xref: /openbmc/linux/mm/vmscan.c (revision 60b2737d)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>	/* for try_to_release_page(),
26 					buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39 
40 #include <linux/swapops.h>
41 
42 /* possible outcome of pageout() */
43 typedef enum {
44 	/* failed to write page out, page is locked */
45 	PAGE_KEEP,
46 	/* move page to the active list, page is locked */
47 	PAGE_ACTIVATE,
48 	/* page has been sent to the disk successfully, page is unlocked */
49 	PAGE_SUCCESS,
50 	/* page is clean and locked */
51 	PAGE_CLEAN,
52 } pageout_t;
53 
54 struct scan_control {
55 	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 	unsigned long nr_to_scan;
57 
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Incremented by the number of pages reclaimed */
62 	unsigned long nr_reclaimed;
63 
64 	unsigned long nr_mapped;	/* From page_state */
65 
66 	/* How many pages shrink_cache() should reclaim */
67 	int nr_to_reclaim;
68 
69 	/* Ask shrink_caches, or shrink_zone to scan at this priority */
70 	unsigned int priority;
71 
72 	/* This context's GFP mask */
73 	unsigned int gfp_mask;
74 
75 	int may_writepage;
76 
77 	/* Can pages be swapped as part of reclaim? */
78 	int may_swap;
79 
80 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
81 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
82 	 * In this context, it doesn't matter that we scan the
83 	 * whole list at once. */
84 	int swap_cluster_max;
85 };
86 
87 /*
88  * The list of shrinker callbacks used by to apply pressure to
89  * ageable caches.
90  */
91 struct shrinker {
92 	shrinker_t		shrinker;
93 	struct list_head	list;
94 	int			seeks;	/* seeks to recreate an obj */
95 	long			nr;	/* objs pending delete */
96 };
97 
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetch(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)			\
116 	do {								\
117 		if ((_page)->lru.prev != _base) {			\
118 			struct page *prev;				\
119 									\
120 			prev = lru_to_page(&(_page->lru));		\
121 			prefetchw(&prev->_field);			\
122 		}							\
123 	} while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127 
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 static long total_memory;
133 
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136 
137 /*
138  * Add a shrinker callback to be called from the vm
139  */
140 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
141 {
142         struct shrinker *shrinker;
143 
144         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
145         if (shrinker) {
146 	        shrinker->shrinker = theshrinker;
147 	        shrinker->seeks = seeks;
148 	        shrinker->nr = 0;
149 	        down_write(&shrinker_rwsem);
150 	        list_add_tail(&shrinker->list, &shrinker_list);
151 	        up_write(&shrinker_rwsem);
152 	}
153 	return shrinker;
154 }
155 EXPORT_SYMBOL(set_shrinker);
156 
157 /*
158  * Remove one
159  */
160 void remove_shrinker(struct shrinker *shrinker)
161 {
162 	down_write(&shrinker_rwsem);
163 	list_del(&shrinker->list);
164 	up_write(&shrinker_rwsem);
165 	kfree(shrinker);
166 }
167 EXPORT_SYMBOL(remove_shrinker);
168 
169 #define SHRINK_BATCH 128
170 /*
171  * Call the shrink functions to age shrinkable caches
172  *
173  * Here we assume it costs one seek to replace a lru page and that it also
174  * takes a seek to recreate a cache object.  With this in mind we age equal
175  * percentages of the lru and ageable caches.  This should balance the seeks
176  * generated by these structures.
177  *
178  * If the vm encounted mapped pages on the LRU it increase the pressure on
179  * slab to avoid swapping.
180  *
181  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
182  *
183  * `lru_pages' represents the number of on-LRU pages in all the zones which
184  * are eligible for the caller's allocation attempt.  It is used for balancing
185  * slab reclaim versus page reclaim.
186  *
187  * Returns the number of slab objects which we shrunk.
188  */
189 static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
190 			unsigned long lru_pages)
191 {
192 	struct shrinker *shrinker;
193 	int ret = 0;
194 
195 	if (scanned == 0)
196 		scanned = SWAP_CLUSTER_MAX;
197 
198 	if (!down_read_trylock(&shrinker_rwsem))
199 		return 1;	/* Assume we'll be able to shrink next time */
200 
201 	list_for_each_entry(shrinker, &shrinker_list, list) {
202 		unsigned long long delta;
203 		unsigned long total_scan;
204 
205 		delta = (4 * scanned) / shrinker->seeks;
206 		delta *= (*shrinker->shrinker)(0, gfp_mask);
207 		do_div(delta, lru_pages + 1);
208 		shrinker->nr += delta;
209 		if (shrinker->nr < 0)
210 			shrinker->nr = LONG_MAX;	/* It wrapped! */
211 
212 		total_scan = shrinker->nr;
213 		shrinker->nr = 0;
214 
215 		while (total_scan >= SHRINK_BATCH) {
216 			long this_scan = SHRINK_BATCH;
217 			int shrink_ret;
218 			int nr_before;
219 
220 			nr_before = (*shrinker->shrinker)(0, gfp_mask);
221 			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
222 			if (shrink_ret == -1)
223 				break;
224 			if (shrink_ret < nr_before)
225 				ret += nr_before - shrink_ret;
226 			mod_page_state(slabs_scanned, this_scan);
227 			total_scan -= this_scan;
228 
229 			cond_resched();
230 		}
231 
232 		shrinker->nr += total_scan;
233 	}
234 	up_read(&shrinker_rwsem);
235 	return ret;
236 }
237 
238 /* Called without lock on whether page is mapped, so answer is unstable */
239 static inline int page_mapping_inuse(struct page *page)
240 {
241 	struct address_space *mapping;
242 
243 	/* Page is in somebody's page tables. */
244 	if (page_mapped(page))
245 		return 1;
246 
247 	/* Be more reluctant to reclaim swapcache than pagecache */
248 	if (PageSwapCache(page))
249 		return 1;
250 
251 	mapping = page_mapping(page);
252 	if (!mapping)
253 		return 0;
254 
255 	/* File is mmap'd by somebody? */
256 	return mapping_mapped(mapping);
257 }
258 
259 static inline int is_page_cache_freeable(struct page *page)
260 {
261 	return page_count(page) - !!PagePrivate(page) == 2;
262 }
263 
264 static int may_write_to_queue(struct backing_dev_info *bdi)
265 {
266 	if (current_is_kswapd())
267 		return 1;
268 	if (current_is_pdflush())	/* This is unlikely, but why not... */
269 		return 1;
270 	if (!bdi_write_congested(bdi))
271 		return 1;
272 	if (bdi == current->backing_dev_info)
273 		return 1;
274 	return 0;
275 }
276 
277 /*
278  * We detected a synchronous write error writing a page out.  Probably
279  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
280  * fsync(), msync() or close().
