1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 /* The highest zone to isolate pages for reclaim from */ 88 enum zone_type reclaim_idx; 89 90 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 91 unsigned int may_writepage:1; 92 93 /* Can mapped pages be reclaimed? */ 94 unsigned int may_unmap:1; 95 96 /* Can pages be swapped as part of reclaim? */ 97 unsigned int may_swap:1; 98 99 /* Can cgroups be reclaimed below their normal consumption range? */ 100 unsigned int may_thrash:1; 101 102 unsigned int hibernation_mode:1; 103 104 /* One of the zones is ready for compaction */ 105 unsigned int compaction_ready:1; 106 107 /* Incremented by the number of inactive pages that were scanned */ 108 unsigned long nr_scanned; 109 110 /* Number of pages freed so far during a call to shrink_zones() */ 111 unsigned long nr_reclaimed; 112 }; 113 114 #ifdef ARCH_HAS_PREFETCH 115 #define prefetch_prev_lru_page(_page, _base, _field) \ 116 do { \ 117 if ((_page)->lru.prev != _base) { \ 118 struct page *prev; \ 119 \ 120 prev = lru_to_page(&(_page->lru)); \ 121 prefetch(&prev->_field); \ 122 } \ 123 } while (0) 124 #else 125 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 126 #endif 127 128 #ifdef ARCH_HAS_PREFETCHW 129 #define prefetchw_prev_lru_page(_page, _base, _field) \ 130 do { \ 131 if ((_page)->lru.prev != _base) { \ 132 struct page *prev; \ 133 \ 134 prev = lru_to_page(&(_page->lru)); \ 135 prefetchw(&prev->_field); \ 136 } \ 137 } while (0) 138 #else 139 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 140 #endif 141 142 /* 143 * From 0 .. 100. Higher means more swappy. 144 */ 145 int vm_swappiness = 60; 146 /* 147 * The total number of pages which are beyond the high watermark within all 148 * zones. 149 */ 150 unsigned long vm_total_pages; 151 152 static LIST_HEAD(shrinker_list); 153 static DECLARE_RWSEM(shrinker_rwsem); 154 155 #ifdef CONFIG_MEMCG 156 static bool global_reclaim(struct scan_control *sc) 157 { 158 return !sc->target_mem_cgroup; 159 } 160 161 /** 162 * sane_reclaim - is the usual dirty throttling mechanism operational? 163 * @sc: scan_control in question 164 * 165 * The normal page dirty throttling mechanism in balance_dirty_pages() is 166 * completely broken with the legacy memcg and direct stalling in 167 * shrink_page_list() is used for throttling instead, which lacks all the 168 * niceties such as fairness, adaptive pausing, bandwidth proportional 169 * allocation and configurability. 170 * 171 * This function tests whether the vmscan currently in progress can assume 172 * that the normal dirty throttling mechanism is operational. 173 */ 174 static bool sane_reclaim(struct scan_control *sc) 175 { 176 struct mem_cgroup *memcg = sc->target_mem_cgroup; 177 178 if (!memcg) 179 return true; 180 #ifdef CONFIG_CGROUP_WRITEBACK 181 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 182 return true; 183 #endif 184 return false; 185 } 186 #else 187 static bool global_reclaim(struct scan_control *sc) 188 { 189 return true; 190 } 191 192 static bool sane_reclaim(struct scan_control *sc) 193 { 194 return true; 195 } 196 #endif 197 198 /* 199 * This misses isolated pages which are not accounted for to save counters. 200 * As the data only determines if reclaim or compaction continues, it is 201 * not expected that isolated pages will be a dominating factor. 202 */ 203 unsigned long zone_reclaimable_pages(struct zone *zone) 204 { 205 unsigned long nr; 206 207 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 208 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 209 if (get_nr_swap_pages() > 0) 210 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 211 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 212 213 return nr; 214 } 215 216 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 217 { 218 unsigned long nr; 219 220 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 221 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 222 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 223 224 if (get_nr_swap_pages() > 0) 225 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 226 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 227 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 228 229 return nr; 230 } 231 232 bool pgdat_reclaimable(struct pglist_data *pgdat) 233 { 234 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) < 235 pgdat_reclaimable_pages(pgdat) * 6; 236 } 237 238 /** 239 * lruvec_lru_size - Returns the number of pages on the given LRU list. 240 * @lruvec: lru vector 241 * @lru: lru to use 242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 243 */ 244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 245 { 246 unsigned long lru_size; 247 int zid; 248 249 if (!mem_cgroup_disabled()) 250 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 251 else 252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 253 254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 256 unsigned long size; 257 258 if (!managed_zone(zone)) 259 continue; 260 261 if (!mem_cgroup_disabled()) 262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 263 else 264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 265 NR_ZONE_LRU_BASE + lru); 266 lru_size -= min(size, lru_size); 267 } 268 269 return lru_size; 270 271 } 272 273 /* 274 * Add a shrinker callback to be called from the vm. 275 */ 276 int register_shrinker(struct shrinker *shrinker) 277 { 278 size_t size = sizeof(*shrinker->nr_deferred); 279 280 if (shrinker->flags & SHRINKER_NUMA_AWARE) 281 size *= nr_node_ids; 282 283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 284 if (!shrinker->nr_deferred) 285 return -ENOMEM; 286 287 down_write(&shrinker_rwsem); 288 list_add_tail(&shrinker->list, &shrinker_list); 289 up_write(&shrinker_rwsem); 290 return 0; 291 } 292 EXPORT_SYMBOL(register_shrinker); 293 294 /* 295 * Remove one 296 */ 297 void unregister_shrinker(struct shrinker *shrinker) 298 { 299 down_write(&shrinker_rwsem); 300 list_del(&shrinker->list); 301 up_write(&shrinker_rwsem); 302 kfree(shrinker->nr_deferred); 303 } 304 EXPORT_SYMBOL(unregister_shrinker); 305 306 #define SHRINK_BATCH 128 307 308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 309 struct shrinker *shrinker, 310 unsigned long nr_scanned, 311 unsigned long nr_eligible) 312 { 313 unsigned long freed = 0; 314 unsigned long long delta; 315 long total_scan; 316 long freeable; 317 long nr; 318 long new_nr; 319 int nid = shrinkctl->nid; 320 long batch_size = shrinker->batch ? shrinker->batch 321 : SHRINK_BATCH; 322 long scanned = 0, next_deferred; 323 324 freeable = shrinker->count_objects(shrinker, shrinkctl); 325 if (freeable == 0) 326 return 0; 327 328 /* 329 * copy the current shrinker scan count into a local variable 330 * and zero it so that other concurrent shrinker invocations 331 * don't also do this scanning work. 332 */ 333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 334 335 total_scan = nr; 336 delta = (4 * nr_scanned) / shrinker->seeks; 337 delta *= freeable; 338 do_div(delta, nr_eligible + 1); 339 total_scan += delta; 340 if (total_scan < 0) { 341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 342 shrinker->scan_objects, total_scan); 343 total_scan = freeable; 344 next_deferred = nr; 345 } else 346 next_deferred = total_scan; 347 348 /* 349 * We need to avoid excessive windup on filesystem shrinkers 350 * due to large numbers of GFP_NOFS allocations causing the 351 * shrinkers to return -1 all the time. This results in a large 352 * nr being built up so when a shrink that can do some work 353 * comes along it empties the entire cache due to nr >>> 354 * freeable. This is bad for sustaining a working set in 355 * memory. 356 * 357 * Hence only allow the shrinker to scan the entire cache when 358 * a large delta change is calculated directly. 359 */ 360 if (delta < freeable / 4) 361 total_scan = min(total_scan, freeable / 2); 362 363 /* 364 * Avoid risking looping forever due to too large nr value: 365 * never try to free more than twice the estimate number of 366 * freeable entries. 367 */ 368 if (total_scan > freeable * 2) 369 total_scan = freeable * 2; 370 371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 372 nr_scanned, nr_eligible, 373 freeable, delta, total_scan); 374 375 /* 376 * Normally, we should not scan less than batch_size objects in one 377 * pass to avoid too frequent shrinker calls, but if the slab has less 378 * than batch_size objects in total and we are really tight on memory, 379 * we will try to reclaim all available objects, otherwise we can end 380 * up failing allocations although there are plenty of reclaimable 381 * objects spread over several slabs with usage less than the 382 * batch_size. 383 * 384 * We detect the "tight on memory" situations by looking at the total 385 * number of objects we want to scan (total_scan). If it is greater 386 * than the total number of objects on slab (freeable), we must be 387 * scanning at high prio and therefore should try to reclaim as much as 388 * possible. 389 */ 390 while (total_scan >= batch_size || 391 total_scan >= freeable) { 392 unsigned long ret; 393 unsigned long nr_to_scan = min(batch_size, total_scan); 394 395 shrinkctl->nr_to_scan = nr_to_scan; 396 ret = shrinker->scan_objects(shrinker, shrinkctl); 397 if (ret == SHRINK_STOP) 398 break; 399 freed += ret; 400 401 count_vm_events(SLABS_SCANNED, nr_to_scan); 402 total_scan -= nr_to_scan; 403 scanned += nr_to_scan; 404 405 cond_resched(); 406 } 407 408 if (next_deferred >= scanned) 409 next_deferred -= scanned; 410 else 411 next_deferred = 0; 412 /* 413 * move the unused scan count back into the shrinker in a 414 * manner that handles concurrent updates. If we exhausted the 415 * scan, there is no need to do an update. 416 */ 417 if (next_deferred > 0) 418 new_nr = atomic_long_add_return(next_deferred, 419 &shrinker->nr_deferred[nid]); 420 else 421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 422 423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 424 return freed; 425 } 426 427 /** 428 * shrink_slab - shrink slab caches 429 * @gfp_mask: allocation context 430 * @nid: node whose slab caches to target 431 * @memcg: memory cgroup whose slab caches to target 432 * @nr_scanned: pressure numerator 433 * @nr_eligible: pressure denominator 434 * 435 * Call the shrink functions to age shrinkable caches. 436 * 437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 438 * unaware shrinkers will receive a node id of 0 instead. 439 * 440 * @memcg specifies the memory cgroup to target. If it is not NULL, 441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 442 * objects from the memory cgroup specified. Otherwise, only unaware 443 * shrinkers are called. 444 * 445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 446 * the available objects should be scanned. Page reclaim for example 447 * passes the number of pages scanned and the number of pages on the 448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 449 * when it encountered mapped pages. The ratio is further biased by 450 * the ->seeks setting of the shrink function, which indicates the 451 * cost to recreate an object relative to that of an LRU page. 452 * 453 * Returns the number of reclaimed slab objects. 454 */ 455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 456 struct mem_cgroup *memcg, 457 unsigned long nr_scanned, 458 unsigned long nr_eligible) 459 { 460 struct shrinker *shrinker; 461 unsigned long freed = 0; 462 463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 464 return 0; 465 466 if (nr_scanned == 0) 467 nr_scanned = SWAP_CLUSTER_MAX; 468 469 if (!down_read_trylock(&shrinker_rwsem)) { 470 /* 471 * If we would return 0, our callers would understand that we 472 * have nothing else to shrink and give up trying. By returning 473 * 1 we keep it going and assume we'll be able to shrink next 474 * time. 475 */ 476 freed = 1; 477 goto out; 478 } 479 480 list_for_each_entry(shrinker, &shrinker_list, list) { 481 struct shrink_control sc = { 482 .gfp_mask = gfp_mask, 483 .nid = nid, 484 .memcg = memcg, 485 }; 486 487 /* 488 * If kernel memory accounting is disabled, we ignore 489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 490 * passing NULL for memcg. 491 */ 492 if (memcg_kmem_enabled() && 493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 494 continue; 495 496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 497 sc.nid = 0; 498 499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 500 } 501 502 up_read(&shrinker_rwsem); 503 out: 504 cond_resched(); 505 return freed; 506 } 507 508 void drop_slab_node(int nid) 509 { 510 unsigned long freed; 511 512 do { 513 struct mem_cgroup *memcg = NULL; 514 515 freed = 0; 516 do { 517 freed += shrink_slab(GFP_KERNEL, nid, memcg, 518 1000, 1000); 519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 520 } while (freed > 10); 521 } 522 523 void drop_slab(void) 524 { 525 int nid; 526 527 for_each_online_node(nid) 528 drop_slab_node(nid); 529 } 530 531 static inline int is_page_cache_freeable(struct page *page) 532 { 533 /* 534 * A freeable page cache page is referenced only by the caller 535 * that isolated the page, the page cache radix tree and 536 * optional buffer heads at page->private. 537 */ 538 return page_count(page) - page_has_private(page) == 2; 539 } 540 541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 542 { 543 if (current->flags & PF_SWAPWRITE) 544 return 1; 545 if (!inode_write_congested(inode)) 546 return 1; 547 if (inode_to_bdi(inode) == current->backing_dev_info) 548 return 1; 549 return 0; 550 } 551 552 /* 553 * We detected a synchronous write error writing a page out. Probably 554 * -ENOSPC. We need to propagate that into the address_space for a subsequent 555 * fsync(), msync() or close(). 556 * 557 * The tricky part is that after writepage we cannot touch the mapping: nothing 558 * prevents it from being freed up. But we have a ref on the page and once 559 * that page is locked, the mapping is pinned. 560 * 561 * We're allowed to run sleeping lock_page() here because we know the caller has 562 * __GFP_FS. 563 */ 564 static void handle_write_error(struct address_space *mapping, 565 struct page *page, int error) 566 { 567 lock_page(page); 568 if (page_mapping(page) == mapping) 569 mapping_set_error(mapping, error); 570 unlock_page(page); 571 } 572 573 /* possible outcome of pageout() */ 574 typedef enum { 575 /* failed to write page out, page is locked */ 576 PAGE_KEEP, 577 /* move page to the active list, page is locked */ 578 PAGE_ACTIVATE, 579 /* page has been sent to the disk successfully, page is unlocked */ 580 PAGE_SUCCESS, 581 /* page is clean and locked */ 582 PAGE_CLEAN, 583 } pageout_t; 584 585 /* 586 * pageout is called by shrink_page_list() for each dirty page. 587 * Calls ->writepage(). 