xref: /openbmc/linux/mm/vmscan.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 
58 #include <asm/tlbflush.h>
59 #include <asm/div64.h>
60 
61 #include <linux/swapops.h>
62 #include <linux/balloon_compaction.h>
63 #include <linux/sched/sysctl.h>
64 
65 #include "internal.h"
66 #include "swap.h"
67 
68 #define CREATE_TRACE_POINTS
69 #include <trace/events/vmscan.h>
70 
71 struct scan_control {
72 	/* How many pages shrink_list() should reclaim */
73 	unsigned long nr_to_reclaim;
74 
75 	/*
76 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 	 * are scanned.
78 	 */
79 	nodemask_t	*nodemask;
80 
81 	/*
82 	 * The memory cgroup that hit its limit and as a result is the
83 	 * primary target of this reclaim invocation.
84 	 */
85 	struct mem_cgroup *target_mem_cgroup;
86 
87 	/*
88 	 * Scan pressure balancing between anon and file LRUs
89 	 */
90 	unsigned long	anon_cost;
91 	unsigned long	file_cost;
92 
93 	/* Can active pages be deactivated as part of reclaim? */
94 #define DEACTIVATE_ANON 1
95 #define DEACTIVATE_FILE 2
96 	unsigned int may_deactivate:2;
97 	unsigned int force_deactivate:1;
98 	unsigned int skipped_deactivate:1;
99 
100 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
101 	unsigned int may_writepage:1;
102 
103 	/* Can mapped pages be reclaimed? */
104 	unsigned int may_unmap:1;
105 
106 	/* Can pages be swapped as part of reclaim? */
107 	unsigned int may_swap:1;
108 
109 	/* Proactive reclaim invoked by userspace through memory.reclaim */
110 	unsigned int proactive:1;
111 
112 	/*
113 	 * Cgroup memory below memory.low is protected as long as we
114 	 * don't threaten to OOM. If any cgroup is reclaimed at
115 	 * reduced force or passed over entirely due to its memory.low
116 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
117 	 * result, then go back for one more cycle that reclaims the protected
118 	 * memory (memcg_low_reclaim) to avert OOM.
119 	 */
120 	unsigned int memcg_low_reclaim:1;
121 	unsigned int memcg_low_skipped:1;
122 
123 	unsigned int hibernation_mode:1;
124 
125 	/* One of the zones is ready for compaction */
126 	unsigned int compaction_ready:1;
127 
128 	/* There is easily reclaimable cold cache in the current node */
129 	unsigned int cache_trim_mode:1;
130 
131 	/* The file pages on the current node are dangerously low */
132 	unsigned int file_is_tiny:1;
133 
134 	/* Always discard instead of demoting to lower tier memory */
135 	unsigned int no_demotion:1;
136 
137 #ifdef CONFIG_LRU_GEN
138 	/* help kswapd make better choices among multiple memcgs */
139 	unsigned int memcgs_need_aging:1;
140 	unsigned long last_reclaimed;
141 #endif
142 
143 	/* Allocation order */
144 	s8 order;
145 
146 	/* Scan (total_size >> priority) pages at once */
147 	s8 priority;
148 
149 	/* The highest zone to isolate pages for reclaim from */
150 	s8 reclaim_idx;
151 
152 	/* This context's GFP mask */
153 	gfp_t gfp_mask;
154 
155 	/* Incremented by the number of inactive pages that were scanned */
156 	unsigned long nr_scanned;
157 
158 	/* Number of pages freed so far during a call to shrink_zones() */
159 	unsigned long nr_reclaimed;
160 
161 	struct {
162 		unsigned int dirty;
163 		unsigned int unqueued_dirty;
164 		unsigned int congested;
165 		unsigned int writeback;
166 		unsigned int immediate;
167 		unsigned int file_taken;
168 		unsigned int taken;
169 	} nr;
170 
171 	/* for recording the reclaimed slab by now */
172 	struct reclaim_state reclaim_state;
173 };
174 
175 #ifdef ARCH_HAS_PREFETCHW
176 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
177 	do {								\
178 		if ((_folio)->lru.prev != _base) {			\
179 			struct folio *prev;				\
180 									\
181 			prev = lru_to_folio(&(_folio->lru));		\
182 			prefetchw(&prev->_field);			\
183 		}							\
184 	} while (0)
185 #else
186 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
187 #endif
188 
189 /*
190  * From 0 .. 200.  Higher means more swappy.
191  */
192 int vm_swappiness = 60;
193 
194 static void set_task_reclaim_state(struct task_struct *task,
195 				   struct reclaim_state *rs)
196 {
197 	/* Check for an overwrite */
198 	WARN_ON_ONCE(rs && task->reclaim_state);
199 
200 	/* Check for the nulling of an already-nulled member */
201 	WARN_ON_ONCE(!rs && !task->reclaim_state);
202 
203 	task->reclaim_state = rs;
204 }
205 
206 LIST_HEAD(shrinker_list);
207 DECLARE_RWSEM(shrinker_rwsem);
208 
209 #ifdef CONFIG_MEMCG
210 static int shrinker_nr_max;
211 
212 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
213 static inline int shrinker_map_size(int nr_items)
214 {
215 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
216 }
217 
218 static inline int shrinker_defer_size(int nr_items)
219 {
220 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
221 }
222 
223 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
224 						     int nid)
225 {
226 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
227 					 lockdep_is_held(&shrinker_rwsem));
228 }
229 
230 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
231 				    int map_size, int defer_size,
232 				    int old_map_size, int old_defer_size)
233 {
234 	struct shrinker_info *new, *old;
235 	struct mem_cgroup_per_node *pn;
236 	int nid;
237 	int size = map_size + defer_size;
238 
239 	for_each_node(nid) {
240 		pn = memcg->nodeinfo[nid];
241 		old = shrinker_info_protected(memcg, nid);
242 		/* Not yet online memcg */
243 		if (!old)
244 			return 0;
245 
246 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
247 		if (!new)
248 			return -ENOMEM;
249 
250 		new->nr_deferred = (atomic_long_t *)(new + 1);
251 		new->map = (void *)new->nr_deferred + defer_size;
252 
253 		/* map: set all old bits, clear all new bits */
254 		memset(new->map, (int)0xff, old_map_size);
255 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
256 		/* nr_deferred: copy old values, clear all new values */
257 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
258 		memset((void *)new->nr_deferred + old_defer_size, 0,
259 		       defer_size - old_defer_size);
260 
261 		rcu_assign_pointer(pn->shrinker_info, new);
262 		kvfree_rcu(old, rcu);
263 	}
264 
265 	return 0;
266 }
267 
268 void free_shrinker_info(struct mem_cgroup *memcg)
269 {
270 	struct mem_cgroup_per_node *pn;
271 	struct shrinker_info *info;
272 	int nid;
273 
274 	for_each_node(nid) {
275 		pn = memcg->nodeinfo[nid];
276 		info = rcu_dereference_protected(pn->shrinker_info, true);
277 		kvfree(info);
278 		rcu_assign_pointer(pn->shrinker_info, NULL);
279 	}
280 }
281 
282 int alloc_shrinker_info(struct mem_cgroup *memcg)
283 {
284 	struct shrinker_info *info;
285 	int nid, size, ret = 0;
286 	int map_size, defer_size = 0;
287 
288 	down_write(&shrinker_rwsem);
289 	map_size = shrinker_map_size(shrinker_nr_max);
290 	defer_size = shrinker_defer_size(shrinker_nr_max);
291 	size = map_size + defer_size;
292 	for_each_node(nid) {
293 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
294 		if (!info) {
295 			free_shrinker_info(memcg);
296 			ret = -ENOMEM;
297 			break;
298 		}
299 		info->nr_deferred = (atomic_long_t *)(info + 1);
300 		info->map = (void *)info->nr_deferred + defer_size;
301 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
302 	}
303 	up_write(&shrinker_rwsem);
304 
305 	return ret;
306 }
307 
308 static inline bool need_expand(int nr_max)
309 {
310 	return round_up(nr_max, BITS_PER_LONG) >
311 	       round_up(shrinker_nr_max, BITS_PER_LONG);
312 }
313 
314 static int expand_shrinker_info(int new_id)
315 {
316 	int ret = 0;
317 	int new_nr_max = new_id + 1;
318 	int map_size, defer_size = 0;
319 	int old_map_size, old_defer_size = 0;
320 	struct mem_cgroup *memcg;
321 
322 	if (!need_expand(new_nr_max))
323 		goto out;
324 
325 	if (!root_mem_cgroup)
326 		goto out;
327 
328 	lockdep_assert_held(&shrinker_rwsem);
329 
330 	map_size = shrinker_map_size(new_nr_max);
331 	defer_size = shrinker_defer_size(new_nr_max);
332 	old_map_size = shrinker_map_size(shrinker_nr_max);
333 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
334 
335 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
336 	do {
337 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
338 					       old_map_size, old_defer_size);
339 		if (ret) {
340 			mem_cgroup_iter_break(NULL, memcg);
341 			goto out;
342 		}
343 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
344 out:
345 	if (!ret)
346 		shrinker_nr_max = new_nr_max;
347 
348 	return ret;
349 }
350 
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352 {
353 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 		struct shrinker_info *info;
355 
356 		rcu_read_lock();
357 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
358 		/* Pairs with smp mb in shrink_slab() */
359 		smp_mb__before_atomic();
360 		set_bit(shrinker_id, info->map);
361 		rcu_read_unlock();
362 	}
363 }
364 
365 static DEFINE_IDR(shrinker_idr);
366 
367 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
368 {
369 	int id, ret = -ENOMEM;
370 
371 	if (mem_cgroup_disabled())
372 		return -ENOSYS;
373 
374 	down_write(&shrinker_rwsem);
375 	/* This may call shrinker, so it must use down_read_trylock() */
376 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
377 	if (id < 0)
378 		goto unlock;
379 
380 	if (id >= shrinker_nr_max) {
381 		if (expand_shrinker_info(id)) {
382 			idr_remove(&shrinker_idr, id);
383 			goto unlock;
384 		}
385 	}
386 	shrinker->id = id;
387 	ret = 0;
388 unlock:
389 	up_write(&shrinker_rwsem);
390 	return ret;
391 }
392 
393 static void unregister_memcg_shrinker(struct shrinker *shrinker)
394 {
395 	int id = shrinker->id;
396 
397 	BUG_ON(id < 0);
398 
399 	lockdep_assert_held(&shrinker_rwsem);
400 
401 	idr_remove(&shrinker_idr, id);
402 }
403 
404 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
405 				   struct mem_cgroup *memcg)
406 {
407 	struct shrinker_info *info;
408 
409 	info = shrinker_info_protected(memcg, nid);
410 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
411 }
412 
413 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
414 				  struct mem_cgroup *memcg)
415 {
416 	struct shrinker_info *info;
417 
418 	info = shrinker_info_protected(memcg, nid);
419 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
420 }
421 
422 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
423 {
424 	int i, nid;
425 	long nr;
426 	struct mem_cgroup *parent;
427 	struct shrinker_info *child_info, *parent_info;
428 
429 	parent = parent_mem_cgroup(memcg);
430 	if (!parent)
431 		parent = root_mem_cgroup;
432 
433 	/* Prevent from concurrent shrinker_info expand */
434 	down_read(&shrinker_rwsem);
435 	for_each_node(nid) {
436 		child_info = shrinker_info_protected(memcg, nid);
437 		parent_info = shrinker_info_protected(parent, nid);
438 		for (i = 0; i < shrinker_nr_max; i++) {
439 			nr = atomic_long_read(&child_info->nr_deferred[i]);
440 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
441 		}
442 	}
443 	up_read(&shrinker_rwsem);
444 }
445 
446 static bool cgroup_reclaim(struct scan_control *sc)
447 {
448 	return sc->target_mem_cgroup;
449 }
450 
451 /**
452  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
453  * @sc: scan_control in question
454  *
455  * The normal page dirty throttling mechanism in balance_dirty_pages() is
456  * completely broken with the legacy memcg and direct stalling in
457  * shrink_page_list() is used for throttling instead, which lacks all the
458  * niceties such as fairness, adaptive pausing, bandwidth proportional
459  * allocation and configurability.
460  *
461  * This function tests whether the vmscan currently in progress can assume
462  * that the normal dirty throttling mechanism is operational.
463  */
464 static bool writeback_throttling_sane(struct scan_control *sc)
465 {
466 	if (!cgroup_reclaim(sc))
467 		return true;
468 #ifdef CONFIG_CGROUP_WRITEBACK
469 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
470 		return true;
471 #endif
472 	return false;
473 }
474 #else
475 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
476 {
477 	return -ENOSYS;
478 }
479 
480 static void unregister_memcg_shrinker(struct shrinker *shrinker)
481 {
482 }
483 
484 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
485 				   struct mem_cgroup *memcg)
486 {
487 	return 0;
488 }
489 
490 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
491 				  struct mem_cgroup *memcg)
492 {
493 	return 0;
494 }
495 
496 static bool cgroup_reclaim(struct scan_control *sc)
497 {
498 	return false;
499 }
500 
501 static bool writeback_throttling_sane(struct scan_control *sc)
502 {
503 	return true;
504 }
505 #endif
506 
507 static long xchg_nr_deferred(struct shrinker *shrinker,
508 			     struct shrink_control *sc)
509 {
510 	int nid = sc->nid;
511 
512 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
513 		nid = 0;
514 
515 	if (sc->memcg &&
516 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
517 		return xchg_nr_deferred_memcg(nid, shrinker,
518 					      sc->memcg);
519 
520 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
521 }
522 
523 
524 static long add_nr_deferred(long nr, struct shrinker *shrinker,
525 			    struct shrink_control *sc)
526 {
527 	int nid = sc->nid;
528 
529 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
530 		nid = 0;
531 
532 	if (sc->memcg &&
533 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
534 		return add_nr_deferred_memcg(nr, nid, shrinker,
535 					     sc->memcg);
536 
537 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
538 }
539 
540 static bool can_demote(int nid, struct scan_control *sc)
541 {
542 	if (!numa_demotion_enabled)
543 		return false;
544 	if (sc && sc->no_demotion)
545 		return false;
546 	if (next_demotion_node(nid) == NUMA_NO_NODE)
547 		return false;
548 
549 	return true;
550 }
551 
552 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
553 					  int nid,
554 					  struct scan_control *sc)
555 {
556 	if (memcg == NULL) {
557 		/*
558 		 * For non-memcg reclaim, is there
559 		 * space in any swap device?
560 		 */
561 		if (get_nr_swap_pages() > 0)
562 			return true;
563 	} else {
564 		/* Is the memcg below its swap limit? */
565 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
566 			return true;
567 	}
568 
569 	/*
570 	 * The page can not be swapped.
571 	 *
572 	 * Can it be reclaimed from this node via demotion?
573 	 */
574 	return can_demote(nid, sc);
575 }
576 
577 /*
578  * This misses isolated pages which are not accounted for to save counters.
579  * As the data only determines if reclaim or compaction continues, it is
580  * not expected that isolated pages will be a dominating factor.
581  */
582 unsigned long zone_reclaimable_pages(struct zone *zone)
583 {
584 	unsigned long nr;
585 
586 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
587 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
588 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
589 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
590 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
591 
592 	return nr;
593 }
594 
595 /**
596  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
597  * @lruvec: lru vector
598  * @lru: lru to use
599  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
600  */
601 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
602 				     int zone_idx)
603 {
604 	unsigned long size = 0;
605 	int zid;
606 
607 	for (zid = 0; zid <= zone_idx; zid++) {
608 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
609 
610 		if (!managed_zone(zone))
611 			continue;
612 
613 		if (!mem_cgroup_disabled())
614 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
615 		else
616 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
617 	}
618 	return size;
619 }
620 
621 /*
622  * Add a shrinker callback to be called from the vm.
623  */
624 static int __prealloc_shrinker(struct shrinker *shrinker)
625 {
626 	unsigned int size;
627 	int err;
628 
629 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
630 		err = prealloc_memcg_shrinker(shrinker);
631 		if (err != -ENOSYS)
632 			return err;
633 
634 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
635 	}
636 
637 	size = sizeof(*shrinker->nr_deferred);
638 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
639 		size *= nr_node_ids;
640 
641 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
642 	if (!shrinker->nr_deferred)
643 		return -ENOMEM;
644 
645 	return 0;
646 }
647 
648 #ifdef CONFIG_SHRINKER_DEBUG
649 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
650 {
651 	va_list ap;
652 	int err;
653 
654 	va_start(ap, fmt);
655 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
656 	va_end(ap);
657 	if (!shrinker->name)
658 		return -ENOMEM;
659 
660 	err = __prealloc_shrinker(shrinker);
661 	if (err) {
662 		kfree_const(shrinker->name);
663 		shrinker->name = NULL;
664 	}
665 
666 	return err;
667 }
668 #else
669 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
670 {
671 	return __prealloc_shrinker(shrinker);
672 }
673 #endif
674 
675 void free_prealloced_shrinker(struct shrinker *shrinker)
676 {
677 #ifdef CONFIG_SHRINKER_DEBUG
678 	kfree_const(shrinker->name);
679 	shrinker->name = NULL;
680 #endif
681 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
682 		down_write(&shrinker_rwsem);
683 		unregister_memcg_shrinker(shrinker);
684 		up_write(&shrinker_rwsem);
685 		return;
686 	}
687 
688 	kfree(shrinker->nr_deferred);
689 	shrinker->nr_deferred = NULL;
690 }
691 
692 void register_shrinker_prepared(struct shrinker *shrinker)
693 {
694 	down_write(&shrinker_rwsem);
695 	list_add_tail(&shrinker->list, &shrinker_list);
696 	shrinker->flags |= SHRINKER_REGISTERED;
697 	shrinker_debugfs_add(shrinker);
698 	up_write(&shrinker_rwsem);
699 }
700 
701 static int __register_shrinker(struct shrinker *shrinker)
702 {
703 	int err = __prealloc_shrinker(shrinker);
704 
705 	if (err)
706 		return err;
707 	register_shrinker_prepared(shrinker);
708 	return 0;
709 }
710 
711 #ifdef CONFIG_SHRINKER_DEBUG
712 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
713 {
714 	va_list ap;
715 	int err;
716 
717 	va_start(ap, fmt);
718 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
719 	va_end(ap);
720 	if (!shrinker->name)
721 		return -ENOMEM;
722 
723 	err = __register_shrinker(shrinker);
724 	if (err) {
725 		kfree_const(shrinker->name);
726 		shrinker->name = NULL;
727 	}
728 	return err;
729 }
730 #else
731 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
732 {
733 	return __register_shrinker(shrinker);
734 }
735 #endif
736 EXPORT_SYMBOL(register_shrinker);
737 
738 /*
739  * Remove one
740  */
741 void unregister_shrinker(struct shrinker *shrinker)
742 {
743 	if (!(shrinker->flags & SHRINKER_REGISTERED))
744 		return;
745 
746 	down_write(&shrinker_rwsem);
747 	list_del(&shrinker->list);
748 	shrinker->flags &= ~SHRINKER_REGISTERED;
749 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
750 		unregister_memcg_shrinker(shrinker);
751 	shrinker_debugfs_remove(shrinker);
752 	up_write(&shrinker_rwsem);
753 
754 	kfree(shrinker->nr_deferred);
755 	shrinker->nr_deferred = NULL;
756 }
757 EXPORT_SYMBOL(unregister_shrinker);
758 
759 /**
760  * synchronize_shrinkers - Wait for all running shrinkers to complete.
761  *
762  * This is equivalent to calling unregister_shrink() and register_shrinker(),
763  * but atomically and with less overhead. This is useful to guarantee that all
764  * shrinker invocations have seen an update, before freeing memory, similar to
765  * rcu.
766  */
767 void synchronize_shrinkers(void)
768 {
769 	down_write(&shrinker_rwsem);
770 	up_write(&shrinker_rwsem);
771 }
772 EXPORT_SYMBOL(synchronize_shrinkers);
773 
774 #define SHRINK_BATCH 128
775 
776 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
777 				    struct shrinker *shrinker, int priority)
778 {
779 	unsigned long freed = 0;
780 	unsigned long long delta;
781 	long total_scan;
782 	long freeable;
783 	long nr;
784 	long new_nr;
785 	long batch_size = shrinker->batch ? shrinker->batch
786 					  : SHRINK_BATCH;
787 	long scanned = 0, next_deferred;
788 
789 	freeable = shrinker->count_objects(shrinker, shrinkctl);
790 	if (freeable == 0 || freeable == SHRINK_EMPTY)
791 		return freeable;
792 
793 	/*
794 	 * copy the current shrinker scan count into a local variable
795 	 * and zero it so that other concurrent shrinker invocations
796 	 * don't also do this scanning work.
797 	 */
798 	nr = xchg_nr_deferred(shrinker, shrinkctl);
799 
800 	if (shrinker->seeks) {
801 		delta = freeable >> priority;
802 		delta *= 4;
803 		do_div(delta, shrinker->seeks);
804 	} else {
805 		/*
806 		 * These objects don't require any IO to create. Trim
807 		 * them aggressively under memory pressure to keep
808 		 * them from causing refetches in the IO caches.
809 		 */
810 		delta = freeable / 2;
811 	}
812 
813 	total_scan = nr >> priority;
814 	total_scan += delta;
815 	total_scan = min(total_scan, (2 * freeable));
816 
817 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
818 				   freeable, delta, total_scan, priority);
819 
820 	/*
821 	 * Normally, we should not scan less than batch_size objects in one
822 	 * pass to avoid too frequent shrinker calls, but if the slab has less
823 	 * than batch_size objects in total and we are really tight on memory,
824 	 * we will try to reclaim all available objects, otherwise we can end
825 	 * up failing allocations although there are plenty of reclaimable
826 	 * objects spread over several slabs with usage less than the
827 	 * batch_size.
828 	 *
829 	 * We detect the "tight on memory" situations by looking at the total
830 	 * number of objects we want to scan (total_scan). If it is greater
831 	 * than the total number of objects on slab (freeable), we must be
832 	 * scanning at high prio and therefore should try to reclaim as much as
833 	 * possible.
834 	 */
835 	while (total_scan >= batch_size ||
836 	       total_scan >= freeable) {
837 		unsigned long ret;
838 		unsigned long nr_to_scan = min(batch_size, total_scan);
839 
840 		shrinkctl->nr_to_scan = nr_to_scan;
841 		shrinkctl->nr_scanned = nr_to_scan;
842 		ret = shrinker->scan_objects(shrinker, shrinkctl);
843 		if (ret == SHRINK_STOP)
844 			break;
845 		freed += ret;
846 
847 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
848 		total_scan -= shrinkctl->nr_scanned;
849 		scanned += shrinkctl->nr_scanned;
850 
851 		cond_resched();
852 	}
853 
854 	/*
855 	 * The deferred work is increased by any new work (delta) that wasn't
856 	 * done, decreased by old deferred work that was done now.
857 	 *
858 	 * And it is capped to two times of the freeable items.
859 	 */
860 	next_deferred = max_t(long, (nr + delta - scanned), 0);
861 	next_deferred = min(next_deferred, (2 * freeable));
862 
863 	/*
864 	 * move the unused scan count back into the shrinker in a
865 	 * manner that handles concurrent updates.
866 	 */
867 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
868 
869 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
870 	return freed;
871 }
872 
873 #ifdef CONFIG_MEMCG
874 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
875 			struct mem_cgroup *memcg, int priority)
876 {
877 	struct shrinker_info *info;
878 	unsigned long ret, freed = 0;
879 	int i;
880 
881 	if (!mem_cgroup_online(memcg))
882 		return 0;
883 
884 	if (!down_read_trylock(&shrinker_rwsem))
885 		return 0;
886 
887 	info = shrinker_info_protected(memcg, nid);
888 	if (unlikely(!info))
889 		goto unlock;
890 
891 	for_each_set_bit(i, info->map, shrinker_nr_max) {
892 		struct shrink_control sc = {
893 			.gfp_mask = gfp_mask,
894 			.nid = nid,
895 			.memcg = memcg,
896 		};
897 		struct shrinker *shrinker;
898 
899 		shrinker = idr_find(&shrinker_idr, i);
900 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
901 			if (!shrinker)
902 				clear_bit(i, info->map);
903 			continue;
904 		}
905 
906 		/* Call non-slab shrinkers even though kmem is disabled */
907 		if (!memcg_kmem_enabled() &&
908 		    !(shrinker->flags & SHRINKER_NONSLAB))
909 			continue;
910 
911 		ret = do_shrink_slab(&sc, shrinker, priority);
912 		if (ret == SHRINK_EMPTY) {
913 			clear_bit(i, info->map);
914 			/*
915 			 * After the shrinker reported that it had no objects to
916 			 * free, but before we cleared the corresponding bit in
917 			 * the memcg shrinker map, a new object might have been
918 			 * added. To make sure, we have the bit set in this
919 			 * case, we invoke the shrinker one more time and reset
920 			 * the bit if it reports that it is not empty anymore.
921 			 * The memory barrier here pairs with the barrier in
922 			 * set_shrinker_bit():
923 			 *
924 			 * list_lru_add()     shrink_slab_memcg()
925 			 *   list_add_tail()    clear_bit()
926 			 *   <MB>               <MB>
927 			 *   set_bit()          do_shrink_slab()
928 			 */
929 			smp_mb__after_atomic();
930 			ret = do_shrink_slab(&sc, shrinker, priority);
931 			if (ret == SHRINK_EMPTY)
932 				ret = 0;
933 			else
934 				set_shrinker_bit(memcg, nid, i);
935 		}
936 		freed += ret;
937 
938 		if (rwsem_is_contended(&shrinker_rwsem)) {
939 			freed = freed ? : 1;
940 			break;
941 		}
942 	}
943 unlock:
944 	up_read(&shrinker_rwsem);
945 	return freed;
946 }
947 #else /* CONFIG_MEMCG */
948 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
949 			struct mem_cgroup *memcg, int priority)
950 {
951 	return 0;
952 }
953 #endif /* CONFIG_MEMCG */
954 
955 /**
956  * shrink_slab - shrink slab caches
957  * @gfp_mask: allocation context
958  * @nid: node whose slab caches to target
959  * @memcg: memory cgroup whose slab caches to target
960  * @priority: the reclaim priority
961  *
962  * Call the shrink functions to age shrinkable caches.
963  *
964  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
965  * unaware shrinkers will receive a node id of 0 instead.
966  *
967  * @memcg specifies the memory cgroup to target. Unaware shrinkers
968  * are called only if it is the root cgroup.
969  *
970  * @priority is sc->priority, we take the number of objects and >> by priority
971  * in order to get the scan target.
972  *
973  * Returns the number of reclaimed slab objects.
974  */
975 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
976 				 struct mem_cgroup *memcg,
977 				 int priority)
978 {
979 	unsigned long ret, freed = 0;
980 	struct shrinker *shrinker;
981 
982 	/*
983 	 * The root memcg might be allocated even though memcg is disabled
984 	 * via "cgroup_disable=memory" boot parameter.  This could make
985 	 * mem_cgroup_is_root() return false, then just run memcg slab
986 	 * shrink, but skip global shrink.  This may result in premature
987 	 * oom.
988 	 */
989 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
990 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
991 
992 	if (!down_read_trylock(&shrinker_rwsem))
993 		goto out;
994 
995 	list_for_each_entry(shrinker, &shrinker_list, list) {
996 		struct shrink_control sc = {
997 			.gfp_mask = gfp_mask,
998 			.nid = nid,
999 			.memcg = memcg,
1000 		};
1001 
1002 		ret = do_shrink_slab(&sc, shrinker, priority);
1003 		if (ret == SHRINK_EMPTY)
1004 			ret = 0;
1005 		freed += ret;
1006 		/*
1007 		 * Bail out if someone want to register a new shrinker to
1008 		 * prevent the registration from being stalled for long periods
1009 		 * by parallel ongoing shrinking.
1010 		 */
1011 		if (rwsem_is_contended(&shrinker_rwsem)) {
1012 			freed = freed ? : 1;
1013 			break;
1014 		}
1015 	}
1016 
1017 	up_read(&shrinker_rwsem);
1018 out:
1019 	cond_resched();
1020 	return freed;
1021 }
1022 
1023 static void drop_slab_node(int nid)
1024 {
1025 	unsigned long freed;
1026 	int shift = 0;
1027 
1028 	do {
1029 		struct mem_cgroup *memcg = NULL;
1030 
1031 		if (fatal_signal_pending(current))
1032 			return;
1033 
1034 		freed = 0;
1035 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
1036 		do {
1037 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1038 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1039 	} while ((freed >> shift++) > 1);
1040 }
1041 
1042 void drop_slab(void)
1043 {
1044 	int nid;
1045 
1046 	for_each_online_node(nid)
1047 		drop_slab_node(nid);
1048 }
1049 
1050 static inline int is_page_cache_freeable(struct folio *folio)
1051 {
1052 	/*
1053 	 * A freeable page cache page is referenced only by the caller
1054 	 * that isolated the page, the page cache and optional buffer
1055 	 * heads at page->private.
