1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 unsigned int may_writepage:1; 88 89 /* Can mapped pages be reclaimed? */ 90 unsigned int may_unmap:1; 91 92 /* Can pages be swapped as part of reclaim? */ 93 unsigned int may_swap:1; 94 95 /* Can cgroups be reclaimed below their normal consumption range? */ 96 unsigned int may_thrash:1; 97 98 unsigned int hibernation_mode:1; 99 100 /* One of the zones is ready for compaction */ 101 unsigned int compaction_ready:1; 102 103 /* Incremented by the number of inactive pages that were scanned */ 104 unsigned long nr_scanned; 105 106 /* Number of pages freed so far during a call to shrink_zones() */ 107 unsigned long nr_reclaimed; 108 }; 109 110 #ifdef ARCH_HAS_PREFETCH 111 #define prefetch_prev_lru_page(_page, _base, _field) \ 112 do { \ 113 if ((_page)->lru.prev != _base) { \ 114 struct page *prev; \ 115 \ 116 prev = lru_to_page(&(_page->lru)); \ 117 prefetch(&prev->_field); \ 118 } \ 119 } while (0) 120 #else 121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 122 #endif 123 124 #ifdef ARCH_HAS_PREFETCHW 125 #define prefetchw_prev_lru_page(_page, _base, _field) \ 126 do { \ 127 if ((_page)->lru.prev != _base) { \ 128 struct page *prev; \ 129 \ 130 prev = lru_to_page(&(_page->lru)); \ 131 prefetchw(&prev->_field); \ 132 } \ 133 } while (0) 134 #else 135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 136 #endif 137 138 /* 139 * From 0 .. 100. Higher means more swappy. 140 */ 141 int vm_swappiness = 60; 142 /* 143 * The total number of pages which are beyond the high watermark within all 144 * zones. 145 */ 146 unsigned long vm_total_pages; 147 148 static LIST_HEAD(shrinker_list); 149 static DECLARE_RWSEM(shrinker_rwsem); 150 151 #ifdef CONFIG_MEMCG 152 static bool global_reclaim(struct scan_control *sc) 153 { 154 return !sc->target_mem_cgroup; 155 } 156 157 /** 158 * sane_reclaim - is the usual dirty throttling mechanism operational? 159 * @sc: scan_control in question 160 * 161 * The normal page dirty throttling mechanism in balance_dirty_pages() is 162 * completely broken with the legacy memcg and direct stalling in 163 * shrink_page_list() is used for throttling instead, which lacks all the 164 * niceties such as fairness, adaptive pausing, bandwidth proportional 165 * allocation and configurability. 166 * 167 * This function tests whether the vmscan currently in progress can assume 168 * that the normal dirty throttling mechanism is operational. 169 */ 170 static bool sane_reclaim(struct scan_control *sc) 171 { 172 struct mem_cgroup *memcg = sc->target_mem_cgroup; 173 174 if (!memcg) 175 return true; 176 #ifdef CONFIG_CGROUP_WRITEBACK 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 178 return true; 179 #endif 180 return false; 181 } 182 #else 183 static bool global_reclaim(struct scan_control *sc) 184 { 185 return true; 186 } 187 188 static bool sane_reclaim(struct scan_control *sc) 189 { 190 return true; 191 } 192 #endif 193 194 static unsigned long zone_reclaimable_pages(struct zone *zone) 195 { 196 unsigned long nr; 197 198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) + 199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) + 200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE); 201 202 if (get_nr_swap_pages() > 0) 203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) + 204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) + 205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON); 206 207 return nr; 208 } 209 210 bool zone_reclaimable(struct zone *zone) 211 { 212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) < 213 zone_reclaimable_pages(zone) * 6; 214 } 215 216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 217 { 218 if (!mem_cgroup_disabled()) 219 return mem_cgroup_get_lru_size(lruvec, lru); 220 221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 222 } 223 224 /* 225 * Add a shrinker callback to be called from the vm. 226 */ 227 int register_shrinker(struct shrinker *shrinker) 228 { 229 size_t size = sizeof(*shrinker->nr_deferred); 230 231 if (shrinker->flags & SHRINKER_NUMA_AWARE) 232 size *= nr_node_ids; 233 234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 235 if (!shrinker->nr_deferred) 236 return -ENOMEM; 237 238 down_write(&shrinker_rwsem); 239 list_add_tail(&shrinker->list, &shrinker_list); 240 up_write(&shrinker_rwsem); 241 return 0; 242 } 243 EXPORT_SYMBOL(register_shrinker); 244 245 /* 246 * Remove one 247 */ 248 void unregister_shrinker(struct shrinker *shrinker) 249 { 250 down_write(&shrinker_rwsem); 251 list_del(&shrinker->list); 252 up_write(&shrinker_rwsem); 253 kfree(shrinker->nr_deferred); 254 } 255 EXPORT_SYMBOL(unregister_shrinker); 256 257 #define SHRINK_BATCH 128 258 259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 260 struct shrinker *shrinker, 261 unsigned long nr_scanned, 262 unsigned long nr_eligible) 263 { 264 unsigned long freed = 0; 265 unsigned long long delta; 266 long total_scan; 267 long freeable; 268 long nr; 269 long new_nr; 270 int nid = shrinkctl->nid; 271 long batch_size = shrinker->batch ? shrinker->batch 272 : SHRINK_BATCH; 273 274 freeable = shrinker->count_objects(shrinker, shrinkctl); 275 if (freeable == 0) 276 return 0; 277 278 /* 279 * copy the current shrinker scan count into a local variable 280 * and zero it so that other concurrent shrinker invocations 281 * don't also do this scanning work. 282 */ 283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 284 285 total_scan = nr; 286 delta = (4 * nr_scanned) / shrinker->seeks; 287 delta *= freeable; 288 do_div(delta, nr_eligible + 1); 289 total_scan += delta; 290 if (total_scan < 0) { 291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 292 shrinker->scan_objects, total_scan); 293 total_scan = freeable; 294 } 295 296 /* 297 * We need to avoid excessive windup on filesystem shrinkers 298 * due to large numbers of GFP_NOFS allocations causing the 299 * shrinkers to return -1 all the time. This results in a large 300 * nr being built up so when a shrink that can do some work 301 * comes along it empties the entire cache due to nr >>> 302 * freeable. This is bad for sustaining a working set in 303 * memory. 304 * 305 * Hence only allow the shrinker to scan the entire cache when 306 * a large delta change is calculated directly. 307 */ 308 if (delta < freeable / 4) 309 total_scan = min(total_scan, freeable / 2); 310 311 /* 312 * Avoid risking looping forever due to too large nr value: 313 * never try to free more than twice the estimate number of 314 * freeable entries. 315 */ 316 if (total_scan > freeable * 2) 317 total_scan = freeable * 2; 318 319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 320 nr_scanned, nr_eligible, 321 freeable, delta, total_scan); 322 323 /* 324 * Normally, we should not scan less than batch_size objects in one 325 * pass to avoid too frequent shrinker calls, but if the slab has less 326 * than batch_size objects in total and we are really tight on memory, 327 * we will try to reclaim all available objects, otherwise we can end 328 * up failing allocations although there are plenty of reclaimable 329 * objects spread over several slabs with usage less than the 330 * batch_size. 331 * 332 * We detect the "tight on memory" situations by looking at the total 333 * number of objects we want to scan (total_scan). If it is greater 334 * than the total number of objects on slab (freeable), we must be 335 * scanning at high prio and therefore should try to reclaim as much as 336 * possible. 337 */ 338 while (total_scan >= batch_size || 339 total_scan >= freeable) { 340 unsigned long ret; 341 unsigned long nr_to_scan = min(batch_size, total_scan); 342 343 shrinkctl->nr_to_scan = nr_to_scan; 344 ret = shrinker->scan_objects(shrinker, shrinkctl); 345 if (ret == SHRINK_STOP) 346 break; 347 freed += ret; 348 349 count_vm_events(SLABS_SCANNED, nr_to_scan); 350 total_scan -= nr_to_scan; 351 352 cond_resched(); 353 } 354 355 /* 356 * move the unused scan count back into the shrinker in a 357 * manner that handles concurrent updates. If we exhausted the 358 * scan, there is no need to do an update. 359 */ 360 if (total_scan > 0) 361 new_nr = atomic_long_add_return(total_scan, 362 &shrinker->nr_deferred[nid]); 363 else 364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 365 366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 367 return freed; 368 } 369 370 /** 371 * shrink_slab - shrink slab caches 372 * @gfp_mask: allocation context 373 * @nid: node whose slab caches to target 374 * @memcg: memory cgroup whose slab caches to target 375 * @nr_scanned: pressure numerator 376 * @nr_eligible: pressure denominator 377 * 378 * Call the shrink functions to age shrinkable caches. 