1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* 83 * Scan pressure balancing between anon and file LRUs 84 */ 85 unsigned long anon_cost; 86 unsigned long file_cost; 87 88 /* Can active pages be deactivated as part of reclaim? */ 89 #define DEACTIVATE_ANON 1 90 #define DEACTIVATE_FILE 2 91 unsigned int may_deactivate:2; 92 unsigned int force_deactivate:1; 93 unsigned int skipped_deactivate:1; 94 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 96 unsigned int may_writepage:1; 97 98 /* Can mapped pages be reclaimed? */ 99 unsigned int may_unmap:1; 100 101 /* Can pages be swapped as part of reclaim? */ 102 unsigned int may_swap:1; 103 104 /* 105 * Cgroups are not reclaimed below their configured memory.low, 106 * unless we threaten to OOM. If any cgroups are skipped due to 107 * memory.low and nothing was reclaimed, go back for memory.low. 108 */ 109 unsigned int memcg_low_reclaim:1; 110 unsigned int memcg_low_skipped:1; 111 112 unsigned int hibernation_mode:1; 113 114 /* One of the zones is ready for compaction */ 115 unsigned int compaction_ready:1; 116 117 /* There is easily reclaimable cold cache in the current node */ 118 unsigned int cache_trim_mode:1; 119 120 /* The file pages on the current node are dangerously low */ 121 unsigned int file_is_tiny:1; 122 123 /* Allocation order */ 124 s8 order; 125 126 /* Scan (total_size >> priority) pages at once */ 127 s8 priority; 128 129 /* The highest zone to isolate pages for reclaim from */ 130 s8 reclaim_idx; 131 132 /* This context's GFP mask */ 133 gfp_t gfp_mask; 134 135 /* Incremented by the number of inactive pages that were scanned */ 136 unsigned long nr_scanned; 137 138 /* Number of pages freed so far during a call to shrink_zones() */ 139 unsigned long nr_reclaimed; 140 141 struct { 142 unsigned int dirty; 143 unsigned int unqueued_dirty; 144 unsigned int congested; 145 unsigned int writeback; 146 unsigned int immediate; 147 unsigned int file_taken; 148 unsigned int taken; 149 } nr; 150 151 /* for recording the reclaimed slab by now */ 152 struct reclaim_state reclaim_state; 153 }; 154 155 #ifdef ARCH_HAS_PREFETCHW 156 #define prefetchw_prev_lru_page(_page, _base, _field) \ 157 do { \ 158 if ((_page)->lru.prev != _base) { \ 159 struct page *prev; \ 160 \ 161 prev = lru_to_page(&(_page->lru)); \ 162 prefetchw(&prev->_field); \ 163 } \ 164 } while (0) 165 #else 166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 167 #endif 168 169 /* 170 * From 0 .. 200. Higher means more swappy. 171 */ 172 int vm_swappiness = 60; 173 /* 174 * The total number of pages which are beyond the high watermark within all 175 * zones. 176 */ 177 unsigned long vm_total_pages; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 /* 196 * We allow subsystems to populate their shrinker-related 197 * LRU lists before register_shrinker_prepared() is called 198 * for the shrinker, since we don't want to impose 199 * restrictions on their internal registration order. 200 * In this case shrink_slab_memcg() may find corresponding 201 * bit is set in the shrinkers map. 202 * 203 * This value is used by the function to detect registering 204 * shrinkers and to skip do_shrink_slab() calls for them. 205 */ 206 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 207 208 static DEFINE_IDR(shrinker_idr); 209 static int shrinker_nr_max; 210 211 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 212 { 213 int id, ret = -ENOMEM; 214 215 down_write(&shrinker_rwsem); 216 /* This may call shrinker, so it must use down_read_trylock() */ 217 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 218 if (id < 0) 219 goto unlock; 220 221 if (id >= shrinker_nr_max) { 222 if (memcg_expand_shrinker_maps(id)) { 223 idr_remove(&shrinker_idr, id); 224 goto unlock; 225 } 226 227 shrinker_nr_max = id + 1; 228 } 229 shrinker->id = id; 230 ret = 0; 231 unlock: 232 up_write(&shrinker_rwsem); 233 return ret; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 int id = shrinker->id; 239 240 BUG_ON(id < 0); 241 242 down_write(&shrinker_rwsem); 243 idr_remove(&shrinker_idr, id); 244 up_write(&shrinker_rwsem); 245 } 246 247 static bool cgroup_reclaim(struct scan_control *sc) 248 { 249 return sc->target_mem_cgroup; 250 } 251 252 /** 253 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 254 * @sc: scan_control in question 255 * 256 * The normal page dirty throttling mechanism in balance_dirty_pages() is 257 * completely broken with the legacy memcg and direct stalling in 258 * shrink_page_list() is used for throttling instead, which lacks all the 259 * niceties such as fairness, adaptive pausing, bandwidth proportional 260 * allocation and configurability. 261 * 262 * This function tests whether the vmscan currently in progress can assume 263 * that the normal dirty throttling mechanism is operational. 264 */ 265 static bool writeback_throttling_sane(struct scan_control *sc) 266 { 267 if (!cgroup_reclaim(sc)) 268 return true; 269 #ifdef CONFIG_CGROUP_WRITEBACK 270 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 271 return true; 272 #endif 273 return false; 274 } 275 #else 276 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 277 { 278 return 0; 279 } 280 281 static void unregister_memcg_shrinker(struct shrinker *shrinker) 282 { 283 } 284 285 static bool cgroup_reclaim(struct scan_control *sc) 286 { 287 return false; 288 } 289 290 static bool writeback_throttling_sane(struct scan_control *sc) 291 { 292 return true; 293 } 294 #endif 295 296 /* 297 * This misses isolated pages which are not accounted for to save counters. 298 * As the data only determines if reclaim or compaction continues, it is 299 * not expected that isolated pages will be a dominating factor. 300 */ 301 unsigned long zone_reclaimable_pages(struct zone *zone) 302 { 303 unsigned long nr; 304 305 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 306 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 307 if (get_nr_swap_pages() > 0) 308 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 309 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 310 311 return nr; 312 } 313 314 /** 315 * lruvec_lru_size - Returns the number of pages on the given LRU list. 316 * @lruvec: lru vector 317 * @lru: lru to use 318 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 319 */ 320 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 321 { 322 unsigned long size = 0; 323 int zid; 324 325 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 326 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 327 328 if (!managed_zone(zone)) 329 continue; 330 331 if (!mem_cgroup_disabled()) 332 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 333 else 334 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 335 } 336 return size; 337 } 338 339 /* 340 * Add a shrinker callback to be called from the vm. 341 */ 342 int prealloc_shrinker(struct shrinker *shrinker) 343 { 344 unsigned int size = sizeof(*shrinker->nr_deferred); 345 346 if (shrinker->flags & SHRINKER_NUMA_AWARE) 347 size *= nr_node_ids; 348 349 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 350 if (!shrinker->nr_deferred) 351 return -ENOMEM; 352 353 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 354 if (prealloc_memcg_shrinker(shrinker)) 355 goto free_deferred; 356 } 357 358 return 0; 359 360 free_deferred: 361 kfree(shrinker->nr_deferred); 362 shrinker->nr_deferred = NULL; 363 return -ENOMEM; 364 } 365 366 void free_prealloced_shrinker(struct shrinker *shrinker) 367 { 368 if (!shrinker->nr_deferred) 369 return; 370 371 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 372 unregister_memcg_shrinker(shrinker); 373 374 kfree(shrinker->nr_deferred); 375 shrinker->nr_deferred = NULL; 376 } 377 378 void register_shrinker_prepared(struct shrinker *shrinker) 379 { 380 down_write(&shrinker_rwsem); 381 list_add_tail(&shrinker->list, &shrinker_list); 382 #ifdef CONFIG_MEMCG 383 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 384 idr_replace(&shrinker_idr, shrinker, shrinker->id); 385 #endif 386 up_write(&shrinker_rwsem); 387 } 388 389 int register_shrinker(struct shrinker *shrinker) 390 { 391 int err = prealloc_shrinker(shrinker); 392 393 if (err) 394 return err; 395 register_shrinker_prepared(shrinker); 396 return 0; 397 } 398 EXPORT_SYMBOL(register_shrinker); 399 400 /* 401 * Remove one 402 */ 403 void unregister_shrinker(struct shrinker *shrinker) 404 { 405 if (!shrinker->nr_deferred) 406 return; 407 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 408 unregister_memcg_shrinker(shrinker); 409 down_write(&shrinker_rwsem); 410 list_del(&shrinker->list); 411 up_write(&shrinker_rwsem); 412 kfree(shrinker->nr_deferred); 413 shrinker->nr_deferred = NULL; 414 } 415 EXPORT_SYMBOL(unregister_shrinker); 416 417 #define SHRINK_BATCH 128 418 419 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 420 struct shrinker *shrinker, int priority) 421 { 422 unsigned long freed = 0; 423 unsigned long long delta; 424 long total_scan; 425 long freeable; 426 long nr; 427 long new_nr; 428 int nid = shrinkctl->nid; 429 long batch_size = shrinker->batch ? shrinker->batch 430 : SHRINK_BATCH; 431 long scanned = 0, next_deferred; 432 433 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 434 nid = 0; 435 436 freeable = shrinker->count_objects(shrinker, shrinkctl); 437 if (freeable == 0 || freeable == SHRINK_EMPTY) 438 return freeable; 439 440 /* 441 * copy the current shrinker scan count into a local variable 442 * and zero it so that other concurrent shrinker invocations 443 * don't also do this scanning work. 444 */ 445 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 446 447 total_scan = nr; 448 if (shrinker->seeks) { 449 delta = freeable >> priority; 450 delta *= 4; 451 do_div(delta, shrinker->seeks); 452 } else { 453 /* 454 * These objects don't require any IO to create. Trim 455 * them aggressively under memory pressure to keep 456 * them from causing refetches in the IO caches. 457 */ 458 delta = freeable / 2; 459 } 460 461 total_scan += delta; 462 if (total_scan < 0) { 463 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 464 shrinker->scan_objects, total_scan); 465 total_scan = freeable; 466 next_deferred = nr; 467 } else 468 next_deferred = total_scan; 469 470 /* 471 * We need to avoid excessive windup on filesystem shrinkers 472 * due to large numbers of GFP_NOFS allocations causing the 473 * shrinkers to return -1 all the time. This results in a large 474 * nr being built up so when a shrink that can do some work 475 * comes along it empties the entire cache due to nr >>> 476 * freeable. This is bad for sustaining a working set in 477 * memory. 478 * 479 * Hence only allow the shrinker to scan the entire cache when 480 * a large delta change is calculated directly. 481 */ 482 if (delta < freeable / 4) 483 total_scan = min(total_scan, freeable / 2); 484 485 /* 486 * Avoid risking looping forever due to too large nr value: 487 * never try to free more than twice the estimate number of 488 * freeable entries. 489 */ 490 if (total_scan > freeable * 2) 491 total_scan = freeable * 2; 492 493 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 494 freeable, delta, total_scan, priority); 495 496 /* 497 * Normally, we should not scan less than batch_size objects in one 498 * pass to avoid too frequent shrinker calls, but if the slab has less 499 * than batch_size objects in total and we are really tight on memory, 500 * we will try to reclaim all available objects, otherwise we can end 501 * up failing allocations although there are plenty of reclaimable 502 * objects spread over several slabs with usage less than the 503 * batch_size. 504 * 505 * We detect the "tight on memory" situations by looking at the total 506 * number of objects we want to scan (total_scan). If it is greater 507 * than the total number of objects on slab (freeable), we must be 508 * scanning at high prio and therefore should try to reclaim as much as 509 * possible. 510 */ 511 while (total_scan >= batch_size || 512 total_scan >= freeable) { 513 unsigned long ret; 514 unsigned long nr_to_scan = min(batch_size, total_scan); 515 516 shrinkctl->nr_to_scan = nr_to_scan; 517 shrinkctl->nr_scanned = nr_to_scan; 518 ret = shrinker->scan_objects(shrinker, shrinkctl); 519 if (ret == SHRINK_STOP) 520 break; 521 freed += ret; 522 523 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 524 total_scan -= shrinkctl->nr_scanned; 525 scanned += shrinkctl->nr_scanned; 526 527 cond_resched(); 528 } 529 530 if (next_deferred >= scanned) 531 next_deferred -= scanned; 532 else 533 next_deferred = 0; 534 /* 535 * move the unused scan count back into the shrinker in a 536 * manner that handles concurrent updates. If we exhausted the 537 * scan, there is no need to do an update. 538 */ 539 if (next_deferred > 0) 540 new_nr = atomic_long_add_return(next_deferred, 541 &shrinker->nr_deferred[nid]); 542 else 543 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 544 545 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 546 return freed; 547 } 548 549 #ifdef CONFIG_MEMCG 550 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 551 struct mem_cgroup *memcg, int priority) 552 { 553 struct memcg_shrinker_map *map; 554 unsigned long ret, freed = 0; 555 int i; 556 557 if (!mem_cgroup_online(memcg)) 558 return 0; 559 560 if (!down_read_trylock(&shrinker_rwsem)) 561 return 0; 562 563 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 564 true); 565 if (unlikely(!map)) 566 goto unlock; 567 568 for_each_set_bit(i, map->map, shrinker_nr_max) { 569 struct shrink_control sc = { 570 .gfp_mask = gfp_mask, 571 .nid = nid, 572 .memcg = memcg, 573 }; 574 struct shrinker *shrinker; 575 576 shrinker = idr_find(&shrinker_idr, i); 577 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 578 if (!shrinker) 579 clear_bit(i, map->map); 580 continue; 581 } 582 583 /* Call non-slab shrinkers even though kmem is disabled */ 584 if (!memcg_kmem_enabled() && 585 !(shrinker->flags & SHRINKER_NONSLAB)) 586 continue; 587 588 ret = do_shrink_slab(&sc, shrinker, priority); 589 if (ret == SHRINK_EMPTY) { 590 clear_bit(i, map->map); 591 /* 592 * After the shrinker reported that it had no objects to 593 * free, but before we cleared the corresponding bit in 594 * the memcg shrinker map, a new object might have been 595 * added. To make sure, we have the bit set in this 596 * case, we invoke the shrinker one more time and reset 597 * the bit if it reports that it is not empty anymore. 598 * The memory barrier here pairs with the barrier in 599 * memcg_set_shrinker_bit(): 600 * 601 * list_lru_add() shrink_slab_memcg() 602 * list_add_tail() clear_bit() 603 * <MB> <MB> 604 * set_bit() do_shrink_slab() 605 */ 606 smp_mb__after_atomic(); 607 ret = do_shrink_slab(&sc, shrinker, priority); 608 if (ret == SHRINK_EMPTY) 609 ret = 0; 610 else 611 memcg_set_shrinker_bit(memcg, nid, i); 612 } 613 freed += ret; 614 615 if (rwsem_is_contended(&shrinker_rwsem)) { 616 freed = freed ? : 1; 617 break; 618 } 619 } 620 unlock: 621 up_read(&shrinker_rwsem); 622 return freed; 623 } 624 #else /* CONFIG_MEMCG */ 625 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 626 struct mem_cgroup *memcg, int priority) 627 { 628 return 0; 629 } 630 #endif /* CONFIG_MEMCG */ 631 632 /** 633 * shrink_slab - shrink slab caches 634 * @gfp_mask: allocation context 635 * @nid: node whose slab caches to target 636 * @memcg: memory cgroup whose slab caches to target 637 * @priority: the reclaim priority 638 * 639 * Call the shrink functions to age shrinkable caches. 640 * 641 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 642 * unaware shrinkers will receive a node id of 0 instead. 643 * 644 * @memcg specifies the memory cgroup to target. Unaware shrinkers 645 * are called only if it is the root cgroup. 646 * 647 * @priority is sc->priority, we take the number of objects and >> by priority 648 * in order to get the scan target. 649 * 650 * Returns the number of reclaimed slab objects. 651 */ 652 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 653 struct mem_cgroup *memcg, 654 int priority) 655 { 656 unsigned long ret, freed = 0; 657 struct shrinker *shrinker; 658 659 /* 660 * The root memcg might be allocated even though memcg is disabled 661 * via "cgroup_disable=memory" boot parameter. This could make 662 * mem_cgroup_is_root() return false, then just run memcg slab 663 * shrink, but skip global shrink. This may result in premature 664 * oom. 665 */ 666 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 667 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 668 669 if (!down_read_trylock(&shrinker_rwsem)) 670 goto out; 671 672 list_for_each_entry(shrinker, &shrinker_list, list) { 673 struct shrink_control sc = { 674 .gfp_mask = gfp_mask, 675 .nid = nid, 676 .memcg = memcg, 677 }; 678 679 ret = do_shrink_slab(&sc, shrinker, priority); 680 if (ret == SHRINK_EMPTY) 681 ret = 0; 682 freed += ret; 683 /* 684 * Bail out if someone want to register a new shrinker to 685 * prevent the registration from being stalled for long periods 686 * by parallel ongoing shrinking. 