1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 /* The highest zone to isolate pages for reclaim from */ 88 enum zone_type reclaim_idx; 89 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* Can cgroups be reclaimed below their normal consumption range? */ 99 unsigned int may_thrash:1; 100 101 unsigned int hibernation_mode:1; 102 103 /* One of the zones is ready for compaction */ 104 unsigned int compaction_ready:1; 105 106 /* Incremented by the number of inactive pages that were scanned */ 107 unsigned long nr_scanned; 108 109 /* Number of pages freed so far during a call to shrink_zones() */ 110 unsigned long nr_reclaimed; 111 }; 112 113 #ifdef ARCH_HAS_PREFETCH 114 #define prefetch_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetch(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 #ifdef ARCH_HAS_PREFETCHW 128 #define prefetchw_prev_lru_page(_page, _base, _field) \ 129 do { \ 130 if ((_page)->lru.prev != _base) { \ 131 struct page *prev; \ 132 \ 133 prev = lru_to_page(&(_page->lru)); \ 134 prefetchw(&prev->_field); \ 135 } \ 136 } while (0) 137 #else 138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 139 #endif 140 141 /* 142 * From 0 .. 100. Higher means more swappy. 143 */ 144 int vm_swappiness = 60; 145 /* 146 * The total number of pages which are beyond the high watermark within all 147 * zones. 148 */ 149 unsigned long vm_total_pages; 150 151 static LIST_HEAD(shrinker_list); 152 static DECLARE_RWSEM(shrinker_rwsem); 153 154 #ifdef CONFIG_MEMCG 155 static bool global_reclaim(struct scan_control *sc) 156 { 157 return !sc->target_mem_cgroup; 158 } 159 160 /** 161 * sane_reclaim - is the usual dirty throttling mechanism operational? 162 * @sc: scan_control in question 163 * 164 * The normal page dirty throttling mechanism in balance_dirty_pages() is 165 * completely broken with the legacy memcg and direct stalling in 166 * shrink_page_list() is used for throttling instead, which lacks all the 167 * niceties such as fairness, adaptive pausing, bandwidth proportional 168 * allocation and configurability. 169 * 170 * This function tests whether the vmscan currently in progress can assume 171 * that the normal dirty throttling mechanism is operational. 172 */ 173 static bool sane_reclaim(struct scan_control *sc) 174 { 175 struct mem_cgroup *memcg = sc->target_mem_cgroup; 176 177 if (!memcg) 178 return true; 179 #ifdef CONFIG_CGROUP_WRITEBACK 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 181 return true; 182 #endif 183 return false; 184 } 185 #else 186 static bool global_reclaim(struct scan_control *sc) 187 { 188 return true; 189 } 190 191 static bool sane_reclaim(struct scan_control *sc) 192 { 193 return true; 194 } 195 #endif 196 197 /* 198 * This misses isolated pages which are not accounted for to save counters. 199 * As the data only determines if reclaim or compaction continues, it is 200 * not expected that isolated pages will be a dominating factor. 201 */ 202 unsigned long zone_reclaimable_pages(struct zone *zone) 203 { 204 unsigned long nr; 205 206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 208 if (get_nr_swap_pages() > 0) 209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 211 212 return nr; 213 } 214 215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 216 { 217 unsigned long nr; 218 219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 222 223 if (get_nr_swap_pages() > 0) 224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 227 228 return nr; 229 } 230 231 bool pgdat_reclaimable(struct pglist_data *pgdat) 232 { 233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) < 234 pgdat_reclaimable_pages(pgdat) * 6; 235 } 236 237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 238 { 239 if (!mem_cgroup_disabled()) 240 return mem_cgroup_get_lru_size(lruvec, lru); 241 242 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 243 } 244 245 unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, 246 int zone_idx) 247 { 248 if (!mem_cgroup_disabled()) 249 return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx); 250 251 return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx], 252 NR_ZONE_LRU_BASE + lru); 253 } 254 255 /* 256 * Add a shrinker callback to be called from the vm. 257 */ 258 int register_shrinker(struct shrinker *shrinker) 259 { 260 size_t size = sizeof(*shrinker->nr_deferred); 261 262 if (shrinker->flags & SHRINKER_NUMA_AWARE) 263 size *= nr_node_ids; 264 265 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 266 if (!shrinker->nr_deferred) 267 return -ENOMEM; 268 269 down_write(&shrinker_rwsem); 270 list_add_tail(&shrinker->list, &shrinker_list); 271 up_write(&shrinker_rwsem); 272 return 0; 273 } 274 EXPORT_SYMBOL(register_shrinker); 275 276 /* 277 * Remove one 278 */ 279 void unregister_shrinker(struct shrinker *shrinker) 280 { 281 down_write(&shrinker_rwsem); 282 list_del(&shrinker->list); 283 up_write(&shrinker_rwsem); 284 kfree(shrinker->nr_deferred); 285 } 286 EXPORT_SYMBOL(unregister_shrinker); 287 288 #define SHRINK_BATCH 128 289 290 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 291 struct shrinker *shrinker, 292 unsigned long nr_scanned, 293 unsigned long nr_eligible) 294 { 295 unsigned long freed = 0; 296 unsigned long long delta; 297 long total_scan; 298 long freeable; 299 long nr; 300 long new_nr; 301 int nid = shrinkctl->nid; 302 long batch_size = shrinker->batch ? shrinker->batch 303 : SHRINK_BATCH; 304 long scanned = 0, next_deferred; 305 306 freeable = shrinker->count_objects(shrinker, shrinkctl); 307 if (freeable == 0) 308 return 0; 309 310 /* 311 * copy the current shrinker scan count into a local variable 312 * and zero it so that other concurrent shrinker invocations 313 * don't also do this scanning work. 314 */ 315 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 316 317 total_scan = nr; 318 delta = (4 * nr_scanned) / shrinker->seeks; 319 delta *= freeable; 320 do_div(delta, nr_eligible + 1); 321 total_scan += delta; 322 if (total_scan < 0) { 323 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 324 shrinker->scan_objects, total_scan); 325 total_scan = freeable; 326 next_deferred = nr; 327 } else 328 next_deferred = total_scan; 329 330 /* 331 * We need to avoid excessive windup on filesystem shrinkers 332 * due to large numbers of GFP_NOFS allocations causing the 333 * shrinkers to return -1 all the time. This results in a large 334 * nr being built up so when a shrink that can do some work 335 * comes along it empties the entire cache due to nr >>> 336 * freeable. This is bad for sustaining a working set in 337 * memory. 338 * 339 * Hence only allow the shrinker to scan the entire cache when 340 * a large delta change is calculated directly. 341 */ 342 if (delta < freeable / 4) 343 total_scan = min(total_scan, freeable / 2); 344 345 /* 346 * Avoid risking looping forever due to too large nr value: 347 * never try to free more than twice the estimate number of 348 * freeable entries. 349 */ 350 if (total_scan > freeable * 2) 351 total_scan = freeable * 2; 352 353 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 354 nr_scanned, nr_eligible, 355 freeable, delta, total_scan); 356 357 /* 358 * Normally, we should not scan less than batch_size objects in one 359 * pass to avoid too frequent shrinker calls, but if the slab has less 360 * than batch_size objects in total and we are really tight on memory, 361 * we will try to reclaim all available objects, otherwise we can end 362 * up failing allocations although there are plenty of reclaimable 363 * objects spread over several slabs with usage less than the 364 * batch_size. 365 * 366 * We detect the "tight on memory" situations by looking at the total 367 * number of objects we want to scan (total_scan). If it is greater 368 * than the total number of objects on slab (freeable), we must be 369 * scanning at high prio and therefore should try to reclaim as much as 370 * possible. 371 */ 372 while (total_scan >= batch_size || 373 total_scan >= freeable) { 374 unsigned long ret; 375 unsigned long nr_to_scan = min(batch_size, total_scan); 376 377 shrinkctl->nr_to_scan = nr_to_scan; 378 ret = shrinker->scan_objects(shrinker, shrinkctl); 379 if (ret == SHRINK_STOP) 380 break; 381 freed += ret; 382 383 count_vm_events(SLABS_SCANNED, nr_to_scan); 384 total_scan -= nr_to_scan; 385 scanned += nr_to_scan; 386 387 cond_resched(); 388 } 389 390 if (next_deferred >= scanned) 391 next_deferred -= scanned; 392 else 393 next_deferred = 0; 394 /* 395 * move the unused scan count back into the shrinker in a 396 * manner that handles concurrent updates. If we exhausted the 397 * scan, there is no need to do an update. 398 */ 399 if (next_deferred > 0) 400 new_nr = atomic_long_add_return(next_deferred, 401 &shrinker->nr_deferred[nid]); 402 else 403 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 404 405 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 406 return freed; 407 } 408 409 /** 410 * shrink_slab - shrink slab caches 411 * @gfp_mask: allocation context 412 * @nid: node whose slab caches to target 413 * @memcg: memory cgroup whose slab caches to target 414 * @nr_scanned: pressure numerator 415 * @nr_eligible: pressure denominator 416 * 417 * Call the shrink functions to age shrinkable caches. 418 * 419 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 420 * unaware shrinkers will receive a node id of 0 instead. 421 * 422 * @memcg specifies the memory cgroup to target. If it is not NULL, 423 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 424 * objects from the memory cgroup specified. Otherwise, only unaware 425 * shrinkers are called. 426 * 427 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 428 * the available objects should be scanned. Page reclaim for example 429 * passes the number of pages scanned and the number of pages on the 430 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 431 * when it encountered mapped pages. The ratio is further biased by 432 * the ->seeks setting of the shrink function, which indicates the 433 * cost to recreate an object relative to that of an LRU page. 434 * 435 * Returns the number of reclaimed slab objects. 436 */ 437 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 438 struct mem_cgroup *memcg, 439 unsigned long nr_scanned, 440 unsigned long nr_eligible) 441 { 442 struct shrinker *shrinker; 443 unsigned long freed = 0; 444 445 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 446 return 0; 447 448 if (nr_scanned == 0) 449 nr_scanned = SWAP_CLUSTER_MAX; 450 451 if (!down_read_trylock(&shrinker_rwsem)) { 452 /* 453 * If we would return 0, our callers would understand that we 454 * have nothing else to shrink and give up trying. By returning 455 * 1 we keep it going and assume we'll be able to shrink next 456 * time. 457 */ 458 freed = 1; 459 goto out; 460 } 461 462 list_for_each_entry(shrinker, &shrinker_list, list) { 463 struct shrink_control sc = { 464 .gfp_mask = gfp_mask, 465 .nid = nid, 466 .memcg = memcg, 467 }; 468 469 /* 470 * If kernel memory accounting is disabled, we ignore 471 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 472 * passing NULL for memcg. 473 */ 474 if (memcg_kmem_enabled() && 475 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 476 continue; 477 478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 479 sc.nid = 0; 480 481 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 482 } 483 484 up_read(&shrinker_rwsem); 485 out: 486 cond_resched(); 487 return freed; 488 } 489 490 void drop_slab_node(int nid) 491 { 492 unsigned long freed; 493 494 do { 495 struct mem_cgroup *memcg = NULL; 496 497 freed = 0; 498 do { 499 freed += shrink_slab(GFP_KERNEL, nid, memcg, 500 1000, 1000); 501 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 502 } while (freed > 10); 503 } 504 505 void drop_slab(void) 506 { 507 int nid; 508 509 for_each_online_node(nid) 510 drop_slab_node(nid); 511 } 512 513 static inline int is_page_cache_freeable(struct page *page) 514 { 515 /* 516 * A freeable page cache page is referenced only by the caller 517 * that isolated the page, the page cache radix tree and 518 * optional buffer heads at page->private. 519 */ 520 return page_count(page) - page_has_private(page) == 2; 521 } 522 523 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 524 { 525 if (current->flags & PF_SWAPWRITE) 526 return 1; 527 if (!inode_write_congested(inode)) 528 return 1; 529 if (inode_to_bdi(inode) == current->backing_dev_info) 530 return 1; 531 return 0; 532 } 533 534 /* 535 * We detected a synchronous write error writing a page out. Probably 536 * -ENOSPC. We need to propagate that into the address_space for a subsequent 537 * fsync(), msync() or close(). 538 * 539 * The tricky part is that after writepage we cannot touch the mapping: nothing 540 * prevents it from being freed up. But we have a ref on the page and once 541 * that page is locked, the mapping is pinned. 542 * 543 * We're allowed to run sleeping lock_page() here because we know the caller has 544 * __GFP_FS. 545 */ 546 static void handle_write_error(struct address_space *mapping, 547 struct page *page, int error) 548 { 549 lock_page(page); 550 if (page_mapping(page) == mapping) 551 mapping_set_error(mapping, error); 552 unlock_page(page); 553 } 554 555 /* possible outcome of pageout() */ 556 typedef enum { 557 /* failed to write page out, page is locked */ 558 PAGE_KEEP, 559 /* move page to the active list, page is locked */ 560 PAGE_ACTIVATE, 561 /* page has been sent to the disk successfully, page is unlocked */ 562 PAGE_SUCCESS, 563 /* page is clean and locked */ 564 PAGE_CLEAN, 565 } pageout_t; 566 567 /* 568 * pageout is called by shrink_page_list() for each dirty page. 569 * Calls ->writepage(). 570 */ 571 static pageout_t pageout(struct page *page, struct address_space *mapping, 572 struct scan_control *sc) 573 { 574 /* 575 * If the page is dirty, only perform writeback if that write 576 * will be non-blocking. To prevent this allocation from being 577 * stalled by pagecache activity. But note that there may be 578 * stalls if we need to run get_block(). We could test 579 * PagePrivate for that. 580 * 581 * If this process is currently in __generic_file_write_iter() against 582 * this page's queue, we can perform writeback even if that 583 * will block. 584 * 585 * If the page is swapcache, write it back even if that would 586 * block, for some throttling. This happens by accident, because 587 * swap_backing_dev_info is bust: it doesn't reflect the 588 * congestion state of the swapdevs. Easy to fix, if needed. 589 */ 590 if (!is_page_cache_freeable(page)) 591 return PAGE_KEEP; 592 if (!mapping) { 593 /* 594 * Some data journaling orphaned pages can have 595 * page->mapping == NULL while being dirty with clean buffers. 