1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmpressure.h> 23 #include <linux/vmstat.h> 24 #include <linux/file.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> /* for try_to_release_page(), 28 buffer_heads_over_limit */ 29 #include <linux/mm_inline.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 #include <linux/oom.h> 45 #include <linux/prefetch.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 50 #include <linux/swapops.h> 51 52 #include "internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/vmscan.h> 56 57 struct scan_control { 58 /* Incremented by the number of inactive pages that were scanned */ 59 unsigned long nr_scanned; 60 61 /* Number of pages freed so far during a call to shrink_zones() */ 62 unsigned long nr_reclaimed; 63 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 unsigned long hibernation_mode; 68 69 /* This context's GFP mask */ 70 gfp_t gfp_mask; 71 72 int may_writepage; 73 74 /* Can mapped pages be reclaimed? */ 75 int may_unmap; 76 77 /* Can pages be swapped as part of reclaim? */ 78 int may_swap; 79 80 int order; 81 82 /* Scan (total_size >> priority) pages at once */ 83 int priority; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Nodemask of nodes allowed by the caller. If NULL, all nodes 93 * are scanned. 94 */ 95 nodemask_t *nodemask; 96 }; 97 98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 99 100 #ifdef ARCH_HAS_PREFETCH 101 #define prefetch_prev_lru_page(_page, _base, _field) \ 102 do { \ 103 if ((_page)->lru.prev != _base) { \ 104 struct page *prev; \ 105 \ 106 prev = lru_to_page(&(_page->lru)); \ 107 prefetch(&prev->_field); \ 108 } \ 109 } while (0) 110 #else 111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 112 #endif 113 114 #ifdef ARCH_HAS_PREFETCHW 115 #define prefetchw_prev_lru_page(_page, _base, _field) \ 116 do { \ 117 if ((_page)->lru.prev != _base) { \ 118 struct page *prev; \ 119 \ 120 prev = lru_to_page(&(_page->lru)); \ 121 prefetchw(&prev->_field); \ 122 } \ 123 } while (0) 124 #else 125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 126 #endif 127 128 /* 129 * From 0 .. 100. Higher means more swappy. 130 */ 131 int vm_swappiness = 60; 132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 133 134 static LIST_HEAD(shrinker_list); 135 static DECLARE_RWSEM(shrinker_rwsem); 136 137 #ifdef CONFIG_MEMCG 138 static bool global_reclaim(struct scan_control *sc) 139 { 140 return !sc->target_mem_cgroup; 141 } 142 143 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc) 144 { 145 struct mem_cgroup *root = sc->target_mem_cgroup; 146 return !mem_cgroup_disabled() && 147 mem_cgroup_soft_reclaim_eligible(root, root) != SKIP_TREE; 148 } 149 #else 150 static bool global_reclaim(struct scan_control *sc) 151 { 152 return true; 153 } 154 155 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc) 156 { 157 return false; 158 } 159 #endif 160 161 unsigned long zone_reclaimable_pages(struct zone *zone) 162 { 163 int nr; 164 165 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 166 zone_page_state(zone, NR_INACTIVE_FILE); 167 168 if (get_nr_swap_pages() > 0) 169 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 170 zone_page_state(zone, NR_INACTIVE_ANON); 171 172 return nr; 173 } 174 175 bool zone_reclaimable(struct zone *zone) 176 { 177 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 178 } 179 180 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 181 { 182 if (!mem_cgroup_disabled()) 183 return mem_cgroup_get_lru_size(lruvec, lru); 184 185 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 186 } 187 188 /* 189 * Add a shrinker callback to be called from the vm. 190 */ 191 int register_shrinker(struct shrinker *shrinker) 192 { 193 size_t size = sizeof(*shrinker->nr_deferred); 194 195 /* 196 * If we only have one possible node in the system anyway, save 197 * ourselves the trouble and disable NUMA aware behavior. This way we 198 * will save memory and some small loop time later. 199 */ 200 if (nr_node_ids == 1) 201 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 202 203 if (shrinker->flags & SHRINKER_NUMA_AWARE) 204 size *= nr_node_ids; 205 206 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 207 if (!shrinker->nr_deferred) 208 return -ENOMEM; 209 210 down_write(&shrinker_rwsem); 211 list_add_tail(&shrinker->list, &shrinker_list); 212 up_write(&shrinker_rwsem); 213 return 0; 214 } 215 EXPORT_SYMBOL(register_shrinker); 216 217 /* 218 * Remove one 219 */ 220 void unregister_shrinker(struct shrinker *shrinker) 221 { 222 down_write(&shrinker_rwsem); 223 list_del(&shrinker->list); 224 up_write(&shrinker_rwsem); 225 } 226 EXPORT_SYMBOL(unregister_shrinker); 227 228 #define SHRINK_BATCH 128 229 230 static unsigned long 231 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, 232 unsigned long nr_pages_scanned, unsigned long lru_pages) 233 { 234 unsigned long freed = 0; 235 unsigned long long delta; 236 long total_scan; 237 long max_pass; 238 long nr; 239 long new_nr; 240 int nid = shrinkctl->nid; 241 long batch_size = shrinker->batch ? shrinker->batch 242 : SHRINK_BATCH; 243 244 max_pass = shrinker->count_objects(shrinker, shrinkctl); 245 if (max_pass == 0) 246 return 0; 247 248 /* 249 * copy the current shrinker scan count into a local variable 250 * and zero it so that other concurrent shrinker invocations 251 * don't also do this scanning work. 252 */ 253 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 254 255 total_scan = nr; 256 delta = (4 * nr_pages_scanned) / shrinker->seeks; 257 delta *= max_pass; 258 do_div(delta, lru_pages + 1); 259 total_scan += delta; 260 if (total_scan < 0) { 261 printk(KERN_ERR 262 "shrink_slab: %pF negative objects to delete nr=%ld\n", 263 shrinker->scan_objects, total_scan); 264 total_scan = max_pass; 265 } 266 267 /* 268 * We need to avoid excessive windup on filesystem shrinkers 269 * due to large numbers of GFP_NOFS allocations causing the 270 * shrinkers to return -1 all the time. This results in a large 271 * nr being built up so when a shrink that can do some work 272 * comes along it empties the entire cache due to nr >>> 273 * max_pass. This is bad for sustaining a working set in 274 * memory. 275 * 276 * Hence only allow the shrinker to scan the entire cache when 277 * a large delta change is calculated directly. 278 */ 279 if (delta < max_pass / 4) 280 total_scan = min(total_scan, max_pass / 2); 281 282 /* 283 * Avoid risking looping forever due to too large nr value: 284 * never try to free more than twice the estimate number of 285 * freeable entries. 286 */ 287 if (total_scan > max_pass * 2) 288 total_scan = max_pass * 2; 289 290 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 291 nr_pages_scanned, lru_pages, 292 max_pass, delta, total_scan); 293 294 while (total_scan >= batch_size) { 295 unsigned long ret; 296 297 shrinkctl->nr_to_scan = batch_size; 298 ret = shrinker->scan_objects(shrinker, shrinkctl); 299 if (ret == SHRINK_STOP) 300 break; 301 freed += ret; 302 303 count_vm_events(SLABS_SCANNED, batch_size); 304 total_scan -= batch_size; 305 306 cond_resched(); 307 } 308 309 /* 310 * move the unused scan count back into the shrinker in a 311 * manner that handles concurrent updates. If we exhausted the 312 * scan, there is no need to do an update. 313 */ 314 if (total_scan > 0) 315 new_nr = atomic_long_add_return(total_scan, 316 &shrinker->nr_deferred[nid]); 317 else 318 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 319 320 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr); 321 return freed; 322 } 323 324 /* 325 * Call the shrink functions to age shrinkable caches 326 * 327 * Here we assume it costs one seek to replace a lru page and that it also 328 * takes a seek to recreate a cache object. With this in mind we age equal 329 * percentages of the lru and ageable caches. This should balance the seeks 330 * generated by these structures. 331 * 332 * If the vm encountered mapped pages on the LRU it increase the pressure on 333 * slab to avoid swapping. 334 * 335 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 336 * 337 * `lru_pages' represents the number of on-LRU pages in all the zones which 338 * are eligible for the caller's allocation attempt. It is used for balancing 339 * slab reclaim versus page reclaim. 340 * 341 * Returns the number of slab objects which we shrunk. 342 */ 343 unsigned long shrink_slab(struct shrink_control *shrinkctl, 344 unsigned long nr_pages_scanned, 345 unsigned long lru_pages) 346 { 347 struct shrinker *shrinker; 348 unsigned long freed = 0; 349 350 if (nr_pages_scanned == 0) 351 nr_pages_scanned = SWAP_CLUSTER_MAX; 352 353 if (!down_read_trylock(&shrinker_rwsem)) { 354 /* 355 * If we would return 0, our callers would understand that we 356 * have nothing else to shrink and give up trying. By returning 357 * 1 we keep it going and assume we'll be able to shrink next 358 * time. 359 */ 360 freed = 1; 361 goto out; 362 } 363 364 list_for_each_entry(shrinker, &shrinker_list, list) { 365 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { 366 if (!node_online(shrinkctl->nid)) 367 continue; 368 369 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) && 370 (shrinkctl->nid != 0)) 371 break; 372 373 freed += shrink_slab_node(shrinkctl, shrinker, 374 nr_pages_scanned, lru_pages); 375 376 } 377 } 378 up_read(&shrinker_rwsem); 379 out: 380 cond_resched(); 381 return freed; 382 } 383 384 static inline int is_page_cache_freeable(struct page *page) 385 { 386 /* 387 * A freeable page cache page is referenced only by the caller 388 * that isolated the page, the page cache radix tree and 389 * optional buffer heads at page->private. 390 */ 391 return page_count(page) - page_has_private(page) == 2; 392 } 393 394 static int may_write_to_queue(struct backing_dev_info *bdi, 395 struct scan_control *sc) 396 { 397 if (current->flags & PF_SWAPWRITE) 398 return 1; 399 if (!bdi_write_congested(bdi)) 400 return 1; 401 if (bdi == current->backing_dev_info) 402 return 1; 403 return 0; 404 } 405 406 /* 407 * We detected a synchronous write error writing a page out. Probably 408 * -ENOSPC. We need to propagate that into the address_space for a subsequent 409 * fsync(), msync() or close(). 410 * 411 * The tricky part is that after writepage we cannot touch the mapping: nothing 412 * prevents it from being freed up. But we have a ref on the page and once 413 * that page is locked, the mapping is pinned. 414 * 415 * We're allowed to run sleeping lock_page() here because we know the caller has 416 * __GFP_FS. 417 */ 418 static void handle_write_error(struct address_space *mapping, 419 struct page *page, int error) 420 { 421 lock_page(page); 422 if (page_mapping(page) == mapping) 423 mapping_set_error(mapping, error); 424 unlock_page(page); 425 } 426 427 /* possible outcome of pageout() */ 428 typedef enum { 429 /* failed to write page out, page is locked */ 430 PAGE_KEEP, 431 /* move page to the active list, page is locked */ 432 PAGE_ACTIVATE, 433 /* page has been sent to the disk successfully, page is unlocked */ 434 PAGE_SUCCESS, 435 /* page is clean and locked */ 436 PAGE_CLEAN, 437 } pageout_t; 438 439 /* 440 * pageout is called by shrink_page_list() for each dirty page. 441 * Calls ->writepage(). 442 */ 443 static pageout_t pageout(struct page *page, struct address_space *mapping, 444 struct scan_control *sc) 445 { 446 /* 447 * If the page is dirty, only perform writeback if that write 448 * will be non-blocking. To prevent this allocation from being 449 * stalled by pagecache activity. But note that there may be 450 * stalls if we need to run get_block(). We could test 451 * PagePrivate for that. 452 * 453 * If this process is currently in __generic_file_aio_write() against 454 * this page's queue, we can perform writeback even if that 455 * will block. 456 * 457 * If the page is swapcache, write it back even if that would 458 * block, for some throttling. This happens by accident, because 459 * swap_backing_dev_info is bust: it doesn't reflect the 460 * congestion state of the swapdevs. Easy to fix, if needed. 461 */ 462 if (!is_page_cache_freeable(page)) 463 return PAGE_KEEP; 464 if (!mapping) { 465 /* 466 * Some data journaling orphaned pages can have 467 * page->mapping == NULL while being dirty with clean buffers. 468 */ 469 if (page_has_private(page)) { 470 if (try_to_free_buffers(page)) { 471 ClearPageDirty(page); 472 printk("%s: orphaned page\n", __func__); 473 return PAGE_CLEAN; 474 } 475 } 476 return PAGE_KEEP; 477 } 478 if (mapping->a_ops->writepage == NULL) 479 return PAGE_ACTIVATE; 480 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 481 return PAGE_KEEP; 482 483 if (clear_page_dirty_for_io(page)) { 484 int res; 485 struct writeback_control wbc = { 486 .sync_mode = WB_SYNC_NONE, 487 .nr_to_write = SWAP_CLUSTER_MAX, 488 .range_start = 0, 489 .range_end = LLONG_MAX, 490 .for_reclaim = 1, 491 }; 492 493 SetPageReclaim(page); 494 res = mapping->a_ops->writepage(page, &wbc); 495 if (res < 0) 496 handle_write_error(mapping, page, res); 497 if (res == AOP_WRITEPAGE_ACTIVATE) { 498 ClearPageReclaim(page); 499 return PAGE_ACTIVATE; 500 } 501 502 if (!PageWriteback(page)) { 503 /* synchronous write or broken a_ops? */ 504 ClearPageReclaim(page); 505 } 506 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 507 inc_zone_page_state(page, NR_VMSCAN_WRITE); 508 return PAGE_SUCCESS; 509 } 510 511 return PAGE_CLEAN; 512 } 513 514 /* 515 * Same as remove_mapping, but if the page is removed from the mapping, it 516 * gets returned with a refcount of 0. 517 */ 518 static int __remove_mapping(struct address_space *mapping, struct page *page) 519 { 520 BUG_ON(!PageLocked(page)); 521 BUG_ON(mapping != page_mapping(page)); 522 523 spin_lock_irq(&mapping->tree_lock); 524 /* 525 * The non racy check for a busy page. 526 * 527 * Must be careful with the order of the tests. When someone has 528 * a ref to the page, it may be possible that they dirty it then 529 * drop the reference. So if PageDirty is tested before page_count 530 * here, then the following race may occur: 531 * 532 * get_user_pages(&page); 533 * [user mapping goes away] 534 * write_to(page); 535 * !PageDirty(page) [good] 536 * SetPageDirty(page); 537 * put_page(page); 538 * !page_count(page) [good, discard it] 539 * 540 * [oops, our write_to data is lost] 541 * 542 * Reversing the order of the tests ensures such a situation cannot 543 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 544 * load is not satisfied before that of page->_count. 545 * 546 * Note that if SetPageDirty is always performed via set_page_dirty, 547 * and thus under tree_lock, then this ordering is not required. 