1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 60 #include "internal.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/vmscan.h> 64 65 struct scan_control { 66 /* How many pages shrink_list() should reclaim */ 67 unsigned long nr_to_reclaim; 68 69 /* 70 * Nodemask of nodes allowed by the caller. If NULL, all nodes 71 * are scanned. 72 */ 73 nodemask_t *nodemask; 74 75 /* 76 * The memory cgroup that hit its limit and as a result is the 77 * primary target of this reclaim invocation. 78 */ 79 struct mem_cgroup *target_mem_cgroup; 80 81 /* 82 * Scan pressure balancing between anon and file LRUs 83 */ 84 unsigned long anon_cost; 85 unsigned long file_cost; 86 87 /* Can active pages be deactivated as part of reclaim? */ 88 #define DEACTIVATE_ANON 1 89 #define DEACTIVATE_FILE 2 90 unsigned int may_deactivate:2; 91 unsigned int force_deactivate:1; 92 unsigned int skipped_deactivate:1; 93 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 95 unsigned int may_writepage:1; 96 97 /* Can mapped pages be reclaimed? */ 98 unsigned int may_unmap:1; 99 100 /* Can pages be swapped as part of reclaim? */ 101 unsigned int may_swap:1; 102 103 /* 104 * Cgroup memory below memory.low is protected as long as we 105 * don't threaten to OOM. If any cgroup is reclaimed at 106 * reduced force or passed over entirely due to its memory.low 107 * setting (memcg_low_skipped), and nothing is reclaimed as a 108 * result, then go back for one more cycle that reclaims the protected 109 * memory (memcg_low_reclaim) to avert OOM. 110 */ 111 unsigned int memcg_low_reclaim:1; 112 unsigned int memcg_low_skipped:1; 113 114 unsigned int hibernation_mode:1; 115 116 /* One of the zones is ready for compaction */ 117 unsigned int compaction_ready:1; 118 119 /* There is easily reclaimable cold cache in the current node */ 120 unsigned int cache_trim_mode:1; 121 122 /* The file pages on the current node are dangerously low */ 123 unsigned int file_is_tiny:1; 124 125 /* Always discard instead of demoting to lower tier memory */ 126 unsigned int no_demotion:1; 127 128 /* Allocation order */ 129 s8 order; 130 131 /* Scan (total_size >> priority) pages at once */ 132 s8 priority; 133 134 /* The highest zone to isolate pages for reclaim from */ 135 s8 reclaim_idx; 136 137 /* This context's GFP mask */ 138 gfp_t gfp_mask; 139 140 /* Incremented by the number of inactive pages that were scanned */ 141 unsigned long nr_scanned; 142 143 /* Number of pages freed so far during a call to shrink_zones() */ 144 unsigned long nr_reclaimed; 145 146 struct { 147 unsigned int dirty; 148 unsigned int unqueued_dirty; 149 unsigned int congested; 150 unsigned int writeback; 151 unsigned int immediate; 152 unsigned int file_taken; 153 unsigned int taken; 154 } nr; 155 156 /* for recording the reclaimed slab by now */ 157 struct reclaim_state reclaim_state; 158 }; 159 160 #ifdef ARCH_HAS_PREFETCHW 161 #define prefetchw_prev_lru_page(_page, _base, _field) \ 162 do { \ 163 if ((_page)->lru.prev != _base) { \ 164 struct page *prev; \ 165 \ 166 prev = lru_to_page(&(_page->lru)); \ 167 prefetchw(&prev->_field); \ 168 } \ 169 } while (0) 170 #else 171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 172 #endif 173 174 /* 175 * From 0 .. 200. Higher means more swappy. 176 */ 177 int vm_swappiness = 60; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size) 218 { 219 struct shrinker_info *new, *old; 220 struct mem_cgroup_per_node *pn; 221 int nid; 222 int size = map_size + defer_size; 223 224 for_each_node(nid) { 225 pn = memcg->nodeinfo[nid]; 226 old = shrinker_info_protected(memcg, nid); 227 /* Not yet online memcg */ 228 if (!old) 229 return 0; 230 231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 232 if (!new) 233 return -ENOMEM; 234 235 new->nr_deferred = (atomic_long_t *)(new + 1); 236 new->map = (void *)new->nr_deferred + defer_size; 237 238 /* map: set all old bits, clear all new bits */ 239 memset(new->map, (int)0xff, old_map_size); 240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 241 /* nr_deferred: copy old values, clear all new values */ 242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 243 memset((void *)new->nr_deferred + old_defer_size, 0, 244 defer_size - old_defer_size); 245 246 rcu_assign_pointer(pn->shrinker_info, new); 247 kvfree_rcu(old, rcu); 248 } 249 250 return 0; 251 } 252 253 void free_shrinker_info(struct mem_cgroup *memcg) 254 { 255 struct mem_cgroup_per_node *pn; 256 struct shrinker_info *info; 257 int nid; 258 259 for_each_node(nid) { 260 pn = memcg->nodeinfo[nid]; 261 info = rcu_dereference_protected(pn->shrinker_info, true); 262 kvfree(info); 263 rcu_assign_pointer(pn->shrinker_info, NULL); 264 } 265 } 266 267 int alloc_shrinker_info(struct mem_cgroup *memcg) 268 { 269 struct shrinker_info *info; 270 int nid, size, ret = 0; 271 int map_size, defer_size = 0; 272 273 down_write(&shrinker_rwsem); 274 map_size = shrinker_map_size(shrinker_nr_max); 275 defer_size = shrinker_defer_size(shrinker_nr_max); 276 size = map_size + defer_size; 277 for_each_node(nid) { 278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 279 if (!info) { 280 free_shrinker_info(memcg); 281 ret = -ENOMEM; 282 break; 283 } 284 info->nr_deferred = (atomic_long_t *)(info + 1); 285 info->map = (void *)info->nr_deferred + defer_size; 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 287 } 288 up_write(&shrinker_rwsem); 289 290 return ret; 291 } 292 293 static inline bool need_expand(int nr_max) 294 { 295 return round_up(nr_max, BITS_PER_LONG) > 296 round_up(shrinker_nr_max, BITS_PER_LONG); 297 } 298 299 static int expand_shrinker_info(int new_id) 300 { 301 int ret = 0; 302 int new_nr_max = new_id + 1; 303 int map_size, defer_size = 0; 304 int old_map_size, old_defer_size = 0; 305 struct mem_cgroup *memcg; 306 307 if (!need_expand(new_nr_max)) 308 goto out; 309 310 if (!root_mem_cgroup) 311 goto out; 312 313 lockdep_assert_held(&shrinker_rwsem); 314 315 map_size = shrinker_map_size(new_nr_max); 316 defer_size = shrinker_defer_size(new_nr_max); 317 old_map_size = shrinker_map_size(shrinker_nr_max); 318 old_defer_size = shrinker_defer_size(shrinker_nr_max); 319 320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 321 do { 322 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 323 old_map_size, old_defer_size); 324 if (ret) { 325 mem_cgroup_iter_break(NULL, memcg); 326 goto out; 327 } 328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 329 out: 330 if (!ret) 331 shrinker_nr_max = new_nr_max; 332 333 return ret; 334 } 335 336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 337 { 338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 339 struct shrinker_info *info; 340 341 rcu_read_lock(); 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 rcu_read_unlock(); 347 } 348 } 349 350 static DEFINE_IDR(shrinker_idr); 351 352 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 353 { 354 int id, ret = -ENOMEM; 355 356 if (mem_cgroup_disabled()) 357 return -ENOSYS; 358 359 down_write(&shrinker_rwsem); 360 /* This may call shrinker, so it must use down_read_trylock() */ 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 362 if (id < 0) 363 goto unlock; 364 365 if (id >= shrinker_nr_max) { 366 if (expand_shrinker_info(id)) { 367 idr_remove(&shrinker_idr, id); 368 goto unlock; 369 } 370 } 371 shrinker->id = id; 372 ret = 0; 373 unlock: 374 up_write(&shrinker_rwsem); 375 return ret; 376 } 377 378 static void unregister_memcg_shrinker(struct shrinker *shrinker) 379 { 380 int id = shrinker->id; 381 382 BUG_ON(id < 0); 383 384 lockdep_assert_held(&shrinker_rwsem); 385 386 idr_remove(&shrinker_idr, id); 387 } 388 389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 390 struct mem_cgroup *memcg) 391 { 392 struct shrinker_info *info; 393 394 info = shrinker_info_protected(memcg, nid); 395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 396 } 397 398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 399 struct mem_cgroup *memcg) 400 { 401 struct shrinker_info *info; 402 403 info = shrinker_info_protected(memcg, nid); 404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 405 } 406 407 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 408 { 409 int i, nid; 410 long nr; 411 struct mem_cgroup *parent; 412 struct shrinker_info *child_info, *parent_info; 413 414 parent = parent_mem_cgroup(memcg); 415 if (!parent) 416 parent = root_mem_cgroup; 417 418 /* Prevent from concurrent shrinker_info expand */ 419 down_read(&shrinker_rwsem); 420 for_each_node(nid) { 421 child_info = shrinker_info_protected(memcg, nid); 422 parent_info = shrinker_info_protected(parent, nid); 423 for (i = 0; i < shrinker_nr_max; i++) { 424 nr = atomic_long_read(&child_info->nr_deferred[i]); 425 atomic_long_add(nr, &parent_info->nr_deferred[i]); 426 } 427 } 428 up_read(&shrinker_rwsem); 429 } 430 431 static bool cgroup_reclaim(struct scan_control *sc) 432 { 433 return sc->target_mem_cgroup; 434 } 435 436 /** 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 438 * @sc: scan_control in question 439 * 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is 441 * completely broken with the legacy memcg and direct stalling in 442 * shrink_page_list() is used for throttling instead, which lacks all the 443 * niceties such as fairness, adaptive pausing, bandwidth proportional 444 * allocation and configurability. 445 * 446 * This function tests whether the vmscan currently in progress can assume 447 * that the normal dirty throttling mechanism is operational. 448 */ 449 static bool writeback_throttling_sane(struct scan_control *sc) 450 { 451 if (!cgroup_reclaim(sc)) 452 return true; 453 #ifdef CONFIG_CGROUP_WRITEBACK 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 455 return true; 456 #endif 457 return false; 458 } 459 #else 460 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 461 { 462 return -ENOSYS; 463 } 464 465 static void unregister_memcg_shrinker(struct shrinker *shrinker) 466 { 467 } 468 469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 470 struct mem_cgroup *memcg) 471 { 472 return 0; 473 } 474 475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static bool cgroup_reclaim(struct scan_control *sc) 482 { 483 return false; 484 } 485 486 static bool writeback_throttling_sane(struct scan_control *sc) 487 { 488 return true; 489 } 490 #endif 491 492 static long xchg_nr_deferred(struct shrinker *shrinker, 493 struct shrink_control *sc) 494 { 495 int nid = sc->nid; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 nid = 0; 499 500 if (sc->memcg && 501 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 502 return xchg_nr_deferred_memcg(nid, shrinker, 503 sc->memcg); 504 505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 506 } 507 508 509 static long add_nr_deferred(long nr, struct shrinker *shrinker, 510 struct shrink_control *sc) 511 { 512 int nid = sc->nid; 513 514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 515 nid = 0; 516 517 if (sc->memcg && 518 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 519 return add_nr_deferred_memcg(nr, nid, shrinker, 520 sc->memcg); 521 522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 523 } 524 525 static bool can_demote(int nid, struct scan_control *sc) 526 { 527 if (!numa_demotion_enabled) 528 return false; 529 if (sc) { 530 if (sc->no_demotion) 531 return false; 532 /* It is pointless to do demotion in memcg reclaim */ 533 if (cgroup_reclaim(sc)) 534 return false; 535 } 536 if (next_demotion_node(nid) == NUMA_NO_NODE) 537 return false; 538 539 return true; 540 } 541 542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 543 int nid, 544 struct scan_control *sc) 545 { 546 if (memcg == NULL) { 547 /* 548 * For non-memcg reclaim, is there 549 * space in any swap device? 550 */ 551 if (get_nr_swap_pages() > 0) 552 return true; 553 } else { 554 /* Is the memcg below its swap limit? */ 555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 556 return true; 557 } 558 559 /* 560 * The page can not be swapped. 561 * 562 * Can it be reclaimed from this node via demotion? 563 */ 564 return can_demote(nid, sc); 565 } 566 567 /* 568 * This misses isolated pages which are not accounted for to save counters. 569 * As the data only determines if reclaim or compaction continues, it is 570 * not expected that isolated pages will be a dominating factor. 571 */ 572 unsigned long zone_reclaimable_pages(struct zone *zone) 573 { 574 unsigned long nr; 575 576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 581 582 return nr; 583 } 584 585 /** 586 * lruvec_lru_size - Returns the number of pages on the given LRU list. 587 * @lruvec: lru vector 588 * @lru: lru to use 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 590 */ 591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 592 int zone_idx) 593 { 594 unsigned long size = 0; 595 int zid; 596 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 599 600 if (!managed_zone(zone)) 601 continue; 602 603 if (!mem_cgroup_disabled()) 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 605 else 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 607 } 608 return size; 609 } 610 611 /* 612 * Add a shrinker callback to be called from the vm. 613 */ 614 int prealloc_shrinker(struct shrinker *shrinker) 615 { 616 unsigned int size; 617 int err; 618 619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 620 err = prealloc_memcg_shrinker(shrinker); 621 if (err != -ENOSYS) 622 return err; 623 624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 625 } 626 627 size = sizeof(*shrinker->nr_deferred); 628 if (shrinker->flags & SHRINKER_NUMA_AWARE) 629 size *= nr_node_ids; 630 631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 632 if (!shrinker->nr_deferred) 633 return -ENOMEM; 634 635 return 0; 636 } 637 638 void free_prealloced_shrinker(struct shrinker *shrinker) 639 { 640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 641 down_write(&shrinker_rwsem); 642 unregister_memcg_shrinker(shrinker); 643 up_write(&shrinker_rwsem); 644 return; 645 } 646 647 kfree(shrinker->nr_deferred); 648 shrinker->nr_deferred = NULL; 649 } 650 651 void register_shrinker_prepared(struct shrinker *shrinker) 652 { 653 down_write(&shrinker_rwsem); 654 list_add_tail(&shrinker->list, &shrinker_list); 655 shrinker->flags |= SHRINKER_REGISTERED; 656 up_write(&shrinker_rwsem); 657 } 658 659 int register_shrinker(struct shrinker *shrinker) 660 { 661 int err = prealloc_shrinker(shrinker); 662 663 if (err) 664 return err; 665 register_shrinker_prepared(shrinker); 666 return 0; 667 } 668 EXPORT_SYMBOL(register_shrinker); 669 670 /* 671 * Remove one 672 */ 673 void unregister_shrinker(struct shrinker *shrinker) 674 { 675 if (!(shrinker->flags & SHRINKER_REGISTERED)) 676 return; 677 678 down_write(&shrinker_rwsem); 679 list_del(&shrinker->list); 680 shrinker->flags &= ~SHRINKER_REGISTERED; 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 682 unregister_memcg_shrinker(shrinker); 683 up_write(&shrinker_rwsem); 684 685 kfree(shrinker->nr_deferred); 686 shrinker->nr_deferred = NULL; 687 } 688 EXPORT_SYMBOL(unregister_shrinker); 689 690 /** 691 * synchronize_shrinkers - Wait for all running shrinkers to complete. 692 * 693 * This is equivalent to calling unregister_shrink() and register_shrinker(), 694 * but atomically and with less overhead. This is useful to guarantee that all 695 * shrinker invocations have seen an update, before freeing memory, similar to 696 * rcu. 697 */ 698 void synchronize_shrinkers(void) 699 { 700 down_write(&shrinker_rwsem); 701 up_write(&shrinker_rwsem); 702 } 703 EXPORT_SYMBOL(synchronize_shrinkers); 704 705 #define SHRINK_BATCH 128 706 707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 708 struct shrinker *shrinker, int priority) 709 { 710 unsigned long freed = 0; 711 unsigned long long delta; 712 long total_scan; 713 long freeable; 714 long nr; 715 long new_nr; 716 long batch_size = shrinker->batch ? shrinker->batch 717 : SHRINK_BATCH; 718 long scanned = 0, next_deferred; 719 720 freeable = shrinker->count_objects(shrinker, shrinkctl); 721 if (freeable == 0 || freeable == SHRINK_EMPTY) 722 return freeable; 723 724 /* 725 * copy the current shrinker scan count into a local variable 726 * and zero it so that other concurrent shrinker invocations 727 * don't also do this scanning work. 728 */ 729 nr = xchg_nr_deferred(shrinker, shrinkctl); 730 731 if (shrinker->seeks) { 732 delta = freeable >> priority; 733 delta *= 4; 734 do_div(delta, shrinker->seeks); 735 } else { 736 /* 737 * These objects don't require any IO to create. Trim 738 * them aggressively under memory pressure to keep 739 * them from causing refetches in the IO caches. 740 */ 741 delta = freeable / 2; 742 } 743 744 total_scan = nr >> priority; 745 total_scan += delta; 746 total_scan = min(total_scan, (2 * freeable)); 747 748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 749 freeable, delta, total_scan, priority); 750 751 /* 752 * Normally, we should not scan less than batch_size objects in one 753 * pass to avoid too frequent shrinker calls, but if the slab has less 754 * than batch_size objects in total and we are really tight on memory, 755 * we will try to reclaim all available objects, otherwise we can end 756 * up failing allocations although there are plenty of reclaimable 757 * objects spread over several slabs with usage less than the 758 * batch_size. 759 * 760 * We detect the "tight on memory" situations by looking at the total 761 * number of objects we want to scan (total_scan). If it is greater 762 * than the total number of objects on slab (freeable), we must be 763 * scanning at high prio and therefore should try to reclaim as much as 764 * possible. 765 */ 766 while (total_scan >= batch_size || 767 total_scan >= freeable) { 768 unsigned long ret; 769 unsigned long nr_to_scan = min(batch_size, total_scan); 770 771 shrinkctl->nr_to_scan = nr_to_scan; 772 shrinkctl->nr_scanned = nr_to_scan; 773 ret = shrinker->scan_objects(shrinker, shrinkctl); 774 if (ret == SHRINK_STOP) 775 break; 776 freed += ret; 777 778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 779 total_scan -= shrinkctl->nr_scanned; 780 scanned += shrinkctl->nr_scanned; 781 782 cond_resched(); 783 } 784 785 /* 786 * The deferred work is increased by any new work (delta) that wasn't 787 * done, decreased by old deferred work that was done now. 788 * 789 * And it is capped to two times of the freeable items. 790 */ 791 next_deferred = max_t(long, (nr + delta - scanned), 0); 792 next_deferred = min(next_deferred, (2 * freeable)); 793 794 /* 795 * move the unused scan count back into the shrinker in a 796 * manner that handles concurrent updates. 