588 */ 589 static pageout_t pageout(struct page *page, struct address_space *mapping, 590 struct scan_control *sc) 591 { 592 /* 593 * If the page is dirty, only perform writeback if that write 594 * will be non-blocking. To prevent this allocation from being 595 * stalled by pagecache activity. But note that there may be 596 * stalls if we need to run get_block(). We could test 597 * PagePrivate for that. 598 * 599 * If this process is currently in __generic_file_write_iter() against 600 * this page's queue, we can perform writeback even if that 601 * will block. 602 * 603 * If the page is swapcache, write it back even if that would 604 * block, for some throttling. This happens by accident, because 605 * swap_backing_dev_info is bust: it doesn't reflect the 606 * congestion state of the swapdevs. Easy to fix, if needed. 607 */ 608 if (!is_page_cache_freeable(page)) 609 return PAGE_KEEP; 610 if (!mapping) { 611 /* 612 * Some data journaling orphaned pages can have 613 * page->mapping == NULL while being dirty with clean buffers. 614 */ 615 if (page_has_private(page)) { 616 if (try_to_free_buffers(page)) { 617 ClearPageDirty(page); 618 pr_info("%s: orphaned page\n", __func__); 619 return PAGE_CLEAN; 620 } 621 } 622 return PAGE_KEEP; 623 } 624 if (mapping->a_ops->writepage == NULL) 625 return PAGE_ACTIVATE; 626 if (!may_write_to_inode(mapping->host, sc)) 627 return PAGE_KEEP; 628 629 if (clear_page_dirty_for_io(page)) { 630 int res; 631 struct writeback_control wbc = { 632 .sync_mode = WB_SYNC_NONE, 633 .nr_to_write = SWAP_CLUSTER_MAX, 634 .range_start = 0, 635 .range_end = LLONG_MAX, 636 .for_reclaim = 1, 637 }; 638 639 SetPageReclaim(page); 640 res = mapping->a_ops->writepage(page, &wbc); 641 if (res < 0) 642 handle_write_error(mapping, page, res); 643 if (res == AOP_WRITEPAGE_ACTIVATE) { 644 ClearPageReclaim(page); 645 return PAGE_ACTIVATE; 646 } 647 648 if (!PageWriteback(page)) { 649 /* synchronous write or broken a_ops? */ 650 ClearPageReclaim(page); 651 } 652 trace_mm_vmscan_writepage(page); 653 inc_node_page_state(page, NR_VMSCAN_WRITE); 654 return PAGE_SUCCESS; 655 } 656 657 return PAGE_CLEAN; 658 } 659 660 /* 661 * Same as remove_mapping, but if the page is removed from the mapping, it 662 * gets returned with a refcount of 0. 663 */ 664 static int __remove_mapping(struct address_space *mapping, struct page *page, 665 bool reclaimed) 666 { 667 unsigned long flags; 668 669 BUG_ON(!PageLocked(page)); 670 BUG_ON(mapping != page_mapping(page)); 671 672 spin_lock_irqsave(&mapping->tree_lock, flags); 673 /* 674 * The non racy check for a busy page. 675 * 676 * Must be careful with the order of the tests. When someone has 677 * a ref to the page, it may be possible that they dirty it then 678 * drop the reference. So if PageDirty is tested before page_count 679 * here, then the following race may occur: 680 * 681 * get_user_pages(&page); 682 * [user mapping goes away] 683 * write_to(page); 684 * !PageDirty(page) [good] 685 * SetPageDirty(page); 686 * put_page(page); 687 * !page_count(page) [good, discard it] 688 * 689 * [oops, our write_to data is lost] 690 * 691 * Reversing the order of the tests ensures such a situation cannot 692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 693 * load is not satisfied before that of page->_refcount. 694 * 695 * Note that if SetPageDirty is always performed via set_page_dirty, 696 * and thus under tree_lock, then this ordering is not required. 697 */ 698 if (!page_ref_freeze(page, 2)) 699 goto cannot_free; 700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 701 if (unlikely(PageDirty(page))) { 702 page_ref_unfreeze(page, 2); 703 goto cannot_free; 704 } 705 706 if (PageSwapCache(page)) { 707 swp_entry_t swap = { .val = page_private(page) }; 708 mem_cgroup_swapout(page, swap); 709 __delete_from_swap_cache(page); 710 spin_unlock_irqrestore(&mapping->tree_lock, flags); 711 swapcache_free(swap); 712 } else { 713 void (*freepage)(struct page *); 714 void *shadow = NULL; 715 716 freepage = mapping->a_ops->freepage; 717 /* 718 * Remember a shadow entry for reclaimed file cache in 719 * order to detect refaults, thus thrashing, later on. 720 * 721 * But don't store shadows in an address space that is 722 * already exiting. This is not just an optizimation, 723 * inode reclaim needs to empty out the radix tree or 724 * the nodes are lost. Don't plant shadows behind its 725 * back. 726 * 727 * We also don't store shadows for DAX mappings because the 728 * only page cache pages found in these are zero pages 729 * covering holes, and because we don't want to mix DAX 730 * exceptional entries and shadow exceptional entries in the 731 * same page_tree. 732 */ 733 if (reclaimed && page_is_file_cache(page) && 734 !mapping_exiting(mapping) && !dax_mapping(mapping)) 735 shadow = workingset_eviction(mapping, page); 736 __delete_from_page_cache(page, shadow); 737 spin_unlock_irqrestore(&mapping->tree_lock, flags); 738 739 if (freepage != NULL) 740 freepage(page); 741 } 742 743 return 1; 744 745 cannot_free: 746 spin_unlock_irqrestore(&mapping->tree_lock, flags); 747 return 0; 748 } 749 750 /* 751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 752 * someone else has a ref on the page, abort and return 0. If it was 753 * successfully detached, return 1. Assumes the caller has a single ref on 754 * this page. 755 */ 756 int remove_mapping(struct address_space *mapping, struct page *page) 757 { 758 if (__remove_mapping(mapping, page, false)) { 759 /* 760 * Unfreezing the refcount with 1 rather than 2 effectively 761 * drops the pagecache ref for us without requiring another 762 * atomic operation. 763 */ 764 page_ref_unfreeze(page, 1); 765 return 1; 766 } 767 return 0; 768 } 769 770 /** 771 * putback_lru_page - put previously isolated page onto appropriate LRU list 772 * @page: page to be put back to appropriate lru list 773 * 774 * Add previously isolated @page to appropriate LRU list. 775 * Page may still be unevictable for other reasons. 776 * 777 * lru_lock must not be held, interrupts must be enabled. 778 */ 779 void putback_lru_page(struct page *page) 780 { 781 bool is_unevictable; 782 int was_unevictable = PageUnevictable(page); 783 784 VM_BUG_ON_PAGE(PageLRU(page), page); 785 786 redo: 787 ClearPageUnevictable(page); 788 789 if (page_evictable(page)) { 790 /* 791 * For evictable pages, we can use the cache. 792 * In event of a race, worst case is we end up with an 793 * unevictable page on [in]active list. 794 * We know how to handle that. 795 */ 796 is_unevictable = false; 797 lru_cache_add(page); 798 } else { 799 /* 800 * Put unevictable pages directly on zone's unevictable 801 * list. 802 */ 803 is_unevictable = true; 804 add_page_to_unevictable_list(page); 805 /* 806 * When racing with an mlock or AS_UNEVICTABLE clearing 807 * (page is unlocked) make sure that if the other thread 808 * does not observe our setting of PG_lru and fails 809 * isolation/check_move_unevictable_pages, 810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 811 * the page back to the evictable list. 812 * 813 * The other side is TestClearPageMlocked() or shmem_lock(). 814 */ 815 smp_mb(); 816 } 817 818 /* 819 * page's status can change while we move it among lru. If an evictable 820 * page is on unevictable list, it never be freed. To avoid that, 821 * check after we added it to the list, again. 822 */ 823 if (is_unevictable && page_evictable(page)) { 824 if (!isolate_lru_page(page)) { 825 put_page(page); 826 goto redo; 827 } 828 /* This means someone else dropped this page from LRU 829 * So, it will be freed or putback to LRU again. There is 830 * nothing to do here. 831 */ 832 } 833 834 if (was_unevictable && !is_unevictable) 835 count_vm_event(UNEVICTABLE_PGRESCUED); 836 else if (!was_unevictable && is_unevictable) 837 count_vm_event(UNEVICTABLE_PGCULLED); 838 839 put_page(page); /* drop ref from isolate */ 840 } 841 842 enum page_references { 843 PAGEREF_RECLAIM, 844 PAGEREF_RECLAIM_CLEAN, 845 PAGEREF_KEEP, 846 PAGEREF_ACTIVATE, 847 }; 848 849 static enum page_references page_check_references(struct page *page, 850 struct scan_control *sc) 851 { 852 int referenced_ptes, referenced_page; 853 unsigned long vm_flags; 854 855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 856 &vm_flags); 857 referenced_page = TestClearPageReferenced(page); 858 859 /* 860 * Mlock lost the isolation race with us. Let try_to_unmap() 861 * move the page to the unevictable list. 862 */ 863 if (vm_flags & VM_LOCKED) 864 return PAGEREF_RECLAIM; 865 866 if (referenced_ptes) { 867 if (PageSwapBacked(page)) 868 return PAGEREF_ACTIVATE; 869 /* 870 * All mapped pages start out with page table 871 * references from the instantiating fault, so we need 872 * to look twice if a mapped file page is used more 873 * than once. 874 * 875 * Mark it and spare it for another trip around the 876 * inactive list. Another page table reference will 877 * lead to its activation. 878 * 879 * Note: the mark is set for activated pages as well 880 * so that recently deactivated but used pages are 881 * quickly recovered. 882 */ 883 SetPageReferenced(page); 884 885 if (referenced_page || referenced_ptes > 1) 886 return PAGEREF_ACTIVATE; 887 888 /* 889 * Activate file-backed executable pages after first usage. 890 */ 891 if (vm_flags & VM_EXEC) 892 return PAGEREF_ACTIVATE; 893 894 return PAGEREF_KEEP; 895 } 896 897 /* Reclaim if clean, defer dirty pages to writeback */ 898 if (referenced_page && !PageSwapBacked(page)) 899 return PAGEREF_RECLAIM_CLEAN; 900 901 return PAGEREF_RECLAIM; 902 } 903 904 /* Check if a page is dirty or under writeback */ 905 static void page_check_dirty_writeback(struct page *page, 906 bool *dirty, bool *writeback) 907 { 908 struct address_space *mapping; 909 910 /* 911 * Anonymous pages are not handled by flushers and must be written 912 * from reclaim context. Do not stall reclaim based on them 913 */ 914 if (!page_is_file_cache(page)) { 915 *dirty = false; 916 *writeback = false; 917 return; 918 } 919 920 /* By default assume that the page flags are accurate */ 921 *dirty = PageDirty(page); 922 *writeback = PageWriteback(page); 923 924 /* Verify dirty/writeback state if the filesystem supports it */ 925 if (!page_has_private(page)) 926 return; 927 928 mapping = page_mapping(page); 929 if (mapping && mapping->a_ops->is_dirty_writeback) 930 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 931 } 932 933 struct reclaim_stat { 934 unsigned nr_dirty; 935 unsigned nr_unqueued_dirty; 936 unsigned nr_congested; 937 unsigned nr_writeback; 938 unsigned nr_immediate; 939 unsigned nr_activate; 940 unsigned nr_ref_keep; 941 unsigned nr_unmap_fail; 942 }; 943 944 /* 945 * shrink_page_list() returns the number of reclaimed pages 946 */ 947 static unsigned long shrink_page_list(struct list_head *page_list, 948 struct pglist_data *pgdat, 949 struct scan_control *sc, 950 enum ttu_flags ttu_flags, 951 struct reclaim_stat *stat, 952 bool force_reclaim) 953 { 954 LIST_HEAD(ret_pages); 955 LIST_HEAD(free_pages); 956 int pgactivate = 0; 957 unsigned nr_unqueued_dirty = 0; 958 unsigned nr_dirty = 0; 959 unsigned nr_congested = 0; 960 unsigned nr_reclaimed = 0; 961 unsigned nr_writeback = 0; 962 unsigned nr_immediate = 0; 963 unsigned nr_ref_keep = 0; 964 unsigned nr_unmap_fail = 0; 965 966 cond_resched(); 967 968 while (!list_empty(page_list)) { 969 struct address_space *mapping; 970 struct page *page; 971 int may_enter_fs; 972 enum page_references references = PAGEREF_RECLAIM_CLEAN; 973 bool dirty, writeback; 974 bool lazyfree = false; 975 int ret = SWAP_SUCCESS; 976 977 cond_resched(); 978 979 page = lru_to_page(page_list); 980 list_del(&page->lru); 981 982 if (!trylock_page(page)) 983 goto keep; 984 985 VM_BUG_ON_PAGE(PageActive(page), page); 986 987 sc->nr_scanned++; 988 989 if (unlikely(!page_evictable(page))) 990 goto cull_mlocked; 991 992 if (!sc->may_unmap && page_mapped(page)) 993 goto keep_locked; 994 995 /* Double the slab pressure for mapped and swapcache pages */ 996 if (page_mapped(page) || PageSwapCache(page)) 997 sc->nr_scanned++; 998 999 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1001 1002 /* 1003 * The number of dirty pages determines if a zone is marked 1004 * reclaim_congested which affects wait_iff_congested. kswapd 1005 * will stall and start writing pages if the tail of the LRU 1006 * is all dirty unqueued pages. 1007 */ 1008 page_check_dirty_writeback(page, &dirty, &writeback); 1009 if (dirty || writeback) 1010 nr_dirty++; 1011 1012 if (dirty && !writeback) 1013 nr_unqueued_dirty++; 1014 1015 /* 1016 * Treat this page as congested if the underlying BDI is or if 1017 * pages are cycling through the LRU so quickly that the 1018 * pages marked for immediate reclaim are making it to the 1019 * end of the LRU a second time. 1020 */ 1021 mapping = page_mapping(page); 1022 if (((dirty || writeback) && mapping && 1023 inode_write_congested(mapping->host)) || 1024 (writeback && PageReclaim(page))) 1025 nr_congested++; 1026 1027 /* 1028 * If a page at the tail of the LRU is under writeback, there 1029 * are three cases to consider. 1030 * 1031 * 1) If reclaim is encountering an excessive number of pages 1032 * under writeback and this page is both under writeback and 1033 * PageReclaim then it indicates that pages are being queued 1034 * for IO but are being recycled through the LRU before the 1035 * IO can complete. Waiting on the page itself risks an 1036 * indefinite stall if it is impossible to writeback the 1037 * page due to IO error or disconnected storage so instead 1038 * note that the LRU is being scanned too quickly and the 1039 * caller can stall after page list has been processed. 1040 * 1041 * 2) Global or new memcg reclaim encounters a page that is 1042 * not marked for immediate reclaim, or the caller does not 1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1044 * not to fs). In this case mark the page for immediate 1045 * reclaim and continue scanning. 1046 * 1047 * Require may_enter_fs because we would wait on fs, which 1048 * may not have submitted IO yet. And the loop driver might 1049 * enter reclaim, and deadlock if it waits on a page for 1050 * which it is needed to do the write (loop masks off 1051 * __GFP_IO|__GFP_FS for this reason); but more thought 1052 * would probably show more reasons. 1053 * 1054 * 3) Legacy memcg encounters a page that is already marked 1055 * PageReclaim. memcg does not have any dirty pages 1056 * throttling so we could easily OOM just because too many 1057 * pages are in writeback and there is nothing else to 1058 * reclaim. Wait for the writeback to complete. 1059 * 1060 * In cases 1) and 2) we activate the pages to get them out of 1061 * the way while we continue scanning for clean pages on the 1062 * inactive list and refilling from the active list. The 1063 * observation here is that waiting for disk writes is more 1064 * expensive than potentially causing reloads down the line. 1065 * Since they're marked for immediate reclaim, they won't put 1066 * memory pressure on the cache working set any longer than it 1067 * takes to write them to disk. 1068 */ 1069 if (PageWriteback(page)) { 1070 /* Case 1 above */ 1071 if (current_is_kswapd() && 1072 PageReclaim(page) && 1073 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1074 nr_immediate++; 1075 goto activate_locked; 1076 1077 /* Case 2 above */ 1078 } else if (sane_reclaim(sc) || 1079 !PageReclaim(page) || !may_enter_fs) { 1080 /* 1081 * This is slightly racy - end_page_writeback() 1082 * might have just cleared PageReclaim, then 1083 * setting PageReclaim here end up interpreted 1084 * as PageReadahead - but that does not matter 1085 * enough to care. What we do want is for this 1086 * page to have PageReclaim set next time memcg 1087 * reclaim reaches the tests above, so it will 1088 * then wait_on_page_writeback() to avoid OOM; 1089 * and it's also appropriate in global reclaim. 