687 */ 688 if (rwsem_is_contended(&shrinker_rwsem)) { 689 freed = freed ? : 1; 690 break; 691 } 692 } 693 694 up_read(&shrinker_rwsem); 695 out: 696 cond_resched(); 697 return freed; 698 } 699 700 void drop_slab_node(int nid) 701 { 702 unsigned long freed; 703 704 do { 705 struct mem_cgroup *memcg = NULL; 706 707 freed = 0; 708 memcg = mem_cgroup_iter(NULL, NULL, NULL); 709 do { 710 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 711 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 712 } while (freed > 10); 713 } 714 715 void drop_slab(void) 716 { 717 int nid; 718 719 for_each_online_node(nid) 720 drop_slab_node(nid); 721 } 722 723 static inline int is_page_cache_freeable(struct page *page) 724 { 725 /* 726 * A freeable page cache page is referenced only by the caller 727 * that isolated the page, the page cache and optional buffer 728 * heads at page->private. 729 */ 730 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 731 HPAGE_PMD_NR : 1; 732 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 733 } 734 735 static int may_write_to_inode(struct inode *inode) 736 { 737 if (current->flags & PF_SWAPWRITE) 738 return 1; 739 if (!inode_write_congested(inode)) 740 return 1; 741 if (inode_to_bdi(inode) == current->backing_dev_info) 742 return 1; 743 return 0; 744 } 745 746 /* 747 * We detected a synchronous write error writing a page out. Probably 748 * -ENOSPC. We need to propagate that into the address_space for a subsequent 749 * fsync(), msync() or close(). 750 * 751 * The tricky part is that after writepage we cannot touch the mapping: nothing 752 * prevents it from being freed up. But we have a ref on the page and once 753 * that page is locked, the mapping is pinned. 754 * 755 * We're allowed to run sleeping lock_page() here because we know the caller has 756 * __GFP_FS. 757 */ 758 static void handle_write_error(struct address_space *mapping, 759 struct page *page, int error) 760 { 761 lock_page(page); 762 if (page_mapping(page) == mapping) 763 mapping_set_error(mapping, error); 764 unlock_page(page); 765 } 766 767 /* possible outcome of pageout() */ 768 typedef enum { 769 /* failed to write page out, page is locked */ 770 PAGE_KEEP, 771 /* move page to the active list, page is locked */ 772 PAGE_ACTIVATE, 773 /* page has been sent to the disk successfully, page is unlocked */ 774 PAGE_SUCCESS, 775 /* page is clean and locked */ 776 PAGE_CLEAN, 777 } pageout_t; 778 779 /* 780 * pageout is called by shrink_page_list() for each dirty page. 781 * Calls ->writepage(). 782 */ 783 static pageout_t pageout(struct page *page, struct address_space *mapping) 784 { 785 /* 786 * If the page is dirty, only perform writeback if that write 787 * will be non-blocking. To prevent this allocation from being 788 * stalled by pagecache activity. But note that there may be 789 * stalls if we need to run get_block(). We could test 790 * PagePrivate for that. 791 * 792 * If this process is currently in __generic_file_write_iter() against 793 * this page's queue, we can perform writeback even if that 794 * will block. 795 * 796 * If the page is swapcache, write it back even if that would 797 * block, for some throttling. This happens by accident, because 798 * swap_backing_dev_info is bust: it doesn't reflect the 799 * congestion state of the swapdevs. Easy to fix, if needed. 800 */ 801 if (!is_page_cache_freeable(page)) 802 return PAGE_KEEP; 803 if (!mapping) { 804 /* 805 * Some data journaling orphaned pages can have 806 * page->mapping == NULL while being dirty with clean buffers. 807 */ 808 if (page_has_private(page)) { 809 if (try_to_free_buffers(page)) { 810 ClearPageDirty(page); 811 pr_info("%s: orphaned page\n", __func__); 812 return PAGE_CLEAN; 813 } 814 } 815 return PAGE_KEEP; 816 } 817 if (mapping->a_ops->writepage == NULL) 818 return PAGE_ACTIVATE; 819 if (!may_write_to_inode(mapping->host)) 820 return PAGE_KEEP; 821 822 if (clear_page_dirty_for_io(page)) { 823 int res; 824 struct writeback_control wbc = { 825 .sync_mode = WB_SYNC_NONE, 826 .nr_to_write = SWAP_CLUSTER_MAX, 827 .range_start = 0, 828 .range_end = LLONG_MAX, 829 .for_reclaim = 1, 830 }; 831 832 SetPageReclaim(page); 833 res = mapping->a_ops->writepage(page, &wbc); 834 if (res < 0) 835 handle_write_error(mapping, page, res); 836 if (res == AOP_WRITEPAGE_ACTIVATE) { 837 ClearPageReclaim(page); 838 return PAGE_ACTIVATE; 839 } 840 841 if (!PageWriteback(page)) { 842 /* synchronous write or broken a_ops? */ 843 ClearPageReclaim(page); 844 } 845 trace_mm_vmscan_writepage(page); 846 inc_node_page_state(page, NR_VMSCAN_WRITE); 847 return PAGE_SUCCESS; 848 } 849 850 return PAGE_CLEAN; 851 } 852 853 /* 854 * Same as remove_mapping, but if the page is removed from the mapping, it 855 * gets returned with a refcount of 0. 856 */ 857 static int __remove_mapping(struct address_space *mapping, struct page *page, 858 bool reclaimed, struct mem_cgroup *target_memcg) 859 { 860 unsigned long flags; 861 int refcount; 862 863 BUG_ON(!PageLocked(page)); 864 BUG_ON(mapping != page_mapping(page)); 865 866 xa_lock_irqsave(&mapping->i_pages, flags); 867 /* 868 * The non racy check for a busy page. 869 * 870 * Must be careful with the order of the tests. When someone has 871 * a ref to the page, it may be possible that they dirty it then 872 * drop the reference. So if PageDirty is tested before page_count 873 * here, then the following race may occur: 874 * 875 * get_user_pages(&page); 876 * [user mapping goes away] 877 * write_to(page); 878 * !PageDirty(page) [good] 879 * SetPageDirty(page); 880 * put_page(page); 881 * !page_count(page) [good, discard it] 882 * 883 * [oops, our write_to data is lost] 884 * 885 * Reversing the order of the tests ensures such a situation cannot 886 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 887 * load is not satisfied before that of page->_refcount. 888 * 889 * Note that if SetPageDirty is always performed via set_page_dirty, 890 * and thus under the i_pages lock, then this ordering is not required. 891 */ 892 refcount = 1 + compound_nr(page); 893 if (!page_ref_freeze(page, refcount)) 894 goto cannot_free; 895 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 896 if (unlikely(PageDirty(page))) { 897 page_ref_unfreeze(page, refcount); 898 goto cannot_free; 899 } 900 901 if (PageSwapCache(page)) { 902 swp_entry_t swap = { .val = page_private(page) }; 903 mem_cgroup_swapout(page, swap); 904 __delete_from_swap_cache(page, swap); 905 xa_unlock_irqrestore(&mapping->i_pages, flags); 906 put_swap_page(page, swap); 907 workingset_eviction(page, target_memcg); 908 } else { 909 void (*freepage)(struct page *); 910 void *shadow = NULL; 911 912 freepage = mapping->a_ops->freepage; 913 /* 914 * Remember a shadow entry for reclaimed file cache in 915 * order to detect refaults, thus thrashing, later on. 916 * 917 * But don't store shadows in an address space that is 918 * already exiting. This is not just an optizimation, 919 * inode reclaim needs to empty out the radix tree or 920 * the nodes are lost. Don't plant shadows behind its 921 * back. 922 * 923 * We also don't store shadows for DAX mappings because the 924 * only page cache pages found in these are zero pages 925 * covering holes, and because we don't want to mix DAX 926 * exceptional entries and shadow exceptional entries in the 927 * same address_space. 928 */ 929 if (reclaimed && page_is_file_lru(page) && 930 !mapping_exiting(mapping) && !dax_mapping(mapping)) 931 shadow = workingset_eviction(page, target_memcg); 932 __delete_from_page_cache(page, shadow); 933 xa_unlock_irqrestore(&mapping->i_pages, flags); 934 935 if (freepage != NULL) 936 freepage(page); 937 } 938 939 return 1; 940 941 cannot_free: 942 xa_unlock_irqrestore(&mapping->i_pages, flags); 943 return 0; 944 } 945 946 /* 947 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 948 * someone else has a ref on the page, abort and return 0. If it was 949 * successfully detached, return 1. Assumes the caller has a single ref on 950 * this page. 951 */ 952 int remove_mapping(struct address_space *mapping, struct page *page) 953 { 954 if (__remove_mapping(mapping, page, false, NULL)) { 955 /* 956 * Unfreezing the refcount with 1 rather than 2 effectively 957 * drops the pagecache ref for us without requiring another 958 * atomic operation. 959 */ 960 page_ref_unfreeze(page, 1); 961 return 1; 962 } 963 return 0; 964 } 965 966 /** 967 * putback_lru_page - put previously isolated page onto appropriate LRU list 968 * @page: page to be put back to appropriate lru list 969 * 970 * Add previously isolated @page to appropriate LRU list. 971 * Page may still be unevictable for other reasons. 972 * 973 * lru_lock must not be held, interrupts must be enabled. 974 */ 975 void putback_lru_page(struct page *page) 976 { 977 lru_cache_add(page); 978 put_page(page); /* drop ref from isolate */ 979 } 980 981 enum page_references { 982 PAGEREF_RECLAIM, 983 PAGEREF_RECLAIM_CLEAN, 984 PAGEREF_KEEP, 985 PAGEREF_ACTIVATE, 986 }; 987 988 static enum page_references page_check_references(struct page *page, 989 struct scan_control *sc) 990 { 991 int referenced_ptes, referenced_page; 992 unsigned long vm_flags; 993 994 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 995 &vm_flags); 996 referenced_page = TestClearPageReferenced(page); 997 998 /* 999 * Mlock lost the isolation race with us. Let try_to_unmap() 1000 * move the page to the unevictable list. 1001 */ 1002 if (vm_flags & VM_LOCKED) 1003 return PAGEREF_RECLAIM; 1004 1005 if (referenced_ptes) { 1006 if (PageSwapBacked(page)) 1007 return PAGEREF_ACTIVATE; 1008 /* 1009 * All mapped pages start out with page table 1010 * references from the instantiating fault, so we need 1011 * to look twice if a mapped file page is used more 1012 * than once. 1013 * 1014 * Mark it and spare it for another trip around the 1015 * inactive list. Another page table reference will 1016 * lead to its activation. 1017 * 1018 * Note: the mark is set for activated pages as well 1019 * so that recently deactivated but used pages are 1020 * quickly recovered. 1021 */ 1022 SetPageReferenced(page); 1023 1024 if (referenced_page || referenced_ptes > 1) 1025 return PAGEREF_ACTIVATE; 1026 1027 /* 1028 * Activate file-backed executable pages after first usage. 1029 */ 1030 if (vm_flags & VM_EXEC) 1031 return PAGEREF_ACTIVATE; 1032 1033 return PAGEREF_KEEP; 1034 } 1035 1036 /* Reclaim if clean, defer dirty pages to writeback */ 1037 if (referenced_page && !PageSwapBacked(page)) 1038 return PAGEREF_RECLAIM_CLEAN; 1039 1040 return PAGEREF_RECLAIM; 1041 } 1042 1043 /* Check if a page is dirty or under writeback */ 1044 static void page_check_dirty_writeback(struct page *page, 1045 bool *dirty, bool *writeback) 1046 { 1047 struct address_space *mapping; 1048 1049 /* 1050 * Anonymous pages are not handled by flushers and must be written 1051 * from reclaim context. Do not stall reclaim based on them 1052 */ 1053 if (!page_is_file_lru(page) || 1054 (PageAnon(page) && !PageSwapBacked(page))) { 1055 *dirty = false; 1056 *writeback = false; 1057 return; 1058 } 1059 1060 /* By default assume that the page flags are accurate */ 1061 *dirty = PageDirty(page); 1062 *writeback = PageWriteback(page); 1063 1064 /* Verify dirty/writeback state if the filesystem supports it */ 1065 if (!page_has_private(page)) 1066 return; 1067 1068 mapping = page_mapping(page); 1069 if (mapping && mapping->a_ops->is_dirty_writeback) 1070 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1071 } 1072 1073 /* 1074 * shrink_page_list() returns the number of reclaimed pages 1075 */ 1076 static unsigned int shrink_page_list(struct list_head *page_list, 1077 struct pglist_data *pgdat, 1078 struct scan_control *sc, 1079 enum ttu_flags ttu_flags, 1080 struct reclaim_stat *stat, 1081 bool ignore_references) 1082 { 1083 LIST_HEAD(ret_pages); 1084 LIST_HEAD(free_pages); 1085 unsigned int nr_reclaimed = 0; 1086 unsigned int pgactivate = 0; 1087 1088 memset(stat, 0, sizeof(*stat)); 1089 cond_resched(); 1090 1091 while (!list_empty(page_list)) { 1092 struct address_space *mapping; 1093 struct page *page; 1094 enum page_references references = PAGEREF_RECLAIM; 1095 bool dirty, writeback, may_enter_fs; 1096 unsigned int nr_pages; 1097 1098 cond_resched(); 1099 1100 page = lru_to_page(page_list); 1101 list_del(&page->lru); 1102 1103 if (!trylock_page(page)) 1104 goto keep; 1105 1106 VM_BUG_ON_PAGE(PageActive(page), page); 1107 1108 nr_pages = compound_nr(page); 1109 1110 /* Account the number of base pages even though THP */ 1111 sc->nr_scanned += nr_pages; 1112 1113 if (unlikely(!page_evictable(page))) 1114 goto activate_locked; 1115 1116 if (!sc->may_unmap && page_mapped(page)) 1117 goto keep_locked; 1118 1119 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1120 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1121 1122 /* 1123 * The number of dirty pages determines if a node is marked 1124 * reclaim_congested which affects wait_iff_congested. kswapd 1125 * will stall and start writing pages if the tail of the LRU 1126 * is all dirty unqueued pages. 1127 */ 1128 page_check_dirty_writeback(page, &dirty, &writeback); 1129 if (dirty || writeback) 1130 stat->nr_dirty++; 1131 1132 if (dirty && !writeback) 1133 stat->nr_unqueued_dirty++; 1134 1135 /* 1136 * Treat this page as congested if the underlying BDI is or if 1137 * pages are cycling through the LRU so quickly that the 1138 * pages marked for immediate reclaim are making it to the 1139 * end of the LRU a second time. 1140 */ 1141 mapping = page_mapping(page); 1142 if (((dirty || writeback) && mapping && 1143 inode_write_congested(mapping->host)) || 1144 (writeback && PageReclaim(page))) 1145 stat->nr_congested++; 1146 1147 /* 1148 * If a page at the tail of the LRU is under writeback, there 1149 * are three cases to consider. 1150 * 1151 * 1) If reclaim is encountering an excessive number of pages 1152 * under writeback and this page is both under writeback and 1153 * PageReclaim then it indicates that pages are being queued 1154 * for IO but are being recycled through the LRU before the 1155 * IO can complete. Waiting on the page itself risks an 1156 * indefinite stall if it is impossible to writeback the 1157 * page due to IO error or disconnected storage so instead 1158 * note that the LRU is being scanned too quickly and the 1159 * caller can stall after page list has been processed. 1160 * 1161 * 2) Global or new memcg reclaim encounters a page that is 1162 * not marked for immediate reclaim, or the caller does not 1163 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1164 * not to fs). In this case mark the page for immediate 1165 * reclaim and continue scanning. 1166 * 1167 * Require may_enter_fs because we would wait on fs, which 1168 * may not have submitted IO yet. And the loop driver might 1169 * enter reclaim, and deadlock if it waits on a page for 1170 * which it is needed to do the write (loop masks off 1171 * __GFP_IO|__GFP_FS for this reason); but more thought 1172 * would probably show more reasons. 1173 * 1174 * 3) Legacy memcg encounters a page that is already marked 1175 * PageReclaim. memcg does not have any dirty pages 1176 * throttling so we could easily OOM just because too many 1177 * pages are in writeback and there is nothing else to 1178 * reclaim. Wait for the writeback to complete. 1179 * 1180 * In cases 1) and 2) we activate the pages to get them out of 1181 * the way while we continue scanning for clean pages on the 1182 * inactive list and refilling from the active list. The 1183 * observation here is that waiting for disk writes is more 1184 * expensive than potentially causing reloads down the line. 1185 * Since they're marked for immediate reclaim, they won't put 1186 * memory pressure on the cache working set any longer than it 1187 * takes to write them to disk. 1188 */ 1189 if (PageWriteback(page)) { 1190 /* Case 1 above */ 1191 if (current_is_kswapd() && 1192 PageReclaim(page) && 1193 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1194 stat->nr_immediate++; 1195 goto activate_locked; 1196 1197 /* Case 2 above */ 1198 } else if (writeback_throttling_sane(sc) || 1199 !PageReclaim(page) || !may_enter_fs) { 1200 /* 1201 * This is slightly racy - end_page_writeback() 1202 * might have just cleared PageReclaim, then 1203 * setting PageReclaim here end up interpreted 1204 * as PageReadahead - but that does not matter 1205 * enough to care. What we do want is for this 1206 * page to have PageReclaim set next time memcg 1207 * reclaim reaches the tests above, so it will 1208 * then wait_on_page_writeback() to avoid OOM; 1209 * and it's also appropriate in global reclaim. 