1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* Number of pages freed so far during a call to shrink_zones() */ 56 unsigned long nr_reclaimed; 57 58 /* This context's GFP mask */ 59 gfp_t gfp_mask; 60 61 int may_writepage; 62 63 /* Can mapped pages be reclaimed? */ 64 int may_unmap; 65 66 /* Can pages be swapped as part of reclaim? */ 67 int may_swap; 68 69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 70 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 71 * In this context, it doesn't matter that we scan the 72 * whole list at once. */ 73 int swap_cluster_max; 74 75 int swappiness; 76 77 int all_unreclaimable; 78 79 int order; 80 81 /* Which cgroup do we reclaim from */ 82 struct mem_cgroup *mem_cgroup; 83 84 /* 85 * Nodemask of nodes allowed by the caller. If NULL, all nodes 86 * are scanned. 87 */ 88 nodemask_t *nodemask; 89 90 /* Pluggable isolate pages callback */ 91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 92 unsigned long *scanned, int order, int mode, 93 struct zone *z, struct mem_cgroup *mem_cont, 94 int active, int file); 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 138 #else 139 #define scanning_global_lru(sc) (1) 140 #endif 141 142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 143 struct scan_control *sc) 144 { 145 if (!scanning_global_lru(sc)) 146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 147 148 return &zone->reclaim_stat; 149 } 150 151 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc, 152 enum lru_list lru) 153 { 154 if (!scanning_global_lru(sc)) 155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 156 157 return zone_page_state(zone, NR_LRU_BASE + lru); 158 } 159 160 161 /* 162 * Add a shrinker callback to be called from the vm 163 */ 164 void register_shrinker(struct shrinker *shrinker) 165 { 166 shrinker->nr = 0; 167 down_write(&shrinker_rwsem); 168 list_add_tail(&shrinker->list, &shrinker_list); 169 up_write(&shrinker_rwsem); 170 } 171 EXPORT_SYMBOL(register_shrinker); 172 173 /* 174 * Remove one 175 */ 176 void unregister_shrinker(struct shrinker *shrinker) 177 { 178 down_write(&shrinker_rwsem); 179 list_del(&shrinker->list); 180 up_write(&shrinker_rwsem); 181 } 182 EXPORT_SYMBOL(unregister_shrinker); 183 184 #define SHRINK_BATCH 128 185 /* 186 * Call the shrink functions to age shrinkable caches 187 * 188 * Here we assume it costs one seek to replace a lru page and that it also 189 * takes a seek to recreate a cache object. With this in mind we age equal 190 * percentages of the lru and ageable caches. This should balance the seeks 191 * generated by these structures. 192 * 193 * If the vm encountered mapped pages on the LRU it increase the pressure on 194 * slab to avoid swapping. 195 * 196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 197 * 198 * `lru_pages' represents the number of on-LRU pages in all the zones which 199 * are eligible for the caller's allocation attempt. It is used for balancing 200 * slab reclaim versus page reclaim. 201 * 202 * Returns the number of slab objects which we shrunk. 203 */ 204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 205 unsigned long lru_pages) 206 { 207 struct shrinker *shrinker; 208 unsigned long ret = 0; 209 210 if (scanned == 0) 211 scanned = SWAP_CLUSTER_MAX; 212 213 if (!down_read_trylock(&shrinker_rwsem)) 214 return 1; /* Assume we'll be able to shrink next time */ 215 216 list_for_each_entry(shrinker, &shrinker_list, list) { 217 unsigned long long delta; 218 unsigned long total_scan; 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 220 221 delta = (4 * scanned) / shrinker->seeks; 222 delta *= max_pass; 223 do_div(delta, lru_pages + 1); 224 shrinker->nr += delta; 225 if (shrinker->nr < 0) { 226 printk(KERN_ERR "shrink_slab: %pF negative objects to " 227 "delete nr=%ld\n", 228 shrinker->shrink, shrinker->nr); 229 shrinker->nr = max_pass; 230 } 231 232 /* 233 * Avoid risking looping forever due to too large nr value: 234 * never try to free more than twice the estimate number of 235 * freeable entries. 236 */ 237 if (shrinker->nr > max_pass * 2) 238 shrinker->nr = max_pass * 2; 239 240 total_scan = shrinker->nr; 241 shrinker->nr = 0; 242 243 while (total_scan >= SHRINK_BATCH) { 244 long this_scan = SHRINK_BATCH; 245 int shrink_ret; 246 int nr_before; 247 248 nr_before = (*shrinker->shrink)(0, gfp_mask); 249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 250 if (shrink_ret == -1) 251 break; 252 if (shrink_ret < nr_before) 253 ret += nr_before - shrink_ret; 254 count_vm_events(SLABS_SCANNED, this_scan); 255 total_scan -= this_scan; 256 257 cond_resched(); 258 } 259 260 shrinker->nr += total_scan; 261 } 262 up_read(&shrinker_rwsem); 263 return ret; 264 } 265 266 /* Called without lock on whether page is mapped, so answer is unstable */ 267 static inline int page_mapping_inuse(struct page *page) 268 { 269 struct address_space *mapping; 270 271 /* Page is in somebody's page tables. */ 272 if (page_mapped(page)) 273 return 1; 274 275 /* Be more reluctant to reclaim swapcache than pagecache */ 276 if (PageSwapCache(page)) 277 return 1; 278 279 mapping = page_mapping(page); 280 if (!mapping) 281 return 0; 282 283 /* File is mmap'd by somebody? */ 284 return mapping_mapped(mapping); 285 } 286 287 static inline int is_page_cache_freeable(struct page *page) 288 { 289 return page_count(page) - !!page_has_private(page) == 2; 290 } 291 292 static int may_write_to_queue(struct backing_dev_info *bdi) 293 { 294 if (current->flags & PF_SWAPWRITE) 295 return 1; 296 if (!bdi_write_congested(bdi)) 297 return 1; 298 if (bdi == current->backing_dev_info) 299 return 1; 300 return 0; 301 } 302 303 /* 304 * We detected a synchronous write error writing a page out. Probably 305 * -ENOSPC. We need to propagate that into the address_space for a subsequent 306 * fsync(), msync() or close(). 307 * 308 * The tricky part is that after writepage we cannot touch the mapping: nothing 309 * prevents it from being freed up. But we have a ref on the page and once 310 * that page is locked, the mapping is pinned. 311 * 312 * We're allowed to run sleeping lock_page() here because we know the caller has 313 * __GFP_FS. 314 */ 315 static void handle_write_error(struct address_space *mapping, 316 struct page *page, int error) 317 { 318 lock_page(page); 319 if (page_mapping(page) == mapping) 320 mapping_set_error(mapping, error); 321 unlock_page(page); 322 } 323 324 /* Request for sync pageout. */ 325 enum pageout_io { 326 PAGEOUT_IO_ASYNC, 327 PAGEOUT_IO_SYNC, 328 }; 329 330 /* possible outcome of pageout() */ 331 typedef enum { 332 /* failed to write page out, page is locked */ 333 PAGE_KEEP, 334 /* move page to the active list, page is locked */ 335 PAGE_ACTIVATE, 336 /* page has been sent to the disk successfully, page is unlocked */ 337 PAGE_SUCCESS, 338 /* page is clean and locked */ 339 PAGE_CLEAN, 340 } pageout_t; 341 342 /* 343 * pageout is called by shrink_page_list() for each dirty page. 344 * Calls ->writepage(). 345 */ 346 static pageout_t pageout(struct page *page, struct address_space *mapping, 347 enum pageout_io sync_writeback) 348 { 349 /* 350 * If the page is dirty, only perform writeback if that write 351 * will be non-blocking. To prevent this allocation from being 352 * stalled by pagecache activity. But note that there may be 353 * stalls if we need to run get_block(). We could test 354 * PagePrivate for that. 355 * 356 * If this process is currently in generic_file_write() against 357 * this page's queue, we can perform writeback even if that 358 * will block. 359 * 360 * If the page is swapcache, write it back even if that would 361 * block, for some throttling. This happens by accident, because 362 * swap_backing_dev_info is bust: it doesn't reflect the 363 * congestion state of the swapdevs. Easy to fix, if needed. 364 * See swapfile.c:page_queue_congested(). 365 */ 366 if (!is_page_cache_freeable(page)) 367 return PAGE_KEEP; 368 if (!mapping) { 369 /* 370 * Some data journaling orphaned pages can have 371 * page->mapping == NULL while being dirty with clean buffers. 372 */ 373 if (page_has_private(page)) { 374 if (try_to_free_buffers(page)) { 375 ClearPageDirty(page); 376 printk("%s: orphaned page\n", __func__); 377 return PAGE_CLEAN; 378 } 379 } 380 return PAGE_KEEP; 381 } 382 if (mapping->a_ops->writepage == NULL) 383 return PAGE_ACTIVATE; 384 if (!may_write_to_queue(mapping->backing_dev_info)) 385 return PAGE_KEEP; 386 387 if (clear_page_dirty_for_io(page)) { 388 int res; 389 struct writeback_control wbc = { 390 .sync_mode = WB_SYNC_NONE, 391 .nr_to_write = SWAP_CLUSTER_MAX, 392 .range_start = 0, 393 .range_end = LLONG_MAX, 394 .nonblocking = 1, 395 .for_reclaim = 1, 396 }; 397 398 SetPageReclaim(page); 399 res = mapping->a_ops->writepage(page, &wbc); 400 if (res < 0) 401 handle_write_error(mapping, page, res); 402 if (res == AOP_WRITEPAGE_ACTIVATE) { 403 ClearPageReclaim(page); 404 return PAGE_ACTIVATE; 405 } 406 407 /* 408 * Wait on writeback if requested to. This happens when 409 * direct reclaiming a large contiguous area and the 410 * first attempt to free a range of pages fails. 411 */ 412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 413 wait_on_page_writeback(page); 414 415 if (!PageWriteback(page)) { 416 /* synchronous write or broken a_ops? */ 417 ClearPageReclaim(page); 418 } 419 inc_zone_page_state(page, NR_VMSCAN_WRITE); 420 return PAGE_SUCCESS; 421 } 422 423 return PAGE_CLEAN; 424 } 425 426 /* 427 * Same as remove_mapping, but if the page is removed from the mapping, it 428 * gets returned with a refcount of 0. 429 */ 430 static int __remove_mapping(struct address_space *mapping, struct page *page) 431 { 432 BUG_ON(!PageLocked(page)); 433 BUG_ON(mapping != page_mapping(page)); 434 435 spin_lock_irq(&mapping->tree_lock); 436 /* 437 * The non racy check for a busy page. 438 * 439 * Must be careful with the order of the tests. When someone has 440 * a ref to the page, it may be possible that they dirty it then 441 * drop the reference. So if PageDirty is tested before page_count 442 * here, then the following race may occur: 443 * 444 * get_user_pages(&page); 445 * [user mapping goes away] 446 * write_to(page); 447 * !PageDirty(page) [good] 448 * SetPageDirty(page); 449 * put_page(page); 450 * !page_count(page) [good, discard it] 451 * 452 * [oops, our write_to data is lost] 453 * 454 * Reversing the order of the tests ensures such a situation cannot 455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 456 * load is not satisfied before that of page->_count. 