797 */ 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 799 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 801 return freed; 802 } 803 804 #ifdef CONFIG_MEMCG 805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 806 struct mem_cgroup *memcg, int priority) 807 { 808 struct shrinker_info *info; 809 unsigned long ret, freed = 0; 810 int i; 811 812 if (!mem_cgroup_online(memcg)) 813 return 0; 814 815 if (!down_read_trylock(&shrinker_rwsem)) 816 return 0; 817 818 info = shrinker_info_protected(memcg, nid); 819 if (unlikely(!info)) 820 goto unlock; 821 822 for_each_set_bit(i, info->map, shrinker_nr_max) { 823 struct shrink_control sc = { 824 .gfp_mask = gfp_mask, 825 .nid = nid, 826 .memcg = memcg, 827 }; 828 struct shrinker *shrinker; 829 830 shrinker = idr_find(&shrinker_idr, i); 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 832 if (!shrinker) 833 clear_bit(i, info->map); 834 continue; 835 } 836 837 /* Call non-slab shrinkers even though kmem is disabled */ 838 if (!memcg_kmem_enabled() && 839 !(shrinker->flags & SHRINKER_NONSLAB)) 840 continue; 841 842 ret = do_shrink_slab(&sc, shrinker, priority); 843 if (ret == SHRINK_EMPTY) { 844 clear_bit(i, info->map); 845 /* 846 * After the shrinker reported that it had no objects to 847 * free, but before we cleared the corresponding bit in 848 * the memcg shrinker map, a new object might have been 849 * added. To make sure, we have the bit set in this 850 * case, we invoke the shrinker one more time and reset 851 * the bit if it reports that it is not empty anymore. 852 * The memory barrier here pairs with the barrier in 853 * set_shrinker_bit(): 854 * 855 * list_lru_add() shrink_slab_memcg() 856 * list_add_tail() clear_bit() 857 * <MB> <MB> 858 * set_bit() do_shrink_slab() 859 */ 860 smp_mb__after_atomic(); 861 ret = do_shrink_slab(&sc, shrinker, priority); 862 if (ret == SHRINK_EMPTY) 863 ret = 0; 864 else 865 set_shrinker_bit(memcg, nid, i); 866 } 867 freed += ret; 868 869 if (rwsem_is_contended(&shrinker_rwsem)) { 870 freed = freed ? : 1; 871 break; 872 } 873 } 874 unlock: 875 up_read(&shrinker_rwsem); 876 return freed; 877 } 878 #else /* CONFIG_MEMCG */ 879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 880 struct mem_cgroup *memcg, int priority) 881 { 882 return 0; 883 } 884 #endif /* CONFIG_MEMCG */ 885 886 /** 887 * shrink_slab - shrink slab caches 888 * @gfp_mask: allocation context 889 * @nid: node whose slab caches to target 890 * @memcg: memory cgroup whose slab caches to target 891 * @priority: the reclaim priority 892 * 893 * Call the shrink functions to age shrinkable caches. 894 * 895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 896 * unaware shrinkers will receive a node id of 0 instead. 897 * 898 * @memcg specifies the memory cgroup to target. Unaware shrinkers 899 * are called only if it is the root cgroup. 900 * 901 * @priority is sc->priority, we take the number of objects and >> by priority 902 * in order to get the scan target. 903 * 904 * Returns the number of reclaimed slab objects. 905 */ 906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 907 struct mem_cgroup *memcg, 908 int priority) 909 { 910 unsigned long ret, freed = 0; 911 struct shrinker *shrinker; 912 913 /* 914 * The root memcg might be allocated even though memcg is disabled 915 * via "cgroup_disable=memory" boot parameter. This could make 916 * mem_cgroup_is_root() return false, then just run memcg slab 917 * shrink, but skip global shrink. This may result in premature 918 * oom. 919 */ 920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 922 923 if (!down_read_trylock(&shrinker_rwsem)) 924 goto out; 925 926 list_for_each_entry(shrinker, &shrinker_list, list) { 927 struct shrink_control sc = { 928 .gfp_mask = gfp_mask, 929 .nid = nid, 930 .memcg = memcg, 931 }; 932 933 ret = do_shrink_slab(&sc, shrinker, priority); 934 if (ret == SHRINK_EMPTY) 935 ret = 0; 936 freed += ret; 937 /* 938 * Bail out if someone want to register a new shrinker to 939 * prevent the registration from being stalled for long periods 940 * by parallel ongoing shrinking. 941 */ 942 if (rwsem_is_contended(&shrinker_rwsem)) { 943 freed = freed ? : 1; 944 break; 945 } 946 } 947 948 up_read(&shrinker_rwsem); 949 out: 950 cond_resched(); 951 return freed; 952 } 953 954 static void drop_slab_node(int nid) 955 { 956 unsigned long freed; 957 int shift = 0; 958 959 do { 960 struct mem_cgroup *memcg = NULL; 961 962 if (fatal_signal_pending(current)) 963 return; 964 965 freed = 0; 966 memcg = mem_cgroup_iter(NULL, NULL, NULL); 967 do { 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 970 } while ((freed >> shift++) > 1); 971 } 972 973 void drop_slab(void) 974 { 975 int nid; 976 977 for_each_online_node(nid) 978 drop_slab_node(nid); 979 } 980 981 static inline int is_page_cache_freeable(struct page *page) 982 { 983 /* 984 * A freeable page cache page is referenced only by the caller 985 * that isolated the page, the page cache and optional buffer 986 * heads at page->private. 987 */ 988 int page_cache_pins = thp_nr_pages(page); 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 990 } 991 992 static int may_write_to_inode(struct inode *inode) 993 { 994 if (current->flags & PF_SWAPWRITE) 995 return 1; 996 if (!inode_write_congested(inode)) 997 return 1; 998 if (inode_to_bdi(inode) == current->backing_dev_info) 999 return 1; 1000 return 0; 1001 } 1002 1003 /* 1004 * We detected a synchronous write error writing a page out. Probably 1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1006 * fsync(), msync() or close(). 1007 * 1008 * The tricky part is that after writepage we cannot touch the mapping: nothing 1009 * prevents it from being freed up. But we have a ref on the page and once 1010 * that page is locked, the mapping is pinned. 1011 * 1012 * We're allowed to run sleeping lock_page() here because we know the caller has 1013 * __GFP_FS. 1014 */ 1015 static void handle_write_error(struct address_space *mapping, 1016 struct page *page, int error) 1017 { 1018 lock_page(page); 1019 if (page_mapping(page) == mapping) 1020 mapping_set_error(mapping, error); 1021 unlock_page(page); 1022 } 1023 1024 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1025 { 1026 int reclaimable = 0, write_pending = 0; 1027 int i; 1028 1029 /* 1030 * If kswapd is disabled, reschedule if necessary but do not 1031 * throttle as the system is likely near OOM. 1032 */ 1033 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1034 return true; 1035 1036 /* 1037 * If there are a lot of dirty/writeback pages then do not 1038 * throttle as throttling will occur when the pages cycle 1039 * towards the end of the LRU if still under writeback. 1040 */ 1041 for (i = 0; i < MAX_NR_ZONES; i++) { 1042 struct zone *zone = pgdat->node_zones + i; 1043 1044 if (!populated_zone(zone)) 1045 continue; 1046 1047 reclaimable += zone_reclaimable_pages(zone); 1048 write_pending += zone_page_state_snapshot(zone, 1049 NR_ZONE_WRITE_PENDING); 1050 } 1051 if (2 * write_pending <= reclaimable) 1052 return true; 1053 1054 return false; 1055 } 1056 1057 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1058 { 1059 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1060 long timeout, ret; 1061 DEFINE_WAIT(wait); 1062 1063 /* 1064 * Do not throttle IO workers, kthreads other than kswapd or 1065 * workqueues. They may be required for reclaim to make 1066 * forward progress (e.g. journalling workqueues or kthreads). 1067 */ 1068 if (!current_is_kswapd() && 1069 current->flags & (PF_IO_WORKER|PF_KTHREAD)) 1070 return; 1071 1072 /* 1073 * These figures are pulled out of thin air. 1074 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1075 * parallel reclaimers which is a short-lived event so the timeout is 1076 * short. Failing to make progress or waiting on writeback are 1077 * potentially long-lived events so use a longer timeout. This is shaky 1078 * logic as a failure to make progress could be due to anything from 1079 * writeback to a slow device to excessive references pages at the tail 1080 * of the inactive LRU. 1081 */ 1082 switch(reason) { 1083 case VMSCAN_THROTTLE_WRITEBACK: 1084 timeout = HZ/10; 1085 1086 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1087 WRITE_ONCE(pgdat->nr_reclaim_start, 1088 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1089 } 1090 1091 break; 1092 case VMSCAN_THROTTLE_CONGESTED: 1093 fallthrough; 1094 case VMSCAN_THROTTLE_NOPROGRESS: 1095 if (skip_throttle_noprogress(pgdat)) { 1096 cond_resched(); 1097 return; 1098 } 1099 1100 timeout = 1; 1101 1102 break; 1103 case VMSCAN_THROTTLE_ISOLATED: 1104 timeout = HZ/50; 1105 break; 1106 default: 1107 WARN_ON_ONCE(1); 1108 timeout = HZ; 1109 break; 1110 } 1111 1112 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1113 ret = schedule_timeout(timeout); 1114 finish_wait(wqh, &wait); 1115 1116 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1117 atomic_dec(&pgdat->nr_writeback_throttled); 1118 1119 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1120 jiffies_to_usecs(timeout - ret), 1121 reason); 1122 } 1123 1124 /* 1125 * Account for pages written if tasks are throttled waiting on dirty 1126 * pages to clean. If enough pages have been cleaned since throttling 1127 * started then wakeup the throttled tasks. 1128 */ 1129 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1130 int nr_throttled) 1131 { 1132 unsigned long nr_written; 1133 1134 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1135 1136 /* 1137 * This is an inaccurate read as the per-cpu deltas may not 1138 * be synchronised. However, given that the system is 1139 * writeback throttled, it is not worth taking the penalty 1140 * of getting an accurate count. At worst, the throttle 1141 * timeout guarantees forward progress. 1142 */ 1143 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1144 READ_ONCE(pgdat->nr_reclaim_start); 1145 1146 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1147 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1148 } 1149 1150 /* possible outcome of pageout() */ 1151 typedef enum { 1152 /* failed to write page out, page is locked */ 1153 PAGE_KEEP, 1154 /* move page to the active list, page is locked */ 1155 PAGE_ACTIVATE, 1156 /* page has been sent to the disk successfully, page is unlocked */ 1157 PAGE_SUCCESS, 1158 /* page is clean and locked */ 1159 PAGE_CLEAN, 1160 } pageout_t; 1161 1162 /* 1163 * pageout is called by shrink_page_list() for each dirty page. 1164 * Calls ->writepage(). 1165 */ 1166 static pageout_t pageout(struct page *page, struct address_space *mapping) 1167 { 1168 /* 1169 * If the page is dirty, only perform writeback if that write 1170 * will be non-blocking. To prevent this allocation from being 1171 * stalled by pagecache activity. But note that there may be 1172 * stalls if we need to run get_block(). We could test 1173 * PagePrivate for that. 1174 * 1175 * If this process is currently in __generic_file_write_iter() against 1176 * this page's queue, we can perform writeback even if that 1177 * will block. 1178 * 1179 * If the page is swapcache, write it back even if that would 1180 * block, for some throttling. This happens by accident, because 1181 * swap_backing_dev_info is bust: it doesn't reflect the 1182 * congestion state of the swapdevs. Easy to fix, if needed. 1183 */ 1184 if (!is_page_cache_freeable(page)) 1185 return PAGE_KEEP; 1186 if (!mapping) { 1187 /* 1188 * Some data journaling orphaned pages can have 1189 * page->mapping == NULL while being dirty with clean buffers. 1190 */ 1191 if (page_has_private(page)) { 1192 if (try_to_free_buffers(page)) { 1193 ClearPageDirty(page); 1194 pr_info("%s: orphaned page\n", __func__); 1195 return PAGE_CLEAN; 1196 } 1197 } 1198 return PAGE_KEEP; 1199 } 1200 if (mapping->a_ops->writepage == NULL) 1201 return PAGE_ACTIVATE; 1202 if (!may_write_to_inode(mapping->host)) 1203 return PAGE_KEEP; 1204 1205 if (clear_page_dirty_for_io(page)) { 1206 int res; 1207 struct writeback_control wbc = { 1208 .sync_mode = WB_SYNC_NONE, 1209 .nr_to_write = SWAP_CLUSTER_MAX, 1210 .range_start = 0, 1211 .range_end = LLONG_MAX, 1212 .for_reclaim = 1, 1213 }; 1214 1215 SetPageReclaim(page); 1216 res = mapping->a_ops->writepage(page, &wbc); 1217 if (res < 0) 1218 handle_write_error(mapping, page, res); 1219 if (res == AOP_WRITEPAGE_ACTIVATE) { 1220 ClearPageReclaim(page); 1221 return PAGE_ACTIVATE; 1222 } 1223 1224 if (!PageWriteback(page)) { 1225 /* synchronous write or broken a_ops? */ 1226 ClearPageReclaim(page); 1227 } 1228 trace_mm_vmscan_writepage(page); 1229 inc_node_page_state(page, NR_VMSCAN_WRITE); 1230 return PAGE_SUCCESS; 1231 } 1232 1233 return PAGE_CLEAN; 1234 } 1235 1236 /* 1237 * Same as remove_mapping, but if the page is removed from the mapping, it 1238 * gets returned with a refcount of 0. 1239 */ 1240 static int __remove_mapping(struct address_space *mapping, struct page *page, 1241 bool reclaimed, struct mem_cgroup *target_memcg) 1242 { 1243 int refcount; 1244 void *shadow = NULL; 1245 1246 BUG_ON(!PageLocked(page)); 1247 BUG_ON(mapping != page_mapping(page)); 1248 1249 if (!PageSwapCache(page)) 1250 spin_lock(&mapping->host->i_lock); 1251 xa_lock_irq(&mapping->i_pages); 1252 /* 1253 * The non racy check for a busy page. 1254 * 1255 * Must be careful with the order of the tests. When someone has 1256 * a ref to the page, it may be possible that they dirty it then 1257 * drop the reference. So if PageDirty is tested before page_count 1258 * here, then the following race may occur: 1259 * 1260 * get_user_pages(&page); 1261 * [user mapping goes away] 1262 * write_to(page); 1263 * !PageDirty(page) [good] 1264 * SetPageDirty(page); 1265 * put_page(page); 1266 * !page_count(page) [good, discard it] 1267 * 1268 * [oops, our write_to data is lost] 1269 * 1270 * Reversing the order of the tests ensures such a situation cannot 1271 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1272 * load is not satisfied before that of page->_refcount. 1273 * 1274 * Note that if SetPageDirty is always performed via set_page_dirty, 1275 * and thus under the i_pages lock, then this ordering is not required. 1276 */ 1277 refcount = 1 + compound_nr(page); 1278 if (!page_ref_freeze(page, refcount)) 1279 goto cannot_free; 1280 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1281 if (unlikely(PageDirty(page))) { 1282 page_ref_unfreeze(page, refcount); 1283 goto cannot_free; 1284 } 1285 1286 if (PageSwapCache(page)) { 1287 swp_entry_t swap = { .val = page_private(page) }; 1288 mem_cgroup_swapout(page, swap); 1289 if (reclaimed && !mapping_exiting(mapping)) 1290 shadow = workingset_eviction(page, target_memcg); 1291 __delete_from_swap_cache(page, swap, shadow); 1292 xa_unlock_irq(&mapping->i_pages); 1293 put_swap_page(page, swap); 1294 } else { 1295 void (*freepage)(struct page *); 1296 1297 freepage = mapping->a_ops->freepage; 1298 /* 1299 * Remember a shadow entry for reclaimed file cache in 1300 * order to detect refaults, thus thrashing, later on. 1301 * 1302 * But don't store shadows in an address space that is 1303 * already exiting. This is not just an optimization, 1304 * inode reclaim needs to empty out the radix tree or 1305 * the nodes are lost. Don't plant shadows behind its 1306 * back. 1307 * 1308 * We also don't store shadows for DAX mappings because the 1309 * only page cache pages found in these are zero pages 1310 * covering holes, and because we don't want to mix DAX 1311 * exceptional entries and shadow exceptional entries in the 1312 * same address_space. 1313 */ 1314 if (reclaimed && page_is_file_lru(page) && 1315 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1316 shadow = workingset_eviction(page, target_memcg); 1317 __delete_from_page_cache(page, shadow); 1318 xa_unlock_irq(&mapping->i_pages); 1319 if (mapping_shrinkable(mapping)) 1320 inode_add_lru(mapping->host); 1321 spin_unlock(&mapping->host->i_lock); 1322 1323 if (freepage != NULL) 1324 freepage(page); 1325 } 1326 1327 return 1; 1328 1329 cannot_free: 1330 xa_unlock_irq(&mapping->i_pages); 1331 if (!PageSwapCache(page)) 1332 spin_unlock(&mapping->host->i_lock); 1333 return 0; 1334 } 1335 1336 /* 1337 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1338 * someone else has a ref on the page, abort and return 0. If it was 1339 * successfully detached, return 1. Assumes the caller has a single ref on 1340 * this page. 1341 */ 1342 int remove_mapping(struct address_space *mapping, struct page *page) 1343 { 1344 if (__remove_mapping(mapping, page, false, NULL)) { 1345 /* 1346 * Unfreezing the refcount with 1 rather than 2 effectively 1347 * drops the pagecache ref for us without requiring another 1348 * atomic operation. 1349 */ 1350 page_ref_unfreeze(page, 1); 1351 return 1; 1352 } 1353 return 0; 1354 } 1355 1356 /** 1357 * putback_lru_page - put previously isolated page onto appropriate LRU list 1358 * @page: page to be put back to appropriate lru list 1359 * 1360 * Add previously isolated @page to appropriate LRU list. 1361 * Page may still be unevictable for other reasons. 1362 * 1363 * lru_lock must not be held, interrupts must be enabled. 1364 */ 1365 void putback_lru_page(struct page *page) 1366 { 1367 lru_cache_add(page); 1368 put_page(page); /* drop ref from isolate */ 1369 } 1370 1371 enum page_references { 1372 PAGEREF_RECLAIM, 1373 PAGEREF_RECLAIM_CLEAN, 1374 PAGEREF_KEEP, 1375 PAGEREF_ACTIVATE, 1376 }; 1377 1378 static enum page_references page_check_references(struct page *page, 1379 struct scan_control *sc) 1380 { 1381 int referenced_ptes, referenced_page; 1382 unsigned long vm_flags; 1383 1384 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1385 &vm_flags); 1386 referenced_page = TestClearPageReferenced(page); 1387 1388 /* 1389 * Mlock lost the isolation race with us. Let try_to_unmap() 1390 * move the page to the unevictable list. 1391 */ 1392 if (vm_flags & VM_LOCKED) 1393 return PAGEREF_RECLAIM; 1394 1395 if (referenced_ptes) { 1396 /* 1397 * All mapped pages start out with page table 1398 * references from the instantiating fault, so we need 1399 * to look twice if a mapped file page is used more 1400 * than once. 1401 * 1402 * Mark it and spare it for another trip around the 1403 * inactive list. Another page table reference will 1404 * lead to its activation. 1405 * 1406 * Note: the mark is set for activated pages as well 1407 * so that recently deactivated but used pages are 1408 * quickly recovered. 1409 */ 1410 SetPageReferenced(page); 1411 1412 if (referenced_page || referenced_ptes > 1) 1413 return PAGEREF_ACTIVATE; 1414 1415 /* 1416 * Activate file-backed executable pages after first usage. 