xref: /openbmc/linux/mm/vmscan.c (revision 4b2a108c)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* This context's GFP mask */
59 	gfp_t gfp_mask;
60 
61 	int may_writepage;
62 
63 	/* Can mapped pages be reclaimed? */
64 	int may_unmap;
65 
66 	/* Can pages be swapped as part of reclaim? */
67 	int may_swap;
68 
69 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 	 * In this context, it doesn't matter that we scan the
72 	 * whole list at once. */
73 	int swap_cluster_max;
74 
75 	int swappiness;
76 
77 	int all_unreclaimable;
78 
79 	int order;
80 
81 	/* Which cgroup do we reclaim from */
82 	struct mem_cgroup *mem_cgroup;
83 
84 	/*
85 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 	 * are scanned.
87 	 */
88 	nodemask_t	*nodemask;
89 
90 	/* Pluggable isolate pages callback */
91 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 			unsigned long *scanned, int order, int mode,
93 			struct zone *z, struct mem_cgroup *mem_cont,
94 			int active, int file);
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc)	(1)
140 #endif
141 
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 						  struct scan_control *sc)
144 {
145 	if (!scanning_global_lru(sc))
146 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147 
148 	return &zone->reclaim_stat;
149 }
150 
151 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 				   enum lru_list lru)
153 {
154 	if (!scanning_global_lru(sc))
155 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156 
157 	return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159 
160 
161 /*
162  * Add a shrinker callback to be called from the vm
163  */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 	shrinker->nr = 0;
167 	down_write(&shrinker_rwsem);
168 	list_add_tail(&shrinker->list, &shrinker_list);
169 	up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172 
173 /*
174  * Remove one
175  */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 	down_write(&shrinker_rwsem);
179 	list_del(&shrinker->list);
180 	up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183 
184 #define SHRINK_BATCH 128
185 /*
186  * Call the shrink functions to age shrinkable caches
187  *
188  * Here we assume it costs one seek to replace a lru page and that it also
189  * takes a seek to recreate a cache object.  With this in mind we age equal
190  * percentages of the lru and ageable caches.  This should balance the seeks
191  * generated by these structures.
192  *
193  * If the vm encountered mapped pages on the LRU it increase the pressure on
194  * slab to avoid swapping.
195  *
196  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197  *
198  * `lru_pages' represents the number of on-LRU pages in all the zones which
199  * are eligible for the caller's allocation attempt.  It is used for balancing
200  * slab reclaim versus page reclaim.
201  *
202  * Returns the number of slab objects which we shrunk.
203  */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 			unsigned long lru_pages)
206 {
207 	struct shrinker *shrinker;
208 	unsigned long ret = 0;
209 
210 	if (scanned == 0)
211 		scanned = SWAP_CLUSTER_MAX;
212 
213 	if (!down_read_trylock(&shrinker_rwsem))
214 		return 1;	/* Assume we'll be able to shrink next time */
215 
216 	list_for_each_entry(shrinker, &shrinker_list, list) {
217 		unsigned long long delta;
218 		unsigned long total_scan;
219 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220 
221 		delta = (4 * scanned) / shrinker->seeks;
222 		delta *= max_pass;
223 		do_div(delta, lru_pages + 1);
224 		shrinker->nr += delta;
225 		if (shrinker->nr < 0) {
226 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 			       "delete nr=%ld\n",
228 			       shrinker->shrink, shrinker->nr);
229 			shrinker->nr = max_pass;
230 		}
231 
232 		/*
233 		 * Avoid risking looping forever due to too large nr value:
234 		 * never try to free more than twice the estimate number of
235 		 * freeable entries.
236 		 */
237 		if (shrinker->nr > max_pass * 2)
238 			shrinker->nr = max_pass * 2;
239 
240 		total_scan = shrinker->nr;
241 		shrinker->nr = 0;
242 
243 		while (total_scan >= SHRINK_BATCH) {
244 			long this_scan = SHRINK_BATCH;
245 			int shrink_ret;
246 			int nr_before;
247 
248 			nr_before = (*shrinker->shrink)(0, gfp_mask);
249 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 			if (shrink_ret == -1)
251 				break;
252 			if (shrink_ret < nr_before)
253 				ret += nr_before - shrink_ret;
254 			count_vm_events(SLABS_SCANNED, this_scan);
255 			total_scan -= this_scan;
256 
257 			cond_resched();
258 		}
259 
260 		shrinker->nr += total_scan;
261 	}
262 	up_read(&shrinker_rwsem);
263 	return ret;
264 }
265 
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269 	struct address_space *mapping;
270 
271 	/* Page is in somebody's page tables. */
272 	if (page_mapped(page))
273 		return 1;
274 
275 	/* Be more reluctant to reclaim swapcache than pagecache */
276 	if (PageSwapCache(page))
277 		return 1;
278 
279 	mapping = page_mapping(page);
280 	if (!mapping)
281 		return 0;
282 
283 	/* File is mmap'd by somebody? */
284 	return mapping_mapped(mapping);
285 }
286 
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289 	return page_count(page) - !!page_has_private(page) == 2;
290 }
291 
292 static int may_write_to_queue(struct backing_dev_info *bdi)
293 {
294 	if (current->flags & PF_SWAPWRITE)
295 		return 1;
296 	if (!bdi_write_congested(bdi))
297 		return 1;
298 	if (bdi == current->backing_dev_info)
299 		return 1;
300 	return 0;
301 }
302 
303 /*
304  * We detected a synchronous write error writing a page out.  Probably
305  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
306  * fsync(), msync() or close().
307  *
308  * The tricky part is that after writepage we cannot touch the mapping: nothing
309  * prevents it from being freed up.  But we have a ref on the page and once
310  * that page is locked, the mapping is pinned.
311  *
312  * We're allowed to run sleeping lock_page() here because we know the caller has
313  * __GFP_FS.
314  */
315 static void handle_write_error(struct address_space *mapping,
316 				struct page *page, int error)
317 {
318 	lock_page(page);
319 	if (page_mapping(page) == mapping)
320 		mapping_set_error(mapping, error);
321 	unlock_page(page);
322 }
323 
324 /* Request for sync pageout. */
325 enum pageout_io {
326 	PAGEOUT_IO_ASYNC,
327 	PAGEOUT_IO_SYNC,
328 };
329 
330 /* possible outcome of pageout() */
331 typedef enum {
332 	/* failed to write page out, page is locked */
333 	PAGE_KEEP,
334 	/* move page to the active list, page is locked */
335 	PAGE_ACTIVATE,
336 	/* page has been sent to the disk successfully, page is unlocked */
337 	PAGE_SUCCESS,
338 	/* page is clean and locked */
339 	PAGE_CLEAN,
340 } pageout_t;
341 
342 /*
343  * pageout is called by shrink_page_list() for each dirty page.
344  * Calls ->writepage().
345  */
346 static pageout_t pageout(struct page *page, struct address_space *mapping,
347 						enum pageout_io sync_writeback)
348 {
349 	/*
350 	 * If the page is dirty, only perform writeback if that write
351 	 * will be non-blocking.  To prevent this allocation from being
352 	 * stalled by pagecache activity.  But note that there may be
353 	 * stalls if we need to run get_block().  We could test
354 	 * PagePrivate for that.
355 	 *
356 	 * If this process is currently in generic_file_write() against
357 	 * this page's queue, we can perform writeback even if that
358 	 * will block.
359 	 *
360 	 * If the page is swapcache, write it back even if that would
361 	 * block, for some throttling. This happens by accident, because
362 	 * swap_backing_dev_info is bust: it doesn't reflect the
363 	 * congestion state of the swapdevs.  Easy to fix, if needed.
364 	 * See swapfile.c:page_queue_congested().
365 	 */
366 	if (!is_page_cache_freeable(page))
367 		return PAGE_KEEP;
368 	if (!mapping) {
369 		/*
370 		 * Some data journaling orphaned pages can have
371 		 * page->mapping == NULL while being dirty with clean buffers.
372 		 */
373 		if (page_has_private(page)) {
374 			if (try_to_free_buffers(page)) {
375 				ClearPageDirty(page);
376 				printk("%s: orphaned page\n", __func__);
377 				return PAGE_CLEAN;
378 			}
379 		}
380 		return PAGE_KEEP;
381 	}
382 	if (mapping->a_ops->writepage == NULL)
383 		return PAGE_ACTIVATE;
384 	if (!may_write_to_queue(mapping->backing_dev_info))
385 		return PAGE_KEEP;
386 
387 	if (clear_page_dirty_for_io(page)) {
388 		int res;
389 		struct writeback_control wbc = {
390 			.sync_mode = WB_SYNC_NONE,
391 			.nr_to_write = SWAP_CLUSTER_MAX,
392 			.range_start = 0,
393 			.range_end = LLONG_MAX,
394 			.nonblocking = 1,
395 			.for_reclaim = 1,
396 		};
397 
398 		SetPageReclaim(page);
399 		res = mapping->a_ops->writepage(page, &wbc);
400 		if (res < 0)
401 			handle_write_error(mapping, page, res);
402 		if (res == AOP_WRITEPAGE_ACTIVATE) {
403 			ClearPageReclaim(page);
404 			return PAGE_ACTIVATE;
405 		}
406 
407 		/*
408 		 * Wait on writeback if requested to. This happens when
409 		 * direct reclaiming a large contiguous area and the
410 		 * first attempt to free a range of pages fails.
411 		 */
412 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 			wait_on_page_writeback(page);
414 
415 		if (!PageWriteback(page)) {
416 			/* synchronous write or broken a_ops? */
417 			ClearPageReclaim(page);
418 		}
419 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
420 		return PAGE_SUCCESS;
421 	}
422 
423 	return PAGE_CLEAN;
424 }
425 
426 /*
427  * Same as remove_mapping, but if the page is removed from the mapping, it
428  * gets returned with a refcount of 0.
429  */
430 static int __remove_mapping(struct address_space *mapping, struct page *page)
431 {
432 	BUG_ON(!PageLocked(page));
433 	BUG_ON(mapping != page_mapping(page));
434 
435 	spin_lock_irq(&mapping->tree_lock);
436 	/*
437 	 * The non racy check for a busy page.
438 	 *
439 	 * Must be careful with the order of the tests. When someone has
440 	 * a ref to the page, it may be possible that they dirty it then
441 	 * drop the reference. So if PageDirty is tested before page_count
442 	 * here, then the following race may occur:
443 	 *
444 	 * get_user_pages(&page);
445 	 * [user mapping goes away]
446 	 * write_to(page);
447 	 *				!PageDirty(page)    [good]
448 	 * SetPageDirty(page);
449 	 * put_page(page);
450 	 *				!page_count(page)   [good, discard it]
451 	 *
452 	 * [oops, our write_to data is lost]
453 	 *
454 	 * Reversing the order of the tests ensures such a situation cannot
455 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 	 * load is not satisfied before that of page->_count.