281  *
282  * The tricky part is that after writepage we cannot touch the mapping: nothing
283  * prevents it from being freed up.  But we have a ref on the page and once
284  * that page is locked, the mapping is pinned.
285  *
286  * We're allowed to run sleeping lock_page() here because we know the caller has
287  * __GFP_FS.
288  */
289 static void handle_write_error(struct address_space *mapping,
290 				struct page *page, int error)
291 {
292 	lock_page(page);
293 	if (page_mapping(page) == mapping) {
294 		if (error == -ENOSPC)
295 			set_bit(AS_ENOSPC, &mapping->flags);
296 		else
297 			set_bit(AS_EIO, &mapping->flags);
298 	}
299 	unlock_page(page);
300 }
301 
302 /*
303  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
304  */
305 static pageout_t pageout(struct page *page, struct address_space *mapping)
306 {
307 	/*
308 	 * If the page is dirty, only perform writeback if that write
309 	 * will be non-blocking.  To prevent this allocation from being
310 	 * stalled by pagecache activity.  But note that there may be
311 	 * stalls if we need to run get_block().  We could test
312 	 * PagePrivate for that.
313 	 *
314 	 * If this process is currently in generic_file_write() against
315 	 * this page's queue, we can perform writeback even if that
316 	 * will block.
317 	 *
318 	 * If the page is swapcache, write it back even if that would
319 	 * block, for some throttling. This happens by accident, because
320 	 * swap_backing_dev_info is bust: it doesn't reflect the
321 	 * congestion state of the swapdevs.  Easy to fix, if needed.
322 	 * See swapfile.c:page_queue_congested().
323 	 */
324 	if (!is_page_cache_freeable(page))
325 		return PAGE_KEEP;
326 	if (!mapping) {
327 		/*
328 		 * Some data journaling orphaned pages can have
329 		 * page->mapping == NULL while being dirty with clean buffers.
330 		 */
331 		if (PagePrivate(page)) {
332 			if (try_to_free_buffers(page)) {
333 				ClearPageDirty(page);
334 				printk("%s: orphaned page\n", __FUNCTION__);
335 				return PAGE_CLEAN;
336 			}
337 		}
338 		return PAGE_KEEP;
339 	}
340 	if (mapping->a_ops->writepage == NULL)
341 		return PAGE_ACTIVATE;
342 	if (!may_write_to_queue(mapping->backing_dev_info))
343 		return PAGE_KEEP;
344 
345 	if (clear_page_dirty_for_io(page)) {
346 		int res;
347 		struct writeback_control wbc = {
348 			.sync_mode = WB_SYNC_NONE,
349 			.nr_to_write = SWAP_CLUSTER_MAX,
350 			.nonblocking = 1,
351 			.for_reclaim = 1,
352 		};
353 
354 		SetPageReclaim(page);
355 		res = mapping->a_ops->writepage(page, &wbc);
356 		if (res < 0)
357 			handle_write_error(mapping, page, res);
358 		if (res == WRITEPAGE_ACTIVATE) {
359 			ClearPageReclaim(page);
360 			return PAGE_ACTIVATE;
361 		}
362 		if (!PageWriteback(page)) {
363 			/* synchronous write or broken a_ops? */
364 			ClearPageReclaim(page);
365 		}
366 
367 		return PAGE_SUCCESS;
368 	}
369 
370 	return PAGE_CLEAN;
371 }
372 
373 /*
374  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
375  */
376 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
377 {
378 	LIST_HEAD(ret_pages);
379 	struct pagevec freed_pvec;
380 	int pgactivate = 0;
381 	int reclaimed = 0;
382 
383 	cond_resched();
384 
385 	pagevec_init(&freed_pvec, 1);
386 	while (!list_empty(page_list)) {
387 		struct address_space *mapping;
388 		struct page *page;
389 		int may_enter_fs;
390 		int referenced;
391 
392 		cond_resched();
393 
394 		page = lru_to_page(page_list);
395 		list_del(&page->lru);
396 
397 		if (TestSetPageLocked(page))
398 			goto keep;
399 
400 		BUG_ON(PageActive(page));
401 
402 		sc->nr_scanned++;
403 		/* Double the slab pressure for mapped and swapcache pages */
404 		if (page_mapped(page) || PageSwapCache(page))
405 			sc->nr_scanned++;
406 
407 		if (PageWriteback(page))
408 			goto keep_locked;
409 
410 		referenced = page_referenced(page, 1, sc->priority <= 0);
411 		/* In active use or really unfreeable?  Activate it. */
412 		if (referenced && page_mapping_inuse(page))
413 			goto activate_locked;
414 
415 #ifdef CONFIG_SWAP
416 		/*
417 		 * Anonymous process memory has backing store?
418 		 * Try to allocate it some swap space here.