548 */ 549 if (!page_freeze_refs(page, 2)) 550 goto cannot_free; 551 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 552 if (unlikely(PageDirty(page))) { 553 page_unfreeze_refs(page, 2); 554 goto cannot_free; 555 } 556 557 if (PageSwapCache(page)) { 558 swp_entry_t swap = { .val = page_private(page) }; 559 __delete_from_swap_cache(page); 560 spin_unlock_irq(&mapping->tree_lock); 561 swapcache_free(swap, page); 562 } else { 563 void (*freepage)(struct page *); 564 565 freepage = mapping->a_ops->freepage; 566 567 __delete_from_page_cache(page); 568 spin_unlock_irq(&mapping->tree_lock); 569 mem_cgroup_uncharge_cache_page(page); 570 571 if (freepage != NULL) 572 freepage(page); 573 } 574 575 return 1; 576 577 cannot_free: 578 spin_unlock_irq(&mapping->tree_lock); 579 return 0; 580 } 581 582 /* 583 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 584 * someone else has a ref on the page, abort and return 0. If it was 585 * successfully detached, return 1. Assumes the caller has a single ref on 586 * this page. 587 */ 588 int remove_mapping(struct address_space *mapping, struct page *page) 589 { 590 if (__remove_mapping(mapping, page)) { 591 /* 592 * Unfreezing the refcount with 1 rather than 2 effectively 593 * drops the pagecache ref for us without requiring another 594 * atomic operation. 595 */ 596 page_unfreeze_refs(page, 1); 597 return 1; 598 } 599 return 0; 600 } 601 602 /** 603 * putback_lru_page - put previously isolated page onto appropriate LRU list 604 * @page: page to be put back to appropriate lru list 605 * 606 * Add previously isolated @page to appropriate LRU list. 607 * Page may still be unevictable for other reasons. 608 * 609 * lru_lock must not be held, interrupts must be enabled. 610 */ 611 void putback_lru_page(struct page *page) 612 { 613 bool is_unevictable; 614 int was_unevictable = PageUnevictable(page); 615 616 VM_BUG_ON(PageLRU(page)); 617 618 redo: 619 ClearPageUnevictable(page); 620 621 if (page_evictable(page)) { 622 /* 623 * For evictable pages, we can use the cache. 624 * In event of a race, worst case is we end up with an 625 * unevictable page on [in]active list. 626 * We know how to handle that. 627 */ 628 is_unevictable = false; 629 lru_cache_add(page); 630 } else { 631 /* 632 * Put unevictable pages directly on zone's unevictable 633 * list. 634 */ 635 is_unevictable = true; 636 add_page_to_unevictable_list(page); 637 /* 638 * When racing with an mlock or AS_UNEVICTABLE clearing 639 * (page is unlocked) make sure that if the other thread 640 * does not observe our setting of PG_lru and fails 641 * isolation/check_move_unevictable_pages, 642 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 643 * the page back to the evictable list. 644 * 645 * The other side is TestClearPageMlocked() or shmem_lock(). 646 */ 647 smp_mb(); 648 } 649 650 /* 651 * page's status can change while we move it among lru. If an evictable 652 * page is on unevictable list, it never be freed. To avoid that, 653 * check after we added it to the list, again. 654 */ 655 if (is_unevictable && page_evictable(page)) { 656 if (!isolate_lru_page(page)) { 657 put_page(page); 658 goto redo; 659 } 660 /* This means someone else dropped this page from LRU 661 * So, it will be freed or putback to LRU again. There is 662 * nothing to do here. 663 */ 664 } 665 666 if (was_unevictable && !is_unevictable) 667 count_vm_event(UNEVICTABLE_PGRESCUED); 668 else if (!was_unevictable && is_unevictable) 669 count_vm_event(UNEVICTABLE_PGCULLED); 670 671 put_page(page); /* drop ref from isolate */ 672 } 673 674 enum page_references { 675 PAGEREF_RECLAIM, 676 PAGEREF_RECLAIM_CLEAN, 677 PAGEREF_KEEP, 678 PAGEREF_ACTIVATE, 679 }; 680 681 static enum page_references page_check_references(struct page *page, 682 struct scan_control *sc) 683 { 684 int referenced_ptes, referenced_page; 685 unsigned long vm_flags; 686 687 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 688 &vm_flags); 689 referenced_page = TestClearPageReferenced(page); 690 691 /* 692 * Mlock lost the isolation race with us. Let try_to_unmap() 693 * move the page to the unevictable list. 694 */ 695 if (vm_flags & VM_LOCKED) 696 return PAGEREF_RECLAIM; 697 698 if (referenced_ptes) { 699 if (PageSwapBacked(page)) 700 return PAGEREF_ACTIVATE; 701 /* 702 * All mapped pages start out with page table 703 * references from the instantiating fault, so we need 704 * to look twice if a mapped file page is used more 705 * than once. 706 * 707 * Mark it and spare it for another trip around the 708 * inactive list. Another page table reference will 709 * lead to its activation. 710 * 711 * Note: the mark is set for activated pages as well 712 * so that recently deactivated but used pages are 713 * quickly recovered. 714 */ 715 SetPageReferenced(page); 716 717 if (referenced_page || referenced_ptes > 1) 718 return PAGEREF_ACTIVATE; 719 720 /* 721 * Activate file-backed executable pages after first usage. 722 */ 723 if (vm_flags & VM_EXEC) 724 return PAGEREF_ACTIVATE; 725 726 return PAGEREF_KEEP; 727 } 728 729 /* Reclaim if clean, defer dirty pages to writeback */ 730 if (referenced_page && !PageSwapBacked(page)) 731 return PAGEREF_RECLAIM_CLEAN; 732 733 return PAGEREF_RECLAIM; 734 } 735 736 /* Check if a page is dirty or under writeback */ 737 static void page_check_dirty_writeback(struct page *page, 738 bool *dirty, bool *writeback) 739 { 740 struct address_space *mapping; 741 742 /* 743 * Anonymous pages are not handled by flushers and must be written 744 * from reclaim context. Do not stall reclaim based on them 745 */ 746 if (!page_is_file_cache(page)) { 747 *dirty = false; 748 *writeback = false; 749 return; 750 } 751 752 /* By default assume that the page flags are accurate */ 753 *dirty = PageDirty(page); 754 *writeback = PageWriteback(page); 755 756 /* Verify dirty/writeback state if the filesystem supports it */ 757 if (!page_has_private(page)) 758 return; 759 760 mapping = page_mapping(page); 761 if (mapping && mapping->a_ops->is_dirty_writeback) 762 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 763 } 764 765 /* 766 * shrink_page_list() returns the number of reclaimed pages 767 */ 768 static unsigned long shrink_page_list(struct list_head *page_list, 769 struct zone *zone, 770 struct scan_control *sc, 771 enum ttu_flags ttu_flags, 772 unsigned long *ret_nr_dirty, 773 unsigned long *ret_nr_unqueued_dirty, 774 unsigned long *ret_nr_congested, 775 unsigned long *ret_nr_writeback, 776 unsigned long *ret_nr_immediate, 777 bool force_reclaim) 778 { 779 LIST_HEAD(ret_pages); 780 LIST_HEAD(free_pages); 781 int pgactivate = 0; 782 unsigned long nr_unqueued_dirty = 0; 783 unsigned long nr_dirty = 0; 784 unsigned long nr_congested = 0; 785 unsigned long nr_reclaimed = 0; 786 unsigned long nr_writeback = 0; 787 unsigned long nr_immediate = 0; 788 789 cond_resched(); 790 791 mem_cgroup_uncharge_start(); 792 while (!list_empty(page_list)) { 793 struct address_space *mapping; 794 struct page *page; 795 int may_enter_fs; 796 enum page_references references = PAGEREF_RECLAIM_CLEAN; 797 bool dirty, writeback; 798 799 cond_resched(); 800 801 page = lru_to_page(page_list); 802 list_del(&page->lru); 803 804 if (!trylock_page(page)) 805 goto keep; 806 807 VM_BUG_ON(PageActive(page)); 808 VM_BUG_ON(page_zone(page) != zone); 809 810 sc->nr_scanned++; 811 812 if (unlikely(!page_evictable(page))) 813 goto cull_mlocked; 814 815 if (!sc->may_unmap && page_mapped(page)) 816 goto keep_locked; 817 818 /* Double the slab pressure for mapped and swapcache pages */ 819 if (page_mapped(page) || PageSwapCache(page)) 820 sc->nr_scanned++; 821 822 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 823 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 824 825 /* 826 * The number of dirty pages determines if a zone is marked 827 * reclaim_congested which affects wait_iff_congested. kswapd 828 * will stall and start writing pages if the tail of the LRU 829 * is all dirty unqueued pages. 830 */ 831 page_check_dirty_writeback(page, &dirty, &writeback); 832 if (dirty || writeback) 833 nr_dirty++; 834 835 if (dirty && !writeback) 836 nr_unqueued_dirty++; 837 838 /* 839 * Treat this page as congested if the underlying BDI is or if 840 * pages are cycling through the LRU so quickly that the 841 * pages marked for immediate reclaim are making it to the 842 * end of the LRU a second time. 843 */ 844 mapping = page_mapping(page); 845 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 846 (writeback && PageReclaim(page))) 847 nr_congested++; 848 849 /* 850 * If a page at the tail of the LRU is under writeback, there 851 * are three cases to consider. 852 * 853 * 1) If reclaim is encountering an excessive number of pages 854 * under writeback and this page is both under writeback and 855 * PageReclaim then it indicates that pages are being queued 856 * for IO but are being recycled through the LRU before the 857 * IO can complete. Waiting on the page itself risks an 858 * indefinite stall if it is impossible to writeback the 859 * page due to IO error or disconnected storage so instead 860 * note that the LRU is being scanned too quickly and the 861 * caller can stall after page list has been processed. 862 * 863 * 2) Global reclaim encounters a page, memcg encounters a 864 * page that is not marked for immediate reclaim or 865 * the caller does not have __GFP_IO. In this case mark 866 * the page for immediate reclaim and continue scanning. 867 * 868 * __GFP_IO is checked because a loop driver thread might 869 * enter reclaim, and deadlock if it waits on a page for 870 * which it is needed to do the write (loop masks off 871 * __GFP_IO|__GFP_FS for this reason); but more thought 872 * would probably show more reasons. 873 * 874 * Don't require __GFP_FS, since we're not going into the 875 * FS, just waiting on its writeback completion. Worryingly, 876 * ext4 gfs2 and xfs allocate pages with 877 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 878 * may_enter_fs here is liable to OOM on them. 879 * 880 * 3) memcg encounters a page that is not already marked 881 * PageReclaim. memcg does not have any dirty pages 882 * throttling so we could easily OOM just because too many 883 * pages are in writeback and there is nothing else to 884 * reclaim. Wait for the writeback to complete. 885 */ 886 if (PageWriteback(page)) { 887 /* Case 1 above */ 888 if (current_is_kswapd() && 889 PageReclaim(page) && 890 zone_is_reclaim_writeback(zone)) { 891 nr_immediate++; 892 goto keep_locked; 893 894 /* Case 2 above */ 895 } else if (global_reclaim(sc) || 896 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 897 /* 898 * This is slightly racy - end_page_writeback() 899 * might have just cleared PageReclaim, then 900 * setting PageReclaim here end up interpreted 901 * as PageReadahead - but that does not matter 902 * enough to care. What we do want is for this 903 * page to have PageReclaim set next time memcg 904 * reclaim reaches the tests above, so it will 905 * then wait_on_page_writeback() to avoid OOM; 906 * and it's also appropriate in global reclaim. 907 */ 908 SetPageReclaim(page); 909 nr_writeback++; 910 911 goto keep_locked; 912 913 /* Case 3 above */ 914 } else { 915 wait_on_page_writeback(page); 916 } 917 } 918 919 if (!force_reclaim) 920 references = page_check_references(page, sc); 921 922 switch (references) { 923 case PAGEREF_ACTIVATE: 924 goto activate_locked; 925 case PAGEREF_KEEP: 926 goto keep_locked; 927 case PAGEREF_RECLAIM: 928 case PAGEREF_RECLAIM_CLEAN: 929 ; /* try to reclaim the page below */ 930 } 931 932 /* 933 * Anonymous process memory has backing store? 934 * Try to allocate it some swap space here. 935 */ 936 if (PageAnon(page) && !PageSwapCache(page)) { 937 if (!(sc->gfp_mask & __GFP_IO)) 938 goto keep_locked; 939 if (!add_to_swap(page, page_list)) 940 goto activate_locked; 941 may_enter_fs = 1; 942 943 /* Adding to swap updated mapping */ 944 mapping = page_mapping(page); 945 } 946 947 /* 948 * The page is mapped into the page tables of one or more 949 * processes. Try to unmap it here. 950 */ 951 if (page_mapped(page) && mapping) { 952 switch (try_to_unmap(page, ttu_flags)) { 953 case SWAP_FAIL: 954 goto activate_locked; 955 case SWAP_AGAIN: 956 goto keep_locked; 957 case SWAP_MLOCK: 958 goto cull_mlocked; 959 case SWAP_SUCCESS: 960 ; /* try to free the page below */ 961 } 962 } 963 964 if (PageDirty(page)) { 965 /* 966 * Only kswapd can writeback filesystem pages to 967 * avoid risk of stack overflow but only writeback 968 * if many dirty pages have been encountered. 969 */ 970 if (page_is_file_cache(page) && 971 (!current_is_kswapd() || 972 !zone_is_reclaim_dirty(zone))) { 973 /* 974 * Immediately reclaim when written back. 975 * Similar in principal to deactivate_page() 976 * except we already have the page isolated 977 * and know it's dirty 978 */ 979 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 980 SetPageReclaim(page); 981 982 goto keep_locked; 983 } 984 985 if (references == PAGEREF_RECLAIM_CLEAN) 986 goto keep_locked; 987 if (!may_enter_fs) 988 goto keep_locked; 989 if (!sc->may_writepage) 990 goto keep_locked; 991 992 /* Page is dirty, try to write it out here */ 993 switch (pageout(page, mapping, sc)) { 994 case PAGE_KEEP: 995 goto keep_locked; 996 case PAGE_ACTIVATE: 997 goto activate_locked; 998 case PAGE_SUCCESS: 999 if (PageWriteback(page)) 1000 goto keep; 1001 if (PageDirty(page)) 1002 goto keep; 1003 1004 /* 1005 * A synchronous write - probably a ramdisk. Go 1006 * ahead and try to reclaim the page. 1007 */ 1008 if (!trylock_page(page)) 1009 goto keep; 1010 if (PageDirty(page) || PageWriteback(page)) 1011 goto keep_locked; 1012 mapping = page_mapping(page); 1013 case PAGE_CLEAN: 1014 ; /* try to free the page below */ 1015 } 1016 } 1017 1018 /* 1019 * If the page has buffers, try to free the buffer mappings 1020 * associated with this page. If we succeed we try to free 1021 * the page as well. 1022 * 1023 * We do this even if the page is PageDirty(). 1024 * try_to_release_page() does not perform I/O, but it is 1025 * possible for a page to have PageDirty set, but it is actually 1026 * clean (all its buffers are clean). This happens if the 1027 * buffers were written out directly, with submit_bh(). ext3 1028 * will do this, as well as the blockdev mapping. 1029 * try_to_release_page() will discover that cleanness and will 1030 * drop the buffers and mark the page clean - it can be freed. 1031 * 1032 * Rarely, pages can have buffers and no ->mapping. These are 1033 * the pages which were not successfully invalidated in 1034 * truncate_complete_page(). We try to drop those buffers here 1035 * and if that worked, and the page is no longer mapped into 1036 * process address space (page_count == 1) it can be freed. 