xref: /openbmc/linux/mm/vmscan.c (revision 4beec1d7)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	/* The highest zone to isolate pages for reclaim from */
88 	enum zone_type reclaim_idx;
89 
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/* Can cgroups be reclaimed below their normal consumption range? */
99 	unsigned int may_thrash:1;
100 
101 	unsigned int hibernation_mode:1;
102 
103 	/* One of the zones is ready for compaction */
104 	unsigned int compaction_ready:1;
105 
106 	/* Incremented by the number of inactive pages that were scanned */
107 	unsigned long nr_scanned;
108 
109 	/* Number of pages freed so far during a call to shrink_zones() */
110 	unsigned long nr_reclaimed;
111 };
112 
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetch(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field)			\
129 	do {								\
130 		if ((_page)->lru.prev != _base) {			\
131 			struct page *prev;				\
132 									\
133 			prev = lru_to_page(&(_page->lru));		\
134 			prefetchw(&prev->_field);			\
135 		}							\
136 	} while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140 
141 /*
142  * From 0 .. 100.  Higher means more swappy.
143  */
144 int vm_swappiness = 60;
145 /*
146  * The total number of pages which are beyond the high watermark within all
147  * zones.
148  */
149 unsigned long vm_total_pages;
150 
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153 
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 	return !sc->target_mem_cgroup;
158 }
159 
160 /**
161  * sane_reclaim - is the usual dirty throttling mechanism operational?
162  * @sc: scan_control in question
163  *
164  * The normal page dirty throttling mechanism in balance_dirty_pages() is
165  * completely broken with the legacy memcg and direct stalling in
166  * shrink_page_list() is used for throttling instead, which lacks all the
167  * niceties such as fairness, adaptive pausing, bandwidth proportional
168  * allocation and configurability.
169  *
170  * This function tests whether the vmscan currently in progress can assume
171  * that the normal dirty throttling mechanism is operational.
172  */
173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
176 
177 	if (!memcg)
178 		return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 		return true;
182 #endif
183 	return false;
184 }
185 #else
186 static bool global_reclaim(struct scan_control *sc)
187 {
188 	return true;
189 }
190 
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	return true;
194 }
195 #endif
196 
197 /*
198  * This misses isolated pages which are not accounted for to save counters.
199  * As the data only determines if reclaim or compaction continues, it is
200  * not expected that isolated pages will be a dominating factor.
201  */
202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 	unsigned long nr;
205 
206 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 	if (get_nr_swap_pages() > 0)
209 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211 
212 	return nr;
213 }
214 
215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216 {
217 	unsigned long nr;
218 
219 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 
223 	if (get_nr_swap_pages() > 0)
224 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 
228 	return nr;
229 }
230 
231 bool pgdat_reclaimable(struct pglist_data *pgdat)
232 {
233 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 		pgdat_reclaimable_pages(pgdat) * 6;
235 }
236 
237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238 {
239 	if (!mem_cgroup_disabled())
240 		return mem_cgroup_get_lru_size(lruvec, lru);
241 
242 	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 }
244 
245 unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru,
246 				   int zone_idx)
247 {
248 	if (!mem_cgroup_disabled())
249 		return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx);
250 
251 	return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx],
252 			       NR_ZONE_LRU_BASE + lru);
253 }
254 
255 /*
256  * Add a shrinker callback to be called from the vm.
257  */
258 int register_shrinker(struct shrinker *shrinker)
259 {
260 	size_t size = sizeof(*shrinker->nr_deferred);
261 
262 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
263 		size *= nr_node_ids;
264 
265 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
266 	if (!shrinker->nr_deferred)
267 		return -ENOMEM;
268 
269 	down_write(&shrinker_rwsem);
270 	list_add_tail(&shrinker->list, &shrinker_list);
271 	up_write(&shrinker_rwsem);
272 	return 0;
273 }
274 EXPORT_SYMBOL(register_shrinker);
275 
276 /*
277  * Remove one
278  */
279 void unregister_shrinker(struct shrinker *shrinker)
280 {
281 	down_write(&shrinker_rwsem);
282 	list_del(&shrinker->list);
283 	up_write(&shrinker_rwsem);
284 	kfree(shrinker->nr_deferred);
285 }
286 EXPORT_SYMBOL(unregister_shrinker);
287 
288 #define SHRINK_BATCH 128
289 
290 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
291 				    struct shrinker *shrinker,
292 				    unsigned long nr_scanned,
293 				    unsigned long nr_eligible)
294 {
295 	unsigned long freed = 0;
296 	unsigned long long delta;
297 	long total_scan;
298 	long freeable;
299 	long nr;
300 	long new_nr;
301 	int nid = shrinkctl->nid;
302 	long batch_size = shrinker->batch ? shrinker->batch
303 					  : SHRINK_BATCH;
304 	long scanned = 0, next_deferred;
305 
306 	freeable = shrinker->count_objects(shrinker, shrinkctl);
307 	if (freeable == 0)
308 		return 0;
309 
310 	/*
311 	 * copy the current shrinker scan count into a local variable
312 	 * and zero it so that other concurrent shrinker invocations
313 	 * don't also do this scanning work.
314 	 */
315 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
316 
317 	total_scan = nr;
318 	delta = (4 * nr_scanned) / shrinker->seeks;
319 	delta *= freeable;
320 	do_div(delta, nr_eligible + 1);
321 	total_scan += delta;
322 	if (total_scan < 0) {
323 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
324 		       shrinker->scan_objects, total_scan);
325 		total_scan = freeable;
326 		next_deferred = nr;
327 	} else
328 		next_deferred = total_scan;
329 
330 	/*
331 	 * We need to avoid excessive windup on filesystem shrinkers
332 	 * due to large numbers of GFP_NOFS allocations causing the
333 	 * shrinkers to return -1 all the time. This results in a large
334 	 * nr being built up so when a shrink that can do some work
335 	 * comes along it empties the entire cache due to nr >>>
336 	 * freeable. This is bad for sustaining a working set in
337 	 * memory.
338 	 *
339 	 * Hence only allow the shrinker to scan the entire cache when
340 	 * a large delta change is calculated directly.
341 	 */
342 	if (delta < freeable / 4)
343 		total_scan = min(total_scan, freeable / 2);
344 
345 	/*
346 	 * Avoid risking looping forever due to too large nr value:
347 	 * never try to free more than twice the estimate number of
348 	 * freeable entries.
349 	 */
350 	if (total_scan > freeable * 2)
351 		total_scan = freeable * 2;
352 
353 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
354 				   nr_scanned, nr_eligible,
355 				   freeable, delta, total_scan);
356 
357 	/*
358 	 * Normally, we should not scan less than batch_size objects in one
359 	 * pass to avoid too frequent shrinker calls, but if the slab has less
360 	 * than batch_size objects in total and we are really tight on memory,
361 	 * we will try to reclaim all available objects, otherwise we can end
362 	 * up failing allocations although there are plenty of reclaimable
363 	 * objects spread over several slabs with usage less than the
364 	 * batch_size.
365 	 *
366 	 * We detect the "tight on memory" situations by looking at the total
367 	 * number of objects we want to scan (total_scan). If it is greater
368 	 * than the total number of objects on slab (freeable), we must be
369 	 * scanning at high prio and therefore should try to reclaim as much as
370 	 * possible.
371 	 */
372 	while (total_scan >= batch_size ||
373 	       total_scan >= freeable) {
374 		unsigned long ret;
375 		unsigned long nr_to_scan = min(batch_size, total_scan);
376 
377 		shrinkctl->nr_to_scan = nr_to_scan;
378 		ret = shrinker->scan_objects(shrinker, shrinkctl);
379 		if (ret == SHRINK_STOP)
380 			break;
381 		freed += ret;
382 
383 		count_vm_events(SLABS_SCANNED, nr_to_scan);
384 		total_scan -= nr_to_scan;
385 		scanned += nr_to_scan;
386 
387 		cond_resched();
388 	}
389 
390 	if (next_deferred >= scanned)
391 		next_deferred -= scanned;
392 	else
393 		next_deferred = 0;
394 	/*
395 	 * move the unused scan count back into the shrinker in a
396 	 * manner that handles concurrent updates. If we exhausted the
397 	 * scan, there is no need to do an update.
398 	 */
399 	if (next_deferred > 0)
400 		new_nr = atomic_long_add_return(next_deferred,
401 						&shrinker->nr_deferred[nid]);
402 	else
403 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
404 
405 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
406 	return freed;
407 }
408 
409 /**
410  * shrink_slab - shrink slab caches
411  * @gfp_mask: allocation context
412  * @nid: node whose slab caches to target
413  * @memcg: memory cgroup whose slab caches to target
414  * @nr_scanned: pressure numerator
415  * @nr_eligible: pressure denominator
416  *
417  * Call the shrink functions to age shrinkable caches.
418  *
419  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
420  * unaware shrinkers will receive a node id of 0 instead.
421  *
422  * @memcg specifies the memory cgroup to target. If it is not NULL,
423  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
424  * objects from the memory cgroup specified. Otherwise, only unaware
425  * shrinkers are called.
426  *
427  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
428  * the available objects should be scanned.  Page reclaim for example
429  * passes the number of pages scanned and the number of pages on the
430  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
431  * when it encountered mapped pages.  The ratio is further biased by
432  * the ->seeks setting of the shrink function, which indicates the
433  * cost to recreate an object relative to that of an LRU page.
434  *
435  * Returns the number of reclaimed slab objects.
436  */
437 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
438 				 struct mem_cgroup *memcg,
439 				 unsigned long nr_scanned,
440 				 unsigned long nr_eligible)
441 {
442 	struct shrinker *shrinker;
443 	unsigned long freed = 0;
444 
445 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
446 		return 0;
447 
448 	if (nr_scanned == 0)
449 		nr_scanned = SWAP_CLUSTER_MAX;
450 
451 	if (!down_read_trylock(&shrinker_rwsem)) {
452 		/*
453 		 * If we would return 0, our callers would understand that we
454 		 * have nothing else to shrink and give up trying. By returning
455 		 * 1 we keep it going and assume we'll be able to shrink next
456 		 * time.
457 		 */
458 		freed = 1;
459 		goto out;
460 	}
461 
462 	list_for_each_entry(shrinker, &shrinker_list, list) {
463 		struct shrink_control sc = {
464 			.gfp_mask = gfp_mask,
465 			.nid = nid,
466 			.memcg = memcg,
467 		};
468 
469 		/*
470 		 * If kernel memory accounting is disabled, we ignore
471 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
472 		 * passing NULL for memcg.
473 		 */
474 		if (memcg_kmem_enabled() &&
475 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
476 			continue;
477 
478 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 			sc.nid = 0;
480 
481 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
482 	}
483 
484 	up_read(&shrinker_rwsem);
485 out:
486 	cond_resched();
487 	return freed;
488 }
489 
490 void drop_slab_node(int nid)
491 {
492 	unsigned long freed;
493 
494 	do {
495 		struct mem_cgroup *memcg = NULL;
496 
497 		freed = 0;
498 		do {
499 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
500 					     1000, 1000);
501 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
502 	} while (freed > 10);
503 }
504 
505 void drop_slab(void)
506 {
507 	int nid;
508 
509 	for_each_online_node(nid)
510 		drop_slab_node(nid);
511 }
512 
513 static inline int is_page_cache_freeable(struct page *page)
514 {
515 	/*
516 	 * A freeable page cache page is referenced only by the caller
517 	 * that isolated the page, the page cache radix tree and
518 	 * optional buffer heads at page->private.
519 	 */
520 	return page_count(page) - page_has_private(page) == 2;
521 }
522 
523 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
524 {
525 	if (current->flags & PF_SWAPWRITE)
526 		return 1;
527 	if (!inode_write_congested(inode))
528 		return 1;
529 	if (inode_to_bdi(inode) == current->backing_dev_info)
530 		return 1;
531 	return 0;
532 }
533 
534 /*
535  * We detected a synchronous write error writing a page out.  Probably
536  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
537  * fsync(), msync() or close().
538  *
539  * The tricky part is that after writepage we cannot touch the mapping: nothing
540  * prevents it from being freed up.  But we have a ref on the page and once
541  * that page is locked, the mapping is pinned.
542  *
543  * We're allowed to run sleeping lock_page() here because we know the caller has
544  * __GFP_FS.
545  */
546 static void handle_write_error(struct address_space *mapping,
547 				struct page *page, int error)
548 {
549 	lock_page(page);
550 	if (page_mapping(page) == mapping)
551 		mapping_set_error(mapping, error);
552 	unlock_page(page);
553 }
554 
555 /* possible outcome of pageout() */
556 typedef enum {
557 	/* failed to write page out, page is locked */
558 	PAGE_KEEP,
559 	/* move page to the active list, page is locked */
560 	PAGE_ACTIVATE,
561 	/* page has been sent to the disk successfully, page is unlocked */
562 	PAGE_SUCCESS,
563 	/* page is clean and locked */
564 	PAGE_CLEAN,
565 } pageout_t;
566 
567 /*
568  * pageout is called by shrink_page_list() for each dirty page.
569  * Calls ->writepage().
570  */
571 static pageout_t pageout(struct page *page, struct address_space *mapping,
572 			 struct scan_control *sc)
573 {
574 	/*
575 	 * If the page is dirty, only perform writeback if that write
576 	 * will be non-blocking.  To prevent this allocation from being
577 	 * stalled by pagecache activity.  But note that there may be
578 	 * stalls if we need to run get_block().  We could test
579 	 * PagePrivate for that.
580 	 *
581 	 * If this process is currently in __generic_file_write_iter() against
582 	 * this page's queue, we can perform writeback even if that
583 	 * will block.
584 	 *
585 	 * If the page is swapcache, write it back even if that would
586 	 * block, for some throttling. This happens by accident, because
587 	 * swap_backing_dev_info is bust: it doesn't reflect the
588 	 * congestion state of the swapdevs.  Easy to fix, if needed.
589 	 */
590 	if (!is_page_cache_freeable(page))
591 		return PAGE_KEEP;
592 	if (!mapping) {
593 		/*
594 		 * Some data journaling orphaned pages can have
595 		 * page->mapping == NULL while being dirty with clean buffers.
596 		 */
597 		if (page_has_private(page)) {
598 			if (try_to_free_buffers(page)) {
599 				ClearPageDirty(page);
600 				pr_info("%s: orphaned page\n", __func__);
601 				return PAGE_CLEAN;
602 			}
603 		}
604 		return PAGE_KEEP;
605 	}
606 	if (mapping->a_ops->writepage == NULL)
607 		return PAGE_ACTIVATE;
608 	if (!may_write_to_inode(mapping->host, sc))
609 		return PAGE_KEEP;
610 
611 	if (clear_page_dirty_for_io(page)) {
612 		int res;
613 		struct writeback_control wbc = {
614 			.sync_mode = WB_SYNC_NONE,
615 			.nr_to_write = SWAP_CLUSTER_MAX,
616 			.range_start = 0,
617 			.range_end = LLONG_MAX,
618 			.for_reclaim = 1,
619 		};
620 
621 		SetPageReclaim(page);
622 		res = mapping->a_ops->writepage(page, &wbc);
623 		if (res < 0)
624 			handle_write_error(mapping, page, res);
625 		if (res == AOP_WRITEPAGE_ACTIVATE) {
626 			ClearPageReclaim(page);
627 			return PAGE_ACTIVATE;
628 		}
629 
630 		if (!PageWriteback(page)) {
631 			/* synchronous write or broken a_ops? */
632 			ClearPageReclaim(page);
633 		}
634 		trace_mm_vmscan_writepage(page);
635 		inc_node_page_state(page, NR_VMSCAN_WRITE);
636 		return PAGE_SUCCESS;
637 	}
638 
639 	return PAGE_CLEAN;
640 }
641 
642 /*
643  * Same as remove_mapping, but if the page is removed from the mapping, it
644  * gets returned with a refcount of 0.
