
5114 
5115 	return type;
5116 }
5117 
5118 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5119 			  int *type_scanned, struct list_head *list)
5120 {
5121 	int i;
5122 	int type;
5123 	int scanned;
5124 	int tier = -1;
5125 	DEFINE_MIN_SEQ(lruvec);
5126 
5127 	/*
5128 	 * Try to make the obvious choice first. When anon and file are both
5129 	 * available from the same generation, interpret swappiness 1 as file
5130 	 * first and 200 as anon first.
5131 	 */
5132 	if (!swappiness)
5133 		type = LRU_GEN_FILE;
5134 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5135 		type = LRU_GEN_ANON;
5136 	else if (swappiness == 1)
5137 		type = LRU_GEN_FILE;
5138 	else if (swappiness == 200)
5139 		type = LRU_GEN_ANON;
5140 	else
5141 		type = get_type_to_scan(lruvec, swappiness, &tier);
5142 
5143 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5144 		if (tier < 0)
5145 			tier = get_tier_idx(lruvec, type);
5146 
5147 		scanned = scan_folios(lruvec, sc, type, tier, list);
5148 		if (scanned)
5149 			break;
5150 
5151 		type = !type;
5152 		tier = -1;
5153 	}
5154 
5155 	*type_scanned = type;
5156 
5157 	return scanned;
5158 }
5159 
5160 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5161 {
5162 	int type;
5163 	int scanned;
5164 	int reclaimed;
5165 	LIST_HEAD(list);
5166 	LIST_HEAD(clean);
5167 	struct folio *folio;
5168 	struct folio *next;
5169 	enum vm_event_item item;
5170 	struct reclaim_stat stat;
5171 	struct lru_gen_mm_walk *walk;
5172 	bool skip_retry = false;
5173 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5174 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5175 
5176 	spin_lock_irq(&lruvec->lru_lock);
5177 
5178 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5179 
5180 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5181 
5182 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5183 		scanned = 0;
5184 
5185 	spin_unlock_irq(&lruvec->lru_lock);
5186 
5187 	if (list_empty(&list))
5188 		return scanned;
5189 retry:
5190 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5191 	sc->nr_reclaimed += reclaimed;
5192 
5193 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5194 		if (!folio_evictable(folio)) {
5195 			list_del(&folio->lru);
5196 			folio_putback_lru(folio);
5197 			continue;
5198 		}
5199 
5200 		if (folio_test_reclaim(folio) &&
5201 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5202 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5203 			if (folio_test_workingset(folio))
5204 				folio_set_referenced(folio);
5205 			continue;
5206 		}
5207 
5208 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5209 		    folio_mapped(folio) || folio_test_locked(folio) ||
5210 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5211 			/* don't add rejected folios to the oldest generation */
5212 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5213 				      BIT(PG_active));
5214 			continue;
5215 		}
5216 
5217 		/* retry folios that may have missed folio_rotate_reclaimable() */
5218 		list_move(&folio->lru, &clean);
5219 		sc->nr_scanned -= folio_nr_pages(folio);
5220 	}
5221 
5222 	spin_lock_irq(&lruvec->lru_lock);
5223 
5224 	move_folios_to_lru(lruvec, &list);
5225 
5226 	walk = current->reclaim_state->mm_walk;
5227 	if (walk && walk->batched)
5228 		reset_batch_size(lruvec, walk);
5229 
5230 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5231 	if (!cgroup_reclaim(sc))
5232 		__count_vm_events(item, reclaimed);
5233 	__count_memcg_events(memcg, item, reclaimed);
5234 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5235 
5236 	spin_unlock_irq(&lruvec->lru_lock);
5237 
5238 	mem_cgroup_uncharge_list(&list);
5239 	free_unref_page_list(&list);
5240 
5241 	INIT_LIST_HEAD(&list);
5242 	list_splice_init(&clean, &list);
5243 
5244 	if (!list_empty(&list)) {
5245 		skip_retry = true;
5246 		goto retry;
5247 	}
5248 
5249 	return scanned;
5250 }
5251 
5252 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5253 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5254 {
5255 	int gen, type, zone;
5256 	unsigned long old = 0;
5257 	unsigned long young = 0;
5258 	unsigned long total = 0;
5259 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5260 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5261 	DEFINE_MIN_SEQ(lruvec);
5262 
5263 	/* whether this lruvec is completely out of cold folios */
5264 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5265 		*nr_to_scan = 0;
5266 		return true;
5267 	}
5268 
5269 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5270 		unsigned long seq;
5271 
5272 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5273 			unsigned long size = 0;
5274 
5275 			gen = lru_gen_from_seq(seq);
5276 
5277 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5278 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5279 
5280 			total += size;
5281 			if (seq == max_seq)
5282 				young += size;
5283 			else if (seq + MIN_NR_GENS == max_seq)
5284 				old += size;
5285 		}
5286 	}
5287 
5288 	/* try to scrape all its memory if this memcg was deleted */
5289 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5290 
5291 	/*
5292 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5293 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5294 	 * ideal number of generations is MIN_NR_GENS+1.
5295 	 */
5296 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5297 		return false;
5298 
5299 	/*
5300 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5301 	 * of the total number of pages for each generation. A reasonable range
5302 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5303 	 * aging cares about the upper bound of hot pages, while the eviction
5304 	 * cares about the lower bound of cold pages.
5305 	 */
5306 	if (young * MIN_NR_GENS > total)
5307 		return true;
5308 	if (old * (MIN_NR_GENS + 2) < total)
5309 		return true;
5310 
5311 	return false;
5312 }
5313 
5314 /*
5315  * For future optimizations:
5316  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5317  *    reclaim.
5318  */
5319 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5320 {
5321 	unsigned long nr_to_scan;
5322 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5323 	DEFINE_MAX_SEQ(lruvec);
5324 
5325 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5326 		return 0;
5327 
5328 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5329 		return nr_to_scan;
5330 
5331 	/* skip the aging path at the default priority */
5332 	if (sc->priority == DEF_PRIORITY)
5333 		return nr_to_scan;
5334 
5335 	/* skip this lruvec as it's low on cold folios */
5336 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5337 }
5338 
5339 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5340 {
5341 	/* don't abort memcg reclaim to ensure fairness */
5342 	if (!global_reclaim(sc))
5343 		return -1;
5344 
5345 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5346 }
5347 
5348 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5349 {
5350 	long nr_to_scan;
5351 	unsigned long scanned = 0;
5352 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5353 	int swappiness = get_swappiness(lruvec, sc);
5354 
5355 	/* clean file folios are more likely to exist */
5356 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5357 		swappiness = 1;
5358 
5359 	while (true) {
5360 		int delta;
5361 
5362 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5363 		if (nr_to_scan <= 0)
5364 			break;
5365 
5366 		delta = evict_folios(lruvec, sc, swappiness);
5367 		if (!delta)
5368 			break;
5369 
5370 		scanned += delta;
5371 		if (scanned >= nr_to_scan)
5372 			break;
5373 
5374 		if (sc->nr_reclaimed >= nr_to_reclaim)
5375 			break;
5376 
5377 		cond_resched();
5378 	}
5379 
5380 	/* whether try_to_inc_max_seq() was successful */
5381 	return nr_to_scan < 0;
5382 }
5383 
5384 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5385 {
5386 	bool success;
5387 	unsigned long scanned = sc->nr_scanned;
5388 	unsigned long reclaimed = sc->nr_reclaimed;
5389 	int seg = lru_gen_memcg_seg(lruvec);
5390 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5391 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5392 
5393 	/* see the comment on MEMCG_NR_GENS */
5394 	if (!lruvec_is_sizable(lruvec, sc))
5395 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5396 
5397 	mem_cgroup_calculate_protection(NULL, memcg);
5398 
5399 	if (mem_cgroup_below_min(NULL, memcg))
5400 		return MEMCG_LRU_YOUNG;
5401 
5402 	if (mem_cgroup_below_low(NULL, memcg)) {
5403 		/* see the comment on MEMCG_NR_GENS */
5404 		if (seg != MEMCG_LRU_TAIL)
5405 			return MEMCG_LRU_TAIL;
5406 
5407 		memcg_memory_event(memcg, MEMCG_LOW);
5408 	}
5409 
5410 	success = try_to_shrink_lruvec(lruvec, sc);
5411 
5412 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5413 
5414 	if (!sc->proactive)
5415 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5416 			   sc->nr_reclaimed - reclaimed);
5417 
5418 	flush_reclaim_state(sc);
5419 
5420 	return success ? MEMCG_LRU_YOUNG : 0;
5421 }
5422 
5423 #ifdef CONFIG_MEMCG
5424 
5425 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5426 {
5427 	int op;
5428 	int gen;
5429 	int bin;
5430 	int first_bin;
5431 	struct lruvec *lruvec;
5432 	struct lru_gen_folio *lrugen;
5433 	struct mem_cgroup *memcg;
5434 	const struct hlist_nulls_node *pos;
5435 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5436 
5437 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5438 restart:
5439 	op = 0;
5440 	memcg = NULL;
5441 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5442 
5443 	rcu_read_lock();
5444 
5445 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5446 		if (op)
5447 			lru_gen_rotate_memcg(lruvec, op);
5448 
5449 		mem_cgroup_put(memcg);
5450 
5451 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5452 		memcg = lruvec_memcg(lruvec);
5453 
5454 		if (!mem_cgroup_tryget(memcg)) {
5455 			op = 0;
5456 			memcg = NULL;
5457 			continue;
5458 		}
5459 
5460 		rcu_read_unlock();
5461 
5462 		op = shrink_one(lruvec, sc);
5463 
5464 		rcu_read_lock();
5465 
5466 		if (sc->nr_reclaimed >= nr_to_reclaim)
5467 			break;
5468 	}
5469 
5470 	rcu_read_unlock();
5471 
5472 	if (op)
5473 		lru_gen_rotate_memcg(lruvec, op);
5474 
5475 	mem_cgroup_put(memcg);
5476 
5477 	if (sc->nr_reclaimed >= nr_to_reclaim)
5478 		return;
5479 
5480 	/* restart if raced with lru_gen_rotate_memcg() */
5481 	if (gen != get_nulls_value(pos))
5482 		goto restart;
5483 
5484 	/* try the rest of the bins of the current generation */
5485 	bin = get_memcg_bin(bin + 1);
5486 	if (bin != first_bin)
5487 		goto restart;
5488 }
5489 
5490 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5491 {
5492 	struct blk_plug plug;
5493 
5494 	VM_WARN_ON_ONCE(global_reclaim(sc));
5495 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5496 
5497 	lru_add_drain();
5498 
5499 	blk_start_plug(&plug);
5500 
5501 	set_mm_walk(NULL, sc->proactive);
5502 
5503 	if (try_to_shrink_lruvec(lruvec, sc))
5504 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5505 
5506 	clear_mm_walk();
5507 
5508 	blk_finish_plug(&plug);
5509 }
5510 
5511 #else /* !CONFIG_MEMCG */
5512 
5513 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5514 {
5515 	BUILD_BUG();
5516 }
5517 
5518 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5519 {
5520 	BUILD_BUG();
5521 }
5522 
5523 #endif
5524 
5525 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5526 {
5527 	int priority;
5528 	unsigned long reclaimable;
5529 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5530 
5531 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5532 		return;
5533 	/*
5534 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5535 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5536 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5537 	 */
5538 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5539 	if (get_swappiness(lruvec, sc))
5540 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5541 
5542 	reclaimable /= MEMCG_NR_GENS;
5543 
5544 	/* round down reclaimable and round up sc->nr_to_reclaim */
5545 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5546 
5547 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5548 }
5549 
5550 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5551 {
5552 	struct blk_plug plug;
5553 	unsigned long reclaimed = sc->nr_reclaimed;
5554 
5555 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5556 
5557 	/*
5558 	 * Unmapped clean folios are already prioritized. Scanning for more of
5559 	 * them is likely futile and can cause high reclaim latency when there
5560 	 * is a large number of memcgs.
