xref: /openbmc/linux/mm/vmscan.c (revision 4e1a33b1)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	/* The highest zone to isolate pages for reclaim from */
88 	enum zone_type reclaim_idx;
89 
90 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
91 	unsigned int may_writepage:1;
92 
93 	/* Can mapped pages be reclaimed? */
94 	unsigned int may_unmap:1;
95 
96 	/* Can pages be swapped as part of reclaim? */
97 	unsigned int may_swap:1;
98 
99 	/* Can cgroups be reclaimed below their normal consumption range? */
100 	unsigned int may_thrash:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Incremented by the number of inactive pages that were scanned */
108 	unsigned long nr_scanned;
109 
110 	/* Number of pages freed so far during a call to shrink_zones() */
111 	unsigned long nr_reclaimed;
112 };
113 
114 #ifdef ARCH_HAS_PREFETCH
115 #define prefetch_prev_lru_page(_page, _base, _field)			\
116 	do {								\
117 		if ((_page)->lru.prev != _base) {			\
118 			struct page *prev;				\
119 									\
120 			prev = lru_to_page(&(_page->lru));		\
121 			prefetch(&prev->_field);			\
122 		}							\
123 	} while (0)
124 #else
125 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127 
128 #ifdef ARCH_HAS_PREFETCHW
129 #define prefetchw_prev_lru_page(_page, _base, _field)			\
130 	do {								\
131 		if ((_page)->lru.prev != _base) {			\
132 			struct page *prev;				\
133 									\
134 			prev = lru_to_page(&(_page->lru));		\
135 			prefetchw(&prev->_field);			\
136 		}							\
137 	} while (0)
138 #else
139 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
140 #endif
141 
142 /*
143  * From 0 .. 100.  Higher means more swappy.
144  */
145 int vm_swappiness = 60;
146 /*
147  * The total number of pages which are beyond the high watermark within all
148  * zones.
149  */
150 unsigned long vm_total_pages;
151 
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154 
155 #ifdef CONFIG_MEMCG
156 static bool global_reclaim(struct scan_control *sc)
157 {
158 	return !sc->target_mem_cgroup;
159 }
160 
161 /**
162  * sane_reclaim - is the usual dirty throttling mechanism operational?
163  * @sc: scan_control in question
164  *
165  * The normal page dirty throttling mechanism in balance_dirty_pages() is
166  * completely broken with the legacy memcg and direct stalling in
167  * shrink_page_list() is used for throttling instead, which lacks all the
168  * niceties such as fairness, adaptive pausing, bandwidth proportional
169  * allocation and configurability.
170  *
171  * This function tests whether the vmscan currently in progress can assume
172  * that the normal dirty throttling mechanism is operational.
173  */
174 static bool sane_reclaim(struct scan_control *sc)
175 {
176 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
177 
178 	if (!memcg)
179 		return true;
180 #ifdef CONFIG_CGROUP_WRITEBACK
181 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
182 		return true;
183 #endif
184 	return false;
185 }
186 #else
187 static bool global_reclaim(struct scan_control *sc)
188 {
189 	return true;
190 }
191 
192 static bool sane_reclaim(struct scan_control *sc)
193 {
194 	return true;
195 }
196 #endif
197 
198 /*
199  * This misses isolated pages which are not accounted for to save counters.
200  * As the data only determines if reclaim or compaction continues, it is
201  * not expected that isolated pages will be a dominating factor.
202  */
203 unsigned long zone_reclaimable_pages(struct zone *zone)
204 {
205 	unsigned long nr;
206 
207 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
208 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
209 	if (get_nr_swap_pages() > 0)
210 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
211 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
212 
213 	return nr;
214 }
215 
216 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
217 {
218 	unsigned long nr;
219 
220 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
221 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
222 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
223 
224 	if (get_nr_swap_pages() > 0)
225 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
226 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
227 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
228 
229 	return nr;
230 }
231 
232 bool pgdat_reclaimable(struct pglist_data *pgdat)
233 {
234 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
235 		pgdat_reclaimable_pages(pgdat) * 6;
236 }
237 
238 /**
239  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
240  * @lruvec: lru vector
241  * @lru: lru to use
242  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243  */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 	unsigned long lru_size;
247 	int zid;
248 
249 	if (!mem_cgroup_disabled())
250 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 	else
252 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253 
254 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 		unsigned long size;
257 
258 		if (!managed_zone(zone))
259 			continue;
260 
261 		if (!mem_cgroup_disabled())
262 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 		else
264 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 				       NR_ZONE_LRU_BASE + lru);
266 		lru_size -= min(size, lru_size);
267 	}
268 
269 	return lru_size;
270 
271 }
272 
273 /*
274  * Add a shrinker callback to be called from the vm.
275  */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 	size_t size = sizeof(*shrinker->nr_deferred);
279 
280 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 		size *= nr_node_ids;
282 
283 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 	if (!shrinker->nr_deferred)
285 		return -ENOMEM;
286 
287 	down_write(&shrinker_rwsem);
288 	list_add_tail(&shrinker->list, &shrinker_list);
289 	up_write(&shrinker_rwsem);
290 	return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293 
294 /*
295  * Remove one
296  */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 	down_write(&shrinker_rwsem);
300 	list_del(&shrinker->list);
301 	up_write(&shrinker_rwsem);
302 	kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305 
306 #define SHRINK_BATCH 128
307 
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 				    struct shrinker *shrinker,
310 				    unsigned long nr_scanned,
311 				    unsigned long nr_eligible)
312 {
313 	unsigned long freed = 0;
314 	unsigned long long delta;
315 	long total_scan;
316 	long freeable;
317 	long nr;
318 	long new_nr;
319 	int nid = shrinkctl->nid;
320 	long batch_size = shrinker->batch ? shrinker->batch
321 					  : SHRINK_BATCH;
322 	long scanned = 0, next_deferred;
323 
324 	freeable = shrinker->count_objects(shrinker, shrinkctl);
325 	if (freeable == 0)
326 		return 0;
327 
328 	/*
329 	 * copy the current shrinker scan count into a local variable
330 	 * and zero it so that other concurrent shrinker invocations
331 	 * don't also do this scanning work.
332 	 */
333 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334 
335 	total_scan = nr;
336 	delta = (4 * nr_scanned) / shrinker->seeks;
337 	delta *= freeable;
338 	do_div(delta, nr_eligible + 1);
339 	total_scan += delta;
340 	if (total_scan < 0) {
341 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 		       shrinker->scan_objects, total_scan);
343 		total_scan = freeable;
344 		next_deferred = nr;
345 	} else
346 		next_deferred = total_scan;
347 
348 	/*
349 	 * We need to avoid excessive windup on filesystem shrinkers
350 	 * due to large numbers of GFP_NOFS allocations causing the
351 	 * shrinkers to return -1 all the time. This results in a large
352 	 * nr being built up so when a shrink that can do some work
353 	 * comes along it empties the entire cache due to nr >>>
354 	 * freeable. This is bad for sustaining a working set in
355 	 * memory.
356 	 *
357 	 * Hence only allow the shrinker to scan the entire cache when
358 	 * a large delta change is calculated directly.
359 	 */
360 	if (delta < freeable / 4)
361 		total_scan = min(total_scan, freeable / 2);
362 
363 	/*
364 	 * Avoid risking looping forever due to too large nr value:
365 	 * never try to free more than twice the estimate number of
366 	 * freeable entries.
367 	 */
368 	if (total_scan > freeable * 2)
369 		total_scan = freeable * 2;
370 
371 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 				   nr_scanned, nr_eligible,
373 				   freeable, delta, total_scan);
374 
375 	/*
376 	 * Normally, we should not scan less than batch_size objects in one
377 	 * pass to avoid too frequent shrinker calls, but if the slab has less
378 	 * than batch_size objects in total and we are really tight on memory,
379 	 * we will try to reclaim all available objects, otherwise we can end
380 	 * up failing allocations although there are plenty of reclaimable
381 	 * objects spread over several slabs with usage less than the
382 	 * batch_size.
383 	 *
384 	 * We detect the "tight on memory" situations by looking at the total
385 	 * number of objects we want to scan (total_scan). If it is greater
386 	 * than the total number of objects on slab (freeable), we must be
387 	 * scanning at high prio and therefore should try to reclaim as much as
388 	 * possible.
389 	 */
390 	while (total_scan >= batch_size ||
391 	       total_scan >= freeable) {
392 		unsigned long ret;
393 		unsigned long nr_to_scan = min(batch_size, total_scan);
394 
395 		shrinkctl->nr_to_scan = nr_to_scan;
396 		ret = shrinker->scan_objects(shrinker, shrinkctl);
397 		if (ret == SHRINK_STOP)
398 			break;
399 		freed += ret;
400 
401 		count_vm_events(SLABS_SCANNED, nr_to_scan);
402 		total_scan -= nr_to_scan;
403 		scanned += nr_to_scan;
404 
405 		cond_resched();
406 	}
407 
408 	if (next_deferred >= scanned)
409 		next_deferred -= scanned;
410 	else
411 		next_deferred = 0;
412 	/*
413 	 * move the unused scan count back into the shrinker in a
414 	 * manner that handles concurrent updates. If we exhausted the
415 	 * scan, there is no need to do an update.
416 	 */
417 	if (next_deferred > 0)
418 		new_nr = atomic_long_add_return(next_deferred,
419 						&shrinker->nr_deferred[nid]);
420 	else
421 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422 
423 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 	return freed;
425 }
426 
427 /**
428  * shrink_slab - shrink slab caches
429  * @gfp_mask: allocation context
430  * @nid: node whose slab caches to target
431  * @memcg: memory cgroup whose slab caches to target
432  * @nr_scanned: pressure numerator
433  * @nr_eligible: pressure denominator
434  *
435  * Call the shrink functions to age shrinkable caches.
436  *
437  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438  * unaware shrinkers will receive a node id of 0 instead.
439  *
440  * @memcg specifies the memory cgroup to target. If it is not NULL,
441  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442  * objects from the memory cgroup specified. Otherwise, only unaware
443  * shrinkers are called.
444  *
445  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446  * the available objects should be scanned.  Page reclaim for example
447  * passes the number of pages scanned and the number of pages on the
448  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449  * when it encountered mapped pages.  The ratio is further biased by
450  * the ->seeks setting of the shrink function, which indicates the
451  * cost to recreate an object relative to that of an LRU page.
452  *
453  * Returns the number of reclaimed slab objects.
454  */
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 				 struct mem_cgroup *memcg,
457 				 unsigned long nr_scanned,
458 				 unsigned long nr_eligible)
459 {
460 	struct shrinker *shrinker;
461 	unsigned long freed = 0;
462 
463 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 		return 0;
465 
466 	if (nr_scanned == 0)
467 		nr_scanned = SWAP_CLUSTER_MAX;
468 
469 	if (!down_read_trylock(&shrinker_rwsem)) {
470 		/*
471 		 * If we would return 0, our callers would understand that we
472 		 * have nothing else to shrink and give up trying. By returning
473 		 * 1 we keep it going and assume we'll be able to shrink next
474 		 * time.
475 		 */
476 		freed = 1;
477 		goto out;
478 	}
479 
480 	list_for_each_entry(shrinker, &shrinker_list, list) {
481 		struct shrink_control sc = {
482 			.gfp_mask = gfp_mask,
483 			.nid = nid,
484 			.memcg = memcg,
485 		};
486 
487 		/*
488 		 * If kernel memory accounting is disabled, we ignore
489 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 		 * passing NULL for memcg.
491 		 */
492 		if (memcg_kmem_enabled() &&
493 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 			continue;
495 
496 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 			sc.nid = 0;
498 
499 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
500 	}
501 
502 	up_read(&shrinker_rwsem);
503 out:
504 	cond_resched();
505 	return freed;
506 }
507 
508 void drop_slab_node(int nid)
509 {
510 	unsigned long freed;
511 
512 	do {
513 		struct mem_cgroup *memcg = NULL;
514 
515 		freed = 0;
516 		do {
517 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 					     1000, 1000);
519 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 	} while (freed > 10);
521 }
522 
523 void drop_slab(void)
524 {
525 	int nid;
526 
527 	for_each_online_node(nid)
528 		drop_slab_node(nid);
529 }
530 
531 static inline int is_page_cache_freeable(struct page *page)
532 {
533 	/*
534 	 * A freeable page cache page is referenced only by the caller
535 	 * that isolated the page, the page cache radix tree and
536 	 * optional buffer heads at page->private.
537 	 */
538 	return page_count(page) - page_has_private(page) == 2;
539 }
540 
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
542 {
543 	if (current->flags & PF_SWAPWRITE)
544 		return 1;
545 	if (!inode_write_congested(inode))
546 		return 1;
547 	if (inode_to_bdi(inode) == current->backing_dev_info)
548 		return 1;
549 	return 0;
550 }
551 
552 /*
553  * We detected a synchronous write error writing a page out.  Probably
554  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
555  * fsync(), msync() or close().
556  *
557  * The tricky part is that after writepage we cannot touch the mapping: nothing
558  * prevents it from being freed up.  But we have a ref on the page and once
559  * that page is locked, the mapping is pinned.
560  *
561  * We're allowed to run sleeping lock_page() here because we know the caller has
562  * __GFP_FS.
563  */
564 static void handle_write_error(struct address_space *mapping,
565 				struct page *page, int error)
566 {
567 	lock_page(page);
568 	if (page_mapping(page) == mapping)
569 		mapping_set_error(mapping, error);
570 	unlock_page(page);
571 }
572 
573 /* possible outcome of pageout() */
574 typedef enum {
575 	/* failed to write page out, page is locked */
576 	PAGE_KEEP,
577 	/* move page to the active list, page is locked */
578 	PAGE_ACTIVATE,
579 	/* page has been sent to the disk successfully, page is unlocked */
580 	PAGE_SUCCESS,
581 	/* page is clean and locked */
582 	PAGE_CLEAN,
583 } pageout_t;
584 
585 /*
586  * pageout is called by shrink_page_list() for each dirty page.
587  * Calls ->writepage().
588  */
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 			 struct scan_control *sc)
591 {
592 	/*
593 	 * If the page is dirty, only perform writeback if that write
594 	 * will be non-blocking.  To prevent this allocation from being
595 	 * stalled by pagecache activity.  But note that there may be
596 	 * stalls if we need to run get_block().  We could test
597 	 * PagePrivate for that.
598 	 *
599 	 * If this process is currently in __generic_file_write_iter() against
600 	 * this page's queue, we can perform writeback even if that
601 	 * will block.
602 	 *
603 	 * If the page is swapcache, write it back even if that would
604 	 * block, for some throttling. This happens by accident, because
605 	 * swap_backing_dev_info is bust: it doesn't reflect the
606 	 * congestion state of the swapdevs.  Easy to fix, if needed.
607 	 */
608 	if (!is_page_cache_freeable(page))
609 		return PAGE_KEEP;
610 	if (!mapping) {
611 		/*
612 		 * Some data journaling orphaned pages can have
613 		 * page->mapping == NULL while being dirty with clean buffers.