645  */
646 static int __remove_mapping(struct address_space *mapping, struct page *page,
647 			    bool reclaimed)
648 {
649 	unsigned long flags;
650 
651 	BUG_ON(!PageLocked(page));
652 	BUG_ON(mapping != page_mapping(page));
653 
654 	spin_lock_irqsave(&mapping->tree_lock, flags);
655 	/*
656 	 * The non racy check for a busy page.
657 	 *
658 	 * Must be careful with the order of the tests. When someone has
659 	 * a ref to the page, it may be possible that they dirty it then
660 	 * drop the reference. So if PageDirty is tested before page_count
661 	 * here, then the following race may occur:
662 	 *
663 	 * get_user_pages(&page);
664 	 * [user mapping goes away]
665 	 * write_to(page);
666 	 *				!PageDirty(page)    [good]
667 	 * SetPageDirty(page);
668 	 * put_page(page);
669 	 *				!page_count(page)   [good, discard it]
670 	 *
671 	 * [oops, our write_to data is lost]
672 	 *
673 	 * Reversing the order of the tests ensures such a situation cannot
674 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
675 	 * load is not satisfied before that of page->_refcount.
676 	 *
677 	 * Note that if SetPageDirty is always performed via set_page_dirty,
678 	 * and thus under tree_lock, then this ordering is not required.
679 	 */
680 	if (!page_ref_freeze(page, 2))
681 		goto cannot_free;
682 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
683 	if (unlikely(PageDirty(page))) {
684 		page_ref_unfreeze(page, 2);
685 		goto cannot_free;
686 	}
687 
688 	if (PageSwapCache(page)) {
689 		swp_entry_t swap = { .val = page_private(page) };
690 		mem_cgroup_swapout(page, swap);
691 		__delete_from_swap_cache(page);
692 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
693 		swapcache_free(swap);
694 	} else {
695 		void (*freepage)(struct page *);
696 		void *shadow = NULL;
697 
698 		freepage = mapping->a_ops->freepage;
699 		/*
700 		 * Remember a shadow entry for reclaimed file cache in
701 		 * order to detect refaults, thus thrashing, later on.
702 		 *
703 		 * But don't store shadows in an address space that is
704 		 * already exiting.  This is not just an optizimation,
705 		 * inode reclaim needs to empty out the radix tree or
706 		 * the nodes are lost.  Don't plant shadows behind its
707 		 * back.
708 		 *
709 		 * We also don't store shadows for DAX mappings because the
710 		 * only page cache pages found in these are zero pages
711 		 * covering holes, and because we don't want to mix DAX
712 		 * exceptional entries and shadow exceptional entries in the
713 		 * same page_tree.
714 		 */
715 		if (reclaimed && page_is_file_cache(page) &&
716 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
717 			shadow = workingset_eviction(mapping, page);
718 		__delete_from_page_cache(page, shadow);
719 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
720 
721 		if (freepage != NULL)
722 			freepage(page);
723 	}
724 
725 	return 1;
726 
727 cannot_free:
728 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 	return 0;
730 }
731 
732 /*
733  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
734  * someone else has a ref on the page, abort and return 0.  If it was
735  * successfully detached, return 1.  Assumes the caller has a single ref on
736  * this page.
737  */
738 int remove_mapping(struct address_space *mapping, struct page *page)
739 {
740 	if (__remove_mapping(mapping, page, false)) {
741 		/*
742 		 * Unfreezing the refcount with 1 rather than 2 effectively
743 		 * drops the pagecache ref for us without requiring another
744 		 * atomic operation.
745 		 */
746 		page_ref_unfreeze(page, 1);
747 		return 1;
748 	}
749 	return 0;
750 }
751 
752 /**
753  * putback_lru_page - put previously isolated page onto appropriate LRU list
754  * @page: page to be put back to appropriate lru list
755  *
756  * Add previously isolated @page to appropriate LRU list.
757  * Page may still be unevictable for other reasons.
758  *
759  * lru_lock must not be held, interrupts must be enabled.
760  */
761 void putback_lru_page(struct page *page)
762 {
763 	bool is_unevictable;
764 	int was_unevictable = PageUnevictable(page);
765 
766 	VM_BUG_ON_PAGE(PageLRU(page), page);
767 
768 redo:
769 	ClearPageUnevictable(page);
770 
771 	if (page_evictable(page)) {
772 		/*
773 		 * For evictable pages, we can use the cache.
774 		 * In event of a race, worst case is we end up with an
775 		 * unevictable page on [in]active list.
776 		 * We know how to handle that.
777 		 */
778 		is_unevictable = false;
779 		lru_cache_add(page);
780 	} else {
781 		/*
782 		 * Put unevictable pages directly on zone's unevictable
783 		 * list.
784 		 */
785 		is_unevictable = true;
786 		add_page_to_unevictable_list(page);
787 		/*
788 		 * When racing with an mlock or AS_UNEVICTABLE clearing
789 		 * (page is unlocked) make sure that if the other thread
790 		 * does not observe our setting of PG_lru and fails
791 		 * isolation/check_move_unevictable_pages,
792 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
793 		 * the page back to the evictable list.
794 		 *
795 		 * The other side is TestClearPageMlocked() or shmem_lock().
796 		 */
797 		smp_mb();
798 	}
799 
800 	/*
801 	 * page's status can change while we move it among lru. If an evictable
802 	 * page is on unevictable list, it never be freed. To avoid that,
803 	 * check after we added it to the list, again.
804 	 */
805 	if (is_unevictable && page_evictable(page)) {
806 		if (!isolate_lru_page(page)) {
807 			put_page(page);
808 			goto redo;
809 		}
810 		/* This means someone else dropped this page from LRU
811 		 * So, it will be freed or putback to LRU again. There is
812 		 * nothing to do here.
813 		 */
814 	}
815 
816 	if (was_unevictable && !is_unevictable)
817 		count_vm_event(UNEVICTABLE_PGRESCUED);
818 	else if (!was_unevictable && is_unevictable)
819 		count_vm_event(UNEVICTABLE_PGCULLED);
820 
821 	put_page(page);		/* drop ref from isolate */
822 }
823 
824 enum page_references {
825 	PAGEREF_RECLAIM,
826 	PAGEREF_RECLAIM_CLEAN,
827 	PAGEREF_KEEP,
828 	PAGEREF_ACTIVATE,
829 };
830 
831 static enum page_references page_check_references(struct page *page,
832 						  struct scan_control *sc)
833 {
834 	int referenced_ptes, referenced_page;
835 	unsigned long vm_flags;
836 
837 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
838 					  &vm_flags);
839 	referenced_page = TestClearPageReferenced(page);
840 
841 	/*
842 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
843 	 * move the page to the unevictable list.
844 	 */
845 	if (vm_flags & VM_LOCKED)
846 		return PAGEREF_RECLAIM;
847 
848 	if (referenced_ptes) {
849 		if (PageSwapBacked(page))
850 			return PAGEREF_ACTIVATE;
851 		/*
852 		 * All mapped pages start out with page table
853 		 * references from the instantiating fault, so we need
854 		 * to look twice if a mapped file page is used more
855 		 * than once.
856 		 *
857 		 * Mark it and spare it for another trip around the
858 		 * inactive list.  Another page table reference will
859 		 * lead to its activation.
860 		 *
861 		 * Note: the mark is set for activated pages as well
862 		 * so that recently deactivated but used pages are
863 		 * quickly recovered.
864 		 */
865 		SetPageReferenced(page);
866 
867 		if (referenced_page || referenced_ptes > 1)
868 			return PAGEREF_ACTIVATE;
869 
870 		/*
871 		 * Activate file-backed executable pages after first usage.
872 		 */
873 		if (vm_flags & VM_EXEC)
874 			return PAGEREF_ACTIVATE;
875 
876 		return PAGEREF_KEEP;
877 	}
878 
879 	/* Reclaim if clean, defer dirty pages to writeback */
880 	if (referenced_page && !PageSwapBacked(page))
881 		return PAGEREF_RECLAIM_CLEAN;
882 
883 	return PAGEREF_RECLAIM;
884 }
885 
886 /* Check if a page is dirty or under writeback */
887 static void page_check_dirty_writeback(struct page *page,
888 				       bool *dirty, bool *writeback)
889 {
890 	struct address_space *mapping;
891 
892 	/*
893 	 * Anonymous pages are not handled by flushers and must be written
894 	 * from reclaim context. Do not stall reclaim based on them
895 	 */
896 	if (!page_is_file_cache(page)) {
897 		*dirty = false;
898 		*writeback = false;
899 		return;
900 	}
901 
902 	/* By default assume that the page flags are accurate */
903 	*dirty = PageDirty(page);
904 	*writeback = PageWriteback(page);
905 
906 	/* Verify dirty/writeback state if the filesystem supports it */
907 	if (!page_has_private(page))
908 		return;
909 
910 	mapping = page_mapping(page);
911 	if (mapping && mapping->a_ops->is_dirty_writeback)
912 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
913 }
914 
915 /*
916  * shrink_page_list() returns the number of reclaimed pages
917  */
918 static unsigned long shrink_page_list(struct list_head *page_list,
919 				      struct pglist_data *pgdat,
920 				      struct scan_control *sc,
921 				      enum ttu_flags ttu_flags,
922 				      unsigned long *ret_nr_dirty,
923 				      unsigned long *ret_nr_unqueued_dirty,
924 				      unsigned long *ret_nr_congested,
925 				      unsigned long *ret_nr_writeback,
926 				      unsigned long *ret_nr_immediate,
927 				      bool force_reclaim)
928 {
929 	LIST_HEAD(ret_pages);
930 	LIST_HEAD(free_pages);
931 	int pgactivate = 0;
932 	unsigned long nr_unqueued_dirty = 0;
933 	unsigned long nr_dirty = 0;
934 	unsigned long nr_congested = 0;
935 	unsigned long nr_reclaimed = 0;
936 	unsigned long nr_writeback = 0;
937 	unsigned long nr_immediate = 0;
938 
939 	cond_resched();
940 
941 	while (!list_empty(page_list)) {
942 		struct address_space *mapping;
943 		struct page *page;
944 		int may_enter_fs;
945 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
946 		bool dirty, writeback;
947 		bool lazyfree = false;
948 		int ret = SWAP_SUCCESS;
949 
950 		cond_resched();
951 
952 		page = lru_to_page(page_list);
953 		list_del(&page->lru);
954 
955 		if (!trylock_page(page))
956 			goto keep;
957 
958 		VM_BUG_ON_PAGE(PageActive(page), page);
959 
960 		sc->nr_scanned++;
961 
962 		if (unlikely(!page_evictable(page)))
963 			goto cull_mlocked;
964 
965 		if (!sc->may_unmap && page_mapped(page))
966 			goto keep_locked;
967 
968 		/* Double the slab pressure for mapped and swapcache pages */
969 		if (page_mapped(page) || PageSwapCache(page))
970 			sc->nr_scanned++;
971 
972 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
973 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
974 
975 		/*
976 		 * The number of dirty pages determines if a zone is marked
977 		 * reclaim_congested which affects wait_iff_congested. kswapd
978 		 * will stall and start writing pages if the tail of the LRU
979 		 * is all dirty unqueued pages.
980 		 */
981 		page_check_dirty_writeback(page, &dirty, &writeback);
982 		if (dirty || writeback)
983 			nr_dirty++;
984 
985 		if (dirty && !writeback)
986 			nr_unqueued_dirty++;
987 
988 		/*
989 		 * Treat this page as congested if the underlying BDI is or if
990 		 * pages are cycling through the LRU so quickly that the
991 		 * pages marked for immediate reclaim are making it to the
992 		 * end of the LRU a second time.
993 		 */
994 		mapping = page_mapping(page);
995 		if (((dirty || writeback) && mapping &&
996 		     inode_write_congested(mapping->host)) ||
997 		    (writeback && PageReclaim(page)))
998 			nr_congested++;
999 
1000 		/*
1001 		 * If a page at the tail of the LRU is under writeback, there
1002 		 * are three cases to consider.
1003 		 *
1004 		 * 1) If reclaim is encountering an excessive number of pages
1005 		 *    under writeback and this page is both under writeback and
1006 		 *    PageReclaim then it indicates that pages are being queued
1007 		 *    for IO but are being recycled through the LRU before the
1008 		 *    IO can complete. Waiting on the page itself risks an
1009 		 *    indefinite stall if it is impossible to writeback the
1010 		 *    page due to IO error or disconnected storage so instead
1011 		 *    note that the LRU is being scanned too quickly and the
1012 		 *    caller can stall after page list has been processed.
1013 		 *
1014 		 * 2) Global or new memcg reclaim encounters a page that is
1015 		 *    not marked for immediate reclaim, or the caller does not
1016 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1017 		 *    not to fs). In this case mark the page for immediate
1018 		 *    reclaim and continue scanning.
1019 		 *
1020 		 *    Require may_enter_fs because we would wait on fs, which
1021 		 *    may not have submitted IO yet. And the loop driver might
1022 		 *    enter reclaim, and deadlock if it waits on a page for
1023 		 *    which it is needed to do the write (loop masks off
1024 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1025 		 *    would probably show more reasons.
1026 		 *
1027 		 * 3) Legacy memcg encounters a page that is already marked
1028 		 *    PageReclaim. memcg does not have any dirty pages
1029 		 *    throttling so we could easily OOM just because too many
1030 		 *    pages are in writeback and there is nothing else to
1031 		 *    reclaim. Wait for the writeback to complete.
1032 		 */
1033 		if (PageWriteback(page)) {
1034 			/* Case 1 above */
1035 			if (current_is_kswapd() &&
1036 			    PageReclaim(page) &&
1037 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1038 				nr_immediate++;
1039 				goto keep_locked;
1040 
1041 			/* Case 2 above */
1042 			} else if (sane_reclaim(sc) ||
1043 			    !PageReclaim(page) || !may_enter_fs) {
1044 				/*
1045 				 * This is slightly racy - end_page_writeback()
1046 				 * might have just cleared PageReclaim, then
1047 				 * setting PageReclaim here end up interpreted
1048 				 * as PageReadahead - but that does not matter
1049 				 * enough to care.  What we do want is for this
1050 				 * page to have PageReclaim set next time memcg
1051 				 * reclaim reaches the tests above, so it will
1052 				 * then wait_on_page_writeback() to avoid OOM;
1053 				 * and it's also appropriate in global reclaim.