5561 	 */
5562 	if (!sc->may_writepage || !sc->may_unmap)
5563 		goto done;
5564 
5565 	lru_add_drain();
5566 
5567 	blk_start_plug(&plug);
5568 
5569 	set_mm_walk(pgdat, sc->proactive);
5570 
5571 	set_initial_priority(pgdat, sc);
5572 
5573 	if (current_is_kswapd())
5574 		sc->nr_reclaimed = 0;
5575 
5576 	if (mem_cgroup_disabled())
5577 		shrink_one(&pgdat->__lruvec, sc);
5578 	else
5579 		shrink_many(pgdat, sc);
5580 
5581 	if (current_is_kswapd())
5582 		sc->nr_reclaimed += reclaimed;
5583 
5584 	clear_mm_walk();
5585 
5586 	blk_finish_plug(&plug);
5587 done:
5588 	/* kswapd should never fail */
5589 	pgdat->kswapd_failures = 0;
5590 }
5591 
5592 /******************************************************************************
5593  *                          state change
5594  ******************************************************************************/
5595 
5596 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5597 {
5598 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5599 
5600 	if (lrugen->enabled) {
5601 		enum lru_list lru;
5602 
5603 		for_each_evictable_lru(lru) {
5604 			if (!list_empty(&lruvec->lists[lru]))
5605 				return false;
5606 		}
5607 	} else {
5608 		int gen, type, zone;
5609 
5610 		for_each_gen_type_zone(gen, type, zone) {
5611 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5612 				return false;
5613 		}
5614 	}
5615 
5616 	return true;
5617 }
5618 
5619 static bool fill_evictable(struct lruvec *lruvec)
5620 {
5621 	enum lru_list lru;
5622 	int remaining = MAX_LRU_BATCH;
5623 
5624 	for_each_evictable_lru(lru) {
5625 		int type = is_file_lru(lru);
5626 		bool active = is_active_lru(lru);
5627 		struct list_head *head = &lruvec->lists[lru];
5628 
5629 		while (!list_empty(head)) {
5630 			bool success;
5631 			struct folio *folio = lru_to_folio(head);
5632 
5633 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5634 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5635 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5636 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5637 
5638 			lruvec_del_folio(lruvec, folio);
5639 			success = lru_gen_add_folio(lruvec, folio, false);
5640 			VM_WARN_ON_ONCE(!success);
5641 
5642 			if (!--remaining)
5643 				return false;
5644 		}
5645 	}
5646 
5647 	return true;
5648 }
5649 
5650 static bool drain_evictable(struct lruvec *lruvec)
5651 {
5652 	int gen, type, zone;
5653 	int remaining = MAX_LRU_BATCH;
5654 
5655 	for_each_gen_type_zone(gen, type, zone) {
5656 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5657 
5658 		while (!list_empty(head)) {
5659 			bool success;
5660 			struct folio *folio = lru_to_folio(head);
5661 
5662 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5663 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5664 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5665 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5666 
5667 			success = lru_gen_del_folio(lruvec, folio, false);
5668 			VM_WARN_ON_ONCE(!success);
5669 			lruvec_add_folio(lruvec, folio);
5670 
5671 			if (!--remaining)
5672 				return false;
5673 		}
5674 	}
5675 
5676 	return true;
5677 }
5678 
5679 static void lru_gen_change_state(bool enabled)
5680 {
5681 	static DEFINE_MUTEX(state_mutex);
5682 
5683 	struct mem_cgroup *memcg;
5684 
5685 	cgroup_lock();
5686 	cpus_read_lock();
5687 	get_online_mems();
5688 	mutex_lock(&state_mutex);
5689 
5690 	if (enabled == lru_gen_enabled())
5691 		goto unlock;
5692 
5693 	if (enabled)
5694 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5695 	else
5696 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5697 
5698 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5699 	do {
5700 		int nid;
5701 
5702 		for_each_node(nid) {
5703 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5704 
5705 			spin_lock_irq(&lruvec->lru_lock);
5706 
5707 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5708 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5709 
5710 			lruvec->lrugen.enabled = enabled;
5711 
5712 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5713 				spin_unlock_irq(&lruvec->lru_lock);
5714 				cond_resched();
5715 				spin_lock_irq(&lruvec->lru_lock);
5716 			}
5717 
5718 			spin_unlock_irq(&lruvec->lru_lock);
5719 		}
5720 
5721 		cond_resched();
5722 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5723 unlock:
5724 	mutex_unlock(&state_mutex);
5725 	put_online_mems();
5726 	cpus_read_unlock();
5727 	cgroup_unlock();
5728 }
5729 
5730 /******************************************************************************
5731  *                          sysfs interface
5732  ******************************************************************************/
5733 
5734 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5735 {
5736 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5737 }
5738 
5739 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5740 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5741 				const char *buf, size_t len)
5742 {
5743 	unsigned int msecs;
5744 
5745 	if (kstrtouint(buf, 0, &msecs))
5746 		return -EINVAL;
5747 
5748 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5749 
5750 	return len;
5751 }
5752 
5753 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5754 
5755 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5756 {
5757 	unsigned int caps = 0;
5758 
5759 	if (get_cap(LRU_GEN_CORE))
5760 		caps |= BIT(LRU_GEN_CORE);
5761 
5762 	if (should_walk_mmu())
5763 		caps |= BIT(LRU_GEN_MM_WALK);
5764 
5765 	if (should_clear_pmd_young())
5766 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5767 
5768 	return sysfs_emit(buf, "0x%04x\n", caps);
5769 }
5770 
5771 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5772 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5773 			     const char *buf, size_t len)
5774 {
5775 	int i;
5776 	unsigned int caps;
5777 
5778 	if (tolower(*buf) == 'n')
5779 		caps = 0;
5780 	else if (tolower(*buf) == 'y')
5781 		caps = -1;
5782 	else if (kstrtouint(buf, 0, &caps))
5783 		return -EINVAL;
5784 
5785 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5786 		bool enabled = caps & BIT(i);
5787 
5788 		if (i == LRU_GEN_CORE)
5789 			lru_gen_change_state(enabled);
5790 		else if (enabled)
5791 			static_branch_enable(&lru_gen_caps[i]);
5792 		else
5793 			static_branch_disable(&lru_gen_caps[i]);
5794 	}
5795 
5796 	return len;
5797 }
5798 
5799 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5800 
5801 static struct attribute *lru_gen_attrs[] = {
5802 	&lru_gen_min_ttl_attr.attr,
5803 	&lru_gen_enabled_attr.attr,
5804 	NULL
5805 };
5806 
5807 static const struct attribute_group lru_gen_attr_group = {
5808 	.name = "lru_gen",
5809 	.attrs = lru_gen_attrs,
5810 };
5811 
5812 /******************************************************************************
5813  *                          debugfs interface
5814  ******************************************************************************/
5815 
5816 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5817 {
5818 	struct mem_cgroup *memcg;
5819 	loff_t nr_to_skip = *pos;
5820 
5821 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5822 	if (!m->private)
5823 		return ERR_PTR(-ENOMEM);
5824 
5825 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5826 	do {
5827 		int nid;
5828 
5829 		for_each_node_state(nid, N_MEMORY) {
5830 			if (!nr_to_skip--)
5831 				return get_lruvec(memcg, nid);
5832 		}
5833 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5834 
5835 	return NULL;
5836 }
5837 
5838 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5839 {
5840 	if (!IS_ERR_OR_NULL(v))
5841 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5842 
5843 	kvfree(m->private);
5844 	m->private = NULL;
5845 }
5846 
5847 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5848 {
5849 	int nid = lruvec_pgdat(v)->node_id;
5850 	struct mem_cgroup *memcg = lruvec_memcg(v);
5851 
5852 	++*pos;
5853 
5854 	nid = next_memory_node(nid);
5855 	if (nid == MAX_NUMNODES) {
5856 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5857 		if (!memcg)
5858 			return NULL;
5859 
5860 		nid = first_memory_node;
5861 	}
5862 
5863 	return get_lruvec(memcg, nid);
5864 }
5865 
5866 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5867 				  unsigned long max_seq, unsigned long *min_seq,
5868 				  unsigned long seq)
5869 {
5870 	int i;
5871 	int type, tier;
5872 	int hist = lru_hist_from_seq(seq);
5873 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5874 
5875 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5876 		seq_printf(m, "            %10d", tier);
5877 		for (type = 0; type < ANON_AND_FILE; type++) {
5878 			const char *s = "   ";
5879 			unsigned long n[3] = {};
5880 
5881 			if (seq == max_seq) {
5882 				s = "RT ";
5883 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5884 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5885 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5886 				s = "rep";
5887 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5888 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5889 				if (tier)
5890 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5891 			}
5892 
5893 			for (i = 0; i < 3; i++)
5894 				seq_printf(m, " %10lu%c", n[i], s[i]);
5895 		}
5896 		seq_putc(m, '\n');
5897 	}
5898 
5899 	seq_puts(m, "                      ");
5900 	for (i = 0; i < NR_MM_STATS; i++) {
5901 		const char *s = "      ";
5902 		unsigned long n = 0;
5903 
5904 		if (seq == max_seq && NR_HIST_GENS == 1) {
5905 			s = "LOYNFA";
5906 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5907 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5908 			s = "loynfa";
5909 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5910 		}
5911 
5912 		seq_printf(m, " %10lu%c", n, s[i]);
5913 	}
5914 	seq_putc(m, '\n');
5915 }
5916 
5917 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5918 static int lru_gen_seq_show(struct seq_file *m, void *v)
5919 {
5920 	unsigned long seq;
5921 	bool full = !debugfs_real_fops(m->file)->write;
5922 	struct lruvec *lruvec = v;
5923 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5924 	int nid = lruvec_pgdat(lruvec)->node_id;
5925 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5926 	DEFINE_MAX_SEQ(lruvec);
5927 	DEFINE_MIN_SEQ(lruvec);
5928 
5929 	if (nid == first_memory_node) {
5930 		const char *path = memcg ? m->private : "";
5931 
5932 #ifdef CONFIG_MEMCG
5933 		if (memcg)
5934 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5935 #endif
5936 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5937 	}
5938 
5939 	seq_printf(m, " node %5d\n", nid);
5940 
5941 	if (!full)
5942 		seq = min_seq[LRU_GEN_ANON];
5943 	else if (max_seq >= MAX_NR_GENS)
5944 		seq = max_seq - MAX_NR_GENS + 1;
5945 	else
5946 		seq = 0;
5947 
5948 	for (; seq <= max_seq; seq++) {
5949 		int type, zone;
5950 		int gen = lru_gen_from_seq(seq);
5951 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5952 
5953 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5954 
5955 		for (type = 0; type < ANON_AND_FILE; type++) {
5956 			unsigned long size = 0;
5957 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5958 
5959 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5960 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5961 
5962 			seq_printf(m, " %10lu%c", size, mark);
5963 		}
5964 
5965 		seq_putc(m, '\n');
5966 
5967 		if (full)
5968 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5969 	}
5970 
