1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* 92 * Cgroups are not reclaimed below their configured memory.low, 93 * unless we threaten to OOM. If any cgroups are skipped due to 94 * memory.low and nothing was reclaimed, go back for memory.low. 95 */ 96 unsigned int memcg_low_reclaim:1; 97 unsigned int memcg_low_skipped:1; 98 99 unsigned int hibernation_mode:1; 100 101 /* One of the zones is ready for compaction */ 102 unsigned int compaction_ready:1; 103 104 /* Allocation order */ 105 s8 order; 106 107 /* Scan (total_size >> priority) pages at once */ 108 s8 priority; 109 110 /* The highest zone to isolate pages for reclaim from */ 111 s8 reclaim_idx; 112 113 /* This context's GFP mask */ 114 gfp_t gfp_mask; 115 116 /* Incremented by the number of inactive pages that were scanned */ 117 unsigned long nr_scanned; 118 119 /* Number of pages freed so far during a call to shrink_zones() */ 120 unsigned long nr_reclaimed; 121 122 struct { 123 unsigned int dirty; 124 unsigned int unqueued_dirty; 125 unsigned int congested; 126 unsigned int writeback; 127 unsigned int immediate; 128 unsigned int file_taken; 129 unsigned int taken; 130 } nr; 131 132 /* for recording the reclaimed slab by now */ 133 struct reclaim_state reclaim_state; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static LIST_HEAD(shrinker_list); 175 static DECLARE_RWSEM(shrinker_rwsem); 176 177 #ifdef CONFIG_MEMCG_KMEM 178 179 /* 180 * We allow subsystems to populate their shrinker-related 181 * LRU lists before register_shrinker_prepared() is called 182 * for the shrinker, since we don't want to impose 183 * restrictions on their internal registration order. 184 * In this case shrink_slab_memcg() may find corresponding 185 * bit is set in the shrinkers map. 186 * 187 * This value is used by the function to detect registering 188 * shrinkers and to skip do_shrink_slab() calls for them. 189 */ 190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 191 192 static DEFINE_IDR(shrinker_idr); 193 static int shrinker_nr_max; 194 195 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 196 { 197 int id, ret = -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 /* This may call shrinker, so it must use down_read_trylock() */ 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 202 if (id < 0) 203 goto unlock; 204 205 if (id >= shrinker_nr_max) { 206 if (memcg_expand_shrinker_maps(id)) { 207 idr_remove(&shrinker_idr, id); 208 goto unlock; 209 } 210 211 shrinker_nr_max = id + 1; 212 } 213 shrinker->id = id; 214 ret = 0; 215 unlock: 216 up_write(&shrinker_rwsem); 217 return ret; 218 } 219 220 static void unregister_memcg_shrinker(struct shrinker *shrinker) 221 { 222 int id = shrinker->id; 223 224 BUG_ON(id < 0); 225 226 down_write(&shrinker_rwsem); 227 idr_remove(&shrinker_idr, id); 228 up_write(&shrinker_rwsem); 229 } 230 #else /* CONFIG_MEMCG_KMEM */ 231 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 232 { 233 return 0; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 } 239 #endif /* CONFIG_MEMCG_KMEM */ 240 241 static void set_task_reclaim_state(struct task_struct *task, 242 struct reclaim_state *rs) 243 { 244 /* Check for an overwrite */ 245 WARN_ON_ONCE(rs && task->reclaim_state); 246 247 /* Check for the nulling of an already-nulled member */ 248 WARN_ON_ONCE(!rs && !task->reclaim_state); 249 250 task->reclaim_state = rs; 251 } 252 253 #ifdef CONFIG_MEMCG 254 static bool global_reclaim(struct scan_control *sc) 255 { 256 return !sc->target_mem_cgroup; 257 } 258 259 /** 260 * sane_reclaim - is the usual dirty throttling mechanism operational? 261 * @sc: scan_control in question 262 * 263 * The normal page dirty throttling mechanism in balance_dirty_pages() is 264 * completely broken with the legacy memcg and direct stalling in 265 * shrink_page_list() is used for throttling instead, which lacks all the 266 * niceties such as fairness, adaptive pausing, bandwidth proportional 267 * allocation and configurability. 268 * 269 * This function tests whether the vmscan currently in progress can assume 270 * that the normal dirty throttling mechanism is operational. 271 */ 272 static bool sane_reclaim(struct scan_control *sc) 273 { 274 struct mem_cgroup *memcg = sc->target_mem_cgroup; 275 276 if (!memcg) 277 return true; 278 #ifdef CONFIG_CGROUP_WRITEBACK 279 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 280 return true; 281 #endif 282 return false; 283 } 284 285 static void set_memcg_congestion(pg_data_t *pgdat, 286 struct mem_cgroup *memcg, 287 bool congested) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 if (!memcg) 292 return; 293 294 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 295 WRITE_ONCE(mn->congested, congested); 296 } 297 298 static bool memcg_congested(pg_data_t *pgdat, 299 struct mem_cgroup *memcg) 300 { 301 struct mem_cgroup_per_node *mn; 302 303 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 304 return READ_ONCE(mn->congested); 305 306 } 307 #else 308 static bool global_reclaim(struct scan_control *sc) 309 { 310 return true; 311 } 312 313 static bool sane_reclaim(struct scan_control *sc) 314 { 315 return true; 316 } 317 318 static inline void set_memcg_congestion(struct pglist_data *pgdat, 319 struct mem_cgroup *memcg, bool congested) 320 { 321 } 322 323 static inline bool memcg_congested(struct pglist_data *pgdat, 324 struct mem_cgroup *memcg) 325 { 326 return false; 327 328 } 329 #endif 330 331 /* 332 * This misses isolated pages which are not accounted for to save counters. 333 * As the data only determines if reclaim or compaction continues, it is 334 * not expected that isolated pages will be a dominating factor. 335 */ 336 unsigned long zone_reclaimable_pages(struct zone *zone) 337 { 338 unsigned long nr; 339 340 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 342 if (get_nr_swap_pages() > 0) 343 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 345 346 return nr; 347 } 348 349 /** 350 * lruvec_lru_size - Returns the number of pages on the given LRU list. 351 * @lruvec: lru vector 352 * @lru: lru to use 353 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 354 */ 355 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 356 { 357 unsigned long lru_size; 358 int zid; 359 360 if (!mem_cgroup_disabled()) 361 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 362 else 363 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 364 365 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 366 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 367 unsigned long size; 368 369 if (!managed_zone(zone)) 370 continue; 371 372 if (!mem_cgroup_disabled()) 373 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 374 else 375 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 376 NR_ZONE_LRU_BASE + lru); 377 lru_size -= min(size, lru_size); 378 } 379 380 return lru_size; 381 382 } 383 384 /* 385 * Add a shrinker callback to be called from the vm. 386 */ 387 int prealloc_shrinker(struct shrinker *shrinker) 388 { 389 unsigned int size = sizeof(*shrinker->nr_deferred); 390 391 if (shrinker->flags & SHRINKER_NUMA_AWARE) 392 size *= nr_node_ids; 393 394 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 395 if (!shrinker->nr_deferred) 396 return -ENOMEM; 397 398 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 399 if (prealloc_memcg_shrinker(shrinker)) 400 goto free_deferred; 401 } 402 403 return 0; 404 405 free_deferred: 406 kfree(shrinker->nr_deferred); 407 shrinker->nr_deferred = NULL; 408 return -ENOMEM; 409 } 410 411 void free_prealloced_shrinker(struct shrinker *shrinker) 412 { 413 if (!shrinker->nr_deferred) 414 return; 415 416 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 417 unregister_memcg_shrinker(shrinker); 418 419 kfree(shrinker->nr_deferred); 420 shrinker->nr_deferred = NULL; 421 } 422 423 void register_shrinker_prepared(struct shrinker *shrinker) 424 { 425 down_write(&shrinker_rwsem); 426 list_add_tail(&shrinker->list, &shrinker_list); 427 #ifdef CONFIG_MEMCG_KMEM 428 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 429 idr_replace(&shrinker_idr, shrinker, shrinker->id); 430 #endif 431 up_write(&shrinker_rwsem); 432 } 433 434 int register_shrinker(struct shrinker *shrinker) 435 { 436 int err = prealloc_shrinker(shrinker); 437 438 if (err) 439 return err; 440 register_shrinker_prepared(shrinker); 441 return 0; 442 } 443 EXPORT_SYMBOL(register_shrinker); 444 445 /* 446 * Remove one 447 */ 448 void unregister_shrinker(struct shrinker *shrinker) 449 { 450 if (!shrinker->nr_deferred) 451 return; 452 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 453 unregister_memcg_shrinker(shrinker); 454 down_write(&shrinker_rwsem); 455 list_del(&shrinker->list); 456 up_write(&shrinker_rwsem); 457 kfree(shrinker->nr_deferred); 458 shrinker->nr_deferred = NULL; 459 } 460 EXPORT_SYMBOL(unregister_shrinker); 461 462 #define SHRINK_BATCH 128 463 464 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 465 struct shrinker *shrinker, int priority) 466 { 467 unsigned long freed = 0; 468 unsigned long long delta; 469 long total_scan; 470 long freeable; 471 long nr; 472 long new_nr; 473 int nid = shrinkctl->nid; 474 long batch_size = shrinker->batch ? shrinker->batch 475 : SHRINK_BATCH; 476 long scanned = 0, next_deferred; 477 478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 479 nid = 0; 480 481 freeable = shrinker->count_objects(shrinker, shrinkctl); 482 if (freeable == 0 || freeable == SHRINK_EMPTY) 483 return freeable; 484 485 /* 486 * copy the current shrinker scan count into a local variable 487 * and zero it so that other concurrent shrinker invocations 488 * don't also do this scanning work. 489 */ 490 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 491 492 total_scan = nr; 493 if (shrinker->seeks) { 494 delta = freeable >> priority; 495 delta *= 4; 496 do_div(delta, shrinker->seeks); 497 } else { 498 /* 499 * These objects don't require any IO to create. Trim 500 * them aggressively under memory pressure to keep 501 * them from causing refetches in the IO caches. 502 */ 503 delta = freeable / 2; 504 } 505 506 total_scan += delta; 507 if (total_scan < 0) { 508 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 509 shrinker->scan_objects, total_scan); 510 total_scan = freeable; 511 next_deferred = nr; 512 } else 513 next_deferred = total_scan; 514 515 /* 516 * We need to avoid excessive windup on filesystem shrinkers 517 * due to large numbers of GFP_NOFS allocations causing the 518 * shrinkers to return -1 all the time. This results in a large 519 * nr being built up so when a shrink that can do some work 520 * comes along it empties the entire cache due to nr >>> 521 * freeable. This is bad for sustaining a working set in 522 * memory. 523 * 524 * Hence only allow the shrinker to scan the entire cache when 525 * a large delta change is calculated directly. 526 */ 527 if (delta < freeable / 4) 528 total_scan = min(total_scan, freeable / 2); 529 530 /* 531 * Avoid risking looping forever due to too large nr value: 532 * never try to free more than twice the estimate number of 533 * freeable entries. 534 */ 535 if (total_scan > freeable * 2) 536 total_scan = freeable * 2; 537 538 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 539 freeable, delta, total_scan, priority); 540 541 /* 542 * Normally, we should not scan less than batch_size objects in one 543 * pass to avoid too frequent shrinker calls, but if the slab has less 544 * than batch_size objects in total and we are really tight on memory, 545 * we will try to reclaim all available objects, otherwise we can end 546 * up failing allocations although there are plenty of reclaimable 547 * objects spread over several slabs with usage less than the 548 * batch_size. 549 * 550 * We detect the "tight on memory" situations by looking at the total 551 * number of objects we want to scan (total_scan). If it is greater 552 * than the total number of objects on slab (freeable), we must be 553 * scanning at high prio and therefore should try to reclaim as much as 554 * possible. 555 */ 556 while (total_scan >= batch_size || 557 total_scan >= freeable) { 558 unsigned long ret; 559 unsigned long nr_to_scan = min(batch_size, total_scan); 560 561 shrinkctl->nr_to_scan = nr_to_scan; 562 shrinkctl->nr_scanned = nr_to_scan; 563 ret = shrinker->scan_objects(shrinker, shrinkctl); 564 if (ret == SHRINK_STOP) 565 break; 566 freed += ret; 567 568 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 569 total_scan -= shrinkctl->nr_scanned; 570 scanned += shrinkctl->nr_scanned; 571 572 cond_resched(); 573 } 574 575 if (next_deferred >= scanned) 576 next_deferred -= scanned; 577 else 578 next_deferred = 0; 579 /* 580 * move the unused scan count back into the shrinker in a 581 * manner that handles concurrent updates. If we exhausted the 582 * scan, there is no need to do an update. 583 */ 584 if (next_deferred > 0) 585 new_nr = atomic_long_add_return(next_deferred, 586 &shrinker->nr_deferred[nid]); 587 else 588 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 589 590 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 591 return freed; 592 } 593 594 #ifdef CONFIG_MEMCG_KMEM 595 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 596 struct mem_cgroup *memcg, int priority) 597 { 598 struct memcg_shrinker_map *map; 599 unsigned long ret, freed = 0; 600 int i; 601 602 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 603 return 0; 604 605 if (!down_read_trylock(&shrinker_rwsem)) 606 return 0; 607 608 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 609 true); 610 if (unlikely(!map)) 611 goto unlock; 612 613 for_each_set_bit(i, map->map, shrinker_nr_max) { 614 struct shrink_control sc = { 615 .gfp_mask = gfp_mask, 616 .nid = nid, 617 .memcg = memcg, 618 }; 619 struct shrinker *shrinker; 620 621 shrinker = idr_find(&shrinker_idr, i); 622 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 623 if (!shrinker) 624 clear_bit(i, map->map); 625 continue; 626 } 627 628 ret = do_shrink_slab(&sc, shrinker, priority); 629 if (ret == SHRINK_EMPTY) { 630 clear_bit(i, map->map); 631 /* 632 * After the shrinker reported that it had no objects to 633 * free, but before we cleared the corresponding bit in 634 * the memcg shrinker map, a new object might have been 635 * added. To make sure, we have the bit set in this 636 * case, we invoke the shrinker one more time and reset 637 * the bit if it reports that it is not empty anymore. 638 * The memory barrier here pairs with the barrier in 639 * memcg_set_shrinker_bit(): 640 * 641 * list_lru_add() shrink_slab_memcg() 642 * list_add_tail() clear_bit() 643 * <MB> <MB> 644 * set_bit() do_shrink_slab() 645 */ 646 smp_mb__after_atomic(); 647 ret = do_shrink_slab(&sc, shrinker, priority); 648 if (ret == SHRINK_EMPTY) 649 ret = 0; 650 else 651 memcg_set_shrinker_bit(memcg, nid, i); 652 } 653 freed += ret; 654 655 if (rwsem_is_contended(&shrinker_rwsem)) { 656 freed = freed ? : 1; 657 break; 658 } 659 } 660 unlock: 661 up_read(&shrinker_rwsem); 662 return freed; 663 } 664 #else /* CONFIG_MEMCG_KMEM */ 665 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 666 struct mem_cgroup *memcg, int priority) 667 { 668 return 0; 669 } 670 #endif /* CONFIG_MEMCG_KMEM */ 671 672 /** 673 * shrink_slab - shrink slab caches 674 * @gfp_mask: allocation context 675 * @nid: node whose slab caches to target 676 * @memcg: memory cgroup whose slab caches to target 677 * @priority: the reclaim priority 678 * 679 * Call the shrink functions to age shrinkable caches. 680 * 681 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 682 * unaware shrinkers will receive a node id of 0 instead. 683 * 684 * @memcg specifies the memory cgroup to target. Unaware shrinkers 685 * are called only if it is the root cgroup. 686 * 687 * @priority is sc->priority, we take the number of objects and >> by priority 688 * in order to get the scan target. 689 * 690 * Returns the number of reclaimed slab objects. 691 */ 692 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 693 struct mem_cgroup *memcg, 694 int priority) 695 { 696 unsigned long ret, freed = 0; 697 struct shrinker *shrinker; 698 699 /* 700 * The root memcg might be allocated even though memcg is disabled 701 * via "cgroup_disable=memory" boot parameter. This could make 702 * mem_cgroup_is_root() return false, then just run memcg slab 703 * shrink, but skip global shrink. This may result in premature 704 * oom. 705 */ 706 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 707 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 708 709 if (!down_read_trylock(&shrinker_rwsem)) 710 goto out; 711 712 list_for_each_entry(shrinker, &shrinker_list, list) { 713 struct shrink_control sc = { 714 .gfp_mask = gfp_mask, 715 .nid = nid, 716 .memcg = memcg, 717 }; 718 719 ret = do_shrink_slab(&sc, shrinker, priority); 720 if (ret == SHRINK_EMPTY) 721 ret = 0; 722 freed += ret; 723 /* 724 * Bail out if someone want to register a new shrinker to 725 * prevent the regsitration from being stalled for long periods 726 * by parallel ongoing shrinking. 