457 	 *
458 	 * Note that if SetPageDirty is always performed via set_page_dirty,
459 	 * and thus under tree_lock, then this ordering is not required.
460 	 */
461 	if (!page_freeze_refs(page, 2))
462 		goto cannot_free;
463 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 	if (unlikely(PageDirty(page))) {
465 		page_unfreeze_refs(page, 2);
466 		goto cannot_free;
467 	}
468 
469 	if (PageSwapCache(page)) {
470 		swp_entry_t swap = { .val = page_private(page) };
471 		__delete_from_swap_cache(page);
472 		spin_unlock_irq(&mapping->tree_lock);
473 		swapcache_free(swap, page);
474 	} else {
475 		__remove_from_page_cache(page);
476 		spin_unlock_irq(&mapping->tree_lock);
477 		mem_cgroup_uncharge_cache_page(page);
478 	}
479 
480 	return 1;
481 
482 cannot_free:
483 	spin_unlock_irq(&mapping->tree_lock);
484 	return 0;
485 }
486 
487 /*
488  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
489  * someone else has a ref on the page, abort and return 0.  If it was
490  * successfully detached, return 1.  Assumes the caller has a single ref on
491  * this page.
492  */
493 int remove_mapping(struct address_space *mapping, struct page *page)
494 {
495 	if (__remove_mapping(mapping, page)) {
496 		/*
497 		 * Unfreezing the refcount with 1 rather than 2 effectively
498 		 * drops the pagecache ref for us without requiring another
499 		 * atomic operation.
500 		 */
501 		page_unfreeze_refs(page, 1);
502 		return 1;
503 	}
504 	return 0;
505 }
506 
507 /**
508  * putback_lru_page - put previously isolated page onto appropriate LRU list
509  * @page: page to be put back to appropriate lru list
510  *
511  * Add previously isolated @page to appropriate LRU list.
512  * Page may still be unevictable for other reasons.
513  *
514  * lru_lock must not be held, interrupts must be enabled.
515  */
516 void putback_lru_page(struct page *page)
517 {
518 	int lru;
519 	int active = !!TestClearPageActive(page);
520 	int was_unevictable = PageUnevictable(page);
521 
522 	VM_BUG_ON(PageLRU(page));
523 
524 redo:
525 	ClearPageUnevictable(page);
526 
527 	if (page_evictable(page, NULL)) {
528 		/*
529 		 * For evictable pages, we can use the cache.
530 		 * In event of a race, worst case is we end up with an
531 		 * unevictable page on [in]active list.
532 		 * We know how to handle that.
533 		 */
534 		lru = active + page_is_file_cache(page);
535 		lru_cache_add_lru(page, lru);
536 	} else {
537 		/*
538 		 * Put unevictable pages directly on zone's unevictable
539 		 * list.
540 		 */
541 		lru = LRU_UNEVICTABLE;
542 		add_page_to_unevictable_list(page);
543 	}
544 
545 	/*
546 	 * page's status can change while we move it among lru. If an evictable
547 	 * page is on unevictable list, it never be freed. To avoid that,
548 	 * check after we added it to the list, again.
549 	 */
550 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
551 		if (!isolate_lru_page(page)) {
552 			put_page(page);
553 			goto redo;
554 		}
555 		/* This means someone else dropped this page from LRU
556 		 * So, it will be freed or putback to LRU again. There is
557 		 * nothing to do here.
558 		 */
559 	}
560 
561 	if (was_unevictable && lru != LRU_UNEVICTABLE)
562 		count_vm_event(UNEVICTABLE_PGRESCUED);
563 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
564 		count_vm_event(UNEVICTABLE_PGCULLED);
565 
566 	put_page(page);		/* drop ref from isolate */
567 }
568 
569 /*
570  * shrink_page_list() returns the number of reclaimed pages
571  */
572 static unsigned long shrink_page_list(struct list_head *page_list,
573 					struct scan_control *sc,
574 					enum pageout_io sync_writeback)
575 {
576 	LIST_HEAD(ret_pages);
577 	struct pagevec freed_pvec;
578 	int pgactivate = 0;
579 	unsigned long nr_reclaimed = 0;
580 	unsigned long vm_flags;
581 
582 	cond_resched();
583 
584 	pagevec_init(&freed_pvec, 1);
585 	while (!list_empty(page_list)) {
586 		struct address_space *mapping;
587 		struct page *page;
588 		int may_enter_fs;
589 		int referenced;
590 
591 		cond_resched();
592 
593 		page = lru_to_page(page_list);
594 		list_del(&page->lru);
595 
596 		if (!trylock_page(page))
597 			goto keep;
598 
599 		VM_BUG_ON(PageActive(page));
600 
601 		sc->nr_scanned++;
602 
603 		if (unlikely(!page_evictable(page, NULL)))
604 			goto cull_mlocked;
605 
606 		if (!sc->may_unmap && page_mapped(page))
607 			goto keep_locked;
608 
609 		/* Double the slab pressure for mapped and swapcache pages */
610 		if (page_mapped(page) || PageSwapCache(page))
611 			sc->nr_scanned++;
612 
613 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
614 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
615 
616 		if (PageWriteback(page)) {
617 			/*
618 			 * Synchronous reclaim is performed in two passes,
619 			 * first an asynchronous pass over the list to
620 			 * start parallel writeback, and a second synchronous
621 			 * pass to wait for the IO to complete.  Wait here
622 			 * for any page for which writeback has already
623 			 * started.
624 			 */
625 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
626 				wait_on_page_writeback(page);
627 			else
628 				goto keep_locked;
629 		}
630 
631 		referenced = page_referenced(page, 1,
632 						sc->mem_cgroup, &vm_flags);
633 		/* In active use or really unfreeable?  Activate it. */
634 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
635 					referenced && page_mapping_inuse(page))
636 			goto activate_locked;
637 
638 		/*
639 		 * Anonymous process memory has backing store?
640 		 * Try to allocate it some swap space here.
641 		 */
642 		if (PageAnon(page) && !PageSwapCache(page)) {
643 			if (!(sc->gfp_mask & __GFP_IO))
644 				goto keep_locked;
645 			if (!add_to_swap(page))
646 				goto activate_locked;
647 			may_enter_fs = 1;
648 		}
649 
650 		mapping = page_mapping(page);
651 
652 		/*
653 		 * The page is mapped into the page tables of one or more
654 		 * processes. Try to unmap it here.
655 		 */
656 		if (page_mapped(page) && mapping) {
657 			switch (try_to_unmap(page, 0)) {
658 			case SWAP_FAIL:
659 				goto activate_locked;
660 			case SWAP_AGAIN:
661 				goto keep_locked;
662 			case SWAP_MLOCK:
663 				goto cull_mlocked;
664 			case SWAP_SUCCESS:
665 				; /* try to free the page below */
666 			}
667 		}
668 
669 		if (PageDirty(page)) {
670 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
671 				goto keep_locked;
672 			if (!may_enter_fs)
673 				goto keep_locked;
674 			if (!sc->may_writepage)
675 				goto keep_locked;
676 
677 			/* Page is dirty, try to write it out here */
678 			switch (pageout(page, mapping, sync_writeback)) {
679 			case PAGE_KEEP:
680 				goto keep_locked;
681 			case PAGE_ACTIVATE:
682 				goto activate_locked;
683 			case PAGE_SUCCESS:
684 				if (PageWriteback(page) || PageDirty(page))
685 					goto keep;
686 				/*
687 				 * A synchronous write - probably a ramdisk.  Go
688 				 * ahead and try to reclaim the page.
689 				 */
690 				if (!trylock_page(page))
691 					goto keep;
692 				if (PageDirty(page) || PageWriteback(page))
693 					goto keep_locked;
694 				mapping = page_mapping(page);
695 			case PAGE_CLEAN:
696 				; /* try to free the page below */
697 			}
698 		}
699 
700 		/*
701 		 * If the page has buffers, try to free the buffer mappings
702 		 * associated with this page. If we succeed we try to free
703 		 * the page as well.
704 		 *
705 		 * We do this even if the page is PageDirty().
706 		 * try_to_release_page() does not perform I/O, but it is
707 		 * possible for a page to have PageDirty set, but it is actually
708 		 * clean (all its buffers are clean).  This happens if the
709 		 * buffers were written out directly, with submit_bh(). ext3
710 		 * will do this, as well as the blockdev mapping.
711 		 * try_to_release_page() will discover that cleanness and will
712 		 * drop the buffers and mark the page clean - it can be freed.
713 		 *
714 		 * Rarely, pages can have buffers and no ->mapping.  These are
715 		 * the pages which were not successfully invalidated in
716 		 * truncate_complete_page().  We try to drop those buffers here
717 		 * and if that worked, and the page is no longer mapped into
718 		 * process address space (page_count == 1) it can be freed.
719 		 * Otherwise, leave the page on the LRU so it is swappable.
720 		 */
721 		if (page_has_private(page)) {
722 			if (!try_to_release_page(page, sc->gfp_mask))
723 				goto activate_locked;
724 			if (!mapping && page_count(page) == 1) {
725 				unlock_page(page);
726 				if (put_page_testzero(page))
727 					goto free_it;
728 				else {
729 					/*
730 					 * rare race with speculative reference.
731 					 * the speculative reference will free
732 					 * this page shortly, so we may
733 					 * increment nr_reclaimed here (and
734 					 * leave it off the LRU).
735 					 */
736 					nr_reclaimed++;
737 					continue;
738 				}
739 			}
740 		}
741 
742 		if (!mapping || !__remove_mapping(mapping, page))
743 			goto keep_locked;
744 
745 		/*
746 		 * At this point, we have no other references and there is
747 		 * no way to pick any more up (removed from LRU, removed
748 		 * from pagecache). Can use non-atomic bitops now (and
749 		 * we obviously don't have to worry about waking up a process
750 		 * waiting on the page lock, because there are no references.