1210 */ 1211 SetPageReclaim(page); 1212 stat->nr_writeback++; 1213 goto activate_locked; 1214 1215 /* Case 3 above */ 1216 } else { 1217 unlock_page(page); 1218 wait_on_page_writeback(page); 1219 /* then go back and try same page again */ 1220 list_add_tail(&page->lru, page_list); 1221 continue; 1222 } 1223 } 1224 1225 if (!ignore_references) 1226 references = page_check_references(page, sc); 1227 1228 switch (references) { 1229 case PAGEREF_ACTIVATE: 1230 goto activate_locked; 1231 case PAGEREF_KEEP: 1232 stat->nr_ref_keep += nr_pages; 1233 goto keep_locked; 1234 case PAGEREF_RECLAIM: 1235 case PAGEREF_RECLAIM_CLEAN: 1236 ; /* try to reclaim the page below */ 1237 } 1238 1239 /* 1240 * Anonymous process memory has backing store? 1241 * Try to allocate it some swap space here. 1242 * Lazyfree page could be freed directly 1243 */ 1244 if (PageAnon(page) && PageSwapBacked(page)) { 1245 if (!PageSwapCache(page)) { 1246 if (!(sc->gfp_mask & __GFP_IO)) 1247 goto keep_locked; 1248 if (PageTransHuge(page)) { 1249 /* cannot split THP, skip it */ 1250 if (!can_split_huge_page(page, NULL)) 1251 goto activate_locked; 1252 /* 1253 * Split pages without a PMD map right 1254 * away. Chances are some or all of the 1255 * tail pages can be freed without IO. 1256 */ 1257 if (!compound_mapcount(page) && 1258 split_huge_page_to_list(page, 1259 page_list)) 1260 goto activate_locked; 1261 } 1262 if (!add_to_swap(page)) { 1263 if (!PageTransHuge(page)) 1264 goto activate_locked_split; 1265 /* Fallback to swap normal pages */ 1266 if (split_huge_page_to_list(page, 1267 page_list)) 1268 goto activate_locked; 1269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1270 count_vm_event(THP_SWPOUT_FALLBACK); 1271 #endif 1272 if (!add_to_swap(page)) 1273 goto activate_locked_split; 1274 } 1275 1276 may_enter_fs = true; 1277 1278 /* Adding to swap updated mapping */ 1279 mapping = page_mapping(page); 1280 } 1281 } else if (unlikely(PageTransHuge(page))) { 1282 /* Split file THP */ 1283 if (split_huge_page_to_list(page, page_list)) 1284 goto keep_locked; 1285 } 1286 1287 /* 1288 * THP may get split above, need minus tail pages and update 1289 * nr_pages to avoid accounting tail pages twice. 1290 * 1291 * The tail pages that are added into swap cache successfully 1292 * reach here. 1293 */ 1294 if ((nr_pages > 1) && !PageTransHuge(page)) { 1295 sc->nr_scanned -= (nr_pages - 1); 1296 nr_pages = 1; 1297 } 1298 1299 /* 1300 * The page is mapped into the page tables of one or more 1301 * processes. Try to unmap it here. 1302 */ 1303 if (page_mapped(page)) { 1304 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1305 bool was_swapbacked = PageSwapBacked(page); 1306 1307 if (unlikely(PageTransHuge(page))) 1308 flags |= TTU_SPLIT_HUGE_PMD; 1309 1310 if (!try_to_unmap(page, flags)) { 1311 stat->nr_unmap_fail += nr_pages; 1312 if (!was_swapbacked && PageSwapBacked(page)) 1313 stat->nr_lazyfree_fail += nr_pages; 1314 goto activate_locked; 1315 } 1316 } 1317 1318 if (PageDirty(page)) { 1319 /* 1320 * Only kswapd can writeback filesystem pages 1321 * to avoid risk of stack overflow. But avoid 1322 * injecting inefficient single-page IO into 1323 * flusher writeback as much as possible: only 1324 * write pages when we've encountered many 1325 * dirty pages, and when we've already scanned 1326 * the rest of the LRU for clean pages and see 1327 * the same dirty pages again (PageReclaim). 1328 */ 1329 if (page_is_file_lru(page) && 1330 (!current_is_kswapd() || !PageReclaim(page) || 1331 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1332 /* 1333 * Immediately reclaim when written back. 1334 * Similar in principal to deactivate_page() 1335 * except we already have the page isolated 1336 * and know it's dirty 1337 */ 1338 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1339 SetPageReclaim(page); 1340 1341 goto activate_locked; 1342 } 1343 1344 if (references == PAGEREF_RECLAIM_CLEAN) 1345 goto keep_locked; 1346 if (!may_enter_fs) 1347 goto keep_locked; 1348 if (!sc->may_writepage) 1349 goto keep_locked; 1350 1351 /* 1352 * Page is dirty. Flush the TLB if a writable entry 1353 * potentially exists to avoid CPU writes after IO 1354 * starts and then write it out here. 1355 */ 1356 try_to_unmap_flush_dirty(); 1357 switch (pageout(page, mapping)) { 1358 case PAGE_KEEP: 1359 goto keep_locked; 1360 case PAGE_ACTIVATE: 1361 goto activate_locked; 1362 case PAGE_SUCCESS: 1363 stat->nr_pageout += hpage_nr_pages(page); 1364 1365 if (PageWriteback(page)) 1366 goto keep; 1367 if (PageDirty(page)) 1368 goto keep; 1369 1370 /* 1371 * A synchronous write - probably a ramdisk. Go 1372 * ahead and try to reclaim the page. 1373 */ 1374 if (!trylock_page(page)) 1375 goto keep; 1376 if (PageDirty(page) || PageWriteback(page)) 1377 goto keep_locked; 1378 mapping = page_mapping(page); 1379 case PAGE_CLEAN: 1380 ; /* try to free the page below */ 1381 } 1382 } 1383 1384 /* 1385 * If the page has buffers, try to free the buffer mappings 1386 * associated with this page. If we succeed we try to free 1387 * the page as well. 1388 * 1389 * We do this even if the page is PageDirty(). 1390 * try_to_release_page() does not perform I/O, but it is 1391 * possible for a page to have PageDirty set, but it is actually 1392 * clean (all its buffers are clean). This happens if the 1393 * buffers were written out directly, with submit_bh(). ext3 1394 * will do this, as well as the blockdev mapping. 1395 * try_to_release_page() will discover that cleanness and will 1396 * drop the buffers and mark the page clean - it can be freed. 1397 * 1398 * Rarely, pages can have buffers and no ->mapping. These are 1399 * the pages which were not successfully invalidated in 1400 * truncate_complete_page(). We try to drop those buffers here 1401 * and if that worked, and the page is no longer mapped into 1402 * process address space (page_count == 1) it can be freed. 1403 * Otherwise, leave the page on the LRU so it is swappable. 1404 */ 1405 if (page_has_private(page)) { 1406 if (!try_to_release_page(page, sc->gfp_mask)) 1407 goto activate_locked; 1408 if (!mapping && page_count(page) == 1) { 1409 unlock_page(page); 1410 if (put_page_testzero(page)) 1411 goto free_it; 1412 else { 1413 /* 1414 * rare race with speculative reference. 1415 * the speculative reference will free 1416 * this page shortly, so we may 1417 * increment nr_reclaimed here (and 1418 * leave it off the LRU). 1419 */ 1420 nr_reclaimed++; 1421 continue; 1422 } 1423 } 1424 } 1425 1426 if (PageAnon(page) && !PageSwapBacked(page)) { 1427 /* follow __remove_mapping for reference */ 1428 if (!page_ref_freeze(page, 1)) 1429 goto keep_locked; 1430 if (PageDirty(page)) { 1431 page_ref_unfreeze(page, 1); 1432 goto keep_locked; 1433 } 1434 1435 count_vm_event(PGLAZYFREED); 1436 count_memcg_page_event(page, PGLAZYFREED); 1437 } else if (!mapping || !__remove_mapping(mapping, page, true, 1438 sc->target_mem_cgroup)) 1439 goto keep_locked; 1440 1441 unlock_page(page); 1442 free_it: 1443 /* 1444 * THP may get swapped out in a whole, need account 1445 * all base pages. 1446 */ 1447 nr_reclaimed += nr_pages; 1448 1449 /* 1450 * Is there need to periodically free_page_list? It would 1451 * appear not as the counts should be low 1452 */ 1453 if (unlikely(PageTransHuge(page))) 1454 destroy_compound_page(page); 1455 else 1456 list_add(&page->lru, &free_pages); 1457 continue; 1458 1459 activate_locked_split: 1460 /* 1461 * The tail pages that are failed to add into swap cache 1462 * reach here. Fixup nr_scanned and nr_pages. 1463 */ 1464 if (nr_pages > 1) { 1465 sc->nr_scanned -= (nr_pages - 1); 1466 nr_pages = 1; 1467 } 1468 activate_locked: 1469 /* Not a candidate for swapping, so reclaim swap space. */ 1470 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1471 PageMlocked(page))) 1472 try_to_free_swap(page); 1473 VM_BUG_ON_PAGE(PageActive(page), page); 1474 if (!PageMlocked(page)) { 1475 int type = page_is_file_lru(page); 1476 SetPageActive(page); 1477 stat->nr_activate[type] += nr_pages; 1478 count_memcg_page_event(page, PGACTIVATE); 1479 } 1480 keep_locked: 1481 unlock_page(page); 1482 keep: 1483 list_add(&page->lru, &ret_pages); 1484 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1485 } 1486 1487 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1488 1489 mem_cgroup_uncharge_list(&free_pages); 1490 try_to_unmap_flush(); 1491 free_unref_page_list(&free_pages); 1492 1493 list_splice(&ret_pages, page_list); 1494 count_vm_events(PGACTIVATE, pgactivate); 1495 1496 return nr_reclaimed; 1497 } 1498 1499 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1500 struct list_head *page_list) 1501 { 1502 struct scan_control sc = { 1503 .gfp_mask = GFP_KERNEL, 1504 .priority = DEF_PRIORITY, 1505 .may_unmap = 1, 1506 }; 1507 struct reclaim_stat stat; 1508 unsigned int nr_reclaimed; 1509 struct page *page, *next; 1510 LIST_HEAD(clean_pages); 1511 1512 list_for_each_entry_safe(page, next, page_list, lru) { 1513 if (page_is_file_lru(page) && !PageDirty(page) && 1514 !__PageMovable(page) && !PageUnevictable(page)) { 1515 ClearPageActive(page); 1516 list_move(&page->lru, &clean_pages); 1517 } 1518 } 1519 1520 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1521 TTU_IGNORE_ACCESS, &stat, true); 1522 list_splice(&clean_pages, page_list); 1523 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed); 1524 /* 1525 * Since lazyfree pages are isolated from file LRU from the beginning, 1526 * they will rotate back to anonymous LRU in the end if it failed to 1527 * discard so isolated count will be mismatched. 1528 * Compensate the isolated count for both LRU lists. 1529 */ 1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1531 stat.nr_lazyfree_fail); 1532 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1533 -stat.nr_lazyfree_fail); 1534 return nr_reclaimed; 1535 } 1536 1537 /* 1538 * Attempt to remove the specified page from its LRU. Only take this page 1539 * if it is of the appropriate PageActive status. Pages which are being 1540 * freed elsewhere are also ignored. 1541 * 1542 * page: page to consider 1543 * mode: one of the LRU isolation modes defined above 1544 * 1545 * returns 0 on success, -ve errno on failure. 1546 */ 1547 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1548 { 1549 int ret = -EINVAL; 1550 1551 /* Only take pages on the LRU. */ 1552 if (!PageLRU(page)) 1553 return ret; 1554 1555 /* Compaction should not handle unevictable pages but CMA can do so */ 1556 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1557 return ret; 1558 1559 ret = -EBUSY; 1560 1561 /* 1562 * To minimise LRU disruption, the caller can indicate that it only 1563 * wants to isolate pages it will be able to operate on without 1564 * blocking - clean pages for the most part. 1565 * 1566 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1567 * that it is possible to migrate without blocking 1568 */ 1569 if (mode & ISOLATE_ASYNC_MIGRATE) { 1570 /* All the caller can do on PageWriteback is block */ 1571 if (PageWriteback(page)) 1572 return ret; 1573 1574 if (PageDirty(page)) { 1575 struct address_space *mapping; 1576 bool migrate_dirty; 1577 1578 /* 1579 * Only pages without mappings or that have a 1580 * ->migratepage callback are possible to migrate 1581 * without blocking. However, we can be racing with 1582 * truncation so it's necessary to lock the page 1583 * to stabilise the mapping as truncation holds 1584 * the page lock until after the page is removed 1585 * from the page cache. 1586 */ 1587 if (!trylock_page(page)) 1588 return ret; 1589 1590 mapping = page_mapping(page); 1591 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1592 unlock_page(page); 1593 if (!migrate_dirty) 1594 return ret; 1595 } 1596 } 1597 1598 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1599 return ret; 1600 1601 if (likely(get_page_unless_zero(page))) { 1602 /* 1603 * Be careful not to clear PageLRU until after we're 1604 * sure the page is not being freed elsewhere -- the 1605 * page release code relies on it. 1606 */ 1607 ClearPageLRU(page); 1608 ret = 0; 1609 } 1610 1611 return ret; 1612 } 1613 1614 1615 /* 1616 * Update LRU sizes after isolating pages. The LRU size updates must 1617 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1618 */ 1619 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1620 enum lru_list lru, unsigned long *nr_zone_taken) 1621 { 1622 int zid; 1623 1624 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1625 if (!nr_zone_taken[zid]) 1626 continue; 1627 1628 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1629 } 1630 1631 } 1632 1633 /** 1634 * pgdat->lru_lock is heavily contended. Some of the functions that 1635 * shrink the lists perform better by taking out a batch of pages 1636 * and working on them outside the LRU lock. 1637 * 1638 * For pagecache intensive workloads, this function is the hottest 1639 * spot in the kernel (apart from copy_*_user functions). 1640 * 1641 * Appropriate locks must be held before calling this function. 1642 * 1643 * @nr_to_scan: The number of eligible pages to look through on the list. 1644 * @lruvec: The LRU vector to pull pages from. 1645 * @dst: The temp list to put pages on to. 1646 * @nr_scanned: The number of pages that were scanned. 1647 * @sc: The scan_control struct for this reclaim session 1648 * @lru: LRU list id for isolating 1649 * 1650 * returns how many pages were moved onto *@dst. 1651 */ 1652 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1653 struct lruvec *lruvec, struct list_head *dst, 1654 unsigned long *nr_scanned, struct scan_control *sc, 1655 enum lru_list lru) 1656 { 1657 struct list_head *src = &lruvec->lists[lru]; 1658 unsigned long nr_taken = 0; 1659 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1660 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1661 unsigned long skipped = 0; 1662 unsigned long scan, total_scan, nr_pages; 1663 LIST_HEAD(pages_skipped); 1664 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1665 1666 total_scan = 0; 1667 scan = 0; 1668 while (scan < nr_to_scan && !list_empty(src)) { 1669 struct page *page; 1670 1671 page = lru_to_page(src); 1672 prefetchw_prev_lru_page(page, src, flags); 1673 1674 VM_BUG_ON_PAGE(!PageLRU(page), page); 1675 1676 nr_pages = compound_nr(page); 1677 total_scan += nr_pages; 1678 1679 if (page_zonenum(page) > sc->reclaim_idx) { 1680 list_move(&page->lru, &pages_skipped); 1681 nr_skipped[page_zonenum(page)] += nr_pages; 1682 continue; 1683 } 1684 1685 /* 1686 * Do not count skipped pages because that makes the function 1687 * return with no isolated pages if the LRU mostly contains 1688 * ineligible pages. This causes the VM to not reclaim any 1689 * pages, triggering a premature OOM. 1690 * 1691 * Account all tail pages of THP. This would not cause 1692 * premature OOM since __isolate_lru_page() returns -EBUSY 1693 * only when the page is being freed somewhere else. 1694 */ 1695 scan += nr_pages; 1696 switch (__isolate_lru_page(page, mode)) { 1697 case 0: 1698 nr_taken += nr_pages; 1699 nr_zone_taken[page_zonenum(page)] += nr_pages; 1700 list_move(&page->lru, dst); 1701 break; 1702 1703 case -EBUSY: 1704 /* else it is being freed elsewhere */ 1705 list_move(&page->lru, src); 1706 continue; 1707 1708 default: 1709 BUG(); 1710 } 1711 } 1712 1713 /* 1714 * Splice any skipped pages to the start of the LRU list. Note that 1715 * this disrupts the LRU order when reclaiming for lower zones but 1716 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1717 * scanning would soon rescan the same pages to skip and put the 1718 * system at risk of premature OOM. 1719 */ 1720 if (!list_empty(&pages_skipped)) { 1721 int zid; 1722 1723 list_splice(&pages_skipped, src); 1724 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1725 if (!nr_skipped[zid]) 1726 continue; 1727 1728 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1729 skipped += nr_skipped[zid]; 1730 } 1731 } 1732 *nr_scanned = total_scan; 1733 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1734 total_scan, skipped, nr_taken, mode, lru); 1735 update_lru_sizes(lruvec, lru, nr_zone_taken); 1736 return nr_taken; 1737 } 1738 1739 /** 1740 * isolate_lru_page - tries to isolate a page from its LRU list 1741 * @page: page to isolate from its LRU list 1742 * 1743 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1744 * vmstat statistic corresponding to whatever LRU list the page was on. 1745 * 1746 * Returns 0 if the page was removed from an LRU list. 1747 * Returns -EBUSY if the page was not on an LRU list. 1748 * 1749 * The returned page will have PageLRU() cleared. If it was found on 1750 * the active list, it will have PageActive set. If it was found on 1751 * the unevictable list, it will have the PageUnevictable bit set. That flag 1752 * may need to be cleared by the caller before letting the page go. 1753 * 1754 * The vmstat statistic corresponding to the list on which the page was 1755 * found will be decremented. 