419 		 */
420 		if (PageAnon(page) && !PageSwapCache(page) && sc->may_swap) {
421 			if (!add_to_swap(page))
422 				goto activate_locked;
423 		}
424 #endif /* CONFIG_SWAP */
425 
426 		mapping = page_mapping(page);
427 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
428 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
429 
430 		/*
431 		 * The page is mapped into the page tables of one or more
432 		 * processes. Try to unmap it here.
433 		 */
434 		if (page_mapped(page) && mapping) {
435 			switch (try_to_unmap(page)) {
436 			case SWAP_FAIL:
437 				goto activate_locked;
438 			case SWAP_AGAIN:
439 				goto keep_locked;
440 			case SWAP_SUCCESS:
441 				; /* try to free the page below */
442 			}
443 		}
444 
445 		if (PageDirty(page)) {
446 			if (referenced)
447 				goto keep_locked;
448 			if (!may_enter_fs)
449 				goto keep_locked;
450 			if (laptop_mode && !sc->may_writepage)
451 				goto keep_locked;
452 
453 			/* Page is dirty, try to write it out here */
454 			switch(pageout(page, mapping)) {
455 			case PAGE_KEEP:
456 				goto keep_locked;
457 			case PAGE_ACTIVATE:
458 				goto activate_locked;
459 			case PAGE_SUCCESS:
460 				if (PageWriteback(page) || PageDirty(page))
461 					goto keep;
462 				/*
463 				 * A synchronous write - probably a ramdisk.  Go
464 				 * ahead and try to reclaim the page.
465 				 */
466 				if (TestSetPageLocked(page))
467 					goto keep;
468 				if (PageDirty(page) || PageWriteback(page))
469 					goto keep_locked;
470 				mapping = page_mapping(page);
471 			case PAGE_CLEAN:
472 				; /* try to free the page below */
473 			}
474 		}
475 
476 		/*
477 		 * If the page has buffers, try to free the buffer mappings
478 		 * associated with this page. If we succeed we try to free
479 		 * the page as well.
480 		 *
481 		 * We do this even if the page is PageDirty().
482 		 * try_to_release_page() does not perform I/O, but it is
483 		 * possible for a page to have PageDirty set, but it is actually
484 		 * clean (all its buffers are clean).  This happens if the
485 		 * buffers were written out directly, with submit_bh(). ext3
486 		 * will do this, as well as the blockdev mapping.
487 		 * try_to_release_page() will discover that cleanness and will
488 		 * drop the buffers and mark the page clean - it can be freed.
489 		 *
490 		 * Rarely, pages can have buffers and no ->mapping.  These are
491 		 * the pages which were not successfully invalidated in
492 		 * truncate_complete_page().  We try to drop those buffers here
493 		 * and if that worked, and the page is no longer mapped into
494 		 * process address space (page_count == 1) it can be freed.
495 		 * Otherwise, leave the page on the LRU so it is swappable.
496 		 */
497 		if (PagePrivate(page)) {
498 			if (!try_to_release_page(page, sc->gfp_mask))
499 				goto activate_locked;
500 			if (!mapping && page_count(page) == 1)
501 				goto free_it;
502 		}
503 
504 		if (!mapping)
505 			goto keep_locked;	/* truncate got there first */
506 
507 		write_lock_irq(&mapping->tree_lock);
508 
509 		/*
510 		 * The non-racy check for busy page.  It is critical to check
511 		 * PageDirty _after_ making sure that the page is freeable and
512 		 * not in use by anybody. 	(pagecache + us == 2)
513 		 */
514 		if (page_count(page) != 2 || PageDirty(page)) {
515 			write_unlock_irq(&mapping->tree_lock);
516 			goto keep_locked;
517 		}
518 
519 #ifdef CONFIG_SWAP
520 		if (PageSwapCache(page)) {
521 			swp_entry_t swap = { .val = page->private };
522 			__delete_from_swap_cache(page);
523 			write_unlock_irq(&mapping->tree_lock);
524 			swap_free(swap);
525 			__put_page(page);	/* The pagecache ref */
526 			goto free_it;
527 		}
528 #endif /* CONFIG_SWAP */
529 
530 		__remove_from_page_cache(page);
531 		write_unlock_irq(&mapping->tree_lock);
532 		__put_page(page);
533 
534 free_it:
535 		unlock_page(page);
536 		reclaimed++;
537 		if (!pagevec_add(&freed_pvec, page))
538 			__pagevec_release_nonlru(&freed_pvec);
539 		continue;
540 
541 activate_locked:
542 		SetPageActive(page);
543 		pgactivate++;
544 keep_locked:
545 		unlock_page(page);
546 keep:
547 		list_add(&page->lru, &ret_pages);
548 		BUG_ON(PageLRU(page));
549 	}
550 	list_splice(&ret_pages, page_list);
551 	if (pagevec_count(&freed_pvec))
552 		__pagevec_release_nonlru(&freed_pvec);
553 	mod_page_state(pgactivate, pgactivate);
554 	sc->nr_reclaimed += reclaimed;
555 	return reclaimed;
556 }
557 
558 /*
559  * zone->lru_lock is heavily contended.  Some of the functions that
560  * shrink the lists perform better by taking out a batch of pages
561  * and working on them outside the LRU lock.
562  *
563  * For pagecache intensive workloads, this function is the hottest
564  * spot in the kernel (apart from copy_*_user functions).
565  *
566  * Appropriate locks must be held before calling this function.
567  *
568  * @nr_to_scan:	The number of pages to look through on the list.
569  * @src:	The LRU list to pull pages off.
570  * @dst:	The temp list to put pages on to.
571  * @scanned:	The number of pages that were scanned.
572  *
573  * returns how many pages were moved onto *@dst.