614 		 */
615 		if (page_has_private(page)) {
616 			if (try_to_free_buffers(page)) {
617 				ClearPageDirty(page);
618 				pr_info("%s: orphaned page\n", __func__);
619 				return PAGE_CLEAN;
620 			}
621 		}
622 		return PAGE_KEEP;
623 	}
624 	if (mapping->a_ops->writepage == NULL)
625 		return PAGE_ACTIVATE;
626 	if (!may_write_to_inode(mapping->host, sc))
627 		return PAGE_KEEP;
628 
629 	if (clear_page_dirty_for_io(page)) {
630 		int res;
631 		struct writeback_control wbc = {
632 			.sync_mode = WB_SYNC_NONE,
633 			.nr_to_write = SWAP_CLUSTER_MAX,
634 			.range_start = 0,
635 			.range_end = LLONG_MAX,
636 			.for_reclaim = 1,
637 		};
638 
639 		SetPageReclaim(page);
640 		res = mapping->a_ops->writepage(page, &wbc);
641 		if (res < 0)
642 			handle_write_error(mapping, page, res);
643 		if (res == AOP_WRITEPAGE_ACTIVATE) {
644 			ClearPageReclaim(page);
645 			return PAGE_ACTIVATE;
646 		}
647 
648 		if (!PageWriteback(page)) {
649 			/* synchronous write or broken a_ops? */
650 			ClearPageReclaim(page);
651 		}
652 		trace_mm_vmscan_writepage(page);
653 		inc_node_page_state(page, NR_VMSCAN_WRITE);
654 		return PAGE_SUCCESS;
655 	}
656 
657 	return PAGE_CLEAN;
658 }
659 
660 /*
661  * Same as remove_mapping, but if the page is removed from the mapping, it
662  * gets returned with a refcount of 0.
663  */
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 			    bool reclaimed)
666 {
667 	unsigned long flags;
668 
669 	BUG_ON(!PageLocked(page));
670 	BUG_ON(mapping != page_mapping(page));
671 
672 	spin_lock_irqsave(&mapping->tree_lock, flags);
673 	/*
674 	 * The non racy check for a busy page.
675 	 *
676 	 * Must be careful with the order of the tests. When someone has
677 	 * a ref to the page, it may be possible that they dirty it then
678 	 * drop the reference. So if PageDirty is tested before page_count
679 	 * here, then the following race may occur:
680 	 *
681 	 * get_user_pages(&page);
682 	 * [user mapping goes away]
683 	 * write_to(page);
684 	 *				!PageDirty(page)    [good]
685 	 * SetPageDirty(page);
686 	 * put_page(page);
687 	 *				!page_count(page)   [good, discard it]
688 	 *
689 	 * [oops, our write_to data is lost]
690 	 *
691 	 * Reversing the order of the tests ensures such a situation cannot
692 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 	 * load is not satisfied before that of page->_refcount.
694 	 *
695 	 * Note that if SetPageDirty is always performed via set_page_dirty,
696 	 * and thus under tree_lock, then this ordering is not required.
697 	 */
698 	if (!page_ref_freeze(page, 2))
699 		goto cannot_free;
700 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 	if (unlikely(PageDirty(page))) {
702 		page_ref_unfreeze(page, 2);
703 		goto cannot_free;
704 	}
705 
706 	if (PageSwapCache(page)) {
707 		swp_entry_t swap = { .val = page_private(page) };
708 		mem_cgroup_swapout(page, swap);
709 		__delete_from_swap_cache(page);
710 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 		swapcache_free(swap);
712 	} else {
713 		void (*freepage)(struct page *);
714 		void *shadow = NULL;
715 
716 		freepage = mapping->a_ops->freepage;
717 		/*
718 		 * Remember a shadow entry for reclaimed file cache in
719 		 * order to detect refaults, thus thrashing, later on.
720 		 *
721 		 * But don't store shadows in an address space that is
722 		 * already exiting.  This is not just an optizimation,
723 		 * inode reclaim needs to empty out the radix tree or
724 		 * the nodes are lost.  Don't plant shadows behind its
725 		 * back.
726 		 *
727 		 * We also don't store shadows for DAX mappings because the
728 		 * only page cache pages found in these are zero pages
729 		 * covering holes, and because we don't want to mix DAX
730 		 * exceptional entries and shadow exceptional entries in the
731 		 * same page_tree.
732 		 */
733 		if (reclaimed && page_is_file_cache(page) &&
734 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735 			shadow = workingset_eviction(mapping, page);
736 		__delete_from_page_cache(page, shadow);
737 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 
739 		if (freepage != NULL)
740 			freepage(page);
741 	}
742 
743 	return 1;
744 
745 cannot_free:
746 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 	return 0;
748 }
749 
750 /*
751  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
752  * someone else has a ref on the page, abort and return 0.  If it was
753  * successfully detached, return 1.  Assumes the caller has a single ref on
754  * this page.
755  */
756 int remove_mapping(struct address_space *mapping, struct page *page)
757 {
758 	if (__remove_mapping(mapping, page, false)) {
759 		/*
760 		 * Unfreezing the refcount with 1 rather than 2 effectively
761 		 * drops the pagecache ref for us without requiring another
762 		 * atomic operation.
763 		 */
764 		page_ref_unfreeze(page, 1);
765 		return 1;
766 	}
767 	return 0;
768 }
769 
770 /**
771  * putback_lru_page - put previously isolated page onto appropriate LRU list
772  * @page: page to be put back to appropriate lru list
773  *
774  * Add previously isolated @page to appropriate LRU list.
775  * Page may still be unevictable for other reasons.
776  *
777  * lru_lock must not be held, interrupts must be enabled.
778  */
779 void putback_lru_page(struct page *page)
780 {
781 	bool is_unevictable;
782 	int was_unevictable = PageUnevictable(page);
783 
784 	VM_BUG_ON_PAGE(PageLRU(page), page);
785 
786 redo:
787 	ClearPageUnevictable(page);
788 
789 	if (page_evictable(page)) {
790 		/*
791 		 * For evictable pages, we can use the cache.
792 		 * In event of a race, worst case is we end up with an
793 		 * unevictable page on [in]active list.
794 		 * We know how to handle that.
795 		 */
796 		is_unevictable = false;
797 		lru_cache_add(page);
798 	} else {
799 		/*
800 		 * Put unevictable pages directly on zone's unevictable
801 		 * list.
802 		 */
803 		is_unevictable = true;
804 		add_page_to_unevictable_list(page);
805 		/*
806 		 * When racing with an mlock or AS_UNEVICTABLE clearing
807 		 * (page is unlocked) make sure that if the other thread
808 		 * does not observe our setting of PG_lru and fails
809 		 * isolation/check_move_unevictable_pages,
810 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 		 * the page back to the evictable list.
812 		 *
813 		 * The other side is TestClearPageMlocked() or shmem_lock().
814 		 */
815 		smp_mb();
816 	}
817 
818 	/*
819 	 * page's status can change while we move it among lru. If an evictable
820 	 * page is on unevictable list, it never be freed. To avoid that,
821 	 * check after we added it to the list, again.
822 	 */
823 	if (is_unevictable && page_evictable(page)) {
824 		if (!isolate_lru_page(page)) {
825 			put_page(page);
826 			goto redo;
827 		}
828 		/* This means someone else dropped this page from LRU
829 		 * So, it will be freed or putback to LRU again. There is
830 		 * nothing to do here.
831 		 */
832 	}
833 
834 	if (was_unevictable && !is_unevictable)
835 		count_vm_event(UNEVICTABLE_PGRESCUED);
836 	else if (!was_unevictable && is_unevictable)
837 		count_vm_event(UNEVICTABLE_PGCULLED);
838 
839 	put_page(page);		/* drop ref from isolate */
840 }
841 
842 enum page_references {
843 	PAGEREF_RECLAIM,
844 	PAGEREF_RECLAIM_CLEAN,
845 	PAGEREF_KEEP,
846 	PAGEREF_ACTIVATE,
847 };
848 
849 static enum page_references page_check_references(struct page *page,
850 						  struct scan_control *sc)
851 {
852 	int referenced_ptes, referenced_page;
853 	unsigned long vm_flags;
854 
855 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 					  &vm_flags);
857 	referenced_page = TestClearPageReferenced(page);
858 
859 	/*
860 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
861 	 * move the page to the unevictable list.
862 	 */
863 	if (vm_flags & VM_LOCKED)
864 		return PAGEREF_RECLAIM;
865 
866 	if (referenced_ptes) {
867 		if (PageSwapBacked(page))
868 			return PAGEREF_ACTIVATE;
869 		/*
870 		 * All mapped pages start out with page table
871 		 * references from the instantiating fault, so we need
872 		 * to look twice if a mapped file page is used more
873 		 * than once.
874 		 *
875 		 * Mark it and spare it for another trip around the
876 		 * inactive list.  Another page table reference will
877 		 * lead to its activation.
878 		 *
879 		 * Note: the mark is set for activated pages as well
880 		 * so that recently deactivated but used pages are
881 		 * quickly recovered.
882 		 */
883 		SetPageReferenced(page);
884 
885 		if (referenced_page || referenced_ptes > 1)
886 			return PAGEREF_ACTIVATE;
887 
888 		/*
889 		 * Activate file-backed executable pages after first usage.
890 		 */
891 		if (vm_flags & VM_EXEC)
892 			return PAGEREF_ACTIVATE;
893 
894 		return PAGEREF_KEEP;
895 	}
896 
897 	/* Reclaim if clean, defer dirty pages to writeback */
898 	if (referenced_page && !PageSwapBacked(page))
899 		return PAGEREF_RECLAIM_CLEAN;
900 
901 	return PAGEREF_RECLAIM;
902 }
903 
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 				       bool *dirty, bool *writeback)
907 {
908 	struct address_space *mapping;
909 
910 	/*
911 	 * Anonymous pages are not handled by flushers and must be written
912 	 * from reclaim context. Do not stall reclaim based on them
913 	 */
914 	if (!page_is_file_cache(page)) {
915 		*dirty = false;
916 		*writeback = false;
917 		return;
918 	}
919 
920 	/* By default assume that the page flags are accurate */
921 	*dirty = PageDirty(page);
922 	*writeback = PageWriteback(page);
923 
924 	/* Verify dirty/writeback state if the filesystem supports it */
925 	if (!page_has_private(page))
926 		return;
927 
928 	mapping = page_mapping(page);
929 	if (mapping && mapping->a_ops->is_dirty_writeback)
930 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
931 }
932 
933 struct reclaim_stat {
934 	unsigned nr_dirty;
935 	unsigned nr_unqueued_dirty;
936 	unsigned nr_congested;
937 	unsigned nr_writeback;
938 	unsigned nr_immediate;
939 	unsigned nr_activate;
940 	unsigned nr_ref_keep;
941 	unsigned nr_unmap_fail;
942 };
943 
944 /*
945  * shrink_page_list() returns the number of reclaimed pages
946  */
947 static unsigned long shrink_page_list(struct list_head *page_list,
948 				      struct pglist_data *pgdat,
949 				      struct scan_control *sc,
950 				      enum ttu_flags ttu_flags,
951 				      struct reclaim_stat *stat,
952 				      bool force_reclaim)
953 {
954 	LIST_HEAD(ret_pages);
955 	LIST_HEAD(free_pages);
956 	int pgactivate = 0;
957 	unsigned nr_unqueued_dirty = 0;
958 	unsigned nr_dirty = 0;
959 	unsigned nr_congested = 0;
960 	unsigned nr_reclaimed = 0;
961 	unsigned nr_writeback = 0;
962 	unsigned nr_immediate = 0;
963 	unsigned nr_ref_keep = 0;
964 	unsigned nr_unmap_fail = 0;
965 
966 	cond_resched();
967 
968 	while (!list_empty(page_list)) {
969 		struct address_space *mapping;
970 		struct page *page;
971 		int may_enter_fs;
972 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
973 		bool dirty, writeback;
974 		bool lazyfree = false;
975 		int ret = SWAP_SUCCESS;
976 
977 		cond_resched();
978 
979 		page = lru_to_page(page_list);
980 		list_del(&page->lru);
981 
982 		if (!trylock_page(page))
983 			goto keep;
984 
985 		VM_BUG_ON_PAGE(PageActive(page), page);
986 
987 		sc->nr_scanned++;
988 
989 		if (unlikely(!page_evictable(page)))
990 			goto cull_mlocked;
991 
992 		if (!sc->may_unmap && page_mapped(page))
993 			goto keep_locked;
994 
995 		/* Double the slab pressure for mapped and swapcache pages */
996 		if (page_mapped(page) || PageSwapCache(page))
997 			sc->nr_scanned++;
998 
999 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1001 
1002 		/*
1003 		 * The number of dirty pages determines if a zone is marked
1004 		 * reclaim_congested which affects wait_iff_congested. kswapd
1005 		 * will stall and start writing pages if the tail of the LRU
1006 		 * is all dirty unqueued pages.
1007 		 */
1008 		page_check_dirty_writeback(page, &dirty, &writeback);
1009 		if (dirty || writeback)
1010 			nr_dirty++;
1011 
1012 		if (dirty && !writeback)
1013 			nr_unqueued_dirty++;
1014 
1015 		/*
1016 		 * Treat this page as congested if the underlying BDI is or if
1017 		 * pages are cycling through the LRU so quickly that the
1018 		 * pages marked for immediate reclaim are making it to the
1019 		 * end of the LRU a second time.
1020 		 */
1021 		mapping = page_mapping(page);
1022 		if (((dirty || writeback) && mapping &&
1023 		     inode_write_congested(mapping->host)) ||
1024 		    (writeback && PageReclaim(page)))
1025 			nr_congested++;
1026 
1027 		/*
1028 		 * If a page at the tail of the LRU is under writeback, there
1029 		 * are three cases to consider.
1030 		 *
1031 		 * 1) If reclaim is encountering an excessive number of pages
1032 		 *    under writeback and this page is both under writeback and
1033 		 *    PageReclaim then it indicates that pages are being queued
1034 		 *    for IO but are being recycled through the LRU before the
1035 		 *    IO can complete. Waiting on the page itself risks an
1036 		 *    indefinite stall if it is impossible to writeback the
1037 		 *    page due to IO error or disconnected storage so instead
1038 		 *    note that the LRU is being scanned too quickly and the
1039 		 *    caller can stall after page list has been processed.
1040 		 *
1041 		 * 2) Global or new memcg reclaim encounters a page that is
1042 		 *    not marked for immediate reclaim, or the caller does not
1043 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 		 *    not to fs). In this case mark the page for immediate
1045 		 *    reclaim and continue scanning.
1046 		 *
1047 		 *    Require may_enter_fs because we would wait on fs, which
1048 		 *    may not have submitted IO yet. And the loop driver might
1049 		 *    enter reclaim, and deadlock if it waits on a page for
1050 		 *    which it is needed to do the write (loop masks off
1051 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1052 		 *    would probably show more reasons.
1053 		 *
1054 		 * 3) Legacy memcg encounters a page that is already marked
1055 		 *    PageReclaim. memcg does not have any dirty pages
1056 		 *    throttling so we could easily OOM just because too many
1057 		 *    pages are in writeback and there is nothing else to
1058 		 *    reclaim. Wait for the writeback to complete.
1059 		 *
1060 		 * In cases 1) and 2) we activate the pages to get them out of
1061 		 * the way while we continue scanning for clean pages on the
1062 		 * inactive list and refilling from the active list. The
1063 		 * observation here is that waiting for disk writes is more
1064 		 * expensive than potentially causing reloads down the line.
1065 		 * Since they're marked for immediate reclaim, they won't put
1066 		 * memory pressure on the cache working set any longer than it
1067 		 * takes to write them to disk.
