xref: /openbmc/linux/mm/vmscan.c (revision 5bd8e16d)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 struct scan_control {
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Number of pages freed so far during a call to shrink_zones() */
62 	unsigned long nr_reclaimed;
63 
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	unsigned long hibernation_mode;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* Can mapped pages be reclaimed? */
75 	int may_unmap;
76 
77 	/* Can pages be swapped as part of reclaim? */
78 	int may_swap;
79 
80 	int order;
81 
82 	/* Scan (total_size >> priority) pages at once */
83 	int priority;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 	 * are scanned.
94 	 */
95 	nodemask_t	*nodemask;
96 };
97 
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetch(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)			\
116 	do {								\
117 		if ((_page)->lru.prev != _base) {			\
118 			struct page *prev;				\
119 									\
120 			prev = lru_to_page(&(_page->lru));		\
121 			prefetchw(&prev->_field);			\
122 		}							\
123 	} while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127 
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
133 
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136 
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 	return !sc->target_mem_cgroup;
141 }
142 
143 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
144 {
145 	struct mem_cgroup *root = sc->target_mem_cgroup;
146 	return !mem_cgroup_disabled() &&
147 		mem_cgroup_soft_reclaim_eligible(root, root) != SKIP_TREE;
148 }
149 #else
150 static bool global_reclaim(struct scan_control *sc)
151 {
152 	return true;
153 }
154 
155 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
156 {
157 	return false;
158 }
159 #endif
160 
161 unsigned long zone_reclaimable_pages(struct zone *zone)
162 {
163 	int nr;
164 
165 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 	     zone_page_state(zone, NR_INACTIVE_FILE);
167 
168 	if (get_nr_swap_pages() > 0)
169 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 		      zone_page_state(zone, NR_INACTIVE_ANON);
171 
172 	return nr;
173 }
174 
175 bool zone_reclaimable(struct zone *zone)
176 {
177 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
178 }
179 
180 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
181 {
182 	if (!mem_cgroup_disabled())
183 		return mem_cgroup_get_lru_size(lruvec, lru);
184 
185 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
186 }
187 
188 /*
189  * Add a shrinker callback to be called from the vm.
190  */
191 int register_shrinker(struct shrinker *shrinker)
192 {
193 	size_t size = sizeof(*shrinker->nr_deferred);
194 
195 	/*
196 	 * If we only have one possible node in the system anyway, save
197 	 * ourselves the trouble and disable NUMA aware behavior. This way we
198 	 * will save memory and some small loop time later.
199 	 */
200 	if (nr_node_ids == 1)
201 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
202 
203 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
204 		size *= nr_node_ids;
205 
206 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
207 	if (!shrinker->nr_deferred)
208 		return -ENOMEM;
209 
210 	down_write(&shrinker_rwsem);
211 	list_add_tail(&shrinker->list, &shrinker_list);
212 	up_write(&shrinker_rwsem);
213 	return 0;
214 }
215 EXPORT_SYMBOL(register_shrinker);
216 
217 /*
218  * Remove one
219  */
220 void unregister_shrinker(struct shrinker *shrinker)
221 {
222 	down_write(&shrinker_rwsem);
223 	list_del(&shrinker->list);
224 	up_write(&shrinker_rwsem);
225 }
226 EXPORT_SYMBOL(unregister_shrinker);
227 
228 #define SHRINK_BATCH 128
229 
230 static unsigned long
231 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
232 		 unsigned long nr_pages_scanned, unsigned long lru_pages)
233 {
234 	unsigned long freed = 0;
235 	unsigned long long delta;
236 	long total_scan;
237 	long max_pass;
238 	long nr;
239 	long new_nr;
240 	int nid = shrinkctl->nid;
241 	long batch_size = shrinker->batch ? shrinker->batch
242 					  : SHRINK_BATCH;
243 
244 	max_pass = shrinker->count_objects(shrinker, shrinkctl);
245 	if (max_pass == 0)
246 		return 0;
247 
248 	/*
249 	 * copy the current shrinker scan count into a local variable
250 	 * and zero it so that other concurrent shrinker invocations
251 	 * don't also do this scanning work.
252 	 */
253 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
254 
255 	total_scan = nr;
256 	delta = (4 * nr_pages_scanned) / shrinker->seeks;
257 	delta *= max_pass;
258 	do_div(delta, lru_pages + 1);
259 	total_scan += delta;
260 	if (total_scan < 0) {
261 		printk(KERN_ERR
262 		"shrink_slab: %pF negative objects to delete nr=%ld\n",
263 		       shrinker->scan_objects, total_scan);
264 		total_scan = max_pass;
265 	}
266 
267 	/*
268 	 * We need to avoid excessive windup on filesystem shrinkers
269 	 * due to large numbers of GFP_NOFS allocations causing the
270 	 * shrinkers to return -1 all the time. This results in a large
271 	 * nr being built up so when a shrink that can do some work
272 	 * comes along it empties the entire cache due to nr >>>
273 	 * max_pass.  This is bad for sustaining a working set in
274 	 * memory.
275 	 *
276 	 * Hence only allow the shrinker to scan the entire cache when
277 	 * a large delta change is calculated directly.
278 	 */
279 	if (delta < max_pass / 4)
280 		total_scan = min(total_scan, max_pass / 2);
281 
282 	/*
283 	 * Avoid risking looping forever due to too large nr value:
284 	 * never try to free more than twice the estimate number of
285 	 * freeable entries.
286 	 */
287 	if (total_scan > max_pass * 2)
288 		total_scan = max_pass * 2;
289 
290 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
291 				nr_pages_scanned, lru_pages,
292 				max_pass, delta, total_scan);
293 
294 	while (total_scan >= batch_size) {
295 		unsigned long ret;
296 
297 		shrinkctl->nr_to_scan = batch_size;
298 		ret = shrinker->scan_objects(shrinker, shrinkctl);
299 		if (ret == SHRINK_STOP)
300 			break;
301 		freed += ret;
302 
303 		count_vm_events(SLABS_SCANNED, batch_size);
304 		total_scan -= batch_size;
305 
306 		cond_resched();
307 	}
308 
309 	/*
310 	 * move the unused scan count back into the shrinker in a
311 	 * manner that handles concurrent updates. If we exhausted the
312 	 * scan, there is no need to do an update.
313 	 */
314 	if (total_scan > 0)
315 		new_nr = atomic_long_add_return(total_scan,
316 						&shrinker->nr_deferred[nid]);
317 	else
318 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
319 
320 	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
321 	return freed;
322 }
323 
324 /*
325  * Call the shrink functions to age shrinkable caches
326  *
327  * Here we assume it costs one seek to replace a lru page and that it also
328  * takes a seek to recreate a cache object.  With this in mind we age equal
329  * percentages of the lru and ageable caches.  This should balance the seeks
330  * generated by these structures.
331  *
332  * If the vm encountered mapped pages on the LRU it increase the pressure on
333  * slab to avoid swapping.
334  *
335  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
336  *
337  * `lru_pages' represents the number of on-LRU pages in all the zones which
338  * are eligible for the caller's allocation attempt.  It is used for balancing
339  * slab reclaim versus page reclaim.
340  *
341  * Returns the number of slab objects which we shrunk.
342  */
343 unsigned long shrink_slab(struct shrink_control *shrinkctl,
344 			  unsigned long nr_pages_scanned,
345 			  unsigned long lru_pages)
346 {
347 	struct shrinker *shrinker;
348 	unsigned long freed = 0;
349 
350 	if (nr_pages_scanned == 0)
351 		nr_pages_scanned = SWAP_CLUSTER_MAX;
352 
353 	if (!down_read_trylock(&shrinker_rwsem)) {
354 		/*
355 		 * If we would return 0, our callers would understand that we
356 		 * have nothing else to shrink and give up trying. By returning
357 		 * 1 we keep it going and assume we'll be able to shrink next
358 		 * time.
359 		 */
360 		freed = 1;
361 		goto out;
362 	}
363 
364 	list_for_each_entry(shrinker, &shrinker_list, list) {
365 		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
366 			if (!node_online(shrinkctl->nid))
367 				continue;
368 
369 			if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
370 			    (shrinkctl->nid != 0))
371 				break;
372 
373 			freed += shrink_slab_node(shrinkctl, shrinker,
374 				 nr_pages_scanned, lru_pages);
375 
376 		}
377 	}
378 	up_read(&shrinker_rwsem);
379 out:
380 	cond_resched();
381 	return freed;
382 }
383 
384 static inline int is_page_cache_freeable(struct page *page)
385 {
386 	/*
387 	 * A freeable page cache page is referenced only by the caller
388 	 * that isolated the page, the page cache radix tree and
389 	 * optional buffer heads at page->private.
390 	 */
391 	return page_count(page) - page_has_private(page) == 2;
392 }
393 
394 static int may_write_to_queue(struct backing_dev_info *bdi,
395 			      struct scan_control *sc)
396 {
397 	if (current->flags & PF_SWAPWRITE)
398 		return 1;
399 	if (!bdi_write_congested(bdi))
400 		return 1;
401 	if (bdi == current->backing_dev_info)
402 		return 1;
403 	return 0;
404 }
405 
406 /*
407  * We detected a synchronous write error writing a page out.  Probably
408  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
409  * fsync(), msync() or close().
410  *
411  * The tricky part is that after writepage we cannot touch the mapping: nothing
412  * prevents it from being freed up.  But we have a ref on the page and once
413  * that page is locked, the mapping is pinned.
414  *
415  * We're allowed to run sleeping lock_page() here because we know the caller has
416  * __GFP_FS.
417  */
418 static void handle_write_error(struct address_space *mapping,
419 				struct page *page, int error)
420 {
421 	lock_page(page);
422 	if (page_mapping(page) == mapping)
423 		mapping_set_error(mapping, error);
424 	unlock_page(page);
425 }
426 
427 /* possible outcome of pageout() */
428 typedef enum {
429 	/* failed to write page out, page is locked */
430 	PAGE_KEEP,
431 	/* move page to the active list, page is locked */
432 	PAGE_ACTIVATE,
433 	/* page has been sent to the disk successfully, page is unlocked */
434 	PAGE_SUCCESS,
435 	/* page is clean and locked */
436 	PAGE_CLEAN,
437 } pageout_t;
438 
439 /*
440  * pageout is called by shrink_page_list() for each dirty page.
441  * Calls ->writepage().
442  */
443 static pageout_t pageout(struct page *page, struct address_space *mapping,
444 			 struct scan_control *sc)
445 {
446 	/*
447 	 * If the page is dirty, only perform writeback if that write
448 	 * will be non-blocking.  To prevent this allocation from being
449 	 * stalled by pagecache activity.  But note that there may be
450 	 * stalls if we need to run get_block().  We could test
451 	 * PagePrivate for that.
452 	 *
453 	 * If this process is currently in __generic_file_aio_write() against
454 	 * this page's queue, we can perform writeback even if that
455 	 * will block.
456 	 *
457 	 * If the page is swapcache, write it back even if that would
458 	 * block, for some throttling. This happens by accident, because
459 	 * swap_backing_dev_info is bust: it doesn't reflect the
460 	 * congestion state of the swapdevs.  Easy to fix, if needed.
461 	 */
462 	if (!is_page_cache_freeable(page))
463 		return PAGE_KEEP;
464 	if (!mapping) {
465 		/*
466 		 * Some data journaling orphaned pages can have
467 		 * page->mapping == NULL while being dirty with clean buffers.
468 		 */
469 		if (page_has_private(page)) {
470 			if (try_to_free_buffers(page)) {
471 				ClearPageDirty(page);
472 				printk("%s: orphaned page\n", __func__);
473 				return PAGE_CLEAN;
474 			}
475 		}
476 		return PAGE_KEEP;
477 	}
478 	if (mapping->a_ops->writepage == NULL)
479 		return PAGE_ACTIVATE;
480 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
481 		return PAGE_KEEP;
482 
483 	if (clear_page_dirty_for_io(page)) {
484 		int res;
485 		struct writeback_control wbc = {
486 			.sync_mode = WB_SYNC_NONE,
487 			.nr_to_write = SWAP_CLUSTER_MAX,
488 			.range_start = 0,
489 			.range_end = LLONG_MAX,
490 			.for_reclaim = 1,
491 		};
492 
493 		SetPageReclaim(page);
494 		res = mapping->a_ops->writepage(page, &wbc);
495 		if (res < 0)
496 			handle_write_error(mapping, page, res);
497 		if (res == AOP_WRITEPAGE_ACTIVATE) {
498 			ClearPageReclaim(page);
499 			return PAGE_ACTIVATE;
500 		}
501 
502 		if (!PageWriteback(page)) {
503 			/* synchronous write or broken a_ops? */
504 			ClearPageReclaim(page);
505 		}
506 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
507 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
508 		return PAGE_SUCCESS;
509 	}
510 
511 	return PAGE_CLEAN;
512 }
513 
514 /*
515  * Same as remove_mapping, but if the page is removed from the mapping, it
516  * gets returned with a refcount of 0.
517  */
518 static int __remove_mapping(struct address_space *mapping, struct page *page)
519 {
520 	BUG_ON(!PageLocked(page));
521 	BUG_ON(mapping != page_mapping(page));
522 
523 	spin_lock_irq(&mapping->tree_lock);
524 	/*
525 	 * The non racy check for a busy page.
526 	 *
527 	 * Must be careful with the order of the tests. When someone has
528 	 * a ref to the page, it may be possible that they dirty it then
529 	 * drop the reference. So if PageDirty is tested before page_count
530 	 * here, then the following race may occur:
531 	 *
532 	 * get_user_pages(&page);
533 	 * [user mapping goes away]
534 	 * write_to(page);
535 	 *				!PageDirty(page)    [good]
536 	 * SetPageDirty(page);
537 	 * put_page(page);
538 	 *				!page_count(page)   [good, discard it]
539 	 *
540 	 * [oops, our write_to data is lost]
541 	 *
542 	 * Reversing the order of the tests ensures such a situation cannot
543 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
544 	 * load is not satisfied before that of page->_count.
545 	 *
546 	 * Note that if SetPageDirty is always performed via set_page_dirty,
547 	 * and thus under tree_lock, then this ordering is not required.
548 	 */
549 	if (!page_freeze_refs(page, 2))
550 		goto cannot_free;
551 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
552 	if (unlikely(PageDirty(page))) {
553 		page_unfreeze_refs(page, 2);
554 		goto cannot_free;
555 	}
556 
557 	if (PageSwapCache(page)) {
558 		swp_entry_t swap = { .val = page_private(page) };
559 		__delete_from_swap_cache(page);
560 		spin_unlock_irq(&mapping->tree_lock);
561 		swapcache_free(swap, page);
562 	} else {
563 		void (*freepage)(struct page *);
564 
565 		freepage = mapping->a_ops->freepage;
566 
567 		__delete_from_page_cache(page);
568 		spin_unlock_irq(&mapping->tree_lock);
569 		mem_cgroup_uncharge_cache_page(page);
570 
571 		if (freepage != NULL)
572 			freepage(page);
573 	}
574 
575 	return 1;
576 
577 cannot_free:
578 	spin_unlock_irq(&mapping->tree_lock);
579 	return 0;
580 }
581 
582 /*
583  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
584  * someone else has a ref on the page, abort and return 0.  If it was
585  * successfully detached, return 1.  Assumes the caller has a single ref on
586  * this page.