379 * 380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 381 * unaware shrinkers will receive a node id of 0 instead. 382 * 383 * @memcg specifies the memory cgroup to target. If it is not NULL, 384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 385 * objects from the memory cgroup specified. Otherwise, only unaware 386 * shrinkers are called. 387 * 388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 389 * the available objects should be scanned. Page reclaim for example 390 * passes the number of pages scanned and the number of pages on the 391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 392 * when it encountered mapped pages. The ratio is further biased by 393 * the ->seeks setting of the shrink function, which indicates the 394 * cost to recreate an object relative to that of an LRU page. 395 * 396 * Returns the number of reclaimed slab objects. 397 */ 398 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 399 struct mem_cgroup *memcg, 400 unsigned long nr_scanned, 401 unsigned long nr_eligible) 402 { 403 struct shrinker *shrinker; 404 unsigned long freed = 0; 405 406 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 407 return 0; 408 409 if (nr_scanned == 0) 410 nr_scanned = SWAP_CLUSTER_MAX; 411 412 if (!down_read_trylock(&shrinker_rwsem)) { 413 /* 414 * If we would return 0, our callers would understand that we 415 * have nothing else to shrink and give up trying. By returning 416 * 1 we keep it going and assume we'll be able to shrink next 417 * time. 418 */ 419 freed = 1; 420 goto out; 421 } 422 423 list_for_each_entry(shrinker, &shrinker_list, list) { 424 struct shrink_control sc = { 425 .gfp_mask = gfp_mask, 426 .nid = nid, 427 .memcg = memcg, 428 }; 429 430 /* 431 * If kernel memory accounting is disabled, we ignore 432 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 433 * passing NULL for memcg. 434 */ 435 if (memcg_kmem_enabled() && 436 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 437 continue; 438 439 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 440 sc.nid = 0; 441 442 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 443 } 444 445 up_read(&shrinker_rwsem); 446 out: 447 cond_resched(); 448 return freed; 449 } 450 451 void drop_slab_node(int nid) 452 { 453 unsigned long freed; 454 455 do { 456 struct mem_cgroup *memcg = NULL; 457 458 freed = 0; 459 do { 460 freed += shrink_slab(GFP_KERNEL, nid, memcg, 461 1000, 1000); 462 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 463 } while (freed > 10); 464 } 465 466 void drop_slab(void) 467 { 468 int nid; 469 470 for_each_online_node(nid) 471 drop_slab_node(nid); 472 } 473 474 static inline int is_page_cache_freeable(struct page *page) 475 { 476 /* 477 * A freeable page cache page is referenced only by the caller 478 * that isolated the page, the page cache radix tree and 479 * optional buffer heads at page->private. 480 */ 481 return page_count(page) - page_has_private(page) == 2; 482 } 483 484 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 485 { 486 if (current->flags & PF_SWAPWRITE) 487 return 1; 488 if (!inode_write_congested(inode)) 489 return 1; 490 if (inode_to_bdi(inode) == current->backing_dev_info) 491 return 1; 492 return 0; 493 } 494 495 /* 496 * We detected a synchronous write error writing a page out. Probably 497 * -ENOSPC. We need to propagate that into the address_space for a subsequent 498 * fsync(), msync() or close(). 499 * 500 * The tricky part is that after writepage we cannot touch the mapping: nothing 501 * prevents it from being freed up. But we have a ref on the page and once 502 * that page is locked, the mapping is pinned. 503 * 504 * We're allowed to run sleeping lock_page() here because we know the caller has 505 * __GFP_FS. 506 */ 507 static void handle_write_error(struct address_space *mapping, 508 struct page *page, int error) 509 { 510 lock_page(page); 511 if (page_mapping(page) == mapping) 512 mapping_set_error(mapping, error); 513 unlock_page(page); 514 } 515 516 /* possible outcome of pageout() */ 517 typedef enum { 518 /* failed to write page out, page is locked */ 519 PAGE_KEEP, 520 /* move page to the active list, page is locked */ 521 PAGE_ACTIVATE, 522 /* page has been sent to the disk successfully, page is unlocked */ 523 PAGE_SUCCESS, 524 /* page is clean and locked */ 525 PAGE_CLEAN, 526 } pageout_t; 527 528 /* 529 * pageout is called by shrink_page_list() for each dirty page. 530 * Calls ->writepage(). 531 */ 532 static pageout_t pageout(struct page *page, struct address_space *mapping, 533 struct scan_control *sc) 534 { 535 /* 536 * If the page is dirty, only perform writeback if that write 537 * will be non-blocking. To prevent this allocation from being 538 * stalled by pagecache activity. But note that there may be 539 * stalls if we need to run get_block(). We could test 540 * PagePrivate for that. 541 * 542 * If this process is currently in __generic_file_write_iter() against 543 * this page's queue, we can perform writeback even if that 544 * will block. 545 * 546 * If the page is swapcache, write it back even if that would 547 * block, for some throttling. This happens by accident, because 548 * swap_backing_dev_info is bust: it doesn't reflect the 549 * congestion state of the swapdevs. Easy to fix, if needed. 550 */ 551 if (!is_page_cache_freeable(page)) 552 return PAGE_KEEP; 553 if (!mapping) { 554 /* 555 * Some data journaling orphaned pages can have 556 * page->mapping == NULL while being dirty with clean buffers. 557 */ 558 if (page_has_private(page)) { 559 if (try_to_free_buffers(page)) { 560 ClearPageDirty(page); 561 pr_info("%s: orphaned page\n", __func__); 562 return PAGE_CLEAN; 563 } 564 } 565 return PAGE_KEEP; 566 } 567 if (mapping->a_ops->writepage == NULL) 568 return PAGE_ACTIVATE; 569 if (!may_write_to_inode(mapping->host, sc)) 570 return PAGE_KEEP; 571 572 if (clear_page_dirty_for_io(page)) { 573 int res; 574 struct writeback_control wbc = { 575 .sync_mode = WB_SYNC_NONE, 576 .nr_to_write = SWAP_CLUSTER_MAX, 577 .range_start = 0, 578 .range_end = LLONG_MAX, 579 .for_reclaim = 1, 580 }; 581 582 SetPageReclaim(page); 583 res = mapping->a_ops->writepage(page, &wbc); 584 if (res < 0) 585 handle_write_error(mapping, page, res); 586 if (res == AOP_WRITEPAGE_ACTIVATE) { 587 ClearPageReclaim(page); 588 return PAGE_ACTIVATE; 589 } 590 591 if (!PageWriteback(page)) { 592 /* synchronous write or broken a_ops? */ 593 ClearPageReclaim(page); 594 } 595 trace_mm_vmscan_writepage(page); 596 inc_zone_page_state(page, NR_VMSCAN_WRITE); 597 return PAGE_SUCCESS; 598 } 599 600 return PAGE_CLEAN; 601 } 602 603 /* 604 * Same as remove_mapping, but if the page is removed from the mapping, it 605 * gets returned with a refcount of 0. 606 */ 607 static int __remove_mapping(struct address_space *mapping, struct page *page, 608 bool reclaimed) 609 { 610 unsigned long flags; 611 612 BUG_ON(!PageLocked(page)); 613 BUG_ON(mapping != page_mapping(page)); 614 615 spin_lock_irqsave(&mapping->tree_lock, flags); 616 /* 617 * The non racy check for a busy page. 618 * 619 * Must be careful with the order of the tests. When someone has 620 * a ref to the page, it may be possible that they dirty it then 621 * drop the reference. So if PageDirty is tested before page_count 622 * here, then the following race may occur: 623 * 624 * get_user_pages(&page); 625 * [user mapping goes away] 626 * write_to(page); 627 * !PageDirty(page) [good] 628 * SetPageDirty(page); 629 * put_page(page); 630 * !page_count(page) [good, discard it] 631 * 632 * [oops, our write_to data is lost] 633 * 634 * Reversing the order of the tests ensures such a situation cannot 635 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 636 * load is not satisfied before that of page->_count. 637 * 638 * Note that if SetPageDirty is always performed via set_page_dirty, 639 * and thus under tree_lock, then this ordering is not required. 