1068 		 */
1069 		if (PageWriteback(page)) {
1070 			/* Case 1 above */
1071 			if (current_is_kswapd() &&
1072 			    PageReclaim(page) &&
1073 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074 				nr_immediate++;
1075 				goto activate_locked;
1076 
1077 			/* Case 2 above */
1078 			} else if (sane_reclaim(sc) ||
1079 			    !PageReclaim(page) || !may_enter_fs) {
1080 				/*
1081 				 * This is slightly racy - end_page_writeback()
1082 				 * might have just cleared PageReclaim, then
1083 				 * setting PageReclaim here end up interpreted
1084 				 * as PageReadahead - but that does not matter
1085 				 * enough to care.  What we do want is for this
1086 				 * page to have PageReclaim set next time memcg
1087 				 * reclaim reaches the tests above, so it will
1088 				 * then wait_on_page_writeback() to avoid OOM;
1089 				 * and it's also appropriate in global reclaim.
1090 				 */
1091 				SetPageReclaim(page);
1092 				nr_writeback++;
1093 				goto activate_locked;
1094 
1095 			/* Case 3 above */
1096 			} else {
1097 				unlock_page(page);
1098 				wait_on_page_writeback(page);
1099 				/* then go back and try same page again */
1100 				list_add_tail(&page->lru, page_list);
1101 				continue;
1102 			}
1103 		}
1104 
1105 		if (!force_reclaim)
1106 			references = page_check_references(page, sc);
1107 
1108 		switch (references) {
1109 		case PAGEREF_ACTIVATE:
1110 			goto activate_locked;
1111 		case PAGEREF_KEEP:
1112 			nr_ref_keep++;
1113 			goto keep_locked;
1114 		case PAGEREF_RECLAIM:
1115 		case PAGEREF_RECLAIM_CLEAN:
1116 			; /* try to reclaim the page below */
1117 		}
1118 
1119 		/*
1120 		 * Anonymous process memory has backing store?
1121 		 * Try to allocate it some swap space here.
1122 		 */
1123 		if (PageAnon(page) && !PageSwapCache(page)) {
1124 			if (!(sc->gfp_mask & __GFP_IO))
1125 				goto keep_locked;
1126 			if (!add_to_swap(page, page_list))
1127 				goto activate_locked;
1128 			lazyfree = true;
1129 			may_enter_fs = 1;
1130 
1131 			/* Adding to swap updated mapping */
1132 			mapping = page_mapping(page);
1133 		} else if (unlikely(PageTransHuge(page))) {
1134 			/* Split file THP */
1135 			if (split_huge_page_to_list(page, page_list))
1136 				goto keep_locked;
1137 		}
1138 
1139 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1140 
1141 		/*
1142 		 * The page is mapped into the page tables of one or more
1143 		 * processes. Try to unmap it here.
1144 		 */
1145 		if (page_mapped(page) && mapping) {
1146 			switch (ret = try_to_unmap(page, lazyfree ?
1147 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1148 				(ttu_flags | TTU_BATCH_FLUSH))) {
1149 			case SWAP_FAIL:
1150 				nr_unmap_fail++;
1151 				goto activate_locked;
1152 			case SWAP_AGAIN:
1153 				goto keep_locked;
1154 			case SWAP_MLOCK:
1155 				goto cull_mlocked;
1156 			case SWAP_LZFREE:
1157 				goto lazyfree;
1158 			case SWAP_SUCCESS:
1159 				; /* try to free the page below */
1160 			}
1161 		}
1162 
1163 		if (PageDirty(page)) {
1164 			/*
1165 			 * Only kswapd can writeback filesystem pages
1166 			 * to avoid risk of stack overflow. But avoid
1167 			 * injecting inefficient single-page IO into
1168 			 * flusher writeback as much as possible: only
1169 			 * write pages when we've encountered many
1170 			 * dirty pages, and when we've already scanned
1171 			 * the rest of the LRU for clean pages and see
1172 			 * the same dirty pages again (PageReclaim).
1173 			 */
1174 			if (page_is_file_cache(page) &&
1175 			    (!current_is_kswapd() || !PageReclaim(page) ||
1176 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1177 				/*
1178 				 * Immediately reclaim when written back.
1179 				 * Similar in principal to deactivate_page()
1180 				 * except we already have the page isolated
1181 				 * and know it's dirty
1182 				 */
1183 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1184 				SetPageReclaim(page);
1185 
1186 				goto activate_locked;
1187 			}
1188 
1189 			if (references == PAGEREF_RECLAIM_CLEAN)
1190 				goto keep_locked;
1191 			if (!may_enter_fs)
1192 				goto keep_locked;
1193 			if (!sc->may_writepage)
1194 				goto keep_locked;
1195 
1196 			/*
1197 			 * Page is dirty. Flush the TLB if a writable entry
1198 			 * potentially exists to avoid CPU writes after IO
1199 			 * starts and then write it out here.
1200 			 */
1201 			try_to_unmap_flush_dirty();
1202 			switch (pageout(page, mapping, sc)) {
1203 			case PAGE_KEEP:
1204 				goto keep_locked;
1205 			case PAGE_ACTIVATE:
1206 				goto activate_locked;
1207 			case PAGE_SUCCESS:
1208 				if (PageWriteback(page))
1209 					goto keep;
1210 				if (PageDirty(page))
1211 					goto keep;
1212 
1213 				/*
1214 				 * A synchronous write - probably a ramdisk.  Go
1215 				 * ahead and try to reclaim the page.
1216 				 */
1217 				if (!trylock_page(page))
1218 					goto keep;
1219 				if (PageDirty(page) || PageWriteback(page))
1220 					goto keep_locked;
1221 				mapping = page_mapping(page);
1222 			case PAGE_CLEAN:
1223 				; /* try to free the page below */
1224 			}
1225 		}
1226 
1227 		/*
1228 		 * If the page has buffers, try to free the buffer mappings
1229 		 * associated with this page. If we succeed we try to free
1230 		 * the page as well.
1231 		 *
1232 		 * We do this even if the page is PageDirty().
1233 		 * try_to_release_page() does not perform I/O, but it is
1234 		 * possible for a page to have PageDirty set, but it is actually
1235 		 * clean (all its buffers are clean).  This happens if the
1236 		 * buffers were written out directly, with submit_bh(). ext3
1237 		 * will do this, as well as the blockdev mapping.
1238 		 * try_to_release_page() will discover that cleanness and will
1239 		 * drop the buffers and mark the page clean - it can be freed.
1240 		 *
1241 		 * Rarely, pages can have buffers and no ->mapping.  These are
1242 		 * the pages which were not successfully invalidated in
1243 		 * truncate_complete_page().  We try to drop those buffers here
1244 		 * and if that worked, and the page is no longer mapped into
1245 		 * process address space (page_count == 1) it can be freed.
1246 		 * Otherwise, leave the page on the LRU so it is swappable.
1247 		 */
1248 		if (page_has_private(page)) {
1249 			if (!try_to_release_page(page, sc->gfp_mask))
1250 				goto activate_locked;
1251 			if (!mapping && page_count(page) == 1) {
1252 				unlock_page(page);
1253 				if (put_page_testzero(page))
1254 					goto free_it;
1255 				else {
1256 					/*
1257 					 * rare race with speculative reference.
1258 					 * the speculative reference will free
1259 					 * this page shortly, so we may
1260 					 * increment nr_reclaimed here (and
1261 					 * leave it off the LRU).
1262 					 */
1263 					nr_reclaimed++;
1264 					continue;
1265 				}
1266 			}
1267 		}
1268 
1269 lazyfree:
1270 		if (!mapping || !__remove_mapping(mapping, page, true))
1271 			goto keep_locked;
1272 
1273 		/*
1274 		 * At this point, we have no other references and there is
1275 		 * no way to pick any more up (removed from LRU, removed
1276 		 * from pagecache). Can use non-atomic bitops now (and
1277 		 * we obviously don't have to worry about waking up a process
1278 		 * waiting on the page lock, because there are no references.
1279 		 */
1280 		__ClearPageLocked(page);
1281 free_it:
1282 		if (ret == SWAP_LZFREE)
1283 			count_vm_event(PGLAZYFREED);
1284 
1285 		nr_reclaimed++;
1286 
1287 		/*
1288 		 * Is there need to periodically free_page_list? It would
1289 		 * appear not as the counts should be low
1290 		 */
1291 		list_add(&page->lru, &free_pages);
1292 		continue;
1293 
1294 cull_mlocked:
1295 		if (PageSwapCache(page))
1296 			try_to_free_swap(page);
1297 		unlock_page(page);
1298 		list_add(&page->lru, &ret_pages);
1299 		continue;
1300 
1301 activate_locked:
1302 		/* Not a candidate for swapping, so reclaim swap space. */
1303 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1304 			try_to_free_swap(page);
1305 		VM_BUG_ON_PAGE(PageActive(page), page);
1306 		SetPageActive(page);
1307 		pgactivate++;
1308 keep_locked:
1309 		unlock_page(page);
1310 keep:
1311 		list_add(&page->lru, &ret_pages);
1312 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1313 	}
1314 
1315 	mem_cgroup_uncharge_list(&free_pages);
1316 	try_to_unmap_flush();
1317 	free_hot_cold_page_list(&free_pages, true);
1318 
1319 	list_splice(&ret_pages, page_list);
1320 	count_vm_events(PGACTIVATE, pgactivate);
1321 
1322 	if (stat) {
1323 		stat->nr_dirty = nr_dirty;
1324 		stat->nr_congested = nr_congested;
1325 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1326 		stat->nr_writeback = nr_writeback;
1327 		stat->nr_immediate = nr_immediate;
1328 		stat->nr_activate = pgactivate;
1329 		stat->nr_ref_keep = nr_ref_keep;
1330 		stat->nr_unmap_fail = nr_unmap_fail;
1331 	}
1332 	return nr_reclaimed;
1333 }
1334 
1335 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1336 					    struct list_head *page_list)
1337 {
1338 	struct scan_control sc = {
1339 		.gfp_mask = GFP_KERNEL,
1340 		.priority = DEF_PRIORITY,
1341 		.may_unmap = 1,
1342 	};
1343 	unsigned long ret;
1344 	struct page *page, *next;
1345 	LIST_HEAD(clean_pages);
1346 
1347 	list_for_each_entry_safe(page, next, page_list, lru) {
1348 		if (page_is_file_cache(page) && !PageDirty(page) &&
1349 		    !__PageMovable(page)) {
1350 			ClearPageActive(page);
1351 			list_move(&page->lru, &clean_pages);
1352 		}
1353 	}
1354 
1355 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1356 			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1357 	list_splice(&clean_pages, page_list);
1358 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1359 	return ret;
1360 }
1361 
1362 /*
1363  * Attempt to remove the specified page from its LRU.  Only take this page
1364  * if it is of the appropriate PageActive status.  Pages which are being
1365  * freed elsewhere are also ignored.
1366  *
1367  * page:	page to consider
1368  * mode:	one of the LRU isolation modes defined above
1369  *
1370  * returns 0 on success, -ve errno on failure.
1371  */
1372 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1373 {
1374 	int ret = -EINVAL;
1375 
1376 	/* Only take pages on the LRU. */
1377 	if (!PageLRU(page))
1378 		return ret;
1379 
1380 	/* Compaction should not handle unevictable pages but CMA can do so */
1381 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1382 		return ret;
1383 
1384 	ret = -EBUSY;
1385 
1386 	/*
1387 	 * To minimise LRU disruption, the caller can indicate that it only
1388 	 * wants to isolate pages it will be able to operate on without
1389 	 * blocking - clean pages for the most part.
1390 	 *
1391 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1392 	 * that it is possible to migrate without blocking
1393 	 */
1394 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1395 		/* All the caller can do on PageWriteback is block */
1396 		if (PageWriteback(page))
1397 			return ret;
1398 
1399 		if (PageDirty(page)) {
1400 			struct address_space *mapping;
1401 
1402 			/*
1403 			 * Only pages without mappings or that have a
1404 			 * ->migratepage callback are possible to migrate
1405 			 * without blocking
1406 			 */
1407 			mapping = page_mapping(page);
1408 			if (mapping && !mapping->a_ops->migratepage)
1409 				return ret;
1410 		}
1411 	}
1412 
1413 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1414 		return ret;
1415 
1416 	if (likely(get_page_unless_zero(page))) {
1417 		/*
1418 		 * Be careful not to clear PageLRU until after we're
1419 		 * sure the page is not being freed elsewhere -- the
1420 		 * page release code relies on it.
1421 		 */
1422 		ClearPageLRU(page);
1423 		ret = 0;
1424 	}
1425 
1426 	return ret;
1427 }
1428 
1429 
1430 /*
1431  * Update LRU sizes after isolating pages. The LRU size updates must
1432  * be complete before mem_cgroup_update_lru_size due to a santity check.
1433  */
1434 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1435 			enum lru_list lru, unsigned long *nr_zone_taken)
1436 {
1437 	int zid;
1438 
1439 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1440 		if (!nr_zone_taken[zid])
1441 			continue;
1442 
1443 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1444 #ifdef CONFIG_MEMCG
1445 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1446 #endif
1447 	}
1448 
1449 }
1450 
1451 /*
1452  * zone_lru_lock is heavily contended.  Some of the functions that
1453  * shrink the lists perform better by taking out a batch of pages
1454  * and working on them outside the LRU lock.
1455  *
1456  * For pagecache intensive workloads, this function is the hottest
1457  * spot in the kernel (apart from copy_*_user functions).
1458  *
1459  * Appropriate locks must be held before calling this function.
1460  *
1461  * @nr_to_scan:	The number of pages to look through on the list.
1462  * @lruvec:	The LRU vector to pull pages from.
1463  * @dst:	The temp list to put pages on to.
1464  * @nr_scanned:	The number of pages that were scanned.
1465  * @sc:		The scan_control struct for this reclaim session
1466  * @mode:	One of the LRU isolation modes
1467  * @lru:	LRU list id for isolating
1468  *
1469  * returns how many pages were moved onto *@dst.
1470  */
1471 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1472 		struct lruvec *lruvec, struct list_head *dst,
1473 		unsigned long *nr_scanned, struct scan_control *sc,
1474 		isolate_mode_t mode, enum lru_list lru)
1475 {
1476 	struct list_head *src = &lruvec->lists[lru];
1477 	unsigned long nr_taken = 0;
1478 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1479 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1480 	unsigned long skipped = 0, total_skipped = 0;
1481 	unsigned long scan, nr_pages;
1482 	LIST_HEAD(pages_skipped);
1483 
1484 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1485 					!list_empty(src);) {
1486 		struct page *page;
1487 
1488 		page = lru_to_page(src);
1489 		prefetchw_prev_lru_page(page, src, flags);
1490 
1491 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1492 
1493 		if (page_zonenum(page) > sc->reclaim_idx) {
1494 			list_move(&page->lru, &pages_skipped);
1495 			nr_skipped[page_zonenum(page)]++;
1496 			continue;
1497 		}
1498 
1499 		/*
1500 		 * Account for scanned and skipped separetly to avoid the pgdat
1501 		 * being prematurely marked unreclaimable by pgdat_reclaimable.