727 */ 728 if (rwsem_is_contended(&shrinker_rwsem)) { 729 freed = freed ? : 1; 730 break; 731 } 732 } 733 734 up_read(&shrinker_rwsem); 735 out: 736 cond_resched(); 737 return freed; 738 } 739 740 void drop_slab_node(int nid) 741 { 742 unsigned long freed; 743 744 do { 745 struct mem_cgroup *memcg = NULL; 746 747 freed = 0; 748 memcg = mem_cgroup_iter(NULL, NULL, NULL); 749 do { 750 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 751 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 752 } while (freed > 10); 753 } 754 755 void drop_slab(void) 756 { 757 int nid; 758 759 for_each_online_node(nid) 760 drop_slab_node(nid); 761 } 762 763 static inline int is_page_cache_freeable(struct page *page) 764 { 765 /* 766 * A freeable page cache page is referenced only by the caller 767 * that isolated the page, the page cache and optional buffer 768 * heads at page->private. 769 */ 770 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 771 HPAGE_PMD_NR : 1; 772 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 773 } 774 775 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 776 { 777 if (current->flags & PF_SWAPWRITE) 778 return 1; 779 if (!inode_write_congested(inode)) 780 return 1; 781 if (inode_to_bdi(inode) == current->backing_dev_info) 782 return 1; 783 return 0; 784 } 785 786 /* 787 * We detected a synchronous write error writing a page out. Probably 788 * -ENOSPC. We need to propagate that into the address_space for a subsequent 789 * fsync(), msync() or close(). 790 * 791 * The tricky part is that after writepage we cannot touch the mapping: nothing 792 * prevents it from being freed up. But we have a ref on the page and once 793 * that page is locked, the mapping is pinned. 794 * 795 * We're allowed to run sleeping lock_page() here because we know the caller has 796 * __GFP_FS. 797 */ 798 static void handle_write_error(struct address_space *mapping, 799 struct page *page, int error) 800 { 801 lock_page(page); 802 if (page_mapping(page) == mapping) 803 mapping_set_error(mapping, error); 804 unlock_page(page); 805 } 806 807 /* possible outcome of pageout() */ 808 typedef enum { 809 /* failed to write page out, page is locked */ 810 PAGE_KEEP, 811 /* move page to the active list, page is locked */ 812 PAGE_ACTIVATE, 813 /* page has been sent to the disk successfully, page is unlocked */ 814 PAGE_SUCCESS, 815 /* page is clean and locked */ 816 PAGE_CLEAN, 817 } pageout_t; 818 819 /* 820 * pageout is called by shrink_page_list() for each dirty page. 821 * Calls ->writepage(). 822 */ 823 static pageout_t pageout(struct page *page, struct address_space *mapping, 824 struct scan_control *sc) 825 { 826 /* 827 * If the page is dirty, only perform writeback if that write 828 * will be non-blocking. To prevent this allocation from being 829 * stalled by pagecache activity. But note that there may be 830 * stalls if we need to run get_block(). We could test 831 * PagePrivate for that. 832 * 833 * If this process is currently in __generic_file_write_iter() against 834 * this page's queue, we can perform writeback even if that 835 * will block. 836 * 837 * If the page is swapcache, write it back even if that would 838 * block, for some throttling. This happens by accident, because 839 * swap_backing_dev_info is bust: it doesn't reflect the 840 * congestion state of the swapdevs. Easy to fix, if needed. 841 */ 842 if (!is_page_cache_freeable(page)) 843 return PAGE_KEEP; 844 if (!mapping) { 845 /* 846 * Some data journaling orphaned pages can have 847 * page->mapping == NULL while being dirty with clean buffers. 848 */ 849 if (page_has_private(page)) { 850 if (try_to_free_buffers(page)) { 851 ClearPageDirty(page); 852 pr_info("%s: orphaned page\n", __func__); 853 return PAGE_CLEAN; 854 } 855 } 856 return PAGE_KEEP; 857 } 858 if (mapping->a_ops->writepage == NULL) 859 return PAGE_ACTIVATE; 860 if (!may_write_to_inode(mapping->host, sc)) 861 return PAGE_KEEP; 862 863 if (clear_page_dirty_for_io(page)) { 864 int res; 865 struct writeback_control wbc = { 866 .sync_mode = WB_SYNC_NONE, 867 .nr_to_write = SWAP_CLUSTER_MAX, 868 .range_start = 0, 869 .range_end = LLONG_MAX, 870 .for_reclaim = 1, 871 }; 872 873 SetPageReclaim(page); 874 res = mapping->a_ops->writepage(page, &wbc); 875 if (res < 0) 876 handle_write_error(mapping, page, res); 877 if (res == AOP_WRITEPAGE_ACTIVATE) { 878 ClearPageReclaim(page); 879 return PAGE_ACTIVATE; 880 } 881 882 if (!PageWriteback(page)) { 883 /* synchronous write or broken a_ops? */ 884 ClearPageReclaim(page); 885 } 886 trace_mm_vmscan_writepage(page); 887 inc_node_page_state(page, NR_VMSCAN_WRITE); 888 return PAGE_SUCCESS; 889 } 890 891 return PAGE_CLEAN; 892 } 893 894 /* 895 * Same as remove_mapping, but if the page is removed from the mapping, it 896 * gets returned with a refcount of 0. 897 */ 898 static int __remove_mapping(struct address_space *mapping, struct page *page, 899 bool reclaimed) 900 { 901 unsigned long flags; 902 int refcount; 903 904 BUG_ON(!PageLocked(page)); 905 BUG_ON(mapping != page_mapping(page)); 906 907 xa_lock_irqsave(&mapping->i_pages, flags); 908 /* 909 * The non racy check for a busy page. 910 * 911 * Must be careful with the order of the tests. When someone has 912 * a ref to the page, it may be possible that they dirty it then 913 * drop the reference. So if PageDirty is tested before page_count 914 * here, then the following race may occur: 915 * 916 * get_user_pages(&page); 917 * [user mapping goes away] 918 * write_to(page); 919 * !PageDirty(page) [good] 920 * SetPageDirty(page); 921 * put_page(page); 922 * !page_count(page) [good, discard it] 923 * 924 * [oops, our write_to data is lost] 925 * 926 * Reversing the order of the tests ensures such a situation cannot 927 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 928 * load is not satisfied before that of page->_refcount. 929 * 930 * Note that if SetPageDirty is always performed via set_page_dirty, 931 * and thus under the i_pages lock, then this ordering is not required. 932 */ 933 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 934 refcount = 1 + HPAGE_PMD_NR; 935 else 936 refcount = 2; 937 if (!page_ref_freeze(page, refcount)) 938 goto cannot_free; 939 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 940 if (unlikely(PageDirty(page))) { 941 page_ref_unfreeze(page, refcount); 942 goto cannot_free; 943 } 944 945 if (PageSwapCache(page)) { 946 swp_entry_t swap = { .val = page_private(page) }; 947 mem_cgroup_swapout(page, swap); 948 __delete_from_swap_cache(page, swap); 949 xa_unlock_irqrestore(&mapping->i_pages, flags); 950 put_swap_page(page, swap); 951 } else { 952 void (*freepage)(struct page *); 953 void *shadow = NULL; 954 955 freepage = mapping->a_ops->freepage; 956 /* 957 * Remember a shadow entry for reclaimed file cache in 958 * order to detect refaults, thus thrashing, later on. 959 * 960 * But don't store shadows in an address space that is 961 * already exiting. This is not just an optizimation, 962 * inode reclaim needs to empty out the radix tree or 963 * the nodes are lost. Don't plant shadows behind its 964 * back. 965 * 966 * We also don't store shadows for DAX mappings because the 967 * only page cache pages found in these are zero pages 968 * covering holes, and because we don't want to mix DAX 969 * exceptional entries and shadow exceptional entries in the 970 * same address_space. 971 */ 972 if (reclaimed && page_is_file_cache(page) && 973 !mapping_exiting(mapping) && !dax_mapping(mapping)) 974 shadow = workingset_eviction(page); 975 __delete_from_page_cache(page, shadow); 976 xa_unlock_irqrestore(&mapping->i_pages, flags); 977 978 if (freepage != NULL) 979 freepage(page); 980 } 981 982 return 1; 983 984 cannot_free: 985 xa_unlock_irqrestore(&mapping->i_pages, flags); 986 return 0; 987 } 988 989 /* 990 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 991 * someone else has a ref on the page, abort and return 0. If it was 992 * successfully detached, return 1. Assumes the caller has a single ref on 993 * this page. 994 */ 995 int remove_mapping(struct address_space *mapping, struct page *page) 996 { 997 if (__remove_mapping(mapping, page, false)) { 998 /* 999 * Unfreezing the refcount with 1 rather than 2 effectively 1000 * drops the pagecache ref for us without requiring another 1001 * atomic operation. 1002 */ 1003 page_ref_unfreeze(page, 1); 1004 return 1; 1005 } 1006 return 0; 1007 } 1008 1009 /** 1010 * putback_lru_page - put previously isolated page onto appropriate LRU list 1011 * @page: page to be put back to appropriate lru list 1012 * 1013 * Add previously isolated @page to appropriate LRU list. 1014 * Page may still be unevictable for other reasons. 1015 * 1016 * lru_lock must not be held, interrupts must be enabled. 1017 */ 1018 void putback_lru_page(struct page *page) 1019 { 1020 lru_cache_add(page); 1021 put_page(page); /* drop ref from isolate */ 1022 } 1023 1024 enum page_references { 1025 PAGEREF_RECLAIM, 1026 PAGEREF_RECLAIM_CLEAN, 1027 PAGEREF_KEEP, 1028 PAGEREF_ACTIVATE, 1029 }; 1030 1031 static enum page_references page_check_references(struct page *page, 1032 struct scan_control *sc) 1033 { 1034 int referenced_ptes, referenced_page; 1035 unsigned long vm_flags; 1036 1037 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1038 &vm_flags); 1039 referenced_page = TestClearPageReferenced(page); 1040 1041 /* 1042 * Mlock lost the isolation race with us. Let try_to_unmap() 1043 * move the page to the unevictable list. 1044 */ 1045 if (vm_flags & VM_LOCKED) 1046 return PAGEREF_RECLAIM; 1047 1048 if (referenced_ptes) { 1049 if (PageSwapBacked(page)) 1050 return PAGEREF_ACTIVATE; 1051 /* 1052 * All mapped pages start out with page table 1053 * references from the instantiating fault, so we need 1054 * to look twice if a mapped file page is used more 1055 * than once. 1056 * 1057 * Mark it and spare it for another trip around the 1058 * inactive list. Another page table reference will 1059 * lead to its activation. 1060 * 1061 * Note: the mark is set for activated pages as well 1062 * so that recently deactivated but used pages are 1063 * quickly recovered. 1064 */ 1065 SetPageReferenced(page); 1066 1067 if (referenced_page || referenced_ptes > 1) 1068 return PAGEREF_ACTIVATE; 1069 1070 /* 1071 * Activate file-backed executable pages after first usage. 1072 */ 1073 if (vm_flags & VM_EXEC) 1074 return PAGEREF_ACTIVATE; 1075 1076 return PAGEREF_KEEP; 1077 } 1078 1079 /* Reclaim if clean, defer dirty pages to writeback */ 1080 if (referenced_page && !PageSwapBacked(page)) 1081 return PAGEREF_RECLAIM_CLEAN; 1082 1083 return PAGEREF_RECLAIM; 1084 } 1085 1086 /* Check if a page is dirty or under writeback */ 1087 static void page_check_dirty_writeback(struct page *page, 1088 bool *dirty, bool *writeback) 1089 { 1090 struct address_space *mapping; 1091 1092 /* 1093 * Anonymous pages are not handled by flushers and must be written 1094 * from reclaim context. Do not stall reclaim based on them 1095 */ 1096 if (!page_is_file_cache(page) || 1097 (PageAnon(page) && !PageSwapBacked(page))) { 1098 *dirty = false; 1099 *writeback = false; 1100 return; 1101 } 1102 1103 /* By default assume that the page flags are accurate */ 1104 *dirty = PageDirty(page); 1105 *writeback = PageWriteback(page); 1106 1107 /* Verify dirty/writeback state if the filesystem supports it */ 1108 if (!page_has_private(page)) 1109 return; 1110 1111 mapping = page_mapping(page); 1112 if (mapping && mapping->a_ops->is_dirty_writeback) 1113 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1114 } 1115 1116 /* 1117 * shrink_page_list() returns the number of reclaimed pages 1118 */ 1119 static unsigned long shrink_page_list(struct list_head *page_list, 1120 struct pglist_data *pgdat, 1121 struct scan_control *sc, 1122 enum ttu_flags ttu_flags, 1123 struct reclaim_stat *stat, 1124 bool force_reclaim) 1125 { 1126 LIST_HEAD(ret_pages); 1127 LIST_HEAD(free_pages); 1128 unsigned nr_reclaimed = 0; 1129 unsigned pgactivate = 0; 1130 1131 memset(stat, 0, sizeof(*stat)); 1132 cond_resched(); 1133 1134 while (!list_empty(page_list)) { 1135 struct address_space *mapping; 1136 struct page *page; 1137 int may_enter_fs; 1138 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1139 bool dirty, writeback; 1140 unsigned int nr_pages; 1141 1142 cond_resched(); 1143 1144 page = lru_to_page(page_list); 1145 list_del(&page->lru); 1146 1147 if (!trylock_page(page)) 1148 goto keep; 1149 1150 VM_BUG_ON_PAGE(PageActive(page), page); 1151 1152 nr_pages = 1 << compound_order(page); 1153 1154 /* Account the number of base pages even though THP */ 1155 sc->nr_scanned += nr_pages; 1156 1157 if (unlikely(!page_evictable(page))) 1158 goto activate_locked; 1159 1160 if (!sc->may_unmap && page_mapped(page)) 1161 goto keep_locked; 1162 1163 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1164 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1165 1166 /* 1167 * The number of dirty pages determines if a node is marked 1168 * reclaim_congested which affects wait_iff_congested. kswapd 1169 * will stall and start writing pages if the tail of the LRU 1170 * is all dirty unqueued pages. 1171 */ 1172 page_check_dirty_writeback(page, &dirty, &writeback); 1173 if (dirty || writeback) 1174 stat->nr_dirty++; 1175 1176 if (dirty && !writeback) 1177 stat->nr_unqueued_dirty++; 1178 1179 /* 1180 * Treat this page as congested if the underlying BDI is or if 1181 * pages are cycling through the LRU so quickly that the 1182 * pages marked for immediate reclaim are making it to the 1183 * end of the LRU a second time. 1184 */ 1185 mapping = page_mapping(page); 1186 if (((dirty || writeback) && mapping && 1187 inode_write_congested(mapping->host)) || 1188 (writeback && PageReclaim(page))) 1189 stat->nr_congested++; 1190 1191 /* 1192 * If a page at the tail of the LRU is under writeback, there 1193 * are three cases to consider. 1194 * 1195 * 1) If reclaim is encountering an excessive number of pages 1196 * under writeback and this page is both under writeback and 1197 * PageReclaim then it indicates that pages are being queued 1198 * for IO but are being recycled through the LRU before the 1199 * IO can complete. Waiting on the page itself risks an 1200 * indefinite stall if it is impossible to writeback the 1201 * page due to IO error or disconnected storage so instead 1202 * note that the LRU is being scanned too quickly and the 1203 * caller can stall after page list has been processed. 1204 * 1205 * 2) Global or new memcg reclaim encounters a page that is 1206 * not marked for immediate reclaim, or the caller does not 1207 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1208 * not to fs). In this case mark the page for immediate 1209 * reclaim and continue scanning. 1210 * 1211 * Require may_enter_fs because we would wait on fs, which 1212 * may not have submitted IO yet. And the loop driver might 1213 * enter reclaim, and deadlock if it waits on a page for 1214 * which it is needed to do the write (loop masks off 1215 * __GFP_IO|__GFP_FS for this reason); but more thought 1216 * would probably show more reasons. 1217 * 1218 * 3) Legacy memcg encounters a page that is already marked 1219 * PageReclaim. memcg does not have any dirty pages 1220 * throttling so we could easily OOM just because too many 1221 * pages are in writeback and there is nothing else to 1222 * reclaim. Wait for the writeback to complete. 