5971 	return 0;
5972 }
5973 
5974 static const struct seq_operations lru_gen_seq_ops = {
5975 	.start = lru_gen_seq_start,
5976 	.stop = lru_gen_seq_stop,
5977 	.next = lru_gen_seq_next,
5978 	.show = lru_gen_seq_show,
5979 };
5980 
5981 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5982 		     bool can_swap, bool force_scan)
5983 {
5984 	DEFINE_MAX_SEQ(lruvec);
5985 	DEFINE_MIN_SEQ(lruvec);
5986 
5987 	if (seq < max_seq)
5988 		return 0;
5989 
5990 	if (seq > max_seq)
5991 		return -EINVAL;
5992 
5993 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5994 		return -ERANGE;
5995 
5996 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5997 
5998 	return 0;
5999 }
6000 
6001 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6002 			int swappiness, unsigned long nr_to_reclaim)
6003 {
6004 	DEFINE_MAX_SEQ(lruvec);
6005 
6006 	if (seq + MIN_NR_GENS > max_seq)
6007 		return -EINVAL;
6008 
6009 	sc->nr_reclaimed = 0;
6010 
6011 	while (!signal_pending(current)) {
6012 		DEFINE_MIN_SEQ(lruvec);
6013 
6014 		if (seq < min_seq[!swappiness])
6015 			return 0;
6016 
6017 		if (sc->nr_reclaimed >= nr_to_reclaim)
6018 			return 0;
6019 
6020 		if (!evict_folios(lruvec, sc, swappiness))
6021 			return 0;
6022 
6023 		cond_resched();
6024 	}
6025 
6026 	return -EINTR;
6027 }
6028 
6029 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6030 		   struct scan_control *sc, int swappiness, unsigned long opt)
6031 {
6032 	struct lruvec *lruvec;
6033 	int err = -EINVAL;
6034 	struct mem_cgroup *memcg = NULL;
6035 
6036 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6037 		return -EINVAL;
6038 
6039 	if (!mem_cgroup_disabled()) {
6040 		rcu_read_lock();
6041 
6042 		memcg = mem_cgroup_from_id(memcg_id);
6043 		if (!mem_cgroup_tryget(memcg))
6044 			memcg = NULL;
6045 
6046 		rcu_read_unlock();
6047 
6048 		if (!memcg)
6049 			return -EINVAL;
6050 	}
6051 
6052 	if (memcg_id != mem_cgroup_id(memcg))
6053 		goto done;
6054 
6055 	lruvec = get_lruvec(memcg, nid);
6056 
6057 	if (swappiness < 0)
6058 		swappiness = get_swappiness(lruvec, sc);
6059 	else if (swappiness > 200)
6060 		goto done;
6061 
6062 	switch (cmd) {
6063 	case '+':
6064 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6065 		break;
6066 	case '-':
6067 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6068 		break;
6069 	}
6070 done:
6071 	mem_cgroup_put(memcg);
6072 
6073 	return err;
6074 }
6075 
6076 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6077 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6078 				 size_t len, loff_t *pos)
6079 {
6080 	void *buf;
6081 	char *cur, *next;
6082 	unsigned int flags;
6083 	struct blk_plug plug;
6084 	int err = -EINVAL;
6085 	struct scan_control sc = {
6086 		.may_writepage = true,
6087 		.may_unmap = true,
6088 		.may_swap = true,
6089 		.reclaim_idx = MAX_NR_ZONES - 1,
6090 		.gfp_mask = GFP_KERNEL,
6091 	};
6092 
6093 	buf = kvmalloc(len + 1, GFP_KERNEL);
6094 	if (!buf)
6095 		return -ENOMEM;
6096 
6097 	if (copy_from_user(buf, src, len)) {
6098 		kvfree(buf);
6099 		return -EFAULT;
6100 	}
6101 
6102 	set_task_reclaim_state(current, &sc.reclaim_state);
6103 	flags = memalloc_noreclaim_save();
6104 	blk_start_plug(&plug);
6105 	if (!set_mm_walk(NULL, true)) {
6106 		err = -ENOMEM;
6107 		goto done;
6108 	}
6109 
6110 	next = buf;
6111 	next[len] = '\0';
6112 
6113 	while ((cur = strsep(&next, ",;\n"))) {
6114 		int n;
6115 		int end;
6116 		char cmd;
6117 		unsigned int memcg_id;
6118 		unsigned int nid;
6119 		unsigned long seq;
6120 		unsigned int swappiness = -1;
6121 		unsigned long opt = -1;
6122 
6123 		cur = skip_spaces(cur);
6124 		if (!*cur)
6125 			continue;
6126 
6127 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6128 			   &seq, &end, &swappiness, &end, &opt, &end);
6129 		if (n < 4 || cur[end]) {
6130 			err = -EINVAL;
6131 			break;
6132 		}
6133 
6134 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6135 		if (err)
6136 			break;
6137 	}
6138 done:
6139 	clear_mm_walk();
6140 	blk_finish_plug(&plug);
6141 	memalloc_noreclaim_restore(flags);
6142 	set_task_reclaim_state(current, NULL);
6143 
6144 	kvfree(buf);
6145 
6146 	return err ? : len;
6147 }
6148 
6149 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6150 {
6151 	return seq_open(file, &lru_gen_seq_ops);
6152 }
6153 
6154 static const struct file_operations lru_gen_rw_fops = {
6155 	.open = lru_gen_seq_open,
6156 	.read = seq_read,
6157 	.write = lru_gen_seq_write,
6158 	.llseek = seq_lseek,
6159 	.release = seq_release,
6160 };
6161 
6162 static const struct file_operations lru_gen_ro_fops = {
6163 	.open = lru_gen_seq_open,
6164 	.read = seq_read,
6165 	.llseek = seq_lseek,
6166 	.release = seq_release,
6167 };
6168 
6169 /******************************************************************************
6170  *                          initialization
6171  ******************************************************************************/
6172 
6173 void lru_gen_init_lruvec(struct lruvec *lruvec)
6174 {
6175 	int i;
6176 	int gen, type, zone;
6177 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6178 
6179 	lrugen->max_seq = MIN_NR_GENS + 1;
6180 	lrugen->enabled = lru_gen_enabled();
6181 
6182 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6183 		lrugen->timestamps[i] = jiffies;
6184 
6185 	for_each_gen_type_zone(gen, type, zone)
6186 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6187 
6188 	lruvec->mm_state.seq = MIN_NR_GENS;
6189 }
6190 
6191 #ifdef CONFIG_MEMCG
6192 
6193 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6194 {
6195 	int i, j;
6196 
6197 	spin_lock_init(&pgdat->memcg_lru.lock);
6198 
6199 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6200 		for (j = 0; j < MEMCG_NR_BINS; j++)
6201 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6202 	}
6203 }
6204 
6205 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6206 {
6207 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6208 	spin_lock_init(&memcg->mm_list.lock);
6209 }
6210 
6211 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6212 {
6213 	int i;
6214 	int nid;
6215 
6216 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6217 
6218 	for_each_node(nid) {
6219 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6220 
6221 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6222 					   sizeof(lruvec->lrugen.nr_pages)));
6223 
6224 		lruvec->lrugen.list.next = LIST_POISON1;
6225 
6226 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6227 			bitmap_free(lruvec->mm_state.filters[i]);
6228 			lruvec->mm_state.filters[i] = NULL;
6229 		}
6230 	}
6231 }
6232 
6233 #endif /* CONFIG_MEMCG */
6234 
6235 static int __init init_lru_gen(void)
6236 {
6237 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6238 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6239 
6240 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6241 		pr_err("lru_gen: failed to create sysfs group\n");
6242 
6243 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6244 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6245 
6246 	return 0;
6247 };
6248 late_initcall(init_lru_gen);
6249 
6250 #else /* !CONFIG_LRU_GEN */
6251 
6252 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6253 {
6254 }
6255 
6256 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6257 {
6258 }
6259 
6260 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6261 {
6262 }
6263 
6264 #endif /* CONFIG_LRU_GEN */
6265 
6266 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6267 {
6268 	unsigned long nr[NR_LRU_LISTS];
6269 	unsigned long targets[NR_LRU_LISTS];
6270 	unsigned long nr_to_scan;
6271 	enum lru_list lru;
6272 	unsigned long nr_reclaimed = 0;
6273 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6274 	bool proportional_reclaim;
6275 	struct blk_plug plug;
6276 
6277 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6278 		lru_gen_shrink_lruvec(lruvec, sc);
6279 		return;
6280 	}
6281 
6282 	get_scan_count(lruvec, sc, nr);
6283 
6284 	/* Record the original scan target for proportional adjustments later */
6285 	memcpy(targets, nr, sizeof(nr));
6286 
6287 	/*
6288 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6289 	 * event that can occur when there is little memory pressure e.g.
6290 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6291 	 * when the requested number of pages are reclaimed when scanning at
6292 	 * DEF_PRIORITY on the assumption that the fact we are direct
6293 	 * reclaiming implies that kswapd is not keeping up and it is best to
6294 	 * do a batch of work at once. For memcg reclaim one check is made to
6295 	 * abort proportional reclaim if either the file or anon lru has already
6296 	 * dropped to zero at the first pass.
6297 	 */
6298 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6299 				sc->priority == DEF_PRIORITY);
6300 
6301 	blk_start_plug(&plug);
6302 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6303 					nr[LRU_INACTIVE_FILE]) {
6304 		unsigned long nr_anon, nr_file, percentage;
6305 		unsigned long nr_scanned;
6306 
6307 		for_each_evictable_lru(lru) {
6308 			if (nr[lru]) {
6309 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6310 				nr[lru] -= nr_to_scan;
6311 
6312 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6313 							    lruvec, sc);
6314 			}
6315 		}
6316 
6317 		cond_resched();
6318 
6319 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6320 			continue;
6321 
6322 		/*
6323 		 * For kswapd and memcg, reclaim at least the number of pages
6324 		 * requested. Ensure that the anon and file LRUs are scanned
6325 		 * proportionally what was requested by get_scan_count(). We
6326 		 * stop reclaiming one LRU and reduce the amount scanning
6327 		 * proportional to the original scan target.
6328 		 */
6329 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6330 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6331 
6332 		/*
6333 		 * It's just vindictive to attack the larger once the smaller
6334 		 * has gone to zero.  And given the way we stop scanning the
6335 		 * smaller below, this makes sure that we only make one nudge
6336 		 * towards proportionality once we've got nr_to_reclaim.
6337 		 */
6338 		if (!nr_file || !nr_anon)
6339 			break;
6340 
6341 		if (nr_file > nr_anon) {
6342 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6343 						targets[LRU_ACTIVE_ANON] + 1;
6344 			lru = LRU_BASE;
6345 			percentage = nr_anon * 100 / scan_target;
6346 		} else {
6347 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6348 						targets[LRU_ACTIVE_FILE] + 1;
6349 			lru = LRU_FILE;
6350 			percentage = nr_file * 100 / scan_target;
6351 		}
6352 
6353 		/* Stop scanning the smaller of the LRU */
6354 		nr[lru] = 0;
6355 		nr[lru + LRU_ACTIVE] = 0;
6356 
6357 		/*
6358 		 * Recalculate the other LRU scan count based on its original
6359 		 * scan target and the percentage scanning already complete
6360 		 */
6361 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6362 		nr_scanned = targets[lru] - nr[lru];
6363 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6364 		nr[lru] -= min(nr[lru], nr_scanned);
6365 
6366 		lru += LRU_ACTIVE;
6367 		nr_scanned = targets[lru] - nr[lru];
6368 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6369 		nr[lru] -= min(nr[lru], nr_scanned);
6370 	}
6371 	blk_finish_plug(&plug);
6372 	sc->nr_reclaimed += nr_reclaimed;
6373 
6374 	/*
6375 	 * Even if we did not try to evict anon pages at all, we want to
6376 	 * rebalance the anon lru active/inactive ratio.