587  */
588 int remove_mapping(struct address_space *mapping, struct page *page)
589 {
590 	if (__remove_mapping(mapping, page)) {
591 		/*
592 		 * Unfreezing the refcount with 1 rather than 2 effectively
593 		 * drops the pagecache ref for us without requiring another
594 		 * atomic operation.
595 		 */
596 		page_unfreeze_refs(page, 1);
597 		return 1;
598 	}
599 	return 0;
600 }
601 
602 /**
603  * putback_lru_page - put previously isolated page onto appropriate LRU list
604  * @page: page to be put back to appropriate lru list
605  *
606  * Add previously isolated @page to appropriate LRU list.
607  * Page may still be unevictable for other reasons.
608  *
609  * lru_lock must not be held, interrupts must be enabled.
610  */
611 void putback_lru_page(struct page *page)
612 {
613 	bool is_unevictable;
614 	int was_unevictable = PageUnevictable(page);
615 
616 	VM_BUG_ON(PageLRU(page));
617 
618 redo:
619 	ClearPageUnevictable(page);
620 
621 	if (page_evictable(page)) {
622 		/*
623 		 * For evictable pages, we can use the cache.
624 		 * In event of a race, worst case is we end up with an
625 		 * unevictable page on [in]active list.
626 		 * We know how to handle that.
627 		 */
628 		is_unevictable = false;
629 		lru_cache_add(page);
630 	} else {
631 		/*
632 		 * Put unevictable pages directly on zone's unevictable
633 		 * list.
634 		 */
635 		is_unevictable = true;
636 		add_page_to_unevictable_list(page);
637 		/*
638 		 * When racing with an mlock or AS_UNEVICTABLE clearing
639 		 * (page is unlocked) make sure that if the other thread
640 		 * does not observe our setting of PG_lru and fails
641 		 * isolation/check_move_unevictable_pages,
642 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
643 		 * the page back to the evictable list.
644 		 *
645 		 * The other side is TestClearPageMlocked() or shmem_lock().
646 		 */
647 		smp_mb();
648 	}
649 
650 	/*
651 	 * page's status can change while we move it among lru. If an evictable
652 	 * page is on unevictable list, it never be freed. To avoid that,
653 	 * check after we added it to the list, again.
654 	 */
655 	if (is_unevictable && page_evictable(page)) {
656 		if (!isolate_lru_page(page)) {
657 			put_page(page);
658 			goto redo;
659 		}
660 		/* This means someone else dropped this page from LRU
661 		 * So, it will be freed or putback to LRU again. There is
662 		 * nothing to do here.
663 		 */
664 	}
665 
666 	if (was_unevictable && !is_unevictable)
667 		count_vm_event(UNEVICTABLE_PGRESCUED);
668 	else if (!was_unevictable && is_unevictable)
669 		count_vm_event(UNEVICTABLE_PGCULLED);
670 
671 	put_page(page);		/* drop ref from isolate */
672 }
673 
674 enum page_references {
675 	PAGEREF_RECLAIM,
676 	PAGEREF_RECLAIM_CLEAN,
677 	PAGEREF_KEEP,
678 	PAGEREF_ACTIVATE,
679 };
680 
681 static enum page_references page_check_references(struct page *page,
682 						  struct scan_control *sc)
683 {
684 	int referenced_ptes, referenced_page;
685 	unsigned long vm_flags;
686 
687 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
688 					  &vm_flags);
689 	referenced_page = TestClearPageReferenced(page);
690 
691 	/*
692 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
693 	 * move the page to the unevictable list.
694 	 */
695 	if (vm_flags & VM_LOCKED)
696 		return PAGEREF_RECLAIM;
697 
698 	if (referenced_ptes) {
699 		if (PageSwapBacked(page))
700 			return PAGEREF_ACTIVATE;
701 		/*
702 		 * All mapped pages start out with page table
703 		 * references from the instantiating fault, so we need
704 		 * to look twice if a mapped file page is used more
705 		 * than once.
706 		 *
707 		 * Mark it and spare it for another trip around the
708 		 * inactive list.  Another page table reference will
709 		 * lead to its activation.
710 		 *
711 		 * Note: the mark is set for activated pages as well
712 		 * so that recently deactivated but used pages are
713 		 * quickly recovered.
714 		 */
715 		SetPageReferenced(page);
716 
717 		if (referenced_page || referenced_ptes > 1)
718 			return PAGEREF_ACTIVATE;
719 
720 		/*
721 		 * Activate file-backed executable pages after first usage.
722 		 */
723 		if (vm_flags & VM_EXEC)
724 			return PAGEREF_ACTIVATE;
725 
726 		return PAGEREF_KEEP;
727 	}
728 
729 	/* Reclaim if clean, defer dirty pages to writeback */
730 	if (referenced_page && !PageSwapBacked(page))
731 		return PAGEREF_RECLAIM_CLEAN;
732 
733 	return PAGEREF_RECLAIM;
734 }
735 
736 /* Check if a page is dirty or under writeback */
737 static void page_check_dirty_writeback(struct page *page,
738 				       bool *dirty, bool *writeback)
739 {
740 	struct address_space *mapping;
741 
742 	/*
743 	 * Anonymous pages are not handled by flushers and must be written
744 	 * from reclaim context. Do not stall reclaim based on them
745 	 */
746 	if (!page_is_file_cache(page)) {
747 		*dirty = false;
748 		*writeback = false;
749 		return;
750 	}
751 
752 	/* By default assume that the page flags are accurate */
753 	*dirty = PageDirty(page);
754 	*writeback = PageWriteback(page);
755 
756 	/* Verify dirty/writeback state if the filesystem supports it */
757 	if (!page_has_private(page))
758 		return;
759 
760 	mapping = page_mapping(page);
761 	if (mapping && mapping->a_ops->is_dirty_writeback)
762 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
763 }
764 
765 /*
766  * shrink_page_list() returns the number of reclaimed pages
767  */
768 static unsigned long shrink_page_list(struct list_head *page_list,
769 				      struct zone *zone,
770 				      struct scan_control *sc,
771 				      enum ttu_flags ttu_flags,
772 				      unsigned long *ret_nr_dirty,
773 				      unsigned long *ret_nr_unqueued_dirty,
774 				      unsigned long *ret_nr_congested,
775 				      unsigned long *ret_nr_writeback,
776 				      unsigned long *ret_nr_immediate,
777 				      bool force_reclaim)
778 {
779 	LIST_HEAD(ret_pages);
780 	LIST_HEAD(free_pages);
781 	int pgactivate = 0;
782 	unsigned long nr_unqueued_dirty = 0;
783 	unsigned long nr_dirty = 0;
784 	unsigned long nr_congested = 0;
785 	unsigned long nr_reclaimed = 0;
786 	unsigned long nr_writeback = 0;
787 	unsigned long nr_immediate = 0;
788 
789 	cond_resched();
790 
791 	mem_cgroup_uncharge_start();
792 	while (!list_empty(page_list)) {
793 		struct address_space *mapping;
794 		struct page *page;
795 		int may_enter_fs;
796 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
797 		bool dirty, writeback;
798 
799 		cond_resched();
800 
801 		page = lru_to_page(page_list);
802 		list_del(&page->lru);
803 
804 		if (!trylock_page(page))
805 			goto keep;
806 
807 		VM_BUG_ON(PageActive(page));
808 		VM_BUG_ON(page_zone(page) != zone);
809 
810 		sc->nr_scanned++;
811 
812 		if (unlikely(!page_evictable(page)))
813 			goto cull_mlocked;
814 
815 		if (!sc->may_unmap && page_mapped(page))
816 			goto keep_locked;
817 
818 		/* Double the slab pressure for mapped and swapcache pages */
819 		if (page_mapped(page) || PageSwapCache(page))
820 			sc->nr_scanned++;
821 
822 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
823 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
824 
825 		/*
826 		 * The number of dirty pages determines if a zone is marked
827 		 * reclaim_congested which affects wait_iff_congested. kswapd
828 		 * will stall and start writing pages if the tail of the LRU
829 		 * is all dirty unqueued pages.
830 		 */
831 		page_check_dirty_writeback(page, &dirty, &writeback);
832 		if (dirty || writeback)
833 			nr_dirty++;
834 
835 		if (dirty && !writeback)
836 			nr_unqueued_dirty++;
837 
838 		/*
839 		 * Treat this page as congested if the underlying BDI is or if
840 		 * pages are cycling through the LRU so quickly that the
841 		 * pages marked for immediate reclaim are making it to the
842 		 * end of the LRU a second time.
843 		 */
844 		mapping = page_mapping(page);
845 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
846 		    (writeback && PageReclaim(page)))
847 			nr_congested++;
848 
849 		/*
850 		 * If a page at the tail of the LRU is under writeback, there
851 		 * are three cases to consider.
852 		 *
853 		 * 1) If reclaim is encountering an excessive number of pages
854 		 *    under writeback and this page is both under writeback and
855 		 *    PageReclaim then it indicates that pages are being queued
856 		 *    for IO but are being recycled through the LRU before the
857 		 *    IO can complete. Waiting on the page itself risks an
858 		 *    indefinite stall if it is impossible to writeback the
859 		 *    page due to IO error or disconnected storage so instead
860 		 *    note that the LRU is being scanned too quickly and the
861 		 *    caller can stall after page list has been processed.
862 		 *
863 		 * 2) Global reclaim encounters a page, memcg encounters a
864 		 *    page that is not marked for immediate reclaim or
865 		 *    the caller does not have __GFP_IO. In this case mark
866 		 *    the page for immediate reclaim and continue scanning.
867 		 *
868 		 *    __GFP_IO is checked  because a loop driver thread might
869 		 *    enter reclaim, and deadlock if it waits on a page for
870 		 *    which it is needed to do the write (loop masks off
871 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
872 		 *    would probably show more reasons.
873 		 *
874 		 *    Don't require __GFP_FS, since we're not going into the
875 		 *    FS, just waiting on its writeback completion. Worryingly,
876 		 *    ext4 gfs2 and xfs allocate pages with
877 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
878 		 *    may_enter_fs here is liable to OOM on them.
879 		 *
880 		 * 3) memcg encounters a page that is not already marked
881 		 *    PageReclaim. memcg does not have any dirty pages
882 		 *    throttling so we could easily OOM just because too many
883 		 *    pages are in writeback and there is nothing else to
884 		 *    reclaim. Wait for the writeback to complete.
885 		 */
886 		if (PageWriteback(page)) {
887 			/* Case 1 above */
888 			if (current_is_kswapd() &&
889 			    PageReclaim(page) &&
890 			    zone_is_reclaim_writeback(zone)) {
891 				nr_immediate++;
892 				goto keep_locked;
893 
894 			/* Case 2 above */
895 			} else if (global_reclaim(sc) ||
896 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
897 				/*
898 				 * This is slightly racy - end_page_writeback()
899 				 * might have just cleared PageReclaim, then
900 				 * setting PageReclaim here end up interpreted
901 				 * as PageReadahead - but that does not matter
902 				 * enough to care.  What we do want is for this
903 				 * page to have PageReclaim set next time memcg
904 				 * reclaim reaches the tests above, so it will
905 				 * then wait_on_page_writeback() to avoid OOM;
906 				 * and it's also appropriate in global reclaim.
907 				 */
908 				SetPageReclaim(page);
909 				nr_writeback++;
910 
911 				goto keep_locked;
912 
913 			/* Case 3 above */
914 			} else {
915 				wait_on_page_writeback(page);
916 			}
917 		}
918 
919 		if (!force_reclaim)
920 			references = page_check_references(page, sc);
921 
922 		switch (references) {
923 		case PAGEREF_ACTIVATE:
924 			goto activate_locked;
925 		case PAGEREF_KEEP:
926 			goto keep_locked;
927 		case PAGEREF_RECLAIM:
928 		case PAGEREF_RECLAIM_CLEAN:
929 			; /* try to reclaim the page below */
930 		}
931 
932 		/*
933 		 * Anonymous process memory has backing store?
934 		 * Try to allocate it some swap space here.
935 		 */
936 		if (PageAnon(page) && !PageSwapCache(page)) {
937 			if (!(sc->gfp_mask & __GFP_IO))
938 				goto keep_locked;
939 			if (!add_to_swap(page, page_list))
940 				goto activate_locked;
941 			may_enter_fs = 1;
942 
943 			/* Adding to swap updated mapping */
944 			mapping = page_mapping(page);
945 		}
946 
947 		/*
948 		 * The page is mapped into the page tables of one or more
949 		 * processes. Try to unmap it here.
950 		 */
951 		if (page_mapped(page) && mapping) {
952 			switch (try_to_unmap(page, ttu_flags)) {
953 			case SWAP_FAIL:
954 				goto activate_locked;
955 			case SWAP_AGAIN:
956 				goto keep_locked;
957 			case SWAP_MLOCK:
958 				goto cull_mlocked;
959 			case SWAP_SUCCESS:
960 				; /* try to free the page below */
961 			}
962 		}
963 
964 		if (PageDirty(page)) {
965 			/*
966 			 * Only kswapd can writeback filesystem pages to
967 			 * avoid risk of stack overflow but only writeback
968 			 * if many dirty pages have been encountered.
969 			 */
970 			if (page_is_file_cache(page) &&
971 					(!current_is_kswapd() ||
972 					 !zone_is_reclaim_dirty(zone))) {
973 				/*
974 				 * Immediately reclaim when written back.
975 				 * Similar in principal to deactivate_page()
976 				 * except we already have the page isolated
977 				 * and know it's dirty
978 				 */
979 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
980 				SetPageReclaim(page);
981 
982 				goto keep_locked;
983 			}
984 
985 			if (references == PAGEREF_RECLAIM_CLEAN)
986 				goto keep_locked;
987 			if (!may_enter_fs)
988 				goto keep_locked;
989 			if (!sc->may_writepage)
990 				goto keep_locked;
991 
992 			/* Page is dirty, try to write it out here */
993 			switch (pageout(page, mapping, sc)) {
994 			case PAGE_KEEP:
995 				goto keep_locked;
996 			case PAGE_ACTIVATE:
997 				goto activate_locked;
998 			case PAGE_SUCCESS:
999 				if (PageWriteback(page))
1000 					goto keep;
1001 				if (PageDirty(page))
1002 					goto keep;
1003 
1004 				/*
1005 				 * A synchronous write - probably a ramdisk.  Go
1006 				 * ahead and try to reclaim the page.
1007 				 */
1008 				if (!trylock_page(page))
1009 					goto keep;
1010 				if (PageDirty(page) || PageWriteback(page))
1011 					goto keep_locked;
1012 				mapping = page_mapping(page);
1013 			case PAGE_CLEAN:
1014 				; /* try to free the page below */
1015 			}
1016 		}
1017 
1018 		/*
1019 		 * If the page has buffers, try to free the buffer mappings
1020 		 * associated with this page. If we succeed we try to free
1021 		 * the page as well.