1090 */ 1091 SetPageReclaim(page); 1092 nr_writeback++; 1093 goto activate_locked; 1094 1095 /* Case 3 above */ 1096 } else { 1097 unlock_page(page); 1098 wait_on_page_writeback(page); 1099 /* then go back and try same page again */ 1100 list_add_tail(&page->lru, page_list); 1101 continue; 1102 } 1103 } 1104 1105 if (!force_reclaim) 1106 references = page_check_references(page, sc); 1107 1108 switch (references) { 1109 case PAGEREF_ACTIVATE: 1110 goto activate_locked; 1111 case PAGEREF_KEEP: 1112 nr_ref_keep++; 1113 goto keep_locked; 1114 case PAGEREF_RECLAIM: 1115 case PAGEREF_RECLAIM_CLEAN: 1116 ; /* try to reclaim the page below */ 1117 } 1118 1119 /* 1120 * Anonymous process memory has backing store? 1121 * Try to allocate it some swap space here. 1122 */ 1123 if (PageAnon(page) && !PageSwapCache(page)) { 1124 if (!(sc->gfp_mask & __GFP_IO)) 1125 goto keep_locked; 1126 if (!add_to_swap(page, page_list)) 1127 goto activate_locked; 1128 lazyfree = true; 1129 may_enter_fs = 1; 1130 1131 /* Adding to swap updated mapping */ 1132 mapping = page_mapping(page); 1133 } else if (unlikely(PageTransHuge(page))) { 1134 /* Split file THP */ 1135 if (split_huge_page_to_list(page, page_list)) 1136 goto keep_locked; 1137 } 1138 1139 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1140 1141 /* 1142 * The page is mapped into the page tables of one or more 1143 * processes. Try to unmap it here. 1144 */ 1145 if (page_mapped(page) && mapping) { 1146 switch (ret = try_to_unmap(page, lazyfree ? 1147 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1148 (ttu_flags | TTU_BATCH_FLUSH))) { 1149 case SWAP_FAIL: 1150 nr_unmap_fail++; 1151 goto activate_locked; 1152 case SWAP_AGAIN: 1153 goto keep_locked; 1154 case SWAP_MLOCK: 1155 goto cull_mlocked; 1156 case SWAP_LZFREE: 1157 goto lazyfree; 1158 case SWAP_SUCCESS: 1159 ; /* try to free the page below */ 1160 } 1161 } 1162 1163 if (PageDirty(page)) { 1164 /* 1165 * Only kswapd can writeback filesystem pages 1166 * to avoid risk of stack overflow. But avoid 1167 * injecting inefficient single-page IO into 1168 * flusher writeback as much as possible: only 1169 * write pages when we've encountered many 1170 * dirty pages, and when we've already scanned 1171 * the rest of the LRU for clean pages and see 1172 * the same dirty pages again (PageReclaim). 1173 */ 1174 if (page_is_file_cache(page) && 1175 (!current_is_kswapd() || !PageReclaim(page) || 1176 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1177 /* 1178 * Immediately reclaim when written back. 1179 * Similar in principal to deactivate_page() 1180 * except we already have the page isolated 1181 * and know it's dirty 1182 */ 1183 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1184 SetPageReclaim(page); 1185 1186 goto activate_locked; 1187 } 1188 1189 if (references == PAGEREF_RECLAIM_CLEAN) 1190 goto keep_locked; 1191 if (!may_enter_fs) 1192 goto keep_locked; 1193 if (!sc->may_writepage) 1194 goto keep_locked; 1195 1196 /* 1197 * Page is dirty. Flush the TLB if a writable entry 1198 * potentially exists to avoid CPU writes after IO 1199 * starts and then write it out here. 1200 */ 1201 try_to_unmap_flush_dirty(); 1202 switch (pageout(page, mapping, sc)) { 1203 case PAGE_KEEP: 1204 goto keep_locked; 1205 case PAGE_ACTIVATE: 1206 goto activate_locked; 1207 case PAGE_SUCCESS: 1208 if (PageWriteback(page)) 1209 goto keep; 1210 if (PageDirty(page)) 1211 goto keep; 1212 1213 /* 1214 * A synchronous write - probably a ramdisk. Go 1215 * ahead and try to reclaim the page. 1216 */ 1217 if (!trylock_page(page)) 1218 goto keep; 1219 if (PageDirty(page) || PageWriteback(page)) 1220 goto keep_locked; 1221 mapping = page_mapping(page); 1222 case PAGE_CLEAN: 1223 ; /* try to free the page below */ 1224 } 1225 } 1226 1227 /* 1228 * If the page has buffers, try to free the buffer mappings 1229 * associated with this page. If we succeed we try to free 1230 * the page as well. 1231 * 1232 * We do this even if the page is PageDirty(). 1233 * try_to_release_page() does not perform I/O, but it is 1234 * possible for a page to have PageDirty set, but it is actually 1235 * clean (all its buffers are clean). This happens if the 1236 * buffers were written out directly, with submit_bh(). ext3 1237 * will do this, as well as the blockdev mapping. 1238 * try_to_release_page() will discover that cleanness and will 1239 * drop the buffers and mark the page clean - it can be freed. 1240 * 1241 * Rarely, pages can have buffers and no ->mapping. These are 1242 * the pages which were not successfully invalidated in 1243 * truncate_complete_page(). We try to drop those buffers here 1244 * and if that worked, and the page is no longer mapped into 1245 * process address space (page_count == 1) it can be freed. 1246 * Otherwise, leave the page on the LRU so it is swappable. 1247 */ 1248 if (page_has_private(page)) { 1249 if (!try_to_release_page(page, sc->gfp_mask)) 1250 goto activate_locked; 1251 if (!mapping && page_count(page) == 1) { 1252 unlock_page(page); 1253 if (put_page_testzero(page)) 1254 goto free_it; 1255 else { 1256 /* 1257 * rare race with speculative reference. 1258 * the speculative reference will free 1259 * this page shortly, so we may 1260 * increment nr_reclaimed here (and 1261 * leave it off the LRU). 1262 */ 1263 nr_reclaimed++; 1264 continue; 1265 } 1266 } 1267 } 1268 1269 lazyfree: 1270 if (!mapping || !__remove_mapping(mapping, page, true)) 1271 goto keep_locked; 1272 1273 /* 1274 * At this point, we have no other references and there is 1275 * no way to pick any more up (removed from LRU, removed 1276 * from pagecache). Can use non-atomic bitops now (and 1277 * we obviously don't have to worry about waking up a process 1278 * waiting on the page lock, because there are no references. 1279 */ 1280 __ClearPageLocked(page); 1281 free_it: 1282 if (ret == SWAP_LZFREE) 1283 count_vm_event(PGLAZYFREED); 1284 1285 nr_reclaimed++; 1286 1287 /* 1288 * Is there need to periodically free_page_list? It would 1289 * appear not as the counts should be low 1290 */ 1291 list_add(&page->lru, &free_pages); 1292 continue; 1293 1294 cull_mlocked: 1295 if (PageSwapCache(page)) 1296 try_to_free_swap(page); 1297 unlock_page(page); 1298 list_add(&page->lru, &ret_pages); 1299 continue; 1300 1301 activate_locked: 1302 /* Not a candidate for swapping, so reclaim swap space. */ 1303 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1304 try_to_free_swap(page); 1305 VM_BUG_ON_PAGE(PageActive(page), page); 1306 SetPageActive(page); 1307 pgactivate++; 1308 keep_locked: 1309 unlock_page(page); 1310 keep: 1311 list_add(&page->lru, &ret_pages); 1312 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1313 } 1314 1315 mem_cgroup_uncharge_list(&free_pages); 1316 try_to_unmap_flush(); 1317 free_hot_cold_page_list(&free_pages, true); 1318 1319 list_splice(&ret_pages, page_list); 1320 count_vm_events(PGACTIVATE, pgactivate); 1321 1322 if (stat) { 1323 stat->nr_dirty = nr_dirty; 1324 stat->nr_congested = nr_congested; 1325 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1326 stat->nr_writeback = nr_writeback; 1327 stat->nr_immediate = nr_immediate; 1328 stat->nr_activate = pgactivate; 1329 stat->nr_ref_keep = nr_ref_keep; 1330 stat->nr_unmap_fail = nr_unmap_fail; 1331 } 1332 return nr_reclaimed; 1333 } 1334 1335 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1336 struct list_head *page_list) 1337 { 1338 struct scan_control sc = { 1339 .gfp_mask = GFP_KERNEL, 1340 .priority = DEF_PRIORITY, 1341 .may_unmap = 1, 1342 }; 1343 unsigned long ret; 1344 struct page *page, *next; 1345 LIST_HEAD(clean_pages); 1346 1347 list_for_each_entry_safe(page, next, page_list, lru) { 1348 if (page_is_file_cache(page) && !PageDirty(page) && 1349 !__PageMovable(page)) { 1350 ClearPageActive(page); 1351 list_move(&page->lru, &clean_pages); 1352 } 1353 } 1354 1355 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1356 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true); 1357 list_splice(&clean_pages, page_list); 1358 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1359 return ret; 1360 } 1361 1362 /* 1363 * Attempt to remove the specified page from its LRU. Only take this page 1364 * if it is of the appropriate PageActive status. Pages which are being 1365 * freed elsewhere are also ignored. 1366 * 1367 * page: page to consider 1368 * mode: one of the LRU isolation modes defined above 1369 * 1370 * returns 0 on success, -ve errno on failure. 1371 */ 1372 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1373 { 1374 int ret = -EINVAL; 1375 1376 /* Only take pages on the LRU. */ 1377 if (!PageLRU(page)) 1378 return ret; 1379 1380 /* Compaction should not handle unevictable pages but CMA can do so */ 1381 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1382 return ret; 1383 1384 ret = -EBUSY; 1385 1386 /* 1387 * To minimise LRU disruption, the caller can indicate that it only 1388 * wants to isolate pages it will be able to operate on without 1389 * blocking - clean pages for the most part. 1390 * 1391 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1392 * that it is possible to migrate without blocking 1393 */ 1394 if (mode & ISOLATE_ASYNC_MIGRATE) { 1395 /* All the caller can do on PageWriteback is block */ 1396 if (PageWriteback(page)) 1397 return ret; 1398 1399 if (PageDirty(page)) { 1400 struct address_space *mapping; 1401 1402 /* 1403 * Only pages without mappings or that have a 1404 * ->migratepage callback are possible to migrate 1405 * without blocking 1406 */ 1407 mapping = page_mapping(page); 1408 if (mapping && !mapping->a_ops->migratepage) 1409 return ret; 1410 } 1411 } 1412 1413 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1414 return ret; 1415 1416 if (likely(get_page_unless_zero(page))) { 1417 /* 1418 * Be careful not to clear PageLRU until after we're 1419 * sure the page is not being freed elsewhere -- the 1420 * page release code relies on it. 1421 */ 1422 ClearPageLRU(page); 1423 ret = 0; 1424 } 1425 1426 return ret; 1427 } 1428 1429 1430 /* 1431 * Update LRU sizes after isolating pages. The LRU size updates must 1432 * be complete before mem_cgroup_update_lru_size due to a santity check. 1433 */ 1434 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1435 enum lru_list lru, unsigned long *nr_zone_taken) 1436 { 1437 int zid; 1438 1439 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1440 if (!nr_zone_taken[zid]) 1441 continue; 1442 1443 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1444 #ifdef CONFIG_MEMCG 1445 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1446 #endif 1447 } 1448 1449 } 1450 1451 /* 1452 * zone_lru_lock is heavily contended. Some of the functions that 1453 * shrink the lists perform better by taking out a batch of pages 1454 * and working on them outside the LRU lock. 1455 * 1456 * For pagecache intensive workloads, this function is the hottest 1457 * spot in the kernel (apart from copy_*_user functions). 1458 * 1459 * Appropriate locks must be held before calling this function. 1460 * 1461 * @nr_to_scan: The number of pages to look through on the list. 1462 * @lruvec: The LRU vector to pull pages from. 1463 * @dst: The temp list to put pages on to. 1464 * @nr_scanned: The number of pages that were scanned. 1465 * @sc: The scan_control struct for this reclaim session 1466 * @mode: One of the LRU isolation modes 1467 * @lru: LRU list id for isolating 1468 * 1469 * returns how many pages were moved onto *@dst. 1470 */ 1471 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1472 struct lruvec *lruvec, struct list_head *dst, 1473 unsigned long *nr_scanned, struct scan_control *sc, 1474 isolate_mode_t mode, enum lru_list lru) 1475 { 1476 struct list_head *src = &lruvec->lists[lru]; 1477 unsigned long nr_taken = 0; 1478 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1479 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1480 unsigned long skipped = 0, total_skipped = 0; 1481 unsigned long scan, nr_pages; 1482 LIST_HEAD(pages_skipped); 1483 1484 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1485 !list_empty(src);) { 1486 struct page *page; 1487 1488 page = lru_to_page(src); 1489 prefetchw_prev_lru_page(page, src, flags); 1490 1491 VM_BUG_ON_PAGE(!PageLRU(page), page); 1492 1493 if (page_zonenum(page) > sc->reclaim_idx) { 1494 list_move(&page->lru, &pages_skipped); 1495 nr_skipped[page_zonenum(page)]++; 1496 continue; 1497 } 1498 1499 /* 1500 * Account for scanned and skipped separetly to avoid the pgdat 1501 * being prematurely marked unreclaimable by pgdat_reclaimable. 1502 */ 1503 scan++; 1504 1505 switch (__isolate_lru_page(page, mode)) { 1506 case 0: 1507 nr_pages = hpage_nr_pages(page); 1508 nr_taken += nr_pages; 1509 nr_zone_taken[page_zonenum(page)] += nr_pages; 1510 list_move(&page->lru, dst); 1511 break; 1512 1513 case -EBUSY: 1514 /* else it is being freed elsewhere */ 1515 list_move(&page->lru, src); 1516 continue; 1517 1518 default: 1519 BUG(); 1520 } 1521 } 1522 1523 /* 1524 * Splice any skipped pages to the start of the LRU list. Note that 1525 * this disrupts the LRU order when reclaiming for lower zones but 1526 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1527 * scanning would soon rescan the same pages to skip and put the 1528 * system at risk of premature OOM. 1529 */ 1530 if (!list_empty(&pages_skipped)) { 1531 int zid; 1532 1533 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1534 if (!nr_skipped[zid]) 1535 continue; 1536 1537 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1538 skipped += nr_skipped[zid]; 1539 } 1540 1541 /* 1542 * Account skipped pages as a partial scan as the pgdat may be 1543 * close to unreclaimable. If the LRU list is empty, account 1544 * skipped pages as a full scan. 1545 */ 1546 total_skipped = list_empty(src) ? skipped : skipped >> 2; 1547 1548 list_splice(&pages_skipped, src); 1549 } 1550 *nr_scanned = scan + total_skipped; 1551 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1552 scan, skipped, nr_taken, mode, lru); 1553 update_lru_sizes(lruvec, lru, nr_zone_taken); 1554 return nr_taken; 1555 } 1556 1557 /** 1558 * isolate_lru_page - tries to isolate a page from its LRU list 1559 * @page: page to isolate from its LRU list 1560 * 1561 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1562 * vmstat statistic corresponding to whatever LRU list the page was on. 1563 * 1564 * Returns 0 if the page was removed from an LRU list. 1565 * Returns -EBUSY if the page was not on an LRU list. 1566 * 1567 * The returned page will have PageLRU() cleared. If it was found on 1568 * the active list, it will have PageActive set. If it was found on 1569 * the unevictable list, it will have the PageUnevictable bit set. That flag 1570 * may need to be cleared by the caller before letting the page go. 1571 * 1572 * The vmstat statistic corresponding to the list on which the page was 1573 * found will be decremented. 