1056 	 */
1057 	return folio_ref_count(folio) - folio_test_private(folio) ==
1058 		1 + folio_nr_pages(folio);
1059 }
1060 
1061 /*
1062  * We detected a synchronous write error writing a folio out.  Probably
1063  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1064  * fsync(), msync() or close().
1065  *
1066  * The tricky part is that after writepage we cannot touch the mapping: nothing
1067  * prevents it from being freed up.  But we have a ref on the folio and once
1068  * that folio is locked, the mapping is pinned.
1069  *
1070  * We're allowed to run sleeping folio_lock() here because we know the caller has
1071  * __GFP_FS.
1072  */
1073 static void handle_write_error(struct address_space *mapping,
1074 				struct folio *folio, int error)
1075 {
1076 	folio_lock(folio);
1077 	if (folio_mapping(folio) == mapping)
1078 		mapping_set_error(mapping, error);
1079 	folio_unlock(folio);
1080 }
1081 
1082 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1083 {
1084 	int reclaimable = 0, write_pending = 0;
1085 	int i;
1086 
1087 	/*
1088 	 * If kswapd is disabled, reschedule if necessary but do not
1089 	 * throttle as the system is likely near OOM.
1090 	 */
1091 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1092 		return true;
1093 
1094 	/*
1095 	 * If there are a lot of dirty/writeback pages then do not
1096 	 * throttle as throttling will occur when the pages cycle
1097 	 * towards the end of the LRU if still under writeback.
1098 	 */
1099 	for (i = 0; i < MAX_NR_ZONES; i++) {
1100 		struct zone *zone = pgdat->node_zones + i;
1101 
1102 		if (!managed_zone(zone))
1103 			continue;
1104 
1105 		reclaimable += zone_reclaimable_pages(zone);
1106 		write_pending += zone_page_state_snapshot(zone,
1107 						  NR_ZONE_WRITE_PENDING);
1108 	}
1109 	if (2 * write_pending <= reclaimable)
1110 		return true;
1111 
1112 	return false;
1113 }
1114 
1115 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1116 {
1117 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1118 	long timeout, ret;
1119 	DEFINE_WAIT(wait);
1120 
1121 	/*
1122 	 * Do not throttle IO workers, kthreads other than kswapd or
1123 	 * workqueues. They may be required for reclaim to make
1124 	 * forward progress (e.g. journalling workqueues or kthreads).
1125 	 */
1126 	if (!current_is_kswapd() &&
1127 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1128 		cond_resched();
1129 		return;
1130 	}
1131 
1132 	/*
1133 	 * These figures are pulled out of thin air.
1134 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1135 	 * parallel reclaimers which is a short-lived event so the timeout is
1136 	 * short. Failing to make progress or waiting on writeback are
1137 	 * potentially long-lived events so use a longer timeout. This is shaky
1138 	 * logic as a failure to make progress could be due to anything from
1139 	 * writeback to a slow device to excessive references pages at the tail
1140 	 * of the inactive LRU.
1141 	 */
1142 	switch(reason) {
1143 	case VMSCAN_THROTTLE_WRITEBACK:
1144 		timeout = HZ/10;
1145 
1146 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1147 			WRITE_ONCE(pgdat->nr_reclaim_start,
1148 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1149 		}
1150 
1151 		break;
1152 	case VMSCAN_THROTTLE_CONGESTED:
1153 		fallthrough;
1154 	case VMSCAN_THROTTLE_NOPROGRESS:
1155 		if (skip_throttle_noprogress(pgdat)) {
1156 			cond_resched();
1157 			return;
1158 		}
1159 
1160 		timeout = 1;
1161 
1162 		break;
1163 	case VMSCAN_THROTTLE_ISOLATED:
1164 		timeout = HZ/50;
1165 		break;
1166 	default:
1167 		WARN_ON_ONCE(1);
1168 		timeout = HZ;
1169 		break;
1170 	}
1171 
1172 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1173 	ret = schedule_timeout(timeout);
1174 	finish_wait(wqh, &wait);
1175 
1176 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1177 		atomic_dec(&pgdat->nr_writeback_throttled);
1178 
1179 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1180 				jiffies_to_usecs(timeout - ret),
1181 				reason);
1182 }
1183 
1184 /*
1185  * Account for pages written if tasks are throttled waiting on dirty
1186  * pages to clean. If enough pages have been cleaned since throttling
1187  * started then wakeup the throttled tasks.
1188  */
1189 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1190 							int nr_throttled)
1191 {
1192 	unsigned long nr_written;
1193 
1194 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1195 
1196 	/*
1197 	 * This is an inaccurate read as the per-cpu deltas may not
1198 	 * be synchronised. However, given that the system is
1199 	 * writeback throttled, it is not worth taking the penalty
1200 	 * of getting an accurate count. At worst, the throttle
1201 	 * timeout guarantees forward progress.
1202 	 */
1203 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1204 		READ_ONCE(pgdat->nr_reclaim_start);
1205 
1206 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1207 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1208 }
1209 
1210 /* possible outcome of pageout() */
1211 typedef enum {
1212 	/* failed to write page out, page is locked */
1213 	PAGE_KEEP,
1214 	/* move page to the active list, page is locked */
1215 	PAGE_ACTIVATE,
1216 	/* page has been sent to the disk successfully, page is unlocked */
1217 	PAGE_SUCCESS,
1218 	/* page is clean and locked */
1219 	PAGE_CLEAN,
1220 } pageout_t;
1221 
1222 /*
1223  * pageout is called by shrink_page_list() for each dirty page.
1224  * Calls ->writepage().
1225  */
1226 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1227 			 struct swap_iocb **plug)
1228 {
1229 	/*
1230 	 * If the folio is dirty, only perform writeback if that write
1231 	 * will be non-blocking.  To prevent this allocation from being
1232 	 * stalled by pagecache activity.  But note that there may be
1233 	 * stalls if we need to run get_block().  We could test
1234 	 * PagePrivate for that.
1235 	 *
1236 	 * If this process is currently in __generic_file_write_iter() against
1237 	 * this folio's queue, we can perform writeback even if that
1238 	 * will block.
1239 	 *
1240 	 * If the folio is swapcache, write it back even if that would
1241 	 * block, for some throttling. This happens by accident, because
1242 	 * swap_backing_dev_info is bust: it doesn't reflect the
1243 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1244 	 */
1245 	if (!is_page_cache_freeable(folio))
1246 		return PAGE_KEEP;
1247 	if (!mapping) {
1248 		/*
1249 		 * Some data journaling orphaned folios can have
1250 		 * folio->mapping == NULL while being dirty with clean buffers.
1251 		 */
1252 		if (folio_test_private(folio)) {
1253 			if (try_to_free_buffers(folio)) {
1254 				folio_clear_dirty(folio);
1255 				pr_info("%s: orphaned folio\n", __func__);
1256 				return PAGE_CLEAN;
1257 			}
1258 		}
1259 		return PAGE_KEEP;
1260 	}
1261 	if (mapping->a_ops->writepage == NULL)
1262 		return PAGE_ACTIVATE;
1263 
1264 	if (folio_clear_dirty_for_io(folio)) {
1265 		int res;
1266 		struct writeback_control wbc = {
1267 			.sync_mode = WB_SYNC_NONE,
1268 			.nr_to_write = SWAP_CLUSTER_MAX,
1269 			.range_start = 0,
1270 			.range_end = LLONG_MAX,
1271 			.for_reclaim = 1,
1272 			.swap_plug = plug,
1273 		};
1274 
1275 		folio_set_reclaim(folio);
1276 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1277 		if (res < 0)
1278 			handle_write_error(mapping, folio, res);
1279 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1280 			folio_clear_reclaim(folio);
1281 			return PAGE_ACTIVATE;
1282 		}
1283 
1284 		if (!folio_test_writeback(folio)) {
1285 			/* synchronous write or broken a_ops? */
1286 			folio_clear_reclaim(folio);
1287 		}
1288 		trace_mm_vmscan_write_folio(folio);
1289 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1290 		return PAGE_SUCCESS;
1291 	}
1292 
1293 	return PAGE_CLEAN;
1294 }
1295 
1296 /*
1297  * Same as remove_mapping, but if the page is removed from the mapping, it
1298  * gets returned with a refcount of 0.
1299  */
1300 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1301 			    bool reclaimed, struct mem_cgroup *target_memcg)
1302 {
1303 	int refcount;
1304 	void *shadow = NULL;
1305 
1306 	BUG_ON(!folio_test_locked(folio));
1307 	BUG_ON(mapping != folio_mapping(folio));
1308 
1309 	if (!folio_test_swapcache(folio))
1310 		spin_lock(&mapping->host->i_lock);
1311 	xa_lock_irq(&mapping->i_pages);
1312 	/*
1313 	 * The non racy check for a busy page.
1314 	 *
1315 	 * Must be careful with the order of the tests. When someone has
1316 	 * a ref to the page, it may be possible that they dirty it then
1317 	 * drop the reference. So if PageDirty is tested before page_count
1318 	 * here, then the following race may occur:
1319 	 *
1320 	 * get_user_pages(&page);
1321 	 * [user mapping goes away]
1322 	 * write_to(page);
1323 	 *				!PageDirty(page)    [good]
1324 	 * SetPageDirty(page);
1325 	 * put_page(page);
1326 	 *				!page_count(page)   [good, discard it]
1327 	 *
1328 	 * [oops, our write_to data is lost]
1329 	 *
1330 	 * Reversing the order of the tests ensures such a situation cannot
1331 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1332 	 * load is not satisfied before that of page->_refcount.
1333 	 *
1334 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1335 	 * and thus under the i_pages lock, then this ordering is not required.
1336 	 */
1337 	refcount = 1 + folio_nr_pages(folio);
1338 	if (!folio_ref_freeze(folio, refcount))
1339 		goto cannot_free;
1340 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1341 	if (unlikely(folio_test_dirty(folio))) {
1342 		folio_ref_unfreeze(folio, refcount);
1343 		goto cannot_free;
1344 	}
1345 
1346 	if (folio_test_swapcache(folio)) {
1347 		swp_entry_t swap = folio_swap_entry(folio);
1348 
1349 		/* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */
1350 		if (reclaimed && !mapping_exiting(mapping))
1351 			shadow = workingset_eviction(folio, target_memcg);
1352 		mem_cgroup_swapout(folio, swap);
1353 		__delete_from_swap_cache(folio, swap, shadow);
1354 		xa_unlock_irq(&mapping->i_pages);
1355 		put_swap_page(&folio->page, swap);
1356 	} else {
1357 		void (*free_folio)(struct folio *);
1358 
1359 		free_folio = mapping->a_ops->free_folio;
1360 		/*
1361 		 * Remember a shadow entry for reclaimed file cache in
1362 		 * order to detect refaults, thus thrashing, later on.
1363 		 *
1364 		 * But don't store shadows in an address space that is
1365 		 * already exiting.  This is not just an optimization,
1366 		 * inode reclaim needs to empty out the radix tree or
1367 		 * the nodes are lost.  Don't plant shadows behind its
1368 		 * back.
1369 		 *
1370 		 * We also don't store shadows for DAX mappings because the
1371 		 * only page cache pages found in these are zero pages
1372 		 * covering holes, and because we don't want to mix DAX
1373 		 * exceptional entries and shadow exceptional entries in the
1374 		 * same address_space.
1375 		 */
1376 		if (reclaimed && folio_is_file_lru(folio) &&
1377 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1378 			shadow = workingset_eviction(folio, target_memcg);
1379 		__filemap_remove_folio(folio, shadow);
1380 		xa_unlock_irq(&mapping->i_pages);
1381 		if (mapping_shrinkable(mapping))
1382 			inode_add_lru(mapping->host);
1383 		spin_unlock(&mapping->host->i_lock);
1384 
1385 		if (free_folio)
1386 			free_folio(folio);
1387 	}
1388 
1389 	return 1;
1390 
1391 cannot_free:
1392 	xa_unlock_irq(&mapping->i_pages);
1393 	if (!folio_test_swapcache(folio))
1394 		spin_unlock(&mapping->host->i_lock);
1395 	return 0;
1396 }
1397 
1398 /**
1399  * remove_mapping() - Attempt to remove a folio from its mapping.
1400  * @mapping: The address space.
1401  * @folio: The folio to remove.
1402  *
1403  * If the folio is dirty, under writeback or if someone else has a ref
1404  * on it, removal will fail.
1405  * Return: The number of pages removed from the mapping.  0 if the folio
1406  * could not be removed.
1407  * Context: The caller should have a single refcount on the folio and
1408  * hold its lock.
1409  */
1410 long remove_mapping(struct address_space *mapping, struct folio *folio)
1411 {
1412 	if (__remove_mapping(mapping, folio, false, NULL)) {
1413 		/*
1414 		 * Unfreezing the refcount with 1 effectively
1415 		 * drops the pagecache ref for us without requiring another
1416 		 * atomic operation.
1417 		 */
1418 		folio_ref_unfreeze(folio, 1);
1419 		return folio_nr_pages(folio);
1420 	}
1421 	return 0;
1422 }
1423 
1424 /**
1425  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1426  * @folio: Folio to be returned to an LRU list.
1427  *
1428  * Add previously isolated @folio to appropriate LRU list.
1429  * The folio may still be unevictable for other reasons.
1430  *
1431  * Context: lru_lock must not be held, interrupts must be enabled.
1432  */
1433 void folio_putback_lru(struct folio *folio)
1434 {
1435 	folio_add_lru(folio);
1436 	folio_put(folio);		/* drop ref from isolate */
1437 }
1438 
1439 enum page_references {
1440 	PAGEREF_RECLAIM,
1441 	PAGEREF_RECLAIM_CLEAN,
1442 	PAGEREF_KEEP,
1443 	PAGEREF_ACTIVATE,
1444 };
1445 
1446 static enum page_references folio_check_references(struct folio *folio,
1447 						  struct scan_control *sc)
1448 {
1449 	int referenced_ptes, referenced_folio;
1450 	unsigned long vm_flags;
1451 
1452 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1453 					   &vm_flags);
1454 	referenced_folio = folio_test_clear_referenced(folio);
1455 
1456 	/*
1457 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1458 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1459 	 */
1460 	if (vm_flags & VM_LOCKED)
1461 		return PAGEREF_ACTIVATE;
1462 
1463 	/* rmap lock contention: rotate */
1464 	if (referenced_ptes == -1)
1465 		return PAGEREF_KEEP;
1466 
1467 	if (referenced_ptes) {
1468 		/*
1469 		 * All mapped folios start out with page table
1470 		 * references from the instantiating fault, so we need
1471 		 * to look twice if a mapped file/anon folio is used more
1472 		 * than once.
1473 		 *
1474 		 * Mark it and spare it for another trip around the
1475 		 * inactive list.  Another page table reference will
1476 		 * lead to its activation.
1477 		 *
1478 		 * Note: the mark is set for activated folios as well
1479 		 * so that recently deactivated but used folios are
1480 		 * quickly recovered.
1481 		 */
1482 		folio_set_referenced(folio);
1483 
1484 		if (referenced_folio || referenced_ptes > 1)
1485 			return PAGEREF_ACTIVATE;
1486 
1487 		/*
1488 		 * Activate file-backed executable folios after first usage.
1489 		 */
1490 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1491 			return PAGEREF_ACTIVATE;
1492 
1493 		return PAGEREF_KEEP;
1494 	}
1495 
1496 	/* Reclaim if clean, defer dirty folios to writeback */
1497 	if (referenced_folio && folio_is_file_lru(folio))
1498 		return PAGEREF_RECLAIM_CLEAN;
1499 
1500 	return PAGEREF_RECLAIM;
1501 }
1502 
1503 /* Check if a page is dirty or under writeback */
1504 static void folio_check_dirty_writeback(struct folio *folio,
1505 				       bool *dirty, bool *writeback)
1506 {
1507 	struct address_space *mapping;
1508 
1509 	/*
1510 	 * Anonymous pages are not handled by flushers and must be written
1511 	 * from reclaim context. Do not stall reclaim based on them.
1512 	 * MADV_FREE anonymous pages are put into inactive file list too.
1513 	 * They could be mistakenly treated as file lru. So further anon
1514 	 * test is needed.
1515 	 */
1516 	if (!folio_is_file_lru(folio) ||
1517 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1518 		*dirty = false;
1519 		*writeback = false;
1520 		return;
1521 	}
1522 
1523 	/* By default assume that the folio flags are accurate */
1524 	*dirty = folio_test_dirty(folio);
1525 	*writeback = folio_test_writeback(folio);
1526 
1527 	/* Verify dirty/writeback state if the filesystem supports it */
1528 	if (!folio_test_private(folio))
1529 		return;
1530 
1531 	mapping = folio_mapping(folio);
1532 	if (mapping && mapping->a_ops->is_dirty_writeback)
1533 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1534 }
1535 
1536 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1537 {
1538 	struct page *target_page;
1539 	nodemask_t *allowed_mask;
1540 	struct migration_target_control *mtc;
1541 
1542 	mtc = (struct migration_target_control *)private;
1543 
1544 	allowed_mask = mtc->nmask;
1545 	/*
1546 	 * make sure we allocate from the target node first also trying to
1547 	 * demote or reclaim pages from the target node via kswapd if we are
1548 	 * low on free memory on target node. If we don't do this and if
1549 	 * we have free memory on the slower(lower) memtier, we would start
1550 	 * allocating pages from slower(lower) memory tiers without even forcing
1551 	 * a demotion of cold pages from the target memtier. This can result
1552 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1553 	 */
1554 	mtc->nmask = NULL;
1555 	mtc->gfp_mask |= __GFP_THISNODE;
1556 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1557 	if (target_page)
1558 		return target_page;
1559 
1560 	mtc->gfp_mask &= ~__GFP_THISNODE;
1561 	mtc->nmask = allowed_mask;
1562 
1563 	return alloc_migration_target(page, (unsigned long)mtc);
1564 }
1565 
1566 /*
1567  * Take pages on @demote_list and attempt to demote them to
1568  * another node.  Pages which are not demoted are left on
1569  * @demote_pages.
1570  */
1571 static unsigned int demote_page_list(struct list_head *demote_pages,
1572 				     struct pglist_data *pgdat)
1573 {
1574 	int target_nid = next_demotion_node(pgdat->node_id);
1575 	unsigned int nr_succeeded;
1576 	nodemask_t allowed_mask;
1577 
1578 	struct migration_target_control mtc = {
1579 		/*
1580 		 * Allocate from 'node', or fail quickly and quietly.
1581 		 * When this happens, 'page' will likely just be discarded
1582 		 * instead of migrated.
1583 		 */
1584 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1585 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1586 		.nid = target_nid,
1587 		.nmask = &allowed_mask
1588 	};
1589 
1590 	if (list_empty(demote_pages))
1591 		return 0;
1592 
1593 	if (target_nid == NUMA_NO_NODE)
1594 		return 0;
1595 
1596 	node_get_allowed_targets(pgdat, &allowed_mask);
1597 
1598 	/* Demotion ignores all cpuset and mempolicy settings */
1599 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1600 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1601 		      &nr_succeeded);
1602 
1603 	if (current_is_kswapd())
1604 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1605 	else
1606 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1607 
1608 	return nr_succeeded;
1609 }
1610 
1611 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1612 {
1613 	if (gfp_mask & __GFP_FS)
1614 		return true;
1615 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1616 		return false;
1617 	/*
1618 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1619 	 * providing this isn't SWP_FS_OPS.
1620 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1621 	 * but that will never affect SWP_FS_OPS, so the data_race
1622 	 * is safe.
1623 	 */
1624 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1625 }
1626 
1627 /*
1628  * shrink_page_list() returns the number of reclaimed pages
1629  */
1630 static unsigned int shrink_page_list(struct list_head *page_list,
1631 				     struct pglist_data *pgdat,
1632 				     struct scan_control *sc,
1633 				     struct reclaim_stat *stat,
1634 				     bool ignore_references)
1635 {
1636 	LIST_HEAD(ret_pages);
1637 	LIST_HEAD(free_pages);
1638 	LIST_HEAD(demote_pages);
1639 	unsigned int nr_reclaimed = 0;
1640 	unsigned int pgactivate = 0;
1641 	bool do_demote_pass;
1642 	struct swap_iocb *plug = NULL;
1643 
1644 	memset(stat, 0, sizeof(*stat));
1645 	cond_resched();
1646 	do_demote_pass = can_demote(pgdat->node_id, sc);
1647 
1648 retry:
1649 	while (!list_empty(page_list)) {
1650 		struct address_space *mapping;
1651 		struct folio *folio;
1652 		enum page_references references = PAGEREF_RECLAIM;
1653 		bool dirty, writeback;
1654 		unsigned int nr_pages;
1655 
1656 		cond_resched();
1657 
1658 		folio = lru_to_folio(page_list);
1659 		list_del(&folio->lru);
1660 
1661 		if (!folio_trylock(folio))
1662 			goto keep;
1663 
1664 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1665 
1666 		nr_pages = folio_nr_pages(folio);
1667 
1668 		/* Account the number of base pages */
1669 		sc->nr_scanned += nr_pages;
1670 
1671 		if (unlikely(!folio_evictable(folio)))
1672 			goto activate_locked;
1673 
1674 		if (!sc->may_unmap && folio_mapped(folio))
1675 			goto keep_locked;
1676 
1677 		/* folio_update_gen() tried to promote this page? */
1678 		if (lru_gen_enabled() && !ignore_references &&
1679 		    folio_mapped(folio) && folio_test_referenced(folio))
1680 			goto keep_locked;
1681 
1682 		/*
1683 		 * The number of dirty pages determines if a node is marked
1684 		 * reclaim_congested. kswapd will stall and start writing
1685 		 * folios if the tail of the LRU is all dirty unqueued folios.
1686 		 */
1687 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1688 		if (dirty || writeback)
1689 			stat->nr_dirty += nr_pages;
1690 
1691 		if (dirty && !writeback)
1692 			stat->nr_unqueued_dirty += nr_pages;
1693 
1694 		/*
1695 		 * Treat this folio as congested if folios are cycling
1696 		 * through the LRU so quickly that the folios marked
1697 		 * for immediate reclaim are making it to the end of
1698 		 * the LRU a second time.
1699 		 */
1700 		if (writeback && folio_test_reclaim(folio))
1701 			stat->nr_congested += nr_pages;
1702 
1703 		/*
1704 		 * If a folio at the tail of the LRU is under writeback, there
1705 		 * are three cases to consider.
1706 		 *
1707 		 * 1) If reclaim is encountering an excessive number
1708 		 *    of folios under writeback and this folio has both
1709 		 *    the writeback and reclaim flags set, then it
1710 		 *    indicates that folios are being queued for I/O but
1711 		 *    are being recycled through the LRU before the I/O
1712 		 *    can complete. Waiting on the folio itself risks an
1713 		 *    indefinite stall if it is impossible to writeback
1714 		 *    the folio due to I/O error or disconnected storage
1715 		 *    so instead note that the LRU is being scanned too
1716 		 *    quickly and the caller can stall after the folio
1717 		 *    list has been processed.
1718 		 *
1719 		 * 2) Global or new memcg reclaim encounters a folio that is
1720 		 *    not marked for immediate reclaim, or the caller does not
1721 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1722 		 *    not to fs). In this case mark the folio for immediate
1723 		 *    reclaim and continue scanning.
1724 		 *
1725 		 *    Require may_enter_fs() because we would wait on fs, which
1726 		 *    may not have submitted I/O yet. And the loop driver might
1727 		 *    enter reclaim, and deadlock if it waits on a folio for
1728 		 *    which it is needed to do the write (loop masks off
1729 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1730 		 *    would probably show more reasons.
1731 		 *
1732 		 * 3) Legacy memcg encounters a folio that already has the
1733 		 *    reclaim flag set. memcg does not have any dirty folio
1734 		 *    throttling so we could easily OOM just because too many
1735 		 *    folios are in writeback and there is nothing else to
1736 		 *    reclaim. Wait for the writeback to complete.
1737 		 *
1738 		 * In cases 1) and 2) we activate the folios to get them out of
1739 		 * the way while we continue scanning for clean folios on the
1740 		 * inactive list and refilling from the active list. The
1741 		 * observation here is that waiting for disk writes is more
1742 		 * expensive than potentially causing reloads down the line.
1743 		 * Since they're marked for immediate reclaim, they won't put
1744 		 * memory pressure on the cache working set any longer than it
1745 		 * takes to write them to disk.
1746 		 */
1747 		if (folio_test_writeback(folio)) {
1748 			/* Case 1 above */
1749 			if (current_is_kswapd() &&
1750 			    folio_test_reclaim(folio) &&
1751 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1752 				stat->nr_immediate += nr_pages;
1753 				goto activate_locked;
1754 
1755 			/* Case 2 above */
1756 			} else if (writeback_throttling_sane(sc) ||
1757 			    !folio_test_reclaim(folio) ||
1758 			    !may_enter_fs(folio, sc->gfp_mask)) {
1759 				/*
1760 				 * This is slightly racy -
1761 				 * folio_end_writeback() might have
1762 				 * just cleared the reclaim flag, then
1763 				 * setting the reclaim flag here ends up
1764 				 * interpreted as the readahead flag - but
1765 				 * that does not matter enough to care.
1766 				 * What we do want is for this folio to
1767 				 * have the reclaim flag set next time
1768 				 * memcg reclaim reaches the tests above,
1769 				 * so it will then wait for writeback to
1770 				 * avoid OOM; and it's also appropriate
1771 				 * in global reclaim.
1772 				 */
1773 				folio_set_reclaim(folio);
1774 				stat->nr_writeback += nr_pages;
1775 				goto activate_locked;
1776 
1777 			/* Case 3 above */
1778 			} else {
1779 				folio_unlock(folio);
1780 				folio_wait_writeback(folio);
1781 				/* then go back and try same folio again */
1782 				list_add_tail(&folio->lru, page_list);
1783 				continue;
1784 			}
1785 		}
1786 
1787 		if (!ignore_references)
1788 			references = folio_check_references(folio, sc);
1789 
1790 		switch (references) {
1791 		case PAGEREF_ACTIVATE:
1792 			goto activate_locked;
1793 		case PAGEREF_KEEP:
1794 			stat->nr_ref_keep += nr_pages;
1795 			goto keep_locked;
1796 		case PAGEREF_RECLAIM:
1797 		case PAGEREF_RECLAIM_CLEAN:
1798 			; /* try to reclaim the folio below */
1799 		}
1800 
1801 		/*
1802 		 * Before reclaiming the folio, try to relocate
1803 		 * its contents to another node.
1804 		 */
1805 		if (do_demote_pass &&
1806 		    (thp_migration_supported() || !folio_test_large(folio))) {
1807 			list_add(&folio->lru, &demote_pages);
1808 			folio_unlock(folio);
1809 			continue;
1810 		}
1811 
1812 		/*
1813 		 * Anonymous process memory has backing store?
1814 		 * Try to allocate it some swap space here.
1815 		 * Lazyfree folio could be freed directly
1816 		 */
1817 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1818 			if (!folio_test_swapcache(folio)) {
1819 				if (!(sc->gfp_mask & __GFP_IO))
1820 					goto keep_locked;
1821 				if (folio_maybe_dma_pinned(folio))
1822 					goto keep_locked;
1823 				if (folio_test_large(folio)) {
1824 					/* cannot split folio, skip it */
1825 					if (!can_split_folio(folio, NULL))
1826 						goto activate_locked;
1827 					/*
1828 					 * Split folios without a PMD map right
1829 					 * away. Chances are some or all of the
1830 					 * tail pages can be freed without IO.
1831 					 */
1832 					if (!folio_entire_mapcount(folio) &&
1833 					    split_folio_to_list(folio,
1834 								page_list))
1835 						goto activate_locked;
1836 				}
1837 				if (!add_to_swap(folio)) {
1838 					if (!folio_test_large(folio))
1839 						goto activate_locked_split;
1840 					/* Fallback to swap normal pages */
1841 					if (split_folio_to_list(folio,
1842 								page_list))
1843 						goto activate_locked;
1844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1845 					count_vm_event(THP_SWPOUT_FALLBACK);
1846 #endif
1847 					if (!add_to_swap(folio))
1848 						goto activate_locked_split;
1849 				}
1850 			}
1851 		} else if (folio_test_swapbacked(folio) &&
1852 			   folio_test_large(folio)) {
1853 			/* Split shmem folio */
1854 			if (split_folio_to_list(folio, page_list))
1855 				goto keep_locked;
1856 		}
1857 
1858 		/*
1859 		 * If the folio was split above, the tail pages will make
1860 		 * their own pass through this function and be accounted
1861 		 * then.