1223 * 1224 * In cases 1) and 2) we activate the pages to get them out of 1225 * the way while we continue scanning for clean pages on the 1226 * inactive list and refilling from the active list. The 1227 * observation here is that waiting for disk writes is more 1228 * expensive than potentially causing reloads down the line. 1229 * Since they're marked for immediate reclaim, they won't put 1230 * memory pressure on the cache working set any longer than it 1231 * takes to write them to disk. 1232 */ 1233 if (PageWriteback(page)) { 1234 /* Case 1 above */ 1235 if (current_is_kswapd() && 1236 PageReclaim(page) && 1237 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1238 stat->nr_immediate++; 1239 goto activate_locked; 1240 1241 /* Case 2 above */ 1242 } else if (sane_reclaim(sc) || 1243 !PageReclaim(page) || !may_enter_fs) { 1244 /* 1245 * This is slightly racy - end_page_writeback() 1246 * might have just cleared PageReclaim, then 1247 * setting PageReclaim here end up interpreted 1248 * as PageReadahead - but that does not matter 1249 * enough to care. What we do want is for this 1250 * page to have PageReclaim set next time memcg 1251 * reclaim reaches the tests above, so it will 1252 * then wait_on_page_writeback() to avoid OOM; 1253 * and it's also appropriate in global reclaim. 1254 */ 1255 SetPageReclaim(page); 1256 stat->nr_writeback++; 1257 goto activate_locked; 1258 1259 /* Case 3 above */ 1260 } else { 1261 unlock_page(page); 1262 wait_on_page_writeback(page); 1263 /* then go back and try same page again */ 1264 list_add_tail(&page->lru, page_list); 1265 continue; 1266 } 1267 } 1268 1269 if (!force_reclaim) 1270 references = page_check_references(page, sc); 1271 1272 switch (references) { 1273 case PAGEREF_ACTIVATE: 1274 goto activate_locked; 1275 case PAGEREF_KEEP: 1276 stat->nr_ref_keep += nr_pages; 1277 goto keep_locked; 1278 case PAGEREF_RECLAIM: 1279 case PAGEREF_RECLAIM_CLEAN: 1280 ; /* try to reclaim the page below */ 1281 } 1282 1283 /* 1284 * Anonymous process memory has backing store? 1285 * Try to allocate it some swap space here. 1286 * Lazyfree page could be freed directly 1287 */ 1288 if (PageAnon(page) && PageSwapBacked(page)) { 1289 if (!PageSwapCache(page)) { 1290 if (!(sc->gfp_mask & __GFP_IO)) 1291 goto keep_locked; 1292 if (PageTransHuge(page)) { 1293 /* cannot split THP, skip it */ 1294 if (!can_split_huge_page(page, NULL)) 1295 goto activate_locked; 1296 /* 1297 * Split pages without a PMD map right 1298 * away. Chances are some or all of the 1299 * tail pages can be freed without IO. 1300 */ 1301 if (!compound_mapcount(page) && 1302 split_huge_page_to_list(page, 1303 page_list)) 1304 goto activate_locked; 1305 } 1306 if (!add_to_swap(page)) { 1307 if (!PageTransHuge(page)) 1308 goto activate_locked_split; 1309 /* Fallback to swap normal pages */ 1310 if (split_huge_page_to_list(page, 1311 page_list)) 1312 goto activate_locked; 1313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1314 count_vm_event(THP_SWPOUT_FALLBACK); 1315 #endif 1316 if (!add_to_swap(page)) 1317 goto activate_locked_split; 1318 } 1319 1320 may_enter_fs = 1; 1321 1322 /* Adding to swap updated mapping */ 1323 mapping = page_mapping(page); 1324 } 1325 } else if (unlikely(PageTransHuge(page))) { 1326 /* Split file THP */ 1327 if (split_huge_page_to_list(page, page_list)) 1328 goto keep_locked; 1329 } 1330 1331 /* 1332 * THP may get split above, need minus tail pages and update 1333 * nr_pages to avoid accounting tail pages twice. 1334 * 1335 * The tail pages that are added into swap cache successfully 1336 * reach here. 1337 */ 1338 if ((nr_pages > 1) && !PageTransHuge(page)) { 1339 sc->nr_scanned -= (nr_pages - 1); 1340 nr_pages = 1; 1341 } 1342 1343 /* 1344 * The page is mapped into the page tables of one or more 1345 * processes. Try to unmap it here. 1346 */ 1347 if (page_mapped(page)) { 1348 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1349 1350 if (unlikely(PageTransHuge(page))) 1351 flags |= TTU_SPLIT_HUGE_PMD; 1352 if (!try_to_unmap(page, flags)) { 1353 stat->nr_unmap_fail += nr_pages; 1354 goto activate_locked; 1355 } 1356 } 1357 1358 if (PageDirty(page)) { 1359 /* 1360 * Only kswapd can writeback filesystem pages 1361 * to avoid risk of stack overflow. But avoid 1362 * injecting inefficient single-page IO into 1363 * flusher writeback as much as possible: only 1364 * write pages when we've encountered many 1365 * dirty pages, and when we've already scanned 1366 * the rest of the LRU for clean pages and see 1367 * the same dirty pages again (PageReclaim). 1368 */ 1369 if (page_is_file_cache(page) && 1370 (!current_is_kswapd() || !PageReclaim(page) || 1371 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1372 /* 1373 * Immediately reclaim when written back. 1374 * Similar in principal to deactivate_page() 1375 * except we already have the page isolated 1376 * and know it's dirty 1377 */ 1378 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1379 SetPageReclaim(page); 1380 1381 goto activate_locked; 1382 } 1383 1384 if (references == PAGEREF_RECLAIM_CLEAN) 1385 goto keep_locked; 1386 if (!may_enter_fs) 1387 goto keep_locked; 1388 if (!sc->may_writepage) 1389 goto keep_locked; 1390 1391 /* 1392 * Page is dirty. Flush the TLB if a writable entry 1393 * potentially exists to avoid CPU writes after IO 1394 * starts and then write it out here. 1395 */ 1396 try_to_unmap_flush_dirty(); 1397 switch (pageout(page, mapping, sc)) { 1398 case PAGE_KEEP: 1399 goto keep_locked; 1400 case PAGE_ACTIVATE: 1401 goto activate_locked; 1402 case PAGE_SUCCESS: 1403 if (PageWriteback(page)) 1404 goto keep; 1405 if (PageDirty(page)) 1406 goto keep; 1407 1408 /* 1409 * A synchronous write - probably a ramdisk. Go 1410 * ahead and try to reclaim the page. 1411 */ 1412 if (!trylock_page(page)) 1413 goto keep; 1414 if (PageDirty(page) || PageWriteback(page)) 1415 goto keep_locked; 1416 mapping = page_mapping(page); 1417 case PAGE_CLEAN: 1418 ; /* try to free the page below */ 1419 } 1420 } 1421 1422 /* 1423 * If the page has buffers, try to free the buffer mappings 1424 * associated with this page. If we succeed we try to free 1425 * the page as well. 1426 * 1427 * We do this even if the page is PageDirty(). 1428 * try_to_release_page() does not perform I/O, but it is 1429 * possible for a page to have PageDirty set, but it is actually 1430 * clean (all its buffers are clean). This happens if the 1431 * buffers were written out directly, with submit_bh(). ext3 1432 * will do this, as well as the blockdev mapping. 1433 * try_to_release_page() will discover that cleanness and will 1434 * drop the buffers and mark the page clean - it can be freed. 1435 * 1436 * Rarely, pages can have buffers and no ->mapping. These are 1437 * the pages which were not successfully invalidated in 1438 * truncate_complete_page(). We try to drop those buffers here 1439 * and if that worked, and the page is no longer mapped into 1440 * process address space (page_count == 1) it can be freed. 1441 * Otherwise, leave the page on the LRU so it is swappable. 1442 */ 1443 if (page_has_private(page)) { 1444 if (!try_to_release_page(page, sc->gfp_mask)) 1445 goto activate_locked; 1446 if (!mapping && page_count(page) == 1) { 1447 unlock_page(page); 1448 if (put_page_testzero(page)) 1449 goto free_it; 1450 else { 1451 /* 1452 * rare race with speculative reference. 1453 * the speculative reference will free 1454 * this page shortly, so we may 1455 * increment nr_reclaimed here (and 1456 * leave it off the LRU). 1457 */ 1458 nr_reclaimed++; 1459 continue; 1460 } 1461 } 1462 } 1463 1464 if (PageAnon(page) && !PageSwapBacked(page)) { 1465 /* follow __remove_mapping for reference */ 1466 if (!page_ref_freeze(page, 1)) 1467 goto keep_locked; 1468 if (PageDirty(page)) { 1469 page_ref_unfreeze(page, 1); 1470 goto keep_locked; 1471 } 1472 1473 count_vm_event(PGLAZYFREED); 1474 count_memcg_page_event(page, PGLAZYFREED); 1475 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1476 goto keep_locked; 1477 1478 unlock_page(page); 1479 free_it: 1480 /* 1481 * THP may get swapped out in a whole, need account 1482 * all base pages. 1483 */ 1484 nr_reclaimed += nr_pages; 1485 1486 /* 1487 * Is there need to periodically free_page_list? It would 1488 * appear not as the counts should be low 1489 */ 1490 if (unlikely(PageTransHuge(page))) { 1491 mem_cgroup_uncharge(page); 1492 (*get_compound_page_dtor(page))(page); 1493 } else 1494 list_add(&page->lru, &free_pages); 1495 continue; 1496 1497 activate_locked_split: 1498 /* 1499 * The tail pages that are failed to add into swap cache 1500 * reach here. Fixup nr_scanned and nr_pages. 1501 */ 1502 if (nr_pages > 1) { 1503 sc->nr_scanned -= (nr_pages - 1); 1504 nr_pages = 1; 1505 } 1506 activate_locked: 1507 /* Not a candidate for swapping, so reclaim swap space. */ 1508 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1509 PageMlocked(page))) 1510 try_to_free_swap(page); 1511 VM_BUG_ON_PAGE(PageActive(page), page); 1512 if (!PageMlocked(page)) { 1513 int type = page_is_file_cache(page); 1514 SetPageActive(page); 1515 stat->nr_activate[type] += nr_pages; 1516 count_memcg_page_event(page, PGACTIVATE); 1517 } 1518 keep_locked: 1519 unlock_page(page); 1520 keep: 1521 list_add(&page->lru, &ret_pages); 1522 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1523 } 1524 1525 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1526 1527 mem_cgroup_uncharge_list(&free_pages); 1528 try_to_unmap_flush(); 1529 free_unref_page_list(&free_pages); 1530 1531 list_splice(&ret_pages, page_list); 1532 count_vm_events(PGACTIVATE, pgactivate); 1533 1534 return nr_reclaimed; 1535 } 1536 1537 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1538 struct list_head *page_list) 1539 { 1540 struct scan_control sc = { 1541 .gfp_mask = GFP_KERNEL, 1542 .priority = DEF_PRIORITY, 1543 .may_unmap = 1, 1544 }; 1545 struct reclaim_stat dummy_stat; 1546 unsigned long ret; 1547 struct page *page, *next; 1548 LIST_HEAD(clean_pages); 1549 1550 list_for_each_entry_safe(page, next, page_list, lru) { 1551 if (page_is_file_cache(page) && !PageDirty(page) && 1552 !__PageMovable(page) && !PageUnevictable(page)) { 1553 ClearPageActive(page); 1554 list_move(&page->lru, &clean_pages); 1555 } 1556 } 1557 1558 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1559 TTU_IGNORE_ACCESS, &dummy_stat, true); 1560 list_splice(&clean_pages, page_list); 1561 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1562 return ret; 1563 } 1564 1565 /* 1566 * Attempt to remove the specified page from its LRU. Only take this page 1567 * if it is of the appropriate PageActive status. Pages which are being 1568 * freed elsewhere are also ignored. 1569 * 1570 * page: page to consider 1571 * mode: one of the LRU isolation modes defined above 1572 * 1573 * returns 0 on success, -ve errno on failure. 1574 */ 1575 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1576 { 1577 int ret = -EINVAL; 1578 1579 /* Only take pages on the LRU. */ 1580 if (!PageLRU(page)) 1581 return ret; 1582 1583 /* Compaction should not handle unevictable pages but CMA can do so */ 1584 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1585 return ret; 1586 1587 ret = -EBUSY; 1588 1589 /* 1590 * To minimise LRU disruption, the caller can indicate that it only 1591 * wants to isolate pages it will be able to operate on without 1592 * blocking - clean pages for the most part. 1593 * 1594 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1595 * that it is possible to migrate without blocking 1596 */ 1597 if (mode & ISOLATE_ASYNC_MIGRATE) { 1598 /* All the caller can do on PageWriteback is block */ 1599 if (PageWriteback(page)) 1600 return ret; 1601 1602 if (PageDirty(page)) { 1603 struct address_space *mapping; 1604 bool migrate_dirty; 1605 1606 /* 1607 * Only pages without mappings or that have a 1608 * ->migratepage callback are possible to migrate 1609 * without blocking. However, we can be racing with 1610 * truncation so it's necessary to lock the page 1611 * to stabilise the mapping as truncation holds 1612 * the page lock until after the page is removed 1613 * from the page cache. 1614 */ 1615 if (!trylock_page(page)) 1616 return ret; 1617 1618 mapping = page_mapping(page); 1619 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1620 unlock_page(page); 1621 if (!migrate_dirty) 1622 return ret; 1623 } 1624 } 1625 1626 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1627 return ret; 1628 1629 if (likely(get_page_unless_zero(page))) { 1630 /* 1631 * Be careful not to clear PageLRU until after we're 1632 * sure the page is not being freed elsewhere -- the 1633 * page release code relies on it. 1634 */ 1635 ClearPageLRU(page); 1636 ret = 0; 1637 } 1638 1639 return ret; 1640 } 1641 1642 1643 /* 1644 * Update LRU sizes after isolating pages. The LRU size updates must 1645 * be complete before mem_cgroup_update_lru_size due to a santity check. 1646 */ 1647 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1648 enum lru_list lru, unsigned long *nr_zone_taken) 1649 { 1650 int zid; 1651 1652 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1653 if (!nr_zone_taken[zid]) 1654 continue; 1655 1656 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1657 #ifdef CONFIG_MEMCG 1658 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1659 #endif 1660 } 1661 1662 } 1663 1664 /** 1665 * pgdat->lru_lock is heavily contended. Some of the functions that 1666 * shrink the lists perform better by taking out a batch of pages 1667 * and working on them outside the LRU lock. 1668 * 1669 * For pagecache intensive workloads, this function is the hottest 1670 * spot in the kernel (apart from copy_*_user functions). 1671 * 1672 * Appropriate locks must be held before calling this function. 1673 * 1674 * @nr_to_scan: The number of eligible pages to look through on the list. 1675 * @lruvec: The LRU vector to pull pages from. 1676 * @dst: The temp list to put pages on to. 1677 * @nr_scanned: The number of pages that were scanned. 1678 * @sc: The scan_control struct for this reclaim session 1679 * @mode: One of the LRU isolation modes 1680 * @lru: LRU list id for isolating 1681 * 1682 * returns how many pages were moved onto *@dst. 1683 */ 1684 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1685 struct lruvec *lruvec, struct list_head *dst, 1686 unsigned long *nr_scanned, struct scan_control *sc, 1687 enum lru_list lru) 1688 { 1689 struct list_head *src = &lruvec->lists[lru]; 1690 unsigned long nr_taken = 0; 1691 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1692 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1693 unsigned long skipped = 0; 1694 unsigned long scan, total_scan, nr_pages; 1695 LIST_HEAD(pages_skipped); 1696 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1697 1698 total_scan = 0; 1699 scan = 0; 1700 while (scan < nr_to_scan && !list_empty(src)) { 1701 struct page *page; 1702 1703 page = lru_to_page(src); 1704 prefetchw_prev_lru_page(page, src, flags); 1705 1706 VM_BUG_ON_PAGE(!PageLRU(page), page); 1707 1708 nr_pages = 1 << compound_order(page); 1709 total_scan += nr_pages; 1710 1711 if (page_zonenum(page) > sc->reclaim_idx) { 1712 list_move(&page->lru, &pages_skipped); 1713 nr_skipped[page_zonenum(page)] += nr_pages; 1714 continue; 1715 } 1716 1717 /* 1718 * Do not count skipped pages because that makes the function 1719 * return with no isolated pages if the LRU mostly contains 1720 * ineligible pages. This causes the VM to not reclaim any 1721 * pages, triggering a premature OOM. 1722 * 1723 * Account all tail pages of THP. This would not cause 1724 * premature OOM since __isolate_lru_page() returns -EBUSY 1725 * only when the page is being freed somewhere else. 1726 */ 1727 scan += nr_pages; 1728 switch (__isolate_lru_page(page, mode)) { 1729 case 0: 1730 nr_taken += nr_pages; 1731 nr_zone_taken[page_zonenum(page)] += nr_pages; 1732 list_move(&page->lru, dst); 1733 break; 1734 1735 case -EBUSY: 1736 /* else it is being freed elsewhere */ 1737 list_move(&page->lru, src); 1738 continue; 1739 1740 default: 1741 BUG(); 1742 } 1743 } 1744 1745 /* 1746 * Splice any skipped pages to the start of the LRU list. Note that 1747 * this disrupts the LRU order when reclaiming for lower zones but 1748 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1749 * scanning would soon rescan the same pages to skip and put the 1750 * system at risk of premature OOM. 1751 */ 1752 if (!list_empty(&pages_skipped)) { 1753 int zid; 1754 1755 list_splice(&pages_skipped, src); 1756 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1757 if (!nr_skipped[zid]) 1758 continue; 1759 1760 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1761 skipped += nr_skipped[zid]; 1762 } 1763 } 1764 *nr_scanned = total_scan; 1765 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1766 total_scan, skipped, nr_taken, mode, lru); 1767 update_lru_sizes(lruvec, lru, nr_zone_taken); 1768 return nr_taken; 1769 } 1770 1771 /** 1772 * isolate_lru_page - tries to isolate a page from its LRU list 1773 * @page: page to isolate from its LRU list 1774 * 1775 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1776 * vmstat statistic corresponding to whatever LRU list the page was on. 1777 * 1778 * Returns 0 if the page was removed from an LRU list. 1779 * Returns -EBUSY if the page was not on an LRU list. 1780 * 1781 * The returned page will have PageLRU() cleared. If it was found on 1782 * the active list, it will have PageActive set. If it was found on 1783 * the unevictable list, it will have the PageUnevictable bit set. That flag 1784 * may need to be cleared by the caller before letting the page go. 1785 * 1786 * The vmstat statistic corresponding to the list on which the page was 1787 * found will be decremented. 