1037 * Otherwise, leave the page on the LRU so it is swappable. 1038 */ 1039 if (page_has_private(page)) { 1040 if (!try_to_release_page(page, sc->gfp_mask)) 1041 goto activate_locked; 1042 if (!mapping && page_count(page) == 1) { 1043 unlock_page(page); 1044 if (put_page_testzero(page)) 1045 goto free_it; 1046 else { 1047 /* 1048 * rare race with speculative reference. 1049 * the speculative reference will free 1050 * this page shortly, so we may 1051 * increment nr_reclaimed here (and 1052 * leave it off the LRU). 1053 */ 1054 nr_reclaimed++; 1055 continue; 1056 } 1057 } 1058 } 1059 1060 if (!mapping || !__remove_mapping(mapping, page)) 1061 goto keep_locked; 1062 1063 /* 1064 * At this point, we have no other references and there is 1065 * no way to pick any more up (removed from LRU, removed 1066 * from pagecache). Can use non-atomic bitops now (and 1067 * we obviously don't have to worry about waking up a process 1068 * waiting on the page lock, because there are no references. 1069 */ 1070 __clear_page_locked(page); 1071 free_it: 1072 nr_reclaimed++; 1073 1074 /* 1075 * Is there need to periodically free_page_list? It would 1076 * appear not as the counts should be low 1077 */ 1078 list_add(&page->lru, &free_pages); 1079 continue; 1080 1081 cull_mlocked: 1082 if (PageSwapCache(page)) 1083 try_to_free_swap(page); 1084 unlock_page(page); 1085 putback_lru_page(page); 1086 continue; 1087 1088 activate_locked: 1089 /* Not a candidate for swapping, so reclaim swap space. */ 1090 if (PageSwapCache(page) && vm_swap_full()) 1091 try_to_free_swap(page); 1092 VM_BUG_ON(PageActive(page)); 1093 SetPageActive(page); 1094 pgactivate++; 1095 keep_locked: 1096 unlock_page(page); 1097 keep: 1098 list_add(&page->lru, &ret_pages); 1099 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 1100 } 1101 1102 free_hot_cold_page_list(&free_pages, 1); 1103 1104 list_splice(&ret_pages, page_list); 1105 count_vm_events(PGACTIVATE, pgactivate); 1106 mem_cgroup_uncharge_end(); 1107 *ret_nr_dirty += nr_dirty; 1108 *ret_nr_congested += nr_congested; 1109 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1110 *ret_nr_writeback += nr_writeback; 1111 *ret_nr_immediate += nr_immediate; 1112 return nr_reclaimed; 1113 } 1114 1115 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1116 struct list_head *page_list) 1117 { 1118 struct scan_control sc = { 1119 .gfp_mask = GFP_KERNEL, 1120 .priority = DEF_PRIORITY, 1121 .may_unmap = 1, 1122 }; 1123 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1124 struct page *page, *next; 1125 LIST_HEAD(clean_pages); 1126 1127 list_for_each_entry_safe(page, next, page_list, lru) { 1128 if (page_is_file_cache(page) && !PageDirty(page)) { 1129 ClearPageActive(page); 1130 list_move(&page->lru, &clean_pages); 1131 } 1132 } 1133 1134 ret = shrink_page_list(&clean_pages, zone, &sc, 1135 TTU_UNMAP|TTU_IGNORE_ACCESS, 1136 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1137 list_splice(&clean_pages, page_list); 1138 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1139 return ret; 1140 } 1141 1142 /* 1143 * Attempt to remove the specified page from its LRU. Only take this page 1144 * if it is of the appropriate PageActive status. Pages which are being 1145 * freed elsewhere are also ignored. 1146 * 1147 * page: page to consider 1148 * mode: one of the LRU isolation modes defined above 1149 * 1150 * returns 0 on success, -ve errno on failure. 1151 */ 1152 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1153 { 1154 int ret = -EINVAL; 1155 1156 /* Only take pages on the LRU. */ 1157 if (!PageLRU(page)) 1158 return ret; 1159 1160 /* Compaction should not handle unevictable pages but CMA can do so */ 1161 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1162 return ret; 1163 1164 ret = -EBUSY; 1165 1166 /* 1167 * To minimise LRU disruption, the caller can indicate that it only 1168 * wants to isolate pages it will be able to operate on without 1169 * blocking - clean pages for the most part. 1170 * 1171 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1172 * is used by reclaim when it is cannot write to backing storage 1173 * 1174 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1175 * that it is possible to migrate without blocking 1176 */ 1177 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1178 /* All the caller can do on PageWriteback is block */ 1179 if (PageWriteback(page)) 1180 return ret; 1181 1182 if (PageDirty(page)) { 1183 struct address_space *mapping; 1184 1185 /* ISOLATE_CLEAN means only clean pages */ 1186 if (mode & ISOLATE_CLEAN) 1187 return ret; 1188 1189 /* 1190 * Only pages without mappings or that have a 1191 * ->migratepage callback are possible to migrate 1192 * without blocking 1193 */ 1194 mapping = page_mapping(page); 1195 if (mapping && !mapping->a_ops->migratepage) 1196 return ret; 1197 } 1198 } 1199 1200 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1201 return ret; 1202 1203 if (likely(get_page_unless_zero(page))) { 1204 /* 1205 * Be careful not to clear PageLRU until after we're 1206 * sure the page is not being freed elsewhere -- the 1207 * page release code relies on it. 1208 */ 1209 ClearPageLRU(page); 1210 ret = 0; 1211 } 1212 1213 return ret; 1214 } 1215 1216 /* 1217 * zone->lru_lock is heavily contended. Some of the functions that 1218 * shrink the lists perform better by taking out a batch of pages 1219 * and working on them outside the LRU lock. 1220 * 1221 * For pagecache intensive workloads, this function is the hottest 1222 * spot in the kernel (apart from copy_*_user functions). 1223 * 1224 * Appropriate locks must be held before calling this function. 1225 * 1226 * @nr_to_scan: The number of pages to look through on the list. 1227 * @lruvec: The LRU vector to pull pages from. 1228 * @dst: The temp list to put pages on to. 1229 * @nr_scanned: The number of pages that were scanned. 1230 * @sc: The scan_control struct for this reclaim session 1231 * @mode: One of the LRU isolation modes 1232 * @lru: LRU list id for isolating 1233 * 1234 * returns how many pages were moved onto *@dst. 1235 */ 1236 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1237 struct lruvec *lruvec, struct list_head *dst, 1238 unsigned long *nr_scanned, struct scan_control *sc, 1239 isolate_mode_t mode, enum lru_list lru) 1240 { 1241 struct list_head *src = &lruvec->lists[lru]; 1242 unsigned long nr_taken = 0; 1243 unsigned long scan; 1244 1245 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1246 struct page *page; 1247 int nr_pages; 1248 1249 page = lru_to_page(src); 1250 prefetchw_prev_lru_page(page, src, flags); 1251 1252 VM_BUG_ON(!PageLRU(page)); 1253 1254 switch (__isolate_lru_page(page, mode)) { 1255 case 0: 1256 nr_pages = hpage_nr_pages(page); 1257 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1258 list_move(&page->lru, dst); 1259 nr_taken += nr_pages; 1260 break; 1261 1262 case -EBUSY: 1263 /* else it is being freed elsewhere */ 1264 list_move(&page->lru, src); 1265 continue; 1266 1267 default: 1268 BUG(); 1269 } 1270 } 1271 1272 *nr_scanned = scan; 1273 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1274 nr_taken, mode, is_file_lru(lru)); 1275 return nr_taken; 1276 } 1277 1278 /** 1279 * isolate_lru_page - tries to isolate a page from its LRU list 1280 * @page: page to isolate from its LRU list 1281 * 1282 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1283 * vmstat statistic corresponding to whatever LRU list the page was on. 1284 * 1285 * Returns 0 if the page was removed from an LRU list. 1286 * Returns -EBUSY if the page was not on an LRU list. 1287 * 1288 * The returned page will have PageLRU() cleared. If it was found on 1289 * the active list, it will have PageActive set. If it was found on 1290 * the unevictable list, it will have the PageUnevictable bit set. That flag 1291 * may need to be cleared by the caller before letting the page go. 1292 * 1293 * The vmstat statistic corresponding to the list on which the page was 1294 * found will be decremented. 1295 * 1296 * Restrictions: 1297 * (1) Must be called with an elevated refcount on the page. This is a 1298 * fundamentnal difference from isolate_lru_pages (which is called 1299 * without a stable reference). 1300 * (2) the lru_lock must not be held. 1301 * (3) interrupts must be enabled. 1302 */ 1303 int isolate_lru_page(struct page *page) 1304 { 1305 int ret = -EBUSY; 1306 1307 VM_BUG_ON(!page_count(page)); 1308 1309 if (PageLRU(page)) { 1310 struct zone *zone = page_zone(page); 1311 struct lruvec *lruvec; 1312 1313 spin_lock_irq(&zone->lru_lock); 1314 lruvec = mem_cgroup_page_lruvec(page, zone); 1315 if (PageLRU(page)) { 1316 int lru = page_lru(page); 1317 get_page(page); 1318 ClearPageLRU(page); 1319 del_page_from_lru_list(page, lruvec, lru); 1320 ret = 0; 1321 } 1322 spin_unlock_irq(&zone->lru_lock); 1323 } 1324 return ret; 1325 } 1326 1327 /* 1328 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1329 * then get resheduled. When there are massive number of tasks doing page 1330 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1331 * the LRU list will go small and be scanned faster than necessary, leading to 1332 * unnecessary swapping, thrashing and OOM. 1333 */ 1334 static int too_many_isolated(struct zone *zone, int file, 1335 struct scan_control *sc) 1336 { 1337 unsigned long inactive, isolated; 1338 1339 if (current_is_kswapd()) 1340 return 0; 1341 1342 if (!global_reclaim(sc)) 1343 return 0; 1344 1345 if (file) { 1346 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1347 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1348 } else { 1349 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1350 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1351 } 1352 1353 /* 1354 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1355 * won't get blocked by normal direct-reclaimers, forming a circular 1356 * deadlock. 1357 */ 1358 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1359 inactive >>= 3; 1360 1361 return isolated > inactive; 1362 } 1363 1364 static noinline_for_stack void 1365 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1366 { 1367 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1368 struct zone *zone = lruvec_zone(lruvec); 1369 LIST_HEAD(pages_to_free); 1370 1371 /* 1372 * Put back any unfreeable pages. 1373 */ 1374 while (!list_empty(page_list)) { 1375 struct page *page = lru_to_page(page_list); 1376 int lru; 1377 1378 VM_BUG_ON(PageLRU(page)); 1379 list_del(&page->lru); 1380 if (unlikely(!page_evictable(page))) { 1381 spin_unlock_irq(&zone->lru_lock); 1382 putback_lru_page(page); 1383 spin_lock_irq(&zone->lru_lock); 1384 continue; 1385 } 1386 1387 lruvec = mem_cgroup_page_lruvec(page, zone); 1388 1389 SetPageLRU(page); 1390 lru = page_lru(page); 1391 add_page_to_lru_list(page, lruvec, lru); 1392 1393 if (is_active_lru(lru)) { 1394 int file = is_file_lru(lru); 1395 int numpages = hpage_nr_pages(page); 1396 reclaim_stat->recent_rotated[file] += numpages; 1397 } 1398 if (put_page_testzero(page)) { 1399 __ClearPageLRU(page); 1400 __ClearPageActive(page); 1401 del_page_from_lru_list(page, lruvec, lru); 1402 1403 if (unlikely(PageCompound(page))) { 1404 spin_unlock_irq(&zone->lru_lock); 1405 (*get_compound_page_dtor(page))(page); 1406 spin_lock_irq(&zone->lru_lock); 1407 } else 1408 list_add(&page->lru, &pages_to_free); 1409 } 1410 } 1411 1412 /* 1413 * To save our caller's stack, now use input list for pages to free. 1414 */ 1415 list_splice(&pages_to_free, page_list); 1416 } 1417 1418 /* 1419 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1420 * of reclaimed pages 1421 */ 1422 static noinline_for_stack unsigned long 1423 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1424 struct scan_control *sc, enum lru_list lru) 1425 { 1426 LIST_HEAD(page_list); 1427 unsigned long nr_scanned; 1428 unsigned long nr_reclaimed = 0; 1429 unsigned long nr_taken; 1430 unsigned long nr_dirty = 0; 1431 unsigned long nr_congested = 0; 1432 unsigned long nr_unqueued_dirty = 0; 1433 unsigned long nr_writeback = 0; 1434 unsigned long nr_immediate = 0; 1435 isolate_mode_t isolate_mode = 0; 1436 int file = is_file_lru(lru); 1437 struct zone *zone = lruvec_zone(lruvec); 1438 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1439 1440 while (unlikely(too_many_isolated(zone, file, sc))) { 1441 congestion_wait(BLK_RW_ASYNC, HZ/10); 1442 1443 /* We are about to die and free our memory. Return now. */ 1444 if (fatal_signal_pending(current)) 1445 return SWAP_CLUSTER_MAX; 1446 } 1447 1448 lru_add_drain(); 1449 1450 if (!sc->may_unmap) 1451 isolate_mode |= ISOLATE_UNMAPPED; 1452 if (!sc->may_writepage) 1453 isolate_mode |= ISOLATE_CLEAN; 1454 1455 spin_lock_irq(&zone->lru_lock); 1456 1457 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1458 &nr_scanned, sc, isolate_mode, lru); 1459 1460 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1461 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1462 1463 if (global_reclaim(sc)) { 1464 zone->pages_scanned += nr_scanned; 1465 if (current_is_kswapd()) 1466 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1467 else 1468 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1469 } 1470 spin_unlock_irq(&zone->lru_lock); 1471 1472 if (nr_taken == 0) 1473 return 0; 1474 1475 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1476 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1477 &nr_writeback, &nr_immediate, 1478 false); 1479 1480 spin_lock_irq(&zone->lru_lock); 1481 1482 reclaim_stat->recent_scanned[file] += nr_taken; 1483 1484 if (global_reclaim(sc)) { 1485 if (current_is_kswapd()) 1486 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1487 nr_reclaimed); 1488 else 1489 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1490 nr_reclaimed); 1491 } 1492 1493 putback_inactive_pages(lruvec, &page_list); 1494 1495 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1496 1497 spin_unlock_irq(&zone->lru_lock); 1498 1499 free_hot_cold_page_list(&page_list, 1); 1500 1501 /* 1502 * If reclaim is isolating dirty pages under writeback, it implies 1503 * that the long-lived page allocation rate is exceeding the page 1504 * laundering rate. Either the global limits are not being effective 1505 * at throttling processes due to the page distribution throughout 1506 * zones or there is heavy usage of a slow backing device. The 1507 * only option is to throttle from reclaim context which is not ideal 1508 * as there is no guarantee the dirtying process is throttled in the 1509 * same way balance_dirty_pages() manages. 