6377 	 */
6378 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6379 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6380 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6381 				   sc, LRU_ACTIVE_ANON);
6382 }
6383 
6384 /* Use reclaim/compaction for costly allocs or under memory pressure */
6385 static bool in_reclaim_compaction(struct scan_control *sc)
6386 {
6387 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6388 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6389 			 sc->priority < DEF_PRIORITY - 2))
6390 		return true;
6391 
6392 	return false;
6393 }
6394 
6395 /*
6396  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6397  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6398  * true if more pages should be reclaimed such that when the page allocator
6399  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6400  * It will give up earlier than that if there is difficulty reclaiming pages.
6401  */
6402 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6403 					unsigned long nr_reclaimed,
6404 					struct scan_control *sc)
6405 {
6406 	unsigned long pages_for_compaction;
6407 	unsigned long inactive_lru_pages;
6408 	int z;
6409 
6410 	/* If not in reclaim/compaction mode, stop */
6411 	if (!in_reclaim_compaction(sc))
6412 		return false;
6413 
6414 	/*
6415 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6416 	 * number of pages that were scanned. This will return to the caller
6417 	 * with the risk reclaim/compaction and the resulting allocation attempt
6418 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6419 	 * allocations through requiring that the full LRU list has been scanned
6420 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6421 	 * scan, but that approximation was wrong, and there were corner cases
6422 	 * where always a non-zero amount of pages were scanned.
6423 	 */
6424 	if (!nr_reclaimed)
6425 		return false;
6426 
6427 	/* If compaction would go ahead or the allocation would succeed, stop */
6428 	for (z = 0; z <= sc->reclaim_idx; z++) {
6429 		struct zone *zone = &pgdat->node_zones[z];
6430 		if (!managed_zone(zone))
6431 			continue;
6432 
6433 		/* Allocation can already succeed, nothing to do */
6434 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6435 				      sc->reclaim_idx, 0))
6436 			return false;
6437 
6438 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6439 			return false;
6440 	}
6441 
6442 	/*
6443 	 * If we have not reclaimed enough pages for compaction and the
6444 	 * inactive lists are large enough, continue reclaiming
6445 	 */
6446 	pages_for_compaction = compact_gap(sc->order);
6447 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6448 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6449 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6450 
6451 	return inactive_lru_pages > pages_for_compaction;
6452 }
6453 
6454 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6455 {
6456 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6457 	struct mem_cgroup *memcg;
6458 
6459 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6460 	do {
6461 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6462 		unsigned long reclaimed;
6463 		unsigned long scanned;
6464 
6465 		/*
6466 		 * This loop can become CPU-bound when target memcgs
6467 		 * aren't eligible for reclaim - either because they
6468 		 * don't have any reclaimable pages, or because their
6469 		 * memory is explicitly protected. Avoid soft lockups.
6470 		 */
6471 		cond_resched();
6472 
6473 		mem_cgroup_calculate_protection(target_memcg, memcg);
6474 
6475 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6476 			/*
6477 			 * Hard protection.
6478 			 * If there is no reclaimable memory, OOM.
6479 			 */
6480 			continue;
6481 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6482 			/*
6483 			 * Soft protection.
6484 			 * Respect the protection only as long as
6485 			 * there is an unprotected supply
6486 			 * of reclaimable memory from other cgroups.
6487 			 */
6488 			if (!sc->memcg_low_reclaim) {
6489 				sc->memcg_low_skipped = 1;
6490 				continue;
6491 			}
6492 			memcg_memory_event(memcg, MEMCG_LOW);
6493 		}
6494 
6495 		reclaimed = sc->nr_reclaimed;
6496 		scanned = sc->nr_scanned;
6497 
6498 		shrink_lruvec(lruvec, sc);
6499 
6500 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6501 			    sc->priority);
6502 
6503 		/* Record the group's reclaim efficiency */
6504 		if (!sc->proactive)
6505 			vmpressure(sc->gfp_mask, memcg, false,
6506 				   sc->nr_scanned - scanned,
6507 				   sc->nr_reclaimed - reclaimed);
6508 
6509 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6510 }
6511 
6512 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6513 {
6514 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6515 	struct lruvec *target_lruvec;
6516 	bool reclaimable = false;
6517 
6518 	if (lru_gen_enabled() && global_reclaim(sc)) {
6519 		lru_gen_shrink_node(pgdat, sc);
6520 		return;
6521 	}
6522 
6523 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6524 
6525 again:
6526 	memset(&sc->nr, 0, sizeof(sc->nr));
6527 
6528 	nr_reclaimed = sc->nr_reclaimed;
6529 	nr_scanned = sc->nr_scanned;
6530 
6531 	prepare_scan_count(pgdat, sc);
6532 
6533 	shrink_node_memcgs(pgdat, sc);
6534 
6535 	flush_reclaim_state(sc);
6536 
6537 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6538 
6539 	/* Record the subtree's reclaim efficiency */
6540 	if (!sc->proactive)
6541 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6542 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6543 
6544 	if (nr_node_reclaimed)
6545 		reclaimable = true;
6546 
6547 	if (current_is_kswapd()) {
6548 		/*
6549 		 * If reclaim is isolating dirty pages under writeback,
6550 		 * it implies that the long-lived page allocation rate
6551 		 * is exceeding the page laundering rate. Either the
6552 		 * global limits are not being effective at throttling
6553 		 * processes due to the page distribution throughout
6554 		 * zones or there is heavy usage of a slow backing
6555 		 * device. The only option is to throttle from reclaim
6556 		 * context which is not ideal as there is no guarantee
6557 		 * the dirtying process is throttled in the same way
6558 		 * balance_dirty_pages() manages.
6559 		 *
6560 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6561 		 * count the number of pages under pages flagged for
6562 		 * immediate reclaim and stall if any are encountered
6563 		 * in the nr_immediate check below.
6564 		 */
6565 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6566 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6567 
6568 		/* Allow kswapd to start writing pages during reclaim.*/
6569 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6570 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6571 
6572 		/*
6573 		 * If kswapd scans pages marked for immediate
6574 		 * reclaim and under writeback (nr_immediate), it
6575 		 * implies that pages are cycling through the LRU
6576 		 * faster than they are written so forcibly stall
6577 		 * until some pages complete writeback.
6578 		 */
6579 		if (sc->nr.immediate)
6580 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6581 	}
6582 
6583 	/*
6584 	 * Tag a node/memcg as congested if all the dirty pages were marked
6585 	 * for writeback and immediate reclaim (counted in nr.congested).
6586 	 *
6587 	 * Legacy memcg will stall in page writeback so avoid forcibly
6588 	 * stalling in reclaim_throttle().
6589 	 */
6590 	if ((current_is_kswapd() ||
6591 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6592 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6593 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6594 
6595 	/*
6596 	 * Stall direct reclaim for IO completions if the lruvec is
6597 	 * node is congested. Allow kswapd to continue until it
6598 	 * starts encountering unqueued dirty pages or cycling through
6599 	 * the LRU too quickly.
6600 	 */
6601 	if (!current_is_kswapd() && current_may_throttle() &&
6602 	    !sc->hibernation_mode &&
6603 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6604 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6605 
6606 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6607 		goto again;
6608 
6609 	/*
6610 	 * Kswapd gives up on balancing particular nodes after too
6611 	 * many failures to reclaim anything from them and goes to
6612 	 * sleep. On reclaim progress, reset the failure counter. A
6613 	 * successful direct reclaim run will revive a dormant kswapd.
6614 	 */
6615 	if (reclaimable)
6616 		pgdat->kswapd_failures = 0;
6617 }
6618 
6619 /*
6620  * Returns true if compaction should go ahead for a costly-order request, or
6621  * the allocation would already succeed without compaction. Return false if we
6622  * should reclaim first.
6623  */
6624 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6625 {
6626 	unsigned long watermark;
6627 
6628 	/* Allocation can already succeed, nothing to do */
6629 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6630 			      sc->reclaim_idx, 0))
6631 		return true;
6632 
6633 	/* Compaction cannot yet proceed. Do reclaim. */
6634 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6635 		return false;
6636 
6637 	/*
6638 	 * Compaction is already possible, but it takes time to run and there
6639 	 * are potentially other callers using the pages just freed. So proceed
6640 	 * with reclaim to make a buffer of free pages available to give
6641 	 * compaction a reasonable chance of completing and allocating the page.
6642 	 * Note that we won't actually reclaim the whole buffer in one attempt
6643 	 * as the target watermark in should_continue_reclaim() is lower. But if
6644 	 * we are already above the high+gap watermark, don't reclaim at all.
6645 	 */
6646 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6647 
6648 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6649 }
6650 
6651 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6652 {
6653 	/*
6654 	 * If reclaim is making progress greater than 12% efficiency then
6655 	 * wake all the NOPROGRESS throttled tasks.
6656 	 */
6657 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6658 		wait_queue_head_t *wqh;
6659 
6660 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6661 		if (waitqueue_active(wqh))
6662 			wake_up(wqh);
6663 
6664 		return;
6665 	}
6666 
6667 	/*
6668 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6669 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6670 	 * under writeback and marked for immediate reclaim at the tail of the
6671 	 * LRU.
6672 	 */
6673 	if (current_is_kswapd() || cgroup_reclaim(sc))
6674 		return;
6675 
6676 	/* Throttle if making no progress at high prioities. */
6677 	if (sc->priority == 1 && !sc->nr_reclaimed)
6678 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6679 }
6680 
6681 /*
6682  * This is the direct reclaim path, for page-allocating processes.  We only
6683  * try to reclaim pages from zones which will satisfy the caller's allocation
6684  * request.
6685  *
6686  * If a zone is deemed to be full of pinned pages then just give it a light
6687  * scan then give up on it.
6688  */
6689 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6690 {
6691 	struct zoneref *z;
6692 	struct zone *zone;
6693 	unsigned long nr_soft_reclaimed;
6694 	unsigned long nr_soft_scanned;
6695 	gfp_t orig_mask;
6696 	pg_data_t *last_pgdat = NULL;
6697 	pg_data_t *first_pgdat = NULL;
6698 
6699 	/*
6700 	 * If the number of buffer_heads in the machine exceeds the maximum
6701 	 * allowed level, force direct reclaim to scan the highmem zone as
6702 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6703 	 */
6704 	orig_mask = sc->gfp_mask;
6705 	if (buffer_heads_over_limit) {
6706 		sc->gfp_mask |= __GFP_HIGHMEM;
6707 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6708 	}
6709 
6710 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6711 					sc->reclaim_idx, sc->nodemask) {
6712 		/*
6713 		 * Take care memory controller reclaiming has small influence
6714 		 * to global LRU.