640 */ 641 if (!page_ref_freeze(page, 2)) 642 goto cannot_free; 643 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 644 if (unlikely(PageDirty(page))) { 645 page_ref_unfreeze(page, 2); 646 goto cannot_free; 647 } 648 649 if (PageSwapCache(page)) { 650 swp_entry_t swap = { .val = page_private(page) }; 651 mem_cgroup_swapout(page, swap); 652 __delete_from_swap_cache(page); 653 spin_unlock_irqrestore(&mapping->tree_lock, flags); 654 swapcache_free(swap); 655 } else { 656 void (*freepage)(struct page *); 657 void *shadow = NULL; 658 659 freepage = mapping->a_ops->freepage; 660 /* 661 * Remember a shadow entry for reclaimed file cache in 662 * order to detect refaults, thus thrashing, later on. 663 * 664 * But don't store shadows in an address space that is 665 * already exiting. This is not just an optizimation, 666 * inode reclaim needs to empty out the radix tree or 667 * the nodes are lost. Don't plant shadows behind its 668 * back. 669 * 670 * We also don't store shadows for DAX mappings because the 671 * only page cache pages found in these are zero pages 672 * covering holes, and because we don't want to mix DAX 673 * exceptional entries and shadow exceptional entries in the 674 * same page_tree. 675 */ 676 if (reclaimed && page_is_file_cache(page) && 677 !mapping_exiting(mapping) && !dax_mapping(mapping)) 678 shadow = workingset_eviction(mapping, page); 679 __delete_from_page_cache(page, shadow); 680 spin_unlock_irqrestore(&mapping->tree_lock, flags); 681 682 if (freepage != NULL) 683 freepage(page); 684 } 685 686 return 1; 687 688 cannot_free: 689 spin_unlock_irqrestore(&mapping->tree_lock, flags); 690 return 0; 691 } 692 693 /* 694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 695 * someone else has a ref on the page, abort and return 0. If it was 696 * successfully detached, return 1. Assumes the caller has a single ref on 697 * this page. 698 */ 699 int remove_mapping(struct address_space *mapping, struct page *page) 700 { 701 if (__remove_mapping(mapping, page, false)) { 702 /* 703 * Unfreezing the refcount with 1 rather than 2 effectively 704 * drops the pagecache ref for us without requiring another 705 * atomic operation. 706 */ 707 page_ref_unfreeze(page, 1); 708 return 1; 709 } 710 return 0; 711 } 712 713 /** 714 * putback_lru_page - put previously isolated page onto appropriate LRU list 715 * @page: page to be put back to appropriate lru list 716 * 717 * Add previously isolated @page to appropriate LRU list. 718 * Page may still be unevictable for other reasons. 719 * 720 * lru_lock must not be held, interrupts must be enabled. 721 */ 722 void putback_lru_page(struct page *page) 723 { 724 bool is_unevictable; 725 int was_unevictable = PageUnevictable(page); 726 727 VM_BUG_ON_PAGE(PageLRU(page), page); 728 729 redo: 730 ClearPageUnevictable(page); 731 732 if (page_evictable(page)) { 733 /* 734 * For evictable pages, we can use the cache. 735 * In event of a race, worst case is we end up with an 736 * unevictable page on [in]active list. 737 * We know how to handle that. 738 */ 739 is_unevictable = false; 740 lru_cache_add(page); 741 } else { 742 /* 743 * Put unevictable pages directly on zone's unevictable 744 * list. 745 */ 746 is_unevictable = true; 747 add_page_to_unevictable_list(page); 748 /* 749 * When racing with an mlock or AS_UNEVICTABLE clearing 750 * (page is unlocked) make sure that if the other thread 751 * does not observe our setting of PG_lru and fails 752 * isolation/check_move_unevictable_pages, 753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 754 * the page back to the evictable list. 755 * 756 * The other side is TestClearPageMlocked() or shmem_lock(). 757 */ 758 smp_mb(); 759 } 760 761 /* 762 * page's status can change while we move it among lru. If an evictable 763 * page is on unevictable list, it never be freed. To avoid that, 764 * check after we added it to the list, again. 765 */ 766 if (is_unevictable && page_evictable(page)) { 767 if (!isolate_lru_page(page)) { 768 put_page(page); 769 goto redo; 770 } 771 /* This means someone else dropped this page from LRU 772 * So, it will be freed or putback to LRU again. There is 773 * nothing to do here. 774 */ 775 } 776 777 if (was_unevictable && !is_unevictable) 778 count_vm_event(UNEVICTABLE_PGRESCUED); 779 else if (!was_unevictable && is_unevictable) 780 count_vm_event(UNEVICTABLE_PGCULLED); 781 782 put_page(page); /* drop ref from isolate */ 783 } 784 785 enum page_references { 786 PAGEREF_RECLAIM, 787 PAGEREF_RECLAIM_CLEAN, 788 PAGEREF_KEEP, 789 PAGEREF_ACTIVATE, 790 }; 791 792 static enum page_references page_check_references(struct page *page, 793 struct scan_control *sc) 794 { 795 int referenced_ptes, referenced_page; 796 unsigned long vm_flags; 797 798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 799 &vm_flags); 800 referenced_page = TestClearPageReferenced(page); 801 802 /* 803 * Mlock lost the isolation race with us. Let try_to_unmap() 804 * move the page to the unevictable list. 805 */ 806 if (vm_flags & VM_LOCKED) 807 return PAGEREF_RECLAIM; 808 809 if (referenced_ptes) { 810 if (PageSwapBacked(page)) 811 return PAGEREF_ACTIVATE; 812 /* 813 * All mapped pages start out with page table 814 * references from the instantiating fault, so we need 815 * to look twice if a mapped file page is used more 816 * than once. 817 * 818 * Mark it and spare it for another trip around the 819 * inactive list. Another page table reference will 820 * lead to its activation. 821 * 822 * Note: the mark is set for activated pages as well 823 * so that recently deactivated but used pages are 824 * quickly recovered. 825 */ 826 SetPageReferenced(page); 827 828 if (referenced_page || referenced_ptes > 1) 829 return PAGEREF_ACTIVATE; 830 831 /* 832 * Activate file-backed executable pages after first usage. 833 */ 834 if (vm_flags & VM_EXEC) 835 return PAGEREF_ACTIVATE; 836 837 return PAGEREF_KEEP; 838 } 839 840 /* Reclaim if clean, defer dirty pages to writeback */ 841 if (referenced_page && !PageSwapBacked(page)) 842 return PAGEREF_RECLAIM_CLEAN; 843 844 return PAGEREF_RECLAIM; 845 } 846 847 /* Check if a page is dirty or under writeback */ 848 static void page_check_dirty_writeback(struct page *page, 849 bool *dirty, bool *writeback) 850 { 851 struct address_space *mapping; 852 853 /* 854 * Anonymous pages are not handled by flushers and must be written 855 * from reclaim context. Do not stall reclaim based on them 856 */ 857 if (!page_is_file_cache(page)) { 858 *dirty = false; 859 *writeback = false; 860 return; 861 } 862 863 /* By default assume that the page flags are accurate */ 864 *dirty = PageDirty(page); 865 *writeback = PageWriteback(page); 866 867 /* Verify dirty/writeback state if the filesystem supports it */ 868 if (!page_has_private(page)) 869 return; 870 871 mapping = page_mapping(page); 872 if (mapping && mapping->a_ops->is_dirty_writeback) 873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 874 } 875 876 /* 877 * shrink_page_list() returns the number of reclaimed pages 878 */ 879 static unsigned long shrink_page_list(struct list_head *page_list, 880 struct zone *zone, 881 struct scan_control *sc, 882 enum ttu_flags ttu_flags, 883 unsigned long *ret_nr_dirty, 884 unsigned long *ret_nr_unqueued_dirty, 885 unsigned long *ret_nr_congested, 886 unsigned long *ret_nr_writeback, 887 unsigned long *ret_nr_immediate, 888 bool force_reclaim) 889 { 890 LIST_HEAD(ret_pages); 891 LIST_HEAD(free_pages); 892 int pgactivate = 0; 893 unsigned long nr_unqueued_dirty = 0; 894 unsigned long nr_dirty = 0; 895 unsigned long nr_congested = 0; 896 unsigned long nr_reclaimed = 0; 897 unsigned long nr_writeback = 0; 898 unsigned long nr_immediate = 0; 899 900 cond_resched(); 901 902 while (!list_empty(page_list)) { 903 struct address_space *mapping; 904 struct page *page; 905 int may_enter_fs; 906 enum page_references references = PAGEREF_RECLAIM_CLEAN; 907 bool dirty, writeback; 908 bool lazyfree = false; 909 int ret = SWAP_SUCCESS; 910 911 cond_resched(); 912 913 page = lru_to_page(page_list); 914 list_del(&page->lru); 915 916 if (!trylock_page(page)) 917 goto keep; 918 919 VM_BUG_ON_PAGE(PageActive(page), page); 920 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 921 922 sc->nr_scanned++; 923 924 if (unlikely(!page_evictable(page))) 925 goto cull_mlocked; 926 927 if (!sc->may_unmap && page_mapped(page)) 928 goto keep_locked; 929 930 /* Double the slab pressure for mapped and swapcache pages */ 931 if (page_mapped(page) || PageSwapCache(page)) 932 sc->nr_scanned++; 933 934 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 936 937 /* 938 * The number of dirty pages determines if a zone is marked 939 * reclaim_congested which affects wait_iff_congested. kswapd 940 * will stall and start writing pages if the tail of the LRU 941 * is all dirty unqueued pages. 