1862 		 */
1863 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1864 			sc->nr_scanned -= (nr_pages - 1);
1865 			nr_pages = 1;
1866 		}
1867 
1868 		/*
1869 		 * The folio is mapped into the page tables of one or more
1870 		 * processes. Try to unmap it here.
1871 		 */
1872 		if (folio_mapped(folio)) {
1873 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1874 			bool was_swapbacked = folio_test_swapbacked(folio);
1875 
1876 			if (folio_test_pmd_mappable(folio))
1877 				flags |= TTU_SPLIT_HUGE_PMD;
1878 
1879 			try_to_unmap(folio, flags);
1880 			if (folio_mapped(folio)) {
1881 				stat->nr_unmap_fail += nr_pages;
1882 				if (!was_swapbacked &&
1883 				    folio_test_swapbacked(folio))
1884 					stat->nr_lazyfree_fail += nr_pages;
1885 				goto activate_locked;
1886 			}
1887 		}
1888 
1889 		mapping = folio_mapping(folio);
1890 		if (folio_test_dirty(folio)) {
1891 			/*
1892 			 * Only kswapd can writeback filesystem folios
1893 			 * to avoid risk of stack overflow. But avoid
1894 			 * injecting inefficient single-folio I/O into
1895 			 * flusher writeback as much as possible: only
1896 			 * write folios when we've encountered many
1897 			 * dirty folios, and when we've already scanned
1898 			 * the rest of the LRU for clean folios and see
1899 			 * the same dirty folios again (with the reclaim
1900 			 * flag set).
1901 			 */
1902 			if (folio_is_file_lru(folio) &&
1903 			    (!current_is_kswapd() ||
1904 			     !folio_test_reclaim(folio) ||
1905 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1906 				/*
1907 				 * Immediately reclaim when written back.
1908 				 * Similar in principle to deactivate_page()
1909 				 * except we already have the folio isolated
1910 				 * and know it's dirty
1911 				 */
1912 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1913 						nr_pages);
1914 				folio_set_reclaim(folio);
1915 
1916 				goto activate_locked;
1917 			}
1918 
1919 			if (references == PAGEREF_RECLAIM_CLEAN)
1920 				goto keep_locked;
1921 			if (!may_enter_fs(folio, sc->gfp_mask))
1922 				goto keep_locked;
1923 			if (!sc->may_writepage)
1924 				goto keep_locked;
1925 
1926 			/*
1927 			 * Folio is dirty. Flush the TLB if a writable entry
1928 			 * potentially exists to avoid CPU writes after I/O
1929 			 * starts and then write it out here.
1930 			 */
1931 			try_to_unmap_flush_dirty();
1932 			switch (pageout(folio, mapping, &plug)) {
1933 			case PAGE_KEEP:
1934 				goto keep_locked;
1935 			case PAGE_ACTIVATE:
1936 				goto activate_locked;
1937 			case PAGE_SUCCESS:
1938 				stat->nr_pageout += nr_pages;
1939 
1940 				if (folio_test_writeback(folio))
1941 					goto keep;
1942 				if (folio_test_dirty(folio))
1943 					goto keep;
1944 
1945 				/*
1946 				 * A synchronous write - probably a ramdisk.  Go
1947 				 * ahead and try to reclaim the folio.
1948 				 */
1949 				if (!folio_trylock(folio))
1950 					goto keep;
1951 				if (folio_test_dirty(folio) ||
1952 				    folio_test_writeback(folio))
1953 					goto keep_locked;
1954 				mapping = folio_mapping(folio);
1955 				fallthrough;
1956 			case PAGE_CLEAN:
1957 				; /* try to free the folio below */
1958 			}
1959 		}
1960 
1961 		/*
1962 		 * If the folio has buffers, try to free the buffer
1963 		 * mappings associated with this folio. If we succeed
1964 		 * we try to free the folio as well.
1965 		 *
1966 		 * We do this even if the folio is dirty.
1967 		 * filemap_release_folio() does not perform I/O, but it
1968 		 * is possible for a folio to have the dirty flag set,
1969 		 * but it is actually clean (all its buffers are clean).
1970 		 * This happens if the buffers were written out directly,
1971 		 * with submit_bh(). ext3 will do this, as well as
1972 		 * the blockdev mapping.  filemap_release_folio() will
1973 		 * discover that cleanness and will drop the buffers
1974 		 * and mark the folio clean - it can be freed.
1975 		 *
1976 		 * Rarely, folios can have buffers and no ->mapping.
1977 		 * These are the folios which were not successfully
1978 		 * invalidated in truncate_cleanup_folio().  We try to
1979 		 * drop those buffers here and if that worked, and the
1980 		 * folio is no longer mapped into process address space
1981 		 * (refcount == 1) it can be freed.  Otherwise, leave
1982 		 * the folio on the LRU so it is swappable.
1983 		 */
1984 		if (folio_has_private(folio)) {
1985 			if (!filemap_release_folio(folio, sc->gfp_mask))
1986 				goto activate_locked;
1987 			if (!mapping && folio_ref_count(folio) == 1) {
1988 				folio_unlock(folio);
1989 				if (folio_put_testzero(folio))
1990 					goto free_it;
1991 				else {
1992 					/*
1993 					 * rare race with speculative reference.
1994 					 * the speculative reference will free
1995 					 * this folio shortly, so we may
1996 					 * increment nr_reclaimed here (and
1997 					 * leave it off the LRU).
1998 					 */
1999 					nr_reclaimed += nr_pages;
2000 					continue;
2001 				}
2002 			}
2003 		}
2004 
2005 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2006 			/* follow __remove_mapping for reference */
2007 			if (!folio_ref_freeze(folio, 1))
2008 				goto keep_locked;
2009 			/*
2010 			 * The folio has only one reference left, which is
2011 			 * from the isolation. After the caller puts the
2012 			 * folio back on the lru and drops the reference, the
2013 			 * folio will be freed anyway. It doesn't matter
2014 			 * which lru it goes on. So we don't bother checking
2015 			 * the dirty flag here.
2016 			 */
2017 			count_vm_events(PGLAZYFREED, nr_pages);
2018 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2019 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2020 							 sc->target_mem_cgroup))
2021 			goto keep_locked;
2022 
2023 		folio_unlock(folio);
2024 free_it:
2025 		/*
2026 		 * Folio may get swapped out as a whole, need to account
2027 		 * all pages in it.
2028 		 */
2029 		nr_reclaimed += nr_pages;
2030 
2031 		/*
2032 		 * Is there need to periodically free_page_list? It would
2033 		 * appear not as the counts should be low
2034 		 */
2035 		if (unlikely(folio_test_large(folio)))
2036 			destroy_large_folio(folio);
2037 		else
2038 			list_add(&folio->lru, &free_pages);
2039 		continue;
2040 
2041 activate_locked_split:
2042 		/*
2043 		 * The tail pages that are failed to add into swap cache
2044 		 * reach here.  Fixup nr_scanned and nr_pages.
2045 		 */
2046 		if (nr_pages > 1) {
2047 			sc->nr_scanned -= (nr_pages - 1);
2048 			nr_pages = 1;
2049 		}
2050 activate_locked:
2051 		/* Not a candidate for swapping, so reclaim swap space. */
2052 		if (folio_test_swapcache(folio) &&
2053 		    (mem_cgroup_swap_full(&folio->page) ||
2054 		     folio_test_mlocked(folio)))
2055 			try_to_free_swap(&folio->page);
2056 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2057 		if (!folio_test_mlocked(folio)) {
2058 			int type = folio_is_file_lru(folio);
2059 			folio_set_active(folio);
2060 			stat->nr_activate[type] += nr_pages;
2061 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2062 		}
2063 keep_locked:
2064 		folio_unlock(folio);
2065 keep:
2066 		list_add(&folio->lru, &ret_pages);
2067 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2068 				folio_test_unevictable(folio), folio);
2069 	}
2070 	/* 'page_list' is always empty here */
2071 
2072 	/* Migrate folios selected for demotion */
2073 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
2074 	/* Folios that could not be demoted are still in @demote_pages */
2075 	if (!list_empty(&demote_pages)) {
2076 		/* Folios which weren't demoted go back on @page_list for retry: */
2077 		list_splice_init(&demote_pages, page_list);
2078 		do_demote_pass = false;
2079 		goto retry;
2080 	}
2081 
2082 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2083 
2084 	mem_cgroup_uncharge_list(&free_pages);
2085 	try_to_unmap_flush();
2086 	free_unref_page_list(&free_pages);
2087 
2088 	list_splice(&ret_pages, page_list);
2089 	count_vm_events(PGACTIVATE, pgactivate);
2090 
2091 	if (plug)
2092 		swap_write_unplug(plug);
2093 	return nr_reclaimed;
2094 }
2095 
2096 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2097 					    struct list_head *folio_list)
2098 {
2099 	struct scan_control sc = {
2100 		.gfp_mask = GFP_KERNEL,
2101 		.may_unmap = 1,
2102 	};
2103 	struct reclaim_stat stat;
2104 	unsigned int nr_reclaimed;
2105 	struct folio *folio, *next;
2106 	LIST_HEAD(clean_folios);
2107 	unsigned int noreclaim_flag;
2108 
2109 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2110 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2111 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2112 		    !folio_test_unevictable(folio)) {
2113 			folio_clear_active(folio);
2114 			list_move(&folio->lru, &clean_folios);
2115 		}
2116 	}
2117 
2118 	/*
2119 	 * We should be safe here since we are only dealing with file pages and
2120 	 * we are not kswapd and therefore cannot write dirty file pages. But
2121 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2122 	 * change in the future.
2123 	 */
2124 	noreclaim_flag = memalloc_noreclaim_save();
2125 	nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc,
2126 					&stat, true);
2127 	memalloc_noreclaim_restore(noreclaim_flag);
2128 
2129 	list_splice(&clean_folios, folio_list);
2130 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2131 			    -(long)nr_reclaimed);
2132 	/*
2133 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2134 	 * they will rotate back to anonymous LRU in the end if it failed to
2135 	 * discard so isolated count will be mismatched.
2136 	 * Compensate the isolated count for both LRU lists.
2137 	 */
2138 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2139 			    stat.nr_lazyfree_fail);
2140 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2141 			    -(long)stat.nr_lazyfree_fail);
2142 	return nr_reclaimed;
2143 }
2144 
2145 /*
2146  * Update LRU sizes after isolating pages. The LRU size updates must
2147  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2148  */
2149 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2150 			enum lru_list lru, unsigned long *nr_zone_taken)
2151 {
2152 	int zid;
2153 
2154 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2155 		if (!nr_zone_taken[zid])
2156 			continue;
2157 
2158 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2159 	}
2160 
2161 }
2162 
2163 /*
2164  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2165  *
2166  * lruvec->lru_lock is heavily contended.  Some of the functions that
2167  * shrink the lists perform better by taking out a batch of pages
2168  * and working on them outside the LRU lock.
2169  *
2170  * For pagecache intensive workloads, this function is the hottest
2171  * spot in the kernel (apart from copy_*_user functions).
2172  *
2173  * Lru_lock must be held before calling this function.
2174  *
2175  * @nr_to_scan:	The number of eligible pages to look through on the list.
2176  * @lruvec:	The LRU vector to pull pages from.
2177  * @dst:	The temp list to put pages on to.
2178  * @nr_scanned:	The number of pages that were scanned.
2179  * @sc:		The scan_control struct for this reclaim session
2180  * @lru:	LRU list id for isolating
2181  *
2182  * returns how many pages were moved onto *@dst.
2183  */
2184 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2185 		struct lruvec *lruvec, struct list_head *dst,
2186 		unsigned long *nr_scanned, struct scan_control *sc,
2187 		enum lru_list lru)
2188 {
2189 	struct list_head *src = &lruvec->lists[lru];
2190 	unsigned long nr_taken = 0;
2191 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2192 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2193 	unsigned long skipped = 0;
2194 	unsigned long scan, total_scan, nr_pages;
2195 	LIST_HEAD(folios_skipped);
2196 
2197 	total_scan = 0;
2198 	scan = 0;
2199 	while (scan < nr_to_scan && !list_empty(src)) {
2200 		struct list_head *move_to = src;
2201 		struct folio *folio;
2202 
2203 		folio = lru_to_folio(src);
2204 		prefetchw_prev_lru_folio(folio, src, flags);
2205 
2206 		nr_pages = folio_nr_pages(folio);
2207 		total_scan += nr_pages;
2208 
2209 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2210 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2211 			move_to = &folios_skipped;
2212 			goto move;
2213 		}
2214 
2215 		/*
2216 		 * Do not count skipped folios because that makes the function
2217 		 * return with no isolated folios if the LRU mostly contains
2218 		 * ineligible folios.  This causes the VM to not reclaim any
2219 		 * folios, triggering a premature OOM.
2220 		 * Account all pages in a folio.
2221 		 */
2222 		scan += nr_pages;
2223 
2224 		if (!folio_test_lru(folio))
2225 			goto move;
2226 		if (!sc->may_unmap && folio_mapped(folio))
2227 			goto move;
2228 
2229 		/*
2230 		 * Be careful not to clear the lru flag until after we're
2231 		 * sure the folio is not being freed elsewhere -- the
2232 		 * folio release code relies on it.
2233 		 */
2234 		if (unlikely(!folio_try_get(folio)))
2235 			goto move;
2236 
2237 		if (!folio_test_clear_lru(folio)) {
2238 			/* Another thread is already isolating this folio */
2239 			folio_put(folio);
2240 			goto move;
2241 		}
2242 
2243 		nr_taken += nr_pages;
2244 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2245 		move_to = dst;
2246 move:
2247 		list_move(&folio->lru, move_to);
2248 	}
2249 
2250 	/*
2251 	 * Splice any skipped folios to the start of the LRU list. Note that
2252 	 * this disrupts the LRU order when reclaiming for lower zones but
2253 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2254 	 * scanning would soon rescan the same folios to skip and waste lots
2255 	 * of cpu cycles.
2256 	 */
2257 	if (!list_empty(&folios_skipped)) {
2258 		int zid;
2259 
2260 		list_splice(&folios_skipped, src);
2261 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2262 			if (!nr_skipped[zid])
2263 				continue;
2264 
2265 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2266 			skipped += nr_skipped[zid];
2267 		}
2268 	}
2269 	*nr_scanned = total_scan;
2270 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2271 				    total_scan, skipped, nr_taken,
2272 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2273 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2274 	return nr_taken;
2275 }
2276 
2277 /**
2278  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2279  * @folio: Folio to isolate from its LRU list.
2280  *
2281  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2282  * corresponding to whatever LRU list the folio was on.
2283  *
2284  * The folio will have its LRU flag cleared.  If it was found on the
2285  * active list, it will have the Active flag set.  If it was found on the
2286  * unevictable list, it will have the Unevictable flag set.  These flags
2287  * may need to be cleared by the caller before letting the page go.
2288  *
2289  * Context:
2290  *
2291  * (1) Must be called with an elevated refcount on the page. This is a
2292  *     fundamental difference from isolate_lru_pages() (which is called
2293  *     without a stable reference).
2294  * (2) The lru_lock must not be held.
2295  * (3) Interrupts must be enabled.
2296  *
2297  * Return: 0 if the folio was removed from an LRU list.
2298  * -EBUSY if the folio was not on an LRU list.
2299  */
2300 int folio_isolate_lru(struct folio *folio)
2301 {
2302 	int ret = -EBUSY;
2303 
2304 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2305 
2306 	if (folio_test_clear_lru(folio)) {
2307 		struct lruvec *lruvec;
2308 
2309 		folio_get(folio);
2310 		lruvec = folio_lruvec_lock_irq(folio);
2311 		lruvec_del_folio(lruvec, folio);
2312 		unlock_page_lruvec_irq(lruvec);
2313 		ret = 0;
2314 	}
2315 
2316 	return ret;
2317 }
2318 
2319 /*
2320  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2321  * then get rescheduled. When there are massive number of tasks doing page
2322  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2323  * the LRU list will go small and be scanned faster than necessary, leading to
2324  * unnecessary swapping, thrashing and OOM.
2325  */
2326 static int too_many_isolated(struct pglist_data *pgdat, int file,
2327 		struct scan_control *sc)
2328 {
2329 	unsigned long inactive, isolated;
2330 	bool too_many;
2331 
2332 	if (current_is_kswapd())
2333 		return 0;
2334 
2335 	if (!writeback_throttling_sane(sc))
2336 		return 0;
2337 
2338 	if (file) {
2339 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2340 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2341 	} else {
2342 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2343 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2344 	}
2345 
2346 	/*
2347 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2348 	 * won't get blocked by normal direct-reclaimers, forming a circular
2349 	 * deadlock.
2350 	 */
2351 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2352 		inactive >>= 3;
2353 
2354 	too_many = isolated > inactive;
2355 
2356 	/* Wake up tasks throttled due to too_many_isolated. */
2357 	if (!too_many)
2358 		wake_throttle_isolated(pgdat);
2359 
2360 	return too_many;
2361 }
2362 
2363 /*
2364  * move_pages_to_lru() moves folios from private @list to appropriate LRU list.
2365  * On return, @list is reused as a list of folios to be freed by the caller.
2366  *
2367  * Returns the number of pages moved to the given lruvec.
2368  */
2369 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2370 				      struct list_head *list)
2371 {
2372 	int nr_pages, nr_moved = 0;
2373 	LIST_HEAD(folios_to_free);
2374 
2375 	while (!list_empty(list)) {
2376 		struct folio *folio = lru_to_folio(list);
2377 
2378 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2379 		list_del(&folio->lru);
2380 		if (unlikely(!folio_evictable(folio))) {
2381 			spin_unlock_irq(&lruvec->lru_lock);
2382 			folio_putback_lru(folio);
2383 			spin_lock_irq(&lruvec->lru_lock);
2384 			continue;
2385 		}
2386 
2387 		/*
2388 		 * The folio_set_lru needs to be kept here for list integrity.
2389 		 * Otherwise:
2390 		 *   #0 move_pages_to_lru             #1 release_pages
2391 		 *   if (!folio_put_testzero())
2392 		 *				      if (folio_put_testzero())
2393 		 *				        !lru //skip lru_lock
2394 		 *     folio_set_lru()
2395 		 *     list_add(&folio->lru,)
2396 		 *                                        list_add(&folio->lru,)
2397 		 */
2398 		folio_set_lru(folio);
2399 
2400 		if (unlikely(folio_put_testzero(folio))) {
2401 			__folio_clear_lru_flags(folio);
2402 
2403 			if (unlikely(folio_test_large(folio))) {
2404 				spin_unlock_irq(&lruvec->lru_lock);
2405 				destroy_large_folio(folio);
2406 				spin_lock_irq(&lruvec->lru_lock);
2407 			} else
2408 				list_add(&folio->lru, &folios_to_free);
2409 
2410 			continue;
2411 		}
2412 
2413 		/*
2414 		 * All pages were isolated from the same lruvec (and isolation
2415 		 * inhibits memcg migration).
2416 		 */
2417 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2418 		lruvec_add_folio(lruvec, folio);
2419 		nr_pages = folio_nr_pages(folio);
2420 		nr_moved += nr_pages;
2421 		if (folio_test_active(folio))
2422 			workingset_age_nonresident(lruvec, nr_pages);
2423 	}
2424 
2425 	/*
2426 	 * To save our caller's stack, now use input list for pages to free.
2427 	 */
2428 	list_splice(&folios_to_free, list);
2429 
2430 	return nr_moved;
2431 }
2432 
2433 /*
2434  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2435  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2436  * we should not throttle.  Otherwise it is safe to do so.
2437  */
2438 static int current_may_throttle(void)
2439 {
2440 	return !(current->flags & PF_LOCAL_THROTTLE);
2441 }
2442 
2443 /*
2444  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2445  * of reclaimed pages
2446  */
2447 static unsigned long
2448 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2449 		     struct scan_control *sc, enum lru_list lru)
2450 {
2451 	LIST_HEAD(page_list);
2452 	unsigned long nr_scanned;
2453 	unsigned int nr_reclaimed = 0;
2454 	unsigned long nr_taken;
2455 	struct reclaim_stat stat;
2456 	bool file = is_file_lru(lru);
2457 	enum vm_event_item item;
2458 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2459 	bool stalled = false;
2460 
2461 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2462 		if (stalled)
2463 			return 0;
2464 
2465 		/* wait a bit for the reclaimer. */
2466 		stalled = true;
2467 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2468 
2469 		/* We are about to die and free our memory. Return now. */
2470 		if (fatal_signal_pending(current))
2471 			return SWAP_CLUSTER_MAX;
2472 	}
2473 
2474 	lru_add_drain();
2475 
2476 	spin_lock_irq(&lruvec->lru_lock);
2477 
2478 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2479 				     &nr_scanned, sc, lru);
2480 
2481 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2482 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2483 	if (!cgroup_reclaim(sc))
2484 		__count_vm_events(item, nr_scanned);
2485 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2486 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2487 
2488 	spin_unlock_irq(&lruvec->lru_lock);
2489 
2490 	if (nr_taken == 0)
2491 		return 0;
2492 
2493 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2494 
2495 	spin_lock_irq(&lruvec->lru_lock);
2496 	move_pages_to_lru(lruvec, &page_list);
2497 
2498 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2499 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2500 	if (!cgroup_reclaim(sc))
2501 		__count_vm_events(item, nr_reclaimed);
2502 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2503 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2504 	spin_unlock_irq(&lruvec->lru_lock);
2505 
2506 	lru_note_cost(lruvec, file, stat.nr_pageout);
2507 	mem_cgroup_uncharge_list(&page_list);
2508 	free_unref_page_list(&page_list);
2509 
2510 	/*
2511 	 * If dirty pages are scanned that are not queued for IO, it
2512 	 * implies that flushers are not doing their job. This can
2513 	 * happen when memory pressure pushes dirty pages to the end of
2514 	 * the LRU before the dirty limits are breached and the dirty
2515 	 * data has expired. It can also happen when the proportion of
2516 	 * dirty pages grows not through writes but through memory
2517 	 * pressure reclaiming all the clean cache. And in some cases,
2518 	 * the flushers simply cannot keep up with the allocation
2519 	 * rate. Nudge the flusher threads in case they are asleep.
2520 	 */
2521 	if (stat.nr_unqueued_dirty == nr_taken)
2522 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2523 
2524 	sc->nr.dirty += stat.nr_dirty;
2525 	sc->nr.congested += stat.nr_congested;
2526 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2527 	sc->nr.writeback += stat.nr_writeback;
2528 	sc->nr.immediate += stat.nr_immediate;
2529 	sc->nr.taken += nr_taken;
2530 	if (file)
2531 		sc->nr.file_taken += nr_taken;
2532 
2533 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2534 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2535 	return nr_reclaimed;
2536 }
2537 
2538 /*
2539  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2540  *
2541  * We move them the other way if the folio is referenced by one or more
2542  * processes.
2543  *
2544  * If the folios are mostly unmapped, the processing is fast and it is
2545  * appropriate to hold lru_lock across the whole operation.  But if
2546  * the folios are mapped, the processing is slow (folio_referenced()), so
2547  * we should drop lru_lock around each folio.  It's impossible to balance
2548  * this, so instead we remove the folios from the LRU while processing them.
2549  * It is safe to rely on the active flag against the non-LRU folios in here
2550  * because nobody will play with that bit on a non-LRU folio.
2551  *
2552  * The downside is that we have to touch folio->_refcount against each folio.
2553  * But we had to alter folio->flags anyway.
2554  */
2555 static void shrink_active_list(unsigned long nr_to_scan,
2556 			       struct lruvec *lruvec,
2557 			       struct scan_control *sc,
2558 			       enum lru_list lru)
2559 {
2560 	unsigned long nr_taken;
2561 	unsigned long nr_scanned;
2562 	unsigned long vm_flags;
2563 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2564 	LIST_HEAD(l_active);
2565 	LIST_HEAD(l_inactive);
2566 	unsigned nr_deactivate, nr_activate;
2567 	unsigned nr_rotated = 0;
2568 	int file = is_file_lru(lru);
2569 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2570 
2571 	lru_add_drain();
2572 
2573 	spin_lock_irq(&lruvec->lru_lock);
2574 
2575 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2576 				     &nr_scanned, sc, lru);
2577 
2578 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2579 
2580 	if (!cgroup_reclaim(sc))
2581 		__count_vm_events(PGREFILL, nr_scanned);
2582 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2583 
2584 	spin_unlock_irq(&lruvec->lru_lock);
2585 
2586 	while (!list_empty(&l_hold)) {
2587 		struct folio *folio;
2588 
2589 		cond_resched();
2590 		folio = lru_to_folio(&l_hold);
2591 		list_del(&folio->lru);
2592 
2593 		if (unlikely(!folio_evictable(folio))) {
2594 			folio_putback_lru(folio);
2595 			continue;
2596 		}
2597 
2598 		if (unlikely(buffer_heads_over_limit)) {
2599 			if (folio_test_private(folio) && folio_trylock(folio)) {
2600 				if (folio_test_private(folio))
2601 					filemap_release_folio(folio, 0);
2602 				folio_unlock(folio);
2603 			}
2604 		}
2605 
2606 		/* Referenced or rmap lock contention: rotate */
2607 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2608 				     &vm_flags) != 0) {
2609 			/*
2610 			 * Identify referenced, file-backed active folios and
2611 			 * give them one more trip around the active list. So
2612 			 * that executable code get better chances to stay in
2613 			 * memory under moderate memory pressure.  Anon folios
2614 			 * are not likely to be evicted by use-once streaming
2615 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2616 			 * so we ignore them here.
2617 			 */
2618 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2619 				nr_rotated += folio_nr_pages(folio);
2620 				list_add(&folio->lru, &l_active);
2621 				continue;
2622 			}
2623 		}
2624 
2625 		folio_clear_active(folio);	/* we are de-activating */
2626 		folio_set_workingset(folio);
2627 		list_add(&folio->lru, &l_inactive);
2628 	}
2629 
2630 	/*
2631 	 * Move folios back to the lru list.
2632 	 */
2633 	spin_lock_irq(&lruvec->lru_lock);
2634 
2635 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2636 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2637 	/* Keep all free folios in l_active list */
2638 	list_splice(&l_inactive, &l_active);
2639 
2640 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2641 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2642 
2643 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2644 	spin_unlock_irq(&lruvec->lru_lock);
2645 
2646 	mem_cgroup_uncharge_list(&l_active);
2647 	free_unref_page_list(&l_active);
2648 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2649 			nr_deactivate, nr_rotated, sc->priority, file);
2650 }
2651 
2652 static unsigned int reclaim_page_list(struct list_head *page_list,
2653 				      struct pglist_data *pgdat)
2654 {
2655 	struct reclaim_stat dummy_stat;
2656 	unsigned int nr_reclaimed;
2657 	struct folio *folio;
2658 	struct scan_control sc = {
2659 		.gfp_mask = GFP_KERNEL,
2660 		.may_writepage = 1,
2661 		.may_unmap = 1,
2662 		.may_swap = 1,
2663 		.no_demotion = 1,
2664 	};
2665 
2666 	nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2667 	while (!list_empty(page_list)) {
2668 		folio = lru_to_folio(page_list);
2669 		list_del(&folio->lru);
2670 		folio_putback_lru(folio);
2671 	}
2672 
2673 	return nr_reclaimed;
2674 }
2675 
2676 unsigned long reclaim_pages(struct list_head *folio_list)
2677 {
2678 	int nid;
2679 	unsigned int nr_reclaimed = 0;
2680 	LIST_HEAD(node_folio_list);
2681 	unsigned int noreclaim_flag;
2682 
2683 	if (list_empty(folio_list))
2684 		return nr_reclaimed;
2685 
2686 	noreclaim_flag = memalloc_noreclaim_save();
2687 
2688 	nid = folio_nid(lru_to_folio(folio_list));
2689 	do {
2690 		struct folio *folio = lru_to_folio(folio_list);
2691 
2692 		if (nid == folio_nid(folio)) {
2693 			folio_clear_active(folio);
2694 			list_move(&folio->lru, &node_folio_list);
2695 			continue;
2696 		}
2697 
2698 		nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2699 		nid = folio_nid(lru_to_folio(folio_list));
2700 	} while (!list_empty(folio_list));
2701 
2702 	nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2703 
2704 	memalloc_noreclaim_restore(noreclaim_flag);
2705 
2706 	return nr_reclaimed;
2707 }
2708 
2709 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2710 				 struct lruvec *lruvec, struct scan_control *sc)
2711 {
2712 	if (is_active_lru(lru)) {
2713 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2714 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2715 		else
2716 			sc->skipped_deactivate = 1;
2717 		return 0;
2718 	}
2719 
2720 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2721 }
2722 
2723 /*
2724  * The inactive anon list should be small enough that the VM never has
2725  * to do too much work.
2726  *
2727  * The inactive file list should be small enough to leave most memory
2728  * to the established workingset on the scan-resistant active list,
2729  * but large enough to avoid thrashing the aggregate readahead window.