6715 		 */
6716 		if (!cgroup_reclaim(sc)) {
6717 			if (!cpuset_zone_allowed(zone,
6718 						 GFP_KERNEL | __GFP_HARDWALL))
6719 				continue;
6720 
6721 			/*
6722 			 * If we already have plenty of memory free for
6723 			 * compaction in this zone, don't free any more.
6724 			 * Even though compaction is invoked for any
6725 			 * non-zero order, only frequent costly order
6726 			 * reclamation is disruptive enough to become a
6727 			 * noticeable problem, like transparent huge
6728 			 * page allocations.
6729 			 */
6730 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6731 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6732 			    compaction_ready(zone, sc)) {
6733 				sc->compaction_ready = true;
6734 				continue;
6735 			}
6736 
6737 			/*
6738 			 * Shrink each node in the zonelist once. If the
6739 			 * zonelist is ordered by zone (not the default) then a
6740 			 * node may be shrunk multiple times but in that case
6741 			 * the user prefers lower zones being preserved.
6742 			 */
6743 			if (zone->zone_pgdat == last_pgdat)
6744 				continue;
6745 
6746 			/*
6747 			 * This steals pages from memory cgroups over softlimit
6748 			 * and returns the number of reclaimed pages and
6749 			 * scanned pages. This works for global memory pressure
6750 			 * and balancing, not for a memcg's limit.
6751 			 */
6752 			nr_soft_scanned = 0;
6753 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6754 						sc->order, sc->gfp_mask,
6755 						&nr_soft_scanned);
6756 			sc->nr_reclaimed += nr_soft_reclaimed;
6757 			sc->nr_scanned += nr_soft_scanned;
6758 			/* need some check for avoid more shrink_zone() */
6759 		}
6760 
6761 		if (!first_pgdat)
6762 			first_pgdat = zone->zone_pgdat;
6763 
6764 		/* See comment about same check for global reclaim above */
6765 		if (zone->zone_pgdat == last_pgdat)
6766 			continue;
6767 		last_pgdat = zone->zone_pgdat;
6768 		shrink_node(zone->zone_pgdat, sc);
6769 	}
6770 
6771 	if (first_pgdat)
6772 		consider_reclaim_throttle(first_pgdat, sc);
6773 
6774 	/*
6775 	 * Restore to original mask to avoid the impact on the caller if we
6776 	 * promoted it to __GFP_HIGHMEM.
6777 	 */
6778 	sc->gfp_mask = orig_mask;
6779 }
6780 
6781 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6782 {
6783 	struct lruvec *target_lruvec;
6784 	unsigned long refaults;
6785 
6786 	if (lru_gen_enabled())
6787 		return;
6788 
6789 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6790 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6791 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6792 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6793 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6794 }
6795 
6796 /*
6797  * This is the main entry point to direct page reclaim.
6798  *
6799  * If a full scan of the inactive list fails to free enough memory then we
6800  * are "out of memory" and something needs to be killed.
6801  *
6802  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6803  * high - the zone may be full of dirty or under-writeback pages, which this
6804  * caller can't do much about.  We kick the writeback threads and take explicit
6805  * naps in the hope that some of these pages can be written.  But if the
6806  * allocating task holds filesystem locks which prevent writeout this might not
6807  * work, and the allocation attempt will fail.
6808  *
6809  * returns:	0, if no pages reclaimed
6810  * 		else, the number of pages reclaimed
6811  */
6812 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6813 					  struct scan_control *sc)
6814 {
6815 	int initial_priority = sc->priority;
6816 	pg_data_t *last_pgdat;
6817 	struct zoneref *z;
6818 	struct zone *zone;
6819 retry:
6820 	delayacct_freepages_start();
6821 
6822 	if (!cgroup_reclaim(sc))
6823 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6824 
6825 	do {
6826 		if (!sc->proactive)
6827 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6828 					sc->priority);
6829 		sc->nr_scanned = 0;
6830 		shrink_zones(zonelist, sc);
6831 
6832 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6833 			break;
6834 
6835 		if (sc->compaction_ready)
6836 			break;
6837 
6838 		/*
6839 		 * If we're getting trouble reclaiming, start doing
6840 		 * writepage even in laptop mode.
6841 		 */
6842 		if (sc->priority < DEF_PRIORITY - 2)
6843 			sc->may_writepage = 1;
6844 	} while (--sc->priority >= 0);
6845 
6846 	last_pgdat = NULL;
6847 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6848 					sc->nodemask) {
6849 		if (zone->zone_pgdat == last_pgdat)
6850 			continue;
6851 		last_pgdat = zone->zone_pgdat;
6852 
6853 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6854 
6855 		if (cgroup_reclaim(sc)) {
6856 			struct lruvec *lruvec;
6857 
6858 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6859 						   zone->zone_pgdat);
6860 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6861 		}
6862 	}
6863 
6864 	delayacct_freepages_end();
6865 
6866 	if (sc->nr_reclaimed)
6867 		return sc->nr_reclaimed;
6868 
6869 	/* Aborted reclaim to try compaction? don't OOM, then */
6870 	if (sc->compaction_ready)
6871 		return 1;
6872 
6873 	/*
6874 	 * We make inactive:active ratio decisions based on the node's
6875 	 * composition of memory, but a restrictive reclaim_idx or a
6876 	 * memory.low cgroup setting can exempt large amounts of
6877 	 * memory from reclaim. Neither of which are very common, so
6878 	 * instead of doing costly eligibility calculations of the
6879 	 * entire cgroup subtree up front, we assume the estimates are
6880 	 * good, and retry with forcible deactivation if that fails.
6881 	 */
6882 	if (sc->skipped_deactivate) {
6883 		sc->priority = initial_priority;
6884 		sc->force_deactivate = 1;
6885 		sc->skipped_deactivate = 0;
6886 		goto retry;
6887 	}
6888 
6889 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6890 	if (sc->memcg_low_skipped) {
6891 		sc->priority = initial_priority;
6892 		sc->force_deactivate = 0;
6893 		sc->memcg_low_reclaim = 1;
6894 		sc->memcg_low_skipped = 0;
6895 		goto retry;
6896 	}
6897 
6898 	return 0;
6899 }
6900 
6901 static bool allow_direct_reclaim(pg_data_t *pgdat)
6902 {
6903 	struct zone *zone;
6904 	unsigned long pfmemalloc_reserve = 0;
6905 	unsigned long free_pages = 0;
6906 	int i;
6907 	bool wmark_ok;
6908 
6909 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6910 		return true;
6911 
6912 	for (i = 0; i <= ZONE_NORMAL; i++) {
6913 		zone = &pgdat->node_zones[i];
6914 		if (!managed_zone(zone))
6915 			continue;
6916 
6917 		if (!zone_reclaimable_pages(zone))
6918 			continue;
6919 
6920 		pfmemalloc_reserve += min_wmark_pages(zone);
6921 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6922 	}
6923 
6924 	/* If there are no reserves (unexpected config) then do not throttle */
6925 	if (!pfmemalloc_reserve)
6926 		return true;
6927 
6928 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6929 
6930 	/* kswapd must be awake if processes are being throttled */
6931 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6932 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6933 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6934 
6935 		wake_up_interruptible(&pgdat->kswapd_wait);
6936 	}
6937 
6938 	return wmark_ok;
6939 }
6940 
6941 /*
6942  * Throttle direct reclaimers if backing storage is backed by the network
6943  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6944  * depleted. kswapd will continue to make progress and wake the processes
6945  * when the low watermark is reached.
6946  *
6947  * Returns true if a fatal signal was delivered during throttling. If this
6948  * happens, the page allocator should not consider triggering the OOM killer.
6949  */
6950 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6951 					nodemask_t *nodemask)
6952 {
6953 	struct zoneref *z;
6954 	struct zone *zone;
6955 	pg_data_t *pgdat = NULL;
6956 
6957 	/*
6958 	 * Kernel threads should not be throttled as they may be indirectly
6959 	 * responsible for cleaning pages necessary for reclaim to make forward
6960 	 * progress. kjournald for example may enter direct reclaim while
6961 	 * committing a transaction where throttling it could forcing other
6962 	 * processes to block on log_wait_commit().
6963 	 */
6964 	if (current->flags & PF_KTHREAD)
6965 		goto out;
6966 
6967 	/*
6968 	 * If a fatal signal is pending, this process should not throttle.
6969 	 * It should return quickly so it can exit and free its memory
6970 	 */
6971 	if (fatal_signal_pending(current))
6972 		goto out;
6973 
6974 	/*
6975 	 * Check if the pfmemalloc reserves are ok by finding the first node
6976 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6977 	 * GFP_KERNEL will be required for allocating network buffers when
6978 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6979 	 *
6980 	 * Throttling is based on the first usable node and throttled processes
6981 	 * wait on a queue until kswapd makes progress and wakes them. There
6982 	 * is an affinity then between processes waking up and where reclaim
6983 	 * progress has been made assuming the process wakes on the same node.
6984 	 * More importantly, processes running on remote nodes will not compete
6985 	 * for remote pfmemalloc reserves and processes on different nodes
6986 	 * should make reasonable progress.
6987 	 */
6988 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6989 					gfp_zone(gfp_mask), nodemask) {
6990 		if (zone_idx(zone) > ZONE_NORMAL)
6991 			continue;
6992 
6993 		/* Throttle based on the first usable node */
6994 		pgdat = zone->zone_pgdat;
6995 		if (allow_direct_reclaim(pgdat))
6996 			goto out;
6997 		break;
6998 	}
6999 
7000 	/* If no zone was usable by the allocation flags then do not throttle */
7001 	if (!pgdat)
7002 		goto out;
7003 
7004 	/* Account for the throttling */
7005 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
7006 
7007 	/*
7008 	 * If the caller cannot enter the filesystem, it's possible that it
7009 	 * is due to the caller holding an FS lock or performing a journal
7010 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
7011 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
7012 	 * blocked waiting on the same lock. Instead, throttle for up to a
7013 	 * second before continuing.
7014 	 */
7015 	if (!(gfp_mask & __GFP_FS))
7016 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
7017 			allow_direct_reclaim(pgdat), HZ);
7018 	else
7019 		/* Throttle until kswapd wakes the process */
7020 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7021 			allow_direct_reclaim(pgdat));
7022 
7023 	if (fatal_signal_pending(current))
7024 		return true;
7025 
7026 out:
7027 	return false;
7028 }
7029 
7030 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7031 				gfp_t gfp_mask, nodemask_t *nodemask)
7032 {
7033 	unsigned long nr_reclaimed;
7034 	struct scan_control sc = {
7035 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7036 		.gfp_mask = current_gfp_context(gfp_mask),
7037 		.reclaim_idx = gfp_zone(gfp_mask),
7038 		.order = order,
7039 		.nodemask = nodemask,
7040 		.priority = DEF_PRIORITY,
7041 		.may_writepage = !laptop_mode,
7042 		.may_unmap = 1,
7043 		.may_swap = 1,
7044 	};
7045 
7046 	/*
7047 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7048 	 * Confirm they are large enough for max values.
7049 	 */
7050 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7051 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7052 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7053 
7054 	/*
7055 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7056 	 * 1 is returned so that the page allocator does not OOM kill at this
7057 	 * point.