1022 		 *
1023 		 * We do this even if the page is PageDirty().
1024 		 * try_to_release_page() does not perform I/O, but it is
1025 		 * possible for a page to have PageDirty set, but it is actually
1026 		 * clean (all its buffers are clean).  This happens if the
1027 		 * buffers were written out directly, with submit_bh(). ext3
1028 		 * will do this, as well as the blockdev mapping.
1029 		 * try_to_release_page() will discover that cleanness and will
1030 		 * drop the buffers and mark the page clean - it can be freed.
1031 		 *
1032 		 * Rarely, pages can have buffers and no ->mapping.  These are
1033 		 * the pages which were not successfully invalidated in
1034 		 * truncate_complete_page().  We try to drop those buffers here
1035 		 * and if that worked, and the page is no longer mapped into
1036 		 * process address space (page_count == 1) it can be freed.
1037 		 * Otherwise, leave the page on the LRU so it is swappable.
1038 		 */
1039 		if (page_has_private(page)) {
1040 			if (!try_to_release_page(page, sc->gfp_mask))
1041 				goto activate_locked;
1042 			if (!mapping && page_count(page) == 1) {
1043 				unlock_page(page);
1044 				if (put_page_testzero(page))
1045 					goto free_it;
1046 				else {
1047 					/*
1048 					 * rare race with speculative reference.
1049 					 * the speculative reference will free
1050 					 * this page shortly, so we may
1051 					 * increment nr_reclaimed here (and
1052 					 * leave it off the LRU).
1053 					 */
1054 					nr_reclaimed++;
1055 					continue;
1056 				}
1057 			}
1058 		}
1059 
1060 		if (!mapping || !__remove_mapping(mapping, page))
1061 			goto keep_locked;
1062 
1063 		/*
1064 		 * At this point, we have no other references and there is
1065 		 * no way to pick any more up (removed from LRU, removed
1066 		 * from pagecache). Can use non-atomic bitops now (and
1067 		 * we obviously don't have to worry about waking up a process
1068 		 * waiting on the page lock, because there are no references.
1069 		 */
1070 		__clear_page_locked(page);
1071 free_it:
1072 		nr_reclaimed++;
1073 
1074 		/*
1075 		 * Is there need to periodically free_page_list? It would
1076 		 * appear not as the counts should be low
1077 		 */
1078 		list_add(&page->lru, &free_pages);
1079 		continue;
1080 
1081 cull_mlocked:
1082 		if (PageSwapCache(page))
1083 			try_to_free_swap(page);
1084 		unlock_page(page);
1085 		putback_lru_page(page);
1086 		continue;
1087 
1088 activate_locked:
1089 		/* Not a candidate for swapping, so reclaim swap space. */
1090 		if (PageSwapCache(page) && vm_swap_full())
1091 			try_to_free_swap(page);
1092 		VM_BUG_ON(PageActive(page));
1093 		SetPageActive(page);
1094 		pgactivate++;
1095 keep_locked:
1096 		unlock_page(page);
1097 keep:
1098 		list_add(&page->lru, &ret_pages);
1099 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1100 	}
1101 
1102 	free_hot_cold_page_list(&free_pages, 1);
1103 
1104 	list_splice(&ret_pages, page_list);
1105 	count_vm_events(PGACTIVATE, pgactivate);
1106 	mem_cgroup_uncharge_end();
1107 	*ret_nr_dirty += nr_dirty;
1108 	*ret_nr_congested += nr_congested;
1109 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1110 	*ret_nr_writeback += nr_writeback;
1111 	*ret_nr_immediate += nr_immediate;
1112 	return nr_reclaimed;
1113 }
1114 
1115 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1116 					    struct list_head *page_list)
1117 {
1118 	struct scan_control sc = {
1119 		.gfp_mask = GFP_KERNEL,
1120 		.priority = DEF_PRIORITY,
1121 		.may_unmap = 1,
1122 	};
1123 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1124 	struct page *page, *next;
1125 	LIST_HEAD(clean_pages);
1126 
1127 	list_for_each_entry_safe(page, next, page_list, lru) {
1128 		if (page_is_file_cache(page) && !PageDirty(page)) {
1129 			ClearPageActive(page);
1130 			list_move(&page->lru, &clean_pages);
1131 		}
1132 	}
1133 
1134 	ret = shrink_page_list(&clean_pages, zone, &sc,
1135 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1136 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1137 	list_splice(&clean_pages, page_list);
1138 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1139 	return ret;
1140 }
1141 
1142 /*
1143  * Attempt to remove the specified page from its LRU.  Only take this page
1144  * if it is of the appropriate PageActive status.  Pages which are being
1145  * freed elsewhere are also ignored.
1146  *
1147  * page:	page to consider
1148  * mode:	one of the LRU isolation modes defined above
1149  *
1150  * returns 0 on success, -ve errno on failure.
1151  */
1152 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1153 {
1154 	int ret = -EINVAL;
1155 
1156 	/* Only take pages on the LRU. */
1157 	if (!PageLRU(page))
1158 		return ret;
1159 
1160 	/* Compaction should not handle unevictable pages but CMA can do so */
1161 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1162 		return ret;
1163 
1164 	ret = -EBUSY;
1165 
1166 	/*
1167 	 * To minimise LRU disruption, the caller can indicate that it only
1168 	 * wants to isolate pages it will be able to operate on without
1169 	 * blocking - clean pages for the most part.
1170 	 *
1171 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1172 	 * is used by reclaim when it is cannot write to backing storage
1173 	 *
1174 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1175 	 * that it is possible to migrate without blocking
1176 	 */
1177 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1178 		/* All the caller can do on PageWriteback is block */
1179 		if (PageWriteback(page))
1180 			return ret;
1181 
1182 		if (PageDirty(page)) {
1183 			struct address_space *mapping;
1184 
1185 			/* ISOLATE_CLEAN means only clean pages */
1186 			if (mode & ISOLATE_CLEAN)
1187 				return ret;
1188 
1189 			/*
1190 			 * Only pages without mappings or that have a
1191 			 * ->migratepage callback are possible to migrate
1192 			 * without blocking
1193 			 */
1194 			mapping = page_mapping(page);
1195 			if (mapping && !mapping->a_ops->migratepage)
1196 				return ret;
1197 		}
1198 	}
1199 
1200 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1201 		return ret;
1202 
1203 	if (likely(get_page_unless_zero(page))) {
1204 		/*
1205 		 * Be careful not to clear PageLRU until after we're
1206 		 * sure the page is not being freed elsewhere -- the
1207 		 * page release code relies on it.
1208 		 */
1209 		ClearPageLRU(page);
1210 		ret = 0;
1211 	}
1212 
1213 	return ret;
1214 }
1215 
1216 /*
1217  * zone->lru_lock is heavily contended.  Some of the functions that
1218  * shrink the lists perform better by taking out a batch of pages
1219  * and working on them outside the LRU lock.
1220  *
1221  * For pagecache intensive workloads, this function is the hottest
1222  * spot in the kernel (apart from copy_*_user functions).
1223  *
1224  * Appropriate locks must be held before calling this function.
1225  *
1226  * @nr_to_scan:	The number of pages to look through on the list.
1227  * @lruvec:	The LRU vector to pull pages from.
1228  * @dst:	The temp list to put pages on to.
1229  * @nr_scanned:	The number of pages that were scanned.
1230  * @sc:		The scan_control struct for this reclaim session
1231  * @mode:	One of the LRU isolation modes
1232  * @lru:	LRU list id for isolating
1233  *
1234  * returns how many pages were moved onto *@dst.
1235  */
1236 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1237 		struct lruvec *lruvec, struct list_head *dst,
1238 		unsigned long *nr_scanned, struct scan_control *sc,
1239 		isolate_mode_t mode, enum lru_list lru)
1240 {
1241 	struct list_head *src = &lruvec->lists[lru];
1242 	unsigned long nr_taken = 0;
1243 	unsigned long scan;
1244 
1245 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1246 		struct page *page;
1247 		int nr_pages;
1248 
1249 		page = lru_to_page(src);
1250 		prefetchw_prev_lru_page(page, src, flags);
1251 
1252 		VM_BUG_ON(!PageLRU(page));
1253 
1254 		switch (__isolate_lru_page(page, mode)) {
1255 		case 0:
1256 			nr_pages = hpage_nr_pages(page);
1257 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1258 			list_move(&page->lru, dst);
1259 			nr_taken += nr_pages;
1260 			break;
1261 
1262 		case -EBUSY:
1263 			/* else it is being freed elsewhere */
1264 			list_move(&page->lru, src);
1265 			continue;
1266 
1267 		default:
1268 			BUG();
1269 		}
1270 	}
1271 
1272 	*nr_scanned = scan;
1273 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1274 				    nr_taken, mode, is_file_lru(lru));
1275 	return nr_taken;
1276 }
1277 
1278 /**
1279  * isolate_lru_page - tries to isolate a page from its LRU list
1280  * @page: page to isolate from its LRU list
1281  *
1282  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1283  * vmstat statistic corresponding to whatever LRU list the page was on.
1284  *
1285  * Returns 0 if the page was removed from an LRU list.
1286  * Returns -EBUSY if the page was not on an LRU list.
1287  *
1288  * The returned page will have PageLRU() cleared.  If it was found on
1289  * the active list, it will have PageActive set.  If it was found on
1290  * the unevictable list, it will have the PageUnevictable bit set. That flag
1291  * may need to be cleared by the caller before letting the page go.
1292  *
1293  * The vmstat statistic corresponding to the list on which the page was
1294  * found will be decremented.
1295  *
1296  * Restrictions:
1297  * (1) Must be called with an elevated refcount on the page. This is a
1298  *     fundamentnal difference from isolate_lru_pages (which is called
1299  *     without a stable reference).
1300  * (2) the lru_lock must not be held.
1301  * (3) interrupts must be enabled.
1302  */
1303 int isolate_lru_page(struct page *page)
1304 {
1305 	int ret = -EBUSY;
1306 
1307 	VM_BUG_ON(!page_count(page));
1308 
1309 	if (PageLRU(page)) {
1310 		struct zone *zone = page_zone(page);
1311 		struct lruvec *lruvec;
1312 
1313 		spin_lock_irq(&zone->lru_lock);
1314 		lruvec = mem_cgroup_page_lruvec(page, zone);
1315 		if (PageLRU(page)) {
1316 			int lru = page_lru(page);
1317 			get_page(page);
1318 			ClearPageLRU(page);
1319 			del_page_from_lru_list(page, lruvec, lru);
1320 			ret = 0;
1321 		}
1322 		spin_unlock_irq(&zone->lru_lock);
1323 	}
1324 	return ret;
1325 }
1326 
1327 /*
1328  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1329  * then get resheduled. When there are massive number of tasks doing page
1330  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1331  * the LRU list will go small and be scanned faster than necessary, leading to
1332  * unnecessary swapping, thrashing and OOM.
1333  */
1334 static int too_many_isolated(struct zone *zone, int file,
1335 		struct scan_control *sc)
1336 {
1337 	unsigned long inactive, isolated;
1338 
1339 	if (current_is_kswapd())
1340 		return 0;
1341 
1342 	if (!global_reclaim(sc))
1343 		return 0;
1344 
1345 	if (file) {
1346 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1347 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1348 	} else {
1349 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1350 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1351 	}
1352 
1353 	/*
1354 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1355 	 * won't get blocked by normal direct-reclaimers, forming a circular
1356 	 * deadlock.
1357 	 */
1358 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1359 		inactive >>= 3;
1360 
1361 	return isolated > inactive;
1362 }
1363 
1364 static noinline_for_stack void
1365 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1366 {
1367 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1368 	struct zone *zone = lruvec_zone(lruvec);
1369 	LIST_HEAD(pages_to_free);
1370 
1371 	/*
1372 	 * Put back any unfreeable pages.
1373 	 */
1374 	while (!list_empty(page_list)) {
1375 		struct page *page = lru_to_page(page_list);
1376 		int lru;
1377 
1378 		VM_BUG_ON(PageLRU(page));
1379 		list_del(&page->lru);
1380 		if (unlikely(!page_evictable(page))) {
1381 			spin_unlock_irq(&zone->lru_lock);
1382 			putback_lru_page(page);
1383 			spin_lock_irq(&zone->lru_lock);
1384 			continue;
1385 		}
1386 
1387 		lruvec = mem_cgroup_page_lruvec(page, zone);
1388 
1389 		SetPageLRU(page);
1390 		lru = page_lru(page);
1391 		add_page_to_lru_list(page, lruvec, lru);
1392 
1393 		if (is_active_lru(lru)) {
1394 			int file = is_file_lru(lru);
1395 			int numpages = hpage_nr_pages(page);
1396 			reclaim_stat->recent_rotated[file] += numpages;
1397 		}
1398 		if (put_page_testzero(page)) {
1399 			__ClearPageLRU(page);
1400 			__ClearPageActive(page);
1401 			del_page_from_lru_list(page, lruvec, lru);
1402 
1403 			if (unlikely(PageCompound(page))) {
1404 				spin_unlock_irq(&zone->lru_lock);
1405 				(*get_compound_page_dtor(page))(page);
1406 				spin_lock_irq(&zone->lru_lock);
1407 			} else
1408 				list_add(&page->lru, &pages_to_free);
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * To save our caller's stack, now use input list for pages to free.
1414 	 */
1415 	list_splice(&pages_to_free, page_list);
1416 }
1417 
1418 /*
1419  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1420  * of reclaimed pages
1421  */
1422 static noinline_for_stack unsigned long
1423 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1424 		     struct scan_control *sc, enum lru_list lru)
1425 {
1426 	LIST_HEAD(page_list);
1427 	unsigned long nr_scanned;
1428 	unsigned long nr_reclaimed = 0;
1429 	unsigned long nr_taken;
1430 	unsigned long nr_dirty = 0;
1431 	unsigned long nr_congested = 0;
1432 	unsigned long nr_unqueued_dirty = 0;
1433 	unsigned long nr_writeback = 0;
1434 	unsigned long nr_immediate = 0;
1435 	isolate_mode_t isolate_mode = 0;
1436 	int file = is_file_lru(lru);
1437 	struct zone *zone = lruvec_zone(lruvec);
1438 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1439 
1440 	while (unlikely(too_many_isolated(zone, file, sc))) {
1441 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1442 
1443 		/* We are about to die and free our memory. Return now. */
1444 		if (fatal_signal_pending(current))
1445 			return SWAP_CLUSTER_MAX;
1446 	}
1447 
1448 	lru_add_drain();
1449 
1450 	if (!sc->may_unmap)
1451 		isolate_mode |= ISOLATE_UNMAPPED;
1452 	if (!sc->may_writepage)
1453 		isolate_mode |= ISOLATE_CLEAN;
1454 
1455 	spin_lock_irq(&zone->lru_lock);
1456 
1457 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1458 				     &nr_scanned, sc, isolate_mode, lru);
1459 
1460 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1461 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1462 
1463 	if (global_reclaim(sc)) {
1464 		zone->pages_scanned += nr_scanned;
1465 		if (current_is_kswapd())
1466 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1467 		else
1468 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1469 	}
1470 	spin_unlock_irq(&zone->lru_lock);
1471 
1472 	if (nr_taken == 0)
1473 		return 0;
1474 
1475 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1476 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1477 				&nr_writeback, &nr_immediate,
1478 				false);
1479 
1480 	spin_lock_irq(&zone->lru_lock);
1481 
1482 	reclaim_stat->recent_scanned[file] += nr_taken;
1483 
1484 	if (global_reclaim(sc)) {
1485 		if (current_is_kswapd())
1486 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1487 					       nr_reclaimed);
1488 		else
1489 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1490 					       nr_reclaimed);
1491 	}
1492 
1493 	putback_inactive_pages(lruvec, &page_list);
1494 
1495 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1496 
1497 	spin_unlock_irq(&zone->lru_lock);
1498 
1499 	free_hot_cold_page_list(&page_list, 1);
1500 
1501 	/*
1502 	 * If reclaim is isolating dirty pages under writeback, it implies
1503 	 * that the long-lived page allocation rate is exceeding the page
1504 	 * laundering rate. Either the global limits are not being effective
1505 	 * at throttling processes due to the page distribution throughout
1506 	 * zones or there is heavy usage of a slow backing device. The
1507 	 * only option is to throttle from reclaim context which is not ideal
1508 	 * as there is no guarantee the dirtying process is throttled in the
1509 	 * same way balance_dirty_pages() manages.