1502 		 */
1503 		scan++;
1504 
1505 		switch (__isolate_lru_page(page, mode)) {
1506 		case 0:
1507 			nr_pages = hpage_nr_pages(page);
1508 			nr_taken += nr_pages;
1509 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1510 			list_move(&page->lru, dst);
1511 			break;
1512 
1513 		case -EBUSY:
1514 			/* else it is being freed elsewhere */
1515 			list_move(&page->lru, src);
1516 			continue;
1517 
1518 		default:
1519 			BUG();
1520 		}
1521 	}
1522 
1523 	/*
1524 	 * Splice any skipped pages to the start of the LRU list. Note that
1525 	 * this disrupts the LRU order when reclaiming for lower zones but
1526 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1527 	 * scanning would soon rescan the same pages to skip and put the
1528 	 * system at risk of premature OOM.
1529 	 */
1530 	if (!list_empty(&pages_skipped)) {
1531 		int zid;
1532 
1533 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1534 			if (!nr_skipped[zid])
1535 				continue;
1536 
1537 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1538 			skipped += nr_skipped[zid];
1539 		}
1540 
1541 		/*
1542 		 * Account skipped pages as a partial scan as the pgdat may be
1543 		 * close to unreclaimable. If the LRU list is empty, account
1544 		 * skipped pages as a full scan.
1545 		 */
1546 		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1547 
1548 		list_splice(&pages_skipped, src);
1549 	}
1550 	*nr_scanned = scan + total_skipped;
1551 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1552 				    scan, skipped, nr_taken, mode, lru);
1553 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1554 	return nr_taken;
1555 }
1556 
1557 /**
1558  * isolate_lru_page - tries to isolate a page from its LRU list
1559  * @page: page to isolate from its LRU list
1560  *
1561  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1562  * vmstat statistic corresponding to whatever LRU list the page was on.
1563  *
1564  * Returns 0 if the page was removed from an LRU list.
1565  * Returns -EBUSY if the page was not on an LRU list.
1566  *
1567  * The returned page will have PageLRU() cleared.  If it was found on
1568  * the active list, it will have PageActive set.  If it was found on
1569  * the unevictable list, it will have the PageUnevictable bit set. That flag
1570  * may need to be cleared by the caller before letting the page go.
1571  *
1572  * The vmstat statistic corresponding to the list on which the page was
1573  * found will be decremented.
1574  *
1575  * Restrictions:
1576  * (1) Must be called with an elevated refcount on the page. This is a
1577  *     fundamentnal difference from isolate_lru_pages (which is called
1578  *     without a stable reference).
1579  * (2) the lru_lock must not be held.
1580  * (3) interrupts must be enabled.
1581  */
1582 int isolate_lru_page(struct page *page)
1583 {
1584 	int ret = -EBUSY;
1585 
1586 	VM_BUG_ON_PAGE(!page_count(page), page);
1587 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1588 
1589 	if (PageLRU(page)) {
1590 		struct zone *zone = page_zone(page);
1591 		struct lruvec *lruvec;
1592 
1593 		spin_lock_irq(zone_lru_lock(zone));
1594 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1595 		if (PageLRU(page)) {
1596 			int lru = page_lru(page);
1597 			get_page(page);
1598 			ClearPageLRU(page);
1599 			del_page_from_lru_list(page, lruvec, lru);
1600 			ret = 0;
1601 		}
1602 		spin_unlock_irq(zone_lru_lock(zone));
1603 	}
1604 	return ret;
1605 }
1606 
1607 /*
1608  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1609  * then get resheduled. When there are massive number of tasks doing page
1610  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1611  * the LRU list will go small and be scanned faster than necessary, leading to
1612  * unnecessary swapping, thrashing and OOM.
1613  */
1614 static int too_many_isolated(struct pglist_data *pgdat, int file,
1615 		struct scan_control *sc)
1616 {
1617 	unsigned long inactive, isolated;
1618 
1619 	if (current_is_kswapd())
1620 		return 0;
1621 
1622 	if (!sane_reclaim(sc))
1623 		return 0;
1624 
1625 	if (file) {
1626 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1627 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1628 	} else {
1629 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1630 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1631 	}
1632 
1633 	/*
1634 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1635 	 * won't get blocked by normal direct-reclaimers, forming a circular
1636 	 * deadlock.
1637 	 */
1638 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1639 		inactive >>= 3;
1640 
1641 	return isolated > inactive;
1642 }
1643 
1644 static noinline_for_stack void
1645 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1646 {
1647 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1648 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1649 	LIST_HEAD(pages_to_free);
1650 
1651 	/*
1652 	 * Put back any unfreeable pages.
1653 	 */
1654 	while (!list_empty(page_list)) {
1655 		struct page *page = lru_to_page(page_list);
1656 		int lru;
1657 
1658 		VM_BUG_ON_PAGE(PageLRU(page), page);
1659 		list_del(&page->lru);
1660 		if (unlikely(!page_evictable(page))) {
1661 			spin_unlock_irq(&pgdat->lru_lock);
1662 			putback_lru_page(page);
1663 			spin_lock_irq(&pgdat->lru_lock);
1664 			continue;
1665 		}
1666 
1667 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1668 
1669 		SetPageLRU(page);
1670 		lru = page_lru(page);
1671 		add_page_to_lru_list(page, lruvec, lru);
1672 
1673 		if (is_active_lru(lru)) {
1674 			int file = is_file_lru(lru);
1675 			int numpages = hpage_nr_pages(page);
1676 			reclaim_stat->recent_rotated[file] += numpages;
1677 		}
1678 		if (put_page_testzero(page)) {
1679 			__ClearPageLRU(page);
1680 			__ClearPageActive(page);
1681 			del_page_from_lru_list(page, lruvec, lru);
1682 
1683 			if (unlikely(PageCompound(page))) {
1684 				spin_unlock_irq(&pgdat->lru_lock);
1685 				mem_cgroup_uncharge(page);
1686 				(*get_compound_page_dtor(page))(page);
1687 				spin_lock_irq(&pgdat->lru_lock);
1688 			} else
1689 				list_add(&page->lru, &pages_to_free);
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * To save our caller's stack, now use input list for pages to free.
1695 	 */
1696 	list_splice(&pages_to_free, page_list);
1697 }
1698 
1699 /*
1700  * If a kernel thread (such as nfsd for loop-back mounts) services
1701  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1702  * In that case we should only throttle if the backing device it is
1703  * writing to is congested.  In other cases it is safe to throttle.
1704  */
1705 static int current_may_throttle(void)
1706 {
1707 	return !(current->flags & PF_LESS_THROTTLE) ||
1708 		current->backing_dev_info == NULL ||
1709 		bdi_write_congested(current->backing_dev_info);
1710 }
1711 
1712 /*
1713  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1714  * of reclaimed pages
1715  */
1716 static noinline_for_stack unsigned long
1717 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1718 		     struct scan_control *sc, enum lru_list lru)
1719 {
1720 	LIST_HEAD(page_list);
1721 	unsigned long nr_scanned;
1722 	unsigned long nr_reclaimed = 0;
1723 	unsigned long nr_taken;
1724 	struct reclaim_stat stat = {};
1725 	isolate_mode_t isolate_mode = 0;
1726 	int file = is_file_lru(lru);
1727 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1728 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1729 
1730 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1731 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1732 
1733 		/* We are about to die and free our memory. Return now. */
1734 		if (fatal_signal_pending(current))
1735 			return SWAP_CLUSTER_MAX;
1736 	}
1737 
1738 	lru_add_drain();
1739 
1740 	if (!sc->may_unmap)
1741 		isolate_mode |= ISOLATE_UNMAPPED;
1742 
1743 	spin_lock_irq(&pgdat->lru_lock);
1744 
1745 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1746 				     &nr_scanned, sc, isolate_mode, lru);
1747 
1748 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1749 	reclaim_stat->recent_scanned[file] += nr_taken;
1750 
1751 	if (global_reclaim(sc)) {
1752 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1753 		if (current_is_kswapd())
1754 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1755 		else
1756 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1757 	}
1758 	spin_unlock_irq(&pgdat->lru_lock);
1759 
1760 	if (nr_taken == 0)
1761 		return 0;
1762 
1763 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1764 				&stat, false);
1765 
1766 	spin_lock_irq(&pgdat->lru_lock);
1767 
1768 	if (global_reclaim(sc)) {
1769 		if (current_is_kswapd())
1770 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1771 		else
1772 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1773 	}
1774 
1775 	putback_inactive_pages(lruvec, &page_list);
1776 
1777 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1778 
1779 	spin_unlock_irq(&pgdat->lru_lock);
1780 
1781 	mem_cgroup_uncharge_list(&page_list);
1782 	free_hot_cold_page_list(&page_list, true);
1783 
1784 	/*
1785 	 * If reclaim is isolating dirty pages under writeback, it implies
1786 	 * that the long-lived page allocation rate is exceeding the page
1787 	 * laundering rate. Either the global limits are not being effective
1788 	 * at throttling processes due to the page distribution throughout
1789 	 * zones or there is heavy usage of a slow backing device. The
1790 	 * only option is to throttle from reclaim context which is not ideal
1791 	 * as there is no guarantee the dirtying process is throttled in the
1792 	 * same way balance_dirty_pages() manages.
1793 	 *
1794 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1795 	 * of pages under pages flagged for immediate reclaim and stall if any
1796 	 * are encountered in the nr_immediate check below.
1797 	 */
1798 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1799 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1800 
1801 	/*
1802 	 * Legacy memcg will stall in page writeback so avoid forcibly
1803 	 * stalling here.
1804 	 */
1805 	if (sane_reclaim(sc)) {
1806 		/*
1807 		 * Tag a zone as congested if all the dirty pages scanned were
1808 		 * backed by a congested BDI and wait_iff_congested will stall.
1809 		 */
1810 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1811 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1812 
1813 		/*
1814 		 * If dirty pages are scanned that are not queued for IO, it
1815 		 * implies that flushers are not doing their job. This can
1816 		 * happen when memory pressure pushes dirty pages to the end of
1817 		 * the LRU before the dirty limits are breached and the dirty
1818 		 * data has expired. It can also happen when the proportion of
1819 		 * dirty pages grows not through writes but through memory
1820 		 * pressure reclaiming all the clean cache. And in some cases,
1821 		 * the flushers simply cannot keep up with the allocation
1822 		 * rate. Nudge the flusher threads in case they are asleep, but
1823 		 * also allow kswapd to start writing pages during reclaim.
1824 		 */
1825 		if (stat.nr_unqueued_dirty == nr_taken) {
1826 			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1827 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1828 		}
1829 
1830 		/*
1831 		 * If kswapd scans pages marked marked for immediate
1832 		 * reclaim and under writeback (nr_immediate), it implies
1833 		 * that pages are cycling through the LRU faster than
1834 		 * they are written so also forcibly stall.
1835 		 */
1836 		if (stat.nr_immediate && current_may_throttle())
1837 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1838 	}
1839 
1840 	/*
1841 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1842 	 * is congested. Allow kswapd to continue until it starts encountering
1843 	 * unqueued dirty pages or cycling through the LRU too quickly.
1844 	 */
1845 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1846 	    current_may_throttle())
1847 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1848 
1849 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1850 			nr_scanned, nr_reclaimed,
1851 			stat.nr_dirty,  stat.nr_writeback,
1852 			stat.nr_congested, stat.nr_immediate,
1853 			stat.nr_activate, stat.nr_ref_keep,
1854 			stat.nr_unmap_fail,
1855 			sc->priority, file);
1856 	return nr_reclaimed;
1857 }
1858 
1859 /*
1860  * This moves pages from the active list to the inactive list.
1861  *
1862  * We move them the other way if the page is referenced by one or more
1863  * processes, from rmap.
1864  *
1865  * If the pages are mostly unmapped, the processing is fast and it is
1866  * appropriate to hold zone_lru_lock across the whole operation.  But if
1867  * the pages are mapped, the processing is slow (page_referenced()) so we
1868  * should drop zone_lru_lock around each page.  It's impossible to balance
1869  * this, so instead we remove the pages from the LRU while processing them.
1870  * It is safe to rely on PG_active against the non-LRU pages in here because
1871  * nobody will play with that bit on a non-LRU page.
1872  *
1873  * The downside is that we have to touch page->_refcount against each page.
1874  * But we had to alter page->flags anyway.
1875  *
1876  * Returns the number of pages moved to the given lru.
1877  */
1878 
1879 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1880 				     struct list_head *list,
1881 				     struct list_head *pages_to_free,
1882 				     enum lru_list lru)
1883 {
1884 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1885 	struct page *page;
1886 	int nr_pages;
1887 	int nr_moved = 0;
1888 
1889 	while (!list_empty(list)) {
1890 		page = lru_to_page(list);
1891 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1892 
1893 		VM_BUG_ON_PAGE(PageLRU(page), page);
1894 		SetPageLRU(page);
1895 
1896 		nr_pages = hpage_nr_pages(page);
1897 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1898 		list_move(&page->lru, &lruvec->lists[lru]);
1899 
1900 		if (put_page_testzero(page)) {
1901 			__ClearPageLRU(page);
1902 			__ClearPageActive(page);
1903 			del_page_from_lru_list(page, lruvec, lru);
1904 
1905 			if (unlikely(PageCompound(page))) {
1906 				spin_unlock_irq(&pgdat->lru_lock);
1907 				mem_cgroup_uncharge(page);
1908 				(*get_compound_page_dtor(page))(page);
1909 				spin_lock_irq(&pgdat->lru_lock);
1910 			} else
1911 				list_add(&page->lru, pages_to_free);
1912 		} else {
1913 			nr_moved += nr_pages;
1914 		}
1915 	}
1916 
1917 	if (!is_active_lru(lru))
1918 		__count_vm_events(PGDEACTIVATE, nr_moved);
1919 
1920 	return nr_moved;
1921 }
1922 
1923 static void shrink_active_list(unsigned long nr_to_scan,
1924 			       struct lruvec *lruvec,
1925 			       struct scan_control *sc,
1926 			       enum lru_list lru)
1927 {
1928 	unsigned long nr_taken;
1929 	unsigned long nr_scanned;
1930 	unsigned long vm_flags;
1931 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1932 	LIST_HEAD(l_active);
1933 	LIST_HEAD(l_inactive);
1934 	struct page *page;
1935 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1936 	unsigned nr_deactivate, nr_activate;
1937 	unsigned nr_rotated = 0;
1938 	isolate_mode_t isolate_mode = 0;
1939 	int file = is_file_lru(lru);
1940 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1941 
1942 	lru_add_drain();
1943 
1944 	if (!sc->may_unmap)
1945 		isolate_mode |= ISOLATE_UNMAPPED;
1946 
1947 	spin_lock_irq(&pgdat->lru_lock);
1948 
1949 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1950 				     &nr_scanned, sc, isolate_mode, lru);
1951 
1952 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1953 	reclaim_stat->recent_scanned[file] += nr_taken;
1954 
1955 	if (global_reclaim(sc))
1956 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1957 	__count_vm_events(PGREFILL, nr_scanned);
1958 
1959 	spin_unlock_irq(&pgdat->lru_lock);
1960 
1961 	while (!list_empty(&l_hold)) {
1962 		cond_resched();
1963 		page = lru_to_page(&l_hold);
1964 		list_del(&page->lru);
1965 
1966 		if (unlikely(!page_evictable(page))) {
1967 			putback_lru_page(page);
1968 			continue;
1969 		}
1970 
1971 		if (unlikely(buffer_heads_over_limit)) {
1972 			if (page_has_private(page) && trylock_page(page)) {
1973 				if (page_has_private(page))
1974 					try_to_release_page(page, 0);
1975 				unlock_page(page);
1976 			}
1977 		}
1978 
1979 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1980 				    &vm_flags)) {
1981 			nr_rotated += hpage_nr_pages(page);
1982 			/*
1983 			 * Identify referenced, file-backed active pages and
1984 			 * give them one more trip around the active list. So
1985 			 * that executable code get better chances to stay in
1986 			 * memory under moderate memory pressure.  Anon pages
1987 			 * are not likely to be evicted by use-once streaming
1988 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1989 			 * so we ignore them here.