1510 * 1511 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1512 * of pages under pages flagged for immediate reclaim and stall if any 1513 * are encountered in the nr_immediate check below. 1514 */ 1515 if (nr_writeback && nr_writeback == nr_taken) 1516 zone_set_flag(zone, ZONE_WRITEBACK); 1517 1518 /* 1519 * memcg will stall in page writeback so only consider forcibly 1520 * stalling for global reclaim 1521 */ 1522 if (global_reclaim(sc)) { 1523 /* 1524 * Tag a zone as congested if all the dirty pages scanned were 1525 * backed by a congested BDI and wait_iff_congested will stall. 1526 */ 1527 if (nr_dirty && nr_dirty == nr_congested) 1528 zone_set_flag(zone, ZONE_CONGESTED); 1529 1530 /* 1531 * If dirty pages are scanned that are not queued for IO, it 1532 * implies that flushers are not keeping up. In this case, flag 1533 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1534 * pages from reclaim context. It will forcibly stall in the 1535 * next check. 1536 */ 1537 if (nr_unqueued_dirty == nr_taken) 1538 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1539 1540 /* 1541 * In addition, if kswapd scans pages marked marked for 1542 * immediate reclaim and under writeback (nr_immediate), it 1543 * implies that pages are cycling through the LRU faster than 1544 * they are written so also forcibly stall. 1545 */ 1546 if (nr_unqueued_dirty == nr_taken || nr_immediate) 1547 congestion_wait(BLK_RW_ASYNC, HZ/10); 1548 } 1549 1550 /* 1551 * Stall direct reclaim for IO completions if underlying BDIs or zone 1552 * is congested. Allow kswapd to continue until it starts encountering 1553 * unqueued dirty pages or cycling through the LRU too quickly. 1554 */ 1555 if (!sc->hibernation_mode && !current_is_kswapd()) 1556 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1557 1558 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1559 zone_idx(zone), 1560 nr_scanned, nr_reclaimed, 1561 sc->priority, 1562 trace_shrink_flags(file)); 1563 return nr_reclaimed; 1564 } 1565 1566 /* 1567 * This moves pages from the active list to the inactive list. 1568 * 1569 * We move them the other way if the page is referenced by one or more 1570 * processes, from rmap. 1571 * 1572 * If the pages are mostly unmapped, the processing is fast and it is 1573 * appropriate to hold zone->lru_lock across the whole operation. But if 1574 * the pages are mapped, the processing is slow (page_referenced()) so we 1575 * should drop zone->lru_lock around each page. It's impossible to balance 1576 * this, so instead we remove the pages from the LRU while processing them. 1577 * It is safe to rely on PG_active against the non-LRU pages in here because 1578 * nobody will play with that bit on a non-LRU page. 1579 * 1580 * The downside is that we have to touch page->_count against each page. 1581 * But we had to alter page->flags anyway. 1582 */ 1583 1584 static void move_active_pages_to_lru(struct lruvec *lruvec, 1585 struct list_head *list, 1586 struct list_head *pages_to_free, 1587 enum lru_list lru) 1588 { 1589 struct zone *zone = lruvec_zone(lruvec); 1590 unsigned long pgmoved = 0; 1591 struct page *page; 1592 int nr_pages; 1593 1594 while (!list_empty(list)) { 1595 page = lru_to_page(list); 1596 lruvec = mem_cgroup_page_lruvec(page, zone); 1597 1598 VM_BUG_ON(PageLRU(page)); 1599 SetPageLRU(page); 1600 1601 nr_pages = hpage_nr_pages(page); 1602 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1603 list_move(&page->lru, &lruvec->lists[lru]); 1604 pgmoved += nr_pages; 1605 1606 if (put_page_testzero(page)) { 1607 __ClearPageLRU(page); 1608 __ClearPageActive(page); 1609 del_page_from_lru_list(page, lruvec, lru); 1610 1611 if (unlikely(PageCompound(page))) { 1612 spin_unlock_irq(&zone->lru_lock); 1613 (*get_compound_page_dtor(page))(page); 1614 spin_lock_irq(&zone->lru_lock); 1615 } else 1616 list_add(&page->lru, pages_to_free); 1617 } 1618 } 1619 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1620 if (!is_active_lru(lru)) 1621 __count_vm_events(PGDEACTIVATE, pgmoved); 1622 } 1623 1624 static void shrink_active_list(unsigned long nr_to_scan, 1625 struct lruvec *lruvec, 1626 struct scan_control *sc, 1627 enum lru_list lru) 1628 { 1629 unsigned long nr_taken; 1630 unsigned long nr_scanned; 1631 unsigned long vm_flags; 1632 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1633 LIST_HEAD(l_active); 1634 LIST_HEAD(l_inactive); 1635 struct page *page; 1636 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1637 unsigned long nr_rotated = 0; 1638 isolate_mode_t isolate_mode = 0; 1639 int file = is_file_lru(lru); 1640 struct zone *zone = lruvec_zone(lruvec); 1641 1642 lru_add_drain(); 1643 1644 if (!sc->may_unmap) 1645 isolate_mode |= ISOLATE_UNMAPPED; 1646 if (!sc->may_writepage) 1647 isolate_mode |= ISOLATE_CLEAN; 1648 1649 spin_lock_irq(&zone->lru_lock); 1650 1651 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1652 &nr_scanned, sc, isolate_mode, lru); 1653 if (global_reclaim(sc)) 1654 zone->pages_scanned += nr_scanned; 1655 1656 reclaim_stat->recent_scanned[file] += nr_taken; 1657 1658 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1659 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1660 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1661 spin_unlock_irq(&zone->lru_lock); 1662 1663 while (!list_empty(&l_hold)) { 1664 cond_resched(); 1665 page = lru_to_page(&l_hold); 1666 list_del(&page->lru); 1667 1668 if (unlikely(!page_evictable(page))) { 1669 putback_lru_page(page); 1670 continue; 1671 } 1672 1673 if (unlikely(buffer_heads_over_limit)) { 1674 if (page_has_private(page) && trylock_page(page)) { 1675 if (page_has_private(page)) 1676 try_to_release_page(page, 0); 1677 unlock_page(page); 1678 } 1679 } 1680 1681 if (page_referenced(page, 0, sc->target_mem_cgroup, 1682 &vm_flags)) { 1683 nr_rotated += hpage_nr_pages(page); 1684 /* 1685 * Identify referenced, file-backed active pages and 1686 * give them one more trip around the active list. So 1687 * that executable code get better chances to stay in 1688 * memory under moderate memory pressure. Anon pages 1689 * are not likely to be evicted by use-once streaming 1690 * IO, plus JVM can create lots of anon VM_EXEC pages, 1691 * so we ignore them here. 1692 */ 1693 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1694 list_add(&page->lru, &l_active); 1695 continue; 1696 } 1697 } 1698 1699 ClearPageActive(page); /* we are de-activating */ 1700 list_add(&page->lru, &l_inactive); 1701 } 1702 1703 /* 1704 * Move pages back to the lru list. 1705 */ 1706 spin_lock_irq(&zone->lru_lock); 1707 /* 1708 * Count referenced pages from currently used mappings as rotated, 1709 * even though only some of them are actually re-activated. This 1710 * helps balance scan pressure between file and anonymous pages in 1711 * get_scan_ratio. 1712 */ 1713 reclaim_stat->recent_rotated[file] += nr_rotated; 1714 1715 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1716 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1717 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1718 spin_unlock_irq(&zone->lru_lock); 1719 1720 free_hot_cold_page_list(&l_hold, 1); 1721 } 1722 1723 #ifdef CONFIG_SWAP 1724 static int inactive_anon_is_low_global(struct zone *zone) 1725 { 1726 unsigned long active, inactive; 1727 1728 active = zone_page_state(zone, NR_ACTIVE_ANON); 1729 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1730 1731 if (inactive * zone->inactive_ratio < active) 1732 return 1; 1733 1734 return 0; 1735 } 1736 1737 /** 1738 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1739 * @lruvec: LRU vector to check 1740 * 1741 * Returns true if the zone does not have enough inactive anon pages, 1742 * meaning some active anon pages need to be deactivated. 1743 */ 1744 static int inactive_anon_is_low(struct lruvec *lruvec) 1745 { 1746 /* 1747 * If we don't have swap space, anonymous page deactivation 1748 * is pointless. 1749 */ 1750 if (!total_swap_pages) 1751 return 0; 1752 1753 if (!mem_cgroup_disabled()) 1754 return mem_cgroup_inactive_anon_is_low(lruvec); 1755 1756 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1757 } 1758 #else 1759 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1760 { 1761 return 0; 1762 } 1763 #endif 1764 1765 /** 1766 * inactive_file_is_low - check if file pages need to be deactivated 1767 * @lruvec: LRU vector to check 1768 * 1769 * When the system is doing streaming IO, memory pressure here 1770 * ensures that active file pages get deactivated, until more 1771 * than half of the file pages are on the inactive list. 1772 * 1773 * Once we get to that situation, protect the system's working 1774 * set from being evicted by disabling active file page aging. 1775 * 1776 * This uses a different ratio than the anonymous pages, because 1777 * the page cache uses a use-once replacement algorithm. 1778 */ 1779 static int inactive_file_is_low(struct lruvec *lruvec) 1780 { 1781 unsigned long inactive; 1782 unsigned long active; 1783 1784 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1785 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1786 1787 return active > inactive; 1788 } 1789 1790 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1791 { 1792 if (is_file_lru(lru)) 1793 return inactive_file_is_low(lruvec); 1794 else 1795 return inactive_anon_is_low(lruvec); 1796 } 1797 1798 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1799 struct lruvec *lruvec, struct scan_control *sc) 1800 { 1801 if (is_active_lru(lru)) { 1802 if (inactive_list_is_low(lruvec, lru)) 1803 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1804 return 0; 1805 } 1806 1807 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1808 } 1809 1810 static int vmscan_swappiness(struct scan_control *sc) 1811 { 1812 if (global_reclaim(sc)) 1813 return vm_swappiness; 1814 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1815 } 1816 1817 enum scan_balance { 1818 SCAN_EQUAL, 1819 SCAN_FRACT, 1820 SCAN_ANON, 1821 SCAN_FILE, 1822 }; 1823 1824 /* 1825 * Determine how aggressively the anon and file LRU lists should be 1826 * scanned. The relative value of each set of LRU lists is determined 1827 * by looking at the fraction of the pages scanned we did rotate back 1828 * onto the active list instead of evict. 1829 * 1830 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1831 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1832 */ 1833 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1834 unsigned long *nr) 1835 { 1836 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1837 u64 fraction[2]; 1838 u64 denominator = 0; /* gcc */ 1839 struct zone *zone = lruvec_zone(lruvec); 1840 unsigned long anon_prio, file_prio; 1841 enum scan_balance scan_balance; 1842 unsigned long anon, file, free; 1843 bool force_scan = false; 1844 unsigned long ap, fp; 1845 enum lru_list lru; 1846 1847 /* 1848 * If the zone or memcg is small, nr[l] can be 0. This 1849 * results in no scanning on this priority and a potential 1850 * priority drop. Global direct reclaim can go to the next 1851 * zone and tends to have no problems. Global kswapd is for 1852 * zone balancing and it needs to scan a minimum amount. When 1853 * reclaiming for a memcg, a priority drop can cause high 1854 * latencies, so it's better to scan a minimum amount there as 1855 * well. 1856 */ 1857 if (current_is_kswapd() && !zone_reclaimable(zone)) 1858 force_scan = true; 1859 if (!global_reclaim(sc)) 1860 force_scan = true; 1861 1862 /* If we have no swap space, do not bother scanning anon pages. */ 1863 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1864 scan_balance = SCAN_FILE; 1865 goto out; 1866 } 1867 1868 /* 1869 * Global reclaim will swap to prevent OOM even with no 1870 * swappiness, but memcg users want to use this knob to 1871 * disable swapping for individual groups completely when 1872 * using the memory controller's swap limit feature would be 1873 * too expensive. 1874 */ 1875 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { 1876 scan_balance = SCAN_FILE; 1877 goto out; 1878 } 1879 1880 /* 1881 * Do not apply any pressure balancing cleverness when the 1882 * system is close to OOM, scan both anon and file equally 1883 * (unless the swappiness setting disagrees with swapping). 1884 */ 1885 if (!sc->priority && vmscan_swappiness(sc)) { 1886 scan_balance = SCAN_EQUAL; 1887 goto out; 1888 } 1889 1890 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1891 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1892 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1893 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1894 1895 /* 1896 * If it's foreseeable that reclaiming the file cache won't be 1897 * enough to get the zone back into a desirable shape, we have 1898 * to swap. Better start now and leave the - probably heavily 1899 * thrashing - remaining file pages alone. 1900 */ 1901 if (global_reclaim(sc)) { 1902 free = zone_page_state(zone, NR_FREE_PAGES); 1903 if (unlikely(file + free <= high_wmark_pages(zone))) { 1904 scan_balance = SCAN_ANON; 1905 goto out; 1906 } 1907 } 1908 1909 /* 1910 * There is enough inactive page cache, do not reclaim 1911 * anything from the anonymous working set right now. 1912 */ 1913 if (!inactive_file_is_low(lruvec)) { 1914 scan_balance = SCAN_FILE; 1915 goto out; 1916 } 1917 1918 scan_balance = SCAN_FRACT; 1919 1920 /* 1921 * With swappiness at 100, anonymous and file have the same priority. 1922 * This scanning priority is essentially the inverse of IO cost. 1923 */ 1924 anon_prio = vmscan_swappiness(sc); 1925 file_prio = 200 - anon_prio; 1926 1927 /* 1928 * OK, so we have swap space and a fair amount of page cache 1929 * pages. We use the recently rotated / recently scanned 1930 * ratios to determine how valuable each cache is. 1931 * 1932 * Because workloads change over time (and to avoid overflow) 1933 * we keep these statistics as a floating average, which ends 1934 * up weighing recent references more than old ones. 1935 * 1936 * anon in [0], file in [1] 1937 */ 1938 spin_lock_irq(&zone->lru_lock); 1939 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1940 reclaim_stat->recent_scanned[0] /= 2; 1941 reclaim_stat->recent_rotated[0] /= 2; 1942 } 1943 1944 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1945 reclaim_stat->recent_scanned[1] /= 2; 1946 reclaim_stat->recent_rotated[1] /= 2; 1947 } 1948 1949 /* 1950 * The amount of pressure on anon vs file pages is inversely 1951 * proportional to the fraction of recently scanned pages on 1952 * each list that were recently referenced and in active use. 1953 */ 1954 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1955 ap /= reclaim_stat->recent_rotated[0] + 1; 1956 1957 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1958 fp /= reclaim_stat->recent_rotated[1] + 1; 1959 spin_unlock_irq(&zone->lru_lock); 1960 1961 fraction[0] = ap; 1962 fraction[1] = fp; 1963 denominator = ap + fp + 1; 1964 out: 1965 for_each_evictable_lru(lru) { 1966 int file = is_file_lru(lru); 1967 unsigned long size; 1968 unsigned long scan; 1969 1970 size = get_lru_size(lruvec, lru); 1971 scan = size >> sc->priority; 1972 1973 if (!scan && force_scan) 1974 scan = min(size, SWAP_CLUSTER_MAX); 1975 1976 switch (scan_balance) { 1977 case SCAN_EQUAL: 1978 /* Scan lists relative to size */ 1979 break; 1980 case SCAN_FRACT: 1981 /* 1982 * Scan types proportional to swappiness and 1983 * their relative recent reclaim efficiency. 