751 		 */
752 		__clear_page_locked(page);
753 free_it:
754 		nr_reclaimed++;
755 		if (!pagevec_add(&freed_pvec, page)) {
756 			__pagevec_free(&freed_pvec);
757 			pagevec_reinit(&freed_pvec);
758 		}
759 		continue;
760 
761 cull_mlocked:
762 		if (PageSwapCache(page))
763 			try_to_free_swap(page);
764 		unlock_page(page);
765 		putback_lru_page(page);
766 		continue;
767 
768 activate_locked:
769 		/* Not a candidate for swapping, so reclaim swap space. */
770 		if (PageSwapCache(page) && vm_swap_full())
771 			try_to_free_swap(page);
772 		VM_BUG_ON(PageActive(page));
773 		SetPageActive(page);
774 		pgactivate++;
775 keep_locked:
776 		unlock_page(page);
777 keep:
778 		list_add(&page->lru, &ret_pages);
779 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
780 	}
781 	list_splice(&ret_pages, page_list);
782 	if (pagevec_count(&freed_pvec))
783 		__pagevec_free(&freed_pvec);
784 	count_vm_events(PGACTIVATE, pgactivate);
785 	return nr_reclaimed;
786 }
787 
788 /* LRU Isolation modes. */
789 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
790 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
791 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
792 
793 /*
794  * Attempt to remove the specified page from its LRU.  Only take this page
795  * if it is of the appropriate PageActive status.  Pages which are being
796  * freed elsewhere are also ignored.
797  *
798  * page:	page to consider
799  * mode:	one of the LRU isolation modes defined above
800  *
801  * returns 0 on success, -ve errno on failure.
802  */
803 int __isolate_lru_page(struct page *page, int mode, int file)
804 {
805 	int ret = -EINVAL;
806 
807 	/* Only take pages on the LRU. */
808 	if (!PageLRU(page))
809 		return ret;
810 
811 	/*
812 	 * When checking the active state, we need to be sure we are
813 	 * dealing with comparible boolean values.  Take the logical not
814 	 * of each.
815 	 */
816 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
817 		return ret;
818 
819 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
820 		return ret;
821 
822 	/*
823 	 * When this function is being called for lumpy reclaim, we
824 	 * initially look into all LRU pages, active, inactive and
825 	 * unevictable; only give shrink_page_list evictable pages.
826 	 */
827 	if (PageUnevictable(page))
828 		return ret;
829 
830 	ret = -EBUSY;
831 
832 	if (likely(get_page_unless_zero(page))) {
833 		/*
834 		 * Be careful not to clear PageLRU until after we're
835 		 * sure the page is not being freed elsewhere -- the
836 		 * page release code relies on it.
837 		 */
838 		ClearPageLRU(page);
839 		ret = 0;
840 	}
841 
842 	return ret;
843 }
844 
845 /*
846  * zone->lru_lock is heavily contended.  Some of the functions that
847  * shrink the lists perform better by taking out a batch of pages
848  * and working on them outside the LRU lock.
849  *
850  * For pagecache intensive workloads, this function is the hottest
851  * spot in the kernel (apart from copy_*_user functions).
852  *
853  * Appropriate locks must be held before calling this function.
854  *
855  * @nr_to_scan:	The number of pages to look through on the list.
856  * @src:	The LRU list to pull pages off.
857  * @dst:	The temp list to put pages on to.
858  * @scanned:	The number of pages that were scanned.
859  * @order:	The caller's attempted allocation order
860  * @mode:	One of the LRU isolation modes
861  * @file:	True [1] if isolating file [!anon] pages
862  *
863  * returns how many pages were moved onto *@dst.
864  */
865 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
866 		struct list_head *src, struct list_head *dst,
867 		unsigned long *scanned, int order, int mode, int file)
868 {
869 	unsigned long nr_taken = 0;
870 	unsigned long scan;
871 
872 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
873 		struct page *page;
874 		unsigned long pfn;
875 		unsigned long end_pfn;
876 		unsigned long page_pfn;
877 		int zone_id;
878 
879 		page = lru_to_page(src);
880 		prefetchw_prev_lru_page(page, src, flags);
881 
882 		VM_BUG_ON(!PageLRU(page));
883 
884 		switch (__isolate_lru_page(page, mode, file)) {
885 		case 0:
886 			list_move(&page->lru, dst);
887 			mem_cgroup_del_lru(page);
888 			nr_taken++;
889 			break;
890 
891 		case -EBUSY:
892 			/* else it is being freed elsewhere */
893 			list_move(&page->lru, src);
894 			mem_cgroup_rotate_lru_list(page, page_lru(page));
895 			continue;
896 
897 		default:
898 			BUG();
899 		}
900 
901 		if (!order)
902 			continue;
903 
904 		/*
905 		 * Attempt to take all pages in the order aligned region
906 		 * surrounding the tag page.  Only take those pages of
907 		 * the same active state as that tag page.  We may safely
908 		 * round the target page pfn down to the requested order
909 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
910 		 * where that page is in a different zone we will detect
911 		 * it from its zone id and abort this block scan.
912 		 */
913 		zone_id = page_zone_id(page);
914 		page_pfn = page_to_pfn(page);
915 		pfn = page_pfn & ~((1 << order) - 1);
916 		end_pfn = pfn + (1 << order);
917 		for (; pfn < end_pfn; pfn++) {
918 			struct page *cursor_page;
919 
920 			/* The target page is in the block, ignore it. */
921 			if (unlikely(pfn == page_pfn))
922 				continue;
923 
924 			/* Avoid holes within the zone. */
925 			if (unlikely(!pfn_valid_within(pfn)))
926 				break;
927 
928 			cursor_page = pfn_to_page(pfn);
929 
930 			/* Check that we have not crossed a zone boundary. */
931 			if (unlikely(page_zone_id(cursor_page) != zone_id))
932 				continue;
933 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
934 				list_move(&cursor_page->lru, dst);
935 				mem_cgroup_del_lru(cursor_page);
936 				nr_taken++;
937 				scan++;
938 			}
939 		}
940 	}
941 
942 	*scanned = scan;
943 	return nr_taken;
944 }
945 
946 static unsigned long isolate_pages_global(unsigned long nr,
947 					struct list_head *dst,
948 					unsigned long *scanned, int order,
949 					int mode, struct zone *z,
950 					struct mem_cgroup *mem_cont,
951 					int active, int file)
952 {
953 	int lru = LRU_BASE;
954 	if (active)
955 		lru += LRU_ACTIVE;
956 	if (file)
957 		lru += LRU_FILE;
958 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
959 								mode, !!file);
960 }
961 
962 /*
963  * clear_active_flags() is a helper for shrink_active_list(), clearing
964  * any active bits from the pages in the list.
965  */
966 static unsigned long clear_active_flags(struct list_head *page_list,
967 					unsigned int *count)
968 {
969 	int nr_active = 0;
970 	int lru;
971 	struct page *page;
972 
973 	list_for_each_entry(page, page_list, lru) {
974 		lru = page_is_file_cache(page);
975 		if (PageActive(page)) {
976 			lru += LRU_ACTIVE;
977 			ClearPageActive(page);
978 			nr_active++;
979 		}
980 		count[lru]++;
981 	}
982 
983 	return nr_active;
984 }
985 
986 /**
987  * isolate_lru_page - tries to isolate a page from its LRU list
988  * @page: page to isolate from its LRU list
989  *
990  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
991  * vmstat statistic corresponding to whatever LRU list the page was on.
992  *
993  * Returns 0 if the page was removed from an LRU list.
994  * Returns -EBUSY if the page was not on an LRU list.
995  *
996  * The returned page will have PageLRU() cleared.  If it was found on
997  * the active list, it will have PageActive set.  If it was found on
998  * the unevictable list, it will have the PageUnevictable bit set. That flag
999  * may need to be cleared by the caller before letting the page go.
1000  *
1001  * The vmstat statistic corresponding to the list on which the page was
1002  * found will be decremented.
1003  *
1004  * Restrictions:
1005  * (1) Must be called with an elevated refcount on the page. This is a
1006  *     fundamentnal difference from isolate_lru_pages (which is called
1007  *     without a stable reference).
1008  * (2) the lru_lock must not be held.
1009  * (3) interrupts must be enabled.
1010  */
1011 int isolate_lru_page(struct page *page)
1012 {
1013 	int ret = -EBUSY;
1014 
1015 	if (PageLRU(page)) {
1016 		struct zone *zone = page_zone(page);
1017 
1018 		spin_lock_irq(&zone->lru_lock);
1019 		if (PageLRU(page) && get_page_unless_zero(page)) {
1020 			int lru = page_lru(page);
1021 			ret = 0;
1022 			ClearPageLRU(page);
1023 
1024 			del_page_from_lru_list(zone, page, lru);
1025 		}
1026 		spin_unlock_irq(&zone->lru_lock);
1027 	}
1028 	return ret;
1029 }
1030 
1031 /*
1032  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1033  * of reclaimed pages
1034  */
1035 static unsigned long shrink_inactive_list(unsigned long max_scan,
1036 			struct zone *zone, struct scan_control *sc,
1037 			int priority, int file)
1038 {
1039 	LIST_HEAD(page_list);
1040 	struct pagevec pvec;
1041 	unsigned long nr_scanned = 0;
1042 	unsigned long nr_reclaimed = 0;
1043 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1044 	int lumpy_reclaim = 0;
1045 
1046 	/*
1047 	 * If we need a large contiguous chunk of memory, or have
1048 	 * trouble getting a small set of contiguous pages, we
1049 	 * will reclaim both active and inactive pages.
1050 	 *
1051 	 * We use the same threshold as pageout congestion_wait below.
1052 	 */
1053 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1054 		lumpy_reclaim = 1;
1055 	else if (sc->order && priority < DEF_PRIORITY - 2)
1056 		lumpy_reclaim = 1;
1057 
1058 	pagevec_init(&pvec, 1);
1059 
1060 	lru_add_drain();
1061 	spin_lock_irq(&zone->lru_lock);
1062 	do {
1063 		struct page *page;
1064 		unsigned long nr_taken;
1065 		unsigned long nr_scan;
1066 		unsigned long nr_freed;
1067 		unsigned long nr_active;
1068 		unsigned int count[NR_LRU_LISTS] = { 0, };
1069 		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1070 
1071 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1072 			     &page_list, &nr_scan, sc->order, mode,
1073 				zone, sc->mem_cgroup, 0, file);
1074 		nr_active = clear_active_flags(&page_list, count);
1075 		__count_vm_events(PGDEACTIVATE, nr_active);
1076 
1077 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1078 						-count[LRU_ACTIVE_FILE]);
1079 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1080 						-count[LRU_INACTIVE_FILE]);
1081 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1082 						-count[LRU_ACTIVE_ANON]);
1083 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1084 						-count[LRU_INACTIVE_ANON]);
1085 
1086 		if (scanning_global_lru(sc))
1087 			zone->pages_scanned += nr_scan;
1088 
1089 		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1090 		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1091 		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1092 		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1093 
1094 		spin_unlock_irq(&zone->lru_lock);
1095 
1096 		nr_scanned += nr_scan;
1097 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1098 
1099 		/*
1100 		 * If we are direct reclaiming for contiguous pages and we do
1101 		 * not reclaim everything in the list, try again and wait
1102 		 * for IO to complete. This will stall high-order allocations
1103 		 * but that should be acceptable to the caller
1104 		 */
1105 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1106 		    lumpy_reclaim) {
1107 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1108 
1109 			/*
1110 			 * The attempt at page out may have made some
1111 			 * of the pages active, mark them inactive again.