1788 * 1789 * Restrictions: 1790 * 1791 * (1) Must be called with an elevated refcount on the page. This is a 1792 * fundamentnal difference from isolate_lru_pages (which is called 1793 * without a stable reference). 1794 * (2) the lru_lock must not be held. 1795 * (3) interrupts must be enabled. 1796 */ 1797 int isolate_lru_page(struct page *page) 1798 { 1799 int ret = -EBUSY; 1800 1801 VM_BUG_ON_PAGE(!page_count(page), page); 1802 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1803 1804 if (PageLRU(page)) { 1805 pg_data_t *pgdat = page_pgdat(page); 1806 struct lruvec *lruvec; 1807 1808 spin_lock_irq(&pgdat->lru_lock); 1809 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1810 if (PageLRU(page)) { 1811 int lru = page_lru(page); 1812 get_page(page); 1813 ClearPageLRU(page); 1814 del_page_from_lru_list(page, lruvec, lru); 1815 ret = 0; 1816 } 1817 spin_unlock_irq(&pgdat->lru_lock); 1818 } 1819 return ret; 1820 } 1821 1822 /* 1823 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1824 * then get resheduled. When there are massive number of tasks doing page 1825 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1826 * the LRU list will go small and be scanned faster than necessary, leading to 1827 * unnecessary swapping, thrashing and OOM. 1828 */ 1829 static int too_many_isolated(struct pglist_data *pgdat, int file, 1830 struct scan_control *sc) 1831 { 1832 unsigned long inactive, isolated; 1833 1834 if (current_is_kswapd()) 1835 return 0; 1836 1837 if (!sane_reclaim(sc)) 1838 return 0; 1839 1840 if (file) { 1841 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1842 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1843 } else { 1844 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1845 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1846 } 1847 1848 /* 1849 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1850 * won't get blocked by normal direct-reclaimers, forming a circular 1851 * deadlock. 1852 */ 1853 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1854 inactive >>= 3; 1855 1856 return isolated > inactive; 1857 } 1858 1859 /* 1860 * This moves pages from @list to corresponding LRU list. 1861 * 1862 * We move them the other way if the page is referenced by one or more 1863 * processes, from rmap. 1864 * 1865 * If the pages are mostly unmapped, the processing is fast and it is 1866 * appropriate to hold zone_lru_lock across the whole operation. But if 1867 * the pages are mapped, the processing is slow (page_referenced()) so we 1868 * should drop zone_lru_lock around each page. It's impossible to balance 1869 * this, so instead we remove the pages from the LRU while processing them. 1870 * It is safe to rely on PG_active against the non-LRU pages in here because 1871 * nobody will play with that bit on a non-LRU page. 1872 * 1873 * The downside is that we have to touch page->_refcount against each page. 1874 * But we had to alter page->flags anyway. 1875 * 1876 * Returns the number of pages moved to the given lruvec. 1877 */ 1878 1879 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1880 struct list_head *list) 1881 { 1882 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1883 int nr_pages, nr_moved = 0; 1884 LIST_HEAD(pages_to_free); 1885 struct page *page; 1886 enum lru_list lru; 1887 1888 while (!list_empty(list)) { 1889 page = lru_to_page(list); 1890 VM_BUG_ON_PAGE(PageLRU(page), page); 1891 if (unlikely(!page_evictable(page))) { 1892 list_del(&page->lru); 1893 spin_unlock_irq(&pgdat->lru_lock); 1894 putback_lru_page(page); 1895 spin_lock_irq(&pgdat->lru_lock); 1896 continue; 1897 } 1898 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1899 1900 SetPageLRU(page); 1901 lru = page_lru(page); 1902 1903 nr_pages = hpage_nr_pages(page); 1904 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1905 list_move(&page->lru, &lruvec->lists[lru]); 1906 1907 if (put_page_testzero(page)) { 1908 __ClearPageLRU(page); 1909 __ClearPageActive(page); 1910 del_page_from_lru_list(page, lruvec, lru); 1911 1912 if (unlikely(PageCompound(page))) { 1913 spin_unlock_irq(&pgdat->lru_lock); 1914 mem_cgroup_uncharge(page); 1915 (*get_compound_page_dtor(page))(page); 1916 spin_lock_irq(&pgdat->lru_lock); 1917 } else 1918 list_add(&page->lru, &pages_to_free); 1919 } else { 1920 nr_moved += nr_pages; 1921 } 1922 } 1923 1924 /* 1925 * To save our caller's stack, now use input list for pages to free. 1926 */ 1927 list_splice(&pages_to_free, list); 1928 1929 return nr_moved; 1930 } 1931 1932 /* 1933 * If a kernel thread (such as nfsd for loop-back mounts) services 1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1935 * In that case we should only throttle if the backing device it is 1936 * writing to is congested. In other cases it is safe to throttle. 1937 */ 1938 static int current_may_throttle(void) 1939 { 1940 return !(current->flags & PF_LESS_THROTTLE) || 1941 current->backing_dev_info == NULL || 1942 bdi_write_congested(current->backing_dev_info); 1943 } 1944 1945 /* 1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1947 * of reclaimed pages 1948 */ 1949 static noinline_for_stack unsigned long 1950 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1951 struct scan_control *sc, enum lru_list lru) 1952 { 1953 LIST_HEAD(page_list); 1954 unsigned long nr_scanned; 1955 unsigned long nr_reclaimed = 0; 1956 unsigned long nr_taken; 1957 struct reclaim_stat stat; 1958 int file = is_file_lru(lru); 1959 enum vm_event_item item; 1960 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1961 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1962 bool stalled = false; 1963 1964 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1965 if (stalled) 1966 return 0; 1967 1968 /* wait a bit for the reclaimer. */ 1969 msleep(100); 1970 stalled = true; 1971 1972 /* We are about to die and free our memory. Return now. */ 1973 if (fatal_signal_pending(current)) 1974 return SWAP_CLUSTER_MAX; 1975 } 1976 1977 lru_add_drain(); 1978 1979 spin_lock_irq(&pgdat->lru_lock); 1980 1981 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1982 &nr_scanned, sc, lru); 1983 1984 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1985 reclaim_stat->recent_scanned[file] += nr_taken; 1986 1987 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1988 if (global_reclaim(sc)) 1989 __count_vm_events(item, nr_scanned); 1990 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1991 spin_unlock_irq(&pgdat->lru_lock); 1992 1993 if (nr_taken == 0) 1994 return 0; 1995 1996 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1997 &stat, false); 1998 1999 spin_lock_irq(&pgdat->lru_lock); 2000 2001 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2002 if (global_reclaim(sc)) 2003 __count_vm_events(item, nr_reclaimed); 2004 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2005 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 2006 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 2007 2008 move_pages_to_lru(lruvec, &page_list); 2009 2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2011 2012 spin_unlock_irq(&pgdat->lru_lock); 2013 2014 mem_cgroup_uncharge_list(&page_list); 2015 free_unref_page_list(&page_list); 2016 2017 /* 2018 * If dirty pages are scanned that are not queued for IO, it 2019 * implies that flushers are not doing their job. This can 2020 * happen when memory pressure pushes dirty pages to the end of 2021 * the LRU before the dirty limits are breached and the dirty 2022 * data has expired. It can also happen when the proportion of 2023 * dirty pages grows not through writes but through memory 2024 * pressure reclaiming all the clean cache. And in some cases, 2025 * the flushers simply cannot keep up with the allocation 2026 * rate. Nudge the flusher threads in case they are asleep. 2027 */ 2028 if (stat.nr_unqueued_dirty == nr_taken) 2029 wakeup_flusher_threads(WB_REASON_VMSCAN); 2030 2031 sc->nr.dirty += stat.nr_dirty; 2032 sc->nr.congested += stat.nr_congested; 2033 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2034 sc->nr.writeback += stat.nr_writeback; 2035 sc->nr.immediate += stat.nr_immediate; 2036 sc->nr.taken += nr_taken; 2037 if (file) 2038 sc->nr.file_taken += nr_taken; 2039 2040 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2041 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2042 return nr_reclaimed; 2043 } 2044 2045 static void shrink_active_list(unsigned long nr_to_scan, 2046 struct lruvec *lruvec, 2047 struct scan_control *sc, 2048 enum lru_list lru) 2049 { 2050 unsigned long nr_taken; 2051 unsigned long nr_scanned; 2052 unsigned long vm_flags; 2053 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2054 LIST_HEAD(l_active); 2055 LIST_HEAD(l_inactive); 2056 struct page *page; 2057 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2058 unsigned nr_deactivate, nr_activate; 2059 unsigned nr_rotated = 0; 2060 int file = is_file_lru(lru); 2061 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2062 2063 lru_add_drain(); 2064 2065 spin_lock_irq(&pgdat->lru_lock); 2066 2067 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2068 &nr_scanned, sc, lru); 2069 2070 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2071 reclaim_stat->recent_scanned[file] += nr_taken; 2072 2073 __count_vm_events(PGREFILL, nr_scanned); 2074 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2075 2076 spin_unlock_irq(&pgdat->lru_lock); 2077 2078 while (!list_empty(&l_hold)) { 2079 cond_resched(); 2080 page = lru_to_page(&l_hold); 2081 list_del(&page->lru); 2082 2083 if (unlikely(!page_evictable(page))) { 2084 putback_lru_page(page); 2085 continue; 2086 } 2087 2088 if (unlikely(buffer_heads_over_limit)) { 2089 if (page_has_private(page) && trylock_page(page)) { 2090 if (page_has_private(page)) 2091 try_to_release_page(page, 0); 2092 unlock_page(page); 2093 } 2094 } 2095 2096 if (page_referenced(page, 0, sc->target_mem_cgroup, 2097 &vm_flags)) { 2098 nr_rotated += hpage_nr_pages(page); 2099 /* 2100 * Identify referenced, file-backed active pages and 2101 * give them one more trip around the active list. So 2102 * that executable code get better chances to stay in 2103 * memory under moderate memory pressure. Anon pages 2104 * are not likely to be evicted by use-once streaming 2105 * IO, plus JVM can create lots of anon VM_EXEC pages, 2106 * so we ignore them here. 2107 */ 2108 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2109 list_add(&page->lru, &l_active); 2110 continue; 2111 } 2112 } 2113 2114 ClearPageActive(page); /* we are de-activating */ 2115 SetPageWorkingset(page); 2116 list_add(&page->lru, &l_inactive); 2117 } 2118 2119 /* 2120 * Move pages back to the lru list. 2121 */ 2122 spin_lock_irq(&pgdat->lru_lock); 2123 /* 2124 * Count referenced pages from currently used mappings as rotated, 2125 * even though only some of them are actually re-activated. This 2126 * helps balance scan pressure between file and anonymous pages in 2127 * get_scan_count. 2128 */ 2129 reclaim_stat->recent_rotated[file] += nr_rotated; 2130 2131 nr_activate = move_pages_to_lru(lruvec, &l_active); 2132 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2133 /* Keep all free pages in l_active list */ 2134 list_splice(&l_inactive, &l_active); 2135 2136 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2137 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2138 2139 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2140 spin_unlock_irq(&pgdat->lru_lock); 2141 2142 mem_cgroup_uncharge_list(&l_active); 2143 free_unref_page_list(&l_active); 2144 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2145 nr_deactivate, nr_rotated, sc->priority, file); 2146 } 2147 2148 /* 2149 * The inactive anon list should be small enough that the VM never has 2150 * to do too much work. 2151 * 2152 * The inactive file list should be small enough to leave most memory 2153 * to the established workingset on the scan-resistant active list, 2154 * but large enough to avoid thrashing the aggregate readahead window. 2155 * 2156 * Both inactive lists should also be large enough that each inactive 2157 * page has a chance to be referenced again before it is reclaimed. 2158 * 2159 * If that fails and refaulting is observed, the inactive list grows. 2160 * 2161 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2162 * on this LRU, maintained by the pageout code. An inactive_ratio 2163 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2164 * 2165 * total target max 2166 * memory ratio inactive 2167 * ------------------------------------- 2168 * 10MB 1 5MB 2169 * 100MB 1 50MB 2170 * 1GB 3 250MB 2171 * 10GB 10 0.9GB 2172 * 100GB 31 3GB 2173 * 1TB 101 10GB 2174 * 10TB 320 32GB 2175 */ 2176 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2177 struct scan_control *sc, bool trace) 2178 { 2179 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2180 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2181 enum lru_list inactive_lru = file * LRU_FILE; 2182 unsigned long inactive, active; 2183 unsigned long inactive_ratio; 2184 unsigned long refaults; 2185 unsigned long gb; 2186 2187 /* 2188 * If we don't have swap space, anonymous page deactivation 2189 * is pointless. 2190 */ 2191 if (!file && !total_swap_pages) 2192 return false; 2193 2194 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2195 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2196 2197 /* 2198 * When refaults are being observed, it means a new workingset 2199 * is being established. Disable active list protection to get 2200 * rid of the stale workingset quickly. 2201 */ 2202 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2203 if (file && lruvec->refaults != refaults) { 2204 inactive_ratio = 0; 2205 } else { 2206 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2207 if (gb) 2208 inactive_ratio = int_sqrt(10 * gb); 2209 else 2210 inactive_ratio = 1; 2211 } 2212 2213 if (trace) 2214 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2215 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2216 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2217 inactive_ratio, file); 2218 2219 return inactive * inactive_ratio < active; 2220 } 2221 2222 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2223 struct lruvec *lruvec, struct scan_control *sc) 2224 { 2225 if (is_active_lru(lru)) { 2226 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2227 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2228 return 0; 2229 } 2230 2231 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2232 } 2233 2234 enum scan_balance { 2235 SCAN_EQUAL, 2236 SCAN_FRACT, 2237 SCAN_ANON, 2238 SCAN_FILE, 2239 }; 2240 2241 /* 2242 * Determine how aggressively the anon and file LRU lists should be 2243 * scanned. The relative value of each set of LRU lists is determined 2244 * by looking at the fraction of the pages scanned we did rotate back 2245 * onto the active list instead of evict. 2246 * 2247 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2248 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2249 */ 2250 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2251 struct scan_control *sc, unsigned long *nr, 2252 unsigned long *lru_pages) 2253 { 2254 int swappiness = mem_cgroup_swappiness(memcg); 2255 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2256 u64 fraction[2]; 2257 u64 denominator = 0; /* gcc */ 2258 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2259 unsigned long anon_prio, file_prio; 2260 enum scan_balance scan_balance; 2261 unsigned long anon, file; 2262 unsigned long ap, fp; 2263 enum lru_list lru; 2264 2265 /* If we have no swap space, do not bother scanning anon pages. */ 2266 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2267 scan_balance = SCAN_FILE; 2268 goto out; 2269 } 2270 2271 /* 2272 * Global reclaim will swap to prevent OOM even with no 2273 * swappiness, but memcg users want to use this knob to 2274 * disable swapping for individual groups completely when 2275 * using the memory controller's swap limit feature would be 2276 * too expensive. 