1574 * 1575 * Restrictions: 1576 * (1) Must be called with an elevated refcount on the page. This is a 1577 * fundamentnal difference from isolate_lru_pages (which is called 1578 * without a stable reference). 1579 * (2) the lru_lock must not be held. 1580 * (3) interrupts must be enabled. 1581 */ 1582 int isolate_lru_page(struct page *page) 1583 { 1584 int ret = -EBUSY; 1585 1586 VM_BUG_ON_PAGE(!page_count(page), page); 1587 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1588 1589 if (PageLRU(page)) { 1590 struct zone *zone = page_zone(page); 1591 struct lruvec *lruvec; 1592 1593 spin_lock_irq(zone_lru_lock(zone)); 1594 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1595 if (PageLRU(page)) { 1596 int lru = page_lru(page); 1597 get_page(page); 1598 ClearPageLRU(page); 1599 del_page_from_lru_list(page, lruvec, lru); 1600 ret = 0; 1601 } 1602 spin_unlock_irq(zone_lru_lock(zone)); 1603 } 1604 return ret; 1605 } 1606 1607 /* 1608 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1609 * then get resheduled. When there are massive number of tasks doing page 1610 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1611 * the LRU list will go small and be scanned faster than necessary, leading to 1612 * unnecessary swapping, thrashing and OOM. 1613 */ 1614 static int too_many_isolated(struct pglist_data *pgdat, int file, 1615 struct scan_control *sc) 1616 { 1617 unsigned long inactive, isolated; 1618 1619 if (current_is_kswapd()) 1620 return 0; 1621 1622 if (!sane_reclaim(sc)) 1623 return 0; 1624 1625 if (file) { 1626 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1627 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1628 } else { 1629 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1630 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1631 } 1632 1633 /* 1634 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1635 * won't get blocked by normal direct-reclaimers, forming a circular 1636 * deadlock. 1637 */ 1638 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1639 inactive >>= 3; 1640 1641 return isolated > inactive; 1642 } 1643 1644 static noinline_for_stack void 1645 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1646 { 1647 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1648 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1649 LIST_HEAD(pages_to_free); 1650 1651 /* 1652 * Put back any unfreeable pages. 1653 */ 1654 while (!list_empty(page_list)) { 1655 struct page *page = lru_to_page(page_list); 1656 int lru; 1657 1658 VM_BUG_ON_PAGE(PageLRU(page), page); 1659 list_del(&page->lru); 1660 if (unlikely(!page_evictable(page))) { 1661 spin_unlock_irq(&pgdat->lru_lock); 1662 putback_lru_page(page); 1663 spin_lock_irq(&pgdat->lru_lock); 1664 continue; 1665 } 1666 1667 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1668 1669 SetPageLRU(page); 1670 lru = page_lru(page); 1671 add_page_to_lru_list(page, lruvec, lru); 1672 1673 if (is_active_lru(lru)) { 1674 int file = is_file_lru(lru); 1675 int numpages = hpage_nr_pages(page); 1676 reclaim_stat->recent_rotated[file] += numpages; 1677 } 1678 if (put_page_testzero(page)) { 1679 __ClearPageLRU(page); 1680 __ClearPageActive(page); 1681 del_page_from_lru_list(page, lruvec, lru); 1682 1683 if (unlikely(PageCompound(page))) { 1684 spin_unlock_irq(&pgdat->lru_lock); 1685 mem_cgroup_uncharge(page); 1686 (*get_compound_page_dtor(page))(page); 1687 spin_lock_irq(&pgdat->lru_lock); 1688 } else 1689 list_add(&page->lru, &pages_to_free); 1690 } 1691 } 1692 1693 /* 1694 * To save our caller's stack, now use input list for pages to free. 1695 */ 1696 list_splice(&pages_to_free, page_list); 1697 } 1698 1699 /* 1700 * If a kernel thread (such as nfsd for loop-back mounts) services 1701 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1702 * In that case we should only throttle if the backing device it is 1703 * writing to is congested. In other cases it is safe to throttle. 1704 */ 1705 static int current_may_throttle(void) 1706 { 1707 return !(current->flags & PF_LESS_THROTTLE) || 1708 current->backing_dev_info == NULL || 1709 bdi_write_congested(current->backing_dev_info); 1710 } 1711 1712 /* 1713 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1714 * of reclaimed pages 1715 */ 1716 static noinline_for_stack unsigned long 1717 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1718 struct scan_control *sc, enum lru_list lru) 1719 { 1720 LIST_HEAD(page_list); 1721 unsigned long nr_scanned; 1722 unsigned long nr_reclaimed = 0; 1723 unsigned long nr_taken; 1724 struct reclaim_stat stat = {}; 1725 isolate_mode_t isolate_mode = 0; 1726 int file = is_file_lru(lru); 1727 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1728 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1729 1730 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1731 congestion_wait(BLK_RW_ASYNC, HZ/10); 1732 1733 /* We are about to die and free our memory. Return now. */ 1734 if (fatal_signal_pending(current)) 1735 return SWAP_CLUSTER_MAX; 1736 } 1737 1738 lru_add_drain(); 1739 1740 if (!sc->may_unmap) 1741 isolate_mode |= ISOLATE_UNMAPPED; 1742 1743 spin_lock_irq(&pgdat->lru_lock); 1744 1745 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1746 &nr_scanned, sc, isolate_mode, lru); 1747 1748 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1749 reclaim_stat->recent_scanned[file] += nr_taken; 1750 1751 if (global_reclaim(sc)) { 1752 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1753 if (current_is_kswapd()) 1754 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1755 else 1756 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1757 } 1758 spin_unlock_irq(&pgdat->lru_lock); 1759 1760 if (nr_taken == 0) 1761 return 0; 1762 1763 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, 1764 &stat, false); 1765 1766 spin_lock_irq(&pgdat->lru_lock); 1767 1768 if (global_reclaim(sc)) { 1769 if (current_is_kswapd()) 1770 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1771 else 1772 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1773 } 1774 1775 putback_inactive_pages(lruvec, &page_list); 1776 1777 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1778 1779 spin_unlock_irq(&pgdat->lru_lock); 1780 1781 mem_cgroup_uncharge_list(&page_list); 1782 free_hot_cold_page_list(&page_list, true); 1783 1784 /* 1785 * If reclaim is isolating dirty pages under writeback, it implies 1786 * that the long-lived page allocation rate is exceeding the page 1787 * laundering rate. Either the global limits are not being effective 1788 * at throttling processes due to the page distribution throughout 1789 * zones or there is heavy usage of a slow backing device. The 1790 * only option is to throttle from reclaim context which is not ideal 1791 * as there is no guarantee the dirtying process is throttled in the 1792 * same way balance_dirty_pages() manages. 1793 * 1794 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1795 * of pages under pages flagged for immediate reclaim and stall if any 1796 * are encountered in the nr_immediate check below. 1797 */ 1798 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1799 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1800 1801 /* 1802 * Legacy memcg will stall in page writeback so avoid forcibly 1803 * stalling here. 1804 */ 1805 if (sane_reclaim(sc)) { 1806 /* 1807 * Tag a zone as congested if all the dirty pages scanned were 1808 * backed by a congested BDI and wait_iff_congested will stall. 1809 */ 1810 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1811 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1812 1813 /* 1814 * If dirty pages are scanned that are not queued for IO, it 1815 * implies that flushers are not doing their job. This can 1816 * happen when memory pressure pushes dirty pages to the end of 1817 * the LRU before the dirty limits are breached and the dirty 1818 * data has expired. It can also happen when the proportion of 1819 * dirty pages grows not through writes but through memory 1820 * pressure reclaiming all the clean cache. And in some cases, 1821 * the flushers simply cannot keep up with the allocation 1822 * rate. Nudge the flusher threads in case they are asleep, but 1823 * also allow kswapd to start writing pages during reclaim. 1824 */ 1825 if (stat.nr_unqueued_dirty == nr_taken) { 1826 wakeup_flusher_threads(0, WB_REASON_VMSCAN); 1827 set_bit(PGDAT_DIRTY, &pgdat->flags); 1828 } 1829 1830 /* 1831 * If kswapd scans pages marked marked for immediate 1832 * reclaim and under writeback (nr_immediate), it implies 1833 * that pages are cycling through the LRU faster than 1834 * they are written so also forcibly stall. 1835 */ 1836 if (stat.nr_immediate && current_may_throttle()) 1837 congestion_wait(BLK_RW_ASYNC, HZ/10); 1838 } 1839 1840 /* 1841 * Stall direct reclaim for IO completions if underlying BDIs or zone 1842 * is congested. Allow kswapd to continue until it starts encountering 1843 * unqueued dirty pages or cycling through the LRU too quickly. 1844 */ 1845 if (!sc->hibernation_mode && !current_is_kswapd() && 1846 current_may_throttle()) 1847 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1848 1849 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1850 nr_scanned, nr_reclaimed, 1851 stat.nr_dirty, stat.nr_writeback, 1852 stat.nr_congested, stat.nr_immediate, 1853 stat.nr_activate, stat.nr_ref_keep, 1854 stat.nr_unmap_fail, 1855 sc->priority, file); 1856 return nr_reclaimed; 1857 } 1858 1859 /* 1860 * This moves pages from the active list to the inactive list. 1861 * 1862 * We move them the other way if the page is referenced by one or more 1863 * processes, from rmap. 1864 * 1865 * If the pages are mostly unmapped, the processing is fast and it is 1866 * appropriate to hold zone_lru_lock across the whole operation. But if 1867 * the pages are mapped, the processing is slow (page_referenced()) so we 1868 * should drop zone_lru_lock around each page. It's impossible to balance 1869 * this, so instead we remove the pages from the LRU while processing them. 1870 * It is safe to rely on PG_active against the non-LRU pages in here because 1871 * nobody will play with that bit on a non-LRU page. 1872 * 1873 * The downside is that we have to touch page->_refcount against each page. 1874 * But we had to alter page->flags anyway. 1875 * 1876 * Returns the number of pages moved to the given lru. 1877 */ 1878 1879 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1880 struct list_head *list, 1881 struct list_head *pages_to_free, 1882 enum lru_list lru) 1883 { 1884 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1885 struct page *page; 1886 int nr_pages; 1887 int nr_moved = 0; 1888 1889 while (!list_empty(list)) { 1890 page = lru_to_page(list); 1891 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1892 1893 VM_BUG_ON_PAGE(PageLRU(page), page); 1894 SetPageLRU(page); 1895 1896 nr_pages = hpage_nr_pages(page); 1897 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1898 list_move(&page->lru, &lruvec->lists[lru]); 1899 1900 if (put_page_testzero(page)) { 1901 __ClearPageLRU(page); 1902 __ClearPageActive(page); 1903 del_page_from_lru_list(page, lruvec, lru); 1904 1905 if (unlikely(PageCompound(page))) { 1906 spin_unlock_irq(&pgdat->lru_lock); 1907 mem_cgroup_uncharge(page); 1908 (*get_compound_page_dtor(page))(page); 1909 spin_lock_irq(&pgdat->lru_lock); 1910 } else 1911 list_add(&page->lru, pages_to_free); 1912 } else { 1913 nr_moved += nr_pages; 1914 } 1915 } 1916 1917 if (!is_active_lru(lru)) 1918 __count_vm_events(PGDEACTIVATE, nr_moved); 1919 1920 return nr_moved; 1921 } 1922 1923 static void shrink_active_list(unsigned long nr_to_scan, 1924 struct lruvec *lruvec, 1925 struct scan_control *sc, 1926 enum lru_list lru) 1927 { 1928 unsigned long nr_taken; 1929 unsigned long nr_scanned; 1930 unsigned long vm_flags; 1931 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1932 LIST_HEAD(l_active); 1933 LIST_HEAD(l_inactive); 1934 struct page *page; 1935 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1936 unsigned nr_deactivate, nr_activate; 1937 unsigned nr_rotated = 0; 1938 isolate_mode_t isolate_mode = 0; 1939 int file = is_file_lru(lru); 1940 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1941 1942 lru_add_drain(); 1943 1944 if (!sc->may_unmap) 1945 isolate_mode |= ISOLATE_UNMAPPED; 1946 1947 spin_lock_irq(&pgdat->lru_lock); 1948 1949 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1950 &nr_scanned, sc, isolate_mode, lru); 1951 1952 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1953 reclaim_stat->recent_scanned[file] += nr_taken; 1954 1955 if (global_reclaim(sc)) 1956 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1957 __count_vm_events(PGREFILL, nr_scanned); 1958 1959 spin_unlock_irq(&pgdat->lru_lock); 1960 1961 while (!list_empty(&l_hold)) { 1962 cond_resched(); 1963 page = lru_to_page(&l_hold); 1964 list_del(&page->lru); 1965 1966 if (unlikely(!page_evictable(page))) { 1967 putback_lru_page(page); 1968 continue; 1969 } 1970 1971 if (unlikely(buffer_heads_over_limit)) { 1972 if (page_has_private(page) && trylock_page(page)) { 1973 if (page_has_private(page)) 1974 try_to_release_page(page, 0); 1975 unlock_page(page); 1976 } 1977 } 1978 1979 if (page_referenced(page, 0, sc->target_mem_cgroup, 1980 &vm_flags)) { 1981 nr_rotated += hpage_nr_pages(page); 1982 /* 1983 * Identify referenced, file-backed active pages and 1984 * give them one more trip around the active list. So 1985 * that executable code get better chances to stay in 1986 * memory under moderate memory pressure. Anon pages 1987 * are not likely to be evicted by use-once streaming 1988 * IO, plus JVM can create lots of anon VM_EXEC pages, 1989 * so we ignore them here. 1990 */ 1991 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1992 list_add(&page->lru, &l_active); 1993 continue; 1994 } 1995 } 1996 1997 ClearPageActive(page); /* we are de-activating */ 1998 list_add(&page->lru, &l_inactive); 1999 } 2000 2001 /* 2002 * Move pages back to the lru list. 2003 */ 2004 spin_lock_irq(&pgdat->lru_lock); 2005 /* 2006 * Count referenced pages from currently used mappings as rotated, 2007 * even though only some of them are actually re-activated. This 2008 * helps balance scan pressure between file and anonymous pages in 2009 * get_scan_count. 