457 * 458 * Note that if SetPageDirty is always performed via set_page_dirty, 459 * and thus under tree_lock, then this ordering is not required. 460 */ 461 if (!page_freeze_refs(page, 2)) 462 goto cannot_free; 463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 464 if (unlikely(PageDirty(page))) { 465 page_unfreeze_refs(page, 2); 466 goto cannot_free; 467 } 468 469 if (PageSwapCache(page)) { 470 swp_entry_t swap = { .val = page_private(page) }; 471 __delete_from_swap_cache(page); 472 spin_unlock_irq(&mapping->tree_lock); 473 swapcache_free(swap, page); 474 } else { 475 __remove_from_page_cache(page); 476 spin_unlock_irq(&mapping->tree_lock); 477 mem_cgroup_uncharge_cache_page(page); 478 } 479 480 return 1; 481 482 cannot_free: 483 spin_unlock_irq(&mapping->tree_lock); 484 return 0; 485 } 486 487 /* 488 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 489 * someone else has a ref on the page, abort and return 0. If it was 490 * successfully detached, return 1. Assumes the caller has a single ref on 491 * this page. 492 */ 493 int remove_mapping(struct address_space *mapping, struct page *page) 494 { 495 if (__remove_mapping(mapping, page)) { 496 /* 497 * Unfreezing the refcount with 1 rather than 2 effectively 498 * drops the pagecache ref for us without requiring another 499 * atomic operation. 500 */ 501 page_unfreeze_refs(page, 1); 502 return 1; 503 } 504 return 0; 505 } 506 507 /** 508 * putback_lru_page - put previously isolated page onto appropriate LRU list 509 * @page: page to be put back to appropriate lru list 510 * 511 * Add previously isolated @page to appropriate LRU list. 512 * Page may still be unevictable for other reasons. 513 * 514 * lru_lock must not be held, interrupts must be enabled. 515 */ 516 void putback_lru_page(struct page *page) 517 { 518 int lru; 519 int active = !!TestClearPageActive(page); 520 int was_unevictable = PageUnevictable(page); 521 522 VM_BUG_ON(PageLRU(page)); 523 524 redo: 525 ClearPageUnevictable(page); 526 527 if (page_evictable(page, NULL)) { 528 /* 529 * For evictable pages, we can use the cache. 530 * In event of a race, worst case is we end up with an 531 * unevictable page on [in]active list. 532 * We know how to handle that. 533 */ 534 lru = active + page_is_file_cache(page); 535 lru_cache_add_lru(page, lru); 536 } else { 537 /* 538 * Put unevictable pages directly on zone's unevictable 539 * list. 540 */ 541 lru = LRU_UNEVICTABLE; 542 add_page_to_unevictable_list(page); 543 } 544 545 /* 546 * page's status can change while we move it among lru. If an evictable 547 * page is on unevictable list, it never be freed. To avoid that, 548 * check after we added it to the list, again. 549 */ 550 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 551 if (!isolate_lru_page(page)) { 552 put_page(page); 553 goto redo; 554 } 555 /* This means someone else dropped this page from LRU 556 * So, it will be freed or putback to LRU again. There is 557 * nothing to do here. 558 */ 559 } 560 561 if (was_unevictable && lru != LRU_UNEVICTABLE) 562 count_vm_event(UNEVICTABLE_PGRESCUED); 563 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 564 count_vm_event(UNEVICTABLE_PGCULLED); 565 566 put_page(page); /* drop ref from isolate */ 567 } 568 569 /* 570 * shrink_page_list() returns the number of reclaimed pages 571 */ 572 static unsigned long shrink_page_list(struct list_head *page_list, 573 struct scan_control *sc, 574 enum pageout_io sync_writeback) 575 { 576 LIST_HEAD(ret_pages); 577 struct pagevec freed_pvec; 578 int pgactivate = 0; 579 unsigned long nr_reclaimed = 0; 580 unsigned long vm_flags; 581 582 cond_resched(); 583 584 pagevec_init(&freed_pvec, 1); 585 while (!list_empty(page_list)) { 586 struct address_space *mapping; 587 struct page *page; 588 int may_enter_fs; 589 int referenced; 590 591 cond_resched(); 592 593 page = lru_to_page(page_list); 594 list_del(&page->lru); 595 596 if (!trylock_page(page)) 597 goto keep; 598 599 VM_BUG_ON(PageActive(page)); 600 601 sc->nr_scanned++; 602 603 if (unlikely(!page_evictable(page, NULL))) 604 goto cull_mlocked; 605 606 if (!sc->may_unmap && page_mapped(page)) 607 goto keep_locked; 608 609 /* Double the slab pressure for mapped and swapcache pages */ 610 if (page_mapped(page) || PageSwapCache(page)) 611 sc->nr_scanned++; 612 613 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 614 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 615 616 if (PageWriteback(page)) { 617 /* 618 * Synchronous reclaim is performed in two passes, 619 * first an asynchronous pass over the list to 620 * start parallel writeback, and a second synchronous 621 * pass to wait for the IO to complete. Wait here 622 * for any page for which writeback has already 623 * started. 624 */ 625 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 626 wait_on_page_writeback(page); 627 else 628 goto keep_locked; 629 } 630 631 referenced = page_referenced(page, 1, 632 sc->mem_cgroup, &vm_flags); 633 /* In active use or really unfreeable? Activate it. */ 634 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 635 referenced && page_mapping_inuse(page)) 636 goto activate_locked; 637 638 /* 639 * Anonymous process memory has backing store? 640 * Try to allocate it some swap space here. 641 */ 642 if (PageAnon(page) && !PageSwapCache(page)) { 643 if (!(sc->gfp_mask & __GFP_IO)) 644 goto keep_locked; 645 if (!add_to_swap(page)) 646 goto activate_locked; 647 may_enter_fs = 1; 648 } 649 650 mapping = page_mapping(page); 651 652 /* 653 * The page is mapped into the page tables of one or more 654 * processes. Try to unmap it here. 655 */ 656 if (page_mapped(page) && mapping) { 657 switch (try_to_unmap(page, 0)) { 658 case SWAP_FAIL: 659 goto activate_locked; 660 case SWAP_AGAIN: 661 goto keep_locked; 662 case SWAP_MLOCK: 663 goto cull_mlocked; 664 case SWAP_SUCCESS: 665 ; /* try to free the page below */ 666 } 667 } 668 669 if (PageDirty(page)) { 670 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 671 goto keep_locked; 672 if (!may_enter_fs) 673 goto keep_locked; 674 if (!sc->may_writepage) 675 goto keep_locked; 676 677 /* Page is dirty, try to write it out here */ 678 switch (pageout(page, mapping, sync_writeback)) { 679 case PAGE_KEEP: 680 goto keep_locked; 681 case PAGE_ACTIVATE: 682 goto activate_locked; 683 case PAGE_SUCCESS: 684 if (PageWriteback(page) || PageDirty(page)) 685 goto keep; 686 /* 687 * A synchronous write - probably a ramdisk. Go 688 * ahead and try to reclaim the page. 689 */ 690 if (!trylock_page(page)) 691 goto keep; 692 if (PageDirty(page) || PageWriteback(page)) 693 goto keep_locked; 694 mapping = page_mapping(page); 695 case PAGE_CLEAN: 696 ; /* try to free the page below */ 697 } 698 } 699 700 /* 701 * If the page has buffers, try to free the buffer mappings 702 * associated with this page. If we succeed we try to free 703 * the page as well. 704 * 705 * We do this even if the page is PageDirty(). 706 * try_to_release_page() does not perform I/O, but it is 707 * possible for a page to have PageDirty set, but it is actually 708 * clean (all its buffers are clean). This happens if the 709 * buffers were written out directly, with submit_bh(). ext3 710 * will do this, as well as the blockdev mapping. 711 * try_to_release_page() will discover that cleanness and will 712 * drop the buffers and mark the page clean - it can be freed. 713 * 714 * Rarely, pages can have buffers and no ->mapping. These are 715 * the pages which were not successfully invalidated in 716 * truncate_complete_page(). We try to drop those buffers here 717 * and if that worked, and the page is no longer mapped into 718 * process address space (page_count == 1) it can be freed. 719 * Otherwise, leave the page on the LRU so it is swappable. 720 */ 721 if (page_has_private(page)) { 722 if (!try_to_release_page(page, sc->gfp_mask)) 723 goto activate_locked; 724 if (!mapping && page_count(page) == 1) { 725 unlock_page(page); 726 if (put_page_testzero(page)) 727 goto free_it; 728 else { 729 /* 730 * rare race with speculative reference. 731 * the speculative reference will free 732 * this page shortly, so we may 733 * increment nr_reclaimed here (and 734 * leave it off the LRU). 735 */ 736 nr_reclaimed++; 737 continue; 738 } 739 } 740 } 741 742 if (!mapping || !__remove_mapping(mapping, page)) 743 goto keep_locked; 744 745 /* 746 * At this point, we have no other references and there is 747 * no way to pick any more up (removed from LRU, removed 748 * from pagecache). Can use non-atomic bitops now (and 749 * we obviously don't have to worry about waking up a process 750 * waiting on the page lock, because there are no references. 751 */ 752 __clear_page_locked(page); 753 free_it: 754 nr_reclaimed++; 755 if (!pagevec_add(&freed_pvec, page)) { 756 __pagevec_free(&freed_pvec); 757 pagevec_reinit(&freed_pvec); 758 } 759 continue; 760 761 cull_mlocked: 762 if (PageSwapCache(page)) 763 try_to_free_swap(page); 764 unlock_page(page); 765 putback_lru_page(page); 766 continue; 767 768 activate_locked: 769 /* Not a candidate for swapping, so reclaim swap space. */ 770 if (PageSwapCache(page) && vm_swap_full()) 771 try_to_free_swap(page); 772 VM_BUG_ON(PageActive(page)); 773 SetPageActive(page); 774 pgactivate++; 775 keep_locked: 776 unlock_page(page); 777 keep: 778 list_add(&page->lru, &ret_pages); 779 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 780 } 781 list_splice(&ret_pages, page_list); 782 if (pagevec_count(&freed_pvec)) 783 __pagevec_free(&freed_pvec); 784 count_vm_events(PGACTIVATE, pgactivate); 785 return nr_reclaimed; 786 } 787 788 /* LRU Isolation modes. */ 789 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 790 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 791 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 792 793 /* 794 * Attempt to remove the specified page from its LRU. Only take this page 795 * if it is of the appropriate PageActive status. Pages which are being 796 * freed elsewhere are also ignored. 