1054 				 */
1055 				SetPageReclaim(page);
1056 				nr_writeback++;
1057 				goto keep_locked;
1058 
1059 			/* Case 3 above */
1060 			} else {
1061 				unlock_page(page);
1062 				wait_on_page_writeback(page);
1063 				/* then go back and try same page again */
1064 				list_add_tail(&page->lru, page_list);
1065 				continue;
1066 			}
1067 		}
1068 
1069 		if (!force_reclaim)
1070 			references = page_check_references(page, sc);
1071 
1072 		switch (references) {
1073 		case PAGEREF_ACTIVATE:
1074 			goto activate_locked;
1075 		case PAGEREF_KEEP:
1076 			goto keep_locked;
1077 		case PAGEREF_RECLAIM:
1078 		case PAGEREF_RECLAIM_CLEAN:
1079 			; /* try to reclaim the page below */
1080 		}
1081 
1082 		/*
1083 		 * Anonymous process memory has backing store?
1084 		 * Try to allocate it some swap space here.
1085 		 */
1086 		if (PageAnon(page) && !PageSwapCache(page)) {
1087 			if (!(sc->gfp_mask & __GFP_IO))
1088 				goto keep_locked;
1089 			if (!add_to_swap(page, page_list))
1090 				goto activate_locked;
1091 			lazyfree = true;
1092 			may_enter_fs = 1;
1093 
1094 			/* Adding to swap updated mapping */
1095 			mapping = page_mapping(page);
1096 		} else if (unlikely(PageTransHuge(page))) {
1097 			/* Split file THP */
1098 			if (split_huge_page_to_list(page, page_list))
1099 				goto keep_locked;
1100 		}
1101 
1102 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1103 
1104 		/*
1105 		 * The page is mapped into the page tables of one or more
1106 		 * processes. Try to unmap it here.
1107 		 */
1108 		if (page_mapped(page) && mapping) {
1109 			switch (ret = try_to_unmap(page, lazyfree ?
1110 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1111 				(ttu_flags | TTU_BATCH_FLUSH))) {
1112 			case SWAP_FAIL:
1113 				goto activate_locked;
1114 			case SWAP_AGAIN:
1115 				goto keep_locked;
1116 			case SWAP_MLOCK:
1117 				goto cull_mlocked;
1118 			case SWAP_LZFREE:
1119 				goto lazyfree;
1120 			case SWAP_SUCCESS:
1121 				; /* try to free the page below */
1122 			}
1123 		}
1124 
1125 		if (PageDirty(page)) {
1126 			/*
1127 			 * Only kswapd can writeback filesystem pages to
1128 			 * avoid risk of stack overflow but only writeback
1129 			 * if many dirty pages have been encountered.
1130 			 */
1131 			if (page_is_file_cache(page) &&
1132 					(!current_is_kswapd() ||
1133 					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1134 				/*
1135 				 * Immediately reclaim when written back.
1136 				 * Similar in principal to deactivate_page()
1137 				 * except we already have the page isolated
1138 				 * and know it's dirty
1139 				 */
1140 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1141 				SetPageReclaim(page);
1142 
1143 				goto keep_locked;
1144 			}
1145 
1146 			if (references == PAGEREF_RECLAIM_CLEAN)
1147 				goto keep_locked;
1148 			if (!may_enter_fs)
1149 				goto keep_locked;
1150 			if (!sc->may_writepage)
1151 				goto keep_locked;
1152 
1153 			/*
1154 			 * Page is dirty. Flush the TLB if a writable entry
1155 			 * potentially exists to avoid CPU writes after IO
1156 			 * starts and then write it out here.
1157 			 */
1158 			try_to_unmap_flush_dirty();
1159 			switch (pageout(page, mapping, sc)) {
1160 			case PAGE_KEEP:
1161 				goto keep_locked;
1162 			case PAGE_ACTIVATE:
1163 				goto activate_locked;
1164 			case PAGE_SUCCESS:
1165 				if (PageWriteback(page))
1166 					goto keep;
1167 				if (PageDirty(page))
1168 					goto keep;
1169 
1170 				/*
1171 				 * A synchronous write - probably a ramdisk.  Go
1172 				 * ahead and try to reclaim the page.
1173 				 */
1174 				if (!trylock_page(page))
1175 					goto keep;
1176 				if (PageDirty(page) || PageWriteback(page))
1177 					goto keep_locked;
1178 				mapping = page_mapping(page);
1179 			case PAGE_CLEAN:
1180 				; /* try to free the page below */
1181 			}
1182 		}
1183 
1184 		/*
1185 		 * If the page has buffers, try to free the buffer mappings
1186 		 * associated with this page. If we succeed we try to free
1187 		 * the page as well.
1188 		 *
1189 		 * We do this even if the page is PageDirty().
1190 		 * try_to_release_page() does not perform I/O, but it is
1191 		 * possible for a page to have PageDirty set, but it is actually
1192 		 * clean (all its buffers are clean).  This happens if the
1193 		 * buffers were written out directly, with submit_bh(). ext3
1194 		 * will do this, as well as the blockdev mapping.
1195 		 * try_to_release_page() will discover that cleanness and will
1196 		 * drop the buffers and mark the page clean - it can be freed.
1197 		 *
1198 		 * Rarely, pages can have buffers and no ->mapping.  These are
1199 		 * the pages which were not successfully invalidated in
1200 		 * truncate_complete_page().  We try to drop those buffers here
1201 		 * and if that worked, and the page is no longer mapped into
1202 		 * process address space (page_count == 1) it can be freed.
1203 		 * Otherwise, leave the page on the LRU so it is swappable.
1204 		 */
1205 		if (page_has_private(page)) {
1206 			if (!try_to_release_page(page, sc->gfp_mask))
1207 				goto activate_locked;
1208 			if (!mapping && page_count(page) == 1) {
1209 				unlock_page(page);
1210 				if (put_page_testzero(page))
1211 					goto free_it;
1212 				else {
1213 					/*
1214 					 * rare race with speculative reference.
1215 					 * the speculative reference will free
1216 					 * this page shortly, so we may
1217 					 * increment nr_reclaimed here (and
1218 					 * leave it off the LRU).
1219 					 */
1220 					nr_reclaimed++;
1221 					continue;
1222 				}
1223 			}
1224 		}
1225 
1226 lazyfree:
1227 		if (!mapping || !__remove_mapping(mapping, page, true))
1228 			goto keep_locked;
1229 
1230 		/*
1231 		 * At this point, we have no other references and there is
1232 		 * no way to pick any more up (removed from LRU, removed
1233 		 * from pagecache). Can use non-atomic bitops now (and
1234 		 * we obviously don't have to worry about waking up a process
1235 		 * waiting on the page lock, because there are no references.
1236 		 */
1237 		__ClearPageLocked(page);
1238 free_it:
1239 		if (ret == SWAP_LZFREE)
1240 			count_vm_event(PGLAZYFREED);
1241 
1242 		nr_reclaimed++;
1243 
1244 		/*
1245 		 * Is there need to periodically free_page_list? It would
1246 		 * appear not as the counts should be low
1247 		 */
1248 		list_add(&page->lru, &free_pages);
1249 		continue;
1250 
1251 cull_mlocked:
1252 		if (PageSwapCache(page))
1253 			try_to_free_swap(page);
1254 		unlock_page(page);
1255 		list_add(&page->lru, &ret_pages);
1256 		continue;
1257 
1258 activate_locked:
1259 		/* Not a candidate for swapping, so reclaim swap space. */
1260 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1261 			try_to_free_swap(page);
1262 		VM_BUG_ON_PAGE(PageActive(page), page);
1263 		SetPageActive(page);
1264 		pgactivate++;
1265 keep_locked:
1266 		unlock_page(page);
1267 keep:
1268 		list_add(&page->lru, &ret_pages);
1269 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1270 	}
1271 
1272 	mem_cgroup_uncharge_list(&free_pages);
1273 	try_to_unmap_flush();
1274 	free_hot_cold_page_list(&free_pages, true);
1275 
1276 	list_splice(&ret_pages, page_list);
1277 	count_vm_events(PGACTIVATE, pgactivate);
1278 
1279 	*ret_nr_dirty += nr_dirty;
1280 	*ret_nr_congested += nr_congested;
1281 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1282 	*ret_nr_writeback += nr_writeback;
1283 	*ret_nr_immediate += nr_immediate;
1284 	return nr_reclaimed;
1285 }
1286 
1287 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1288 					    struct list_head *page_list)
1289 {
1290 	struct scan_control sc = {
1291 		.gfp_mask = GFP_KERNEL,
1292 		.priority = DEF_PRIORITY,
1293 		.may_unmap = 1,
1294 	};
1295 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1296 	struct page *page, *next;
1297 	LIST_HEAD(clean_pages);
1298 
1299 	list_for_each_entry_safe(page, next, page_list, lru) {
1300 		if (page_is_file_cache(page) && !PageDirty(page) &&
1301 		    !__PageMovable(page)) {
1302 			ClearPageActive(page);
1303 			list_move(&page->lru, &clean_pages);
1304 		}
1305 	}
1306 
1307 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1308 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1309 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1310 	list_splice(&clean_pages, page_list);
1311 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1312 	return ret;
1313 }
1314 
1315 /*
1316  * Attempt to remove the specified page from its LRU.  Only take this page
1317  * if it is of the appropriate PageActive status.  Pages which are being
1318  * freed elsewhere are also ignored.
1319  *
1320  * page:	page to consider
1321  * mode:	one of the LRU isolation modes defined above
1322  *
1323  * returns 0 on success, -ve errno on failure.
1324  */
1325 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1326 {
1327 	int ret = -EINVAL;
1328 
1329 	/* Only take pages on the LRU. */
1330 	if (!PageLRU(page))
1331 		return ret;
1332 
1333 	/* Compaction should not handle unevictable pages but CMA can do so */
1334 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1335 		return ret;
1336 
1337 	ret = -EBUSY;
1338 
1339 	/*
1340 	 * To minimise LRU disruption, the caller can indicate that it only
1341 	 * wants to isolate pages it will be able to operate on without
1342 	 * blocking - clean pages for the most part.
1343 	 *
1344 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1345 	 * is used by reclaim when it is cannot write to backing storage
1346 	 *
1347 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1348 	 * that it is possible to migrate without blocking
1349 	 */
1350 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1351 		/* All the caller can do on PageWriteback is block */
1352 		if (PageWriteback(page))
1353 			return ret;
1354 
1355 		if (PageDirty(page)) {
1356 			struct address_space *mapping;
1357 
1358 			/* ISOLATE_CLEAN means only clean pages */
1359 			if (mode & ISOLATE_CLEAN)
1360 				return ret;
1361 
1362 			/*
1363 			 * Only pages without mappings or that have a
1364 			 * ->migratepage callback are possible to migrate
1365 			 * without blocking
1366 			 */
1367 			mapping = page_mapping(page);
1368 			if (mapping && !mapping->a_ops->migratepage)
1369 				return ret;
1370 		}
1371 	}
1372 
1373 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1374 		return ret;
1375 
1376 	if (likely(get_page_unless_zero(page))) {
1377 		/*
1378 		 * Be careful not to clear PageLRU until after we're
1379 		 * sure the page is not being freed elsewhere -- the
1380 		 * page release code relies on it.
1381 		 */
1382 		ClearPageLRU(page);
1383 		ret = 0;
1384 	}
1385 
1386 	return ret;
1387 }
1388 
1389 
1390 /*
1391  * Update LRU sizes after isolating pages. The LRU size updates must
1392  * be complete before mem_cgroup_update_lru_size due to a santity check.
1393  */
1394 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1395 			enum lru_list lru, unsigned long *nr_zone_taken)
1396 {
1397 	int zid;
1398 
1399 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1400 		if (!nr_zone_taken[zid])
1401 			continue;
1402 
1403 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1404 #ifdef CONFIG_MEMCG
1405 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1406 #endif
1407 	}
1408 
1409 }
1410 
1411 /*
1412  * zone_lru_lock is heavily contended.  Some of the functions that
1413  * shrink the lists perform better by taking out a batch of pages
1414  * and working on them outside the LRU lock.
1415  *
1416  * For pagecache intensive workloads, this function is the hottest
1417  * spot in the kernel (apart from copy_*_user functions).
1418  *
1419  * Appropriate locks must be held before calling this function.
1420  *
1421  * @nr_to_scan:	The number of pages to look through on the list.
1422  * @lruvec:	The LRU vector to pull pages from.
1423  * @dst:	The temp list to put pages on to.
1424  * @nr_scanned:	The number of pages that were scanned.
1425  * @sc:		The scan_control struct for this reclaim session
1426  * @mode:	One of the LRU isolation modes
1427  * @lru:	LRU list id for isolating
1428  *
1429  * returns how many pages were moved onto *@dst.
1430  */
1431 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1432 		struct lruvec *lruvec, struct list_head *dst,
1433 		unsigned long *nr_scanned, struct scan_control *sc,
1434 		isolate_mode_t mode, enum lru_list lru)
1435 {
1436 	struct list_head *src = &lruvec->lists[lru];
1437 	unsigned long nr_taken = 0;
1438 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1439 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1440 	unsigned long scan, nr_pages;
1441 	LIST_HEAD(pages_skipped);
1442 
1443 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1444 					!list_empty(src);) {
1445 		struct page *page;
1446 
1447 		page = lru_to_page(src);
1448 		prefetchw_prev_lru_page(page, src, flags);
1449 
1450 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1451 
1452 		if (page_zonenum(page) > sc->reclaim_idx) {
1453 			list_move(&page->lru, &pages_skipped);
1454 			nr_skipped[page_zonenum(page)]++;
1455 			continue;
1456 		}
1457 
1458 		/*
1459 		 * Account for scanned and skipped separetly to avoid the pgdat
1460 		 * being prematurely marked unreclaimable by pgdat_reclaimable.
1461 		 */
1462 		scan++;
1463 
1464 		switch (__isolate_lru_page(page, mode)) {
1465 		case 0:
1466 			nr_pages = hpage_nr_pages(page);
1467 			nr_taken += nr_pages;
1468 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1469 			list_move(&page->lru, dst);
1470 			break;
1471 
1472 		case -EBUSY:
1473 			/* else it is being freed elsewhere */
1474 			list_move(&page->lru, src);
1475 			continue;
1476 
1477 		default:
1478 			BUG();
1479 		}
1480 	}
1481 
1482 	/*
1483 	 * Splice any skipped pages to the start of the LRU list. Note that
1484 	 * this disrupts the LRU order when reclaiming for lower zones but
1485 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1486 	 * scanning would soon rescan the same pages to skip and put the
1487 	 * system at risk of premature OOM.
1488 	 */
1489 	if (!list_empty(&pages_skipped)) {
1490 		int zid;
1491 		unsigned long total_skipped = 0;
1492 
1493 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1494 			if (!nr_skipped[zid])
1495 				continue;
1496 
1497 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1498 			total_skipped += nr_skipped[zid];
1499 		}
1500 
1501 		/*
1502 		 * Account skipped pages as a partial scan as the pgdat may be
1503 		 * close to unreclaimable. If the LRU list is empty, account
1504 		 * skipped pages as a full scan.
1505 		 */
1506 		scan += list_empty(src) ? total_skipped : total_skipped >> 2;
1507 
1508 		list_splice(&pages_skipped, src);
1509 	}
1510 	*nr_scanned = scan;
1511 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1512 				    nr_taken, mode, is_file_lru(lru));
1513 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1514 	return nr_taken;
1515 }
1516 
1517 /**
1518  * isolate_lru_page - tries to isolate a page from its LRU list
1519  * @page: page to isolate from its LRU list
1520  *
1521  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1522  * vmstat statistic corresponding to whatever LRU list the page was on.
1523  *
1524  * Returns 0 if the page was removed from an LRU list.