1417 */ 1418 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1419 return PAGEREF_ACTIVATE; 1420 1421 return PAGEREF_KEEP; 1422 } 1423 1424 /* Reclaim if clean, defer dirty pages to writeback */ 1425 if (referenced_page && !PageSwapBacked(page)) 1426 return PAGEREF_RECLAIM_CLEAN; 1427 1428 return PAGEREF_RECLAIM; 1429 } 1430 1431 /* Check if a page is dirty or under writeback */ 1432 static void page_check_dirty_writeback(struct page *page, 1433 bool *dirty, bool *writeback) 1434 { 1435 struct address_space *mapping; 1436 1437 /* 1438 * Anonymous pages are not handled by flushers and must be written 1439 * from reclaim context. Do not stall reclaim based on them 1440 */ 1441 if (!page_is_file_lru(page) || 1442 (PageAnon(page) && !PageSwapBacked(page))) { 1443 *dirty = false; 1444 *writeback = false; 1445 return; 1446 } 1447 1448 /* By default assume that the page flags are accurate */ 1449 *dirty = PageDirty(page); 1450 *writeback = PageWriteback(page); 1451 1452 /* Verify dirty/writeback state if the filesystem supports it */ 1453 if (!page_has_private(page)) 1454 return; 1455 1456 mapping = page_mapping(page); 1457 if (mapping && mapping->a_ops->is_dirty_writeback) 1458 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1459 } 1460 1461 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1462 { 1463 struct migration_target_control mtc = { 1464 /* 1465 * Allocate from 'node', or fail quickly and quietly. 1466 * When this happens, 'page' will likely just be discarded 1467 * instead of migrated. 1468 */ 1469 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1470 __GFP_THISNODE | __GFP_NOWARN | 1471 __GFP_NOMEMALLOC | GFP_NOWAIT, 1472 .nid = node 1473 }; 1474 1475 return alloc_migration_target(page, (unsigned long)&mtc); 1476 } 1477 1478 /* 1479 * Take pages on @demote_list and attempt to demote them to 1480 * another node. Pages which are not demoted are left on 1481 * @demote_pages. 1482 */ 1483 static unsigned int demote_page_list(struct list_head *demote_pages, 1484 struct pglist_data *pgdat) 1485 { 1486 int target_nid = next_demotion_node(pgdat->node_id); 1487 unsigned int nr_succeeded; 1488 1489 if (list_empty(demote_pages)) 1490 return 0; 1491 1492 if (target_nid == NUMA_NO_NODE) 1493 return 0; 1494 1495 /* Demotion ignores all cpuset and mempolicy settings */ 1496 migrate_pages(demote_pages, alloc_demote_page, NULL, 1497 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1498 &nr_succeeded); 1499 1500 if (current_is_kswapd()) 1501 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1502 else 1503 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1504 1505 return nr_succeeded; 1506 } 1507 1508 /* 1509 * shrink_page_list() returns the number of reclaimed pages 1510 */ 1511 static unsigned int shrink_page_list(struct list_head *page_list, 1512 struct pglist_data *pgdat, 1513 struct scan_control *sc, 1514 struct reclaim_stat *stat, 1515 bool ignore_references) 1516 { 1517 LIST_HEAD(ret_pages); 1518 LIST_HEAD(free_pages); 1519 LIST_HEAD(demote_pages); 1520 unsigned int nr_reclaimed = 0; 1521 unsigned int pgactivate = 0; 1522 bool do_demote_pass; 1523 1524 memset(stat, 0, sizeof(*stat)); 1525 cond_resched(); 1526 do_demote_pass = can_demote(pgdat->node_id, sc); 1527 1528 retry: 1529 while (!list_empty(page_list)) { 1530 struct address_space *mapping; 1531 struct page *page; 1532 enum page_references references = PAGEREF_RECLAIM; 1533 bool dirty, writeback, may_enter_fs; 1534 unsigned int nr_pages; 1535 1536 cond_resched(); 1537 1538 page = lru_to_page(page_list); 1539 list_del(&page->lru); 1540 1541 if (!trylock_page(page)) 1542 goto keep; 1543 1544 VM_BUG_ON_PAGE(PageActive(page), page); 1545 1546 nr_pages = compound_nr(page); 1547 1548 /* Account the number of base pages even though THP */ 1549 sc->nr_scanned += nr_pages; 1550 1551 if (unlikely(!page_evictable(page))) 1552 goto activate_locked; 1553 1554 if (!sc->may_unmap && page_mapped(page)) 1555 goto keep_locked; 1556 1557 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1558 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1559 1560 /* 1561 * The number of dirty pages determines if a node is marked 1562 * reclaim_congested. kswapd will stall and start writing 1563 * pages if the tail of the LRU is all dirty unqueued pages. 1564 */ 1565 page_check_dirty_writeback(page, &dirty, &writeback); 1566 if (dirty || writeback) 1567 stat->nr_dirty++; 1568 1569 if (dirty && !writeback) 1570 stat->nr_unqueued_dirty++; 1571 1572 /* 1573 * Treat this page as congested if the underlying BDI is or if 1574 * pages are cycling through the LRU so quickly that the 1575 * pages marked for immediate reclaim are making it to the 1576 * end of the LRU a second time. 1577 */ 1578 mapping = page_mapping(page); 1579 if (((dirty || writeback) && mapping && 1580 inode_write_congested(mapping->host)) || 1581 (writeback && PageReclaim(page))) 1582 stat->nr_congested++; 1583 1584 /* 1585 * If a page at the tail of the LRU is under writeback, there 1586 * are three cases to consider. 1587 * 1588 * 1) If reclaim is encountering an excessive number of pages 1589 * under writeback and this page is both under writeback and 1590 * PageReclaim then it indicates that pages are being queued 1591 * for IO but are being recycled through the LRU before the 1592 * IO can complete. Waiting on the page itself risks an 1593 * indefinite stall if it is impossible to writeback the 1594 * page due to IO error or disconnected storage so instead 1595 * note that the LRU is being scanned too quickly and the 1596 * caller can stall after page list has been processed. 1597 * 1598 * 2) Global or new memcg reclaim encounters a page that is 1599 * not marked for immediate reclaim, or the caller does not 1600 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1601 * not to fs). In this case mark the page for immediate 1602 * reclaim and continue scanning. 1603 * 1604 * Require may_enter_fs because we would wait on fs, which 1605 * may not have submitted IO yet. And the loop driver might 1606 * enter reclaim, and deadlock if it waits on a page for 1607 * which it is needed to do the write (loop masks off 1608 * __GFP_IO|__GFP_FS for this reason); but more thought 1609 * would probably show more reasons. 1610 * 1611 * 3) Legacy memcg encounters a page that is already marked 1612 * PageReclaim. memcg does not have any dirty pages 1613 * throttling so we could easily OOM just because too many 1614 * pages are in writeback and there is nothing else to 1615 * reclaim. Wait for the writeback to complete. 1616 * 1617 * In cases 1) and 2) we activate the pages to get them out of 1618 * the way while we continue scanning for clean pages on the 1619 * inactive list and refilling from the active list. The 1620 * observation here is that waiting for disk writes is more 1621 * expensive than potentially causing reloads down the line. 1622 * Since they're marked for immediate reclaim, they won't put 1623 * memory pressure on the cache working set any longer than it 1624 * takes to write them to disk. 1625 */ 1626 if (PageWriteback(page)) { 1627 /* Case 1 above */ 1628 if (current_is_kswapd() && 1629 PageReclaim(page) && 1630 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1631 stat->nr_immediate++; 1632 goto activate_locked; 1633 1634 /* Case 2 above */ 1635 } else if (writeback_throttling_sane(sc) || 1636 !PageReclaim(page) || !may_enter_fs) { 1637 /* 1638 * This is slightly racy - end_page_writeback() 1639 * might have just cleared PageReclaim, then 1640 * setting PageReclaim here end up interpreted 1641 * as PageReadahead - but that does not matter 1642 * enough to care. What we do want is for this 1643 * page to have PageReclaim set next time memcg 1644 * reclaim reaches the tests above, so it will 1645 * then wait_on_page_writeback() to avoid OOM; 1646 * and it's also appropriate in global reclaim. 1647 */ 1648 SetPageReclaim(page); 1649 stat->nr_writeback++; 1650 goto activate_locked; 1651 1652 /* Case 3 above */ 1653 } else { 1654 unlock_page(page); 1655 wait_on_page_writeback(page); 1656 /* then go back and try same page again */ 1657 list_add_tail(&page->lru, page_list); 1658 continue; 1659 } 1660 } 1661 1662 if (!ignore_references) 1663 references = page_check_references(page, sc); 1664 1665 switch (references) { 1666 case PAGEREF_ACTIVATE: 1667 goto activate_locked; 1668 case PAGEREF_KEEP: 1669 stat->nr_ref_keep += nr_pages; 1670 goto keep_locked; 1671 case PAGEREF_RECLAIM: 1672 case PAGEREF_RECLAIM_CLEAN: 1673 ; /* try to reclaim the page below */ 1674 } 1675 1676 /* 1677 * Before reclaiming the page, try to relocate 1678 * its contents to another node. 1679 */ 1680 if (do_demote_pass && 1681 (thp_migration_supported() || !PageTransHuge(page))) { 1682 list_add(&page->lru, &demote_pages); 1683 unlock_page(page); 1684 continue; 1685 } 1686 1687 /* 1688 * Anonymous process memory has backing store? 1689 * Try to allocate it some swap space here. 1690 * Lazyfree page could be freed directly 1691 */ 1692 if (PageAnon(page) && PageSwapBacked(page)) { 1693 if (!PageSwapCache(page)) { 1694 if (!(sc->gfp_mask & __GFP_IO)) 1695 goto keep_locked; 1696 if (page_maybe_dma_pinned(page)) 1697 goto keep_locked; 1698 if (PageTransHuge(page)) { 1699 /* cannot split THP, skip it */ 1700 if (!can_split_huge_page(page, NULL)) 1701 goto activate_locked; 1702 /* 1703 * Split pages without a PMD map right 1704 * away. Chances are some or all of the 1705 * tail pages can be freed without IO. 1706 */ 1707 if (!compound_mapcount(page) && 1708 split_huge_page_to_list(page, 1709 page_list)) 1710 goto activate_locked; 1711 } 1712 if (!add_to_swap(page)) { 1713 if (!PageTransHuge(page)) 1714 goto activate_locked_split; 1715 /* Fallback to swap normal pages */ 1716 if (split_huge_page_to_list(page, 1717 page_list)) 1718 goto activate_locked; 1719 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1720 count_vm_event(THP_SWPOUT_FALLBACK); 1721 #endif 1722 if (!add_to_swap(page)) 1723 goto activate_locked_split; 1724 } 1725 1726 may_enter_fs = true; 1727 1728 /* Adding to swap updated mapping */ 1729 mapping = page_mapping(page); 1730 } 1731 } else if (unlikely(PageTransHuge(page))) { 1732 /* Split file THP */ 1733 if (split_huge_page_to_list(page, page_list)) 1734 goto keep_locked; 1735 } 1736 1737 /* 1738 * THP may get split above, need minus tail pages and update 1739 * nr_pages to avoid accounting tail pages twice. 1740 * 1741 * The tail pages that are added into swap cache successfully 1742 * reach here. 1743 */ 1744 if ((nr_pages > 1) && !PageTransHuge(page)) { 1745 sc->nr_scanned -= (nr_pages - 1); 1746 nr_pages = 1; 1747 } 1748 1749 /* 1750 * The page is mapped into the page tables of one or more 1751 * processes. Try to unmap it here. 1752 */ 1753 if (page_mapped(page)) { 1754 enum ttu_flags flags = TTU_BATCH_FLUSH; 1755 bool was_swapbacked = PageSwapBacked(page); 1756 1757 if (unlikely(PageTransHuge(page))) 1758 flags |= TTU_SPLIT_HUGE_PMD; 1759 1760 try_to_unmap(page, flags); 1761 if (page_mapped(page)) { 1762 stat->nr_unmap_fail += nr_pages; 1763 if (!was_swapbacked && PageSwapBacked(page)) 1764 stat->nr_lazyfree_fail += nr_pages; 1765 goto activate_locked; 1766 } 1767 } 1768 1769 if (PageDirty(page)) { 1770 /* 1771 * Only kswapd can writeback filesystem pages 1772 * to avoid risk of stack overflow. But avoid 1773 * injecting inefficient single-page IO into 1774 * flusher writeback as much as possible: only 1775 * write pages when we've encountered many 1776 * dirty pages, and when we've already scanned 1777 * the rest of the LRU for clean pages and see 1778 * the same dirty pages again (PageReclaim). 1779 */ 1780 if (page_is_file_lru(page) && 1781 (!current_is_kswapd() || !PageReclaim(page) || 1782 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1783 /* 1784 * Immediately reclaim when written back. 1785 * Similar in principal to deactivate_page() 1786 * except we already have the page isolated 1787 * and know it's dirty 1788 */ 1789 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1790 SetPageReclaim(page); 1791 1792 goto activate_locked; 1793 } 1794 1795 if (references == PAGEREF_RECLAIM_CLEAN) 1796 goto keep_locked; 1797 if (!may_enter_fs) 1798 goto keep_locked; 1799 if (!sc->may_writepage) 1800 goto keep_locked; 1801 1802 /* 1803 * Page is dirty. Flush the TLB if a writable entry 1804 * potentially exists to avoid CPU writes after IO 1805 * starts and then write it out here. 1806 */ 1807 try_to_unmap_flush_dirty(); 1808 switch (pageout(page, mapping)) { 1809 case PAGE_KEEP: 1810 goto keep_locked; 1811 case PAGE_ACTIVATE: 1812 goto activate_locked; 1813 case PAGE_SUCCESS: 1814 stat->nr_pageout += thp_nr_pages(page); 1815 1816 if (PageWriteback(page)) 1817 goto keep; 1818 if (PageDirty(page)) 1819 goto keep; 1820 1821 /* 1822 * A synchronous write - probably a ramdisk. Go 1823 * ahead and try to reclaim the page. 1824 */ 1825 if (!trylock_page(page)) 1826 goto keep; 1827 if (PageDirty(page) || PageWriteback(page)) 1828 goto keep_locked; 1829 mapping = page_mapping(page); 1830 fallthrough; 1831 case PAGE_CLEAN: 1832 ; /* try to free the page below */ 1833 } 1834 } 1835 1836 /* 1837 * If the page has buffers, try to free the buffer mappings 1838 * associated with this page. If we succeed we try to free 1839 * the page as well. 1840 * 1841 * We do this even if the page is PageDirty(). 1842 * try_to_release_page() does not perform I/O, but it is 1843 * possible for a page to have PageDirty set, but it is actually 1844 * clean (all its buffers are clean). This happens if the 1845 * buffers were written out directly, with submit_bh(). ext3 1846 * will do this, as well as the blockdev mapping. 1847 * try_to_release_page() will discover that cleanness and will 1848 * drop the buffers and mark the page clean - it can be freed. 1849 * 1850 * Rarely, pages can have buffers and no ->mapping. These are 1851 * the pages which were not successfully invalidated in 1852 * truncate_cleanup_page(). We try to drop those buffers here 1853 * and if that worked, and the page is no longer mapped into 1854 * process address space (page_count == 1) it can be freed. 1855 * Otherwise, leave the page on the LRU so it is swappable. 1856 */ 1857 if (page_has_private(page)) { 1858 if (!try_to_release_page(page, sc->gfp_mask)) 1859 goto activate_locked; 1860 if (!mapping && page_count(page) == 1) { 1861 unlock_page(page); 1862 if (put_page_testzero(page)) 1863 goto free_it; 1864 else { 1865 /* 1866 * rare race with speculative reference. 1867 * the speculative reference will free 1868 * this page shortly, so we may 1869 * increment nr_reclaimed here (and 1870 * leave it off the LRU). 1871 */ 1872 nr_reclaimed++; 1873 continue; 1874 } 1875 } 1876 } 1877 1878 if (PageAnon(page) && !PageSwapBacked(page)) { 1879 /* follow __remove_mapping for reference */ 1880 if (!page_ref_freeze(page, 1)) 1881 goto keep_locked; 1882 /* 1883 * The page has only one reference left, which is 1884 * from the isolation. After the caller puts the 1885 * page back on lru and drops the reference, the 1886 * page will be freed anyway. It doesn't matter 1887 * which lru it goes. So we don't bother checking 1888 * PageDirty here. 1889 */ 1890 count_vm_event(PGLAZYFREED); 1891 count_memcg_page_event(page, PGLAZYFREED); 1892 } else if (!mapping || !__remove_mapping(mapping, page, true, 1893 sc->target_mem_cgroup)) 1894 goto keep_locked; 1895 1896 unlock_page(page); 1897 free_it: 1898 /* 1899 * THP may get swapped out in a whole, need account 1900 * all base pages. 1901 */ 1902 nr_reclaimed += nr_pages; 1903 1904 /* 1905 * Is there need to periodically free_page_list? It would 1906 * appear not as the counts should be low 1907 */ 1908 if (unlikely(PageTransHuge(page))) 1909 destroy_compound_page(page); 1910 else 1911 list_add(&page->lru, &free_pages); 1912 continue; 1913 1914 activate_locked_split: 1915 /* 1916 * The tail pages that are failed to add into swap cache 1917 * reach here. Fixup nr_scanned and nr_pages. 1918 */ 1919 if (nr_pages > 1) { 1920 sc->nr_scanned -= (nr_pages - 1); 1921 nr_pages = 1; 1922 } 1923 activate_locked: 1924 /* Not a candidate for swapping, so reclaim swap space. */ 1925 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1926 PageMlocked(page))) 1927 try_to_free_swap(page); 1928 VM_BUG_ON_PAGE(PageActive(page), page); 1929 if (!PageMlocked(page)) { 1930 int type = page_is_file_lru(page); 1931 SetPageActive(page); 1932 stat->nr_activate[type] += nr_pages; 1933 count_memcg_page_event(page, PGACTIVATE); 1934 } 1935 keep_locked: 1936 unlock_page(page); 1937 keep: 1938 list_add(&page->lru, &ret_pages); 1939 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1940 } 1941 /* 'page_list' is always empty here */ 1942 1943 /* Migrate pages selected for demotion */ 1944 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1945 /* Pages that could not be demoted are still in @demote_pages */ 1946 if (!list_empty(&demote_pages)) { 1947 /* Pages which failed to demoted go back on @page_list for retry: */ 1948 list_splice_init(&demote_pages, page_list); 1949 do_demote_pass = false; 1950 goto retry; 1951 } 1952 1953 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1954 1955 mem_cgroup_uncharge_list(&free_pages); 1956 try_to_unmap_flush(); 1957 free_unref_page_list(&free_pages); 1958 1959 list_splice(&ret_pages, page_list); 1960 count_vm_events(PGACTIVATE, pgactivate); 1961 1962 return nr_reclaimed; 1963 } 1964 1965 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1966 struct list_head *page_list) 1967 { 1968 struct scan_control sc = { 1969 .gfp_mask = GFP_KERNEL, 1970 .may_unmap = 1, 1971 }; 1972 struct reclaim_stat stat; 1973 unsigned int nr_reclaimed; 1974 struct page *page, *next; 1975 LIST_HEAD(clean_pages); 1976 unsigned int noreclaim_flag; 1977 1978 list_for_each_entry_safe(page, next, page_list, lru) { 1979 if (!PageHuge(page) && page_is_file_lru(page) && 1980 !PageDirty(page) && !__PageMovable(page) && 1981 !PageUnevictable(page)) { 1982 ClearPageActive(page); 1983 list_move(&page->lru, &clean_pages); 1984 } 1985 } 1986 1987 /* 1988 * We should be safe here since we are only dealing with file pages and 1989 * we are not kswapd and therefore cannot write dirty file pages. But 1990 * call memalloc_noreclaim_save() anyway, just in case these conditions 1991 * change in the future. 1992 */ 1993 noreclaim_flag = memalloc_noreclaim_save(); 1994 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1995 &stat, true); 1996 memalloc_noreclaim_restore(noreclaim_flag); 1997 1998 list_splice(&clean_pages, page_list); 1999 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2000 -(long)nr_reclaimed); 2001 /* 2002 * Since lazyfree pages are isolated from file LRU from the beginning, 2003 * they will rotate back to anonymous LRU in the end if it failed to 2004 * discard so isolated count will be mismatched. 2005 * Compensate the isolated count for both LRU lists. 