596 */ 597 if (page_has_private(page)) { 598 if (try_to_free_buffers(page)) { 599 ClearPageDirty(page); 600 pr_info("%s: orphaned page\n", __func__); 601 return PAGE_CLEAN; 602 } 603 } 604 return PAGE_KEEP; 605 } 606 if (mapping->a_ops->writepage == NULL) 607 return PAGE_ACTIVATE; 608 if (!may_write_to_inode(mapping->host, sc)) 609 return PAGE_KEEP; 610 611 if (clear_page_dirty_for_io(page)) { 612 int res; 613 struct writeback_control wbc = { 614 .sync_mode = WB_SYNC_NONE, 615 .nr_to_write = SWAP_CLUSTER_MAX, 616 .range_start = 0, 617 .range_end = LLONG_MAX, 618 .for_reclaim = 1, 619 }; 620 621 SetPageReclaim(page); 622 res = mapping->a_ops->writepage(page, &wbc); 623 if (res < 0) 624 handle_write_error(mapping, page, res); 625 if (res == AOP_WRITEPAGE_ACTIVATE) { 626 ClearPageReclaim(page); 627 return PAGE_ACTIVATE; 628 } 629 630 if (!PageWriteback(page)) { 631 /* synchronous write or broken a_ops? */ 632 ClearPageReclaim(page); 633 } 634 trace_mm_vmscan_writepage(page); 635 inc_node_page_state(page, NR_VMSCAN_WRITE); 636 return PAGE_SUCCESS; 637 } 638 639 return PAGE_CLEAN; 640 } 641 642 /* 643 * Same as remove_mapping, but if the page is removed from the mapping, it 644 * gets returned with a refcount of 0. 645 */ 646 static int __remove_mapping(struct address_space *mapping, struct page *page, 647 bool reclaimed) 648 { 649 unsigned long flags; 650 651 BUG_ON(!PageLocked(page)); 652 BUG_ON(mapping != page_mapping(page)); 653 654 spin_lock_irqsave(&mapping->tree_lock, flags); 655 /* 656 * The non racy check for a busy page. 657 * 658 * Must be careful with the order of the tests. When someone has 659 * a ref to the page, it may be possible that they dirty it then 660 * drop the reference. So if PageDirty is tested before page_count 661 * here, then the following race may occur: 662 * 663 * get_user_pages(&page); 664 * [user mapping goes away] 665 * write_to(page); 666 * !PageDirty(page) [good] 667 * SetPageDirty(page); 668 * put_page(page); 669 * !page_count(page) [good, discard it] 670 * 671 * [oops, our write_to data is lost] 672 * 673 * Reversing the order of the tests ensures such a situation cannot 674 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 675 * load is not satisfied before that of page->_refcount. 676 * 677 * Note that if SetPageDirty is always performed via set_page_dirty, 678 * and thus under tree_lock, then this ordering is not required. 679 */ 680 if (!page_ref_freeze(page, 2)) 681 goto cannot_free; 682 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 683 if (unlikely(PageDirty(page))) { 684 page_ref_unfreeze(page, 2); 685 goto cannot_free; 686 } 687 688 if (PageSwapCache(page)) { 689 swp_entry_t swap = { .val = page_private(page) }; 690 mem_cgroup_swapout(page, swap); 691 __delete_from_swap_cache(page); 692 spin_unlock_irqrestore(&mapping->tree_lock, flags); 693 swapcache_free(swap); 694 } else { 695 void (*freepage)(struct page *); 696 void *shadow = NULL; 697 698 freepage = mapping->a_ops->freepage; 699 /* 700 * Remember a shadow entry for reclaimed file cache in 701 * order to detect refaults, thus thrashing, later on. 702 * 703 * But don't store shadows in an address space that is 704 * already exiting. This is not just an optizimation, 705 * inode reclaim needs to empty out the radix tree or 706 * the nodes are lost. Don't plant shadows behind its 707 * back. 708 * 709 * We also don't store shadows for DAX mappings because the 710 * only page cache pages found in these are zero pages 711 * covering holes, and because we don't want to mix DAX 712 * exceptional entries and shadow exceptional entries in the 713 * same page_tree. 714 */ 715 if (reclaimed && page_is_file_cache(page) && 716 !mapping_exiting(mapping) && !dax_mapping(mapping)) 717 shadow = workingset_eviction(mapping, page); 718 __delete_from_page_cache(page, shadow); 719 spin_unlock_irqrestore(&mapping->tree_lock, flags); 720 721 if (freepage != NULL) 722 freepage(page); 723 } 724 725 return 1; 726 727 cannot_free: 728 spin_unlock_irqrestore(&mapping->tree_lock, flags); 729 return 0; 730 } 731 732 /* 733 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 734 * someone else has a ref on the page, abort and return 0. If it was 735 * successfully detached, return 1. Assumes the caller has a single ref on 736 * this page. 737 */ 738 int remove_mapping(struct address_space *mapping, struct page *page) 739 { 740 if (__remove_mapping(mapping, page, false)) { 741 /* 742 * Unfreezing the refcount with 1 rather than 2 effectively 743 * drops the pagecache ref for us without requiring another 744 * atomic operation. 745 */ 746 page_ref_unfreeze(page, 1); 747 return 1; 748 } 749 return 0; 750 } 751 752 /** 753 * putback_lru_page - put previously isolated page onto appropriate LRU list 754 * @page: page to be put back to appropriate lru list 755 * 756 * Add previously isolated @page to appropriate LRU list. 757 * Page may still be unevictable for other reasons. 758 * 759 * lru_lock must not be held, interrupts must be enabled. 760 */ 761 void putback_lru_page(struct page *page) 762 { 763 bool is_unevictable; 764 int was_unevictable = PageUnevictable(page); 765 766 VM_BUG_ON_PAGE(PageLRU(page), page); 767 768 redo: 769 ClearPageUnevictable(page); 770 771 if (page_evictable(page)) { 772 /* 773 * For evictable pages, we can use the cache. 774 * In event of a race, worst case is we end up with an 775 * unevictable page on [in]active list. 776 * We know how to handle that. 777 */ 778 is_unevictable = false; 779 lru_cache_add(page); 780 } else { 781 /* 782 * Put unevictable pages directly on zone's unevictable 783 * list. 784 */ 785 is_unevictable = true; 786 add_page_to_unevictable_list(page); 787 /* 788 * When racing with an mlock or AS_UNEVICTABLE clearing 789 * (page is unlocked) make sure that if the other thread 790 * does not observe our setting of PG_lru and fails 791 * isolation/check_move_unevictable_pages, 792 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 793 * the page back to the evictable list. 794 * 795 * The other side is TestClearPageMlocked() or shmem_lock(). 796 */ 797 smp_mb(); 798 } 799 800 /* 801 * page's status can change while we move it among lru. If an evictable 802 * page is on unevictable list, it never be freed. To avoid that, 803 * check after we added it to the list, again. 804 */ 805 if (is_unevictable && page_evictable(page)) { 806 if (!isolate_lru_page(page)) { 807 put_page(page); 808 goto redo; 809 } 810 /* This means someone else dropped this page from LRU 811 * So, it will be freed or putback to LRU again. There is 812 * nothing to do here. 813 */ 814 } 815 816 if (was_unevictable && !is_unevictable) 817 count_vm_event(UNEVICTABLE_PGRESCUED); 818 else if (!was_unevictable && is_unevictable) 819 count_vm_event(UNEVICTABLE_PGCULLED); 820 821 put_page(page); /* drop ref from isolate */ 822 } 823 824 enum page_references { 825 PAGEREF_RECLAIM, 826 PAGEREF_RECLAIM_CLEAN, 827 PAGEREF_KEEP, 828 PAGEREF_ACTIVATE, 829 }; 830 831 static enum page_references page_check_references(struct page *page, 832 struct scan_control *sc) 833 { 834 int referenced_ptes, referenced_page; 835 unsigned long vm_flags; 836 837 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 838 &vm_flags); 839 referenced_page = TestClearPageReferenced(page); 840 841 /* 842 * Mlock lost the isolation race with us. Let try_to_unmap() 843 * move the page to the unevictable list. 844 */ 845 if (vm_flags & VM_LOCKED) 846 return PAGEREF_RECLAIM; 847 848 if (referenced_ptes) { 849 if (PageSwapBacked(page)) 850 return PAGEREF_ACTIVATE; 851 /* 852 * All mapped pages start out with page table 853 * references from the instantiating fault, so we need 854 * to look twice if a mapped file page is used more 855 * than once. 856 * 857 * Mark it and spare it for another trip around the 858 * inactive list. Another page table reference will 859 * lead to its activation. 860 * 861 * Note: the mark is set for activated pages as well 862 * so that recently deactivated but used pages are 863 * quickly recovered. 864 */ 865 SetPageReferenced(page); 866 867 if (referenced_page || referenced_ptes > 1) 868 return PAGEREF_ACTIVATE; 869 870 /* 871 * Activate file-backed executable pages after first usage. 872 */ 873 if (vm_flags & VM_EXEC) 874 return PAGEREF_ACTIVATE; 875 876 return PAGEREF_KEEP; 877 } 878 879 /* Reclaim if clean, defer dirty pages to writeback */ 880 if (referenced_page && !PageSwapBacked(page)) 881 return PAGEREF_RECLAIM_CLEAN; 882 883 return PAGEREF_RECLAIM; 884 } 885 886 /* Check if a page is dirty or under writeback */ 887 static void page_check_dirty_writeback(struct page *page, 888 bool *dirty, bool *writeback) 889 { 890 struct address_space *mapping; 891 892 /* 893 * Anonymous pages are not handled by flushers and must be written 894 * from reclaim context. Do not stall reclaim based on them 895 */ 896 if (!page_is_file_cache(page)) { 897 *dirty = false; 898 *writeback = false; 899 return; 900 } 901 902 /* By default assume that the page flags are accurate */ 903 *dirty = PageDirty(page); 904 *writeback = PageWriteback(page); 905 906 /* Verify dirty/writeback state if the filesystem supports it */ 907 if (!page_has_private(page)) 908 return; 909 910 mapping = page_mapping(page); 911 if (mapping && mapping->a_ops->is_dirty_writeback) 912 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 913 } 914 915 /* 916 * shrink_page_list() returns the number of reclaimed pages 917 */ 918 static unsigned long shrink_page_list(struct list_head *page_list, 919 struct pglist_data *pgdat, 920 struct scan_control *sc, 921 enum ttu_flags ttu_flags, 922 unsigned long *ret_nr_dirty, 923 unsigned long *ret_nr_unqueued_dirty, 924 unsigned long *ret_nr_congested, 925 unsigned long *ret_nr_writeback, 926 unsigned long *ret_nr_immediate, 927 bool force_reclaim) 928 { 929 LIST_HEAD(ret_pages); 930 LIST_HEAD(free_pages); 931 int pgactivate = 0; 932 unsigned long nr_unqueued_dirty = 0; 933 unsigned long nr_dirty = 0; 934 unsigned long nr_congested = 0; 935 unsigned long nr_reclaimed = 0; 936 unsigned long nr_writeback = 0; 937 unsigned long nr_immediate = 0; 938 939 cond_resched(); 940 941 while (!list_empty(page_list)) { 942 struct address_space *mapping; 943 struct page *page; 944 int may_enter_fs; 945 enum page_references references = PAGEREF_RECLAIM_CLEAN; 946 bool dirty, writeback; 947 bool lazyfree = false; 948 int ret = SWAP_SUCCESS; 949 950 cond_resched(); 951 952 page = lru_to_page(page_list); 953 list_del(&page->lru); 954 955 if (!trylock_page(page)) 956 goto keep; 957 958 VM_BUG_ON_PAGE(PageActive(page), page); 959 960 sc->nr_scanned++; 961 962 if (unlikely(!page_evictable(page))) 963 goto cull_mlocked; 964 965 if (!sc->may_unmap && page_mapped(page)) 966 goto keep_locked; 967 968 /* Double the slab pressure for mapped and swapcache pages */ 969 if (page_mapped(page) || PageSwapCache(page)) 970 sc->nr_scanned++; 971 972 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 973 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 974 975 /* 976 * The number of dirty pages determines if a zone is marked 977 * reclaim_congested which affects wait_iff_congested. kswapd 978 * will stall and start writing pages if the tail of the LRU 979 * is all dirty unqueued pages. 980 */ 981 page_check_dirty_writeback(page, &dirty, &writeback); 982 if (dirty || writeback) 983 nr_dirty++; 984 985 if (dirty && !writeback) 986 nr_unqueued_dirty++; 987 988 /* 989 * Treat this page as congested if the underlying BDI is or if 990 * pages are cycling through the LRU so quickly that the 991 * pages marked for immediate reclaim are making it to the 992 * end of the LRU a second time. 993 */ 994 mapping = page_mapping(page); 995 if (((dirty || writeback) && mapping && 996 inode_write_congested(mapping->host)) || 997 (writeback && PageReclaim(page))) 998 nr_congested++; 999 1000 /* 1001 * If a page at the tail of the LRU is under writeback, there 1002 * are three cases to consider. 1003 * 1004 * 1) If reclaim is encountering an excessive number of pages 1005 * under writeback and this page is both under writeback and 1006 * PageReclaim then it indicates that pages are being queued 1007 * for IO but are being recycled through the LRU before the 1008 * IO can complete. Waiting on the page itself risks an 1009 * indefinite stall if it is impossible to writeback the 1010 * page due to IO error or disconnected storage so instead 1011 * note that the LRU is being scanned too quickly and the 1012 * caller can stall after page list has been processed. 1013 * 1014 * 2) Global or new memcg reclaim encounters a page that is 1015 * not marked for immediate reclaim, or the caller does not 1016 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1017 * not to fs). In this case mark the page for immediate 1018 * reclaim and continue scanning. 1019 * 1020 * Require may_enter_fs because we would wait on fs, which 1021 * may not have submitted IO yet. And the loop driver might 1022 * enter reclaim, and deadlock if it waits on a page for 1023 * which it is needed to do the write (loop masks off 1024 * __GFP_IO|__GFP_FS for this reason); but more thought 1025 * would probably show more reasons. 1026 * 1027 * 3) Legacy memcg encounters a page that is already marked 1028 * PageReclaim. memcg does not have any dirty pages 1029 * throttling so we could easily OOM just because too many 1030 * pages are in writeback and there is nothing else to 1031 * reclaim. Wait for the writeback to complete. 1032 */ 1033 if (PageWriteback(page)) { 1034 /* Case 1 above */ 1035 if (current_is_kswapd() && 1036 PageReclaim(page) && 1037 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1038 nr_immediate++; 1039 goto keep_locked; 1040 1041 /* Case 2 above */ 1042 } else if (sane_reclaim(sc) || 1043 !PageReclaim(page) || !may_enter_fs) { 1044 /* 1045 * This is slightly racy - end_page_writeback() 1046 * might have just cleared PageReclaim, then 1047 * setting PageReclaim here end up interpreted 1048 * as PageReadahead - but that does not matter 1049 * enough to care. What we do want is for this 1050 * page to have PageReclaim set next time memcg 1051 * reclaim reaches the tests above, so it will 1052 * then wait_on_page_writeback() to avoid OOM; 1053 * and it's also appropriate in global reclaim. 1054 */ 1055 SetPageReclaim(page); 1056 nr_writeback++; 1057 goto keep_locked; 1058 1059 /* Case 3 above */ 1060 } else { 1061 unlock_page(page); 1062 wait_on_page_writeback(page); 1063 /* then go back and try same page again */ 1064 list_add_tail(&page->lru, page_list); 1065 continue; 1066 } 1067 } 1068 1069 if (!force_reclaim) 1070 references = page_check_references(page, sc); 1071 1072 switch (references) { 1073 case PAGEREF_ACTIVATE: 1074 goto activate_locked; 1075 case PAGEREF_KEEP: 1076 goto keep_locked; 1077 case PAGEREF_RECLAIM: 1078 case PAGEREF_RECLAIM_CLEAN: 1079 ; /* try to reclaim the page below */ 1080 } 1081 1082 /* 1083 * Anonymous process memory has backing store? 1084 * Try to allocate it some swap space here. 1085 */ 1086 if (PageAnon(page) && !PageSwapCache(page)) { 1087 if (!