1112 			 */
1113 			nr_active = clear_active_flags(&page_list, count);
1114 			count_vm_events(PGDEACTIVATE, nr_active);
1115 
1116 			nr_freed += shrink_page_list(&page_list, sc,
1117 							PAGEOUT_IO_SYNC);
1118 		}
1119 
1120 		nr_reclaimed += nr_freed;
1121 		local_irq_disable();
1122 		if (current_is_kswapd()) {
1123 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1124 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1125 		} else if (scanning_global_lru(sc))
1126 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1127 
1128 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1129 
1130 		if (nr_taken == 0)
1131 			goto done;
1132 
1133 		spin_lock(&zone->lru_lock);
1134 		/*
1135 		 * Put back any unfreeable pages.
1136 		 */
1137 		while (!list_empty(&page_list)) {
1138 			int lru;
1139 			page = lru_to_page(&page_list);
1140 			VM_BUG_ON(PageLRU(page));
1141 			list_del(&page->lru);
1142 			if (unlikely(!page_evictable(page, NULL))) {
1143 				spin_unlock_irq(&zone->lru_lock);
1144 				putback_lru_page(page);
1145 				spin_lock_irq(&zone->lru_lock);
1146 				continue;
1147 			}
1148 			SetPageLRU(page);
1149 			lru = page_lru(page);
1150 			add_page_to_lru_list(zone, page, lru);
1151 			if (PageActive(page)) {
1152 				int file = !!page_is_file_cache(page);
1153 				reclaim_stat->recent_rotated[file]++;
1154 			}
1155 			if (!pagevec_add(&pvec, page)) {
1156 				spin_unlock_irq(&zone->lru_lock);
1157 				__pagevec_release(&pvec);
1158 				spin_lock_irq(&zone->lru_lock);
1159 			}
1160 		}
1161   	} while (nr_scanned < max_scan);
1162 	spin_unlock(&zone->lru_lock);
1163 done:
1164 	local_irq_enable();
1165 	pagevec_release(&pvec);
1166 	return nr_reclaimed;
1167 }
1168 
1169 /*
1170  * We are about to scan this zone at a certain priority level.  If that priority
1171  * level is smaller (ie: more urgent) than the previous priority, then note
1172  * that priority level within the zone.  This is done so that when the next
1173  * process comes in to scan this zone, it will immediately start out at this
1174  * priority level rather than having to build up its own scanning priority.
1175  * Here, this priority affects only the reclaim-mapped threshold.
1176  */
1177 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1178 {
1179 	if (priority < zone->prev_priority)
1180 		zone->prev_priority = priority;
1181 }
1182 
1183 /*
1184  * This moves pages from the active list to the inactive list.
1185  *
1186  * We move them the other way if the page is referenced by one or more
1187  * processes, from rmap.
1188  *
1189  * If the pages are mostly unmapped, the processing is fast and it is
1190  * appropriate to hold zone->lru_lock across the whole operation.  But if
1191  * the pages are mapped, the processing is slow (page_referenced()) so we
1192  * should drop zone->lru_lock around each page.  It's impossible to balance
1193  * this, so instead we remove the pages from the LRU while processing them.
1194  * It is safe to rely on PG_active against the non-LRU pages in here because
1195  * nobody will play with that bit on a non-LRU page.
1196  *
1197  * The downside is that we have to touch page->_count against each page.
1198  * But we had to alter page->flags anyway.
1199  */
1200 
1201 static void move_active_pages_to_lru(struct zone *zone,
1202 				     struct list_head *list,
1203 				     enum lru_list lru)
1204 {
1205 	unsigned long pgmoved = 0;
1206 	struct pagevec pvec;
1207 	struct page *page;
1208 
1209 	pagevec_init(&pvec, 1);
1210 
1211 	while (!list_empty(list)) {
1212 		page = lru_to_page(list);
1213 		prefetchw_prev_lru_page(page, list, flags);
1214 
1215 		VM_BUG_ON(PageLRU(page));
1216 		SetPageLRU(page);
1217 
1218 		VM_BUG_ON(!PageActive(page));
1219 		if (!is_active_lru(lru))
1220 			ClearPageActive(page);	/* we are de-activating */
1221 
1222 		list_move(&page->lru, &zone->lru[lru].list);
1223 		mem_cgroup_add_lru_list(page, lru);
1224 		pgmoved++;
1225 
1226 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1227 			spin_unlock_irq(&zone->lru_lock);
1228 			if (buffer_heads_over_limit)
1229 				pagevec_strip(&pvec);
1230 			__pagevec_release(&pvec);
1231 			spin_lock_irq(&zone->lru_lock);
1232 		}
1233 	}
1234 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1235 	if (!is_active_lru(lru))
1236 		__count_vm_events(PGDEACTIVATE, pgmoved);
1237 }
1238 
1239 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1240 			struct scan_control *sc, int priority, int file)
1241 {
1242 	unsigned long pgmoved;
1243 	unsigned long pgscanned;
1244 	unsigned long vm_flags;
1245 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1246 	LIST_HEAD(l_active);
1247 	LIST_HEAD(l_inactive);
1248 	struct page *page;
1249 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1250 
1251 	lru_add_drain();
1252 	spin_lock_irq(&zone->lru_lock);
1253 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1254 					ISOLATE_ACTIVE, zone,
1255 					sc->mem_cgroup, 1, file);
1256 	/*
1257 	 * zone->pages_scanned is used for detect zone's oom
1258 	 * mem_cgroup remembers nr_scan by itself.
1259 	 */
1260 	if (scanning_global_lru(sc)) {
1261 		zone->pages_scanned += pgscanned;
1262 	}
1263 	reclaim_stat->recent_scanned[!!file] += pgmoved;
1264 
1265 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1266 	if (file)
1267 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1268 	else
1269 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1270 	spin_unlock_irq(&zone->lru_lock);
1271 
1272 	pgmoved = 0;  /* count referenced (mapping) mapped pages */
1273 	while (!list_empty(&l_hold)) {
1274 		cond_resched();
1275 		page = lru_to_page(&l_hold);
1276 		list_del(&page->lru);
1277 
1278 		if (unlikely(!page_evictable(page, NULL))) {
1279 			putback_lru_page(page);
1280 			continue;
1281 		}
1282 
1283 		/* page_referenced clears PageReferenced */
1284 		if (page_mapping_inuse(page) &&
1285 		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1286 			pgmoved++;
1287 			/*
1288 			 * Identify referenced, file-backed active pages and
1289 			 * give them one more trip around the active list. So
1290 			 * that executable code get better chances to stay in
1291 			 * memory under moderate memory pressure.  Anon pages
1292 			 * are not likely to be evicted by use-once streaming
1293 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1294 			 * so we ignore them here.
1295 			 */
1296 			if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1297 				list_add(&page->lru, &l_active);
1298 				continue;
1299 			}
1300 		}
1301 
1302 		list_add(&page->lru, &l_inactive);
1303 	}
1304 
1305 	/*
1306 	 * Move pages back to the lru list.
1307 	 */
1308 	spin_lock_irq(&zone->lru_lock);
1309 	/*
1310 	 * Count referenced pages from currently used mappings as rotated,
1311 	 * even though only some of them are actually re-activated.  This
1312 	 * helps balance scan pressure between file and anonymous pages in
1313 	 * get_scan_ratio.
1314 	 */
1315 	reclaim_stat->recent_rotated[!!file] += pgmoved;
1316 
1317 	move_active_pages_to_lru(zone, &l_active,
1318 						LRU_ACTIVE + file * LRU_FILE);
1319 	move_active_pages_to_lru(zone, &l_inactive,
1320 						LRU_BASE   + file * LRU_FILE);
1321 
1322 	spin_unlock_irq(&zone->lru_lock);
1323 }
1324 
1325 static int inactive_anon_is_low_global(struct zone *zone)
1326 {
1327 	unsigned long active, inactive;
1328 
1329 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1330 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1331 
1332 	if (inactive * zone->inactive_ratio < active)
1333 		return 1;
1334 
1335 	return 0;
1336 }
1337 
1338 /**
1339  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1340  * @zone: zone to check
1341  * @sc:   scan control of this context
1342  *
1343  * Returns true if the zone does not have enough inactive anon pages,
1344  * meaning some active anon pages need to be deactivated.
1345  */
1346 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1347 {
1348 	int low;
1349 
1350 	if (scanning_global_lru(sc))
1351 		low = inactive_anon_is_low_global(zone);
1352 	else
1353 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1354 	return low;
1355 }
1356 
1357 static int inactive_file_is_low_global(struct zone *zone)
1358 {
1359 	unsigned long active, inactive;
1360 
1361 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1362 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1363 
1364 	return (active > inactive);
1365 }
1366 
1367 /**
1368  * inactive_file_is_low - check if file pages need to be deactivated
1369  * @zone: zone to check
1370  * @sc:   scan control of this context
1371  *
1372  * When the system is doing streaming IO, memory pressure here
1373  * ensures that active file pages get deactivated, until more
1374  * than half of the file pages are on the inactive list.
1375  *
1376  * Once we get to that situation, protect the system's working
1377  * set from being evicted by disabling active file page aging.
1378  *
1379  * This uses a different ratio than the anonymous pages, because
1380  * the page cache uses a use-once replacement algorithm.
1381  */
1382 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1383 {
1384 	int low;
1385 
1386 	if (scanning_global_lru(sc))
1387 		low = inactive_file_is_low_global(zone);
1388 	else
1389 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1390 	return low;
1391 }
1392 
1393 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1394 	struct zone *zone, struct scan_control *sc, int priority)
1395 {
1396 	int file = is_file_lru(lru);
1397 
1398 	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1399 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1400 		return 0;
1401 	}
1402 
1403 	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1404 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1405 		return 0;
1406 	}
1407 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1408 }
1409 
1410 /*
1411  * Determine how aggressively the anon and file LRU lists should be
1412  * scanned.  The relative value of each set of LRU lists is determined
1413  * by looking at the fraction of the pages scanned we did rotate back
1414  * onto the active list instead of evict.
1415  *
1416  * percent[0] specifies how much pressure to put on ram/swap backed
1417  * memory, while percent[1] determines pressure on the file LRUs.