1990 			 */
1991 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1992 				list_add(&page->lru, &l_active);
1993 				continue;
1994 			}
1995 		}
1996 
1997 		ClearPageActive(page);	/* we are de-activating */
1998 		list_add(&page->lru, &l_inactive);
1999 	}
2000 
2001 	/*
2002 	 * Move pages back to the lru list.
2003 	 */
2004 	spin_lock_irq(&pgdat->lru_lock);
2005 	/*
2006 	 * Count referenced pages from currently used mappings as rotated,
2007 	 * even though only some of them are actually re-activated.  This
2008 	 * helps balance scan pressure between file and anonymous pages in
2009 	 * get_scan_count.
2010 	 */
2011 	reclaim_stat->recent_rotated[file] += nr_rotated;
2012 
2013 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2014 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2015 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2016 	spin_unlock_irq(&pgdat->lru_lock);
2017 
2018 	mem_cgroup_uncharge_list(&l_hold);
2019 	free_hot_cold_page_list(&l_hold, true);
2020 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2021 			nr_deactivate, nr_rotated, sc->priority, file);
2022 }
2023 
2024 /*
2025  * The inactive anon list should be small enough that the VM never has
2026  * to do too much work.
2027  *
2028  * The inactive file list should be small enough to leave most memory
2029  * to the established workingset on the scan-resistant active list,
2030  * but large enough to avoid thrashing the aggregate readahead window.
2031  *
2032  * Both inactive lists should also be large enough that each inactive
2033  * page has a chance to be referenced again before it is reclaimed.
2034  *
2035  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2036  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2037  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2038  *
2039  * total     target    max
2040  * memory    ratio     inactive
2041  * -------------------------------------
2042  *   10MB       1         5MB
2043  *  100MB       1        50MB
2044  *    1GB       3       250MB
2045  *   10GB      10       0.9GB
2046  *  100GB      31         3GB
2047  *    1TB     101        10GB
2048  *   10TB     320        32GB
2049  */
2050 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2051 						struct scan_control *sc, bool trace)
2052 {
2053 	unsigned long inactive_ratio;
2054 	unsigned long inactive, active;
2055 	enum lru_list inactive_lru = file * LRU_FILE;
2056 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2057 	unsigned long gb;
2058 
2059 	/*
2060 	 * If we don't have swap space, anonymous page deactivation
2061 	 * is pointless.
2062 	 */
2063 	if (!file && !total_swap_pages)
2064 		return false;
2065 
2066 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2067 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2068 
2069 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2070 	if (gb)
2071 		inactive_ratio = int_sqrt(10 * gb);
2072 	else
2073 		inactive_ratio = 1;
2074 
2075 	if (trace)
2076 		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2077 				sc->reclaim_idx,
2078 				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2079 				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2080 				inactive_ratio, file);
2081 
2082 	return inactive * inactive_ratio < active;
2083 }
2084 
2085 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2086 				 struct lruvec *lruvec, struct scan_control *sc)
2087 {
2088 	if (is_active_lru(lru)) {
2089 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2090 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2091 		return 0;
2092 	}
2093 
2094 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2095 }
2096 
2097 enum scan_balance {
2098 	SCAN_EQUAL,
2099 	SCAN_FRACT,
2100 	SCAN_ANON,
2101 	SCAN_FILE,
2102 };
2103 
2104 /*
2105  * Determine how aggressively the anon and file LRU lists should be
2106  * scanned.  The relative value of each set of LRU lists is determined
2107  * by looking at the fraction of the pages scanned we did rotate back
2108  * onto the active list instead of evict.
2109  *
2110  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2111  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2112  */
2113 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2114 			   struct scan_control *sc, unsigned long *nr,
2115 			   unsigned long *lru_pages)
2116 {
2117 	int swappiness = mem_cgroup_swappiness(memcg);
2118 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2119 	u64 fraction[2];
2120 	u64 denominator = 0;	/* gcc */
2121 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2122 	unsigned long anon_prio, file_prio;
2123 	enum scan_balance scan_balance;
2124 	unsigned long anon, file;
2125 	bool force_scan = false;
2126 	unsigned long ap, fp;
2127 	enum lru_list lru;
2128 	bool some_scanned;
2129 	int pass;
2130 
2131 	/*
2132 	 * If the zone or memcg is small, nr[l] can be 0.  This
2133 	 * results in no scanning on this priority and a potential
2134 	 * priority drop.  Global direct reclaim can go to the next
2135 	 * zone and tends to have no problems. Global kswapd is for
2136 	 * zone balancing and it needs to scan a minimum amount. When
2137 	 * reclaiming for a memcg, a priority drop can cause high
2138 	 * latencies, so it's better to scan a minimum amount there as
2139 	 * well.
2140 	 */
2141 	if (current_is_kswapd()) {
2142 		if (!pgdat_reclaimable(pgdat))
2143 			force_scan = true;
2144 		if (!mem_cgroup_online(memcg))
2145 			force_scan = true;
2146 	}
2147 	if (!global_reclaim(sc))
2148 		force_scan = true;
2149 
2150 	/* If we have no swap space, do not bother scanning anon pages. */
2151 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2152 		scan_balance = SCAN_FILE;
2153 		goto out;
2154 	}
2155 
2156 	/*
2157 	 * Global reclaim will swap to prevent OOM even with no
2158 	 * swappiness, but memcg users want to use this knob to
2159 	 * disable swapping for individual groups completely when
2160 	 * using the memory controller's swap limit feature would be
2161 	 * too expensive.
2162 	 */
2163 	if (!global_reclaim(sc) && !swappiness) {
2164 		scan_balance = SCAN_FILE;
2165 		goto out;
2166 	}
2167 
2168 	/*
2169 	 * Do not apply any pressure balancing cleverness when the
2170 	 * system is close to OOM, scan both anon and file equally
2171 	 * (unless the swappiness setting disagrees with swapping).
2172 	 */
2173 	if (!sc->priority && swappiness) {
2174 		scan_balance = SCAN_EQUAL;
2175 		goto out;
2176 	}
2177 
2178 	/*
2179 	 * Prevent the reclaimer from falling into the cache trap: as
2180 	 * cache pages start out inactive, every cache fault will tip
2181 	 * the scan balance towards the file LRU.  And as the file LRU
2182 	 * shrinks, so does the window for rotation from references.
2183 	 * This means we have a runaway feedback loop where a tiny
2184 	 * thrashing file LRU becomes infinitely more attractive than
2185 	 * anon pages.  Try to detect this based on file LRU size.
2186 	 */
2187 	if (global_reclaim(sc)) {
2188 		unsigned long pgdatfile;
2189 		unsigned long pgdatfree;
2190 		int z;
2191 		unsigned long total_high_wmark = 0;
2192 
2193 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2194 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2195 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2196 
2197 		for (z = 0; z < MAX_NR_ZONES; z++) {
2198 			struct zone *zone = &pgdat->node_zones[z];
2199 			if (!managed_zone(zone))
2200 				continue;
2201 
2202 			total_high_wmark += high_wmark_pages(zone);
2203 		}
2204 
2205 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2206 			scan_balance = SCAN_ANON;
2207 			goto out;
2208 		}
2209 	}
2210 
2211 	/*
2212 	 * If there is enough inactive page cache, i.e. if the size of the
2213 	 * inactive list is greater than that of the active list *and* the
2214 	 * inactive list actually has some pages to scan on this priority, we
2215 	 * do not reclaim anything from the anonymous working set right now.
2216 	 * Without the second condition we could end up never scanning an
2217 	 * lruvec even if it has plenty of old anonymous pages unless the
2218 	 * system is under heavy pressure.
2219 	 */
2220 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2221 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2222 		scan_balance = SCAN_FILE;
2223 		goto out;
2224 	}
2225 
2226 	scan_balance = SCAN_FRACT;
2227 
2228 	/*
2229 	 * With swappiness at 100, anonymous and file have the same priority.
2230 	 * This scanning priority is essentially the inverse of IO cost.
2231 	 */
2232 	anon_prio = swappiness;
2233 	file_prio = 200 - anon_prio;
2234 
2235 	/*
2236 	 * OK, so we have swap space and a fair amount of page cache
2237 	 * pages.  We use the recently rotated / recently scanned
2238 	 * ratios to determine how valuable each cache is.
2239 	 *
2240 	 * Because workloads change over time (and to avoid overflow)
2241 	 * we keep these statistics as a floating average, which ends
2242 	 * up weighing recent references more than old ones.
2243 	 *
2244 	 * anon in [0], file in [1]
2245 	 */
2246 
2247 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2248 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2249 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2250 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2251 
2252 	spin_lock_irq(&pgdat->lru_lock);
2253 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2254 		reclaim_stat->recent_scanned[0] /= 2;
2255 		reclaim_stat->recent_rotated[0] /= 2;
2256 	}
2257 
2258 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2259 		reclaim_stat->recent_scanned[1] /= 2;
2260 		reclaim_stat->recent_rotated[1] /= 2;
2261 	}
2262 
2263 	/*
2264 	 * The amount of pressure on anon vs file pages is inversely
2265 	 * proportional to the fraction of recently scanned pages on
2266 	 * each list that were recently referenced and in active use.
2267 	 */
2268 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2269 	ap /= reclaim_stat->recent_rotated[0] + 1;
2270 
2271 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2272 	fp /= reclaim_stat->recent_rotated[1] + 1;
2273 	spin_unlock_irq(&pgdat->lru_lock);
2274 
2275 	fraction[0] = ap;
2276 	fraction[1] = fp;
2277 	denominator = ap + fp + 1;
2278 out:
2279 	some_scanned = false;
2280 	/* Only use force_scan on second pass. */
2281 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2282 		*lru_pages = 0;
2283 		for_each_evictable_lru(lru) {
2284 			int file = is_file_lru(lru);
2285 			unsigned long size;
2286 			unsigned long scan;
2287 
2288 			size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2289 			scan = size >> sc->priority;
2290 
2291 			if (!scan && pass && force_scan)
2292 				scan = min(size, SWAP_CLUSTER_MAX);
2293 
2294 			switch (scan_balance) {
2295 			case SCAN_EQUAL:
2296 				/* Scan lists relative to size */
2297 				break;
2298 			case SCAN_FRACT:
2299 				/*
2300 				 * Scan types proportional to swappiness and
2301 				 * their relative recent reclaim efficiency.
2302 				 */
2303 				scan = div64_u64(scan * fraction[file],
2304 							denominator);
2305 				break;
2306 			case SCAN_FILE:
2307 			case SCAN_ANON:
2308 				/* Scan one type exclusively */
2309 				if ((scan_balance == SCAN_FILE) != file) {
2310 					size = 0;
2311 					scan = 0;
2312 				}
2313 				break;
2314 			default:
2315 				/* Look ma, no brain */
2316 				BUG();
2317 			}
2318 
2319 			*lru_pages += size;
2320 			nr[lru] = scan;
2321 
2322 			/*
2323 			 * Skip the second pass and don't force_scan,
2324 			 * if we found something to scan.
2325 			 */
2326 			some_scanned |= !!scan;
2327 		}
2328 	}
2329 }
2330 
2331 /*
2332  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2333  */
2334 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2335 			      struct scan_control *sc, unsigned long *lru_pages)
2336 {
2337 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2338 	unsigned long nr[NR_LRU_LISTS];
2339 	unsigned long targets[NR_LRU_LISTS];
2340 	unsigned long nr_to_scan;
2341 	enum lru_list lru;
2342 	unsigned long nr_reclaimed = 0;
2343 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2344 	struct blk_plug plug;
2345 	bool scan_adjusted;
2346 
2347 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2348 
2349 	/* Record the original scan target for proportional adjustments later */
2350 	memcpy(targets, nr, sizeof(nr));
2351 
2352 	/*
2353 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2354 	 * event that can occur when there is little memory pressure e.g.
2355 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2356 	 * when the requested number of pages are reclaimed when scanning at
2357 	 * DEF_PRIORITY on the assumption that the fact we are direct
2358 	 * reclaiming implies that kswapd is not keeping up and it is best to
2359 	 * do a batch of work at once. For memcg reclaim one check is made to
2360 	 * abort proportional reclaim if either the file or anon lru has already
2361 	 * dropped to zero at the first pass.
2362 	 */
2363 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2364 			 sc->priority == DEF_PRIORITY);
2365 
2366 	blk_start_plug(&plug);
2367 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2368 					nr[LRU_INACTIVE_FILE]) {
2369 		unsigned long nr_anon, nr_file, percentage;
2370 		unsigned long nr_scanned;
2371 
2372 		for_each_evictable_lru(lru) {
2373 			if (nr[lru]) {
2374 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2375 				nr[lru] -= nr_to_scan;
2376 
2377 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2378 							    lruvec, sc);
2379 			}
2380 		}
2381 
2382 		cond_resched();
2383 
2384 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2385 			continue;
2386 
2387 		/*
2388 		 * For kswapd and memcg, reclaim at least the number of pages
2389 		 * requested. Ensure that the anon and file LRUs are scanned
2390 		 * proportionally what was requested by get_scan_count(). We
2391 		 * stop reclaiming one LRU and reduce the amount scanning
2392 		 * proportional to the original scan target.
2393 		 */
2394 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2395 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2396 
2397 		/*
2398 		 * It's just vindictive to attack the larger once the smaller
2399 		 * has gone to zero.  And given the way we stop scanning the
2400 		 * smaller below, this makes sure that we only make one nudge
2401 		 * towards proportionality once we've got nr_to_reclaim.
2402 		 */
2403 		if (!nr_file || !nr_anon)
2404 			break;
2405 
2406 		if (nr_file > nr_anon) {
2407 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2408 						targets[LRU_ACTIVE_ANON] + 1;
2409 			lru = LRU_BASE;
2410 			percentage = nr_anon * 100 / scan_target;
2411 		} else {
2412 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2413 						targets[LRU_ACTIVE_FILE] + 1;
2414 			lru = LRU_FILE;
2415 			percentage = nr_file * 100 / scan_target;
2416 		}
2417 
2418 		/* Stop scanning the smaller of the LRU */
2419 		nr[lru] = 0;
2420 		nr[lru + LRU_ACTIVE] = 0;
2421 
2422 		/*
2423 		 * Recalculate the other LRU scan count based on its original
2424 		 * scan target and the percentage scanning already complete
2425 		 */
2426 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2427 		nr_scanned = targets[lru] - nr[lru];
2428 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2429 		nr[lru] -= min(nr[lru], nr_scanned);
2430 
2431 		lru += LRU_ACTIVE;
2432 		nr_scanned = targets[lru] - nr[lru];
2433 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2434 		nr[lru] -= min(nr[lru], nr_scanned);
2435 
2436 		scan_adjusted = true;
2437 	}
2438 	blk_finish_plug(&plug);
2439 	sc->nr_reclaimed += nr_reclaimed;
2440 
2441 	/*
2442 	 * Even if we did not try to evict anon pages at all, we want to
2443 	 * rebalance the anon lru active/inactive ratio.