1525  * Returns -EBUSY if the page was not on an LRU list.
1526  *
1527  * The returned page will have PageLRU() cleared.  If it was found on
1528  * the active list, it will have PageActive set.  If it was found on
1529  * the unevictable list, it will have the PageUnevictable bit set. That flag
1530  * may need to be cleared by the caller before letting the page go.
1531  *
1532  * The vmstat statistic corresponding to the list on which the page was
1533  * found will be decremented.
1534  *
1535  * Restrictions:
1536  * (1) Must be called with an elevated refcount on the page. This is a
1537  *     fundamentnal difference from isolate_lru_pages (which is called
1538  *     without a stable reference).
1539  * (2) the lru_lock must not be held.
1540  * (3) interrupts must be enabled.
1541  */
1542 int isolate_lru_page(struct page *page)
1543 {
1544 	int ret = -EBUSY;
1545 
1546 	VM_BUG_ON_PAGE(!page_count(page), page);
1547 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1548 
1549 	if (PageLRU(page)) {
1550 		struct zone *zone = page_zone(page);
1551 		struct lruvec *lruvec;
1552 
1553 		spin_lock_irq(zone_lru_lock(zone));
1554 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1555 		if (PageLRU(page)) {
1556 			int lru = page_lru(page);
1557 			get_page(page);
1558 			ClearPageLRU(page);
1559 			del_page_from_lru_list(page, lruvec, lru);
1560 			ret = 0;
1561 		}
1562 		spin_unlock_irq(zone_lru_lock(zone));
1563 	}
1564 	return ret;
1565 }
1566 
1567 /*
1568  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1569  * then get resheduled. When there are massive number of tasks doing page
1570  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1571  * the LRU list will go small and be scanned faster than necessary, leading to
1572  * unnecessary swapping, thrashing and OOM.
1573  */
1574 static int too_many_isolated(struct pglist_data *pgdat, int file,
1575 		struct scan_control *sc)
1576 {
1577 	unsigned long inactive, isolated;
1578 
1579 	if (current_is_kswapd())
1580 		return 0;
1581 
1582 	if (!sane_reclaim(sc))
1583 		return 0;
1584 
1585 	if (file) {
1586 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1587 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1588 	} else {
1589 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1590 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1591 	}
1592 
1593 	/*
1594 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1595 	 * won't get blocked by normal direct-reclaimers, forming a circular
1596 	 * deadlock.
1597 	 */
1598 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1599 		inactive >>= 3;
1600 
1601 	return isolated > inactive;
1602 }
1603 
1604 static noinline_for_stack void
1605 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1606 {
1607 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1608 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1609 	LIST_HEAD(pages_to_free);
1610 
1611 	/*
1612 	 * Put back any unfreeable pages.
1613 	 */
1614 	while (!list_empty(page_list)) {
1615 		struct page *page = lru_to_page(page_list);
1616 		int lru;
1617 
1618 		VM_BUG_ON_PAGE(PageLRU(page), page);
1619 		list_del(&page->lru);
1620 		if (unlikely(!page_evictable(page))) {
1621 			spin_unlock_irq(&pgdat->lru_lock);
1622 			putback_lru_page(page);
1623 			spin_lock_irq(&pgdat->lru_lock);
1624 			continue;
1625 		}
1626 
1627 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1628 
1629 		SetPageLRU(page);
1630 		lru = page_lru(page);
1631 		add_page_to_lru_list(page, lruvec, lru);
1632 
1633 		if (is_active_lru(lru)) {
1634 			int file = is_file_lru(lru);
1635 			int numpages = hpage_nr_pages(page);
1636 			reclaim_stat->recent_rotated[file] += numpages;
1637 		}
1638 		if (put_page_testzero(page)) {
1639 			__ClearPageLRU(page);
1640 			__ClearPageActive(page);
1641 			del_page_from_lru_list(page, lruvec, lru);
1642 
1643 			if (unlikely(PageCompound(page))) {
1644 				spin_unlock_irq(&pgdat->lru_lock);
1645 				mem_cgroup_uncharge(page);
1646 				(*get_compound_page_dtor(page))(page);
1647 				spin_lock_irq(&pgdat->lru_lock);
1648 			} else
1649 				list_add(&page->lru, &pages_to_free);
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * To save our caller's stack, now use input list for pages to free.
1655 	 */
1656 	list_splice(&pages_to_free, page_list);
1657 }
1658 
1659 /*
1660  * If a kernel thread (such as nfsd for loop-back mounts) services
1661  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1662  * In that case we should only throttle if the backing device it is
1663  * writing to is congested.  In other cases it is safe to throttle.
1664  */
1665 static int current_may_throttle(void)
1666 {
1667 	return !(current->flags & PF_LESS_THROTTLE) ||
1668 		current->backing_dev_info == NULL ||
1669 		bdi_write_congested(current->backing_dev_info);
1670 }
1671 
1672 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1673 				struct scan_control *sc, enum lru_list lru)
1674 {
1675 	int zid;
1676 	struct zone *zone;
1677 	int file = is_file_lru(lru);
1678 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1679 
1680 	if (!global_reclaim(sc))
1681 		return true;
1682 
1683 	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1684 		zone = &pgdat->node_zones[zid];
1685 		if (!managed_zone(zone))
1686 			continue;
1687 
1688 		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1689 				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1690 			return true;
1691 	}
1692 
1693 	return false;
1694 }
1695 
1696 /*
1697  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1698  * of reclaimed pages
1699  */
1700 static noinline_for_stack unsigned long
1701 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1702 		     struct scan_control *sc, enum lru_list lru)
1703 {
1704 	LIST_HEAD(page_list);
1705 	unsigned long nr_scanned;
1706 	unsigned long nr_reclaimed = 0;
1707 	unsigned long nr_taken;
1708 	unsigned long nr_dirty = 0;
1709 	unsigned long nr_congested = 0;
1710 	unsigned long nr_unqueued_dirty = 0;
1711 	unsigned long nr_writeback = 0;
1712 	unsigned long nr_immediate = 0;
1713 	isolate_mode_t isolate_mode = 0;
1714 	int file = is_file_lru(lru);
1715 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1716 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1717 
1718 	if (!inactive_reclaimable_pages(lruvec, sc, lru))
1719 		return 0;
1720 
1721 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1722 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1723 
1724 		/* We are about to die and free our memory. Return now. */
1725 		if (fatal_signal_pending(current))
1726 			return SWAP_CLUSTER_MAX;
1727 	}
1728 
1729 	lru_add_drain();
1730 
1731 	if (!sc->may_unmap)
1732 		isolate_mode |= ISOLATE_UNMAPPED;
1733 	if (!sc->may_writepage)
1734 		isolate_mode |= ISOLATE_CLEAN;
1735 
1736 	spin_lock_irq(&pgdat->lru_lock);
1737 
1738 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1739 				     &nr_scanned, sc, isolate_mode, lru);
1740 
1741 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1742 	reclaim_stat->recent_scanned[file] += nr_taken;
1743 
1744 	if (global_reclaim(sc)) {
1745 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1746 		if (current_is_kswapd())
1747 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1748 		else
1749 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1750 	}
1751 	spin_unlock_irq(&pgdat->lru_lock);
1752 
1753 	if (nr_taken == 0)
1754 		return 0;
1755 
1756 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1757 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1758 				&nr_writeback, &nr_immediate,
1759 				false);
1760 
1761 	spin_lock_irq(&pgdat->lru_lock);
1762 
1763 	if (global_reclaim(sc)) {
1764 		if (current_is_kswapd())
1765 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1766 		else
1767 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1768 	}
1769 
1770 	putback_inactive_pages(lruvec, &page_list);
1771 
1772 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1773 
1774 	spin_unlock_irq(&pgdat->lru_lock);
1775 
1776 	mem_cgroup_uncharge_list(&page_list);
1777 	free_hot_cold_page_list(&page_list, true);
1778 
1779 	/*
1780 	 * If reclaim is isolating dirty pages under writeback, it implies
1781 	 * that the long-lived page allocation rate is exceeding the page
1782 	 * laundering rate. Either the global limits are not being effective
1783 	 * at throttling processes due to the page distribution throughout
1784 	 * zones or there is heavy usage of a slow backing device. The
1785 	 * only option is to throttle from reclaim context which is not ideal
1786 	 * as there is no guarantee the dirtying process is throttled in the
1787 	 * same way balance_dirty_pages() manages.
1788 	 *
1789 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1790 	 * of pages under pages flagged for immediate reclaim and stall if any
1791 	 * are encountered in the nr_immediate check below.
1792 	 */
1793 	if (nr_writeback && nr_writeback == nr_taken)
1794 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1795 
1796 	/*
1797 	 * Legacy memcg will stall in page writeback so avoid forcibly
1798 	 * stalling here.
1799 	 */
1800 	if (sane_reclaim(sc)) {
1801 		/*
1802 		 * Tag a zone as congested if all the dirty pages scanned were
1803 		 * backed by a congested BDI and wait_iff_congested will stall.
1804 		 */
1805 		if (nr_dirty && nr_dirty == nr_congested)
1806 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1807 
1808 		/*
1809 		 * If dirty pages are scanned that are not queued for IO, it
1810 		 * implies that flushers are not keeping up. In this case, flag
1811 		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1812 		 * reclaim context.
1813 		 */
1814 		if (nr_unqueued_dirty == nr_taken)
1815 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1816 
1817 		/*
1818 		 * If kswapd scans pages marked marked for immediate
1819 		 * reclaim and under writeback (nr_immediate), it implies
1820 		 * that pages are cycling through the LRU faster than
1821 		 * they are written so also forcibly stall.
1822 		 */
1823 		if (nr_immediate && current_may_throttle())
1824 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1825 	}
1826 
1827 	/*
1828 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1829 	 * is congested. Allow kswapd to continue until it starts encountering
1830 	 * unqueued dirty pages or cycling through the LRU too quickly.
1831 	 */
1832 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1833 	    current_may_throttle())
1834 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1835 
1836 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1837 			nr_scanned, nr_reclaimed,
1838 			sc->priority, file);
1839 	return nr_reclaimed;
1840 }
1841 
1842 /*
1843  * This moves pages from the active list to the inactive list.
1844  *
1845  * We move them the other way if the page is referenced by one or more
1846  * processes, from rmap.
1847  *
1848  * If the pages are mostly unmapped, the processing is fast and it is
1849  * appropriate to hold zone_lru_lock across the whole operation.  But if
1850  * the pages are mapped, the processing is slow (page_referenced()) so we
1851  * should drop zone_lru_lock around each page.  It's impossible to balance
1852  * this, so instead we remove the pages from the LRU while processing them.
1853  * It is safe to rely on PG_active against the non-LRU pages in here because
1854  * nobody will play with that bit on a non-LRU page.
1855  *
1856  * The downside is that we have to touch page->_refcount against each page.
1857  * But we had to alter page->flags anyway.
1858  */
1859 
1860 static void move_active_pages_to_lru(struct lruvec *lruvec,
1861 				     struct list_head *list,
1862 				     struct list_head *pages_to_free,
1863 				     enum lru_list lru)
1864 {
1865 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1866 	unsigned long pgmoved = 0;
1867 	struct page *page;
1868 	int nr_pages;
1869 
1870 	while (!list_empty(list)) {
1871 		page = lru_to_page(list);
1872 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1873 
1874 		VM_BUG_ON_PAGE(PageLRU(page), page);
1875 		SetPageLRU(page);
1876 
1877 		nr_pages = hpage_nr_pages(page);
1878 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1879 		list_move(&page->lru, &lruvec->lists[lru]);
1880 		pgmoved += nr_pages;
1881 
1882 		if (put_page_testzero(page)) {
1883 			__ClearPageLRU(page);
1884 			__ClearPageActive(page);
1885 			del_page_from_lru_list(page, lruvec, lru);
1886 
1887 			if (unlikely(PageCompound(page))) {
1888 				spin_unlock_irq(&pgdat->lru_lock);
1889 				mem_cgroup_uncharge(page);
1890 				(*get_compound_page_dtor(page))(page);
1891 				spin_lock_irq(&pgdat->lru_lock);
1892 			} else
1893 				list_add(&page->lru, pages_to_free);
1894 		}
1895 	}
1896 
1897 	if (!is_active_lru(lru))
1898 		__count_vm_events(PGDEACTIVATE, pgmoved);
1899 }
1900 
1901 static void shrink_active_list(unsigned long nr_to_scan,
1902 			       struct lruvec *lruvec,
1903 			       struct scan_control *sc,
1904 			       enum lru_list lru)
1905 {
1906 	unsigned long nr_taken;
1907 	unsigned long nr_scanned;
1908 	unsigned long vm_flags;
1909 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1910 	LIST_HEAD(l_active);
1911 	LIST_HEAD(l_inactive);
1912 	struct page *page;
1913 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1914 	unsigned long nr_rotated = 0;
1915 	isolate_mode_t isolate_mode = 0;
1916 	int file = is_file_lru(lru);
1917 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1918 
1919 	lru_add_drain();
1920 
1921 	if (!sc->may_unmap)
1922 		isolate_mode |= ISOLATE_UNMAPPED;
1923 	if (!sc->may_writepage)
1924 		isolate_mode |= ISOLATE_CLEAN;
1925 
1926 	spin_lock_irq(&pgdat->lru_lock);
1927 
1928 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1929 				     &nr_scanned, sc, isolate_mode, lru);
1930 
1931 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1932 	reclaim_stat->recent_scanned[file] += nr_taken;
1933 
1934 	if (global_reclaim(sc))
1935 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1936 	__count_vm_events(PGREFILL, nr_scanned);
1937 
1938 	spin_unlock_irq(&pgdat->lru_lock);
1939 
1940 	while (!list_empty(&l_hold)) {
1941 		cond_resched();
1942 		page = lru_to_page(&l_hold);
1943 		list_del(&page->lru);
1944 
1945 		if (unlikely(!page_evictable(page))) {
1946 			putback_lru_page(page);
1947 			continue;
1948 		}
1949 
1950 		if (unlikely(buffer_heads_over_limit)) {
1951 			if (page_has_private(page) && trylock_page(page)) {
1952 				if (page_has_private(page))
1953 					try_to_release_page(page, 0);
1954 				unlock_page(page);
1955 			}
1956 		}
1957 
1958 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1959 				    &vm_flags)) {
1960 			nr_rotated += hpage_nr_pages(page);
1961 			/*
1962 			 * Identify referenced, file-backed active pages and
1963 			 * give them one more trip around the active list. So
1964 			 * that executable code get better chances to stay in
1965 			 * memory under moderate memory pressure.  Anon pages
1966 			 * are not likely to be evicted by use-once streaming
1967 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1968 			 * so we ignore them here.
1969 			 */
1970 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1971 				list_add(&page->lru, &l_active);
1972 				continue;
1973 			}
1974 		}
1975 
1976 		ClearPageActive(page);	/* we are de-activating */
1977 		list_add(&page->lru, &l_inactive);
1978 	}
1979 
1980 	/*
1981 	 * Move pages back to the lru list.
1982 	 */
1983 	spin_lock_irq(&pgdat->lru_lock);
1984 	/*
1985 	 * Count referenced pages from currently used mappings as rotated,
1986 	 * even though only some of them are actually re-activated.  This
1987 	 * helps balance scan pressure between file and anonymous pages in
1988 	 * get_scan_count.