(sc->gfp_mask & __GFP_IO)) 1088 goto keep_locked; 1089 if (!add_to_swap(page, page_list)) 1090 goto activate_locked; 1091 lazyfree = true; 1092 may_enter_fs = 1; 1093 1094 /* Adding to swap updated mapping */ 1095 mapping = page_mapping(page); 1096 } else if (unlikely(PageTransHuge(page))) { 1097 /* Split file THP */ 1098 if (split_huge_page_to_list(page, page_list)) 1099 goto keep_locked; 1100 } 1101 1102 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1103 1104 /* 1105 * The page is mapped into the page tables of one or more 1106 * processes. Try to unmap it here. 1107 */ 1108 if (page_mapped(page) && mapping) { 1109 switch (ret = try_to_unmap(page, lazyfree ? 1110 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1111 (ttu_flags | TTU_BATCH_FLUSH))) { 1112 case SWAP_FAIL: 1113 goto activate_locked; 1114 case SWAP_AGAIN: 1115 goto keep_locked; 1116 case SWAP_MLOCK: 1117 goto cull_mlocked; 1118 case SWAP_LZFREE: 1119 goto lazyfree; 1120 case SWAP_SUCCESS: 1121 ; /* try to free the page below */ 1122 } 1123 } 1124 1125 if (PageDirty(page)) { 1126 /* 1127 * Only kswapd can writeback filesystem pages to 1128 * avoid risk of stack overflow but only writeback 1129 * if many dirty pages have been encountered. 1130 */ 1131 if (page_is_file_cache(page) && 1132 (!current_is_kswapd() || 1133 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1134 /* 1135 * Immediately reclaim when written back. 1136 * Similar in principal to deactivate_page() 1137 * except we already have the page isolated 1138 * and know it's dirty 1139 */ 1140 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1141 SetPageReclaim(page); 1142 1143 goto keep_locked; 1144 } 1145 1146 if (references == PAGEREF_RECLAIM_CLEAN) 1147 goto keep_locked; 1148 if (!may_enter_fs) 1149 goto keep_locked; 1150 if (!sc->may_writepage) 1151 goto keep_locked; 1152 1153 /* 1154 * Page is dirty. Flush the TLB if a writable entry 1155 * potentially exists to avoid CPU writes after IO 1156 * starts and then write it out here. 1157 */ 1158 try_to_unmap_flush_dirty(); 1159 switch (pageout(page, mapping, sc)) { 1160 case PAGE_KEEP: 1161 goto keep_locked; 1162 case PAGE_ACTIVATE: 1163 goto activate_locked; 1164 case PAGE_SUCCESS: 1165 if (PageWriteback(page)) 1166 goto keep; 1167 if (PageDirty(page)) 1168 goto keep; 1169 1170 /* 1171 * A synchronous write - probably a ramdisk. Go 1172 * ahead and try to reclaim the page. 1173 */ 1174 if (!trylock_page(page)) 1175 goto keep; 1176 if (PageDirty(page) || PageWriteback(page)) 1177 goto keep_locked; 1178 mapping = page_mapping(page); 1179 case PAGE_CLEAN: 1180 ; /* try to free the page below */ 1181 } 1182 } 1183 1184 /* 1185 * If the page has buffers, try to free the buffer mappings 1186 * associated with this page. If we succeed we try to free 1187 * the page as well. 1188 * 1189 * We do this even if the page is PageDirty(). 1190 * try_to_release_page() does not perform I/O, but it is 1191 * possible for a page to have PageDirty set, but it is actually 1192 * clean (all its buffers are clean). This happens if the 1193 * buffers were written out directly, with submit_bh(). ext3 1194 * will do this, as well as the blockdev mapping. 1195 * try_to_release_page() will discover that cleanness and will 1196 * drop the buffers and mark the page clean - it can be freed. 1197 * 1198 * Rarely, pages can have buffers and no ->mapping. These are 1199 * the pages which were not successfully invalidated in 1200 * truncate_complete_page(). We try to drop those buffers here 1201 * and if that worked, and the page is no longer mapped into 1202 * process address space (page_count == 1) it can be freed. 1203 * Otherwise, leave the page on the LRU so it is swappable. 1204 */ 1205 if (page_has_private(page)) { 1206 if (!try_to_release_page(page, sc->gfp_mask)) 1207 goto activate_locked; 1208 if (!mapping && page_count(page) == 1) { 1209 unlock_page(page); 1210 if (put_page_testzero(page)) 1211 goto free_it; 1212 else { 1213 /* 1214 * rare race with speculative reference. 1215 * the speculative reference will free 1216 * this page shortly, so we may 1217 * increment nr_reclaimed here (and 1218 * leave it off the LRU). 1219 */ 1220 nr_reclaimed++; 1221 continue; 1222 } 1223 } 1224 } 1225 1226 lazyfree: 1227 if (!mapping || !__remove_mapping(mapping, page, true)) 1228 goto keep_locked; 1229 1230 /* 1231 * At this point, we have no other references and there is 1232 * no way to pick any more up (removed from LRU, removed 1233 * from pagecache). Can use non-atomic bitops now (and 1234 * we obviously don't have to worry about waking up a process 1235 * waiting on the page lock, because there are no references. 1236 */ 1237 __ClearPageLocked(page); 1238 free_it: 1239 if (ret == SWAP_LZFREE) 1240 count_vm_event(PGLAZYFREED); 1241 1242 nr_reclaimed++; 1243 1244 /* 1245 * Is there need to periodically free_page_list? It would 1246 * appear not as the counts should be low 1247 */ 1248 list_add(&page->lru, &free_pages); 1249 continue; 1250 1251 cull_mlocked: 1252 if (PageSwapCache(page)) 1253 try_to_free_swap(page); 1254 unlock_page(page); 1255 list_add(&page->lru, &ret_pages); 1256 continue; 1257 1258 activate_locked: 1259 /* Not a candidate for swapping, so reclaim swap space. */ 1260 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1261 try_to_free_swap(page); 1262 VM_BUG_ON_PAGE(PageActive(page), page); 1263 SetPageActive(page); 1264 pgactivate++; 1265 keep_locked: 1266 unlock_page(page); 1267 keep: 1268 list_add(&page->lru, &ret_pages); 1269 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1270 } 1271 1272 mem_cgroup_uncharge_list(&free_pages); 1273 try_to_unmap_flush(); 1274 free_hot_cold_page_list(&free_pages, true); 1275 1276 list_splice(&ret_pages, page_list); 1277 count_vm_events(PGACTIVATE, pgactivate); 1278 1279 *ret_nr_dirty += nr_dirty; 1280 *ret_nr_congested += nr_congested; 1281 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1282 *ret_nr_writeback += nr_writeback; 1283 *ret_nr_immediate += nr_immediate; 1284 return nr_reclaimed; 1285 } 1286 1287 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1288 struct list_head *page_list) 1289 { 1290 struct scan_control sc = { 1291 .gfp_mask = GFP_KERNEL, 1292 .priority = DEF_PRIORITY, 1293 .may_unmap = 1, 1294 }; 1295 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1296 struct page *page, *next; 1297 LIST_HEAD(clean_pages); 1298 1299 list_for_each_entry_safe(page, next, page_list, lru) { 1300 if (page_is_file_cache(page) && !PageDirty(page) && 1301 !__PageMovable(page)) { 1302 ClearPageActive(page); 1303 list_move(&page->lru, &clean_pages); 1304 } 1305 } 1306 1307 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1308 TTU_UNMAP|TTU_IGNORE_ACCESS, 1309 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1310 list_splice(&clean_pages, page_list); 1311 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1312 return ret; 1313 } 1314 1315 /* 1316 * Attempt to remove the specified page from its LRU. Only take this page 1317 * if it is of the appropriate PageActive status. Pages which are being 1318 * freed elsewhere are also ignored. 1319 * 1320 * page: page to consider 1321 * mode: one of the LRU isolation modes defined above 1322 * 1323 * returns 0 on success, -ve errno on failure. 1324 */ 1325 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1326 { 1327 int ret = -EINVAL; 1328 1329 /* Only take pages on the LRU. */ 1330 if (!PageLRU(page)) 1331 return ret; 1332 1333 /* Compaction should not handle unevictable pages but CMA can do so */ 1334 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1335 return ret; 1336 1337 ret = -EBUSY; 1338 1339 /* 1340 * To minimise LRU disruption, the caller can indicate that it only 1341 * wants to isolate pages it will be able to operate on without 1342 * blocking - clean pages for the most part. 1343 * 1344 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1345 * is used by reclaim when it is cannot write to backing storage 1346 * 1347 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1348 * that it is possible to migrate without blocking 1349 */ 1350 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1351 /* All the caller can do on PageWriteback is block */ 1352 if (PageWriteback(page)) 1353 return ret; 1354 1355 if (PageDirty(page)) { 1356 struct address_space *mapping; 1357 1358 /* ISOLATE_CLEAN means only clean pages */ 1359 if (mode & ISOLATE_CLEAN) 1360 return ret; 1361 1362 /* 1363 * Only pages without mappings or that have a 1364 * ->migratepage callback are possible to migrate 1365 * without blocking 1366 */ 1367 mapping = page_mapping(page); 1368 if (mapping && !mapping->a_ops->migratepage) 1369 return ret; 1370 } 1371 } 1372 1373 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1374 return ret; 1375 1376 if (likely(get_page_unless_zero(page))) { 1377 /* 1378 * Be careful not to clear PageLRU until after we're 1379 * sure the page is not being freed elsewhere -- the 1380 * page release code relies on it. 1381 */ 1382 ClearPageLRU(page); 1383 ret = 0; 1384 } 1385 1386 return ret; 1387 } 1388 1389 1390 /* 1391 * Update LRU sizes after isolating pages. The LRU size updates must 1392 * be complete before mem_cgroup_update_lru_size due to a santity check. 1393 */ 1394 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1395 enum lru_list lru, unsigned long *nr_zone_taken) 1396 { 1397 int zid; 1398 1399 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1400 if (!nr_zone_taken[zid]) 1401 continue; 1402 1403 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1404 #ifdef CONFIG_MEMCG 1405 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1406 #endif 1407 } 1408 1409 } 1410 1411 /* 1412 * zone_lru_lock is heavily contended. Some of the functions that 1413 * shrink the lists perform better by taking out a batch of pages 1414 * and working on them outside the LRU lock. 1415 * 1416 * For pagecache intensive workloads, this function is the hottest 1417 * spot in the kernel (apart from copy_*_user functions). 1418 * 1419 * Appropriate locks must be held before calling this function. 1420 * 1421 * @nr_to_scan: The number of pages to look through on the list. 1422 * @lruvec: The LRU vector to pull pages from. 1423 * @dst: The temp list to put pages on to. 1424 * @nr_scanned: The number of pages that were scanned. 1425 * @sc: The scan_control struct for this reclaim session 1426 * @mode: One of the LRU isolation modes 1427 * @lru: LRU list id for isolating 1428 * 1429 * returns how many pages were moved onto *@dst. 1430 */ 1431 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1432 struct lruvec *lruvec, struct list_head *dst, 1433 unsigned long *nr_scanned, struct scan_control *sc, 1434 isolate_mode_t mode, enum lru_list lru) 1435 { 1436 struct list_head *src = &lruvec->lists[lru]; 1437 unsigned long nr_taken = 0; 1438 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1439 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1440 unsigned long scan, nr_pages; 1441 LIST_HEAD(pages_skipped); 1442 1443 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1444 !list_empty(src);) { 1445 struct page *page; 1446 1447 page = lru_to_page(src); 1448 prefetchw_prev_lru_page(page, src, flags); 1449 1450 VM_BUG_ON_PAGE(!PageLRU(page), page); 1451 1452 if (page_zonenum(page) > sc->reclaim_idx) { 1453 list_move(&page->lru, &pages_skipped); 1454 nr_skipped[page_zonenum(page)]++; 1455 continue; 1456 } 1457 1458 /* 1459 * Account for scanned and skipped separetly to avoid the pgdat 1460 * being prematurely marked unreclaimable by pgdat_reclaimable. 1461 */ 1462 scan++; 1463 1464 switch (__isolate_lru_page(page, mode)) { 1465 case 0: 1466 nr_pages = hpage_nr_pages(page); 1467 nr_taken += nr_pages; 1468 nr_zone_taken[page_zonenum(page)] += nr_pages; 1469 list_move(&page->lru, dst); 1470 break; 1471 1472 case -EBUSY: 1473 /* else it is being freed elsewhere */ 1474 list_move(&page->lru, src); 1475 continue; 1476 1477 default: 1478 BUG(); 1479 } 1480 } 1481 1482 /* 1483 * Splice any skipped pages to the start of the LRU list. Note that 1484 * this disrupts the LRU order when reclaiming for lower zones but 1485 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1486 * scanning would soon rescan the same pages to skip and put the 1487 * system at risk of premature OOM. 1488 */ 1489 if (!list_empty(&pages_skipped)) { 1490 int zid; 1491 unsigned long total_skipped = 0; 1492 1493 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1494 if (!nr_skipped[zid]) 1495 continue; 1496 1497 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1498 total_skipped += nr_skipped[zid]; 1499 } 1500 1501 /* 1502 * Account skipped pages as a partial scan as the pgdat may be 1503 * close to unreclaimable. If the LRU list is empty, account 1504 * skipped pages as a full scan. 1505 */ 1506 scan += list_empty(src) ? total_skipped : total_skipped >> 2; 1507 1508 list_splice(&pages_skipped, src); 1509 } 1510 *nr_scanned = scan; 1511 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan, 1512 nr_taken, mode, is_file_lru(lru)); 1513 update_lru_sizes(lruvec, lru, nr_zone_taken); 1514 return nr_taken; 1515 } 1516 1517 /** 1518 * isolate_lru_page - tries to isolate a page from its LRU list 1519 * @page: page to isolate from its LRU list 1520 * 1521 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1522 * vmstat statistic corresponding to whatever LRU list the page was on. 1523 * 1524 * Returns 0 if the page was removed from an LRU list. 1525 * Returns -EBUSY if the page was not on an LRU list. 1526 * 1527 * The returned page will have PageLRU() cleared. If it was found on 1528 * the active list, it will have PageActive set. If it was found on 1529 * the unevictable list, it will have the PageUnevictable bit set. That flag 1530 * may need to be cleared by the caller before letting the page go. 1531 * 1532 * The vmstat statistic corresponding to the list on which the page was 1533 * found will be decremented. 1534 * 1535 * Restrictions: 1536 * (1) Must be called with an elevated refcount on the page. This is a 1537 * fundamentnal difference from isolate_lru_pages (which is called 1538 * without a stable reference). 1539 * (2) the lru_lock must not be held. 1540 * (3) interrupts must be enabled. 1541 */ 1542 int isolate_lru_page(struct page *page) 1543 { 1544 int ret = -EBUSY; 1545 1546 VM_BUG_ON_PAGE(!page_count(page), page); 1547 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1548 1549 if (PageLRU(page)) { 1550 struct zone *zone = page_zone(page); 1551 struct lruvec *lruvec; 1552 1553 spin_lock_irq(zone_lru_lock(zone)); 1554 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1555 if (PageLRU(page)) { 1556 int lru = page_lru(page); 1557 get_page(page); 1558 ClearPageLRU(page); 1559 del_page_from_lru_list(page, lruvec, lru); 1560 ret = 0; 1561 } 1562 spin_unlock_irq(zone_lru_lock(zone)); 1563 } 1564 return ret; 1565 } 1566 1567 /* 1568 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1569 * then get resheduled. When there are massive number of tasks doing page 1570 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1571 * the LRU list will go small and be scanned faster than necessary, leading to 1572 * unnecessary swapping, thrashing and OOM. 1573 */ 1574 static int too_many_isolated(struct pglist_data *pgdat, int file, 1575 struct scan_control *sc) 1576 { 1577 unsigned long inactive, isolated; 1578 1579 if (current_is_kswapd()) 1580 return 0; 1581 1582 if (!sane_reclaim(sc)) 1583 return 0; 1584 1585 if (file) { 1586 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1587 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1588 } else { 1589 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1590 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1591 } 1592 1593 /* 1594 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1595 * won't get blocked by normal direct-reclaimers, forming a circular 1596 * deadlock. 