1756 * 1757 * Restrictions: 1758 * 1759 * (1) Must be called with an elevated refcount on the page. This is a 1760 * fundamentnal difference from isolate_lru_pages (which is called 1761 * without a stable reference). 1762 * (2) the lru_lock must not be held. 1763 * (3) interrupts must be enabled. 1764 */ 1765 int isolate_lru_page(struct page *page) 1766 { 1767 int ret = -EBUSY; 1768 1769 VM_BUG_ON_PAGE(!page_count(page), page); 1770 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1771 1772 if (PageLRU(page)) { 1773 pg_data_t *pgdat = page_pgdat(page); 1774 struct lruvec *lruvec; 1775 1776 spin_lock_irq(&pgdat->lru_lock); 1777 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1778 if (PageLRU(page)) { 1779 int lru = page_lru(page); 1780 get_page(page); 1781 ClearPageLRU(page); 1782 del_page_from_lru_list(page, lruvec, lru); 1783 ret = 0; 1784 } 1785 spin_unlock_irq(&pgdat->lru_lock); 1786 } 1787 return ret; 1788 } 1789 1790 /* 1791 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1792 * then get rescheduled. When there are massive number of tasks doing page 1793 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1794 * the LRU list will go small and be scanned faster than necessary, leading to 1795 * unnecessary swapping, thrashing and OOM. 1796 */ 1797 static int too_many_isolated(struct pglist_data *pgdat, int file, 1798 struct scan_control *sc) 1799 { 1800 unsigned long inactive, isolated; 1801 1802 if (current_is_kswapd()) 1803 return 0; 1804 1805 if (!writeback_throttling_sane(sc)) 1806 return 0; 1807 1808 if (file) { 1809 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1810 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1811 } else { 1812 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1813 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1814 } 1815 1816 /* 1817 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1818 * won't get blocked by normal direct-reclaimers, forming a circular 1819 * deadlock. 1820 */ 1821 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1822 inactive >>= 3; 1823 1824 return isolated > inactive; 1825 } 1826 1827 /* 1828 * This moves pages from @list to corresponding LRU list. 1829 * 1830 * We move them the other way if the page is referenced by one or more 1831 * processes, from rmap. 1832 * 1833 * If the pages are mostly unmapped, the processing is fast and it is 1834 * appropriate to hold zone_lru_lock across the whole operation. But if 1835 * the pages are mapped, the processing is slow (page_referenced()) so we 1836 * should drop zone_lru_lock around each page. It's impossible to balance 1837 * this, so instead we remove the pages from the LRU while processing them. 1838 * It is safe to rely on PG_active against the non-LRU pages in here because 1839 * nobody will play with that bit on a non-LRU page. 1840 * 1841 * The downside is that we have to touch page->_refcount against each page. 1842 * But we had to alter page->flags anyway. 1843 * 1844 * Returns the number of pages moved to the given lruvec. 1845 */ 1846 1847 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1848 struct list_head *list) 1849 { 1850 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1851 int nr_pages, nr_moved = 0; 1852 LIST_HEAD(pages_to_free); 1853 struct page *page; 1854 enum lru_list lru; 1855 1856 while (!list_empty(list)) { 1857 page = lru_to_page(list); 1858 VM_BUG_ON_PAGE(PageLRU(page), page); 1859 if (unlikely(!page_evictable(page))) { 1860 list_del(&page->lru); 1861 spin_unlock_irq(&pgdat->lru_lock); 1862 putback_lru_page(page); 1863 spin_lock_irq(&pgdat->lru_lock); 1864 continue; 1865 } 1866 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1867 1868 SetPageLRU(page); 1869 lru = page_lru(page); 1870 1871 nr_pages = hpage_nr_pages(page); 1872 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1873 list_move(&page->lru, &lruvec->lists[lru]); 1874 1875 if (put_page_testzero(page)) { 1876 __ClearPageLRU(page); 1877 __ClearPageActive(page); 1878 del_page_from_lru_list(page, lruvec, lru); 1879 1880 if (unlikely(PageCompound(page))) { 1881 spin_unlock_irq(&pgdat->lru_lock); 1882 destroy_compound_page(page); 1883 spin_lock_irq(&pgdat->lru_lock); 1884 } else 1885 list_add(&page->lru, &pages_to_free); 1886 } else { 1887 nr_moved += nr_pages; 1888 if (PageActive(page)) 1889 workingset_age_nonresident(lruvec, nr_pages); 1890 } 1891 } 1892 1893 /* 1894 * To save our caller's stack, now use input list for pages to free. 1895 */ 1896 list_splice(&pages_to_free, list); 1897 1898 return nr_moved; 1899 } 1900 1901 /* 1902 * If a kernel thread (such as nfsd for loop-back mounts) services 1903 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1904 * In that case we should only throttle if the backing device it is 1905 * writing to is congested. In other cases it is safe to throttle. 1906 */ 1907 static int current_may_throttle(void) 1908 { 1909 return !(current->flags & PF_LOCAL_THROTTLE) || 1910 current->backing_dev_info == NULL || 1911 bdi_write_congested(current->backing_dev_info); 1912 } 1913 1914 /* 1915 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1916 * of reclaimed pages 1917 */ 1918 static noinline_for_stack unsigned long 1919 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1920 struct scan_control *sc, enum lru_list lru) 1921 { 1922 LIST_HEAD(page_list); 1923 unsigned long nr_scanned; 1924 unsigned int nr_reclaimed = 0; 1925 unsigned long nr_taken; 1926 struct reclaim_stat stat; 1927 bool file = is_file_lru(lru); 1928 enum vm_event_item item; 1929 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1930 bool stalled = false; 1931 1932 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1933 if (stalled) 1934 return 0; 1935 1936 /* wait a bit for the reclaimer. */ 1937 msleep(100); 1938 stalled = true; 1939 1940 /* We are about to die and free our memory. Return now. */ 1941 if (fatal_signal_pending(current)) 1942 return SWAP_CLUSTER_MAX; 1943 } 1944 1945 lru_add_drain(); 1946 1947 spin_lock_irq(&pgdat->lru_lock); 1948 1949 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1950 &nr_scanned, sc, lru); 1951 1952 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1953 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1954 if (!cgroup_reclaim(sc)) 1955 __count_vm_events(item, nr_scanned); 1956 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1957 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1958 1959 spin_unlock_irq(&pgdat->lru_lock); 1960 1961 if (nr_taken == 0) 1962 return 0; 1963 1964 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1965 &stat, false); 1966 1967 spin_lock_irq(&pgdat->lru_lock); 1968 1969 move_pages_to_lru(lruvec, &page_list); 1970 1971 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1972 lru_note_cost(lruvec, file, stat.nr_pageout); 1973 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1974 if (!cgroup_reclaim(sc)) 1975 __count_vm_events(item, nr_reclaimed); 1976 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1977 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1978 1979 spin_unlock_irq(&pgdat->lru_lock); 1980 1981 mem_cgroup_uncharge_list(&page_list); 1982 free_unref_page_list(&page_list); 1983 1984 /* 1985 * If dirty pages are scanned that are not queued for IO, it 1986 * implies that flushers are not doing their job. This can 1987 * happen when memory pressure pushes dirty pages to the end of 1988 * the LRU before the dirty limits are breached and the dirty 1989 * data has expired. It can also happen when the proportion of 1990 * dirty pages grows not through writes but through memory 1991 * pressure reclaiming all the clean cache. And in some cases, 1992 * the flushers simply cannot keep up with the allocation 1993 * rate. Nudge the flusher threads in case they are asleep. 1994 */ 1995 if (stat.nr_unqueued_dirty == nr_taken) 1996 wakeup_flusher_threads(WB_REASON_VMSCAN); 1997 1998 sc->nr.dirty += stat.nr_dirty; 1999 sc->nr.congested += stat.nr_congested; 2000 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2001 sc->nr.writeback += stat.nr_writeback; 2002 sc->nr.immediate += stat.nr_immediate; 2003 sc->nr.taken += nr_taken; 2004 if (file) 2005 sc->nr.file_taken += nr_taken; 2006 2007 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2008 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2009 return nr_reclaimed; 2010 } 2011 2012 static void shrink_active_list(unsigned long nr_to_scan, 2013 struct lruvec *lruvec, 2014 struct scan_control *sc, 2015 enum lru_list lru) 2016 { 2017 unsigned long nr_taken; 2018 unsigned long nr_scanned; 2019 unsigned long vm_flags; 2020 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2021 LIST_HEAD(l_active); 2022 LIST_HEAD(l_inactive); 2023 struct page *page; 2024 unsigned nr_deactivate, nr_activate; 2025 unsigned nr_rotated = 0; 2026 int file = is_file_lru(lru); 2027 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2028 2029 lru_add_drain(); 2030 2031 spin_lock_irq(&pgdat->lru_lock); 2032 2033 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2034 &nr_scanned, sc, lru); 2035 2036 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2037 2038 __count_vm_events(PGREFILL, nr_scanned); 2039 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2040 2041 spin_unlock_irq(&pgdat->lru_lock); 2042 2043 while (!list_empty(&l_hold)) { 2044 cond_resched(); 2045 page = lru_to_page(&l_hold); 2046 list_del(&page->lru); 2047 2048 if (unlikely(!page_evictable(page))) { 2049 putback_lru_page(page); 2050 continue; 2051 } 2052 2053 if (unlikely(buffer_heads_over_limit)) { 2054 if (page_has_private(page) && trylock_page(page)) { 2055 if (page_has_private(page)) 2056 try_to_release_page(page, 0); 2057 unlock_page(page); 2058 } 2059 } 2060 2061 if (page_referenced(page, 0, sc->target_mem_cgroup, 2062 &vm_flags)) { 2063 /* 2064 * Identify referenced, file-backed active pages and 2065 * give them one more trip around the active list. So 2066 * that executable code get better chances to stay in 2067 * memory under moderate memory pressure. Anon pages 2068 * are not likely to be evicted by use-once streaming 2069 * IO, plus JVM can create lots of anon VM_EXEC pages, 2070 * so we ignore them here. 2071 */ 2072 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2073 nr_rotated += hpage_nr_pages(page); 2074 list_add(&page->lru, &l_active); 2075 continue; 2076 } 2077 } 2078 2079 ClearPageActive(page); /* we are de-activating */ 2080 SetPageWorkingset(page); 2081 list_add(&page->lru, &l_inactive); 2082 } 2083 2084 /* 2085 * Move pages back to the lru list. 2086 */ 2087 spin_lock_irq(&pgdat->lru_lock); 2088 2089 nr_activate = move_pages_to_lru(lruvec, &l_active); 2090 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2091 /* Keep all free pages in l_active list */ 2092 list_splice(&l_inactive, &l_active); 2093 2094 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2095 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2096 2097 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2098 spin_unlock_irq(&pgdat->lru_lock); 2099 2100 mem_cgroup_uncharge_list(&l_active); 2101 free_unref_page_list(&l_active); 2102 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2103 nr_deactivate, nr_rotated, sc->priority, file); 2104 } 2105 2106 unsigned long reclaim_pages(struct list_head *page_list) 2107 { 2108 int nid = NUMA_NO_NODE; 2109 unsigned int nr_reclaimed = 0; 2110 LIST_HEAD(node_page_list); 2111 struct reclaim_stat dummy_stat; 2112 struct page *page; 2113 struct scan_control sc = { 2114 .gfp_mask = GFP_KERNEL, 2115 .priority = DEF_PRIORITY, 2116 .may_writepage = 1, 2117 .may_unmap = 1, 2118 .may_swap = 1, 2119 }; 2120 2121 while (!list_empty(page_list)) { 2122 page = lru_to_page(page_list); 2123 if (nid == NUMA_NO_NODE) { 2124 nid = page_to_nid(page); 2125 INIT_LIST_HEAD(&node_page_list); 2126 } 2127 2128 if (nid == page_to_nid(page)) { 2129 ClearPageActive(page); 2130 list_move(&page->lru, &node_page_list); 2131 continue; 2132 } 2133 2134 nr_reclaimed += shrink_page_list(&node_page_list, 2135 NODE_DATA(nid), 2136 &sc, 0, 2137 &dummy_stat, false); 2138 while (!list_empty(&node_page_list)) { 2139 page = lru_to_page(&node_page_list); 2140 list_del(&page->lru); 2141 putback_lru_page(page); 2142 } 2143 2144 nid = NUMA_NO_NODE; 2145 } 2146 2147 if (!list_empty(&node_page_list)) { 2148 nr_reclaimed += shrink_page_list(&node_page_list, 2149 NODE_DATA(nid), 2150 &sc, 0, 2151 &dummy_stat, false); 2152 while (!list_empty(&node_page_list)) { 2153 page = lru_to_page(&node_page_list); 2154 list_del(&page->lru); 2155 putback_lru_page(page); 2156 } 2157 } 2158 2159 return nr_reclaimed; 2160 } 2161 2162 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2163 struct lruvec *lruvec, struct scan_control *sc) 2164 { 2165 if (is_active_lru(lru)) { 2166 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2167 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2168 else 2169 sc->skipped_deactivate = 1; 2170 return 0; 2171 } 2172 2173 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2174 } 2175 2176 /* 2177 * The inactive anon list should be small enough that the VM never has 2178 * to do too much work. 2179 * 2180 * The inactive file list should be small enough to leave most memory 2181 * to the established workingset on the scan-resistant active list, 2182 * but large enough to avoid thrashing the aggregate readahead window. 2183 * 2184 * Both inactive lists should also be large enough that each inactive 2185 * page has a chance to be referenced again before it is reclaimed. 2186 * 2187 * If that fails and refaulting is observed, the inactive list grows. 2188 * 2189 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2190 * on this LRU, maintained by the pageout code. An inactive_ratio 2191 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2192 * 2193 * total target max 2194 * memory ratio inactive 2195 * ------------------------------------- 2196 * 10MB 1 5MB 2197 * 100MB 1 50MB 2198 * 1GB 3 250MB 2199 * 10GB 10 0.9GB 2200 * 100GB 31 3GB 2201 * 1TB 101 10GB 2202 * 10TB 320 32GB 2203 */ 2204 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2205 { 2206 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2207 unsigned long inactive, active; 2208 unsigned long inactive_ratio; 2209 unsigned long gb; 2210 2211 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2212 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2213 2214 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2215 if (gb) 2216 inactive_ratio = int_sqrt(10 * gb); 2217 else 2218 inactive_ratio = 1; 2219 2220 return inactive * inactive_ratio < active; 2221 } 2222 2223 enum scan_balance { 2224 SCAN_EQUAL, 2225 SCAN_FRACT, 2226 SCAN_ANON, 2227 SCAN_FILE, 2228 }; 2229 2230 /* 2231 * Determine how aggressively the anon and file LRU lists should be 2232 * scanned. The relative value of each set of LRU lists is determined 2233 * by looking at the fraction of the pages scanned we did rotate back 2234 * onto the active list instead of evict. 2235 * 2236 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2237 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2238 */ 2239 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2240 unsigned long *nr) 2241 { 2242 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2243 unsigned long anon_cost, file_cost, total_cost; 2244 int swappiness = mem_cgroup_swappiness(memcg); 2245 u64 fraction[2]; 2246 u64 denominator = 0; /* gcc */ 2247 enum scan_balance scan_balance; 2248 unsigned long ap, fp; 2249 enum lru_list lru; 2250 2251 /* If we have no swap space, do not bother scanning anon pages. */ 2252 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2253 scan_balance = SCAN_FILE; 2254 goto out; 2255 } 2256 2257 /* 2258 * Global reclaim will swap to prevent OOM even with no 2259 * swappiness, but memcg users want to use this knob to 2260 * disable swapping for individual groups completely when 2261 * using the memory controller's swap limit feature would be 2262 * too expensive. 2263 */ 2264 if (cgroup_reclaim(sc) && !swappiness) { 2265 scan_balance = SCAN_FILE; 2266 goto out; 2267 } 2268 2269 /* 2270 * Do not apply any pressure balancing cleverness when the 2271 * system is close to OOM, scan both anon and file equally 2272 * (unless the swappiness setting disagrees with swapping). 