2010 */ 2011 reclaim_stat->recent_rotated[file] += nr_rotated; 2012 2013 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2014 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2015 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2016 spin_unlock_irq(&pgdat->lru_lock); 2017 2018 mem_cgroup_uncharge_list(&l_hold); 2019 free_hot_cold_page_list(&l_hold, true); 2020 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2021 nr_deactivate, nr_rotated, sc->priority, file); 2022 } 2023 2024 /* 2025 * The inactive anon list should be small enough that the VM never has 2026 * to do too much work. 2027 * 2028 * The inactive file list should be small enough to leave most memory 2029 * to the established workingset on the scan-resistant active list, 2030 * but large enough to avoid thrashing the aggregate readahead window. 2031 * 2032 * Both inactive lists should also be large enough that each inactive 2033 * page has a chance to be referenced again before it is reclaimed. 2034 * 2035 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2036 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2037 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2038 * 2039 * total target max 2040 * memory ratio inactive 2041 * ------------------------------------- 2042 * 10MB 1 5MB 2043 * 100MB 1 50MB 2044 * 1GB 3 250MB 2045 * 10GB 10 0.9GB 2046 * 100GB 31 3GB 2047 * 1TB 101 10GB 2048 * 10TB 320 32GB 2049 */ 2050 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2051 struct scan_control *sc, bool trace) 2052 { 2053 unsigned long inactive_ratio; 2054 unsigned long inactive, active; 2055 enum lru_list inactive_lru = file * LRU_FILE; 2056 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2057 unsigned long gb; 2058 2059 /* 2060 * If we don't have swap space, anonymous page deactivation 2061 * is pointless. 2062 */ 2063 if (!file && !total_swap_pages) 2064 return false; 2065 2066 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2067 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2068 2069 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2070 if (gb) 2071 inactive_ratio = int_sqrt(10 * gb); 2072 else 2073 inactive_ratio = 1; 2074 2075 if (trace) 2076 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id, 2077 sc->reclaim_idx, 2078 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2079 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2080 inactive_ratio, file); 2081 2082 return inactive * inactive_ratio < active; 2083 } 2084 2085 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2086 struct lruvec *lruvec, struct scan_control *sc) 2087 { 2088 if (is_active_lru(lru)) { 2089 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2090 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2091 return 0; 2092 } 2093 2094 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2095 } 2096 2097 enum scan_balance { 2098 SCAN_EQUAL, 2099 SCAN_FRACT, 2100 SCAN_ANON, 2101 SCAN_FILE, 2102 }; 2103 2104 /* 2105 * Determine how aggressively the anon and file LRU lists should be 2106 * scanned. The relative value of each set of LRU lists is determined 2107 * by looking at the fraction of the pages scanned we did rotate back 2108 * onto the active list instead of evict. 2109 * 2110 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2111 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2112 */ 2113 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2114 struct scan_control *sc, unsigned long *nr, 2115 unsigned long *lru_pages) 2116 { 2117 int swappiness = mem_cgroup_swappiness(memcg); 2118 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2119 u64 fraction[2]; 2120 u64 denominator = 0; /* gcc */ 2121 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2122 unsigned long anon_prio, file_prio; 2123 enum scan_balance scan_balance; 2124 unsigned long anon, file; 2125 bool force_scan = false; 2126 unsigned long ap, fp; 2127 enum lru_list lru; 2128 bool some_scanned; 2129 int pass; 2130 2131 /* 2132 * If the zone or memcg is small, nr[l] can be 0. This 2133 * results in no scanning on this priority and a potential 2134 * priority drop. Global direct reclaim can go to the next 2135 * zone and tends to have no problems. Global kswapd is for 2136 * zone balancing and it needs to scan a minimum amount. When 2137 * reclaiming for a memcg, a priority drop can cause high 2138 * latencies, so it's better to scan a minimum amount there as 2139 * well. 2140 */ 2141 if (current_is_kswapd()) { 2142 if (!pgdat_reclaimable(pgdat)) 2143 force_scan = true; 2144 if (!mem_cgroup_online(memcg)) 2145 force_scan = true; 2146 } 2147 if (!global_reclaim(sc)) 2148 force_scan = true; 2149 2150 /* If we have no swap space, do not bother scanning anon pages. */ 2151 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2152 scan_balance = SCAN_FILE; 2153 goto out; 2154 } 2155 2156 /* 2157 * Global reclaim will swap to prevent OOM even with no 2158 * swappiness, but memcg users want to use this knob to 2159 * disable swapping for individual groups completely when 2160 * using the memory controller's swap limit feature would be 2161 * too expensive. 2162 */ 2163 if (!global_reclaim(sc) && !swappiness) { 2164 scan_balance = SCAN_FILE; 2165 goto out; 2166 } 2167 2168 /* 2169 * Do not apply any pressure balancing cleverness when the 2170 * system is close to OOM, scan both anon and file equally 2171 * (unless the swappiness setting disagrees with swapping). 2172 */ 2173 if (!sc->priority && swappiness) { 2174 scan_balance = SCAN_EQUAL; 2175 goto out; 2176 } 2177 2178 /* 2179 * Prevent the reclaimer from falling into the cache trap: as 2180 * cache pages start out inactive, every cache fault will tip 2181 * the scan balance towards the file LRU. And as the file LRU 2182 * shrinks, so does the window for rotation from references. 2183 * This means we have a runaway feedback loop where a tiny 2184 * thrashing file LRU becomes infinitely more attractive than 2185 * anon pages. Try to detect this based on file LRU size. 2186 */ 2187 if (global_reclaim(sc)) { 2188 unsigned long pgdatfile; 2189 unsigned long pgdatfree; 2190 int z; 2191 unsigned long total_high_wmark = 0; 2192 2193 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2194 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2195 node_page_state(pgdat, NR_INACTIVE_FILE); 2196 2197 for (z = 0; z < MAX_NR_ZONES; z++) { 2198 struct zone *zone = &pgdat->node_zones[z]; 2199 if (!managed_zone(zone)) 2200 continue; 2201 2202 total_high_wmark += high_wmark_pages(zone); 2203 } 2204 2205 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2206 scan_balance = SCAN_ANON; 2207 goto out; 2208 } 2209 } 2210 2211 /* 2212 * If there is enough inactive page cache, i.e. if the size of the 2213 * inactive list is greater than that of the active list *and* the 2214 * inactive list actually has some pages to scan on this priority, we 2215 * do not reclaim anything from the anonymous working set right now. 2216 * Without the second condition we could end up never scanning an 2217 * lruvec even if it has plenty of old anonymous pages unless the 2218 * system is under heavy pressure. 2219 */ 2220 if (!inactive_list_is_low(lruvec, true, sc, false) && 2221 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2222 scan_balance = SCAN_FILE; 2223 goto out; 2224 } 2225 2226 scan_balance = SCAN_FRACT; 2227 2228 /* 2229 * With swappiness at 100, anonymous and file have the same priority. 2230 * This scanning priority is essentially the inverse of IO cost. 2231 */ 2232 anon_prio = swappiness; 2233 file_prio = 200 - anon_prio; 2234 2235 /* 2236 * OK, so we have swap space and a fair amount of page cache 2237 * pages. We use the recently rotated / recently scanned 2238 * ratios to determine how valuable each cache is. 2239 * 2240 * Because workloads change over time (and to avoid overflow) 2241 * we keep these statistics as a floating average, which ends 2242 * up weighing recent references more than old ones. 2243 * 2244 * anon in [0], file in [1] 2245 */ 2246 2247 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2248 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2249 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2250 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2251 2252 spin_lock_irq(&pgdat->lru_lock); 2253 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2254 reclaim_stat->recent_scanned[0] /= 2; 2255 reclaim_stat->recent_rotated[0] /= 2; 2256 } 2257 2258 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2259 reclaim_stat->recent_scanned[1] /= 2; 2260 reclaim_stat->recent_rotated[1] /= 2; 2261 } 2262 2263 /* 2264 * The amount of pressure on anon vs file pages is inversely 2265 * proportional to the fraction of recently scanned pages on 2266 * each list that were recently referenced and in active use. 2267 */ 2268 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2269 ap /= reclaim_stat->recent_rotated[0] + 1; 2270 2271 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2272 fp /= reclaim_stat->recent_rotated[1] + 1; 2273 spin_unlock_irq(&pgdat->lru_lock); 2274 2275 fraction[0] = ap; 2276 fraction[1] = fp; 2277 denominator = ap + fp + 1; 2278 out: 2279 some_scanned = false; 2280 /* Only use force_scan on second pass. */ 2281 for (pass = 0; !some_scanned && pass < 2; pass++) { 2282 *lru_pages = 0; 2283 for_each_evictable_lru(lru) { 2284 int file = is_file_lru(lru); 2285 unsigned long size; 2286 unsigned long scan; 2287 2288 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2289 scan = size >> sc->priority; 2290 2291 if (!scan && pass && force_scan) 2292 scan = min(size, SWAP_CLUSTER_MAX); 2293 2294 switch (scan_balance) { 2295 case SCAN_EQUAL: 2296 /* Scan lists relative to size */ 2297 break; 2298 case SCAN_FRACT: 2299 /* 2300 * Scan types proportional to swappiness and 2301 * their relative recent reclaim efficiency. 2302 */ 2303 scan = div64_u64(scan * fraction[file], 2304 denominator); 2305 break; 2306 case SCAN_FILE: 2307 case SCAN_ANON: 2308 /* Scan one type exclusively */ 2309 if ((scan_balance == SCAN_FILE) != file) { 2310 size = 0; 2311 scan = 0; 2312 } 2313 break; 2314 default: 2315 /* Look ma, no brain */ 2316 BUG(); 2317 } 2318 2319 *lru_pages += size; 2320 nr[lru] = scan; 2321 2322 /* 2323 * Skip the second pass and don't force_scan, 2324 * if we found something to scan. 2325 */ 2326 some_scanned |= !!scan; 2327 } 2328 } 2329 } 2330 2331 /* 2332 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2333 */ 2334 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2335 struct scan_control *sc, unsigned long *lru_pages) 2336 { 2337 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2338 unsigned long nr[NR_LRU_LISTS]; 2339 unsigned long targets[NR_LRU_LISTS]; 2340 unsigned long nr_to_scan; 2341 enum lru_list lru; 2342 unsigned long nr_reclaimed = 0; 2343 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2344 struct blk_plug plug; 2345 bool scan_adjusted; 2346 2347 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2348 2349 /* Record the original scan target for proportional adjustments later */ 2350 memcpy(targets, nr, sizeof(nr)); 2351 2352 /* 2353 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2354 * event that can occur when there is little memory pressure e.g. 2355 * multiple streaming readers/writers. Hence, we do not abort scanning 2356 * when the requested number of pages are reclaimed when scanning at 2357 * DEF_PRIORITY on the assumption that the fact we are direct 2358 * reclaiming implies that kswapd is not keeping up and it is best to 2359 * do a batch of work at once. For memcg reclaim one check is made to 2360 * abort proportional reclaim if either the file or anon lru has already 2361 * dropped to zero at the first pass. 2362 */ 2363 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2364 sc->priority == DEF_PRIORITY); 2365 2366 blk_start_plug(&plug); 2367 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2368 nr[LRU_INACTIVE_FILE]) { 2369 unsigned long nr_anon, nr_file, percentage; 2370 unsigned long nr_scanned; 2371 2372 for_each_evictable_lru(lru) { 2373 if (nr[lru]) { 2374 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2375 nr[lru] -= nr_to_scan; 2376 2377 nr_reclaimed += shrink_list(lru, nr_to_scan, 2378 lruvec, sc); 2379 } 2380 } 2381 2382 cond_resched(); 2383 2384 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2385 continue; 2386 2387 /* 2388 * For kswapd and memcg, reclaim at least the number of pages 2389 * requested. Ensure that the anon and file LRUs are scanned 2390 * proportionally what was requested by get_scan_count(). We 2391 * stop reclaiming one LRU and reduce the amount scanning 2392 * proportional to the original scan target. 2393 */ 2394 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2395 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2396 2397 /* 2398 * It's just vindictive to attack the larger once the smaller 2399 * has gone to zero. And given the way we stop scanning the 2400 * smaller below, this makes sure that we only make one nudge 2401 * towards proportionality once we've got nr_to_reclaim. 2402 */ 2403 if (!nr_file || !nr_anon) 2404 break; 2405 2406 if (nr_file > nr_anon) { 2407 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2408 targets[LRU_ACTIVE_ANON] + 1; 2409 lru = LRU_BASE; 2410 percentage = nr_anon * 100 / scan_target; 2411 } else { 2412 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2413 targets[LRU_ACTIVE_FILE] + 1; 2414 lru = LRU_FILE; 2415 percentage = nr_file * 100 / scan_target; 2416 } 2417 2418 /* Stop scanning the smaller of the LRU */ 2419 nr[lru] = 0; 2420 nr[lru + LRU_ACTIVE] = 0; 2421 2422 /* 2423 * Recalculate the other LRU scan count based on its original 2424 * scan target and the percentage scanning already complete 2425 */ 2426 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2427 nr_scanned = targets[lru] - nr[lru]; 2428 nr[lru] = targets[lru] * (100 - percentage) / 100; 2429 nr[lru] -= min(nr[lru], nr_scanned); 2430 2431 lru += LRU_ACTIVE; 2432 nr_scanned = targets[lru] - nr[lru]; 2433 nr[lru] = targets[lru] * (100 - percentage) / 100; 2434 nr[lru] -= min(nr[lru], nr_scanned); 2435 2436 scan_adjusted = true; 2437 } 2438 blk_finish_plug(&plug); 2439 sc->nr_reclaimed += nr_reclaimed; 2440 2441 /* 2442 * Even if we did not try to evict anon pages at all, we want to 2443 * rebalance the anon lru active/inactive ratio. 2444 */ 2445 if (inactive_list_is_low(lruvec, false, sc, true)) 2446 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2447 sc, LRU_ACTIVE_ANON); 2448 } 2449 2450 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2451 static bool in_reclaim_compaction(struct scan_control *sc) 2452 { 2453 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2454 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2455 sc->priority < DEF_PRIORITY - 2)) 2456 return true; 2457 2458 return false; 2459 } 2460 2461 /* 2462 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2463 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2464 * true if more pages should be reclaimed such that when the page allocator 2465 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2466 * It will give up earlier than that if there is difficulty reclaiming pages. 