1597 */ 1598 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1599 inactive >>= 3; 1600 1601 return isolated > inactive; 1602 } 1603 1604 static noinline_for_stack void 1605 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1606 { 1607 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1608 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1609 LIST_HEAD(pages_to_free); 1610 1611 /* 1612 * Put back any unfreeable pages. 1613 */ 1614 while (!list_empty(page_list)) { 1615 struct page *page = lru_to_page(page_list); 1616 int lru; 1617 1618 VM_BUG_ON_PAGE(PageLRU(page), page); 1619 list_del(&page->lru); 1620 if (unlikely(!page_evictable(page))) { 1621 spin_unlock_irq(&pgdat->lru_lock); 1622 putback_lru_page(page); 1623 spin_lock_irq(&pgdat->lru_lock); 1624 continue; 1625 } 1626 1627 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1628 1629 SetPageLRU(page); 1630 lru = page_lru(page); 1631 add_page_to_lru_list(page, lruvec, lru); 1632 1633 if (is_active_lru(lru)) { 1634 int file = is_file_lru(lru); 1635 int numpages = hpage_nr_pages(page); 1636 reclaim_stat->recent_rotated[file] += numpages; 1637 } 1638 if (put_page_testzero(page)) { 1639 __ClearPageLRU(page); 1640 __ClearPageActive(page); 1641 del_page_from_lru_list(page, lruvec, lru); 1642 1643 if (unlikely(PageCompound(page))) { 1644 spin_unlock_irq(&pgdat->lru_lock); 1645 mem_cgroup_uncharge(page); 1646 (*get_compound_page_dtor(page))(page); 1647 spin_lock_irq(&pgdat->lru_lock); 1648 } else 1649 list_add(&page->lru, &pages_to_free); 1650 } 1651 } 1652 1653 /* 1654 * To save our caller's stack, now use input list for pages to free. 1655 */ 1656 list_splice(&pages_to_free, page_list); 1657 } 1658 1659 /* 1660 * If a kernel thread (such as nfsd for loop-back mounts) services 1661 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1662 * In that case we should only throttle if the backing device it is 1663 * writing to is congested. In other cases it is safe to throttle. 1664 */ 1665 static int current_may_throttle(void) 1666 { 1667 return !(current->flags & PF_LESS_THROTTLE) || 1668 current->backing_dev_info == NULL || 1669 bdi_write_congested(current->backing_dev_info); 1670 } 1671 1672 static bool inactive_reclaimable_pages(struct lruvec *lruvec, 1673 struct scan_control *sc, enum lru_list lru) 1674 { 1675 int zid; 1676 struct zone *zone; 1677 int file = is_file_lru(lru); 1678 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1679 1680 if (!global_reclaim(sc)) 1681 return true; 1682 1683 for (zid = sc->reclaim_idx; zid >= 0; zid--) { 1684 zone = &pgdat->node_zones[zid]; 1685 if (!managed_zone(zone)) 1686 continue; 1687 1688 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE + 1689 LRU_FILE * file) >= SWAP_CLUSTER_MAX) 1690 return true; 1691 } 1692 1693 return false; 1694 } 1695 1696 /* 1697 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1698 * of reclaimed pages 1699 */ 1700 static noinline_for_stack unsigned long 1701 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1702 struct scan_control *sc, enum lru_list lru) 1703 { 1704 LIST_HEAD(page_list); 1705 unsigned long nr_scanned; 1706 unsigned long nr_reclaimed = 0; 1707 unsigned long nr_taken; 1708 unsigned long nr_dirty = 0; 1709 unsigned long nr_congested = 0; 1710 unsigned long nr_unqueued_dirty = 0; 1711 unsigned long nr_writeback = 0; 1712 unsigned long nr_immediate = 0; 1713 isolate_mode_t isolate_mode = 0; 1714 int file = is_file_lru(lru); 1715 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1716 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1717 1718 if (!inactive_reclaimable_pages(lruvec, sc, lru)) 1719 return 0; 1720 1721 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1722 congestion_wait(BLK_RW_ASYNC, HZ/10); 1723 1724 /* We are about to die and free our memory. Return now. */ 1725 if (fatal_signal_pending(current)) 1726 return SWAP_CLUSTER_MAX; 1727 } 1728 1729 lru_add_drain(); 1730 1731 if (!sc->may_unmap) 1732 isolate_mode |= ISOLATE_UNMAPPED; 1733 if (!sc->may_writepage) 1734 isolate_mode |= ISOLATE_CLEAN; 1735 1736 spin_lock_irq(&pgdat->lru_lock); 1737 1738 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1739 &nr_scanned, sc, isolate_mode, lru); 1740 1741 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1742 reclaim_stat->recent_scanned[file] += nr_taken; 1743 1744 if (global_reclaim(sc)) { 1745 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1746 if (current_is_kswapd()) 1747 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1748 else 1749 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1750 } 1751 spin_unlock_irq(&pgdat->lru_lock); 1752 1753 if (nr_taken == 0) 1754 return 0; 1755 1756 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, 1757 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1758 &nr_writeback, &nr_immediate, 1759 false); 1760 1761 spin_lock_irq(&pgdat->lru_lock); 1762 1763 if (global_reclaim(sc)) { 1764 if (current_is_kswapd()) 1765 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1766 else 1767 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1768 } 1769 1770 putback_inactive_pages(lruvec, &page_list); 1771 1772 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1773 1774 spin_unlock_irq(&pgdat->lru_lock); 1775 1776 mem_cgroup_uncharge_list(&page_list); 1777 free_hot_cold_page_list(&page_list, true); 1778 1779 /* 1780 * If reclaim is isolating dirty pages under writeback, it implies 1781 * that the long-lived page allocation rate is exceeding the page 1782 * laundering rate. Either the global limits are not being effective 1783 * at throttling processes due to the page distribution throughout 1784 * zones or there is heavy usage of a slow backing device. The 1785 * only option is to throttle from reclaim context which is not ideal 1786 * as there is no guarantee the dirtying process is throttled in the 1787 * same way balance_dirty_pages() manages. 1788 * 1789 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1790 * of pages under pages flagged for immediate reclaim and stall if any 1791 * are encountered in the nr_immediate check below. 1792 */ 1793 if (nr_writeback && nr_writeback == nr_taken) 1794 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1795 1796 /* 1797 * Legacy memcg will stall in page writeback so avoid forcibly 1798 * stalling here. 1799 */ 1800 if (sane_reclaim(sc)) { 1801 /* 1802 * Tag a zone as congested if all the dirty pages scanned were 1803 * backed by a congested BDI and wait_iff_congested will stall. 1804 */ 1805 if (nr_dirty && nr_dirty == nr_congested) 1806 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1807 1808 /* 1809 * If dirty pages are scanned that are not queued for IO, it 1810 * implies that flushers are not keeping up. In this case, flag 1811 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from 1812 * reclaim context. 1813 */ 1814 if (nr_unqueued_dirty == nr_taken) 1815 set_bit(PGDAT_DIRTY, &pgdat->flags); 1816 1817 /* 1818 * If kswapd scans pages marked marked for immediate 1819 * reclaim and under writeback (nr_immediate), it implies 1820 * that pages are cycling through the LRU faster than 1821 * they are written so also forcibly stall. 1822 */ 1823 if (nr_immediate && current_may_throttle()) 1824 congestion_wait(BLK_RW_ASYNC, HZ/10); 1825 } 1826 1827 /* 1828 * Stall direct reclaim for IO completions if underlying BDIs or zone 1829 * is congested. Allow kswapd to continue until it starts encountering 1830 * unqueued dirty pages or cycling through the LRU too quickly. 1831 */ 1832 if (!sc->hibernation_mode && !current_is_kswapd() && 1833 current_may_throttle()) 1834 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1835 1836 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1837 nr_scanned, nr_reclaimed, 1838 sc->priority, file); 1839 return nr_reclaimed; 1840 } 1841 1842 /* 1843 * This moves pages from the active list to the inactive list. 1844 * 1845 * We move them the other way if the page is referenced by one or more 1846 * processes, from rmap. 1847 * 1848 * If the pages are mostly unmapped, the processing is fast and it is 1849 * appropriate to hold zone_lru_lock across the whole operation. But if 1850 * the pages are mapped, the processing is slow (page_referenced()) so we 1851 * should drop zone_lru_lock around each page. It's impossible to balance 1852 * this, so instead we remove the pages from the LRU while processing them. 1853 * It is safe to rely on PG_active against the non-LRU pages in here because 1854 * nobody will play with that bit on a non-LRU page. 1855 * 1856 * The downside is that we have to touch page->_refcount against each page. 1857 * But we had to alter page->flags anyway. 1858 */ 1859 1860 static void move_active_pages_to_lru(struct lruvec *lruvec, 1861 struct list_head *list, 1862 struct list_head *pages_to_free, 1863 enum lru_list lru) 1864 { 1865 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1866 unsigned long pgmoved = 0; 1867 struct page *page; 1868 int nr_pages; 1869 1870 while (!list_empty(list)) { 1871 page = lru_to_page(list); 1872 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1873 1874 VM_BUG_ON_PAGE(PageLRU(page), page); 1875 SetPageLRU(page); 1876 1877 nr_pages = hpage_nr_pages(page); 1878 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1879 list_move(&page->lru, &lruvec->lists[lru]); 1880 pgmoved += nr_pages; 1881 1882 if (put_page_testzero(page)) { 1883 __ClearPageLRU(page); 1884 __ClearPageActive(page); 1885 del_page_from_lru_list(page, lruvec, lru); 1886 1887 if (unlikely(PageCompound(page))) { 1888 spin_unlock_irq(&pgdat->lru_lock); 1889 mem_cgroup_uncharge(page); 1890 (*get_compound_page_dtor(page))(page); 1891 spin_lock_irq(&pgdat->lru_lock); 1892 } else 1893 list_add(&page->lru, pages_to_free); 1894 } 1895 } 1896 1897 if (!is_active_lru(lru)) 1898 __count_vm_events(PGDEACTIVATE, pgmoved); 1899 } 1900 1901 static void shrink_active_list(unsigned long nr_to_scan, 1902 struct lruvec *lruvec, 1903 struct scan_control *sc, 1904 enum lru_list lru) 1905 { 1906 unsigned long nr_taken; 1907 unsigned long nr_scanned; 1908 unsigned long vm_flags; 1909 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1910 LIST_HEAD(l_active); 1911 LIST_HEAD(l_inactive); 1912 struct page *page; 1913 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1914 unsigned long nr_rotated = 0; 1915 isolate_mode_t isolate_mode = 0; 1916 int file = is_file_lru(lru); 1917 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1918 1919 lru_add_drain(); 1920 1921 if (!sc->may_unmap) 1922 isolate_mode |= ISOLATE_UNMAPPED; 1923 if (!sc->may_writepage) 1924 isolate_mode |= ISOLATE_CLEAN; 1925 1926 spin_lock_irq(&pgdat->lru_lock); 1927 1928 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1929 &nr_scanned, sc, isolate_mode, lru); 1930 1931 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1932 reclaim_stat->recent_scanned[file] += nr_taken; 1933 1934 if (global_reclaim(sc)) 1935 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1936 __count_vm_events(PGREFILL, nr_scanned); 1937 1938 spin_unlock_irq(&pgdat->lru_lock); 1939 1940 while (!list_empty(&l_hold)) { 1941 cond_resched(); 1942 page = lru_to_page(&l_hold); 1943 list_del(&page->lru); 1944 1945 if (unlikely(!page_evictable(page))) { 1946 putback_lru_page(page); 1947 continue; 1948 } 1949 1950 if (unlikely(buffer_heads_over_limit)) { 1951 if (page_has_private(page) && trylock_page(page)) { 1952 if (page_has_private(page)) 1953 try_to_release_page(page, 0); 1954 unlock_page(page); 1955 } 1956 } 1957 1958 if (page_referenced(page, 0, sc->target_mem_cgroup, 1959 &vm_flags)) { 1960 nr_rotated += hpage_nr_pages(page); 1961 /* 1962 * Identify referenced, file-backed active pages and 1963 * give them one more trip around the active list. So 1964 * that executable code get better chances to stay in 1965 * memory under moderate memory pressure. Anon pages 1966 * are not likely to be evicted by use-once streaming 1967 * IO, plus JVM can create lots of anon VM_EXEC pages, 1968 * so we ignore them here. 1969 */ 1970 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1971 list_add(&page->lru, &l_active); 1972 continue; 1973 } 1974 } 1975 1976 ClearPageActive(page); /* we are de-activating */ 1977 list_add(&page->lru, &l_inactive); 1978 } 1979 1980 /* 1981 * Move pages back to the lru list. 1982 */ 1983 spin_lock_irq(&pgdat->lru_lock); 1984 /* 1985 * Count referenced pages from currently used mappings as rotated, 1986 * even though only some of them are actually re-activated. This 1987 * helps balance scan pressure between file and anonymous pages in 1988 * get_scan_count. 1989 */ 1990 reclaim_stat->recent_rotated[file] += nr_rotated; 1991 1992 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1993 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1994 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1995 spin_unlock_irq(&pgdat->lru_lock); 1996 1997 mem_cgroup_uncharge_list(&l_hold); 1998 free_hot_cold_page_list(&l_hold, true); 1999 } 2000 2001 /* 2002 * The inactive anon list should be small enough that the VM never has 2003 * to do too much work. 2004 * 2005 * The inactive file list should be small enough to leave most memory 2006 * to the established workingset on the scan-resistant active list, 2007 * but large enough to avoid thrashing the aggregate readahead window. 2008 * 2009 * Both inactive lists should also be large enough that each inactive 2010 * page has a chance to be referenced again before it is reclaimed. 2011 * 2012 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2013 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2014 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2015 * 2016 * total target max 2017 * memory ratio inactive 2018 * ------------------------------------- 2019 * 10MB 1 5MB 2020 * 100MB 1 50MB 2021 * 1GB 3 250MB 2022 * 10GB 10 0.9GB 2023 * 100GB 31 3GB 2024 * 1TB 101 10GB 2025 * 10TB 320 32GB 2026 */ 2027 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2028 struct scan_control *sc) 2029 { 2030 unsigned long inactive_ratio; 2031 unsigned long inactive; 2032 unsigned long active; 2033 unsigned long gb; 2034 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2035 int zid; 2036 2037 /* 2038 * If we don't have swap space, anonymous page deactivation 2039 * is pointless. 