1510 	 *
1511 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1512 	 * of pages under pages flagged for immediate reclaim and stall if any
1513 	 * are encountered in the nr_immediate check below.
1514 	 */
1515 	if (nr_writeback && nr_writeback == nr_taken)
1516 		zone_set_flag(zone, ZONE_WRITEBACK);
1517 
1518 	/*
1519 	 * memcg will stall in page writeback so only consider forcibly
1520 	 * stalling for global reclaim
1521 	 */
1522 	if (global_reclaim(sc)) {
1523 		/*
1524 		 * Tag a zone as congested if all the dirty pages scanned were
1525 		 * backed by a congested BDI and wait_iff_congested will stall.
1526 		 */
1527 		if (nr_dirty && nr_dirty == nr_congested)
1528 			zone_set_flag(zone, ZONE_CONGESTED);
1529 
1530 		/*
1531 		 * If dirty pages are scanned that are not queued for IO, it
1532 		 * implies that flushers are not keeping up. In this case, flag
1533 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1534 		 * pages from reclaim context. It will forcibly stall in the
1535 		 * next check.
1536 		 */
1537 		if (nr_unqueued_dirty == nr_taken)
1538 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1539 
1540 		/*
1541 		 * In addition, if kswapd scans pages marked marked for
1542 		 * immediate reclaim and under writeback (nr_immediate), it
1543 		 * implies that pages are cycling through the LRU faster than
1544 		 * they are written so also forcibly stall.
1545 		 */
1546 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1547 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1548 	}
1549 
1550 	/*
1551 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1552 	 * is congested. Allow kswapd to continue until it starts encountering
1553 	 * unqueued dirty pages or cycling through the LRU too quickly.
1554 	 */
1555 	if (!sc->hibernation_mode && !current_is_kswapd())
1556 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1557 
1558 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1559 		zone_idx(zone),
1560 		nr_scanned, nr_reclaimed,
1561 		sc->priority,
1562 		trace_shrink_flags(file));
1563 	return nr_reclaimed;
1564 }
1565 
1566 /*
1567  * This moves pages from the active list to the inactive list.
1568  *
1569  * We move them the other way if the page is referenced by one or more
1570  * processes, from rmap.
1571  *
1572  * If the pages are mostly unmapped, the processing is fast and it is
1573  * appropriate to hold zone->lru_lock across the whole operation.  But if
1574  * the pages are mapped, the processing is slow (page_referenced()) so we
1575  * should drop zone->lru_lock around each page.  It's impossible to balance
1576  * this, so instead we remove the pages from the LRU while processing them.
1577  * It is safe to rely on PG_active against the non-LRU pages in here because
1578  * nobody will play with that bit on a non-LRU page.
1579  *
1580  * The downside is that we have to touch page->_count against each page.
1581  * But we had to alter page->flags anyway.
1582  */
1583 
1584 static void move_active_pages_to_lru(struct lruvec *lruvec,
1585 				     struct list_head *list,
1586 				     struct list_head *pages_to_free,
1587 				     enum lru_list lru)
1588 {
1589 	struct zone *zone = lruvec_zone(lruvec);
1590 	unsigned long pgmoved = 0;
1591 	struct page *page;
1592 	int nr_pages;
1593 
1594 	while (!list_empty(list)) {
1595 		page = lru_to_page(list);
1596 		lruvec = mem_cgroup_page_lruvec(page, zone);
1597 
1598 		VM_BUG_ON(PageLRU(page));
1599 		SetPageLRU(page);
1600 
1601 		nr_pages = hpage_nr_pages(page);
1602 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1603 		list_move(&page->lru, &lruvec->lists[lru]);
1604 		pgmoved += nr_pages;
1605 
1606 		if (put_page_testzero(page)) {
1607 			__ClearPageLRU(page);
1608 			__ClearPageActive(page);
1609 			del_page_from_lru_list(page, lruvec, lru);
1610 
1611 			if (unlikely(PageCompound(page))) {
1612 				spin_unlock_irq(&zone->lru_lock);
1613 				(*get_compound_page_dtor(page))(page);
1614 				spin_lock_irq(&zone->lru_lock);
1615 			} else
1616 				list_add(&page->lru, pages_to_free);
1617 		}
1618 	}
1619 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1620 	if (!is_active_lru(lru))
1621 		__count_vm_events(PGDEACTIVATE, pgmoved);
1622 }
1623 
1624 static void shrink_active_list(unsigned long nr_to_scan,
1625 			       struct lruvec *lruvec,
1626 			       struct scan_control *sc,
1627 			       enum lru_list lru)
1628 {
1629 	unsigned long nr_taken;
1630 	unsigned long nr_scanned;
1631 	unsigned long vm_flags;
1632 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1633 	LIST_HEAD(l_active);
1634 	LIST_HEAD(l_inactive);
1635 	struct page *page;
1636 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1637 	unsigned long nr_rotated = 0;
1638 	isolate_mode_t isolate_mode = 0;
1639 	int file = is_file_lru(lru);
1640 	struct zone *zone = lruvec_zone(lruvec);
1641 
1642 	lru_add_drain();
1643 
1644 	if (!sc->may_unmap)
1645 		isolate_mode |= ISOLATE_UNMAPPED;
1646 	if (!sc->may_writepage)
1647 		isolate_mode |= ISOLATE_CLEAN;
1648 
1649 	spin_lock_irq(&zone->lru_lock);
1650 
1651 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1652 				     &nr_scanned, sc, isolate_mode, lru);
1653 	if (global_reclaim(sc))
1654 		zone->pages_scanned += nr_scanned;
1655 
1656 	reclaim_stat->recent_scanned[file] += nr_taken;
1657 
1658 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1659 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1660 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1661 	spin_unlock_irq(&zone->lru_lock);
1662 
1663 	while (!list_empty(&l_hold)) {
1664 		cond_resched();
1665 		page = lru_to_page(&l_hold);
1666 		list_del(&page->lru);
1667 
1668 		if (unlikely(!page_evictable(page))) {
1669 			putback_lru_page(page);
1670 			continue;
1671 		}
1672 
1673 		if (unlikely(buffer_heads_over_limit)) {
1674 			if (page_has_private(page) && trylock_page(page)) {
1675 				if (page_has_private(page))
1676 					try_to_release_page(page, 0);
1677 				unlock_page(page);
1678 			}
1679 		}
1680 
1681 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1682 				    &vm_flags)) {
1683 			nr_rotated += hpage_nr_pages(page);
1684 			/*
1685 			 * Identify referenced, file-backed active pages and
1686 			 * give them one more trip around the active list. So
1687 			 * that executable code get better chances to stay in
1688 			 * memory under moderate memory pressure.  Anon pages
1689 			 * are not likely to be evicted by use-once streaming
1690 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1691 			 * so we ignore them here.
1692 			 */
1693 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1694 				list_add(&page->lru, &l_active);
1695 				continue;
1696 			}
1697 		}
1698 
1699 		ClearPageActive(page);	/* we are de-activating */
1700 		list_add(&page->lru, &l_inactive);
1701 	}
1702 
1703 	/*
1704 	 * Move pages back to the lru list.
1705 	 */
1706 	spin_lock_irq(&zone->lru_lock);
1707 	/*
1708 	 * Count referenced pages from currently used mappings as rotated,
1709 	 * even though only some of them are actually re-activated.  This
1710 	 * helps balance scan pressure between file and anonymous pages in
1711 	 * get_scan_ratio.
1712 	 */
1713 	reclaim_stat->recent_rotated[file] += nr_rotated;
1714 
1715 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1716 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1717 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1718 	spin_unlock_irq(&zone->lru_lock);
1719 
1720 	free_hot_cold_page_list(&l_hold, 1);
1721 }
1722 
1723 #ifdef CONFIG_SWAP
1724 static int inactive_anon_is_low_global(struct zone *zone)
1725 {
1726 	unsigned long active, inactive;
1727 
1728 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1729 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1730 
1731 	if (inactive * zone->inactive_ratio < active)
1732 		return 1;
1733 
1734 	return 0;
1735 }
1736 
1737 /**
1738  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1739  * @lruvec: LRU vector to check
1740  *
1741  * Returns true if the zone does not have enough inactive anon pages,
1742  * meaning some active anon pages need to be deactivated.
1743  */
1744 static int inactive_anon_is_low(struct lruvec *lruvec)
1745 {
1746 	/*
1747 	 * If we don't have swap space, anonymous page deactivation
1748 	 * is pointless.
1749 	 */
1750 	if (!total_swap_pages)
1751 		return 0;
1752 
1753 	if (!mem_cgroup_disabled())
1754 		return mem_cgroup_inactive_anon_is_low(lruvec);
1755 
1756 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1757 }
1758 #else
1759 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1760 {
1761 	return 0;
1762 }
1763 #endif
1764 
1765 /**
1766  * inactive_file_is_low - check if file pages need to be deactivated
1767  * @lruvec: LRU vector to check
1768  *
1769  * When the system is doing streaming IO, memory pressure here
1770  * ensures that active file pages get deactivated, until more
1771  * than half of the file pages are on the inactive list.
1772  *
1773  * Once we get to that situation, protect the system's working
1774  * set from being evicted by disabling active file page aging.
1775  *
1776  * This uses a different ratio than the anonymous pages, because
1777  * the page cache uses a use-once replacement algorithm.
1778  */
1779 static int inactive_file_is_low(struct lruvec *lruvec)
1780 {
1781 	unsigned long inactive;
1782 	unsigned long active;
1783 
1784 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1785 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1786 
1787 	return active > inactive;
1788 }
1789 
1790 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1791 {
1792 	if (is_file_lru(lru))
1793 		return inactive_file_is_low(lruvec);
1794 	else
1795 		return inactive_anon_is_low(lruvec);
1796 }
1797 
1798 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1799 				 struct lruvec *lruvec, struct scan_control *sc)
1800 {
1801 	if (is_active_lru(lru)) {
1802 		if (inactive_list_is_low(lruvec, lru))
1803 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1804 		return 0;
1805 	}
1806 
1807 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1808 }
1809 
1810 static int vmscan_swappiness(struct scan_control *sc)
1811 {
1812 	if (global_reclaim(sc))
1813 		return vm_swappiness;
1814 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1815 }
1816 
1817 enum scan_balance {
1818 	SCAN_EQUAL,
1819 	SCAN_FRACT,
1820 	SCAN_ANON,
1821 	SCAN_FILE,
1822 };
1823 
1824 /*
1825  * Determine how aggressively the anon and file LRU lists should be
1826  * scanned.  The relative value of each set of LRU lists is determined
1827  * by looking at the fraction of the pages scanned we did rotate back
1828  * onto the active list instead of evict.
1829  *
1830  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1831  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1832  */
1833 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1834 			   unsigned long *nr)
1835 {
1836 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1837 	u64 fraction[2];
1838 	u64 denominator = 0;	/* gcc */
1839 	struct zone *zone = lruvec_zone(lruvec);
1840 	unsigned long anon_prio, file_prio;
1841 	enum scan_balance scan_balance;
1842 	unsigned long anon, file, free;
1843 	bool force_scan = false;
1844 	unsigned long ap, fp;
1845 	enum lru_list lru;
1846 
1847 	/*
1848 	 * If the zone or memcg is small, nr[l] can be 0.  This
1849 	 * results in no scanning on this priority and a potential
1850 	 * priority drop.  Global direct reclaim can go to the next
1851 	 * zone and tends to have no problems. Global kswapd is for
1852 	 * zone balancing and it needs to scan a minimum amount. When
1853 	 * reclaiming for a memcg, a priority drop can cause high
1854 	 * latencies, so it's better to scan a minimum amount there as
1855 	 * well.
1856 	 */
1857 	if (current_is_kswapd() && !zone_reclaimable(zone))
1858 		force_scan = true;
1859 	if (!global_reclaim(sc))
1860 		force_scan = true;
1861 
1862 	/* If we have no swap space, do not bother scanning anon pages. */
1863 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1864 		scan_balance = SCAN_FILE;
1865 		goto out;
1866 	}
1867 
1868 	/*
1869 	 * Global reclaim will swap to prevent OOM even with no
1870 	 * swappiness, but memcg users want to use this knob to
1871 	 * disable swapping for individual groups completely when
1872 	 * using the memory controller's swap limit feature would be
1873 	 * too expensive.
1874 	 */
1875 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1876 		scan_balance = SCAN_FILE;
1877 		goto out;
1878 	}
1879 
1880 	/*
1881 	 * Do not apply any pressure balancing cleverness when the
1882 	 * system is close to OOM, scan both anon and file equally
1883 	 * (unless the swappiness setting disagrees with swapping).
1884 	 */
1885 	if (!sc->priority && vmscan_swappiness(sc)) {
1886 		scan_balance = SCAN_EQUAL;
1887 		goto out;
1888 	}
1889 
1890 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1891 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1892 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1893 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1894 
1895 	/*
1896 	 * If it's foreseeable that reclaiming the file cache won't be
1897 	 * enough to get the zone back into a desirable shape, we have
1898 	 * to swap.  Better start now and leave the - probably heavily
1899 	 * thrashing - remaining file pages alone.
1900 	 */
1901 	if (global_reclaim(sc)) {
1902 		free = zone_page_state(zone, NR_FREE_PAGES);
1903 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1904 			scan_balance = SCAN_ANON;
1905 			goto out;
1906 		}
1907 	}
1908 
1909 	/*
1910 	 * There is enough inactive page cache, do not reclaim
1911 	 * anything from the anonymous working set right now.