2730  *
2731  * Both inactive lists should also be large enough that each inactive
2732  * page has a chance to be referenced again before it is reclaimed.
2733  *
2734  * If that fails and refaulting is observed, the inactive list grows.
2735  *
2736  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2737  * on this LRU, maintained by the pageout code. An inactive_ratio
2738  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2739  *
2740  * total     target    max
2741  * memory    ratio     inactive
2742  * -------------------------------------
2743  *   10MB       1         5MB
2744  *  100MB       1        50MB
2745  *    1GB       3       250MB
2746  *   10GB      10       0.9GB
2747  *  100GB      31         3GB
2748  *    1TB     101        10GB
2749  *   10TB     320        32GB
2750  */
2751 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2752 {
2753 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2754 	unsigned long inactive, active;
2755 	unsigned long inactive_ratio;
2756 	unsigned long gb;
2757 
2758 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2759 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2760 
2761 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2762 	if (gb)
2763 		inactive_ratio = int_sqrt(10 * gb);
2764 	else
2765 		inactive_ratio = 1;
2766 
2767 	return inactive * inactive_ratio < active;
2768 }
2769 
2770 enum scan_balance {
2771 	SCAN_EQUAL,
2772 	SCAN_FRACT,
2773 	SCAN_ANON,
2774 	SCAN_FILE,
2775 };
2776 
2777 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2778 {
2779 	unsigned long file;
2780 	struct lruvec *target_lruvec;
2781 
2782 	if (lru_gen_enabled())
2783 		return;
2784 
2785 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2786 
2787 	/*
2788 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2789 	 * lruvec stats for heuristics.
2790 	 */
2791 	mem_cgroup_flush_stats();
2792 
2793 	/*
2794 	 * Determine the scan balance between anon and file LRUs.
2795 	 */
2796 	spin_lock_irq(&target_lruvec->lru_lock);
2797 	sc->anon_cost = target_lruvec->anon_cost;
2798 	sc->file_cost = target_lruvec->file_cost;
2799 	spin_unlock_irq(&target_lruvec->lru_lock);
2800 
2801 	/*
2802 	 * Target desirable inactive:active list ratios for the anon
2803 	 * and file LRU lists.
2804 	 */
2805 	if (!sc->force_deactivate) {
2806 		unsigned long refaults;
2807 
2808 		/*
2809 		 * When refaults are being observed, it means a new
2810 		 * workingset is being established. Deactivate to get
2811 		 * rid of any stale active pages quickly.
2812 		 */
2813 		refaults = lruvec_page_state(target_lruvec,
2814 				WORKINGSET_ACTIVATE_ANON);
2815 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2816 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2817 			sc->may_deactivate |= DEACTIVATE_ANON;
2818 		else
2819 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2820 
2821 		refaults = lruvec_page_state(target_lruvec,
2822 				WORKINGSET_ACTIVATE_FILE);
2823 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2824 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2825 			sc->may_deactivate |= DEACTIVATE_FILE;
2826 		else
2827 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2828 	} else
2829 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2830 
2831 	/*
2832 	 * If we have plenty of inactive file pages that aren't
2833 	 * thrashing, try to reclaim those first before touching
2834 	 * anonymous pages.
2835 	 */
2836 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2837 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2838 		sc->cache_trim_mode = 1;
2839 	else
2840 		sc->cache_trim_mode = 0;
2841 
2842 	/*
2843 	 * Prevent the reclaimer from falling into the cache trap: as
2844 	 * cache pages start out inactive, every cache fault will tip
2845 	 * the scan balance towards the file LRU.  And as the file LRU
2846 	 * shrinks, so does the window for rotation from references.
2847 	 * This means we have a runaway feedback loop where a tiny
2848 	 * thrashing file LRU becomes infinitely more attractive than
2849 	 * anon pages.  Try to detect this based on file LRU size.
2850 	 */
2851 	if (!cgroup_reclaim(sc)) {
2852 		unsigned long total_high_wmark = 0;
2853 		unsigned long free, anon;
2854 		int z;
2855 
2856 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2857 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2858 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2859 
2860 		for (z = 0; z < MAX_NR_ZONES; z++) {
2861 			struct zone *zone = &pgdat->node_zones[z];
2862 
2863 			if (!managed_zone(zone))
2864 				continue;
2865 
2866 			total_high_wmark += high_wmark_pages(zone);
2867 		}
2868 
2869 		/*
2870 		 * Consider anon: if that's low too, this isn't a
2871 		 * runaway file reclaim problem, but rather just
2872 		 * extreme pressure. Reclaim as per usual then.
2873 		 */
2874 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2875 
2876 		sc->file_is_tiny =
2877 			file + free <= total_high_wmark &&
2878 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2879 			anon >> sc->priority;
2880 	}
2881 }
2882 
2883 /*
2884  * Determine how aggressively the anon and file LRU lists should be
2885  * scanned.
2886  *
2887  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2888  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2889  */
2890 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2891 			   unsigned long *nr)
2892 {
2893 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2894 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2895 	unsigned long anon_cost, file_cost, total_cost;
2896 	int swappiness = mem_cgroup_swappiness(memcg);
2897 	u64 fraction[ANON_AND_FILE];
2898 	u64 denominator = 0;	/* gcc */
2899 	enum scan_balance scan_balance;
2900 	unsigned long ap, fp;
2901 	enum lru_list lru;
2902 
2903 	/* If we have no swap space, do not bother scanning anon pages. */
2904 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2905 		scan_balance = SCAN_FILE;
2906 		goto out;
2907 	}
2908 
2909 	/*
2910 	 * Global reclaim will swap to prevent OOM even with no
2911 	 * swappiness, but memcg users want to use this knob to
2912 	 * disable swapping for individual groups completely when
2913 	 * using the memory controller's swap limit feature would be
2914 	 * too expensive.
2915 	 */
2916 	if (cgroup_reclaim(sc) && !swappiness) {
2917 		scan_balance = SCAN_FILE;
2918 		goto out;
2919 	}
2920 
2921 	/*
2922 	 * Do not apply any pressure balancing cleverness when the
2923 	 * system is close to OOM, scan both anon and file equally
2924 	 * (unless the swappiness setting disagrees with swapping).
2925 	 */
2926 	if (!sc->priority && swappiness) {
2927 		scan_balance = SCAN_EQUAL;
2928 		goto out;
2929 	}
2930 
2931 	/*
2932 	 * If the system is almost out of file pages, force-scan anon.
2933 	 */
2934 	if (sc->file_is_tiny) {
2935 		scan_balance = SCAN_ANON;
2936 		goto out;
2937 	}
2938 
2939 	/*
2940 	 * If there is enough inactive page cache, we do not reclaim
2941 	 * anything from the anonymous working right now.
2942 	 */
2943 	if (sc->cache_trim_mode) {
2944 		scan_balance = SCAN_FILE;
2945 		goto out;
2946 	}
2947 
2948 	scan_balance = SCAN_FRACT;
2949 	/*
2950 	 * Calculate the pressure balance between anon and file pages.
2951 	 *
2952 	 * The amount of pressure we put on each LRU is inversely
2953 	 * proportional to the cost of reclaiming each list, as
2954 	 * determined by the share of pages that are refaulting, times
2955 	 * the relative IO cost of bringing back a swapped out
2956 	 * anonymous page vs reloading a filesystem page (swappiness).
2957 	 *
2958 	 * Although we limit that influence to ensure no list gets
2959 	 * left behind completely: at least a third of the pressure is
2960 	 * applied, before swappiness.
2961 	 *
2962 	 * With swappiness at 100, anon and file have equal IO cost.
2963 	 */
2964 	total_cost = sc->anon_cost + sc->file_cost;
2965 	anon_cost = total_cost + sc->anon_cost;
2966 	file_cost = total_cost + sc->file_cost;
2967 	total_cost = anon_cost + file_cost;
2968 
2969 	ap = swappiness * (total_cost + 1);
2970 	ap /= anon_cost + 1;
2971 
2972 	fp = (200 - swappiness) * (total_cost + 1);
2973 	fp /= file_cost + 1;
2974 
2975 	fraction[0] = ap;
2976 	fraction[1] = fp;
2977 	denominator = ap + fp;
2978 out:
2979 	for_each_evictable_lru(lru) {
2980 		int file = is_file_lru(lru);
2981 		unsigned long lruvec_size;
2982 		unsigned long low, min;
2983 		unsigned long scan;
2984 
2985 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2986 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2987 				      &min, &low);
2988 
2989 		if (min || low) {
2990 			/*
2991 			 * Scale a cgroup's reclaim pressure by proportioning
2992 			 * its current usage to its memory.low or memory.min
2993 			 * setting.
2994 			 *
2995 			 * This is important, as otherwise scanning aggression
2996 			 * becomes extremely binary -- from nothing as we
2997 			 * approach the memory protection threshold, to totally
2998 			 * nominal as we exceed it.  This results in requiring
2999 			 * setting extremely liberal protection thresholds. It
3000 			 * also means we simply get no protection at all if we
3001 			 * set it too low, which is not ideal.
3002 			 *
3003 			 * If there is any protection in place, we reduce scan
3004 			 * pressure by how much of the total memory used is
3005 			 * within protection thresholds.
3006 			 *
3007 			 * There is one special case: in the first reclaim pass,
3008 			 * we skip over all groups that are within their low
3009 			 * protection. If that fails to reclaim enough pages to
3010 			 * satisfy the reclaim goal, we come back and override
3011 			 * the best-effort low protection. However, we still
3012 			 * ideally want to honor how well-behaved groups are in
3013 			 * that case instead of simply punishing them all
3014 			 * equally. As such, we reclaim them based on how much
3015 			 * memory they are using, reducing the scan pressure
3016 			 * again by how much of the total memory used is under
3017 			 * hard protection.
3018 			 */
3019 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3020 			unsigned long protection;
3021 
3022 			/* memory.low scaling, make sure we retry before OOM */
3023 			if (!sc->memcg_low_reclaim && low > min) {
3024 				protection = low;
3025 				sc->memcg_low_skipped = 1;
3026 			} else {
3027 				protection = min;
3028 			}
3029 
3030 			/* Avoid TOCTOU with earlier protection check */
3031 			cgroup_size = max(cgroup_size, protection);
3032 
3033 			scan = lruvec_size - lruvec_size * protection /
3034 				(cgroup_size + 1);
3035 
3036 			/*
3037 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3038 			 * reclaim moving forwards, avoiding decrementing
3039 			 * sc->priority further than desirable.
3040 			 */
3041 			scan = max(scan, SWAP_CLUSTER_MAX);
3042 		} else {
3043 			scan = lruvec_size;
3044 		}
3045 
3046 		scan >>= sc->priority;
3047 
3048 		/*
3049 		 * If the cgroup's already been deleted, make sure to
3050 		 * scrape out the remaining cache.
3051 		 */
3052 		if (!scan && !mem_cgroup_online(memcg))
3053 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3054 
3055 		switch (scan_balance) {
3056 		case SCAN_EQUAL:
3057 			/* Scan lists relative to size */
3058 			break;
3059 		case SCAN_FRACT:
3060 			/*
3061 			 * Scan types proportional to swappiness and
3062 			 * their relative recent reclaim efficiency.
3063 			 * Make sure we don't miss the last page on
3064 			 * the offlined memory cgroups because of a
3065 			 * round-off error.
3066 			 */
3067 			scan = mem_cgroup_online(memcg) ?
3068 			       div64_u64(scan * fraction[file], denominator) :
3069 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3070 						  denominator);
3071 			break;
3072 		case SCAN_FILE:
3073 		case SCAN_ANON:
3074 			/* Scan one type exclusively */
3075 			if ((scan_balance == SCAN_FILE) != file)
3076 				scan = 0;
3077 			break;
3078 		default:
3079 			/* Look ma, no brain */
3080 			BUG();
3081 		}
3082 
3083 		nr[lru] = scan;
3084 	}
3085 }
3086 
3087 /*
3088  * Anonymous LRU management is a waste if there is
3089  * ultimately no way to reclaim the memory.
3090  */
3091 static bool can_age_anon_pages(struct pglist_data *pgdat,
3092 			       struct scan_control *sc)
3093 {
3094 	/* Aging the anon LRU is valuable if swap is present: */
3095 	if (total_swap_pages > 0)
3096 		return true;
3097 
3098 	/* Also valuable if anon pages can be demoted: */
3099 	return can_demote(pgdat->node_id, sc);
3100 }
3101 
3102 #ifdef CONFIG_LRU_GEN
3103 
3104 #ifdef CONFIG_LRU_GEN_ENABLED
3105 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3106 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3107 #else
3108 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3109 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3110 #endif
3111 
3112 /******************************************************************************
3113  *                          shorthand helpers
3114  ******************************************************************************/
3115 
3116 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3117 
3118 #define DEFINE_MAX_SEQ(lruvec)						\
3119 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3120 
3121 #define DEFINE_MIN_SEQ(lruvec)						\
3122 	unsigned long min_seq[ANON_AND_FILE] = {			\
3123 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3124 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3125 	}
3126 
3127 #define for_each_gen_type_zone(gen, type, zone)				\
3128 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3129 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3130 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3131 
3132 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3133 {
3134 	struct pglist_data *pgdat = NODE_DATA(nid);
3135 
3136 #ifdef CONFIG_MEMCG
3137 	if (memcg) {
3138 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3139 
3140 		/* for hotadd_new_pgdat() */
3141 		if (!lruvec->pgdat)
3142 			lruvec->pgdat = pgdat;
3143 
3144 		return lruvec;
3145 	}
3146 #endif
3147 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3148 
3149 	return pgdat ? &pgdat->__lruvec : NULL;
3150 }
3151 
3152 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3153 {
3154 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3155 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3156 
3157 	if (!can_demote(pgdat->node_id, sc) &&
3158 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3159 		return 0;
3160 
3161 	return mem_cgroup_swappiness(memcg);
3162 }
3163 
3164 static int get_nr_gens(struct lruvec *lruvec, int type)
3165 {
3166 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3167 }
3168 
3169 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3170 {
3171 	/* see the comment on lru_gen_struct */
3172 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3173 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3174 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3175 }
3176 
3177 /******************************************************************************
3178  *                          mm_struct list
3179  ******************************************************************************/
3180 
3181 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3182 {
3183 	static struct lru_gen_mm_list mm_list = {
3184 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3185 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3186 	};
3187 
3188 #ifdef CONFIG_MEMCG
3189 	if (memcg)
3190 		return &memcg->mm_list;
3191 #endif
3192 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3193 
3194 	return &mm_list;
3195 }
3196 
3197 void lru_gen_add_mm(struct mm_struct *mm)
3198 {
3199 	int nid;
3200 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3201 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3202 
3203 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3204 #ifdef CONFIG_MEMCG
3205 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3206 	mm->lru_gen.memcg = memcg;
3207 #endif
3208 	spin_lock(&mm_list->lock);
3209 
3210 	for_each_node_state(nid, N_MEMORY) {
3211 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3212 
3213 		if (!lruvec)
3214 			continue;
3215 
3216 		/* the first addition since the last iteration */
3217 		if (lruvec->mm_state.tail == &mm_list->fifo)
3218 			lruvec->mm_state.tail = &mm->lru_gen.list;
3219 	}
3220 
3221 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3222 
3223 	spin_unlock(&mm_list->lock);
3224 }
3225 
3226 void lru_gen_del_mm(struct mm_struct *mm)
3227 {
3228 	int nid;
3229 	struct lru_gen_mm_list *mm_list;
3230 	struct mem_cgroup *memcg = NULL;
3231 
3232 	if (list_empty(&mm->lru_gen.list))
3233 		return;
3234 
3235 #ifdef CONFIG_MEMCG
3236 	memcg = mm->lru_gen.memcg;
3237 #endif
3238 	mm_list = get_mm_list(memcg);
3239 
3240 	spin_lock(&mm_list->lock);
3241 
3242 	for_each_node(nid) {
3243 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3244 
3245 		if (!lruvec)
3246 			continue;
3247 
3248 		/* where the last iteration ended (exclusive) */
3249 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3250 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3251 
3252 		/* where the current iteration continues (inclusive) */
3253 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3254 			continue;
3255 
3256 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3257 		/* the deletion ends the current iteration */
3258 		if (lruvec->mm_state.head == &mm_list->fifo)
3259 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3260 	}
3261 
3262 	list_del_init(&mm->lru_gen.list);
3263 
3264 	spin_unlock(&mm_list->lock);
3265 
3266 #ifdef CONFIG_MEMCG
3267 	mem_cgroup_put(mm->lru_gen.memcg);
3268 	mm->lru_gen.memcg = NULL;
3269 #endif
3270 }
3271 
3272 #ifdef CONFIG_MEMCG
3273 void lru_gen_migrate_mm(struct mm_struct *mm)
3274 {
3275 	struct mem_cgroup *memcg;
3276 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3277 
3278 	VM_WARN_ON_ONCE(task->mm != mm);
3279 	lockdep_assert_held(&task->alloc_lock);
3280 
3281 	/* for mm_update_next_owner() */
3282 	if (mem_cgroup_disabled())
3283 		return;
3284 
3285 	rcu_read_lock();
3286 	memcg = mem_cgroup_from_task(task);
3287 	rcu_read_unlock();
3288 	if (memcg == mm->lru_gen.memcg)
3289 		return;
3290 
3291 	VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3292 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3293 
3294 	lru_gen_del_mm(mm);
3295 	lru_gen_add_mm(mm);
3296 }
3297 #endif
3298 
3299 /*
3300  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3301  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3302  * bits in a bitmap, k is the number of hash functions and n is the number of
3303  * inserted items.
3304  *
3305  * Page table walkers use one of the two filters to reduce their search space.
3306  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3307  * aging uses the double-buffering technique to flip to the other filter each
3308  * time it produces a new generation. For non-leaf entries that have enough
3309  * leaf entries, the aging carries them over to the next generation in
3310  * walk_pmd_range(); the eviction also report them when walking the rmap
3311  * in lru_gen_look_around().
3312  *
3313  * For future optimizations:
3314  * 1. It's not necessary to keep both filters all the time. The spare one can be
3315  *    freed after the RCU grace period and reallocated if needed again.
3316  * 2. And when reallocating, it's worth scaling its size according to the number
3317  *    of inserted entries in the other filter, to reduce the memory overhead on
3318  *    small systems and false positives on large systems.
3319  * 3. Jenkins' hash function is an alternative to Knuth's.
3320  */
3321 #define BLOOM_FILTER_SHIFT	15
3322 
3323 static inline int filter_gen_from_seq(unsigned long seq)
3324 {
3325 	return seq % NR_BLOOM_FILTERS;
3326 }
3327 
3328 static void get_item_key(void *item, int *key)
3329 {
3330 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3331 
3332 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3333 
3334 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3335 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3336 }
3337 
3338 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3339 {
3340 	unsigned long *filter;
3341 	int gen = filter_gen_from_seq(seq);
3342 
3343 	filter = lruvec->mm_state.filters[gen];
3344 	if (filter) {
3345 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3346 		return;
3347 	}
3348 
3349 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3350 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3351 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3352 }
3353 
3354 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3355 {
3356 	int key[2];
3357 	unsigned long *filter;
3358 	int gen = filter_gen_from_seq(seq);
3359 
3360 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3361 	if (!filter)
3362 		return;
3363 
3364 	get_item_key(item, key);
3365 
3366 	if (!test_bit(key[0], filter))
3367 		set_bit(key[0], filter);
3368 	if (!test_bit(key[1], filter))
3369 		set_bit(key[1], filter);
3370 }
3371 
3372 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3373 {
3374 	int key[2];
3375 	unsigned long *filter;
3376 	int gen = filter_gen_from_seq(seq);
3377 
3378 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3379 	if (!filter)
3380 		return true;
3381 
3382 	get_item_key(item, key);
3383 
3384 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3385 }
3386 
3387 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3388 {
3389 	int i;
3390 	int hist;
3391 
3392 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3393 
3394 	if (walk) {
3395 		hist = lru_hist_from_seq(walk->max_seq);
3396 
3397 		for (i = 0; i < NR_MM_STATS; i++) {
3398 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3399 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3400 			walk->mm_stats[i] = 0;
3401 		}
3402 	}
3403 
3404 	if (NR_HIST_GENS > 1 && last) {
3405 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3406 
3407 		for (i = 0; i < NR_MM_STATS; i++)
3408 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3409 	}
3410 }
3411 
3412 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3413 {
3414 	int type;
3415 	unsigned long size = 0;
3416 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3417 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3418 
3419 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3420 		return true;
3421 
3422 	clear_bit(key, &mm->lru_gen.bitmap);
3423 
3424 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3425 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3426 			       get_mm_counter(mm, MM_ANONPAGES) +
3427 			       get_mm_counter(mm, MM_SHMEMPAGES);
3428 	}
3429 
3430 	if (size < MIN_LRU_BATCH)
3431 		return true;
3432 
3433 	return !mmget_not_zero(mm);
3434 }
3435 
3436 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3437 			    struct mm_struct **iter)
3438 {
3439 	bool first = false;
3440 	bool last = true;
3441 	struct mm_struct *mm = NULL;
3442 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3443 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3444 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3445 
3446 	/*
3447 	 * There are four interesting cases for this page table walker:
3448 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3449 	 *    there is nothing left to do.
3450 	 * 2. It's the first of the current generation, and it needs to reset
3451 	 *    the Bloom filter for the next generation.
3452 	 * 3. It reaches the end of mm_list, and it needs to increment
3453 	 *    mm_state->seq; the iteration is done.
3454 	 * 4. It's the last of the current generation, and it needs to reset the
3455 	 *    mm stats counters for the next generation.
3456 	 */
3457 	spin_lock(&mm_list->lock);
3458 
3459 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3460 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3461 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3462 
3463 	if (walk->max_seq <= mm_state->seq) {
3464 		if (!*iter)
3465 			last = false;
3466 		goto done;
3467 	}
3468 
3469 	if (!mm_state->nr_walkers) {
3470 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3471 
3472 		mm_state->head = mm_list->fifo.next;
3473 		first = true;
3474 	}
3475 
3476 	while (!mm && mm_state->head != &mm_list->fifo) {
3477 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3478 
3479 		mm_state->head = mm_state->head->next;
3480 
3481 		/* force scan for those added after the last iteration */
3482 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3483 			mm_state->tail = mm_state->head;
3484 			walk->force_scan = true;
3485 		}
3486 
3487 		if (should_skip_mm(mm, walk))
3488 			mm = NULL;
3489 	}
3490 
3491 	if (mm_state->head == &mm_list->fifo)
3492 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3493 done:
3494 	if (*iter && !mm)
3495 		mm_state->nr_walkers--;
3496 	if (!*iter && mm)
3497 		mm_state->nr_walkers++;
3498 
3499 	if (mm_state->nr_walkers)
3500 		last = false;
3501 
3502 	if (*iter || last)
3503 		reset_mm_stats(lruvec, walk, last);
3504 
3505 	spin_unlock(&mm_list->lock);
3506 
3507 	if (mm && first)
3508 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3509 
3510 	if (*iter)
3511 		mmput_async(*iter);
3512 
3513 	*iter = mm;
3514 
3515 	return last;
3516 }
3517 
3518 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3519 {
3520 	bool success = false;
3521 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3522 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3523 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3524 
3525 	spin_lock(&mm_list->lock);
3526 
3527 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3528 
3529 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3530 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3531 
3532 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3533 		reset_mm_stats(lruvec, NULL, true);
3534 		success = true;
3535 	}
3536 
3537 	spin_unlock(&mm_list->lock);
3538 
3539 	return success;
3540 }
3541 
3542 /******************************************************************************
3543  *                          refault feedback loop
3544  ******************************************************************************/
3545 
3546 /*
3547  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3548  *
3549  * The P term is refaulted/(evicted+protected) from a tier in the generation
3550  * currently being evicted; the I term is the exponential moving average of the
3551  * P term over the generations previously evicted, using the smoothing factor
3552  * 1/2; the D term isn't supported.
3553  *
3554  * The setpoint (SP) is always the first tier of one type; the process variable
3555  * (PV) is either any tier of the other type or any other tier of the same
3556  * type.
3557  *
3558  * The error is the difference between the SP and the PV; the correction is to
3559  * turn off protection when SP>PV or turn on protection when SP<PV.
3560  *
3561  * For future optimizations:
3562  * 1. The D term may discount the other two terms over time so that long-lived
3563  *    generations can resist stale information.
3564  */
3565 struct ctrl_pos {
3566 	unsigned long refaulted;
3567 	unsigned long total;
3568 	int gain;
3569 };
3570 
3571 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3572 			  struct ctrl_pos *pos)
3573 {
3574 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3575 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3576 
3577 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3578 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3579 	pos->total = lrugen->avg_total[type][tier] +
3580 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3581 	if (tier)
3582 		pos->total += lrugen->protected[hist][type][tier - 1];
3583 	pos->gain = gain;
3584 }
3585 
3586 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3587 {
3588 	int hist, tier;
3589 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3590 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3591 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3592 
3593 	lockdep_assert_held(&lruvec->lru_lock);
3594 
3595 	if (!carryover && !clear)
3596 		return;
3597 
3598 	hist = lru_hist_from_seq(seq);
3599 
3600 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3601 		if (carryover) {
3602 			unsigned long sum;
3603 
3604 			sum = lrugen->avg_refaulted[type][tier] +
3605 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3606 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3607 
3608 			sum = lrugen->avg_total[type][tier] +
3609 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3610 			if (tier)
3611 				sum += lrugen->protected[hist][type][tier - 1];
3612 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3613 		}
3614 
3615 		if (clear) {
3616 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3617 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3618 			if (tier)
3619 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3620 		}
3621 	}
3622 }
3623 
3624 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3625 {
3626 	/*
3627 	 * Return true if the PV has a limited number of refaults or a lower
3628 	 * refaulted/total than the SP.
3629 	 */
3630 	return pv->refaulted < MIN_LRU_BATCH ||
3631 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3632 	       (sp->refaulted + 1) * pv->total * pv->gain;
3633 }
3634 
3635 /******************************************************************************
3636  *                          the aging
3637  ******************************************************************************/
3638 
3639 /* promote pages accessed through page tables */
3640 static int folio_update_gen(struct folio *folio, int gen)
3641 {
3642 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3643 
3644 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3645 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3646 
3647 	do {
3648 		/* lru_gen_del_folio() has isolated this page? */
3649 		if (!(old_flags & LRU_GEN_MASK)) {
3650 			/* for shrink_page_list() */
3651 			new_flags = old_flags | BIT(PG_referenced);
3652 			continue;
3653 		}
3654 
3655 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3656 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3657 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3658 
3659 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3660 }
3661 
3662 /* protect pages accessed multiple times through file descriptors */
3663 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3664 {
3665 	int type = folio_is_file_lru(folio);
3666 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3667 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3668 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3669 
3670 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3671 
3672 	do {
3673 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3674 		/* folio_update_gen() has promoted this page? */
3675 		if (new_gen >= 0 && new_gen != old_gen)
3676 			return new_gen;
3677 
3678 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3679 
3680 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3681 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3682 		/* for folio_end_writeback() */
3683 		if (reclaiming)
3684 			new_flags |= BIT(PG_reclaim);
3685 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3686 
3687 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3688 
3689 	return new_gen;
3690 }
3691 
3692 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3693 			      int old_gen, int new_gen)
3694 {
3695 	int type = folio_is_file_lru(folio);
3696 	int zone = folio_zonenum(folio);
3697 	int delta = folio_nr_pages(folio);
3698 
3699 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3700 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3701 
3702 	walk->batched++;
3703 
3704 	walk->nr_pages[old_gen][type][zone] -= delta;
3705 	walk->nr_pages[new_gen][type][zone] += delta;
3706 }
3707 
3708 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3709 {
3710 	int gen, type, zone;
3711 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3712 
3713 	walk->batched = 0;
3714 
3715 	for_each_gen_type_zone(gen, type, zone) {
3716 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3717 		int delta = walk->nr_pages[gen][type][zone];
3718 
3719 		if (!delta)
3720 			continue;
3721 
3722 		walk->nr_pages[gen][type][zone] = 0;
3723 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3724 			   lrugen->nr_pages[gen][type][zone] + delta);
3725 
3726 		if (lru_gen_is_active(lruvec, gen))
3727 			lru += LRU_ACTIVE;
3728 		__update_lru_size(lruvec, lru, zone, delta);
3729 	}
3730 }
3731 
3732 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3733 {
3734 	struct address_space *mapping;
3735 	struct vm_area_struct *vma = args->vma;
3736 	struct lru_gen_mm_walk *walk = args->private;
3737 
3738 	if (!vma_is_accessible(vma))
3739 		return true;
3740 
3741 	if (is_vm_hugetlb_page(vma))
3742 		return true;
3743 
3744 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3745 		return true;
3746 
3747 	if (vma == get_gate_vma(vma->vm_mm))
3748 		return true;
3749 
3750 	if (vma_is_anonymous(vma))
3751 		return !walk->can_swap;
3752 
3753 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3754 		return true;
3755 
3756 	mapping = vma->vm_file->f_mapping;
3757 	if (mapping_unevictable(mapping))
3758 		return true;
3759 
3760 	if (shmem_mapping(mapping))
3761 		return !walk->can_swap;
3762 
3763 	/* to exclude special mappings like dax, etc. */
3764 	return !mapping->a_ops->read_folio;
3765 }
3766 
3767 /*
3768  * Some userspace memory allocators map many single-page VMAs. Instead of
3769  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3770  * table to reduce zigzags and improve cache performance.