1984 */ 1985 scan = div64_u64(scan * fraction[file], denominator); 1986 break; 1987 case SCAN_FILE: 1988 case SCAN_ANON: 1989 /* Scan one type exclusively */ 1990 if ((scan_balance == SCAN_FILE) != file) 1991 scan = 0; 1992 break; 1993 default: 1994 /* Look ma, no brain */ 1995 BUG(); 1996 } 1997 nr[lru] = scan; 1998 } 1999 } 2000 2001 /* 2002 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2003 */ 2004 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2005 { 2006 unsigned long nr[NR_LRU_LISTS]; 2007 unsigned long targets[NR_LRU_LISTS]; 2008 unsigned long nr_to_scan; 2009 enum lru_list lru; 2010 unsigned long nr_reclaimed = 0; 2011 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2012 struct blk_plug plug; 2013 bool scan_adjusted = false; 2014 2015 get_scan_count(lruvec, sc, nr); 2016 2017 /* Record the original scan target for proportional adjustments later */ 2018 memcpy(targets, nr, sizeof(nr)); 2019 2020 blk_start_plug(&plug); 2021 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2022 nr[LRU_INACTIVE_FILE]) { 2023 unsigned long nr_anon, nr_file, percentage; 2024 unsigned long nr_scanned; 2025 2026 for_each_evictable_lru(lru) { 2027 if (nr[lru]) { 2028 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2029 nr[lru] -= nr_to_scan; 2030 2031 nr_reclaimed += shrink_list(lru, nr_to_scan, 2032 lruvec, sc); 2033 } 2034 } 2035 2036 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2037 continue; 2038 2039 /* 2040 * For global direct reclaim, reclaim only the number of pages 2041 * requested. Less care is taken to scan proportionally as it 2042 * is more important to minimise direct reclaim stall latency 2043 * than it is to properly age the LRU lists. 2044 */ 2045 if (global_reclaim(sc) && !current_is_kswapd()) 2046 break; 2047 2048 /* 2049 * For kswapd and memcg, reclaim at least the number of pages 2050 * requested. Ensure that the anon and file LRUs shrink 2051 * proportionally what was requested by get_scan_count(). We 2052 * stop reclaiming one LRU and reduce the amount scanning 2053 * proportional to the original scan target. 2054 */ 2055 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2056 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2057 2058 if (nr_file > nr_anon) { 2059 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2060 targets[LRU_ACTIVE_ANON] + 1; 2061 lru = LRU_BASE; 2062 percentage = nr_anon * 100 / scan_target; 2063 } else { 2064 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2065 targets[LRU_ACTIVE_FILE] + 1; 2066 lru = LRU_FILE; 2067 percentage = nr_file * 100 / scan_target; 2068 } 2069 2070 /* Stop scanning the smaller of the LRU */ 2071 nr[lru] = 0; 2072 nr[lru + LRU_ACTIVE] = 0; 2073 2074 /* 2075 * Recalculate the other LRU scan count based on its original 2076 * scan target and the percentage scanning already complete 2077 */ 2078 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2079 nr_scanned = targets[lru] - nr[lru]; 2080 nr[lru] = targets[lru] * (100 - percentage) / 100; 2081 nr[lru] -= min(nr[lru], nr_scanned); 2082 2083 lru += LRU_ACTIVE; 2084 nr_scanned = targets[lru] - nr[lru]; 2085 nr[lru] = targets[lru] * (100 - percentage) / 100; 2086 nr[lru] -= min(nr[lru], nr_scanned); 2087 2088 scan_adjusted = true; 2089 } 2090 blk_finish_plug(&plug); 2091 sc->nr_reclaimed += nr_reclaimed; 2092 2093 /* 2094 * Even if we did not try to evict anon pages at all, we want to 2095 * rebalance the anon lru active/inactive ratio. 2096 */ 2097 if (inactive_anon_is_low(lruvec)) 2098 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2099 sc, LRU_ACTIVE_ANON); 2100 2101 throttle_vm_writeout(sc->gfp_mask); 2102 } 2103 2104 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2105 static bool in_reclaim_compaction(struct scan_control *sc) 2106 { 2107 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2108 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2109 sc->priority < DEF_PRIORITY - 2)) 2110 return true; 2111 2112 return false; 2113 } 2114 2115 /* 2116 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2117 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2118 * true if more pages should be reclaimed such that when the page allocator 2119 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2120 * It will give up earlier than that if there is difficulty reclaiming pages. 2121 */ 2122 static inline bool should_continue_reclaim(struct zone *zone, 2123 unsigned long nr_reclaimed, 2124 unsigned long nr_scanned, 2125 struct scan_control *sc) 2126 { 2127 unsigned long pages_for_compaction; 2128 unsigned long inactive_lru_pages; 2129 2130 /* If not in reclaim/compaction mode, stop */ 2131 if (!in_reclaim_compaction(sc)) 2132 return false; 2133 2134 /* Consider stopping depending on scan and reclaim activity */ 2135 if (sc->gfp_mask & __GFP_REPEAT) { 2136 /* 2137 * For __GFP_REPEAT allocations, stop reclaiming if the 2138 * full LRU list has been scanned and we are still failing 2139 * to reclaim pages. This full LRU scan is potentially 2140 * expensive but a __GFP_REPEAT caller really wants to succeed 2141 */ 2142 if (!nr_reclaimed && !nr_scanned) 2143 return false; 2144 } else { 2145 /* 2146 * For non-__GFP_REPEAT allocations which can presumably 2147 * fail without consequence, stop if we failed to reclaim 2148 * any pages from the last SWAP_CLUSTER_MAX number of 2149 * pages that were scanned. This will return to the 2150 * caller faster at the risk reclaim/compaction and 2151 * the resulting allocation attempt fails 2152 */ 2153 if (!nr_reclaimed) 2154 return false; 2155 } 2156 2157 /* 2158 * If we have not reclaimed enough pages for compaction and the 2159 * inactive lists are large enough, continue reclaiming 2160 */ 2161 pages_for_compaction = (2UL << sc->order); 2162 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2163 if (get_nr_swap_pages() > 0) 2164 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2165 if (sc->nr_reclaimed < pages_for_compaction && 2166 inactive_lru_pages > pages_for_compaction) 2167 return true; 2168 2169 /* If compaction would go ahead or the allocation would succeed, stop */ 2170 switch (compaction_suitable(zone, sc->order)) { 2171 case COMPACT_PARTIAL: 2172 case COMPACT_CONTINUE: 2173 return false; 2174 default: 2175 return true; 2176 } 2177 } 2178 2179 static int 2180 __shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim) 2181 { 2182 unsigned long nr_reclaimed, nr_scanned; 2183 int groups_scanned = 0; 2184 2185 do { 2186 struct mem_cgroup *root = sc->target_mem_cgroup; 2187 struct mem_cgroup_reclaim_cookie reclaim = { 2188 .zone = zone, 2189 .priority = sc->priority, 2190 }; 2191 struct mem_cgroup *memcg = NULL; 2192 mem_cgroup_iter_filter filter = (soft_reclaim) ? 2193 mem_cgroup_soft_reclaim_eligible : NULL; 2194 2195 nr_reclaimed = sc->nr_reclaimed; 2196 nr_scanned = sc->nr_scanned; 2197 2198 while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) { 2199 struct lruvec *lruvec; 2200 2201 groups_scanned++; 2202 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2203 2204 shrink_lruvec(lruvec, sc); 2205 2206 /* 2207 * Direct reclaim and kswapd have to scan all memory 2208 * cgroups to fulfill the overall scan target for the 2209 * zone. 2210 * 2211 * Limit reclaim, on the other hand, only cares about 2212 * nr_to_reclaim pages to be reclaimed and it will 2213 * retry with decreasing priority if one round over the 2214 * whole hierarchy is not sufficient. 2215 */ 2216 if (!global_reclaim(sc) && 2217 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2218 mem_cgroup_iter_break(root, memcg); 2219 break; 2220 } 2221 } 2222 2223 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2224 sc->nr_scanned - nr_scanned, 2225 sc->nr_reclaimed - nr_reclaimed); 2226 2227 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2228 sc->nr_scanned - nr_scanned, sc)); 2229 2230 return groups_scanned; 2231 } 2232 2233 2234 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2235 { 2236 bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc); 2237 unsigned long nr_scanned = sc->nr_scanned; 2238 int scanned_groups; 2239 2240 scanned_groups = __shrink_zone(zone, sc, do_soft_reclaim); 2241 /* 2242 * memcg iterator might race with other reclaimer or start from 2243 * a incomplete tree walk so the tree walk in __shrink_zone 2244 * might have missed groups that are above the soft limit. Try 2245 * another loop to catch up with others. Do it just once to 2246 * prevent from reclaim latencies when other reclaimers always 2247 * preempt this one. 2248 */ 2249 if (do_soft_reclaim && !scanned_groups) 2250 __shrink_zone(zone, sc, do_soft_reclaim); 2251 2252 /* 2253 * No group is over the soft limit or those that are do not have 2254 * pages in the zone we are reclaiming so we have to reclaim everybody 2255 */ 2256 if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) { 2257 __shrink_zone(zone, sc, false); 2258 return; 2259 } 2260 } 2261 2262 /* Returns true if compaction should go ahead for a high-order request */ 2263 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2264 { 2265 unsigned long balance_gap, watermark; 2266 bool watermark_ok; 2267 2268 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2269 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2270 return false; 2271 2272 /* 2273 * Compaction takes time to run and there are potentially other 2274 * callers using the pages just freed. Continue reclaiming until 2275 * there is a buffer of free pages available to give compaction 2276 * a reasonable chance of completing and allocating the page 2277 */ 2278 balance_gap = min(low_wmark_pages(zone), 2279 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2280 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2281 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2282 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2283 2284 /* 2285 * If compaction is deferred, reclaim up to a point where 2286 * compaction will have a chance of success when re-enabled 2287 */ 2288 if (compaction_deferred(zone, sc->order)) 2289 return watermark_ok; 2290 2291 /* If compaction is not ready to start, keep reclaiming */ 2292 if (!compaction_suitable(zone, sc->order)) 2293 return false; 2294 2295 return watermark_ok; 2296 } 2297 2298 /* 2299 * This is the direct reclaim path, for page-allocating processes. We only 2300 * try to reclaim pages from zones which will satisfy the caller's allocation 2301 * request. 2302 * 2303 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2304 * Because: 2305 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2306 * allocation or 2307 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2308 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2309 * zone defense algorithm. 2310 * 2311 * If a zone is deemed to be full of pinned pages then just give it a light 2312 * scan then give up on it. 2313 * 2314 * This function returns true if a zone is being reclaimed for a costly 2315 * high-order allocation and compaction is ready to begin. This indicates to 2316 * the caller that it should consider retrying the allocation instead of 2317 * further reclaim. 2318 */ 2319 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2320 { 2321 struct zoneref *z; 2322 struct zone *zone; 2323 bool aborted_reclaim = false; 2324 2325 /* 2326 * If the number of buffer_heads in the machine exceeds the maximum 2327 * allowed level, force direct reclaim to scan the highmem zone as 2328 * highmem pages could be pinning lowmem pages storing buffer_heads 2329 */ 2330 if (buffer_heads_over_limit) 2331 sc->gfp_mask |= __GFP_HIGHMEM; 2332 2333 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2334 gfp_zone(sc->gfp_mask), sc->nodemask) { 2335 if (!populated_zone(zone)) 2336 continue; 2337 /* 2338 * Take care memory controller reclaiming has small influence 2339 * to global LRU. 2340 */ 2341 if (global_reclaim(sc)) { 2342 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2343 continue; 2344 if (sc->priority != DEF_PRIORITY && 2345 !zone_reclaimable(zone)) 2346 continue; /* Let kswapd poll it */ 2347 if (IS_ENABLED(CONFIG_COMPACTION)) { 2348 /* 2349 * If we already have plenty of memory free for 2350 * compaction in this zone, don't free any more. 2351 * Even though compaction is invoked for any 2352 * non-zero order, only frequent costly order 2353 * reclamation is disruptive enough to become a 2354 * noticeable problem, like transparent huge 2355 * page allocations. 2356 */ 2357 if (compaction_ready(zone, sc)) { 2358 aborted_reclaim = true; 2359 continue; 2360 } 2361 } 2362 /* need some check for avoid more shrink_zone() */ 2363 } 2364 2365 shrink_zone(zone, sc); 2366 } 2367 2368 return aborted_reclaim; 2369 } 2370 2371 /* All zones in zonelist are unreclaimable? */ 2372 static bool all_unreclaimable(struct zonelist *zonelist, 2373 struct scan_control *sc) 2374 { 2375 struct zoneref *z; 2376 struct zone *zone; 2377 2378 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2379 gfp_zone(sc->gfp_mask), sc->nodemask) { 2380 if (!populated_zone(zone)) 2381 continue; 2382 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2383 continue; 2384 if (zone_reclaimable(zone)) 2385 return false; 2386 } 2387 2388 return true; 2389 } 2390 2391 /* 2392 * This is the main entry point to direct page reclaim. 2393 * 2394 * If a full scan of the inactive list fails to free enough memory then we 2395 * are "out of memory" and something needs to be killed. 