574  */
575 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
576 			     struct list_head *dst, int *scanned)
577 {
578 	int nr_taken = 0;
579 	struct page *page;
580 	int scan = 0;
581 
582 	while (scan++ < nr_to_scan && !list_empty(src)) {
583 		page = lru_to_page(src);
584 		prefetchw_prev_lru_page(page, src, flags);
585 
586 		if (!TestClearPageLRU(page))
587 			BUG();
588 		list_del(&page->lru);
589 		if (get_page_testone(page)) {
590 			/*
591 			 * It is being freed elsewhere
592 			 */
593 			__put_page(page);
594 			SetPageLRU(page);
595 			list_add(&page->lru, src);
596 			continue;
597 		} else {
598 			list_add(&page->lru, dst);
599 			nr_taken++;
600 		}
601 	}
602 
603 	*scanned = scan;
604 	return nr_taken;
605 }
606 
607 /*
608  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
609  */
610 static void shrink_cache(struct zone *zone, struct scan_control *sc)
611 {
612 	LIST_HEAD(page_list);
613 	struct pagevec pvec;
614 	int max_scan = sc->nr_to_scan;
615 
616 	pagevec_init(&pvec, 1);
617 
618 	lru_add_drain();
619 	spin_lock_irq(&zone->lru_lock);
620 	while (max_scan > 0) {
621 		struct page *page;
622 		int nr_taken;
623 		int nr_scan;
624 		int nr_freed;
625 
626 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
627 					     &zone->inactive_list,
628 					     &page_list, &nr_scan);
629 		zone->nr_inactive -= nr_taken;
630 		zone->pages_scanned += nr_scan;
631 		spin_unlock_irq(&zone->lru_lock);
632 
633 		if (nr_taken == 0)
634 			goto done;
635 
636 		max_scan -= nr_scan;
637 		if (current_is_kswapd())
638 			mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
639 		else
640 			mod_page_state_zone(zone, pgscan_direct, nr_scan);
641 		nr_freed = shrink_list(&page_list, sc);
642 		if (current_is_kswapd())
643 			mod_page_state(kswapd_steal, nr_freed);
644 		mod_page_state_zone(zone, pgsteal, nr_freed);
645 		sc->nr_to_reclaim -= nr_freed;
646 
647 		spin_lock_irq(&zone->lru_lock);
648 		/*
649 		 * Put back any unfreeable pages.
650 		 */
651 		while (!list_empty(&page_list)) {
652 			page = lru_to_page(&page_list);
653 			if (TestSetPageLRU(page))
654 				BUG();
655 			list_del(&page->lru);
656 			if (PageActive(page))
657 				add_page_to_active_list(zone, page);
658 			else
659 				add_page_to_inactive_list(zone, page);
660 			if (!pagevec_add(&pvec, page)) {
661 				spin_unlock_irq(&zone->lru_lock);
662 				__pagevec_release(&pvec);
663 				spin_lock_irq(&zone->lru_lock);
664 			}
665 		}
666   	}
667 	spin_unlock_irq(&zone->lru_lock);
668 done:
669 	pagevec_release(&pvec);
670 }
671 
672 /*
673  * This moves pages from the active list to the inactive list.
674  *
675  * We move them the other way if the page is referenced by one or more
676  * processes, from rmap.
677  *
678  * If the pages are mostly unmapped, the processing is fast and it is
679  * appropriate to hold zone->lru_lock across the whole operation.  But if
680  * the pages are mapped, the processing is slow (page_referenced()) so we
681  * should drop zone->lru_lock around each page.  It's impossible to balance
682  * this, so instead we remove the pages from the LRU while processing them.
683  * It is safe to rely on PG_active against the non-LRU pages in here because
684  * nobody will play with that bit on a non-LRU page.
685  *
686  * The downside is that we have to touch page->_count against each page.
687  * But we had to alter page->flags anyway.
688  */
689 static void
690 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
691 {
692 	int pgmoved;
693 	int pgdeactivate = 0;
694 	int pgscanned;
695 	int nr_pages = sc->nr_to_scan;
696 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
697 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
698 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
699 	struct page *page;
700 	struct pagevec pvec;
701 	int reclaim_mapped = 0;
702 	long mapped_ratio;
703 	long distress;
704 	long swap_tendency;
705 
706 	lru_add_drain();
707 	spin_lock_irq(&zone->lru_lock);
708 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
709 				    &l_hold, &pgscanned);
710 	zone->pages_scanned += pgscanned;
711 	zone->nr_active -= pgmoved;
712 	spin_unlock_irq(&zone->lru_lock);
713 
714 	/*
715 	 * `distress' is a measure of how much trouble we're having reclaiming
716 	 * pages.  0 -> no problems.  100 -> great trouble.
717 	 */
718 	distress = 100 >> zone->prev_priority;
719 
720 	/*
721 	 * The point of this algorithm is to decide when to start reclaiming
722 	 * mapped memory instead of just pagecache.  Work out how much memory
723 	 * is mapped.
724 	 */
725 	mapped_ratio = (sc->nr_mapped * 100) / total_memory;
726 
727 	/*
728 	 * Now decide how much we really want to unmap some pages.  The mapped
729 	 * ratio is downgraded - just because there's a lot of mapped memory
730 	 * doesn't necessarily mean that page reclaim isn't succeeding.
731 	 *
732 	 * The distress ratio is important - we don't want to start going oom.
733 	 *
734 	 * A 100% value of vm_swappiness overrides this algorithm altogether.
735 	 */
736 	swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
737 
738 	/*
739 	 * Now use this metric to decide whether to start moving mapped memory
740 	 * onto the inactive list.