2006 */ 2007 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2008 stat.nr_lazyfree_fail); 2009 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2010 -(long)stat.nr_lazyfree_fail); 2011 return nr_reclaimed; 2012 } 2013 2014 /* 2015 * Attempt to remove the specified page from its LRU. Only take this page 2016 * if it is of the appropriate PageActive status. Pages which are being 2017 * freed elsewhere are also ignored. 2018 * 2019 * page: page to consider 2020 * mode: one of the LRU isolation modes defined above 2021 * 2022 * returns true on success, false on failure. 2023 */ 2024 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 2025 { 2026 /* Only take pages on the LRU. */ 2027 if (!PageLRU(page)) 2028 return false; 2029 2030 /* Compaction should not handle unevictable pages but CMA can do so */ 2031 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 2032 return false; 2033 2034 /* 2035 * To minimise LRU disruption, the caller can indicate that it only 2036 * wants to isolate pages it will be able to operate on without 2037 * blocking - clean pages for the most part. 2038 * 2039 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 2040 * that it is possible to migrate without blocking 2041 */ 2042 if (mode & ISOLATE_ASYNC_MIGRATE) { 2043 /* All the caller can do on PageWriteback is block */ 2044 if (PageWriteback(page)) 2045 return false; 2046 2047 if (PageDirty(page)) { 2048 struct address_space *mapping; 2049 bool migrate_dirty; 2050 2051 /* 2052 * Only pages without mappings or that have a 2053 * ->migratepage callback are possible to migrate 2054 * without blocking. However, we can be racing with 2055 * truncation so it's necessary to lock the page 2056 * to stabilise the mapping as truncation holds 2057 * the page lock until after the page is removed 2058 * from the page cache. 2059 */ 2060 if (!trylock_page(page)) 2061 return false; 2062 2063 mapping = page_mapping(page); 2064 migrate_dirty = !mapping || mapping->a_ops->migratepage; 2065 unlock_page(page); 2066 if (!migrate_dirty) 2067 return false; 2068 } 2069 } 2070 2071 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 2072 return false; 2073 2074 return true; 2075 } 2076 2077 /* 2078 * Update LRU sizes after isolating pages. The LRU size updates must 2079 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2080 */ 2081 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2082 enum lru_list lru, unsigned long *nr_zone_taken) 2083 { 2084 int zid; 2085 2086 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2087 if (!nr_zone_taken[zid]) 2088 continue; 2089 2090 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2091 } 2092 2093 } 2094 2095 /* 2096 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2097 * 2098 * lruvec->lru_lock is heavily contended. Some of the functions that 2099 * shrink the lists perform better by taking out a batch of pages 2100 * and working on them outside the LRU lock. 2101 * 2102 * For pagecache intensive workloads, this function is the hottest 2103 * spot in the kernel (apart from copy_*_user functions). 2104 * 2105 * Lru_lock must be held before calling this function. 2106 * 2107 * @nr_to_scan: The number of eligible pages to look through on the list. 2108 * @lruvec: The LRU vector to pull pages from. 2109 * @dst: The temp list to put pages on to. 2110 * @nr_scanned: The number of pages that were scanned. 2111 * @sc: The scan_control struct for this reclaim session 2112 * @lru: LRU list id for isolating 2113 * 2114 * returns how many pages were moved onto *@dst. 2115 */ 2116 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 2117 struct lruvec *lruvec, struct list_head *dst, 2118 unsigned long *nr_scanned, struct scan_control *sc, 2119 enum lru_list lru) 2120 { 2121 struct list_head *src = &lruvec->lists[lru]; 2122 unsigned long nr_taken = 0; 2123 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2124 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2125 unsigned long skipped = 0; 2126 unsigned long scan, total_scan, nr_pages; 2127 LIST_HEAD(pages_skipped); 2128 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 2129 2130 total_scan = 0; 2131 scan = 0; 2132 while (scan < nr_to_scan && !list_empty(src)) { 2133 struct page *page; 2134 2135 page = lru_to_page(src); 2136 prefetchw_prev_lru_page(page, src, flags); 2137 2138 nr_pages = compound_nr(page); 2139 total_scan += nr_pages; 2140 2141 if (page_zonenum(page) > sc->reclaim_idx) { 2142 list_move(&page->lru, &pages_skipped); 2143 nr_skipped[page_zonenum(page)] += nr_pages; 2144 continue; 2145 } 2146 2147 /* 2148 * Do not count skipped pages because that makes the function 2149 * return with no isolated pages if the LRU mostly contains 2150 * ineligible pages. This causes the VM to not reclaim any 2151 * pages, triggering a premature OOM. 2152 * 2153 * Account all tail pages of THP. This would not cause 2154 * premature OOM since __isolate_lru_page() returns -EBUSY 2155 * only when the page is being freed somewhere else. 2156 */ 2157 scan += nr_pages; 2158 if (!__isolate_lru_page_prepare(page, mode)) { 2159 /* It is being freed elsewhere */ 2160 list_move(&page->lru, src); 2161 continue; 2162 } 2163 /* 2164 * Be careful not to clear PageLRU until after we're 2165 * sure the page is not being freed elsewhere -- the 2166 * page release code relies on it. 2167 */ 2168 if (unlikely(!get_page_unless_zero(page))) { 2169 list_move(&page->lru, src); 2170 continue; 2171 } 2172 2173 if (!TestClearPageLRU(page)) { 2174 /* Another thread is already isolating this page */ 2175 put_page(page); 2176 list_move(&page->lru, src); 2177 continue; 2178 } 2179 2180 nr_taken += nr_pages; 2181 nr_zone_taken[page_zonenum(page)] += nr_pages; 2182 list_move(&page->lru, dst); 2183 } 2184 2185 /* 2186 * Splice any skipped pages to the start of the LRU list. Note that 2187 * this disrupts the LRU order when reclaiming for lower zones but 2188 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2189 * scanning would soon rescan the same pages to skip and put the 2190 * system at risk of premature OOM. 2191 */ 2192 if (!list_empty(&pages_skipped)) { 2193 int zid; 2194 2195 list_splice(&pages_skipped, src); 2196 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2197 if (!nr_skipped[zid]) 2198 continue; 2199 2200 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2201 skipped += nr_skipped[zid]; 2202 } 2203 } 2204 *nr_scanned = total_scan; 2205 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2206 total_scan, skipped, nr_taken, mode, lru); 2207 update_lru_sizes(lruvec, lru, nr_zone_taken); 2208 return nr_taken; 2209 } 2210 2211 /** 2212 * isolate_lru_page - tries to isolate a page from its LRU list 2213 * @page: page to isolate from its LRU list 2214 * 2215 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2216 * vmstat statistic corresponding to whatever LRU list the page was on. 2217 * 2218 * Returns 0 if the page was removed from an LRU list. 2219 * Returns -EBUSY if the page was not on an LRU list. 2220 * 2221 * The returned page will have PageLRU() cleared. If it was found on 2222 * the active list, it will have PageActive set. If it was found on 2223 * the unevictable list, it will have the PageUnevictable bit set. That flag 2224 * may need to be cleared by the caller before letting the page go. 2225 * 2226 * The vmstat statistic corresponding to the list on which the page was 2227 * found will be decremented. 2228 * 2229 * Restrictions: 2230 * 2231 * (1) Must be called with an elevated refcount on the page. This is a 2232 * fundamental difference from isolate_lru_pages (which is called 2233 * without a stable reference). 2234 * (2) the lru_lock must not be held. 2235 * (3) interrupts must be enabled. 2236 */ 2237 int isolate_lru_page(struct page *page) 2238 { 2239 struct folio *folio = page_folio(page); 2240 int ret = -EBUSY; 2241 2242 VM_BUG_ON_PAGE(!page_count(page), page); 2243 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2244 2245 if (TestClearPageLRU(page)) { 2246 struct lruvec *lruvec; 2247 2248 get_page(page); 2249 lruvec = folio_lruvec_lock_irq(folio); 2250 del_page_from_lru_list(page, lruvec); 2251 unlock_page_lruvec_irq(lruvec); 2252 ret = 0; 2253 } 2254 2255 return ret; 2256 } 2257 2258 /* 2259 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2260 * then get rescheduled. When there are massive number of tasks doing page 2261 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2262 * the LRU list will go small and be scanned faster than necessary, leading to 2263 * unnecessary swapping, thrashing and OOM. 2264 */ 2265 static int too_many_isolated(struct pglist_data *pgdat, int file, 2266 struct scan_control *sc) 2267 { 2268 unsigned long inactive, isolated; 2269 bool too_many; 2270 2271 if (current_is_kswapd()) 2272 return 0; 2273 2274 if (!writeback_throttling_sane(sc)) 2275 return 0; 2276 2277 if (file) { 2278 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2279 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2280 } else { 2281 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2282 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2283 } 2284 2285 /* 2286 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2287 * won't get blocked by normal direct-reclaimers, forming a circular 2288 * deadlock. 2289 */ 2290 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2291 inactive >>= 3; 2292 2293 too_many = isolated > inactive; 2294 2295 /* Wake up tasks throttled due to too_many_isolated. */ 2296 if (!too_many) 2297 wake_throttle_isolated(pgdat); 2298 2299 return too_many; 2300 } 2301 2302 /* 2303 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2304 * On return, @list is reused as a list of pages to be freed by the caller. 2305 * 2306 * Returns the number of pages moved to the given lruvec. 2307 */ 2308 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2309 struct list_head *list) 2310 { 2311 int nr_pages, nr_moved = 0; 2312 LIST_HEAD(pages_to_free); 2313 struct page *page; 2314 2315 while (!list_empty(list)) { 2316 page = lru_to_page(list); 2317 VM_BUG_ON_PAGE(PageLRU(page), page); 2318 list_del(&page->lru); 2319 if (unlikely(!page_evictable(page))) { 2320 spin_unlock_irq(&lruvec->lru_lock); 2321 putback_lru_page(page); 2322 spin_lock_irq(&lruvec->lru_lock); 2323 continue; 2324 } 2325 2326 /* 2327 * The SetPageLRU needs to be kept here for list integrity. 2328 * Otherwise: 2329 * #0 move_pages_to_lru #1 release_pages 2330 * if !put_page_testzero 2331 * if (put_page_testzero()) 2332 * !PageLRU //skip lru_lock 2333 * SetPageLRU() 2334 * list_add(&page->lru,) 2335 * list_add(&page->lru,) 2336 */ 2337 SetPageLRU(page); 2338 2339 if (unlikely(put_page_testzero(page))) { 2340 __clear_page_lru_flags(page); 2341 2342 if (unlikely(PageCompound(page))) { 2343 spin_unlock_irq(&lruvec->lru_lock); 2344 destroy_compound_page(page); 2345 spin_lock_irq(&lruvec->lru_lock); 2346 } else 2347 list_add(&page->lru, &pages_to_free); 2348 2349 continue; 2350 } 2351 2352 /* 2353 * All pages were isolated from the same lruvec (and isolation 2354 * inhibits memcg migration). 2355 */ 2356 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page); 2357 add_page_to_lru_list(page, lruvec); 2358 nr_pages = thp_nr_pages(page); 2359 nr_moved += nr_pages; 2360 if (PageActive(page)) 2361 workingset_age_nonresident(lruvec, nr_pages); 2362 } 2363 2364 /* 2365 * To save our caller's stack, now use input list for pages to free. 2366 */ 2367 list_splice(&pages_to_free, list); 2368 2369 return nr_moved; 2370 } 2371 2372 /* 2373 * If a kernel thread (such as nfsd for loop-back mounts) services 2374 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2375 * In that case we should only throttle if the backing device it is 2376 * writing to is congested. In other cases it is safe to throttle. 2377 */ 2378 static int current_may_throttle(void) 2379 { 2380 return !(current->flags & PF_LOCAL_THROTTLE) || 2381 current->backing_dev_info == NULL || 2382 bdi_write_congested(current->backing_dev_info); 2383 } 2384 2385 /* 2386 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2387 * of reclaimed pages 2388 */ 2389 static unsigned long 2390 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2391 struct scan_control *sc, enum lru_list lru) 2392 { 2393 LIST_HEAD(page_list); 2394 unsigned long nr_scanned; 2395 unsigned int nr_reclaimed = 0; 2396 unsigned long nr_taken; 2397 struct reclaim_stat stat; 2398 bool file = is_file_lru(lru); 2399 enum vm_event_item item; 2400 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2401 bool stalled = false; 2402 2403 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2404 if (stalled) 2405 return 0; 2406 2407 /* wait a bit for the reclaimer. */ 2408 stalled = true; 2409 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2410 2411 /* We are about to die and free our memory. Return now. */ 2412 if (fatal_signal_pending(current)) 2413 return SWAP_CLUSTER_MAX; 2414 } 2415 2416 lru_add_drain(); 2417 2418 spin_lock_irq(&lruvec->lru_lock); 2419 2420 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2421 &nr_scanned, sc, lru); 2422 2423 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2424 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2425 if (!cgroup_reclaim(sc)) 2426 __count_vm_events(item, nr_scanned); 2427 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2428 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2429 2430 spin_unlock_irq(&lruvec->lru_lock); 2431 2432 if (nr_taken == 0) 2433 return 0; 2434 2435 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2436 2437 spin_lock_irq(&lruvec->lru_lock); 2438 move_pages_to_lru(lruvec, &page_list); 2439 2440 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2441 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2442 if (!cgroup_reclaim(sc)) 2443 __count_vm_events(item, nr_reclaimed); 2444 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2445 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2446 spin_unlock_irq(&lruvec->lru_lock); 2447 2448 lru_note_cost(lruvec, file, stat.nr_pageout); 2449 mem_cgroup_uncharge_list(&page_list); 2450 free_unref_page_list(&page_list); 2451 2452 /* 2453 * If dirty pages are scanned that are not queued for IO, it 2454 * implies that flushers are not doing their job. This can 2455 * happen when memory pressure pushes dirty pages to the end of 2456 * the LRU before the dirty limits are breached and the dirty 2457 * data has expired. It can also happen when the proportion of 2458 * dirty pages grows not through writes but through memory 2459 * pressure reclaiming all the clean cache. And in some cases, 2460 * the flushers simply cannot keep up with the allocation 2461 * rate. Nudge the flusher threads in case they are asleep. 2462 */ 2463 if (stat.nr_unqueued_dirty == nr_taken) 2464 wakeup_flusher_threads(WB_REASON_VMSCAN); 2465 2466 sc->nr.dirty += stat.nr_dirty; 2467 sc->nr.congested += stat.nr_congested; 2468 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2469 sc->nr.writeback += stat.nr_writeback; 2470 sc->nr.immediate += stat.nr_immediate; 2471 sc->nr.taken += nr_taken; 2472 if (file) 2473 sc->nr.file_taken += nr_taken; 2474 2475 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2476 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2477 return nr_reclaimed; 2478 } 2479 2480 /* 2481 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2482 * 2483 * We move them the other way if the page is referenced by one or more 2484 * processes. 2485 * 2486 * If the pages are mostly unmapped, the processing is fast and it is 2487 * appropriate to hold lru_lock across the whole operation. But if 2488 * the pages are mapped, the processing is slow (page_referenced()), so 2489 * we should drop lru_lock around each page. It's impossible to balance 2490 * this, so instead we remove the pages from the LRU while processing them. 2491 * It is safe to rely on PG_active against the non-LRU pages in here because 2492 * nobody will play with that bit on a non-LRU page. 2493 * 2494 * The downside is that we have to touch page->_refcount against each page. 2495 * But we had to alter page->flags anyway. 2496 */ 2497 static void shrink_active_list(unsigned long nr_to_scan, 2498 struct lruvec *lruvec, 2499 struct scan_control *sc, 2500 enum lru_list lru) 2501 { 2502 unsigned long nr_taken; 2503 unsigned long nr_scanned; 2504 unsigned long vm_flags; 2505 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2506 LIST_HEAD(l_active); 2507 LIST_HEAD(l_inactive); 2508 struct page *page; 2509 unsigned nr_deactivate, nr_activate; 2510 unsigned nr_rotated = 0; 2511 int file = is_file_lru(lru); 2512 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2513 2514 lru_add_drain(); 2515 2516 spin_lock_irq(&lruvec->lru_lock); 2517 2518 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2519 &nr_scanned, sc, lru); 2520 2521 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2522 2523 if (!cgroup_reclaim(sc)) 2524 __count_vm_events(PGREFILL, nr_scanned); 2525 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2526 2527 spin_unlock_irq(&lruvec->lru_lock); 2528 2529 while (!list_empty(&l_hold)) { 2530 cond_resched(); 2531 page = lru_to_page(&l_hold); 2532 list_del(&page->lru); 2533 2534 if (unlikely(!page_evictable(page))) { 2535 putback_lru_page(page); 2536 continue; 2537 } 2538 2539 if (unlikely(buffer_heads_over_limit)) { 2540 if (page_has_private(page) && trylock_page(page)) { 2541 if (page_has_private(page)) 2542 try_to_release_page(page, 0); 2543 unlock_page(page); 2544 } 2545 } 2546 2547 if (page_referenced(page, 0, sc->target_mem_cgroup, 2548 &vm_flags)) { 2549 /* 2550 * Identify referenced, file-backed active pages and 2551 * give them one more trip around the active list. So 2552 * that executable code get better chances to stay in 2553 * memory under moderate memory pressure. Anon pages 2554 * are not likely to be evicted by use-once streaming 2555 * IO, plus JVM can create lots of anon VM_EXEC pages, 2556 * so we ignore them here. 2557 */ 2558 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2559 nr_rotated += thp_nr_pages(page); 2560 list_add(&page->lru, &l_active); 2561 continue; 2562 } 2563 } 2564 2565 ClearPageActive(page); /* we are de-activating */ 2566 SetPageWorkingset(page); 2567 list_add(&page->lru, &l_inactive); 2568 } 2569 2570 /* 2571 * Move pages back to the lru list. 2572 */ 2573 spin_lock_irq(&lruvec->lru_lock); 2574 2575 nr_activate = move_pages_to_lru(lruvec, &l_active); 2576 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2577 /* Keep all free pages in l_active list */ 2578 list_splice(&l_inactive, &l_active); 2579 2580 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2581 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2582 2583 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2584 spin_unlock_irq(&lruvec->lru_lock); 2585 2586 mem_cgroup_uncharge_list(&l_active); 2587 free_unref_page_list(&l_active); 2588 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2589 nr_deactivate, nr_rotated, sc->priority, file); 2590 } 2591 2592 unsigned long reclaim_pages(struct list_head *page_list) 2593 { 2594 int nid = NUMA_NO_NODE; 2595 unsigned int nr_reclaimed = 0; 2596 LIST_HEAD(node_page_list); 2597 struct reclaim_stat dummy_stat; 2598 struct page *page; 2599 unsigned int noreclaim_flag; 2600 struct scan_control sc = { 2601 .gfp_mask = GFP_KERNEL, 2602 .may_writepage = 1, 2603 .may_unmap = 1, 2604 .may_swap = 1, 2605 .no_demotion = 1, 2606 }; 2607 2608 noreclaim_flag = memalloc_noreclaim_save(); 2609 2610 while (!list_empty(page_list)) { 2611 page = lru_to_page(page_list); 2612 if (nid == NUMA_NO_NODE) { 2613 nid = page_to_nid(page); 2614 INIT_LIST_HEAD(&node_page_list); 2615 } 2616 2617 if (nid == page_to_nid(page)) { 2618 ClearPageActive(page); 2619 list_move(&page->lru, &node_page_list); 2620 continue; 2621 } 2622 2623 nr_reclaimed += shrink_page_list(&node_page_list, 2624 NODE_DATA(nid), 2625 &sc, &dummy_stat, false); 2626 while (!list_empty(&node_page_list)) { 2627 page = lru_to_page(&node_page_list); 2628 list_del(&page->lru); 2629 putback_lru_page(page); 2630 } 2631 2632 nid = NUMA_NO_NODE; 2633 } 2634 2635 if (!list_empty(&node_page_list)) { 2636 nr_reclaimed += shrink_page_list(&node_page_list, 2637 NODE_DATA(nid), 2638 &sc, &dummy_stat, false); 2639 while (!list_empty(&node_page_list)) { 2640 page = lru_to_page(&node_page_list); 2641 list_del(&page->lru); 2642 putback_lru_page(page); 2643 } 2644 } 2645 2646 memalloc_noreclaim_restore(noreclaim_flag); 2647 2648 return nr_reclaimed; 2649 } 2650 2651 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2652 struct lruvec *lruvec, struct scan_control *sc) 2653 { 2654 if (is_active_lru(lru)) { 2655 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2656 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2657 else 2658 sc->skipped_deactivate = 1; 2659 return 0; 2660 } 2661 2662 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2663 } 2664 2665 /* 2666 * The inactive anon list should be small enough that the VM never has 2667 * to do too much work. 2668 * 2669 * The inactive file list should be small enough to leave most memory 2670 * to the established workingset on the scan-resistant active list, 2671 * but large enough to avoid thrashing the aggregate readahead window. 