1418  */
1419 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1420 					unsigned long *percent)
1421 {
1422 	unsigned long anon, file, free;
1423 	unsigned long anon_prio, file_prio;
1424 	unsigned long ap, fp;
1425 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1426 
1427 	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1428 		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1429 	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1430 		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1431 
1432 	if (scanning_global_lru(sc)) {
1433 		free  = zone_page_state(zone, NR_FREE_PAGES);
1434 		/* If we have very few page cache pages,
1435 		   force-scan anon pages. */
1436 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1437 			percent[0] = 100;
1438 			percent[1] = 0;
1439 			return;
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * OK, so we have swap space and a fair amount of page cache
1445 	 * pages.  We use the recently rotated / recently scanned
1446 	 * ratios to determine how valuable each cache is.
1447 	 *
1448 	 * Because workloads change over time (and to avoid overflow)
1449 	 * we keep these statistics as a floating average, which ends
1450 	 * up weighing recent references more than old ones.
1451 	 *
1452 	 * anon in [0], file in [1]
1453 	 */
1454 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1455 		spin_lock_irq(&zone->lru_lock);
1456 		reclaim_stat->recent_scanned[0] /= 2;
1457 		reclaim_stat->recent_rotated[0] /= 2;
1458 		spin_unlock_irq(&zone->lru_lock);
1459 	}
1460 
1461 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1462 		spin_lock_irq(&zone->lru_lock);
1463 		reclaim_stat->recent_scanned[1] /= 2;
1464 		reclaim_stat->recent_rotated[1] /= 2;
1465 		spin_unlock_irq(&zone->lru_lock);
1466 	}
1467 
1468 	/*
1469 	 * With swappiness at 100, anonymous and file have the same priority.
1470 	 * This scanning priority is essentially the inverse of IO cost.
1471 	 */
1472 	anon_prio = sc->swappiness;
1473 	file_prio = 200 - sc->swappiness;
1474 
1475 	/*
1476 	 * The amount of pressure on anon vs file pages is inversely
1477 	 * proportional to the fraction of recently scanned pages on
1478 	 * each list that were recently referenced and in active use.
1479 	 */
1480 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1481 	ap /= reclaim_stat->recent_rotated[0] + 1;
1482 
1483 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1484 	fp /= reclaim_stat->recent_rotated[1] + 1;
1485 
1486 	/* Normalize to percentages */
1487 	percent[0] = 100 * ap / (ap + fp + 1);
1488 	percent[1] = 100 - percent[0];
1489 }
1490 
1491 /*
1492  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1493  * until we collected @swap_cluster_max pages to scan.
1494  */
1495 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1496 				       unsigned long *nr_saved_scan,
1497 				       unsigned long swap_cluster_max)
1498 {
1499 	unsigned long nr;
1500 
1501 	*nr_saved_scan += nr_to_scan;
1502 	nr = *nr_saved_scan;
1503 
1504 	if (nr >= swap_cluster_max)
1505 		*nr_saved_scan = 0;
1506 	else
1507 		nr = 0;
1508 
1509 	return nr;
1510 }
1511 
1512 /*
1513  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1514  */
1515 static void shrink_zone(int priority, struct zone *zone,
1516 				struct scan_control *sc)
1517 {
1518 	unsigned long nr[NR_LRU_LISTS];
1519 	unsigned long nr_to_scan;
1520 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1521 	enum lru_list l;
1522 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1523 	unsigned long swap_cluster_max = sc->swap_cluster_max;
1524 	int noswap = 0;
1525 
1526 	/* If we have no swap space, do not bother scanning anon pages. */
1527 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1528 		noswap = 1;
1529 		percent[0] = 0;
1530 		percent[1] = 100;
1531 	} else
1532 		get_scan_ratio(zone, sc, percent);
1533 
1534 	for_each_evictable_lru(l) {
1535 		int file = is_file_lru(l);
1536 		unsigned long scan;
1537 
1538 		scan = zone_nr_pages(zone, sc, l);
1539 		if (priority || noswap) {
1540 			scan >>= priority;
1541 			scan = (scan * percent[file]) / 100;
1542 		}
1543 		if (scanning_global_lru(sc))
1544 			nr[l] = nr_scan_try_batch(scan,
1545 						  &zone->lru[l].nr_saved_scan,
1546 						  swap_cluster_max);
1547 		else
1548 			nr[l] = scan;
1549 	}
1550 
1551 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1552 					nr[LRU_INACTIVE_FILE]) {
1553 		for_each_evictable_lru(l) {
1554 			if (nr[l]) {
1555 				nr_to_scan = min(nr[l], swap_cluster_max);
1556 				nr[l] -= nr_to_scan;
1557 
1558 				nr_reclaimed += shrink_list(l, nr_to_scan,
1559 							    zone, sc, priority);
1560 			}
1561 		}
1562 		/*
1563 		 * On large memory systems, scan >> priority can become
1564 		 * really large. This is fine for the starting priority;
1565 		 * we want to put equal scanning pressure on each zone.
1566 		 * However, if the VM has a harder time of freeing pages,
1567 		 * with multiple processes reclaiming pages, the total
1568 		 * freeing target can get unreasonably large.
1569 		 */
1570 		if (nr_reclaimed > swap_cluster_max &&
1571 			priority < DEF_PRIORITY && !current_is_kswapd())
1572 			break;
1573 	}
1574 
1575 	sc->nr_reclaimed = nr_reclaimed;
1576 
1577 	/*
1578 	 * Even if we did not try to evict anon pages at all, we want to
1579 	 * rebalance the anon lru active/inactive ratio.
1580 	 */
1581 	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1582 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1583 
1584 	throttle_vm_writeout(sc->gfp_mask);
1585 }
1586 
1587 /*
1588  * This is the direct reclaim path, for page-allocating processes.  We only
1589  * try to reclaim pages from zones which will satisfy the caller's allocation
1590  * request.
1591  *
1592  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1593  * Because:
1594  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1595  *    allocation or
1596  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1597  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1598  *    zone defense algorithm.
1599  *
1600  * If a zone is deemed to be full of pinned pages then just give it a light
1601  * scan then give up on it.
1602  */
1603 static void shrink_zones(int priority, struct zonelist *zonelist,
1604 					struct scan_control *sc)
1605 {
1606 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1607 	struct zoneref *z;
1608 	struct zone *zone;
1609 
1610 	sc->all_unreclaimable = 1;
1611 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1612 					sc->nodemask) {
1613 		if (!populated_zone(zone))
1614 			continue;
1615 		/*
1616 		 * Take care memory controller reclaiming has small influence
1617 		 * to global LRU.
1618 		 */
1619 		if (scanning_global_lru(sc)) {
1620 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1621 				continue;
1622 			note_zone_scanning_priority(zone, priority);
1623 
1624 			if (zone_is_all_unreclaimable(zone) &&
1625 						priority != DEF_PRIORITY)
1626 				continue;	/* Let kswapd poll it */
1627 			sc->all_unreclaimable = 0;
1628 		} else {
1629 			/*
1630 			 * Ignore cpuset limitation here. We just want to reduce
1631 			 * # of used pages by us regardless of memory shortage.
1632 			 */
1633 			sc->all_unreclaimable = 0;
1634 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1635 							priority);
1636 		}
1637 
1638 		shrink_zone(priority, zone, sc);
1639 	}
1640 }
1641 
1642 /*
1643  * This is the main entry point to direct page reclaim.
1644  *
1645  * If a full scan of the inactive list fails to free enough memory then we
1646  * are "out of memory" and something needs to be killed.
1647  *
1648  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1649  * high - the zone may be full of dirty or under-writeback pages, which this
1650  * caller can't do much about.  We kick pdflush and take explicit naps in the
1651  * hope that some of these pages can be written.  But if the allocating task
1652  * holds filesystem locks which prevent writeout this might not work, and the
1653  * allocation attempt will fail.
1654  *
1655  * returns:	0, if no pages reclaimed
1656  * 		else, the number of pages reclaimed
1657  */
1658 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1659 					struct scan_control *sc)
1660 {
1661 	int priority;
1662 	unsigned long ret = 0;
1663 	unsigned long total_scanned = 0;
1664 	struct reclaim_state *reclaim_state = current->reclaim_state;
1665 	unsigned long lru_pages = 0;
1666 	struct zoneref *z;
1667 	struct zone *zone;
1668 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1669 
1670 	delayacct_freepages_start();
1671 
1672 	if (scanning_global_lru(sc))
1673 		count_vm_event(ALLOCSTALL);
1674 	/*
1675 	 * mem_cgroup will not do shrink_slab.
1676 	 */
1677 	if (scanning_global_lru(sc)) {
1678 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1679 
1680 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1681 				continue;
1682 
1683 			lru_pages += zone_lru_pages(zone);
1684 		}
1685 	}
1686 
1687 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1688 		sc->nr_scanned = 0;
1689 		if (!priority)
1690 			disable_swap_token();
1691 		shrink_zones(priority, zonelist, sc);
1692 		/*
1693 		 * Don't shrink slabs when reclaiming memory from
1694 		 * over limit cgroups
1695 		 */
1696 		if (scanning_global_lru(sc)) {
1697 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1698 			if (reclaim_state) {
1699 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1700 				reclaim_state->reclaimed_slab = 0;
1701 			}
1702 		}
1703 		total_scanned += sc->nr_scanned;
1704 		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1705 			ret = sc->nr_reclaimed;
1706 			goto out;
1707 		}
1708 
1709 		/*
1710 		 * Try to write back as many pages as we just scanned.  This
1711 		 * tends to cause slow streaming writers to write data to the
1712 		 * disk smoothly, at the dirtying rate, which is nice.   But
1713 		 * that's undesirable in laptop mode, where we *want* lumpy
1714 		 * writeout.  So in laptop mode, write out the whole world.
1715 		 */
1716 		if (total_scanned > sc->swap_cluster_max +
1717 					sc->swap_cluster_max / 2) {
1718 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1719 			sc->may_writepage = 1;
1720 		}
1721 
1722 		/* Take a nap, wait for some writeback to complete */
1723 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1724 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1725 	}
1726 	/* top priority shrink_zones still had more to do? don't OOM, then */
1727 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1728 		ret = sc->nr_reclaimed;
1729 out:
1730 	/*
1731 	 * Now that we've scanned all the zones at this priority level, note
1732 	 * that level within the zone so that the next thread which performs
1733 	 * scanning of this zone will immediately start out at this priority
1734 	 * level.  This affects only the decision whether or not to bring
1735 	 * mapped pages onto the inactive list.