741 	 */
742 	if (swap_tendency >= 100)
743 		reclaim_mapped = 1;
744 
745 	while (!list_empty(&l_hold)) {
746 		cond_resched();
747 		page = lru_to_page(&l_hold);
748 		list_del(&page->lru);
749 		if (page_mapped(page)) {
750 			if (!reclaim_mapped ||
751 			    (total_swap_pages == 0 && PageAnon(page)) ||
752 			    page_referenced(page, 0, sc->priority <= 0)) {
753 				list_add(&page->lru, &l_active);
754 				continue;
755 			}
756 		}
757 		list_add(&page->lru, &l_inactive);
758 	}
759 
760 	pagevec_init(&pvec, 1);
761 	pgmoved = 0;
762 	spin_lock_irq(&zone->lru_lock);
763 	while (!list_empty(&l_inactive)) {
764 		page = lru_to_page(&l_inactive);
765 		prefetchw_prev_lru_page(page, &l_inactive, flags);
766 		if (TestSetPageLRU(page))
767 			BUG();
768 		if (!TestClearPageActive(page))
769 			BUG();
770 		list_move(&page->lru, &zone->inactive_list);
771 		pgmoved++;
772 		if (!pagevec_add(&pvec, page)) {
773 			zone->nr_inactive += pgmoved;
774 			spin_unlock_irq(&zone->lru_lock);
775 			pgdeactivate += pgmoved;
776 			pgmoved = 0;
777 			if (buffer_heads_over_limit)
778 				pagevec_strip(&pvec);
779 			__pagevec_release(&pvec);
780 			spin_lock_irq(&zone->lru_lock);
781 		}
782 	}
783 	zone->nr_inactive += pgmoved;
784 	pgdeactivate += pgmoved;
785 	if (buffer_heads_over_limit) {
786 		spin_unlock_irq(&zone->lru_lock);
787 		pagevec_strip(&pvec);
788 		spin_lock_irq(&zone->lru_lock);
789 	}
790 
791 	pgmoved = 0;
792 	while (!list_empty(&l_active)) {
793 		page = lru_to_page(&l_active);
794 		prefetchw_prev_lru_page(page, &l_active, flags);
795 		if (TestSetPageLRU(page))
796 			BUG();
797 		BUG_ON(!PageActive(page));
798 		list_move(&page->lru, &zone->active_list);
799 		pgmoved++;
800 		if (!pagevec_add(&pvec, page)) {
801 			zone->nr_active += pgmoved;
802 			pgmoved = 0;
803 			spin_unlock_irq(&zone->lru_lock);
804 			__pagevec_release(&pvec);
805 			spin_lock_irq(&zone->lru_lock);
806 		}
807 	}
808 	zone->nr_active += pgmoved;
809 	spin_unlock_irq(&zone->lru_lock);
810 	pagevec_release(&pvec);
811 
812 	mod_page_state_zone(zone, pgrefill, pgscanned);
813 	mod_page_state(pgdeactivate, pgdeactivate);
814 }
815 
816 /*
817  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
818  */
819 static void
820 shrink_zone(struct zone *zone, struct scan_control *sc)
821 {
822 	unsigned long nr_active;
823 	unsigned long nr_inactive;
824 
825 	/*
826 	 * Add one to `nr_to_scan' just to make sure that the kernel will
827 	 * slowly sift through the active list.
828 	 */
829 	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
830 	nr_active = zone->nr_scan_active;
831 	if (nr_active >= sc->swap_cluster_max)
832 		zone->nr_scan_active = 0;
833 	else
834 		nr_active = 0;
835 
836 	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
837 	nr_inactive = zone->nr_scan_inactive;
838 	if (nr_inactive >= sc->swap_cluster_max)
839 		zone->nr_scan_inactive = 0;
840 	else
841 		nr_inactive = 0;
842 
843 	sc->nr_to_reclaim = sc->swap_cluster_max;
844 
845 	while (nr_active || nr_inactive) {
846 		if (nr_active) {
847 			sc->nr_to_scan = min(nr_active,
848 					(unsigned long)sc->swap_cluster_max);
849 			nr_active -= sc->nr_to_scan;
850 			refill_inactive_zone(zone, sc);
851 		}
852 
853 		if (nr_inactive) {
854 			sc->nr_to_scan = min(nr_inactive,
855 					(unsigned long)sc->swap_cluster_max);
856 			nr_inactive -= sc->nr_to_scan;
857 			shrink_cache(zone, sc);
858 			if (sc->nr_to_reclaim <= 0)
859 				break;
860 		}
861 	}
862 
863 	throttle_vm_writeout();
864 }
865 
866 /*
867  * This is the direct reclaim path, for page-allocating processes.  We only
868  * try to reclaim pages from zones which will satisfy the caller's allocation
869  * request.
870  *
871  * We reclaim from a zone even if that zone is over pages_high.  Because:
872  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
873  *    allocation or
874  * b) The zones may be over pages_high but they must go *over* pages_high to
875  *    satisfy the `incremental min' zone defense algorithm.
876  *
877  * Returns the number of reclaimed pages.
878  *
879  * If a zone is deemed to be full of pinned pages then just give it a light
880  * scan then give up on it.
881  */
882 static void
883 shrink_caches(struct zone **zones, struct scan_control *sc)
884 {
885 	int i;
886 
887 	for (i = 0; zones[i] != NULL; i++) {
888 		struct zone *zone = zones[i];
889 
890 		if (zone->present_pages == 0)
891 			continue;
892 
893 		if (!cpuset_zone_allowed(zone))
894 			continue;
895 
896 		zone->temp_priority = sc->priority;
897 		if (zone->prev_priority > sc->priority)
898 			zone->prev_priority = sc->priority;
899 
900 		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
901 			continue;	/* Let kswapd poll it */
902 
903 		atomic_inc(&zone->reclaim_in_progress);
904 		shrink_zone(zone, sc);
905 		atomic_dec(&zone->reclaim_in_progress);
906 	}
907 }
908 
909 /*
910  * This is the main entry point to direct page reclaim.