2672 * 2673 * Both inactive lists should also be large enough that each inactive 2674 * page has a chance to be referenced again before it is reclaimed. 2675 * 2676 * If that fails and refaulting is observed, the inactive list grows. 2677 * 2678 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2679 * on this LRU, maintained by the pageout code. An inactive_ratio 2680 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2681 * 2682 * total target max 2683 * memory ratio inactive 2684 * ------------------------------------- 2685 * 10MB 1 5MB 2686 * 100MB 1 50MB 2687 * 1GB 3 250MB 2688 * 10GB 10 0.9GB 2689 * 100GB 31 3GB 2690 * 1TB 101 10GB 2691 * 10TB 320 32GB 2692 */ 2693 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2694 { 2695 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2696 unsigned long inactive, active; 2697 unsigned long inactive_ratio; 2698 unsigned long gb; 2699 2700 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2701 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2702 2703 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2704 if (gb) 2705 inactive_ratio = int_sqrt(10 * gb); 2706 else 2707 inactive_ratio = 1; 2708 2709 return inactive * inactive_ratio < active; 2710 } 2711 2712 enum scan_balance { 2713 SCAN_EQUAL, 2714 SCAN_FRACT, 2715 SCAN_ANON, 2716 SCAN_FILE, 2717 }; 2718 2719 /* 2720 * Determine how aggressively the anon and file LRU lists should be 2721 * scanned. The relative value of each set of LRU lists is determined 2722 * by looking at the fraction of the pages scanned we did rotate back 2723 * onto the active list instead of evict. 2724 * 2725 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2726 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2727 */ 2728 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2729 unsigned long *nr) 2730 { 2731 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2732 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2733 unsigned long anon_cost, file_cost, total_cost; 2734 int swappiness = mem_cgroup_swappiness(memcg); 2735 u64 fraction[ANON_AND_FILE]; 2736 u64 denominator = 0; /* gcc */ 2737 enum scan_balance scan_balance; 2738 unsigned long ap, fp; 2739 enum lru_list lru; 2740 2741 /* If we have no swap space, do not bother scanning anon pages. */ 2742 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2743 scan_balance = SCAN_FILE; 2744 goto out; 2745 } 2746 2747 /* 2748 * Global reclaim will swap to prevent OOM even with no 2749 * swappiness, but memcg users want to use this knob to 2750 * disable swapping for individual groups completely when 2751 * using the memory controller's swap limit feature would be 2752 * too expensive. 2753 */ 2754 if (cgroup_reclaim(sc) && !swappiness) { 2755 scan_balance = SCAN_FILE; 2756 goto out; 2757 } 2758 2759 /* 2760 * Do not apply any pressure balancing cleverness when the 2761 * system is close to OOM, scan both anon and file equally 2762 * (unless the swappiness setting disagrees with swapping). 2763 */ 2764 if (!sc->priority && swappiness) { 2765 scan_balance = SCAN_EQUAL; 2766 goto out; 2767 } 2768 2769 /* 2770 * If the system is almost out of file pages, force-scan anon. 2771 */ 2772 if (sc->file_is_tiny) { 2773 scan_balance = SCAN_ANON; 2774 goto out; 2775 } 2776 2777 /* 2778 * If there is enough inactive page cache, we do not reclaim 2779 * anything from the anonymous working right now. 2780 */ 2781 if (sc->cache_trim_mode) { 2782 scan_balance = SCAN_FILE; 2783 goto out; 2784 } 2785 2786 scan_balance = SCAN_FRACT; 2787 /* 2788 * Calculate the pressure balance between anon and file pages. 2789 * 2790 * The amount of pressure we put on each LRU is inversely 2791 * proportional to the cost of reclaiming each list, as 2792 * determined by the share of pages that are refaulting, times 2793 * the relative IO cost of bringing back a swapped out 2794 * anonymous page vs reloading a filesystem page (swappiness). 2795 * 2796 * Although we limit that influence to ensure no list gets 2797 * left behind completely: at least a third of the pressure is 2798 * applied, before swappiness. 2799 * 2800 * With swappiness at 100, anon and file have equal IO cost. 2801 */ 2802 total_cost = sc->anon_cost + sc->file_cost; 2803 anon_cost = total_cost + sc->anon_cost; 2804 file_cost = total_cost + sc->file_cost; 2805 total_cost = anon_cost + file_cost; 2806 2807 ap = swappiness * (total_cost + 1); 2808 ap /= anon_cost + 1; 2809 2810 fp = (200 - swappiness) * (total_cost + 1); 2811 fp /= file_cost + 1; 2812 2813 fraction[0] = ap; 2814 fraction[1] = fp; 2815 denominator = ap + fp; 2816 out: 2817 for_each_evictable_lru(lru) { 2818 int file = is_file_lru(lru); 2819 unsigned long lruvec_size; 2820 unsigned long low, min; 2821 unsigned long scan; 2822 2823 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2824 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2825 &min, &low); 2826 2827 if (min || low) { 2828 /* 2829 * Scale a cgroup's reclaim pressure by proportioning 2830 * its current usage to its memory.low or memory.min 2831 * setting. 2832 * 2833 * This is important, as otherwise scanning aggression 2834 * becomes extremely binary -- from nothing as we 2835 * approach the memory protection threshold, to totally 2836 * nominal as we exceed it. This results in requiring 2837 * setting extremely liberal protection thresholds. It 2838 * also means we simply get no protection at all if we 2839 * set it too low, which is not ideal. 2840 * 2841 * If there is any protection in place, we reduce scan 2842 * pressure by how much of the total memory used is 2843 * within protection thresholds. 2844 * 2845 * There is one special case: in the first reclaim pass, 2846 * we skip over all groups that are within their low 2847 * protection. If that fails to reclaim enough pages to 2848 * satisfy the reclaim goal, we come back and override 2849 * the best-effort low protection. However, we still 2850 * ideally want to honor how well-behaved groups are in 2851 * that case instead of simply punishing them all 2852 * equally. As such, we reclaim them based on how much 2853 * memory they are using, reducing the scan pressure 2854 * again by how much of the total memory used is under 2855 * hard protection. 2856 */ 2857 unsigned long cgroup_size = mem_cgroup_size(memcg); 2858 unsigned long protection; 2859 2860 /* memory.low scaling, make sure we retry before OOM */ 2861 if (!sc->memcg_low_reclaim && low > min) { 2862 protection = low; 2863 sc->memcg_low_skipped = 1; 2864 } else { 2865 protection = min; 2866 } 2867 2868 /* Avoid TOCTOU with earlier protection check */ 2869 cgroup_size = max(cgroup_size, protection); 2870 2871 scan = lruvec_size - lruvec_size * protection / 2872 (cgroup_size + 1); 2873 2874 /* 2875 * Minimally target SWAP_CLUSTER_MAX pages to keep 2876 * reclaim moving forwards, avoiding decrementing 2877 * sc->priority further than desirable. 2878 */ 2879 scan = max(scan, SWAP_CLUSTER_MAX); 2880 } else { 2881 scan = lruvec_size; 2882 } 2883 2884 scan >>= sc->priority; 2885 2886 /* 2887 * If the cgroup's already been deleted, make sure to 2888 * scrape out the remaining cache. 2889 */ 2890 if (!scan && !mem_cgroup_online(memcg)) 2891 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2892 2893 switch (scan_balance) { 2894 case SCAN_EQUAL: 2895 /* Scan lists relative to size */ 2896 break; 2897 case SCAN_FRACT: 2898 /* 2899 * Scan types proportional to swappiness and 2900 * their relative recent reclaim efficiency. 2901 * Make sure we don't miss the last page on 2902 * the offlined memory cgroups because of a 2903 * round-off error. 2904 */ 2905 scan = mem_cgroup_online(memcg) ? 2906 div64_u64(scan * fraction[file], denominator) : 2907 DIV64_U64_ROUND_UP(scan * fraction[file], 2908 denominator); 2909 break; 2910 case SCAN_FILE: 2911 case SCAN_ANON: 2912 /* Scan one type exclusively */ 2913 if ((scan_balance == SCAN_FILE) != file) 2914 scan = 0; 2915 break; 2916 default: 2917 /* Look ma, no brain */ 2918 BUG(); 2919 } 2920 2921 nr[lru] = scan; 2922 } 2923 } 2924 2925 /* 2926 * Anonymous LRU management is a waste if there is 2927 * ultimately no way to reclaim the memory. 2928 */ 2929 static bool can_age_anon_pages(struct pglist_data *pgdat, 2930 struct scan_control *sc) 2931 { 2932 /* Aging the anon LRU is valuable if swap is present: */ 2933 if (total_swap_pages > 0) 2934 return true; 2935 2936 /* Also valuable if anon pages can be demoted: */ 2937 return can_demote(pgdat->node_id, sc); 2938 } 2939 2940 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2941 { 2942 unsigned long nr[NR_LRU_LISTS]; 2943 unsigned long targets[NR_LRU_LISTS]; 2944 unsigned long nr_to_scan; 2945 enum lru_list lru; 2946 unsigned long nr_reclaimed = 0; 2947 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2948 struct blk_plug plug; 2949 bool scan_adjusted; 2950 2951 get_scan_count(lruvec, sc, nr); 2952 2953 /* Record the original scan target for proportional adjustments later */ 2954 memcpy(targets, nr, sizeof(nr)); 2955 2956 /* 2957 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2958 * event that can occur when there is little memory pressure e.g. 2959 * multiple streaming readers/writers. Hence, we do not abort scanning 2960 * when the requested number of pages are reclaimed when scanning at 2961 * DEF_PRIORITY on the assumption that the fact we are direct 2962 * reclaiming implies that kswapd is not keeping up and it is best to 2963 * do a batch of work at once. For memcg reclaim one check is made to 2964 * abort proportional reclaim if either the file or anon lru has already 2965 * dropped to zero at the first pass. 2966 */ 2967 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2968 sc->priority == DEF_PRIORITY); 2969 2970 blk_start_plug(&plug); 2971 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2972 nr[LRU_INACTIVE_FILE]) { 2973 unsigned long nr_anon, nr_file, percentage; 2974 unsigned long nr_scanned; 2975 2976 for_each_evictable_lru(lru) { 2977 if (nr[lru]) { 2978 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2979 nr[lru] -= nr_to_scan; 2980 2981 nr_reclaimed += shrink_list(lru, nr_to_scan, 2982 lruvec, sc); 2983 } 2984 } 2985 2986 cond_resched(); 2987 2988 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2989 continue; 2990 2991 /* 2992 * For kswapd and memcg, reclaim at least the number of pages 2993 * requested. Ensure that the anon and file LRUs are scanned 2994 * proportionally what was requested by get_scan_count(). We 2995 * stop reclaiming one LRU and reduce the amount scanning 2996 * proportional to the original scan target. 2997 */ 2998 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2999 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 3000 3001 /* 3002 * It's just vindictive to attack the larger once the smaller 3003 * has gone to zero. And given the way we stop scanning the 3004 * smaller below, this makes sure that we only make one nudge 3005 * towards proportionality once we've got nr_to_reclaim. 3006 */ 3007 if (!nr_file || !nr_anon) 3008 break; 3009 3010 if (nr_file > nr_anon) { 3011 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 3012 targets[LRU_ACTIVE_ANON] + 1; 3013 lru = LRU_BASE; 3014 percentage = nr_anon * 100 / scan_target; 3015 } else { 3016 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 3017 targets[LRU_ACTIVE_FILE] + 1; 3018 lru = LRU_FILE; 3019 percentage = nr_file * 100 / scan_target; 3020 } 3021 3022 /* Stop scanning the smaller of the LRU */ 3023 nr[lru] = 0; 3024 nr[lru + LRU_ACTIVE] = 0; 3025 3026 /* 3027 * Recalculate the other LRU scan count based on its original 3028 * scan target and the percentage scanning already complete 3029 */ 3030 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 3031 nr_scanned = targets[lru] - nr[lru]; 3032 nr[lru] = targets[lru] * (100 - percentage) / 100; 3033 nr[lru] -= min(nr[lru], nr_scanned); 3034 3035 lru += LRU_ACTIVE; 3036 nr_scanned = targets[lru] - nr[lru]; 3037 nr[lru] = targets[lru] * (100 - percentage) / 100; 3038 nr[lru] -= min(nr[lru], nr_scanned); 3039 3040 scan_adjusted = true; 3041 } 3042 blk_finish_plug(&plug); 3043 sc->nr_reclaimed += nr_reclaimed; 3044 3045 /* 3046 * Even if we did not try to evict anon pages at all, we want to 3047 * rebalance the anon lru active/inactive ratio. 3048 */ 3049 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 3050 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3051 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3052 sc, LRU_ACTIVE_ANON); 3053 } 3054 3055 /* Use reclaim/compaction for costly allocs or under memory pressure */ 3056 static bool in_reclaim_compaction(struct scan_control *sc) 3057 { 3058 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3059 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 3060 sc->priority < DEF_PRIORITY - 2)) 3061 return true; 3062 3063 return false; 3064 } 3065 3066 /* 3067 * Reclaim/compaction is used for high-order allocation requests. It reclaims 3068 * order-0 pages before compacting the zone. should_continue_reclaim() returns 3069 * true if more pages should be reclaimed such that when the page allocator 3070 * calls try_to_compact_pages() that it will have enough free pages to succeed. 3071 * It will give up earlier than that if there is difficulty reclaiming pages. 3072 */ 3073 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 3074 unsigned long nr_reclaimed, 3075 struct scan_control *sc) 3076 { 3077 unsigned long pages_for_compaction; 3078 unsigned long inactive_lru_pages; 3079 int z; 3080 3081 /* If not in reclaim/compaction mode, stop */ 3082 if (!in_reclaim_compaction(sc)) 3083 return false; 3084 3085 /* 3086 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 3087 * number of pages that were scanned. This will return to the caller 3088 * with the risk reclaim/compaction and the resulting allocation attempt 3089 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 3090 * allocations through requiring that the full LRU list has been scanned 3091 * first, by assuming that zero delta of sc->nr_scanned means full LRU 3092 * scan, but that approximation was wrong, and there were corner cases 3093 * where always a non-zero amount of pages were scanned. 3094 */ 3095 if (!nr_reclaimed) 3096 return false; 3097 3098 /* If compaction would go ahead or the allocation would succeed, stop */ 3099 for (z = 0; z <= sc->reclaim_idx; z++) { 3100 struct zone *zone = &pgdat->node_zones[z]; 3101 if (!managed_zone(zone)) 3102 continue; 3103 3104 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 3105 case COMPACT_SUCCESS: 3106 case COMPACT_CONTINUE: 3107 return false; 3108 default: 3109 /* check next zone */ 3110 ; 3111 } 3112 } 3113 3114 /* 3115 * If we have not reclaimed enough pages for compaction and the 3116 * inactive lists are large enough, continue reclaiming 3117 */ 3118 pages_for_compaction = compact_gap(sc->order); 3119 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 3120 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3121 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 3122 3123 return inactive_lru_pages > pages_for_compaction; 3124 } 3125 3126 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 3127 { 3128 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 3129 struct mem_cgroup *memcg; 3130 3131 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 3132 do { 3133 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3134 unsigned long reclaimed; 3135 unsigned long scanned; 3136 3137 /* 3138 * This loop can become CPU-bound when target memcgs 3139 * aren't eligible for reclaim - either because they 3140 * don't have any reclaimable pages, or because their 3141 * memory is explicitly protected. Avoid soft lockups. 3142 */ 3143 cond_resched(); 3144 3145 mem_cgroup_calculate_protection(target_memcg, memcg); 3146 3147 if (mem_cgroup_below_min(memcg)) { 3148 /* 3149 * Hard protection. 3150 * If there is no reclaimable memory, OOM. 3151 */ 3152 continue; 3153 } else if (mem_cgroup_below_low(memcg)) { 3154 /* 3155 * Soft protection. 3156 * Respect the protection only as long as 3157 * there is an unprotected supply 3158 * of reclaimable memory from other cgroups. 