2273 */ 2274 if (!sc->priority && swappiness) { 2275 scan_balance = SCAN_EQUAL; 2276 goto out; 2277 } 2278 2279 /* 2280 * If the system is almost out of file pages, force-scan anon. 2281 */ 2282 if (sc->file_is_tiny) { 2283 scan_balance = SCAN_ANON; 2284 goto out; 2285 } 2286 2287 /* 2288 * If there is enough inactive page cache, we do not reclaim 2289 * anything from the anonymous working right now. 2290 */ 2291 if (sc->cache_trim_mode) { 2292 scan_balance = SCAN_FILE; 2293 goto out; 2294 } 2295 2296 scan_balance = SCAN_FRACT; 2297 /* 2298 * Calculate the pressure balance between anon and file pages. 2299 * 2300 * The amount of pressure we put on each LRU is inversely 2301 * proportional to the cost of reclaiming each list, as 2302 * determined by the share of pages that are refaulting, times 2303 * the relative IO cost of bringing back a swapped out 2304 * anonymous page vs reloading a filesystem page (swappiness). 2305 * 2306 * Although we limit that influence to ensure no list gets 2307 * left behind completely: at least a third of the pressure is 2308 * applied, before swappiness. 2309 * 2310 * With swappiness at 100, anon and file have equal IO cost. 2311 */ 2312 total_cost = sc->anon_cost + sc->file_cost; 2313 anon_cost = total_cost + sc->anon_cost; 2314 file_cost = total_cost + sc->file_cost; 2315 total_cost = anon_cost + file_cost; 2316 2317 ap = swappiness * (total_cost + 1); 2318 ap /= anon_cost + 1; 2319 2320 fp = (200 - swappiness) * (total_cost + 1); 2321 fp /= file_cost + 1; 2322 2323 fraction[0] = ap; 2324 fraction[1] = fp; 2325 denominator = ap + fp; 2326 out: 2327 for_each_evictable_lru(lru) { 2328 int file = is_file_lru(lru); 2329 unsigned long lruvec_size; 2330 unsigned long scan; 2331 unsigned long protection; 2332 2333 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2334 protection = mem_cgroup_protection(memcg, 2335 sc->memcg_low_reclaim); 2336 2337 if (protection) { 2338 /* 2339 * Scale a cgroup's reclaim pressure by proportioning 2340 * its current usage to its memory.low or memory.min 2341 * setting. 2342 * 2343 * This is important, as otherwise scanning aggression 2344 * becomes extremely binary -- from nothing as we 2345 * approach the memory protection threshold, to totally 2346 * nominal as we exceed it. This results in requiring 2347 * setting extremely liberal protection thresholds. It 2348 * also means we simply get no protection at all if we 2349 * set it too low, which is not ideal. 2350 * 2351 * If there is any protection in place, we reduce scan 2352 * pressure by how much of the total memory used is 2353 * within protection thresholds. 2354 * 2355 * There is one special case: in the first reclaim pass, 2356 * we skip over all groups that are within their low 2357 * protection. If that fails to reclaim enough pages to 2358 * satisfy the reclaim goal, we come back and override 2359 * the best-effort low protection. However, we still 2360 * ideally want to honor how well-behaved groups are in 2361 * that case instead of simply punishing them all 2362 * equally. As such, we reclaim them based on how much 2363 * memory they are using, reducing the scan pressure 2364 * again by how much of the total memory used is under 2365 * hard protection. 2366 */ 2367 unsigned long cgroup_size = mem_cgroup_size(memcg); 2368 2369 /* Avoid TOCTOU with earlier protection check */ 2370 cgroup_size = max(cgroup_size, protection); 2371 2372 scan = lruvec_size - lruvec_size * protection / 2373 cgroup_size; 2374 2375 /* 2376 * Minimally target SWAP_CLUSTER_MAX pages to keep 2377 * reclaim moving forwards, avoiding decrementing 2378 * sc->priority further than desirable. 2379 */ 2380 scan = max(scan, SWAP_CLUSTER_MAX); 2381 } else { 2382 scan = lruvec_size; 2383 } 2384 2385 scan >>= sc->priority; 2386 2387 /* 2388 * If the cgroup's already been deleted, make sure to 2389 * scrape out the remaining cache. 2390 */ 2391 if (!scan && !mem_cgroup_online(memcg)) 2392 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2393 2394 switch (scan_balance) { 2395 case SCAN_EQUAL: 2396 /* Scan lists relative to size */ 2397 break; 2398 case SCAN_FRACT: 2399 /* 2400 * Scan types proportional to swappiness and 2401 * their relative recent reclaim efficiency. 2402 * Make sure we don't miss the last page on 2403 * the offlined memory cgroups because of a 2404 * round-off error. 2405 */ 2406 scan = mem_cgroup_online(memcg) ? 2407 div64_u64(scan * fraction[file], denominator) : 2408 DIV64_U64_ROUND_UP(scan * fraction[file], 2409 denominator); 2410 break; 2411 case SCAN_FILE: 2412 case SCAN_ANON: 2413 /* Scan one type exclusively */ 2414 if ((scan_balance == SCAN_FILE) != file) 2415 scan = 0; 2416 break; 2417 default: 2418 /* Look ma, no brain */ 2419 BUG(); 2420 } 2421 2422 nr[lru] = scan; 2423 } 2424 } 2425 2426 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2427 { 2428 unsigned long nr[NR_LRU_LISTS]; 2429 unsigned long targets[NR_LRU_LISTS]; 2430 unsigned long nr_to_scan; 2431 enum lru_list lru; 2432 unsigned long nr_reclaimed = 0; 2433 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2434 struct blk_plug plug; 2435 bool scan_adjusted; 2436 2437 get_scan_count(lruvec, sc, nr); 2438 2439 /* Record the original scan target for proportional adjustments later */ 2440 memcpy(targets, nr, sizeof(nr)); 2441 2442 /* 2443 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2444 * event that can occur when there is little memory pressure e.g. 2445 * multiple streaming readers/writers. Hence, we do not abort scanning 2446 * when the requested number of pages are reclaimed when scanning at 2447 * DEF_PRIORITY on the assumption that the fact we are direct 2448 * reclaiming implies that kswapd is not keeping up and it is best to 2449 * do a batch of work at once. For memcg reclaim one check is made to 2450 * abort proportional reclaim if either the file or anon lru has already 2451 * dropped to zero at the first pass. 2452 */ 2453 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2454 sc->priority == DEF_PRIORITY); 2455 2456 blk_start_plug(&plug); 2457 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2458 nr[LRU_INACTIVE_FILE]) { 2459 unsigned long nr_anon, nr_file, percentage; 2460 unsigned long nr_scanned; 2461 2462 for_each_evictable_lru(lru) { 2463 if (nr[lru]) { 2464 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2465 nr[lru] -= nr_to_scan; 2466 2467 nr_reclaimed += shrink_list(lru, nr_to_scan, 2468 lruvec, sc); 2469 } 2470 } 2471 2472 cond_resched(); 2473 2474 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2475 continue; 2476 2477 /* 2478 * For kswapd and memcg, reclaim at least the number of pages 2479 * requested. Ensure that the anon and file LRUs are scanned 2480 * proportionally what was requested by get_scan_count(). We 2481 * stop reclaiming one LRU and reduce the amount scanning 2482 * proportional to the original scan target. 2483 */ 2484 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2485 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2486 2487 /* 2488 * It's just vindictive to attack the larger once the smaller 2489 * has gone to zero. And given the way we stop scanning the 2490 * smaller below, this makes sure that we only make one nudge 2491 * towards proportionality once we've got nr_to_reclaim. 2492 */ 2493 if (!nr_file || !nr_anon) 2494 break; 2495 2496 if (nr_file > nr_anon) { 2497 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2498 targets[LRU_ACTIVE_ANON] + 1; 2499 lru = LRU_BASE; 2500 percentage = nr_anon * 100 / scan_target; 2501 } else { 2502 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2503 targets[LRU_ACTIVE_FILE] + 1; 2504 lru = LRU_FILE; 2505 percentage = nr_file * 100 / scan_target; 2506 } 2507 2508 /* Stop scanning the smaller of the LRU */ 2509 nr[lru] = 0; 2510 nr[lru + LRU_ACTIVE] = 0; 2511 2512 /* 2513 * Recalculate the other LRU scan count based on its original 2514 * scan target and the percentage scanning already complete 2515 */ 2516 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2517 nr_scanned = targets[lru] - nr[lru]; 2518 nr[lru] = targets[lru] * (100 - percentage) / 100; 2519 nr[lru] -= min(nr[lru], nr_scanned); 2520 2521 lru += LRU_ACTIVE; 2522 nr_scanned = targets[lru] - nr[lru]; 2523 nr[lru] = targets[lru] * (100 - percentage) / 100; 2524 nr[lru] -= min(nr[lru], nr_scanned); 2525 2526 scan_adjusted = true; 2527 } 2528 blk_finish_plug(&plug); 2529 sc->nr_reclaimed += nr_reclaimed; 2530 2531 /* 2532 * Even if we did not try to evict anon pages at all, we want to 2533 * rebalance the anon lru active/inactive ratio. 2534 */ 2535 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2536 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2537 sc, LRU_ACTIVE_ANON); 2538 } 2539 2540 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2541 static bool in_reclaim_compaction(struct scan_control *sc) 2542 { 2543 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2544 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2545 sc->priority < DEF_PRIORITY - 2)) 2546 return true; 2547 2548 return false; 2549 } 2550 2551 /* 2552 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2553 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2554 * true if more pages should be reclaimed such that when the page allocator 2555 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2556 * It will give up earlier than that if there is difficulty reclaiming pages. 2557 */ 2558 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2559 unsigned long nr_reclaimed, 2560 struct scan_control *sc) 2561 { 2562 unsigned long pages_for_compaction; 2563 unsigned long inactive_lru_pages; 2564 int z; 2565 2566 /* If not in reclaim/compaction mode, stop */ 2567 if (!in_reclaim_compaction(sc)) 2568 return false; 2569 2570 /* 2571 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2572 * number of pages that were scanned. This will return to the caller 2573 * with the risk reclaim/compaction and the resulting allocation attempt 2574 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2575 * allocations through requiring that the full LRU list has been scanned 2576 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2577 * scan, but that approximation was wrong, and there were corner cases 2578 * where always a non-zero amount of pages were scanned. 2579 */ 2580 if (!nr_reclaimed) 2581 return false; 2582 2583 /* If compaction would go ahead or the allocation would succeed, stop */ 2584 for (z = 0; z <= sc->reclaim_idx; z++) { 2585 struct zone *zone = &pgdat->node_zones[z]; 2586 if (!managed_zone(zone)) 2587 continue; 2588 2589 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2590 case COMPACT_SUCCESS: 2591 case COMPACT_CONTINUE: 2592 return false; 2593 default: 2594 /* check next zone */ 2595 ; 2596 } 2597 } 2598 2599 /* 2600 * If we have not reclaimed enough pages for compaction and the 2601 * inactive lists are large enough, continue reclaiming 2602 */ 2603 pages_for_compaction = compact_gap(sc->order); 2604 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2605 if (get_nr_swap_pages() > 0) 2606 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2607 2608 return inactive_lru_pages > pages_for_compaction; 2609 } 2610 2611 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2612 { 2613 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2614 struct mem_cgroup *memcg; 2615 2616 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2617 do { 2618 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2619 unsigned long reclaimed; 2620 unsigned long scanned; 2621 2622 switch (mem_cgroup_protected(target_memcg, memcg)) { 2623 case MEMCG_PROT_MIN: 2624 /* 2625 * Hard protection. 2626 * If there is no reclaimable memory, OOM. 2627 */ 2628 continue; 2629 case MEMCG_PROT_LOW: 2630 /* 2631 * Soft protection. 2632 * Respect the protection only as long as 2633 * there is an unprotected supply 2634 * of reclaimable memory from other cgroups. 2635 */ 2636 if (!sc->memcg_low_reclaim) { 2637 sc->memcg_low_skipped = 1; 2638 continue; 2639 } 2640 memcg_memory_event(memcg, MEMCG_LOW); 2641 break; 2642 case MEMCG_PROT_NONE: 2643 /* 2644 * All protection thresholds breached. We may 2645 * still choose to vary the scan pressure 2646 * applied based on by how much the cgroup in 2647 * question has exceeded its protection 2648 * thresholds (see get_scan_count). 2649 */ 2650 break; 2651 } 2652 2653 reclaimed = sc->nr_reclaimed; 2654 scanned = sc->nr_scanned; 2655 2656 shrink_lruvec(lruvec, sc); 2657 2658 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2659 sc->priority); 2660 2661 /* Record the group's reclaim efficiency */ 2662 vmpressure(sc->gfp_mask, memcg, false, 2663 sc->nr_scanned - scanned, 2664 sc->nr_reclaimed - reclaimed); 2665 2666 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2667 } 2668 2669 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2670 { 2671 struct reclaim_state *reclaim_state = current->reclaim_state; 2672 unsigned long nr_reclaimed, nr_scanned; 2673 struct lruvec *target_lruvec; 2674 bool reclaimable = false; 2675 unsigned long file; 2676 2677 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2678 2679 again: 2680 memset(&sc->nr, 0, sizeof(sc->nr)); 2681 2682 nr_reclaimed = sc->nr_reclaimed; 2683 nr_scanned = sc->nr_scanned; 2684 2685 /* 2686 * Determine the scan balance between anon and file LRUs. 2687 */ 2688 spin_lock_irq(&pgdat->lru_lock); 2689 sc->anon_cost = target_lruvec->anon_cost; 2690 sc->file_cost = target_lruvec->file_cost; 2691 spin_unlock_irq(&pgdat->lru_lock); 2692 2693 /* 2694 * Target desirable inactive:active list ratios for the anon 2695 * and file LRU lists. 2696 */ 2697 if (!sc->force_deactivate) { 2698 unsigned long refaults; 2699 2700 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2701 sc->may_deactivate |= DEACTIVATE_ANON; 2702 else 2703 sc->may_deactivate &= ~DEACTIVATE_ANON; 2704 2705 /* 2706 * When refaults are being observed, it means a new 2707 * workingset is being established. Deactivate to get 2708 * rid of any stale active pages quickly. 2709 */ 2710 refaults = lruvec_page_state(target_lruvec, 2711 WORKINGSET_ACTIVATE); 2712 if (refaults != target_lruvec->refaults || 2713 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2714 sc->may_deactivate |= DEACTIVATE_FILE; 2715 else 2716 sc->may_deactivate &= ~DEACTIVATE_FILE; 2717 } else 2718 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2719 2720 /* 2721 * If we have plenty of inactive file pages that aren't 2722 * thrashing, try to reclaim those first before touching 2723 * anonymous pages. 2724 */ 2725 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2726 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2727 sc->cache_trim_mode = 1; 2728 else 2729 sc->cache_trim_mode = 0; 2730 2731 /* 2732 * Prevent the reclaimer from falling into the cache trap: as 2733 * cache pages start out inactive, every cache fault will tip 2734 * the scan balance towards the file LRU. And as the file LRU 2735 * shrinks, so does the window for rotation from references. 2736 * This means we have a runaway feedback loop where a tiny 2737 * thrashing file LRU becomes infinitely more attractive than 2738 * anon pages. Try to detect this based on file LRU size. 2739 */ 2740 if (!cgroup_reclaim(sc)) { 2741 unsigned long total_high_wmark = 0; 2742 unsigned long free, anon; 2743 int z; 2744 2745 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2746 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2747 node_page_state(pgdat, NR_INACTIVE_FILE); 2748 2749 for (z = 0; z < MAX_NR_ZONES; z++) { 2750 struct zone *zone = &pgdat->node_zones[z]; 2751 if (!managed_zone(zone)) 2752 continue; 2753 2754 total_high_wmark += high_wmark_pages(zone); 2755 } 2756 2757 /* 2758 * Consider anon: if that's low too, this isn't a 2759 * runaway file reclaim problem, but rather just 2760 * extreme pressure. Reclaim as per usual then. 2761 */ 2762 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2763 2764 sc->file_is_tiny = 2765 file + free <= total_high_wmark && 2766 !