1736 	 */
1737 	if (priority < 0)
1738 		priority = 0;
1739 
1740 	if (scanning_global_lru(sc)) {
1741 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1742 
1743 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1744 				continue;
1745 
1746 			zone->prev_priority = priority;
1747 		}
1748 	} else
1749 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1750 
1751 	delayacct_freepages_end();
1752 
1753 	return ret;
1754 }
1755 
1756 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1757 				gfp_t gfp_mask, nodemask_t *nodemask)
1758 {
1759 	struct scan_control sc = {
1760 		.gfp_mask = gfp_mask,
1761 		.may_writepage = !laptop_mode,
1762 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1763 		.may_unmap = 1,
1764 		.may_swap = 1,
1765 		.swappiness = vm_swappiness,
1766 		.order = order,
1767 		.mem_cgroup = NULL,
1768 		.isolate_pages = isolate_pages_global,
1769 		.nodemask = nodemask,
1770 	};
1771 
1772 	return do_try_to_free_pages(zonelist, &sc);
1773 }
1774 
1775 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1776 
1777 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1778 					   gfp_t gfp_mask,
1779 					   bool noswap,
1780 					   unsigned int swappiness)
1781 {
1782 	struct scan_control sc = {
1783 		.may_writepage = !laptop_mode,
1784 		.may_unmap = 1,
1785 		.may_swap = !noswap,
1786 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1787 		.swappiness = swappiness,
1788 		.order = 0,
1789 		.mem_cgroup = mem_cont,
1790 		.isolate_pages = mem_cgroup_isolate_pages,
1791 		.nodemask = NULL, /* we don't care the placement */
1792 	};
1793 	struct zonelist *zonelist;
1794 
1795 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1796 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1797 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1798 	return do_try_to_free_pages(zonelist, &sc);
1799 }
1800 #endif
1801 
1802 /*
1803  * For kswapd, balance_pgdat() will work across all this node's zones until
1804  * they are all at high_wmark_pages(zone).
1805  *
1806  * Returns the number of pages which were actually freed.
1807  *
1808  * There is special handling here for zones which are full of pinned pages.
1809  * This can happen if the pages are all mlocked, or if they are all used by
1810  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1811  * What we do is to detect the case where all pages in the zone have been
1812  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1813  * dead and from now on, only perform a short scan.  Basically we're polling
1814  * the zone for when the problem goes away.
1815  *
1816  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1817  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1818  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1819  * lower zones regardless of the number of free pages in the lower zones. This
1820  * interoperates with the page allocator fallback scheme to ensure that aging
1821  * of pages is balanced across the zones.
1822  */
1823 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1824 {
1825 	int all_zones_ok;
1826 	int priority;
1827 	int i;
1828 	unsigned long total_scanned;
1829 	struct reclaim_state *reclaim_state = current->reclaim_state;
1830 	struct scan_control sc = {
1831 		.gfp_mask = GFP_KERNEL,
1832 		.may_unmap = 1,
1833 		.may_swap = 1,
1834 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1835 		.swappiness = vm_swappiness,
1836 		.order = order,
1837 		.mem_cgroup = NULL,
1838 		.isolate_pages = isolate_pages_global,
1839 	};
1840 	/*
1841 	 * temp_priority is used to remember the scanning priority at which
1842 	 * this zone was successfully refilled to
1843 	 * free_pages == high_wmark_pages(zone).
1844 	 */
1845 	int temp_priority[MAX_NR_ZONES];
1846 
1847 loop_again:
1848 	total_scanned = 0;
1849 	sc.nr_reclaimed = 0;
1850 	sc.may_writepage = !laptop_mode;
1851 	count_vm_event(PAGEOUTRUN);
1852 
1853 	for (i = 0; i < pgdat->nr_zones; i++)
1854 		temp_priority[i] = DEF_PRIORITY;
1855 
1856 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1857 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1858 		unsigned long lru_pages = 0;
1859 
1860 		/* The swap token gets in the way of swapout... */
1861 		if (!priority)
1862 			disable_swap_token();
1863 
1864 		all_zones_ok = 1;
1865 
1866 		/*
1867 		 * Scan in the highmem->dma direction for the highest
1868 		 * zone which needs scanning
1869 		 */
1870 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1871 			struct zone *zone = pgdat->node_zones + i;
1872 
1873 			if (!populated_zone(zone))
1874 				continue;
1875 
1876 			if (zone_is_all_unreclaimable(zone) &&
1877 			    priority != DEF_PRIORITY)
1878 				continue;
1879 
1880 			/*
1881 			 * Do some background aging of the anon list, to give
1882 			 * pages a chance to be referenced before reclaiming.
1883 			 */
1884 			if (inactive_anon_is_low(zone, &sc))
1885 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1886 							&sc, priority, 0);
1887 
1888 			if (!zone_watermark_ok(zone, order,
1889 					high_wmark_pages(zone), 0, 0)) {
1890 				end_zone = i;
1891 				break;
1892 			}
1893 		}
1894 		if (i < 0)
1895 			goto out;
1896 
1897 		for (i = 0; i <= end_zone; i++) {
1898 			struct zone *zone = pgdat->node_zones + i;
1899 
1900 			lru_pages += zone_lru_pages(zone);
1901 		}
1902 
1903 		/*
1904 		 * Now scan the zone in the dma->highmem direction, stopping
1905 		 * at the last zone which needs scanning.
1906 		 *
1907 		 * We do this because the page allocator works in the opposite
1908 		 * direction.  This prevents the page allocator from allocating
1909 		 * pages behind kswapd's direction of progress, which would
1910 		 * cause too much scanning of the lower zones.
1911 		 */
1912 		for (i = 0; i <= end_zone; i++) {
1913 			struct zone *zone = pgdat->node_zones + i;
1914 			int nr_slab;
1915 
1916 			if (!populated_zone(zone))
1917 				continue;
1918 
1919 			if (zone_is_all_unreclaimable(zone) &&
1920 					priority != DEF_PRIORITY)
1921 				continue;
1922 
1923 			if (!zone_watermark_ok(zone, order,
1924 					high_wmark_pages(zone), end_zone, 0))
1925 				all_zones_ok = 0;
1926 			temp_priority[i] = priority;
1927 			sc.nr_scanned = 0;
1928 			note_zone_scanning_priority(zone, priority);
1929 			/*
1930 			 * We put equal pressure on every zone, unless one
1931 			 * zone has way too many pages free already.
1932 			 */
1933 			if (!zone_watermark_ok(zone, order,
1934 					8*high_wmark_pages(zone), end_zone, 0))
1935 				shrink_zone(priority, zone, &sc);
1936 			reclaim_state->reclaimed_slab = 0;
1937 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1938 						lru_pages);
1939 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1940 			total_scanned += sc.nr_scanned;
1941 			if (zone_is_all_unreclaimable(zone))
1942 				continue;
1943 			if (nr_slab == 0 && zone->pages_scanned >=
1944 						(zone_lru_pages(zone) * 6))
1945 					zone_set_flag(zone,
1946 						      ZONE_ALL_UNRECLAIMABLE);
1947 			/*
1948 			 * If we've done a decent amount of scanning and
1949 			 * the reclaim ratio is low, start doing writepage
1950 			 * even in laptop mode
1951 			 */
1952 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1953 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1954 				sc.may_writepage = 1;
1955 		}
1956 		if (all_zones_ok)
1957 			break;		/* kswapd: all done */
1958 		/*
1959 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1960 		 * another pass across the zones.
1961 		 */
1962 		if (total_scanned && priority < DEF_PRIORITY - 2)
1963 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1964 
1965 		/*
1966 		 * We do this so kswapd doesn't build up large priorities for
1967 		 * example when it is freeing in parallel with allocators. It
1968 		 * matches the direct reclaim path behaviour in terms of impact
1969 		 * on zone->*_priority.
1970 		 */
1971 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1972 			break;
1973 	}
1974 out:
1975 	/*
1976 	 * Note within each zone the priority level at which this zone was
1977 	 * brought into a happy state.  So that the next thread which scans this
1978 	 * zone will start out at that priority level.
1979 	 */
1980 	for (i = 0; i < pgdat->nr_zones; i++) {
1981 		struct zone *zone = pgdat->node_zones + i;
1982 
1983 		zone->prev_priority = temp_priority[i];
1984 	}
1985 	if (!all_zones_ok) {
1986 		cond_resched();
1987 
1988 		try_to_freeze();
1989 
1990 		/*
1991 		 * Fragmentation may mean that the system cannot be
1992 		 * rebalanced for high-order allocations in all zones.
1993 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1994 		 * it means the zones have been fully scanned and are still
1995 		 * not balanced. For high-order allocations, there is
1996 		 * little point trying all over again as kswapd may
1997 		 * infinite loop.
1998 		 *
1999 		 * Instead, recheck all watermarks at order-0 as they
2000 		 * are the most important. If watermarks are ok, kswapd will go
2001 		 * back to sleep. High-order users can still perform direct
2002 		 * reclaim if they wish.
2003 		 */
2004 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2005 			order = sc.order = 0;
2006 
2007 		goto loop_again;
2008 	}
2009 
2010 	return sc.nr_reclaimed;
2011 }
2012 
2013 /*
2014  * The background pageout daemon, started as a kernel thread
2015  * from the init process.
2016  *
2017  * This basically trickles out pages so that we have _some_
2018  * free memory available even if there is no other activity
2019  * that frees anything up. This is needed for things like routing
2020  * etc, where we otherwise might have all activity going on in
2021  * asynchronous contexts that cannot page things out.
2022  *
2023  * If there are applications that are active memory-allocators
2024  * (most normal use), this basically shouldn't matter.
2025  */
2026 static int kswapd(void *p)
2027 {
2028 	unsigned long order;
2029 	pg_data_t *pgdat = (pg_data_t*)p;
2030 	struct task_struct *tsk = current;
2031 	DEFINE_WAIT(wait);
2032 	struct reclaim_state reclaim_state = {
2033 		.reclaimed_slab = 0,
2034 	};
2035 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2036 
2037 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2038 
2039 	if (!cpumask_empty(cpumask))
2040 		set_cpus_allowed_ptr(tsk, cpumask);
2041 	current->reclaim_state = &reclaim_state;
2042 
2043 	/*
2044 	 * Tell the memory management that we're a "memory allocator",
2045 	 * and that if we need more memory we should get access to it
2046 	 * regardless (see "__alloc_pages()"). "kswapd" should
2047 	 * never get caught in the normal page freeing logic.
2048 	 *
2049 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2050 	 * you need a small amount of memory in order to be able to
2051 	 * page out something else, and this flag essentially protects
2052 	 * us from recursively trying to free more memory as we're
2053 	 * trying to free the first piece of memory in the first place).