2467 */ 2468 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2469 unsigned long nr_reclaimed, 2470 unsigned long nr_scanned, 2471 struct scan_control *sc) 2472 { 2473 unsigned long pages_for_compaction; 2474 unsigned long inactive_lru_pages; 2475 int z; 2476 2477 /* If not in reclaim/compaction mode, stop */ 2478 if (!in_reclaim_compaction(sc)) 2479 return false; 2480 2481 /* Consider stopping depending on scan and reclaim activity */ 2482 if (sc->gfp_mask & __GFP_REPEAT) { 2483 /* 2484 * For __GFP_REPEAT allocations, stop reclaiming if the 2485 * full LRU list has been scanned and we are still failing 2486 * to reclaim pages. This full LRU scan is potentially 2487 * expensive but a __GFP_REPEAT caller really wants to succeed 2488 */ 2489 if (!nr_reclaimed && !nr_scanned) 2490 return false; 2491 } else { 2492 /* 2493 * For non-__GFP_REPEAT allocations which can presumably 2494 * fail without consequence, stop if we failed to reclaim 2495 * any pages from the last SWAP_CLUSTER_MAX number of 2496 * pages that were scanned. This will return to the 2497 * caller faster at the risk reclaim/compaction and 2498 * the resulting allocation attempt fails 2499 */ 2500 if (!nr_reclaimed) 2501 return false; 2502 } 2503 2504 /* 2505 * If we have not reclaimed enough pages for compaction and the 2506 * inactive lists are large enough, continue reclaiming 2507 */ 2508 pages_for_compaction = compact_gap(sc->order); 2509 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2510 if (get_nr_swap_pages() > 0) 2511 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2512 if (sc->nr_reclaimed < pages_for_compaction && 2513 inactive_lru_pages > pages_for_compaction) 2514 return true; 2515 2516 /* If compaction would go ahead or the allocation would succeed, stop */ 2517 for (z = 0; z <= sc->reclaim_idx; z++) { 2518 struct zone *zone = &pgdat->node_zones[z]; 2519 if (!managed_zone(zone)) 2520 continue; 2521 2522 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2523 case COMPACT_SUCCESS: 2524 case COMPACT_CONTINUE: 2525 return false; 2526 default: 2527 /* check next zone */ 2528 ; 2529 } 2530 } 2531 return true; 2532 } 2533 2534 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2535 { 2536 struct reclaim_state *reclaim_state = current->reclaim_state; 2537 unsigned long nr_reclaimed, nr_scanned; 2538 bool reclaimable = false; 2539 2540 do { 2541 struct mem_cgroup *root = sc->target_mem_cgroup; 2542 struct mem_cgroup_reclaim_cookie reclaim = { 2543 .pgdat = pgdat, 2544 .priority = sc->priority, 2545 }; 2546 unsigned long node_lru_pages = 0; 2547 struct mem_cgroup *memcg; 2548 2549 nr_reclaimed = sc->nr_reclaimed; 2550 nr_scanned = sc->nr_scanned; 2551 2552 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2553 do { 2554 unsigned long lru_pages; 2555 unsigned long reclaimed; 2556 unsigned long scanned; 2557 2558 if (mem_cgroup_low(root, memcg)) { 2559 if (!sc->may_thrash) 2560 continue; 2561 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2562 } 2563 2564 reclaimed = sc->nr_reclaimed; 2565 scanned = sc->nr_scanned; 2566 2567 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2568 node_lru_pages += lru_pages; 2569 2570 if (memcg) 2571 shrink_slab(sc->gfp_mask, pgdat->node_id, 2572 memcg, sc->nr_scanned - scanned, 2573 lru_pages); 2574 2575 /* Record the group's reclaim efficiency */ 2576 vmpressure(sc->gfp_mask, memcg, false, 2577 sc->nr_scanned - scanned, 2578 sc->nr_reclaimed - reclaimed); 2579 2580 /* 2581 * Direct reclaim and kswapd have to scan all memory 2582 * cgroups to fulfill the overall scan target for the 2583 * node. 2584 * 2585 * Limit reclaim, on the other hand, only cares about 2586 * nr_to_reclaim pages to be reclaimed and it will 2587 * retry with decreasing priority if one round over the 2588 * whole hierarchy is not sufficient. 2589 */ 2590 if (!global_reclaim(sc) && 2591 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2592 mem_cgroup_iter_break(root, memcg); 2593 break; 2594 } 2595 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2596 2597 /* 2598 * Shrink the slab caches in the same proportion that 2599 * the eligible LRU pages were scanned. 2600 */ 2601 if (global_reclaim(sc)) 2602 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2603 sc->nr_scanned - nr_scanned, 2604 node_lru_pages); 2605 2606 if (reclaim_state) { 2607 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2608 reclaim_state->reclaimed_slab = 0; 2609 } 2610 2611 /* Record the subtree's reclaim efficiency */ 2612 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2613 sc->nr_scanned - nr_scanned, 2614 sc->nr_reclaimed - nr_reclaimed); 2615 2616 if (sc->nr_reclaimed - nr_reclaimed) 2617 reclaimable = true; 2618 2619 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2620 sc->nr_scanned - nr_scanned, sc)); 2621 2622 return reclaimable; 2623 } 2624 2625 /* 2626 * Returns true if compaction should go ahead for a costly-order request, or 2627 * the allocation would already succeed without compaction. Return false if we 2628 * should reclaim first. 2629 */ 2630 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2631 { 2632 unsigned long watermark; 2633 enum compact_result suitable; 2634 2635 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2636 if (suitable == COMPACT_SUCCESS) 2637 /* Allocation should succeed already. Don't reclaim. */ 2638 return true; 2639 if (suitable == COMPACT_SKIPPED) 2640 /* Compaction cannot yet proceed. Do reclaim. */ 2641 return false; 2642 2643 /* 2644 * Compaction is already possible, but it takes time to run and there 2645 * are potentially other callers using the pages just freed. So proceed 2646 * with reclaim to make a buffer of free pages available to give 2647 * compaction a reasonable chance of completing and allocating the page. 2648 * Note that we won't actually reclaim the whole buffer in one attempt 2649 * as the target watermark in should_continue_reclaim() is lower. But if 2650 * we are already above the high+gap watermark, don't reclaim at all. 2651 */ 2652 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2653 2654 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2655 } 2656 2657 /* 2658 * This is the direct reclaim path, for page-allocating processes. We only 2659 * try to reclaim pages from zones which will satisfy the caller's allocation 2660 * request. 2661 * 2662 * If a zone is deemed to be full of pinned pages then just give it a light 2663 * scan then give up on it. 2664 */ 2665 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2666 { 2667 struct zoneref *z; 2668 struct zone *zone; 2669 unsigned long nr_soft_reclaimed; 2670 unsigned long nr_soft_scanned; 2671 gfp_t orig_mask; 2672 pg_data_t *last_pgdat = NULL; 2673 2674 /* 2675 * If the number of buffer_heads in the machine exceeds the maximum 2676 * allowed level, force direct reclaim to scan the highmem zone as 2677 * highmem pages could be pinning lowmem pages storing buffer_heads 2678 */ 2679 orig_mask = sc->gfp_mask; 2680 if (buffer_heads_over_limit) { 2681 sc->gfp_mask |= __GFP_HIGHMEM; 2682 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2683 } 2684 2685 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2686 sc->reclaim_idx, sc->nodemask) { 2687 /* 2688 * Take care memory controller reclaiming has small influence 2689 * to global LRU. 2690 */ 2691 if (global_reclaim(sc)) { 2692 if (!cpuset_zone_allowed(zone, 2693 GFP_KERNEL | __GFP_HARDWALL)) 2694 continue; 2695 2696 if (sc->priority != DEF_PRIORITY && 2697 !pgdat_reclaimable(zone->zone_pgdat)) 2698 continue; /* Let kswapd poll it */ 2699 2700 /* 2701 * If we already have plenty of memory free for 2702 * compaction in this zone, don't free any more. 2703 * Even though compaction is invoked for any 2704 * non-zero order, only frequent costly order 2705 * reclamation is disruptive enough to become a 2706 * noticeable problem, like transparent huge 2707 * page allocations. 2708 */ 2709 if (IS_ENABLED(CONFIG_COMPACTION) && 2710 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2711 compaction_ready(zone, sc)) { 2712 sc->compaction_ready = true; 2713 continue; 2714 } 2715 2716 /* 2717 * Shrink each node in the zonelist once. If the 2718 * zonelist is ordered by zone (not the default) then a 2719 * node may be shrunk multiple times but in that case 2720 * the user prefers lower zones being preserved. 2721 */ 2722 if (zone->zone_pgdat == last_pgdat) 2723 continue; 2724 2725 /* 2726 * This steals pages from memory cgroups over softlimit 2727 * and returns the number of reclaimed pages and 2728 * scanned pages. This works for global memory pressure 2729 * and balancing, not for a memcg's limit. 2730 */ 2731 nr_soft_scanned = 0; 2732 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2733 sc->order, sc->gfp_mask, 2734 &nr_soft_scanned); 2735 sc->nr_reclaimed += nr_soft_reclaimed; 2736 sc->nr_scanned += nr_soft_scanned; 2737 /* need some check for avoid more shrink_zone() */ 2738 } 2739 2740 /* See comment about same check for global reclaim above */ 2741 if (zone->zone_pgdat == last_pgdat) 2742 continue; 2743 last_pgdat = zone->zone_pgdat; 2744 shrink_node(zone->zone_pgdat, sc); 2745 } 2746 2747 /* 2748 * Restore to original mask to avoid the impact on the caller if we 2749 * promoted it to __GFP_HIGHMEM. 2750 */ 2751 sc->gfp_mask = orig_mask; 2752 } 2753 2754 /* 2755 * This is the main entry point to direct page reclaim. 2756 * 2757 * If a full scan of the inactive list fails to free enough memory then we 2758 * are "out of memory" and something needs to be killed. 2759 * 2760 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2761 * high - the zone may be full of dirty or under-writeback pages, which this 2762 * caller can't do much about. We kick the writeback threads and take explicit 2763 * naps in the hope that some of these pages can be written. But if the 2764 * allocating task holds filesystem locks which prevent writeout this might not 2765 * work, and the allocation attempt will fail. 2766 * 2767 * returns: 0, if no pages reclaimed 2768 * else, the number of pages reclaimed 2769 */ 2770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2771 struct scan_control *sc) 2772 { 2773 int initial_priority = sc->priority; 2774 retry: 2775 delayacct_freepages_start(); 2776 2777 if (global_reclaim(sc)) 2778 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2779 2780 do { 2781 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2782 sc->priority); 2783 sc->nr_scanned = 0; 2784 shrink_zones(zonelist, sc); 2785 2786 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2787 break; 2788 2789 if (sc->compaction_ready) 2790 break; 2791 2792 /* 2793 * If we're getting trouble reclaiming, start doing 2794 * writepage even in laptop mode. 2795 */ 2796 if (sc->priority < DEF_PRIORITY - 2) 2797 sc->may_writepage = 1; 2798 } while (--sc->priority >= 0); 2799 2800 delayacct_freepages_end(); 2801 2802 if (sc->nr_reclaimed) 2803 return sc->nr_reclaimed; 2804 2805 /* Aborted reclaim to try compaction? don't OOM, then */ 2806 if (sc->compaction_ready) 2807 return 1; 2808 2809 /* Untapped cgroup reserves? Don't OOM, retry. */ 2810 if (!sc->may_thrash) { 2811 sc->priority = initial_priority; 2812 sc->may_thrash = 1; 2813 goto retry; 2814 } 2815 2816 return 0; 2817 } 2818 2819 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2820 { 2821 struct zone *zone; 2822 unsigned long pfmemalloc_reserve = 0; 2823 unsigned long free_pages = 0; 2824 int i; 2825 bool wmark_ok; 2826 2827 for (i = 0; i <= ZONE_NORMAL; i++) { 2828 zone = &pgdat->node_zones[i]; 2829 if (!managed_zone(zone) || 2830 pgdat_reclaimable_pages(pgdat) == 0) 2831 continue; 2832 2833 pfmemalloc_reserve += min_wmark_pages(zone); 2834 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2835 } 2836 2837 /* If there are no reserves (unexpected config) then do not throttle */ 2838 if (!pfmemalloc_reserve) 2839 return true; 2840 2841 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2842 2843 /* kswapd must be awake if processes are being throttled */ 2844 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2845 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2846 (enum zone_type)ZONE_NORMAL); 2847 wake_up_interruptible(&pgdat->kswapd_wait); 2848 } 2849 2850 return wmark_ok; 2851 } 2852 2853 /* 2854 * Throttle direct reclaimers if backing storage is backed by the network 2855 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2856 * depleted. kswapd will continue to make progress and wake the processes 2857 * when the low watermark is reached. 2858 * 2859 * Returns true if a fatal signal was delivered during throttling. If this 2860 * happens, the page allocator should not consider triggering the OOM killer. 2861 */ 2862 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2863 nodemask_t *nodemask) 2864 { 2865 struct zoneref *z; 2866 struct zone *zone; 2867 pg_data_t *pgdat = NULL; 2868 2869 /* 2870 * Kernel threads should not be throttled as they may be indirectly 2871 * responsible for cleaning pages necessary for reclaim to make forward 2872 * progress. kjournald for example may enter direct reclaim while 2873 * committing a transaction where throttling it could forcing other 2874 * processes to block on log_wait_commit(). 2875 */ 2876 if (current->flags & PF_KTHREAD) 2877 goto out; 2878 2879 /* 2880 * If a fatal signal is pending, this process should not throttle. 2881 * It should return quickly so it can exit and free its memory 2882 */ 2883 if (fatal_signal_pending(current)) 2884 goto out; 2885 2886 /* 2887 * Check if the pfmemalloc reserves are ok by finding the first node 2888 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2889 * GFP_KERNEL will be required for allocating network buffers when 2890 * swapping over the network so ZONE_HIGHMEM is unusable. 2891 * 2892 * Throttling is based on the first usable node and throttled processes 2893 * wait on a queue until kswapd makes progress and wakes them. There 2894 * is an affinity then between processes waking up and where reclaim 2895 * progress has been made assuming the process wakes on the same node. 2896 * More importantly, processes running on remote nodes will not compete 2897 * for remote pfmemalloc reserves and processes on different nodes 2898 * should make reasonable progress. 2899 */ 2900 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2901 gfp_zone(gfp_mask), nodemask) { 2902 if (zone_idx(zone) > ZONE_NORMAL) 2903 continue; 2904 2905 /* Throttle based on the first usable node */ 2906 pgdat = zone->zone_pgdat; 2907 if (pfmemalloc_watermark_ok(pgdat)) 2908 goto out; 2909 break; 2910 } 2911 2912 /* If no zone was usable by the allocation flags then do not throttle */ 2913 if (!pgdat) 2914 goto out; 2915 2916 /* Account for the throttling */ 2917 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2918 2919 /* 2920 * If the caller cannot enter the filesystem, it's possible that it 2921 * is due to the caller holding an FS lock or performing a journal 2922 * transaction in the case of a filesystem like ext[3|4]. In this case, 2923 * it is not safe to block on pfmemalloc_wait as kswapd could be 2924 * blocked waiting on the same lock. Instead, throttle for up to a 2925 * second before continuing. 2926 */ 2927 if (!