2277 */ 2278 if (!global_reclaim(sc) && !swappiness) { 2279 scan_balance = SCAN_FILE; 2280 goto out; 2281 } 2282 2283 /* 2284 * Do not apply any pressure balancing cleverness when the 2285 * system is close to OOM, scan both anon and file equally 2286 * (unless the swappiness setting disagrees with swapping). 2287 */ 2288 if (!sc->priority && swappiness) { 2289 scan_balance = SCAN_EQUAL; 2290 goto out; 2291 } 2292 2293 /* 2294 * Prevent the reclaimer from falling into the cache trap: as 2295 * cache pages start out inactive, every cache fault will tip 2296 * the scan balance towards the file LRU. And as the file LRU 2297 * shrinks, so does the window for rotation from references. 2298 * This means we have a runaway feedback loop where a tiny 2299 * thrashing file LRU becomes infinitely more attractive than 2300 * anon pages. Try to detect this based on file LRU size. 2301 */ 2302 if (global_reclaim(sc)) { 2303 unsigned long pgdatfile; 2304 unsigned long pgdatfree; 2305 int z; 2306 unsigned long total_high_wmark = 0; 2307 2308 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2309 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2310 node_page_state(pgdat, NR_INACTIVE_FILE); 2311 2312 for (z = 0; z < MAX_NR_ZONES; z++) { 2313 struct zone *zone = &pgdat->node_zones[z]; 2314 if (!managed_zone(zone)) 2315 continue; 2316 2317 total_high_wmark += high_wmark_pages(zone); 2318 } 2319 2320 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2321 /* 2322 * Force SCAN_ANON if there are enough inactive 2323 * anonymous pages on the LRU in eligible zones. 2324 * Otherwise, the small LRU gets thrashed. 2325 */ 2326 if (!inactive_list_is_low(lruvec, false, sc, false) && 2327 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2328 >> sc->priority) { 2329 scan_balance = SCAN_ANON; 2330 goto out; 2331 } 2332 } 2333 } 2334 2335 /* 2336 * If there is enough inactive page cache, i.e. if the size of the 2337 * inactive list is greater than that of the active list *and* the 2338 * inactive list actually has some pages to scan on this priority, we 2339 * do not reclaim anything from the anonymous working set right now. 2340 * Without the second condition we could end up never scanning an 2341 * lruvec even if it has plenty of old anonymous pages unless the 2342 * system is under heavy pressure. 2343 */ 2344 if (!inactive_list_is_low(lruvec, true, sc, false) && 2345 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2346 scan_balance = SCAN_FILE; 2347 goto out; 2348 } 2349 2350 scan_balance = SCAN_FRACT; 2351 2352 /* 2353 * With swappiness at 100, anonymous and file have the same priority. 2354 * This scanning priority is essentially the inverse of IO cost. 2355 */ 2356 anon_prio = swappiness; 2357 file_prio = 200 - anon_prio; 2358 2359 /* 2360 * OK, so we have swap space and a fair amount of page cache 2361 * pages. We use the recently rotated / recently scanned 2362 * ratios to determine how valuable each cache is. 2363 * 2364 * Because workloads change over time (and to avoid overflow) 2365 * we keep these statistics as a floating average, which ends 2366 * up weighing recent references more than old ones. 2367 * 2368 * anon in [0], file in [1] 2369 */ 2370 2371 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2372 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2373 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2374 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2375 2376 spin_lock_irq(&pgdat->lru_lock); 2377 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2378 reclaim_stat->recent_scanned[0] /= 2; 2379 reclaim_stat->recent_rotated[0] /= 2; 2380 } 2381 2382 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2383 reclaim_stat->recent_scanned[1] /= 2; 2384 reclaim_stat->recent_rotated[1] /= 2; 2385 } 2386 2387 /* 2388 * The amount of pressure on anon vs file pages is inversely 2389 * proportional to the fraction of recently scanned pages on 2390 * each list that were recently referenced and in active use. 2391 */ 2392 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2393 ap /= reclaim_stat->recent_rotated[0] + 1; 2394 2395 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2396 fp /= reclaim_stat->recent_rotated[1] + 1; 2397 spin_unlock_irq(&pgdat->lru_lock); 2398 2399 fraction[0] = ap; 2400 fraction[1] = fp; 2401 denominator = ap + fp + 1; 2402 out: 2403 *lru_pages = 0; 2404 for_each_evictable_lru(lru) { 2405 int file = is_file_lru(lru); 2406 unsigned long size; 2407 unsigned long scan; 2408 2409 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2410 scan = size >> sc->priority; 2411 /* 2412 * If the cgroup's already been deleted, make sure to 2413 * scrape out the remaining cache. 2414 */ 2415 if (!scan && !mem_cgroup_online(memcg)) 2416 scan = min(size, SWAP_CLUSTER_MAX); 2417 2418 switch (scan_balance) { 2419 case SCAN_EQUAL: 2420 /* Scan lists relative to size */ 2421 break; 2422 case SCAN_FRACT: 2423 /* 2424 * Scan types proportional to swappiness and 2425 * their relative recent reclaim efficiency. 2426 * Make sure we don't miss the last page 2427 * because of a round-off error. 2428 */ 2429 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2430 denominator); 2431 break; 2432 case SCAN_FILE: 2433 case SCAN_ANON: 2434 /* Scan one type exclusively */ 2435 if ((scan_balance == SCAN_FILE) != file) { 2436 size = 0; 2437 scan = 0; 2438 } 2439 break; 2440 default: 2441 /* Look ma, no brain */ 2442 BUG(); 2443 } 2444 2445 *lru_pages += size; 2446 nr[lru] = scan; 2447 } 2448 } 2449 2450 /* 2451 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2452 */ 2453 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2454 struct scan_control *sc, unsigned long *lru_pages) 2455 { 2456 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2457 unsigned long nr[NR_LRU_LISTS]; 2458 unsigned long targets[NR_LRU_LISTS]; 2459 unsigned long nr_to_scan; 2460 enum lru_list lru; 2461 unsigned long nr_reclaimed = 0; 2462 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2463 struct blk_plug plug; 2464 bool scan_adjusted; 2465 2466 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2467 2468 /* Record the original scan target for proportional adjustments later */ 2469 memcpy(targets, nr, sizeof(nr)); 2470 2471 /* 2472 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2473 * event that can occur when there is little memory pressure e.g. 2474 * multiple streaming readers/writers. Hence, we do not abort scanning 2475 * when the requested number of pages are reclaimed when scanning at 2476 * DEF_PRIORITY on the assumption that the fact we are direct 2477 * reclaiming implies that kswapd is not keeping up and it is best to 2478 * do a batch of work at once. For memcg reclaim one check is made to 2479 * abort proportional reclaim if either the file or anon lru has already 2480 * dropped to zero at the first pass. 2481 */ 2482 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2483 sc->priority == DEF_PRIORITY); 2484 2485 blk_start_plug(&plug); 2486 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2487 nr[LRU_INACTIVE_FILE]) { 2488 unsigned long nr_anon, nr_file, percentage; 2489 unsigned long nr_scanned; 2490 2491 for_each_evictable_lru(lru) { 2492 if (nr[lru]) { 2493 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2494 nr[lru] -= nr_to_scan; 2495 2496 nr_reclaimed += shrink_list(lru, nr_to_scan, 2497 lruvec, sc); 2498 } 2499 } 2500 2501 cond_resched(); 2502 2503 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2504 continue; 2505 2506 /* 2507 * For kswapd and memcg, reclaim at least the number of pages 2508 * requested. Ensure that the anon and file LRUs are scanned 2509 * proportionally what was requested by get_scan_count(). We 2510 * stop reclaiming one LRU and reduce the amount scanning 2511 * proportional to the original scan target. 2512 */ 2513 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2514 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2515 2516 /* 2517 * It's just vindictive to attack the larger once the smaller 2518 * has gone to zero. And given the way we stop scanning the 2519 * smaller below, this makes sure that we only make one nudge 2520 * towards proportionality once we've got nr_to_reclaim. 2521 */ 2522 if (!nr_file || !nr_anon) 2523 break; 2524 2525 if (nr_file > nr_anon) { 2526 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2527 targets[LRU_ACTIVE_ANON] + 1; 2528 lru = LRU_BASE; 2529 percentage = nr_anon * 100 / scan_target; 2530 } else { 2531 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2532 targets[LRU_ACTIVE_FILE] + 1; 2533 lru = LRU_FILE; 2534 percentage = nr_file * 100 / scan_target; 2535 } 2536 2537 /* Stop scanning the smaller of the LRU */ 2538 nr[lru] = 0; 2539 nr[lru + LRU_ACTIVE] = 0; 2540 2541 /* 2542 * Recalculate the other LRU scan count based on its original 2543 * scan target and the percentage scanning already complete 2544 */ 2545 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2546 nr_scanned = targets[lru] - nr[lru]; 2547 nr[lru] = targets[lru] * (100 - percentage) / 100; 2548 nr[lru] -= min(nr[lru], nr_scanned); 2549 2550 lru += LRU_ACTIVE; 2551 nr_scanned = targets[lru] - nr[lru]; 2552 nr[lru] = targets[lru] * (100 - percentage) / 100; 2553 nr[lru] -= min(nr[lru], nr_scanned); 2554 2555 scan_adjusted = true; 2556 } 2557 blk_finish_plug(&plug); 2558 sc->nr_reclaimed += nr_reclaimed; 2559 2560 /* 2561 * Even if we did not try to evict anon pages at all, we want to 2562 * rebalance the anon lru active/inactive ratio. 2563 */ 2564 if (inactive_list_is_low(lruvec, false, sc, true)) 2565 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2566 sc, LRU_ACTIVE_ANON); 2567 } 2568 2569 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2570 static bool in_reclaim_compaction(struct scan_control *sc) 2571 { 2572 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2573 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2574 sc->priority < DEF_PRIORITY - 2)) 2575 return true; 2576 2577 return false; 2578 } 2579 2580 /* 2581 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2582 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2583 * true if more pages should be reclaimed such that when the page allocator 2584 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2585 * It will give up earlier than that if there is difficulty reclaiming pages. 2586 */ 2587 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2588 unsigned long nr_reclaimed, 2589 unsigned long nr_scanned, 2590 struct scan_control *sc) 2591 { 2592 unsigned long pages_for_compaction; 2593 unsigned long inactive_lru_pages; 2594 int z; 2595 2596 /* If not in reclaim/compaction mode, stop */ 2597 if (!in_reclaim_compaction(sc)) 2598 return false; 2599 2600 /* Consider stopping depending on scan and reclaim activity */ 2601 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2602 /* 2603 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2604 * full LRU list has been scanned and we are still failing 2605 * to reclaim pages. This full LRU scan is potentially 2606 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2607 */ 2608 if (!nr_reclaimed && !nr_scanned) 2609 return false; 2610 } else { 2611 /* 2612 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2613 * fail without consequence, stop if we failed to reclaim 2614 * any pages from the last SWAP_CLUSTER_MAX number of 2615 * pages that were scanned. This will return to the 2616 * caller faster at the risk reclaim/compaction and 2617 * the resulting allocation attempt fails 2618 */ 2619 if (!nr_reclaimed) 2620 return false; 2621 } 2622 2623 /* 2624 * If we have not reclaimed enough pages for compaction and the 2625 * inactive lists are large enough, continue reclaiming 2626 */ 2627 pages_for_compaction = compact_gap(sc->order); 2628 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2629 if (get_nr_swap_pages() > 0) 2630 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2631 if (sc->nr_reclaimed < pages_for_compaction && 2632 inactive_lru_pages > pages_for_compaction) 2633 return true; 2634 2635 /* If compaction would go ahead or the allocation would succeed, stop */ 2636 for (z = 0; z <= sc->reclaim_idx; z++) { 2637 struct zone *zone = &pgdat->node_zones[z]; 2638 if (!managed_zone(zone)) 2639 continue; 2640 2641 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2642 case COMPACT_SUCCESS: 2643 case COMPACT_CONTINUE: 2644 return false; 2645 default: 2646 /* check next zone */ 2647 ; 2648 } 2649 } 2650 return true; 2651 } 2652 2653 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2654 { 2655 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2656 (memcg && memcg_congested(pgdat, memcg)); 2657 } 2658 2659 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2660 { 2661 struct reclaim_state *reclaim_state = current->reclaim_state; 2662 unsigned long nr_reclaimed, nr_scanned; 2663 bool reclaimable = false; 2664 2665 do { 2666 struct mem_cgroup *root = sc->target_mem_cgroup; 2667 struct mem_cgroup_reclaim_cookie reclaim = { 2668 .pgdat = pgdat, 2669 .priority = sc->priority, 2670 }; 2671 unsigned long node_lru_pages = 0; 2672 struct mem_cgroup *memcg; 2673 2674 memset(&sc->nr, 0, sizeof(sc->nr)); 2675 2676 nr_reclaimed = sc->nr_reclaimed; 2677 nr_scanned = sc->nr_scanned; 2678 2679 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2680 do { 2681 unsigned long lru_pages; 2682 unsigned long reclaimed; 2683 unsigned long scanned; 2684 2685 switch (mem_cgroup_protected(root, memcg)) { 2686 case MEMCG_PROT_MIN: 2687 /* 2688 * Hard protection. 2689 * If there is no reclaimable memory, OOM. 2690 */ 2691 continue; 2692 case MEMCG_PROT_LOW: 2693 /* 2694 * Soft protection. 2695 * Respect the protection only as long as 2696 * there is an unprotected supply 2697 * of reclaimable memory from other cgroups. 2698 */ 2699 if (!sc->memcg_low_reclaim) { 2700 sc->memcg_low_skipped = 1; 2701 continue; 2702 } 2703 memcg_memory_event(memcg, MEMCG_LOW); 2704 break; 2705 case MEMCG_PROT_NONE: 2706 break; 2707 } 2708 2709 reclaimed = sc->nr_reclaimed; 2710 scanned = sc->nr_scanned; 2711 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2712 node_lru_pages += lru_pages; 2713 2714 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2715 sc->priority); 2716 2717 /* Record the group's reclaim efficiency */ 2718 vmpressure(sc->gfp_mask, memcg, false, 2719 sc->nr_scanned - scanned, 2720 sc->nr_reclaimed - reclaimed); 2721 2722 /* 2723 * Kswapd have to scan all memory cgroups to fulfill 2724 * the overall scan target for the node. 2725 * 2726 * Limit reclaim, on the other hand, only cares about 2727 * nr_to_reclaim pages to be reclaimed and it will 2728 * retry with decreasing priority if one round over the 2729 * whole hierarchy is not sufficient. 2730 */ 2731 if (!current_is_kswapd() && 2732 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2733 mem_cgroup_iter_break(root, memcg); 2734 break; 2735 } 2736 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2737 2738 if (reclaim_state) { 2739 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2740 reclaim_state->reclaimed_slab = 0; 2741 } 2742 2743 /* Record the subtree's reclaim efficiency */ 2744 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2745 sc->nr_scanned - nr_scanned, 2746 sc->nr_reclaimed - nr_reclaimed); 2747 2748 if (sc->nr_reclaimed - nr_reclaimed) 2749 reclaimable = true; 2750 2751 if (current_is_kswapd()) { 2752 /* 2753 * If reclaim is isolating dirty pages under writeback, 2754 * it implies that the long-lived page allocation rate 2755 * is exceeding the page laundering rate. Either the 2756 * global limits are not being effective at throttling 2757 * processes due to the page distribution throughout 2758 * zones or there is heavy usage of a slow backing 2759 * device. The only option is to throttle from reclaim 2760 * context which is not ideal as there is no guarantee 2761 * the dirtying process is throttled in the same way 2762 * balance_dirty_pages() manages. 2763 * 2764 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2765 * count the number of pages under pages flagged for 2766 * immediate reclaim and stall if any are encountered 2767 * in the nr_immediate check below. 2768 */ 2769 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2770 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2771 2772 /* 2773 * Tag a node as congested if all the dirty pages 2774 * scanned were backed by a congested BDI and 2775 * wait_iff_congested will stall. 