7058 	 */
7059 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7060 		return 1;
7061 
7062 	set_task_reclaim_state(current, &sc.reclaim_state);
7063 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7064 
7065 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7066 
7067 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7068 	set_task_reclaim_state(current, NULL);
7069 
7070 	return nr_reclaimed;
7071 }
7072 
7073 #ifdef CONFIG_MEMCG
7074 
7075 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7076 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7077 						gfp_t gfp_mask, bool noswap,
7078 						pg_data_t *pgdat,
7079 						unsigned long *nr_scanned)
7080 {
7081 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7082 	struct scan_control sc = {
7083 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7084 		.target_mem_cgroup = memcg,
7085 		.may_writepage = !laptop_mode,
7086 		.may_unmap = 1,
7087 		.reclaim_idx = MAX_NR_ZONES - 1,
7088 		.may_swap = !noswap,
7089 	};
7090 
7091 	WARN_ON_ONCE(!current->reclaim_state);
7092 
7093 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7094 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7095 
7096 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7097 						      sc.gfp_mask);
7098 
7099 	/*
7100 	 * NOTE: Although we can get the priority field, using it
7101 	 * here is not a good idea, since it limits the pages we can scan.
7102 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7103 	 * will pick up pages from other mem cgroup's as well. We hack
7104 	 * the priority and make it zero.
7105 	 */
7106 	shrink_lruvec(lruvec, &sc);
7107 
7108 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7109 
7110 	*nr_scanned = sc.nr_scanned;
7111 
7112 	return sc.nr_reclaimed;
7113 }
7114 
7115 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7116 					   unsigned long nr_pages,
7117 					   gfp_t gfp_mask,
7118 					   unsigned int reclaim_options)
7119 {
7120 	unsigned long nr_reclaimed;
7121 	unsigned int noreclaim_flag;
7122 	struct scan_control sc = {
7123 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7124 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7125 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7126 		.reclaim_idx = MAX_NR_ZONES - 1,
7127 		.target_mem_cgroup = memcg,
7128 		.priority = DEF_PRIORITY,
7129 		.may_writepage = !laptop_mode,
7130 		.may_unmap = 1,
7131 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7132 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7133 	};
7134 	/*
7135 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7136 	 * equal pressure on all the nodes. This is based on the assumption that
7137 	 * the reclaim does not bail out early.
7138 	 */
7139 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7140 
7141 	set_task_reclaim_state(current, &sc.reclaim_state);
7142 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7143 	noreclaim_flag = memalloc_noreclaim_save();
7144 
7145 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7146 
7147 	memalloc_noreclaim_restore(noreclaim_flag);
7148 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7149 	set_task_reclaim_state(current, NULL);
7150 
7151 	return nr_reclaimed;
7152 }
7153 #endif
7154 
7155 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7156 {
7157 	struct mem_cgroup *memcg;
7158 	struct lruvec *lruvec;
7159 
7160 	if (lru_gen_enabled()) {
7161 		lru_gen_age_node(pgdat, sc);
7162 		return;
7163 	}
7164 
7165 	if (!can_age_anon_pages(pgdat, sc))
7166 		return;
7167 
7168 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7169 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7170 		return;
7171 
7172 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7173 	do {
7174 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7175 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7176 				   sc, LRU_ACTIVE_ANON);
7177 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7178 	} while (memcg);
7179 }
7180 
7181 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7182 {
7183 	int i;
7184 	struct zone *zone;
7185 
7186 	/*
7187 	 * Check for watermark boosts top-down as the higher zones
7188 	 * are more likely to be boosted. Both watermarks and boosts
7189 	 * should not be checked at the same time as reclaim would
7190 	 * start prematurely when there is no boosting and a lower
7191 	 * zone is balanced.
7192 	 */
7193 	for (i = highest_zoneidx; i >= 0; i--) {
7194 		zone = pgdat->node_zones + i;
7195 		if (!managed_zone(zone))
7196 			continue;
7197 
7198 		if (zone->watermark_boost)
7199 			return true;
7200 	}
7201 
7202 	return false;
7203 }
7204 
7205 /*
7206  * Returns true if there is an eligible zone balanced for the request order
7207  * and highest_zoneidx
7208  */
7209 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7210 {
7211 	int i;
7212 	unsigned long mark = -1;
7213 	struct zone *zone;
7214 
7215 	/*
7216 	 * Check watermarks bottom-up as lower zones are more likely to
7217 	 * meet watermarks.
7218 	 */
7219 	for (i = 0; i <= highest_zoneidx; i++) {
7220 		zone = pgdat->node_zones + i;
7221 
7222 		if (!managed_zone(zone))
7223 			continue;
7224 
7225 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7226 			mark = wmark_pages(zone, WMARK_PROMO);
7227 		else
7228 			mark = high_wmark_pages(zone);
7229 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7230 			return true;
7231 	}
7232 
7233 	/*
7234 	 * If a node has no managed zone within highest_zoneidx, it does not
7235 	 * need balancing by definition. This can happen if a zone-restricted
7236 	 * allocation tries to wake a remote kswapd.
7237 	 */
7238 	if (mark == -1)
7239 		return true;
7240 
7241 	return false;
7242 }
7243 
7244 /* Clear pgdat state for congested, dirty or under writeback. */
7245 static void clear_pgdat_congested(pg_data_t *pgdat)
7246 {
7247 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7248 
7249 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7250 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7251 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7252 }
7253 
7254 /*
7255  * Prepare kswapd for sleeping. This verifies that there are no processes
7256  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7257  *
7258  * Returns true if kswapd is ready to sleep
7259  */
7260 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7261 				int highest_zoneidx)
7262 {
7263 	/*
7264 	 * The throttled processes are normally woken up in balance_pgdat() as
7265 	 * soon as allow_direct_reclaim() is true. But there is a potential
7266 	 * race between when kswapd checks the watermarks and a process gets
7267 	 * throttled. There is also a potential race if processes get
7268 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7269 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7270 	 * the wake up checks. If kswapd is going to sleep, no process should
7271 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7272 	 * the wake up is premature, processes will wake kswapd and get
7273 	 * throttled again. The difference from wake ups in balance_pgdat() is
7274 	 * that here we are under prepare_to_wait().
7275 	 */
7276 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7277 		wake_up_all(&pgdat->pfmemalloc_wait);
7278 
7279 	/* Hopeless node, leave it to direct reclaim */
7280 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7281 		return true;
7282 
7283 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7284 		clear_pgdat_congested(pgdat);
7285 		return true;
7286 	}
7287 
7288 	return false;
7289 }
7290 
7291 /*
7292  * kswapd shrinks a node of pages that are at or below the highest usable
7293  * zone that is currently unbalanced.
7294  *
7295  * Returns true if kswapd scanned at least the requested number of pages to
7296  * reclaim or if the lack of progress was due to pages under writeback.
7297  * This is used to determine if the scanning priority needs to be raised.
7298  */
7299 static bool kswapd_shrink_node(pg_data_t *pgdat,
7300 			       struct scan_control *sc)
7301 {
7302 	struct zone *zone;
7303 	int z;
7304 
7305 	/* Reclaim a number of pages proportional to the number of zones */
7306 	sc->nr_to_reclaim = 0;
7307 	for (z = 0; z <= sc->reclaim_idx; z++) {
7308 		zone = pgdat->node_zones + z;
7309 		if (!managed_zone(zone))
7310 			continue;
7311 
7312 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7313 	}
7314 
7315 	/*
7316 	 * Historically care was taken to put equal pressure on all zones but
7317 	 * now pressure is applied based on node LRU order.
7318 	 */
7319 	shrink_node(pgdat, sc);
7320 
7321 	/*
7322 	 * Fragmentation may mean that the system cannot be rebalanced for
7323 	 * high-order allocations. If twice the allocation size has been
7324 	 * reclaimed then recheck watermarks only at order-0 to prevent
7325 	 * excessive reclaim. Assume that a process requested a high-order
7326 	 * can direct reclaim/compact.
7327 	 */
7328 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7329 		sc->order = 0;
7330 
7331 	return sc->nr_scanned >= sc->nr_to_reclaim;
7332 }
7333 
7334 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7335 static inline void
7336 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7337 {
7338 	int i;
7339 	struct zone *zone;
7340 
7341 	for (i = 0; i <= highest_zoneidx; i++) {
7342 		zone = pgdat->node_zones + i;
7343 
7344 		if (!managed_zone(zone))
7345 			continue;
7346 
7347 		if (active)
7348 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7349 		else
7350 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7351 	}
7352 }
7353 
7354 static inline void
7355 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7356 {
7357 	update_reclaim_active(pgdat, highest_zoneidx, true);
7358 }
7359 
7360 static inline void
7361 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7362 {
7363 	update_reclaim_active(pgdat, highest_zoneidx, false);
7364 }
7365 
7366 /*
7367  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7368  * that are eligible for use by the caller until at least one zone is
7369  * balanced.
7370  *
7371  * Returns the order kswapd finished reclaiming at.
7372  *
7373  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7374  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7375  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7376  * or lower is eligible for reclaim until at least one usable zone is
7377  * balanced.
7378  */
7379 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7380 {
7381 	int i;
7382 	unsigned long nr_soft_reclaimed;
7383 	unsigned long nr_soft_scanned;
7384 	unsigned long pflags;
7385 	unsigned long nr_boost_reclaim;
7386 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7387 	bool boosted;
7388 	struct zone *zone;
7389 	struct scan_control sc = {
7390 		.gfp_mask = GFP_KERNEL,
7391 		.order = order,
7392 		.may_unmap = 1,
7393 	};
7394 
7395 	set_task_reclaim_state(current, &sc.reclaim_state);
7396 	psi_memstall_enter(&pflags);
7397 	__fs_reclaim_acquire(_THIS_IP_);
7398 
7399 	count_vm_event(PAGEOUTRUN);
7400 
7401 	/*
7402 	 * Account for the reclaim boost. Note that the zone boost is left in
7403 	 * place so that parallel allocations that are near the watermark will
7404 	 * stall or direct reclaim until kswapd is finished.
7405 	 */
7406 	nr_boost_reclaim = 0;
7407 	for (i = 0; i <= highest_zoneidx; i++) {
7408 		zone = pgdat->node_zones + i;
7409 		if (!managed_zone(zone))
7410 			continue;
7411 
7412 		nr_boost_reclaim += zone->watermark_boost;
7413 		zone_boosts[i] = zone->watermark_boost;
7414 	}
7415 	boosted = nr_boost_reclaim;
7416 
7417 restart:
7418 	set_reclaim_active(pgdat, highest_zoneidx);
7419 	sc.priority = DEF_PRIORITY;
7420 	do {
7421 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7422 		bool raise_priority = true;
7423 		bool balanced;
7424 		bool ret;
7425 
7426 		sc.reclaim_idx = highest_zoneidx;
7427 
7428 		/*
7429 		 * If the number of buffer_heads exceeds the maximum allowed
7430 		 * then consider reclaiming from all zones. This has a dual
7431 		 * purpose -- on 64-bit systems it is expected that
7432 		 * buffer_heads are stripped during active rotation. On 32-bit
7433 		 * systems, highmem pages can pin lowmem memory and shrinking
7434 		 * buffers can relieve lowmem pressure. Reclaim may still not
7435 		 * go ahead if all eligible zones for the original allocation
7436 		 * request are balanced to avoid excessive reclaim from kswapd.