(sc->may_deactivate & DEACTIVATE_ANON) && 2767 anon >> sc->priority; 2768 } 2769 2770 shrink_node_memcgs(pgdat, sc); 2771 2772 if (reclaim_state) { 2773 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2774 reclaim_state->reclaimed_slab = 0; 2775 } 2776 2777 /* Record the subtree's reclaim efficiency */ 2778 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2779 sc->nr_scanned - nr_scanned, 2780 sc->nr_reclaimed - nr_reclaimed); 2781 2782 if (sc->nr_reclaimed - nr_reclaimed) 2783 reclaimable = true; 2784 2785 if (current_is_kswapd()) { 2786 /* 2787 * If reclaim is isolating dirty pages under writeback, 2788 * it implies that the long-lived page allocation rate 2789 * is exceeding the page laundering rate. Either the 2790 * global limits are not being effective at throttling 2791 * processes due to the page distribution throughout 2792 * zones or there is heavy usage of a slow backing 2793 * device. The only option is to throttle from reclaim 2794 * context which is not ideal as there is no guarantee 2795 * the dirtying process is throttled in the same way 2796 * balance_dirty_pages() manages. 2797 * 2798 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2799 * count the number of pages under pages flagged for 2800 * immediate reclaim and stall if any are encountered 2801 * in the nr_immediate check below. 2802 */ 2803 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2804 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2805 2806 /* Allow kswapd to start writing pages during reclaim.*/ 2807 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2808 set_bit(PGDAT_DIRTY, &pgdat->flags); 2809 2810 /* 2811 * If kswapd scans pages marked marked for immediate 2812 * reclaim and under writeback (nr_immediate), it 2813 * implies that pages are cycling through the LRU 2814 * faster than they are written so also forcibly stall. 2815 */ 2816 if (sc->nr.immediate) 2817 congestion_wait(BLK_RW_ASYNC, HZ/10); 2818 } 2819 2820 /* 2821 * Tag a node/memcg as congested if all the dirty pages 2822 * scanned were backed by a congested BDI and 2823 * wait_iff_congested will stall. 2824 * 2825 * Legacy memcg will stall in page writeback so avoid forcibly 2826 * stalling in wait_iff_congested(). 2827 */ 2828 if ((current_is_kswapd() || 2829 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2830 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2831 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2832 2833 /* 2834 * Stall direct reclaim for IO completions if underlying BDIs 2835 * and node is congested. Allow kswapd to continue until it 2836 * starts encountering unqueued dirty pages or cycling through 2837 * the LRU too quickly. 2838 */ 2839 if (!current_is_kswapd() && current_may_throttle() && 2840 !sc->hibernation_mode && 2841 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2842 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2843 2844 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2845 sc)) 2846 goto again; 2847 2848 /* 2849 * Kswapd gives up on balancing particular nodes after too 2850 * many failures to reclaim anything from them and goes to 2851 * sleep. On reclaim progress, reset the failure counter. A 2852 * successful direct reclaim run will revive a dormant kswapd. 2853 */ 2854 if (reclaimable) 2855 pgdat->kswapd_failures = 0; 2856 } 2857 2858 /* 2859 * Returns true if compaction should go ahead for a costly-order request, or 2860 * the allocation would already succeed without compaction. Return false if we 2861 * should reclaim first. 2862 */ 2863 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2864 { 2865 unsigned long watermark; 2866 enum compact_result suitable; 2867 2868 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2869 if (suitable == COMPACT_SUCCESS) 2870 /* Allocation should succeed already. Don't reclaim. */ 2871 return true; 2872 if (suitable == COMPACT_SKIPPED) 2873 /* Compaction cannot yet proceed. Do reclaim. */ 2874 return false; 2875 2876 /* 2877 * Compaction is already possible, but it takes time to run and there 2878 * are potentially other callers using the pages just freed. So proceed 2879 * with reclaim to make a buffer of free pages available to give 2880 * compaction a reasonable chance of completing and allocating the page. 2881 * Note that we won't actually reclaim the whole buffer in one attempt 2882 * as the target watermark in should_continue_reclaim() is lower. But if 2883 * we are already above the high+gap watermark, don't reclaim at all. 2884 */ 2885 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2886 2887 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2888 } 2889 2890 /* 2891 * This is the direct reclaim path, for page-allocating processes. We only 2892 * try to reclaim pages from zones which will satisfy the caller's allocation 2893 * request. 2894 * 2895 * If a zone is deemed to be full of pinned pages then just give it a light 2896 * scan then give up on it. 2897 */ 2898 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2899 { 2900 struct zoneref *z; 2901 struct zone *zone; 2902 unsigned long nr_soft_reclaimed; 2903 unsigned long nr_soft_scanned; 2904 gfp_t orig_mask; 2905 pg_data_t *last_pgdat = NULL; 2906 2907 /* 2908 * If the number of buffer_heads in the machine exceeds the maximum 2909 * allowed level, force direct reclaim to scan the highmem zone as 2910 * highmem pages could be pinning lowmem pages storing buffer_heads 2911 */ 2912 orig_mask = sc->gfp_mask; 2913 if (buffer_heads_over_limit) { 2914 sc->gfp_mask |= __GFP_HIGHMEM; 2915 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2916 } 2917 2918 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2919 sc->reclaim_idx, sc->nodemask) { 2920 /* 2921 * Take care memory controller reclaiming has small influence 2922 * to global LRU. 2923 */ 2924 if (!cgroup_reclaim(sc)) { 2925 if (!cpuset_zone_allowed(zone, 2926 GFP_KERNEL | __GFP_HARDWALL)) 2927 continue; 2928 2929 /* 2930 * If we already have plenty of memory free for 2931 * compaction in this zone, don't free any more. 2932 * Even though compaction is invoked for any 2933 * non-zero order, only frequent costly order 2934 * reclamation is disruptive enough to become a 2935 * noticeable problem, like transparent huge 2936 * page allocations. 2937 */ 2938 if (IS_ENABLED(CONFIG_COMPACTION) && 2939 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2940 compaction_ready(zone, sc)) { 2941 sc->compaction_ready = true; 2942 continue; 2943 } 2944 2945 /* 2946 * Shrink each node in the zonelist once. If the 2947 * zonelist is ordered by zone (not the default) then a 2948 * node may be shrunk multiple times but in that case 2949 * the user prefers lower zones being preserved. 2950 */ 2951 if (zone->zone_pgdat == last_pgdat) 2952 continue; 2953 2954 /* 2955 * This steals pages from memory cgroups over softlimit 2956 * and returns the number of reclaimed pages and 2957 * scanned pages. This works for global memory pressure 2958 * and balancing, not for a memcg's limit. 2959 */ 2960 nr_soft_scanned = 0; 2961 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2962 sc->order, sc->gfp_mask, 2963 &nr_soft_scanned); 2964 sc->nr_reclaimed += nr_soft_reclaimed; 2965 sc->nr_scanned += nr_soft_scanned; 2966 /* need some check for avoid more shrink_zone() */ 2967 } 2968 2969 /* See comment about same check for global reclaim above */ 2970 if (zone->zone_pgdat == last_pgdat) 2971 continue; 2972 last_pgdat = zone->zone_pgdat; 2973 shrink_node(zone->zone_pgdat, sc); 2974 } 2975 2976 /* 2977 * Restore to original mask to avoid the impact on the caller if we 2978 * promoted it to __GFP_HIGHMEM. 2979 */ 2980 sc->gfp_mask = orig_mask; 2981 } 2982 2983 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2984 { 2985 struct lruvec *target_lruvec; 2986 unsigned long refaults; 2987 2988 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2989 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE); 2990 target_lruvec->refaults = refaults; 2991 } 2992 2993 /* 2994 * This is the main entry point to direct page reclaim. 2995 * 2996 * If a full scan of the inactive list fails to free enough memory then we 2997 * are "out of memory" and something needs to be killed. 2998 * 2999 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3000 * high - the zone may be full of dirty or under-writeback pages, which this 3001 * caller can't do much about. We kick the writeback threads and take explicit 3002 * naps in the hope that some of these pages can be written. But if the 3003 * allocating task holds filesystem locks which prevent writeout this might not 3004 * work, and the allocation attempt will fail. 3005 * 3006 * returns: 0, if no pages reclaimed 3007 * else, the number of pages reclaimed 3008 */ 3009 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3010 struct scan_control *sc) 3011 { 3012 int initial_priority = sc->priority; 3013 pg_data_t *last_pgdat; 3014 struct zoneref *z; 3015 struct zone *zone; 3016 retry: 3017 delayacct_freepages_start(); 3018 3019 if (!cgroup_reclaim(sc)) 3020 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3021 3022 do { 3023 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3024 sc->priority); 3025 sc->nr_scanned = 0; 3026 shrink_zones(zonelist, sc); 3027 3028 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3029 break; 3030 3031 if (sc->compaction_ready) 3032 break; 3033 3034 /* 3035 * If we're getting trouble reclaiming, start doing 3036 * writepage even in laptop mode. 3037 */ 3038 if (sc->priority < DEF_PRIORITY - 2) 3039 sc->may_writepage = 1; 3040 } while (--sc->priority >= 0); 3041 3042 last_pgdat = NULL; 3043 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3044 sc->nodemask) { 3045 if (zone->zone_pgdat == last_pgdat) 3046 continue; 3047 last_pgdat = zone->zone_pgdat; 3048 3049 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3050 3051 if (cgroup_reclaim(sc)) { 3052 struct lruvec *lruvec; 3053 3054 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3055 zone->zone_pgdat); 3056 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3057 } 3058 } 3059 3060 delayacct_freepages_end(); 3061 3062 if (sc->nr_reclaimed) 3063 return sc->nr_reclaimed; 3064 3065 /* Aborted reclaim to try compaction? don't OOM, then */ 3066 if (sc->compaction_ready) 3067 return 1; 3068 3069 /* 3070 * We make inactive:active ratio decisions based on the node's 3071 * composition of memory, but a restrictive reclaim_idx or a 3072 * memory.low cgroup setting can exempt large amounts of 3073 * memory from reclaim. Neither of which are very common, so 3074 * instead of doing costly eligibility calculations of the 3075 * entire cgroup subtree up front, we assume the estimates are 3076 * good, and retry with forcible deactivation if that fails. 3077 */ 3078 if (sc->skipped_deactivate) { 3079 sc->priority = initial_priority; 3080 sc->force_deactivate = 1; 3081 sc->skipped_deactivate = 0; 3082 goto retry; 3083 } 3084 3085 /* Untapped cgroup reserves? Don't OOM, retry. */ 3086 if (sc->memcg_low_skipped) { 3087 sc->priority = initial_priority; 3088 sc->force_deactivate = 0; 3089 sc->memcg_low_reclaim = 1; 3090 sc->memcg_low_skipped = 0; 3091 goto retry; 3092 } 3093 3094 return 0; 3095 } 3096 3097 static bool allow_direct_reclaim(pg_data_t *pgdat) 3098 { 3099 struct zone *zone; 3100 unsigned long pfmemalloc_reserve = 0; 3101 unsigned long free_pages = 0; 3102 int i; 3103 bool wmark_ok; 3104 3105 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3106 return true; 3107 3108 for (i = 0; i <= ZONE_NORMAL; i++) { 3109 zone = &pgdat->node_zones[i]; 3110 if (!managed_zone(zone)) 3111 continue; 3112 3113 if (!zone_reclaimable_pages(zone)) 3114 continue; 3115 3116 pfmemalloc_reserve += min_wmark_pages(zone); 3117 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3118 } 3119 3120 /* If there are no reserves (unexpected config) then do not throttle */ 3121 if (!pfmemalloc_reserve) 3122 return true; 3123 3124 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3125 3126 /* kswapd must be awake if processes are being throttled */ 3127 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3128 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3129 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3130 3131 wake_up_interruptible(&pgdat->kswapd_wait); 3132 } 3133 3134 return wmark_ok; 3135 } 3136 3137 /* 3138 * Throttle direct reclaimers if backing storage is backed by the network 3139 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3140 * depleted. kswapd will continue to make progress and wake the processes 3141 * when the low watermark is reached. 3142 * 3143 * Returns true if a fatal signal was delivered during throttling. If this 3144 * happens, the page allocator should not consider triggering the OOM killer. 3145 */ 3146 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3147 nodemask_t *nodemask) 3148 { 3149 struct zoneref *z; 3150 struct zone *zone; 3151 pg_data_t *pgdat = NULL; 3152 3153 /* 3154 * Kernel threads should not be throttled as they may be indirectly 3155 * responsible for cleaning pages necessary for reclaim to make forward 3156 * progress. kjournald for example may enter direct reclaim while 3157 * committing a transaction where throttling it could forcing other 3158 * processes to block on log_wait_commit(). 3159 */ 3160 if (current->flags & PF_KTHREAD) 3161 goto out; 3162 3163 /* 3164 * If a fatal signal is pending, this process should not throttle. 3165 * It should return quickly so it can exit and free its memory 3166 */ 3167 if (fatal_signal_pending(current)) 3168 goto out; 3169 3170 /* 3171 * Check if the pfmemalloc reserves are ok by finding the first node 3172 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3173 * GFP_KERNEL will be required for allocating network buffers when 3174 * swapping over the network so ZONE_HIGHMEM is unusable. 3175 * 3176 * Throttling is based on the first usable node and throttled processes 3177 * wait on a queue until kswapd makes progress and wakes them. There 3178 * is an affinity then between processes waking up and where reclaim 3179 * progress has been made assuming the process wakes on the same node. 3180 * More importantly, processes running on remote nodes will not compete 3181 * for remote pfmemalloc reserves and processes on different nodes 3182 * should make reasonable progress. 3183 */ 3184 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3185 gfp_zone(gfp_mask), nodemask) { 3186 if (zone_idx(zone) > ZONE_NORMAL) 3187 continue; 3188 3189 /* Throttle based on the first usable node */ 3190 pgdat = zone->zone_pgdat; 3191 if (allow_direct_reclaim(pgdat)) 3192 goto out; 3193 break; 3194 } 3195 3196 /* If no zone was usable by the allocation flags then do not throttle */ 3197 if (!pgdat) 3198 goto out; 3199 3200 /* Account for the throttling */ 3201 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3202 3203 /* 3204 * If the caller cannot enter the filesystem, it's possible that it 3205 * is due to the caller holding an FS lock or performing a journal 3206 * transaction in the case of a filesystem like ext[3|4]. In this case, 3207 * it is not safe to block on pfmemalloc_wait as kswapd could be 3208 * blocked waiting on the same lock. Instead, throttle for up to a 3209 * second before continuing. 3210 */ 3211 if (!(gfp_mask & __GFP_FS)) { 3212 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3213 allow_direct_reclaim(pgdat), HZ); 3214 3215 goto check_pending; 3216 } 3217 3218 /* Throttle until kswapd wakes the process */ 3219 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3220 allow_direct_reclaim(pgdat)); 3221 3222 check_pending: 3223 if (fatal_signal_pending(current)) 3224 return true; 3225 3226 out: 3227 return false; 3228 } 3229 3230 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3231 gfp_t gfp_mask, nodemask_t *nodemask) 3232 { 3233 unsigned long nr_reclaimed; 3234 struct scan_control sc = { 3235 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3236 .gfp_mask = current_gfp_context(gfp_mask), 3237 .reclaim_idx = gfp_zone(gfp_mask), 3238 .order = order, 3239 .nodemask = nodemask, 3240 .priority = DEF_PRIORITY, 3241 .may_writepage = !laptop_mode, 3242 .may_unmap = 1, 3243 .may_swap = 1, 3244 }; 3245 3246 /* 3247 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3248 * Confirm they are large enough for max values. 3249 */ 3250 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3251 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3252 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3253 3254 /* 3255 * Do not enter reclaim if fatal signal was delivered while throttled. 3256 * 1 is returned so that the page allocator does not OOM kill at this 3257 * point. 