797 * 798 * page: page to consider 799 * mode: one of the LRU isolation modes defined above 800 * 801 * returns 0 on success, -ve errno on failure. 802 */ 803 int __isolate_lru_page(struct page *page, int mode, int file) 804 { 805 int ret = -EINVAL; 806 807 /* Only take pages on the LRU. */ 808 if (!PageLRU(page)) 809 return ret; 810 811 /* 812 * When checking the active state, we need to be sure we are 813 * dealing with comparible boolean values. Take the logical not 814 * of each. 815 */ 816 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 817 return ret; 818 819 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file)) 820 return ret; 821 822 /* 823 * When this function is being called for lumpy reclaim, we 824 * initially look into all LRU pages, active, inactive and 825 * unevictable; only give shrink_page_list evictable pages. 826 */ 827 if (PageUnevictable(page)) 828 return ret; 829 830 ret = -EBUSY; 831 832 if (likely(get_page_unless_zero(page))) { 833 /* 834 * Be careful not to clear PageLRU until after we're 835 * sure the page is not being freed elsewhere -- the 836 * page release code relies on it. 837 */ 838 ClearPageLRU(page); 839 ret = 0; 840 } 841 842 return ret; 843 } 844 845 /* 846 * zone->lru_lock is heavily contended. Some of the functions that 847 * shrink the lists perform better by taking out a batch of pages 848 * and working on them outside the LRU lock. 849 * 850 * For pagecache intensive workloads, this function is the hottest 851 * spot in the kernel (apart from copy_*_user functions). 852 * 853 * Appropriate locks must be held before calling this function. 854 * 855 * @nr_to_scan: The number of pages to look through on the list. 856 * @src: The LRU list to pull pages off. 857 * @dst: The temp list to put pages on to. 858 * @scanned: The number of pages that were scanned. 859 * @order: The caller's attempted allocation order 860 * @mode: One of the LRU isolation modes 861 * @file: True [1] if isolating file [!anon] pages 862 * 863 * returns how many pages were moved onto *@dst. 864 */ 865 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 866 struct list_head *src, struct list_head *dst, 867 unsigned long *scanned, int order, int mode, int file) 868 { 869 unsigned long nr_taken = 0; 870 unsigned long scan; 871 872 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 873 struct page *page; 874 unsigned long pfn; 875 unsigned long end_pfn; 876 unsigned long page_pfn; 877 int zone_id; 878 879 page = lru_to_page(src); 880 prefetchw_prev_lru_page(page, src, flags); 881 882 VM_BUG_ON(!PageLRU(page)); 883 884 switch (__isolate_lru_page(page, mode, file)) { 885 case 0: 886 list_move(&page->lru, dst); 887 mem_cgroup_del_lru(page); 888 nr_taken++; 889 break; 890 891 case -EBUSY: 892 /* else it is being freed elsewhere */ 893 list_move(&page->lru, src); 894 mem_cgroup_rotate_lru_list(page, page_lru(page)); 895 continue; 896 897 default: 898 BUG(); 899 } 900 901 if (!order) 902 continue; 903 904 /* 905 * Attempt to take all pages in the order aligned region 906 * surrounding the tag page. Only take those pages of 907 * the same active state as that tag page. We may safely 908 * round the target page pfn down to the requested order 909 * as the mem_map is guarenteed valid out to MAX_ORDER, 910 * where that page is in a different zone we will detect 911 * it from its zone id and abort this block scan. 912 */ 913 zone_id = page_zone_id(page); 914 page_pfn = page_to_pfn(page); 915 pfn = page_pfn & ~((1 << order) - 1); 916 end_pfn = pfn + (1 << order); 917 for (; pfn < end_pfn; pfn++) { 918 struct page *cursor_page; 919 920 /* The target page is in the block, ignore it. */ 921 if (unlikely(pfn == page_pfn)) 922 continue; 923 924 /* Avoid holes within the zone. */ 925 if (unlikely(!pfn_valid_within(pfn))) 926 break; 927 928 cursor_page = pfn_to_page(pfn); 929 930 /* Check that we have not crossed a zone boundary. */ 931 if (unlikely(page_zone_id(cursor_page) != zone_id)) 932 continue; 933 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 934 list_move(&cursor_page->lru, dst); 935 mem_cgroup_del_lru(cursor_page); 936 nr_taken++; 937 scan++; 938 } 939 } 940 } 941 942 *scanned = scan; 943 return nr_taken; 944 } 945 946 static unsigned long isolate_pages_global(unsigned long nr, 947 struct list_head *dst, 948 unsigned long *scanned, int order, 949 int mode, struct zone *z, 950 struct mem_cgroup *mem_cont, 951 int active, int file) 952 { 953 int lru = LRU_BASE; 954 if (active) 955 lru += LRU_ACTIVE; 956 if (file) 957 lru += LRU_FILE; 958 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 959 mode, !!file); 960 } 961 962 /* 963 * clear_active_flags() is a helper for shrink_active_list(), clearing 964 * any active bits from the pages in the list. 965 */ 966 static unsigned long clear_active_flags(struct list_head *page_list, 967 unsigned int *count) 968 { 969 int nr_active = 0; 970 int lru; 971 struct page *page; 972 973 list_for_each_entry(page, page_list, lru) { 974 lru = page_is_file_cache(page); 975 if (PageActive(page)) { 976 lru += LRU_ACTIVE; 977 ClearPageActive(page); 978 nr_active++; 979 } 980 count[lru]++; 981 } 982 983 return nr_active; 984 } 985 986 /** 987 * isolate_lru_page - tries to isolate a page from its LRU list 988 * @page: page to isolate from its LRU list 989 * 990 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 991 * vmstat statistic corresponding to whatever LRU list the page was on. 992 * 993 * Returns 0 if the page was removed from an LRU list. 994 * Returns -EBUSY if the page was not on an LRU list. 995 * 996 * The returned page will have PageLRU() cleared. If it was found on 997 * the active list, it will have PageActive set. If it was found on 998 * the unevictable list, it will have the PageUnevictable bit set. That flag 999 * may need to be cleared by the caller before letting the page go. 1000 * 1001 * The vmstat statistic corresponding to the list on which the page was 1002 * found will be decremented. 1003 * 1004 * Restrictions: 1005 * (1) Must be called with an elevated refcount on the page. This is a 1006 * fundamentnal difference from isolate_lru_pages (which is called 1007 * without a stable reference). 1008 * (2) the lru_lock must not be held. 1009 * (3) interrupts must be enabled. 1010 */ 1011 int isolate_lru_page(struct page *page) 1012 { 1013 int ret = -EBUSY; 1014 1015 if (PageLRU(page)) { 1016 struct zone *zone = page_zone(page); 1017 1018 spin_lock_irq(&zone->lru_lock); 1019 if (PageLRU(page) && get_page_unless_zero(page)) { 1020 int lru = page_lru(page); 1021 ret = 0; 1022 ClearPageLRU(page); 1023 1024 del_page_from_lru_list(zone, page, lru); 1025 } 1026 spin_unlock_irq(&zone->lru_lock); 1027 } 1028 return ret; 1029 } 1030 1031 /* 1032 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1033 * of reclaimed pages 1034 */ 1035 static unsigned long shrink_inactive_list(unsigned long max_scan, 1036 struct zone *zone, struct scan_control *sc, 1037 int priority, int file) 1038 { 1039 LIST_HEAD(page_list); 1040 struct pagevec pvec; 1041 unsigned long nr_scanned = 0; 1042 unsigned long nr_reclaimed = 0; 1043 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1044 int lumpy_reclaim = 0; 1045 1046 /* 1047 * If we need a large contiguous chunk of memory, or have 1048 * trouble getting a small set of contiguous pages, we 1049 * will reclaim both active and inactive pages. 1050 * 1051 * We use the same threshold as pageout congestion_wait below. 1052 */ 1053 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1054 lumpy_reclaim = 1; 1055 else if (sc->order && priority < DEF_PRIORITY - 2) 1056 lumpy_reclaim = 1; 1057 1058 pagevec_init(&pvec, 1); 1059 1060 lru_add_drain(); 1061 spin_lock_irq(&zone->lru_lock); 1062 do { 1063 struct page *page; 1064 unsigned long nr_taken; 1065 unsigned long nr_scan; 1066 unsigned long nr_freed; 1067 unsigned long nr_active; 1068 unsigned int count[NR_LRU_LISTS] = { 0, }; 1069 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE; 1070 1071 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 1072 &page_list, &nr_scan, sc->order, mode, 1073 zone, sc->mem_cgroup, 0, file); 1074 nr_active = clear_active_flags(&page_list, count); 1075 __count_vm_events(PGDEACTIVATE, nr_active); 1076 1077 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1078 -count[LRU_ACTIVE_FILE]); 1079 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1080 -count[LRU_INACTIVE_FILE]); 1081 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1082 -count[LRU_ACTIVE_ANON]); 1083 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1084 -count[LRU_INACTIVE_ANON]); 1085 1086 if (scanning_global_lru(sc)) 1087 zone->pages_scanned += nr_scan; 1088 1089 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON]; 1090 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON]; 1091 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE]; 1092 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE]; 1093 1094 spin_unlock_irq(&zone->lru_lock); 1095 1096 nr_scanned += nr_scan; 1097 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1098 1099 /* 1100 * If we are direct reclaiming for contiguous pages and we do 1101 * not reclaim everything in the list, try again and wait 1102 * for IO to complete. This will stall high-order allocations 1103 * but that should be acceptable to the caller 1104 */ 1105 if (nr_freed < nr_taken && !current_is_kswapd() && 1106 lumpy_reclaim) { 1107 congestion_wait(BLK_RW_ASYNC, HZ/10); 1108 1109 /* 1110 * The attempt at page out may have made some 1111 * of the pages active, mark them inactive again. 1112 */ 1113 nr_active = clear_active_flags(&page_list, count); 1114 count_vm_events(PGDEACTIVATE, nr_active); 1115 1116 nr_freed += shrink_page_list(&page_list, sc, 1117 PAGEOUT_IO_SYNC); 1118 } 1119 1120 nr_reclaimed += nr_freed; 1121 local_irq_disable(); 1122 if (current_is_kswapd()) { 1123 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 1124 __count_vm_events(KSWAPD_STEAL, nr_freed); 1125 } else if (scanning_global_lru(sc)) 1126 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 1127 1128 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1129 1130 if (nr_taken == 0) 1131 goto done; 1132 1133 spin_lock(&zone->lru_lock); 1134 /* 1135 * Put back any unfreeable pages. 