2040 */ 2041 if (!file && !total_swap_pages) 2042 return false; 2043 2044 inactive = lruvec_lru_size(lruvec, file * LRU_FILE); 2045 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE); 2046 2047 /* 2048 * For zone-constrained allocations, it is necessary to check if 2049 * deactivations are required for lowmem to be reclaimed. This 2050 * calculates the inactive/active pages available in eligible zones. 2051 */ 2052 for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) { 2053 struct zone *zone = &pgdat->node_zones[zid]; 2054 unsigned long inactive_zone, active_zone; 2055 2056 if (!managed_zone(zone)) 2057 continue; 2058 2059 inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid); 2060 active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid); 2061 2062 inactive -= min(inactive, inactive_zone); 2063 active -= min(active, active_zone); 2064 } 2065 2066 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2067 if (gb) 2068 inactive_ratio = int_sqrt(10 * gb); 2069 else 2070 inactive_ratio = 1; 2071 2072 return inactive * inactive_ratio < active; 2073 } 2074 2075 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2076 struct lruvec *lruvec, struct scan_control *sc) 2077 { 2078 if (is_active_lru(lru)) { 2079 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc)) 2080 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2081 return 0; 2082 } 2083 2084 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2085 } 2086 2087 enum scan_balance { 2088 SCAN_EQUAL, 2089 SCAN_FRACT, 2090 SCAN_ANON, 2091 SCAN_FILE, 2092 }; 2093 2094 /* 2095 * Determine how aggressively the anon and file LRU lists should be 2096 * scanned. The relative value of each set of LRU lists is determined 2097 * by looking at the fraction of the pages scanned we did rotate back 2098 * onto the active list instead of evict. 2099 * 2100 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2101 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2102 */ 2103 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2104 struct scan_control *sc, unsigned long *nr, 2105 unsigned long *lru_pages) 2106 { 2107 int swappiness = mem_cgroup_swappiness(memcg); 2108 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2109 u64 fraction[2]; 2110 u64 denominator = 0; /* gcc */ 2111 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2112 unsigned long anon_prio, file_prio; 2113 enum scan_balance scan_balance; 2114 unsigned long anon, file; 2115 bool force_scan = false; 2116 unsigned long ap, fp; 2117 enum lru_list lru; 2118 bool some_scanned; 2119 int pass; 2120 2121 /* 2122 * If the zone or memcg is small, nr[l] can be 0. This 2123 * results in no scanning on this priority and a potential 2124 * priority drop. Global direct reclaim can go to the next 2125 * zone and tends to have no problems. Global kswapd is for 2126 * zone balancing and it needs to scan a minimum amount. When 2127 * reclaiming for a memcg, a priority drop can cause high 2128 * latencies, so it's better to scan a minimum amount there as 2129 * well. 2130 */ 2131 if (current_is_kswapd()) { 2132 if (!pgdat_reclaimable(pgdat)) 2133 force_scan = true; 2134 if (!mem_cgroup_online(memcg)) 2135 force_scan = true; 2136 } 2137 if (!global_reclaim(sc)) 2138 force_scan = true; 2139 2140 /* If we have no swap space, do not bother scanning anon pages. */ 2141 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2142 scan_balance = SCAN_FILE; 2143 goto out; 2144 } 2145 2146 /* 2147 * Global reclaim will swap to prevent OOM even with no 2148 * swappiness, but memcg users want to use this knob to 2149 * disable swapping for individual groups completely when 2150 * using the memory controller's swap limit feature would be 2151 * too expensive. 2152 */ 2153 if (!global_reclaim(sc) && !swappiness) { 2154 scan_balance = SCAN_FILE; 2155 goto out; 2156 } 2157 2158 /* 2159 * Do not apply any pressure balancing cleverness when the 2160 * system is close to OOM, scan both anon and file equally 2161 * (unless the swappiness setting disagrees with swapping). 2162 */ 2163 if (!sc->priority && swappiness) { 2164 scan_balance = SCAN_EQUAL; 2165 goto out; 2166 } 2167 2168 /* 2169 * Prevent the reclaimer from falling into the cache trap: as 2170 * cache pages start out inactive, every cache fault will tip 2171 * the scan balance towards the file LRU. And as the file LRU 2172 * shrinks, so does the window for rotation from references. 2173 * This means we have a runaway feedback loop where a tiny 2174 * thrashing file LRU becomes infinitely more attractive than 2175 * anon pages. Try to detect this based on file LRU size. 2176 */ 2177 if (global_reclaim(sc)) { 2178 unsigned long pgdatfile; 2179 unsigned long pgdatfree; 2180 int z; 2181 unsigned long total_high_wmark = 0; 2182 2183 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2184 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2185 node_page_state(pgdat, NR_INACTIVE_FILE); 2186 2187 for (z = 0; z < MAX_NR_ZONES; z++) { 2188 struct zone *zone = &pgdat->node_zones[z]; 2189 if (!managed_zone(zone)) 2190 continue; 2191 2192 total_high_wmark += high_wmark_pages(zone); 2193 } 2194 2195 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2196 scan_balance = SCAN_ANON; 2197 goto out; 2198 } 2199 } 2200 2201 /* 2202 * If there is enough inactive page cache, i.e. if the size of the 2203 * inactive list is greater than that of the active list *and* the 2204 * inactive list actually has some pages to scan on this priority, we 2205 * do not reclaim anything from the anonymous working set right now. 2206 * Without the second condition we could end up never scanning an 2207 * lruvec even if it has plenty of old anonymous pages unless the 2208 * system is under heavy pressure. 2209 */ 2210 if (!inactive_list_is_low(lruvec, true, sc) && 2211 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2212 scan_balance = SCAN_FILE; 2213 goto out; 2214 } 2215 2216 scan_balance = SCAN_FRACT; 2217 2218 /* 2219 * With swappiness at 100, anonymous and file have the same priority. 2220 * This scanning priority is essentially the inverse of IO cost. 2221 */ 2222 anon_prio = swappiness; 2223 file_prio = 200 - anon_prio; 2224 2225 /* 2226 * OK, so we have swap space and a fair amount of page cache 2227 * pages. We use the recently rotated / recently scanned 2228 * ratios to determine how valuable each cache is. 2229 * 2230 * Because workloads change over time (and to avoid overflow) 2231 * we keep these statistics as a floating average, which ends 2232 * up weighing recent references more than old ones. 2233 * 2234 * anon in [0], file in [1] 2235 */ 2236 2237 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2238 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2239 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2240 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2241 2242 spin_lock_irq(&pgdat->lru_lock); 2243 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2244 reclaim_stat->recent_scanned[0] /= 2; 2245 reclaim_stat->recent_rotated[0] /= 2; 2246 } 2247 2248 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2249 reclaim_stat->recent_scanned[1] /= 2; 2250 reclaim_stat->recent_rotated[1] /= 2; 2251 } 2252 2253 /* 2254 * The amount of pressure on anon vs file pages is inversely 2255 * proportional to the fraction of recently scanned pages on 2256 * each list that were recently referenced and in active use. 2257 */ 2258 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2259 ap /= reclaim_stat->recent_rotated[0] + 1; 2260 2261 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2262 fp /= reclaim_stat->recent_rotated[1] + 1; 2263 spin_unlock_irq(&pgdat->lru_lock); 2264 2265 fraction[0] = ap; 2266 fraction[1] = fp; 2267 denominator = ap + fp + 1; 2268 out: 2269 some_scanned = false; 2270 /* Only use force_scan on second pass. */ 2271 for (pass = 0; !some_scanned && pass < 2; pass++) { 2272 *lru_pages = 0; 2273 for_each_evictable_lru(lru) { 2274 int file = is_file_lru(lru); 2275 unsigned long size; 2276 unsigned long scan; 2277 2278 size = lruvec_lru_size(lruvec, lru); 2279 scan = size >> sc->priority; 2280 2281 if (!scan && pass && force_scan) 2282 scan = min(size, SWAP_CLUSTER_MAX); 2283 2284 switch (scan_balance) { 2285 case SCAN_EQUAL: 2286 /* Scan lists relative to size */ 2287 break; 2288 case SCAN_FRACT: 2289 /* 2290 * Scan types proportional to swappiness and 2291 * their relative recent reclaim efficiency. 2292 */ 2293 scan = div64_u64(scan * fraction[file], 2294 denominator); 2295 break; 2296 case SCAN_FILE: 2297 case SCAN_ANON: 2298 /* Scan one type exclusively */ 2299 if ((scan_balance == SCAN_FILE) != file) { 2300 size = 0; 2301 scan = 0; 2302 } 2303 break; 2304 default: 2305 /* Look ma, no brain */ 2306 BUG(); 2307 } 2308 2309 *lru_pages += size; 2310 nr[lru] = scan; 2311 2312 /* 2313 * Skip the second pass and don't force_scan, 2314 * if we found something to scan. 2315 */ 2316 some_scanned |= !!scan; 2317 } 2318 } 2319 } 2320 2321 /* 2322 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2323 */ 2324 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2325 struct scan_control *sc, unsigned long *lru_pages) 2326 { 2327 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2328 unsigned long nr[NR_LRU_LISTS]; 2329 unsigned long targets[NR_LRU_LISTS]; 2330 unsigned long nr_to_scan; 2331 enum lru_list lru; 2332 unsigned long nr_reclaimed = 0; 2333 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2334 struct blk_plug plug; 2335 bool scan_adjusted; 2336 2337 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2338 2339 /* Record the original scan target for proportional adjustments later */ 2340 memcpy(targets, nr, sizeof(nr)); 2341 2342 /* 2343 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2344 * event that can occur when there is little memory pressure e.g. 2345 * multiple streaming readers/writers. Hence, we do not abort scanning 2346 * when the requested number of pages are reclaimed when scanning at 2347 * DEF_PRIORITY on the assumption that the fact we are direct 2348 * reclaiming implies that kswapd is not keeping up and it is best to 2349 * do a batch of work at once. For memcg reclaim one check is made to 2350 * abort proportional reclaim if either the file or anon lru has already 2351 * dropped to zero at the first pass. 2352 */ 2353 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2354 sc->priority == DEF_PRIORITY); 2355 2356 blk_start_plug(&plug); 2357 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2358 nr[LRU_INACTIVE_FILE]) { 2359 unsigned long nr_anon, nr_file, percentage; 2360 unsigned long nr_scanned; 2361 2362 for_each_evictable_lru(lru) { 2363 if (nr[lru]) { 2364 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2365 nr[lru] -= nr_to_scan; 2366 2367 nr_reclaimed += shrink_list(lru, nr_to_scan, 2368 lruvec, sc); 2369 } 2370 } 2371 2372 cond_resched(); 2373 2374 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2375 continue; 2376 2377 /* 2378 * For kswapd and memcg, reclaim at least the number of pages 2379 * requested. Ensure that the anon and file LRUs are scanned 2380 * proportionally what was requested by get_scan_count(). We 2381 * stop reclaiming one LRU and reduce the amount scanning 2382 * proportional to the original scan target. 2383 */ 2384 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2385 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2386 2387 /* 2388 * It's just vindictive to attack the larger once the smaller 2389 * has gone to zero. And given the way we stop scanning the 2390 * smaller below, this makes sure that we only make one nudge 2391 * towards proportionality once we've got nr_to_reclaim. 2392 */ 2393 if (!nr_file || !nr_anon) 2394 break; 2395 2396 if (nr_file > nr_anon) { 2397 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2398 targets[LRU_ACTIVE_ANON] + 1; 2399 lru = LRU_BASE; 2400 percentage = nr_anon * 100 / scan_target; 2401 } else { 2402 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2403 targets[LRU_ACTIVE_FILE] + 1; 2404 lru = LRU_FILE; 2405 percentage = nr_file * 100 / scan_target; 2406 } 2407 2408 /* Stop scanning the smaller of the LRU */ 2409 nr[lru] = 0; 2410 nr[lru + LRU_ACTIVE] = 0; 2411 2412 /* 2413 * Recalculate the other LRU scan count based on its original 2414 * scan target and the percentage scanning already complete 2415 */ 2416 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2417 nr_scanned = targets[lru] - nr[lru]; 2418 nr[lru] = targets[lru] * (100 - percentage) / 100; 2419 nr[lru] -= min(nr[lru], nr_scanned); 2420 2421 lru += LRU_ACTIVE; 2422 nr_scanned = targets[lru] - nr[lru]; 2423 nr[lru] = targets[lru] * (100 - percentage) / 100; 2424 nr[lru] -= min(nr[lru], nr_scanned); 2425 2426 scan_adjusted = true; 2427 } 2428 blk_finish_plug(&plug); 2429 sc->nr_reclaimed += nr_reclaimed; 2430 2431 /* 2432 * Even if we did not try to evict anon pages at all, we want to 2433 * rebalance the anon lru active/inactive ratio. 2434 */ 2435 if (inactive_list_is_low(lruvec, false, sc)) 2436 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2437 sc, LRU_ACTIVE_ANON); 2438 } 2439 2440 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2441 static bool in_reclaim_compaction(struct scan_control *sc) 2442 { 2443 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2444 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2445 sc->priority < DEF_PRIORITY - 2)) 2446 return true; 2447 2448 return false; 2449 } 2450 2451 /* 2452 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2453 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2454 * true if more pages should be reclaimed such that when the page allocator 2455 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2456 * It will give up earlier than that if there is difficulty reclaiming pages. 