1912 	 */
1913 	if (!inactive_file_is_low(lruvec)) {
1914 		scan_balance = SCAN_FILE;
1915 		goto out;
1916 	}
1917 
1918 	scan_balance = SCAN_FRACT;
1919 
1920 	/*
1921 	 * With swappiness at 100, anonymous and file have the same priority.
1922 	 * This scanning priority is essentially the inverse of IO cost.
1923 	 */
1924 	anon_prio = vmscan_swappiness(sc);
1925 	file_prio = 200 - anon_prio;
1926 
1927 	/*
1928 	 * OK, so we have swap space and a fair amount of page cache
1929 	 * pages.  We use the recently rotated / recently scanned
1930 	 * ratios to determine how valuable each cache is.
1931 	 *
1932 	 * Because workloads change over time (and to avoid overflow)
1933 	 * we keep these statistics as a floating average, which ends
1934 	 * up weighing recent references more than old ones.
1935 	 *
1936 	 * anon in [0], file in [1]
1937 	 */
1938 	spin_lock_irq(&zone->lru_lock);
1939 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1940 		reclaim_stat->recent_scanned[0] /= 2;
1941 		reclaim_stat->recent_rotated[0] /= 2;
1942 	}
1943 
1944 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1945 		reclaim_stat->recent_scanned[1] /= 2;
1946 		reclaim_stat->recent_rotated[1] /= 2;
1947 	}
1948 
1949 	/*
1950 	 * The amount of pressure on anon vs file pages is inversely
1951 	 * proportional to the fraction of recently scanned pages on
1952 	 * each list that were recently referenced and in active use.
1953 	 */
1954 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1955 	ap /= reclaim_stat->recent_rotated[0] + 1;
1956 
1957 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1958 	fp /= reclaim_stat->recent_rotated[1] + 1;
1959 	spin_unlock_irq(&zone->lru_lock);
1960 
1961 	fraction[0] = ap;
1962 	fraction[1] = fp;
1963 	denominator = ap + fp + 1;
1964 out:
1965 	for_each_evictable_lru(lru) {
1966 		int file = is_file_lru(lru);
1967 		unsigned long size;
1968 		unsigned long scan;
1969 
1970 		size = get_lru_size(lruvec, lru);
1971 		scan = size >> sc->priority;
1972 
1973 		if (!scan && force_scan)
1974 			scan = min(size, SWAP_CLUSTER_MAX);
1975 
1976 		switch (scan_balance) {
1977 		case SCAN_EQUAL:
1978 			/* Scan lists relative to size */
1979 			break;
1980 		case SCAN_FRACT:
1981 			/*
1982 			 * Scan types proportional to swappiness and
1983 			 * their relative recent reclaim efficiency.
1984 			 */
1985 			scan = div64_u64(scan * fraction[file], denominator);
1986 			break;
1987 		case SCAN_FILE:
1988 		case SCAN_ANON:
1989 			/* Scan one type exclusively */
1990 			if ((scan_balance == SCAN_FILE) != file)
1991 				scan = 0;
1992 			break;
1993 		default:
1994 			/* Look ma, no brain */
1995 			BUG();
1996 		}
1997 		nr[lru] = scan;
1998 	}
1999 }
2000 
2001 /*
2002  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2003  */
2004 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2005 {
2006 	unsigned long nr[NR_LRU_LISTS];
2007 	unsigned long targets[NR_LRU_LISTS];
2008 	unsigned long nr_to_scan;
2009 	enum lru_list lru;
2010 	unsigned long nr_reclaimed = 0;
2011 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2012 	struct blk_plug plug;
2013 	bool scan_adjusted = false;
2014 
2015 	get_scan_count(lruvec, sc, nr);
2016 
2017 	/* Record the original scan target for proportional adjustments later */
2018 	memcpy(targets, nr, sizeof(nr));
2019 
2020 	blk_start_plug(&plug);
2021 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2022 					nr[LRU_INACTIVE_FILE]) {
2023 		unsigned long nr_anon, nr_file, percentage;
2024 		unsigned long nr_scanned;
2025 
2026 		for_each_evictable_lru(lru) {
2027 			if (nr[lru]) {
2028 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2029 				nr[lru] -= nr_to_scan;
2030 
2031 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2032 							    lruvec, sc);
2033 			}
2034 		}
2035 
2036 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2037 			continue;
2038 
2039 		/*
2040 		 * For global direct reclaim, reclaim only the number of pages
2041 		 * requested. Less care is taken to scan proportionally as it
2042 		 * is more important to minimise direct reclaim stall latency
2043 		 * than it is to properly age the LRU lists.
2044 		 */
2045 		if (global_reclaim(sc) && !current_is_kswapd())
2046 			break;
2047 
2048 		/*
2049 		 * For kswapd and memcg, reclaim at least the number of pages
2050 		 * requested. Ensure that the anon and file LRUs shrink
2051 		 * proportionally what was requested by get_scan_count(). We
2052 		 * stop reclaiming one LRU and reduce the amount scanning
2053 		 * proportional to the original scan target.
2054 		 */
2055 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2056 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2057 
2058 		if (nr_file > nr_anon) {
2059 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2060 						targets[LRU_ACTIVE_ANON] + 1;
2061 			lru = LRU_BASE;
2062 			percentage = nr_anon * 100 / scan_target;
2063 		} else {
2064 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2065 						targets[LRU_ACTIVE_FILE] + 1;
2066 			lru = LRU_FILE;
2067 			percentage = nr_file * 100 / scan_target;
2068 		}
2069 
2070 		/* Stop scanning the smaller of the LRU */
2071 		nr[lru] = 0;
2072 		nr[lru + LRU_ACTIVE] = 0;
2073 
2074 		/*
2075 		 * Recalculate the other LRU scan count based on its original
2076 		 * scan target and the percentage scanning already complete
2077 		 */
2078 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2079 		nr_scanned = targets[lru] - nr[lru];
2080 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2081 		nr[lru] -= min(nr[lru], nr_scanned);
2082 
2083 		lru += LRU_ACTIVE;
2084 		nr_scanned = targets[lru] - nr[lru];
2085 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2086 		nr[lru] -= min(nr[lru], nr_scanned);
2087 
2088 		scan_adjusted = true;
2089 	}
2090 	blk_finish_plug(&plug);
2091 	sc->nr_reclaimed += nr_reclaimed;
2092 
2093 	/*
2094 	 * Even if we did not try to evict anon pages at all, we want to
2095 	 * rebalance the anon lru active/inactive ratio.
2096 	 */
2097 	if (inactive_anon_is_low(lruvec))
2098 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2099 				   sc, LRU_ACTIVE_ANON);
2100 
2101 	throttle_vm_writeout(sc->gfp_mask);
2102 }
2103 
2104 /* Use reclaim/compaction for costly allocs or under memory pressure */
2105 static bool in_reclaim_compaction(struct scan_control *sc)
2106 {
2107 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2108 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2109 			 sc->priority < DEF_PRIORITY - 2))
2110 		return true;
2111 
2112 	return false;
2113 }
2114 
2115 /*
2116  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2117  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2118  * true if more pages should be reclaimed such that when the page allocator
2119  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2120  * It will give up earlier than that if there is difficulty reclaiming pages.
2121  */
2122 static inline bool should_continue_reclaim(struct zone *zone,
2123 					unsigned long nr_reclaimed,
2124 					unsigned long nr_scanned,
2125 					struct scan_control *sc)
2126 {
2127 	unsigned long pages_for_compaction;
2128 	unsigned long inactive_lru_pages;
2129 
2130 	/* If not in reclaim/compaction mode, stop */
2131 	if (!in_reclaim_compaction(sc))
2132 		return false;
2133 
2134 	/* Consider stopping depending on scan and reclaim activity */
2135 	if (sc->gfp_mask & __GFP_REPEAT) {
2136 		/*
2137 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2138 		 * full LRU list has been scanned and we are still failing
2139 		 * to reclaim pages. This full LRU scan is potentially
2140 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2141 		 */
2142 		if (!nr_reclaimed && !nr_scanned)
2143 			return false;
2144 	} else {
2145 		/*
2146 		 * For non-__GFP_REPEAT allocations which can presumably
2147 		 * fail without consequence, stop if we failed to reclaim
2148 		 * any pages from the last SWAP_CLUSTER_MAX number of
2149 		 * pages that were scanned. This will return to the
2150 		 * caller faster at the risk reclaim/compaction and
2151 		 * the resulting allocation attempt fails
2152 		 */
2153 		if (!nr_reclaimed)
2154 			return false;
2155 	}
2156 
2157 	/*
2158 	 * If we have not reclaimed enough pages for compaction and the
2159 	 * inactive lists are large enough, continue reclaiming
2160 	 */
2161 	pages_for_compaction = (2UL << sc->order);
2162 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2163 	if (get_nr_swap_pages() > 0)
2164 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2165 	if (sc->nr_reclaimed < pages_for_compaction &&
2166 			inactive_lru_pages > pages_for_compaction)
2167 		return true;
2168 
2169 	/* If compaction would go ahead or the allocation would succeed, stop */
2170 	switch (compaction_suitable(zone, sc->order)) {
2171 	case COMPACT_PARTIAL:
2172 	case COMPACT_CONTINUE:
2173 		return false;
2174 	default:
2175 		return true;
2176 	}
2177 }
2178 
2179 static int
2180 __shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
2181 {
2182 	unsigned long nr_reclaimed, nr_scanned;
2183 	int groups_scanned = 0;
2184 
2185 	do {
2186 		struct mem_cgroup *root = sc->target_mem_cgroup;
2187 		struct mem_cgroup_reclaim_cookie reclaim = {
2188 			.zone = zone,
2189 			.priority = sc->priority,
2190 		};
2191 		struct mem_cgroup *memcg = NULL;
2192 		mem_cgroup_iter_filter filter = (soft_reclaim) ?
2193 			mem_cgroup_soft_reclaim_eligible : NULL;
2194 
2195 		nr_reclaimed = sc->nr_reclaimed;
2196 		nr_scanned = sc->nr_scanned;
2197 
2198 		while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) {
2199 			struct lruvec *lruvec;
2200 
2201 			groups_scanned++;
2202 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2203 
2204 			shrink_lruvec(lruvec, sc);
2205 
2206 			/*
2207 			 * Direct reclaim and kswapd have to scan all memory
2208 			 * cgroups to fulfill the overall scan target for the
2209 			 * zone.
2210 			 *
2211 			 * Limit reclaim, on the other hand, only cares about
2212 			 * nr_to_reclaim pages to be reclaimed and it will
2213 			 * retry with decreasing priority if one round over the
2214 			 * whole hierarchy is not sufficient.
2215 			 */
2216 			if (!global_reclaim(sc) &&
2217 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2218 				mem_cgroup_iter_break(root, memcg);
2219 				break;
2220 			}
2221 		}
2222 
2223 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2224 			   sc->nr_scanned - nr_scanned,
2225 			   sc->nr_reclaimed - nr_reclaimed);
2226 
2227 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2228 					 sc->nr_scanned - nr_scanned, sc));
2229 
2230 	return groups_scanned;
2231 }
2232 
2233 
2234 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2235 {
2236 	bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
2237 	unsigned long nr_scanned = sc->nr_scanned;
2238 	int scanned_groups;
2239 
2240 	scanned_groups = __shrink_zone(zone, sc, do_soft_reclaim);
2241 	/*
2242 	 * memcg iterator might race with other reclaimer or start from
2243 	 * a incomplete tree walk so the tree walk in __shrink_zone
2244 	 * might have missed groups that are above the soft limit. Try
2245 	 * another loop to catch up with others. Do it just once to
2246 	 * prevent from reclaim latencies when other reclaimers always
2247 	 * preempt this one.
2248 	 */
2249 	if (do_soft_reclaim && !scanned_groups)
2250 		__shrink_zone(zone, sc, do_soft_reclaim);
2251 
2252 	/*
2253 	 * No group is over the soft limit or those that are do not have
2254 	 * pages in the zone we are reclaiming so we have to reclaim everybody
2255 	 */
2256 	if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
2257 		__shrink_zone(zone, sc, false);
2258 		return;
2259 	}
2260 }
2261 
2262 /* Returns true if compaction should go ahead for a high-order request */
2263 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2264 {
2265 	unsigned long balance_gap, watermark;
2266 	bool watermark_ok;
2267 
2268 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2269 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2270 		return false;
2271 
2272 	/*
2273 	 * Compaction takes time to run and there are potentially other
2274 	 * callers using the pages just freed. Continue reclaiming until
2275 	 * there is a buffer of free pages available to give compaction
2276 	 * a reasonable chance of completing and allocating the page
2277 	 */
2278 	balance_gap = min(low_wmark_pages(zone),
2279 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2280 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2281 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2282 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2283 
2284 	/*
2285 	 * If compaction is deferred, reclaim up to a point where
2286 	 * compaction will have a chance of success when re-enabled
2287 	 */
2288 	if (compaction_deferred(zone, sc->order))
2289 		return watermark_ok;
2290 
2291 	/* If compaction is not ready to start, keep reclaiming */
2292 	if (!compaction_suitable(zone, sc->order))
2293 		return false;
2294 
2295 	return watermark_ok;
2296 }
2297 
2298 /*
2299  * This is the direct reclaim path, for page-allocating processes.  We only
2300  * try to reclaim pages from zones which will satisfy the caller's allocation
2301  * request.
2302  *
2303  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2304  * Because:
2305  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2306  *    allocation or
2307  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2308  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2309  *    zone defense algorithm.
2310  *
2311  * If a zone is deemed to be full of pinned pages then just give it a light
2312  * scan then give up on it.
2313  *
2314  * This function returns true if a zone is being reclaimed for a costly
2315  * high-order allocation and compaction is ready to begin. This indicates to
2316  * the caller that it should consider retrying the allocation instead of
2317  * further reclaim.
2318  */
2319 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2320 {
2321 	struct zoneref *z;
2322 	struct zone *zone;
2323 	bool aborted_reclaim = false;
2324 
2325 	/*
2326 	 * If the number of buffer_heads in the machine exceeds the maximum
2327 	 * allowed level, force direct reclaim to scan the highmem zone as
2328 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2329 	 */
2330 	if (buffer_heads_over_limit)
2331 		sc->gfp_mask |= __GFP_HIGHMEM;
2332 
2333 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2334 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2335 		if (!populated_zone(zone))
2336 			continue;
2337 		/*
2338 		 * Take care memory controller reclaiming has small influence
2339 		 * to global LRU.
2340 		 */
2341 		if (global_reclaim(sc)) {
2342 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2343 				continue;
2344 			if (sc->priority != DEF_PRIORITY &&
2345 			    !zone_reclaimable(zone))
2346 				continue;	/* Let kswapd poll it */
2347 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2348 				/*
2349 				 * If we already have plenty of memory free for
2350 				 * compaction in this zone, don't free any more.
2351 				 * Even though compaction is invoked for any
2352 				 * non-zero order, only frequent costly order
2353 				 * reclamation is disruptive enough to become a
2354 				 * noticeable problem, like transparent huge
2355 				 * page allocations.