1136 */ 1137 while (!list_empty(&page_list)) { 1138 int lru; 1139 page = lru_to_page(&page_list); 1140 VM_BUG_ON(PageLRU(page)); 1141 list_del(&page->lru); 1142 if (unlikely(!page_evictable(page, NULL))) { 1143 spin_unlock_irq(&zone->lru_lock); 1144 putback_lru_page(page); 1145 spin_lock_irq(&zone->lru_lock); 1146 continue; 1147 } 1148 SetPageLRU(page); 1149 lru = page_lru(page); 1150 add_page_to_lru_list(zone, page, lru); 1151 if (PageActive(page)) { 1152 int file = !!page_is_file_cache(page); 1153 reclaim_stat->recent_rotated[file]++; 1154 } 1155 if (!pagevec_add(&pvec, page)) { 1156 spin_unlock_irq(&zone->lru_lock); 1157 __pagevec_release(&pvec); 1158 spin_lock_irq(&zone->lru_lock); 1159 } 1160 } 1161 } while (nr_scanned < max_scan); 1162 spin_unlock(&zone->lru_lock); 1163 done: 1164 local_irq_enable(); 1165 pagevec_release(&pvec); 1166 return nr_reclaimed; 1167 } 1168 1169 /* 1170 * We are about to scan this zone at a certain priority level. If that priority 1171 * level is smaller (ie: more urgent) than the previous priority, then note 1172 * that priority level within the zone. This is done so that when the next 1173 * process comes in to scan this zone, it will immediately start out at this 1174 * priority level rather than having to build up its own scanning priority. 1175 * Here, this priority affects only the reclaim-mapped threshold. 1176 */ 1177 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1178 { 1179 if (priority < zone->prev_priority) 1180 zone->prev_priority = priority; 1181 } 1182 1183 /* 1184 * This moves pages from the active list to the inactive list. 1185 * 1186 * We move them the other way if the page is referenced by one or more 1187 * processes, from rmap. 1188 * 1189 * If the pages are mostly unmapped, the processing is fast and it is 1190 * appropriate to hold zone->lru_lock across the whole operation. But if 1191 * the pages are mapped, the processing is slow (page_referenced()) so we 1192 * should drop zone->lru_lock around each page. It's impossible to balance 1193 * this, so instead we remove the pages from the LRU while processing them. 1194 * It is safe to rely on PG_active against the non-LRU pages in here because 1195 * nobody will play with that bit on a non-LRU page. 1196 * 1197 * The downside is that we have to touch page->_count against each page. 1198 * But we had to alter page->flags anyway. 1199 */ 1200 1201 static void move_active_pages_to_lru(struct zone *zone, 1202 struct list_head *list, 1203 enum lru_list lru) 1204 { 1205 unsigned long pgmoved = 0; 1206 struct pagevec pvec; 1207 struct page *page; 1208 1209 pagevec_init(&pvec, 1); 1210 1211 while (!list_empty(list)) { 1212 page = lru_to_page(list); 1213 prefetchw_prev_lru_page(page, list, flags); 1214 1215 VM_BUG_ON(PageLRU(page)); 1216 SetPageLRU(page); 1217 1218 VM_BUG_ON(!PageActive(page)); 1219 if (!is_active_lru(lru)) 1220 ClearPageActive(page); /* we are de-activating */ 1221 1222 list_move(&page->lru, &zone->lru[lru].list); 1223 mem_cgroup_add_lru_list(page, lru); 1224 pgmoved++; 1225 1226 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1227 spin_unlock_irq(&zone->lru_lock); 1228 if (buffer_heads_over_limit) 1229 pagevec_strip(&pvec); 1230 __pagevec_release(&pvec); 1231 spin_lock_irq(&zone->lru_lock); 1232 } 1233 } 1234 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1235 if (!is_active_lru(lru)) 1236 __count_vm_events(PGDEACTIVATE, pgmoved); 1237 } 1238 1239 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1240 struct scan_control *sc, int priority, int file) 1241 { 1242 unsigned long pgmoved; 1243 unsigned long pgscanned; 1244 unsigned long vm_flags; 1245 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1246 LIST_HEAD(l_active); 1247 LIST_HEAD(l_inactive); 1248 struct page *page; 1249 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1250 1251 lru_add_drain(); 1252 spin_lock_irq(&zone->lru_lock); 1253 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1254 ISOLATE_ACTIVE, zone, 1255 sc->mem_cgroup, 1, file); 1256 /* 1257 * zone->pages_scanned is used for detect zone's oom 1258 * mem_cgroup remembers nr_scan by itself. 1259 */ 1260 if (scanning_global_lru(sc)) { 1261 zone->pages_scanned += pgscanned; 1262 } 1263 reclaim_stat->recent_scanned[!!file] += pgmoved; 1264 1265 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1266 if (file) 1267 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved); 1268 else 1269 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved); 1270 spin_unlock_irq(&zone->lru_lock); 1271 1272 pgmoved = 0; /* count referenced (mapping) mapped pages */ 1273 while (!list_empty(&l_hold)) { 1274 cond_resched(); 1275 page = lru_to_page(&l_hold); 1276 list_del(&page->lru); 1277 1278 if (unlikely(!page_evictable(page, NULL))) { 1279 putback_lru_page(page); 1280 continue; 1281 } 1282 1283 /* page_referenced clears PageReferenced */ 1284 if (page_mapping_inuse(page) && 1285 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1286 pgmoved++; 1287 /* 1288 * Identify referenced, file-backed active pages and 1289 * give them one more trip around the active list. So 1290 * that executable code get better chances to stay in 1291 * memory under moderate memory pressure. Anon pages 1292 * are not likely to be evicted by use-once streaming 1293 * IO, plus JVM can create lots of anon VM_EXEC pages, 1294 * so we ignore them here. 1295 */ 1296 if ((vm_flags & VM_EXEC) && !PageAnon(page)) { 1297 list_add(&page->lru, &l_active); 1298 continue; 1299 } 1300 } 1301 1302 list_add(&page->lru, &l_inactive); 1303 } 1304 1305 /* 1306 * Move pages back to the lru list. 1307 */ 1308 spin_lock_irq(&zone->lru_lock); 1309 /* 1310 * Count referenced pages from currently used mappings as rotated, 1311 * even though only some of them are actually re-activated. This 1312 * helps balance scan pressure between file and anonymous pages in 1313 * get_scan_ratio. 1314 */ 1315 reclaim_stat->recent_rotated[!!file] += pgmoved; 1316 1317 move_active_pages_to_lru(zone, &l_active, 1318 LRU_ACTIVE + file * LRU_FILE); 1319 move_active_pages_to_lru(zone, &l_inactive, 1320 LRU_BASE + file * LRU_FILE); 1321 1322 spin_unlock_irq(&zone->lru_lock); 1323 } 1324 1325 static int inactive_anon_is_low_global(struct zone *zone) 1326 { 1327 unsigned long active, inactive; 1328 1329 active = zone_page_state(zone, NR_ACTIVE_ANON); 1330 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1331 1332 if (inactive * zone->inactive_ratio < active) 1333 return 1; 1334 1335 return 0; 1336 } 1337 1338 /** 1339 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1340 * @zone: zone to check 1341 * @sc: scan control of this context 1342 * 1343 * Returns true if the zone does not have enough inactive anon pages, 1344 * meaning some active anon pages need to be deactivated. 1345 */ 1346 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1347 { 1348 int low; 1349 1350 if (scanning_global_lru(sc)) 1351 low = inactive_anon_is_low_global(zone); 1352 else 1353 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1354 return low; 1355 } 1356 1357 static int inactive_file_is_low_global(struct zone *zone) 1358 { 1359 unsigned long active, inactive; 1360 1361 active = zone_page_state(zone, NR_ACTIVE_FILE); 1362 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1363 1364 return (active > inactive); 1365 } 1366 1367 /** 1368 * inactive_file_is_low - check if file pages need to be deactivated 1369 * @zone: zone to check 1370 * @sc: scan control of this context 1371 * 1372 * When the system is doing streaming IO, memory pressure here 1373 * ensures that active file pages get deactivated, until more 1374 * than half of the file pages are on the inactive list. 1375 * 1376 * Once we get to that situation, protect the system's working 1377 * set from being evicted by disabling active file page aging. 1378 * 1379 * This uses a different ratio than the anonymous pages, because 1380 * the page cache uses a use-once replacement algorithm. 1381 */ 1382 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1383 { 1384 int low; 1385 1386 if (scanning_global_lru(sc)) 1387 low = inactive_file_is_low_global(zone); 1388 else 1389 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1390 return low; 1391 } 1392 1393 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1394 struct zone *zone, struct scan_control *sc, int priority) 1395 { 1396 int file = is_file_lru(lru); 1397 1398 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) { 1399 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1400 return 0; 1401 } 1402 1403 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) { 1404 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1405 return 0; 1406 } 1407 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1408 } 1409 1410 /* 1411 * Determine how aggressively the anon and file LRU lists should be 1412 * scanned. The relative value of each set of LRU lists is determined 1413 * by looking at the fraction of the pages scanned we did rotate back 1414 * onto the active list instead of evict. 1415 * 1416 * percent[0] specifies how much pressure to put on ram/swap backed 1417 * memory, while percent[1] determines pressure on the file LRUs. 1418 */ 1419 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1420 unsigned long *percent) 1421 { 1422 unsigned long anon, file, free; 1423 unsigned long anon_prio, file_prio; 1424 unsigned long ap, fp; 1425 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1426 1427 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) + 1428 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON); 1429 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) + 1430 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE); 1431 1432 if (scanning_global_lru(sc)) { 1433 free = zone_page_state(zone, NR_FREE_PAGES); 1434 /* If we have very few page cache pages, 1435 force-scan anon pages. */ 1436 if (unlikely(file + free <= high_wmark_pages(zone))) { 1437 percent[0] = 100; 1438 percent[1] = 0; 1439 return; 1440 } 1441 } 1442 1443 /* 1444 * OK, so we have swap space and a fair amount of page cache 1445 * pages. We use the recently rotated / recently scanned 1446 * ratios to determine how valuable each cache is. 1447 * 1448 * Because workloads change over time (and to avoid overflow) 1449 * we keep these statistics as a floating average, which ends 1450 * up weighing recent references more than old ones. 1451 * 1452 * anon in [0], file in [1] 1453 */ 1454 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1455 spin_lock_irq(&zone->lru_lock); 1456 reclaim_stat->recent_scanned[0] /= 2; 1457 reclaim_stat->recent_rotated[0] /= 2; 1458 spin_unlock_irq(&zone->lru_lock); 1459 } 1460 1461 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1462 spin_lock_irq(&zone->lru_lock); 1463 reclaim_stat->recent_scanned[1] /= 2; 1464 reclaim_stat->recent_rotated[1] /= 2; 1465 spin_unlock_irq(&zone->lru_lock); 1466 } 1467 1468 /* 1469 * With swappiness at 100, anonymous and file have the same priority. 