3771  */
3772 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3773 			 unsigned long *vm_start, unsigned long *vm_end)
3774 {
3775 	unsigned long start = round_up(*vm_end, size);
3776 	unsigned long end = (start | ~mask) + 1;
3777 
3778 	VM_WARN_ON_ONCE(mask & size);
3779 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3780 
3781 	while (args->vma) {
3782 		if (start >= args->vma->vm_end) {
3783 			args->vma = args->vma->vm_next;
3784 			continue;
3785 		}
3786 
3787 		if (end && end <= args->vma->vm_start)
3788 			return false;
3789 
3790 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) {
3791 			args->vma = args->vma->vm_next;
3792 			continue;
3793 		}
3794 
3795 		*vm_start = max(start, args->vma->vm_start);
3796 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3797 
3798 		return true;
3799 	}
3800 
3801 	return false;
3802 }
3803 
3804 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3805 {
3806 	unsigned long pfn = pte_pfn(pte);
3807 
3808 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3809 
3810 	if (!pte_present(pte) || is_zero_pfn(pfn))
3811 		return -1;
3812 
3813 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3814 		return -1;
3815 
3816 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3817 		return -1;
3818 
3819 	return pfn;
3820 }
3821 
3822 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3823 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3824 {
3825 	unsigned long pfn = pmd_pfn(pmd);
3826 
3827 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3828 
3829 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3830 		return -1;
3831 
3832 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3833 		return -1;
3834 
3835 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3836 		return -1;
3837 
3838 	return pfn;
3839 }
3840 #endif
3841 
3842 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3843 				   struct pglist_data *pgdat, bool can_swap)
3844 {
3845 	struct folio *folio;
3846 
3847 	/* try to avoid unnecessary memory loads */
3848 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3849 		return NULL;
3850 
3851 	folio = pfn_folio(pfn);
3852 	if (folio_nid(folio) != pgdat->node_id)
3853 		return NULL;
3854 
3855 	if (folio_memcg_rcu(folio) != memcg)
3856 		return NULL;
3857 
3858 	/* file VMAs can contain anon pages from COW */
3859 	if (!folio_is_file_lru(folio) && !can_swap)
3860 		return NULL;
3861 
3862 	return folio;
3863 }
3864 
3865 static bool suitable_to_scan(int total, int young)
3866 {
3867 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3868 
3869 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3870 	return young * n >= total;
3871 }
3872 
3873 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3874 			   struct mm_walk *args)
3875 {
3876 	int i;
3877 	pte_t *pte;
3878 	spinlock_t *ptl;
3879 	unsigned long addr;
3880 	int total = 0;
3881 	int young = 0;
3882 	struct lru_gen_mm_walk *walk = args->private;
3883 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3884 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3885 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3886 
3887 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3888 
3889 	ptl = pte_lockptr(args->mm, pmd);
3890 	if (!spin_trylock(ptl))
3891 		return false;
3892 
3893 	arch_enter_lazy_mmu_mode();
3894 
3895 	pte = pte_offset_map(pmd, start & PMD_MASK);
3896 restart:
3897 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3898 		unsigned long pfn;
3899 		struct folio *folio;
3900 
3901 		total++;
3902 		walk->mm_stats[MM_LEAF_TOTAL]++;
3903 
3904 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3905 		if (pfn == -1)
3906 			continue;
3907 
3908 		if (!pte_young(pte[i])) {
3909 			walk->mm_stats[MM_LEAF_OLD]++;
3910 			continue;
3911 		}
3912 
3913 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3914 		if (!folio)
3915 			continue;
3916 
3917 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3918 			VM_WARN_ON_ONCE(true);
3919 
3920 		young++;
3921 		walk->mm_stats[MM_LEAF_YOUNG]++;
3922 
3923 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3924 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3925 		      !folio_test_swapcache(folio)))
3926 			folio_mark_dirty(folio);
3927 
3928 		old_gen = folio_update_gen(folio, new_gen);
3929 		if (old_gen >= 0 && old_gen != new_gen)
3930 			update_batch_size(walk, folio, old_gen, new_gen);
3931 	}
3932 
3933 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3934 		goto restart;
3935 
3936 	pte_unmap(pte);
3937 
3938 	arch_leave_lazy_mmu_mode();
3939 	spin_unlock(ptl);
3940 
3941 	return suitable_to_scan(total, young);
3942 }
3943 
3944 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3945 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3946 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3947 {
3948 	int i;
3949 	pmd_t *pmd;
3950 	spinlock_t *ptl;
3951 	struct lru_gen_mm_walk *walk = args->private;
3952 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3953 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3954 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3955 
3956 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3957 
3958 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3959 	if (*start == -1) {
3960 		*start = next;
3961 		return;
3962 	}
3963 
3964 	i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
3965 	if (i && i <= MIN_LRU_BATCH) {
3966 		__set_bit(i - 1, bitmap);
3967 		return;
3968 	}
3969 
3970 	pmd = pmd_offset(pud, *start);
3971 
3972 	ptl = pmd_lockptr(args->mm, pmd);
3973 	if (!spin_trylock(ptl))
3974 		goto done;
3975 
3976 	arch_enter_lazy_mmu_mode();
3977 
3978 	do {
3979 		unsigned long pfn;
3980 		struct folio *folio;
3981 		unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
3982 
3983 		pfn = get_pmd_pfn(pmd[i], vma, addr);
3984 		if (pfn == -1)
3985 			goto next;
3986 
3987 		if (!pmd_trans_huge(pmd[i])) {
3988 			if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) &&
3989 			    get_cap(LRU_GEN_NONLEAF_YOUNG))
3990 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3991 			goto next;
3992 		}
3993 
3994 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3995 		if (!folio)
3996 			goto next;
3997 
3998 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3999 			goto next;
4000 
4001 		walk->mm_stats[MM_LEAF_YOUNG]++;
4002 
4003 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4004 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4005 		      !folio_test_swapcache(folio)))
4006 			folio_mark_dirty(folio);
4007 
4008 		old_gen = folio_update_gen(folio, new_gen);
4009 		if (old_gen >= 0 && old_gen != new_gen)
4010 			update_batch_size(walk, folio, old_gen, new_gen);
4011 next:
4012 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4013 	} while (i <= MIN_LRU_BATCH);
4014 
4015 	arch_leave_lazy_mmu_mode();
4016 	spin_unlock(ptl);
4017 done:
4018 	*start = -1;
4019 	bitmap_zero(bitmap, MIN_LRU_BATCH);
4020 }
4021 #else
4022 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4023 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4024 {
4025 }
4026 #endif
4027 
4028 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4029 			   struct mm_walk *args)
4030 {
4031 	int i;
4032 	pmd_t *pmd;
4033 	unsigned long next;
4034 	unsigned long addr;
4035 	struct vm_area_struct *vma;
4036 	unsigned long pos = -1;
4037 	struct lru_gen_mm_walk *walk = args->private;
4038 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4039 
4040 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4041 
4042 	/*
4043 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4044 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4045 	 * the PMD lock to clear the accessed bit in PMD entries.
4046 	 */
4047 	pmd = pmd_offset(pud, start & PUD_MASK);
4048 restart:
4049 	/* walk_pte_range() may call get_next_vma() */
4050 	vma = args->vma;
4051 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4052 		pmd_t val = pmd_read_atomic(pmd + i);
4053 
4054 		/* for pmd_read_atomic() */
4055 		barrier();
4056 
4057 		next = pmd_addr_end(addr, end);
4058 
4059 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4060 			walk->mm_stats[MM_LEAF_TOTAL]++;
4061 			continue;
4062 		}
4063 
4064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4065 		if (pmd_trans_huge(val)) {
4066 			unsigned long pfn = pmd_pfn(val);
4067 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4068 
4069 			walk->mm_stats[MM_LEAF_TOTAL]++;
4070 
4071 			if (!pmd_young(val)) {
4072 				walk->mm_stats[MM_LEAF_OLD]++;
4073 				continue;
4074 			}
4075 
4076 			/* try to avoid unnecessary memory loads */
4077 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4078 				continue;
4079 
4080 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4081 			continue;
4082 		}
4083 #endif
4084 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4085 
4086 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
4087 		if (get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4088 			if (!pmd_young(val))
4089 				continue;
4090 
4091 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4092 		}
4093 #endif
4094 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4095 			continue;
4096 
4097 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4098 
4099 		if (!walk_pte_range(&val, addr, next, args))
4100 			continue;
4101 
4102 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4103 
4104 		/* carry over to the next generation */
4105 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4106 	}
4107 
4108 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4109 
4110 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4111 		goto restart;
4112 }
4113 
4114 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4115 			  struct mm_walk *args)
4116 {
4117 	int i;
4118 	pud_t *pud;
4119 	unsigned long addr;
4120 	unsigned long next;
4121 	struct lru_gen_mm_walk *walk = args->private;
4122 
4123 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4124 
4125 	pud = pud_offset(p4d, start & P4D_MASK);
4126 restart:
4127 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4128 		pud_t val = READ_ONCE(pud[i]);
4129 
4130 		next = pud_addr_end(addr, end);
4131 
4132 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4133 			continue;
4134 
4135 		walk_pmd_range(&val, addr, next, args);
4136 
4137 		/* a racy check to curtail the waiting time */
4138 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4139 			return 1;
4140 
4141 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4142 			end = (addr | ~PUD_MASK) + 1;
4143 			goto done;
4144 		}
4145 	}
4146 
4147 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4148 		goto restart;
4149 
4150 	end = round_up(end, P4D_SIZE);
4151 done:
4152 	if (!end || !args->vma)
4153 		return 1;
4154 
4155 	walk->next_addr = max(end, args->vma->vm_start);
4156 
4157 	return -EAGAIN;
4158 }
4159 
4160 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4161 {
4162 	static const struct mm_walk_ops mm_walk_ops = {
4163 		.test_walk = should_skip_vma,
4164 		.p4d_entry = walk_pud_range,
4165 	};
4166 
4167 	int err;
4168 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4169 
4170 	walk->next_addr = FIRST_USER_ADDRESS;
4171 
4172 	do {
4173 		err = -EBUSY;
4174 
4175 		/* folio_update_gen() requires stable folio_memcg() */
4176 		if (!mem_cgroup_trylock_pages(memcg))
4177 			break;
4178 
4179 		/* the caller might be holding the lock for write */
4180 		if (mmap_read_trylock(mm)) {
4181 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4182 
4183 			mmap_read_unlock(mm);
4184 		}
4185 
4186 		mem_cgroup_unlock_pages();
4187 
4188 		if (walk->batched) {
4189 			spin_lock_irq(&lruvec->lru_lock);
4190 			reset_batch_size(lruvec, walk);
4191 			spin_unlock_irq(&lruvec->lru_lock);
4192 		}
4193 
4194 		cond_resched();
4195 	} while (err == -EAGAIN);
4196 }
4197 
4198 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4199 {
4200 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4201 
4202 	if (pgdat && current_is_kswapd()) {
4203 		VM_WARN_ON_ONCE(walk);
4204 
4205 		walk = &pgdat->mm_walk;
4206 	} else if (!pgdat && !walk) {
4207 		VM_WARN_ON_ONCE(current_is_kswapd());
4208 
4209 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4210 	}
4211 
4212 	current->reclaim_state->mm_walk = walk;
4213 
4214 	return walk;
4215 }
4216 
4217 static void clear_mm_walk(void)
4218 {
4219 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4220 
4221 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4222 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4223 
4224 	current->reclaim_state->mm_walk = NULL;
4225 
4226 	if (!current_is_kswapd())
4227 		kfree(walk);
4228 }
4229 
4230 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4231 {
4232 	int zone;
4233 	int remaining = MAX_LRU_BATCH;
4234 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4235 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4236 
4237 	if (type == LRU_GEN_ANON && !can_swap)
4238 		goto done;
4239 
4240 	/* prevent cold/hot inversion if force_scan is true */
4241 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4242 		struct list_head *head = &lrugen->lists[old_gen][type][zone];
4243 
4244 		while (!list_empty(head)) {
4245 			struct folio *folio = lru_to_folio(head);
4246 
4247 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4248 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4249 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4250 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4251 
4252 			new_gen = folio_inc_gen(lruvec, folio, false);
4253 			list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4254 
4255 			if (!--remaining)
4256 				return false;
4257 		}
4258 	}
4259 done:
4260 	reset_ctrl_pos(lruvec, type, true);
4261 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4262 
4263 	return true;
4264 }
4265 
4266 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4267 {
4268 	int gen, type, zone;
4269 	bool success = false;
4270 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4271 	DEFINE_MIN_SEQ(lruvec);
4272 
4273 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4274 
4275 	/* find the oldest populated generation */
4276 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4277 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4278 			gen = lru_gen_from_seq(min_seq[type]);
4279 
4280 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4281 				if (!list_empty(&lrugen->lists[gen][type][zone]))
4282 					goto next;
4283 			}
4284 
4285 			min_seq[type]++;
4286 		}
4287 next:
4288 		;
4289 	}
4290 
4291 	/* see the comment on lru_gen_struct */
4292 	if (can_swap) {
4293 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4294 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4295 	}
4296 
4297 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4298 		if (min_seq[type] == lrugen->min_seq[type])
4299 			continue;
4300 
4301 		reset_ctrl_pos(lruvec, type, true);
4302 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4303 		success = true;
4304 	}
4305 
4306 	return success;
4307 }
4308 
4309 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4310 {
4311 	int prev, next;
4312 	int type, zone;
4313 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4314 
4315 	spin_lock_irq(&lruvec->lru_lock);
4316 
4317 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4318 
4319 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4320 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4321 			continue;
4322 
4323 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4324 
4325 		while (!inc_min_seq(lruvec, type, can_swap)) {
4326 			spin_unlock_irq(&lruvec->lru_lock);
4327 			cond_resched();
4328 			spin_lock_irq(&lruvec->lru_lock);
4329 		}
4330 	}
4331 
4332 	/*
4333 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4334 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4335 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4336 	 * overlap, cold/hot inversion happens.
4337 	 */
4338 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4339 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4340 
4341 	for (type = 0; type < ANON_AND_FILE; type++) {
4342 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4343 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4344 			long delta = lrugen->nr_pages[prev][type][zone] -
4345 				     lrugen->nr_pages[next][type][zone];
4346 
4347 			if (!delta)
4348 				continue;
4349 
4350 			__update_lru_size(lruvec, lru, zone, delta);
4351 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4352 		}
4353 	}
4354 
4355 	for (type = 0; type < ANON_AND_FILE; type++)
4356 		reset_ctrl_pos(lruvec, type, false);
4357 
4358 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4359 	/* make sure preceding modifications appear */
4360 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4361 
4362 	spin_unlock_irq(&lruvec->lru_lock);
4363 }
4364 
4365 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4366 			       struct scan_control *sc, bool can_swap, bool force_scan)
4367 {
4368 	bool success;
4369 	struct lru_gen_mm_walk *walk;
4370 	struct mm_struct *mm = NULL;
4371 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4372 
4373 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4374 
4375 	/* see the comment in iterate_mm_list() */
4376 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4377 		success = false;
4378 		goto done;
4379 	}
4380 
4381 	/*
4382 	 * If the hardware doesn't automatically set the accessed bit, fallback
4383 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4384 	 * handful of PTEs. Spreading the work out over a period of time usually
4385 	 * is less efficient, but it avoids bursty page faults.
4386 	 */
4387 	if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
4388 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4389 		goto done;
4390 	}
4391 
4392 	walk = set_mm_walk(NULL);
4393 	if (!walk) {
4394 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4395 		goto done;
4396 	}
4397 
4398 	walk->lruvec = lruvec;
4399 	walk->max_seq = max_seq;
4400 	walk->can_swap = can_swap;
4401 	walk->force_scan = force_scan;
4402 
4403 	do {
4404 		success = iterate_mm_list(lruvec, walk, &mm);
4405 		if (mm)
4406 			walk_mm(lruvec, mm, walk);
4407 
4408 		cond_resched();
4409 	} while (mm);
4410 done:
4411 	if (!success) {
4412 		if (sc->priority <= DEF_PRIORITY - 2)
4413 			wait_event_killable(lruvec->mm_state.wait,
4414 					    max_seq < READ_ONCE(lrugen->max_seq));
4415 
4416 		return max_seq < READ_ONCE(lrugen->max_seq);
4417 	}
4418 
4419 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4420 
4421 	inc_max_seq(lruvec, can_swap, force_scan);
4422 	/* either this sees any waiters or they will see updated max_seq */
4423 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4424 		wake_up_all(&lruvec->mm_state.wait);
4425 
4426 	wakeup_flusher_threads(WB_REASON_VMSCAN);
4427 
4428 	return true;
4429 }
4430 
4431 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4432 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4433 {
4434 	int gen, type, zone;
4435 	unsigned long old = 0;
4436 	unsigned long young = 0;
4437 	unsigned long total = 0;
4438 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4439 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4440 
4441 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4442 		unsigned long seq;
4443 
4444 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4445 			unsigned long size = 0;
4446 
4447 			gen = lru_gen_from_seq(seq);
4448 
4449 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4450 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4451 
4452 			total += size;
4453 			if (seq == max_seq)
4454 				young += size;
4455 			else if (seq + MIN_NR_GENS == max_seq)
4456 				old += size;
4457 		}
4458 	}
4459 
4460 	/* try to scrape all its memory if this memcg was deleted */
4461 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4462 
4463 	/*
4464 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4465 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4466 	 * ideal number of generations is MIN_NR_GENS+1.
4467 	 */
4468 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4469 		return true;
4470 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4471 		return false;
4472 
4473 	/*
4474 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4475 	 * of the total number of pages for each generation. A reasonable range
4476 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4477 	 * aging cares about the upper bound of hot pages, while the eviction
4478 	 * cares about the lower bound of cold pages.
4479 	 */
4480 	if (young * MIN_NR_GENS > total)
4481 		return true;
4482 	if (old * (MIN_NR_GENS + 2) < total)
4483 		return true;
4484 
4485 	return false;
4486 }
4487 
4488 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4489 {
4490 	bool need_aging;
4491 	unsigned long nr_to_scan;
4492 	int swappiness = get_swappiness(lruvec, sc);
4493 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4494 	DEFINE_MAX_SEQ(lruvec);
4495 	DEFINE_MIN_SEQ(lruvec);
4496 
4497 	VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4498 
4499 	mem_cgroup_calculate_protection(NULL, memcg);
4500 
4501 	if (mem_cgroup_below_min(memcg))
4502 		return false;
4503 
4504 	need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4505 
4506 	if (min_ttl) {
4507 		int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4508 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4509 
4510 		if (time_is_after_jiffies(birth + min_ttl))
4511 			return false;
4512 
4513 		/* the size is likely too small to be helpful */
4514 		if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4515 			return false;
4516 	}
4517 
4518 	if (need_aging)
4519 		try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4520 
4521 	return true;
4522 }
4523 
4524 /* to protect the working set of the last N jiffies */
4525 static unsigned long lru_gen_min_ttl __read_mostly;
4526 
4527 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4528 {
4529 	struct mem_cgroup *memcg;
4530 	bool success = false;
4531 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4532 
4533 	VM_WARN_ON_ONCE(!current_is_kswapd());
4534 
4535 	sc->last_reclaimed = sc->nr_reclaimed;
4536 
4537 	/*
4538 	 * To reduce the chance of going into the aging path, which can be
4539 	 * costly, optimistically skip it if the flag below was cleared in the
4540 	 * eviction path. This improves the overall performance when multiple
4541 	 * memcgs are available.
4542 	 */
4543 	if (!sc->memcgs_need_aging) {
4544 		sc->memcgs_need_aging = true;
4545 		return;
4546 	}
4547 
4548 	set_mm_walk(pgdat);
4549 
4550 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4551 	do {
4552 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4553 
4554 		if (age_lruvec(lruvec, sc, min_ttl))
4555 			success = true;
4556 
4557 		cond_resched();
4558 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4559 
4560 	clear_mm_walk();
4561 
4562 	/* check the order to exclude compaction-induced reclaim */
4563 	if (success || !min_ttl || sc->order)
4564 		return;
4565 
4566 	/*
4567 	 * The main goal is to OOM kill if every generation from all memcgs is
4568 	 * younger than min_ttl. However, another possibility is all memcgs are
4569 	 * either below min or empty.
4570 	 */
4571 	if (mutex_trylock(&oom_lock)) {
4572 		struct oom_control oc = {
4573 			.gfp_mask = sc->gfp_mask,
4574 		};
4575 
4576 		out_of_memory(&oc);
4577 
4578 		mutex_unlock(&oom_lock);
4579 	}
4580 }
4581 
4582 /*
4583  * This function exploits spatial locality when shrink_page_list() walks the
4584  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4585  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4586  * the PTE table to the Bloom filter. This forms a feedback loop between the
4587  * eviction and the aging.
4588  */
4589 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4590 {
4591 	int i;
4592 	pte_t *pte;
4593 	unsigned long start;
4594 	unsigned long end;
4595 	unsigned long addr;
4596 	struct lru_gen_mm_walk *walk;
4597 	int young = 0;
4598 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4599 	struct folio *folio = pfn_folio(pvmw->pfn);
4600 	struct mem_cgroup *memcg = folio_memcg(folio);
4601 	struct pglist_data *pgdat = folio_pgdat(folio);
4602 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4603 	DEFINE_MAX_SEQ(lruvec);
4604 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4605 
4606 	lockdep_assert_held(pvmw->ptl);
4607 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4608 
4609 	if (spin_is_contended(pvmw->ptl))
4610 		return;
4611 
4612 	/* avoid taking the LRU lock under the PTL when possible */
4613 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4614 
4615 	start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4616 	end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4617 
4618 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4619 		if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4620 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4621 		else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4622 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4623 		else {
4624 			start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4625 			end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4626 		}
4627 	}
4628 
4629 	pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4630 
4631 	rcu_read_lock();
4632 	arch_enter_lazy_mmu_mode();
4633 
4634 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4635 		unsigned long pfn;
4636 
4637 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4638 		if (pfn == -1)
4639 			continue;
4640 
4641 		if (!pte_young(pte[i]))
4642 			continue;
4643 
4644 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4645 		if (!folio)
4646 			continue;
4647 
4648 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4649 			VM_WARN_ON_ONCE(true);
4650 
4651 		young++;
4652 
4653 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4654 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4655 		      !folio_test_swapcache(folio)))
4656 			folio_mark_dirty(folio);
4657 
4658 		old_gen = folio_lru_gen(folio);
4659 		if (old_gen < 0)
4660 			folio_set_referenced(folio);
4661 		else if (old_gen != new_gen)
4662 			__set_bit(i, bitmap);
4663 	}
4664 
4665 	arch_leave_lazy_mmu_mode();
4666 	rcu_read_unlock();
4667 
4668 	/* feedback from rmap walkers to page table walkers */
4669 	if (suitable_to_scan(i, young))
4670 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4671 
4672 	if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4673 		for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4674 			folio = pfn_folio(pte_pfn(pte[i]));
4675 			folio_activate(folio);
4676 		}
4677 		return;
4678 	}
4679 
4680 	/* folio_update_gen() requires stable folio_memcg() */
4681 	if (!mem_cgroup_trylock_pages(memcg))
4682 		return;
4683 
4684 	if (!walk) {
4685 		spin_lock_irq(&lruvec->lru_lock);
4686 		new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4687 	}
4688 
4689 	for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4690 		folio = pfn_folio(pte_pfn(pte[i]));
4691 		if (folio_memcg_rcu(folio) != memcg)
4692 			continue;
4693 
4694 		old_gen = folio_update_gen(folio, new_gen);
4695 		if (old_gen < 0 || old_gen == new_gen)
4696 			continue;
4697 
4698 		if (walk)
4699 			update_batch_size(walk, folio, old_gen, new_gen);
4700 		else
4701 			lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4702 	}
4703 
4704 	if (!walk)
4705 		spin_unlock_irq(&lruvec->lru_lock);
4706 
4707 	mem_cgroup_unlock_pages();
4708 }
4709 
4710 /******************************************************************************
4711  *                          the eviction
4712  ******************************************************************************/
4713 
4714 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4715 {
4716 	bool success;
4717 	int gen = folio_lru_gen(folio);
4718 	int type = folio_is_file_lru(folio);
4719 	int zone = folio_zonenum(folio);
4720 	int delta = folio_nr_pages(folio);
4721 	int refs = folio_lru_refs(folio);
4722 	int tier = lru_tier_from_refs(refs);
4723 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4724 
4725 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4726 
4727 	/* unevictable */
4728 	if (!folio_evictable(folio)) {
4729 		success = lru_gen_del_folio(lruvec, folio, true);
4730 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4731 		folio_set_unevictable(folio);
4732 		lruvec_add_folio(lruvec, folio);
4733 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4734 		return true;
4735 	}
4736 
4737 	/* dirty lazyfree */
4738 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4739 		success = lru_gen_del_folio(lruvec, folio, true);
4740 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4741 		folio_set_swapbacked(folio);
4742 		lruvec_add_folio_tail(lruvec, folio);
4743 		return true;
4744 	}
4745 
4746 	/* promoted */
4747 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4748 		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4749 		return true;
4750 	}
4751 
4752 	/* protected */
4753 	if (tier > tier_idx) {
4754 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4755 
4756 		gen = folio_inc_gen(lruvec, folio, false);
4757 		list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4758 
4759 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4760 			   lrugen->protected[hist][type][tier - 1] + delta);
4761 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4762 		return true;
4763 	}
4764 
4765 	/* waiting for writeback */
4766 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4767 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4768 		gen = folio_inc_gen(lruvec, folio, true);
4769 		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4770 		return true;
4771 	}
4772 
4773 	return false;
4774 }
4775 
4776 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4777 {
4778 	bool success;
4779 
4780 	/* unmapping inhibited */
4781 	if (!sc->may_unmap && folio_mapped(folio))
4782 		return false;
4783 
4784 	/* swapping inhibited */
4785 	if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4786 	    (folio_test_dirty(folio) ||
4787 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4788 		return false;
4789 
4790 	/* raced with release_pages() */
4791 	if (!folio_try_get(folio))
4792 		return false;
4793 
4794 	/* raced with another isolation */
4795 	if (!folio_test_clear_lru(folio)) {
4796 		folio_put(folio);
4797 		return false;
4798 	}
4799 
4800 	/* see the comment on MAX_NR_TIERS */
4801 	if (!folio_test_referenced(folio))
4802 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4803 
4804 	/* for shrink_page_list() */
4805 	folio_clear_reclaim(folio);
4806 	folio_clear_referenced(folio);
4807 
4808 	success = lru_gen_del_folio(lruvec, folio, true);
4809 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4810 
4811 	return true;
4812 }
4813 
4814 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4815 		       int type, int tier, struct list_head *list)
4816 {
4817 	int gen, zone;
4818 	enum vm_event_item item;
4819 	int sorted = 0;
4820 	int scanned = 0;
4821 	int isolated = 0;
4822 	int remaining = MAX_LRU_BATCH;
4823 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4824 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4825 
4826 	VM_WARN_ON_ONCE(!list_empty(list));
4827 
4828 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4829 		return 0;
4830 
4831 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4832 
4833 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4834 		LIST_HEAD(moved);
4835 		int skipped = 0;
4836 		struct list_head *head = &lrugen->lists[gen][type][zone];
4837 
4838 		while (!list_empty(head)) {
4839 			struct folio *folio = lru_to_folio(head);
4840 			int delta = folio_nr_pages(folio);
4841 
4842 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4843 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4844 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4845 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4846 
4847 			scanned += delta;
4848 
4849 			if (sort_folio(lruvec, folio, tier))
4850 				sorted += delta;
4851 			else if (isolate_folio(lruvec, folio, sc)) {
4852 				list_add(&folio->lru, list);
4853 				isolated += delta;
4854 			} else {
4855 				list_move(&folio->lru, &moved);
4856 				skipped += delta;
4857 			}
4858 
4859 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4860 				break;
4861 		}
4862 
4863 		if (skipped) {
4864 			list_splice(&moved, head);
4865 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4866 		}
4867 
4868 		if (!remaining || isolated >= MIN_LRU_BATCH)
4869 			break;
4870 	}
4871 
4872 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
4873 	if (!cgroup_reclaim(sc)) {
4874 		__count_vm_events(item, isolated);
4875 		__count_vm_events(PGREFILL, sorted);
4876 	}
4877 	__count_memcg_events(memcg, item, isolated);
4878 	__count_memcg_events(memcg, PGREFILL, sorted);
4879 	__count_vm_events(PGSCAN_ANON + type, isolated);
4880 
4881 	/*
4882 	 * There might not be eligible pages due to reclaim_idx, may_unmap and
4883 	 * may_writepage. Check the remaining to prevent livelock if it's not
4884 	 * making progress.