1989 	 */
1990 	reclaim_stat->recent_rotated[file] += nr_rotated;
1991 
1992 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1993 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1994 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1995 	spin_unlock_irq(&pgdat->lru_lock);
1996 
1997 	mem_cgroup_uncharge_list(&l_hold);
1998 	free_hot_cold_page_list(&l_hold, true);
1999 }
2000 
2001 /*
2002  * The inactive anon list should be small enough that the VM never has
2003  * to do too much work.
2004  *
2005  * The inactive file list should be small enough to leave most memory
2006  * to the established workingset on the scan-resistant active list,
2007  * but large enough to avoid thrashing the aggregate readahead window.
2008  *
2009  * Both inactive lists should also be large enough that each inactive
2010  * page has a chance to be referenced again before it is reclaimed.
2011  *
2012  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2013  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2014  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2015  *
2016  * total     target    max
2017  * memory    ratio     inactive
2018  * -------------------------------------
2019  *   10MB       1         5MB
2020  *  100MB       1        50MB
2021  *    1GB       3       250MB
2022  *   10GB      10       0.9GB
2023  *  100GB      31         3GB
2024  *    1TB     101        10GB
2025  *   10TB     320        32GB
2026  */
2027 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2028 						struct scan_control *sc)
2029 {
2030 	unsigned long inactive_ratio;
2031 	unsigned long inactive;
2032 	unsigned long active;
2033 	unsigned long gb;
2034 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2035 	int zid;
2036 
2037 	/*
2038 	 * If we don't have swap space, anonymous page deactivation
2039 	 * is pointless.
2040 	 */
2041 	if (!file && !total_swap_pages)
2042 		return false;
2043 
2044 	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
2045 	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2046 
2047 	/*
2048 	 * For zone-constrained allocations, it is necessary to check if
2049 	 * deactivations are required for lowmem to be reclaimed. This
2050 	 * calculates the inactive/active pages available in eligible zones.
2051 	 */
2052 	for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
2053 		struct zone *zone = &pgdat->node_zones[zid];
2054 		unsigned long inactive_zone, active_zone;
2055 
2056 		if (!managed_zone(zone))
2057 			continue;
2058 
2059 		inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid);
2060 		active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid);
2061 
2062 		inactive -= min(inactive, inactive_zone);
2063 		active -= min(active, active_zone);
2064 	}
2065 
2066 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2067 	if (gb)
2068 		inactive_ratio = int_sqrt(10 * gb);
2069 	else
2070 		inactive_ratio = 1;
2071 
2072 	return inactive * inactive_ratio < active;
2073 }
2074 
2075 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2076 				 struct lruvec *lruvec, struct scan_control *sc)
2077 {
2078 	if (is_active_lru(lru)) {
2079 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2080 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2081 		return 0;
2082 	}
2083 
2084 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2085 }
2086 
2087 enum scan_balance {
2088 	SCAN_EQUAL,
2089 	SCAN_FRACT,
2090 	SCAN_ANON,
2091 	SCAN_FILE,
2092 };
2093 
2094 /*
2095  * Determine how aggressively the anon and file LRU lists should be
2096  * scanned.  The relative value of each set of LRU lists is determined
2097  * by looking at the fraction of the pages scanned we did rotate back
2098  * onto the active list instead of evict.
2099  *
2100  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2101  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2102  */
2103 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2104 			   struct scan_control *sc, unsigned long *nr,
2105 			   unsigned long *lru_pages)
2106 {
2107 	int swappiness = mem_cgroup_swappiness(memcg);
2108 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2109 	u64 fraction[2];
2110 	u64 denominator = 0;	/* gcc */
2111 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2112 	unsigned long anon_prio, file_prio;
2113 	enum scan_balance scan_balance;
2114 	unsigned long anon, file;
2115 	bool force_scan = false;
2116 	unsigned long ap, fp;
2117 	enum lru_list lru;
2118 	bool some_scanned;
2119 	int pass;
2120 
2121 	/*
2122 	 * If the zone or memcg is small, nr[l] can be 0.  This
2123 	 * results in no scanning on this priority and a potential
2124 	 * priority drop.  Global direct reclaim can go to the next
2125 	 * zone and tends to have no problems. Global kswapd is for
2126 	 * zone balancing and it needs to scan a minimum amount. When
2127 	 * reclaiming for a memcg, a priority drop can cause high
2128 	 * latencies, so it's better to scan a minimum amount there as
2129 	 * well.
2130 	 */
2131 	if (current_is_kswapd()) {
2132 		if (!pgdat_reclaimable(pgdat))
2133 			force_scan = true;
2134 		if (!mem_cgroup_online(memcg))
2135 			force_scan = true;
2136 	}
2137 	if (!global_reclaim(sc))
2138 		force_scan = true;
2139 
2140 	/* If we have no swap space, do not bother scanning anon pages. */
2141 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2142 		scan_balance = SCAN_FILE;
2143 		goto out;
2144 	}
2145 
2146 	/*
2147 	 * Global reclaim will swap to prevent OOM even with no
2148 	 * swappiness, but memcg users want to use this knob to
2149 	 * disable swapping for individual groups completely when
2150 	 * using the memory controller's swap limit feature would be
2151 	 * too expensive.
2152 	 */
2153 	if (!global_reclaim(sc) && !swappiness) {
2154 		scan_balance = SCAN_FILE;
2155 		goto out;
2156 	}
2157 
2158 	/*
2159 	 * Do not apply any pressure balancing cleverness when the
2160 	 * system is close to OOM, scan both anon and file equally
2161 	 * (unless the swappiness setting disagrees with swapping).
2162 	 */
2163 	if (!sc->priority && swappiness) {
2164 		scan_balance = SCAN_EQUAL;
2165 		goto out;
2166 	}
2167 
2168 	/*
2169 	 * Prevent the reclaimer from falling into the cache trap: as
2170 	 * cache pages start out inactive, every cache fault will tip
2171 	 * the scan balance towards the file LRU.  And as the file LRU
2172 	 * shrinks, so does the window for rotation from references.
2173 	 * This means we have a runaway feedback loop where a tiny
2174 	 * thrashing file LRU becomes infinitely more attractive than
2175 	 * anon pages.  Try to detect this based on file LRU size.
2176 	 */
2177 	if (global_reclaim(sc)) {
2178 		unsigned long pgdatfile;
2179 		unsigned long pgdatfree;
2180 		int z;
2181 		unsigned long total_high_wmark = 0;
2182 
2183 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2184 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2185 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2186 
2187 		for (z = 0; z < MAX_NR_ZONES; z++) {
2188 			struct zone *zone = &pgdat->node_zones[z];
2189 			if (!managed_zone(zone))
2190 				continue;
2191 
2192 			total_high_wmark += high_wmark_pages(zone);
2193 		}
2194 
2195 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2196 			scan_balance = SCAN_ANON;
2197 			goto out;
2198 		}
2199 	}
2200 
2201 	/*
2202 	 * If there is enough inactive page cache, i.e. if the size of the
2203 	 * inactive list is greater than that of the active list *and* the
2204 	 * inactive list actually has some pages to scan on this priority, we
2205 	 * do not reclaim anything from the anonymous working set right now.
2206 	 * Without the second condition we could end up never scanning an
2207 	 * lruvec even if it has plenty of old anonymous pages unless the
2208 	 * system is under heavy pressure.
2209 	 */
2210 	if (!inactive_list_is_low(lruvec, true, sc) &&
2211 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2212 		scan_balance = SCAN_FILE;
2213 		goto out;
2214 	}
2215 
2216 	scan_balance = SCAN_FRACT;
2217 
2218 	/*
2219 	 * With swappiness at 100, anonymous and file have the same priority.
2220 	 * This scanning priority is essentially the inverse of IO cost.
2221 	 */
2222 	anon_prio = swappiness;
2223 	file_prio = 200 - anon_prio;
2224 
2225 	/*
2226 	 * OK, so we have swap space and a fair amount of page cache
2227 	 * pages.  We use the recently rotated / recently scanned
2228 	 * ratios to determine how valuable each cache is.
2229 	 *
2230 	 * Because workloads change over time (and to avoid overflow)
2231 	 * we keep these statistics as a floating average, which ends
2232 	 * up weighing recent references more than old ones.
2233 	 *
2234 	 * anon in [0], file in [1]
2235 	 */
2236 
2237 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2238 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2239 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2240 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2241 
2242 	spin_lock_irq(&pgdat->lru_lock);
2243 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2244 		reclaim_stat->recent_scanned[0] /= 2;
2245 		reclaim_stat->recent_rotated[0] /= 2;
2246 	}
2247 
2248 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2249 		reclaim_stat->recent_scanned[1] /= 2;
2250 		reclaim_stat->recent_rotated[1] /= 2;
2251 	}
2252 
2253 	/*
2254 	 * The amount of pressure on anon vs file pages is inversely
2255 	 * proportional to the fraction of recently scanned pages on
2256 	 * each list that were recently referenced and in active use.
2257 	 */
2258 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2259 	ap /= reclaim_stat->recent_rotated[0] + 1;
2260 
2261 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2262 	fp /= reclaim_stat->recent_rotated[1] + 1;
2263 	spin_unlock_irq(&pgdat->lru_lock);
2264 
2265 	fraction[0] = ap;
2266 	fraction[1] = fp;
2267 	denominator = ap + fp + 1;
2268 out:
2269 	some_scanned = false;
2270 	/* Only use force_scan on second pass. */
2271 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2272 		*lru_pages = 0;
2273 		for_each_evictable_lru(lru) {
2274 			int file = is_file_lru(lru);
2275 			unsigned long size;
2276 			unsigned long scan;
2277 
2278 			size = lruvec_lru_size(lruvec, lru);
2279 			scan = size >> sc->priority;
2280 
2281 			if (!scan && pass && force_scan)
2282 				scan = min(size, SWAP_CLUSTER_MAX);
2283 
2284 			switch (scan_balance) {
2285 			case SCAN_EQUAL:
2286 				/* Scan lists relative to size */
2287 				break;
2288 			case SCAN_FRACT:
2289 				/*
2290 				 * Scan types proportional to swappiness and
2291 				 * their relative recent reclaim efficiency.
2292 				 */
2293 				scan = div64_u64(scan * fraction[file],
2294 							denominator);
2295 				break;
2296 			case SCAN_FILE:
2297 			case SCAN_ANON:
2298 				/* Scan one type exclusively */
2299 				if ((scan_balance == SCAN_FILE) != file) {
2300 					size = 0;
2301 					scan = 0;
2302 				}
2303 				break;
2304 			default:
2305 				/* Look ma, no brain */
2306 				BUG();
2307 			}
2308 
2309 			*lru_pages += size;
2310 			nr[lru] = scan;
2311 
2312 			/*
2313 			 * Skip the second pass and don't force_scan,
2314 			 * if we found something to scan.
2315 			 */
2316 			some_scanned |= !!scan;
2317 		}
2318 	}
2319 }
2320 
2321 /*
2322  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2323  */
2324 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2325 			      struct scan_control *sc, unsigned long *lru_pages)
2326 {
2327 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2328 	unsigned long nr[NR_LRU_LISTS];
2329 	unsigned long targets[NR_LRU_LISTS];
2330 	unsigned long nr_to_scan;
2331 	enum lru_list lru;
2332 	unsigned long nr_reclaimed = 0;
2333 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2334 	struct blk_plug plug;
2335 	bool scan_adjusted;
2336 
2337 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2338 
2339 	/* Record the original scan target for proportional adjustments later */
2340 	memcpy(targets, nr, sizeof(nr));
2341 
2342 	/*
2343 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2344 	 * event that can occur when there is little memory pressure e.g.
2345 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2346 	 * when the requested number of pages are reclaimed when scanning at
2347 	 * DEF_PRIORITY on the assumption that the fact we are direct
2348 	 * reclaiming implies that kswapd is not keeping up and it is best to
2349 	 * do a batch of work at once. For memcg reclaim one check is made to
2350 	 * abort proportional reclaim if either the file or anon lru has already
2351 	 * dropped to zero at the first pass.
2352 	 */
2353 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2354 			 sc->priority == DEF_PRIORITY);
2355 
2356 	blk_start_plug(&plug);
2357 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2358 					nr[LRU_INACTIVE_FILE]) {
2359 		unsigned long nr_anon, nr_file, percentage;
2360 		unsigned long nr_scanned;
2361 
2362 		for_each_evictable_lru(lru) {
2363 			if (nr[lru]) {
2364 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2365 				nr[lru] -= nr_to_scan;
2366 
2367 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2368 							    lruvec, sc);
2369 			}
2370 		}
2371 
2372 		cond_resched();
2373 
2374 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2375 			continue;
2376 
2377 		/*
2378 		 * For kswapd and memcg, reclaim at least the number of pages
2379 		 * requested. Ensure that the anon and file LRUs are scanned
2380 		 * proportionally what was requested by get_scan_count(). We
2381 		 * stop reclaiming one LRU and reduce the amount scanning
2382 		 * proportional to the original scan target.
2383 		 */
2384 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2385 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2386 
2387 		/*
2388 		 * It's just vindictive to attack the larger once the smaller
2389 		 * has gone to zero.  And given the way we stop scanning the
2390 		 * smaller below, this makes sure that we only make one nudge
2391 		 * towards proportionality once we've got nr_to_reclaim.
2392 		 */
2393 		if (!nr_file || !nr_anon)
2394 			break;
2395 
2396 		if (nr_file > nr_anon) {
2397 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2398 						targets[LRU_ACTIVE_ANON] + 1;
2399 			lru = LRU_BASE;
2400 			percentage = nr_anon * 100 / scan_target;
2401 		} else {
2402 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2403 						targets[LRU_ACTIVE_FILE] + 1;
2404 			lru = LRU_FILE;
2405 			percentage = nr_file * 100 / scan_target;
2406 		}
2407 
2408 		/* Stop scanning the smaller of the LRU */
2409 		nr[lru] = 0;
2410 		nr[lru + LRU_ACTIVE] = 0;
2411 
2412 		/*
2413 		 * Recalculate the other LRU scan count based on its original
2414 		 * scan target and the percentage scanning already complete
2415 		 */
2416 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2417 		nr_scanned = targets[lru] - nr[lru];
2418 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2419 		nr[lru] -= min(nr[lru], nr_scanned);
2420 
2421 		lru += LRU_ACTIVE;
2422 		nr_scanned = targets[lru] - nr[lru];
2423 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2424 		nr[lru] -= min(nr[lru], nr_scanned);
2425 
2426 		scan_adjusted = true;
2427 	}
2428 	blk_finish_plug(&plug);
2429 	sc->nr_reclaimed += nr_reclaimed;
2430 
2431 	/*
2432 	 * Even if we did not try to evict anon pages at all, we want to
2433 	 * rebalance the anon lru active/inactive ratio.
2434 	 */
2435 	if (inactive_list_is_low(lruvec, false, sc))
2436 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2437 				   sc, LRU_ACTIVE_ANON);
2438 }
2439 
2440 /* Use reclaim/compaction for costly allocs or under memory pressure */
2441 static bool in_reclaim_compaction(struct scan_control *sc)
2442 {
2443 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2444 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2445 			 sc->priority < DEF_PRIORITY - 2))
2446 		return true;
2447 
2448 	return false;
2449 }
2450 
2451 /*
2452  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2453  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2454  * true if more pages should be reclaimed such that when the page allocator
2455  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2456  * It will give up earlier than that if there is difficulty reclaiming pages.