1470 * This scanning priority is essentially the inverse of IO cost. 1471 */ 1472 anon_prio = sc->swappiness; 1473 file_prio = 200 - sc->swappiness; 1474 1475 /* 1476 * The amount of pressure on anon vs file pages is inversely 1477 * proportional to the fraction of recently scanned pages on 1478 * each list that were recently referenced and in active use. 1479 */ 1480 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1481 ap /= reclaim_stat->recent_rotated[0] + 1; 1482 1483 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1484 fp /= reclaim_stat->recent_rotated[1] + 1; 1485 1486 /* Normalize to percentages */ 1487 percent[0] = 100 * ap / (ap + fp + 1); 1488 percent[1] = 100 - percent[0]; 1489 } 1490 1491 /* 1492 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1493 * until we collected @swap_cluster_max pages to scan. 1494 */ 1495 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1496 unsigned long *nr_saved_scan, 1497 unsigned long swap_cluster_max) 1498 { 1499 unsigned long nr; 1500 1501 *nr_saved_scan += nr_to_scan; 1502 nr = *nr_saved_scan; 1503 1504 if (nr >= swap_cluster_max) 1505 *nr_saved_scan = 0; 1506 else 1507 nr = 0; 1508 1509 return nr; 1510 } 1511 1512 /* 1513 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1514 */ 1515 static void shrink_zone(int priority, struct zone *zone, 1516 struct scan_control *sc) 1517 { 1518 unsigned long nr[NR_LRU_LISTS]; 1519 unsigned long nr_to_scan; 1520 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1521 enum lru_list l; 1522 unsigned long nr_reclaimed = sc->nr_reclaimed; 1523 unsigned long swap_cluster_max = sc->swap_cluster_max; 1524 int noswap = 0; 1525 1526 /* If we have no swap space, do not bother scanning anon pages. */ 1527 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1528 noswap = 1; 1529 percent[0] = 0; 1530 percent[1] = 100; 1531 } else 1532 get_scan_ratio(zone, sc, percent); 1533 1534 for_each_evictable_lru(l) { 1535 int file = is_file_lru(l); 1536 unsigned long scan; 1537 1538 scan = zone_nr_pages(zone, sc, l); 1539 if (priority || noswap) { 1540 scan >>= priority; 1541 scan = (scan * percent[file]) / 100; 1542 } 1543 if (scanning_global_lru(sc)) 1544 nr[l] = nr_scan_try_batch(scan, 1545 &zone->lru[l].nr_saved_scan, 1546 swap_cluster_max); 1547 else 1548 nr[l] = scan; 1549 } 1550 1551 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1552 nr[LRU_INACTIVE_FILE]) { 1553 for_each_evictable_lru(l) { 1554 if (nr[l]) { 1555 nr_to_scan = min(nr[l], swap_cluster_max); 1556 nr[l] -= nr_to_scan; 1557 1558 nr_reclaimed += shrink_list(l, nr_to_scan, 1559 zone, sc, priority); 1560 } 1561 } 1562 /* 1563 * On large memory systems, scan >> priority can become 1564 * really large. This is fine for the starting priority; 1565 * we want to put equal scanning pressure on each zone. 1566 * However, if the VM has a harder time of freeing pages, 1567 * with multiple processes reclaiming pages, the total 1568 * freeing target can get unreasonably large. 1569 */ 1570 if (nr_reclaimed > swap_cluster_max && 1571 priority < DEF_PRIORITY && !current_is_kswapd()) 1572 break; 1573 } 1574 1575 sc->nr_reclaimed = nr_reclaimed; 1576 1577 /* 1578 * Even if we did not try to evict anon pages at all, we want to 1579 * rebalance the anon lru active/inactive ratio. 1580 */ 1581 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) 1582 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1583 1584 throttle_vm_writeout(sc->gfp_mask); 1585 } 1586 1587 /* 1588 * This is the direct reclaim path, for page-allocating processes. We only 1589 * try to reclaim pages from zones which will satisfy the caller's allocation 1590 * request. 1591 * 1592 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1593 * Because: 1594 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1595 * allocation or 1596 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1597 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1598 * zone defense algorithm. 1599 * 1600 * If a zone is deemed to be full of pinned pages then just give it a light 1601 * scan then give up on it. 1602 */ 1603 static void shrink_zones(int priority, struct zonelist *zonelist, 1604 struct scan_control *sc) 1605 { 1606 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1607 struct zoneref *z; 1608 struct zone *zone; 1609 1610 sc->all_unreclaimable = 1; 1611 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1612 sc->nodemask) { 1613 if (!populated_zone(zone)) 1614 continue; 1615 /* 1616 * Take care memory controller reclaiming has small influence 1617 * to global LRU. 1618 */ 1619 if (scanning_global_lru(sc)) { 1620 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1621 continue; 1622 note_zone_scanning_priority(zone, priority); 1623 1624 if (zone_is_all_unreclaimable(zone) && 1625 priority != DEF_PRIORITY) 1626 continue; /* Let kswapd poll it */ 1627 sc->all_unreclaimable = 0; 1628 } else { 1629 /* 1630 * Ignore cpuset limitation here. We just want to reduce 1631 * # of used pages by us regardless of memory shortage. 1632 */ 1633 sc->all_unreclaimable = 0; 1634 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1635 priority); 1636 } 1637 1638 shrink_zone(priority, zone, sc); 1639 } 1640 } 1641 1642 /* 1643 * This is the main entry point to direct page reclaim. 1644 * 1645 * If a full scan of the inactive list fails to free enough memory then we 1646 * are "out of memory" and something needs to be killed. 1647 * 1648 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1649 * high - the zone may be full of dirty or under-writeback pages, which this 1650 * caller can't do much about. We kick pdflush and take explicit naps in the 1651 * hope that some of these pages can be written. But if the allocating task 1652 * holds filesystem locks which prevent writeout this might not work, and the 1653 * allocation attempt will fail. 1654 * 1655 * returns: 0, if no pages reclaimed 1656 * else, the number of pages reclaimed 1657 */ 1658 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1659 struct scan_control *sc) 1660 { 1661 int priority; 1662 unsigned long ret = 0; 1663 unsigned long total_scanned = 0; 1664 struct reclaim_state *reclaim_state = current->reclaim_state; 1665 unsigned long lru_pages = 0; 1666 struct zoneref *z; 1667 struct zone *zone; 1668 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1669 1670 delayacct_freepages_start(); 1671 1672 if (scanning_global_lru(sc)) 1673 count_vm_event(ALLOCSTALL); 1674 /* 1675 * mem_cgroup will not do shrink_slab. 1676 */ 1677 if (scanning_global_lru(sc)) { 1678 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1679 1680 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1681 continue; 1682 1683 lru_pages += zone_lru_pages(zone); 1684 } 1685 } 1686 1687 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1688 sc->nr_scanned = 0; 1689 if (!priority) 1690 disable_swap_token(); 1691 shrink_zones(priority, zonelist, sc); 1692 /* 1693 * Don't shrink slabs when reclaiming memory from 1694 * over limit cgroups 1695 */ 1696 if (scanning_global_lru(sc)) { 1697 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1698 if (reclaim_state) { 1699 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1700 reclaim_state->reclaimed_slab = 0; 1701 } 1702 } 1703 total_scanned += sc->nr_scanned; 1704 if (sc->nr_reclaimed >= sc->swap_cluster_max) { 1705 ret = sc->nr_reclaimed; 1706 goto out; 1707 } 1708 1709 /* 1710 * Try to write back as many pages as we just scanned. This 1711 * tends to cause slow streaming writers to write data to the 1712 * disk smoothly, at the dirtying rate, which is nice. But 1713 * that's undesirable in laptop mode, where we *want* lumpy 1714 * writeout. So in laptop mode, write out the whole world. 1715 */ 1716 if (total_scanned > sc->swap_cluster_max + 1717 sc->swap_cluster_max / 2) { 1718 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1719 sc->may_writepage = 1; 1720 } 1721 1722 /* Take a nap, wait for some writeback to complete */ 1723 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1724 congestion_wait(BLK_RW_ASYNC, HZ/10); 1725 } 1726 /* top priority shrink_zones still had more to do? don't OOM, then */ 1727 if (!sc->all_unreclaimable && scanning_global_lru(sc)) 1728 ret = sc->nr_reclaimed; 1729 out: 1730 /* 1731 * Now that we've scanned all the zones at this priority level, note 1732 * that level within the zone so that the next thread which performs 1733 * scanning of this zone will immediately start out at this priority 1734 * level. This affects only the decision whether or not to bring 1735 * mapped pages onto the inactive list. 1736 */ 1737 if (priority < 0) 1738 priority = 0; 1739 1740 if (scanning_global_lru(sc)) { 1741 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1742 1743 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1744 continue; 1745 1746 zone->prev_priority = priority; 1747 } 1748 } else 1749 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1750 1751 delayacct_freepages_end(); 1752 1753 return ret; 1754 } 1755 1756 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1757 gfp_t gfp_mask, nodemask_t *nodemask) 1758 { 1759 struct scan_control sc = { 1760 .gfp_mask = gfp_mask, 1761 .may_writepage = !laptop_mode, 1762 .swap_cluster_max = SWAP_CLUSTER_MAX, 1763 .may_unmap = 1, 1764 .may_swap = 1, 1765 .swappiness = vm_swappiness, 1766 .order = order, 1767 .mem_cgroup = NULL, 1768 .isolate_pages = isolate_pages_global, 1769 .nodemask = nodemask, 1770 }; 1771 1772 return do_try_to_free_pages(zonelist, &sc); 1773 } 1774 1775 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1776 1777 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1778 gfp_t gfp_mask, 1779 bool noswap, 1780 unsigned int swappiness) 1781 { 1782 struct scan_control sc = { 1783 .may_writepage = !laptop_mode, 1784 .may_unmap = 1, 1785 .may_swap = !noswap, 1786 .swap_cluster_max = SWAP_CLUSTER_MAX, 1787 .swappiness = swappiness, 1788 .order = 0, 1789 .mem_cgroup = mem_cont, 1790 .isolate_pages = mem_cgroup_isolate_pages, 1791 .nodemask = NULL, /* we don't care the placement */ 1792 }; 1793 struct zonelist *zonelist; 1794 1795 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1796 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1797 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1798 return do_try_to_free_pages(zonelist, &sc); 1799 } 1800 #endif 1801 1802 /* 1803 * For kswapd, balance_pgdat() will work across all this node's zones until 1804 * they are all at high_wmark_pages(zone). 