942 */ 943 page_check_dirty_writeback(page, &dirty, &writeback); 944 if (dirty || writeback) 945 nr_dirty++; 946 947 if (dirty && !writeback) 948 nr_unqueued_dirty++; 949 950 /* 951 * Treat this page as congested if the underlying BDI is or if 952 * pages are cycling through the LRU so quickly that the 953 * pages marked for immediate reclaim are making it to the 954 * end of the LRU a second time. 955 */ 956 mapping = page_mapping(page); 957 if (((dirty || writeback) && mapping && 958 inode_write_congested(mapping->host)) || 959 (writeback && PageReclaim(page))) 960 nr_congested++; 961 962 /* 963 * If a page at the tail of the LRU is under writeback, there 964 * are three cases to consider. 965 * 966 * 1) If reclaim is encountering an excessive number of pages 967 * under writeback and this page is both under writeback and 968 * PageReclaim then it indicates that pages are being queued 969 * for IO but are being recycled through the LRU before the 970 * IO can complete. Waiting on the page itself risks an 971 * indefinite stall if it is impossible to writeback the 972 * page due to IO error or disconnected storage so instead 973 * note that the LRU is being scanned too quickly and the 974 * caller can stall after page list has been processed. 975 * 976 * 2) Global or new memcg reclaim encounters a page that is 977 * not marked for immediate reclaim, or the caller does not 978 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 979 * not to fs). In this case mark the page for immediate 980 * reclaim and continue scanning. 981 * 982 * Require may_enter_fs because we would wait on fs, which 983 * may not have submitted IO yet. And the loop driver might 984 * enter reclaim, and deadlock if it waits on a page for 985 * which it is needed to do the write (loop masks off 986 * __GFP_IO|__GFP_FS for this reason); but more thought 987 * would probably show more reasons. 988 * 989 * 3) Legacy memcg encounters a page that is already marked 990 * PageReclaim. memcg does not have any dirty pages 991 * throttling so we could easily OOM just because too many 992 * pages are in writeback and there is nothing else to 993 * reclaim. Wait for the writeback to complete. 994 */ 995 if (PageWriteback(page)) { 996 /* Case 1 above */ 997 if (current_is_kswapd() && 998 PageReclaim(page) && 999 test_bit(ZONE_WRITEBACK, &zone->flags)) { 1000 nr_immediate++; 1001 goto keep_locked; 1002 1003 /* Case 2 above */ 1004 } else if (sane_reclaim(sc) || 1005 !PageReclaim(page) || !may_enter_fs) { 1006 /* 1007 * This is slightly racy - end_page_writeback() 1008 * might have just cleared PageReclaim, then 1009 * setting PageReclaim here end up interpreted 1010 * as PageReadahead - but that does not matter 1011 * enough to care. What we do want is for this 1012 * page to have PageReclaim set next time memcg 1013 * reclaim reaches the tests above, so it will 1014 * then wait_on_page_writeback() to avoid OOM; 1015 * and it's also appropriate in global reclaim. 1016 */ 1017 SetPageReclaim(page); 1018 nr_writeback++; 1019 goto keep_locked; 1020 1021 /* Case 3 above */ 1022 } else { 1023 unlock_page(page); 1024 wait_on_page_writeback(page); 1025 /* then go back and try same page again */ 1026 list_add_tail(&page->lru, page_list); 1027 continue; 1028 } 1029 } 1030 1031 if (!force_reclaim) 1032 references = page_check_references(page, sc); 1033 1034 switch (references) { 1035 case PAGEREF_ACTIVATE: 1036 goto activate_locked; 1037 case PAGEREF_KEEP: 1038 goto keep_locked; 1039 case PAGEREF_RECLAIM: 1040 case PAGEREF_RECLAIM_CLEAN: 1041 ; /* try to reclaim the page below */ 1042 } 1043 1044 /* 1045 * Anonymous process memory has backing store? 1046 * Try to allocate it some swap space here. 1047 */ 1048 if (PageAnon(page) && !PageSwapCache(page)) { 1049 if (!(sc->gfp_mask & __GFP_IO)) 1050 goto keep_locked; 1051 if (!add_to_swap(page, page_list)) 1052 goto activate_locked; 1053 lazyfree = true; 1054 may_enter_fs = 1; 1055 1056 /* Adding to swap updated mapping */ 1057 mapping = page_mapping(page); 1058 } 1059 1060 /* 1061 * The page is mapped into the page tables of one or more 1062 * processes. Try to unmap it here. 1063 */ 1064 if (page_mapped(page) && mapping) { 1065 switch (ret = try_to_unmap(page, lazyfree ? 1066 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1067 (ttu_flags | TTU_BATCH_FLUSH))) { 1068 case SWAP_FAIL: 1069 goto activate_locked; 1070 case SWAP_AGAIN: 1071 goto keep_locked; 1072 case SWAP_MLOCK: 1073 goto cull_mlocked; 1074 case SWAP_LZFREE: 1075 goto lazyfree; 1076 case SWAP_SUCCESS: 1077 ; /* try to free the page below */ 1078 } 1079 } 1080 1081 if (PageDirty(page)) { 1082 /* 1083 * Only kswapd can writeback filesystem pages to 1084 * avoid risk of stack overflow but only writeback 1085 * if many dirty pages have been encountered. 1086 */ 1087 if (page_is_file_cache(page) && 1088 (!current_is_kswapd() || 1089 !test_bit(ZONE_DIRTY, &zone->flags))) { 1090 /* 1091 * Immediately reclaim when written back. 1092 * Similar in principal to deactivate_page() 1093 * except we already have the page isolated 1094 * and know it's dirty 1095 */ 1096 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1097 SetPageReclaim(page); 1098 1099 goto keep_locked; 1100 } 1101 1102 if (references == PAGEREF_RECLAIM_CLEAN) 1103 goto keep_locked; 1104 if (!may_enter_fs) 1105 goto keep_locked; 1106 if (!sc->may_writepage) 1107 goto keep_locked; 1108 1109 /* 1110 * Page is dirty. Flush the TLB if a writable entry 1111 * potentially exists to avoid CPU writes after IO 1112 * starts and then write it out here. 1113 */ 1114 try_to_unmap_flush_dirty(); 1115 switch (pageout(page, mapping, sc)) { 1116 case PAGE_KEEP: 1117 goto keep_locked; 1118 case PAGE_ACTIVATE: 1119 goto activate_locked; 1120 case PAGE_SUCCESS: 1121 if (PageWriteback(page)) 1122 goto keep; 1123 if (PageDirty(page)) 1124 goto keep; 1125 1126 /* 1127 * A synchronous write - probably a ramdisk. Go 1128 * ahead and try to reclaim the page. 1129 */ 1130 if (!trylock_page(page)) 1131 goto keep; 1132 if (PageDirty(page) || PageWriteback(page)) 1133 goto keep_locked; 1134 mapping = page_mapping(page); 1135 case PAGE_CLEAN: 1136 ; /* try to free the page below */ 1137 } 1138 } 1139 1140 /* 1141 * If the page has buffers, try to free the buffer mappings 1142 * associated with this page. If we succeed we try to free 1143 * the page as well. 1144 * 1145 * We do this even if the page is PageDirty(). 1146 * try_to_release_page() does not perform I/O, but it is 1147 * possible for a page to have PageDirty set, but it is actually 1148 * clean (all its buffers are clean). This happens if the 1149 * buffers were written out directly, with submit_bh(). ext3 1150 * will do this, as well as the blockdev mapping. 1151 * try_to_release_page() will discover that cleanness and will 1152 * drop the buffers and mark the page clean - it can be freed. 1153 * 1154 * Rarely, pages can have buffers and no ->mapping. These are 1155 * the pages which were not successfully invalidated in 1156 * truncate_complete_page(). We try to drop those buffers here 1157 * and if that worked, and the page is no longer mapped into 1158 * process address space (page_count == 1) it can be freed. 1159 * Otherwise, leave the page on the LRU so it is swappable. 1160 */ 1161 if (page_has_private(page)) { 1162 if (!try_to_release_page(page, sc->gfp_mask)) 1163 goto activate_locked; 1164 if (!mapping && page_count(page) == 1) { 1165 unlock_page(page); 1166 if (put_page_testzero(page)) 1167 goto free_it; 1168 else { 1169 /* 1170 * rare race with speculative reference. 1171 * the speculative reference will free 1172 * this page shortly, so we may 1173 * increment nr_reclaimed here (and 1174 * leave it off the LRU). 1175 */ 1176 nr_reclaimed++; 1177 continue; 1178 } 1179 } 1180 } 1181 1182 lazyfree: 1183 if (!mapping || !__remove_mapping(mapping, page, true)) 1184 goto keep_locked; 1185 1186 /* 1187 * At this point, we have no other references and there is 1188 * no way to pick any more up (removed from LRU, removed 1189 * from pagecache). Can use non-atomic bitops now (and 1190 * we obviously don't have to worry about waking up a process 1191 * waiting on the page lock, because there are no references. 