2396 * 2397 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2398 * high - the zone may be full of dirty or under-writeback pages, which this 2399 * caller can't do much about. We kick the writeback threads and take explicit 2400 * naps in the hope that some of these pages can be written. But if the 2401 * allocating task holds filesystem locks which prevent writeout this might not 2402 * work, and the allocation attempt will fail. 2403 * 2404 * returns: 0, if no pages reclaimed 2405 * else, the number of pages reclaimed 2406 */ 2407 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2408 struct scan_control *sc, 2409 struct shrink_control *shrink) 2410 { 2411 unsigned long total_scanned = 0; 2412 struct reclaim_state *reclaim_state = current->reclaim_state; 2413 struct zoneref *z; 2414 struct zone *zone; 2415 unsigned long writeback_threshold; 2416 bool aborted_reclaim; 2417 2418 delayacct_freepages_start(); 2419 2420 if (global_reclaim(sc)) 2421 count_vm_event(ALLOCSTALL); 2422 2423 do { 2424 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2425 sc->priority); 2426 sc->nr_scanned = 0; 2427 aborted_reclaim = shrink_zones(zonelist, sc); 2428 2429 /* 2430 * Don't shrink slabs when reclaiming memory from over limit 2431 * cgroups but do shrink slab at least once when aborting 2432 * reclaim for compaction to avoid unevenly scanning file/anon 2433 * LRU pages over slab pages. 2434 */ 2435 if (global_reclaim(sc)) { 2436 unsigned long lru_pages = 0; 2437 2438 nodes_clear(shrink->nodes_to_scan); 2439 for_each_zone_zonelist(zone, z, zonelist, 2440 gfp_zone(sc->gfp_mask)) { 2441 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2442 continue; 2443 2444 lru_pages += zone_reclaimable_pages(zone); 2445 node_set(zone_to_nid(zone), 2446 shrink->nodes_to_scan); 2447 } 2448 2449 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2450 if (reclaim_state) { 2451 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2452 reclaim_state->reclaimed_slab = 0; 2453 } 2454 } 2455 total_scanned += sc->nr_scanned; 2456 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2457 goto out; 2458 2459 /* 2460 * If we're getting trouble reclaiming, start doing 2461 * writepage even in laptop mode. 2462 */ 2463 if (sc->priority < DEF_PRIORITY - 2) 2464 sc->may_writepage = 1; 2465 2466 /* 2467 * Try to write back as many pages as we just scanned. This 2468 * tends to cause slow streaming writers to write data to the 2469 * disk smoothly, at the dirtying rate, which is nice. But 2470 * that's undesirable in laptop mode, where we *want* lumpy 2471 * writeout. So in laptop mode, write out the whole world. 2472 */ 2473 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2474 if (total_scanned > writeback_threshold) { 2475 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2476 WB_REASON_TRY_TO_FREE_PAGES); 2477 sc->may_writepage = 1; 2478 } 2479 } while (--sc->priority >= 0 && !aborted_reclaim); 2480 2481 out: 2482 delayacct_freepages_end(); 2483 2484 if (sc->nr_reclaimed) 2485 return sc->nr_reclaimed; 2486 2487 /* 2488 * As hibernation is going on, kswapd is freezed so that it can't mark 2489 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2490 * check. 2491 */ 2492 if (oom_killer_disabled) 2493 return 0; 2494 2495 /* Aborted reclaim to try compaction? don't OOM, then */ 2496 if (aborted_reclaim) 2497 return 1; 2498 2499 /* top priority shrink_zones still had more to do? don't OOM, then */ 2500 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2501 return 1; 2502 2503 return 0; 2504 } 2505 2506 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2507 { 2508 struct zone *zone; 2509 unsigned long pfmemalloc_reserve = 0; 2510 unsigned long free_pages = 0; 2511 int i; 2512 bool wmark_ok; 2513 2514 for (i = 0; i <= ZONE_NORMAL; i++) { 2515 zone = &pgdat->node_zones[i]; 2516 pfmemalloc_reserve += min_wmark_pages(zone); 2517 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2518 } 2519 2520 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2521 2522 /* kswapd must be awake if processes are being throttled */ 2523 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2524 pgdat->classzone_idx = min(pgdat->classzone_idx, 2525 (enum zone_type)ZONE_NORMAL); 2526 wake_up_interruptible(&pgdat->kswapd_wait); 2527 } 2528 2529 return wmark_ok; 2530 } 2531 2532 /* 2533 * Throttle direct reclaimers if backing storage is backed by the network 2534 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2535 * depleted. kswapd will continue to make progress and wake the processes 2536 * when the low watermark is reached. 2537 * 2538 * Returns true if a fatal signal was delivered during throttling. If this 2539 * happens, the page allocator should not consider triggering the OOM killer. 2540 */ 2541 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2542 nodemask_t *nodemask) 2543 { 2544 struct zone *zone; 2545 int high_zoneidx = gfp_zone(gfp_mask); 2546 pg_data_t *pgdat; 2547 2548 /* 2549 * Kernel threads should not be throttled as they may be indirectly 2550 * responsible for cleaning pages necessary for reclaim to make forward 2551 * progress. kjournald for example may enter direct reclaim while 2552 * committing a transaction where throttling it could forcing other 2553 * processes to block on log_wait_commit(). 2554 */ 2555 if (current->flags & PF_KTHREAD) 2556 goto out; 2557 2558 /* 2559 * If a fatal signal is pending, this process should not throttle. 2560 * It should return quickly so it can exit and free its memory 2561 */ 2562 if (fatal_signal_pending(current)) 2563 goto out; 2564 2565 /* Check if the pfmemalloc reserves are ok */ 2566 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2567 pgdat = zone->zone_pgdat; 2568 if (pfmemalloc_watermark_ok(pgdat)) 2569 goto out; 2570 2571 /* Account for the throttling */ 2572 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2573 2574 /* 2575 * If the caller cannot enter the filesystem, it's possible that it 2576 * is due to the caller holding an FS lock or performing a journal 2577 * transaction in the case of a filesystem like ext[3|4]. In this case, 2578 * it is not safe to block on pfmemalloc_wait as kswapd could be 2579 * blocked waiting on the same lock. Instead, throttle for up to a 2580 * second before continuing. 2581 */ 2582 if (!(gfp_mask & __GFP_FS)) { 2583 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2584 pfmemalloc_watermark_ok(pgdat), HZ); 2585 2586 goto check_pending; 2587 } 2588 2589 /* Throttle until kswapd wakes the process */ 2590 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2591 pfmemalloc_watermark_ok(pgdat)); 2592 2593 check_pending: 2594 if (fatal_signal_pending(current)) 2595 return true; 2596 2597 out: 2598 return false; 2599 } 2600 2601 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2602 gfp_t gfp_mask, nodemask_t *nodemask) 2603 { 2604 unsigned long nr_reclaimed; 2605 struct scan_control sc = { 2606 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2607 .may_writepage = !laptop_mode, 2608 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2609 .may_unmap = 1, 2610 .may_swap = 1, 2611 .order = order, 2612 .priority = DEF_PRIORITY, 2613 .target_mem_cgroup = NULL, 2614 .nodemask = nodemask, 2615 }; 2616 struct shrink_control shrink = { 2617 .gfp_mask = sc.gfp_mask, 2618 }; 2619 2620 /* 2621 * Do not enter reclaim if fatal signal was delivered while throttled. 2622 * 1 is returned so that the page allocator does not OOM kill at this 2623 * point. 2624 */ 2625 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2626 return 1; 2627 2628 trace_mm_vmscan_direct_reclaim_begin(order, 2629 sc.may_writepage, 2630 gfp_mask); 2631 2632 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2633 2634 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2635 2636 return nr_reclaimed; 2637 } 2638 2639 #ifdef CONFIG_MEMCG 2640 2641 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2642 gfp_t gfp_mask, bool noswap, 2643 struct zone *zone, 2644 unsigned long *nr_scanned) 2645 { 2646 struct scan_control sc = { 2647 .nr_scanned = 0, 2648 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2649 .may_writepage = !laptop_mode, 2650 .may_unmap = 1, 2651 .may_swap = !noswap, 2652 .order = 0, 2653 .priority = 0, 2654 .target_mem_cgroup = memcg, 2655 }; 2656 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2657 2658 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2659 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2660 2661 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2662 sc.may_writepage, 2663 sc.gfp_mask); 2664 2665 /* 2666 * NOTE: Although we can get the priority field, using it 2667 * here is not a good idea, since it limits the pages we can scan. 2668 * if we don't reclaim here, the shrink_zone from balance_pgdat 2669 * will pick up pages from other mem cgroup's as well. We hack 2670 * the priority and make it zero. 2671 */ 2672 shrink_lruvec(lruvec, &sc); 2673 2674 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2675 2676 *nr_scanned = sc.nr_scanned; 2677 return sc.nr_reclaimed; 2678 } 2679 2680 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2681 gfp_t gfp_mask, 2682 bool noswap) 2683 { 2684 struct zonelist *zonelist; 2685 unsigned long nr_reclaimed; 2686 int nid; 2687 struct scan_control sc = { 2688 .may_writepage = !laptop_mode, 2689 .may_unmap = 1, 2690 .may_swap = !noswap, 2691 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2692 .order = 0, 2693 .priority = DEF_PRIORITY, 2694 .target_mem_cgroup = memcg, 2695 .nodemask = NULL, /* we don't care the placement */ 2696 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2697 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2698 }; 2699 struct shrink_control shrink = { 2700 .gfp_mask = sc.gfp_mask, 2701 }; 2702 2703 /* 2704 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2705 * take care of from where we get pages. So the node where we start the 2706 * scan does not need to be the current node. 2707 */ 2708 nid = mem_cgroup_select_victim_node(memcg); 2709 2710 zonelist = NODE_DATA(nid)->node_zonelists; 2711 2712 trace_mm_vmscan_memcg_reclaim_begin(0, 2713 sc.may_writepage, 2714 sc.gfp_mask); 2715 2716 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2717 2718 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2719 2720 return nr_reclaimed; 2721 } 2722 #endif 2723 2724 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2725 { 2726 struct mem_cgroup *memcg; 2727 2728 if (!total_swap_pages) 2729 return; 2730 2731 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2732 do { 2733 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2734 2735 if (inactive_anon_is_low(lruvec)) 2736 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2737 sc, LRU_ACTIVE_ANON); 2738 2739 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2740 } while (memcg); 2741 } 2742 2743 static bool zone_balanced(struct zone *zone, int order, 2744 unsigned long balance_gap, int classzone_idx) 2745 { 2746 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2747 balance_gap, classzone_idx, 0)) 2748 return false; 2749 2750 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2751 !compaction_suitable(zone, order)) 2752 return false; 2753 2754 return true; 2755 } 2756 2757 /* 2758 * pgdat_balanced() is used when checking if a node is balanced. 2759 * 2760 * For order-0, all zones must be balanced! 2761 * 2762 * For high-order allocations only zones that meet watermarks and are in a 2763 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2764 * total of balanced pages must be at least 25% of the zones allowed by 2765 * classzone_idx for the node to be considered balanced. Forcing all zones to 2766 * be balanced for high orders can cause excessive reclaim when there are 2767 * imbalanced zones. 2768 * The choice of 25% is due to 2769 * o a 16M DMA zone that is balanced will not balance a zone on any 2770 * reasonable sized machine 2771 * o On all other machines, the top zone must be at least a reasonable 2772 * percentage of the middle zones. For example, on 32-bit x86, highmem 2773 * would need to be at least 256M for it to be balance a whole node. 2774 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2775 * to balance a node on its own. These seemed like reasonable ratios. 2776 */ 2777 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2778 { 2779 unsigned long managed_pages = 0; 2780 unsigned long balanced_pages = 0; 2781 int i; 2782 2783 /* Check the watermark levels */ 2784 for (i = 0; i <= classzone_idx; i++) { 2785 struct zone *zone = pgdat->node_zones + i; 2786 2787 if (!populated_zone(zone)) 2788 continue; 2789 2790 managed_pages += zone->managed_pages; 2791 2792 /* 2793 * A special case here: 2794 * 2795 * balance_pgdat() skips over all_unreclaimable after 2796 * DEF_PRIORITY. Effectively, it considers them balanced so 2797 * they must be considered balanced here as well! 2798 */ 2799 if (!zone_reclaimable(zone)) { 2800 balanced_pages += zone->managed_pages; 2801 continue; 2802 } 2803 2804 if (zone_balanced(zone, order, 0, i)) 2805 balanced_pages += zone->managed_pages; 2806 else if (!order) 2807 return false; 2808 } 2809 2810 if (order) 2811 return balanced_pages >= (managed_pages >> 2); 2812 else 2813 return true; 2814 } 2815 2816 /* 2817 * Prepare kswapd for sleeping. This verifies that there are no processes 2818 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2819 * 2820 * Returns true if kswapd is ready to sleep 2821 */ 2822 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2823 int classzone_idx) 2824 { 2825 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2826 if (remaining) 2827 return false; 2828 2829 /* 2830 * There is a potential race between when kswapd checks its watermarks 2831 * and a process gets throttled. There is also a potential race if 2832 * processes get throttled, kswapd wakes, a large process exits therby 2833 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2834 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2835 * so wake them now if necessary. If necessary, processes will wake 2836 * kswapd and get throttled again 2837 */ 2838 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2839 wake_up(&pgdat->pfmemalloc_wait); 2840 return false; 2841 } 2842 2843 return pgdat_balanced(pgdat, order, classzone_idx); 2844 } 2845 2846 /* 2847 * kswapd shrinks the zone by the number of pages required to reach 2848 * the high watermark. 2849 * 2850 * Returns true if kswapd scanned at least the requested number of pages to 2851 * reclaim or if the lack of progress was due to pages under writeback. 2852 * This is used to determine if the scanning priority needs to be raised. 2853 */ 2854 static bool kswapd_shrink_zone(struct zone *zone, 2855 int classzone_idx, 2856 struct scan_control *sc, 2857 unsigned long lru_pages, 2858 unsigned long *nr_attempted) 2859 { 2860 int testorder = sc->order; 2861 unsigned long balance_gap; 2862 struct reclaim_state *reclaim_state = current->reclaim_state; 2863 struct shrink_control shrink = { 2864 .gfp_mask = sc->gfp_mask, 2865 }; 2866 bool lowmem_pressure; 2867 2868 /* Reclaim above the high watermark. */ 2869 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2870 2871 /* 2872 * Kswapd reclaims only single pages with compaction enabled. Trying 2873 * too hard to reclaim until contiguous free pages have become 2874 * available can hurt performance by evicting too much useful data 2875 * from memory. Do not reclaim more than needed for compaction. 