2356 				 */
2357 				if (compaction_ready(zone, sc)) {
2358 					aborted_reclaim = true;
2359 					continue;
2360 				}
2361 			}
2362 			/* need some check for avoid more shrink_zone() */
2363 		}
2364 
2365 		shrink_zone(zone, sc);
2366 	}
2367 
2368 	return aborted_reclaim;
2369 }
2370 
2371 /* All zones in zonelist are unreclaimable? */
2372 static bool all_unreclaimable(struct zonelist *zonelist,
2373 		struct scan_control *sc)
2374 {
2375 	struct zoneref *z;
2376 	struct zone *zone;
2377 
2378 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2379 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2380 		if (!populated_zone(zone))
2381 			continue;
2382 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2383 			continue;
2384 		if (zone_reclaimable(zone))
2385 			return false;
2386 	}
2387 
2388 	return true;
2389 }
2390 
2391 /*
2392  * This is the main entry point to direct page reclaim.
2393  *
2394  * If a full scan of the inactive list fails to free enough memory then we
2395  * are "out of memory" and something needs to be killed.
2396  *
2397  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2398  * high - the zone may be full of dirty or under-writeback pages, which this
2399  * caller can't do much about.  We kick the writeback threads and take explicit
2400  * naps in the hope that some of these pages can be written.  But if the
2401  * allocating task holds filesystem locks which prevent writeout this might not
2402  * work, and the allocation attempt will fail.
2403  *
2404  * returns:	0, if no pages reclaimed
2405  * 		else, the number of pages reclaimed
2406  */
2407 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2408 					struct scan_control *sc,
2409 					struct shrink_control *shrink)
2410 {
2411 	unsigned long total_scanned = 0;
2412 	struct reclaim_state *reclaim_state = current->reclaim_state;
2413 	struct zoneref *z;
2414 	struct zone *zone;
2415 	unsigned long writeback_threshold;
2416 	bool aborted_reclaim;
2417 
2418 	delayacct_freepages_start();
2419 
2420 	if (global_reclaim(sc))
2421 		count_vm_event(ALLOCSTALL);
2422 
2423 	do {
2424 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2425 				sc->priority);
2426 		sc->nr_scanned = 0;
2427 		aborted_reclaim = shrink_zones(zonelist, sc);
2428 
2429 		/*
2430 		 * Don't shrink slabs when reclaiming memory from over limit
2431 		 * cgroups but do shrink slab at least once when aborting
2432 		 * reclaim for compaction to avoid unevenly scanning file/anon
2433 		 * LRU pages over slab pages.
2434 		 */
2435 		if (global_reclaim(sc)) {
2436 			unsigned long lru_pages = 0;
2437 
2438 			nodes_clear(shrink->nodes_to_scan);
2439 			for_each_zone_zonelist(zone, z, zonelist,
2440 					gfp_zone(sc->gfp_mask)) {
2441 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2442 					continue;
2443 
2444 				lru_pages += zone_reclaimable_pages(zone);
2445 				node_set(zone_to_nid(zone),
2446 					 shrink->nodes_to_scan);
2447 			}
2448 
2449 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2450 			if (reclaim_state) {
2451 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2452 				reclaim_state->reclaimed_slab = 0;
2453 			}
2454 		}
2455 		total_scanned += sc->nr_scanned;
2456 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2457 			goto out;
2458 
2459 		/*
2460 		 * If we're getting trouble reclaiming, start doing
2461 		 * writepage even in laptop mode.
2462 		 */
2463 		if (sc->priority < DEF_PRIORITY - 2)
2464 			sc->may_writepage = 1;
2465 
2466 		/*
2467 		 * Try to write back as many pages as we just scanned.  This
2468 		 * tends to cause slow streaming writers to write data to the
2469 		 * disk smoothly, at the dirtying rate, which is nice.   But
2470 		 * that's undesirable in laptop mode, where we *want* lumpy
2471 		 * writeout.  So in laptop mode, write out the whole world.
2472 		 */
2473 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2474 		if (total_scanned > writeback_threshold) {
2475 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2476 						WB_REASON_TRY_TO_FREE_PAGES);
2477 			sc->may_writepage = 1;
2478 		}
2479 	} while (--sc->priority >= 0 && !aborted_reclaim);
2480 
2481 out:
2482 	delayacct_freepages_end();
2483 
2484 	if (sc->nr_reclaimed)
2485 		return sc->nr_reclaimed;
2486 
2487 	/*
2488 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2489 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2490 	 * check.
2491 	 */
2492 	if (oom_killer_disabled)
2493 		return 0;
2494 
2495 	/* Aborted reclaim to try compaction? don't OOM, then */
2496 	if (aborted_reclaim)
2497 		return 1;
2498 
2499 	/* top priority shrink_zones still had more to do? don't OOM, then */
2500 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2501 		return 1;
2502 
2503 	return 0;
2504 }
2505 
2506 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2507 {
2508 	struct zone *zone;
2509 	unsigned long pfmemalloc_reserve = 0;
2510 	unsigned long free_pages = 0;
2511 	int i;
2512 	bool wmark_ok;
2513 
2514 	for (i = 0; i <= ZONE_NORMAL; i++) {
2515 		zone = &pgdat->node_zones[i];
2516 		pfmemalloc_reserve += min_wmark_pages(zone);
2517 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2518 	}
2519 
2520 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2521 
2522 	/* kswapd must be awake if processes are being throttled */
2523 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2524 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2525 						(enum zone_type)ZONE_NORMAL);
2526 		wake_up_interruptible(&pgdat->kswapd_wait);
2527 	}
2528 
2529 	return wmark_ok;
2530 }
2531 
2532 /*
2533  * Throttle direct reclaimers if backing storage is backed by the network
2534  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2535  * depleted. kswapd will continue to make progress and wake the processes
2536  * when the low watermark is reached.
2537  *
2538  * Returns true if a fatal signal was delivered during throttling. If this
2539  * happens, the page allocator should not consider triggering the OOM killer.
2540  */
2541 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2542 					nodemask_t *nodemask)
2543 {
2544 	struct zone *zone;
2545 	int high_zoneidx = gfp_zone(gfp_mask);
2546 	pg_data_t *pgdat;
2547 
2548 	/*
2549 	 * Kernel threads should not be throttled as they may be indirectly
2550 	 * responsible for cleaning pages necessary for reclaim to make forward
2551 	 * progress. kjournald for example may enter direct reclaim while
2552 	 * committing a transaction where throttling it could forcing other
2553 	 * processes to block on log_wait_commit().
2554 	 */
2555 	if (current->flags & PF_KTHREAD)
2556 		goto out;
2557 
2558 	/*
2559 	 * If a fatal signal is pending, this process should not throttle.
2560 	 * It should return quickly so it can exit and free its memory
2561 	 */
2562 	if (fatal_signal_pending(current))
2563 		goto out;
2564 
2565 	/* Check if the pfmemalloc reserves are ok */
2566 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2567 	pgdat = zone->zone_pgdat;
2568 	if (pfmemalloc_watermark_ok(pgdat))
2569 		goto out;
2570 
2571 	/* Account for the throttling */
2572 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2573 
2574 	/*
2575 	 * If the caller cannot enter the filesystem, it's possible that it
2576 	 * is due to the caller holding an FS lock or performing a journal
2577 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2578 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2579 	 * blocked waiting on the same lock. Instead, throttle for up to a
2580 	 * second before continuing.
2581 	 */
2582 	if (!(gfp_mask & __GFP_FS)) {
2583 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2584 			pfmemalloc_watermark_ok(pgdat), HZ);
2585 
2586 		goto check_pending;
2587 	}
2588 
2589 	/* Throttle until kswapd wakes the process */
2590 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2591 		pfmemalloc_watermark_ok(pgdat));
2592 
2593 check_pending:
2594 	if (fatal_signal_pending(current))
2595 		return true;
2596 
2597 out:
2598 	return false;
2599 }
2600 
2601 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2602 				gfp_t gfp_mask, nodemask_t *nodemask)
2603 {
2604 	unsigned long nr_reclaimed;
2605 	struct scan_control sc = {
2606 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2607 		.may_writepage = !laptop_mode,
2608 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2609 		.may_unmap = 1,
2610 		.may_swap = 1,
2611 		.order = order,
2612 		.priority = DEF_PRIORITY,
2613 		.target_mem_cgroup = NULL,
2614 		.nodemask = nodemask,
2615 	};
2616 	struct shrink_control shrink = {
2617 		.gfp_mask = sc.gfp_mask,
2618 	};
2619 
2620 	/*
2621 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2622 	 * 1 is returned so that the page allocator does not OOM kill at this
2623 	 * point.
2624 	 */
2625 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2626 		return 1;
2627 
2628 	trace_mm_vmscan_direct_reclaim_begin(order,
2629 				sc.may_writepage,
2630 				gfp_mask);
2631 
2632 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2633 
2634 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2635 
2636 	return nr_reclaimed;
2637 }
2638 
2639 #ifdef CONFIG_MEMCG
2640 
2641 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2642 						gfp_t gfp_mask, bool noswap,
2643 						struct zone *zone,
2644 						unsigned long *nr_scanned)
2645 {
2646 	struct scan_control sc = {
2647 		.nr_scanned = 0,
2648 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2649 		.may_writepage = !laptop_mode,
2650 		.may_unmap = 1,
2651 		.may_swap = !noswap,
2652 		.order = 0,
2653 		.priority = 0,
2654 		.target_mem_cgroup = memcg,
2655 	};
2656 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2657 
2658 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2659 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2660 
2661 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2662 						      sc.may_writepage,
2663 						      sc.gfp_mask);
2664 
2665 	/*
2666 	 * NOTE: Although we can get the priority field, using it
2667 	 * here is not a good idea, since it limits the pages we can scan.
2668 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2669 	 * will pick up pages from other mem cgroup's as well. We hack
2670 	 * the priority and make it zero.
2671 	 */
2672 	shrink_lruvec(lruvec, &sc);
2673 
2674 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2675 
2676 	*nr_scanned = sc.nr_scanned;
2677 	return sc.nr_reclaimed;
2678 }
2679 
2680 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2681 					   gfp_t gfp_mask,
2682 					   bool noswap)
2683 {
2684 	struct zonelist *zonelist;
2685 	unsigned long nr_reclaimed;
2686 	int nid;
2687 	struct scan_control sc = {
2688 		.may_writepage = !laptop_mode,
2689 		.may_unmap = 1,
2690 		.may_swap = !noswap,
2691 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2692 		.order = 0,
2693 		.priority = DEF_PRIORITY,
2694 		.target_mem_cgroup = memcg,
2695 		.nodemask = NULL, /* we don't care the placement */
2696 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2697 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2698 	};
2699 	struct shrink_control shrink = {
2700 		.gfp_mask = sc.gfp_mask,
2701 	};
2702 
2703 	/*
2704 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2705 	 * take care of from where we get pages. So the node where we start the
2706 	 * scan does not need to be the current node.
2707 	 */
2708 	nid = mem_cgroup_select_victim_node(memcg);
2709 
2710 	zonelist = NODE_DATA(nid)->node_zonelists;
2711 
2712 	trace_mm_vmscan_memcg_reclaim_begin(0,
2713 					    sc.may_writepage,
2714 					    sc.gfp_mask);
2715 
2716 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2717 
2718 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2719 
2720 	return nr_reclaimed;
2721 }
2722 #endif
2723 
2724 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2725 {
2726 	struct mem_cgroup *memcg;
2727 
2728 	if (!total_swap_pages)
2729 		return;
2730 
2731 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2732 	do {
2733 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2734 
2735 		if (inactive_anon_is_low(lruvec))
2736 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2737 					   sc, LRU_ACTIVE_ANON);
2738 
2739 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2740 	} while (memcg);
2741 }
2742 
2743 static bool zone_balanced(struct zone *zone, int order,
2744 			  unsigned long balance_gap, int classzone_idx)
2745 {
2746 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2747 				    balance_gap, classzone_idx, 0))
2748 		return false;
2749 
2750 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2751 	    !compaction_suitable(zone, order))
2752 		return false;
2753 
2754 	return true;
2755 }
2756 
2757 /*
2758  * pgdat_balanced() is used when checking if a node is balanced.
2759  *
2760  * For order-0, all zones must be balanced!
2761  *
2762  * For high-order allocations only zones that meet watermarks and are in a
2763  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2764  * total of balanced pages must be at least 25% of the zones allowed by
2765  * classzone_idx for the node to be considered balanced. Forcing all zones to
2766  * be balanced for high orders can cause excessive reclaim when there are
2767  * imbalanced zones.
2768  * The choice of 25% is due to
2769  *   o a 16M DMA zone that is balanced will not balance a zone on any
2770  *     reasonable sized machine
2771  *   o On all other machines, the top zone must be at least a reasonable
2772  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2773  *     would need to be at least 256M for it to be balance a whole node.
2774  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2775  *     to balance a node on its own. These seemed like reasonable ratios.
2776  */
2777 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2778 {
2779 	unsigned long managed_pages = 0;
2780 	unsigned long balanced_pages = 0;
2781 	int i;
2782 
2783 	/* Check the watermark levels */
2784 	for (i = 0; i <= classzone_idx; i++) {
2785 		struct zone *zone = pgdat->node_zones + i;
2786 
2787 		if (!populated_zone(zone))
2788 			continue;
2789 
2790 		managed_pages += zone->managed_pages;
2791 
2792 		/*
2793 		 * A special case here:
2794 		 *
2795 		 * balance_pgdat() skips over all_unreclaimable after
2796 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2797 		 * they must be considered balanced here as well!
2798 		 */
2799 		if (!zone_reclaimable(zone)) {
2800 			balanced_pages += zone->managed_pages;
2801 			continue;
2802 		}
2803 
2804 		if (zone_balanced(zone, order, 0, i))
2805 			balanced_pages += zone->managed_pages;
2806 		else if (!order)
2807 			return false;
2808 	}
2809 
2810 	if (order)
2811 		return balanced_pages >= (managed_pages >> 2);
2812 	else
2813 		return true;
2814 }
2815 
2816 /*
2817  * Prepare kswapd for sleeping. This verifies that there are no processes
2818  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2819  *
2820  * Returns true if kswapd is ready to sleep
2821  */
2822 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2823 					int classzone_idx)
2824 {
2825 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2826 	if (remaining)
2827 		return false;
2828 
2829 	/*
2830 	 * There is a potential race between when kswapd checks its watermarks
2831 	 * and a process gets throttled. There is also a potential race if
2832 	 * processes get throttled, kswapd wakes, a large process exits therby
2833 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2834 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2835 	 * so wake them now if necessary. If necessary, processes will wake
2836 	 * kswapd and get throttled again
2837 	 */
2838 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2839 		wake_up(&pgdat->pfmemalloc_wait);
2840 		return false;
2841 	}
2842 
2843 	return pgdat_balanced(pgdat, order, classzone_idx);
2844 }
2845 
2846 /*
2847  * kswapd shrinks the zone by the number of pages required to reach
2848  * the high watermark.