7437 		 */
7438 		if (buffer_heads_over_limit) {
7439 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7440 				zone = pgdat->node_zones + i;
7441 				if (!managed_zone(zone))
7442 					continue;
7443 
7444 				sc.reclaim_idx = i;
7445 				break;
7446 			}
7447 		}
7448 
7449 		/*
7450 		 * If the pgdat is imbalanced then ignore boosting and preserve
7451 		 * the watermarks for a later time and restart. Note that the
7452 		 * zone watermarks will be still reset at the end of balancing
7453 		 * on the grounds that the normal reclaim should be enough to
7454 		 * re-evaluate if boosting is required when kswapd next wakes.
7455 		 */
7456 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7457 		if (!balanced && nr_boost_reclaim) {
7458 			nr_boost_reclaim = 0;
7459 			goto restart;
7460 		}
7461 
7462 		/*
7463 		 * If boosting is not active then only reclaim if there are no
7464 		 * eligible zones. Note that sc.reclaim_idx is not used as
7465 		 * buffer_heads_over_limit may have adjusted it.
7466 		 */
7467 		if (!nr_boost_reclaim && balanced)
7468 			goto out;
7469 
7470 		/* Limit the priority of boosting to avoid reclaim writeback */
7471 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7472 			raise_priority = false;
7473 
7474 		/*
7475 		 * Do not writeback or swap pages for boosted reclaim. The
7476 		 * intent is to relieve pressure not issue sub-optimal IO
7477 		 * from reclaim context. If no pages are reclaimed, the
7478 		 * reclaim will be aborted.
7479 		 */
7480 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7481 		sc.may_swap = !nr_boost_reclaim;
7482 
7483 		/*
7484 		 * Do some background aging, to give pages a chance to be
7485 		 * referenced before reclaiming. All pages are rotated
7486 		 * regardless of classzone as this is about consistent aging.
7487 		 */
7488 		kswapd_age_node(pgdat, &sc);
7489 
7490 		/*
7491 		 * If we're getting trouble reclaiming, start doing writepage
7492 		 * even in laptop mode.
7493 		 */
7494 		if (sc.priority < DEF_PRIORITY - 2)
7495 			sc.may_writepage = 1;
7496 
7497 		/* Call soft limit reclaim before calling shrink_node. */
7498 		sc.nr_scanned = 0;
7499 		nr_soft_scanned = 0;
7500 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7501 						sc.gfp_mask, &nr_soft_scanned);
7502 		sc.nr_reclaimed += nr_soft_reclaimed;
7503 
7504 		/*
7505 		 * There should be no need to raise the scanning priority if
7506 		 * enough pages are already being scanned that that high
7507 		 * watermark would be met at 100% efficiency.
7508 		 */
7509 		if (kswapd_shrink_node(pgdat, &sc))
7510 			raise_priority = false;
7511 
7512 		/*
7513 		 * If the low watermark is met there is no need for processes
7514 		 * to be throttled on pfmemalloc_wait as they should not be
7515 		 * able to safely make forward progress. Wake them
7516 		 */
7517 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7518 				allow_direct_reclaim(pgdat))
7519 			wake_up_all(&pgdat->pfmemalloc_wait);
7520 
7521 		/* Check if kswapd should be suspending */
7522 		__fs_reclaim_release(_THIS_IP_);
7523 		ret = try_to_freeze();
7524 		__fs_reclaim_acquire(_THIS_IP_);
7525 		if (ret || kthread_should_stop())
7526 			break;
7527 
7528 		/*
7529 		 * Raise priority if scanning rate is too low or there was no
7530 		 * progress in reclaiming pages
7531 		 */
7532 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7533 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7534 
7535 		/*
7536 		 * If reclaim made no progress for a boost, stop reclaim as
7537 		 * IO cannot be queued and it could be an infinite loop in
7538 		 * extreme circumstances.
7539 		 */
7540 		if (nr_boost_reclaim && !nr_reclaimed)
7541 			break;
7542 
7543 		if (raise_priority || !nr_reclaimed)
7544 			sc.priority--;
7545 	} while (sc.priority >= 1);
7546 
7547 	if (!sc.nr_reclaimed)
7548 		pgdat->kswapd_failures++;
7549 
7550 out:
7551 	clear_reclaim_active(pgdat, highest_zoneidx);
7552 
7553 	/* If reclaim was boosted, account for the reclaim done in this pass */
7554 	if (boosted) {
7555 		unsigned long flags;
7556 
7557 		for (i = 0; i <= highest_zoneidx; i++) {
7558 			if (!zone_boosts[i])
7559 				continue;
7560 
7561 			/* Increments are under the zone lock */
7562 			zone = pgdat->node_zones + i;
7563 			spin_lock_irqsave(&zone->lock, flags);
7564 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7565 			spin_unlock_irqrestore(&zone->lock, flags);
7566 		}
7567 
7568 		/*
7569 		 * As there is now likely space, wakeup kcompact to defragment
7570 		 * pageblocks.
7571 		 */
7572 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7573 	}
7574 
7575 	snapshot_refaults(NULL, pgdat);
7576 	__fs_reclaim_release(_THIS_IP_);
7577 	psi_memstall_leave(&pflags);
7578 	set_task_reclaim_state(current, NULL);
7579 
7580 	/*
7581 	 * Return the order kswapd stopped reclaiming at as
7582 	 * prepare_kswapd_sleep() takes it into account. If another caller
7583 	 * entered the allocator slow path while kswapd was awake, order will
7584 	 * remain at the higher level.
7585 	 */
7586 	return sc.order;
7587 }
7588 
7589 /*
7590  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7591  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7592  * not a valid index then either kswapd runs for first time or kswapd couldn't
7593  * sleep after previous reclaim attempt (node is still unbalanced). In that
7594  * case return the zone index of the previous kswapd reclaim cycle.
7595  */
7596 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7597 					   enum zone_type prev_highest_zoneidx)
7598 {
7599 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7600 
7601 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7602 }
7603 
7604 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7605 				unsigned int highest_zoneidx)
7606 {
7607 	long remaining = 0;
7608 	DEFINE_WAIT(wait);
7609 
7610 	if (freezing(current) || kthread_should_stop())
7611 		return;
7612 
7613 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7614 
7615 	/*
7616 	 * Try to sleep for a short interval. Note that kcompactd will only be
7617 	 * woken if it is possible to sleep for a short interval. This is
7618 	 * deliberate on the assumption that if reclaim cannot keep an
7619 	 * eligible zone balanced that it's also unlikely that compaction will
7620 	 * succeed.
7621 	 */
7622 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7623 		/*
7624 		 * Compaction records what page blocks it recently failed to
7625 		 * isolate pages from and skips them in the future scanning.
7626 		 * When kswapd is going to sleep, it is reasonable to assume
7627 		 * that pages and compaction may succeed so reset the cache.
7628 		 */
7629 		reset_isolation_suitable(pgdat);
7630 
7631 		/*
7632 		 * We have freed the memory, now we should compact it to make
7633 		 * allocation of the requested order possible.
7634 		 */
7635 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7636 
7637 		remaining = schedule_timeout(HZ/10);
7638 
7639 		/*
7640 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7641 		 * order. The values will either be from a wakeup request or
7642 		 * the previous request that slept prematurely.
7643 		 */
7644 		if (remaining) {
7645 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7646 					kswapd_highest_zoneidx(pgdat,
7647 							highest_zoneidx));
7648 
7649 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7650 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7651 		}
7652 
7653 		finish_wait(&pgdat->kswapd_wait, &wait);
7654 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7655 	}
7656 
7657 	/*
7658 	 * After a short sleep, check if it was a premature sleep. If not, then
7659 	 * go fully to sleep until explicitly woken up.
7660 	 */
7661 	if (!remaining &&
7662 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7663 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7664 
7665 		/*
7666 		 * vmstat counters are not perfectly accurate and the estimated
7667 		 * value for counters such as NR_FREE_PAGES can deviate from the
7668 		 * true value by nr_online_cpus * threshold. To avoid the zone
7669 		 * watermarks being breached while under pressure, we reduce the
7670 		 * per-cpu vmstat threshold while kswapd is awake and restore
7671 		 * them before going back to sleep.
7672 		 */
7673 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7674 
7675 		if (!kthread_should_stop())
7676 			schedule();
7677 
7678 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7679 	} else {
7680 		if (remaining)
7681 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7682 		else
7683 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7684 	}
7685 	finish_wait(&pgdat->kswapd_wait, &wait);
7686 }
7687 
7688 /*
7689  * The background pageout daemon, started as a kernel thread
7690  * from the init process.
7691  *
7692  * This basically trickles out pages so that we have _some_
7693  * free memory available even if there is no other activity
7694  * that frees anything up. This is needed for things like routing
7695  * etc, where we otherwise might have all activity going on in
7696  * asynchronous contexts that cannot page things out.
7697  *
7698  * If there are applications that are active memory-allocators
7699  * (most normal use), this basically shouldn't matter.
7700  */
7701 static int kswapd(void *p)
7702 {
7703 	unsigned int alloc_order, reclaim_order;
7704 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7705 	pg_data_t *pgdat = (pg_data_t *)p;
7706 	struct task_struct *tsk = current;
7707 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7708 
7709 	if (!cpumask_empty(cpumask))
7710 		set_cpus_allowed_ptr(tsk, cpumask);
7711 
7712 	/*
7713 	 * Tell the memory management that we're a "memory allocator",
7714 	 * and that if we need more memory we should get access to it
7715 	 * regardless (see "__alloc_pages()"). "kswapd" should
7716 	 * never get caught in the normal page freeing logic.
7717 	 *
7718 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7719 	 * you need a small amount of memory in order to be able to
7720 	 * page out something else, and this flag essentially protects
7721 	 * us from recursively trying to free more memory as we're
7722 	 * trying to free the first piece of memory in the first place).
7723 	 */
7724 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7725 	set_freezable();
7726 
7727 	WRITE_ONCE(pgdat->kswapd_order, 0);
7728 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7729 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7730 	for ( ; ; ) {
7731 		bool ret;
7732 
7733 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7734 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7735 							highest_zoneidx);
7736 
7737 kswapd_try_sleep:
7738 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7739 					highest_zoneidx);
7740 
7741 		/* Read the new order and highest_zoneidx */
7742 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7743 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7744 							highest_zoneidx);
7745 		WRITE_ONCE(pgdat->kswapd_order, 0);
7746 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7747 
7748 		ret = try_to_freeze();
7749 		if (kthread_should_stop())
7750 			break;
7751 
7752 		/*
7753 		 * We can speed up thawing tasks if we don't call balance_pgdat
7754 		 * after returning from the refrigerator
7755 		 */
7756 		if (ret)
7757 			continue;
7758 
7759 		/*
7760 		 * Reclaim begins at the requested order but if a high-order
7761 		 * reclaim fails then kswapd falls back to reclaiming for
7762 		 * order-0. If that happens, kswapd will consider sleeping
7763 		 * for the order it finished reclaiming at (reclaim_order)
7764 		 * but kcompactd is woken to compact for the original
7765 		 * request (alloc_order).
7766 		 */
7767 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7768 						alloc_order);
7769 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7770 						highest_zoneidx);
7771 		if (reclaim_order < alloc_order)
7772 			goto kswapd_try_sleep;
7773 	}
7774 
7775 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7776 
7777 	return 0;
7778 }
7779 
7780 /*
7781  * A zone is low on free memory or too fragmented for high-order memory.  If
7782  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7783  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7784  * has failed or is not needed, still wake up kcompactd if only compaction is
7785  * needed.