2776 */ 2777 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2778 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2779 2780 /* Allow kswapd to start writing pages during reclaim.*/ 2781 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2782 set_bit(PGDAT_DIRTY, &pgdat->flags); 2783 2784 /* 2785 * If kswapd scans pages marked marked for immediate 2786 * reclaim and under writeback (nr_immediate), it 2787 * implies that pages are cycling through the LRU 2788 * faster than they are written so also forcibly stall. 2789 */ 2790 if (sc->nr.immediate) 2791 congestion_wait(BLK_RW_ASYNC, HZ/10); 2792 } 2793 2794 /* 2795 * Legacy memcg will stall in page writeback so avoid forcibly 2796 * stalling in wait_iff_congested(). 2797 */ 2798 if (!global_reclaim(sc) && sane_reclaim(sc) && 2799 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2800 set_memcg_congestion(pgdat, root, true); 2801 2802 /* 2803 * Stall direct reclaim for IO completions if underlying BDIs 2804 * and node is congested. Allow kswapd to continue until it 2805 * starts encountering unqueued dirty pages or cycling through 2806 * the LRU too quickly. 2807 */ 2808 if (!sc->hibernation_mode && !current_is_kswapd() && 2809 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2810 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2811 2812 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2813 sc->nr_scanned - nr_scanned, sc)); 2814 2815 /* 2816 * Kswapd gives up on balancing particular nodes after too 2817 * many failures to reclaim anything from them and goes to 2818 * sleep. On reclaim progress, reset the failure counter. A 2819 * successful direct reclaim run will revive a dormant kswapd. 2820 */ 2821 if (reclaimable) 2822 pgdat->kswapd_failures = 0; 2823 2824 return reclaimable; 2825 } 2826 2827 /* 2828 * Returns true if compaction should go ahead for a costly-order request, or 2829 * the allocation would already succeed without compaction. Return false if we 2830 * should reclaim first. 2831 */ 2832 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2833 { 2834 unsigned long watermark; 2835 enum compact_result suitable; 2836 2837 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2838 if (suitable == COMPACT_SUCCESS) 2839 /* Allocation should succeed already. Don't reclaim. */ 2840 return true; 2841 if (suitable == COMPACT_SKIPPED) 2842 /* Compaction cannot yet proceed. Do reclaim. */ 2843 return false; 2844 2845 /* 2846 * Compaction is already possible, but it takes time to run and there 2847 * are potentially other callers using the pages just freed. So proceed 2848 * with reclaim to make a buffer of free pages available to give 2849 * compaction a reasonable chance of completing and allocating the page. 2850 * Note that we won't actually reclaim the whole buffer in one attempt 2851 * as the target watermark in should_continue_reclaim() is lower. But if 2852 * we are already above the high+gap watermark, don't reclaim at all. 2853 */ 2854 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2855 2856 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2857 } 2858 2859 /* 2860 * This is the direct reclaim path, for page-allocating processes. We only 2861 * try to reclaim pages from zones which will satisfy the caller's allocation 2862 * request. 2863 * 2864 * If a zone is deemed to be full of pinned pages then just give it a light 2865 * scan then give up on it. 2866 */ 2867 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2868 { 2869 struct zoneref *z; 2870 struct zone *zone; 2871 unsigned long nr_soft_reclaimed; 2872 unsigned long nr_soft_scanned; 2873 gfp_t orig_mask; 2874 pg_data_t *last_pgdat = NULL; 2875 2876 /* 2877 * If the number of buffer_heads in the machine exceeds the maximum 2878 * allowed level, force direct reclaim to scan the highmem zone as 2879 * highmem pages could be pinning lowmem pages storing buffer_heads 2880 */ 2881 orig_mask = sc->gfp_mask; 2882 if (buffer_heads_over_limit) { 2883 sc->gfp_mask |= __GFP_HIGHMEM; 2884 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2885 } 2886 2887 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2888 sc->reclaim_idx, sc->nodemask) { 2889 /* 2890 * Take care memory controller reclaiming has small influence 2891 * to global LRU. 2892 */ 2893 if (global_reclaim(sc)) { 2894 if (!cpuset_zone_allowed(zone, 2895 GFP_KERNEL | __GFP_HARDWALL)) 2896 continue; 2897 2898 /* 2899 * If we already have plenty of memory free for 2900 * compaction in this zone, don't free any more. 2901 * Even though compaction is invoked for any 2902 * non-zero order, only frequent costly order 2903 * reclamation is disruptive enough to become a 2904 * noticeable problem, like transparent huge 2905 * page allocations. 2906 */ 2907 if (IS_ENABLED(CONFIG_COMPACTION) && 2908 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2909 compaction_ready(zone, sc)) { 2910 sc->compaction_ready = true; 2911 continue; 2912 } 2913 2914 /* 2915 * Shrink each node in the zonelist once. If the 2916 * zonelist is ordered by zone (not the default) then a 2917 * node may be shrunk multiple times but in that case 2918 * the user prefers lower zones being preserved. 2919 */ 2920 if (zone->zone_pgdat == last_pgdat) 2921 continue; 2922 2923 /* 2924 * This steals pages from memory cgroups over softlimit 2925 * and returns the number of reclaimed pages and 2926 * scanned pages. This works for global memory pressure 2927 * and balancing, not for a memcg's limit. 2928 */ 2929 nr_soft_scanned = 0; 2930 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2931 sc->order, sc->gfp_mask, 2932 &nr_soft_scanned); 2933 sc->nr_reclaimed += nr_soft_reclaimed; 2934 sc->nr_scanned += nr_soft_scanned; 2935 /* need some check for avoid more shrink_zone() */ 2936 } 2937 2938 /* See comment about same check for global reclaim above */ 2939 if (zone->zone_pgdat == last_pgdat) 2940 continue; 2941 last_pgdat = zone->zone_pgdat; 2942 shrink_node(zone->zone_pgdat, sc); 2943 } 2944 2945 /* 2946 * Restore to original mask to avoid the impact on the caller if we 2947 * promoted it to __GFP_HIGHMEM. 2948 */ 2949 sc->gfp_mask = orig_mask; 2950 } 2951 2952 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2953 { 2954 struct mem_cgroup *memcg; 2955 2956 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2957 do { 2958 unsigned long refaults; 2959 struct lruvec *lruvec; 2960 2961 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2962 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2963 lruvec->refaults = refaults; 2964 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2965 } 2966 2967 /* 2968 * This is the main entry point to direct page reclaim. 2969 * 2970 * If a full scan of the inactive list fails to free enough memory then we 2971 * are "out of memory" and something needs to be killed. 2972 * 2973 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2974 * high - the zone may be full of dirty or under-writeback pages, which this 2975 * caller can't do much about. We kick the writeback threads and take explicit 2976 * naps in the hope that some of these pages can be written. But if the 2977 * allocating task holds filesystem locks which prevent writeout this might not 2978 * work, and the allocation attempt will fail. 2979 * 2980 * returns: 0, if no pages reclaimed 2981 * else, the number of pages reclaimed 2982 */ 2983 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2984 struct scan_control *sc) 2985 { 2986 int initial_priority = sc->priority; 2987 pg_data_t *last_pgdat; 2988 struct zoneref *z; 2989 struct zone *zone; 2990 retry: 2991 delayacct_freepages_start(); 2992 2993 if (global_reclaim(sc)) 2994 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2995 2996 do { 2997 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2998 sc->priority); 2999 sc->nr_scanned = 0; 3000 shrink_zones(zonelist, sc); 3001 3002 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3003 break; 3004 3005 if (sc->compaction_ready) 3006 break; 3007 3008 /* 3009 * If we're getting trouble reclaiming, start doing 3010 * writepage even in laptop mode. 3011 */ 3012 if (sc->priority < DEF_PRIORITY - 2) 3013 sc->may_writepage = 1; 3014 } while (--sc->priority >= 0); 3015 3016 last_pgdat = NULL; 3017 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3018 sc->nodemask) { 3019 if (zone->zone_pgdat == last_pgdat) 3020 continue; 3021 last_pgdat = zone->zone_pgdat; 3022 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3023 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3024 } 3025 3026 delayacct_freepages_end(); 3027 3028 if (sc->nr_reclaimed) 3029 return sc->nr_reclaimed; 3030 3031 /* Aborted reclaim to try compaction? don't OOM, then */ 3032 if (sc->compaction_ready) 3033 return 1; 3034 3035 /* Untapped cgroup reserves? Don't OOM, retry. */ 3036 if (sc->memcg_low_skipped) { 3037 sc->priority = initial_priority; 3038 sc->memcg_low_reclaim = 1; 3039 sc->memcg_low_skipped = 0; 3040 goto retry; 3041 } 3042 3043 return 0; 3044 } 3045 3046 static bool allow_direct_reclaim(pg_data_t *pgdat) 3047 { 3048 struct zone *zone; 3049 unsigned long pfmemalloc_reserve = 0; 3050 unsigned long free_pages = 0; 3051 int i; 3052 bool wmark_ok; 3053 3054 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3055 return true; 3056 3057 for (i = 0; i <= ZONE_NORMAL; i++) { 3058 zone = &pgdat->node_zones[i]; 3059 if (!managed_zone(zone)) 3060 continue; 3061 3062 if (!zone_reclaimable_pages(zone)) 3063 continue; 3064 3065 pfmemalloc_reserve += min_wmark_pages(zone); 3066 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3067 } 3068 3069 /* If there are no reserves (unexpected config) then do not throttle */ 3070 if (!pfmemalloc_reserve) 3071 return true; 3072 3073 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3074 3075 /* kswapd must be awake if processes are being throttled */ 3076 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3077 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3078 (enum zone_type)ZONE_NORMAL); 3079 wake_up_interruptible(&pgdat->kswapd_wait); 3080 } 3081 3082 return wmark_ok; 3083 } 3084 3085 /* 3086 * Throttle direct reclaimers if backing storage is backed by the network 3087 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3088 * depleted. kswapd will continue to make progress and wake the processes 3089 * when the low watermark is reached. 3090 * 3091 * Returns true if a fatal signal was delivered during throttling. If this 3092 * happens, the page allocator should not consider triggering the OOM killer. 3093 */ 3094 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3095 nodemask_t *nodemask) 3096 { 3097 struct zoneref *z; 3098 struct zone *zone; 3099 pg_data_t *pgdat = NULL; 3100 3101 /* 3102 * Kernel threads should not be throttled as they may be indirectly 3103 * responsible for cleaning pages necessary for reclaim to make forward 3104 * progress. kjournald for example may enter direct reclaim while 3105 * committing a transaction where throttling it could forcing other 3106 * processes to block on log_wait_commit(). 3107 */ 3108 if (current->flags & PF_KTHREAD) 3109 goto out; 3110 3111 /* 3112 * If a fatal signal is pending, this process should not throttle. 3113 * It should return quickly so it can exit and free its memory 3114 */ 3115 if (fatal_signal_pending(current)) 3116 goto out; 3117 3118 /* 3119 * Check if the pfmemalloc reserves are ok by finding the first node 3120 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3121 * GFP_KERNEL will be required for allocating network buffers when 3122 * swapping over the network so ZONE_HIGHMEM is unusable. 3123 * 3124 * Throttling is based on the first usable node and throttled processes 3125 * wait on a queue until kswapd makes progress and wakes them. There 3126 * is an affinity then between processes waking up and where reclaim 3127 * progress has been made assuming the process wakes on the same node. 3128 * More importantly, processes running on remote nodes will not compete 3129 * for remote pfmemalloc reserves and processes on different nodes 3130 * should make reasonable progress. 3131 */ 3132 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3133 gfp_zone(gfp_mask), nodemask) { 3134 if (zone_idx(zone) > ZONE_NORMAL) 3135 continue; 3136 3137 /* Throttle based on the first usable node */ 3138 pgdat = zone->zone_pgdat; 3139 if (allow_direct_reclaim(pgdat)) 3140 goto out; 3141 break; 3142 } 3143 3144 /* If no zone was usable by the allocation flags then do not throttle */ 3145 if (!pgdat) 3146 goto out; 3147 3148 /* Account for the throttling */ 3149 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3150 3151 /* 3152 * If the caller cannot enter the filesystem, it's possible that it 3153 * is due to the caller holding an FS lock or performing a journal 3154 * transaction in the case of a filesystem like ext[3|4]. In this case, 3155 * it is not safe to block on pfmemalloc_wait as kswapd could be 3156 * blocked waiting on the same lock. Instead, throttle for up to a 3157 * second before continuing. 3158 */ 3159 if (!(gfp_mask & __GFP_FS)) { 3160 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3161 allow_direct_reclaim(pgdat), HZ); 3162 3163 goto check_pending; 3164 } 3165 3166 /* Throttle until kswapd wakes the process */ 3167 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3168 allow_direct_reclaim(pgdat)); 3169 3170 check_pending: 3171 if (fatal_signal_pending(current)) 3172 return true; 3173 3174 out: 3175 return false; 3176 } 3177 3178 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3179 gfp_t gfp_mask, nodemask_t *nodemask) 3180 { 3181 unsigned long nr_reclaimed; 3182 struct scan_control sc = { 3183 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3184 .gfp_mask = current_gfp_context(gfp_mask), 3185 .reclaim_idx = gfp_zone(gfp_mask), 3186 .order = order, 3187 .nodemask = nodemask, 3188 .priority = DEF_PRIORITY, 3189 .may_writepage = !laptop_mode, 3190 .may_unmap = 1, 3191 .may_swap = 1, 3192 }; 3193 3194 /* 3195 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3196 * Confirm they are large enough for max values. 3197 */ 3198 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3199 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3200 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3201 3202 /* 3203 * Do not enter reclaim if fatal signal was delivered while throttled. 3204 * 1 is returned so that the page allocator does not OOM kill at this 3205 * point. 