1805 * 1806 * Returns the number of pages which were actually freed. 1807 * 1808 * There is special handling here for zones which are full of pinned pages. 1809 * This can happen if the pages are all mlocked, or if they are all used by 1810 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1811 * What we do is to detect the case where all pages in the zone have been 1812 * scanned twice and there has been zero successful reclaim. Mark the zone as 1813 * dead and from now on, only perform a short scan. Basically we're polling 1814 * the zone for when the problem goes away. 1815 * 1816 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1817 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 1818 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 1819 * lower zones regardless of the number of free pages in the lower zones. This 1820 * interoperates with the page allocator fallback scheme to ensure that aging 1821 * of pages is balanced across the zones. 1822 */ 1823 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1824 { 1825 int all_zones_ok; 1826 int priority; 1827 int i; 1828 unsigned long total_scanned; 1829 struct reclaim_state *reclaim_state = current->reclaim_state; 1830 struct scan_control sc = { 1831 .gfp_mask = GFP_KERNEL, 1832 .may_unmap = 1, 1833 .may_swap = 1, 1834 .swap_cluster_max = SWAP_CLUSTER_MAX, 1835 .swappiness = vm_swappiness, 1836 .order = order, 1837 .mem_cgroup = NULL, 1838 .isolate_pages = isolate_pages_global, 1839 }; 1840 /* 1841 * temp_priority is used to remember the scanning priority at which 1842 * this zone was successfully refilled to 1843 * free_pages == high_wmark_pages(zone). 1844 */ 1845 int temp_priority[MAX_NR_ZONES]; 1846 1847 loop_again: 1848 total_scanned = 0; 1849 sc.nr_reclaimed = 0; 1850 sc.may_writepage = !laptop_mode; 1851 count_vm_event(PAGEOUTRUN); 1852 1853 for (i = 0; i < pgdat->nr_zones; i++) 1854 temp_priority[i] = DEF_PRIORITY; 1855 1856 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1857 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1858 unsigned long lru_pages = 0; 1859 1860 /* The swap token gets in the way of swapout... */ 1861 if (!priority) 1862 disable_swap_token(); 1863 1864 all_zones_ok = 1; 1865 1866 /* 1867 * Scan in the highmem->dma direction for the highest 1868 * zone which needs scanning 1869 */ 1870 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1871 struct zone *zone = pgdat->node_zones + i; 1872 1873 if (!populated_zone(zone)) 1874 continue; 1875 1876 if (zone_is_all_unreclaimable(zone) && 1877 priority != DEF_PRIORITY) 1878 continue; 1879 1880 /* 1881 * Do some background aging of the anon list, to give 1882 * pages a chance to be referenced before reclaiming. 1883 */ 1884 if (inactive_anon_is_low(zone, &sc)) 1885 shrink_active_list(SWAP_CLUSTER_MAX, zone, 1886 &sc, priority, 0); 1887 1888 if (!zone_watermark_ok(zone, order, 1889 high_wmark_pages(zone), 0, 0)) { 1890 end_zone = i; 1891 break; 1892 } 1893 } 1894 if (i < 0) 1895 goto out; 1896 1897 for (i = 0; i <= end_zone; i++) { 1898 struct zone *zone = pgdat->node_zones + i; 1899 1900 lru_pages += zone_lru_pages(zone); 1901 } 1902 1903 /* 1904 * Now scan the zone in the dma->highmem direction, stopping 1905 * at the last zone which needs scanning. 1906 * 1907 * We do this because the page allocator works in the opposite 1908 * direction. This prevents the page allocator from allocating 1909 * pages behind kswapd's direction of progress, which would 1910 * cause too much scanning of the lower zones. 1911 */ 1912 for (i = 0; i <= end_zone; i++) { 1913 struct zone *zone = pgdat->node_zones + i; 1914 int nr_slab; 1915 1916 if (!populated_zone(zone)) 1917 continue; 1918 1919 if (zone_is_all_unreclaimable(zone) && 1920 priority != DEF_PRIORITY) 1921 continue; 1922 1923 if (!zone_watermark_ok(zone, order, 1924 high_wmark_pages(zone), end_zone, 0)) 1925 all_zones_ok = 0; 1926 temp_priority[i] = priority; 1927 sc.nr_scanned = 0; 1928 note_zone_scanning_priority(zone, priority); 1929 /* 1930 * We put equal pressure on every zone, unless one 1931 * zone has way too many pages free already. 1932 */ 1933 if (!zone_watermark_ok(zone, order, 1934 8*high_wmark_pages(zone), end_zone, 0)) 1935 shrink_zone(priority, zone, &sc); 1936 reclaim_state->reclaimed_slab = 0; 1937 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1938 lru_pages); 1939 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 1940 total_scanned += sc.nr_scanned; 1941 if (zone_is_all_unreclaimable(zone)) 1942 continue; 1943 if (nr_slab == 0 && zone->pages_scanned >= 1944 (zone_lru_pages(zone) * 6)) 1945 zone_set_flag(zone, 1946 ZONE_ALL_UNRECLAIMABLE); 1947 /* 1948 * If we've done a decent amount of scanning and 1949 * the reclaim ratio is low, start doing writepage 1950 * even in laptop mode 1951 */ 1952 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1953 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 1954 sc.may_writepage = 1; 1955 } 1956 if (all_zones_ok) 1957 break; /* kswapd: all done */ 1958 /* 1959 * OK, kswapd is getting into trouble. Take a nap, then take 1960 * another pass across the zones. 1961 */ 1962 if (total_scanned && priority < DEF_PRIORITY - 2) 1963 congestion_wait(BLK_RW_ASYNC, HZ/10); 1964 1965 /* 1966 * We do this so kswapd doesn't build up large priorities for 1967 * example when it is freeing in parallel with allocators. It 1968 * matches the direct reclaim path behaviour in terms of impact 1969 * on zone->*_priority. 1970 */ 1971 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 1972 break; 1973 } 1974 out: 1975 /* 1976 * Note within each zone the priority level at which this zone was 1977 * brought into a happy state. So that the next thread which scans this 1978 * zone will start out at that priority level. 1979 */ 1980 for (i = 0; i < pgdat->nr_zones; i++) { 1981 struct zone *zone = pgdat->node_zones + i; 1982 1983 zone->prev_priority = temp_priority[i]; 1984 } 1985 if (!all_zones_ok) { 1986 cond_resched(); 1987 1988 try_to_freeze(); 1989 1990 /* 1991 * Fragmentation may mean that the system cannot be 1992 * rebalanced for high-order allocations in all zones. 1993 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 1994 * it means the zones have been fully scanned and are still 1995 * not balanced. For high-order allocations, there is 1996 * little point trying all over again as kswapd may 1997 * infinite loop. 1998 * 1999 * Instead, recheck all watermarks at order-0 as they 2000 * are the most important. If watermarks are ok, kswapd will go 2001 * back to sleep. High-order users can still perform direct 2002 * reclaim if they wish. 2003 */ 2004 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2005 order = sc.order = 0; 2006 2007 goto loop_again; 2008 } 2009 2010 return sc.nr_reclaimed; 2011 } 2012 2013 /* 2014 * The background pageout daemon, started as a kernel thread 2015 * from the init process. 2016 * 2017 * This basically trickles out pages so that we have _some_ 2018 * free memory available even if there is no other activity 2019 * that frees anything up. This is needed for things like routing 2020 * etc, where we otherwise might have all activity going on in 2021 * asynchronous contexts that cannot page things out. 2022 * 2023 * If there are applications that are active memory-allocators 2024 * (most normal use), this basically shouldn't matter. 2025 */ 2026 static int kswapd(void *p) 2027 { 2028 unsigned long order; 2029 pg_data_t *pgdat = (pg_data_t*)p; 2030 struct task_struct *tsk = current; 2031 DEFINE_WAIT(wait); 2032 struct reclaim_state reclaim_state = { 2033 .reclaimed_slab = 0, 2034 }; 2035 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2036 2037 lockdep_set_current_reclaim_state(GFP_KERNEL); 2038 2039 if (!cpumask_empty(cpumask)) 2040 set_cpus_allowed_ptr(tsk, cpumask); 2041 current->reclaim_state = &reclaim_state; 2042 2043 /* 2044 * Tell the memory management that we're a "memory allocator", 2045 * and that if we need more memory we should get access to it 2046 * regardless (see "__alloc_pages()"). "kswapd" should 2047 * never get caught in the normal page freeing logic. 2048 * 2049 * (Kswapd normally doesn't need memory anyway, but sometimes 2050 * you need a small amount of memory in order to be able to 2051 * page out something else, and this flag essentially protects 2052 * us from recursively trying to free more memory as we're 2053 * trying to free the first piece of memory in the first place). 2054 */ 2055 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2056 set_freezable(); 2057 2058 order = 0; 2059 for ( ; ; ) { 2060 unsigned long new_order; 2061 2062 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2063 new_order = pgdat->kswapd_max_order; 2064 pgdat->kswapd_max_order = 0; 2065 if (order < new_order) { 2066 /* 2067 * Don't sleep if someone wants a larger 'order' 2068 * allocation 2069 */ 2070 order = new_order; 2071 } else { 2072 if (!freezing(current)) 2073 schedule(); 2074 2075 order = pgdat->kswapd_max_order; 2076 } 2077 finish_wait(&pgdat->kswapd_wait, &wait); 2078 2079 if (!try_to_freeze()) { 2080 /* We can speed up thawing tasks if we don't call 2081 * balance_pgdat after returning from the refrigerator 2082 */ 2083 balance_pgdat(pgdat, order); 2084 } 2085 } 2086 return 0; 2087 } 2088 2089 /* 2090 * A zone is low on free memory, so wake its kswapd task to service it. 2091 */ 2092 void wakeup_kswapd(struct zone *zone, int order) 2093 { 2094 pg_data_t *pgdat; 2095 2096 if (!populated_zone(zone)) 2097 return; 2098 2099 pgdat = zone->zone_pgdat; 2100 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2101 return; 2102 if (pgdat->kswapd_max_order < order) 2103 pgdat->kswapd_max_order = order; 2104 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2105 return; 2106 if (!waitqueue_active(&pgdat->kswapd_wait)) 2107 return; 2108 wake_up_interruptible(&pgdat->kswapd_wait); 2109 } 2110 2111 unsigned long global_lru_pages(void) 2112 { 2113 return global_page_state(NR_ACTIVE_ANON) 2114 + global_page_state(NR_ACTIVE_FILE) 2115 + global_page_state(NR_INACTIVE_ANON) 2116 + global_page_state(NR_INACTIVE_FILE); 2117 } 2118 2119 #ifdef CONFIG_HIBERNATION 2120 /* 2121 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 2122 * from LRU lists system-wide, for given pass and priority. 