2444 	 */
2445 	if (inactive_list_is_low(lruvec, false, sc, true))
2446 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2447 				   sc, LRU_ACTIVE_ANON);
2448 }
2449 
2450 /* Use reclaim/compaction for costly allocs or under memory pressure */
2451 static bool in_reclaim_compaction(struct scan_control *sc)
2452 {
2453 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2454 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2455 			 sc->priority < DEF_PRIORITY - 2))
2456 		return true;
2457 
2458 	return false;
2459 }
2460 
2461 /*
2462  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2463  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2464  * true if more pages should be reclaimed such that when the page allocator
2465  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2466  * It will give up earlier than that if there is difficulty reclaiming pages.
2467  */
2468 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2469 					unsigned long nr_reclaimed,
2470 					unsigned long nr_scanned,
2471 					struct scan_control *sc)
2472 {
2473 	unsigned long pages_for_compaction;
2474 	unsigned long inactive_lru_pages;
2475 	int z;
2476 
2477 	/* If not in reclaim/compaction mode, stop */
2478 	if (!in_reclaim_compaction(sc))
2479 		return false;
2480 
2481 	/* Consider stopping depending on scan and reclaim activity */
2482 	if (sc->gfp_mask & __GFP_REPEAT) {
2483 		/*
2484 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2485 		 * full LRU list has been scanned and we are still failing
2486 		 * to reclaim pages. This full LRU scan is potentially
2487 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2488 		 */
2489 		if (!nr_reclaimed && !nr_scanned)
2490 			return false;
2491 	} else {
2492 		/*
2493 		 * For non-__GFP_REPEAT allocations which can presumably
2494 		 * fail without consequence, stop if we failed to reclaim
2495 		 * any pages from the last SWAP_CLUSTER_MAX number of
2496 		 * pages that were scanned. This will return to the
2497 		 * caller faster at the risk reclaim/compaction and
2498 		 * the resulting allocation attempt fails
2499 		 */
2500 		if (!nr_reclaimed)
2501 			return false;
2502 	}
2503 
2504 	/*
2505 	 * If we have not reclaimed enough pages for compaction and the
2506 	 * inactive lists are large enough, continue reclaiming
2507 	 */
2508 	pages_for_compaction = compact_gap(sc->order);
2509 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2510 	if (get_nr_swap_pages() > 0)
2511 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2512 	if (sc->nr_reclaimed < pages_for_compaction &&
2513 			inactive_lru_pages > pages_for_compaction)
2514 		return true;
2515 
2516 	/* If compaction would go ahead or the allocation would succeed, stop */
2517 	for (z = 0; z <= sc->reclaim_idx; z++) {
2518 		struct zone *zone = &pgdat->node_zones[z];
2519 		if (!managed_zone(zone))
2520 			continue;
2521 
2522 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2523 		case COMPACT_SUCCESS:
2524 		case COMPACT_CONTINUE:
2525 			return false;
2526 		default:
2527 			/* check next zone */
2528 			;
2529 		}
2530 	}
2531 	return true;
2532 }
2533 
2534 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2535 {
2536 	struct reclaim_state *reclaim_state = current->reclaim_state;
2537 	unsigned long nr_reclaimed, nr_scanned;
2538 	bool reclaimable = false;
2539 
2540 	do {
2541 		struct mem_cgroup *root = sc->target_mem_cgroup;
2542 		struct mem_cgroup_reclaim_cookie reclaim = {
2543 			.pgdat = pgdat,
2544 			.priority = sc->priority,
2545 		};
2546 		unsigned long node_lru_pages = 0;
2547 		struct mem_cgroup *memcg;
2548 
2549 		nr_reclaimed = sc->nr_reclaimed;
2550 		nr_scanned = sc->nr_scanned;
2551 
2552 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2553 		do {
2554 			unsigned long lru_pages;
2555 			unsigned long reclaimed;
2556 			unsigned long scanned;
2557 
2558 			if (mem_cgroup_low(root, memcg)) {
2559 				if (!sc->may_thrash)
2560 					continue;
2561 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2562 			}
2563 
2564 			reclaimed = sc->nr_reclaimed;
2565 			scanned = sc->nr_scanned;
2566 
2567 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2568 			node_lru_pages += lru_pages;
2569 
2570 			if (memcg)
2571 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2572 					    memcg, sc->nr_scanned - scanned,
2573 					    lru_pages);
2574 
2575 			/* Record the group's reclaim efficiency */
2576 			vmpressure(sc->gfp_mask, memcg, false,
2577 				   sc->nr_scanned - scanned,
2578 				   sc->nr_reclaimed - reclaimed);
2579 
2580 			/*
2581 			 * Direct reclaim and kswapd have to scan all memory
2582 			 * cgroups to fulfill the overall scan target for the
2583 			 * node.
2584 			 *
2585 			 * Limit reclaim, on the other hand, only cares about
2586 			 * nr_to_reclaim pages to be reclaimed and it will
2587 			 * retry with decreasing priority if one round over the
2588 			 * whole hierarchy is not sufficient.
2589 			 */
2590 			if (!global_reclaim(sc) &&
2591 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2592 				mem_cgroup_iter_break(root, memcg);
2593 				break;
2594 			}
2595 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2596 
2597 		/*
2598 		 * Shrink the slab caches in the same proportion that
2599 		 * the eligible LRU pages were scanned.
2600 		 */
2601 		if (global_reclaim(sc))
2602 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2603 				    sc->nr_scanned - nr_scanned,
2604 				    node_lru_pages);
2605 
2606 		if (reclaim_state) {
2607 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2608 			reclaim_state->reclaimed_slab = 0;
2609 		}
2610 
2611 		/* Record the subtree's reclaim efficiency */
2612 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2613 			   sc->nr_scanned - nr_scanned,
2614 			   sc->nr_reclaimed - nr_reclaimed);
2615 
2616 		if (sc->nr_reclaimed - nr_reclaimed)
2617 			reclaimable = true;
2618 
2619 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2620 					 sc->nr_scanned - nr_scanned, sc));
2621 
2622 	return reclaimable;
2623 }
2624 
2625 /*
2626  * Returns true if compaction should go ahead for a costly-order request, or
2627  * the allocation would already succeed without compaction. Return false if we
2628  * should reclaim first.
2629  */
2630 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2631 {
2632 	unsigned long watermark;
2633 	enum compact_result suitable;
2634 
2635 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2636 	if (suitable == COMPACT_SUCCESS)
2637 		/* Allocation should succeed already. Don't reclaim. */
2638 		return true;
2639 	if (suitable == COMPACT_SKIPPED)
2640 		/* Compaction cannot yet proceed. Do reclaim. */
2641 		return false;
2642 
2643 	/*
2644 	 * Compaction is already possible, but it takes time to run and there
2645 	 * are potentially other callers using the pages just freed. So proceed
2646 	 * with reclaim to make a buffer of free pages available to give
2647 	 * compaction a reasonable chance of completing and allocating the page.
2648 	 * Note that we won't actually reclaim the whole buffer in one attempt
2649 	 * as the target watermark in should_continue_reclaim() is lower. But if
2650 	 * we are already above the high+gap watermark, don't reclaim at all.
2651 	 */
2652 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2653 
2654 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2655 }
2656 
2657 /*
2658  * This is the direct reclaim path, for page-allocating processes.  We only
2659  * try to reclaim pages from zones which will satisfy the caller's allocation
2660  * request.
2661  *
2662  * If a zone is deemed to be full of pinned pages then just give it a light
2663  * scan then give up on it.
2664  */
2665 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2666 {
2667 	struct zoneref *z;
2668 	struct zone *zone;
2669 	unsigned long nr_soft_reclaimed;
2670 	unsigned long nr_soft_scanned;
2671 	gfp_t orig_mask;
2672 	pg_data_t *last_pgdat = NULL;
2673 
2674 	/*
2675 	 * If the number of buffer_heads in the machine exceeds the maximum
2676 	 * allowed level, force direct reclaim to scan the highmem zone as
2677 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2678 	 */
2679 	orig_mask = sc->gfp_mask;
2680 	if (buffer_heads_over_limit) {
2681 		sc->gfp_mask |= __GFP_HIGHMEM;
2682 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2683 	}
2684 
2685 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2686 					sc->reclaim_idx, sc->nodemask) {
2687 		/*
2688 		 * Take care memory controller reclaiming has small influence
2689 		 * to global LRU.
2690 		 */
2691 		if (global_reclaim(sc)) {
2692 			if (!cpuset_zone_allowed(zone,
2693 						 GFP_KERNEL | __GFP_HARDWALL))
2694 				continue;
2695 
2696 			if (sc->priority != DEF_PRIORITY &&
2697 			    !pgdat_reclaimable(zone->zone_pgdat))
2698 				continue;	/* Let kswapd poll it */
2699 
2700 			/*
2701 			 * If we already have plenty of memory free for
2702 			 * compaction in this zone, don't free any more.
2703 			 * Even though compaction is invoked for any
2704 			 * non-zero order, only frequent costly order
2705 			 * reclamation is disruptive enough to become a
2706 			 * noticeable problem, like transparent huge
2707 			 * page allocations.
2708 			 */
2709 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2710 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2711 			    compaction_ready(zone, sc)) {
2712 				sc->compaction_ready = true;
2713 				continue;
2714 			}
2715 
2716 			/*
2717 			 * Shrink each node in the zonelist once. If the
2718 			 * zonelist is ordered by zone (not the default) then a
2719 			 * node may be shrunk multiple times but in that case
2720 			 * the user prefers lower zones being preserved.
2721 			 */
2722 			if (zone->zone_pgdat == last_pgdat)
2723 				continue;
2724 
2725 			/*
2726 			 * This steals pages from memory cgroups over softlimit
2727 			 * and returns the number of reclaimed pages and
2728 			 * scanned pages. This works for global memory pressure
2729 			 * and balancing, not for a memcg's limit.
2730 			 */
2731 			nr_soft_scanned = 0;
2732 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2733 						sc->order, sc->gfp_mask,
2734 						&nr_soft_scanned);
2735 			sc->nr_reclaimed += nr_soft_reclaimed;
2736 			sc->nr_scanned += nr_soft_scanned;
2737 			/* need some check for avoid more shrink_zone() */
2738 		}
2739 
2740 		/* See comment about same check for global reclaim above */
2741 		if (zone->zone_pgdat == last_pgdat)
2742 			continue;
2743 		last_pgdat = zone->zone_pgdat;
2744 		shrink_node(zone->zone_pgdat, sc);
2745 	}
2746 
2747 	/*
2748 	 * Restore to original mask to avoid the impact on the caller if we
2749 	 * promoted it to __GFP_HIGHMEM.
2750 	 */
2751 	sc->gfp_mask = orig_mask;
2752 }
2753 
2754 /*
2755  * This is the main entry point to direct page reclaim.
2756  *
2757  * If a full scan of the inactive list fails to free enough memory then we
2758  * are "out of memory" and something needs to be killed.
2759  *
2760  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2761  * high - the zone may be full of dirty or under-writeback pages, which this
2762  * caller can't do much about.  We kick the writeback threads and take explicit
2763  * naps in the hope that some of these pages can be written.  But if the
2764  * allocating task holds filesystem locks which prevent writeout this might not
2765  * work, and the allocation attempt will fail.
2766  *
2767  * returns:	0, if no pages reclaimed
2768  * 		else, the number of pages reclaimed
2769  */
2770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2771 					  struct scan_control *sc)
2772 {
2773 	int initial_priority = sc->priority;
2774 retry:
2775 	delayacct_freepages_start();
2776 
2777 	if (global_reclaim(sc))
2778 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2779 
2780 	do {
2781 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2782 				sc->priority);
2783 		sc->nr_scanned = 0;
2784 		shrink_zones(zonelist, sc);
2785 
2786 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2787 			break;
2788 
2789 		if (sc->compaction_ready)
2790 			break;
2791 
2792 		/*
2793 		 * If we're getting trouble reclaiming, start doing
2794 		 * writepage even in laptop mode.
2795 		 */
2796 		if (sc->priority < DEF_PRIORITY - 2)
2797 			sc->may_writepage = 1;
2798 	} while (--sc->priority >= 0);
2799 
2800 	delayacct_freepages_end();
2801 
2802 	if (sc->nr_reclaimed)
2803 		return sc->nr_reclaimed;
2804 
2805 	/* Aborted reclaim to try compaction? don't OOM, then */
2806 	if (sc->compaction_ready)
2807 		return 1;
2808 
2809 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2810 	if (!sc->may_thrash) {
2811 		sc->priority = initial_priority;
2812 		sc->may_thrash = 1;
2813 		goto retry;
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2820 {
2821 	struct zone *zone;
2822 	unsigned long pfmemalloc_reserve = 0;
2823 	unsigned long free_pages = 0;
2824 	int i;
2825 	bool wmark_ok;
2826 
2827 	for (i = 0; i <= ZONE_NORMAL; i++) {
2828 		zone = &pgdat->node_zones[i];
2829 		if (!managed_zone(zone) ||
2830 		    pgdat_reclaimable_pages(pgdat) == 0)
2831 			continue;
2832 
2833 		pfmemalloc_reserve += min_wmark_pages(zone);
2834 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2835 	}
2836 
2837 	/* If there are no reserves (unexpected config) then do not throttle */
2838 	if (!pfmemalloc_reserve)
2839 		return true;
2840 
2841 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2842 
2843 	/* kswapd must be awake if processes are being throttled */
2844 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2845 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2846 						(enum zone_type)ZONE_NORMAL);
2847 		wake_up_interruptible(&pgdat->kswapd_wait);
2848 	}
2849 
2850 	return wmark_ok;
2851 }
2852 
2853 /*
2854  * Throttle direct reclaimers if backing storage is backed by the network
2855  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2856  * depleted. kswapd will continue to make progress and wake the processes
2857  * when the low watermark is reached.
2858  *
2859  * Returns true if a fatal signal was delivered during throttling. If this
2860  * happens, the page allocator should not consider triggering the OOM killer.
2861  */
2862 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2863 					nodemask_t *nodemask)
2864 {
2865 	struct zoneref *z;
2866 	struct zone *zone;
2867 	pg_data_t *pgdat = NULL;
2868 
2869 	/*
2870 	 * Kernel threads should not be throttled as they may be indirectly
2871 	 * responsible for cleaning pages necessary for reclaim to make forward
2872 	 * progress. kjournald for example may enter direct reclaim while
2873 	 * committing a transaction where throttling it could forcing other
2874 	 * processes to block on log_wait_commit().
2875 	 */
2876 	if (current->flags & PF_KTHREAD)
2877 		goto out;
2878 
2879 	/*
2880 	 * If a fatal signal is pending, this process should not throttle.
2881 	 * It should return quickly so it can exit and free its memory
2882 	 */
2883 	if (fatal_signal_pending(current))
2884 		goto out;
2885 
2886 	/*
2887 	 * Check if the pfmemalloc reserves are ok by finding the first node
2888 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2889 	 * GFP_KERNEL will be required for allocating network buffers when
2890 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2891 	 *
2892 	 * Throttling is based on the first usable node and throttled processes
2893 	 * wait on a queue until kswapd makes progress and wakes them. There
2894 	 * is an affinity then between processes waking up and where reclaim
2895 	 * progress has been made assuming the process wakes on the same node.