911  *
912  * If a full scan of the inactive list fails to free enough memory then we
913  * are "out of memory" and something needs to be killed.
914  *
915  * If the caller is !__GFP_FS then the probability of a failure is reasonably
916  * high - the zone may be full of dirty or under-writeback pages, which this
917  * caller can't do much about.  We kick pdflush and take explicit naps in the
918  * hope that some of these pages can be written.  But if the allocating task
919  * holds filesystem locks which prevent writeout this might not work, and the
920  * allocation attempt will fail.
921  */
922 int try_to_free_pages(struct zone **zones, unsigned int gfp_mask)
923 {
924 	int priority;
925 	int ret = 0;
926 	int total_scanned = 0, total_reclaimed = 0;
927 	struct reclaim_state *reclaim_state = current->reclaim_state;
928 	struct scan_control sc;
929 	unsigned long lru_pages = 0;
930 	int i;
931 
932 	sc.gfp_mask = gfp_mask;
933 	sc.may_writepage = 0;
934 	sc.may_swap = 1;
935 
936 	inc_page_state(allocstall);
937 
938 	for (i = 0; zones[i] != NULL; i++) {
939 		struct zone *zone = zones[i];
940 
941 		if (!cpuset_zone_allowed(zone))
942 			continue;
943 
944 		zone->temp_priority = DEF_PRIORITY;
945 		lru_pages += zone->nr_active + zone->nr_inactive;
946 	}
947 
948 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
949 		sc.nr_mapped = read_page_state(nr_mapped);
950 		sc.nr_scanned = 0;
951 		sc.nr_reclaimed = 0;
952 		sc.priority = priority;
953 		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
954 		shrink_caches(zones, &sc);
955 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
956 		if (reclaim_state) {
957 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
958 			reclaim_state->reclaimed_slab = 0;
959 		}
960 		total_scanned += sc.nr_scanned;
961 		total_reclaimed += sc.nr_reclaimed;
962 		if (total_reclaimed >= sc.swap_cluster_max) {
963 			ret = 1;
964 			goto out;
965 		}
966 
967 		/*
968 		 * Try to write back as many pages as we just scanned.  This
969 		 * tends to cause slow streaming writers to write data to the
970 		 * disk smoothly, at the dirtying rate, which is nice.   But
971 		 * that's undesirable in laptop mode, where we *want* lumpy
972 		 * writeout.  So in laptop mode, write out the whole world.
973 		 */
974 		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
975 			wakeup_bdflush(laptop_mode ? 0 : total_scanned);
976 			sc.may_writepage = 1;
977 		}
978 
979 		/* Take a nap, wait for some writeback to complete */
980 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
981 			blk_congestion_wait(WRITE, HZ/10);
982 	}
983 out:
984 	for (i = 0; zones[i] != 0; i++) {
985 		struct zone *zone = zones[i];
986 
987 		if (!cpuset_zone_allowed(zone))
988 			continue;
989 
990 		zone->prev_priority = zone->temp_priority;
991 	}
992 	return ret;
993 }
994 
995 /*
996  * For kswapd, balance_pgdat() will work across all this node's zones until
997  * they are all at pages_high.
998  *
999  * If `nr_pages' is non-zero then it is the number of pages which are to be
1000  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1001  * special.
1002  *
1003  * Returns the number of pages which were actually freed.
1004  *
1005  * There is special handling here for zones which are full of pinned pages.
1006  * This can happen if the pages are all mlocked, or if they are all used by
1007  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1008  * What we do is to detect the case where all pages in the zone have been
1009  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1010  * dead and from now on, only perform a short scan.  Basically we're polling
1011  * the zone for when the problem goes away.
1012  *
1013  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1014  * zones which have free_pages > pages_high, but once a zone is found to have
1015  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1016  * of the number of free pages in the lower zones.  This interoperates with
1017  * the page allocator fallback scheme to ensure that aging of pages is balanced
1018  * across the zones.
1019  */
1020 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1021 {
1022 	int to_free = nr_pages;
1023 	int all_zones_ok;
1024 	int priority;
1025 	int i;
1026 	int total_scanned, total_reclaimed;
1027 	struct reclaim_state *reclaim_state = current->reclaim_state;
1028 	struct scan_control sc;
1029 
1030 loop_again:
1031 	total_scanned = 0;
1032 	total_reclaimed = 0;
1033 	sc.gfp_mask = GFP_KERNEL;
1034 	sc.may_writepage = 0;
1035 	sc.may_swap = 1;
1036 	sc.nr_mapped = read_page_state(nr_mapped);
1037 
1038 	inc_page_state(pageoutrun);
1039 
1040 	for (i = 0; i < pgdat->nr_zones; i++) {
1041 		struct zone *zone = pgdat->node_zones + i;
1042 
1043 		zone->temp_priority = DEF_PRIORITY;
1044 	}
1045 
1046 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1047 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1048 		unsigned long lru_pages = 0;
1049 
1050 		all_zones_ok = 1;
1051 
1052 		if (nr_pages == 0) {
1053 			/*
1054 			 * Scan in the highmem->dma direction for the highest
1055 			 * zone which needs scanning
1056 			 */
1057 			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1058 				struct zone *zone = pgdat->node_zones + i;
1059 
1060 				if (zone->present_pages == 0)
1061 					continue;
1062 
1063 				if (zone->all_unreclaimable &&
1064 						priority != DEF_PRIORITY)
1065 					continue;
1066 
1067 				if (!zone_watermark_ok(zone, order,
1068 						zone->pages_high, 0, 0, 0)) {
1069 					end_zone = i;
1070 					goto scan;
1071 				}
1072 			}
1073 			goto out;
1074 		} else {
1075 			end_zone = pgdat->nr_zones - 1;
1076 		}
1077 scan:
1078 		for (i = 0; i <= end_zone; i++) {
1079 			struct zone *zone = pgdat->node_zones + i;
1080 
1081 			lru_pages += zone->nr_active + zone->nr_inactive;
1082 		}
1083 
1084 		/*
1085 		 * Now scan the zone in the dma->highmem direction, stopping
1086 		 * at the last zone which needs scanning.