1192 */ 1193 __ClearPageLocked(page); 1194 free_it: 1195 if (ret == SWAP_LZFREE) 1196 count_vm_event(PGLAZYFREED); 1197 1198 nr_reclaimed++; 1199 1200 /* 1201 * Is there need to periodically free_page_list? It would 1202 * appear not as the counts should be low 1203 */ 1204 list_add(&page->lru, &free_pages); 1205 continue; 1206 1207 cull_mlocked: 1208 if (PageSwapCache(page)) 1209 try_to_free_swap(page); 1210 unlock_page(page); 1211 list_add(&page->lru, &ret_pages); 1212 continue; 1213 1214 activate_locked: 1215 /* Not a candidate for swapping, so reclaim swap space. */ 1216 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1217 try_to_free_swap(page); 1218 VM_BUG_ON_PAGE(PageActive(page), page); 1219 SetPageActive(page); 1220 pgactivate++; 1221 keep_locked: 1222 unlock_page(page); 1223 keep: 1224 list_add(&page->lru, &ret_pages); 1225 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1226 } 1227 1228 mem_cgroup_uncharge_list(&free_pages); 1229 try_to_unmap_flush(); 1230 free_hot_cold_page_list(&free_pages, true); 1231 1232 list_splice(&ret_pages, page_list); 1233 count_vm_events(PGACTIVATE, pgactivate); 1234 1235 *ret_nr_dirty += nr_dirty; 1236 *ret_nr_congested += nr_congested; 1237 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1238 *ret_nr_writeback += nr_writeback; 1239 *ret_nr_immediate += nr_immediate; 1240 return nr_reclaimed; 1241 } 1242 1243 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1244 struct list_head *page_list) 1245 { 1246 struct scan_control sc = { 1247 .gfp_mask = GFP_KERNEL, 1248 .priority = DEF_PRIORITY, 1249 .may_unmap = 1, 1250 }; 1251 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1252 struct page *page, *next; 1253 LIST_HEAD(clean_pages); 1254 1255 list_for_each_entry_safe(page, next, page_list, lru) { 1256 if (page_is_file_cache(page) && !PageDirty(page) && 1257 !isolated_balloon_page(page)) { 1258 ClearPageActive(page); 1259 list_move(&page->lru, &clean_pages); 1260 } 1261 } 1262 1263 ret = shrink_page_list(&clean_pages, zone, &sc, 1264 TTU_UNMAP|TTU_IGNORE_ACCESS, 1265 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1266 list_splice(&clean_pages, page_list); 1267 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1268 return ret; 1269 } 1270 1271 /* 1272 * Attempt to remove the specified page from its LRU. Only take this page 1273 * if it is of the appropriate PageActive status. Pages which are being 1274 * freed elsewhere are also ignored. 1275 * 1276 * page: page to consider 1277 * mode: one of the LRU isolation modes defined above 1278 * 1279 * returns 0 on success, -ve errno on failure. 1280 */ 1281 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1282 { 1283 int ret = -EINVAL; 1284 1285 /* Only take pages on the LRU. */ 1286 if (!PageLRU(page)) 1287 return ret; 1288 1289 /* Compaction should not handle unevictable pages but CMA can do so */ 1290 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1291 return ret; 1292 1293 ret = -EBUSY; 1294 1295 /* 1296 * To minimise LRU disruption, the caller can indicate that it only 1297 * wants to isolate pages it will be able to operate on without 1298 * blocking - clean pages for the most part. 1299 * 1300 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1301 * is used by reclaim when it is cannot write to backing storage 1302 * 1303 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1304 * that it is possible to migrate without blocking 1305 */ 1306 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1307 /* All the caller can do on PageWriteback is block */ 1308 if (PageWriteback(page)) 1309 return ret; 1310 1311 if (PageDirty(page)) { 1312 struct address_space *mapping; 1313 1314 /* ISOLATE_CLEAN means only clean pages */ 1315 if (mode & ISOLATE_CLEAN) 1316 return ret; 1317 1318 /* 1319 * Only pages without mappings or that have a 1320 * ->migratepage callback are possible to migrate 1321 * without blocking 1322 */ 1323 mapping = page_mapping(page); 1324 if (mapping && !mapping->a_ops->migratepage) 1325 return ret; 1326 } 1327 } 1328 1329 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1330 return ret; 1331 1332 if (likely(get_page_unless_zero(page))) { 1333 /* 1334 * Be careful not to clear PageLRU until after we're 1335 * sure the page is not being freed elsewhere -- the 1336 * page release code relies on it. 1337 */ 1338 ClearPageLRU(page); 1339 ret = 0; 1340 } 1341 1342 return ret; 1343 } 1344 1345 /* 1346 * zone->lru_lock is heavily contended. Some of the functions that 1347 * shrink the lists perform better by taking out a batch of pages 1348 * and working on them outside the LRU lock. 1349 * 1350 * For pagecache intensive workloads, this function is the hottest 1351 * spot in the kernel (apart from copy_*_user functions). 1352 * 1353 * Appropriate locks must be held before calling this function. 1354 * 1355 * @nr_to_scan: The number of pages to look through on the list. 1356 * @lruvec: The LRU vector to pull pages from. 1357 * @dst: The temp list to put pages on to. 1358 * @nr_scanned: The number of pages that were scanned. 1359 * @sc: The scan_control struct for this reclaim session 1360 * @mode: One of the LRU isolation modes 1361 * @lru: LRU list id for isolating 1362 * 1363 * returns how many pages were moved onto *@dst. 1364 */ 1365 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1366 struct lruvec *lruvec, struct list_head *dst, 1367 unsigned long *nr_scanned, struct scan_control *sc, 1368 isolate_mode_t mode, enum lru_list lru) 1369 { 1370 struct list_head *src = &lruvec->lists[lru]; 1371 unsigned long nr_taken = 0; 1372 unsigned long scan; 1373 1374 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1375 !list_empty(src); scan++) { 1376 struct page *page; 1377 int nr_pages; 1378 1379 page = lru_to_page(src); 1380 prefetchw_prev_lru_page(page, src, flags); 1381 1382 VM_BUG_ON_PAGE(!PageLRU(page), page); 1383 1384 switch (__isolate_lru_page(page, mode)) { 1385 case 0: 1386 nr_pages = hpage_nr_pages(page); 1387 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1388 list_move(&page->lru, dst); 1389 nr_taken += nr_pages; 1390 break; 1391 1392 case -EBUSY: 1393 /* else it is being freed elsewhere */ 1394 list_move(&page->lru, src); 1395 continue; 1396 1397 default: 1398 BUG(); 1399 } 1400 } 1401 1402 *nr_scanned = scan; 1403 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1404 nr_taken, mode, is_file_lru(lru)); 1405 return nr_taken; 1406 } 1407 1408 /** 1409 * isolate_lru_page - tries to isolate a page from its LRU list 1410 * @page: page to isolate from its LRU list 1411 * 1412 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1413 * vmstat statistic corresponding to whatever LRU list the page was on. 1414 * 1415 * Returns 0 if the page was removed from an LRU list. 1416 * Returns -EBUSY if the page was not on an LRU list. 1417 * 1418 * The returned page will have PageLRU() cleared. If it was found on 1419 * the active list, it will have PageActive set. If it was found on 1420 * the unevictable list, it will have the PageUnevictable bit set. That flag 1421 * may need to be cleared by the caller before letting the page go. 1422 * 1423 * The vmstat statistic corresponding to the list on which the page was 1424 * found will be decremented. 1425 * 1426 * Restrictions: 1427 * (1) Must be called with an elevated refcount on the page. This is a 1428 * fundamentnal difference from isolate_lru_pages (which is called 1429 * without a stable reference). 1430 * (2) the lru_lock must not be held. 1431 * (3) interrupts must be enabled. 1432 */ 1433 int isolate_lru_page(struct page *page) 1434 { 1435 int ret = -EBUSY; 1436 1437 VM_BUG_ON_PAGE(!page_count(page), page); 1438 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1439 1440 if (PageLRU(page)) { 1441 struct zone *zone = page_zone(page); 1442 struct lruvec *lruvec; 1443 1444 spin_lock_irq(&zone->lru_lock); 1445 lruvec = mem_cgroup_page_lruvec(page, zone); 1446 if (PageLRU(page)) { 1447 int lru = page_lru(page); 1448 get_page(page); 1449 ClearPageLRU(page); 1450 del_page_from_lru_list(page, lruvec, lru); 1451 ret = 0; 1452 } 1453 spin_unlock_irq(&zone->lru_lock); 1454 } 1455 return ret; 1456 } 1457 1458 /* 1459 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1460 * then get resheduled. When there are massive number of tasks doing page 1461 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1462 * the LRU list will go small and be scanned faster than necessary, leading to 1463 * unnecessary swapping, thrashing and OOM. 1464 */ 1465 static int too_many_isolated(struct zone *zone, int file, 1466 struct scan_control *sc) 1467 { 1468 unsigned long inactive, isolated; 1469 1470 if (current_is_kswapd()) 1471 return 0; 1472 1473 if (!sane_reclaim(sc)) 1474 return 0; 1475 1476 if (file) { 1477 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1478 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1479 } else { 1480 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1481 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1482 } 1483 1484 /* 1485 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1486 * won't get blocked by normal direct-reclaimers, forming a circular 1487 * deadlock. 