3159 */ 3160 if (!sc->memcg_low_reclaim) { 3161 sc->memcg_low_skipped = 1; 3162 continue; 3163 } 3164 memcg_memory_event(memcg, MEMCG_LOW); 3165 } 3166 3167 reclaimed = sc->nr_reclaimed; 3168 scanned = sc->nr_scanned; 3169 3170 shrink_lruvec(lruvec, sc); 3171 3172 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3173 sc->priority); 3174 3175 /* Record the group's reclaim efficiency */ 3176 vmpressure(sc->gfp_mask, memcg, false, 3177 sc->nr_scanned - scanned, 3178 sc->nr_reclaimed - reclaimed); 3179 3180 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3181 } 3182 3183 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3184 { 3185 struct reclaim_state *reclaim_state = current->reclaim_state; 3186 unsigned long nr_reclaimed, nr_scanned; 3187 struct lruvec *target_lruvec; 3188 bool reclaimable = false; 3189 unsigned long file; 3190 3191 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3192 3193 again: 3194 /* 3195 * Flush the memory cgroup stats, so that we read accurate per-memcg 3196 * lruvec stats for heuristics. 3197 */ 3198 mem_cgroup_flush_stats(); 3199 3200 memset(&sc->nr, 0, sizeof(sc->nr)); 3201 3202 nr_reclaimed = sc->nr_reclaimed; 3203 nr_scanned = sc->nr_scanned; 3204 3205 /* 3206 * Determine the scan balance between anon and file LRUs. 3207 */ 3208 spin_lock_irq(&target_lruvec->lru_lock); 3209 sc->anon_cost = target_lruvec->anon_cost; 3210 sc->file_cost = target_lruvec->file_cost; 3211 spin_unlock_irq(&target_lruvec->lru_lock); 3212 3213 /* 3214 * Target desirable inactive:active list ratios for the anon 3215 * and file LRU lists. 3216 */ 3217 if (!sc->force_deactivate) { 3218 unsigned long refaults; 3219 3220 refaults = lruvec_page_state(target_lruvec, 3221 WORKINGSET_ACTIVATE_ANON); 3222 if (refaults != target_lruvec->refaults[0] || 3223 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3224 sc->may_deactivate |= DEACTIVATE_ANON; 3225 else 3226 sc->may_deactivate &= ~DEACTIVATE_ANON; 3227 3228 /* 3229 * When refaults are being observed, it means a new 3230 * workingset is being established. Deactivate to get 3231 * rid of any stale active pages quickly. 3232 */ 3233 refaults = lruvec_page_state(target_lruvec, 3234 WORKINGSET_ACTIVATE_FILE); 3235 if (refaults != target_lruvec->refaults[1] || 3236 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3237 sc->may_deactivate |= DEACTIVATE_FILE; 3238 else 3239 sc->may_deactivate &= ~DEACTIVATE_FILE; 3240 } else 3241 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3242 3243 /* 3244 * If we have plenty of inactive file pages that aren't 3245 * thrashing, try to reclaim those first before touching 3246 * anonymous pages. 3247 */ 3248 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3249 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3250 sc->cache_trim_mode = 1; 3251 else 3252 sc->cache_trim_mode = 0; 3253 3254 /* 3255 * Prevent the reclaimer from falling into the cache trap: as 3256 * cache pages start out inactive, every cache fault will tip 3257 * the scan balance towards the file LRU. And as the file LRU 3258 * shrinks, so does the window for rotation from references. 3259 * This means we have a runaway feedback loop where a tiny 3260 * thrashing file LRU becomes infinitely more attractive than 3261 * anon pages. Try to detect this based on file LRU size. 3262 */ 3263 if (!cgroup_reclaim(sc)) { 3264 unsigned long total_high_wmark = 0; 3265 unsigned long free, anon; 3266 int z; 3267 3268 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3269 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3270 node_page_state(pgdat, NR_INACTIVE_FILE); 3271 3272 for (z = 0; z < MAX_NR_ZONES; z++) { 3273 struct zone *zone = &pgdat->node_zones[z]; 3274 if (!managed_zone(zone)) 3275 continue; 3276 3277 total_high_wmark += high_wmark_pages(zone); 3278 } 3279 3280 /* 3281 * Consider anon: if that's low too, this isn't a 3282 * runaway file reclaim problem, but rather just 3283 * extreme pressure. Reclaim as per usual then. 3284 */ 3285 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3286 3287 sc->file_is_tiny = 3288 file + free <= total_high_wmark && 3289 !(sc->may_deactivate & DEACTIVATE_ANON) && 3290 anon >> sc->priority; 3291 } 3292 3293 shrink_node_memcgs(pgdat, sc); 3294 3295 if (reclaim_state) { 3296 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3297 reclaim_state->reclaimed_slab = 0; 3298 } 3299 3300 /* Record the subtree's reclaim efficiency */ 3301 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3302 sc->nr_scanned - nr_scanned, 3303 sc->nr_reclaimed - nr_reclaimed); 3304 3305 if (sc->nr_reclaimed - nr_reclaimed) 3306 reclaimable = true; 3307 3308 if (current_is_kswapd()) { 3309 /* 3310 * If reclaim is isolating dirty pages under writeback, 3311 * it implies that the long-lived page allocation rate 3312 * is exceeding the page laundering rate. Either the 3313 * global limits are not being effective at throttling 3314 * processes due to the page distribution throughout 3315 * zones or there is heavy usage of a slow backing 3316 * device. The only option is to throttle from reclaim 3317 * context which is not ideal as there is no guarantee 3318 * the dirtying process is throttled in the same way 3319 * balance_dirty_pages() manages. 3320 * 3321 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3322 * count the number of pages under pages flagged for 3323 * immediate reclaim and stall if any are encountered 3324 * in the nr_immediate check below. 3325 */ 3326 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3327 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3328 3329 /* Allow kswapd to start writing pages during reclaim.*/ 3330 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3331 set_bit(PGDAT_DIRTY, &pgdat->flags); 3332 3333 /* 3334 * If kswapd scans pages marked for immediate 3335 * reclaim and under writeback (nr_immediate), it 3336 * implies that pages are cycling through the LRU 3337 * faster than they are written so forcibly stall 3338 * until some pages complete writeback. 3339 */ 3340 if (sc->nr.immediate) 3341 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3342 } 3343 3344 /* 3345 * Tag a node/memcg as congested if all the dirty pages were marked 3346 * for writeback and immediate reclaim (counted in nr.congested). 3347 * 3348 * Legacy memcg will stall in page writeback so avoid forcibly 3349 * stalling in reclaim_throttle(). 3350 */ 3351 if ((current_is_kswapd() || 3352 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3353 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3354 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3355 3356 /* 3357 * Stall direct reclaim for IO completions if the lruvec is 3358 * node is congested. Allow kswapd to continue until it 3359 * starts encountering unqueued dirty pages or cycling through 3360 * the LRU too quickly. 3361 */ 3362 if (!current_is_kswapd() && current_may_throttle() && 3363 !sc->hibernation_mode && 3364 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3365 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 3366 3367 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3368 sc)) 3369 goto again; 3370 3371 /* 3372 * Kswapd gives up on balancing particular nodes after too 3373 * many failures to reclaim anything from them and goes to 3374 * sleep. On reclaim progress, reset the failure counter. A 3375 * successful direct reclaim run will revive a dormant kswapd. 3376 */ 3377 if (reclaimable) 3378 pgdat->kswapd_failures = 0; 3379 } 3380 3381 /* 3382 * Returns true if compaction should go ahead for a costly-order request, or 3383 * the allocation would already succeed without compaction. Return false if we 3384 * should reclaim first. 3385 */ 3386 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3387 { 3388 unsigned long watermark; 3389 enum compact_result suitable; 3390 3391 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3392 if (suitable == COMPACT_SUCCESS) 3393 /* Allocation should succeed already. Don't reclaim. */ 3394 return true; 3395 if (suitable == COMPACT_SKIPPED) 3396 /* Compaction cannot yet proceed. Do reclaim. */ 3397 return false; 3398 3399 /* 3400 * Compaction is already possible, but it takes time to run and there 3401 * are potentially other callers using the pages just freed. So proceed 3402 * with reclaim to make a buffer of free pages available to give 3403 * compaction a reasonable chance of completing and allocating the page. 3404 * Note that we won't actually reclaim the whole buffer in one attempt 3405 * as the target watermark in should_continue_reclaim() is lower. But if 3406 * we are already above the high+gap watermark, don't reclaim at all. 3407 */ 3408 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3409 3410 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3411 } 3412 3413 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 3414 { 3415 /* 3416 * If reclaim is making progress greater than 12% efficiency then 3417 * wake all the NOPROGRESS throttled tasks. 3418 */ 3419 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 3420 wait_queue_head_t *wqh; 3421 3422 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 3423 if (waitqueue_active(wqh)) 3424 wake_up(wqh); 3425 3426 return; 3427 } 3428 3429 /* 3430 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 3431 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 3432 * under writeback and marked for immediate reclaim at the tail of the 3433 * LRU. 3434 */ 3435 if (current_is_kswapd() || cgroup_reclaim(sc)) 3436 return; 3437 3438 /* Throttle if making no progress at high prioities. */ 3439 if (sc->priority == 1 && !sc->nr_reclaimed) 3440 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 3441 } 3442 3443 /* 3444 * This is the direct reclaim path, for page-allocating processes. We only 3445 * try to reclaim pages from zones which will satisfy the caller's allocation 3446 * request. 3447 * 3448 * If a zone is deemed to be full of pinned pages then just give it a light 3449 * scan then give up on it. 3450 */ 3451 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3452 { 3453 struct zoneref *z; 3454 struct zone *zone; 3455 unsigned long nr_soft_reclaimed; 3456 unsigned long nr_soft_scanned; 3457 gfp_t orig_mask; 3458 pg_data_t *last_pgdat = NULL; 3459 pg_data_t *first_pgdat = NULL; 3460 3461 /* 3462 * If the number of buffer_heads in the machine exceeds the maximum 3463 * allowed level, force direct reclaim to scan the highmem zone as 3464 * highmem pages could be pinning lowmem pages storing buffer_heads 3465 */ 3466 orig_mask = sc->gfp_mask; 3467 if (buffer_heads_over_limit) { 3468 sc->gfp_mask |= __GFP_HIGHMEM; 3469 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3470 } 3471 3472 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3473 sc->reclaim_idx, sc->nodemask) { 3474 /* 3475 * Take care memory controller reclaiming has small influence 3476 * to global LRU. 3477 */ 3478 if (!cgroup_reclaim(sc)) { 3479 if (!cpuset_zone_allowed(zone, 3480 GFP_KERNEL | __GFP_HARDWALL)) 3481 continue; 3482 3483 /* 3484 * If we already have plenty of memory free for 3485 * compaction in this zone, don't free any more. 3486 * Even though compaction is invoked for any 3487 * non-zero order, only frequent costly order 3488 * reclamation is disruptive enough to become a 3489 * noticeable problem, like transparent huge 3490 * page allocations. 3491 */ 3492 if (IS_ENABLED(CONFIG_COMPACTION) && 3493 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3494 compaction_ready(zone, sc)) { 3495 sc->compaction_ready = true; 3496 continue; 3497 } 3498 3499 /* 3500 * Shrink each node in the zonelist once. If the 3501 * zonelist is ordered by zone (not the default) then a 3502 * node may be shrunk multiple times but in that case 3503 * the user prefers lower zones being preserved. 3504 */ 3505 if (zone->zone_pgdat == last_pgdat) 3506 continue; 3507 3508 /* 3509 * This steals pages from memory cgroups over softlimit 3510 * and returns the number of reclaimed pages and 3511 * scanned pages. This works for global memory pressure 3512 * and balancing, not for a memcg's limit. 3513 */ 3514 nr_soft_scanned = 0; 3515 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3516 sc->order, sc->gfp_mask, 3517 &nr_soft_scanned); 3518 sc->nr_reclaimed += nr_soft_reclaimed; 3519 sc->nr_scanned += nr_soft_scanned; 3520 /* need some check for avoid more shrink_zone() */ 3521 } 3522 3523 if (!first_pgdat) 3524 first_pgdat = zone->zone_pgdat; 3525 3526 /* See comment about same check for global reclaim above */ 3527 if (zone->zone_pgdat == last_pgdat) 3528 continue; 3529 last_pgdat = zone->zone_pgdat; 3530 shrink_node(zone->zone_pgdat, sc); 3531 } 3532 3533 if (first_pgdat) 3534 consider_reclaim_throttle(first_pgdat, sc); 3535 3536 /* 3537 * Restore to original mask to avoid the impact on the caller if we 3538 * promoted it to __GFP_HIGHMEM. 3539 */ 3540 sc->gfp_mask = orig_mask; 3541 } 3542 3543 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3544 { 3545 struct lruvec *target_lruvec; 3546 unsigned long refaults; 3547 3548 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3549 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3550 target_lruvec->refaults[0] = refaults; 3551 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3552 target_lruvec->refaults[1] = refaults; 3553 } 3554 3555 /* 3556 * This is the main entry point to direct page reclaim. 3557 * 3558 * If a full scan of the inactive list fails to free enough memory then we 3559 * are "out of memory" and something needs to be killed. 3560 * 3561 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3562 * high - the zone may be full of dirty or under-writeback pages, which this 3563 * caller can't do much about. We kick the writeback threads and take explicit 3564 * naps in the hope that some of these pages can be written. But if the 3565 * allocating task holds filesystem locks which prevent writeout this might not 3566 * work, and the allocation attempt will fail. 3567 * 3568 * returns: 0, if no pages reclaimed 3569 * else, the number of pages reclaimed 3570 */ 3571 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3572 struct scan_control *sc) 3573 { 3574 int initial_priority = sc->priority; 3575 pg_data_t *last_pgdat; 3576 struct zoneref *z; 3577 struct zone *zone; 3578 retry: 3579 delayacct_freepages_start(); 3580 3581 if (!cgroup_reclaim(sc)) 3582 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3583 3584 do { 3585 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3586 sc->priority); 3587 sc->nr_scanned = 0; 3588 shrink_zones(zonelist, sc); 3589 3590 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3591 break; 3592 3593 if (sc->compaction_ready) 3594 break; 3595 3596 /* 3597 * If we're getting trouble reclaiming, start doing 3598 * writepage even in laptop mode. 3599 */ 3600 if (sc->priority < DEF_PRIORITY - 2) 3601 sc->may_writepage = 1; 3602 } while (--sc->priority >= 0); 3603 3604 last_pgdat = NULL; 3605 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3606 sc->nodemask) { 3607 if (zone->zone_pgdat == last_pgdat) 3608 continue; 3609 last_pgdat = zone->zone_pgdat; 3610 3611 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3612 3613 if (cgroup_reclaim(sc)) { 3614 struct lruvec *lruvec; 3615 3616 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3617 zone->zone_pgdat); 3618 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3619 } 3620 } 3621 3622 delayacct_freepages_end(); 3623 3624 if (sc->nr_reclaimed) 3625 return sc->nr_reclaimed; 3626 3627 /* Aborted reclaim to try compaction? don't OOM, then */ 3628 if (sc->compaction_ready) 3629 return 1; 3630 3631 /* 3632 * We make inactive:active ratio decisions based on the node's 3633 * composition of memory, but a restrictive reclaim_idx or a 3634 * memory.low cgroup setting can exempt large amounts of 3635 * memory from reclaim. Neither of which are very common, so 3636 * instead of doing costly eligibility calculations of the 3637 * entire cgroup subtree up front, we assume the estimates are 3638 * good, and retry with forcible deactivation if that fails. 3639 */ 3640 if (sc->skipped_deactivate) { 3641 sc->priority = initial_priority; 3642 sc->force_deactivate = 1; 3643 sc->skipped_deactivate = 0; 3644 goto retry; 3645 } 3646 3647 /* Untapped cgroup reserves? Don't OOM, retry. */ 3648 if (sc->memcg_low_skipped) { 3649 sc->priority = initial_priority; 3650 sc->force_deactivate = 0; 3651 sc->memcg_low_reclaim = 1; 3652 sc->memcg_low_skipped = 0; 3653 goto retry; 3654 } 3655 3656 return 0; 3657 } 3658 3659 static bool allow_direct_reclaim(pg_data_t *pgdat) 3660 { 3661 struct zone *zone; 3662 unsigned long pfmemalloc_reserve = 0; 3663 unsigned long free_pages = 0; 3664 int i; 3665 bool wmark_ok; 3666 3667 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3668 return true; 3669 3670 for (i = 0; i <= ZONE_NORMAL; i++) { 3671 zone = &pgdat->node_zones[i]; 3672 if (!managed_zone(zone)) 3673 continue; 3674 3675 if (!zone_reclaimable_pages(zone)) 3676 continue; 3677 3678 pfmemalloc_reserve += min_wmark_pages(zone); 3679 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3680 } 3681 3682 /* If there are no reserves (unexpected config) then do not throttle */ 3683 if (!pfmemalloc_reserve) 3684 return true; 3685 3686 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3687 3688 /* kswapd must be awake if processes are being throttled */ 3689 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3690 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3691 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3692 3693 wake_up_interruptible(&pgdat->kswapd_wait); 3694 } 3695 3696 return wmark_ok; 3697 } 3698 3699 /* 3700 * Throttle direct reclaimers if backing storage is backed by the network 3701 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3702 * depleted. kswapd will continue to make progress and wake the processes 3703 * when the low watermark is reached. 3704 * 3705 * Returns true if a fatal signal was delivered during throttling. If this 3706 * happens, the page allocator should not consider triggering the OOM killer. 3707 */ 3708 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3709 nodemask_t *nodemask) 3710 { 3711 struct zoneref *z; 3712 struct zone *zone; 3713 pg_data_t *pgdat = NULL; 3714 3715 /* 3716 * Kernel threads should not be throttled as they may be indirectly 3717 * responsible for cleaning pages necessary for reclaim to make forward 3718 * progress. kjournald for example may enter direct reclaim while 3719 * committing a transaction where throttling it could forcing other 3720 * processes to block on log_wait_commit(). 3721 */ 3722 if (current->flags & PF_KTHREAD) 3723 goto out; 3724 3725 /* 3726 * If a fatal signal is pending, this process should not throttle. 3727 * It should return quickly so it can exit and free its memory 3728 */ 3729 if (fatal_signal_pending(current)) 3730 goto out; 3731 3732 /* 3733 * Check if the pfmemalloc reserves are ok by finding the first node 3734 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3735 * GFP_KERNEL will be required for allocating network buffers when 3736 * swapping over the network so ZONE_HIGHMEM is unusable. 