1087 		 *
1088 		 * We do this because the page allocator works in the opposite
1089 		 * direction.  This prevents the page allocator from allocating
1090 		 * pages behind kswapd's direction of progress, which would
1091 		 * cause too much scanning of the lower zones.
1092 		 */
1093 		for (i = 0; i <= end_zone; i++) {
1094 			struct zone *zone = pgdat->node_zones + i;
1095 			int nr_slab;
1096 
1097 			if (zone->present_pages == 0)
1098 				continue;
1099 
1100 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1101 				continue;
1102 
1103 			if (nr_pages == 0) {	/* Not software suspend */
1104 				if (!zone_watermark_ok(zone, order,
1105 						zone->pages_high, end_zone, 0, 0))
1106 					all_zones_ok = 0;
1107 			}
1108 			zone->temp_priority = priority;
1109 			if (zone->prev_priority > priority)
1110 				zone->prev_priority = priority;
1111 			sc.nr_scanned = 0;
1112 			sc.nr_reclaimed = 0;
1113 			sc.priority = priority;
1114 			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1115 			atomic_inc(&zone->reclaim_in_progress);
1116 			shrink_zone(zone, &sc);
1117 			atomic_dec(&zone->reclaim_in_progress);
1118 			reclaim_state->reclaimed_slab = 0;
1119 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1120 						lru_pages);
1121 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1122 			total_reclaimed += sc.nr_reclaimed;
1123 			total_scanned += sc.nr_scanned;
1124 			if (zone->all_unreclaimable)
1125 				continue;
1126 			if (nr_slab == 0 && zone->pages_scanned >=
1127 				    (zone->nr_active + zone->nr_inactive) * 4)
1128 				zone->all_unreclaimable = 1;
1129 			/*
1130 			 * If we've done a decent amount of scanning and
1131 			 * the reclaim ratio is low, start doing writepage
1132 			 * even in laptop mode
1133 			 */
1134 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1135 			    total_scanned > total_reclaimed+total_reclaimed/2)
1136 				sc.may_writepage = 1;
1137 		}
1138 		if (nr_pages && to_free > total_reclaimed)
1139 			continue;	/* swsusp: need to do more work */
1140 		if (all_zones_ok)
1141 			break;		/* kswapd: all done */
1142 		/*
1143 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1144 		 * another pass across the zones.
1145 		 */
1146 		if (total_scanned && priority < DEF_PRIORITY - 2)
1147 			blk_congestion_wait(WRITE, HZ/10);
1148 
1149 		/*
1150 		 * We do this so kswapd doesn't build up large priorities for
1151 		 * example when it is freeing in parallel with allocators. It
1152 		 * matches the direct reclaim path behaviour in terms of impact
1153 		 * on zone->*_priority.
1154 		 */
1155 		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1156 			break;
1157 	}
1158 out:
1159 	for (i = 0; i < pgdat->nr_zones; i++) {
1160 		struct zone *zone = pgdat->node_zones + i;
1161 
1162 		zone->prev_priority = zone->temp_priority;
1163 	}
1164 	if (!all_zones_ok) {
1165 		cond_resched();
1166 		goto loop_again;
1167 	}
1168 
1169 	return total_reclaimed;
1170 }
1171 
1172 /*
1173  * The background pageout daemon, started as a kernel thread
1174  * from the init process.
1175  *
1176  * This basically trickles out pages so that we have _some_
1177  * free memory available even if there is no other activity
1178  * that frees anything up. This is needed for things like routing
1179  * etc, where we otherwise might have all activity going on in
1180  * asynchronous contexts that cannot page things out.
1181  *
1182  * If there are applications that are active memory-allocators
1183  * (most normal use), this basically shouldn't matter.
1184  */
1185 static int kswapd(void *p)
1186 {
1187 	unsigned long order;
1188 	pg_data_t *pgdat = (pg_data_t*)p;
1189 	struct task_struct *tsk = current;
1190 	DEFINE_WAIT(wait);
1191 	struct reclaim_state reclaim_state = {
1192 		.reclaimed_slab = 0,
1193 	};
1194 	cpumask_t cpumask;
1195 
1196 	daemonize("kswapd%d", pgdat->node_id);
1197 	cpumask = node_to_cpumask(pgdat->node_id);
1198 	if (!cpus_empty(cpumask))
1199 		set_cpus_allowed(tsk, cpumask);
1200 	current->reclaim_state = &reclaim_state;
1201 
1202 	/*
1203 	 * Tell the memory management that we're a "memory allocator",
1204 	 * and that if we need more memory we should get access to it
1205 	 * regardless (see "__alloc_pages()"). "kswapd" should
1206 	 * never get caught in the normal page freeing logic.
1207 	 *
1208 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1209 	 * you need a small amount of memory in order to be able to
1210 	 * page out something else, and this flag essentially protects
1211 	 * us from recursively trying to free more memory as we're
1212 	 * trying to free the first piece of memory in the first place).
1213 	 */
1214 	tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1215 
1216 	order = 0;
1217 	for ( ; ; ) {
1218 		unsigned long new_order;
1219 		if (current->flags & PF_FREEZE)
1220 			refrigerator(PF_FREEZE);
1221 
1222 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1223 		new_order = pgdat->kswapd_max_order;
1224 		pgdat->kswapd_max_order = 0;
1225 		if (order < new_order) {
1226 			/*
1227 			 * Don't sleep if someone wants a larger 'order'
1228 			 * allocation
1229 			 */
1230 			order = new_order;
1231 		} else {
1232 			schedule();
1233 			order = pgdat->kswapd_max_order;
1234 		}
1235 		finish_wait(&pgdat->kswapd_wait, &wait);
1236 
1237 		balance_pgdat(pgdat, 0, order);
1238 	}
1239 	return 0;
1240 }
1241 
1242 /*
1243  * A zone is low on free memory, so wake its kswapd task to service it.