1488 */ 1489 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1490 inactive >>= 3; 1491 1492 return isolated > inactive; 1493 } 1494 1495 static noinline_for_stack void 1496 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1497 { 1498 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1499 struct zone *zone = lruvec_zone(lruvec); 1500 LIST_HEAD(pages_to_free); 1501 1502 /* 1503 * Put back any unfreeable pages. 1504 */ 1505 while (!list_empty(page_list)) { 1506 struct page *page = lru_to_page(page_list); 1507 int lru; 1508 1509 VM_BUG_ON_PAGE(PageLRU(page), page); 1510 list_del(&page->lru); 1511 if (unlikely(!page_evictable(page))) { 1512 spin_unlock_irq(&zone->lru_lock); 1513 putback_lru_page(page); 1514 spin_lock_irq(&zone->lru_lock); 1515 continue; 1516 } 1517 1518 lruvec = mem_cgroup_page_lruvec(page, zone); 1519 1520 SetPageLRU(page); 1521 lru = page_lru(page); 1522 add_page_to_lru_list(page, lruvec, lru); 1523 1524 if (is_active_lru(lru)) { 1525 int file = is_file_lru(lru); 1526 int numpages = hpage_nr_pages(page); 1527 reclaim_stat->recent_rotated[file] += numpages; 1528 } 1529 if (put_page_testzero(page)) { 1530 __ClearPageLRU(page); 1531 __ClearPageActive(page); 1532 del_page_from_lru_list(page, lruvec, lru); 1533 1534 if (unlikely(PageCompound(page))) { 1535 spin_unlock_irq(&zone->lru_lock); 1536 mem_cgroup_uncharge(page); 1537 (*get_compound_page_dtor(page))(page); 1538 spin_lock_irq(&zone->lru_lock); 1539 } else 1540 list_add(&page->lru, &pages_to_free); 1541 } 1542 } 1543 1544 /* 1545 * To save our caller's stack, now use input list for pages to free. 1546 */ 1547 list_splice(&pages_to_free, page_list); 1548 } 1549 1550 /* 1551 * If a kernel thread (such as nfsd for loop-back mounts) services 1552 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1553 * In that case we should only throttle if the backing device it is 1554 * writing to is congested. In other cases it is safe to throttle. 1555 */ 1556 static int current_may_throttle(void) 1557 { 1558 return !(current->flags & PF_LESS_THROTTLE) || 1559 current->backing_dev_info == NULL || 1560 bdi_write_congested(current->backing_dev_info); 1561 } 1562 1563 /* 1564 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1565 * of reclaimed pages 1566 */ 1567 static noinline_for_stack unsigned long 1568 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1569 struct scan_control *sc, enum lru_list lru) 1570 { 1571 LIST_HEAD(page_list); 1572 unsigned long nr_scanned; 1573 unsigned long nr_reclaimed = 0; 1574 unsigned long nr_taken; 1575 unsigned long nr_dirty = 0; 1576 unsigned long nr_congested = 0; 1577 unsigned long nr_unqueued_dirty = 0; 1578 unsigned long nr_writeback = 0; 1579 unsigned long nr_immediate = 0; 1580 isolate_mode_t isolate_mode = 0; 1581 int file = is_file_lru(lru); 1582 struct zone *zone = lruvec_zone(lruvec); 1583 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1584 1585 while (unlikely(too_many_isolated(zone, file, sc))) { 1586 congestion_wait(BLK_RW_ASYNC, HZ/10); 1587 1588 /* We are about to die and free our memory. Return now. */ 1589 if (fatal_signal_pending(current)) 1590 return SWAP_CLUSTER_MAX; 1591 } 1592 1593 lru_add_drain(); 1594 1595 if (!sc->may_unmap) 1596 isolate_mode |= ISOLATE_UNMAPPED; 1597 if (!sc->may_writepage) 1598 isolate_mode |= ISOLATE_CLEAN; 1599 1600 spin_lock_irq(&zone->lru_lock); 1601 1602 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1603 &nr_scanned, sc, isolate_mode, lru); 1604 1605 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1606 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1607 1608 if (global_reclaim(sc)) { 1609 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1610 if (current_is_kswapd()) 1611 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1612 else 1613 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1614 } 1615 spin_unlock_irq(&zone->lru_lock); 1616 1617 if (nr_taken == 0) 1618 return 0; 1619 1620 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1621 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1622 &nr_writeback, &nr_immediate, 1623 false); 1624 1625 spin_lock_irq(&zone->lru_lock); 1626 1627 reclaim_stat->recent_scanned[file] += nr_taken; 1628 1629 if (global_reclaim(sc)) { 1630 if (current_is_kswapd()) 1631 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1632 nr_reclaimed); 1633 else 1634 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1635 nr_reclaimed); 1636 } 1637 1638 putback_inactive_pages(lruvec, &page_list); 1639 1640 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1641 1642 spin_unlock_irq(&zone->lru_lock); 1643 1644 mem_cgroup_uncharge_list(&page_list); 1645 free_hot_cold_page_list(&page_list, true); 1646 1647 /* 1648 * If reclaim is isolating dirty pages under writeback, it implies 1649 * that the long-lived page allocation rate is exceeding the page 1650 * laundering rate. Either the global limits are not being effective 1651 * at throttling processes due to the page distribution throughout 1652 * zones or there is heavy usage of a slow backing device. The 1653 * only option is to throttle from reclaim context which is not ideal 1654 * as there is no guarantee the dirtying process is throttled in the 1655 * same way balance_dirty_pages() manages. 1656 * 1657 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1658 * of pages under pages flagged for immediate reclaim and stall if any 1659 * are encountered in the nr_immediate check below. 1660 */ 1661 if (nr_writeback && nr_writeback == nr_taken) 1662 set_bit(ZONE_WRITEBACK, &zone->flags); 1663 1664 /* 1665 * Legacy memcg will stall in page writeback so avoid forcibly 1666 * stalling here. 1667 */ 1668 if (sane_reclaim(sc)) { 1669 /* 1670 * Tag a zone as congested if all the dirty pages scanned were 1671 * backed by a congested BDI and wait_iff_congested will stall. 1672 */ 1673 if (nr_dirty && nr_dirty == nr_congested) 1674 set_bit(ZONE_CONGESTED, &zone->flags); 1675 1676 /* 1677 * If dirty pages are scanned that are not queued for IO, it 1678 * implies that flushers are not keeping up. In this case, flag 1679 * the zone ZONE_DIRTY and kswapd will start writing pages from 1680 * reclaim context. 1681 */ 1682 if (nr_unqueued_dirty == nr_taken) 1683 set_bit(ZONE_DIRTY, &zone->flags); 1684 1685 /* 1686 * If kswapd scans pages marked marked for immediate 1687 * reclaim and under writeback (nr_immediate), it implies 1688 * that pages are cycling through the LRU faster than 1689 * they are written so also forcibly stall. 1690 */ 1691 if (nr_immediate && current_may_throttle()) 1692 congestion_wait(BLK_RW_ASYNC, HZ/10); 1693 } 1694 1695 /* 1696 * Stall direct reclaim for IO completions if underlying BDIs or zone 1697 * is congested. Allow kswapd to continue until it starts encountering 1698 * unqueued dirty pages or cycling through the LRU too quickly. 1699 */ 1700 if (!sc->hibernation_mode && !current_is_kswapd() && 1701 current_may_throttle()) 1702 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1703 1704 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed, 1705 sc->priority, file); 1706 return nr_reclaimed; 1707 } 1708 1709 /* 1710 * This moves pages from the active list to the inactive list. 1711 * 1712 * We move them the other way if the page is referenced by one or more 1713 * processes, from rmap. 1714 * 1715 * If the pages are mostly unmapped, the processing is fast and it is 1716 * appropriate to hold zone->lru_lock across the whole operation. But if 1717 * the pages are mapped, the processing is slow (page_referenced()) so we 1718 * should drop zone->lru_lock around each page. It's impossible to balance 1719 * this, so instead we remove the pages from the LRU while processing them. 1720 * It is safe to rely on PG_active against the non-LRU pages in here because 1721 * nobody will play with that bit on a non-LRU page. 1722 * 1723 * The downside is that we have to touch page->_count against each page. 1724 * But we had to alter page->flags anyway. 