2457 */ 2458 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2459 unsigned long nr_reclaimed, 2460 unsigned long nr_scanned, 2461 struct scan_control *sc) 2462 { 2463 unsigned long pages_for_compaction; 2464 unsigned long inactive_lru_pages; 2465 int z; 2466 2467 /* If not in reclaim/compaction mode, stop */ 2468 if (!in_reclaim_compaction(sc)) 2469 return false; 2470 2471 /* Consider stopping depending on scan and reclaim activity */ 2472 if (sc->gfp_mask & __GFP_REPEAT) { 2473 /* 2474 * For __GFP_REPEAT allocations, stop reclaiming if the 2475 * full LRU list has been scanned and we are still failing 2476 * to reclaim pages. This full LRU scan is potentially 2477 * expensive but a __GFP_REPEAT caller really wants to succeed 2478 */ 2479 if (!nr_reclaimed && !nr_scanned) 2480 return false; 2481 } else { 2482 /* 2483 * For non-__GFP_REPEAT allocations which can presumably 2484 * fail without consequence, stop if we failed to reclaim 2485 * any pages from the last SWAP_CLUSTER_MAX number of 2486 * pages that were scanned. This will return to the 2487 * caller faster at the risk reclaim/compaction and 2488 * the resulting allocation attempt fails 2489 */ 2490 if (!nr_reclaimed) 2491 return false; 2492 } 2493 2494 /* 2495 * If we have not reclaimed enough pages for compaction and the 2496 * inactive lists are large enough, continue reclaiming 2497 */ 2498 pages_for_compaction = compact_gap(sc->order); 2499 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2500 if (get_nr_swap_pages() > 0) 2501 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2502 if (sc->nr_reclaimed < pages_for_compaction && 2503 inactive_lru_pages > pages_for_compaction) 2504 return true; 2505 2506 /* If compaction would go ahead or the allocation would succeed, stop */ 2507 for (z = 0; z <= sc->reclaim_idx; z++) { 2508 struct zone *zone = &pgdat->node_zones[z]; 2509 if (!managed_zone(zone)) 2510 continue; 2511 2512 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2513 case COMPACT_SUCCESS: 2514 case COMPACT_CONTINUE: 2515 return false; 2516 default: 2517 /* check next zone */ 2518 ; 2519 } 2520 } 2521 return true; 2522 } 2523 2524 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2525 { 2526 struct reclaim_state *reclaim_state = current->reclaim_state; 2527 unsigned long nr_reclaimed, nr_scanned; 2528 bool reclaimable = false; 2529 2530 do { 2531 struct mem_cgroup *root = sc->target_mem_cgroup; 2532 struct mem_cgroup_reclaim_cookie reclaim = { 2533 .pgdat = pgdat, 2534 .priority = sc->priority, 2535 }; 2536 unsigned long node_lru_pages = 0; 2537 struct mem_cgroup *memcg; 2538 2539 nr_reclaimed = sc->nr_reclaimed; 2540 nr_scanned = sc->nr_scanned; 2541 2542 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2543 do { 2544 unsigned long lru_pages; 2545 unsigned long reclaimed; 2546 unsigned long scanned; 2547 2548 if (mem_cgroup_low(root, memcg)) { 2549 if (!sc->may_thrash) 2550 continue; 2551 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2552 } 2553 2554 reclaimed = sc->nr_reclaimed; 2555 scanned = sc->nr_scanned; 2556 2557 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2558 node_lru_pages += lru_pages; 2559 2560 if (memcg) 2561 shrink_slab(sc->gfp_mask, pgdat->node_id, 2562 memcg, sc->nr_scanned - scanned, 2563 lru_pages); 2564 2565 /* Record the group's reclaim efficiency */ 2566 vmpressure(sc->gfp_mask, memcg, false, 2567 sc->nr_scanned - scanned, 2568 sc->nr_reclaimed - reclaimed); 2569 2570 /* 2571 * Direct reclaim and kswapd have to scan all memory 2572 * cgroups to fulfill the overall scan target for the 2573 * node. 2574 * 2575 * Limit reclaim, on the other hand, only cares about 2576 * nr_to_reclaim pages to be reclaimed and it will 2577 * retry with decreasing priority if one round over the 2578 * whole hierarchy is not sufficient. 2579 */ 2580 if (!global_reclaim(sc) && 2581 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2582 mem_cgroup_iter_break(root, memcg); 2583 break; 2584 } 2585 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2586 2587 /* 2588 * Shrink the slab caches in the same proportion that 2589 * the eligible LRU pages were scanned. 2590 */ 2591 if (global_reclaim(sc)) 2592 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2593 sc->nr_scanned - nr_scanned, 2594 node_lru_pages); 2595 2596 if (reclaim_state) { 2597 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2598 reclaim_state->reclaimed_slab = 0; 2599 } 2600 2601 /* Record the subtree's reclaim efficiency */ 2602 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2603 sc->nr_scanned - nr_scanned, 2604 sc->nr_reclaimed - nr_reclaimed); 2605 2606 if (sc->nr_reclaimed - nr_reclaimed) 2607 reclaimable = true; 2608 2609 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2610 sc->nr_scanned - nr_scanned, sc)); 2611 2612 return reclaimable; 2613 } 2614 2615 /* 2616 * Returns true if compaction should go ahead for a costly-order request, or 2617 * the allocation would already succeed without compaction. Return false if we 2618 * should reclaim first. 2619 */ 2620 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2621 { 2622 unsigned long watermark; 2623 enum compact_result suitable; 2624 2625 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2626 if (suitable == COMPACT_SUCCESS) 2627 /* Allocation should succeed already. Don't reclaim. */ 2628 return true; 2629 if (suitable == COMPACT_SKIPPED) 2630 /* Compaction cannot yet proceed. Do reclaim. */ 2631 return false; 2632 2633 /* 2634 * Compaction is already possible, but it takes time to run and there 2635 * are potentially other callers using the pages just freed. So proceed 2636 * with reclaim to make a buffer of free pages available to give 2637 * compaction a reasonable chance of completing and allocating the page. 2638 * Note that we won't actually reclaim the whole buffer in one attempt 2639 * as the target watermark in should_continue_reclaim() is lower. But if 2640 * we are already above the high+gap watermark, don't reclaim at all. 2641 */ 2642 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2643 2644 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2645 } 2646 2647 /* 2648 * This is the direct reclaim path, for page-allocating processes. We only 2649 * try to reclaim pages from zones which will satisfy the caller's allocation 2650 * request. 2651 * 2652 * If a zone is deemed to be full of pinned pages then just give it a light 2653 * scan then give up on it. 2654 */ 2655 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2656 { 2657 struct zoneref *z; 2658 struct zone *zone; 2659 unsigned long nr_soft_reclaimed; 2660 unsigned long nr_soft_scanned; 2661 gfp_t orig_mask; 2662 pg_data_t *last_pgdat = NULL; 2663 2664 /* 2665 * If the number of buffer_heads in the machine exceeds the maximum 2666 * allowed level, force direct reclaim to scan the highmem zone as 2667 * highmem pages could be pinning lowmem pages storing buffer_heads 2668 */ 2669 orig_mask = sc->gfp_mask; 2670 if (buffer_heads_over_limit) { 2671 sc->gfp_mask |= __GFP_HIGHMEM; 2672 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2673 } 2674 2675 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2676 sc->reclaim_idx, sc->nodemask) { 2677 /* 2678 * Take care memory controller reclaiming has small influence 2679 * to global LRU. 2680 */ 2681 if (global_reclaim(sc)) { 2682 if (!cpuset_zone_allowed(zone, 2683 GFP_KERNEL | __GFP_HARDWALL)) 2684 continue; 2685 2686 if (sc->priority != DEF_PRIORITY && 2687 !pgdat_reclaimable(zone->zone_pgdat)) 2688 continue; /* Let kswapd poll it */ 2689 2690 /* 2691 * If we already have plenty of memory free for 2692 * compaction in this zone, don't free any more. 2693 * Even though compaction is invoked for any 2694 * non-zero order, only frequent costly order 2695 * reclamation is disruptive enough to become a 2696 * noticeable problem, like transparent huge 2697 * page allocations. 2698 */ 2699 if (IS_ENABLED(CONFIG_COMPACTION) && 2700 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2701 compaction_ready(zone, sc)) { 2702 sc->compaction_ready = true; 2703 continue; 2704 } 2705 2706 /* 2707 * Shrink each node in the zonelist once. If the 2708 * zonelist is ordered by zone (not the default) then a 2709 * node may be shrunk multiple times but in that case 2710 * the user prefers lower zones being preserved. 2711 */ 2712 if (zone->zone_pgdat == last_pgdat) 2713 continue; 2714 2715 /* 2716 * This steals pages from memory cgroups over softlimit 2717 * and returns the number of reclaimed pages and 2718 * scanned pages. This works for global memory pressure 2719 * and balancing, not for a memcg's limit. 2720 */ 2721 nr_soft_scanned = 0; 2722 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2723 sc->order, sc->gfp_mask, 2724 &nr_soft_scanned); 2725 sc->nr_reclaimed += nr_soft_reclaimed; 2726 sc->nr_scanned += nr_soft_scanned; 2727 /* need some check for avoid more shrink_zone() */ 2728 } 2729 2730 /* See comment about same check for global reclaim above */ 2731 if (zone->zone_pgdat == last_pgdat) 2732 continue; 2733 last_pgdat = zone->zone_pgdat; 2734 shrink_node(zone->zone_pgdat, sc); 2735 } 2736 2737 /* 2738 * Restore to original mask to avoid the impact on the caller if we 2739 * promoted it to __GFP_HIGHMEM. 2740 */ 2741 sc->gfp_mask = orig_mask; 2742 } 2743 2744 /* 2745 * This is the main entry point to direct page reclaim. 2746 * 2747 * If a full scan of the inactive list fails to free enough memory then we 2748 * are "out of memory" and something needs to be killed. 2749 * 2750 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2751 * high - the zone may be full of dirty or under-writeback pages, which this 2752 * caller can't do much about. We kick the writeback threads and take explicit 2753 * naps in the hope that some of these pages can be written. But if the 2754 * allocating task holds filesystem locks which prevent writeout this might not 2755 * work, and the allocation attempt will fail. 2756 * 2757 * returns: 0, if no pages reclaimed 2758 * else, the number of pages reclaimed 2759 */ 2760 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2761 struct scan_control *sc) 2762 { 2763 int initial_priority = sc->priority; 2764 unsigned long total_scanned = 0; 2765 unsigned long writeback_threshold; 2766 retry: 2767 delayacct_freepages_start(); 2768 2769 if (global_reclaim(sc)) 2770 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2771 2772 do { 2773 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2774 sc->priority); 2775 sc->nr_scanned = 0; 2776 shrink_zones(zonelist, sc); 2777 2778 total_scanned += sc->nr_scanned; 2779 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2780 break; 2781 2782 if (sc->compaction_ready) 2783 break; 2784 2785 /* 2786 * If we're getting trouble reclaiming, start doing 2787 * writepage even in laptop mode. 2788 */ 2789 if (sc->priority < DEF_PRIORITY - 2) 2790 sc->may_writepage = 1; 2791 2792 /* 2793 * Try to write back as many pages as we just scanned. This 2794 * tends to cause slow streaming writers to write data to the 2795 * disk smoothly, at the dirtying rate, which is nice. But 2796 * that's undesirable in laptop mode, where we *want* lumpy 2797 * writeout. So in laptop mode, write out the whole world. 2798 */ 2799 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2800 if (total_scanned > writeback_threshold) { 2801 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2802 WB_REASON_TRY_TO_FREE_PAGES); 2803 sc->may_writepage = 1; 2804 } 2805 } while (--sc->priority >= 0); 2806 2807 delayacct_freepages_end(); 2808 2809 if (sc->nr_reclaimed) 2810 return sc->nr_reclaimed; 2811 2812 /* Aborted reclaim to try compaction? don't OOM, then */ 2813 if (sc->compaction_ready) 2814 return 1; 2815 2816 /* Untapped cgroup reserves? Don't OOM, retry. */ 2817 if (!sc->may_thrash) { 2818 sc->priority = initial_priority; 2819 sc->may_thrash = 1; 2820 goto retry; 2821 } 2822 2823 return 0; 2824 } 2825 2826 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2827 { 2828 struct zone *zone; 2829 unsigned long pfmemalloc_reserve = 0; 2830 unsigned long free_pages = 0; 2831 int i; 2832 bool wmark_ok; 2833 2834 for (i = 0; i <= ZONE_NORMAL; i++) { 2835 zone = &pgdat->node_zones[i]; 2836 if (!managed_zone(zone) || 2837 pgdat_reclaimable_pages(pgdat) == 0) 2838 continue; 2839 2840 pfmemalloc_reserve += min_wmark_pages(zone); 2841 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2842 } 2843 2844 /* If there are no reserves (unexpected config) then do not throttle */ 2845 if (!pfmemalloc_reserve) 2846 return true; 2847 2848 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2849 2850 /* kswapd must be awake if processes are being throttled */ 2851 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2852 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2853 (enum zone_type)ZONE_NORMAL); 2854 wake_up_interruptible(&pgdat->kswapd_wait); 2855 } 2856 2857 return wmark_ok; 2858 } 2859 2860 /* 2861 * Throttle direct reclaimers if backing storage is backed by the network 2862 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2863 * depleted. kswapd will continue to make progress and wake the processes 2864 * when the low watermark is reached. 2865 * 2866 * Returns true if a fatal signal was delivered during throttling. If this 2867 * happens, the page allocator should not consider triggering the OOM killer. 2868 */ 2869 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2870 nodemask_t *nodemask) 2871 { 2872 struct zoneref *z; 2873 struct zone *zone; 2874 pg_data_t *pgdat = NULL; 2875 2876 /* 2877 * Kernel threads should not be throttled as they may be indirectly 2878 * responsible for cleaning pages necessary for reclaim to make forward 2879 * progress. kjournald for example may enter direct reclaim while 2880 * committing a transaction where throttling it could forcing other 2881 * processes to block on log_wait_commit(). 2882 */ 2883 if (current->flags & PF_KTHREAD) 2884 goto out; 2885 2886 /* 2887 * If a fatal signal is pending, this process should not throttle. 2888 * It should return quickly so it can exit and free its memory 2889 */ 2890 if (fatal_signal_pending(current)) 2891 goto out; 2892 2893 /* 2894 * Check if the pfmemalloc reserves are ok by finding the first node 2895 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2896 * GFP_KERNEL will be required for allocating network buffers when 2897 * swapping over the network so ZONE_HIGHMEM is unusable. 2898 * 2899 * Throttling is based on the first usable node and throttled processes 2900 * wait on a queue until kswapd makes progress and wakes them. There 2901 * is an affinity then between processes waking up and where reclaim 2902 * progress has been made assuming the process wakes on the same node. 2903 * More importantly, processes running on remote nodes will not compete 2904 * for remote pfmemalloc reserves and processes on different nodes 2905 * should make reasonable progress. 2906 */ 2907 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2908 gfp_zone(gfp_mask), nodemask) { 2909 if (zone_idx(zone) > ZONE_NORMAL) 2910 continue; 2911 2912 /* Throttle based on the first usable node */ 2913 pgdat = zone->zone_pgdat; 2914 if (pfmemalloc_watermark_ok(pgdat)) 2915 goto out; 2916 break; 2917 } 2918 2919 /* If no zone was usable by the allocation flags then do not throttle */ 2920 if (!pgdat) 2921 goto out; 2922 2923 /* Account for the throttling */ 2924 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2925 2926 /* 2927 * If the caller cannot enter the filesystem, it's possible that it 2928 * is due to the caller holding an FS lock or performing a journal 2929 * transaction in the case of a filesystem like ext[3|4]. In this case, 2930 * it is not safe to block on pfmemalloc_wait as kswapd could be 2931 * blocked waiting on the same lock. Instead, throttle for up to a 2932 * second before continuing. 2933 */ 2934 if (!