2457  */
2458 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2459 					unsigned long nr_reclaimed,
2460 					unsigned long nr_scanned,
2461 					struct scan_control *sc)
2462 {
2463 	unsigned long pages_for_compaction;
2464 	unsigned long inactive_lru_pages;
2465 	int z;
2466 
2467 	/* If not in reclaim/compaction mode, stop */
2468 	if (!in_reclaim_compaction(sc))
2469 		return false;
2470 
2471 	/* Consider stopping depending on scan and reclaim activity */
2472 	if (sc->gfp_mask & __GFP_REPEAT) {
2473 		/*
2474 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2475 		 * full LRU list has been scanned and we are still failing
2476 		 * to reclaim pages. This full LRU scan is potentially
2477 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2478 		 */
2479 		if (!nr_reclaimed && !nr_scanned)
2480 			return false;
2481 	} else {
2482 		/*
2483 		 * For non-__GFP_REPEAT allocations which can presumably
2484 		 * fail without consequence, stop if we failed to reclaim
2485 		 * any pages from the last SWAP_CLUSTER_MAX number of
2486 		 * pages that were scanned. This will return to the
2487 		 * caller faster at the risk reclaim/compaction and
2488 		 * the resulting allocation attempt fails
2489 		 */
2490 		if (!nr_reclaimed)
2491 			return false;
2492 	}
2493 
2494 	/*
2495 	 * If we have not reclaimed enough pages for compaction and the
2496 	 * inactive lists are large enough, continue reclaiming
2497 	 */
2498 	pages_for_compaction = compact_gap(sc->order);
2499 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2500 	if (get_nr_swap_pages() > 0)
2501 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2502 	if (sc->nr_reclaimed < pages_for_compaction &&
2503 			inactive_lru_pages > pages_for_compaction)
2504 		return true;
2505 
2506 	/* If compaction would go ahead or the allocation would succeed, stop */
2507 	for (z = 0; z <= sc->reclaim_idx; z++) {
2508 		struct zone *zone = &pgdat->node_zones[z];
2509 		if (!managed_zone(zone))
2510 			continue;
2511 
2512 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2513 		case COMPACT_SUCCESS:
2514 		case COMPACT_CONTINUE:
2515 			return false;
2516 		default:
2517 			/* check next zone */
2518 			;
2519 		}
2520 	}
2521 	return true;
2522 }
2523 
2524 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2525 {
2526 	struct reclaim_state *reclaim_state = current->reclaim_state;
2527 	unsigned long nr_reclaimed, nr_scanned;
2528 	bool reclaimable = false;
2529 
2530 	do {
2531 		struct mem_cgroup *root = sc->target_mem_cgroup;
2532 		struct mem_cgroup_reclaim_cookie reclaim = {
2533 			.pgdat = pgdat,
2534 			.priority = sc->priority,
2535 		};
2536 		unsigned long node_lru_pages = 0;
2537 		struct mem_cgroup *memcg;
2538 
2539 		nr_reclaimed = sc->nr_reclaimed;
2540 		nr_scanned = sc->nr_scanned;
2541 
2542 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2543 		do {
2544 			unsigned long lru_pages;
2545 			unsigned long reclaimed;
2546 			unsigned long scanned;
2547 
2548 			if (mem_cgroup_low(root, memcg)) {
2549 				if (!sc->may_thrash)
2550 					continue;
2551 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2552 			}
2553 
2554 			reclaimed = sc->nr_reclaimed;
2555 			scanned = sc->nr_scanned;
2556 
2557 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2558 			node_lru_pages += lru_pages;
2559 
2560 			if (memcg)
2561 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2562 					    memcg, sc->nr_scanned - scanned,
2563 					    lru_pages);
2564 
2565 			/* Record the group's reclaim efficiency */
2566 			vmpressure(sc->gfp_mask, memcg, false,
2567 				   sc->nr_scanned - scanned,
2568 				   sc->nr_reclaimed - reclaimed);
2569 
2570 			/*
2571 			 * Direct reclaim and kswapd have to scan all memory
2572 			 * cgroups to fulfill the overall scan target for the
2573 			 * node.
2574 			 *
2575 			 * Limit reclaim, on the other hand, only cares about
2576 			 * nr_to_reclaim pages to be reclaimed and it will
2577 			 * retry with decreasing priority if one round over the
2578 			 * whole hierarchy is not sufficient.
2579 			 */
2580 			if (!global_reclaim(sc) &&
2581 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2582 				mem_cgroup_iter_break(root, memcg);
2583 				break;
2584 			}
2585 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2586 
2587 		/*
2588 		 * Shrink the slab caches in the same proportion that
2589 		 * the eligible LRU pages were scanned.
2590 		 */
2591 		if (global_reclaim(sc))
2592 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2593 				    sc->nr_scanned - nr_scanned,
2594 				    node_lru_pages);
2595 
2596 		if (reclaim_state) {
2597 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2598 			reclaim_state->reclaimed_slab = 0;
2599 		}
2600 
2601 		/* Record the subtree's reclaim efficiency */
2602 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2603 			   sc->nr_scanned - nr_scanned,
2604 			   sc->nr_reclaimed - nr_reclaimed);
2605 
2606 		if (sc->nr_reclaimed - nr_reclaimed)
2607 			reclaimable = true;
2608 
2609 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2610 					 sc->nr_scanned - nr_scanned, sc));
2611 
2612 	return reclaimable;
2613 }
2614 
2615 /*
2616  * Returns true if compaction should go ahead for a costly-order request, or
2617  * the allocation would already succeed without compaction. Return false if we
2618  * should reclaim first.
2619  */
2620 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2621 {
2622 	unsigned long watermark;
2623 	enum compact_result suitable;
2624 
2625 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2626 	if (suitable == COMPACT_SUCCESS)
2627 		/* Allocation should succeed already. Don't reclaim. */
2628 		return true;
2629 	if (suitable == COMPACT_SKIPPED)
2630 		/* Compaction cannot yet proceed. Do reclaim. */
2631 		return false;
2632 
2633 	/*
2634 	 * Compaction is already possible, but it takes time to run and there
2635 	 * are potentially other callers using the pages just freed. So proceed
2636 	 * with reclaim to make a buffer of free pages available to give
2637 	 * compaction a reasonable chance of completing and allocating the page.
2638 	 * Note that we won't actually reclaim the whole buffer in one attempt
2639 	 * as the target watermark in should_continue_reclaim() is lower. But if
2640 	 * we are already above the high+gap watermark, don't reclaim at all.
2641 	 */
2642 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2643 
2644 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2645 }
2646 
2647 /*
2648  * This is the direct reclaim path, for page-allocating processes.  We only
2649  * try to reclaim pages from zones which will satisfy the caller's allocation
2650  * request.
2651  *
2652  * If a zone is deemed to be full of pinned pages then just give it a light
2653  * scan then give up on it.
2654  */
2655 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2656 {
2657 	struct zoneref *z;
2658 	struct zone *zone;
2659 	unsigned long nr_soft_reclaimed;
2660 	unsigned long nr_soft_scanned;
2661 	gfp_t orig_mask;
2662 	pg_data_t *last_pgdat = NULL;
2663 
2664 	/*
2665 	 * If the number of buffer_heads in the machine exceeds the maximum
2666 	 * allowed level, force direct reclaim to scan the highmem zone as
2667 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2668 	 */
2669 	orig_mask = sc->gfp_mask;
2670 	if (buffer_heads_over_limit) {
2671 		sc->gfp_mask |= __GFP_HIGHMEM;
2672 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2673 	}
2674 
2675 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2676 					sc->reclaim_idx, sc->nodemask) {
2677 		/*
2678 		 * Take care memory controller reclaiming has small influence
2679 		 * to global LRU.
2680 		 */
2681 		if (global_reclaim(sc)) {
2682 			if (!cpuset_zone_allowed(zone,
2683 						 GFP_KERNEL | __GFP_HARDWALL))
2684 				continue;
2685 
2686 			if (sc->priority != DEF_PRIORITY &&
2687 			    !pgdat_reclaimable(zone->zone_pgdat))
2688 				continue;	/* Let kswapd poll it */
2689 
2690 			/*
2691 			 * If we already have plenty of memory free for
2692 			 * compaction in this zone, don't free any more.
2693 			 * Even though compaction is invoked for any
2694 			 * non-zero order, only frequent costly order
2695 			 * reclamation is disruptive enough to become a
2696 			 * noticeable problem, like transparent huge
2697 			 * page allocations.
2698 			 */
2699 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2700 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2701 			    compaction_ready(zone, sc)) {
2702 				sc->compaction_ready = true;
2703 				continue;
2704 			}
2705 
2706 			/*
2707 			 * Shrink each node in the zonelist once. If the
2708 			 * zonelist is ordered by zone (not the default) then a
2709 			 * node may be shrunk multiple times but in that case
2710 			 * the user prefers lower zones being preserved.
2711 			 */
2712 			if (zone->zone_pgdat == last_pgdat)
2713 				continue;
2714 
2715 			/*
2716 			 * This steals pages from memory cgroups over softlimit
2717 			 * and returns the number of reclaimed pages and
2718 			 * scanned pages. This works for global memory pressure
2719 			 * and balancing, not for a memcg's limit.
2720 			 */
2721 			nr_soft_scanned = 0;
2722 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2723 						sc->order, sc->gfp_mask,
2724 						&nr_soft_scanned);
2725 			sc->nr_reclaimed += nr_soft_reclaimed;
2726 			sc->nr_scanned += nr_soft_scanned;
2727 			/* need some check for avoid more shrink_zone() */
2728 		}
2729 
2730 		/* See comment about same check for global reclaim above */
2731 		if (zone->zone_pgdat == last_pgdat)
2732 			continue;
2733 		last_pgdat = zone->zone_pgdat;
2734 		shrink_node(zone->zone_pgdat, sc);
2735 	}
2736 
2737 	/*
2738 	 * Restore to original mask to avoid the impact on the caller if we
2739 	 * promoted it to __GFP_HIGHMEM.
2740 	 */
2741 	sc->gfp_mask = orig_mask;
2742 }
2743 
2744 /*
2745  * This is the main entry point to direct page reclaim.
2746  *
2747  * If a full scan of the inactive list fails to free enough memory then we
2748  * are "out of memory" and something needs to be killed.
2749  *
2750  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2751  * high - the zone may be full of dirty or under-writeback pages, which this
2752  * caller can't do much about.  We kick the writeback threads and take explicit
2753  * naps in the hope that some of these pages can be written.  But if the
2754  * allocating task holds filesystem locks which prevent writeout this might not
2755  * work, and the allocation attempt will fail.
2756  *
2757  * returns:	0, if no pages reclaimed
2758  * 		else, the number of pages reclaimed
2759  */
2760 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2761 					  struct scan_control *sc)
2762 {
2763 	int initial_priority = sc->priority;
2764 	unsigned long total_scanned = 0;
2765 	unsigned long writeback_threshold;
2766 retry:
2767 	delayacct_freepages_start();
2768 
2769 	if (global_reclaim(sc))
2770 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2771 
2772 	do {
2773 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2774 				sc->priority);
2775 		sc->nr_scanned = 0;
2776 		shrink_zones(zonelist, sc);
2777 
2778 		total_scanned += sc->nr_scanned;
2779 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2780 			break;
2781 
2782 		if (sc->compaction_ready)
2783 			break;
2784 
2785 		/*
2786 		 * If we're getting trouble reclaiming, start doing
2787 		 * writepage even in laptop mode.
2788 		 */
2789 		if (sc->priority < DEF_PRIORITY - 2)
2790 			sc->may_writepage = 1;
2791 
2792 		/*
2793 		 * Try to write back as many pages as we just scanned.  This
2794 		 * tends to cause slow streaming writers to write data to the
2795 		 * disk smoothly, at the dirtying rate, which is nice.   But
2796 		 * that's undesirable in laptop mode, where we *want* lumpy
2797 		 * writeout.  So in laptop mode, write out the whole world.
2798 		 */
2799 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2800 		if (total_scanned > writeback_threshold) {
2801 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2802 						WB_REASON_TRY_TO_FREE_PAGES);
2803 			sc->may_writepage = 1;
2804 		}
2805 	} while (--sc->priority >= 0);
2806 
2807 	delayacct_freepages_end();
2808 
2809 	if (sc->nr_reclaimed)
2810 		return sc->nr_reclaimed;
2811 
2812 	/* Aborted reclaim to try compaction? don't OOM, then */
2813 	if (sc->compaction_ready)
2814 		return 1;
2815 
2816 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2817 	if (!sc->may_thrash) {
2818 		sc->priority = initial_priority;
2819 		sc->may_thrash = 1;
2820 		goto retry;
2821 	}
2822 
2823 	return 0;
2824 }
2825 
2826 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2827 {
2828 	struct zone *zone;
2829 	unsigned long pfmemalloc_reserve = 0;
2830 	unsigned long free_pages = 0;
2831 	int i;
2832 	bool wmark_ok;
2833 
2834 	for (i = 0; i <= ZONE_NORMAL; i++) {
2835 		zone = &pgdat->node_zones[i];
2836 		if (!managed_zone(zone) ||
2837 		    pgdat_reclaimable_pages(pgdat) == 0)
2838 			continue;
2839 
2840 		pfmemalloc_reserve += min_wmark_pages(zone);
2841 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2842 	}
2843 
2844 	/* If there are no reserves (unexpected config) then do not throttle */
2845 	if (!pfmemalloc_reserve)
2846 		return true;
2847 
2848 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2849 
2850 	/* kswapd must be awake if processes are being throttled */
2851 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2852 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2853 						(enum zone_type)ZONE_NORMAL);
2854 		wake_up_interruptible(&pgdat->kswapd_wait);
2855 	}
2856 
2857 	return wmark_ok;
2858 }
2859 
2860 /*
2861  * Throttle direct reclaimers if backing storage is backed by the network
2862  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2863  * depleted. kswapd will continue to make progress and wake the processes
2864  * when the low watermark is reached.
2865  *
2866  * Returns true if a fatal signal was delivered during throttling. If this
2867  * happens, the page allocator should not consider triggering the OOM killer.
2868  */
2869 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2870 					nodemask_t *nodemask)
2871 {
2872 	struct zoneref *z;
2873 	struct zone *zone;
2874 	pg_data_t *pgdat = NULL;
2875 
2876 	/*
2877 	 * Kernel threads should not be throttled as they may be indirectly
2878 	 * responsible for cleaning pages necessary for reclaim to make forward
2879 	 * progress. kjournald for example may enter direct reclaim while
2880 	 * committing a transaction where throttling it could forcing other
2881 	 * processes to block on log_wait_commit().
2882 	 */
2883 	if (current->flags & PF_KTHREAD)
2884 		goto out;
2885 
2886 	/*
2887 	 * If a fatal signal is pending, this process should not throttle.
2888 	 * It should return quickly so it can exit and free its memory
2889 	 */
2890 	if (fatal_signal_pending(current))
2891 		goto out;
2892 
2893 	/*
2894 	 * Check if the pfmemalloc reserves are ok by finding the first node
2895 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2896 	 * GFP_KERNEL will be required for allocating network buffers when
2897 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2898 	 *
2899 	 * Throttling is based on the first usable node and throttled processes
2900 	 * wait on a queue until kswapd makes progress and wakes them. There
2901 	 * is an affinity then between processes waking up and where reclaim
2902 	 * progress has been made assuming the process wakes on the same node.