1725 */ 1726 1727 static void move_active_pages_to_lru(struct lruvec *lruvec, 1728 struct list_head *list, 1729 struct list_head *pages_to_free, 1730 enum lru_list lru) 1731 { 1732 struct zone *zone = lruvec_zone(lruvec); 1733 unsigned long pgmoved = 0; 1734 struct page *page; 1735 int nr_pages; 1736 1737 while (!list_empty(list)) { 1738 page = lru_to_page(list); 1739 lruvec = mem_cgroup_page_lruvec(page, zone); 1740 1741 VM_BUG_ON_PAGE(PageLRU(page), page); 1742 SetPageLRU(page); 1743 1744 nr_pages = hpage_nr_pages(page); 1745 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1746 list_move(&page->lru, &lruvec->lists[lru]); 1747 pgmoved += nr_pages; 1748 1749 if (put_page_testzero(page)) { 1750 __ClearPageLRU(page); 1751 __ClearPageActive(page); 1752 del_page_from_lru_list(page, lruvec, lru); 1753 1754 if (unlikely(PageCompound(page))) { 1755 spin_unlock_irq(&zone->lru_lock); 1756 mem_cgroup_uncharge(page); 1757 (*get_compound_page_dtor(page))(page); 1758 spin_lock_irq(&zone->lru_lock); 1759 } else 1760 list_add(&page->lru, pages_to_free); 1761 } 1762 } 1763 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1764 if (!is_active_lru(lru)) 1765 __count_vm_events(PGDEACTIVATE, pgmoved); 1766 } 1767 1768 static void shrink_active_list(unsigned long nr_to_scan, 1769 struct lruvec *lruvec, 1770 struct scan_control *sc, 1771 enum lru_list lru) 1772 { 1773 unsigned long nr_taken; 1774 unsigned long nr_scanned; 1775 unsigned long vm_flags; 1776 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1777 LIST_HEAD(l_active); 1778 LIST_HEAD(l_inactive); 1779 struct page *page; 1780 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1781 unsigned long nr_rotated = 0; 1782 isolate_mode_t isolate_mode = 0; 1783 int file = is_file_lru(lru); 1784 struct zone *zone = lruvec_zone(lruvec); 1785 1786 lru_add_drain(); 1787 1788 if (!sc->may_unmap) 1789 isolate_mode |= ISOLATE_UNMAPPED; 1790 if (!sc->may_writepage) 1791 isolate_mode |= ISOLATE_CLEAN; 1792 1793 spin_lock_irq(&zone->lru_lock); 1794 1795 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1796 &nr_scanned, sc, isolate_mode, lru); 1797 if (global_reclaim(sc)) 1798 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1799 1800 reclaim_stat->recent_scanned[file] += nr_taken; 1801 1802 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1803 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1804 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1805 spin_unlock_irq(&zone->lru_lock); 1806 1807 while (!list_empty(&l_hold)) { 1808 cond_resched(); 1809 page = lru_to_page(&l_hold); 1810 list_del(&page->lru); 1811 1812 if (unlikely(!page_evictable(page))) { 1813 putback_lru_page(page); 1814 continue; 1815 } 1816 1817 if (unlikely(buffer_heads_over_limit)) { 1818 if (page_has_private(page) && trylock_page(page)) { 1819 if (page_has_private(page)) 1820 try_to_release_page(page, 0); 1821 unlock_page(page); 1822 } 1823 } 1824 1825 if (page_referenced(page, 0, sc->target_mem_cgroup, 1826 &vm_flags)) { 1827 nr_rotated += hpage_nr_pages(page); 1828 /* 1829 * Identify referenced, file-backed active pages and 1830 * give them one more trip around the active list. So 1831 * that executable code get better chances to stay in 1832 * memory under moderate memory pressure. Anon pages 1833 * are not likely to be evicted by use-once streaming 1834 * IO, plus JVM can create lots of anon VM_EXEC pages, 1835 * so we ignore them here. 1836 */ 1837 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1838 list_add(&page->lru, &l_active); 1839 continue; 1840 } 1841 } 1842 1843 ClearPageActive(page); /* we are de-activating */ 1844 list_add(&page->lru, &l_inactive); 1845 } 1846 1847 /* 1848 * Move pages back to the lru list. 1849 */ 1850 spin_lock_irq(&zone->lru_lock); 1851 /* 1852 * Count referenced pages from currently used mappings as rotated, 1853 * even though only some of them are actually re-activated. This 1854 * helps balance scan pressure between file and anonymous pages in 1855 * get_scan_count. 1856 */ 1857 reclaim_stat->recent_rotated[file] += nr_rotated; 1858 1859 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1860 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1861 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1862 spin_unlock_irq(&zone->lru_lock); 1863 1864 mem_cgroup_uncharge_list(&l_hold); 1865 free_hot_cold_page_list(&l_hold, true); 1866 } 1867 1868 #ifdef CONFIG_SWAP 1869 static bool inactive_anon_is_low_global(struct zone *zone) 1870 { 1871 unsigned long active, inactive; 1872 1873 active = zone_page_state(zone, NR_ACTIVE_ANON); 1874 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1875 1876 return inactive * zone->inactive_ratio < active; 1877 } 1878 1879 /** 1880 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1881 * @lruvec: LRU vector to check 1882 * 1883 * Returns true if the zone does not have enough inactive anon pages, 1884 * meaning some active anon pages need to be deactivated. 1885 */ 1886 static bool inactive_anon_is_low(struct lruvec *lruvec) 1887 { 1888 /* 1889 * If we don't have swap space, anonymous page deactivation 1890 * is pointless. 1891 */ 1892 if (!total_swap_pages) 1893 return false; 1894 1895 if (!mem_cgroup_disabled()) 1896 return mem_cgroup_inactive_anon_is_low(lruvec); 1897 1898 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1899 } 1900 #else 1901 static inline bool inactive_anon_is_low(struct lruvec *lruvec) 1902 { 1903 return false; 1904 } 1905 #endif 1906 1907 /** 1908 * inactive_file_is_low - check if file pages need to be deactivated 1909 * @lruvec: LRU vector to check 1910 * 1911 * When the system is doing streaming IO, memory pressure here 1912 * ensures that active file pages get deactivated, until more 1913 * than half of the file pages are on the inactive list. 1914 * 1915 * Once we get to that situation, protect the system's working 1916 * set from being evicted by disabling active file page aging. 1917 * 1918 * This uses a different ratio than the anonymous pages, because 1919 * the page cache uses a use-once replacement algorithm. 1920 */ 1921 static bool inactive_file_is_low(struct lruvec *lruvec) 1922 { 1923 unsigned long inactive; 1924 unsigned long active; 1925 1926 inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 1927 active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE); 1928 1929 return active > inactive; 1930 } 1931 1932 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1933 { 1934 if (is_file_lru(lru)) 1935 return inactive_file_is_low(lruvec); 1936 else 1937 return inactive_anon_is_low(lruvec); 1938 } 1939 1940 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1941 struct lruvec *lruvec, struct scan_control *sc) 1942 { 1943 if (is_active_lru(lru)) { 1944 if (inactive_list_is_low(lruvec, lru)) 1945 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1946 return 0; 1947 } 1948 1949 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1950 } 1951 1952 enum scan_balance { 1953 SCAN_EQUAL, 1954 SCAN_FRACT, 1955 SCAN_ANON, 1956 SCAN_FILE, 1957 }; 1958 1959 /* 1960 * Determine how aggressively the anon and file LRU lists should be 1961 * scanned. The relative value of each set of LRU lists is determined 1962 * by looking at the fraction of the pages scanned we did rotate back 1963 * onto the active list instead of evict. 1964 * 1965 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1966 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1967 */ 1968 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 1969 struct scan_control *sc, unsigned long *nr, 1970 unsigned long *lru_pages) 1971 { 1972 int swappiness = mem_cgroup_swappiness(memcg); 1973 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1974 u64 fraction[2]; 1975 u64 denominator = 0; /* gcc */ 1976 struct zone *zone = lruvec_zone(lruvec); 1977 unsigned long anon_prio, file_prio; 1978 enum scan_balance scan_balance; 1979 unsigned long anon, file; 1980 bool force_scan = false; 1981 unsigned long ap, fp; 1982 enum lru_list lru; 1983 bool some_scanned; 1984 int pass; 1985 1986 /* 1987 * If the zone or memcg is small, nr[l] can be 0. This 1988 * results in no scanning on this priority and a potential 1989 * priority drop. Global direct reclaim can go to the next 1990 * zone and tends to have no problems. Global kswapd is for 1991 * zone balancing and it needs to scan a minimum amount. When 1992 * reclaiming for a memcg, a priority drop can cause high 1993 * latencies, so it's better to scan a minimum amount there as 1994 * well. 1995 */ 1996 if (current_is_kswapd()) { 1997 if (!zone_reclaimable(zone)) 1998 force_scan = true; 1999 if (!mem_cgroup_online(memcg)) 2000 force_scan = true; 2001 } 2002 if (!global_reclaim(sc)) 2003 force_scan = true; 2004 2005 /* If we have no swap space, do not bother scanning anon pages. */ 2006 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2007 scan_balance = SCAN_FILE; 2008 goto out; 2009 } 2010 2011 /* 2012 * Global reclaim will swap to prevent OOM even with no 2013 * swappiness, but memcg users want to use this knob to 2014 * disable swapping for individual groups completely when 2015 * using the memory controller's swap limit feature would be 2016 * too expensive. 