(gfp_mask & __GFP_FS)) { 2935 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2936 pfmemalloc_watermark_ok(pgdat), HZ); 2937 2938 goto check_pending; 2939 } 2940 2941 /* Throttle until kswapd wakes the process */ 2942 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2943 pfmemalloc_watermark_ok(pgdat)); 2944 2945 check_pending: 2946 if (fatal_signal_pending(current)) 2947 return true; 2948 2949 out: 2950 return false; 2951 } 2952 2953 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2954 gfp_t gfp_mask, nodemask_t *nodemask) 2955 { 2956 unsigned long nr_reclaimed; 2957 struct scan_control sc = { 2958 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2959 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2960 .reclaim_idx = gfp_zone(gfp_mask), 2961 .order = order, 2962 .nodemask = nodemask, 2963 .priority = DEF_PRIORITY, 2964 .may_writepage = !laptop_mode, 2965 .may_unmap = 1, 2966 .may_swap = 1, 2967 }; 2968 2969 /* 2970 * Do not enter reclaim if fatal signal was delivered while throttled. 2971 * 1 is returned so that the page allocator does not OOM kill at this 2972 * point. 2973 */ 2974 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2975 return 1; 2976 2977 trace_mm_vmscan_direct_reclaim_begin(order, 2978 sc.may_writepage, 2979 gfp_mask, 2980 sc.reclaim_idx); 2981 2982 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2983 2984 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2985 2986 return nr_reclaimed; 2987 } 2988 2989 #ifdef CONFIG_MEMCG 2990 2991 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 2992 gfp_t gfp_mask, bool noswap, 2993 pg_data_t *pgdat, 2994 unsigned long *nr_scanned) 2995 { 2996 struct scan_control sc = { 2997 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2998 .target_mem_cgroup = memcg, 2999 .may_writepage = !laptop_mode, 3000 .may_unmap = 1, 3001 .reclaim_idx = MAX_NR_ZONES - 1, 3002 .may_swap = !noswap, 3003 }; 3004 unsigned long lru_pages; 3005 3006 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3007 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3008 3009 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3010 sc.may_writepage, 3011 sc.gfp_mask, 3012 sc.reclaim_idx); 3013 3014 /* 3015 * NOTE: Although we can get the priority field, using it 3016 * here is not a good idea, since it limits the pages we can scan. 3017 * if we don't reclaim here, the shrink_node from balance_pgdat 3018 * will pick up pages from other mem cgroup's as well. We hack 3019 * the priority and make it zero. 3020 */ 3021 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3022 3023 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3024 3025 *nr_scanned = sc.nr_scanned; 3026 return sc.nr_reclaimed; 3027 } 3028 3029 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3030 unsigned long nr_pages, 3031 gfp_t gfp_mask, 3032 bool may_swap) 3033 { 3034 struct zonelist *zonelist; 3035 unsigned long nr_reclaimed; 3036 int nid; 3037 struct scan_control sc = { 3038 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3039 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3040 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3041 .reclaim_idx = MAX_NR_ZONES - 1, 3042 .target_mem_cgroup = memcg, 3043 .priority = DEF_PRIORITY, 3044 .may_writepage = !laptop_mode, 3045 .may_unmap = 1, 3046 .may_swap = may_swap, 3047 }; 3048 3049 /* 3050 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3051 * take care of from where we get pages. So the node where we start the 3052 * scan does not need to be the current node. 3053 */ 3054 nid = mem_cgroup_select_victim_node(memcg); 3055 3056 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3057 3058 trace_mm_vmscan_memcg_reclaim_begin(0, 3059 sc.may_writepage, 3060 sc.gfp_mask, 3061 sc.reclaim_idx); 3062 3063 current->flags |= PF_MEMALLOC; 3064 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3065 current->flags &= ~PF_MEMALLOC; 3066 3067 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3068 3069 return nr_reclaimed; 3070 } 3071 #endif 3072 3073 static void age_active_anon(struct pglist_data *pgdat, 3074 struct scan_control *sc) 3075 { 3076 struct mem_cgroup *memcg; 3077 3078 if (!total_swap_pages) 3079 return; 3080 3081 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3082 do { 3083 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3084 3085 if (inactive_list_is_low(lruvec, false, sc)) 3086 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3087 sc, LRU_ACTIVE_ANON); 3088 3089 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3090 } while (memcg); 3091 } 3092 3093 static bool zone_balanced(struct zone *zone, int order, int classzone_idx) 3094 { 3095 unsigned long mark = high_wmark_pages(zone); 3096 3097 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3098 return false; 3099 3100 /* 3101 * If any eligible zone is balanced then the node is not considered 3102 * to be congested or dirty 3103 */ 3104 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); 3105 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); 3106 3107 return true; 3108 } 3109 3110 /* 3111 * Prepare kswapd for sleeping. This verifies that there are no processes 3112 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3113 * 3114 * Returns true if kswapd is ready to sleep 3115 */ 3116 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3117 { 3118 int i; 3119 3120 /* 3121 * The throttled processes are normally woken up in balance_pgdat() as 3122 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3123 * race between when kswapd checks the watermarks and a process gets 3124 * throttled. There is also a potential race if processes get 3125 * throttled, kswapd wakes, a large process exits thereby balancing the 3126 * zones, which causes kswapd to exit balance_pgdat() before reaching 3127 * the wake up checks. If kswapd is going to sleep, no process should 3128 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3129 * the wake up is premature, processes will wake kswapd and get 3130 * throttled again. The difference from wake ups in balance_pgdat() is 3131 * that here we are under prepare_to_wait(). 3132 */ 3133 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3134 wake_up_all(&pgdat->pfmemalloc_wait); 3135 3136 for (i = 0; i <= classzone_idx; i++) { 3137 struct zone *zone = pgdat->node_zones + i; 3138 3139 if (!managed_zone(zone)) 3140 continue; 3141 3142 if (!zone_balanced(zone, order, classzone_idx)) 3143 return false; 3144 } 3145 3146 return true; 3147 } 3148 3149 /* 3150 * kswapd shrinks a node of pages that are at or below the highest usable 3151 * zone that is currently unbalanced. 3152 * 3153 * Returns true if kswapd scanned at least the requested number of pages to 3154 * reclaim or if the lack of progress was due to pages under writeback. 3155 * This is used to determine if the scanning priority needs to be raised. 3156 */ 3157 static bool kswapd_shrink_node(pg_data_t *pgdat, 3158 struct scan_control *sc) 3159 { 3160 struct zone *zone; 3161 int z; 3162 3163 /* Reclaim a number of pages proportional to the number of zones */ 3164 sc->nr_to_reclaim = 0; 3165 for (z = 0; z <= sc->reclaim_idx; z++) { 3166 zone = pgdat->node_zones + z; 3167 if (!managed_zone(zone)) 3168 continue; 3169 3170 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3171 } 3172 3173 /* 3174 * Historically care was taken to put equal pressure on all zones but 3175 * now pressure is applied based on node LRU order. 3176 */ 3177 shrink_node(pgdat, sc); 3178 3179 /* 3180 * Fragmentation may mean that the system cannot be rebalanced for 3181 * high-order allocations. If twice the allocation size has been 3182 * reclaimed then recheck watermarks only at order-0 to prevent 3183 * excessive reclaim. Assume that a process requested a high-order 3184 * can direct reclaim/compact. 3185 */ 3186 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3187 sc->order = 0; 3188 3189 return sc->nr_scanned >= sc->nr_to_reclaim; 3190 } 3191 3192 /* 3193 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3194 * that are eligible for use by the caller until at least one zone is 3195 * balanced. 3196 * 3197 * Returns the order kswapd finished reclaiming at. 3198 * 3199 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3200 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3201 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3202 * or lower is eligible for reclaim until at least one usable zone is 3203 * balanced. 3204 */ 3205 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3206 { 3207 int i; 3208 unsigned long nr_soft_reclaimed; 3209 unsigned long nr_soft_scanned; 3210 struct zone *zone; 3211 struct scan_control sc = { 3212 .gfp_mask = GFP_KERNEL, 3213 .order = order, 3214 .priority = DEF_PRIORITY, 3215 .may_writepage = !laptop_mode, 3216 .may_unmap = 1, 3217 .may_swap = 1, 3218 }; 3219 count_vm_event(PAGEOUTRUN); 3220 3221 do { 3222 bool raise_priority = true; 3223 3224 sc.nr_reclaimed = 0; 3225 sc.reclaim_idx = classzone_idx; 3226 3227 /* 3228 * If the number of buffer_heads exceeds the maximum allowed 3229 * then consider reclaiming from all zones. This has a dual 3230 * purpose -- on 64-bit systems it is expected that 3231 * buffer_heads are stripped during active rotation. On 32-bit 3232 * systems, highmem pages can pin lowmem memory and shrinking 3233 * buffers can relieve lowmem pressure. Reclaim may still not 3234 * go ahead if all eligible zones for the original allocation 3235 * request are balanced to avoid excessive reclaim from kswapd. 3236 */ 3237 if (buffer_heads_over_limit) { 3238 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3239 zone = pgdat->node_zones + i; 3240 if (!managed_zone(zone)) 3241 continue; 3242 3243 sc.reclaim_idx = i; 3244 break; 3245 } 3246 } 3247 3248 /* 3249 * Only reclaim if there are no eligible zones. Check from 3250 * high to low zone as allocations prefer higher zones. 3251 * Scanning from low to high zone would allow congestion to be 3252 * cleared during a very small window when a small low 3253 * zone was balanced even under extreme pressure when the 3254 * overall node may be congested. Note that sc.reclaim_idx 3255 * is not used as buffer_heads_over_limit may have adjusted 3256 * it. 3257 */ 3258 for (i = classzone_idx; i >= 0; i--) { 3259 zone = pgdat->node_zones + i; 3260 if (!managed_zone(zone)) 3261 continue; 3262 3263 if (zone_balanced(zone, sc.order, classzone_idx)) 3264 goto out; 3265 } 3266 3267 /* 3268 * Do some background aging of the anon list, to give 3269 * pages a chance to be referenced before reclaiming. All 3270 * pages are rotated regardless of classzone as this is 3271 * about consistent aging. 3272 */ 3273 age_active_anon(pgdat, &sc); 3274 3275 /* 3276 * If we're getting trouble reclaiming, start doing writepage 3277 * even in laptop mode. 3278 */ 3279 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat)) 3280 sc.may_writepage = 1; 3281 3282 /* Call soft limit reclaim before calling shrink_node. */ 3283 sc.nr_scanned = 0; 3284 nr_soft_scanned = 0; 3285 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3286 sc.gfp_mask, &nr_soft_scanned); 3287 sc.nr_reclaimed += nr_soft_reclaimed; 3288 3289 /* 3290 * There should be no need to raise the scanning priority if 3291 * enough pages are already being scanned that that high 3292 * watermark would be met at 100% efficiency. 3293 */ 3294 if (kswapd_shrink_node(pgdat, &sc)) 3295 raise_priority = false; 3296 3297 /* 3298 * If the low watermark is met there is no need for processes 3299 * to be throttled on pfmemalloc_wait as they should not be 3300 * able to safely make forward progress. Wake them 3301 */ 3302 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3303 pfmemalloc_watermark_ok(pgdat)) 3304 wake_up_all(&pgdat->pfmemalloc_wait); 3305 3306 /* Check if kswapd should be suspending */ 3307 if (try_to_freeze() || kthread_should_stop()) 3308 break; 3309 3310 /* 3311 * Raise priority if scanning rate is too low or there was no 3312 * progress in reclaiming pages 3313 */ 3314 if (raise_priority || !sc.nr_reclaimed) 3315 sc.priority--; 3316 } while (sc.priority >= 1); 3317 3318 out: 3319 /* 3320 * Return the order kswapd stopped reclaiming at as 3321 * prepare_kswapd_sleep() takes it into account. If another caller 3322 * entered the allocator slow path while kswapd was awake, order will 3323 * remain at the higher level. 3324 */ 3325 return sc.order; 3326 } 3327 3328 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3329 unsigned int classzone_idx) 3330 { 3331 long remaining = 0; 3332 DEFINE_WAIT(wait); 3333 3334 if (freezing(current) || kthread_should_stop()) 3335 return; 3336 3337 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3338 3339 /* Try to sleep for a short interval */ 3340 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3341 /* 3342 * Compaction records what page blocks it recently failed to 3343 * isolate pages from and skips them in the future scanning. 3344 * When kswapd is going to sleep, it is reasonable to assume 3345 * that pages and compaction may succeed so reset the cache. 3346 */ 3347 reset_isolation_suitable(pgdat); 3348 3349 /* 3350 * We have freed the memory, now we should compact it to make 3351 * allocation of the requested order possible. 3352 */ 3353 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3354 3355 remaining = schedule_timeout(HZ/10); 3356 3357 /* 3358 * If woken prematurely then reset kswapd_classzone_idx and 3359 * order. The values will either be from a wakeup request or 3360 * the previous request that slept prematurely. 3361 */ 3362 if (remaining) { 3363 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3364 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3365 } 3366 3367 finish_wait(&pgdat->kswapd_wait, &wait); 3368 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3369 } 3370 3371 /* 3372 * After a short sleep, check if it was a premature sleep. If not, then 3373 * go fully to sleep until explicitly woken up. 3374 */ 3375 if (!remaining && 3376 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3377 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3378 3379 /* 3380 * vmstat counters are not perfectly accurate and the estimated 3381 * value for counters such as NR_FREE_PAGES can deviate from the 3382 * true value by nr_online_cpus * threshold. To avoid the zone 3383 * watermarks being breached while under pressure, we reduce the 3384 * per-cpu vmstat threshold while kswapd is awake and restore 3385 * them before going back to sleep. 3386 */ 3387 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3388 3389 if (!kthread_should_stop()) 3390 schedule(); 3391 3392 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3393 } else { 3394 if (remaining) 3395 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3396 else 3397 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3398 } 3399 finish_wait(&pgdat->kswapd_wait, &wait); 3400 } 3401 3402 /* 3403 * The background pageout daemon, started as a kernel thread 3404 * from the init process. 