4885 	 */
4886 	return isolated || !remaining ? scanned : 0;
4887 }
4888 
4889 static int get_tier_idx(struct lruvec *lruvec, int type)
4890 {
4891 	int tier;
4892 	struct ctrl_pos sp, pv;
4893 
4894 	/*
4895 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4896 	 * This value is chosen because any other tier would have at least twice
4897 	 * as many refaults as the first tier.
4898 	 */
4899 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4900 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4901 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4902 		if (!positive_ctrl_err(&sp, &pv))
4903 			break;
4904 	}
4905 
4906 	return tier - 1;
4907 }
4908 
4909 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4910 {
4911 	int type, tier;
4912 	struct ctrl_pos sp, pv;
4913 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4914 
4915 	/*
4916 	 * Compare the first tier of anon with that of file to determine which
4917 	 * type to scan. Also need to compare other tiers of the selected type
4918 	 * with the first tier of the other type to determine the last tier (of
4919 	 * the selected type) to evict.
4920 	 */
4921 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4922 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4923 	type = positive_ctrl_err(&sp, &pv);
4924 
4925 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4926 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4927 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4928 		if (!positive_ctrl_err(&sp, &pv))
4929 			break;
4930 	}
4931 
4932 	*tier_idx = tier - 1;
4933 
4934 	return type;
4935 }
4936 
4937 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4938 			  int *type_scanned, struct list_head *list)
4939 {
4940 	int i;
4941 	int type;
4942 	int scanned;
4943 	int tier = -1;
4944 	DEFINE_MIN_SEQ(lruvec);
4945 
4946 	/*
4947 	 * Try to make the obvious choice first. When anon and file are both
4948 	 * available from the same generation, interpret swappiness 1 as file
4949 	 * first and 200 as anon first.
4950 	 */
4951 	if (!swappiness)
4952 		type = LRU_GEN_FILE;
4953 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4954 		type = LRU_GEN_ANON;
4955 	else if (swappiness == 1)
4956 		type = LRU_GEN_FILE;
4957 	else if (swappiness == 200)
4958 		type = LRU_GEN_ANON;
4959 	else
4960 		type = get_type_to_scan(lruvec, swappiness, &tier);
4961 
4962 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4963 		if (tier < 0)
4964 			tier = get_tier_idx(lruvec, type);
4965 
4966 		scanned = scan_folios(lruvec, sc, type, tier, list);
4967 		if (scanned)
4968 			break;
4969 
4970 		type = !type;
4971 		tier = -1;
4972 	}
4973 
4974 	*type_scanned = type;
4975 
4976 	return scanned;
4977 }
4978 
4979 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4980 			bool *need_swapping)
4981 {
4982 	int type;
4983 	int scanned;
4984 	int reclaimed;
4985 	LIST_HEAD(list);
4986 	struct folio *folio;
4987 	enum vm_event_item item;
4988 	struct reclaim_stat stat;
4989 	struct lru_gen_mm_walk *walk;
4990 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4991 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4992 
4993 	spin_lock_irq(&lruvec->lru_lock);
4994 
4995 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4996 
4997 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4998 
4999 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5000 		scanned = 0;
5001 
5002 	spin_unlock_irq(&lruvec->lru_lock);
5003 
5004 	if (list_empty(&list))
5005 		return scanned;
5006 
5007 	reclaimed = shrink_page_list(&list, pgdat, sc, &stat, false);
5008 
5009 	list_for_each_entry(folio, &list, lru) {
5010 		/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5011 		if (folio_test_workingset(folio))
5012 			folio_set_referenced(folio);
5013 
5014 		/* don't add rejected pages to the oldest generation */
5015 		if (folio_test_reclaim(folio) &&
5016 		    (folio_test_dirty(folio) || folio_test_writeback(folio)))
5017 			folio_clear_active(folio);
5018 		else
5019 			folio_set_active(folio);
5020 	}
5021 
5022 	spin_lock_irq(&lruvec->lru_lock);
5023 
5024 	move_pages_to_lru(lruvec, &list);
5025 
5026 	walk = current->reclaim_state->mm_walk;
5027 	if (walk && walk->batched)
5028 		reset_batch_size(lruvec, walk);
5029 
5030 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
5031 	if (!cgroup_reclaim(sc))
5032 		__count_vm_events(item, reclaimed);
5033 	__count_memcg_events(memcg, item, reclaimed);
5034 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5035 
5036 	spin_unlock_irq(&lruvec->lru_lock);
5037 
5038 	mem_cgroup_uncharge_list(&list);
5039 	free_unref_page_list(&list);
5040 
5041 	sc->nr_reclaimed += reclaimed;
5042 
5043 	if (need_swapping && type == LRU_GEN_ANON)
5044 		*need_swapping = true;
5045 
5046 	return scanned;
5047 }
5048 
5049 /*
5050  * For future optimizations:
5051  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5052  *    reclaim.
5053  */
5054 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
5055 				    bool can_swap, bool *need_aging)
5056 {
5057 	unsigned long nr_to_scan;
5058 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5059 	DEFINE_MAX_SEQ(lruvec);
5060 	DEFINE_MIN_SEQ(lruvec);
5061 
5062 	if (mem_cgroup_below_min(memcg) ||
5063 	    (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim))
5064 		return 0;
5065 
5066 	*need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5067 	if (!*need_aging)
5068 		return nr_to_scan;
5069 
5070 	/* skip the aging path at the default priority */
5071 	if (sc->priority == DEF_PRIORITY)
5072 		goto done;
5073 
5074 	/* leave the work to lru_gen_age_node() */
5075 	if (current_is_kswapd())
5076 		return 0;
5077 
5078 	if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
5079 		return nr_to_scan;
5080 done:
5081 	return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5082 }
5083 
5084 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5085 			      struct scan_control *sc, bool need_swapping)
5086 {
5087 	int i;
5088 	DEFINE_MAX_SEQ(lruvec);
5089 
5090 	if (!current_is_kswapd()) {
5091 		/* age each memcg once to ensure fairness */
5092 		if (max_seq - seq > 1)
5093 			return true;
5094 
5095 		/* over-swapping can increase allocation latency */
5096 		if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5097 			return true;
5098 
5099 		/* give this thread a chance to exit and free its memory */
5100 		if (fatal_signal_pending(current)) {
5101 			sc->nr_reclaimed += MIN_LRU_BATCH;
5102 			return true;
5103 		}
5104 
5105 		if (cgroup_reclaim(sc))
5106 			return false;
5107 	} else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5108 		return false;
5109 
5110 	/* keep scanning at low priorities to ensure fairness */
5111 	if (sc->priority > DEF_PRIORITY - 2)
5112 		return false;
5113 
5114 	/*
5115 	 * A minimum amount of work was done under global memory pressure. For
5116 	 * kswapd, it may be overshooting. For direct reclaim, the target isn't
5117 	 * met, and yet the allocation may still succeed, since kswapd may have
5118 	 * caught up. In either case, it's better to stop now, and restart if
5119 	 * necessary.
5120 	 */
5121 	for (i = 0; i <= sc->reclaim_idx; i++) {
5122 		unsigned long wmark;
5123 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5124 
5125 		if (!managed_zone(zone))
5126 			continue;
5127 
5128 		wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5129 		if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5130 			return false;
5131 	}
5132 
5133 	sc->nr_reclaimed += MIN_LRU_BATCH;
5134 
5135 	return true;
5136 }
5137 
5138 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5139 {
5140 	struct blk_plug plug;
5141 	bool need_aging = false;
5142 	bool need_swapping = false;
5143 	unsigned long scanned = 0;
5144 	unsigned long reclaimed = sc->nr_reclaimed;
5145 	DEFINE_MAX_SEQ(lruvec);
5146 
5147 	lru_add_drain();
5148 
5149 	blk_start_plug(&plug);
5150 
5151 	set_mm_walk(lruvec_pgdat(lruvec));
5152 
5153 	while (true) {
5154 		int delta;
5155 		int swappiness;
5156 		unsigned long nr_to_scan;
5157 
5158 		if (sc->may_swap)
5159 			swappiness = get_swappiness(lruvec, sc);
5160 		else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5161 			swappiness = 1;
5162 		else
5163 			swappiness = 0;
5164 
5165 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
5166 		if (!nr_to_scan)
5167 			goto done;
5168 
5169 		delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
5170 		if (!delta)
5171 			goto done;
5172 
5173 		scanned += delta;
5174 		if (scanned >= nr_to_scan)
5175 			break;
5176 
5177 		if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5178 			break;
5179 
5180 		cond_resched();
5181 	}
5182 
5183 	/* see the comment in lru_gen_age_node() */
5184 	if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5185 		sc->memcgs_need_aging = false;
5186 done:
5187 	clear_mm_walk();
5188 
5189 	blk_finish_plug(&plug);
5190 }
5191 
5192 /******************************************************************************
5193  *                          state change
5194  ******************************************************************************/
5195 
5196 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5197 {
5198 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5199 
5200 	if (lrugen->enabled) {
5201 		enum lru_list lru;
5202 
5203 		for_each_evictable_lru(lru) {
5204 			if (!list_empty(&lruvec->lists[lru]))
5205 				return false;
5206 		}
5207 	} else {
5208 		int gen, type, zone;
5209 
5210 		for_each_gen_type_zone(gen, type, zone) {
5211 			if (!list_empty(&lrugen->lists[gen][type][zone]))
5212 				return false;
5213 		}
5214 	}
5215 
5216 	return true;
5217 }
5218 
5219 static bool fill_evictable(struct lruvec *lruvec)
5220 {
5221 	enum lru_list lru;
5222 	int remaining = MAX_LRU_BATCH;
5223 
5224 	for_each_evictable_lru(lru) {
5225 		int type = is_file_lru(lru);
5226 		bool active = is_active_lru(lru);
5227 		struct list_head *head = &lruvec->lists[lru];
5228 
5229 		while (!list_empty(head)) {
5230 			bool success;
5231 			struct folio *folio = lru_to_folio(head);
5232 
5233 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5234 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5235 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5236 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5237 
5238 			lruvec_del_folio(lruvec, folio);
5239 			success = lru_gen_add_folio(lruvec, folio, false);
5240 			VM_WARN_ON_ONCE(!success);
5241 
5242 			if (!--remaining)
5243 				return false;
5244 		}
5245 	}
5246 
5247 	return true;
5248 }
5249 
5250 static bool drain_evictable(struct lruvec *lruvec)
5251 {
5252 	int gen, type, zone;
5253 	int remaining = MAX_LRU_BATCH;
5254 
5255 	for_each_gen_type_zone(gen, type, zone) {
5256 		struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5257 
5258 		while (!list_empty(head)) {
5259 			bool success;
5260 			struct folio *folio = lru_to_folio(head);
5261 
5262 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5263 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5264 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5265 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5266 
5267 			success = lru_gen_del_folio(lruvec, folio, false);
5268 			VM_WARN_ON_ONCE(!success);
5269 			lruvec_add_folio(lruvec, folio);
5270 
5271 			if (!--remaining)
5272 				return false;
5273 		}
5274 	}
5275 
5276 	return true;
5277 }
5278 
5279 static void lru_gen_change_state(bool enabled)
5280 {
5281 	static DEFINE_MUTEX(state_mutex);
5282 
5283 	struct mem_cgroup *memcg;
5284 
5285 	cgroup_lock();
5286 	cpus_read_lock();
5287 	get_online_mems();
5288 	mutex_lock(&state_mutex);
5289 
5290 	if (enabled == lru_gen_enabled())
5291 		goto unlock;
5292 
5293 	if (enabled)
5294 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5295 	else
5296 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5297 
5298 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5299 	do {
5300 		int nid;
5301 
5302 		for_each_node(nid) {
5303 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5304 
5305 			if (!lruvec)
5306 				continue;
5307 
5308 			spin_lock_irq(&lruvec->lru_lock);
5309 
5310 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5311 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5312 
5313 			lruvec->lrugen.enabled = enabled;
5314 
5315 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5316 				spin_unlock_irq(&lruvec->lru_lock);
5317 				cond_resched();
5318 				spin_lock_irq(&lruvec->lru_lock);
5319 			}
5320 
5321 			spin_unlock_irq(&lruvec->lru_lock);
5322 		}
5323 
5324 		cond_resched();
5325 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5326 unlock:
5327 	mutex_unlock(&state_mutex);
5328 	put_online_mems();
5329 	cpus_read_unlock();
5330 	cgroup_unlock();
5331 }
5332 
5333 /******************************************************************************
5334  *                          sysfs interface
5335  ******************************************************************************/
5336 
5337 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5338 {
5339 	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5340 }
5341 
5342 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5343 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5344 			     const char *buf, size_t len)
5345 {
5346 	unsigned int msecs;
5347 
5348 	if (kstrtouint(buf, 0, &msecs))
5349 		return -EINVAL;
5350 
5351 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5352 
5353 	return len;
5354 }
5355 
5356 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5357 	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5358 );
5359 
5360 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5361 {
5362 	unsigned int caps = 0;
5363 
5364 	if (get_cap(LRU_GEN_CORE))
5365 		caps |= BIT(LRU_GEN_CORE);
5366 
5367 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5368 		caps |= BIT(LRU_GEN_MM_WALK);
5369 
5370 	if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && get_cap(LRU_GEN_NONLEAF_YOUNG))
5371 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5372 
5373 	return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
5374 }
5375 
5376 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5377 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5378 			     const char *buf, size_t len)
5379 {
5380 	int i;
5381 	unsigned int caps;
5382 
5383 	if (tolower(*buf) == 'n')
5384 		caps = 0;
5385 	else if (tolower(*buf) == 'y')
5386 		caps = -1;
5387 	else if (kstrtouint(buf, 0, &caps))
5388 		return -EINVAL;
5389 
5390 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5391 		bool enabled = caps & BIT(i);
5392 
5393 		if (i == LRU_GEN_CORE)
5394 			lru_gen_change_state(enabled);
5395 		else if (enabled)
5396 			static_branch_enable(&lru_gen_caps[i]);
5397 		else
5398 			static_branch_disable(&lru_gen_caps[i]);
5399 	}
5400 
5401 	return len;
5402 }
5403 
5404 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5405 	enabled, 0644, show_enabled, store_enabled
5406 );
5407 
5408 static struct attribute *lru_gen_attrs[] = {
5409 	&lru_gen_min_ttl_attr.attr,
5410 	&lru_gen_enabled_attr.attr,
5411 	NULL
5412 };
5413 
5414 static struct attribute_group lru_gen_attr_group = {
5415 	.name = "lru_gen",
5416 	.attrs = lru_gen_attrs,
5417 };
5418 
5419 /******************************************************************************
5420  *                          debugfs interface
5421  ******************************************************************************/
5422 
5423 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5424 {
5425 	struct mem_cgroup *memcg;
5426 	loff_t nr_to_skip = *pos;
5427 
5428 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5429 	if (!m->private)
5430 		return ERR_PTR(-ENOMEM);
5431 
5432 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5433 	do {
5434 		int nid;
5435 
5436 		for_each_node_state(nid, N_MEMORY) {
5437 			if (!nr_to_skip--)
5438 				return get_lruvec(memcg, nid);
5439 		}
5440 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5441 
5442 	return NULL;
5443 }
5444 
5445 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5446 {
5447 	if (!IS_ERR_OR_NULL(v))
5448 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5449 
5450 	kvfree(m->private);
5451 	m->private = NULL;
5452 }
5453 
5454 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5455 {
5456 	int nid = lruvec_pgdat(v)->node_id;
5457 	struct mem_cgroup *memcg = lruvec_memcg(v);
5458 
5459 	++*pos;
5460 
5461 	nid = next_memory_node(nid);
5462 	if (nid == MAX_NUMNODES) {
5463 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5464 		if (!memcg)
5465 			return NULL;
5466 
5467 		nid = first_memory_node;
5468 	}
5469 
5470 	return get_lruvec(memcg, nid);
5471 }
5472 
5473 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5474 				  unsigned long max_seq, unsigned long *min_seq,
5475 				  unsigned long seq)
5476 {
5477 	int i;
5478 	int type, tier;
5479 	int hist = lru_hist_from_seq(seq);
5480 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5481 
5482 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5483 		seq_printf(m, "            %10d", tier);
5484 		for (type = 0; type < ANON_AND_FILE; type++) {
5485 			const char *s = "   ";
5486 			unsigned long n[3] = {};
5487 
5488 			if (seq == max_seq) {
5489 				s = "RT ";
5490 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5491 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5492 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5493 				s = "rep";
5494 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5495 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5496 				if (tier)
5497 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5498 			}
5499 
5500 			for (i = 0; i < 3; i++)
5501 				seq_printf(m, " %10lu%c", n[i], s[i]);
5502 		}
5503 		seq_putc(m, '\n');
5504 	}
5505 
5506 	seq_puts(m, "                      ");
5507 	for (i = 0; i < NR_MM_STATS; i++) {
5508 		const char *s = "      ";
5509 		unsigned long n = 0;
5510 
5511 		if (seq == max_seq && NR_HIST_GENS == 1) {
5512 			s = "LOYNFA";
5513 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5514 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5515 			s = "loynfa";
5516 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5517 		}
5518 
5519 		seq_printf(m, " %10lu%c", n, s[i]);
5520 	}
5521 	seq_putc(m, '\n');
5522 }
5523 
5524 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5525 static int lru_gen_seq_show(struct seq_file *m, void *v)
5526 {
5527 	unsigned long seq;
5528 	bool full = !debugfs_real_fops(m->file)->write;
5529 	struct lruvec *lruvec = v;
5530 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5531 	int nid = lruvec_pgdat(lruvec)->node_id;
5532 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5533 	DEFINE_MAX_SEQ(lruvec);
5534 	DEFINE_MIN_SEQ(lruvec);
5535 
5536 	if (nid == first_memory_node) {
5537 		const char *path = memcg ? m->private : "";
5538 
5539 #ifdef CONFIG_MEMCG
5540 		if (memcg)
5541 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5542 #endif
5543 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5544 	}
5545 
5546 	seq_printf(m, " node %5d\n", nid);
5547 
5548 	if (!full)
5549 		seq = min_seq[LRU_GEN_ANON];
5550 	else if (max_seq >= MAX_NR_GENS)
5551 		seq = max_seq - MAX_NR_GENS + 1;
5552 	else
5553 		seq = 0;
5554 
5555 	for (; seq <= max_seq; seq++) {
5556 		int type, zone;
5557 		int gen = lru_gen_from_seq(seq);
5558 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5559 
5560 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5561 
5562 		for (type = 0; type < ANON_AND_FILE; type++) {
5563 			unsigned long size = 0;
5564 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5565 
5566 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5567 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5568 
5569 			seq_printf(m, " %10lu%c", size, mark);
5570 		}
5571 
5572 		seq_putc(m, '\n');
5573 
5574 		if (full)
5575 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5576 	}
5577 
5578 	return 0;
5579 }
5580 
5581 static const struct seq_operations lru_gen_seq_ops = {
5582 	.start = lru_gen_seq_start,
5583 	.stop = lru_gen_seq_stop,
5584 	.next = lru_gen_seq_next,
5585 	.show = lru_gen_seq_show,
5586 };
5587 
5588 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5589 		     bool can_swap, bool force_scan)
5590 {
5591 	DEFINE_MAX_SEQ(lruvec);
5592 	DEFINE_MIN_SEQ(lruvec);
5593 
5594 	if (seq < max_seq)
5595 		return 0;
5596 
5597 	if (seq > max_seq)
5598 		return -EINVAL;
5599 
5600 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5601 		return -ERANGE;
5602 
5603 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5604 
5605 	return 0;
5606 }
5607 
5608 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5609 			int swappiness, unsigned long nr_to_reclaim)
5610 {
5611 	DEFINE_MAX_SEQ(lruvec);
5612 
5613 	if (seq + MIN_NR_GENS > max_seq)
5614 		return -EINVAL;
5615 
5616 	sc->nr_reclaimed = 0;
5617 
5618 	while (!signal_pending(current)) {
5619 		DEFINE_MIN_SEQ(lruvec);
5620 
5621 		if (seq < min_seq[!swappiness])
5622 			return 0;
5623 
5624 		if (sc->nr_reclaimed >= nr_to_reclaim)
5625 			return 0;
5626 
5627 		if (!evict_folios(lruvec, sc, swappiness, NULL))
5628 			return 0;
5629 
5630 		cond_resched();
5631 	}
5632 
5633 	return -EINTR;
5634 }
5635 
5636 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5637 		   struct scan_control *sc, int swappiness, unsigned long opt)
5638 {
5639 	struct lruvec *lruvec;
5640 	int err = -EINVAL;
5641 	struct mem_cgroup *memcg = NULL;
5642 
5643 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5644 		return -EINVAL;
5645 
5646 	if (!mem_cgroup_disabled()) {
5647 		rcu_read_lock();
5648 		memcg = mem_cgroup_from_id(memcg_id);
5649 #ifdef CONFIG_MEMCG
5650 		if (memcg && !css_tryget(&memcg->css))
5651 			memcg = NULL;
5652 #endif
5653 		rcu_read_unlock();
5654 
5655 		if (!memcg)
5656 			return -EINVAL;
5657 	}
5658 
5659 	if (memcg_id != mem_cgroup_id(memcg))
5660 		goto done;
5661 
5662 	lruvec = get_lruvec(memcg, nid);
5663 
5664 	if (swappiness < 0)
5665 		swappiness = get_swappiness(lruvec, sc);
5666 	else if (swappiness > 200)
5667 		goto done;
5668 
5669 	switch (cmd) {
5670 	case '+':
5671 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5672 		break;
5673 	case '-':
5674 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5675 		break;
5676 	}
5677 done:
5678 	mem_cgroup_put(memcg);
5679 
5680 	return err;
5681 }
5682 
5683 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5684 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5685 				 size_t len, loff_t *pos)
5686 {
5687 	void *buf;
5688 	char *cur, *next;
5689 	unsigned int flags;
5690 	struct blk_plug plug;
5691 	int err = -EINVAL;
5692 	struct scan_control sc = {
5693 		.may_writepage = true,
5694 		.may_unmap = true,
5695 		.may_swap = true,
5696 		.reclaim_idx = MAX_NR_ZONES - 1,
5697 		.gfp_mask = GFP_KERNEL,
5698 	};
5699 
5700 	buf = kvmalloc(len + 1, GFP_KERNEL);
5701 	if (!buf)
5702 		return -ENOMEM;
5703 
5704 	if (copy_from_user(buf, src, len)) {
5705 		kvfree(buf);
5706 		return -EFAULT;
5707 	}
5708 
5709 	set_task_reclaim_state(current, &sc.reclaim_state);
5710 	flags = memalloc_noreclaim_save();
5711 	blk_start_plug(&plug);
5712 	if (!set_mm_walk(NULL)) {
5713 		err = -ENOMEM;
5714 		goto done;
5715 	}
5716 
5717 	next = buf;
5718 	next[len] = '\0';
5719 
5720 	while ((cur = strsep(&next, ",;\n"))) {
5721 		int n;
5722 		int end;
5723 		char cmd;
5724 		unsigned int memcg_id;
5725 		unsigned int nid;
5726 		unsigned long seq;
5727 		unsigned int swappiness = -1;
5728 		unsigned long opt = -1;
5729 
5730 		cur = skip_spaces(cur);
5731 		if (!*cur)
5732 			continue;
5733 
5734 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5735 			   &seq, &end, &swappiness, &end, &opt, &end);
5736 		if (n < 4 || cur[end]) {
5737 			err = -EINVAL;
5738 			break;
5739 		}
5740 
5741 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5742 		if (err)
5743 			break;
5744 	}
5745 done:
5746 	clear_mm_walk();
5747 	blk_finish_plug(&plug);
5748 	memalloc_noreclaim_restore(flags);
5749 	set_task_reclaim_state(current, NULL);
5750 
5751 	kvfree(buf);
5752 
5753 	return err ? : len;
5754 }
5755 
5756 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5757 {
5758 	return seq_open(file, &lru_gen_seq_ops);
5759 }
5760 
5761 static const struct file_operations lru_gen_rw_fops = {
5762 	.open = lru_gen_seq_open,
5763 	.read = seq_read,
5764 	.write = lru_gen_seq_write,
5765 	.llseek = seq_lseek,
5766 	.release = seq_release,
5767 };
5768 
5769 static const struct file_operations lru_gen_ro_fops = {
5770 	.open = lru_gen_seq_open,
5771 	.read = seq_read,
5772 	.llseek = seq_lseek,
5773 	.release = seq_release,
5774 };
5775 
5776 /******************************************************************************
5777  *                          initialization
5778  ******************************************************************************/
5779 
5780 void lru_gen_init_lruvec(struct lruvec *lruvec)
5781 {
5782 	int i;
5783 	int gen, type, zone;
5784 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5785 
5786 	lrugen->max_seq = MIN_NR_GENS + 1;
5787 	lrugen->enabled = lru_gen_enabled();
5788 
5789 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5790 		lrugen->timestamps[i] = jiffies;
5791 
5792 	for_each_gen_type_zone(gen, type, zone)
5793 		INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
5794 
5795 	lruvec->mm_state.seq = MIN_NR_GENS;
5796 	init_waitqueue_head(&lruvec->mm_state.wait);
5797 }
5798 
5799 #ifdef CONFIG_MEMCG
5800 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5801 {
5802 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
5803 	spin_lock_init(&memcg->mm_list.lock);
5804 }
5805 
5806 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5807 {
5808 	int i;
5809 	int nid;
5810 
5811 	for_each_node(nid) {
5812 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5813 
5814 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5815 					   sizeof(lruvec->lrugen.nr_pages)));
5816 
5817 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5818 			bitmap_free(lruvec->mm_state.filters[i]);
5819 			lruvec->mm_state.filters[i] = NULL;
5820 		}
5821 	}
5822 }
5823 #endif
5824 
5825 static int __init init_lru_gen(void)
5826 {
5827 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5828 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5829 
5830 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5831 		pr_err("lru_gen: failed to create sysfs group\n");
5832 
5833 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5834 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5835 
5836 	return 0;
5837 };
5838 late_initcall(init_lru_gen);
5839 
5840 #else /* !CONFIG_LRU_GEN */
5841 
5842 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5843 {
5844 }
5845 
5846 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5847 {
5848 }
5849 
5850 #endif /* CONFIG_LRU_GEN */
5851 
5852 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5853 {
5854 	unsigned long nr[NR_LRU_LISTS];
5855 	unsigned long targets[NR_LRU_LISTS];
5856 	unsigned long nr_to_scan;
5857 	enum lru_list lru;
5858 	unsigned long nr_reclaimed = 0;
5859 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5860 	struct blk_plug plug;
5861 	bool scan_adjusted;
5862 
5863 	if (lru_gen_enabled()) {
5864 		lru_gen_shrink_lruvec(lruvec, sc);
5865 		return;
5866 	}
5867 
5868 	get_scan_count(lruvec, sc, nr);
5869 
5870 	/* Record the original scan target for proportional adjustments later */
5871 	memcpy(targets, nr, sizeof(nr));
5872 
5873 	/*
5874 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5875 	 * event that can occur when there is little memory pressure e.g.
5876 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5877 	 * when the requested number of pages are reclaimed when scanning at
5878 	 * DEF_PRIORITY on the assumption that the fact we are direct
5879 	 * reclaiming implies that kswapd is not keeping up and it is best to
5880 	 * do a batch of work at once. For memcg reclaim one check is made to
5881 	 * abort proportional reclaim if either the file or anon lru has already
5882 	 * dropped to zero at the first pass.
5883 	 */
5884 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5885 			 sc->priority == DEF_PRIORITY);
5886 
5887 	blk_start_plug(&plug);
5888 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5889 					nr[LRU_INACTIVE_FILE]) {
5890 		unsigned long nr_anon, nr_file, percentage;
5891 		unsigned long nr_scanned;
5892 
5893 		for_each_evictable_lru(lru) {
5894 			if (nr[lru]) {
5895 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5896 				nr[lru] -= nr_to_scan;
5897 
5898 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5899 							    lruvec, sc);
5900 			}
5901 		}
5902 
5903 		cond_resched();
5904 
5905 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
5906 			continue;
5907 
5908 		/*
5909 		 * For kswapd and memcg, reclaim at least the number of pages
5910 		 * requested. Ensure that the anon and file LRUs are scanned
5911 		 * proportionally what was requested by get_scan_count(). We
5912 		 * stop reclaiming one LRU and reduce the amount scanning
5913 		 * proportional to the original scan target.