2123 * 2124 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 2125 */ 2126 static void shrink_all_zones(unsigned long nr_pages, int prio, 2127 int pass, struct scan_control *sc) 2128 { 2129 struct zone *zone; 2130 unsigned long nr_reclaimed = 0; 2131 2132 for_each_populated_zone(zone) { 2133 enum lru_list l; 2134 2135 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 2136 continue; 2137 2138 for_each_evictable_lru(l) { 2139 enum zone_stat_item ls = NR_LRU_BASE + l; 2140 unsigned long lru_pages = zone_page_state(zone, ls); 2141 2142 /* For pass = 0, we don't shrink the active list */ 2143 if (pass == 0 && (l == LRU_ACTIVE_ANON || 2144 l == LRU_ACTIVE_FILE)) 2145 continue; 2146 2147 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1; 2148 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) { 2149 unsigned long nr_to_scan; 2150 2151 zone->lru[l].nr_saved_scan = 0; 2152 nr_to_scan = min(nr_pages, lru_pages); 2153 nr_reclaimed += shrink_list(l, nr_to_scan, zone, 2154 sc, prio); 2155 if (nr_reclaimed >= nr_pages) { 2156 sc->nr_reclaimed += nr_reclaimed; 2157 return; 2158 } 2159 } 2160 } 2161 } 2162 sc->nr_reclaimed += nr_reclaimed; 2163 } 2164 2165 /* 2166 * Try to free `nr_pages' of memory, system-wide, and return the number of 2167 * freed pages. 2168 * 2169 * Rather than trying to age LRUs the aim is to preserve the overall 2170 * LRU order by reclaiming preferentially 2171 * inactive > active > active referenced > active mapped 2172 */ 2173 unsigned long shrink_all_memory(unsigned long nr_pages) 2174 { 2175 unsigned long lru_pages, nr_slab; 2176 int pass; 2177 struct reclaim_state reclaim_state; 2178 struct scan_control sc = { 2179 .gfp_mask = GFP_KERNEL, 2180 .may_unmap = 0, 2181 .may_writepage = 1, 2182 .isolate_pages = isolate_pages_global, 2183 .nr_reclaimed = 0, 2184 }; 2185 2186 current->reclaim_state = &reclaim_state; 2187 2188 lru_pages = global_lru_pages(); 2189 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 2190 /* If slab caches are huge, it's better to hit them first */ 2191 while (nr_slab >= lru_pages) { 2192 reclaim_state.reclaimed_slab = 0; 2193 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 2194 if (!reclaim_state.reclaimed_slab) 2195 break; 2196 2197 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2198 if (sc.nr_reclaimed >= nr_pages) 2199 goto out; 2200 2201 nr_slab -= reclaim_state.reclaimed_slab; 2202 } 2203 2204 /* 2205 * We try to shrink LRUs in 5 passes: 2206 * 0 = Reclaim from inactive_list only 2207 * 1 = Reclaim from active list but don't reclaim mapped 2208 * 2 = 2nd pass of type 1 2209 * 3 = Reclaim mapped (normal reclaim) 2210 * 4 = 2nd pass of type 3 2211 */ 2212 for (pass = 0; pass < 5; pass++) { 2213 int prio; 2214 2215 /* Force reclaiming mapped pages in the passes #3 and #4 */ 2216 if (pass > 2) 2217 sc.may_unmap = 1; 2218 2219 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 2220 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed; 2221 2222 sc.nr_scanned = 0; 2223 sc.swap_cluster_max = nr_to_scan; 2224 shrink_all_zones(nr_to_scan, prio, pass, &sc); 2225 if (sc.nr_reclaimed >= nr_pages) 2226 goto out; 2227 2228 reclaim_state.reclaimed_slab = 0; 2229 shrink_slab(sc.nr_scanned, sc.gfp_mask, 2230 global_lru_pages()); 2231 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2232 if (sc.nr_reclaimed >= nr_pages) 2233 goto out; 2234 2235 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 2236 congestion_wait(BLK_RW_ASYNC, HZ / 10); 2237 } 2238 } 2239 2240 /* 2241 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be 2242 * something in slab caches 2243 */ 2244 if (!sc.nr_reclaimed) { 2245 do { 2246 reclaim_state.reclaimed_slab = 0; 2247 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); 2248 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2249 } while (sc.nr_reclaimed < nr_pages && 2250 reclaim_state.reclaimed_slab > 0); 2251 } 2252 2253 2254 out: 2255 current->reclaim_state = NULL; 2256 2257 return sc.nr_reclaimed; 2258 } 2259 #endif /* CONFIG_HIBERNATION */ 2260 2261 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2262 not required for correctness. So if the last cpu in a node goes 2263 away, we get changed to run anywhere: as the first one comes back, 2264 restore their cpu bindings. */ 2265 static int __devinit cpu_callback(struct notifier_block *nfb, 2266 unsigned long action, void *hcpu) 2267 { 2268 int nid; 2269 2270 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2271 for_each_node_state(nid, N_HIGH_MEMORY) { 2272 pg_data_t *pgdat = NODE_DATA(nid); 2273 const struct cpumask *mask; 2274 2275 mask = cpumask_of_node(pgdat->node_id); 2276 2277 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2278 /* One of our CPUs online: restore mask */ 2279 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2280 } 2281 } 2282 return NOTIFY_OK; 2283 } 2284 2285 /* 2286 * This kswapd start function will be called by init and node-hot-add. 2287 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2288 */ 2289 int kswapd_run(int nid) 2290 { 2291 pg_data_t *pgdat = NODE_DATA(nid); 2292 int ret = 0; 2293 2294 if (pgdat->kswapd) 2295 return 0; 2296 2297 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2298 if (IS_ERR(pgdat->kswapd)) { 2299 /* failure at boot is fatal */ 2300 BUG_ON(system_state == SYSTEM_BOOTING); 2301 printk("Failed to start kswapd on node %d\n",nid); 2302 ret = -1; 2303 } 2304 return ret; 2305 } 2306 2307 static int __init kswapd_init(void) 2308 { 2309 int nid; 2310 2311 swap_setup(); 2312 for_each_node_state(nid, N_HIGH_MEMORY) 2313 kswapd_run(nid); 2314 hotcpu_notifier(cpu_callback, 0); 2315 return 0; 2316 } 2317 2318 module_init(kswapd_init) 2319 2320 #ifdef CONFIG_NUMA 2321 /* 2322 * Zone reclaim mode 2323 * 2324 * If non-zero call zone_reclaim when the number of free pages falls below 2325 * the watermarks. 2326 */ 2327 int zone_reclaim_mode __read_mostly; 2328 2329 #define RECLAIM_OFF 0 2330 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2331 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2332 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2333 2334 /* 2335 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2336 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2337 * a zone. 2338 */ 2339 #define ZONE_RECLAIM_PRIORITY 4 2340 2341 /* 2342 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2343 * occur. 2344 */ 2345 int sysctl_min_unmapped_ratio = 1; 2346 2347 /* 2348 * If the number of slab pages in a zone grows beyond this percentage then 2349 * slab reclaim needs to occur. 2350 */ 2351 int sysctl_min_slab_ratio = 5; 2352 2353 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2354 { 2355 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2356 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2357 zone_page_state(zone, NR_ACTIVE_FILE); 2358 2359 /* 2360 * It's possible for there to be more file mapped pages than 2361 * accounted for by the pages on the file LRU lists because 2362 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2363 */ 2364 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2365 } 2366 2367 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2368 static long zone_pagecache_reclaimable(struct zone *zone) 2369 { 2370 long nr_pagecache_reclaimable; 2371 long delta = 0; 2372 2373 /* 2374 * If RECLAIM_SWAP is set, then all file pages are considered 2375 * potentially reclaimable. Otherwise, we have to worry about 2376 * pages like swapcache and zone_unmapped_file_pages() provides 2377 * a better estimate 2378 */ 2379 if (zone_reclaim_mode & RECLAIM_SWAP) 2380 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2381 else 2382 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2383 2384 /* If we can't clean pages, remove dirty pages from consideration */ 2385 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2386 delta += zone_page_state(zone, NR_FILE_DIRTY); 2387 2388 /* Watch for any possible underflows due to delta */ 2389 if (unlikely(delta > nr_pagecache_reclaimable)) 2390 delta = nr_pagecache_reclaimable; 2391 2392 return nr_pagecache_reclaimable - delta; 2393 } 2394 2395 /* 2396 * Try to free up some pages from this zone through reclaim. 2397 */ 2398 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2399 { 2400 /* Minimum pages needed in order to stay on node */ 2401 const unsigned long nr_pages = 1 << order; 2402 struct task_struct *p = current; 2403 struct reclaim_state reclaim_state; 2404 int priority; 2405 struct scan_control sc = { 2406 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2407 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2408 .may_swap = 1, 2409 .swap_cluster_max = max_t(unsigned long, nr_pages, 2410 SWAP_CLUSTER_MAX), 2411 .gfp_mask = gfp_mask, 2412 .swappiness = vm_swappiness, 2413 .order = order, 2414 .isolate_pages = isolate_pages_global, 2415 }; 2416 unsigned long slab_reclaimable; 2417 2418 disable_swap_token(); 2419 cond_resched(); 2420 /* 2421 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2422 * and we also need to be able to write out pages for RECLAIM_WRITE 2423 * and RECLAIM_SWAP. 2424 */ 2425 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2426 reclaim_state.reclaimed_slab = 0; 2427 p->reclaim_state = &reclaim_state; 2428 2429 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2430 /* 2431 * Free memory by calling shrink zone with increasing 2432 * priorities until we have enough memory freed. 