3206 */ 3207 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3208 return 1; 3209 3210 set_task_reclaim_state(current, &sc.reclaim_state); 3211 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3212 3213 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3214 3215 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3216 set_task_reclaim_state(current, NULL); 3217 3218 return nr_reclaimed; 3219 } 3220 3221 #ifdef CONFIG_MEMCG 3222 3223 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3224 gfp_t gfp_mask, bool noswap, 3225 pg_data_t *pgdat, 3226 unsigned long *nr_scanned) 3227 { 3228 struct scan_control sc = { 3229 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3230 .target_mem_cgroup = memcg, 3231 .may_writepage = !laptop_mode, 3232 .may_unmap = 1, 3233 .reclaim_idx = MAX_NR_ZONES - 1, 3234 .may_swap = !noswap, 3235 }; 3236 unsigned long lru_pages; 3237 3238 set_task_reclaim_state(current, &sc.reclaim_state); 3239 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3240 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3241 3242 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3243 sc.gfp_mask); 3244 3245 /* 3246 * NOTE: Although we can get the priority field, using it 3247 * here is not a good idea, since it limits the pages we can scan. 3248 * if we don't reclaim here, the shrink_node from balance_pgdat 3249 * will pick up pages from other mem cgroup's as well. We hack 3250 * the priority and make it zero. 3251 */ 3252 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3253 3254 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3255 3256 set_task_reclaim_state(current, NULL); 3257 *nr_scanned = sc.nr_scanned; 3258 3259 return sc.nr_reclaimed; 3260 } 3261 3262 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3263 unsigned long nr_pages, 3264 gfp_t gfp_mask, 3265 bool may_swap) 3266 { 3267 struct zonelist *zonelist; 3268 unsigned long nr_reclaimed; 3269 unsigned long pflags; 3270 int nid; 3271 unsigned int noreclaim_flag; 3272 struct scan_control sc = { 3273 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3274 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3275 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3276 .reclaim_idx = MAX_NR_ZONES - 1, 3277 .target_mem_cgroup = memcg, 3278 .priority = DEF_PRIORITY, 3279 .may_writepage = !laptop_mode, 3280 .may_unmap = 1, 3281 .may_swap = may_swap, 3282 }; 3283 3284 set_task_reclaim_state(current, &sc.reclaim_state); 3285 /* 3286 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3287 * take care of from where we get pages. So the node where we start the 3288 * scan does not need to be the current node. 3289 */ 3290 nid = mem_cgroup_select_victim_node(memcg); 3291 3292 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3293 3294 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3295 3296 psi_memstall_enter(&pflags); 3297 noreclaim_flag = memalloc_noreclaim_save(); 3298 3299 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3300 3301 memalloc_noreclaim_restore(noreclaim_flag); 3302 psi_memstall_leave(&pflags); 3303 3304 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3305 set_task_reclaim_state(current, NULL); 3306 3307 return nr_reclaimed; 3308 } 3309 #endif 3310 3311 static void age_active_anon(struct pglist_data *pgdat, 3312 struct scan_control *sc) 3313 { 3314 struct mem_cgroup *memcg; 3315 3316 if (!total_swap_pages) 3317 return; 3318 3319 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3320 do { 3321 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3322 3323 if (inactive_list_is_low(lruvec, false, sc, true)) 3324 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3325 sc, LRU_ACTIVE_ANON); 3326 3327 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3328 } while (memcg); 3329 } 3330 3331 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3332 { 3333 int i; 3334 struct zone *zone; 3335 3336 /* 3337 * Check for watermark boosts top-down as the higher zones 3338 * are more likely to be boosted. Both watermarks and boosts 3339 * should not be checked at the time time as reclaim would 3340 * start prematurely when there is no boosting and a lower 3341 * zone is balanced. 3342 */ 3343 for (i = classzone_idx; i >= 0; i--) { 3344 zone = pgdat->node_zones + i; 3345 if (!managed_zone(zone)) 3346 continue; 3347 3348 if (zone->watermark_boost) 3349 return true; 3350 } 3351 3352 return false; 3353 } 3354 3355 /* 3356 * Returns true if there is an eligible zone balanced for the request order 3357 * and classzone_idx 3358 */ 3359 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3360 { 3361 int i; 3362 unsigned long mark = -1; 3363 struct zone *zone; 3364 3365 /* 3366 * Check watermarks bottom-up as lower zones are more likely to 3367 * meet watermarks. 3368 */ 3369 for (i = 0; i <= classzone_idx; i++) { 3370 zone = pgdat->node_zones + i; 3371 3372 if (!managed_zone(zone)) 3373 continue; 3374 3375 mark = high_wmark_pages(zone); 3376 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3377 return true; 3378 } 3379 3380 /* 3381 * If a node has no populated zone within classzone_idx, it does not 3382 * need balancing by definition. This can happen if a zone-restricted 3383 * allocation tries to wake a remote kswapd. 3384 */ 3385 if (mark == -1) 3386 return true; 3387 3388 return false; 3389 } 3390 3391 /* Clear pgdat state for congested, dirty or under writeback. */ 3392 static void clear_pgdat_congested(pg_data_t *pgdat) 3393 { 3394 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3395 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3396 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3397 } 3398 3399 /* 3400 * Prepare kswapd for sleeping. This verifies that there are no processes 3401 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3402 * 3403 * Returns true if kswapd is ready to sleep 3404 */ 3405 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3406 { 3407 /* 3408 * The throttled processes are normally woken up in balance_pgdat() as 3409 * soon as allow_direct_reclaim() is true. But there is a potential 3410 * race between when kswapd checks the watermarks and a process gets 3411 * throttled. There is also a potential race if processes get 3412 * throttled, kswapd wakes, a large process exits thereby balancing the 3413 * zones, which causes kswapd to exit balance_pgdat() before reaching 3414 * the wake up checks. If kswapd is going to sleep, no process should 3415 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3416 * the wake up is premature, processes will wake kswapd and get 3417 * throttled again. The difference from wake ups in balance_pgdat() is 3418 * that here we are under prepare_to_wait(). 3419 */ 3420 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3421 wake_up_all(&pgdat->pfmemalloc_wait); 3422 3423 /* Hopeless node, leave it to direct reclaim */ 3424 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3425 return true; 3426 3427 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3428 clear_pgdat_congested(pgdat); 3429 return true; 3430 } 3431 3432 return false; 3433 } 3434 3435 /* 3436 * kswapd shrinks a node of pages that are at or below the highest usable 3437 * zone that is currently unbalanced. 3438 * 3439 * Returns true if kswapd scanned at least the requested number of pages to 3440 * reclaim or if the lack of progress was due to pages under writeback. 3441 * This is used to determine if the scanning priority needs to be raised. 3442 */ 3443 static bool kswapd_shrink_node(pg_data_t *pgdat, 3444 struct scan_control *sc) 3445 { 3446 struct zone *zone; 3447 int z; 3448 3449 /* Reclaim a number of pages proportional to the number of zones */ 3450 sc->nr_to_reclaim = 0; 3451 for (z = 0; z <= sc->reclaim_idx; z++) { 3452 zone = pgdat->node_zones + z; 3453 if (!managed_zone(zone)) 3454 continue; 3455 3456 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3457 } 3458 3459 /* 3460 * Historically care was taken to put equal pressure on all zones but 3461 * now pressure is applied based on node LRU order. 3462 */ 3463 shrink_node(pgdat, sc); 3464 3465 /* 3466 * Fragmentation may mean that the system cannot be rebalanced for 3467 * high-order allocations. If twice the allocation size has been 3468 * reclaimed then recheck watermarks only at order-0 to prevent 3469 * excessive reclaim. Assume that a process requested a high-order 3470 * can direct reclaim/compact. 3471 */ 3472 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3473 sc->order = 0; 3474 3475 return sc->nr_scanned >= sc->nr_to_reclaim; 3476 } 3477 3478 /* 3479 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3480 * that are eligible for use by the caller until at least one zone is 3481 * balanced. 3482 * 3483 * Returns the order kswapd finished reclaiming at. 3484 * 3485 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3486 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3487 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3488 * or lower is eligible for reclaim until at least one usable zone is 3489 * balanced. 3490 */ 3491 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3492 { 3493 int i; 3494 unsigned long nr_soft_reclaimed; 3495 unsigned long nr_soft_scanned; 3496 unsigned long pflags; 3497 unsigned long nr_boost_reclaim; 3498 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3499 bool boosted; 3500 struct zone *zone; 3501 struct scan_control sc = { 3502 .gfp_mask = GFP_KERNEL, 3503 .order = order, 3504 .may_unmap = 1, 3505 }; 3506 3507 set_task_reclaim_state(current, &sc.reclaim_state); 3508 psi_memstall_enter(&pflags); 3509 __fs_reclaim_acquire(); 3510 3511 count_vm_event(PAGEOUTRUN); 3512 3513 /* 3514 * Account for the reclaim boost. Note that the zone boost is left in 3515 * place so that parallel allocations that are near the watermark will 3516 * stall or direct reclaim until kswapd is finished. 3517 */ 3518 nr_boost_reclaim = 0; 3519 for (i = 0; i <= classzone_idx; i++) { 3520 zone = pgdat->node_zones + i; 3521 if (!managed_zone(zone)) 3522 continue; 3523 3524 nr_boost_reclaim += zone->watermark_boost; 3525 zone_boosts[i] = zone->watermark_boost; 3526 } 3527 boosted = nr_boost_reclaim; 3528 3529 restart: 3530 sc.priority = DEF_PRIORITY; 3531 do { 3532 unsigned long nr_reclaimed = sc.nr_reclaimed; 3533 bool raise_priority = true; 3534 bool balanced; 3535 bool ret; 3536 3537 sc.reclaim_idx = classzone_idx; 3538 3539 /* 3540 * If the number of buffer_heads exceeds the maximum allowed 3541 * then consider reclaiming from all zones. This has a dual 3542 * purpose -- on 64-bit systems it is expected that 3543 * buffer_heads are stripped during active rotation. On 32-bit 3544 * systems, highmem pages can pin lowmem memory and shrinking 3545 * buffers can relieve lowmem pressure. Reclaim may still not 3546 * go ahead if all eligible zones for the original allocation 3547 * request are balanced to avoid excessive reclaim from kswapd. 3548 */ 3549 if (buffer_heads_over_limit) { 3550 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3551 zone = pgdat->node_zones + i; 3552 if (!managed_zone(zone)) 3553 continue; 3554 3555 sc.reclaim_idx = i; 3556 break; 3557 } 3558 } 3559 3560 /* 3561 * If the pgdat is imbalanced then ignore boosting and preserve 3562 * the watermarks for a later time and restart. Note that the 3563 * zone watermarks will be still reset at the end of balancing 3564 * on the grounds that the normal reclaim should be enough to 3565 * re-evaluate if boosting is required when kswapd next wakes. 3566 */ 3567 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3568 if (!balanced && nr_boost_reclaim) { 3569 nr_boost_reclaim = 0; 3570 goto restart; 3571 } 3572 3573 /* 3574 * If boosting is not active then only reclaim if there are no 3575 * eligible zones. Note that sc.reclaim_idx is not used as 3576 * buffer_heads_over_limit may have adjusted it. 3577 */ 3578 if (!nr_boost_reclaim && balanced) 3579 goto out; 3580 3581 /* Limit the priority of boosting to avoid reclaim writeback */ 3582 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3583 raise_priority = false; 3584 3585 /* 3586 * Do not writeback or swap pages for boosted reclaim. The 3587 * intent is to relieve pressure not issue sub-optimal IO 3588 * from reclaim context. If no pages are reclaimed, the 3589 * reclaim will be aborted. 3590 */ 3591 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3592 sc.may_swap = !nr_boost_reclaim; 3593 3594 /* 3595 * Do some background aging of the anon list, to give 3596 * pages a chance to be referenced before reclaiming. All 3597 * pages are rotated regardless of classzone as this is 3598 * about consistent aging. 3599 */ 3600 age_active_anon(pgdat, &sc); 3601 3602 /* 3603 * If we're getting trouble reclaiming, start doing writepage 3604 * even in laptop mode. 3605 */ 3606 if (sc.priority < DEF_PRIORITY - 2) 3607 sc.may_writepage = 1; 3608 3609 /* Call soft limit reclaim before calling shrink_node. */ 3610 sc.nr_scanned = 0; 3611 nr_soft_scanned = 0; 3612 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3613 sc.gfp_mask, &nr_soft_scanned); 3614 sc.nr_reclaimed += nr_soft_reclaimed; 3615 3616 /* 3617 * There should be no need to raise the scanning priority if 3618 * enough pages are already being scanned that that high 3619 * watermark would be met at 100% efficiency. 3620 */ 3621 if (kswapd_shrink_node(pgdat, &sc)) 3622 raise_priority = false; 3623 3624 /* 3625 * If the low watermark is met there is no need for processes 3626 * to be throttled on pfmemalloc_wait as they should not be 3627 * able to safely make forward progress. Wake them 3628 */ 3629 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3630 allow_direct_reclaim(pgdat)) 3631 wake_up_all(&pgdat->pfmemalloc_wait); 3632 3633 /* Check if kswapd should be suspending */ 3634 __fs_reclaim_release(); 3635 ret = try_to_freeze(); 3636 __fs_reclaim_acquire(); 3637 if (ret || kthread_should_stop()) 3638 break; 3639 3640 /* 3641 * Raise priority if scanning rate is too low or there was no 3642 * progress in reclaiming pages 3643 */ 3644 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3645 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3646 3647 /* 3648 * If reclaim made no progress for a boost, stop reclaim as 3649 * IO cannot be queued and it could be an infinite loop in 3650 * extreme circumstances. 3651 */ 3652 if (nr_boost_reclaim && !nr_reclaimed) 3653 break; 3654 3655 if (raise_priority || !nr_reclaimed) 3656 sc.priority--; 3657 } while (sc.priority >= 1); 3658 3659 if (!sc.nr_reclaimed) 3660 pgdat->kswapd_failures++; 3661 3662 out: 3663 /* If reclaim was boosted, account for the reclaim done in this pass */ 3664 if (boosted) { 3665 unsigned long flags; 3666 3667 for (i = 0; i <= classzone_idx; i++) { 3668 if (!zone_boosts[i]) 3669 continue; 3670 3671 /* Increments are under the zone lock */ 3672 zone = pgdat->node_zones + i; 3673 spin_lock_irqsave(&zone->lock, flags); 3674 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3675 spin_unlock_irqrestore(&zone->lock, flags); 3676 } 3677 3678 /* 3679 * As there is now likely space, wakeup kcompact to defragment 3680 * pageblocks. 3681 */ 3682 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3683 } 3684 3685 snapshot_refaults(NULL, pgdat); 3686 __fs_reclaim_release(); 3687 psi_memstall_leave(&pflags); 3688 set_task_reclaim_state(current, NULL); 3689 3690 /* 3691 * Return the order kswapd stopped reclaiming at as 3692 * prepare_kswapd_sleep() takes it into account. If another caller 3693 * entered the allocator slow path while kswapd was awake, order will 3694 * remain at the higher level. 3695 */ 3696 return sc.order; 3697 } 3698 3699 /* 3700 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3701 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3702 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3703 * after previous reclaim attempt (node is still unbalanced). In that case 3704 * return the zone index of the previous kswapd reclaim cycle. 3705 */ 3706 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3707 enum zone_type prev_classzone_idx) 3708 { 3709 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3710 return prev_classzone_idx; 3711 return pgdat->kswapd_classzone_idx; 3712 } 3713 3714 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3715 unsigned int classzone_idx) 3716 { 3717 long remaining = 0; 3718 DEFINE_WAIT(wait); 3719 3720 if (freezing(current) || kthread_should_stop()) 3721 return; 3722 3723 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3724 3725 /* 3726 * Try to sleep for a short interval. Note that kcompactd will only be 3727 * woken if it is possible to sleep for a short interval. This is 3728 * deliberate on the assumption that if reclaim cannot keep an 3729 * eligible zone balanced that it's also unlikely that compaction will 3730 * succeed. 3731 */ 3732 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3733 /* 3734 * Compaction records what page blocks it recently failed to 3735 * isolate pages from and skips them in the future scanning. 3736 * When kswapd is going to sleep, it is reasonable to assume 3737 * that pages and compaction may succeed so reset the cache. 3738 */ 3739 reset_isolation_suitable(pgdat); 3740 3741 /* 3742 * We have freed the memory, now we should compact it to make 3743 * allocation of the requested order possible. 3744 */ 3745 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3746 3747 remaining = schedule_timeout(HZ/10); 3748 3749 /* 3750 * If woken prematurely then reset kswapd_classzone_idx and 3751 * order. The values will either be from a wakeup request or 3752 * the previous request that slept prematurely. 3753 */ 3754 if (remaining) { 3755 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3756 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3757 } 3758 3759 finish_wait(&pgdat->kswapd_wait, &wait); 3760 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3761 } 3762 3763 /* 3764 * After a short sleep, check if it was a premature sleep. If not, then 3765 * go fully to sleep until explicitly woken up. 3766 */ 3767 if (!remaining && 3768 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3769 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3770 3771 /* 3772 * vmstat counters are not perfectly accurate and the estimated 3773 * value for counters such as NR_FREE_PAGES can deviate from the 3774 * true value by nr_online_cpus * threshold. To avoid the zone 3775 * watermarks being breached while under pressure, we reduce the 3776 * per-cpu vmstat threshold while kswapd is awake and restore 3777 * them before going back to sleep. 