(gfp_mask & __GFP_FS)) { 2928 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2929 pfmemalloc_watermark_ok(pgdat), HZ); 2930 2931 goto check_pending; 2932 } 2933 2934 /* Throttle until kswapd wakes the process */ 2935 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2936 pfmemalloc_watermark_ok(pgdat)); 2937 2938 check_pending: 2939 if (fatal_signal_pending(current)) 2940 return true; 2941 2942 out: 2943 return false; 2944 } 2945 2946 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2947 gfp_t gfp_mask, nodemask_t *nodemask) 2948 { 2949 unsigned long nr_reclaimed; 2950 struct scan_control sc = { 2951 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2952 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2953 .reclaim_idx = gfp_zone(gfp_mask), 2954 .order = order, 2955 .nodemask = nodemask, 2956 .priority = DEF_PRIORITY, 2957 .may_writepage = !laptop_mode, 2958 .may_unmap = 1, 2959 .may_swap = 1, 2960 }; 2961 2962 /* 2963 * Do not enter reclaim if fatal signal was delivered while throttled. 2964 * 1 is returned so that the page allocator does not OOM kill at this 2965 * point. 2966 */ 2967 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2968 return 1; 2969 2970 trace_mm_vmscan_direct_reclaim_begin(order, 2971 sc.may_writepage, 2972 gfp_mask, 2973 sc.reclaim_idx); 2974 2975 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2976 2977 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2978 2979 return nr_reclaimed; 2980 } 2981 2982 #ifdef CONFIG_MEMCG 2983 2984 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 2985 gfp_t gfp_mask, bool noswap, 2986 pg_data_t *pgdat, 2987 unsigned long *nr_scanned) 2988 { 2989 struct scan_control sc = { 2990 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2991 .target_mem_cgroup = memcg, 2992 .may_writepage = !laptop_mode, 2993 .may_unmap = 1, 2994 .reclaim_idx = MAX_NR_ZONES - 1, 2995 .may_swap = !noswap, 2996 }; 2997 unsigned long lru_pages; 2998 2999 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3000 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3001 3002 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3003 sc.may_writepage, 3004 sc.gfp_mask, 3005 sc.reclaim_idx); 3006 3007 /* 3008 * NOTE: Although we can get the priority field, using it 3009 * here is not a good idea, since it limits the pages we can scan. 3010 * if we don't reclaim here, the shrink_node from balance_pgdat 3011 * will pick up pages from other mem cgroup's as well. We hack 3012 * the priority and make it zero. 3013 */ 3014 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3015 3016 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3017 3018 *nr_scanned = sc.nr_scanned; 3019 return sc.nr_reclaimed; 3020 } 3021 3022 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3023 unsigned long nr_pages, 3024 gfp_t gfp_mask, 3025 bool may_swap) 3026 { 3027 struct zonelist *zonelist; 3028 unsigned long nr_reclaimed; 3029 int nid; 3030 struct scan_control sc = { 3031 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3032 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3033 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3034 .reclaim_idx = MAX_NR_ZONES - 1, 3035 .target_mem_cgroup = memcg, 3036 .priority = DEF_PRIORITY, 3037 .may_writepage = !laptop_mode, 3038 .may_unmap = 1, 3039 .may_swap = may_swap, 3040 }; 3041 3042 /* 3043 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3044 * take care of from where we get pages. So the node where we start the 3045 * scan does not need to be the current node. 3046 */ 3047 nid = mem_cgroup_select_victim_node(memcg); 3048 3049 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3050 3051 trace_mm_vmscan_memcg_reclaim_begin(0, 3052 sc.may_writepage, 3053 sc.gfp_mask, 3054 sc.reclaim_idx); 3055 3056 current->flags |= PF_MEMALLOC; 3057 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3058 current->flags &= ~PF_MEMALLOC; 3059 3060 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3061 3062 return nr_reclaimed; 3063 } 3064 #endif 3065 3066 static void age_active_anon(struct pglist_data *pgdat, 3067 struct scan_control *sc) 3068 { 3069 struct mem_cgroup *memcg; 3070 3071 if (!total_swap_pages) 3072 return; 3073 3074 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3075 do { 3076 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3077 3078 if (inactive_list_is_low(lruvec, false, sc, true)) 3079 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3080 sc, LRU_ACTIVE_ANON); 3081 3082 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3083 } while (memcg); 3084 } 3085 3086 static bool zone_balanced(struct zone *zone, int order, int classzone_idx) 3087 { 3088 unsigned long mark = high_wmark_pages(zone); 3089 3090 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3091 return false; 3092 3093 /* 3094 * If any eligible zone is balanced then the node is not considered 3095 * to be congested or dirty 3096 */ 3097 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); 3098 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); 3099 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags); 3100 3101 return true; 3102 } 3103 3104 /* 3105 * Prepare kswapd for sleeping. This verifies that there are no processes 3106 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3107 * 3108 * Returns true if kswapd is ready to sleep 3109 */ 3110 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3111 { 3112 int i; 3113 3114 /* 3115 * The throttled processes are normally woken up in balance_pgdat() as 3116 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3117 * race between when kswapd checks the watermarks and a process gets 3118 * throttled. There is also a potential race if processes get 3119 * throttled, kswapd wakes, a large process exits thereby balancing the 3120 * zones, which causes kswapd to exit balance_pgdat() before reaching 3121 * the wake up checks. If kswapd is going to sleep, no process should 3122 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3123 * the wake up is premature, processes will wake kswapd and get 3124 * throttled again. The difference from wake ups in balance_pgdat() is 3125 * that here we are under prepare_to_wait(). 3126 */ 3127 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3128 wake_up_all(&pgdat->pfmemalloc_wait); 3129 3130 for (i = 0; i <= classzone_idx; i++) { 3131 struct zone *zone = pgdat->node_zones + i; 3132 3133 if (!managed_zone(zone)) 3134 continue; 3135 3136 if (!zone_balanced(zone, order, classzone_idx)) 3137 return false; 3138 } 3139 3140 return true; 3141 } 3142 3143 /* 3144 * kswapd shrinks a node of pages that are at or below the highest usable 3145 * zone that is currently unbalanced. 3146 * 3147 * Returns true if kswapd scanned at least the requested number of pages to 3148 * reclaim or if the lack of progress was due to pages under writeback. 3149 * This is used to determine if the scanning priority needs to be raised. 3150 */ 3151 static bool kswapd_shrink_node(pg_data_t *pgdat, 3152 struct scan_control *sc) 3153 { 3154 struct zone *zone; 3155 int z; 3156 3157 /* Reclaim a number of pages proportional to the number of zones */ 3158 sc->nr_to_reclaim = 0; 3159 for (z = 0; z <= sc->reclaim_idx; z++) { 3160 zone = pgdat->node_zones + z; 3161 if (!managed_zone(zone)) 3162 continue; 3163 3164 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3165 } 3166 3167 /* 3168 * Historically care was taken to put equal pressure on all zones but 3169 * now pressure is applied based on node LRU order. 3170 */ 3171 shrink_node(pgdat, sc); 3172 3173 /* 3174 * Fragmentation may mean that the system cannot be rebalanced for 3175 * high-order allocations. If twice the allocation size has been 3176 * reclaimed then recheck watermarks only at order-0 to prevent 3177 * excessive reclaim. Assume that a process requested a high-order 3178 * can direct reclaim/compact. 3179 */ 3180 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3181 sc->order = 0; 3182 3183 return sc->nr_scanned >= sc->nr_to_reclaim; 3184 } 3185 3186 /* 3187 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3188 * that are eligible for use by the caller until at least one zone is 3189 * balanced. 3190 * 3191 * Returns the order kswapd finished reclaiming at. 3192 * 3193 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3194 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3195 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3196 * or lower is eligible for reclaim until at least one usable zone is 3197 * balanced. 3198 */ 3199 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3200 { 3201 int i; 3202 unsigned long nr_soft_reclaimed; 3203 unsigned long nr_soft_scanned; 3204 struct zone *zone; 3205 struct scan_control sc = { 3206 .gfp_mask = GFP_KERNEL, 3207 .order = order, 3208 .priority = DEF_PRIORITY, 3209 .may_writepage = !laptop_mode, 3210 .may_unmap = 1, 3211 .may_swap = 1, 3212 }; 3213 count_vm_event(PAGEOUTRUN); 3214 3215 do { 3216 bool raise_priority = true; 3217 3218 sc.nr_reclaimed = 0; 3219 sc.reclaim_idx = classzone_idx; 3220 3221 /* 3222 * If the number of buffer_heads exceeds the maximum allowed 3223 * then consider reclaiming from all zones. This has a dual 3224 * purpose -- on 64-bit systems it is expected that 3225 * buffer_heads are stripped during active rotation. On 32-bit 3226 * systems, highmem pages can pin lowmem memory and shrinking 3227 * buffers can relieve lowmem pressure. Reclaim may still not 3228 * go ahead if all eligible zones for the original allocation 3229 * request are balanced to avoid excessive reclaim from kswapd. 3230 */ 3231 if (buffer_heads_over_limit) { 3232 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3233 zone = pgdat->node_zones + i; 3234 if (!managed_zone(zone)) 3235 continue; 3236 3237 sc.reclaim_idx = i; 3238 break; 3239 } 3240 } 3241 3242 /* 3243 * Only reclaim if there are no eligible zones. Check from 3244 * high to low zone as allocations prefer higher zones. 3245 * Scanning from low to high zone would allow congestion to be 3246 * cleared during a very small window when a small low 3247 * zone was balanced even under extreme pressure when the 3248 * overall node may be congested. Note that sc.reclaim_idx 3249 * is not used as buffer_heads_over_limit may have adjusted 3250 * it. 3251 */ 3252 for (i = classzone_idx; i >= 0; i--) { 3253 zone = pgdat->node_zones + i; 3254 if (!managed_zone(zone)) 3255 continue; 3256 3257 if (zone_balanced(zone, sc.order, classzone_idx)) 3258 goto out; 3259 } 3260 3261 /* 3262 * Do some background aging of the anon list, to give 3263 * pages a chance to be referenced before reclaiming. All 3264 * pages are rotated regardless of classzone as this is 3265 * about consistent aging. 3266 */ 3267 age_active_anon(pgdat, &sc); 3268 3269 /* 3270 * If we're getting trouble reclaiming, start doing writepage 3271 * even in laptop mode. 3272 */ 3273 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat)) 3274 sc.may_writepage = 1; 3275 3276 /* Call soft limit reclaim before calling shrink_node. */ 3277 sc.nr_scanned = 0; 3278 nr_soft_scanned = 0; 3279 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3280 sc.gfp_mask, &nr_soft_scanned); 3281 sc.nr_reclaimed += nr_soft_reclaimed; 3282 3283 /* 3284 * There should be no need to raise the scanning priority if 3285 * enough pages are already being scanned that that high 3286 * watermark would be met at 100% efficiency. 3287 */ 3288 if (kswapd_shrink_node(pgdat, &sc)) 3289 raise_priority = false; 3290 3291 /* 3292 * If the low watermark is met there is no need for processes 3293 * to be throttled on pfmemalloc_wait as they should not be 3294 * able to safely make forward progress. Wake them 3295 */ 3296 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3297 pfmemalloc_watermark_ok(pgdat)) 3298 wake_up_all(&pgdat->pfmemalloc_wait); 3299 3300 /* Check if kswapd should be suspending */ 3301 if (try_to_freeze() || kthread_should_stop()) 3302 break; 3303 3304 /* 3305 * Raise priority if scanning rate is too low or there was no 3306 * progress in reclaiming pages 3307 */ 3308 if (raise_priority || !sc.nr_reclaimed) 3309 sc.priority--; 3310 } while (sc.priority >= 1); 3311 3312 out: 3313 /* 3314 * Return the order kswapd stopped reclaiming at as 3315 * prepare_kswapd_sleep() takes it into account. If another caller 3316 * entered the allocator slow path while kswapd was awake, order will 3317 * remain at the higher level. 3318 */ 3319 return sc.order; 3320 } 3321 3322 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3323 unsigned int classzone_idx) 3324 { 3325 long remaining = 0; 3326 DEFINE_WAIT(wait); 3327 3328 if (freezing(current) || kthread_should_stop()) 3329 return; 3330 3331 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3332 3333 /* Try to sleep for a short interval */ 3334 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3335 /* 3336 * Compaction records what page blocks it recently failed to 3337 * isolate pages from and skips them in the future scanning. 3338 * When kswapd is going to sleep, it is reasonable to assume 3339 * that pages and compaction may succeed so reset the cache. 3340 */ 3341 reset_isolation_suitable(pgdat); 3342 3343 /* 3344 * We have freed the memory, now we should compact it to make 3345 * allocation of the requested order possible. 3346 */ 3347 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3348 3349 remaining = schedule_timeout(HZ/10); 3350 3351 /* 3352 * If woken prematurely then reset kswapd_classzone_idx and 3353 * order. The values will either be from a wakeup request or 3354 * the previous request that slept prematurely. 3355 */ 3356 if (remaining) { 3357 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3358 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3359 } 3360 3361 finish_wait(&pgdat->kswapd_wait, &wait); 3362 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3363 } 3364 3365 /* 3366 * After a short sleep, check if it was a premature sleep. If not, then 3367 * go fully to sleep until explicitly woken up. 3368 */ 3369 if (!remaining && 3370 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3371 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3372 3373 /* 3374 * vmstat counters are not perfectly accurate and the estimated 3375 * value for counters such as NR_FREE_PAGES can deviate from the 3376 * true value by nr_online_cpus * threshold. To avoid the zone 3377 * watermarks being breached while under pressure, we reduce the 3378 * per-cpu vmstat threshold while kswapd is awake and restore 3379 * them before going back to sleep. 3380 */ 3381 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3382 3383 if (!kthread_should_stop()) 3384 schedule(); 3385 3386 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3387 } else { 3388 if (remaining) 3389 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3390 else 3391 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3392 } 3393 finish_wait(&pgdat->kswapd_wait, &wait); 3394 } 3395 3396 /* 3397 * The background pageout daemon, started as a kernel thread 3398 * from the init process. 