3737 * 3738 * Throttling is based on the first usable node and throttled processes 3739 * wait on a queue until kswapd makes progress and wakes them. There 3740 * is an affinity then between processes waking up and where reclaim 3741 * progress has been made assuming the process wakes on the same node. 3742 * More importantly, processes running on remote nodes will not compete 3743 * for remote pfmemalloc reserves and processes on different nodes 3744 * should make reasonable progress. 3745 */ 3746 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3747 gfp_zone(gfp_mask), nodemask) { 3748 if (zone_idx(zone) > ZONE_NORMAL) 3749 continue; 3750 3751 /* Throttle based on the first usable node */ 3752 pgdat = zone->zone_pgdat; 3753 if (allow_direct_reclaim(pgdat)) 3754 goto out; 3755 break; 3756 } 3757 3758 /* If no zone was usable by the allocation flags then do not throttle */ 3759 if (!pgdat) 3760 goto out; 3761 3762 /* Account for the throttling */ 3763 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3764 3765 /* 3766 * If the caller cannot enter the filesystem, it's possible that it 3767 * is due to the caller holding an FS lock or performing a journal 3768 * transaction in the case of a filesystem like ext[3|4]. In this case, 3769 * it is not safe to block on pfmemalloc_wait as kswapd could be 3770 * blocked waiting on the same lock. Instead, throttle for up to a 3771 * second before continuing. 3772 */ 3773 if (!(gfp_mask & __GFP_FS)) 3774 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3775 allow_direct_reclaim(pgdat), HZ); 3776 else 3777 /* Throttle until kswapd wakes the process */ 3778 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3779 allow_direct_reclaim(pgdat)); 3780 3781 if (fatal_signal_pending(current)) 3782 return true; 3783 3784 out: 3785 return false; 3786 } 3787 3788 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3789 gfp_t gfp_mask, nodemask_t *nodemask) 3790 { 3791 unsigned long nr_reclaimed; 3792 struct scan_control sc = { 3793 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3794 .gfp_mask = current_gfp_context(gfp_mask), 3795 .reclaim_idx = gfp_zone(gfp_mask), 3796 .order = order, 3797 .nodemask = nodemask, 3798 .priority = DEF_PRIORITY, 3799 .may_writepage = !laptop_mode, 3800 .may_unmap = 1, 3801 .may_swap = 1, 3802 }; 3803 3804 /* 3805 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3806 * Confirm they are large enough for max values. 3807 */ 3808 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3809 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3810 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3811 3812 /* 3813 * Do not enter reclaim if fatal signal was delivered while throttled. 3814 * 1 is returned so that the page allocator does not OOM kill at this 3815 * point. 3816 */ 3817 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3818 return 1; 3819 3820 set_task_reclaim_state(current, &sc.reclaim_state); 3821 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3822 3823 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3824 3825 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3826 set_task_reclaim_state(current, NULL); 3827 3828 return nr_reclaimed; 3829 } 3830 3831 #ifdef CONFIG_MEMCG 3832 3833 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3834 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3835 gfp_t gfp_mask, bool noswap, 3836 pg_data_t *pgdat, 3837 unsigned long *nr_scanned) 3838 { 3839 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3840 struct scan_control sc = { 3841 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3842 .target_mem_cgroup = memcg, 3843 .may_writepage = !laptop_mode, 3844 .may_unmap = 1, 3845 .reclaim_idx = MAX_NR_ZONES - 1, 3846 .may_swap = !noswap, 3847 }; 3848 3849 WARN_ON_ONCE(!current->reclaim_state); 3850 3851 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3852 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3853 3854 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3855 sc.gfp_mask); 3856 3857 /* 3858 * NOTE: Although we can get the priority field, using it 3859 * here is not a good idea, since it limits the pages we can scan. 3860 * if we don't reclaim here, the shrink_node from balance_pgdat 3861 * will pick up pages from other mem cgroup's as well. We hack 3862 * the priority and make it zero. 3863 */ 3864 shrink_lruvec(lruvec, &sc); 3865 3866 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3867 3868 *nr_scanned = sc.nr_scanned; 3869 3870 return sc.nr_reclaimed; 3871 } 3872 3873 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3874 unsigned long nr_pages, 3875 gfp_t gfp_mask, 3876 bool may_swap) 3877 { 3878 unsigned long nr_reclaimed; 3879 unsigned int noreclaim_flag; 3880 struct scan_control sc = { 3881 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3882 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3883 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3884 .reclaim_idx = MAX_NR_ZONES - 1, 3885 .target_mem_cgroup = memcg, 3886 .priority = DEF_PRIORITY, 3887 .may_writepage = !laptop_mode, 3888 .may_unmap = 1, 3889 .may_swap = may_swap, 3890 }; 3891 /* 3892 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3893 * equal pressure on all the nodes. This is based on the assumption that 3894 * the reclaim does not bail out early. 3895 */ 3896 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3897 3898 set_task_reclaim_state(current, &sc.reclaim_state); 3899 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3900 noreclaim_flag = memalloc_noreclaim_save(); 3901 3902 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3903 3904 memalloc_noreclaim_restore(noreclaim_flag); 3905 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3906 set_task_reclaim_state(current, NULL); 3907 3908 return nr_reclaimed; 3909 } 3910 #endif 3911 3912 static void age_active_anon(struct pglist_data *pgdat, 3913 struct scan_control *sc) 3914 { 3915 struct mem_cgroup *memcg; 3916 struct lruvec *lruvec; 3917 3918 if (!can_age_anon_pages(pgdat, sc)) 3919 return; 3920 3921 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3922 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3923 return; 3924 3925 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3926 do { 3927 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3928 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3929 sc, LRU_ACTIVE_ANON); 3930 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3931 } while (memcg); 3932 } 3933 3934 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3935 { 3936 int i; 3937 struct zone *zone; 3938 3939 /* 3940 * Check for watermark boosts top-down as the higher zones 3941 * are more likely to be boosted. Both watermarks and boosts 3942 * should not be checked at the same time as reclaim would 3943 * start prematurely when there is no boosting and a lower 3944 * zone is balanced. 3945 */ 3946 for (i = highest_zoneidx; i >= 0; i--) { 3947 zone = pgdat->node_zones + i; 3948 if (!managed_zone(zone)) 3949 continue; 3950 3951 if (zone->watermark_boost) 3952 return true; 3953 } 3954 3955 return false; 3956 } 3957 3958 /* 3959 * Returns true if there is an eligible zone balanced for the request order 3960 * and highest_zoneidx 3961 */ 3962 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3963 { 3964 int i; 3965 unsigned long mark = -1; 3966 struct zone *zone; 3967 3968 /* 3969 * Check watermarks bottom-up as lower zones are more likely to 3970 * meet watermarks. 3971 */ 3972 for (i = 0; i <= highest_zoneidx; i++) { 3973 zone = pgdat->node_zones + i; 3974 3975 if (!managed_zone(zone)) 3976 continue; 3977 3978 mark = high_wmark_pages(zone); 3979 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3980 return true; 3981 } 3982 3983 /* 3984 * If a node has no populated zone within highest_zoneidx, it does not 3985 * need balancing by definition. This can happen if a zone-restricted 3986 * allocation tries to wake a remote kswapd. 3987 */ 3988 if (mark == -1) 3989 return true; 3990 3991 return false; 3992 } 3993 3994 /* Clear pgdat state for congested, dirty or under writeback. */ 3995 static void clear_pgdat_congested(pg_data_t *pgdat) 3996 { 3997 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3998 3999 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 4000 clear_bit(PGDAT_DIRTY, &pgdat->flags); 4001 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 4002 } 4003 4004 /* 4005 * Prepare kswapd for sleeping. This verifies that there are no processes 4006 * waiting in throttle_direct_reclaim() and that watermarks have been met. 4007 * 4008 * Returns true if kswapd is ready to sleep 4009 */ 4010 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 4011 int highest_zoneidx) 4012 { 4013 /* 4014 * The throttled processes are normally woken up in balance_pgdat() as 4015 * soon as allow_direct_reclaim() is true. But there is a potential 4016 * race between when kswapd checks the watermarks and a process gets 4017 * throttled. There is also a potential race if processes get 4018 * throttled, kswapd wakes, a large process exits thereby balancing the 4019 * zones, which causes kswapd to exit balance_pgdat() before reaching 4020 * the wake up checks. If kswapd is going to sleep, no process should 4021 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 4022 * the wake up is premature, processes will wake kswapd and get 4023 * throttled again. The difference from wake ups in balance_pgdat() is 4024 * that here we are under prepare_to_wait(). 4025 */ 4026 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 4027 wake_up_all(&pgdat->pfmemalloc_wait); 4028 4029 /* Hopeless node, leave it to direct reclaim */ 4030 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 4031 return true; 4032 4033 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 4034 clear_pgdat_congested(pgdat); 4035 return true; 4036 } 4037 4038 return false; 4039 } 4040 4041 /* 4042 * kswapd shrinks a node of pages that are at or below the highest usable 4043 * zone that is currently unbalanced. 4044 * 4045 * Returns true if kswapd scanned at least the requested number of pages to 4046 * reclaim or if the lack of progress was due to pages under writeback. 4047 * This is used to determine if the scanning priority needs to be raised. 4048 */ 4049 static bool kswapd_shrink_node(pg_data_t *pgdat, 4050 struct scan_control *sc) 4051 { 4052 struct zone *zone; 4053 int z; 4054 4055 /* Reclaim a number of pages proportional to the number of zones */ 4056 sc->nr_to_reclaim = 0; 4057 for (z = 0; z <= sc->reclaim_idx; z++) { 4058 zone = pgdat->node_zones + z; 4059 if (!managed_zone(zone)) 4060 continue; 4061 4062 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 4063 } 4064 4065 /* 4066 * Historically care was taken to put equal pressure on all zones but 4067 * now pressure is applied based on node LRU order. 4068 */ 4069 shrink_node(pgdat, sc); 4070 4071 /* 4072 * Fragmentation may mean that the system cannot be rebalanced for 4073 * high-order allocations. If twice the allocation size has been 4074 * reclaimed then recheck watermarks only at order-0 to prevent 4075 * excessive reclaim. Assume that a process requested a high-order 4076 * can direct reclaim/compact. 4077 */ 4078 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 4079 sc->order = 0; 4080 4081 return sc->nr_scanned >= sc->nr_to_reclaim; 4082 } 4083 4084 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 4085 static inline void 4086 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 4087 { 4088 int i; 4089 struct zone *zone; 4090 4091 for (i = 0; i <= highest_zoneidx; i++) { 4092 zone = pgdat->node_zones + i; 4093 4094 if (!managed_zone(zone)) 4095 continue; 4096 4097 if (active) 4098 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4099 else 4100 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4101 } 4102 } 4103 4104 static inline void 4105 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4106 { 4107 update_reclaim_active(pgdat, highest_zoneidx, true); 4108 } 4109 4110 static inline void 4111 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4112 { 4113 update_reclaim_active(pgdat, highest_zoneidx, false); 4114 } 4115 4116 /* 4117 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 4118 * that are eligible for use by the caller until at least one zone is 4119 * balanced. 4120 * 4121 * Returns the order kswapd finished reclaiming at. 4122 * 4123 * kswapd scans the zones in the highmem->normal->dma direction. It skips 4124 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 4125 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 4126 * or lower is eligible for reclaim until at least one usable zone is 4127 * balanced. 4128 */ 4129 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 4130 { 4131 int i; 4132 unsigned long nr_soft_reclaimed; 4133 unsigned long nr_soft_scanned; 4134 unsigned long pflags; 4135 unsigned long nr_boost_reclaim; 4136 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 4137 bool boosted; 4138 struct zone *zone; 4139 struct scan_control sc = { 4140 .gfp_mask = GFP_KERNEL, 4141 .order = order, 4142 .may_unmap = 1, 4143 }; 4144 4145 set_task_reclaim_state(current, &sc.reclaim_state); 4146 psi_memstall_enter(&pflags); 4147 __fs_reclaim_acquire(_THIS_IP_); 4148 4149 count_vm_event(PAGEOUTRUN); 4150 4151 /* 4152 * Account for the reclaim boost. Note that the zone boost is left in 4153 * place so that parallel allocations that are near the watermark will 4154 * stall or direct reclaim until kswapd is finished. 4155 */ 4156 nr_boost_reclaim = 0; 4157 for (i = 0; i <= highest_zoneidx; i++) { 4158 zone = pgdat->node_zones + i; 4159 if (!managed_zone(zone)) 4160 continue; 4161 4162 nr_boost_reclaim += zone->watermark_boost; 4163 zone_boosts[i] = zone->watermark_boost; 4164 } 4165 boosted = nr_boost_reclaim; 4166 4167 restart: 4168 set_reclaim_active(pgdat, highest_zoneidx); 4169 sc.priority = DEF_PRIORITY; 4170 do { 4171 unsigned long nr_reclaimed = sc.nr_reclaimed; 4172 bool raise_priority = true; 4173 bool balanced; 4174 bool ret; 4175 4176 sc.reclaim_idx = highest_zoneidx; 4177 4178 /* 4179 * If the number of buffer_heads exceeds the maximum allowed 4180 * then consider reclaiming from all zones. This has a dual 4181 * purpose -- on 64-bit systems it is expected that 4182 * buffer_heads are stripped during active rotation. On 32-bit 4183 * systems, highmem pages can pin lowmem memory and shrinking 4184 * buffers can relieve lowmem pressure. Reclaim may still not 4185 * go ahead if all eligible zones for the original allocation 4186 * request are balanced to avoid excessive reclaim from kswapd. 4187 */ 4188 if (buffer_heads_over_limit) { 4189 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4190 zone = pgdat->node_zones + i; 4191 if (!managed_zone(zone)) 4192 continue; 4193 4194 sc.reclaim_idx = i; 4195 break; 4196 } 4197 } 4198 4199 /* 4200 * If the pgdat is imbalanced then ignore boosting and preserve 4201 * the watermarks for a later time and restart. Note that the 4202 * zone watermarks will be still reset at the end of balancing 4203 * on the grounds that the normal reclaim should be enough to 4204 * re-evaluate if boosting is required when kswapd next wakes. 4205 */ 4206 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4207 if (!balanced && nr_boost_reclaim) { 4208 nr_boost_reclaim = 0; 4209 goto restart; 4210 } 4211 4212 /* 4213 * If boosting is not active then only reclaim if there are no 4214 * eligible zones. Note that sc.reclaim_idx is not used as 4215 * buffer_heads_over_limit may have adjusted it. 4216 */ 4217 if (!nr_boost_reclaim && balanced) 4218 goto out; 4219 4220 /* Limit the priority of boosting to avoid reclaim writeback */ 4221 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4222 raise_priority = false; 4223 4224 /* 4225 * Do not writeback or swap pages for boosted reclaim. The 4226 * intent is to relieve pressure not issue sub-optimal IO 4227 * from reclaim context. If no pages are reclaimed, the 4228 * reclaim will be aborted. 4229 */ 4230 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4231 sc.may_swap = !nr_boost_reclaim; 4232 4233 /* 4234 * Do some background aging of the anon list, to give 4235 * pages a chance to be referenced before reclaiming. All 4236 * pages are rotated regardless of classzone as this is 4237 * about consistent aging. 4238 */ 4239 age_active_anon(pgdat, &sc); 4240 4241 /* 4242 * If we're getting trouble reclaiming, start doing writepage 4243 * even in laptop mode. 4244 */ 4245 if (sc.priority < DEF_PRIORITY - 2) 4246 sc.may_writepage = 1; 4247 4248 /* Call soft limit reclaim before calling shrink_node. */ 4249 sc.nr_scanned = 0; 4250 nr_soft_scanned = 0; 4251 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4252 sc.gfp_mask, &nr_soft_scanned); 4253 sc.nr_reclaimed += nr_soft_reclaimed; 4254 4255 /* 4256 * There should be no need to raise the scanning priority if 4257 * enough pages are already being scanned that that high 4258 * watermark would be met at 100% efficiency. 4259 */ 4260 if (kswapd_shrink_node(pgdat, &sc)) 4261 raise_priority = false; 4262 4263 /* 4264 * If the low watermark is met there is no need for processes 4265 * to be throttled on pfmemalloc_wait as they should not be 4266 * able to safely make forward progress. Wake them 4267 */ 4268 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4269 allow_direct_reclaim(pgdat)) 4270 wake_up_all(&pgdat->pfmemalloc_wait); 4271 4272 /* Check if kswapd should be suspending */ 4273 __fs_reclaim_release(_THIS_IP_); 4274 ret = try_to_freeze(); 4275 __fs_reclaim_acquire(_THIS_IP_); 4276 if (ret || kthread_should_stop()) 4277 break; 4278 4279 /* 4280 * Raise priority if scanning rate is too low or there was no 4281 * progress in reclaiming pages 4282 */ 4283 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4284 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4285 4286 /* 4287 * If reclaim made no progress for a boost, stop reclaim as 4288 * IO cannot be queued and it could be an infinite loop in 4289 * extreme circumstances. 4290 */ 4291 if (nr_boost_reclaim && !nr_reclaimed) 4292 break; 4293 4294 if (raise_priority || !nr_reclaimed) 4295 sc.priority--; 4296 } while (sc.priority >= 1); 4297 4298 if (!sc.nr_reclaimed) 4299 pgdat->kswapd_failures++; 4300 4301 out: 4302 clear_reclaim_active(pgdat, highest_zoneidx); 4303 4304 /* If reclaim was boosted, account for the reclaim done in this pass */ 4305 if (boosted) { 4306 unsigned long flags; 4307 4308 for (i = 0; i <= highest_zoneidx; i++) { 4309 if (!zone_boosts[i]) 4310 continue; 4311 4312 /* Increments are under the zone lock */ 4313 zone = pgdat->node_zones + i; 4314 spin_lock_irqsave(&zone->lock, flags); 4315 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4316 spin_unlock_irqrestore(&zone->lock, flags); 4317 } 4318 4319 /* 4320 * As there is now likely space, wakeup kcompact to defragment 4321 * pageblocks. 