3778 */ 3779 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3780 3781 if (!kthread_should_stop()) 3782 schedule(); 3783 3784 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3785 } else { 3786 if (remaining) 3787 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3788 else 3789 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3790 } 3791 finish_wait(&pgdat->kswapd_wait, &wait); 3792 } 3793 3794 /* 3795 * The background pageout daemon, started as a kernel thread 3796 * from the init process. 3797 * 3798 * This basically trickles out pages so that we have _some_ 3799 * free memory available even if there is no other activity 3800 * that frees anything up. This is needed for things like routing 3801 * etc, where we otherwise might have all activity going on in 3802 * asynchronous contexts that cannot page things out. 3803 * 3804 * If there are applications that are active memory-allocators 3805 * (most normal use), this basically shouldn't matter. 3806 */ 3807 static int kswapd(void *p) 3808 { 3809 unsigned int alloc_order, reclaim_order; 3810 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3811 pg_data_t *pgdat = (pg_data_t*)p; 3812 struct task_struct *tsk = current; 3813 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3814 3815 if (!cpumask_empty(cpumask)) 3816 set_cpus_allowed_ptr(tsk, cpumask); 3817 3818 /* 3819 * Tell the memory management that we're a "memory allocator", 3820 * and that if we need more memory we should get access to it 3821 * regardless (see "__alloc_pages()"). "kswapd" should 3822 * never get caught in the normal page freeing logic. 3823 * 3824 * (Kswapd normally doesn't need memory anyway, but sometimes 3825 * you need a small amount of memory in order to be able to 3826 * page out something else, and this flag essentially protects 3827 * us from recursively trying to free more memory as we're 3828 * trying to free the first piece of memory in the first place). 3829 */ 3830 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3831 set_freezable(); 3832 3833 pgdat->kswapd_order = 0; 3834 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3835 for ( ; ; ) { 3836 bool ret; 3837 3838 alloc_order = reclaim_order = pgdat->kswapd_order; 3839 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3840 3841 kswapd_try_sleep: 3842 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3843 classzone_idx); 3844 3845 /* Read the new order and classzone_idx */ 3846 alloc_order = reclaim_order = pgdat->kswapd_order; 3847 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3848 pgdat->kswapd_order = 0; 3849 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3850 3851 ret = try_to_freeze(); 3852 if (kthread_should_stop()) 3853 break; 3854 3855 /* 3856 * We can speed up thawing tasks if we don't call balance_pgdat 3857 * after returning from the refrigerator 3858 */ 3859 if (ret) 3860 continue; 3861 3862 /* 3863 * Reclaim begins at the requested order but if a high-order 3864 * reclaim fails then kswapd falls back to reclaiming for 3865 * order-0. If that happens, kswapd will consider sleeping 3866 * for the order it finished reclaiming at (reclaim_order) 3867 * but kcompactd is woken to compact for the original 3868 * request (alloc_order). 3869 */ 3870 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3871 alloc_order); 3872 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3873 if (reclaim_order < alloc_order) 3874 goto kswapd_try_sleep; 3875 } 3876 3877 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3878 3879 return 0; 3880 } 3881 3882 /* 3883 * A zone is low on free memory or too fragmented for high-order memory. If 3884 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3885 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3886 * has failed or is not needed, still wake up kcompactd if only compaction is 3887 * needed. 3888 */ 3889 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3890 enum zone_type classzone_idx) 3891 { 3892 pg_data_t *pgdat; 3893 3894 if (!managed_zone(zone)) 3895 return; 3896 3897 if (!cpuset_zone_allowed(zone, gfp_flags)) 3898 return; 3899 pgdat = zone->zone_pgdat; 3900 3901 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3902 pgdat->kswapd_classzone_idx = classzone_idx; 3903 else 3904 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3905 classzone_idx); 3906 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3907 if (!waitqueue_active(&pgdat->kswapd_wait)) 3908 return; 3909 3910 /* Hopeless node, leave it to direct reclaim if possible */ 3911 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3912 (pgdat_balanced(pgdat, order, classzone_idx) && 3913 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3914 /* 3915 * There may be plenty of free memory available, but it's too 3916 * fragmented for high-order allocations. Wake up kcompactd 3917 * and rely on compaction_suitable() to determine if it's 3918 * needed. If it fails, it will defer subsequent attempts to 3919 * ratelimit its work. 3920 */ 3921 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3922 wakeup_kcompactd(pgdat, order, classzone_idx); 3923 return; 3924 } 3925 3926 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3927 gfp_flags); 3928 wake_up_interruptible(&pgdat->kswapd_wait); 3929 } 3930 3931 #ifdef CONFIG_HIBERNATION 3932 /* 3933 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3934 * freed pages. 3935 * 3936 * Rather than trying to age LRUs the aim is to preserve the overall 3937 * LRU order by reclaiming preferentially 3938 * inactive > active > active referenced > active mapped 3939 */ 3940 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3941 { 3942 struct scan_control sc = { 3943 .nr_to_reclaim = nr_to_reclaim, 3944 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3945 .reclaim_idx = MAX_NR_ZONES - 1, 3946 .priority = DEF_PRIORITY, 3947 .may_writepage = 1, 3948 .may_unmap = 1, 3949 .may_swap = 1, 3950 .hibernation_mode = 1, 3951 }; 3952 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3953 unsigned long nr_reclaimed; 3954 unsigned int noreclaim_flag; 3955 3956 fs_reclaim_acquire(sc.gfp_mask); 3957 noreclaim_flag = memalloc_noreclaim_save(); 3958 set_task_reclaim_state(current, &sc.reclaim_state); 3959 3960 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3961 3962 set_task_reclaim_state(current, NULL); 3963 memalloc_noreclaim_restore(noreclaim_flag); 3964 fs_reclaim_release(sc.gfp_mask); 3965 3966 return nr_reclaimed; 3967 } 3968 #endif /* CONFIG_HIBERNATION */ 3969 3970 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3971 not required for correctness. So if the last cpu in a node goes 3972 away, we get changed to run anywhere: as the first one comes back, 3973 restore their cpu bindings. */ 3974 static int kswapd_cpu_online(unsigned int cpu) 3975 { 3976 int nid; 3977 3978 for_each_node_state(nid, N_MEMORY) { 3979 pg_data_t *pgdat = NODE_DATA(nid); 3980 const struct cpumask *mask; 3981 3982 mask = cpumask_of_node(pgdat->node_id); 3983 3984 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3985 /* One of our CPUs online: restore mask */ 3986 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3987 } 3988 return 0; 3989 } 3990 3991 /* 3992 * This kswapd start function will be called by init and node-hot-add. 3993 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3994 */ 3995 int kswapd_run(int nid) 3996 { 3997 pg_data_t *pgdat = NODE_DATA(nid); 3998 int ret = 0; 3999 4000 if (pgdat->kswapd) 4001 return 0; 4002 4003 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4004 if (IS_ERR(pgdat->kswapd)) { 4005 /* failure at boot is fatal */ 4006 BUG_ON(system_state < SYSTEM_RUNNING); 4007 pr_err("Failed to start kswapd on node %d\n", nid); 4008 ret = PTR_ERR(pgdat->kswapd); 4009 pgdat->kswapd = NULL; 4010 } 4011 return ret; 4012 } 4013 4014 /* 4015 * Called by memory hotplug when all memory in a node is offlined. Caller must 4016 * hold mem_hotplug_begin/end(). 4017 */ 4018 void kswapd_stop(int nid) 4019 { 4020 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4021 4022 if (kswapd) { 4023 kthread_stop(kswapd); 4024 NODE_DATA(nid)->kswapd = NULL; 4025 } 4026 } 4027 4028 static int __init kswapd_init(void) 4029 { 4030 int nid, ret; 4031 4032 swap_setup(); 4033 for_each_node_state(nid, N_MEMORY) 4034 kswapd_run(nid); 4035 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4036 "mm/vmscan:online", kswapd_cpu_online, 4037 NULL); 4038 WARN_ON(ret < 0); 4039 return 0; 4040 } 4041 4042 module_init(kswapd_init) 4043 4044 #ifdef CONFIG_NUMA 4045 /* 4046 * Node reclaim mode 4047 * 4048 * If non-zero call node_reclaim when the number of free pages falls below 4049 * the watermarks. 4050 */ 4051 int node_reclaim_mode __read_mostly; 4052 4053 #define RECLAIM_OFF 0 4054 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4055 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4056 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4057 4058 /* 4059 * Priority for NODE_RECLAIM. This determines the fraction of pages 4060 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4061 * a zone. 4062 */ 4063 #define NODE_RECLAIM_PRIORITY 4 4064 4065 /* 4066 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4067 * occur. 4068 */ 4069 int sysctl_min_unmapped_ratio = 1; 4070 4071 /* 4072 * If the number of slab pages in a zone grows beyond this percentage then 4073 * slab reclaim needs to occur. 4074 */ 4075 int sysctl_min_slab_ratio = 5; 4076 4077 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4078 { 4079 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4080 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4081 node_page_state(pgdat, NR_ACTIVE_FILE); 4082 4083 /* 4084 * It's possible for there to be more file mapped pages than 4085 * accounted for by the pages on the file LRU lists because 4086 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4087 */ 4088 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4089 } 4090 4091 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4092 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4093 { 4094 unsigned long nr_pagecache_reclaimable; 4095 unsigned long delta = 0; 4096 4097 /* 4098 * If RECLAIM_UNMAP is set, then all file pages are considered 4099 * potentially reclaimable. Otherwise, we have to worry about 4100 * pages like swapcache and node_unmapped_file_pages() provides 4101 * a better estimate 4102 */ 4103 if (node_reclaim_mode & RECLAIM_UNMAP) 4104 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4105 else 4106 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4107 4108 /* If we can't clean pages, remove dirty pages from consideration */ 4109 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4110 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4111 4112 /* Watch for any possible underflows due to delta */ 4113 if (unlikely(delta > nr_pagecache_reclaimable)) 4114 delta = nr_pagecache_reclaimable; 4115 4116 return nr_pagecache_reclaimable - delta; 4117 } 4118 4119 /* 4120 * Try to free up some pages from this node through reclaim. 4121 */ 4122 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4123 { 4124 /* Minimum pages needed in order to stay on node */ 4125 const unsigned long nr_pages = 1 << order; 4126 struct task_struct *p = current; 4127 unsigned int noreclaim_flag; 4128 struct scan_control sc = { 4129 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4130 .gfp_mask = current_gfp_context(gfp_mask), 4131 .order = order, 4132 .priority = NODE_RECLAIM_PRIORITY, 4133 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4134 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4135 .may_swap = 1, 4136 .reclaim_idx = gfp_zone(gfp_mask), 4137 }; 4138 4139 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4140 sc.gfp_mask); 4141 4142 cond_resched(); 4143 fs_reclaim_acquire(sc.gfp_mask); 4144 /* 4145 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4146 * and we also need to be able to write out pages for RECLAIM_WRITE 4147 * and RECLAIM_UNMAP. 4148 */ 4149 noreclaim_flag = memalloc_noreclaim_save(); 4150 p->flags |= PF_SWAPWRITE; 4151 set_task_reclaim_state(p, &sc.reclaim_state); 4152 4153 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4154 /* 4155 * Free memory by calling shrink node with increasing 4156 * priorities until we have enough memory freed. 4157 */ 4158 do { 4159 shrink_node(pgdat, &sc); 4160 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4161 } 4162 4163 set_task_reclaim_state(p, NULL); 4164 current->flags &= ~PF_SWAPWRITE; 4165 memalloc_noreclaim_restore(noreclaim_flag); 4166 fs_reclaim_release(sc.gfp_mask); 4167 4168 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4169 4170 return sc.nr_reclaimed >= nr_pages; 4171 } 4172 4173 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4174 { 4175 int ret; 4176 4177 /* 4178 * Node reclaim reclaims unmapped file backed pages and 4179 * slab pages if we are over the defined limits. 4180 * 4181 * A small portion of unmapped file backed pages is needed for 4182 * file I/O otherwise pages read by file I/O will be immediately 4183 * thrown out if the node is overallocated. So we do not reclaim 4184 * if less than a specified percentage of the node is used by 4185 * unmapped file backed pages. 4186 */ 4187 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4188 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4189 return NODE_RECLAIM_FULL; 4190 4191 /* 4192 * Do not scan if the allocation should not be delayed. 4193 */ 4194 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4195 return NODE_RECLAIM_NOSCAN; 4196 4197 /* 4198 * Only run node reclaim on the local node or on nodes that do not 4199 * have associated processors. This will favor the local processor 4200 * over remote processors and spread off node memory allocations 4201 * as wide as possible. 4202 */ 4203 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4204 return NODE_RECLAIM_NOSCAN; 4205 4206 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4207 return NODE_RECLAIM_NOSCAN; 4208 4209 ret = __node_reclaim(pgdat, gfp_mask, order); 4210 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4211 4212 if (!ret) 4213 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4214 4215 return ret; 4216 } 4217 #endif 4218 4219 /* 4220 * page_evictable - test whether a page is evictable 4221 * @page: the page to test 4222 * 4223 * Test whether page is evictable--i.e., should be placed on active/inactive 4224 * lists vs unevictable list. 4225 * 4226 * Reasons page might not be evictable: 4227 * (1) page's mapping marked unevictable 4228 * (2) page is part of an mlocked VMA 4229 * 4230 */ 4231 int page_evictable(struct page *page) 4232 { 4233 int ret; 4234 4235 /* Prevent address_space of inode and swap cache from being freed */ 4236 rcu_read_lock(); 4237 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4238 rcu_read_unlock(); 4239 return ret; 4240 } 4241 4242 /** 4243 * check_move_unevictable_pages - check pages for evictability and move to 4244 * appropriate zone lru list 4245 * @pvec: pagevec with lru pages to check 4246 * 4247 * Checks pages for evictability, if an evictable page is in the unevictable 4248 * lru list, moves it to the appropriate evictable lru list. This function 4249 * should be only used for lru pages. 4250 */ 4251 void check_move_unevictable_pages(struct pagevec *pvec) 4252 { 4253 struct lruvec *lruvec; 4254 struct pglist_data *pgdat = NULL; 4255 int pgscanned = 0; 4256 int pgrescued = 0; 4257 int i; 4258 4259 for (i = 0; i < pvec->nr; i++) { 4260 struct page *page = pvec->pages[i]; 4261 struct pglist_data *pagepgdat = page_pgdat(page); 4262 4263 pgscanned++; 4264 if (pagepgdat != pgdat) { 4265 if (pgdat) 4266 spin_unlock_irq(&pgdat->lru_lock); 4267 pgdat = pagepgdat; 4268 spin_lock_irq(&pgdat->lru_lock); 4269 } 4270 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4271 4272 if (!PageLRU(page) || !PageUnevictable(page)) 4273 continue; 4274 4275 if (page_evictable(page)) { 4276 enum lru_list lru = page_lru_base_type(page); 4277 4278 VM_BUG_ON_PAGE(PageActive(page), page); 4279 ClearPageUnevictable(page); 4280 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4281 add_page_to_lru_list(page, lruvec, lru); 4282 pgrescued++; 4283 } 4284 } 4285 4286 if (pgdat) { 4287 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4288 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4289 spin_unlock_irq(&pgdat->lru_lock); 4290 } 4291 } 4292 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4293