3399 * 3400 * This basically trickles out pages so that we have _some_ 3401 * free memory available even if there is no other activity 3402 * that frees anything up. This is needed for things like routing 3403 * etc, where we otherwise might have all activity going on in 3404 * asynchronous contexts that cannot page things out. 3405 * 3406 * If there are applications that are active memory-allocators 3407 * (most normal use), this basically shouldn't matter. 3408 */ 3409 static int kswapd(void *p) 3410 { 3411 unsigned int alloc_order, reclaim_order, classzone_idx; 3412 pg_data_t *pgdat = (pg_data_t*)p; 3413 struct task_struct *tsk = current; 3414 3415 struct reclaim_state reclaim_state = { 3416 .reclaimed_slab = 0, 3417 }; 3418 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3419 3420 lockdep_set_current_reclaim_state(GFP_KERNEL); 3421 3422 if (!cpumask_empty(cpumask)) 3423 set_cpus_allowed_ptr(tsk, cpumask); 3424 current->reclaim_state = &reclaim_state; 3425 3426 /* 3427 * Tell the memory management that we're a "memory allocator", 3428 * and that if we need more memory we should get access to it 3429 * regardless (see "__alloc_pages()"). "kswapd" should 3430 * never get caught in the normal page freeing logic. 3431 * 3432 * (Kswapd normally doesn't need memory anyway, but sometimes 3433 * you need a small amount of memory in order to be able to 3434 * page out something else, and this flag essentially protects 3435 * us from recursively trying to free more memory as we're 3436 * trying to free the first piece of memory in the first place). 3437 */ 3438 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3439 set_freezable(); 3440 3441 pgdat->kswapd_order = alloc_order = reclaim_order = 0; 3442 pgdat->kswapd_classzone_idx = classzone_idx = 0; 3443 for ( ; ; ) { 3444 bool ret; 3445 3446 kswapd_try_sleep: 3447 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3448 classzone_idx); 3449 3450 /* Read the new order and classzone_idx */ 3451 alloc_order = reclaim_order = pgdat->kswapd_order; 3452 classzone_idx = pgdat->kswapd_classzone_idx; 3453 pgdat->kswapd_order = 0; 3454 pgdat->kswapd_classzone_idx = 0; 3455 3456 ret = try_to_freeze(); 3457 if (kthread_should_stop()) 3458 break; 3459 3460 /* 3461 * We can speed up thawing tasks if we don't call balance_pgdat 3462 * after returning from the refrigerator 3463 */ 3464 if (ret) 3465 continue; 3466 3467 /* 3468 * Reclaim begins at the requested order but if a high-order 3469 * reclaim fails then kswapd falls back to reclaiming for 3470 * order-0. If that happens, kswapd will consider sleeping 3471 * for the order it finished reclaiming at (reclaim_order) 3472 * but kcompactd is woken to compact for the original 3473 * request (alloc_order). 3474 */ 3475 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3476 alloc_order); 3477 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3478 if (reclaim_order < alloc_order) 3479 goto kswapd_try_sleep; 3480 3481 alloc_order = reclaim_order = pgdat->kswapd_order; 3482 classzone_idx = pgdat->kswapd_classzone_idx; 3483 } 3484 3485 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3486 current->reclaim_state = NULL; 3487 lockdep_clear_current_reclaim_state(); 3488 3489 return 0; 3490 } 3491 3492 /* 3493 * A zone is low on free memory, so wake its kswapd task to service it. 3494 */ 3495 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3496 { 3497 pg_data_t *pgdat; 3498 int z; 3499 3500 if (!managed_zone(zone)) 3501 return; 3502 3503 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3504 return; 3505 pgdat = zone->zone_pgdat; 3506 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3507 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3508 if (!waitqueue_active(&pgdat->kswapd_wait)) 3509 return; 3510 3511 /* Only wake kswapd if all zones are unbalanced */ 3512 for (z = 0; z <= classzone_idx; z++) { 3513 zone = pgdat->node_zones + z; 3514 if (!managed_zone(zone)) 3515 continue; 3516 3517 if (zone_balanced(zone, order, classzone_idx)) 3518 return; 3519 } 3520 3521 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3522 wake_up_interruptible(&pgdat->kswapd_wait); 3523 } 3524 3525 #ifdef CONFIG_HIBERNATION 3526 /* 3527 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3528 * freed pages. 3529 * 3530 * Rather than trying to age LRUs the aim is to preserve the overall 3531 * LRU order by reclaiming preferentially 3532 * inactive > active > active referenced > active mapped 3533 */ 3534 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3535 { 3536 struct reclaim_state reclaim_state; 3537 struct scan_control sc = { 3538 .nr_to_reclaim = nr_to_reclaim, 3539 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3540 .reclaim_idx = MAX_NR_ZONES - 1, 3541 .priority = DEF_PRIORITY, 3542 .may_writepage = 1, 3543 .may_unmap = 1, 3544 .may_swap = 1, 3545 .hibernation_mode = 1, 3546 }; 3547 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3548 struct task_struct *p = current; 3549 unsigned long nr_reclaimed; 3550 3551 p->flags |= PF_MEMALLOC; 3552 lockdep_set_current_reclaim_state(sc.gfp_mask); 3553 reclaim_state.reclaimed_slab = 0; 3554 p->reclaim_state = &reclaim_state; 3555 3556 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3557 3558 p->reclaim_state = NULL; 3559 lockdep_clear_current_reclaim_state(); 3560 p->flags &= ~PF_MEMALLOC; 3561 3562 return nr_reclaimed; 3563 } 3564 #endif /* CONFIG_HIBERNATION */ 3565 3566 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3567 not required for correctness. So if the last cpu in a node goes 3568 away, we get changed to run anywhere: as the first one comes back, 3569 restore their cpu bindings. */ 3570 static int kswapd_cpu_online(unsigned int cpu) 3571 { 3572 int nid; 3573 3574 for_each_node_state(nid, N_MEMORY) { 3575 pg_data_t *pgdat = NODE_DATA(nid); 3576 const struct cpumask *mask; 3577 3578 mask = cpumask_of_node(pgdat->node_id); 3579 3580 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3581 /* One of our CPUs online: restore mask */ 3582 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3583 } 3584 return 0; 3585 } 3586 3587 /* 3588 * This kswapd start function will be called by init and node-hot-add. 3589 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3590 */ 3591 int kswapd_run(int nid) 3592 { 3593 pg_data_t *pgdat = NODE_DATA(nid); 3594 int ret = 0; 3595 3596 if (pgdat->kswapd) 3597 return 0; 3598 3599 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3600 if (IS_ERR(pgdat->kswapd)) { 3601 /* failure at boot is fatal */ 3602 BUG_ON(system_state == SYSTEM_BOOTING); 3603 pr_err("Failed to start kswapd on node %d\n", nid); 3604 ret = PTR_ERR(pgdat->kswapd); 3605 pgdat->kswapd = NULL; 3606 } 3607 return ret; 3608 } 3609 3610 /* 3611 * Called by memory hotplug when all memory in a node is offlined. Caller must 3612 * hold mem_hotplug_begin/end(). 3613 */ 3614 void kswapd_stop(int nid) 3615 { 3616 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3617 3618 if (kswapd) { 3619 kthread_stop(kswapd); 3620 NODE_DATA(nid)->kswapd = NULL; 3621 } 3622 } 3623 3624 static int __init kswapd_init(void) 3625 { 3626 int nid, ret; 3627 3628 swap_setup(); 3629 for_each_node_state(nid, N_MEMORY) 3630 kswapd_run(nid); 3631 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3632 "mm/vmscan:online", kswapd_cpu_online, 3633 NULL); 3634 WARN_ON(ret < 0); 3635 return 0; 3636 } 3637 3638 module_init(kswapd_init) 3639 3640 #ifdef CONFIG_NUMA 3641 /* 3642 * Node reclaim mode 3643 * 3644 * If non-zero call node_reclaim when the number of free pages falls below 3645 * the watermarks. 3646 */ 3647 int node_reclaim_mode __read_mostly; 3648 3649 #define RECLAIM_OFF 0 3650 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3651 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3652 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3653 3654 /* 3655 * Priority for NODE_RECLAIM. This determines the fraction of pages 3656 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3657 * a zone. 3658 */ 3659 #define NODE_RECLAIM_PRIORITY 4 3660 3661 /* 3662 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3663 * occur. 3664 */ 3665 int sysctl_min_unmapped_ratio = 1; 3666 3667 /* 3668 * If the number of slab pages in a zone grows beyond this percentage then 3669 * slab reclaim needs to occur. 3670 */ 3671 int sysctl_min_slab_ratio = 5; 3672 3673 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3674 { 3675 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3676 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3677 node_page_state(pgdat, NR_ACTIVE_FILE); 3678 3679 /* 3680 * It's possible for there to be more file mapped pages than 3681 * accounted for by the pages on the file LRU lists because 3682 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3683 */ 3684 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3685 } 3686 3687 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3688 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3689 { 3690 unsigned long nr_pagecache_reclaimable; 3691 unsigned long delta = 0; 3692 3693 /* 3694 * If RECLAIM_UNMAP is set, then all file pages are considered 3695 * potentially reclaimable. Otherwise, we have to worry about 3696 * pages like swapcache and node_unmapped_file_pages() provides 3697 * a better estimate 3698 */ 3699 if (node_reclaim_mode & RECLAIM_UNMAP) 3700 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3701 else 3702 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3703 3704 /* If we can't clean pages, remove dirty pages from consideration */ 3705 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3706 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3707 3708 /* Watch for any possible underflows due to delta */ 3709 if (unlikely(delta > nr_pagecache_reclaimable)) 3710 delta = nr_pagecache_reclaimable; 3711 3712 return nr_pagecache_reclaimable - delta; 3713 } 3714 3715 /* 3716 * Try to free up some pages from this node through reclaim. 3717 */ 3718 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3719 { 3720 /* Minimum pages needed in order to stay on node */ 3721 const unsigned long nr_pages = 1 << order; 3722 struct task_struct *p = current; 3723 struct reclaim_state reclaim_state; 3724 int classzone_idx = gfp_zone(gfp_mask); 3725 struct scan_control sc = { 3726 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3727 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3728 .order = order, 3729 .priority = NODE_RECLAIM_PRIORITY, 3730 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3731 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3732 .may_swap = 1, 3733 .reclaim_idx = classzone_idx, 3734 }; 3735 3736 cond_resched(); 3737 /* 3738 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3739 * and we also need to be able to write out pages for RECLAIM_WRITE 3740 * and RECLAIM_UNMAP. 3741 */ 3742 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3743 lockdep_set_current_reclaim_state(gfp_mask); 3744 reclaim_state.reclaimed_slab = 0; 3745 p->reclaim_state = &reclaim_state; 3746 3747 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3748 /* 3749 * Free memory by calling shrink zone with increasing 3750 * priorities until we have enough memory freed. 3751 */ 3752 do { 3753 shrink_node(pgdat, &sc); 3754 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3755 } 3756 3757 p->reclaim_state = NULL; 3758 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3759 lockdep_clear_current_reclaim_state(); 3760 return sc.nr_reclaimed >= nr_pages; 3761 } 3762 3763 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3764 { 3765 int ret; 3766 3767 /* 3768 * Node reclaim reclaims unmapped file backed pages and 3769 * slab pages if we are over the defined limits. 3770 * 3771 * A small portion of unmapped file backed pages is needed for 3772 * file I/O otherwise pages read by file I/O will be immediately 3773 * thrown out if the node is overallocated. So we do not reclaim 3774 * if less than a specified percentage of the node is used by 3775 * unmapped file backed pages. 3776 */ 3777 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3778 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3779 return NODE_RECLAIM_FULL; 3780 3781 if (!pgdat_reclaimable(pgdat)) 3782 return NODE_RECLAIM_FULL; 3783 3784 /* 3785 * Do not scan if the allocation should not be delayed. 3786 */ 3787 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3788 return NODE_RECLAIM_NOSCAN; 3789 3790 /* 3791 * Only run node reclaim on the local node or on nodes that do not 3792 * have associated processors. This will favor the local processor 3793 * over remote processors and spread off node memory allocations 3794 * as wide as possible. 3795 */ 3796 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3797 return NODE_RECLAIM_NOSCAN; 3798 3799 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3800 return NODE_RECLAIM_NOSCAN; 3801 3802 ret = __node_reclaim(pgdat, gfp_mask, order); 3803 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3804 3805 if (!ret) 3806 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3807 3808 return ret; 3809 } 3810 #endif 3811 3812 /* 3813 * page_evictable - test whether a page is evictable 3814 * @page: the page to test 3815 * 3816 * Test whether page is evictable--i.e., should be placed on active/inactive 3817 * lists vs unevictable list. 3818 * 3819 * Reasons page might not be evictable: 3820 * (1) page's mapping marked unevictable 3821 * (2) page is part of an mlocked VMA 3822 * 3823 */ 3824 int page_evictable(struct page *page) 3825 { 3826 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3827 } 3828 3829 #ifdef CONFIG_SHMEM 3830 /** 3831 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3832 * @pages: array of pages to check 3833 * @nr_pages: number of pages to check 3834 * 3835 * Checks pages for evictability and moves them to the appropriate lru list. 3836 * 3837 * This function is only used for SysV IPC SHM_UNLOCK. 3838 */ 3839 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3840 { 3841 struct lruvec *lruvec; 3842 struct pglist_data *pgdat = NULL; 3843 int pgscanned = 0; 3844 int pgrescued = 0; 3845 int i; 3846 3847 for (i = 0; i < nr_pages; i++) { 3848 struct page *page = pages[i]; 3849 struct pglist_data *pagepgdat = page_pgdat(page); 3850 3851 pgscanned++; 3852 if (pagepgdat != pgdat) { 3853 if (pgdat) 3854 spin_unlock_irq(&pgdat->lru_lock); 3855 pgdat = pagepgdat; 3856 spin_lock_irq(&pgdat->lru_lock); 3857 } 3858 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3859 3860 if (!PageLRU(page) || !PageUnevictable(page)) 3861 continue; 3862 3863 if (page_evictable(page)) { 3864 enum lru_list lru = page_lru_base_type(page); 3865 3866 VM_BUG_ON_PAGE(PageActive(page), page); 3867 ClearPageUnevictable(page); 3868 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3869 add_page_to_lru_list(page, lruvec, lru); 3870 pgrescued++; 3871 } 3872 } 3873 3874 if (pgdat) { 3875 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3876 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3877 spin_unlock_irq(&pgdat->lru_lock); 3878 } 3879 } 3880 #endif /* CONFIG_SHMEM */ 3881