2896 	 * More importantly, processes running on remote nodes will not compete
2897 	 * for remote pfmemalloc reserves and processes on different nodes
2898 	 * should make reasonable progress.
2899 	 */
2900 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2901 					gfp_zone(gfp_mask), nodemask) {
2902 		if (zone_idx(zone) > ZONE_NORMAL)
2903 			continue;
2904 
2905 		/* Throttle based on the first usable node */
2906 		pgdat = zone->zone_pgdat;
2907 		if (pfmemalloc_watermark_ok(pgdat))
2908 			goto out;
2909 		break;
2910 	}
2911 
2912 	/* If no zone was usable by the allocation flags then do not throttle */
2913 	if (!pgdat)
2914 		goto out;
2915 
2916 	/* Account for the throttling */
2917 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2918 
2919 	/*
2920 	 * If the caller cannot enter the filesystem, it's possible that it
2921 	 * is due to the caller holding an FS lock or performing a journal
2922 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2923 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2924 	 * blocked waiting on the same lock. Instead, throttle for up to a
2925 	 * second before continuing.
2926 	 */
2927 	if (!(gfp_mask & __GFP_FS)) {
2928 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2929 			pfmemalloc_watermark_ok(pgdat), HZ);
2930 
2931 		goto check_pending;
2932 	}
2933 
2934 	/* Throttle until kswapd wakes the process */
2935 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2936 		pfmemalloc_watermark_ok(pgdat));
2937 
2938 check_pending:
2939 	if (fatal_signal_pending(current))
2940 		return true;
2941 
2942 out:
2943 	return false;
2944 }
2945 
2946 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2947 				gfp_t gfp_mask, nodemask_t *nodemask)
2948 {
2949 	unsigned long nr_reclaimed;
2950 	struct scan_control sc = {
2951 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2952 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2953 		.reclaim_idx = gfp_zone(gfp_mask),
2954 		.order = order,
2955 		.nodemask = nodemask,
2956 		.priority = DEF_PRIORITY,
2957 		.may_writepage = !laptop_mode,
2958 		.may_unmap = 1,
2959 		.may_swap = 1,
2960 	};
2961 
2962 	/*
2963 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2964 	 * 1 is returned so that the page allocator does not OOM kill at this
2965 	 * point.
2966 	 */
2967 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2968 		return 1;
2969 
2970 	trace_mm_vmscan_direct_reclaim_begin(order,
2971 				sc.may_writepage,
2972 				gfp_mask,
2973 				sc.reclaim_idx);
2974 
2975 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2976 
2977 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2978 
2979 	return nr_reclaimed;
2980 }
2981 
2982 #ifdef CONFIG_MEMCG
2983 
2984 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2985 						gfp_t gfp_mask, bool noswap,
2986 						pg_data_t *pgdat,
2987 						unsigned long *nr_scanned)
2988 {
2989 	struct scan_control sc = {
2990 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2991 		.target_mem_cgroup = memcg,
2992 		.may_writepage = !laptop_mode,
2993 		.may_unmap = 1,
2994 		.reclaim_idx = MAX_NR_ZONES - 1,
2995 		.may_swap = !noswap,
2996 	};
2997 	unsigned long lru_pages;
2998 
2999 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3000 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3001 
3002 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3003 						      sc.may_writepage,
3004 						      sc.gfp_mask,
3005 						      sc.reclaim_idx);
3006 
3007 	/*
3008 	 * NOTE: Although we can get the priority field, using it
3009 	 * here is not a good idea, since it limits the pages we can scan.
3010 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3011 	 * will pick up pages from other mem cgroup's as well. We hack
3012 	 * the priority and make it zero.
3013 	 */
3014 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3015 
3016 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3017 
3018 	*nr_scanned = sc.nr_scanned;
3019 	return sc.nr_reclaimed;
3020 }
3021 
3022 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3023 					   unsigned long nr_pages,
3024 					   gfp_t gfp_mask,
3025 					   bool may_swap)
3026 {
3027 	struct zonelist *zonelist;
3028 	unsigned long nr_reclaimed;
3029 	int nid;
3030 	struct scan_control sc = {
3031 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3032 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3033 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3034 		.reclaim_idx = MAX_NR_ZONES - 1,
3035 		.target_mem_cgroup = memcg,
3036 		.priority = DEF_PRIORITY,
3037 		.may_writepage = !laptop_mode,
3038 		.may_unmap = 1,
3039 		.may_swap = may_swap,
3040 	};
3041 
3042 	/*
3043 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3044 	 * take care of from where we get pages. So the node where we start the
3045 	 * scan does not need to be the current node.
3046 	 */
3047 	nid = mem_cgroup_select_victim_node(memcg);
3048 
3049 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3050 
3051 	trace_mm_vmscan_memcg_reclaim_begin(0,
3052 					    sc.may_writepage,
3053 					    sc.gfp_mask,
3054 					    sc.reclaim_idx);
3055 
3056 	current->flags |= PF_MEMALLOC;
3057 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3058 	current->flags &= ~PF_MEMALLOC;
3059 
3060 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3061 
3062 	return nr_reclaimed;
3063 }
3064 #endif
3065 
3066 static void age_active_anon(struct pglist_data *pgdat,
3067 				struct scan_control *sc)
3068 {
3069 	struct mem_cgroup *memcg;
3070 
3071 	if (!total_swap_pages)
3072 		return;
3073 
3074 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3075 	do {
3076 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3077 
3078 		if (inactive_list_is_low(lruvec, false, sc, true))
3079 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3080 					   sc, LRU_ACTIVE_ANON);
3081 
3082 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3083 	} while (memcg);
3084 }
3085 
3086 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3087 {
3088 	unsigned long mark = high_wmark_pages(zone);
3089 
3090 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3091 		return false;
3092 
3093 	/*
3094 	 * If any eligible zone is balanced then the node is not considered
3095 	 * to be congested or dirty
3096 	 */
3097 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3098 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3099 	clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3100 
3101 	return true;
3102 }
3103 
3104 /*
3105  * Prepare kswapd for sleeping. This verifies that there are no processes
3106  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3107  *
3108  * Returns true if kswapd is ready to sleep
3109  */
3110 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3111 {
3112 	int i;
3113 
3114 	/*
3115 	 * The throttled processes are normally woken up in balance_pgdat() as
3116 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3117 	 * race between when kswapd checks the watermarks and a process gets
3118 	 * throttled. There is also a potential race if processes get
3119 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3120 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3121 	 * the wake up checks. If kswapd is going to sleep, no process should
3122 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3123 	 * the wake up is premature, processes will wake kswapd and get
3124 	 * throttled again. The difference from wake ups in balance_pgdat() is
3125 	 * that here we are under prepare_to_wait().
3126 	 */
3127 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3128 		wake_up_all(&pgdat->pfmemalloc_wait);
3129 
3130 	for (i = 0; i <= classzone_idx; i++) {
3131 		struct zone *zone = pgdat->node_zones + i;
3132 
3133 		if (!managed_zone(zone))
3134 			continue;
3135 
3136 		if (!zone_balanced(zone, order, classzone_idx))
3137 			return false;
3138 	}
3139 
3140 	return true;
3141 }
3142 
3143 /*
3144  * kswapd shrinks a node of pages that are at or below the highest usable
3145  * zone that is currently unbalanced.
3146  *
3147  * Returns true if kswapd scanned at least the requested number of pages to
3148  * reclaim or if the lack of progress was due to pages under writeback.
3149  * This is used to determine if the scanning priority needs to be raised.
3150  */
3151 static bool kswapd_shrink_node(pg_data_t *pgdat,
3152 			       struct scan_control *sc)
3153 {
3154 	struct zone *zone;
3155 	int z;
3156 
3157 	/* Reclaim a number of pages proportional to the number of zones */
3158 	sc->nr_to_reclaim = 0;
3159 	for (z = 0; z <= sc->reclaim_idx; z++) {
3160 		zone = pgdat->node_zones + z;
3161 		if (!managed_zone(zone))
3162 			continue;
3163 
3164 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3165 	}
3166 
3167 	/*
3168 	 * Historically care was taken to put equal pressure on all zones but
3169 	 * now pressure is applied based on node LRU order.
3170 	 */
3171 	shrink_node(pgdat, sc);
3172 
3173 	/*
3174 	 * Fragmentation may mean that the system cannot be rebalanced for
3175 	 * high-order allocations. If twice the allocation size has been
3176 	 * reclaimed then recheck watermarks only at order-0 to prevent
3177 	 * excessive reclaim. Assume that a process requested a high-order
3178 	 * can direct reclaim/compact.
3179 	 */
3180 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3181 		sc->order = 0;
3182 
3183 	return sc->nr_scanned >= sc->nr_to_reclaim;
3184 }
3185 
3186 /*
3187  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3188  * that are eligible for use by the caller until at least one zone is
3189  * balanced.
3190  *
3191  * Returns the order kswapd finished reclaiming at.
3192  *
3193  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3194  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3195  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3196  * or lower is eligible for reclaim until at least one usable zone is
3197  * balanced.
3198  */
3199 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3200 {
3201 	int i;
3202 	unsigned long nr_soft_reclaimed;
3203 	unsigned long nr_soft_scanned;
3204 	struct zone *zone;
3205 	struct scan_control sc = {
3206 		.gfp_mask = GFP_KERNEL,
3207 		.order = order,
3208 		.priority = DEF_PRIORITY,
3209 		.may_writepage = !laptop_mode,
3210 		.may_unmap = 1,
3211 		.may_swap = 1,
3212 	};
3213 	count_vm_event(PAGEOUTRUN);
3214 
3215 	do {
3216 		bool raise_priority = true;
3217 
3218 		sc.nr_reclaimed = 0;
3219 		sc.reclaim_idx = classzone_idx;
3220 
3221 		/*
3222 		 * If the number of buffer_heads exceeds the maximum allowed
3223 		 * then consider reclaiming from all zones. This has a dual
3224 		 * purpose -- on 64-bit systems it is expected that
3225 		 * buffer_heads are stripped during active rotation. On 32-bit
3226 		 * systems, highmem pages can pin lowmem memory and shrinking
3227 		 * buffers can relieve lowmem pressure. Reclaim may still not
3228 		 * go ahead if all eligible zones for the original allocation
3229 		 * request are balanced to avoid excessive reclaim from kswapd.
3230 		 */
3231 		if (buffer_heads_over_limit) {
3232 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3233 				zone = pgdat->node_zones + i;
3234 				if (!managed_zone(zone))
3235 					continue;
3236 
3237 				sc.reclaim_idx = i;
3238 				break;
3239 			}
3240 		}
3241 
3242 		/*
3243 		 * Only reclaim if there are no eligible zones. Check from
3244 		 * high to low zone as allocations prefer higher zones.
3245 		 * Scanning from low to high zone would allow congestion to be
3246 		 * cleared during a very small window when a small low
3247 		 * zone was balanced even under extreme pressure when the
3248 		 * overall node may be congested. Note that sc.reclaim_idx
3249 		 * is not used as buffer_heads_over_limit may have adjusted
3250 		 * it.
3251 		 */
3252 		for (i = classzone_idx; i >= 0; i--) {
3253 			zone = pgdat->node_zones + i;
3254 			if (!managed_zone(zone))
3255 				continue;
3256 
3257 			if (zone_balanced(zone, sc.order, classzone_idx))
3258 				goto out;
3259 		}
3260 
3261 		/*
3262 		 * Do some background aging of the anon list, to give
3263 		 * pages a chance to be referenced before reclaiming. All
3264 		 * pages are rotated regardless of classzone as this is
3265 		 * about consistent aging.
3266 		 */
3267 		age_active_anon(pgdat, &sc);
3268 
3269 		/*
3270 		 * If we're getting trouble reclaiming, start doing writepage
3271 		 * even in laptop mode.
3272 		 */
3273 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3274 			sc.may_writepage = 1;
3275 
3276 		/* Call soft limit reclaim before calling shrink_node. */
3277 		sc.nr_scanned = 0;
3278 		nr_soft_scanned = 0;
3279 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3280 						sc.gfp_mask, &nr_soft_scanned);
3281 		sc.nr_reclaimed += nr_soft_reclaimed;
3282 
3283 		/*
3284 		 * There should be no need to raise the scanning priority if
3285 		 * enough pages are already being scanned that that high
3286 		 * watermark would be met at 100% efficiency.
3287 		 */
3288 		if (kswapd_shrink_node(pgdat, &sc))
3289 			raise_priority = false;
3290 
3291 		/*
3292 		 * If the low watermark is met there is no need for processes
3293 		 * to be throttled on pfmemalloc_wait as they should not be
3294 		 * able to safely make forward progress. Wake them
3295 		 */
3296 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3297 				pfmemalloc_watermark_ok(pgdat))
3298 			wake_up_all(&pgdat->pfmemalloc_wait);
3299 
3300 		/* Check if kswapd should be suspending */
3301 		if (try_to_freeze() || kthread_should_stop())
3302 			break;
3303 
3304 		/*
3305 		 * Raise priority if scanning rate is too low or there was no
3306 		 * progress in reclaiming pages
3307 		 */
3308 		if (raise_priority || !sc.nr_reclaimed)
3309 			sc.priority--;
3310 	} while (sc.priority >= 1);
3311 
3312 out:
3313 	/*
3314 	 * Return the order kswapd stopped reclaiming at as
3315 	 * prepare_kswapd_sleep() takes it into account. If another caller
3316 	 * entered the allocator slow path while kswapd was awake, order will
3317 	 * remain at the higher level.
3318 	 */
3319 	return sc.order;
3320 }
3321 
3322 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3323 				unsigned int classzone_idx)
3324 {
3325 	long remaining = 0;
3326 	DEFINE_WAIT(wait);
3327 
3328 	if (freezing(current) || kthread_should_stop())
3329 		return;
3330 
3331 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3332 
3333 	/* Try to sleep for a short interval */
3334 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3335 		/*
3336 		 * Compaction records what page blocks it recently failed to
3337 		 * isolate pages from and skips them in the future scanning.
3338 		 * When kswapd is going to sleep, it is reasonable to assume
3339 		 * that pages and compaction may succeed so reset the cache.
3340 		 */
3341 		reset_isolation_suitable(pgdat);
3342 
3343 		/*
3344 		 * We have freed the memory, now we should compact it to make
3345 		 * allocation of the requested order possible.
3346 		 */
3347 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3348 
3349 		remaining = schedule_timeout(HZ/10);
3350 
3351 		/*
3352 		 * If woken prematurely then reset kswapd_classzone_idx and
3353 		 * order. The values will either be from a wakeup request or
3354 		 * the previous request that slept prematurely.
3355 		 */
3356 		if (remaining) {
3357 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3358 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3359 		}
3360 
3361 		finish_wait(&pgdat->kswapd_wait, &wait);
3362 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3363 	}
3364 
3365 	/*
3366 	 * After a short sleep, check if it was a premature sleep. If not, then
3367 	 * go fully to sleep until explicitly woken up.
3368 	 */
3369 	if (!remaining &&
3370 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3371 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3372 
3373 		/*
3374 		 * vmstat counters are not perfectly accurate and the estimated
3375 		 * value for counters such as NR_FREE_PAGES can deviate from the
3376 		 * true value by nr_online_cpus * threshold. To avoid the zone
3377 		 * watermarks being breached while under pressure, we reduce the
3378 		 * per-cpu vmstat threshold while kswapd is awake and restore
3379 		 * them before going back to sleep.