4322 */ 4323 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4324 } 4325 4326 snapshot_refaults(NULL, pgdat); 4327 __fs_reclaim_release(_THIS_IP_); 4328 psi_memstall_leave(&pflags); 4329 set_task_reclaim_state(current, NULL); 4330 4331 /* 4332 * Return the order kswapd stopped reclaiming at as 4333 * prepare_kswapd_sleep() takes it into account. If another caller 4334 * entered the allocator slow path while kswapd was awake, order will 4335 * remain at the higher level. 4336 */ 4337 return sc.order; 4338 } 4339 4340 /* 4341 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4342 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4343 * not a valid index then either kswapd runs for first time or kswapd couldn't 4344 * sleep after previous reclaim attempt (node is still unbalanced). In that 4345 * case return the zone index of the previous kswapd reclaim cycle. 4346 */ 4347 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4348 enum zone_type prev_highest_zoneidx) 4349 { 4350 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4351 4352 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4353 } 4354 4355 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4356 unsigned int highest_zoneidx) 4357 { 4358 long remaining = 0; 4359 DEFINE_WAIT(wait); 4360 4361 if (freezing(current) || kthread_should_stop()) 4362 return; 4363 4364 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4365 4366 /* 4367 * Try to sleep for a short interval. Note that kcompactd will only be 4368 * woken if it is possible to sleep for a short interval. This is 4369 * deliberate on the assumption that if reclaim cannot keep an 4370 * eligible zone balanced that it's also unlikely that compaction will 4371 * succeed. 4372 */ 4373 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4374 /* 4375 * Compaction records what page blocks it recently failed to 4376 * isolate pages from and skips them in the future scanning. 4377 * When kswapd is going to sleep, it is reasonable to assume 4378 * that pages and compaction may succeed so reset the cache. 4379 */ 4380 reset_isolation_suitable(pgdat); 4381 4382 /* 4383 * We have freed the memory, now we should compact it to make 4384 * allocation of the requested order possible. 4385 */ 4386 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4387 4388 remaining = schedule_timeout(HZ/10); 4389 4390 /* 4391 * If woken prematurely then reset kswapd_highest_zoneidx and 4392 * order. The values will either be from a wakeup request or 4393 * the previous request that slept prematurely. 4394 */ 4395 if (remaining) { 4396 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4397 kswapd_highest_zoneidx(pgdat, 4398 highest_zoneidx)); 4399 4400 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4401 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4402 } 4403 4404 finish_wait(&pgdat->kswapd_wait, &wait); 4405 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4406 } 4407 4408 /* 4409 * After a short sleep, check if it was a premature sleep. If not, then 4410 * go fully to sleep until explicitly woken up. 4411 */ 4412 if (!remaining && 4413 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4414 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4415 4416 /* 4417 * vmstat counters are not perfectly accurate and the estimated 4418 * value for counters such as NR_FREE_PAGES can deviate from the 4419 * true value by nr_online_cpus * threshold. To avoid the zone 4420 * watermarks being breached while under pressure, we reduce the 4421 * per-cpu vmstat threshold while kswapd is awake and restore 4422 * them before going back to sleep. 4423 */ 4424 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4425 4426 if (!kthread_should_stop()) 4427 schedule(); 4428 4429 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4430 } else { 4431 if (remaining) 4432 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4433 else 4434 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4435 } 4436 finish_wait(&pgdat->kswapd_wait, &wait); 4437 } 4438 4439 /* 4440 * The background pageout daemon, started as a kernel thread 4441 * from the init process. 4442 * 4443 * This basically trickles out pages so that we have _some_ 4444 * free memory available even if there is no other activity 4445 * that frees anything up. This is needed for things like routing 4446 * etc, where we otherwise might have all activity going on in 4447 * asynchronous contexts that cannot page things out. 4448 * 4449 * If there are applications that are active memory-allocators 4450 * (most normal use), this basically shouldn't matter. 4451 */ 4452 static int kswapd(void *p) 4453 { 4454 unsigned int alloc_order, reclaim_order; 4455 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4456 pg_data_t *pgdat = (pg_data_t *)p; 4457 struct task_struct *tsk = current; 4458 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4459 4460 if (!cpumask_empty(cpumask)) 4461 set_cpus_allowed_ptr(tsk, cpumask); 4462 4463 /* 4464 * Tell the memory management that we're a "memory allocator", 4465 * and that if we need more memory we should get access to it 4466 * regardless (see "__alloc_pages()"). "kswapd" should 4467 * never get caught in the normal page freeing logic. 4468 * 4469 * (Kswapd normally doesn't need memory anyway, but sometimes 4470 * you need a small amount of memory in order to be able to 4471 * page out something else, and this flag essentially protects 4472 * us from recursively trying to free more memory as we're 4473 * trying to free the first piece of memory in the first place). 4474 */ 4475 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4476 set_freezable(); 4477 4478 WRITE_ONCE(pgdat->kswapd_order, 0); 4479 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4480 atomic_set(&pgdat->nr_writeback_throttled, 0); 4481 for ( ; ; ) { 4482 bool ret; 4483 4484 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4485 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4486 highest_zoneidx); 4487 4488 kswapd_try_sleep: 4489 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4490 highest_zoneidx); 4491 4492 /* Read the new order and highest_zoneidx */ 4493 alloc_order = READ_ONCE(pgdat->kswapd_order); 4494 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4495 highest_zoneidx); 4496 WRITE_ONCE(pgdat->kswapd_order, 0); 4497 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4498 4499 ret = try_to_freeze(); 4500 if (kthread_should_stop()) 4501 break; 4502 4503 /* 4504 * We can speed up thawing tasks if we don't call balance_pgdat 4505 * after returning from the refrigerator 4506 */ 4507 if (ret) 4508 continue; 4509 4510 /* 4511 * Reclaim begins at the requested order but if a high-order 4512 * reclaim fails then kswapd falls back to reclaiming for 4513 * order-0. If that happens, kswapd will consider sleeping 4514 * for the order it finished reclaiming at (reclaim_order) 4515 * but kcompactd is woken to compact for the original 4516 * request (alloc_order). 4517 */ 4518 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4519 alloc_order); 4520 reclaim_order = balance_pgdat(pgdat, alloc_order, 4521 highest_zoneidx); 4522 if (reclaim_order < alloc_order) 4523 goto kswapd_try_sleep; 4524 } 4525 4526 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4527 4528 return 0; 4529 } 4530 4531 /* 4532 * A zone is low on free memory or too fragmented for high-order memory. If 4533 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4534 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4535 * has failed or is not needed, still wake up kcompactd if only compaction is 4536 * needed. 4537 */ 4538 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4539 enum zone_type highest_zoneidx) 4540 { 4541 pg_data_t *pgdat; 4542 enum zone_type curr_idx; 4543 4544 if (!managed_zone(zone)) 4545 return; 4546 4547 if (!cpuset_zone_allowed(zone, gfp_flags)) 4548 return; 4549 4550 pgdat = zone->zone_pgdat; 4551 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4552 4553 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4554 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4555 4556 if (READ_ONCE(pgdat->kswapd_order) < order) 4557 WRITE_ONCE(pgdat->kswapd_order, order); 4558 4559 if (!waitqueue_active(&pgdat->kswapd_wait)) 4560 return; 4561 4562 /* Hopeless node, leave it to direct reclaim if possible */ 4563 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4564 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4565 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4566 /* 4567 * There may be plenty of free memory available, but it's too 4568 * fragmented for high-order allocations. Wake up kcompactd 4569 * and rely on compaction_suitable() to determine if it's 4570 * needed. If it fails, it will defer subsequent attempts to 4571 * ratelimit its work. 4572 */ 4573 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4574 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4575 return; 4576 } 4577 4578 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4579 gfp_flags); 4580 wake_up_interruptible(&pgdat->kswapd_wait); 4581 } 4582 4583 #ifdef CONFIG_HIBERNATION 4584 /* 4585 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4586 * freed pages. 4587 * 4588 * Rather than trying to age LRUs the aim is to preserve the overall 4589 * LRU order by reclaiming preferentially 4590 * inactive > active > active referenced > active mapped 4591 */ 4592 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4593 { 4594 struct scan_control sc = { 4595 .nr_to_reclaim = nr_to_reclaim, 4596 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4597 .reclaim_idx = MAX_NR_ZONES - 1, 4598 .priority = DEF_PRIORITY, 4599 .may_writepage = 1, 4600 .may_unmap = 1, 4601 .may_swap = 1, 4602 .hibernation_mode = 1, 4603 }; 4604 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4605 unsigned long nr_reclaimed; 4606 unsigned int noreclaim_flag; 4607 4608 fs_reclaim_acquire(sc.gfp_mask); 4609 noreclaim_flag = memalloc_noreclaim_save(); 4610 set_task_reclaim_state(current, &sc.reclaim_state); 4611 4612 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4613 4614 set_task_reclaim_state(current, NULL); 4615 memalloc_noreclaim_restore(noreclaim_flag); 4616 fs_reclaim_release(sc.gfp_mask); 4617 4618 return nr_reclaimed; 4619 } 4620 #endif /* CONFIG_HIBERNATION */ 4621 4622 /* 4623 * This kswapd start function will be called by init and node-hot-add. 4624 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4625 */ 4626 void kswapd_run(int nid) 4627 { 4628 pg_data_t *pgdat = NODE_DATA(nid); 4629 4630 if (pgdat->kswapd) 4631 return; 4632 4633 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4634 if (IS_ERR(pgdat->kswapd)) { 4635 /* failure at boot is fatal */ 4636 BUG_ON(system_state < SYSTEM_RUNNING); 4637 pr_err("Failed to start kswapd on node %d\n", nid); 4638 pgdat->kswapd = NULL; 4639 } 4640 } 4641 4642 /* 4643 * Called by memory hotplug when all memory in a node is offlined. Caller must 4644 * hold mem_hotplug_begin/end(). 4645 */ 4646 void kswapd_stop(int nid) 4647 { 4648 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4649 4650 if (kswapd) { 4651 kthread_stop(kswapd); 4652 NODE_DATA(nid)->kswapd = NULL; 4653 } 4654 } 4655 4656 static int __init kswapd_init(void) 4657 { 4658 int nid; 4659 4660 swap_setup(); 4661 for_each_node_state(nid, N_MEMORY) 4662 kswapd_run(nid); 4663 return 0; 4664 } 4665 4666 module_init(kswapd_init) 4667 4668 #ifdef CONFIG_NUMA 4669 /* 4670 * Node reclaim mode 4671 * 4672 * If non-zero call node_reclaim when the number of free pages falls below 4673 * the watermarks. 4674 */ 4675 int node_reclaim_mode __read_mostly; 4676 4677 /* 4678 * Priority for NODE_RECLAIM. This determines the fraction of pages 4679 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4680 * a zone. 4681 */ 4682 #define NODE_RECLAIM_PRIORITY 4 4683 4684 /* 4685 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4686 * occur. 4687 */ 4688 int sysctl_min_unmapped_ratio = 1; 4689 4690 /* 4691 * If the number of slab pages in a zone grows beyond this percentage then 4692 * slab reclaim needs to occur. 4693 */ 4694 int sysctl_min_slab_ratio = 5; 4695 4696 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4697 { 4698 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4699 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4700 node_page_state(pgdat, NR_ACTIVE_FILE); 4701 4702 /* 4703 * It's possible for there to be more file mapped pages than 4704 * accounted for by the pages on the file LRU lists because 4705 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4706 */ 4707 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4708 } 4709 4710 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4711 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4712 { 4713 unsigned long nr_pagecache_reclaimable; 4714 unsigned long delta = 0; 4715 4716 /* 4717 * If RECLAIM_UNMAP is set, then all file pages are considered 4718 * potentially reclaimable. Otherwise, we have to worry about 4719 * pages like swapcache and node_unmapped_file_pages() provides 4720 * a better estimate 4721 */ 4722 if (node_reclaim_mode & RECLAIM_UNMAP) 4723 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4724 else 4725 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4726 4727 /* If we can't clean pages, remove dirty pages from consideration */ 4728 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4729 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4730 4731 /* Watch for any possible underflows due to delta */ 4732 if (unlikely(delta > nr_pagecache_reclaimable)) 4733 delta = nr_pagecache_reclaimable; 4734 4735 return nr_pagecache_reclaimable - delta; 4736 } 4737 4738 /* 4739 * Try to free up some pages from this node through reclaim. 4740 */ 4741 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4742 { 4743 /* Minimum pages needed in order to stay on node */ 4744 const unsigned long nr_pages = 1 << order; 4745 struct task_struct *p = current; 4746 unsigned int noreclaim_flag; 4747 struct scan_control sc = { 4748 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4749 .gfp_mask = current_gfp_context(gfp_mask), 4750 .order = order, 4751 .priority = NODE_RECLAIM_PRIORITY, 4752 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4753 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4754 .may_swap = 1, 4755 .reclaim_idx = gfp_zone(gfp_mask), 4756 }; 4757 unsigned long pflags; 4758 4759 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4760 sc.gfp_mask); 4761 4762 cond_resched(); 4763 psi_memstall_enter(&pflags); 4764 fs_reclaim_acquire(sc.gfp_mask); 4765 /* 4766 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4767 * and we also need to be able to write out pages for RECLAIM_WRITE 4768 * and RECLAIM_UNMAP. 4769 */ 4770 noreclaim_flag = memalloc_noreclaim_save(); 4771 p->flags |= PF_SWAPWRITE; 4772 set_task_reclaim_state(p, &sc.reclaim_state); 4773 4774 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4775 /* 4776 * Free memory by calling shrink node with increasing 4777 * priorities until we have enough memory freed. 4778 */ 4779 do { 4780 shrink_node(pgdat, &sc); 4781 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4782 } 4783 4784 set_task_reclaim_state(p, NULL); 4785 current->flags &= ~PF_SWAPWRITE; 4786 memalloc_noreclaim_restore(noreclaim_flag); 4787 fs_reclaim_release(sc.gfp_mask); 4788 psi_memstall_leave(&pflags); 4789 4790 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4791 4792 return sc.nr_reclaimed >= nr_pages; 4793 } 4794 4795 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4796 { 4797 int ret; 4798 4799 /* 4800 * Node reclaim reclaims unmapped file backed pages and 4801 * slab pages if we are over the defined limits. 4802 * 4803 * A small portion of unmapped file backed pages is needed for 4804 * file I/O otherwise pages read by file I/O will be immediately 4805 * thrown out if the node is overallocated. So we do not reclaim 4806 * if less than a specified percentage of the node is used by 4807 * unmapped file backed pages. 4808 */ 4809 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4810 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4811 pgdat->min_slab_pages) 4812 return NODE_RECLAIM_FULL; 4813 4814 /* 4815 * Do not scan if the allocation should not be delayed. 4816 */ 4817 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4818 return NODE_RECLAIM_NOSCAN; 4819 4820 /* 4821 * Only run node reclaim on the local node or on nodes that do not 4822 * have associated processors. This will favor the local processor 4823 * over remote processors and spread off node memory allocations 4824 * as wide as possible. 4825 */ 4826 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4827 return NODE_RECLAIM_NOSCAN; 4828 4829 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4830 return NODE_RECLAIM_NOSCAN; 4831 4832 ret = __node_reclaim(pgdat, gfp_mask, order); 4833 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4834 4835 if (!ret) 4836 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4837 4838 return ret; 4839 } 4840 #endif 4841 4842 /** 4843 * check_move_unevictable_pages - check pages for evictability and move to 4844 * appropriate zone lru list 4845 * @pvec: pagevec with lru pages to check 4846 * 4847 * Checks pages for evictability, if an evictable page is in the unevictable 4848 * lru list, moves it to the appropriate evictable lru list. This function 4849 * should be only used for lru pages. 4850 */ 4851 void check_move_unevictable_pages(struct pagevec *pvec) 4852 { 4853 struct lruvec *lruvec = NULL; 4854 int pgscanned = 0; 4855 int pgrescued = 0; 4856 int i; 4857 4858 for (i = 0; i < pvec->nr; i++) { 4859 struct page *page = pvec->pages[i]; 4860 struct folio *folio = page_folio(page); 4861 int nr_pages; 4862 4863 if (PageTransTail(page)) 4864 continue; 4865 4866 nr_pages = thp_nr_pages(page); 4867 pgscanned += nr_pages; 4868 4869 /* block memcg migration during page moving between lru */ 4870 if (!TestClearPageLRU(page)) 4871 continue; 4872 4873 lruvec = folio_lruvec_relock_irq(folio, lruvec); 4874 if (page_evictable(page) && PageUnevictable(page)) { 4875 del_page_from_lru_list(page, lruvec); 4876 ClearPageUnevictable(page); 4877 add_page_to_lru_list(page, lruvec); 4878 pgrescued += nr_pages; 4879 } 4880 SetPageLRU(page); 4881 } 4882 4883 if (lruvec) { 4884 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4885 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4886 unlock_page_lruvec_irq(lruvec); 4887 } else if (pgscanned) { 4888 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4889 } 4890 } 4891 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4892