1244  */
1245 void wakeup_kswapd(struct zone *zone, int order)
1246 {
1247 	pg_data_t *pgdat;
1248 
1249 	if (zone->present_pages == 0)
1250 		return;
1251 
1252 	pgdat = zone->zone_pgdat;
1253 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0, 0))
1254 		return;
1255 	if (pgdat->kswapd_max_order < order)
1256 		pgdat->kswapd_max_order = order;
1257 	if (!cpuset_zone_allowed(zone))
1258 		return;
1259 	if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1260 		return;
1261 	wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1262 }
1263 
1264 #ifdef CONFIG_PM
1265 /*
1266  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1267  * pages.
1268  */
1269 int shrink_all_memory(int nr_pages)
1270 {
1271 	pg_data_t *pgdat;
1272 	int nr_to_free = nr_pages;
1273 	int ret = 0;
1274 	struct reclaim_state reclaim_state = {
1275 		.reclaimed_slab = 0,
1276 	};
1277 
1278 	current->reclaim_state = &reclaim_state;
1279 	for_each_pgdat(pgdat) {
1280 		int freed;
1281 		freed = balance_pgdat(pgdat, nr_to_free, 0);
1282 		ret += freed;
1283 		nr_to_free -= freed;
1284 		if (nr_to_free <= 0)
1285 			break;
1286 	}
1287 	current->reclaim_state = NULL;
1288 	return ret;
1289 }
1290 #endif
1291 
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1294    not required for correctness.  So if the last cpu in a node goes
1295    away, we get changed to run anywhere: as the first one comes back,
1296    restore their cpu bindings. */
1297 static int __devinit cpu_callback(struct notifier_block *nfb,
1298 				  unsigned long action,
1299 				  void *hcpu)
1300 {
1301 	pg_data_t *pgdat;
1302 	cpumask_t mask;
1303 
1304 	if (action == CPU_ONLINE) {
1305 		for_each_pgdat(pgdat) {
1306 			mask = node_to_cpumask(pgdat->node_id);
1307 			if (any_online_cpu(mask) != NR_CPUS)
1308 				/* One of our CPUs online: restore mask */
1309 				set_cpus_allowed(pgdat->kswapd, mask);
1310 		}
1311 	}
1312 	return NOTIFY_OK;
1313 }
1314 #endif /* CONFIG_HOTPLUG_CPU */
1315 
1316 static int __init kswapd_init(void)
1317 {
1318 	pg_data_t *pgdat;
1319 	swap_setup();
1320 	for_each_pgdat(pgdat)
1321 		pgdat->kswapd
1322 		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1323 	total_memory = nr_free_pagecache_pages();
1324 	hotcpu_notifier(cpu_callback, 0);
1325 	return 0;
1326 }
1327 
1328 module_init(kswapd_init)
1329 
1330 
1331 /*
1332  * Try to free up some pages from this zone through reclaim.
1333  */
1334 int zone_reclaim(struct zone *zone, unsigned int gfp_mask, unsigned int order)
1335 {
1336 	struct scan_control sc;
1337 	int nr_pages = 1 << order;
1338 	int total_reclaimed = 0;
1339 
1340 	/* The reclaim may sleep, so don't do it if sleep isn't allowed */
1341 	if (!(gfp_mask & __GFP_WAIT))
1342 		return 0;
1343 	if (zone->all_unreclaimable)
1344 		return 0;
1345 
1346 	sc.gfp_mask = gfp_mask;
1347 	sc.may_writepage = 0;
1348 	sc.may_swap = 0;
1349 	sc.nr_mapped = read_page_state(nr_mapped);
1350 	sc.nr_scanned = 0;
1351 	sc.nr_reclaimed = 0;
1352 	/* scan at the highest priority */
1353 	sc.priority = 0;
1354 
1355 	if (nr_pages > SWAP_CLUSTER_MAX)
1356 		sc.swap_cluster_max = nr_pages;
1357 	else
1358 		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1359 
1360 	/* Don't reclaim the zone if there are other reclaimers active */
1361 	if (!atomic_inc_and_test(&zone->reclaim_in_progress))
1362 		goto out;
1363 
1364 	shrink_zone(zone, &sc);
1365 	total_reclaimed = sc.nr_reclaimed;
1366 
1367  out:
1368 	atomic_dec(&zone->reclaim_in_progress);
1369 	return total_reclaimed;
1370 }
1371 
1372 asmlinkage long sys_set_zone_reclaim(unsigned int node, unsigned int zone,
1373 				     unsigned int state)
1374 {
1375 	struct zone *z;
1376 	int i;
1377 
1378 	if (node >= MAX_NUMNODES || !node_online(node))
1379 		return -EINVAL;
1380 
1381 	/* This will break if we ever add more zones */
1382 	if (!(zone & (1<<ZONE_DMA|1<<ZONE_NORMAL|1<<ZONE_HIGHMEM)))
1383 		return -EINVAL;
1384 
1385 	for (i = 0; i < MAX_NR_ZONES; i++) {
1386 		if (!(zone & 1<<i))
1387 			continue;
1388 
1389 		z = &NODE_DATA(node)->node_zones[i];
1390 
1391 		if (state)
1392 			z->reclaim_pages = 1;
1393 		else
1394 			z->reclaim_pages = 0;
1395 	}
1396 
1397 	return 0;
1398 }
1399