2849  *
2850  * Returns true if kswapd scanned at least the requested number of pages to
2851  * reclaim or if the lack of progress was due to pages under writeback.
2852  * This is used to determine if the scanning priority needs to be raised.
2853  */
2854 static bool kswapd_shrink_zone(struct zone *zone,
2855 			       int classzone_idx,
2856 			       struct scan_control *sc,
2857 			       unsigned long lru_pages,
2858 			       unsigned long *nr_attempted)
2859 {
2860 	int testorder = sc->order;
2861 	unsigned long balance_gap;
2862 	struct reclaim_state *reclaim_state = current->reclaim_state;
2863 	struct shrink_control shrink = {
2864 		.gfp_mask = sc->gfp_mask,
2865 	};
2866 	bool lowmem_pressure;
2867 
2868 	/* Reclaim above the high watermark. */
2869 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2870 
2871 	/*
2872 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2873 	 * too hard to reclaim until contiguous free pages have become
2874 	 * available can hurt performance by evicting too much useful data
2875 	 * from memory. Do not reclaim more than needed for compaction.
2876 	 */
2877 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2878 			compaction_suitable(zone, sc->order) !=
2879 				COMPACT_SKIPPED)
2880 		testorder = 0;
2881 
2882 	/*
2883 	 * We put equal pressure on every zone, unless one zone has way too
2884 	 * many pages free already. The "too many pages" is defined as the
2885 	 * high wmark plus a "gap" where the gap is either the low
2886 	 * watermark or 1% of the zone, whichever is smaller.
2887 	 */
2888 	balance_gap = min(low_wmark_pages(zone),
2889 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2890 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2891 
2892 	/*
2893 	 * If there is no low memory pressure or the zone is balanced then no
2894 	 * reclaim is necessary
2895 	 */
2896 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2897 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2898 						balance_gap, classzone_idx))
2899 		return true;
2900 
2901 	shrink_zone(zone, sc);
2902 	nodes_clear(shrink.nodes_to_scan);
2903 	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2904 
2905 	reclaim_state->reclaimed_slab = 0;
2906 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2907 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2908 
2909 	/* Account for the number of pages attempted to reclaim */
2910 	*nr_attempted += sc->nr_to_reclaim;
2911 
2912 	zone_clear_flag(zone, ZONE_WRITEBACK);
2913 
2914 	/*
2915 	 * If a zone reaches its high watermark, consider it to be no longer
2916 	 * congested. It's possible there are dirty pages backed by congested
2917 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2918 	 * waits.
2919 	 */
2920 	if (zone_reclaimable(zone) &&
2921 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2922 		zone_clear_flag(zone, ZONE_CONGESTED);
2923 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2924 	}
2925 
2926 	return sc->nr_scanned >= sc->nr_to_reclaim;
2927 }
2928 
2929 /*
2930  * For kswapd, balance_pgdat() will work across all this node's zones until
2931  * they are all at high_wmark_pages(zone).
2932  *
2933  * Returns the final order kswapd was reclaiming at
2934  *
2935  * There is special handling here for zones which are full of pinned pages.
2936  * This can happen if the pages are all mlocked, or if they are all used by
2937  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2938  * What we do is to detect the case where all pages in the zone have been
2939  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2940  * dead and from now on, only perform a short scan.  Basically we're polling
2941  * the zone for when the problem goes away.
2942  *
2943  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2944  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2945  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2946  * lower zones regardless of the number of free pages in the lower zones. This
2947  * interoperates with the page allocator fallback scheme to ensure that aging
2948  * of pages is balanced across the zones.
2949  */
2950 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2951 							int *classzone_idx)
2952 {
2953 	int i;
2954 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2955 	struct scan_control sc = {
2956 		.gfp_mask = GFP_KERNEL,
2957 		.priority = DEF_PRIORITY,
2958 		.may_unmap = 1,
2959 		.may_swap = 1,
2960 		.may_writepage = !laptop_mode,
2961 		.order = order,
2962 		.target_mem_cgroup = NULL,
2963 	};
2964 	count_vm_event(PAGEOUTRUN);
2965 
2966 	do {
2967 		unsigned long lru_pages = 0;
2968 		unsigned long nr_attempted = 0;
2969 		bool raise_priority = true;
2970 		bool pgdat_needs_compaction = (order > 0);
2971 
2972 		sc.nr_reclaimed = 0;
2973 
2974 		/*
2975 		 * Scan in the highmem->dma direction for the highest
2976 		 * zone which needs scanning
2977 		 */
2978 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2979 			struct zone *zone = pgdat->node_zones + i;
2980 
2981 			if (!populated_zone(zone))
2982 				continue;
2983 
2984 			if (sc.priority != DEF_PRIORITY &&
2985 			    !zone_reclaimable(zone))
2986 				continue;
2987 
2988 			/*
2989 			 * Do some background aging of the anon list, to give
2990 			 * pages a chance to be referenced before reclaiming.
2991 			 */
2992 			age_active_anon(zone, &sc);
2993 
2994 			/*
2995 			 * If the number of buffer_heads in the machine
2996 			 * exceeds the maximum allowed level and this node
2997 			 * has a highmem zone, force kswapd to reclaim from
2998 			 * it to relieve lowmem pressure.
2999 			 */
3000 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3001 				end_zone = i;
3002 				break;
3003 			}
3004 
3005 			if (!zone_balanced(zone, order, 0, 0)) {
3006 				end_zone = i;
3007 				break;
3008 			} else {
3009 				/*
3010 				 * If balanced, clear the dirty and congested
3011 				 * flags
3012 				 */
3013 				zone_clear_flag(zone, ZONE_CONGESTED);
3014 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3015 			}
3016 		}
3017 
3018 		if (i < 0)
3019 			goto out;
3020 
3021 		for (i = 0; i <= end_zone; i++) {
3022 			struct zone *zone = pgdat->node_zones + i;
3023 
3024 			if (!populated_zone(zone))
3025 				continue;
3026 
3027 			lru_pages += zone_reclaimable_pages(zone);
3028 
3029 			/*
3030 			 * If any zone is currently balanced then kswapd will
3031 			 * not call compaction as it is expected that the
3032 			 * necessary pages are already available.
3033 			 */
3034 			if (pgdat_needs_compaction &&
3035 					zone_watermark_ok(zone, order,
3036 						low_wmark_pages(zone),
3037 						*classzone_idx, 0))
3038 				pgdat_needs_compaction = false;
3039 		}
3040 
3041 		/*
3042 		 * If we're getting trouble reclaiming, start doing writepage
3043 		 * even in laptop mode.
3044 		 */
3045 		if (sc.priority < DEF_PRIORITY - 2)
3046 			sc.may_writepage = 1;
3047 
3048 		/*
3049 		 * Now scan the zone in the dma->highmem direction, stopping
3050 		 * at the last zone which needs scanning.
3051 		 *
3052 		 * We do this because the page allocator works in the opposite
3053 		 * direction.  This prevents the page allocator from allocating
3054 		 * pages behind kswapd's direction of progress, which would
3055 		 * cause too much scanning of the lower zones.
3056 		 */
3057 		for (i = 0; i <= end_zone; i++) {
3058 			struct zone *zone = pgdat->node_zones + i;
3059 
3060 			if (!populated_zone(zone))
3061 				continue;
3062 
3063 			if (sc.priority != DEF_PRIORITY &&
3064 			    !zone_reclaimable(zone))
3065 				continue;
3066 
3067 			sc.nr_scanned = 0;
3068 
3069 			/*
3070 			 * There should be no need to raise the scanning
3071 			 * priority if enough pages are already being scanned
3072 			 * that that high watermark would be met at 100%
3073 			 * efficiency.
3074 			 */
3075 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3076 					lru_pages, &nr_attempted))
3077 				raise_priority = false;
3078 		}
3079 
3080 		/*
3081 		 * If the low watermark is met there is no need for processes
3082 		 * to be throttled on pfmemalloc_wait as they should not be
3083 		 * able to safely make forward progress. Wake them
3084 		 */
3085 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3086 				pfmemalloc_watermark_ok(pgdat))
3087 			wake_up(&pgdat->pfmemalloc_wait);
3088 
3089 		/*
3090 		 * Fragmentation may mean that the system cannot be rebalanced
3091 		 * for high-order allocations in all zones. If twice the
3092 		 * allocation size has been reclaimed and the zones are still
3093 		 * not balanced then recheck the watermarks at order-0 to
3094 		 * prevent kswapd reclaiming excessively. Assume that a
3095 		 * process requested a high-order can direct reclaim/compact.
3096 		 */
3097 		if (order && sc.nr_reclaimed >= 2UL << order)
3098 			order = sc.order = 0;
3099 
3100 		/* Check if kswapd should be suspending */
3101 		if (try_to_freeze() || kthread_should_stop())
3102 			break;
3103 
3104 		/*
3105 		 * Compact if necessary and kswapd is reclaiming at least the
3106 		 * high watermark number of pages as requsted
3107 		 */
3108 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3109 			compact_pgdat(pgdat, order);
3110 
3111 		/*
3112 		 * Raise priority if scanning rate is too low or there was no
3113 		 * progress in reclaiming pages
3114 		 */
3115 		if (raise_priority || !sc.nr_reclaimed)
3116 			sc.priority--;
3117 	} while (sc.priority >= 1 &&
3118 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3119 
3120 out:
3121 	/*
3122 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3123 	 * makes a decision on the order we were last reclaiming at. However,
3124 	 * if another caller entered the allocator slow path while kswapd
3125 	 * was awake, order will remain at the higher level
3126 	 */
3127 	*classzone_idx = end_zone;
3128 	return order;
3129 }
3130 
3131 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3132 {
3133 	long remaining = 0;
3134 	DEFINE_WAIT(wait);
3135 
3136 	if (freezing(current) || kthread_should_stop())
3137 		return;
3138 
3139 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3140 
3141 	/* Try to sleep for a short interval */
3142 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3143 		remaining = schedule_timeout(HZ/10);
3144 		finish_wait(&pgdat->kswapd_wait, &wait);
3145 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3146 	}
3147 
3148 	/*
3149 	 * After a short sleep, check if it was a premature sleep. If not, then
3150 	 * go fully to sleep until explicitly woken up.
3151 	 */
3152 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3153 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3154 
3155 		/*
3156 		 * vmstat counters are not perfectly accurate and the estimated
3157 		 * value for counters such as NR_FREE_PAGES can deviate from the
3158 		 * true value by nr_online_cpus * threshold. To avoid the zone
3159 		 * watermarks being breached while under pressure, we reduce the
3160 		 * per-cpu vmstat threshold while kswapd is awake and restore
3161 		 * them before going back to sleep.
3162 		 */
3163 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3164 
3165 		/*
3166 		 * Compaction records what page blocks it recently failed to
3167 		 * isolate pages from and skips them in the future scanning.
3168 		 * When kswapd is going to sleep, it is reasonable to assume
3169 		 * that pages and compaction may succeed so reset the cache.
3170 		 */
3171 		reset_isolation_suitable(pgdat);
3172 
3173 		if (!kthread_should_stop())
3174 			schedule();
3175 
3176 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3177 	} else {
3178 		if (remaining)
3179 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3180 		else
3181 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3182 	}
3183 	finish_wait(&pgdat->kswapd_wait, &wait);
3184 }
3185 
3186 /*
3187  * The background pageout daemon, started as a kernel thread
3188  * from the init process.
3189  *
3190  * This basically trickles out pages so that we have _some_
3191  * free memory available even if there is no other activity
3192  * that frees anything up. This is needed for things like routing
3193  * etc, where we otherwise might have all activity going on in
3194  * asynchronous contexts that cannot page things out.
3195  *
3196  * If there are applications that are active memory-allocators
3197  * (most normal use), this basically shouldn't matter.
3198  */
3199 static int kswapd(void *p)
3200 {
3201 	unsigned long order, new_order;
3202 	unsigned balanced_order;
3203 	int classzone_idx, new_classzone_idx;
3204 	int balanced_classzone_idx;
3205 	pg_data_t *pgdat = (pg_data_t*)p;
3206 	struct task_struct *tsk = current;
3207 
3208 	struct reclaim_state reclaim_state = {
3209 		.reclaimed_slab = 0,
3210 	};
3211 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3212 
3213 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3214 
3215 	if (!cpumask_empty(cpumask))
3216 		set_cpus_allowed_ptr(tsk, cpumask);
3217 	current->reclaim_state = &reclaim_state;
3218 
3219 	/*
3220 	 * Tell the memory management that we're a "memory allocator",
3221 	 * and that if we need more memory we should get access to it
3222 	 * regardless (see "__alloc_pages()"). "kswapd" should
3223 	 * never get caught in the normal page freeing logic.
3224 	 *
3225 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3226 	 * you need a small amount of memory in order to be able to
3227 	 * page out something else, and this flag essentially protects
3228 	 * us from recursively trying to free more memory as we're
3229 	 * trying to free the first piece of memory in the first place).
3230 	 */
3231 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3232 	set_freezable();
3233 
3234 	order = new_order = 0;
3235 	balanced_order = 0;
3236 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3237 	balanced_classzone_idx = classzone_idx;
3238 	for ( ; ; ) {
3239 		bool ret;
3240 
3241 		/*
3242 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3243 		 * new request of a similar or harder type will succeed soon
3244 		 * so consider going to sleep on the basis we reclaimed at
3245 		 */
3246 		if (balanced_classzone_idx >= new_classzone_idx &&
3247 					balanced_order == new_order) {
3248 			new_order = pgdat->kswapd_max_order;
3249 			new_classzone_idx = pgdat->classzone_idx;
3250 			pgdat->kswapd_max_order =  0;
3251 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3252 		}
3253 
3254 		if (order < new_order || classzone_idx > new_classzone_idx) {
3255 			/*
3256 			 * Don't sleep if someone wants a larger 'order'
3257 			 * allocation or has tigher zone constraints
3258 			 */
3259 			order = new_order;
3260 			classzone_idx = new_classzone_idx;
3261 		} else {
3262 			kswapd_try_to_sleep(pgdat, balanced_order,
3263 						balanced_classzone_idx);
3264 			order = pgdat->kswapd_max_order;
3265 			classzone_idx = pgdat->classzone_idx;
3266 			new_order = order;
3267 			new_classzone_idx = classzone_idx;
3268 			pgdat->kswapd_max_order = 0;
3269 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3270 		}
3271 
3272 		ret = try_to_freeze();
3273 		if (kthread_should_stop())
3274 			break;
3275 
3276 		/*
3277 		 * We can speed up thawing tasks if we don't call balance_pgdat
3278 		 * after returning from the refrigerator
3279 		 */
3280 		if (!ret) {
3281 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3282 			balanced_classzone_idx = classzone_idx;
3283 			balanced_order = balance_pgdat(pgdat, order,
3284 						&balanced_classzone_idx);
3285 		}
3286 	}
3287 
3288 	current->reclaim_state = NULL;
3289 	return 0;
3290 }
3291 
3292 /*
3293  * A zone is low on free memory, so wake its kswapd task to service it.