2903 	 * More importantly, processes running on remote nodes will not compete
2904 	 * for remote pfmemalloc reserves and processes on different nodes
2905 	 * should make reasonable progress.
2906 	 */
2907 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2908 					gfp_zone(gfp_mask), nodemask) {
2909 		if (zone_idx(zone) > ZONE_NORMAL)
2910 			continue;
2911 
2912 		/* Throttle based on the first usable node */
2913 		pgdat = zone->zone_pgdat;
2914 		if (pfmemalloc_watermark_ok(pgdat))
2915 			goto out;
2916 		break;
2917 	}
2918 
2919 	/* If no zone was usable by the allocation flags then do not throttle */
2920 	if (!pgdat)
2921 		goto out;
2922 
2923 	/* Account for the throttling */
2924 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2925 
2926 	/*
2927 	 * If the caller cannot enter the filesystem, it's possible that it
2928 	 * is due to the caller holding an FS lock or performing a journal
2929 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2930 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2931 	 * blocked waiting on the same lock. Instead, throttle for up to a
2932 	 * second before continuing.
2933 	 */
2934 	if (!(gfp_mask & __GFP_FS)) {
2935 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2936 			pfmemalloc_watermark_ok(pgdat), HZ);
2937 
2938 		goto check_pending;
2939 	}
2940 
2941 	/* Throttle until kswapd wakes the process */
2942 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2943 		pfmemalloc_watermark_ok(pgdat));
2944 
2945 check_pending:
2946 	if (fatal_signal_pending(current))
2947 		return true;
2948 
2949 out:
2950 	return false;
2951 }
2952 
2953 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2954 				gfp_t gfp_mask, nodemask_t *nodemask)
2955 {
2956 	unsigned long nr_reclaimed;
2957 	struct scan_control sc = {
2958 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2959 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2960 		.reclaim_idx = gfp_zone(gfp_mask),
2961 		.order = order,
2962 		.nodemask = nodemask,
2963 		.priority = DEF_PRIORITY,
2964 		.may_writepage = !laptop_mode,
2965 		.may_unmap = 1,
2966 		.may_swap = 1,
2967 	};
2968 
2969 	/*
2970 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2971 	 * 1 is returned so that the page allocator does not OOM kill at this
2972 	 * point.
2973 	 */
2974 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2975 		return 1;
2976 
2977 	trace_mm_vmscan_direct_reclaim_begin(order,
2978 				sc.may_writepage,
2979 				gfp_mask,
2980 				sc.reclaim_idx);
2981 
2982 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2983 
2984 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2985 
2986 	return nr_reclaimed;
2987 }
2988 
2989 #ifdef CONFIG_MEMCG
2990 
2991 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2992 						gfp_t gfp_mask, bool noswap,
2993 						pg_data_t *pgdat,
2994 						unsigned long *nr_scanned)
2995 {
2996 	struct scan_control sc = {
2997 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2998 		.target_mem_cgroup = memcg,
2999 		.may_writepage = !laptop_mode,
3000 		.may_unmap = 1,
3001 		.reclaim_idx = MAX_NR_ZONES - 1,
3002 		.may_swap = !noswap,
3003 	};
3004 	unsigned long lru_pages;
3005 
3006 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3007 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3008 
3009 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3010 						      sc.may_writepage,
3011 						      sc.gfp_mask,
3012 						      sc.reclaim_idx);
3013 
3014 	/*
3015 	 * NOTE: Although we can get the priority field, using it
3016 	 * here is not a good idea, since it limits the pages we can scan.
3017 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3018 	 * will pick up pages from other mem cgroup's as well. We hack
3019 	 * the priority and make it zero.
3020 	 */
3021 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3022 
3023 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3024 
3025 	*nr_scanned = sc.nr_scanned;
3026 	return sc.nr_reclaimed;
3027 }
3028 
3029 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3030 					   unsigned long nr_pages,
3031 					   gfp_t gfp_mask,
3032 					   bool may_swap)
3033 {
3034 	struct zonelist *zonelist;
3035 	unsigned long nr_reclaimed;
3036 	int nid;
3037 	struct scan_control sc = {
3038 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3039 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3040 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3041 		.reclaim_idx = MAX_NR_ZONES - 1,
3042 		.target_mem_cgroup = memcg,
3043 		.priority = DEF_PRIORITY,
3044 		.may_writepage = !laptop_mode,
3045 		.may_unmap = 1,
3046 		.may_swap = may_swap,
3047 	};
3048 
3049 	/*
3050 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3051 	 * take care of from where we get pages. So the node where we start the
3052 	 * scan does not need to be the current node.
3053 	 */
3054 	nid = mem_cgroup_select_victim_node(memcg);
3055 
3056 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3057 
3058 	trace_mm_vmscan_memcg_reclaim_begin(0,
3059 					    sc.may_writepage,
3060 					    sc.gfp_mask,
3061 					    sc.reclaim_idx);
3062 
3063 	current->flags |= PF_MEMALLOC;
3064 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3065 	current->flags &= ~PF_MEMALLOC;
3066 
3067 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3068 
3069 	return nr_reclaimed;
3070 }
3071 #endif
3072 
3073 static void age_active_anon(struct pglist_data *pgdat,
3074 				struct scan_control *sc)
3075 {
3076 	struct mem_cgroup *memcg;
3077 
3078 	if (!total_swap_pages)
3079 		return;
3080 
3081 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3082 	do {
3083 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3084 
3085 		if (inactive_list_is_low(lruvec, false, sc))
3086 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3087 					   sc, LRU_ACTIVE_ANON);
3088 
3089 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3090 	} while (memcg);
3091 }
3092 
3093 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3094 {
3095 	unsigned long mark = high_wmark_pages(zone);
3096 
3097 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3098 		return false;
3099 
3100 	/*
3101 	 * If any eligible zone is balanced then the node is not considered
3102 	 * to be congested or dirty
3103 	 */
3104 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3105 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3106 
3107 	return true;
3108 }
3109 
3110 /*
3111  * Prepare kswapd for sleeping. This verifies that there are no processes
3112  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3113  *
3114  * Returns true if kswapd is ready to sleep
3115  */
3116 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3117 {
3118 	int i;
3119 
3120 	/*
3121 	 * The throttled processes are normally woken up in balance_pgdat() as
3122 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3123 	 * race between when kswapd checks the watermarks and a process gets
3124 	 * throttled. There is also a potential race if processes get
3125 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3126 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3127 	 * the wake up checks. If kswapd is going to sleep, no process should
3128 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3129 	 * the wake up is premature, processes will wake kswapd and get
3130 	 * throttled again. The difference from wake ups in balance_pgdat() is
3131 	 * that here we are under prepare_to_wait().
3132 	 */
3133 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3134 		wake_up_all(&pgdat->pfmemalloc_wait);
3135 
3136 	for (i = 0; i <= classzone_idx; i++) {
3137 		struct zone *zone = pgdat->node_zones + i;
3138 
3139 		if (!managed_zone(zone))
3140 			continue;
3141 
3142 		if (!zone_balanced(zone, order, classzone_idx))
3143 			return false;
3144 	}
3145 
3146 	return true;
3147 }
3148 
3149 /*
3150  * kswapd shrinks a node of pages that are at or below the highest usable
3151  * zone that is currently unbalanced.
3152  *
3153  * Returns true if kswapd scanned at least the requested number of pages to
3154  * reclaim or if the lack of progress was due to pages under writeback.
3155  * This is used to determine if the scanning priority needs to be raised.
3156  */
3157 static bool kswapd_shrink_node(pg_data_t *pgdat,
3158 			       struct scan_control *sc)
3159 {
3160 	struct zone *zone;
3161 	int z;
3162 
3163 	/* Reclaim a number of pages proportional to the number of zones */
3164 	sc->nr_to_reclaim = 0;
3165 	for (z = 0; z <= sc->reclaim_idx; z++) {
3166 		zone = pgdat->node_zones + z;
3167 		if (!managed_zone(zone))
3168 			continue;
3169 
3170 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3171 	}
3172 
3173 	/*
3174 	 * Historically care was taken to put equal pressure on all zones but
3175 	 * now pressure is applied based on node LRU order.
3176 	 */
3177 	shrink_node(pgdat, sc);
3178 
3179 	/*
3180 	 * Fragmentation may mean that the system cannot be rebalanced for
3181 	 * high-order allocations. If twice the allocation size has been
3182 	 * reclaimed then recheck watermarks only at order-0 to prevent
3183 	 * excessive reclaim. Assume that a process requested a high-order
3184 	 * can direct reclaim/compact.
3185 	 */
3186 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3187 		sc->order = 0;
3188 
3189 	return sc->nr_scanned >= sc->nr_to_reclaim;
3190 }
3191 
3192 /*
3193  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3194  * that are eligible for use by the caller until at least one zone is
3195  * balanced.
3196  *
3197  * Returns the order kswapd finished reclaiming at.
3198  *
3199  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3200  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3201  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3202  * or lower is eligible for reclaim until at least one usable zone is
3203  * balanced.
3204  */
3205 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3206 {
3207 	int i;
3208 	unsigned long nr_soft_reclaimed;
3209 	unsigned long nr_soft_scanned;
3210 	struct zone *zone;
3211 	struct scan_control sc = {
3212 		.gfp_mask = GFP_KERNEL,
3213 		.order = order,
3214 		.priority = DEF_PRIORITY,
3215 		.may_writepage = !laptop_mode,
3216 		.may_unmap = 1,
3217 		.may_swap = 1,
3218 	};
3219 	count_vm_event(PAGEOUTRUN);
3220 
3221 	do {
3222 		bool raise_priority = true;
3223 
3224 		sc.nr_reclaimed = 0;
3225 		sc.reclaim_idx = classzone_idx;
3226 
3227 		/*
3228 		 * If the number of buffer_heads exceeds the maximum allowed
3229 		 * then consider reclaiming from all zones. This has a dual
3230 		 * purpose -- on 64-bit systems it is expected that
3231 		 * buffer_heads are stripped during active rotation. On 32-bit
3232 		 * systems, highmem pages can pin lowmem memory and shrinking
3233 		 * buffers can relieve lowmem pressure. Reclaim may still not
3234 		 * go ahead if all eligible zones for the original allocation
3235 		 * request are balanced to avoid excessive reclaim from kswapd.
3236 		 */
3237 		if (buffer_heads_over_limit) {
3238 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3239 				zone = pgdat->node_zones + i;
3240 				if (!managed_zone(zone))
3241 					continue;
3242 
3243 				sc.reclaim_idx = i;
3244 				break;
3245 			}
3246 		}
3247 
3248 		/*
3249 		 * Only reclaim if there are no eligible zones. Check from
3250 		 * high to low zone as allocations prefer higher zones.
3251 		 * Scanning from low to high zone would allow congestion to be
3252 		 * cleared during a very small window when a small low
3253 		 * zone was balanced even under extreme pressure when the
3254 		 * overall node may be congested. Note that sc.reclaim_idx
3255 		 * is not used as buffer_heads_over_limit may have adjusted
3256 		 * it.
3257 		 */
3258 		for (i = classzone_idx; i >= 0; i--) {
3259 			zone = pgdat->node_zones + i;
3260 			if (!managed_zone(zone))
3261 				continue;
3262 
3263 			if (zone_balanced(zone, sc.order, classzone_idx))
3264 				goto out;
3265 		}
3266 
3267 		/*
3268 		 * Do some background aging of the anon list, to give
3269 		 * pages a chance to be referenced before reclaiming. All
3270 		 * pages are rotated regardless of classzone as this is
3271 		 * about consistent aging.
3272 		 */
3273 		age_active_anon(pgdat, &sc);
3274 
3275 		/*
3276 		 * If we're getting trouble reclaiming, start doing writepage
3277 		 * even in laptop mode.
3278 		 */
3279 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3280 			sc.may_writepage = 1;
3281 
3282 		/* Call soft limit reclaim before calling shrink_node. */
3283 		sc.nr_scanned = 0;
3284 		nr_soft_scanned = 0;
3285 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3286 						sc.gfp_mask, &nr_soft_scanned);
3287 		sc.nr_reclaimed += nr_soft_reclaimed;
3288 
3289 		/*
3290 		 * There should be no need to raise the scanning priority if
3291 		 * enough pages are already being scanned that that high
3292 		 * watermark would be met at 100% efficiency.
3293 		 */
3294 		if (kswapd_shrink_node(pgdat, &sc))
3295 			raise_priority = false;
3296 
3297 		/*
3298 		 * If the low watermark is met there is no need for processes
3299 		 * to be throttled on pfmemalloc_wait as they should not be
3300 		 * able to safely make forward progress. Wake them
3301 		 */
3302 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3303 				pfmemalloc_watermark_ok(pgdat))
3304 			wake_up_all(&pgdat->pfmemalloc_wait);
3305 
3306 		/* Check if kswapd should be suspending */
3307 		if (try_to_freeze() || kthread_should_stop())
3308 			break;
3309 
3310 		/*
3311 		 * Raise priority if scanning rate is too low or there was no
3312 		 * progress in reclaiming pages
3313 		 */
3314 		if (raise_priority || !sc.nr_reclaimed)
3315 			sc.priority--;
3316 	} while (sc.priority >= 1);
3317 
3318 out:
3319 	/*
3320 	 * Return the order kswapd stopped reclaiming at as
3321 	 * prepare_kswapd_sleep() takes it into account. If another caller
3322 	 * entered the allocator slow path while kswapd was awake, order will
3323 	 * remain at the higher level.
3324 	 */
3325 	return sc.order;
3326 }
3327 
3328 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3329 				unsigned int classzone_idx)
3330 {
3331 	long remaining = 0;
3332 	DEFINE_WAIT(wait);
3333 
3334 	if (freezing(current) || kthread_should_stop())
3335 		return;
3336 
3337 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3338 
3339 	/* Try to sleep for a short interval */
3340 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3341 		/*
3342 		 * Compaction records what page blocks it recently failed to
3343 		 * isolate pages from and skips them in the future scanning.
3344 		 * When kswapd is going to sleep, it is reasonable to assume
3345 		 * that pages and compaction may succeed so reset the cache.
3346 		 */
3347 		reset_isolation_suitable(pgdat);
3348 
3349 		/*
3350 		 * We have freed the memory, now we should compact it to make
3351 		 * allocation of the requested order possible.
3352 		 */
3353 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3354 
3355 		remaining = schedule_timeout(HZ/10);
3356 
3357 		/*
3358 		 * If woken prematurely then reset kswapd_classzone_idx and
3359 		 * order. The values will either be from a wakeup request or
3360 		 * the previous request that slept prematurely.
3361 		 */
3362 		if (remaining) {
3363 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3364 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3365 		}
3366 
3367 		finish_wait(&pgdat->kswapd_wait, &wait);
3368 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3369 	}
3370 
3371 	/*
3372 	 * After a short sleep, check if it was a premature sleep. If not, then
3373 	 * go fully to sleep until explicitly woken up.
3374 	 */
3375 	if (!remaining &&
3376 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3377 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3378 
3379 		/*
3380 		 * vmstat counters are not perfectly accurate and the estimated
3381 		 * value for counters such as NR_FREE_PAGES can deviate from the
3382 		 * true value by nr_online_cpus * threshold. To avoid the zone
3383 		 * watermarks being breached while under pressure, we reduce the
3384 		 * per-cpu vmstat threshold while kswapd is awake and restore
3385 		 * them before going back to sleep.