5914 		 */
5915 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5916 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5917 
5918 		/*
5919 		 * It's just vindictive to attack the larger once the smaller
5920 		 * has gone to zero.  And given the way we stop scanning the
5921 		 * smaller below, this makes sure that we only make one nudge
5922 		 * towards proportionality once we've got nr_to_reclaim.
5923 		 */
5924 		if (!nr_file || !nr_anon)
5925 			break;
5926 
5927 		if (nr_file > nr_anon) {
5928 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5929 						targets[LRU_ACTIVE_ANON] + 1;
5930 			lru = LRU_BASE;
5931 			percentage = nr_anon * 100 / scan_target;
5932 		} else {
5933 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5934 						targets[LRU_ACTIVE_FILE] + 1;
5935 			lru = LRU_FILE;
5936 			percentage = nr_file * 100 / scan_target;
5937 		}
5938 
5939 		/* Stop scanning the smaller of the LRU */
5940 		nr[lru] = 0;
5941 		nr[lru + LRU_ACTIVE] = 0;
5942 
5943 		/*
5944 		 * Recalculate the other LRU scan count based on its original
5945 		 * scan target and the percentage scanning already complete
5946 		 */
5947 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5948 		nr_scanned = targets[lru] - nr[lru];
5949 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5950 		nr[lru] -= min(nr[lru], nr_scanned);
5951 
5952 		lru += LRU_ACTIVE;
5953 		nr_scanned = targets[lru] - nr[lru];
5954 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5955 		nr[lru] -= min(nr[lru], nr_scanned);
5956 
5957 		scan_adjusted = true;
5958 	}
5959 	blk_finish_plug(&plug);
5960 	sc->nr_reclaimed += nr_reclaimed;
5961 
5962 	/*
5963 	 * Even if we did not try to evict anon pages at all, we want to
5964 	 * rebalance the anon lru active/inactive ratio.
5965 	 */
5966 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5967 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5968 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5969 				   sc, LRU_ACTIVE_ANON);
5970 }
5971 
5972 /* Use reclaim/compaction for costly allocs or under memory pressure */
5973 static bool in_reclaim_compaction(struct scan_control *sc)
5974 {
5975 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5976 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5977 			 sc->priority < DEF_PRIORITY - 2))
5978 		return true;
5979 
5980 	return false;
5981 }
5982 
5983 /*
5984  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5985  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5986  * true if more pages should be reclaimed such that when the page allocator
5987  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5988  * It will give up earlier than that if there is difficulty reclaiming pages.
5989  */
5990 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5991 					unsigned long nr_reclaimed,
5992 					struct scan_control *sc)
5993 {
5994 	unsigned long pages_for_compaction;
5995 	unsigned long inactive_lru_pages;
5996 	int z;
5997 
5998 	/* If not in reclaim/compaction mode, stop */
5999 	if (!in_reclaim_compaction(sc))
6000 		return false;
6001 
6002 	/*
6003 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6004 	 * number of pages that were scanned. This will return to the caller
6005 	 * with the risk reclaim/compaction and the resulting allocation attempt
6006 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6007 	 * allocations through requiring that the full LRU list has been scanned
6008 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6009 	 * scan, but that approximation was wrong, and there were corner cases
6010 	 * where always a non-zero amount of pages were scanned.
6011 	 */
6012 	if (!nr_reclaimed)
6013 		return false;
6014 
6015 	/* If compaction would go ahead or the allocation would succeed, stop */
6016 	for (z = 0; z <= sc->reclaim_idx; z++) {
6017 		struct zone *zone = &pgdat->node_zones[z];
6018 		if (!managed_zone(zone))
6019 			continue;
6020 
6021 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6022 		case COMPACT_SUCCESS:
6023 		case COMPACT_CONTINUE:
6024 			return false;
6025 		default:
6026 			/* check next zone */
6027 			;
6028 		}
6029 	}
6030 
6031 	/*
6032 	 * If we have not reclaimed enough pages for compaction and the
6033 	 * inactive lists are large enough, continue reclaiming
6034 	 */
6035 	pages_for_compaction = compact_gap(sc->order);
6036 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6037 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6038 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6039 
6040 	return inactive_lru_pages > pages_for_compaction;
6041 }
6042 
6043 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6044 {
6045 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6046 	struct mem_cgroup *memcg;
6047 
6048 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6049 	do {
6050 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6051 		unsigned long reclaimed;
6052 		unsigned long scanned;
6053 
6054 		/*
6055 		 * This loop can become CPU-bound when target memcgs
6056 		 * aren't eligible for reclaim - either because they
6057 		 * don't have any reclaimable pages, or because their
6058 		 * memory is explicitly protected. Avoid soft lockups.
6059 		 */
6060 		cond_resched();
6061 
6062 		mem_cgroup_calculate_protection(target_memcg, memcg);
6063 
6064 		if (mem_cgroup_below_min(memcg)) {
6065 			/*
6066 			 * Hard protection.
6067 			 * If there is no reclaimable memory, OOM.
6068 			 */
6069 			continue;
6070 		} else if (mem_cgroup_below_low(memcg)) {
6071 			/*
6072 			 * Soft protection.
6073 			 * Respect the protection only as long as
6074 			 * there is an unprotected supply
6075 			 * of reclaimable memory from other cgroups.
6076 			 */
6077 			if (!sc->memcg_low_reclaim) {
6078 				sc->memcg_low_skipped = 1;
6079 				continue;
6080 			}
6081 			memcg_memory_event(memcg, MEMCG_LOW);
6082 		}
6083 
6084 		reclaimed = sc->nr_reclaimed;
6085 		scanned = sc->nr_scanned;
6086 
6087 		shrink_lruvec(lruvec, sc);
6088 
6089 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6090 			    sc->priority);
6091 
6092 		/* Record the group's reclaim efficiency */
6093 		if (!sc->proactive)
6094 			vmpressure(sc->gfp_mask, memcg, false,
6095 				   sc->nr_scanned - scanned,
6096 				   sc->nr_reclaimed - reclaimed);
6097 
6098 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6099 }
6100 
6101 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6102 {
6103 	struct reclaim_state *reclaim_state = current->reclaim_state;
6104 	unsigned long nr_reclaimed, nr_scanned;
6105 	struct lruvec *target_lruvec;
6106 	bool reclaimable = false;
6107 
6108 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6109 
6110 again:
6111 	memset(&sc->nr, 0, sizeof(sc->nr));
6112 
6113 	nr_reclaimed = sc->nr_reclaimed;
6114 	nr_scanned = sc->nr_scanned;
6115 
6116 	prepare_scan_count(pgdat, sc);
6117 
6118 	shrink_node_memcgs(pgdat, sc);
6119 
6120 	if (reclaim_state) {
6121 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6122 		reclaim_state->reclaimed_slab = 0;
6123 	}
6124 
6125 	/* Record the subtree's reclaim efficiency */
6126 	if (!sc->proactive)
6127 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6128 			   sc->nr_scanned - nr_scanned,
6129 			   sc->nr_reclaimed - nr_reclaimed);
6130 
6131 	if (sc->nr_reclaimed - nr_reclaimed)
6132 		reclaimable = true;
6133 
6134 	if (current_is_kswapd()) {
6135 		/*
6136 		 * If reclaim is isolating dirty pages under writeback,
6137 		 * it implies that the long-lived page allocation rate
6138 		 * is exceeding the page laundering rate. Either the
6139 		 * global limits are not being effective at throttling
6140 		 * processes due to the page distribution throughout
6141 		 * zones or there is heavy usage of a slow backing
6142 		 * device. The only option is to throttle from reclaim
6143 		 * context which is not ideal as there is no guarantee
6144 		 * the dirtying process is throttled in the same way
6145 		 * balance_dirty_pages() manages.
6146 		 *
6147 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6148 		 * count the number of pages under pages flagged for
6149 		 * immediate reclaim and stall if any are encountered
6150 		 * in the nr_immediate check below.
6151 		 */
6152 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6153 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6154 
6155 		/* Allow kswapd to start writing pages during reclaim.*/
6156 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6157 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6158 
6159 		/*
6160 		 * If kswapd scans pages marked for immediate
6161 		 * reclaim and under writeback (nr_immediate), it
6162 		 * implies that pages are cycling through the LRU
6163 		 * faster than they are written so forcibly stall
6164 		 * until some pages complete writeback.
6165 		 */
6166 		if (sc->nr.immediate)
6167 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6168 	}
6169 
6170 	/*
6171 	 * Tag a node/memcg as congested if all the dirty pages were marked
6172 	 * for writeback and immediate reclaim (counted in nr.congested).
6173 	 *
6174 	 * Legacy memcg will stall in page writeback so avoid forcibly
6175 	 * stalling in reclaim_throttle().
6176 	 */
6177 	if ((current_is_kswapd() ||
6178 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6179 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6180 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6181 
6182 	/*
6183 	 * Stall direct reclaim for IO completions if the lruvec is
6184 	 * node is congested. Allow kswapd to continue until it
6185 	 * starts encountering unqueued dirty pages or cycling through
6186 	 * the LRU too quickly.
6187 	 */
6188 	if (!current_is_kswapd() && current_may_throttle() &&
6189 	    !sc->hibernation_mode &&
6190 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6191 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6192 
6193 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6194 				    sc))
6195 		goto again;
6196 
6197 	/*
6198 	 * Kswapd gives up on balancing particular nodes after too
6199 	 * many failures to reclaim anything from them and goes to
6200 	 * sleep. On reclaim progress, reset the failure counter. A
6201 	 * successful direct reclaim run will revive a dormant kswapd.
6202 	 */
6203 	if (reclaimable)
6204 		pgdat->kswapd_failures = 0;
6205 }
6206 
6207 /*
6208  * Returns true if compaction should go ahead for a costly-order request, or
6209  * the allocation would already succeed without compaction. Return false if we
6210  * should reclaim first.
6211  */
6212 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6213 {
6214 	unsigned long watermark;
6215 	enum compact_result suitable;
6216 
6217 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6218 	if (suitable == COMPACT_SUCCESS)
6219 		/* Allocation should succeed already. Don't reclaim. */
6220 		return true;
6221 	if (suitable == COMPACT_SKIPPED)
6222 		/* Compaction cannot yet proceed. Do reclaim. */
6223 		return false;
6224 
6225 	/*
6226 	 * Compaction is already possible, but it takes time to run and there
6227 	 * are potentially other callers using the pages just freed. So proceed
6228 	 * with reclaim to make a buffer of free pages available to give
6229 	 * compaction a reasonable chance of completing and allocating the page.
6230 	 * Note that we won't actually reclaim the whole buffer in one attempt
6231 	 * as the target watermark in should_continue_reclaim() is lower. But if
6232 	 * we are already above the high+gap watermark, don't reclaim at all.
6233 	 */
6234 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6235 
6236 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6237 }
6238 
6239 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6240 {
6241 	/*
6242 	 * If reclaim is making progress greater than 12% efficiency then
6243 	 * wake all the NOPROGRESS throttled tasks.
6244 	 */
6245 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6246 		wait_queue_head_t *wqh;
6247 
6248 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6249 		if (waitqueue_active(wqh))
6250 			wake_up(wqh);
6251 
6252 		return;
6253 	}
6254 
6255 	/*
6256 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6257 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6258 	 * under writeback and marked for immediate reclaim at the tail of the
6259 	 * LRU.
6260 	 */
6261 	if (current_is_kswapd() || cgroup_reclaim(sc))
6262 		return;
6263 
6264 	/* Throttle if making no progress at high prioities. */
6265 	if (sc->priority == 1 && !sc->nr_reclaimed)
6266 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6267 }
6268 
6269 /*
6270  * This is the direct reclaim path, for page-allocating processes.  We only
6271  * try to reclaim pages from zones which will satisfy the caller's allocation
6272  * request.
6273  *
6274  * If a zone is deemed to be full of pinned pages then just give it a light
6275  * scan then give up on it.
6276  */
6277 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6278 {
6279 	struct zoneref *z;
6280 	struct zone *zone;
6281 	unsigned long nr_soft_reclaimed;
6282 	unsigned long nr_soft_scanned;
6283 	gfp_t orig_mask;
6284 	pg_data_t *last_pgdat = NULL;
6285 	pg_data_t *first_pgdat = NULL;
6286 
6287 	/*
6288 	 * If the number of buffer_heads in the machine exceeds the maximum
6289 	 * allowed level, force direct reclaim to scan the highmem zone as
6290 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6291 	 */
6292 	orig_mask = sc->gfp_mask;
6293 	if (buffer_heads_over_limit) {
6294 		sc->gfp_mask |= __GFP_HIGHMEM;
6295 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6296 	}
6297 
6298 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6299 					sc->reclaim_idx, sc->nodemask) {
6300 		/*
6301 		 * Take care memory controller reclaiming has small influence
6302 		 * to global LRU.
6303 		 */
6304 		if (!cgroup_reclaim(sc)) {
6305 			if (!cpuset_zone_allowed(zone,
6306 						 GFP_KERNEL | __GFP_HARDWALL))
6307 				continue;
6308 
6309 			/*
6310 			 * If we already have plenty of memory free for
6311 			 * compaction in this zone, don't free any more.
6312 			 * Even though compaction is invoked for any
6313 			 * non-zero order, only frequent costly order
6314 			 * reclamation is disruptive enough to become a
6315 			 * noticeable problem, like transparent huge
6316 			 * page allocations.
6317 			 */
6318 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6319 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6320 			    compaction_ready(zone, sc)) {
6321 				sc->compaction_ready = true;
6322 				continue;
6323 			}
6324 
6325 			/*
6326 			 * Shrink each node in the zonelist once. If the
6327 			 * zonelist is ordered by zone (not the default) then a
6328 			 * node may be shrunk multiple times but in that case
6329 			 * the user prefers lower zones being preserved.
6330 			 */
6331 			if (zone->zone_pgdat == last_pgdat)
6332 				continue;
6333 
6334 			/*
6335 			 * This steals pages from memory cgroups over softlimit
6336 			 * and returns the number of reclaimed pages and
6337 			 * scanned pages. This works for global memory pressure
6338 			 * and balancing, not for a memcg's limit.
6339 			 */
6340 			nr_soft_scanned = 0;
6341 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6342 						sc->order, sc->gfp_mask,
6343 						&nr_soft_scanned);
6344 			sc->nr_reclaimed += nr_soft_reclaimed;
6345 			sc->nr_scanned += nr_soft_scanned;
6346 			/* need some check for avoid more shrink_zone() */
6347 		}
6348 
6349 		if (!first_pgdat)
6350 			first_pgdat = zone->zone_pgdat;
6351 
6352 		/* See comment about same check for global reclaim above */
6353 		if (zone->zone_pgdat == last_pgdat)
6354 			continue;
6355 		last_pgdat = zone->zone_pgdat;
6356 		shrink_node(zone->zone_pgdat, sc);
6357 	}
6358 
6359 	if (first_pgdat)
6360 		consider_reclaim_throttle(first_pgdat, sc);
6361 
6362 	/*
6363 	 * Restore to original mask to avoid the impact on the caller if we
6364 	 * promoted it to __GFP_HIGHMEM.
6365 	 */
6366 	sc->gfp_mask = orig_mask;
6367 }
6368 
6369 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6370 {
6371 	struct lruvec *target_lruvec;
6372 	unsigned long refaults;
6373 
6374 	if (lru_gen_enabled())
6375 		return;
6376 
6377 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6378 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6379 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6380 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6381 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6382 }
6383 
6384 /*
6385  * This is the main entry point to direct page reclaim.
6386  *
6387  * If a full scan of the inactive list fails to free enough memory then we
6388  * are "out of memory" and something needs to be killed.
6389  *
6390  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6391  * high - the zone may be full of dirty or under-writeback pages, which this
6392  * caller can't do much about.  We kick the writeback threads and take explicit
6393  * naps in the hope that some of these pages can be written.  But if the
6394  * allocating task holds filesystem locks which prevent writeout this might not
6395  * work, and the allocation attempt will fail.
6396  *
6397  * returns:	0, if no pages reclaimed
6398  * 		else, the number of pages reclaimed
6399  */
6400 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6401 					  struct scan_control *sc)
6402 {
6403 	int initial_priority = sc->priority;
6404 	pg_data_t *last_pgdat;
6405 	struct zoneref *z;
6406 	struct zone *zone;
6407 retry:
6408 	delayacct_freepages_start();
6409 
6410 	if (!cgroup_reclaim(sc))
6411 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6412 
6413 	do {
6414 		if (!sc->proactive)
6415 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6416 					sc->priority);
6417 		sc->nr_scanned = 0;
6418 		shrink_zones(zonelist, sc);
6419 
6420 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6421 			break;
6422 
6423 		if (sc->compaction_ready)
6424 			break;
6425 
6426 		/*
6427 		 * If we're getting trouble reclaiming, start doing
6428 		 * writepage even in laptop mode.
6429 		 */
6430 		if (sc->priority < DEF_PRIORITY - 2)
6431 			sc->may_writepage = 1;
6432 	} while (--sc->priority >= 0);
6433 
6434 	last_pgdat = NULL;
6435 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6436 					sc->nodemask) {
6437 		if (zone->zone_pgdat == last_pgdat)
6438 			continue;
6439 		last_pgdat = zone->zone_pgdat;
6440 
6441 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6442 
6443 		if (cgroup_reclaim(sc)) {
6444 			struct lruvec *lruvec;
6445 
6446 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6447 						   zone->zone_pgdat);
6448 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6449 		}
6450 	}
6451 
6452 	delayacct_freepages_end();
6453 
6454 	if (sc->nr_reclaimed)
6455 		return sc->nr_reclaimed;
6456 
6457 	/* Aborted reclaim to try compaction? don't OOM, then */
6458 	if (sc->compaction_ready)
6459 		return 1;
6460 
6461 	/*
6462 	 * We make inactive:active ratio decisions based on the node's
6463 	 * composition of memory, but a restrictive reclaim_idx or a
6464 	 * memory.low cgroup setting can exempt large amounts of
6465 	 * memory from reclaim. Neither of which are very common, so
6466 	 * instead of doing costly eligibility calculations of the
6467 	 * entire cgroup subtree up front, we assume the estimates are
6468 	 * good, and retry with forcible deactivation if that fails.
6469 	 */
6470 	if (sc->skipped_deactivate) {
6471 		sc->priority = initial_priority;
6472 		sc->force_deactivate = 1;
6473 		sc->skipped_deactivate = 0;
6474 		goto retry;
6475 	}
6476 
6477 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6478 	if (sc->memcg_low_skipped) {
6479 		sc->priority = initial_priority;
6480 		sc->force_deactivate = 0;
6481 		sc->memcg_low_reclaim = 1;
6482 		sc->memcg_low_skipped = 0;
6483 		goto retry;
6484 	}
6485 
6486 	return 0;
6487 }
6488 
6489 static bool allow_direct_reclaim(pg_data_t *pgdat)
6490 {
6491 	struct zone *zone;
6492 	unsigned long pfmemalloc_reserve = 0;
6493 	unsigned long free_pages = 0;
6494 	int i;
6495 	bool wmark_ok;
6496 
6497 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6498 		return true;
6499 
6500 	for (i = 0; i <= ZONE_NORMAL; i++) {
6501 		zone = &pgdat->node_zones[i];
6502 		if (!managed_zone(zone))
6503 			continue;
6504 
6505 		if (!zone_reclaimable_pages(zone))
6506 			continue;
6507 
6508 		pfmemalloc_reserve += min_wmark_pages(zone);
6509 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6510 	}
6511 
6512 	/* If there are no reserves (unexpected config) then do not throttle */
6513 	if (!pfmemalloc_reserve)
6514 		return true;
6515 
6516 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6517 
6518 	/* kswapd must be awake if processes are being throttled */
6519 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6520 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6521 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6522 
6523 		wake_up_interruptible(&pgdat->kswapd_wait);
6524 	}
6525 
6526 	return wmark_ok;
6527 }
6528 
6529 /*
6530  * Throttle direct reclaimers if backing storage is backed by the network
6531  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6532  * depleted. kswapd will continue to make progress and wake the processes
6533  * when the low watermark is reached.
6534  *
6535  * Returns true if a fatal signal was delivered during throttling. If this
6536  * happens, the page allocator should not consider triggering the OOM killer.
6537  */
6538 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6539 					nodemask_t *nodemask)
6540 {
6541 	struct zoneref *z;
6542 	struct zone *zone;
6543 	pg_data_t *pgdat = NULL;
6544 
6545 	/*
6546 	 * Kernel threads should not be throttled as they may be indirectly
6547 	 * responsible for cleaning pages necessary for reclaim to make forward
6548 	 * progress. kjournald for example may enter direct reclaim while
6549 	 * committing a transaction where throttling it could forcing other
6550 	 * processes to block on log_wait_commit().
6551 	 */
6552 	if (current->flags & PF_KTHREAD)
6553 		goto out;
6554 
6555 	/*
6556 	 * If a fatal signal is pending, this process should not throttle.
6557 	 * It should return quickly so it can exit and free its memory
6558 	 */
6559 	if (fatal_signal_pending(current))
6560 		goto out;
6561 
6562 	/*
6563 	 * Check if the pfmemalloc reserves are ok by finding the first node
6564 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6565 	 * GFP_KERNEL will be required for allocating network buffers when
6566 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6567 	 *
6568 	 * Throttling is based on the first usable node and throttled processes
6569 	 * wait on a queue until kswapd makes progress and wakes them. There
6570 	 * is an affinity then between processes waking up and where reclaim
6571 	 * progress has been made assuming the process wakes on the same node.
6572 	 * More importantly, processes running on remote nodes will not compete
6573 	 * for remote pfmemalloc reserves and processes on different nodes
6574 	 * should make reasonable progress.
6575 	 */
6576 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6577 					gfp_zone(gfp_mask), nodemask) {
6578 		if (zone_idx(zone) > ZONE_NORMAL)
6579 			continue;
6580 
6581 		/* Throttle based on the first usable node */
6582 		pgdat = zone->zone_pgdat;
6583 		if (allow_direct_reclaim(pgdat))
6584 			goto out;
6585 		break;
6586 	}
6587 
6588 	/* If no zone was usable by the allocation flags then do not throttle */
6589 	if (!pgdat)
6590 		goto out;
6591 
6592 	/* Account for the throttling */
6593 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6594 
6595 	/*
6596 	 * If the caller cannot enter the filesystem, it's possible that it
6597 	 * is due to the caller holding an FS lock or performing a journal
6598 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6599 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6600 	 * blocked waiting on the same lock. Instead, throttle for up to a
6601 	 * second before continuing.
6602 	 */
6603 	if (!(gfp_mask & __GFP_FS))
6604 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6605 			allow_direct_reclaim(pgdat), HZ);
6606 	else
6607 		/* Throttle until kswapd wakes the process */
6608 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6609 			allow_direct_reclaim(pgdat));
6610 
6611 	if (fatal_signal_pending(current))
6612 		return true;
6613 
6614 out:
6615 	return false;
6616 }
6617 
6618 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6619 				gfp_t gfp_mask, nodemask_t *nodemask)
6620 {
6621 	unsigned long nr_reclaimed;
6622 	struct scan_control sc = {
6623 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6624 		.gfp_mask = current_gfp_context(gfp_mask),
6625 		.reclaim_idx = gfp_zone(gfp_mask),
6626 		.order = order,
6627 		.nodemask = nodemask,
6628 		.priority = DEF_PRIORITY,
6629 		.may_writepage = !laptop_mode,
6630 		.may_unmap = 1,
6631 		.may_swap = 1,
6632 	};
6633 
6634 	/*
6635 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6636 	 * Confirm they are large enough for max values.
6637 	 */
6638 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6639 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6640 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6641 
6642 	/*
6643 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6644 	 * 1 is returned so that the page allocator does not OOM kill at this
6645 	 * point.
6646 	 */
6647 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6648 		return 1;
6649 
6650 	set_task_reclaim_state(current, &sc.reclaim_state);
6651 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6652 
6653 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6654 
6655 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6656 	set_task_reclaim_state(current, NULL);
6657 
6658 	return nr_reclaimed;
6659 }
6660 
6661 #ifdef CONFIG_MEMCG
6662 
6663 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6664 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6665 						gfp_t gfp_mask, bool noswap,
6666 						pg_data_t *pgdat,
6667 						unsigned long *nr_scanned)
6668 {
6669 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6670 	struct scan_control sc = {
6671 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6672 		.target_mem_cgroup = memcg,
6673 		.may_writepage = !laptop_mode,
6674 		.may_unmap = 1,
6675 		.reclaim_idx = MAX_NR_ZONES - 1,
6676 		.may_swap = !noswap,
6677 	};
6678 
6679 	WARN_ON_ONCE(!current->reclaim_state);
6680 
6681 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6682 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6683 
6684 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6685 						      sc.gfp_mask);
6686 
6687 	/*
6688 	 * NOTE: Although we can get the priority field, using it
6689 	 * here is not a good idea, since it limits the pages we can scan.
6690 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6691 	 * will pick up pages from other mem cgroup's as well. We hack
6692 	 * the priority and make it zero.
6693 	 */
6694 	shrink_lruvec(lruvec, &sc);
6695 
6696 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6697 
6698 	*nr_scanned = sc.nr_scanned;
6699 
6700 	return sc.nr_reclaimed;
6701 }
6702 
6703 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6704 					   unsigned long nr_pages,
6705 					   gfp_t gfp_mask,
6706 					   unsigned int reclaim_options)
6707 {
6708 	unsigned long nr_reclaimed;
6709 	unsigned int noreclaim_flag;
6710 	struct scan_control sc = {
6711 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6712 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6713 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6714 		.reclaim_idx = MAX_NR_ZONES - 1,
6715 		.target_mem_cgroup = memcg,
6716 		.priority = DEF_PRIORITY,
6717 		.may_writepage = !laptop_mode,
6718 		.may_unmap = 1,
6719 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6720 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6721 	};
6722 	/*
6723 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6724 	 * equal pressure on all the nodes. This is based on the assumption that
6725 	 * the reclaim does not bail out early.
6726 	 */
6727 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6728 
6729 	set_task_reclaim_state(current, &sc.reclaim_state);
6730 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6731 	noreclaim_flag = memalloc_noreclaim_save();
6732 
6733 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6734 
6735 	memalloc_noreclaim_restore(noreclaim_flag);
6736 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6737 	set_task_reclaim_state(current, NULL);
6738 
6739 	return nr_reclaimed;
6740 }
6741 #endif
6742 
6743 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6744 {
6745 	struct mem_cgroup *memcg;
6746 	struct lruvec *lruvec;
6747 
6748 	if (lru_gen_enabled()) {
6749 		lru_gen_age_node(pgdat, sc);
6750 		return;
6751 	}
6752 
6753 	if (!can_age_anon_pages(pgdat, sc))
6754 		return;
6755 
6756 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6757 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6758 		return;
6759 
6760 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6761 	do {
6762 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6763 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6764 				   sc, LRU_ACTIVE_ANON);
6765 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6766 	} while (memcg);
6767 }
6768 
6769 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6770 {
6771 	int i;
6772 	struct zone *zone;
6773 
6774 	/*
6775 	 * Check for watermark boosts top-down as the higher zones
6776 	 * are more likely to be boosted. Both watermarks and boosts
6777 	 * should not be checked at the same time as reclaim would
6778 	 * start prematurely when there is no boosting and a lower
6779 	 * zone is balanced.
6780 	 */
6781 	for (i = highest_zoneidx; i >= 0; i--) {
6782 		zone = pgdat->node_zones + i;
6783 		if (!managed_zone(zone))
6784 			continue;
6785 
6786 		if (zone->watermark_boost)
6787 			return true;
6788 	}
6789 
6790 	return false;
6791 }
6792 
6793 /*
6794  * Returns true if there is an eligible zone balanced for the request order
6795  * and highest_zoneidx
6796  */
6797 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6798 {
6799 	int i;
6800 	unsigned long mark = -1;
6801 	struct zone *zone;
6802 
6803 	/*
6804 	 * Check watermarks bottom-up as lower zones are more likely to
6805 	 * meet watermarks.
6806 	 */
6807 	for (i = 0; i <= highest_zoneidx; i++) {
6808 		zone = pgdat->node_zones + i;
6809 
6810 		if (!managed_zone(zone))
6811 			continue;
6812 
6813 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6814 			mark = wmark_pages(zone, WMARK_PROMO);
6815 		else
6816 			mark = high_wmark_pages(zone);
6817 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6818 			return true;
6819 	}
6820 
6821 	/*
6822 	 * If a node has no managed zone within highest_zoneidx, it does not
6823 	 * need balancing by definition. This can happen if a zone-restricted
6824 	 * allocation tries to wake a remote kswapd.