2876 */ 2877 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2878 compaction_suitable(zone, sc->order) != 2879 COMPACT_SKIPPED) 2880 testorder = 0; 2881 2882 /* 2883 * We put equal pressure on every zone, unless one zone has way too 2884 * many pages free already. The "too many pages" is defined as the 2885 * high wmark plus a "gap" where the gap is either the low 2886 * watermark or 1% of the zone, whichever is smaller. 2887 */ 2888 balance_gap = min(low_wmark_pages(zone), 2889 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2890 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2891 2892 /* 2893 * If there is no low memory pressure or the zone is balanced then no 2894 * reclaim is necessary 2895 */ 2896 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2897 if (!lowmem_pressure && zone_balanced(zone, testorder, 2898 balance_gap, classzone_idx)) 2899 return true; 2900 2901 shrink_zone(zone, sc); 2902 nodes_clear(shrink.nodes_to_scan); 2903 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2904 2905 reclaim_state->reclaimed_slab = 0; 2906 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2907 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2908 2909 /* Account for the number of pages attempted to reclaim */ 2910 *nr_attempted += sc->nr_to_reclaim; 2911 2912 zone_clear_flag(zone, ZONE_WRITEBACK); 2913 2914 /* 2915 * If a zone reaches its high watermark, consider it to be no longer 2916 * congested. It's possible there are dirty pages backed by congested 2917 * BDIs but as pressure is relieved, speculatively avoid congestion 2918 * waits. 2919 */ 2920 if (zone_reclaimable(zone) && 2921 zone_balanced(zone, testorder, 0, classzone_idx)) { 2922 zone_clear_flag(zone, ZONE_CONGESTED); 2923 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2924 } 2925 2926 return sc->nr_scanned >= sc->nr_to_reclaim; 2927 } 2928 2929 /* 2930 * For kswapd, balance_pgdat() will work across all this node's zones until 2931 * they are all at high_wmark_pages(zone). 2932 * 2933 * Returns the final order kswapd was reclaiming at 2934 * 2935 * There is special handling here for zones which are full of pinned pages. 2936 * This can happen if the pages are all mlocked, or if they are all used by 2937 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2938 * What we do is to detect the case where all pages in the zone have been 2939 * scanned twice and there has been zero successful reclaim. Mark the zone as 2940 * dead and from now on, only perform a short scan. Basically we're polling 2941 * the zone for when the problem goes away. 2942 * 2943 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2944 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2945 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2946 * lower zones regardless of the number of free pages in the lower zones. This 2947 * interoperates with the page allocator fallback scheme to ensure that aging 2948 * of pages is balanced across the zones. 2949 */ 2950 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2951 int *classzone_idx) 2952 { 2953 int i; 2954 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2955 struct scan_control sc = { 2956 .gfp_mask = GFP_KERNEL, 2957 .priority = DEF_PRIORITY, 2958 .may_unmap = 1, 2959 .may_swap = 1, 2960 .may_writepage = !laptop_mode, 2961 .order = order, 2962 .target_mem_cgroup = NULL, 2963 }; 2964 count_vm_event(PAGEOUTRUN); 2965 2966 do { 2967 unsigned long lru_pages = 0; 2968 unsigned long nr_attempted = 0; 2969 bool raise_priority = true; 2970 bool pgdat_needs_compaction = (order > 0); 2971 2972 sc.nr_reclaimed = 0; 2973 2974 /* 2975 * Scan in the highmem->dma direction for the highest 2976 * zone which needs scanning 2977 */ 2978 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2979 struct zone *zone = pgdat->node_zones + i; 2980 2981 if (!populated_zone(zone)) 2982 continue; 2983 2984 if (sc.priority != DEF_PRIORITY && 2985 !zone_reclaimable(zone)) 2986 continue; 2987 2988 /* 2989 * Do some background aging of the anon list, to give 2990 * pages a chance to be referenced before reclaiming. 2991 */ 2992 age_active_anon(zone, &sc); 2993 2994 /* 2995 * If the number of buffer_heads in the machine 2996 * exceeds the maximum allowed level and this node 2997 * has a highmem zone, force kswapd to reclaim from 2998 * it to relieve lowmem pressure. 2999 */ 3000 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3001 end_zone = i; 3002 break; 3003 } 3004 3005 if (!zone_balanced(zone, order, 0, 0)) { 3006 end_zone = i; 3007 break; 3008 } else { 3009 /* 3010 * If balanced, clear the dirty and congested 3011 * flags 3012 */ 3013 zone_clear_flag(zone, ZONE_CONGESTED); 3014 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 3015 } 3016 } 3017 3018 if (i < 0) 3019 goto out; 3020 3021 for (i = 0; i <= end_zone; i++) { 3022 struct zone *zone = pgdat->node_zones + i; 3023 3024 if (!populated_zone(zone)) 3025 continue; 3026 3027 lru_pages += zone_reclaimable_pages(zone); 3028 3029 /* 3030 * If any zone is currently balanced then kswapd will 3031 * not call compaction as it is expected that the 3032 * necessary pages are already available. 3033 */ 3034 if (pgdat_needs_compaction && 3035 zone_watermark_ok(zone, order, 3036 low_wmark_pages(zone), 3037 *classzone_idx, 0)) 3038 pgdat_needs_compaction = false; 3039 } 3040 3041 /* 3042 * If we're getting trouble reclaiming, start doing writepage 3043 * even in laptop mode. 3044 */ 3045 if (sc.priority < DEF_PRIORITY - 2) 3046 sc.may_writepage = 1; 3047 3048 /* 3049 * Now scan the zone in the dma->highmem direction, stopping 3050 * at the last zone which needs scanning. 3051 * 3052 * We do this because the page allocator works in the opposite 3053 * direction. This prevents the page allocator from allocating 3054 * pages behind kswapd's direction of progress, which would 3055 * cause too much scanning of the lower zones. 3056 */ 3057 for (i = 0; i <= end_zone; i++) { 3058 struct zone *zone = pgdat->node_zones + i; 3059 3060 if (!populated_zone(zone)) 3061 continue; 3062 3063 if (sc.priority != DEF_PRIORITY && 3064 !zone_reclaimable(zone)) 3065 continue; 3066 3067 sc.nr_scanned = 0; 3068 3069 /* 3070 * There should be no need to raise the scanning 3071 * priority if enough pages are already being scanned 3072 * that that high watermark would be met at 100% 3073 * efficiency. 3074 */ 3075 if (kswapd_shrink_zone(zone, end_zone, &sc, 3076 lru_pages, &nr_attempted)) 3077 raise_priority = false; 3078 } 3079 3080 /* 3081 * If the low watermark is met there is no need for processes 3082 * to be throttled on pfmemalloc_wait as they should not be 3083 * able to safely make forward progress. Wake them 3084 */ 3085 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3086 pfmemalloc_watermark_ok(pgdat)) 3087 wake_up(&pgdat->pfmemalloc_wait); 3088 3089 /* 3090 * Fragmentation may mean that the system cannot be rebalanced 3091 * for high-order allocations in all zones. If twice the 3092 * allocation size has been reclaimed and the zones are still 3093 * not balanced then recheck the watermarks at order-0 to 3094 * prevent kswapd reclaiming excessively. Assume that a 3095 * process requested a high-order can direct reclaim/compact. 3096 */ 3097 if (order && sc.nr_reclaimed >= 2UL << order) 3098 order = sc.order = 0; 3099 3100 /* Check if kswapd should be suspending */ 3101 if (try_to_freeze() || kthread_should_stop()) 3102 break; 3103 3104 /* 3105 * Compact if necessary and kswapd is reclaiming at least the 3106 * high watermark number of pages as requsted 3107 */ 3108 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3109 compact_pgdat(pgdat, order); 3110 3111 /* 3112 * Raise priority if scanning rate is too low or there was no 3113 * progress in reclaiming pages 3114 */ 3115 if (raise_priority || !sc.nr_reclaimed) 3116 sc.priority--; 3117 } while (sc.priority >= 1 && 3118 !pgdat_balanced(pgdat, order, *classzone_idx)); 3119 3120 out: 3121 /* 3122 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3123 * makes a decision on the order we were last reclaiming at. However, 3124 * if another caller entered the allocator slow path while kswapd 3125 * was awake, order will remain at the higher level 3126 */ 3127 *classzone_idx = end_zone; 3128 return order; 3129 } 3130 3131 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3132 { 3133 long remaining = 0; 3134 DEFINE_WAIT(wait); 3135 3136 if (freezing(current) || kthread_should_stop()) 3137 return; 3138 3139 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3140 3141 /* Try to sleep for a short interval */ 3142 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3143 remaining = schedule_timeout(HZ/10); 3144 finish_wait(&pgdat->kswapd_wait, &wait); 3145 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3146 } 3147 3148 /* 3149 * After a short sleep, check if it was a premature sleep. If not, then 3150 * go fully to sleep until explicitly woken up. 3151 */ 3152 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3153 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3154 3155 /* 3156 * vmstat counters are not perfectly accurate and the estimated 3157 * value for counters such as NR_FREE_PAGES can deviate from the 3158 * true value by nr_online_cpus * threshold. To avoid the zone 3159 * watermarks being breached while under pressure, we reduce the 3160 * per-cpu vmstat threshold while kswapd is awake and restore 3161 * them before going back to sleep. 3162 */ 3163 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3164 3165 /* 3166 * Compaction records what page blocks it recently failed to 3167 * isolate pages from and skips them in the future scanning. 3168 * When kswapd is going to sleep, it is reasonable to assume 3169 * that pages and compaction may succeed so reset the cache. 3170 */ 3171 reset_isolation_suitable(pgdat); 3172 3173 if (!kthread_should_stop()) 3174 schedule(); 3175 3176 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3177 } else { 3178 if (remaining) 3179 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3180 else 3181 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3182 } 3183 finish_wait(&pgdat->kswapd_wait, &wait); 3184 } 3185 3186 /* 3187 * The background pageout daemon, started as a kernel thread 3188 * from the init process. 3189 * 3190 * This basically trickles out pages so that we have _some_ 3191 * free memory available even if there is no other activity 3192 * that frees anything up. This is needed for things like routing 3193 * etc, where we otherwise might have all activity going on in 3194 * asynchronous contexts that cannot page things out. 3195 * 3196 * If there are applications that are active memory-allocators 3197 * (most normal use), this basically shouldn't matter. 3198 */ 3199 static int kswapd(void *p) 3200 { 3201 unsigned long order, new_order; 3202 unsigned balanced_order; 3203 int classzone_idx, new_classzone_idx; 3204 int balanced_classzone_idx; 3205 pg_data_t *pgdat = (pg_data_t*)p; 3206 struct task_struct *tsk = current; 3207 3208 struct reclaim_state reclaim_state = { 3209 .reclaimed_slab = 0, 3210 }; 3211 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3212 3213 lockdep_set_current_reclaim_state(GFP_KERNEL); 3214 3215 if (!cpumask_empty(cpumask)) 3216 set_cpus_allowed_ptr(tsk, cpumask); 3217 current->reclaim_state = &reclaim_state; 3218 3219 /* 3220 * Tell the memory management that we're a "memory allocator", 3221 * and that if we need more memory we should get access to it 3222 * regardless (see "__alloc_pages()"). "kswapd" should 3223 * never get caught in the normal page freeing logic. 3224 * 3225 * (Kswapd normally doesn't need memory anyway, but sometimes 3226 * you need a small amount of memory in order to be able to 3227 * page out something else, and this flag essentially protects 3228 * us from recursively trying to free more memory as we're 3229 * trying to free the first piece of memory in the first place). 3230 */ 3231 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3232 set_freezable(); 3233 3234 order = new_order = 0; 3235 balanced_order = 0; 3236 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3237 balanced_classzone_idx = classzone_idx; 3238 for ( ; ; ) { 3239 bool ret; 3240 3241 /* 3242 * If the last balance_pgdat was unsuccessful it's unlikely a 3243 * new request of a similar or harder type will succeed soon 3244 * so consider going to sleep on the basis we reclaimed at 3245 */ 3246 if (balanced_classzone_idx >= new_classzone_idx && 3247 balanced_order == new_order) { 3248 new_order = pgdat->kswapd_max_order; 3249 new_classzone_idx = pgdat->classzone_idx; 3250 pgdat->kswapd_max_order = 0; 3251 pgdat->classzone_idx = pgdat->nr_zones - 1; 3252 } 3253 3254 if (order < new_order || classzone_idx > new_classzone_idx) { 3255 /* 3256 * Don't sleep if someone wants a larger 'order' 3257 * allocation or has tigher zone constraints 3258 */ 3259 order = new_order; 3260 classzone_idx = new_classzone_idx; 3261 } else { 3262 kswapd_try_to_sleep(pgdat, balanced_order, 3263 balanced_classzone_idx); 3264 order = pgdat->kswapd_max_order; 3265 classzone_idx = pgdat->classzone_idx; 3266 new_order = order; 3267 new_classzone_idx = classzone_idx; 3268 pgdat->kswapd_max_order = 0; 3269 pgdat->classzone_idx = pgdat->nr_zones - 1; 3270 } 3271 3272 ret = try_to_freeze(); 3273 if (kthread_should_stop()) 3274 break; 3275 3276 /* 3277 * We can speed up thawing tasks if we don't call balance_pgdat 3278 * after returning from the refrigerator 3279 */ 3280 if (!ret) { 3281 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3282 balanced_classzone_idx = classzone_idx; 3283 balanced_order = balance_pgdat(pgdat, order, 3284 &balanced_classzone_idx); 3285 } 3286 } 3287 3288 current->reclaim_state = NULL; 3289 return 0; 3290 } 3291 3292 /* 3293 * A zone is low on free memory, so wake its kswapd task to service it. 3294 */ 3295 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3296 { 3297 pg_data_t *pgdat; 3298 3299 if (!populated_zone(zone)) 3300 return; 3301 3302 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3303 return; 3304 pgdat = zone->zone_pgdat; 3305 if (pgdat->kswapd_max_order < order) { 3306 pgdat->kswapd_max_order = order; 3307 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3308 } 3309 if (!waitqueue_active(&pgdat->kswapd_wait)) 3310 return; 3311 if (zone_balanced(zone, order, 0, 0)) 3312 return; 3313 3314 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3315 wake_up_interruptible(&pgdat->kswapd_wait); 3316 } 3317 3318 /* 3319 * The reclaimable count would be mostly accurate. 