3294  */
3295 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3296 {
3297 	pg_data_t *pgdat;
3298 
3299 	if (!populated_zone(zone))
3300 		return;
3301 
3302 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3303 		return;
3304 	pgdat = zone->zone_pgdat;
3305 	if (pgdat->kswapd_max_order < order) {
3306 		pgdat->kswapd_max_order = order;
3307 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3308 	}
3309 	if (!waitqueue_active(&pgdat->kswapd_wait))
3310 		return;
3311 	if (zone_balanced(zone, order, 0, 0))
3312 		return;
3313 
3314 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3315 	wake_up_interruptible(&pgdat->kswapd_wait);
3316 }
3317 
3318 /*
3319  * The reclaimable count would be mostly accurate.
3320  * The less reclaimable pages may be
3321  * - mlocked pages, which will be moved to unevictable list when encountered
3322  * - mapped pages, which may require several travels to be reclaimed
3323  * - dirty pages, which is not "instantly" reclaimable
3324  */
3325 unsigned long global_reclaimable_pages(void)
3326 {
3327 	int nr;
3328 
3329 	nr = global_page_state(NR_ACTIVE_FILE) +
3330 	     global_page_state(NR_INACTIVE_FILE);
3331 
3332 	if (get_nr_swap_pages() > 0)
3333 		nr += global_page_state(NR_ACTIVE_ANON) +
3334 		      global_page_state(NR_INACTIVE_ANON);
3335 
3336 	return nr;
3337 }
3338 
3339 #ifdef CONFIG_HIBERNATION
3340 /*
3341  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3342  * freed pages.
3343  *
3344  * Rather than trying to age LRUs the aim is to preserve the overall
3345  * LRU order by reclaiming preferentially
3346  * inactive > active > active referenced > active mapped
3347  */
3348 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3349 {
3350 	struct reclaim_state reclaim_state;
3351 	struct scan_control sc = {
3352 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3353 		.may_swap = 1,
3354 		.may_unmap = 1,
3355 		.may_writepage = 1,
3356 		.nr_to_reclaim = nr_to_reclaim,
3357 		.hibernation_mode = 1,
3358 		.order = 0,
3359 		.priority = DEF_PRIORITY,
3360 	};
3361 	struct shrink_control shrink = {
3362 		.gfp_mask = sc.gfp_mask,
3363 	};
3364 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3365 	struct task_struct *p = current;
3366 	unsigned long nr_reclaimed;
3367 
3368 	p->flags |= PF_MEMALLOC;
3369 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3370 	reclaim_state.reclaimed_slab = 0;
3371 	p->reclaim_state = &reclaim_state;
3372 
3373 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3374 
3375 	p->reclaim_state = NULL;
3376 	lockdep_clear_current_reclaim_state();
3377 	p->flags &= ~PF_MEMALLOC;
3378 
3379 	return nr_reclaimed;
3380 }
3381 #endif /* CONFIG_HIBERNATION */
3382 
3383 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3384    not required for correctness.  So if the last cpu in a node goes
3385    away, we get changed to run anywhere: as the first one comes back,
3386    restore their cpu bindings. */
3387 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3388 			void *hcpu)
3389 {
3390 	int nid;
3391 
3392 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3393 		for_each_node_state(nid, N_MEMORY) {
3394 			pg_data_t *pgdat = NODE_DATA(nid);
3395 			const struct cpumask *mask;
3396 
3397 			mask = cpumask_of_node(pgdat->node_id);
3398 
3399 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3400 				/* One of our CPUs online: restore mask */
3401 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3402 		}
3403 	}
3404 	return NOTIFY_OK;
3405 }
3406 
3407 /*
3408  * This kswapd start function will be called by init and node-hot-add.
3409  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3410  */
3411 int kswapd_run(int nid)
3412 {
3413 	pg_data_t *pgdat = NODE_DATA(nid);
3414 	int ret = 0;
3415 
3416 	if (pgdat->kswapd)
3417 		return 0;
3418 
3419 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3420 	if (IS_ERR(pgdat->kswapd)) {
3421 		/* failure at boot is fatal */
3422 		BUG_ON(system_state == SYSTEM_BOOTING);
3423 		pr_err("Failed to start kswapd on node %d\n", nid);
3424 		ret = PTR_ERR(pgdat->kswapd);
3425 		pgdat->kswapd = NULL;
3426 	}
3427 	return ret;
3428 }
3429 
3430 /*
3431  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3432  * hold lock_memory_hotplug().
3433  */
3434 void kswapd_stop(int nid)
3435 {
3436 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3437 
3438 	if (kswapd) {
3439 		kthread_stop(kswapd);
3440 		NODE_DATA(nid)->kswapd = NULL;
3441 	}
3442 }
3443 
3444 static int __init kswapd_init(void)
3445 {
3446 	int nid;
3447 
3448 	swap_setup();
3449 	for_each_node_state(nid, N_MEMORY)
3450  		kswapd_run(nid);
3451 	hotcpu_notifier(cpu_callback, 0);
3452 	return 0;
3453 }
3454 
3455 module_init(kswapd_init)
3456 
3457 #ifdef CONFIG_NUMA
3458 /*
3459  * Zone reclaim mode
3460  *
3461  * If non-zero call zone_reclaim when the number of free pages falls below
3462  * the watermarks.
3463  */
3464 int zone_reclaim_mode __read_mostly;
3465 
3466 #define RECLAIM_OFF 0
3467 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3468 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3469 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3470 
3471 /*
3472  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3473  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3474  * a zone.
3475  */
3476 #define ZONE_RECLAIM_PRIORITY 4
3477 
3478 /*
3479  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3480  * occur.
3481  */
3482 int sysctl_min_unmapped_ratio = 1;
3483 
3484 /*
3485  * If the number of slab pages in a zone grows beyond this percentage then
3486  * slab reclaim needs to occur.
3487  */
3488 int sysctl_min_slab_ratio = 5;
3489 
3490 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3491 {
3492 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3493 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3494 		zone_page_state(zone, NR_ACTIVE_FILE);
3495 
3496 	/*
3497 	 * It's possible for there to be more file mapped pages than
3498 	 * accounted for by the pages on the file LRU lists because
3499 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3500 	 */
3501 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3502 }
3503 
3504 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3505 static long zone_pagecache_reclaimable(struct zone *zone)
3506 {
3507 	long nr_pagecache_reclaimable;
3508 	long delta = 0;
3509 
3510 	/*
3511 	 * If RECLAIM_SWAP is set, then all file pages are considered
3512 	 * potentially reclaimable. Otherwise, we have to worry about
3513 	 * pages like swapcache and zone_unmapped_file_pages() provides
3514 	 * a better estimate
3515 	 */
3516 	if (zone_reclaim_mode & RECLAIM_SWAP)
3517 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3518 	else
3519 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3520 
3521 	/* If we can't clean pages, remove dirty pages from consideration */
3522 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3523 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3524 
3525 	/* Watch for any possible underflows due to delta */
3526 	if (unlikely(delta > nr_pagecache_reclaimable))
3527 		delta = nr_pagecache_reclaimable;
3528 
3529 	return nr_pagecache_reclaimable - delta;
3530 }
3531 
3532 /*
3533  * Try to free up some pages from this zone through reclaim.
3534  */
3535 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3536 {
3537 	/* Minimum pages needed in order to stay on node */
3538 	const unsigned long nr_pages = 1 << order;
3539 	struct task_struct *p = current;
3540 	struct reclaim_state reclaim_state;
3541 	struct scan_control sc = {
3542 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3543 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3544 		.may_swap = 1,
3545 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3546 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3547 		.order = order,
3548 		.priority = ZONE_RECLAIM_PRIORITY,
3549 	};
3550 	struct shrink_control shrink = {
3551 		.gfp_mask = sc.gfp_mask,
3552 	};
3553 	unsigned long nr_slab_pages0, nr_slab_pages1;
3554 
3555 	cond_resched();
3556 	/*
3557 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3558 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3559 	 * and RECLAIM_SWAP.
3560 	 */
3561 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3562 	lockdep_set_current_reclaim_state(gfp_mask);
3563 	reclaim_state.reclaimed_slab = 0;
3564 	p->reclaim_state = &reclaim_state;
3565 
3566 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3567 		/*
3568 		 * Free memory by calling shrink zone with increasing
3569 		 * priorities until we have enough memory freed.
3570 		 */
3571 		do {
3572 			shrink_zone(zone, &sc);
3573 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3574 	}
3575 
3576 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3577 	if (nr_slab_pages0 > zone->min_slab_pages) {
3578 		/*
3579 		 * shrink_slab() does not currently allow us to determine how
3580 		 * many pages were freed in this zone. So we take the current
3581 		 * number of slab pages and shake the slab until it is reduced
3582 		 * by the same nr_pages that we used for reclaiming unmapped
3583 		 * pages.
3584 		 */
3585 		nodes_clear(shrink.nodes_to_scan);
3586 		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3587 		for (;;) {
3588 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3589 
3590 			/* No reclaimable slab or very low memory pressure */
3591 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3592 				break;
3593 
3594 			/* Freed enough memory */
3595 			nr_slab_pages1 = zone_page_state(zone,
3596 							NR_SLAB_RECLAIMABLE);
3597 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3598 				break;
3599 		}
3600 
3601 		/*
3602 		 * Update nr_reclaimed by the number of slab pages we
3603 		 * reclaimed from this zone.
3604 		 */
3605 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3606 		if (nr_slab_pages1 < nr_slab_pages0)
3607 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3608 	}
3609 
3610 	p->reclaim_state = NULL;
3611 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3612 	lockdep_clear_current_reclaim_state();
3613 	return sc.nr_reclaimed >= nr_pages;
3614 }
3615 
3616 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3617 {
3618 	int node_id;
3619 	int ret;
3620 
3621 	/*
3622 	 * Zone reclaim reclaims unmapped file backed pages and
3623 	 * slab pages if we are over the defined limits.
3624 	 *
3625 	 * A small portion of unmapped file backed pages is needed for
3626 	 * file I/O otherwise pages read by file I/O will be immediately
3627 	 * thrown out if the zone is overallocated. So we do not reclaim
3628 	 * if less than a specified percentage of the zone is used by
3629 	 * unmapped file backed pages.
3630 	 */
3631 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3632 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3633 		return ZONE_RECLAIM_FULL;
3634 
3635 	if (!zone_reclaimable(zone))
3636 		return ZONE_RECLAIM_FULL;
3637 
3638 	/*
3639 	 * Do not scan if the allocation should not be delayed.
3640 	 */
3641 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3642 		return ZONE_RECLAIM_NOSCAN;
3643 
3644 	/*
3645 	 * Only run zone reclaim on the local zone or on zones that do not
3646 	 * have associated processors. This will favor the local processor
3647 	 * over remote processors and spread off node memory allocations
3648 	 * as wide as possible.
3649 	 */
3650 	node_id = zone_to_nid(zone);
3651 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3652 		return ZONE_RECLAIM_NOSCAN;
3653 
3654 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3655 		return ZONE_RECLAIM_NOSCAN;
3656 
3657 	ret = __zone_reclaim(zone, gfp_mask, order);
3658 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3659 
3660 	if (!ret)
3661 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3662 
3663 	return ret;
3664 }
3665 #endif
3666 
3667 /*
3668  * page_evictable - test whether a page is evictable
3669  * @page: the page to test
3670  *
3671  * Test whether page is evictable--i.e., should be placed on active/inactive
3672  * lists vs unevictable list.
3673  *
3674  * Reasons page might not be evictable:
3675  * (1) page's mapping marked unevictable
3676  * (2) page is part of an mlocked VMA
3677  *
3678  */
3679 int page_evictable(struct page *page)
3680 {
3681 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3682 }
3683 
3684 #ifdef CONFIG_SHMEM
3685 /**
3686  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3687  * @pages:	array of pages to check
3688  * @nr_pages:	number of pages to check
3689  *
3690  * Checks pages for evictability and moves them to the appropriate lru list.
3691  *
3692  * This function is only used for SysV IPC SHM_UNLOCK.
3693  */
3694 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3695 {
3696 	struct lruvec *lruvec;
3697 	struct zone *zone = NULL;
3698 	int pgscanned = 0;
3699 	int pgrescued = 0;
3700 	int i;
3701 
3702 	for (i = 0; i < nr_pages; i++) {
3703 		struct page *page = pages[i];
3704 		struct zone *pagezone;
3705 
3706 		pgscanned++;
3707 		pagezone = page_zone(page);
3708 		if (pagezone != zone) {
3709 			if (zone)
3710 				spin_unlock_irq(&zone->lru_lock);
3711 			zone = pagezone;
3712 			spin_lock_irq(&zone->lru_lock);
3713 		}
3714 		lruvec = mem_cgroup_page_lruvec(page, zone);
3715 
3716 		if (!PageLRU(page) || !PageUnevictable(page))
3717 			continue;
3718 
3719 		if (page_evictable(page)) {
3720 			enum lru_list lru = page_lru_base_type(page);
3721 
3722 			VM_BUG_ON(PageActive(page));
3723 			ClearPageUnevictable(page);
3724 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3725 			add_page_to_lru_list(page, lruvec, lru);
3726 			pgrescued++;
3727 		}
3728 	}
3729 
3730 	if (zone) {
3731 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3732 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3733 		spin_unlock_irq(&zone->lru_lock);
3734 	}
3735 }
3736 #endif /* CONFIG_SHMEM */
3737 
3738 static void warn_scan_unevictable_pages(void)
3739 {
3740 	printk_once(KERN_WARNING
3741 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3742 		    "disabled for lack of a legitimate use case.  If you have "
3743 		    "one, please send an email to linux-mm@kvack.org.\n",
3744 		    current->comm);
3745 }
3746 
3747 /*
3748  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3749  * all nodes' unevictable lists for evictable pages
3750  */
3751 unsigned long scan_unevictable_pages;
3752 
3753 int scan_unevictable_handler(struct ctl_table *table, int write,
3754 			   void __user *buffer,
3755 			   size_t *length, loff_t *ppos)
3756 {
3757 	warn_scan_unevictable_pages();
3758 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3759 	scan_unevictable_pages = 0;
3760 	return 0;
3761 }
3762 
3763 #ifdef CONFIG_NUMA
3764 /*
3765  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3766  * a specified node's per zone unevictable lists for evictable pages.
3767  */
3768 
3769 static ssize_t read_scan_unevictable_node(struct device *dev,
3770 					  struct device_attribute *attr,
3771 					  char *buf)
3772 {
3773 	warn_scan_unevictable_pages();
3774 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3775 }
3776 
3777 static ssize_t write_scan_unevictable_node(struct device *dev,
3778 					   struct device_attribute *attr,
3779 					const char *buf, size_t count)
3780 {
3781 	warn_scan_unevictable_pages();
3782 	return 1;
3783 }
3784 
3785 
3786 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3787 			read_scan_unevictable_node,
3788 			write_scan_unevictable_node);
3789 
3790 int scan_unevictable_register_node(struct node *node)
3791 {
3792 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3793 }
3794 
3795 void scan_unevictable_unregister_node(struct node *node)
3796 {
3797 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3798 }
3799 #endif
3800