7786  */
7787 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7788 		   enum zone_type highest_zoneidx)
7789 {
7790 	pg_data_t *pgdat;
7791 	enum zone_type curr_idx;
7792 
7793 	if (!managed_zone(zone))
7794 		return;
7795 
7796 	if (!cpuset_zone_allowed(zone, gfp_flags))
7797 		return;
7798 
7799 	pgdat = zone->zone_pgdat;
7800 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7801 
7802 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7803 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7804 
7805 	if (READ_ONCE(pgdat->kswapd_order) < order)
7806 		WRITE_ONCE(pgdat->kswapd_order, order);
7807 
7808 	if (!waitqueue_active(&pgdat->kswapd_wait))
7809 		return;
7810 
7811 	/* Hopeless node, leave it to direct reclaim if possible */
7812 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7813 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7814 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7815 		/*
7816 		 * There may be plenty of free memory available, but it's too
7817 		 * fragmented for high-order allocations.  Wake up kcompactd
7818 		 * and rely on compaction_suitable() to determine if it's
7819 		 * needed.  If it fails, it will defer subsequent attempts to
7820 		 * ratelimit its work.
7821 		 */
7822 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7823 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7824 		return;
7825 	}
7826 
7827 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7828 				      gfp_flags);
7829 	wake_up_interruptible(&pgdat->kswapd_wait);
7830 }
7831 
7832 #ifdef CONFIG_HIBERNATION
7833 /*
7834  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7835  * freed pages.
7836  *
7837  * Rather than trying to age LRUs the aim is to preserve the overall
7838  * LRU order by reclaiming preferentially
7839  * inactive > active > active referenced > active mapped
7840  */
7841 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7842 {
7843 	struct scan_control sc = {
7844 		.nr_to_reclaim = nr_to_reclaim,
7845 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7846 		.reclaim_idx = MAX_NR_ZONES - 1,
7847 		.priority = DEF_PRIORITY,
7848 		.may_writepage = 1,
7849 		.may_unmap = 1,
7850 		.may_swap = 1,
7851 		.hibernation_mode = 1,
7852 	};
7853 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7854 	unsigned long nr_reclaimed;
7855 	unsigned int noreclaim_flag;
7856 
7857 	fs_reclaim_acquire(sc.gfp_mask);
7858 	noreclaim_flag = memalloc_noreclaim_save();
7859 	set_task_reclaim_state(current, &sc.reclaim_state);
7860 
7861 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7862 
7863 	set_task_reclaim_state(current, NULL);
7864 	memalloc_noreclaim_restore(noreclaim_flag);
7865 	fs_reclaim_release(sc.gfp_mask);
7866 
7867 	return nr_reclaimed;
7868 }
7869 #endif /* CONFIG_HIBERNATION */
7870 
7871 /*
7872  * This kswapd start function will be called by init and node-hot-add.
7873  */
7874 void __meminit kswapd_run(int nid)
7875 {
7876 	pg_data_t *pgdat = NODE_DATA(nid);
7877 
7878 	pgdat_kswapd_lock(pgdat);
7879 	if (!pgdat->kswapd) {
7880 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7881 		if (IS_ERR(pgdat->kswapd)) {
7882 			/* failure at boot is fatal */
7883 			BUG_ON(system_state < SYSTEM_RUNNING);
7884 			pr_err("Failed to start kswapd on node %d\n", nid);
7885 			pgdat->kswapd = NULL;
7886 		}
7887 	}
7888 	pgdat_kswapd_unlock(pgdat);
7889 }
7890 
7891 /*
7892  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7893  * be holding mem_hotplug_begin/done().
7894  */
7895 void __meminit kswapd_stop(int nid)
7896 {
7897 	pg_data_t *pgdat = NODE_DATA(nid);
7898 	struct task_struct *kswapd;
7899 
7900 	pgdat_kswapd_lock(pgdat);
7901 	kswapd = pgdat->kswapd;
7902 	if (kswapd) {
7903 		kthread_stop(kswapd);
7904 		pgdat->kswapd = NULL;
7905 	}
7906 	pgdat_kswapd_unlock(pgdat);
7907 }
7908 
7909 static int __init kswapd_init(void)
7910 {
7911 	int nid;
7912 
7913 	swap_setup();
7914 	for_each_node_state(nid, N_MEMORY)
7915  		kswapd_run(nid);
7916 	return 0;
7917 }
7918 
7919 module_init(kswapd_init)
7920 
7921 #ifdef CONFIG_NUMA
7922 /*
7923  * Node reclaim mode
7924  *
7925  * If non-zero call node_reclaim when the number of free pages falls below
7926  * the watermarks.
7927  */
7928 int node_reclaim_mode __read_mostly;
7929 
7930 /*
7931  * Priority for NODE_RECLAIM. This determines the fraction of pages
7932  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7933  * a zone.
7934  */
7935 #define NODE_RECLAIM_PRIORITY 4
7936 
7937 /*
7938  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7939  * occur.
7940  */
7941 int sysctl_min_unmapped_ratio = 1;
7942 
7943 /*
7944  * If the number of slab pages in a zone grows beyond this percentage then
7945  * slab reclaim needs to occur.
7946  */
7947 int sysctl_min_slab_ratio = 5;
7948 
7949 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7950 {
7951 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7952 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7953 		node_page_state(pgdat, NR_ACTIVE_FILE);
7954 
7955 	/*
7956 	 * It's possible for there to be more file mapped pages than
7957 	 * accounted for by the pages on the file LRU lists because
7958 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7959 	 */
7960 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7961 }
7962 
7963 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7964 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7965 {
7966 	unsigned long nr_pagecache_reclaimable;
7967 	unsigned long delta = 0;
7968 
7969 	/*
7970 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7971 	 * potentially reclaimable. Otherwise, we have to worry about
7972 	 * pages like swapcache and node_unmapped_file_pages() provides
7973 	 * a better estimate
7974 	 */
7975 	if (node_reclaim_mode & RECLAIM_UNMAP)
7976 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7977 	else
7978 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7979 
7980 	/* If we can't clean pages, remove dirty pages from consideration */
7981 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7982 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7983 
7984 	/* Watch for any possible underflows due to delta */
7985 	if (unlikely(delta > nr_pagecache_reclaimable))
7986 		delta = nr_pagecache_reclaimable;
7987 
7988 	return nr_pagecache_reclaimable - delta;
7989 }
7990 
7991 /*
7992  * Try to free up some pages from this node through reclaim.
7993  */
7994 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7995 {
7996 	/* Minimum pages needed in order to stay on node */
7997 	const unsigned long nr_pages = 1 << order;
7998 	struct task_struct *p = current;
7999 	unsigned int noreclaim_flag;
8000 	struct scan_control sc = {
8001 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
8002 		.gfp_mask = current_gfp_context(gfp_mask),
8003 		.order = order,
8004 		.priority = NODE_RECLAIM_PRIORITY,
8005 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
8006 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
8007 		.may_swap = 1,
8008 		.reclaim_idx = gfp_zone(gfp_mask),
8009 	};
8010 	unsigned long pflags;
8011 
8012 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
8013 					   sc.gfp_mask);
8014 
8015 	cond_resched();
8016 	psi_memstall_enter(&pflags);
8017 	fs_reclaim_acquire(sc.gfp_mask);
8018 	/*
8019 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8020 	 */
8021 	noreclaim_flag = memalloc_noreclaim_save();
8022 	set_task_reclaim_state(p, &sc.reclaim_state);
8023 
8024 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8025 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8026 		/*
8027 		 * Free memory by calling shrink node with increasing
8028 		 * priorities until we have enough memory freed.
8029 		 */
8030 		do {
8031 			shrink_node(pgdat, &sc);
8032 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8033 	}
8034 
8035 	set_task_reclaim_state(p, NULL);
8036 	memalloc_noreclaim_restore(noreclaim_flag);
8037 	fs_reclaim_release(sc.gfp_mask);
8038 	psi_memstall_leave(&pflags);
8039 
8040 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8041 
8042 	return sc.nr_reclaimed >= nr_pages;
8043 }
8044 
8045 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8046 {
8047 	int ret;
8048 
8049 	/*
8050 	 * Node reclaim reclaims unmapped file backed pages and
8051 	 * slab pages if we are over the defined limits.
8052 	 *
8053 	 * A small portion of unmapped file backed pages is needed for
8054 	 * file I/O otherwise pages read by file I/O will be immediately
8055 	 * thrown out if the node is overallocated. So we do not reclaim
8056 	 * if less than a specified percentage of the node is used by
8057 	 * unmapped file backed pages.
8058 	 */
8059 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8060 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8061 	    pgdat->min_slab_pages)
8062 		return NODE_RECLAIM_FULL;
8063 
8064 	/*
8065 	 * Do not scan if the allocation should not be delayed.
8066 	 */
8067 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8068 		return NODE_RECLAIM_NOSCAN;
8069 
8070 	/*
8071 	 * Only run node reclaim on the local node or on nodes that do not
8072 	 * have associated processors. This will favor the local processor
8073 	 * over remote processors and spread off node memory allocations
8074 	 * as wide as possible.
8075 	 */
8076 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8077 		return NODE_RECLAIM_NOSCAN;
8078 
8079 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8080 		return NODE_RECLAIM_NOSCAN;
8081 
8082 	ret = __node_reclaim(pgdat, gfp_mask, order);
8083 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8084 
8085 	if (!ret)
8086 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8087 
8088 	return ret;
8089 }
8090 #endif
8091 
8092 void check_move_unevictable_pages(struct pagevec *pvec)
8093 {
8094 	struct folio_batch fbatch;
8095 	unsigned i;
8096 
8097 	folio_batch_init(&fbatch);
8098 	for (i = 0; i < pvec->nr; i++) {
8099 		struct page *page = pvec->pages[i];
8100 
8101 		if (PageTransTail(page))
8102 			continue;
8103 		folio_batch_add(&fbatch, page_folio(page));
8104 	}
8105 	check_move_unevictable_folios(&fbatch);
8106 }
8107 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8108 
8109 /**
8110  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8111  * lru list
8112  * @fbatch: Batch of lru folios to check.
8113  *
8114  * Checks folios for evictability, if an evictable folio is in the unevictable
8115  * lru list, moves it to the appropriate evictable lru list. This function
8116  * should be only used for lru folios.
8117  */
8118 void check_move_unevictable_folios(struct folio_batch *fbatch)
8119 {
8120 	struct lruvec *lruvec = NULL;
8121 	int pgscanned = 0;
8122 	int pgrescued = 0;
8123 	int i;
8124 
8125 	for (i = 0; i < fbatch->nr; i++) {
8126 		struct folio *folio = fbatch->folios[i];
8127 		int nr_pages = folio_nr_pages(folio);
8128 
8129 		pgscanned += nr_pages;
8130 
8131 		/* block memcg migration while the folio moves between lrus */
8132 		if (!folio_test_clear_lru(folio))
8133 			continue;
8134 
8135 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8136 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8137 			lruvec_del_folio(lruvec, folio);
8138 			folio_clear_unevictable(folio);
8139 			lruvec_add_folio(lruvec, folio);
8140 			pgrescued += nr_pages;
8141 		}
8142 		folio_set_lru(folio);
8143 	}
8144 
8145 	if (lruvec) {
8146 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8147 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8148 		unlock_page_lruvec_irq(lruvec);
8149 	} else if (pgscanned) {
8150 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8151 	}
8152 }
8153 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8154