6825 	 */
6826 	if (mark == -1)
6827 		return true;
6828 
6829 	return false;
6830 }
6831 
6832 /* Clear pgdat state for congested, dirty or under writeback. */
6833 static void clear_pgdat_congested(pg_data_t *pgdat)
6834 {
6835 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6836 
6837 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6838 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6839 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6840 }
6841 
6842 /*
6843  * Prepare kswapd for sleeping. This verifies that there are no processes
6844  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6845  *
6846  * Returns true if kswapd is ready to sleep
6847  */
6848 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6849 				int highest_zoneidx)
6850 {
6851 	/*
6852 	 * The throttled processes are normally woken up in balance_pgdat() as
6853 	 * soon as allow_direct_reclaim() is true. But there is a potential
6854 	 * race between when kswapd checks the watermarks and a process gets
6855 	 * throttled. There is also a potential race if processes get
6856 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6857 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6858 	 * the wake up checks. If kswapd is going to sleep, no process should
6859 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6860 	 * the wake up is premature, processes will wake kswapd and get
6861 	 * throttled again. The difference from wake ups in balance_pgdat() is
6862 	 * that here we are under prepare_to_wait().
6863 	 */
6864 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6865 		wake_up_all(&pgdat->pfmemalloc_wait);
6866 
6867 	/* Hopeless node, leave it to direct reclaim */
6868 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6869 		return true;
6870 
6871 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6872 		clear_pgdat_congested(pgdat);
6873 		return true;
6874 	}
6875 
6876 	return false;
6877 }
6878 
6879 /*
6880  * kswapd shrinks a node of pages that are at or below the highest usable
6881  * zone that is currently unbalanced.
6882  *
6883  * Returns true if kswapd scanned at least the requested number of pages to
6884  * reclaim or if the lack of progress was due to pages under writeback.
6885  * This is used to determine if the scanning priority needs to be raised.
6886  */
6887 static bool kswapd_shrink_node(pg_data_t *pgdat,
6888 			       struct scan_control *sc)
6889 {
6890 	struct zone *zone;
6891 	int z;
6892 
6893 	/* Reclaim a number of pages proportional to the number of zones */
6894 	sc->nr_to_reclaim = 0;
6895 	for (z = 0; z <= sc->reclaim_idx; z++) {
6896 		zone = pgdat->node_zones + z;
6897 		if (!managed_zone(zone))
6898 			continue;
6899 
6900 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6901 	}
6902 
6903 	/*
6904 	 * Historically care was taken to put equal pressure on all zones but
6905 	 * now pressure is applied based on node LRU order.
6906 	 */
6907 	shrink_node(pgdat, sc);
6908 
6909 	/*
6910 	 * Fragmentation may mean that the system cannot be rebalanced for
6911 	 * high-order allocations. If twice the allocation size has been
6912 	 * reclaimed then recheck watermarks only at order-0 to prevent
6913 	 * excessive reclaim. Assume that a process requested a high-order
6914 	 * can direct reclaim/compact.
6915 	 */
6916 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6917 		sc->order = 0;
6918 
6919 	return sc->nr_scanned >= sc->nr_to_reclaim;
6920 }
6921 
6922 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6923 static inline void
6924 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6925 {
6926 	int i;
6927 	struct zone *zone;
6928 
6929 	for (i = 0; i <= highest_zoneidx; i++) {
6930 		zone = pgdat->node_zones + i;
6931 
6932 		if (!managed_zone(zone))
6933 			continue;
6934 
6935 		if (active)
6936 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6937 		else
6938 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6939 	}
6940 }
6941 
6942 static inline void
6943 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6944 {
6945 	update_reclaim_active(pgdat, highest_zoneidx, true);
6946 }
6947 
6948 static inline void
6949 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6950 {
6951 	update_reclaim_active(pgdat, highest_zoneidx, false);
6952 }
6953 
6954 /*
6955  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6956  * that are eligible for use by the caller until at least one zone is
6957  * balanced.
6958  *
6959  * Returns the order kswapd finished reclaiming at.
6960  *
6961  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6962  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6963  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6964  * or lower is eligible for reclaim until at least one usable zone is
6965  * balanced.
6966  */
6967 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6968 {
6969 	int i;
6970 	unsigned long nr_soft_reclaimed;
6971 	unsigned long nr_soft_scanned;
6972 	unsigned long pflags;
6973 	unsigned long nr_boost_reclaim;
6974 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6975 	bool boosted;
6976 	struct zone *zone;
6977 	struct scan_control sc = {
6978 		.gfp_mask = GFP_KERNEL,
6979 		.order = order,
6980 		.may_unmap = 1,
6981 	};
6982 
6983 	set_task_reclaim_state(current, &sc.reclaim_state);
6984 	psi_memstall_enter(&pflags);
6985 	__fs_reclaim_acquire(_THIS_IP_);
6986 
6987 	count_vm_event(PAGEOUTRUN);
6988 
6989 	/*
6990 	 * Account for the reclaim boost. Note that the zone boost is left in
6991 	 * place so that parallel allocations that are near the watermark will
6992 	 * stall or direct reclaim until kswapd is finished.
6993 	 */
6994 	nr_boost_reclaim = 0;
6995 	for (i = 0; i <= highest_zoneidx; i++) {
6996 		zone = pgdat->node_zones + i;
6997 		if (!managed_zone(zone))
6998 			continue;
6999 
7000 		nr_boost_reclaim += zone->watermark_boost;
7001 		zone_boosts[i] = zone->watermark_boost;
7002 	}
7003 	boosted = nr_boost_reclaim;
7004 
7005 restart:
7006 	set_reclaim_active(pgdat, highest_zoneidx);
7007 	sc.priority = DEF_PRIORITY;
7008 	do {
7009 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7010 		bool raise_priority = true;
7011 		bool balanced;
7012 		bool ret;
7013 
7014 		sc.reclaim_idx = highest_zoneidx;
7015 
7016 		/*
7017 		 * If the number of buffer_heads exceeds the maximum allowed
7018 		 * then consider reclaiming from all zones. This has a dual
7019 		 * purpose -- on 64-bit systems it is expected that
7020 		 * buffer_heads are stripped during active rotation. On 32-bit
7021 		 * systems, highmem pages can pin lowmem memory and shrinking
7022 		 * buffers can relieve lowmem pressure. Reclaim may still not
7023 		 * go ahead if all eligible zones for the original allocation
7024 		 * request are balanced to avoid excessive reclaim from kswapd.
7025 		 */
7026 		if (buffer_heads_over_limit) {
7027 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7028 				zone = pgdat->node_zones + i;
7029 				if (!managed_zone(zone))
7030 					continue;
7031 
7032 				sc.reclaim_idx = i;
7033 				break;
7034 			}
7035 		}
7036 
7037 		/*
7038 		 * If the pgdat is imbalanced then ignore boosting and preserve
7039 		 * the watermarks for a later time and restart. Note that the
7040 		 * zone watermarks will be still reset at the end of balancing
7041 		 * on the grounds that the normal reclaim should be enough to
7042 		 * re-evaluate if boosting is required when kswapd next wakes.
7043 		 */
7044 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7045 		if (!balanced && nr_boost_reclaim) {
7046 			nr_boost_reclaim = 0;
7047 			goto restart;
7048 		}
7049 
7050 		/*
7051 		 * If boosting is not active then only reclaim if there are no
7052 		 * eligible zones. Note that sc.reclaim_idx is not used as
7053 		 * buffer_heads_over_limit may have adjusted it.
7054 		 */
7055 		if (!nr_boost_reclaim && balanced)
7056 			goto out;
7057 
7058 		/* Limit the priority of boosting to avoid reclaim writeback */
7059 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7060 			raise_priority = false;
7061 
7062 		/*
7063 		 * Do not writeback or swap pages for boosted reclaim. The
7064 		 * intent is to relieve pressure not issue sub-optimal IO
7065 		 * from reclaim context. If no pages are reclaimed, the
7066 		 * reclaim will be aborted.
7067 		 */
7068 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7069 		sc.may_swap = !nr_boost_reclaim;
7070 
7071 		/*
7072 		 * Do some background aging, to give pages a chance to be
7073 		 * referenced before reclaiming. All pages are rotated
7074 		 * regardless of classzone as this is about consistent aging.
7075 		 */
7076 		kswapd_age_node(pgdat, &sc);
7077 
7078 		/*
7079 		 * If we're getting trouble reclaiming, start doing writepage
7080 		 * even in laptop mode.
7081 		 */
7082 		if (sc.priority < DEF_PRIORITY - 2)
7083 			sc.may_writepage = 1;
7084 
7085 		/* Call soft limit reclaim before calling shrink_node. */
7086 		sc.nr_scanned = 0;
7087 		nr_soft_scanned = 0;
7088 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7089 						sc.gfp_mask, &nr_soft_scanned);
7090 		sc.nr_reclaimed += nr_soft_reclaimed;
7091 
7092 		/*
7093 		 * There should be no need to raise the scanning priority if
7094 		 * enough pages are already being scanned that that high
7095 		 * watermark would be met at 100% efficiency.
7096 		 */
7097 		if (kswapd_shrink_node(pgdat, &sc))
7098 			raise_priority = false;
7099 
7100 		/*
7101 		 * If the low watermark is met there is no need for processes
7102 		 * to be throttled on pfmemalloc_wait as they should not be
7103 		 * able to safely make forward progress. Wake them
7104 		 */
7105 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7106 				allow_direct_reclaim(pgdat))
7107 			wake_up_all(&pgdat->pfmemalloc_wait);
7108 
7109 		/* Check if kswapd should be suspending */
7110 		__fs_reclaim_release(_THIS_IP_);
7111 		ret = try_to_freeze();
7112 		__fs_reclaim_acquire(_THIS_IP_);
7113 		if (ret || kthread_should_stop())
7114 			break;
7115 
7116 		/*
7117 		 * Raise priority if scanning rate is too low or there was no
7118 		 * progress in reclaiming pages
7119 		 */
7120 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7121 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7122 
7123 		/*
7124 		 * If reclaim made no progress for a boost, stop reclaim as
7125 		 * IO cannot be queued and it could be an infinite loop in
7126 		 * extreme circumstances.
7127 		 */
7128 		if (nr_boost_reclaim && !nr_reclaimed)
7129 			break;
7130 
7131 		if (raise_priority || !nr_reclaimed)
7132 			sc.priority--;
7133 	} while (sc.priority >= 1);
7134 
7135 	if (!sc.nr_reclaimed)
7136 		pgdat->kswapd_failures++;
7137 
7138 out:
7139 	clear_reclaim_active(pgdat, highest_zoneidx);
7140 
7141 	/* If reclaim was boosted, account for the reclaim done in this pass */
7142 	if (boosted) {
7143 		unsigned long flags;
7144 
7145 		for (i = 0; i <= highest_zoneidx; i++) {
7146 			if (!zone_boosts[i])
7147 				continue;
7148 
7149 			/* Increments are under the zone lock */
7150 			zone = pgdat->node_zones + i;
7151 			spin_lock_irqsave(&zone->lock, flags);
7152 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7153 			spin_unlock_irqrestore(&zone->lock, flags);
7154 		}
7155 
7156 		/*
7157 		 * As there is now likely space, wakeup kcompact to defragment
7158 		 * pageblocks.
7159 		 */
7160 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7161 	}
7162 
7163 	snapshot_refaults(NULL, pgdat);
7164 	__fs_reclaim_release(_THIS_IP_);
7165 	psi_memstall_leave(&pflags);
7166 	set_task_reclaim_state(current, NULL);
7167 
7168 	/*
7169 	 * Return the order kswapd stopped reclaiming at as
7170 	 * prepare_kswapd_sleep() takes it into account. If another caller
7171 	 * entered the allocator slow path while kswapd was awake, order will
7172 	 * remain at the higher level.
7173 	 */
7174 	return sc.order;
7175 }
7176 
7177 /*
7178  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7179  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7180  * not a valid index then either kswapd runs for first time or kswapd couldn't
7181  * sleep after previous reclaim attempt (node is still unbalanced). In that
7182  * case return the zone index of the previous kswapd reclaim cycle.
7183  */
7184 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7185 					   enum zone_type prev_highest_zoneidx)
7186 {
7187 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7188 
7189 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7190 }
7191 
7192 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7193 				unsigned int highest_zoneidx)
7194 {
7195 	long remaining = 0;
7196 	DEFINE_WAIT(wait);
7197 
7198 	if (freezing(current) || kthread_should_stop())
7199 		return;
7200 
7201 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7202 
7203 	/*
7204 	 * Try to sleep for a short interval. Note that kcompactd will only be
7205 	 * woken if it is possible to sleep for a short interval. This is
7206 	 * deliberate on the assumption that if reclaim cannot keep an
7207 	 * eligible zone balanced that it's also unlikely that compaction will
7208 	 * succeed.
7209 	 */
7210 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7211 		/*
7212 		 * Compaction records what page blocks it recently failed to
7213 		 * isolate pages from and skips them in the future scanning.
7214 		 * When kswapd is going to sleep, it is reasonable to assume
7215 		 * that pages and compaction may succeed so reset the cache.
7216 		 */
7217 		reset_isolation_suitable(pgdat);
7218 
7219 		/*
7220 		 * We have freed the memory, now we should compact it to make
7221 		 * allocation of the requested order possible.
7222 		 */
7223 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7224 
7225 		remaining = schedule_timeout(HZ/10);
7226 
7227 		/*
7228 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7229 		 * order. The values will either be from a wakeup request or
7230 		 * the previous request that slept prematurely.
7231 		 */
7232 		if (remaining) {
7233 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7234 					kswapd_highest_zoneidx(pgdat,
7235 							highest_zoneidx));
7236 
7237 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7238 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7239 		}
7240 
7241 		finish_wait(&pgdat->kswapd_wait, &wait);
7242 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7243 	}
7244 
7245 	/*
7246 	 * After a short sleep, check if it was a premature sleep. If not, then
7247 	 * go fully to sleep until explicitly woken up.
7248 	 */
7249 	if (!remaining &&
7250 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7251 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7252 
7253 		/*
7254 		 * vmstat counters are not perfectly accurate and the estimated
7255 		 * value for counters such as NR_FREE_PAGES can deviate from the
7256 		 * true value by nr_online_cpus * threshold. To avoid the zone
7257 		 * watermarks being breached while under pressure, we reduce the
7258 		 * per-cpu vmstat threshold while kswapd is awake and restore
7259 		 * them before going back to sleep.
7260 		 */
7261 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7262 
7263 		if (!kthread_should_stop())
7264 			schedule();
7265 
7266 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7267 	} else {
7268 		if (remaining)
7269 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7270 		else
7271 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7272 	}
7273 	finish_wait(&pgdat->kswapd_wait, &wait);
7274 }
7275 
7276 /*
7277  * The background pageout daemon, started as a kernel thread
7278  * from the init process.
7279  *
7280  * This basically trickles out pages so that we have _some_
7281  * free memory available even if there is no other activity
7282  * that frees anything up. This is needed for things like routing
7283  * etc, where we otherwise might have all activity going on in
7284  * asynchronous contexts that cannot page things out.
7285  *
7286  * If there are applications that are active memory-allocators
7287  * (most normal use), this basically shouldn't matter.
7288  */
7289 static int kswapd(void *p)
7290 {
7291 	unsigned int alloc_order, reclaim_order;
7292 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7293 	pg_data_t *pgdat = (pg_data_t *)p;
7294 	struct task_struct *tsk = current;
7295 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7296 
7297 	if (!cpumask_empty(cpumask))
7298 		set_cpus_allowed_ptr(tsk, cpumask);
7299 
7300 	/*
7301 	 * Tell the memory management that we're a "memory allocator",
7302 	 * and that if we need more memory we should get access to it
7303 	 * regardless (see "__alloc_pages()"). "kswapd" should
7304 	 * never get caught in the normal page freeing logic.
7305 	 *
7306 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7307 	 * you need a small amount of memory in order to be able to
7308 	 * page out something else, and this flag essentially protects
7309 	 * us from recursively trying to free more memory as we're
7310 	 * trying to free the first piece of memory in the first place).
7311 	 */
7312 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7313 	set_freezable();
7314 
7315 	WRITE_ONCE(pgdat->kswapd_order, 0);
7316 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7317 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7318 	for ( ; ; ) {
7319 		bool ret;
7320 
7321 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7322 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7323 							highest_zoneidx);
7324 
7325 kswapd_try_sleep:
7326 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7327 					highest_zoneidx);
7328 
7329 		/* Read the new order and highest_zoneidx */
7330 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7331 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7332 							highest_zoneidx);
7333 		WRITE_ONCE(pgdat->kswapd_order, 0);
7334 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7335 
7336 		ret = try_to_freeze();
7337 		if (kthread_should_stop())
7338 			break;
7339 
7340 		/*
7341 		 * We can speed up thawing tasks if we don't call balance_pgdat
7342 		 * after returning from the refrigerator
7343 		 */
7344 		if (ret)
7345 			continue;
7346 
7347 		/*
7348 		 * Reclaim begins at the requested order but if a high-order
7349 		 * reclaim fails then kswapd falls back to reclaiming for
7350 		 * order-0. If that happens, kswapd will consider sleeping
7351 		 * for the order it finished reclaiming at (reclaim_order)
7352 		 * but kcompactd is woken to compact for the original
7353 		 * request (alloc_order).
7354 		 */
7355 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7356 						alloc_order);
7357 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7358 						highest_zoneidx);
7359 		if (reclaim_order < alloc_order)
7360 			goto kswapd_try_sleep;
7361 	}
7362 
7363 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7364 
7365 	return 0;
7366 }
7367 
7368 /*
7369  * A zone is low on free memory or too fragmented for high-order memory.  If
7370  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7371  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7372  * has failed or is not needed, still wake up kcompactd if only compaction is
7373  * needed.
7374  */
7375 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7376 		   enum zone_type highest_zoneidx)
7377 {
7378 	pg_data_t *pgdat;
7379 	enum zone_type curr_idx;
7380 
7381 	if (!managed_zone(zone))
7382 		return;
7383 
7384 	if (!cpuset_zone_allowed(zone, gfp_flags))
7385 		return;
7386 
7387 	pgdat = zone->zone_pgdat;
7388 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7389 
7390 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7391 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7392 
7393 	if (READ_ONCE(pgdat->kswapd_order) < order)
7394 		WRITE_ONCE(pgdat->kswapd_order, order);
7395 
7396 	if (!waitqueue_active(&pgdat->kswapd_wait))
7397 		return;
7398 
7399 	/* Hopeless node, leave it to direct reclaim if possible */
7400 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7401 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7402 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7403 		/*
7404 		 * There may be plenty of free memory available, but it's too
7405 		 * fragmented for high-order allocations.  Wake up kcompactd
7406 		 * and rely on compaction_suitable() to determine if it's
7407 		 * needed.  If it fails, it will defer subsequent attempts to
7408 		 * ratelimit its work.
7409 		 */
7410 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7411 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7412 		return;
7413 	}
7414 
7415 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7416 				      gfp_flags);
7417 	wake_up_interruptible(&pgdat->kswapd_wait);
7418 }
7419 
7420 #ifdef CONFIG_HIBERNATION
7421 /*
7422  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7423  * freed pages.
7424  *
7425  * Rather than trying to age LRUs the aim is to preserve the overall
7426  * LRU order by reclaiming preferentially
7427  * inactive > active > active referenced > active mapped
7428  */
7429 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7430 {
7431 	struct scan_control sc = {
7432 		.nr_to_reclaim = nr_to_reclaim,
7433 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7434 		.reclaim_idx = MAX_NR_ZONES - 1,
7435 		.priority = DEF_PRIORITY,
7436 		.may_writepage = 1,
7437 		.may_unmap = 1,
7438 		.may_swap = 1,
7439 		.hibernation_mode = 1,
7440 	};
7441 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7442 	unsigned long nr_reclaimed;
7443 	unsigned int noreclaim_flag;
7444 
7445 	fs_reclaim_acquire(sc.gfp_mask);
7446 	noreclaim_flag = memalloc_noreclaim_save();
7447 	set_task_reclaim_state(current, &sc.reclaim_state);
7448 
7449 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7450 
7451 	set_task_reclaim_state(current, NULL);
7452 	memalloc_noreclaim_restore(noreclaim_flag);
7453 	fs_reclaim_release(sc.gfp_mask);
7454 
7455 	return nr_reclaimed;
7456 }
7457 #endif /* CONFIG_HIBERNATION */
7458 
7459 /*
7460  * This kswapd start function will be called by init and node-hot-add.
7461  */
7462 void kswapd_run(int nid)
7463 {
7464 	pg_data_t *pgdat = NODE_DATA(nid);
7465 
7466 	pgdat_kswapd_lock(pgdat);
7467 	if (!pgdat->kswapd) {
7468 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7469 		if (IS_ERR(pgdat->kswapd)) {
7470 			/* failure at boot is fatal */
7471 			BUG_ON(system_state < SYSTEM_RUNNING);
7472 			pr_err("Failed to start kswapd on node %d\n", nid);
7473 			pgdat->kswapd = NULL;
7474 		}
7475 	}
7476 	pgdat_kswapd_unlock(pgdat);
7477 }
7478 
7479 /*
7480  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7481  * be holding mem_hotplug_begin/done().
7482  */
7483 void kswapd_stop(int nid)
7484 {
7485 	pg_data_t *pgdat = NODE_DATA(nid);
7486 	struct task_struct *kswapd;
7487 
7488 	pgdat_kswapd_lock(pgdat);
7489 	kswapd = pgdat->kswapd;
7490 	if (kswapd) {
7491 		kthread_stop(kswapd);
7492 		pgdat->kswapd = NULL;
7493 	}
7494 	pgdat_kswapd_unlock(pgdat);
7495 }
7496 
7497 static int __init kswapd_init(void)
7498 {
7499 	int nid;
7500 
7501 	swap_setup();
7502 	for_each_node_state(nid, N_MEMORY)
7503  		kswapd_run(nid);
7504 	return 0;
7505 }
7506 
7507 module_init(kswapd_init)
7508 
7509 #ifdef CONFIG_NUMA
7510 /*
7511  * Node reclaim mode
7512  *
7513  * If non-zero call node_reclaim when the number of free pages falls below
7514  * the watermarks.
7515  */
7516 int node_reclaim_mode __read_mostly;
7517 
7518 /*
7519  * Priority for NODE_RECLAIM. This determines the fraction of pages
7520  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7521  * a zone.
7522  */
7523 #define NODE_RECLAIM_PRIORITY 4
7524 
7525 /*
7526  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7527  * occur.
7528  */
7529 int sysctl_min_unmapped_ratio = 1;
7530 
7531 /*
7532  * If the number of slab pages in a zone grows beyond this percentage then
7533  * slab reclaim needs to occur.
7534  */
7535 int sysctl_min_slab_ratio = 5;
7536 
7537 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7538 {
7539 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7540 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7541 		node_page_state(pgdat, NR_ACTIVE_FILE);
7542 
7543 	/*
7544 	 * It's possible for there to be more file mapped pages than
7545 	 * accounted for by the pages on the file LRU lists because
7546 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7547 	 */
7548 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7549 }
7550 
7551 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7552 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7553 {
7554 	unsigned long nr_pagecache_reclaimable;
7555 	unsigned long delta = 0;
7556 
7557 	/*
7558 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7559 	 * potentially reclaimable. Otherwise, we have to worry about
7560 	 * pages like swapcache and node_unmapped_file_pages() provides
7561 	 * a better estimate
7562 	 */
7563 	if (node_reclaim_mode & RECLAIM_UNMAP)
7564 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7565 	else
7566 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7567 
7568 	/* If we can't clean pages, remove dirty pages from consideration */
7569 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7570 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7571 
7572 	/* Watch for any possible underflows due to delta */
7573 	if (unlikely(delta > nr_pagecache_reclaimable))
7574 		delta = nr_pagecache_reclaimable;
7575 
7576 	return nr_pagecache_reclaimable - delta;
7577 }
7578 
7579 /*
7580  * Try to free up some pages from this node through reclaim.
7581  */
7582 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7583 {
7584 	/* Minimum pages needed in order to stay on node */
7585 	const unsigned long nr_pages = 1 << order;
7586 	struct task_struct *p = current;
7587 	unsigned int noreclaim_flag;
7588 	struct scan_control sc = {
7589 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7590 		.gfp_mask = current_gfp_context(gfp_mask),
7591 		.order = order,
7592 		.priority = NODE_RECLAIM_PRIORITY,
7593 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7594 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7595 		.may_swap = 1,
7596 		.reclaim_idx = gfp_zone(gfp_mask),
7597 	};
7598 	unsigned long pflags;
7599 
7600 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7601 					   sc.gfp_mask);
7602 
7603 	cond_resched();
7604 	psi_memstall_enter(&pflags);
7605 	fs_reclaim_acquire(sc.gfp_mask);
7606 	/*
7607 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7608 	 */
7609 	noreclaim_flag = memalloc_noreclaim_save();
7610 	set_task_reclaim_state(p, &sc.reclaim_state);
7611 
7612 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7613 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7614 		/*
7615 		 * Free memory by calling shrink node with increasing
7616 		 * priorities until we have enough memory freed.
7617 		 */
7618 		do {
7619 			shrink_node(pgdat, &sc);
7620 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7621 	}
7622 
7623 	set_task_reclaim_state(p, NULL);
7624 	memalloc_noreclaim_restore(noreclaim_flag);
7625 	fs_reclaim_release(sc.gfp_mask);
7626 	psi_memstall_leave(&pflags);
7627 
7628 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7629 
7630 	return sc.nr_reclaimed >= nr_pages;
7631 }
7632 
7633 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7634 {
7635 	int ret;
7636 
7637 	/*
7638 	 * Node reclaim reclaims unmapped file backed pages and
7639 	 * slab pages if we are over the defined limits.
7640 	 *
7641 	 * A small portion of unmapped file backed pages is needed for
7642 	 * file I/O otherwise pages read by file I/O will be immediately
7643 	 * thrown out if the node is overallocated. So we do not reclaim
7644 	 * if less than a specified percentage of the node is used by
7645 	 * unmapped file backed pages.
7646 	 */
7647 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7648 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7649 	    pgdat->min_slab_pages)
7650 		return NODE_RECLAIM_FULL;
7651 
7652 	/*
7653 	 * Do not scan if the allocation should not be delayed.
7654 	 */
7655 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7656 		return NODE_RECLAIM_NOSCAN;
7657 
7658 	/*
7659 	 * Only run node reclaim on the local node or on nodes that do not
7660 	 * have associated processors. This will favor the local processor
7661 	 * over remote processors and spread off node memory allocations
7662 	 * as wide as possible.
7663 	 */
7664 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7665 		return NODE_RECLAIM_NOSCAN;
7666 
7667 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7668 		return NODE_RECLAIM_NOSCAN;
7669 
7670 	ret = __node_reclaim(pgdat, gfp_mask, order);
7671 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7672 
7673 	if (!ret)
7674 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7675 
7676 	return ret;
7677 }
7678 #endif
7679 
7680 void check_move_unevictable_pages(struct pagevec *pvec)
7681 {
7682 	struct folio_batch fbatch;
7683 	unsigned i;
7684 
7685 	folio_batch_init(&fbatch);
7686 	for (i = 0; i < pvec->nr; i++) {
7687 		struct page *page = pvec->pages[i];
7688 
7689 		if (PageTransTail(page))
7690 			continue;
7691 		folio_batch_add(&fbatch, page_folio(page));
7692 	}
7693 	check_move_unevictable_folios(&fbatch);
7694 }
7695 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7696 
7697 /**
7698  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7699  * lru list
7700  * @fbatch: Batch of lru folios to check.
7701  *
7702  * Checks folios for evictability, if an evictable folio is in the unevictable
7703  * lru list, moves it to the appropriate evictable lru list. This function
7704  * should be only used for lru folios.
7705  */
7706 void check_move_unevictable_folios(struct folio_batch *fbatch)
7707 {
7708 	struct lruvec *lruvec = NULL;
7709 	int pgscanned = 0;
7710 	int pgrescued = 0;
7711 	int i;
7712 
7713 	for (i = 0; i < fbatch->nr; i++) {
7714 		struct folio *folio = fbatch->folios[i];
7715 		int nr_pages = folio_nr_pages(folio);
7716 
7717 		pgscanned += nr_pages;
7718 
7719 		/* block memcg migration while the folio moves between lrus */
7720 		if (!folio_test_clear_lru(folio))
7721 			continue;
7722 
7723 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7724 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7725 			lruvec_del_folio(lruvec, folio);
7726 			folio_clear_unevictable(folio);
7727 			lruvec_add_folio(lruvec, folio);
7728 			pgrescued += nr_pages;
7729 		}
7730 		folio_set_lru(folio);
7731 	}
7732 
7733 	if (lruvec) {
7734 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7735 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7736 		unlock_page_lruvec_irq(lruvec);
7737 	} else if (pgscanned) {
7738 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7739 	}
7740 }
7741 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7742