3258 */ 3259 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3260 return 1; 3261 3262 set_task_reclaim_state(current, &sc.reclaim_state); 3263 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3264 3265 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3266 3267 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3268 set_task_reclaim_state(current, NULL); 3269 3270 return nr_reclaimed; 3271 } 3272 3273 #ifdef CONFIG_MEMCG 3274 3275 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3276 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3277 gfp_t gfp_mask, bool noswap, 3278 pg_data_t *pgdat, 3279 unsigned long *nr_scanned) 3280 { 3281 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3282 struct scan_control sc = { 3283 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3284 .target_mem_cgroup = memcg, 3285 .may_writepage = !laptop_mode, 3286 .may_unmap = 1, 3287 .reclaim_idx = MAX_NR_ZONES - 1, 3288 .may_swap = !noswap, 3289 }; 3290 3291 WARN_ON_ONCE(!current->reclaim_state); 3292 3293 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3294 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3295 3296 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3297 sc.gfp_mask); 3298 3299 /* 3300 * NOTE: Although we can get the priority field, using it 3301 * here is not a good idea, since it limits the pages we can scan. 3302 * if we don't reclaim here, the shrink_node from balance_pgdat 3303 * will pick up pages from other mem cgroup's as well. We hack 3304 * the priority and make it zero. 3305 */ 3306 shrink_lruvec(lruvec, &sc); 3307 3308 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3309 3310 *nr_scanned = sc.nr_scanned; 3311 3312 return sc.nr_reclaimed; 3313 } 3314 3315 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3316 unsigned long nr_pages, 3317 gfp_t gfp_mask, 3318 bool may_swap) 3319 { 3320 unsigned long nr_reclaimed; 3321 unsigned long pflags; 3322 unsigned int noreclaim_flag; 3323 struct scan_control sc = { 3324 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3325 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3326 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3327 .reclaim_idx = MAX_NR_ZONES - 1, 3328 .target_mem_cgroup = memcg, 3329 .priority = DEF_PRIORITY, 3330 .may_writepage = !laptop_mode, 3331 .may_unmap = 1, 3332 .may_swap = may_swap, 3333 }; 3334 /* 3335 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3336 * equal pressure on all the nodes. This is based on the assumption that 3337 * the reclaim does not bail out early. 3338 */ 3339 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3340 3341 set_task_reclaim_state(current, &sc.reclaim_state); 3342 3343 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3344 3345 psi_memstall_enter(&pflags); 3346 noreclaim_flag = memalloc_noreclaim_save(); 3347 3348 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3349 3350 memalloc_noreclaim_restore(noreclaim_flag); 3351 psi_memstall_leave(&pflags); 3352 3353 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3354 set_task_reclaim_state(current, NULL); 3355 3356 return nr_reclaimed; 3357 } 3358 #endif 3359 3360 static void age_active_anon(struct pglist_data *pgdat, 3361 struct scan_control *sc) 3362 { 3363 struct mem_cgroup *memcg; 3364 struct lruvec *lruvec; 3365 3366 if (!total_swap_pages) 3367 return; 3368 3369 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3370 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3371 return; 3372 3373 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3374 do { 3375 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3376 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3377 sc, LRU_ACTIVE_ANON); 3378 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3379 } while (memcg); 3380 } 3381 3382 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3383 { 3384 int i; 3385 struct zone *zone; 3386 3387 /* 3388 * Check for watermark boosts top-down as the higher zones 3389 * are more likely to be boosted. Both watermarks and boosts 3390 * should not be checked at the time time as reclaim would 3391 * start prematurely when there is no boosting and a lower 3392 * zone is balanced. 3393 */ 3394 for (i = highest_zoneidx; i >= 0; i--) { 3395 zone = pgdat->node_zones + i; 3396 if (!managed_zone(zone)) 3397 continue; 3398 3399 if (zone->watermark_boost) 3400 return true; 3401 } 3402 3403 return false; 3404 } 3405 3406 /* 3407 * Returns true if there is an eligible zone balanced for the request order 3408 * and highest_zoneidx 3409 */ 3410 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3411 { 3412 int i; 3413 unsigned long mark = -1; 3414 struct zone *zone; 3415 3416 /* 3417 * Check watermarks bottom-up as lower zones are more likely to 3418 * meet watermarks. 3419 */ 3420 for (i = 0; i <= highest_zoneidx; i++) { 3421 zone = pgdat->node_zones + i; 3422 3423 if (!managed_zone(zone)) 3424 continue; 3425 3426 mark = high_wmark_pages(zone); 3427 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3428 return true; 3429 } 3430 3431 /* 3432 * If a node has no populated zone within highest_zoneidx, it does not 3433 * need balancing by definition. This can happen if a zone-restricted 3434 * allocation tries to wake a remote kswapd. 3435 */ 3436 if (mark == -1) 3437 return true; 3438 3439 return false; 3440 } 3441 3442 /* Clear pgdat state for congested, dirty or under writeback. */ 3443 static void clear_pgdat_congested(pg_data_t *pgdat) 3444 { 3445 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3446 3447 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3448 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3449 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3450 } 3451 3452 /* 3453 * Prepare kswapd for sleeping. This verifies that there are no processes 3454 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3455 * 3456 * Returns true if kswapd is ready to sleep 3457 */ 3458 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3459 int highest_zoneidx) 3460 { 3461 /* 3462 * The throttled processes are normally woken up in balance_pgdat() as 3463 * soon as allow_direct_reclaim() is true. But there is a potential 3464 * race between when kswapd checks the watermarks and a process gets 3465 * throttled. There is also a potential race if processes get 3466 * throttled, kswapd wakes, a large process exits thereby balancing the 3467 * zones, which causes kswapd to exit balance_pgdat() before reaching 3468 * the wake up checks. If kswapd is going to sleep, no process should 3469 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3470 * the wake up is premature, processes will wake kswapd and get 3471 * throttled again. The difference from wake ups in balance_pgdat() is 3472 * that here we are under prepare_to_wait(). 3473 */ 3474 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3475 wake_up_all(&pgdat->pfmemalloc_wait); 3476 3477 /* Hopeless node, leave it to direct reclaim */ 3478 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3479 return true; 3480 3481 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3482 clear_pgdat_congested(pgdat); 3483 return true; 3484 } 3485 3486 return false; 3487 } 3488 3489 /* 3490 * kswapd shrinks a node of pages that are at or below the highest usable 3491 * zone that is currently unbalanced. 3492 * 3493 * Returns true if kswapd scanned at least the requested number of pages to 3494 * reclaim or if the lack of progress was due to pages under writeback. 3495 * This is used to determine if the scanning priority needs to be raised. 3496 */ 3497 static bool kswapd_shrink_node(pg_data_t *pgdat, 3498 struct scan_control *sc) 3499 { 3500 struct zone *zone; 3501 int z; 3502 3503 /* Reclaim a number of pages proportional to the number of zones */ 3504 sc->nr_to_reclaim = 0; 3505 for (z = 0; z <= sc->reclaim_idx; z++) { 3506 zone = pgdat->node_zones + z; 3507 if (!managed_zone(zone)) 3508 continue; 3509 3510 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3511 } 3512 3513 /* 3514 * Historically care was taken to put equal pressure on all zones but 3515 * now pressure is applied based on node LRU order. 3516 */ 3517 shrink_node(pgdat, sc); 3518 3519 /* 3520 * Fragmentation may mean that the system cannot be rebalanced for 3521 * high-order allocations. If twice the allocation size has been 3522 * reclaimed then recheck watermarks only at order-0 to prevent 3523 * excessive reclaim. Assume that a process requested a high-order 3524 * can direct reclaim/compact. 3525 */ 3526 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3527 sc->order = 0; 3528 3529 return sc->nr_scanned >= sc->nr_to_reclaim; 3530 } 3531 3532 /* 3533 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3534 * that are eligible for use by the caller until at least one zone is 3535 * balanced. 3536 * 3537 * Returns the order kswapd finished reclaiming at. 3538 * 3539 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3540 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3541 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3542 * or lower is eligible for reclaim until at least one usable zone is 3543 * balanced. 3544 */ 3545 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3546 { 3547 int i; 3548 unsigned long nr_soft_reclaimed; 3549 unsigned long nr_soft_scanned; 3550 unsigned long pflags; 3551 unsigned long nr_boost_reclaim; 3552 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3553 bool boosted; 3554 struct zone *zone; 3555 struct scan_control sc = { 3556 .gfp_mask = GFP_KERNEL, 3557 .order = order, 3558 .may_unmap = 1, 3559 }; 3560 3561 set_task_reclaim_state(current, &sc.reclaim_state); 3562 psi_memstall_enter(&pflags); 3563 __fs_reclaim_acquire(); 3564 3565 count_vm_event(PAGEOUTRUN); 3566 3567 /* 3568 * Account for the reclaim boost. Note that the zone boost is left in 3569 * place so that parallel allocations that are near the watermark will 3570 * stall or direct reclaim until kswapd is finished. 3571 */ 3572 nr_boost_reclaim = 0; 3573 for (i = 0; i <= highest_zoneidx; i++) { 3574 zone = pgdat->node_zones + i; 3575 if (!managed_zone(zone)) 3576 continue; 3577 3578 nr_boost_reclaim += zone->watermark_boost; 3579 zone_boosts[i] = zone->watermark_boost; 3580 } 3581 boosted = nr_boost_reclaim; 3582 3583 restart: 3584 sc.priority = DEF_PRIORITY; 3585 do { 3586 unsigned long nr_reclaimed = sc.nr_reclaimed; 3587 bool raise_priority = true; 3588 bool balanced; 3589 bool ret; 3590 3591 sc.reclaim_idx = highest_zoneidx; 3592 3593 /* 3594 * If the number of buffer_heads exceeds the maximum allowed 3595 * then consider reclaiming from all zones. This has a dual 3596 * purpose -- on 64-bit systems it is expected that 3597 * buffer_heads are stripped during active rotation. On 32-bit 3598 * systems, highmem pages can pin lowmem memory and shrinking 3599 * buffers can relieve lowmem pressure. Reclaim may still not 3600 * go ahead if all eligible zones for the original allocation 3601 * request are balanced to avoid excessive reclaim from kswapd. 3602 */ 3603 if (buffer_heads_over_limit) { 3604 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3605 zone = pgdat->node_zones + i; 3606 if (!managed_zone(zone)) 3607 continue; 3608 3609 sc.reclaim_idx = i; 3610 break; 3611 } 3612 } 3613 3614 /* 3615 * If the pgdat is imbalanced then ignore boosting and preserve 3616 * the watermarks for a later time and restart. Note that the 3617 * zone watermarks will be still reset at the end of balancing 3618 * on the grounds that the normal reclaim should be enough to 3619 * re-evaluate if boosting is required when kswapd next wakes. 3620 */ 3621 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3622 if (!balanced && nr_boost_reclaim) { 3623 nr_boost_reclaim = 0; 3624 goto restart; 3625 } 3626 3627 /* 3628 * If boosting is not active then only reclaim if there are no 3629 * eligible zones. Note that sc.reclaim_idx is not used as 3630 * buffer_heads_over_limit may have adjusted it. 3631 */ 3632 if (!nr_boost_reclaim && balanced) 3633 goto out; 3634 3635 /* Limit the priority of boosting to avoid reclaim writeback */ 3636 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3637 raise_priority = false; 3638 3639 /* 3640 * Do not writeback or swap pages for boosted reclaim. The 3641 * intent is to relieve pressure not issue sub-optimal IO 3642 * from reclaim context. If no pages are reclaimed, the 3643 * reclaim will be aborted. 3644 */ 3645 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3646 sc.may_swap = !nr_boost_reclaim; 3647 3648 /* 3649 * Do some background aging of the anon list, to give 3650 * pages a chance to be referenced before reclaiming. All 3651 * pages are rotated regardless of classzone as this is 3652 * about consistent aging. 3653 */ 3654 age_active_anon(pgdat, &sc); 3655 3656 /* 3657 * If we're getting trouble reclaiming, start doing writepage 3658 * even in laptop mode. 3659 */ 3660 if (sc.priority < DEF_PRIORITY - 2) 3661 sc.may_writepage = 1; 3662 3663 /* Call soft limit reclaim before calling shrink_node. */ 3664 sc.nr_scanned = 0; 3665 nr_soft_scanned = 0; 3666 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3667 sc.gfp_mask, &nr_soft_scanned); 3668 sc.nr_reclaimed += nr_soft_reclaimed; 3669 3670 /* 3671 * There should be no need to raise the scanning priority if 3672 * enough pages are already being scanned that that high 3673 * watermark would be met at 100% efficiency. 3674 */ 3675 if (kswapd_shrink_node(pgdat, &sc)) 3676 raise_priority = false; 3677 3678 /* 3679 * If the low watermark is met there is no need for processes 3680 * to be throttled on pfmemalloc_wait as they should not be 3681 * able to safely make forward progress. Wake them 3682 */ 3683 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3684 allow_direct_reclaim(pgdat)) 3685 wake_up_all(&pgdat->pfmemalloc_wait); 3686 3687 /* Check if kswapd should be suspending */ 3688 __fs_reclaim_release(); 3689 ret = try_to_freeze(); 3690 __fs_reclaim_acquire(); 3691 if (ret || kthread_should_stop()) 3692 break; 3693 3694 /* 3695 * Raise priority if scanning rate is too low or there was no 3696 * progress in reclaiming pages 3697 */ 3698 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3699 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3700 3701 /* 3702 * If reclaim made no progress for a boost, stop reclaim as 3703 * IO cannot be queued and it could be an infinite loop in 3704 * extreme circumstances. 3705 */ 3706 if (nr_boost_reclaim && !nr_reclaimed) 3707 break; 3708 3709 if (raise_priority || !nr_reclaimed) 3710 sc.priority--; 3711 } while (sc.priority >= 1); 3712 3713 if (!sc.nr_reclaimed) 3714 pgdat->kswapd_failures++; 3715 3716 out: 3717 /* If reclaim was boosted, account for the reclaim done in this pass */ 3718 if (boosted) { 3719 unsigned long flags; 3720 3721 for (i = 0; i <= highest_zoneidx; i++) { 3722 if (!zone_boosts[i]) 3723 continue; 3724 3725 /* Increments are under the zone lock */ 3726 zone = pgdat->node_zones + i; 3727 spin_lock_irqsave(&zone->lock, flags); 3728 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3729 spin_unlock_irqrestore(&zone->lock, flags); 3730 } 3731 3732 /* 3733 * As there is now likely space, wakeup kcompact to defragment 3734 * pageblocks. 3735 */ 3736 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3737 } 3738 3739 snapshot_refaults(NULL, pgdat); 3740 __fs_reclaim_release(); 3741 psi_memstall_leave(&pflags); 3742 set_task_reclaim_state(current, NULL); 3743 3744 /* 3745 * Return the order kswapd stopped reclaiming at as 3746 * prepare_kswapd_sleep() takes it into account. If another caller 3747 * entered the allocator slow path while kswapd was awake, order will 3748 * remain at the higher level. 3749 */ 3750 return sc.order; 3751 } 3752 3753 /* 3754 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3755 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3756 * not a valid index then either kswapd runs for first time or kswapd couldn't 3757 * sleep after previous reclaim attempt (node is still unbalanced). In that 3758 * case return the zone index of the previous kswapd reclaim cycle. 3759 */ 3760 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3761 enum zone_type prev_highest_zoneidx) 3762 { 3763 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3764 3765 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3766 } 3767 3768 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3769 unsigned int highest_zoneidx) 3770 { 3771 long remaining = 0; 3772 DEFINE_WAIT(wait); 3773 3774 if (freezing(current) || kthread_should_stop()) 3775 return; 3776 3777 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3778 3779 /* 3780 * Try to sleep for a short interval. Note that kcompactd will only be 3781 * woken if it is possible to sleep for a short interval. This is 3782 * deliberate on the assumption that if reclaim cannot keep an 3783 * eligible zone balanced that it's also unlikely that compaction will 3784 * succeed. 3785 */ 3786 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3787 /* 3788 * Compaction records what page blocks it recently failed to 3789 * isolate pages from and skips them in the future scanning. 