2054 	 */
2055 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2056 	set_freezable();
2057 
2058 	order = 0;
2059 	for ( ; ; ) {
2060 		unsigned long new_order;
2061 
2062 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2063 		new_order = pgdat->kswapd_max_order;
2064 		pgdat->kswapd_max_order = 0;
2065 		if (order < new_order) {
2066 			/*
2067 			 * Don't sleep if someone wants a larger 'order'
2068 			 * allocation
2069 			 */
2070 			order = new_order;
2071 		} else {
2072 			if (!freezing(current))
2073 				schedule();
2074 
2075 			order = pgdat->kswapd_max_order;
2076 		}
2077 		finish_wait(&pgdat->kswapd_wait, &wait);
2078 
2079 		if (!try_to_freeze()) {
2080 			/* We can speed up thawing tasks if we don't call
2081 			 * balance_pgdat after returning from the refrigerator
2082 			 */
2083 			balance_pgdat(pgdat, order);
2084 		}
2085 	}
2086 	return 0;
2087 }
2088 
2089 /*
2090  * A zone is low on free memory, so wake its kswapd task to service it.
2091  */
2092 void wakeup_kswapd(struct zone *zone, int order)
2093 {
2094 	pg_data_t *pgdat;
2095 
2096 	if (!populated_zone(zone))
2097 		return;
2098 
2099 	pgdat = zone->zone_pgdat;
2100 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2101 		return;
2102 	if (pgdat->kswapd_max_order < order)
2103 		pgdat->kswapd_max_order = order;
2104 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2105 		return;
2106 	if (!waitqueue_active(&pgdat->kswapd_wait))
2107 		return;
2108 	wake_up_interruptible(&pgdat->kswapd_wait);
2109 }
2110 
2111 unsigned long global_lru_pages(void)
2112 {
2113 	return global_page_state(NR_ACTIVE_ANON)
2114 		+ global_page_state(NR_ACTIVE_FILE)
2115 		+ global_page_state(NR_INACTIVE_ANON)
2116 		+ global_page_state(NR_INACTIVE_FILE);
2117 }
2118 
2119 #ifdef CONFIG_HIBERNATION
2120 /*
2121  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2122  * from LRU lists system-wide, for given pass and priority.
2123  *
2124  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2125  */
2126 static void shrink_all_zones(unsigned long nr_pages, int prio,
2127 				      int pass, struct scan_control *sc)
2128 {
2129 	struct zone *zone;
2130 	unsigned long nr_reclaimed = 0;
2131 
2132 	for_each_populated_zone(zone) {
2133 		enum lru_list l;
2134 
2135 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2136 			continue;
2137 
2138 		for_each_evictable_lru(l) {
2139 			enum zone_stat_item ls = NR_LRU_BASE + l;
2140 			unsigned long lru_pages = zone_page_state(zone, ls);
2141 
2142 			/* For pass = 0, we don't shrink the active list */
2143 			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2144 						l == LRU_ACTIVE_FILE))
2145 				continue;
2146 
2147 			zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2148 			if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
2149 				unsigned long nr_to_scan;
2150 
2151 				zone->lru[l].nr_saved_scan = 0;
2152 				nr_to_scan = min(nr_pages, lru_pages);
2153 				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2154 								sc, prio);
2155 				if (nr_reclaimed >= nr_pages) {
2156 					sc->nr_reclaimed += nr_reclaimed;
2157 					return;
2158 				}
2159 			}
2160 		}
2161 	}
2162 	sc->nr_reclaimed += nr_reclaimed;
2163 }
2164 
2165 /*
2166  * Try to free `nr_pages' of memory, system-wide, and return the number of
2167  * freed pages.
2168  *
2169  * Rather than trying to age LRUs the aim is to preserve the overall
2170  * LRU order by reclaiming preferentially
2171  * inactive > active > active referenced > active mapped
2172  */
2173 unsigned long shrink_all_memory(unsigned long nr_pages)
2174 {
2175 	unsigned long lru_pages, nr_slab;
2176 	int pass;
2177 	struct reclaim_state reclaim_state;
2178 	struct scan_control sc = {
2179 		.gfp_mask = GFP_KERNEL,
2180 		.may_unmap = 0,
2181 		.may_writepage = 1,
2182 		.isolate_pages = isolate_pages_global,
2183 		.nr_reclaimed = 0,
2184 	};
2185 
2186 	current->reclaim_state = &reclaim_state;
2187 
2188 	lru_pages = global_lru_pages();
2189 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2190 	/* If slab caches are huge, it's better to hit them first */
2191 	while (nr_slab >= lru_pages) {
2192 		reclaim_state.reclaimed_slab = 0;
2193 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2194 		if (!reclaim_state.reclaimed_slab)
2195 			break;
2196 
2197 		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2198 		if (sc.nr_reclaimed >= nr_pages)
2199 			goto out;
2200 
2201 		nr_slab -= reclaim_state.reclaimed_slab;
2202 	}
2203 
2204 	/*
2205 	 * We try to shrink LRUs in 5 passes:
2206 	 * 0 = Reclaim from inactive_list only
2207 	 * 1 = Reclaim from active list but don't reclaim mapped
2208 	 * 2 = 2nd pass of type 1
2209 	 * 3 = Reclaim mapped (normal reclaim)
2210 	 * 4 = 2nd pass of type 3
2211 	 */
2212 	for (pass = 0; pass < 5; pass++) {
2213 		int prio;
2214 
2215 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2216 		if (pass > 2)
2217 			sc.may_unmap = 1;
2218 
2219 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2220 			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2221 
2222 			sc.nr_scanned = 0;
2223 			sc.swap_cluster_max = nr_to_scan;
2224 			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2225 			if (sc.nr_reclaimed >= nr_pages)
2226 				goto out;
2227 
2228 			reclaim_state.reclaimed_slab = 0;
2229 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2230 					global_lru_pages());
2231 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2232 			if (sc.nr_reclaimed >= nr_pages)
2233 				goto out;
2234 
2235 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2236 				congestion_wait(BLK_RW_ASYNC, HZ / 10);
2237 		}
2238 	}
2239 
2240 	/*
2241 	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2242 	 * something in slab caches
2243 	 */
2244 	if (!sc.nr_reclaimed) {
2245 		do {
2246 			reclaim_state.reclaimed_slab = 0;
2247 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2248 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2249 		} while (sc.nr_reclaimed < nr_pages &&
2250 				reclaim_state.reclaimed_slab > 0);
2251 	}
2252 
2253 
2254 out:
2255 	current->reclaim_state = NULL;
2256 
2257 	return sc.nr_reclaimed;
2258 }
2259 #endif /* CONFIG_HIBERNATION */
2260 
2261 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2262    not required for correctness.  So if the last cpu in a node goes
2263    away, we get changed to run anywhere: as the first one comes back,
2264    restore their cpu bindings. */
2265 static int __devinit cpu_callback(struct notifier_block *nfb,
2266 				  unsigned long action, void *hcpu)
2267 {
2268 	int nid;
2269 
2270 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2271 		for_each_node_state(nid, N_HIGH_MEMORY) {
2272 			pg_data_t *pgdat = NODE_DATA(nid);
2273 			const struct cpumask *mask;
2274 
2275 			mask = cpumask_of_node(pgdat->node_id);
2276 
2277 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2278 				/* One of our CPUs online: restore mask */
2279 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2280 		}
2281 	}
2282 	return NOTIFY_OK;
2283 }
2284 
2285 /*
2286  * This kswapd start function will be called by init and node-hot-add.
2287  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2288  */
2289 int kswapd_run(int nid)
2290 {
2291 	pg_data_t *pgdat = NODE_DATA(nid);
2292 	int ret = 0;
2293 
2294 	if (pgdat->kswapd)
2295 		return 0;
2296 
2297 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2298 	if (IS_ERR(pgdat->kswapd)) {
2299 		/* failure at boot is fatal */
2300 		BUG_ON(system_state == SYSTEM_BOOTING);
2301 		printk("Failed to start kswapd on node %d\n",nid);
2302 		ret = -1;
2303 	}
2304 	return ret;
2305 }
2306 
2307 static int __init kswapd_init(void)
2308 {
2309 	int nid;
2310 
2311 	swap_setup();
2312 	for_each_node_state(nid, N_HIGH_MEMORY)
2313  		kswapd_run(nid);
2314 	hotcpu_notifier(cpu_callback, 0);
2315 	return 0;
2316 }
2317 
2318 module_init(kswapd_init)
2319 
2320 #ifdef CONFIG_NUMA
2321 /*
2322  * Zone reclaim mode
2323  *
2324  * If non-zero call zone_reclaim when the number of free pages falls below
2325  * the watermarks.
2326  */
2327 int zone_reclaim_mode __read_mostly;
2328 
2329 #define RECLAIM_OFF 0
2330 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2331 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2332 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2333 
2334 /*
2335  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2336  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2337  * a zone.
2338  */
2339 #define ZONE_RECLAIM_PRIORITY 4
2340 
2341 /*
2342  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2343  * occur.
2344  */
2345 int sysctl_min_unmapped_ratio = 1;
2346 
2347 /*
2348  * If the number of slab pages in a zone grows beyond this percentage then
2349  * slab reclaim needs to occur.
2350  */
2351 int sysctl_min_slab_ratio = 5;
2352 
2353 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2354 {
2355 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2356 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2357 		zone_page_state(zone, NR_ACTIVE_FILE);
2358 
2359 	/*
2360 	 * It's possible for there to be more file mapped pages than
2361 	 * accounted for by the pages on the file LRU lists because
2362 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2363 	 */
2364 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2365 }
2366 
2367 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2368 static long zone_pagecache_reclaimable(struct zone *zone)
2369 {
2370 	long nr_pagecache_reclaimable;
2371 	long delta = 0;
2372 
2373 	/*
2374 	 * If RECLAIM_SWAP is set, then all file pages are considered
2375 	 * potentially reclaimable. Otherwise, we have to worry about
2376 	 * pages like swapcache and zone_unmapped_file_pages() provides
2377 	 * a better estimate
2378 	 */
2379 	if (zone_reclaim_mode & RECLAIM_SWAP)
2380 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2381 	else
2382 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2383 
2384 	/* If we can't clean pages, remove dirty pages from consideration */
2385 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2386 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2387 
2388 	/* Watch for any possible underflows due to delta */
2389 	if (unlikely(delta > nr_pagecache_reclaimable))
2390 		delta = nr_pagecache_reclaimable;
2391 
2392 	return nr_pagecache_reclaimable - delta;
2393 }
2394 
2395 /*
2396  * Try to free up some pages from this zone through reclaim.