3386 		 */
3387 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3388 
3389 		if (!kthread_should_stop())
3390 			schedule();
3391 
3392 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3393 	} else {
3394 		if (remaining)
3395 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3396 		else
3397 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3398 	}
3399 	finish_wait(&pgdat->kswapd_wait, &wait);
3400 }
3401 
3402 /*
3403  * The background pageout daemon, started as a kernel thread
3404  * from the init process.
3405  *
3406  * This basically trickles out pages so that we have _some_
3407  * free memory available even if there is no other activity
3408  * that frees anything up. This is needed for things like routing
3409  * etc, where we otherwise might have all activity going on in
3410  * asynchronous contexts that cannot page things out.
3411  *
3412  * If there are applications that are active memory-allocators
3413  * (most normal use), this basically shouldn't matter.
3414  */
3415 static int kswapd(void *p)
3416 {
3417 	unsigned int alloc_order, reclaim_order, classzone_idx;
3418 	pg_data_t *pgdat = (pg_data_t*)p;
3419 	struct task_struct *tsk = current;
3420 
3421 	struct reclaim_state reclaim_state = {
3422 		.reclaimed_slab = 0,
3423 	};
3424 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3425 
3426 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3427 
3428 	if (!cpumask_empty(cpumask))
3429 		set_cpus_allowed_ptr(tsk, cpumask);
3430 	current->reclaim_state = &reclaim_state;
3431 
3432 	/*
3433 	 * Tell the memory management that we're a "memory allocator",
3434 	 * and that if we need more memory we should get access to it
3435 	 * regardless (see "__alloc_pages()"). "kswapd" should
3436 	 * never get caught in the normal page freeing logic.
3437 	 *
3438 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3439 	 * you need a small amount of memory in order to be able to
3440 	 * page out something else, and this flag essentially protects
3441 	 * us from recursively trying to free more memory as we're
3442 	 * trying to free the first piece of memory in the first place).
3443 	 */
3444 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3445 	set_freezable();
3446 
3447 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3448 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3449 	for ( ; ; ) {
3450 		bool ret;
3451 
3452 kswapd_try_sleep:
3453 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3454 					classzone_idx);
3455 
3456 		/* Read the new order and classzone_idx */
3457 		alloc_order = reclaim_order = pgdat->kswapd_order;
3458 		classzone_idx = pgdat->kswapd_classzone_idx;
3459 		pgdat->kswapd_order = 0;
3460 		pgdat->kswapd_classzone_idx = 0;
3461 
3462 		ret = try_to_freeze();
3463 		if (kthread_should_stop())
3464 			break;
3465 
3466 		/*
3467 		 * We can speed up thawing tasks if we don't call balance_pgdat
3468 		 * after returning from the refrigerator
3469 		 */
3470 		if (ret)
3471 			continue;
3472 
3473 		/*
3474 		 * Reclaim begins at the requested order but if a high-order
3475 		 * reclaim fails then kswapd falls back to reclaiming for
3476 		 * order-0. If that happens, kswapd will consider sleeping
3477 		 * for the order it finished reclaiming at (reclaim_order)
3478 		 * but kcompactd is woken to compact for the original
3479 		 * request (alloc_order).
3480 		 */
3481 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3482 						alloc_order);
3483 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3484 		if (reclaim_order < alloc_order)
3485 			goto kswapd_try_sleep;
3486 
3487 		alloc_order = reclaim_order = pgdat->kswapd_order;
3488 		classzone_idx = pgdat->kswapd_classzone_idx;
3489 	}
3490 
3491 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3492 	current->reclaim_state = NULL;
3493 	lockdep_clear_current_reclaim_state();
3494 
3495 	return 0;
3496 }
3497 
3498 /*
3499  * A zone is low on free memory, so wake its kswapd task to service it.
3500  */
3501 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3502 {
3503 	pg_data_t *pgdat;
3504 	int z;
3505 
3506 	if (!managed_zone(zone))
3507 		return;
3508 
3509 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3510 		return;
3511 	pgdat = zone->zone_pgdat;
3512 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3513 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3514 	if (!waitqueue_active(&pgdat->kswapd_wait))
3515 		return;
3516 
3517 	/* Only wake kswapd if all zones are unbalanced */
3518 	for (z = 0; z <= classzone_idx; z++) {
3519 		zone = pgdat->node_zones + z;
3520 		if (!managed_zone(zone))
3521 			continue;
3522 
3523 		if (zone_balanced(zone, order, classzone_idx))
3524 			return;
3525 	}
3526 
3527 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3528 	wake_up_interruptible(&pgdat->kswapd_wait);
3529 }
3530 
3531 #ifdef CONFIG_HIBERNATION
3532 /*
3533  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3534  * freed pages.
3535  *
3536  * Rather than trying to age LRUs the aim is to preserve the overall
3537  * LRU order by reclaiming preferentially
3538  * inactive > active > active referenced > active mapped
3539  */
3540 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3541 {
3542 	struct reclaim_state reclaim_state;
3543 	struct scan_control sc = {
3544 		.nr_to_reclaim = nr_to_reclaim,
3545 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3546 		.reclaim_idx = MAX_NR_ZONES - 1,
3547 		.priority = DEF_PRIORITY,
3548 		.may_writepage = 1,
3549 		.may_unmap = 1,
3550 		.may_swap = 1,
3551 		.hibernation_mode = 1,
3552 	};
3553 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3554 	struct task_struct *p = current;
3555 	unsigned long nr_reclaimed;
3556 
3557 	p->flags |= PF_MEMALLOC;
3558 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3559 	reclaim_state.reclaimed_slab = 0;
3560 	p->reclaim_state = &reclaim_state;
3561 
3562 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3563 
3564 	p->reclaim_state = NULL;
3565 	lockdep_clear_current_reclaim_state();
3566 	p->flags &= ~PF_MEMALLOC;
3567 
3568 	return nr_reclaimed;
3569 }
3570 #endif /* CONFIG_HIBERNATION */
3571 
3572 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3573    not required for correctness.  So if the last cpu in a node goes
3574    away, we get changed to run anywhere: as the first one comes back,
3575    restore their cpu bindings. */
3576 static int kswapd_cpu_online(unsigned int cpu)
3577 {
3578 	int nid;
3579 
3580 	for_each_node_state(nid, N_MEMORY) {
3581 		pg_data_t *pgdat = NODE_DATA(nid);
3582 		const struct cpumask *mask;
3583 
3584 		mask = cpumask_of_node(pgdat->node_id);
3585 
3586 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3587 			/* One of our CPUs online: restore mask */
3588 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3589 	}
3590 	return 0;
3591 }
3592 
3593 /*
3594  * This kswapd start function will be called by init and node-hot-add.
3595  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3596  */
3597 int kswapd_run(int nid)
3598 {
3599 	pg_data_t *pgdat = NODE_DATA(nid);
3600 	int ret = 0;
3601 
3602 	if (pgdat->kswapd)
3603 		return 0;
3604 
3605 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3606 	if (IS_ERR(pgdat->kswapd)) {
3607 		/* failure at boot is fatal */
3608 		BUG_ON(system_state == SYSTEM_BOOTING);
3609 		pr_err("Failed to start kswapd on node %d\n", nid);
3610 		ret = PTR_ERR(pgdat->kswapd);
3611 		pgdat->kswapd = NULL;
3612 	}
3613 	return ret;
3614 }
3615 
3616 /*
3617  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3618  * hold mem_hotplug_begin/end().
3619  */
3620 void kswapd_stop(int nid)
3621 {
3622 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3623 
3624 	if (kswapd) {
3625 		kthread_stop(kswapd);
3626 		NODE_DATA(nid)->kswapd = NULL;
3627 	}
3628 }
3629 
3630 static int __init kswapd_init(void)
3631 {
3632 	int nid, ret;
3633 
3634 	swap_setup();
3635 	for_each_node_state(nid, N_MEMORY)
3636  		kswapd_run(nid);
3637 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3638 					"mm/vmscan:online", kswapd_cpu_online,
3639 					NULL);
3640 	WARN_ON(ret < 0);
3641 	return 0;
3642 }
3643 
3644 module_init(kswapd_init)
3645 
3646 #ifdef CONFIG_NUMA
3647 /*
3648  * Node reclaim mode
3649  *
3650  * If non-zero call node_reclaim when the number of free pages falls below
3651  * the watermarks.
3652  */
3653 int node_reclaim_mode __read_mostly;
3654 
3655 #define RECLAIM_OFF 0
3656 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3657 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3658 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3659 
3660 /*
3661  * Priority for NODE_RECLAIM. This determines the fraction of pages
3662  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3663  * a zone.
3664  */
3665 #define NODE_RECLAIM_PRIORITY 4
3666 
3667 /*
3668  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3669  * occur.
3670  */
3671 int sysctl_min_unmapped_ratio = 1;
3672 
3673 /*
3674  * If the number of slab pages in a zone grows beyond this percentage then
3675  * slab reclaim needs to occur.
3676  */
3677 int sysctl_min_slab_ratio = 5;
3678 
3679 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3680 {
3681 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3682 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3683 		node_page_state(pgdat, NR_ACTIVE_FILE);
3684 
3685 	/*
3686 	 * It's possible for there to be more file mapped pages than
3687 	 * accounted for by the pages on the file LRU lists because
3688 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3689 	 */
3690 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3691 }
3692 
3693 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3694 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3695 {
3696 	unsigned long nr_pagecache_reclaimable;
3697 	unsigned long delta = 0;
3698 
3699 	/*
3700 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3701 	 * potentially reclaimable. Otherwise, we have to worry about
3702 	 * pages like swapcache and node_unmapped_file_pages() provides
3703 	 * a better estimate
3704 	 */
3705 	if (node_reclaim_mode & RECLAIM_UNMAP)
3706 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3707 	else
3708 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3709 
3710 	/* If we can't clean pages, remove dirty pages from consideration */
3711 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3712 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3713 
3714 	/* Watch for any possible underflows due to delta */
3715 	if (unlikely(delta > nr_pagecache_reclaimable))
3716 		delta = nr_pagecache_reclaimable;
3717 
3718 	return nr_pagecache_reclaimable - delta;
3719 }
3720 
3721 /*
3722  * Try to free up some pages from this node through reclaim.
3723  */
3724 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3725 {
3726 	/* Minimum pages needed in order to stay on node */
3727 	const unsigned long nr_pages = 1 << order;
3728 	struct task_struct *p = current;
3729 	struct reclaim_state reclaim_state;
3730 	int classzone_idx = gfp_zone(gfp_mask);
3731 	struct scan_control sc = {
3732 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3733 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3734 		.order = order,
3735 		.priority = NODE_RECLAIM_PRIORITY,
3736 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3737 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3738 		.may_swap = 1,
3739 		.reclaim_idx = classzone_idx,
3740 	};
3741 
3742 	cond_resched();
3743 	/*
3744 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3745 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3746 	 * and RECLAIM_UNMAP.
3747 	 */
3748 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3749 	lockdep_set_current_reclaim_state(gfp_mask);
3750 	reclaim_state.reclaimed_slab = 0;
3751 	p->reclaim_state = &reclaim_state;
3752 
3753 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3754 		/*
3755 		 * Free memory by calling shrink zone with increasing
3756 		 * priorities until we have enough memory freed.
3757 		 */
3758 		do {
3759 			shrink_node(pgdat, &sc);
3760 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3761 	}
3762 
3763 	p->reclaim_state = NULL;
3764 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3765 	lockdep_clear_current_reclaim_state();
3766 	return sc.nr_reclaimed >= nr_pages;
3767 }
3768 
3769 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3770 {
3771 	int ret;
3772 
3773 	/*
3774 	 * Node reclaim reclaims unmapped file backed pages and
3775 	 * slab pages if we are over the defined limits.
3776 	 *
3777 	 * A small portion of unmapped file backed pages is needed for
3778 	 * file I/O otherwise pages read by file I/O will be immediately
3779 	 * thrown out if the node is overallocated. So we do not reclaim
3780 	 * if less than a specified percentage of the node is used by
3781 	 * unmapped file backed pages.
3782 	 */
3783 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3784 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3785 		return NODE_RECLAIM_FULL;
3786 
3787 	if (!pgdat_reclaimable(pgdat))
3788 		return NODE_RECLAIM_FULL;
3789 
3790 	/*
3791 	 * Do not scan if the allocation should not be delayed.
3792 	 */
3793 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3794 		return NODE_RECLAIM_NOSCAN;
3795 
3796 	/*
3797 	 * Only run node reclaim on the local node or on nodes that do not
3798 	 * have associated processors. This will favor the local processor
3799 	 * over remote processors and spread off node memory allocations
3800 	 * as wide as possible.
3801 	 */
3802 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3803 		return NODE_RECLAIM_NOSCAN;
3804 
3805 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3806 		return NODE_RECLAIM_NOSCAN;
3807 
3808 	ret = __node_reclaim(pgdat, gfp_mask, order);
3809 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3810 
3811 	if (!ret)
3812 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3813 
3814 	return ret;
3815 }
3816 #endif
3817 
3818 /*
3819  * page_evictable - test whether a page is evictable
3820  * @page: the page to test
3821  *
3822  * Test whether page is evictable--i.e., should be placed on active/inactive
3823  * lists vs unevictable list.
3824  *
3825  * Reasons page might not be evictable:
3826  * (1) page's mapping marked unevictable
3827  * (2) page is part of an mlocked VMA
3828  *
3829  */
3830 int page_evictable(struct page *page)
3831 {
3832 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3833 }
3834 
3835 #ifdef CONFIG_SHMEM
3836 /**
3837  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3838  * @pages:	array of pages to check
3839  * @nr_pages:	number of pages to check
3840  *
3841  * Checks pages for evictability and moves them to the appropriate lru list.
3842  *
3843  * This function is only used for SysV IPC SHM_UNLOCK.
3844  */
3845 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3846 {
3847 	struct lruvec *lruvec;
3848 	struct pglist_data *pgdat = NULL;
3849 	int pgscanned = 0;
3850 	int pgrescued = 0;
3851 	int i;
3852 
3853 	for (i = 0; i < nr_pages; i++) {
3854 		struct page *page = pages[i];
3855 		struct pglist_data *pagepgdat = page_pgdat(page);
3856 
3857 		pgscanned++;
3858 		if (pagepgdat != pgdat) {
3859 			if (pgdat)
3860 				spin_unlock_irq(&pgdat->lru_lock);
3861 			pgdat = pagepgdat;
3862 			spin_lock_irq(&pgdat->lru_lock);
3863 		}
3864 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3865 
3866 		if (!PageLRU(page) || !PageUnevictable(page))
3867 			continue;
3868 
3869 		if (page_evictable(page)) {
3870 			enum lru_list lru = page_lru_base_type(page);
3871 
3872 			VM_BUG_ON_PAGE(PageActive(page), page);
3873 			ClearPageUnevictable(page);
3874 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3875 			add_page_to_lru_list(page, lruvec, lru);
3876 			pgrescued++;
3877 		}
3878 	}
3879 
3880 	if (pgdat) {
3881 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3882 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3883 		spin_unlock_irq(&pgdat->lru_lock);
3884 	}
3885 }
3886 #endif /* CONFIG_SHMEM */
3887