3790 * When kswapd is going to sleep, it is reasonable to assume 3791 * that pages and compaction may succeed so reset the cache. 3792 */ 3793 reset_isolation_suitable(pgdat); 3794 3795 /* 3796 * We have freed the memory, now we should compact it to make 3797 * allocation of the requested order possible. 3798 */ 3799 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3800 3801 remaining = schedule_timeout(HZ/10); 3802 3803 /* 3804 * If woken prematurely then reset kswapd_highest_zoneidx and 3805 * order. The values will either be from a wakeup request or 3806 * the previous request that slept prematurely. 3807 */ 3808 if (remaining) { 3809 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3810 kswapd_highest_zoneidx(pgdat, 3811 highest_zoneidx)); 3812 3813 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3814 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3815 } 3816 3817 finish_wait(&pgdat->kswapd_wait, &wait); 3818 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3819 } 3820 3821 /* 3822 * After a short sleep, check if it was a premature sleep. If not, then 3823 * go fully to sleep until explicitly woken up. 3824 */ 3825 if (!remaining && 3826 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3827 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3828 3829 /* 3830 * vmstat counters are not perfectly accurate and the estimated 3831 * value for counters such as NR_FREE_PAGES can deviate from the 3832 * true value by nr_online_cpus * threshold. To avoid the zone 3833 * watermarks being breached while under pressure, we reduce the 3834 * per-cpu vmstat threshold while kswapd is awake and restore 3835 * them before going back to sleep. 3836 */ 3837 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3838 3839 if (!kthread_should_stop()) 3840 schedule(); 3841 3842 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3843 } else { 3844 if (remaining) 3845 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3846 else 3847 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3848 } 3849 finish_wait(&pgdat->kswapd_wait, &wait); 3850 } 3851 3852 /* 3853 * The background pageout daemon, started as a kernel thread 3854 * from the init process. 3855 * 3856 * This basically trickles out pages so that we have _some_ 3857 * free memory available even if there is no other activity 3858 * that frees anything up. This is needed for things like routing 3859 * etc, where we otherwise might have all activity going on in 3860 * asynchronous contexts that cannot page things out. 3861 * 3862 * If there are applications that are active memory-allocators 3863 * (most normal use), this basically shouldn't matter. 3864 */ 3865 static int kswapd(void *p) 3866 { 3867 unsigned int alloc_order, reclaim_order; 3868 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3869 pg_data_t *pgdat = (pg_data_t*)p; 3870 struct task_struct *tsk = current; 3871 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3872 3873 if (!cpumask_empty(cpumask)) 3874 set_cpus_allowed_ptr(tsk, cpumask); 3875 3876 /* 3877 * Tell the memory management that we're a "memory allocator", 3878 * and that if we need more memory we should get access to it 3879 * regardless (see "__alloc_pages()"). "kswapd" should 3880 * never get caught in the normal page freeing logic. 3881 * 3882 * (Kswapd normally doesn't need memory anyway, but sometimes 3883 * you need a small amount of memory in order to be able to 3884 * page out something else, and this flag essentially protects 3885 * us from recursively trying to free more memory as we're 3886 * trying to free the first piece of memory in the first place). 3887 */ 3888 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3889 set_freezable(); 3890 3891 WRITE_ONCE(pgdat->kswapd_order, 0); 3892 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3893 for ( ; ; ) { 3894 bool ret; 3895 3896 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3897 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3898 highest_zoneidx); 3899 3900 kswapd_try_sleep: 3901 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3902 highest_zoneidx); 3903 3904 /* Read the new order and highest_zoneidx */ 3905 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3906 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3907 highest_zoneidx); 3908 WRITE_ONCE(pgdat->kswapd_order, 0); 3909 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3910 3911 ret = try_to_freeze(); 3912 if (kthread_should_stop()) 3913 break; 3914 3915 /* 3916 * We can speed up thawing tasks if we don't call balance_pgdat 3917 * after returning from the refrigerator 3918 */ 3919 if (ret) 3920 continue; 3921 3922 /* 3923 * Reclaim begins at the requested order but if a high-order 3924 * reclaim fails then kswapd falls back to reclaiming for 3925 * order-0. If that happens, kswapd will consider sleeping 3926 * for the order it finished reclaiming at (reclaim_order) 3927 * but kcompactd is woken to compact for the original 3928 * request (alloc_order). 3929 */ 3930 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3931 alloc_order); 3932 reclaim_order = balance_pgdat(pgdat, alloc_order, 3933 highest_zoneidx); 3934 if (reclaim_order < alloc_order) 3935 goto kswapd_try_sleep; 3936 } 3937 3938 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3939 3940 return 0; 3941 } 3942 3943 /* 3944 * A zone is low on free memory or too fragmented for high-order memory. If 3945 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3946 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3947 * has failed or is not needed, still wake up kcompactd if only compaction is 3948 * needed. 3949 */ 3950 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3951 enum zone_type highest_zoneidx) 3952 { 3953 pg_data_t *pgdat; 3954 enum zone_type curr_idx; 3955 3956 if (!managed_zone(zone)) 3957 return; 3958 3959 if (!cpuset_zone_allowed(zone, gfp_flags)) 3960 return; 3961 3962 pgdat = zone->zone_pgdat; 3963 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3964 3965 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3966 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3967 3968 if (READ_ONCE(pgdat->kswapd_order) < order) 3969 WRITE_ONCE(pgdat->kswapd_order, order); 3970 3971 if (!waitqueue_active(&pgdat->kswapd_wait)) 3972 return; 3973 3974 /* Hopeless node, leave it to direct reclaim if possible */ 3975 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3976 (pgdat_balanced(pgdat, order, highest_zoneidx) && 3977 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 3978 /* 3979 * There may be plenty of free memory available, but it's too 3980 * fragmented for high-order allocations. Wake up kcompactd 3981 * and rely on compaction_suitable() to determine if it's 3982 * needed. If it fails, it will defer subsequent attempts to 3983 * ratelimit its work. 3984 */ 3985 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3986 wakeup_kcompactd(pgdat, order, highest_zoneidx); 3987 return; 3988 } 3989 3990 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 3991 gfp_flags); 3992 wake_up_interruptible(&pgdat->kswapd_wait); 3993 } 3994 3995 #ifdef CONFIG_HIBERNATION 3996 /* 3997 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3998 * freed pages. 3999 * 4000 * Rather than trying to age LRUs the aim is to preserve the overall 4001 * LRU order by reclaiming preferentially 4002 * inactive > active > active referenced > active mapped 4003 */ 4004 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4005 { 4006 struct scan_control sc = { 4007 .nr_to_reclaim = nr_to_reclaim, 4008 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4009 .reclaim_idx = MAX_NR_ZONES - 1, 4010 .priority = DEF_PRIORITY, 4011 .may_writepage = 1, 4012 .may_unmap = 1, 4013 .may_swap = 1, 4014 .hibernation_mode = 1, 4015 }; 4016 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4017 unsigned long nr_reclaimed; 4018 unsigned int noreclaim_flag; 4019 4020 fs_reclaim_acquire(sc.gfp_mask); 4021 noreclaim_flag = memalloc_noreclaim_save(); 4022 set_task_reclaim_state(current, &sc.reclaim_state); 4023 4024 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4025 4026 set_task_reclaim_state(current, NULL); 4027 memalloc_noreclaim_restore(noreclaim_flag); 4028 fs_reclaim_release(sc.gfp_mask); 4029 4030 return nr_reclaimed; 4031 } 4032 #endif /* CONFIG_HIBERNATION */ 4033 4034 /* 4035 * This kswapd start function will be called by init and node-hot-add. 4036 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4037 */ 4038 int kswapd_run(int nid) 4039 { 4040 pg_data_t *pgdat = NODE_DATA(nid); 4041 int ret = 0; 4042 4043 if (pgdat->kswapd) 4044 return 0; 4045 4046 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4047 if (IS_ERR(pgdat->kswapd)) { 4048 /* failure at boot is fatal */ 4049 BUG_ON(system_state < SYSTEM_RUNNING); 4050 pr_err("Failed to start kswapd on node %d\n", nid); 4051 ret = PTR_ERR(pgdat->kswapd); 4052 pgdat->kswapd = NULL; 4053 } 4054 return ret; 4055 } 4056 4057 /* 4058 * Called by memory hotplug when all memory in a node is offlined. Caller must 4059 * hold mem_hotplug_begin/end(). 4060 */ 4061 void kswapd_stop(int nid) 4062 { 4063 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4064 4065 if (kswapd) { 4066 kthread_stop(kswapd); 4067 NODE_DATA(nid)->kswapd = NULL; 4068 } 4069 } 4070 4071 static int __init kswapd_init(void) 4072 { 4073 int nid; 4074 4075 swap_setup(); 4076 for_each_node_state(nid, N_MEMORY) 4077 kswapd_run(nid); 4078 return 0; 4079 } 4080 4081 module_init(kswapd_init) 4082 4083 #ifdef CONFIG_NUMA 4084 /* 4085 * Node reclaim mode 4086 * 4087 * If non-zero call node_reclaim when the number of free pages falls below 4088 * the watermarks. 4089 */ 4090 int node_reclaim_mode __read_mostly; 4091 4092 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4093 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4094 4095 /* 4096 * Priority for NODE_RECLAIM. This determines the fraction of pages 4097 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4098 * a zone. 4099 */ 4100 #define NODE_RECLAIM_PRIORITY 4 4101 4102 /* 4103 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4104 * occur. 4105 */ 4106 int sysctl_min_unmapped_ratio = 1; 4107 4108 /* 4109 * If the number of slab pages in a zone grows beyond this percentage then 4110 * slab reclaim needs to occur. 4111 */ 4112 int sysctl_min_slab_ratio = 5; 4113 4114 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4115 { 4116 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4117 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4118 node_page_state(pgdat, NR_ACTIVE_FILE); 4119 4120 /* 4121 * It's possible for there to be more file mapped pages than 4122 * accounted for by the pages on the file LRU lists because 4123 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4124 */ 4125 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4126 } 4127 4128 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4129 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4130 { 4131 unsigned long nr_pagecache_reclaimable; 4132 unsigned long delta = 0; 4133 4134 /* 4135 * If RECLAIM_UNMAP is set, then all file pages are considered 4136 * potentially reclaimable. Otherwise, we have to worry about 4137 * pages like swapcache and node_unmapped_file_pages() provides 4138 * a better estimate 4139 */ 4140 if (node_reclaim_mode & RECLAIM_UNMAP) 4141 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4142 else 4143 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4144 4145 /* If we can't clean pages, remove dirty pages from consideration */ 4146 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4147 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4148 4149 /* Watch for any possible underflows due to delta */ 4150 if (unlikely(delta > nr_pagecache_reclaimable)) 4151 delta = nr_pagecache_reclaimable; 4152 4153 return nr_pagecache_reclaimable - delta; 4154 } 4155 4156 /* 4157 * Try to free up some pages from this node through reclaim. 4158 */ 4159 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4160 { 4161 /* Minimum pages needed in order to stay on node */ 4162 const unsigned long nr_pages = 1 << order; 4163 struct task_struct *p = current; 4164 unsigned int noreclaim_flag; 4165 struct scan_control sc = { 4166 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4167 .gfp_mask = current_gfp_context(gfp_mask), 4168 .order = order, 4169 .priority = NODE_RECLAIM_PRIORITY, 4170 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4171 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4172 .may_swap = 1, 4173 .reclaim_idx = gfp_zone(gfp_mask), 4174 }; 4175 4176 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4177 sc.gfp_mask); 4178 4179 cond_resched(); 4180 fs_reclaim_acquire(sc.gfp_mask); 4181 /* 4182 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4183 * and we also need to be able to write out pages for RECLAIM_WRITE 4184 * and RECLAIM_UNMAP. 4185 */ 4186 noreclaim_flag = memalloc_noreclaim_save(); 4187 p->flags |= PF_SWAPWRITE; 4188 set_task_reclaim_state(p, &sc.reclaim_state); 4189 4190 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4191 /* 4192 * Free memory by calling shrink node with increasing 4193 * priorities until we have enough memory freed. 4194 */ 4195 do { 4196 shrink_node(pgdat, &sc); 4197 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4198 } 4199 4200 set_task_reclaim_state(p, NULL); 4201 current->flags &= ~PF_SWAPWRITE; 4202 memalloc_noreclaim_restore(noreclaim_flag); 4203 fs_reclaim_release(sc.gfp_mask); 4204 4205 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4206 4207 return sc.nr_reclaimed >= nr_pages; 4208 } 4209 4210 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4211 { 4212 int ret; 4213 4214 /* 4215 * Node reclaim reclaims unmapped file backed pages and 4216 * slab pages if we are over the defined limits. 4217 * 4218 * A small portion of unmapped file backed pages is needed for 4219 * file I/O otherwise pages read by file I/O will be immediately 4220 * thrown out if the node is overallocated. So we do not reclaim 4221 * if less than a specified percentage of the node is used by 4222 * unmapped file backed pages. 4223 */ 4224 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4225 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4226 return NODE_RECLAIM_FULL; 4227 4228 /* 4229 * Do not scan if the allocation should not be delayed. 4230 */ 4231 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4232 return NODE_RECLAIM_NOSCAN; 4233 4234 /* 4235 * Only run node reclaim on the local node or on nodes that do not 4236 * have associated processors. This will favor the local processor 4237 * over remote processors and spread off node memory allocations 4238 * as wide as possible. 4239 */ 4240 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4241 return NODE_RECLAIM_NOSCAN; 4242 4243 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4244 return NODE_RECLAIM_NOSCAN; 4245 4246 ret = __node_reclaim(pgdat, gfp_mask, order); 4247 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4248 4249 if (!ret) 4250 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4251 4252 return ret; 4253 } 4254 #endif 4255 4256 /** 4257 * check_move_unevictable_pages - check pages for evictability and move to 4258 * appropriate zone lru list 4259 * @pvec: pagevec with lru pages to check 4260 * 4261 * Checks pages for evictability, if an evictable page is in the unevictable 4262 * lru list, moves it to the appropriate evictable lru list. This function 4263 * should be only used for lru pages. 4264 */ 4265 void check_move_unevictable_pages(struct pagevec *pvec) 4266 { 4267 struct lruvec *lruvec; 4268 struct pglist_data *pgdat = NULL; 4269 int pgscanned = 0; 4270 int pgrescued = 0; 4271 int i; 4272 4273 for (i = 0; i < pvec->nr; i++) { 4274 struct page *page = pvec->pages[i]; 4275 struct pglist_data *pagepgdat = page_pgdat(page); 4276 4277 pgscanned++; 4278 if (pagepgdat != pgdat) { 4279 if (pgdat) 4280 spin_unlock_irq(&pgdat->lru_lock); 4281 pgdat = pagepgdat; 4282 spin_lock_irq(&pgdat->lru_lock); 4283 } 4284 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4285 4286 if (!PageLRU(page) || !PageUnevictable(page)) 4287 continue; 4288 4289 if (page_evictable(page)) { 4290 enum lru_list lru = page_lru_base_type(page); 4291 4292 VM_BUG_ON_PAGE(PageActive(page), page); 4293 ClearPageUnevictable(page); 4294 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4295 add_page_to_lru_list(page, lruvec, lru); 4296 pgrescued++; 4297 } 4298 } 4299 4300 if (pgdat) { 4301 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4302 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4303 spin_unlock_irq(&pgdat->lru_lock); 4304 } 4305 } 4306 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4307