2397  */
2398 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2399 {
2400 	/* Minimum pages needed in order to stay on node */
2401 	const unsigned long nr_pages = 1 << order;
2402 	struct task_struct *p = current;
2403 	struct reclaim_state reclaim_state;
2404 	int priority;
2405 	struct scan_control sc = {
2406 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2407 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2408 		.may_swap = 1,
2409 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2410 					SWAP_CLUSTER_MAX),
2411 		.gfp_mask = gfp_mask,
2412 		.swappiness = vm_swappiness,
2413 		.order = order,
2414 		.isolate_pages = isolate_pages_global,
2415 	};
2416 	unsigned long slab_reclaimable;
2417 
2418 	disable_swap_token();
2419 	cond_resched();
2420 	/*
2421 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2422 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2423 	 * and RECLAIM_SWAP.
2424 	 */
2425 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2426 	reclaim_state.reclaimed_slab = 0;
2427 	p->reclaim_state = &reclaim_state;
2428 
2429 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2430 		/*
2431 		 * Free memory by calling shrink zone with increasing
2432 		 * priorities until we have enough memory freed.
2433 		 */
2434 		priority = ZONE_RECLAIM_PRIORITY;
2435 		do {
2436 			note_zone_scanning_priority(zone, priority);
2437 			shrink_zone(priority, zone, &sc);
2438 			priority--;
2439 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2440 	}
2441 
2442 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2443 	if (slab_reclaimable > zone->min_slab_pages) {
2444 		/*
2445 		 * shrink_slab() does not currently allow us to determine how
2446 		 * many pages were freed in this zone. So we take the current
2447 		 * number of slab pages and shake the slab until it is reduced
2448 		 * by the same nr_pages that we used for reclaiming unmapped
2449 		 * pages.
2450 		 *
2451 		 * Note that shrink_slab will free memory on all zones and may
2452 		 * take a long time.
2453 		 */
2454 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2455 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2456 				slab_reclaimable - nr_pages)
2457 			;
2458 
2459 		/*
2460 		 * Update nr_reclaimed by the number of slab pages we
2461 		 * reclaimed from this zone.
2462 		 */
2463 		sc.nr_reclaimed += slab_reclaimable -
2464 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2465 	}
2466 
2467 	p->reclaim_state = NULL;
2468 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2469 	return sc.nr_reclaimed >= nr_pages;
2470 }
2471 
2472 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2473 {
2474 	int node_id;
2475 	int ret;
2476 
2477 	/*
2478 	 * Zone reclaim reclaims unmapped file backed pages and
2479 	 * slab pages if we are over the defined limits.
2480 	 *
2481 	 * A small portion of unmapped file backed pages is needed for
2482 	 * file I/O otherwise pages read by file I/O will be immediately
2483 	 * thrown out if the zone is overallocated. So we do not reclaim
2484 	 * if less than a specified percentage of the zone is used by
2485 	 * unmapped file backed pages.
2486 	 */
2487 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2488 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2489 		return ZONE_RECLAIM_FULL;
2490 
2491 	if (zone_is_all_unreclaimable(zone))
2492 		return ZONE_RECLAIM_FULL;
2493 
2494 	/*
2495 	 * Do not scan if the allocation should not be delayed.
2496 	 */
2497 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2498 		return ZONE_RECLAIM_NOSCAN;
2499 
2500 	/*
2501 	 * Only run zone reclaim on the local zone or on zones that do not
2502 	 * have associated processors. This will favor the local processor
2503 	 * over remote processors and spread off node memory allocations
2504 	 * as wide as possible.
2505 	 */
2506 	node_id = zone_to_nid(zone);
2507 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2508 		return ZONE_RECLAIM_NOSCAN;
2509 
2510 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2511 		return ZONE_RECLAIM_NOSCAN;
2512 
2513 	ret = __zone_reclaim(zone, gfp_mask, order);
2514 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2515 
2516 	if (!ret)
2517 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2518 
2519 	return ret;
2520 }
2521 #endif
2522 
2523 /*
2524  * page_evictable - test whether a page is evictable
2525  * @page: the page to test
2526  * @vma: the VMA in which the page is or will be mapped, may be NULL
2527  *
2528  * Test whether page is evictable--i.e., should be placed on active/inactive
2529  * lists vs unevictable list.  The vma argument is !NULL when called from the
2530  * fault path to determine how to instantate a new page.
2531  *
2532  * Reasons page might not be evictable:
2533  * (1) page's mapping marked unevictable
2534  * (2) page is part of an mlocked VMA
2535  *
2536  */
2537 int page_evictable(struct page *page, struct vm_area_struct *vma)
2538 {
2539 
2540 	if (mapping_unevictable(page_mapping(page)))
2541 		return 0;
2542 
2543 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2544 		return 0;
2545 
2546 	return 1;
2547 }
2548 
2549 /**
2550  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2551  * @page: page to check evictability and move to appropriate lru list
2552  * @zone: zone page is in
2553  *
2554  * Checks a page for evictability and moves the page to the appropriate
2555  * zone lru list.
2556  *
2557  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2558  * have PageUnevictable set.
2559  */
2560 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2561 {
2562 	VM_BUG_ON(PageActive(page));
2563 
2564 retry:
2565 	ClearPageUnevictable(page);
2566 	if (page_evictable(page, NULL)) {
2567 		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2568 
2569 		__dec_zone_state(zone, NR_UNEVICTABLE);
2570 		list_move(&page->lru, &zone->lru[l].list);
2571 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2572 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2573 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2574 	} else {
2575 		/*
2576 		 * rotate unevictable list
2577 		 */
2578 		SetPageUnevictable(page);
2579 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2580 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2581 		if (page_evictable(page, NULL))
2582 			goto retry;
2583 	}
2584 }
2585 
2586 /**
2587  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2588  * @mapping: struct address_space to scan for evictable pages
2589  *
2590  * Scan all pages in mapping.  Check unevictable pages for
2591  * evictability and move them to the appropriate zone lru list.
2592  */
2593 void scan_mapping_unevictable_pages(struct address_space *mapping)
2594 {
2595 	pgoff_t next = 0;
2596 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2597 			 PAGE_CACHE_SHIFT;
2598 	struct zone *zone;
2599 	struct pagevec pvec;
2600 
2601 	if (mapping->nrpages == 0)
2602 		return;
2603 
2604 	pagevec_init(&pvec, 0);
2605 	while (next < end &&
2606 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2607 		int i;
2608 		int pg_scanned = 0;
2609 
2610 		zone = NULL;
2611 
2612 		for (i = 0; i < pagevec_count(&pvec); i++) {
2613 			struct page *page = pvec.pages[i];
2614 			pgoff_t page_index = page->index;
2615 			struct zone *pagezone = page_zone(page);
2616 
2617 			pg_scanned++;
2618 			if (page_index > next)
2619 				next = page_index;
2620 			next++;
2621 
2622 			if (pagezone != zone) {
2623 				if (zone)
2624 					spin_unlock_irq(&zone->lru_lock);
2625 				zone = pagezone;
2626 				spin_lock_irq(&zone->lru_lock);
2627 			}
2628 
2629 			if (PageLRU(page) && PageUnevictable(page))
2630 				check_move_unevictable_page(page, zone);
2631 		}
2632 		if (zone)
2633 			spin_unlock_irq(&zone->lru_lock);
2634 		pagevec_release(&pvec);
2635 
2636 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2637 	}
2638 
2639 }
2640 
2641 /**
2642  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2643  * @zone - zone of which to scan the unevictable list
2644  *
2645  * Scan @zone's unevictable LRU lists to check for pages that have become
2646  * evictable.  Move those that have to @zone's inactive list where they
2647  * become candidates for reclaim, unless shrink_inactive_zone() decides
2648  * to reactivate them.  Pages that are still unevictable are rotated
2649  * back onto @zone's unevictable list.
2650  */
2651 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2652 static void scan_zone_unevictable_pages(struct zone *zone)
2653 {
2654 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2655 	unsigned long scan;
2656 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2657 
2658 	while (nr_to_scan > 0) {
2659 		unsigned long batch_size = min(nr_to_scan,
2660 						SCAN_UNEVICTABLE_BATCH_SIZE);
2661 
2662 		spin_lock_irq(&zone->lru_lock);
2663 		for (scan = 0;  scan < batch_size; scan++) {
2664 			struct page *page = lru_to_page(l_unevictable);
2665 
2666 			if (!trylock_page(page))
2667 				continue;
2668 
2669 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2670 
2671 			if (likely(PageLRU(page) && PageUnevictable(page)))
2672 				check_move_unevictable_page(page, zone);
2673 
2674 			unlock_page(page);
2675 		}
2676 		spin_unlock_irq(&zone->lru_lock);
2677 
2678 		nr_to_scan -= batch_size;
2679 	}
2680 }
2681 
2682 
2683 /**
2684  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2685  *
2686  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2687  * pages that have become evictable.  Move those back to the zones'
2688  * inactive list where they become candidates for reclaim.
2689  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2690  * and we add swap to the system.  As such, it runs in the context of a task
2691  * that has possibly/probably made some previously unevictable pages
2692  * evictable.
2693  */
2694 static void scan_all_zones_unevictable_pages(void)
2695 {
2696 	struct zone *zone;
2697 
2698 	for_each_zone(zone) {
2699 		scan_zone_unevictable_pages(zone);
2700 	}
2701 }
2702 
2703 /*
2704  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2705  * all nodes' unevictable lists for evictable pages
2706  */
2707 unsigned long scan_unevictable_pages;
2708 
2709 int scan_unevictable_handler(struct ctl_table *table, int write,
2710 			   struct file *file, void __user *buffer,
2711 			   size_t *length, loff_t *ppos)
2712 {
2713 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2714 
2715 	if (write && *(unsigned long *)table->data)
2716 		scan_all_zones_unevictable_pages();
2717 
2718 	scan_unevictable_pages = 0;
2719 	return 0;
2720 }
2721 
2722 /*
2723  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2724  * a specified node's per zone unevictable lists for evictable pages.
2725  */
2726 
2727 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2728 					  struct sysdev_attribute *attr,
2729 					  char *buf)
2730 {
2731 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2732 }
2733 
2734 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2735 					   struct sysdev_attribute *attr,
2736 					const char *buf, size_t count)
2737 {
2738 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2739 	struct zone *zone;
2740 	unsigned long res;
2741 	unsigned long req = strict_strtoul(buf, 10, &res);
2742 
2743 	if (!req)
2744 		return 1;	/* zero is no-op */
2745 
2746 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2747 		if (!populated_zone(zone))
2748 			continue;
2749 		scan_zone_unevictable_pages(zone);
2750 	}
2751 	return 1;
2752 }
2753 
2754 
2755 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2756 			read_scan_unevictable_node,
2757 			write_scan_unevictable_node);
2758 
2759 int scan_unevictable_register_node(struct node *node)
2760 {
2761 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2762 }
2763 
2764 void scan_unevictable_unregister_node(struct node *node)
2765 {
2766 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2767 }
2768 
2769