3380 		 */
3381 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3382 
3383 		if (!kthread_should_stop())
3384 			schedule();
3385 
3386 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3387 	} else {
3388 		if (remaining)
3389 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3390 		else
3391 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3392 	}
3393 	finish_wait(&pgdat->kswapd_wait, &wait);
3394 }
3395 
3396 /*
3397  * The background pageout daemon, started as a kernel thread
3398  * from the init process.
3399  *
3400  * This basically trickles out pages so that we have _some_
3401  * free memory available even if there is no other activity
3402  * that frees anything up. This is needed for things like routing
3403  * etc, where we otherwise might have all activity going on in
3404  * asynchronous contexts that cannot page things out.
3405  *
3406  * If there are applications that are active memory-allocators
3407  * (most normal use), this basically shouldn't matter.
3408  */
3409 static int kswapd(void *p)
3410 {
3411 	unsigned int alloc_order, reclaim_order, classzone_idx;
3412 	pg_data_t *pgdat = (pg_data_t*)p;
3413 	struct task_struct *tsk = current;
3414 
3415 	struct reclaim_state reclaim_state = {
3416 		.reclaimed_slab = 0,
3417 	};
3418 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3419 
3420 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3421 
3422 	if (!cpumask_empty(cpumask))
3423 		set_cpus_allowed_ptr(tsk, cpumask);
3424 	current->reclaim_state = &reclaim_state;
3425 
3426 	/*
3427 	 * Tell the memory management that we're a "memory allocator",
3428 	 * and that if we need more memory we should get access to it
3429 	 * regardless (see "__alloc_pages()"). "kswapd" should
3430 	 * never get caught in the normal page freeing logic.
3431 	 *
3432 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3433 	 * you need a small amount of memory in order to be able to
3434 	 * page out something else, and this flag essentially protects
3435 	 * us from recursively trying to free more memory as we're
3436 	 * trying to free the first piece of memory in the first place).
3437 	 */
3438 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3439 	set_freezable();
3440 
3441 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3442 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3443 	for ( ; ; ) {
3444 		bool ret;
3445 
3446 kswapd_try_sleep:
3447 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3448 					classzone_idx);
3449 
3450 		/* Read the new order and classzone_idx */
3451 		alloc_order = reclaim_order = pgdat->kswapd_order;
3452 		classzone_idx = pgdat->kswapd_classzone_idx;
3453 		pgdat->kswapd_order = 0;
3454 		pgdat->kswapd_classzone_idx = 0;
3455 
3456 		ret = try_to_freeze();
3457 		if (kthread_should_stop())
3458 			break;
3459 
3460 		/*
3461 		 * We can speed up thawing tasks if we don't call balance_pgdat
3462 		 * after returning from the refrigerator
3463 		 */
3464 		if (ret)
3465 			continue;
3466 
3467 		/*
3468 		 * Reclaim begins at the requested order but if a high-order
3469 		 * reclaim fails then kswapd falls back to reclaiming for
3470 		 * order-0. If that happens, kswapd will consider sleeping
3471 		 * for the order it finished reclaiming at (reclaim_order)
3472 		 * but kcompactd is woken to compact for the original
3473 		 * request (alloc_order).
3474 		 */
3475 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3476 						alloc_order);
3477 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3478 		if (reclaim_order < alloc_order)
3479 			goto kswapd_try_sleep;
3480 
3481 		alloc_order = reclaim_order = pgdat->kswapd_order;
3482 		classzone_idx = pgdat->kswapd_classzone_idx;
3483 	}
3484 
3485 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3486 	current->reclaim_state = NULL;
3487 	lockdep_clear_current_reclaim_state();
3488 
3489 	return 0;
3490 }
3491 
3492 /*
3493  * A zone is low on free memory, so wake its kswapd task to service it.
3494  */
3495 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3496 {
3497 	pg_data_t *pgdat;
3498 	int z;
3499 
3500 	if (!managed_zone(zone))
3501 		return;
3502 
3503 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3504 		return;
3505 	pgdat = zone->zone_pgdat;
3506 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3507 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3508 	if (!waitqueue_active(&pgdat->kswapd_wait))
3509 		return;
3510 
3511 	/* Only wake kswapd if all zones are unbalanced */
3512 	for (z = 0; z <= classzone_idx; z++) {
3513 		zone = pgdat->node_zones + z;
3514 		if (!managed_zone(zone))
3515 			continue;
3516 
3517 		if (zone_balanced(zone, order, classzone_idx))
3518 			return;
3519 	}
3520 
3521 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3522 	wake_up_interruptible(&pgdat->kswapd_wait);
3523 }
3524 
3525 #ifdef CONFIG_HIBERNATION
3526 /*
3527  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3528  * freed pages.
3529  *
3530  * Rather than trying to age LRUs the aim is to preserve the overall
3531  * LRU order by reclaiming preferentially
3532  * inactive > active > active referenced > active mapped
3533  */
3534 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3535 {
3536 	struct reclaim_state reclaim_state;
3537 	struct scan_control sc = {
3538 		.nr_to_reclaim = nr_to_reclaim,
3539 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3540 		.reclaim_idx = MAX_NR_ZONES - 1,
3541 		.priority = DEF_PRIORITY,
3542 		.may_writepage = 1,
3543 		.may_unmap = 1,
3544 		.may_swap = 1,
3545 		.hibernation_mode = 1,
3546 	};
3547 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3548 	struct task_struct *p = current;
3549 	unsigned long nr_reclaimed;
3550 
3551 	p->flags |= PF_MEMALLOC;
3552 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3553 	reclaim_state.reclaimed_slab = 0;
3554 	p->reclaim_state = &reclaim_state;
3555 
3556 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3557 
3558 	p->reclaim_state = NULL;
3559 	lockdep_clear_current_reclaim_state();
3560 	p->flags &= ~PF_MEMALLOC;
3561 
3562 	return nr_reclaimed;
3563 }
3564 #endif /* CONFIG_HIBERNATION */
3565 
3566 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3567    not required for correctness.  So if the last cpu in a node goes
3568    away, we get changed to run anywhere: as the first one comes back,
3569    restore their cpu bindings. */
3570 static int kswapd_cpu_online(unsigned int cpu)
3571 {
3572 	int nid;
3573 
3574 	for_each_node_state(nid, N_MEMORY) {
3575 		pg_data_t *pgdat = NODE_DATA(nid);
3576 		const struct cpumask *mask;
3577 
3578 		mask = cpumask_of_node(pgdat->node_id);
3579 
3580 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3581 			/* One of our CPUs online: restore mask */
3582 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3583 	}
3584 	return 0;
3585 }
3586 
3587 /*
3588  * This kswapd start function will be called by init and node-hot-add.
3589  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3590  */
3591 int kswapd_run(int nid)
3592 {
3593 	pg_data_t *pgdat = NODE_DATA(nid);
3594 	int ret = 0;
3595 
3596 	if (pgdat->kswapd)
3597 		return 0;
3598 
3599 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3600 	if (IS_ERR(pgdat->kswapd)) {
3601 		/* failure at boot is fatal */
3602 		BUG_ON(system_state == SYSTEM_BOOTING);
3603 		pr_err("Failed to start kswapd on node %d\n", nid);
3604 		ret = PTR_ERR(pgdat->kswapd);
3605 		pgdat->kswapd = NULL;
3606 	}
3607 	return ret;
3608 }
3609 
3610 /*
3611  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3612  * hold mem_hotplug_begin/end().
3613  */
3614 void kswapd_stop(int nid)
3615 {
3616 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3617 
3618 	if (kswapd) {
3619 		kthread_stop(kswapd);
3620 		NODE_DATA(nid)->kswapd = NULL;
3621 	}
3622 }
3623 
3624 static int __init kswapd_init(void)
3625 {
3626 	int nid, ret;
3627 
3628 	swap_setup();
3629 	for_each_node_state(nid, N_MEMORY)
3630  		kswapd_run(nid);
3631 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3632 					"mm/vmscan:online", kswapd_cpu_online,
3633 					NULL);
3634 	WARN_ON(ret < 0);
3635 	return 0;
3636 }
3637 
3638 module_init(kswapd_init)
3639 
3640 #ifdef CONFIG_NUMA
3641 /*
3642  * Node reclaim mode
3643  *
3644  * If non-zero call node_reclaim when the number of free pages falls below
3645  * the watermarks.
3646  */
3647 int node_reclaim_mode __read_mostly;
3648 
3649 #define RECLAIM_OFF 0
3650 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3651 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3652 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3653 
3654 /*
3655  * Priority for NODE_RECLAIM. This determines the fraction of pages
3656  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3657  * a zone.
3658  */
3659 #define NODE_RECLAIM_PRIORITY 4
3660 
3661 /*
3662  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3663  * occur.
3664  */
3665 int sysctl_min_unmapped_ratio = 1;
3666 
3667 /*
3668  * If the number of slab pages in a zone grows beyond this percentage then
3669  * slab reclaim needs to occur.
3670  */
3671 int sysctl_min_slab_ratio = 5;
3672 
3673 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3674 {
3675 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3676 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3677 		node_page_state(pgdat, NR_ACTIVE_FILE);
3678 
3679 	/*
3680 	 * It's possible for there to be more file mapped pages than
3681 	 * accounted for by the pages on the file LRU lists because
3682 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3683 	 */
3684 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3685 }
3686 
3687 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3688 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3689 {
3690 	unsigned long nr_pagecache_reclaimable;
3691 	unsigned long delta = 0;
3692 
3693 	/*
3694 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3695 	 * potentially reclaimable. Otherwise, we have to worry about
3696 	 * pages like swapcache and node_unmapped_file_pages() provides
3697 	 * a better estimate
3698 	 */
3699 	if (node_reclaim_mode & RECLAIM_UNMAP)
3700 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3701 	else
3702 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3703 
3704 	/* If we can't clean pages, remove dirty pages from consideration */
3705 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3706 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3707 
3708 	/* Watch for any possible underflows due to delta */
3709 	if (unlikely(delta > nr_pagecache_reclaimable))
3710 		delta = nr_pagecache_reclaimable;
3711 
3712 	return nr_pagecache_reclaimable - delta;
3713 }
3714 
3715 /*
3716  * Try to free up some pages from this node through reclaim.
3717  */
3718 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3719 {
3720 	/* Minimum pages needed in order to stay on node */
3721 	const unsigned long nr_pages = 1 << order;
3722 	struct task_struct *p = current;
3723 	struct reclaim_state reclaim_state;
3724 	int classzone_idx = gfp_zone(gfp_mask);
3725 	struct scan_control sc = {
3726 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3727 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3728 		.order = order,
3729 		.priority = NODE_RECLAIM_PRIORITY,
3730 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3731 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3732 		.may_swap = 1,
3733 		.reclaim_idx = classzone_idx,
3734 	};
3735 
3736 	cond_resched();
3737 	/*
3738 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3739 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3740 	 * and RECLAIM_UNMAP.
3741 	 */
3742 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3743 	lockdep_set_current_reclaim_state(gfp_mask);
3744 	reclaim_state.reclaimed_slab = 0;
3745 	p->reclaim_state = &reclaim_state;
3746 
3747 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3748 		/*
3749 		 * Free memory by calling shrink zone with increasing
3750 		 * priorities until we have enough memory freed.
3751 		 */
3752 		do {
3753 			shrink_node(pgdat, &sc);
3754 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3755 	}
3756 
3757 	p->reclaim_state = NULL;
3758 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3759 	lockdep_clear_current_reclaim_state();
3760 	return sc.nr_reclaimed >= nr_pages;
3761 }
3762 
3763 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3764 {
3765 	int ret;
3766 
3767 	/*
3768 	 * Node reclaim reclaims unmapped file backed pages and
3769 	 * slab pages if we are over the defined limits.
3770 	 *
3771 	 * A small portion of unmapped file backed pages is needed for
3772 	 * file I/O otherwise pages read by file I/O will be immediately
3773 	 * thrown out if the node is overallocated. So we do not reclaim
3774 	 * if less than a specified percentage of the node is used by
3775 	 * unmapped file backed pages.
3776 	 */
3777 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3778 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3779 		return NODE_RECLAIM_FULL;
3780 
3781 	if (!pgdat_reclaimable(pgdat))
3782 		return NODE_RECLAIM_FULL;
3783 
3784 	/*
3785 	 * Do not scan if the allocation should not be delayed.
3786 	 */
3787 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3788 		return NODE_RECLAIM_NOSCAN;
3789 
3790 	/*
3791 	 * Only run node reclaim on the local node or on nodes that do not
3792 	 * have associated processors. This will favor the local processor
3793 	 * over remote processors and spread off node memory allocations
3794 	 * as wide as possible.
3795 	 */
3796 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3797 		return NODE_RECLAIM_NOSCAN;
3798 
3799 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3800 		return NODE_RECLAIM_NOSCAN;
3801 
3802 	ret = __node_reclaim(pgdat, gfp_mask, order);
3803 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3804 
3805 	if (!ret)
3806 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3807 
3808 	return ret;
3809 }
3810 #endif
3811 
3812 /*
3813  * page_evictable - test whether a page is evictable
3814  * @page: the page to test
3815  *
3816  * Test whether page is evictable--i.e., should be placed on active/inactive
3817  * lists vs unevictable list.
3818  *
3819  * Reasons page might not be evictable:
3820  * (1) page's mapping marked unevictable
3821  * (2) page is part of an mlocked VMA
3822  *
3823  */
3824 int page_evictable(struct page *page)
3825 {
3826 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3827 }
3828 
3829 #ifdef CONFIG_SHMEM
3830 /**
3831  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3832  * @pages:	array of pages to check
3833  * @nr_pages:	number of pages to check
3834  *
3835  * Checks pages for evictability and moves them to the appropriate lru list.
3836  *
3837  * This function is only used for SysV IPC SHM_UNLOCK.
3838  */
3839 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3840 {
3841 	struct lruvec *lruvec;
3842 	struct pglist_data *pgdat = NULL;
3843 	int pgscanned = 0;
3844 	int pgrescued = 0;
3845 	int i;
3846 
3847 	for (i = 0; i < nr_pages; i++) {
3848 		struct page *page = pages[i];
3849 		struct pglist_data *pagepgdat = page_pgdat(page);
3850 
3851 		pgscanned++;
3852 		if (pagepgdat != pgdat) {
3853 			if (pgdat)
3854 				spin_unlock_irq(&pgdat->lru_lock);
3855 			pgdat = pagepgdat;
3856 			spin_lock_irq(&pgdat->lru_lock);
3857 		}
3858 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3859 
3860 		if (!PageLRU(page) || !PageUnevictable(page))
3861 			continue;
3862 
3863 		if (page_evictable(page)) {
3864 			enum lru_list lru = page_lru_base_type(page);
3865 
3866 			VM_BUG_ON_PAGE(PageActive(page), page);
3867 			ClearPageUnevictable(page);
3868 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3869 			add_page_to_lru_list(page, lruvec, lru);
3870 			pgrescued++;
3871 		}
3872 	}
3873 
3874 	if (pgdat) {
3875 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3876 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3877 		spin_unlock_irq(&pgdat->lru_lock);
3878 	}
3879 }
3880 #endif /* CONFIG_SHMEM */
3881