2433 */ 2434 priority = ZONE_RECLAIM_PRIORITY; 2435 do { 2436 note_zone_scanning_priority(zone, priority); 2437 shrink_zone(priority, zone, &sc); 2438 priority--; 2439 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2440 } 2441 2442 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2443 if (slab_reclaimable > zone->min_slab_pages) { 2444 /* 2445 * shrink_slab() does not currently allow us to determine how 2446 * many pages were freed in this zone. So we take the current 2447 * number of slab pages and shake the slab until it is reduced 2448 * by the same nr_pages that we used for reclaiming unmapped 2449 * pages. 2450 * 2451 * Note that shrink_slab will free memory on all zones and may 2452 * take a long time. 2453 */ 2454 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2455 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2456 slab_reclaimable - nr_pages) 2457 ; 2458 2459 /* 2460 * Update nr_reclaimed by the number of slab pages we 2461 * reclaimed from this zone. 2462 */ 2463 sc.nr_reclaimed += slab_reclaimable - 2464 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2465 } 2466 2467 p->reclaim_state = NULL; 2468 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2469 return sc.nr_reclaimed >= nr_pages; 2470 } 2471 2472 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2473 { 2474 int node_id; 2475 int ret; 2476 2477 /* 2478 * Zone reclaim reclaims unmapped file backed pages and 2479 * slab pages if we are over the defined limits. 2480 * 2481 * A small portion of unmapped file backed pages is needed for 2482 * file I/O otherwise pages read by file I/O will be immediately 2483 * thrown out if the zone is overallocated. So we do not reclaim 2484 * if less than a specified percentage of the zone is used by 2485 * unmapped file backed pages. 2486 */ 2487 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2488 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2489 return ZONE_RECLAIM_FULL; 2490 2491 if (zone_is_all_unreclaimable(zone)) 2492 return ZONE_RECLAIM_FULL; 2493 2494 /* 2495 * Do not scan if the allocation should not be delayed. 2496 */ 2497 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2498 return ZONE_RECLAIM_NOSCAN; 2499 2500 /* 2501 * Only run zone reclaim on the local zone or on zones that do not 2502 * have associated processors. This will favor the local processor 2503 * over remote processors and spread off node memory allocations 2504 * as wide as possible. 2505 */ 2506 node_id = zone_to_nid(zone); 2507 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2508 return ZONE_RECLAIM_NOSCAN; 2509 2510 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2511 return ZONE_RECLAIM_NOSCAN; 2512 2513 ret = __zone_reclaim(zone, gfp_mask, order); 2514 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2515 2516 if (!ret) 2517 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2518 2519 return ret; 2520 } 2521 #endif 2522 2523 /* 2524 * page_evictable - test whether a page is evictable 2525 * @page: the page to test 2526 * @vma: the VMA in which the page is or will be mapped, may be NULL 2527 * 2528 * Test whether page is evictable--i.e., should be placed on active/inactive 2529 * lists vs unevictable list. The vma argument is !NULL when called from the 2530 * fault path to determine how to instantate a new page. 2531 * 2532 * Reasons page might not be evictable: 2533 * (1) page's mapping marked unevictable 2534 * (2) page is part of an mlocked VMA 2535 * 2536 */ 2537 int page_evictable(struct page *page, struct vm_area_struct *vma) 2538 { 2539 2540 if (mapping_unevictable(page_mapping(page))) 2541 return 0; 2542 2543 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2544 return 0; 2545 2546 return 1; 2547 } 2548 2549 /** 2550 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2551 * @page: page to check evictability and move to appropriate lru list 2552 * @zone: zone page is in 2553 * 2554 * Checks a page for evictability and moves the page to the appropriate 2555 * zone lru list. 2556 * 2557 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2558 * have PageUnevictable set. 2559 */ 2560 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2561 { 2562 VM_BUG_ON(PageActive(page)); 2563 2564 retry: 2565 ClearPageUnevictable(page); 2566 if (page_evictable(page, NULL)) { 2567 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page); 2568 2569 __dec_zone_state(zone, NR_UNEVICTABLE); 2570 list_move(&page->lru, &zone->lru[l].list); 2571 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2572 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2573 __count_vm_event(UNEVICTABLE_PGRESCUED); 2574 } else { 2575 /* 2576 * rotate unevictable list 2577 */ 2578 SetPageUnevictable(page); 2579 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2580 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2581 if (page_evictable(page, NULL)) 2582 goto retry; 2583 } 2584 } 2585 2586 /** 2587 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2588 * @mapping: struct address_space to scan for evictable pages 2589 * 2590 * Scan all pages in mapping. Check unevictable pages for 2591 * evictability and move them to the appropriate zone lru list. 2592 */ 2593 void scan_mapping_unevictable_pages(struct address_space *mapping) 2594 { 2595 pgoff_t next = 0; 2596 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2597 PAGE_CACHE_SHIFT; 2598 struct zone *zone; 2599 struct pagevec pvec; 2600 2601 if (mapping->nrpages == 0) 2602 return; 2603 2604 pagevec_init(&pvec, 0); 2605 while (next < end && 2606 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2607 int i; 2608 int pg_scanned = 0; 2609 2610 zone = NULL; 2611 2612 for (i = 0; i < pagevec_count(&pvec); i++) { 2613 struct page *page = pvec.pages[i]; 2614 pgoff_t page_index = page->index; 2615 struct zone *pagezone = page_zone(page); 2616 2617 pg_scanned++; 2618 if (page_index > next) 2619 next = page_index; 2620 next++; 2621 2622 if (pagezone != zone) { 2623 if (zone) 2624 spin_unlock_irq(&zone->lru_lock); 2625 zone = pagezone; 2626 spin_lock_irq(&zone->lru_lock); 2627 } 2628 2629 if (PageLRU(page) && PageUnevictable(page)) 2630 check_move_unevictable_page(page, zone); 2631 } 2632 if (zone) 2633 spin_unlock_irq(&zone->lru_lock); 2634 pagevec_release(&pvec); 2635 2636 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2637 } 2638 2639 } 2640 2641 /** 2642 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2643 * @zone - zone of which to scan the unevictable list 2644 * 2645 * Scan @zone's unevictable LRU lists to check for pages that have become 2646 * evictable. Move those that have to @zone's inactive list where they 2647 * become candidates for reclaim, unless shrink_inactive_zone() decides 2648 * to reactivate them. Pages that are still unevictable are rotated 2649 * back onto @zone's unevictable list. 2650 */ 2651 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2652 static void scan_zone_unevictable_pages(struct zone *zone) 2653 { 2654 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2655 unsigned long scan; 2656 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2657 2658 while (nr_to_scan > 0) { 2659 unsigned long batch_size = min(nr_to_scan, 2660 SCAN_UNEVICTABLE_BATCH_SIZE); 2661 2662 spin_lock_irq(&zone->lru_lock); 2663 for (scan = 0; scan < batch_size; scan++) { 2664 struct page *page = lru_to_page(l_unevictable); 2665 2666 if (!trylock_page(page)) 2667 continue; 2668 2669 prefetchw_prev_lru_page(page, l_unevictable, flags); 2670 2671 if (likely(PageLRU(page) && PageUnevictable(page))) 2672 check_move_unevictable_page(page, zone); 2673 2674 unlock_page(page); 2675 } 2676 spin_unlock_irq(&zone->lru_lock); 2677 2678 nr_to_scan -= batch_size; 2679 } 2680 } 2681 2682 2683 /** 2684 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2685 * 2686 * A really big hammer: scan all zones' unevictable LRU lists to check for 2687 * pages that have become evictable. Move those back to the zones' 2688 * inactive list where they become candidates for reclaim. 2689 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2690 * and we add swap to the system. As such, it runs in the context of a task 2691 * that has possibly/probably made some previously unevictable pages 2692 * evictable. 2693 */ 2694 static void scan_all_zones_unevictable_pages(void) 2695 { 2696 struct zone *zone; 2697 2698 for_each_zone(zone) { 2699 scan_zone_unevictable_pages(zone); 2700 } 2701 } 2702 2703 /* 2704 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2705 * all nodes' unevictable lists for evictable pages 2706 */ 2707 unsigned long scan_unevictable_pages; 2708 2709 int scan_unevictable_handler(struct ctl_table *table, int write, 2710 struct file *file, void __user *buffer, 2711 size_t *length, loff_t *ppos) 2712 { 2713 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 2714 2715 if (write && *(unsigned long *)table->data) 2716 scan_all_zones_unevictable_pages(); 2717 2718 scan_unevictable_pages = 0; 2719 return 0; 2720 } 2721 2722 /* 2723 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2724 * a specified node's per zone unevictable lists for evictable pages. 2725 */ 2726 2727 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2728 struct sysdev_attribute *attr, 2729 char *buf) 2730 { 2731 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2732 } 2733 2734 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2735 struct sysdev_attribute *attr, 2736 const char *buf, size_t count) 2737 { 2738 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2739 struct zone *zone; 2740 unsigned long res; 2741 unsigned long req = strict_strtoul(buf, 10, &res); 2742 2743 if (!req) 2744 return 1; /* zero is no-op */ 2745 2746 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2747 if (!populated_zone(zone)) 2748 continue; 2749 scan_zone_unevictable_pages(zone); 2750 } 2751 return 1; 2752 } 2753 2754 2755 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2756 read_scan_unevictable_node, 2757 write_scan_unevictable_node); 2758 2759 int scan_unevictable_register_node(struct node *node) 2760 { 2761 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2762 } 2763 2764 void scan_unevictable_unregister_node(struct node *node) 2765 { 2766 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2767 } 2768 2769