3405 * 3406 * This basically trickles out pages so that we have _some_ 3407 * free memory available even if there is no other activity 3408 * that frees anything up. This is needed for things like routing 3409 * etc, where we otherwise might have all activity going on in 3410 * asynchronous contexts that cannot page things out. 3411 * 3412 * If there are applications that are active memory-allocators 3413 * (most normal use), this basically shouldn't matter. 3414 */ 3415 static int kswapd(void *p) 3416 { 3417 unsigned int alloc_order, reclaim_order, classzone_idx; 3418 pg_data_t *pgdat = (pg_data_t*)p; 3419 struct task_struct *tsk = current; 3420 3421 struct reclaim_state reclaim_state = { 3422 .reclaimed_slab = 0, 3423 }; 3424 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3425 3426 lockdep_set_current_reclaim_state(GFP_KERNEL); 3427 3428 if (!cpumask_empty(cpumask)) 3429 set_cpus_allowed_ptr(tsk, cpumask); 3430 current->reclaim_state = &reclaim_state; 3431 3432 /* 3433 * Tell the memory management that we're a "memory allocator", 3434 * and that if we need more memory we should get access to it 3435 * regardless (see "__alloc_pages()"). "kswapd" should 3436 * never get caught in the normal page freeing logic. 3437 * 3438 * (Kswapd normally doesn't need memory anyway, but sometimes 3439 * you need a small amount of memory in order to be able to 3440 * page out something else, and this flag essentially protects 3441 * us from recursively trying to free more memory as we're 3442 * trying to free the first piece of memory in the first place). 3443 */ 3444 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3445 set_freezable(); 3446 3447 pgdat->kswapd_order = alloc_order = reclaim_order = 0; 3448 pgdat->kswapd_classzone_idx = classzone_idx = 0; 3449 for ( ; ; ) { 3450 bool ret; 3451 3452 kswapd_try_sleep: 3453 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3454 classzone_idx); 3455 3456 /* Read the new order and classzone_idx */ 3457 alloc_order = reclaim_order = pgdat->kswapd_order; 3458 classzone_idx = pgdat->kswapd_classzone_idx; 3459 pgdat->kswapd_order = 0; 3460 pgdat->kswapd_classzone_idx = 0; 3461 3462 ret = try_to_freeze(); 3463 if (kthread_should_stop()) 3464 break; 3465 3466 /* 3467 * We can speed up thawing tasks if we don't call balance_pgdat 3468 * after returning from the refrigerator 3469 */ 3470 if (ret) 3471 continue; 3472 3473 /* 3474 * Reclaim begins at the requested order but if a high-order 3475 * reclaim fails then kswapd falls back to reclaiming for 3476 * order-0. If that happens, kswapd will consider sleeping 3477 * for the order it finished reclaiming at (reclaim_order) 3478 * but kcompactd is woken to compact for the original 3479 * request (alloc_order). 3480 */ 3481 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3482 alloc_order); 3483 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3484 if (reclaim_order < alloc_order) 3485 goto kswapd_try_sleep; 3486 3487 alloc_order = reclaim_order = pgdat->kswapd_order; 3488 classzone_idx = pgdat->kswapd_classzone_idx; 3489 } 3490 3491 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3492 current->reclaim_state = NULL; 3493 lockdep_clear_current_reclaim_state(); 3494 3495 return 0; 3496 } 3497 3498 /* 3499 * A zone is low on free memory, so wake its kswapd task to service it. 3500 */ 3501 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3502 { 3503 pg_data_t *pgdat; 3504 int z; 3505 3506 if (!managed_zone(zone)) 3507 return; 3508 3509 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3510 return; 3511 pgdat = zone->zone_pgdat; 3512 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3513 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3514 if (!waitqueue_active(&pgdat->kswapd_wait)) 3515 return; 3516 3517 /* Only wake kswapd if all zones are unbalanced */ 3518 for (z = 0; z <= classzone_idx; z++) { 3519 zone = pgdat->node_zones + z; 3520 if (!managed_zone(zone)) 3521 continue; 3522 3523 if (zone_balanced(zone, order, classzone_idx)) 3524 return; 3525 } 3526 3527 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3528 wake_up_interruptible(&pgdat->kswapd_wait); 3529 } 3530 3531 #ifdef CONFIG_HIBERNATION 3532 /* 3533 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3534 * freed pages. 3535 * 3536 * Rather than trying to age LRUs the aim is to preserve the overall 3537 * LRU order by reclaiming preferentially 3538 * inactive > active > active referenced > active mapped 3539 */ 3540 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3541 { 3542 struct reclaim_state reclaim_state; 3543 struct scan_control sc = { 3544 .nr_to_reclaim = nr_to_reclaim, 3545 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3546 .reclaim_idx = MAX_NR_ZONES - 1, 3547 .priority = DEF_PRIORITY, 3548 .may_writepage = 1, 3549 .may_unmap = 1, 3550 .may_swap = 1, 3551 .hibernation_mode = 1, 3552 }; 3553 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3554 struct task_struct *p = current; 3555 unsigned long nr_reclaimed; 3556 3557 p->flags |= PF_MEMALLOC; 3558 lockdep_set_current_reclaim_state(sc.gfp_mask); 3559 reclaim_state.reclaimed_slab = 0; 3560 p->reclaim_state = &reclaim_state; 3561 3562 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3563 3564 p->reclaim_state = NULL; 3565 lockdep_clear_current_reclaim_state(); 3566 p->flags &= ~PF_MEMALLOC; 3567 3568 return nr_reclaimed; 3569 } 3570 #endif /* CONFIG_HIBERNATION */ 3571 3572 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3573 not required for correctness. So if the last cpu in a node goes 3574 away, we get changed to run anywhere: as the first one comes back, 3575 restore their cpu bindings. */ 3576 static int kswapd_cpu_online(unsigned int cpu) 3577 { 3578 int nid; 3579 3580 for_each_node_state(nid, N_MEMORY) { 3581 pg_data_t *pgdat = NODE_DATA(nid); 3582 const struct cpumask *mask; 3583 3584 mask = cpumask_of_node(pgdat->node_id); 3585 3586 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3587 /* One of our CPUs online: restore mask */ 3588 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3589 } 3590 return 0; 3591 } 3592 3593 /* 3594 * This kswapd start function will be called by init and node-hot-add. 3595 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3596 */ 3597 int kswapd_run(int nid) 3598 { 3599 pg_data_t *pgdat = NODE_DATA(nid); 3600 int ret = 0; 3601 3602 if (pgdat->kswapd) 3603 return 0; 3604 3605 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3606 if (IS_ERR(pgdat->kswapd)) { 3607 /* failure at boot is fatal */ 3608 BUG_ON(system_state == SYSTEM_BOOTING); 3609 pr_err("Failed to start kswapd on node %d\n", nid); 3610 ret = PTR_ERR(pgdat->kswapd); 3611 pgdat->kswapd = NULL; 3612 } 3613 return ret; 3614 } 3615 3616 /* 3617 * Called by memory hotplug when all memory in a node is offlined. Caller must 3618 * hold mem_hotplug_begin/end(). 3619 */ 3620 void kswapd_stop(int nid) 3621 { 3622 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3623 3624 if (kswapd) { 3625 kthread_stop(kswapd); 3626 NODE_DATA(nid)->kswapd = NULL; 3627 } 3628 } 3629 3630 static int __init kswapd_init(void) 3631 { 3632 int nid, ret; 3633 3634 swap_setup(); 3635 for_each_node_state(nid, N_MEMORY) 3636 kswapd_run(nid); 3637 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3638 "mm/vmscan:online", kswapd_cpu_online, 3639 NULL); 3640 WARN_ON(ret < 0); 3641 return 0; 3642 } 3643 3644 module_init(kswapd_init) 3645 3646 #ifdef CONFIG_NUMA 3647 /* 3648 * Node reclaim mode 3649 * 3650 * If non-zero call node_reclaim when the number of free pages falls below 3651 * the watermarks. 3652 */ 3653 int node_reclaim_mode __read_mostly; 3654 3655 #define RECLAIM_OFF 0 3656 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3657 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3658 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3659 3660 /* 3661 * Priority for NODE_RECLAIM. This determines the fraction of pages 3662 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3663 * a zone. 3664 */ 3665 #define NODE_RECLAIM_PRIORITY 4 3666 3667 /* 3668 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3669 * occur. 3670 */ 3671 int sysctl_min_unmapped_ratio = 1; 3672 3673 /* 3674 * If the number of slab pages in a zone grows beyond this percentage then 3675 * slab reclaim needs to occur. 3676 */ 3677 int sysctl_min_slab_ratio = 5; 3678 3679 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3680 { 3681 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3682 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3683 node_page_state(pgdat, NR_ACTIVE_FILE); 3684 3685 /* 3686 * It's possible for there to be more file mapped pages than 3687 * accounted for by the pages on the file LRU lists because 3688 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3689 */ 3690 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3691 } 3692 3693 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3694 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3695 { 3696 unsigned long nr_pagecache_reclaimable; 3697 unsigned long delta = 0; 3698 3699 /* 3700 * If RECLAIM_UNMAP is set, then all file pages are considered 3701 * potentially reclaimable. Otherwise, we have to worry about 3702 * pages like swapcache and node_unmapped_file_pages() provides 3703 * a better estimate 3704 */ 3705 if (node_reclaim_mode & RECLAIM_UNMAP) 3706 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3707 else 3708 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3709 3710 /* If we can't clean pages, remove dirty pages from consideration */ 3711 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3712 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3713 3714 /* Watch for any possible underflows due to delta */ 3715 if (unlikely(delta > nr_pagecache_reclaimable)) 3716 delta = nr_pagecache_reclaimable; 3717 3718 return nr_pagecache_reclaimable - delta; 3719 } 3720 3721 /* 3722 * Try to free up some pages from this node through reclaim. 3723 */ 3724 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3725 { 3726 /* Minimum pages needed in order to stay on node */ 3727 const unsigned long nr_pages = 1 << order; 3728 struct task_struct *p = current; 3729 struct reclaim_state reclaim_state; 3730 int classzone_idx = gfp_zone(gfp_mask); 3731 struct scan_control sc = { 3732 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3733 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3734 .order = order, 3735 .priority = NODE_RECLAIM_PRIORITY, 3736 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3737 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3738 .may_swap = 1, 3739 .reclaim_idx = classzone_idx, 3740 }; 3741 3742 cond_resched(); 3743 /* 3744 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3745 * and we also need to be able to write out pages for RECLAIM_WRITE 3746 * and RECLAIM_UNMAP. 3747 */ 3748 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3749 lockdep_set_current_reclaim_state(gfp_mask); 3750 reclaim_state.reclaimed_slab = 0; 3751 p->reclaim_state = &reclaim_state; 3752 3753 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3754 /* 3755 * Free memory by calling shrink zone with increasing 3756 * priorities until we have enough memory freed. 3757 */ 3758 do { 3759 shrink_node(pgdat, &sc); 3760 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3761 } 3762 3763 p->reclaim_state = NULL; 3764 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3765 lockdep_clear_current_reclaim_state(); 3766 return sc.nr_reclaimed >= nr_pages; 3767 } 3768 3769 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3770 { 3771 int ret; 3772 3773 /* 3774 * Node reclaim reclaims unmapped file backed pages and 3775 * slab pages if we are over the defined limits. 3776 * 3777 * A small portion of unmapped file backed pages is needed for 3778 * file I/O otherwise pages read by file I/O will be immediately 3779 * thrown out if the node is overallocated. So we do not reclaim 3780 * if less than a specified percentage of the node is used by 3781 * unmapped file backed pages. 3782 */ 3783 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3784 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3785 return NODE_RECLAIM_FULL; 3786 3787 if (!pgdat_reclaimable(pgdat)) 3788 return NODE_RECLAIM_FULL; 3789 3790 /* 3791 * Do not scan if the allocation should not be delayed. 3792 */ 3793 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3794 return NODE_RECLAIM_NOSCAN; 3795 3796 /* 3797 * Only run node reclaim on the local node or on nodes that do not 3798 * have associated processors. This will favor the local processor 3799 * over remote processors and spread off node memory allocations 3800 * as wide as possible. 3801 */ 3802 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3803 return NODE_RECLAIM_NOSCAN; 3804 3805 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3806 return NODE_RECLAIM_NOSCAN; 3807 3808 ret = __node_reclaim(pgdat, gfp_mask, order); 3809 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3810 3811 if (!ret) 3812 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3813 3814 return ret; 3815 } 3816 #endif 3817 3818 /* 3819 * page_evictable - test whether a page is evictable 3820 * @page: the page to test 3821 * 3822 * Test whether page is evictable--i.e., should be placed on active/inactive 3823 * lists vs unevictable list. 3824 * 3825 * Reasons page might not be evictable: 3826 * (1) page's mapping marked unevictable 3827 * (2) page is part of an mlocked VMA 3828 * 3829 */ 3830 int page_evictable(struct page *page) 3831 { 3832 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3833 } 3834 3835 #ifdef CONFIG_SHMEM 3836 /** 3837 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3838 * @pages: array of pages to check 3839 * @nr_pages: number of pages to check 3840 * 3841 * Checks pages for evictability and moves them to the appropriate lru list. 3842 * 3843 * This function is only used for SysV IPC SHM_UNLOCK. 3844 */ 3845 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3846 { 3847 struct lruvec *lruvec; 3848 struct pglist_data *pgdat = NULL; 3849 int pgscanned = 0; 3850 int pgrescued = 0; 3851 int i; 3852 3853 for (i = 0; i < nr_pages; i++) { 3854 struct page *page = pages[i]; 3855 struct pglist_data *pagepgdat = page_pgdat(page); 3856 3857 pgscanned++; 3858 if (pagepgdat != pgdat) { 3859 if (pgdat) 3860 spin_unlock_irq(&pgdat->lru_lock); 3861 pgdat = pagepgdat; 3862 spin_lock_irq(&pgdat->lru_lock); 3863 } 3864 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3865 3866 if (!PageLRU(page) || !PageUnevictable(page)) 3867 continue; 3868 3869 if (page_evictable(page)) { 3870 enum lru_list lru = page_lru_base_type(page); 3871 3872 VM_BUG_ON_PAGE(PageActive(page), page); 3873 ClearPageUnevictable(page); 3874 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3875 add_page_to_lru_list(page, lruvec, lru); 3876 pgrescued++; 3877 } 3878 } 3879 3880 if (pgdat) { 3881 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3882 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3883 spin_unlock_irq(&pgdat->lru_lock); 3884 } 3885 } 3886 #endif /* CONFIG_SHMEM */ 3887