3320 * The less reclaimable pages may be 3321 * - mlocked pages, which will be moved to unevictable list when encountered 3322 * - mapped pages, which may require several travels to be reclaimed 3323 * - dirty pages, which is not "instantly" reclaimable 3324 */ 3325 unsigned long global_reclaimable_pages(void) 3326 { 3327 int nr; 3328 3329 nr = global_page_state(NR_ACTIVE_FILE) + 3330 global_page_state(NR_INACTIVE_FILE); 3331 3332 if (get_nr_swap_pages() > 0) 3333 nr += global_page_state(NR_ACTIVE_ANON) + 3334 global_page_state(NR_INACTIVE_ANON); 3335 3336 return nr; 3337 } 3338 3339 #ifdef CONFIG_HIBERNATION 3340 /* 3341 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3342 * freed pages. 3343 * 3344 * Rather than trying to age LRUs the aim is to preserve the overall 3345 * LRU order by reclaiming preferentially 3346 * inactive > active > active referenced > active mapped 3347 */ 3348 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3349 { 3350 struct reclaim_state reclaim_state; 3351 struct scan_control sc = { 3352 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3353 .may_swap = 1, 3354 .may_unmap = 1, 3355 .may_writepage = 1, 3356 .nr_to_reclaim = nr_to_reclaim, 3357 .hibernation_mode = 1, 3358 .order = 0, 3359 .priority = DEF_PRIORITY, 3360 }; 3361 struct shrink_control shrink = { 3362 .gfp_mask = sc.gfp_mask, 3363 }; 3364 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3365 struct task_struct *p = current; 3366 unsigned long nr_reclaimed; 3367 3368 p->flags |= PF_MEMALLOC; 3369 lockdep_set_current_reclaim_state(sc.gfp_mask); 3370 reclaim_state.reclaimed_slab = 0; 3371 p->reclaim_state = &reclaim_state; 3372 3373 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3374 3375 p->reclaim_state = NULL; 3376 lockdep_clear_current_reclaim_state(); 3377 p->flags &= ~PF_MEMALLOC; 3378 3379 return nr_reclaimed; 3380 } 3381 #endif /* CONFIG_HIBERNATION */ 3382 3383 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3384 not required for correctness. So if the last cpu in a node goes 3385 away, we get changed to run anywhere: as the first one comes back, 3386 restore their cpu bindings. */ 3387 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3388 void *hcpu) 3389 { 3390 int nid; 3391 3392 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3393 for_each_node_state(nid, N_MEMORY) { 3394 pg_data_t *pgdat = NODE_DATA(nid); 3395 const struct cpumask *mask; 3396 3397 mask = cpumask_of_node(pgdat->node_id); 3398 3399 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3400 /* One of our CPUs online: restore mask */ 3401 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3402 } 3403 } 3404 return NOTIFY_OK; 3405 } 3406 3407 /* 3408 * This kswapd start function will be called by init and node-hot-add. 3409 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3410 */ 3411 int kswapd_run(int nid) 3412 { 3413 pg_data_t *pgdat = NODE_DATA(nid); 3414 int ret = 0; 3415 3416 if (pgdat->kswapd) 3417 return 0; 3418 3419 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3420 if (IS_ERR(pgdat->kswapd)) { 3421 /* failure at boot is fatal */ 3422 BUG_ON(system_state == SYSTEM_BOOTING); 3423 pr_err("Failed to start kswapd on node %d\n", nid); 3424 ret = PTR_ERR(pgdat->kswapd); 3425 pgdat->kswapd = NULL; 3426 } 3427 return ret; 3428 } 3429 3430 /* 3431 * Called by memory hotplug when all memory in a node is offlined. Caller must 3432 * hold lock_memory_hotplug(). 3433 */ 3434 void kswapd_stop(int nid) 3435 { 3436 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3437 3438 if (kswapd) { 3439 kthread_stop(kswapd); 3440 NODE_DATA(nid)->kswapd = NULL; 3441 } 3442 } 3443 3444 static int __init kswapd_init(void) 3445 { 3446 int nid; 3447 3448 swap_setup(); 3449 for_each_node_state(nid, N_MEMORY) 3450 kswapd_run(nid); 3451 hotcpu_notifier(cpu_callback, 0); 3452 return 0; 3453 } 3454 3455 module_init(kswapd_init) 3456 3457 #ifdef CONFIG_NUMA 3458 /* 3459 * Zone reclaim mode 3460 * 3461 * If non-zero call zone_reclaim when the number of free pages falls below 3462 * the watermarks. 3463 */ 3464 int zone_reclaim_mode __read_mostly; 3465 3466 #define RECLAIM_OFF 0 3467 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3468 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3469 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3470 3471 /* 3472 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3473 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3474 * a zone. 3475 */ 3476 #define ZONE_RECLAIM_PRIORITY 4 3477 3478 /* 3479 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3480 * occur. 3481 */ 3482 int sysctl_min_unmapped_ratio = 1; 3483 3484 /* 3485 * If the number of slab pages in a zone grows beyond this percentage then 3486 * slab reclaim needs to occur. 3487 */ 3488 int sysctl_min_slab_ratio = 5; 3489 3490 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3491 { 3492 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3493 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3494 zone_page_state(zone, NR_ACTIVE_FILE); 3495 3496 /* 3497 * It's possible for there to be more file mapped pages than 3498 * accounted for by the pages on the file LRU lists because 3499 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3500 */ 3501 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3502 } 3503 3504 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3505 static long zone_pagecache_reclaimable(struct zone *zone) 3506 { 3507 long nr_pagecache_reclaimable; 3508 long delta = 0; 3509 3510 /* 3511 * If RECLAIM_SWAP is set, then all file pages are considered 3512 * potentially reclaimable. Otherwise, we have to worry about 3513 * pages like swapcache and zone_unmapped_file_pages() provides 3514 * a better estimate 3515 */ 3516 if (zone_reclaim_mode & RECLAIM_SWAP) 3517 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3518 else 3519 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3520 3521 /* If we can't clean pages, remove dirty pages from consideration */ 3522 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3523 delta += zone_page_state(zone, NR_FILE_DIRTY); 3524 3525 /* Watch for any possible underflows due to delta */ 3526 if (unlikely(delta > nr_pagecache_reclaimable)) 3527 delta = nr_pagecache_reclaimable; 3528 3529 return nr_pagecache_reclaimable - delta; 3530 } 3531 3532 /* 3533 * Try to free up some pages from this zone through reclaim. 3534 */ 3535 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3536 { 3537 /* Minimum pages needed in order to stay on node */ 3538 const unsigned long nr_pages = 1 << order; 3539 struct task_struct *p = current; 3540 struct reclaim_state reclaim_state; 3541 struct scan_control sc = { 3542 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3543 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3544 .may_swap = 1, 3545 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3546 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3547 .order = order, 3548 .priority = ZONE_RECLAIM_PRIORITY, 3549 }; 3550 struct shrink_control shrink = { 3551 .gfp_mask = sc.gfp_mask, 3552 }; 3553 unsigned long nr_slab_pages0, nr_slab_pages1; 3554 3555 cond_resched(); 3556 /* 3557 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3558 * and we also need to be able to write out pages for RECLAIM_WRITE 3559 * and RECLAIM_SWAP. 3560 */ 3561 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3562 lockdep_set_current_reclaim_state(gfp_mask); 3563 reclaim_state.reclaimed_slab = 0; 3564 p->reclaim_state = &reclaim_state; 3565 3566 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3567 /* 3568 * Free memory by calling shrink zone with increasing 3569 * priorities until we have enough memory freed. 3570 */ 3571 do { 3572 shrink_zone(zone, &sc); 3573 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3574 } 3575 3576 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3577 if (nr_slab_pages0 > zone->min_slab_pages) { 3578 /* 3579 * shrink_slab() does not currently allow us to determine how 3580 * many pages were freed in this zone. So we take the current 3581 * number of slab pages and shake the slab until it is reduced 3582 * by the same nr_pages that we used for reclaiming unmapped 3583 * pages. 3584 */ 3585 nodes_clear(shrink.nodes_to_scan); 3586 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 3587 for (;;) { 3588 unsigned long lru_pages = zone_reclaimable_pages(zone); 3589 3590 /* No reclaimable slab or very low memory pressure */ 3591 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3592 break; 3593 3594 /* Freed enough memory */ 3595 nr_slab_pages1 = zone_page_state(zone, 3596 NR_SLAB_RECLAIMABLE); 3597 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3598 break; 3599 } 3600 3601 /* 3602 * Update nr_reclaimed by the number of slab pages we 3603 * reclaimed from this zone. 3604 */ 3605 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3606 if (nr_slab_pages1 < nr_slab_pages0) 3607 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3608 } 3609 3610 p->reclaim_state = NULL; 3611 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3612 lockdep_clear_current_reclaim_state(); 3613 return sc.nr_reclaimed >= nr_pages; 3614 } 3615 3616 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3617 { 3618 int node_id; 3619 int ret; 3620 3621 /* 3622 * Zone reclaim reclaims unmapped file backed pages and 3623 * slab pages if we are over the defined limits. 3624 * 3625 * A small portion of unmapped file backed pages is needed for 3626 * file I/O otherwise pages read by file I/O will be immediately 3627 * thrown out if the zone is overallocated. So we do not reclaim 3628 * if less than a specified percentage of the zone is used by 3629 * unmapped file backed pages. 3630 */ 3631 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3632 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3633 return ZONE_RECLAIM_FULL; 3634 3635 if (!zone_reclaimable(zone)) 3636 return ZONE_RECLAIM_FULL; 3637 3638 /* 3639 * Do not scan if the allocation should not be delayed. 3640 */ 3641 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3642 return ZONE_RECLAIM_NOSCAN; 3643 3644 /* 3645 * Only run zone reclaim on the local zone or on zones that do not 3646 * have associated processors. This will favor the local processor 3647 * over remote processors and spread off node memory allocations 3648 * as wide as possible. 3649 */ 3650 node_id = zone_to_nid(zone); 3651 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3652 return ZONE_RECLAIM_NOSCAN; 3653 3654 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3655 return ZONE_RECLAIM_NOSCAN; 3656 3657 ret = __zone_reclaim(zone, gfp_mask, order); 3658 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3659 3660 if (!ret) 3661 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3662 3663 return ret; 3664 } 3665 #endif 3666 3667 /* 3668 * page_evictable - test whether a page is evictable 3669 * @page: the page to test 3670 * 3671 * Test whether page is evictable--i.e., should be placed on active/inactive 3672 * lists vs unevictable list. 3673 * 3674 * Reasons page might not be evictable: 3675 * (1) page's mapping marked unevictable 3676 * (2) page is part of an mlocked VMA 3677 * 3678 */ 3679 int page_evictable(struct page *page) 3680 { 3681 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3682 } 3683 3684 #ifdef CONFIG_SHMEM 3685 /** 3686 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3687 * @pages: array of pages to check 3688 * @nr_pages: number of pages to check 3689 * 3690 * Checks pages for evictability and moves them to the appropriate lru list. 3691 * 3692 * This function is only used for SysV IPC SHM_UNLOCK. 3693 */ 3694 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3695 { 3696 struct lruvec *lruvec; 3697 struct zone *zone = NULL; 3698 int pgscanned = 0; 3699 int pgrescued = 0; 3700 int i; 3701 3702 for (i = 0; i < nr_pages; i++) { 3703 struct page *page = pages[i]; 3704 struct zone *pagezone; 3705 3706 pgscanned++; 3707 pagezone = page_zone(page); 3708 if (pagezone != zone) { 3709 if (zone) 3710 spin_unlock_irq(&zone->lru_lock); 3711 zone = pagezone; 3712 spin_lock_irq(&zone->lru_lock); 3713 } 3714 lruvec = mem_cgroup_page_lruvec(page, zone); 3715 3716 if (!PageLRU(page) || !PageUnevictable(page)) 3717 continue; 3718 3719 if (page_evictable(page)) { 3720 enum lru_list lru = page_lru_base_type(page); 3721 3722 VM_BUG_ON(PageActive(page)); 3723 ClearPageUnevictable(page); 3724 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3725 add_page_to_lru_list(page, lruvec, lru); 3726 pgrescued++; 3727 } 3728 } 3729 3730 if (zone) { 3731 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3732 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3733 spin_unlock_irq(&zone->lru_lock); 3734 } 3735 } 3736 #endif /* CONFIG_SHMEM */ 3737 3738 static void warn_scan_unevictable_pages(void) 3739 { 3740 printk_once(KERN_WARNING 3741 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3742 "disabled for lack of a legitimate use case. If you have " 3743 "one, please send an email to linux-mm@kvack.org.\n", 3744 current->comm); 3745 } 3746 3747 /* 3748 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3749 * all nodes' unevictable lists for evictable pages 3750 */ 3751 unsigned long scan_unevictable_pages; 3752 3753 int scan_unevictable_handler(struct ctl_table *table, int write, 3754 void __user *buffer, 3755 size_t *length, loff_t *ppos) 3756 { 3757 warn_scan_unevictable_pages(); 3758 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3759 scan_unevictable_pages = 0; 3760 return 0; 3761 } 3762 3763 #ifdef CONFIG_NUMA 3764 /* 3765 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3766 * a specified node's per zone unevictable lists for evictable pages. 3767 */ 3768 3769 static ssize_t read_scan_unevictable_node(struct device *dev, 3770 struct device_attribute *attr, 3771 char *buf) 3772 { 3773 warn_scan_unevictable_pages(); 3774 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3775 } 3776 3777 static ssize_t write_scan_unevictable_node(struct device *dev, 3778 struct device_attribute *attr, 3779 const char *buf, size_t count) 3780 { 3781 warn_scan_unevictable_pages(); 3782 return 1; 3783 } 3784 3785 3786 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3787 read_scan_unevictable_node, 3788 write_scan_unevictable_node); 3789 3790 int scan_unevictable_register_node(struct node *node) 3791 { 3792 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3793 } 3794 3795 void scan_unevictable_unregister_node(struct node *node) 3796 { 3797 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3798 } 3799 #endif 3800