2017 */ 2018 if (!global_reclaim(sc) && !swappiness) { 2019 scan_balance = SCAN_FILE; 2020 goto out; 2021 } 2022 2023 /* 2024 * Do not apply any pressure balancing cleverness when the 2025 * system is close to OOM, scan both anon and file equally 2026 * (unless the swappiness setting disagrees with swapping). 2027 */ 2028 if (!sc->priority && swappiness) { 2029 scan_balance = SCAN_EQUAL; 2030 goto out; 2031 } 2032 2033 /* 2034 * Prevent the reclaimer from falling into the cache trap: as 2035 * cache pages start out inactive, every cache fault will tip 2036 * the scan balance towards the file LRU. And as the file LRU 2037 * shrinks, so does the window for rotation from references. 2038 * This means we have a runaway feedback loop where a tiny 2039 * thrashing file LRU becomes infinitely more attractive than 2040 * anon pages. Try to detect this based on file LRU size. 2041 */ 2042 if (global_reclaim(sc)) { 2043 unsigned long zonefile; 2044 unsigned long zonefree; 2045 2046 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2047 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2048 zone_page_state(zone, NR_INACTIVE_FILE); 2049 2050 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2051 scan_balance = SCAN_ANON; 2052 goto out; 2053 } 2054 } 2055 2056 /* 2057 * If there is enough inactive page cache, i.e. if the size of the 2058 * inactive list is greater than that of the active list *and* the 2059 * inactive list actually has some pages to scan on this priority, we 2060 * do not reclaim anything from the anonymous working set right now. 2061 * Without the second condition we could end up never scanning an 2062 * lruvec even if it has plenty of old anonymous pages unless the 2063 * system is under heavy pressure. 2064 */ 2065 if (!inactive_file_is_low(lruvec) && 2066 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2067 scan_balance = SCAN_FILE; 2068 goto out; 2069 } 2070 2071 scan_balance = SCAN_FRACT; 2072 2073 /* 2074 * With swappiness at 100, anonymous and file have the same priority. 2075 * This scanning priority is essentially the inverse of IO cost. 2076 */ 2077 anon_prio = swappiness; 2078 file_prio = 200 - anon_prio; 2079 2080 /* 2081 * OK, so we have swap space and a fair amount of page cache 2082 * pages. We use the recently rotated / recently scanned 2083 * ratios to determine how valuable each cache is. 2084 * 2085 * Because workloads change over time (and to avoid overflow) 2086 * we keep these statistics as a floating average, which ends 2087 * up weighing recent references more than old ones. 2088 * 2089 * anon in [0], file in [1] 2090 */ 2091 2092 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2093 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2094 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2095 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2096 2097 spin_lock_irq(&zone->lru_lock); 2098 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2099 reclaim_stat->recent_scanned[0] /= 2; 2100 reclaim_stat->recent_rotated[0] /= 2; 2101 } 2102 2103 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2104 reclaim_stat->recent_scanned[1] /= 2; 2105 reclaim_stat->recent_rotated[1] /= 2; 2106 } 2107 2108 /* 2109 * The amount of pressure on anon vs file pages is inversely 2110 * proportional to the fraction of recently scanned pages on 2111 * each list that were recently referenced and in active use. 2112 */ 2113 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2114 ap /= reclaim_stat->recent_rotated[0] + 1; 2115 2116 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2117 fp /= reclaim_stat->recent_rotated[1] + 1; 2118 spin_unlock_irq(&zone->lru_lock); 2119 2120 fraction[0] = ap; 2121 fraction[1] = fp; 2122 denominator = ap + fp + 1; 2123 out: 2124 some_scanned = false; 2125 /* Only use force_scan on second pass. */ 2126 for (pass = 0; !some_scanned && pass < 2; pass++) { 2127 *lru_pages = 0; 2128 for_each_evictable_lru(lru) { 2129 int file = is_file_lru(lru); 2130 unsigned long size; 2131 unsigned long scan; 2132 2133 size = lruvec_lru_size(lruvec, lru); 2134 scan = size >> sc->priority; 2135 2136 if (!scan && pass && force_scan) 2137 scan = min(size, SWAP_CLUSTER_MAX); 2138 2139 switch (scan_balance) { 2140 case SCAN_EQUAL: 2141 /* Scan lists relative to size */ 2142 break; 2143 case SCAN_FRACT: 2144 /* 2145 * Scan types proportional to swappiness and 2146 * their relative recent reclaim efficiency. 2147 */ 2148 scan = div64_u64(scan * fraction[file], 2149 denominator); 2150 break; 2151 case SCAN_FILE: 2152 case SCAN_ANON: 2153 /* Scan one type exclusively */ 2154 if ((scan_balance == SCAN_FILE) != file) { 2155 size = 0; 2156 scan = 0; 2157 } 2158 break; 2159 default: 2160 /* Look ma, no brain */ 2161 BUG(); 2162 } 2163 2164 *lru_pages += size; 2165 nr[lru] = scan; 2166 2167 /* 2168 * Skip the second pass and don't force_scan, 2169 * if we found something to scan. 2170 */ 2171 some_scanned |= !!scan; 2172 } 2173 } 2174 } 2175 2176 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2177 static void init_tlb_ubc(void) 2178 { 2179 /* 2180 * This deliberately does not clear the cpumask as it's expensive 2181 * and unnecessary. If there happens to be data in there then the 2182 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2183 * then will be cleared. 2184 */ 2185 current->tlb_ubc.flush_required = false; 2186 } 2187 #else 2188 static inline void init_tlb_ubc(void) 2189 { 2190 } 2191 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2192 2193 /* 2194 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2195 */ 2196 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg, 2197 struct scan_control *sc, unsigned long *lru_pages) 2198 { 2199 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2200 unsigned long nr[NR_LRU_LISTS]; 2201 unsigned long targets[NR_LRU_LISTS]; 2202 unsigned long nr_to_scan; 2203 enum lru_list lru; 2204 unsigned long nr_reclaimed = 0; 2205 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2206 struct blk_plug plug; 2207 bool scan_adjusted; 2208 2209 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2210 2211 /* Record the original scan target for proportional adjustments later */ 2212 memcpy(targets, nr, sizeof(nr)); 2213 2214 /* 2215 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2216 * event that can occur when there is little memory pressure e.g. 2217 * multiple streaming readers/writers. Hence, we do not abort scanning 2218 * when the requested number of pages are reclaimed when scanning at 2219 * DEF_PRIORITY on the assumption that the fact we are direct 2220 * reclaiming implies that kswapd is not keeping up and it is best to 2221 * do a batch of work at once. For memcg reclaim one check is made to 2222 * abort proportional reclaim if either the file or anon lru has already 2223 * dropped to zero at the first pass. 2224 */ 2225 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2226 sc->priority == DEF_PRIORITY); 2227 2228 init_tlb_ubc(); 2229 2230 blk_start_plug(&plug); 2231 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2232 nr[LRU_INACTIVE_FILE]) { 2233 unsigned long nr_anon, nr_file, percentage; 2234 unsigned long nr_scanned; 2235 2236 for_each_evictable_lru(lru) { 2237 if (nr[lru]) { 2238 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2239 nr[lru] -= nr_to_scan; 2240 2241 nr_reclaimed += shrink_list(lru, nr_to_scan, 2242 lruvec, sc); 2243 } 2244 } 2245 2246 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2247 continue; 2248 2249 /* 2250 * For kswapd and memcg, reclaim at least the number of pages 2251 * requested. Ensure that the anon and file LRUs are scanned 2252 * proportionally what was requested by get_scan_count(). We 2253 * stop reclaiming one LRU and reduce the amount scanning 2254 * proportional to the original scan target. 2255 */ 2256 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2257 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2258 2259 /* 2260 * It's just vindictive to attack the larger once the smaller 2261 * has gone to zero. And given the way we stop scanning the 2262 * smaller below, this makes sure that we only make one nudge 2263 * towards proportionality once we've got nr_to_reclaim. 2264 */ 2265 if (!nr_file || !nr_anon) 2266 break; 2267 2268 if (nr_file > nr_anon) { 2269 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2270 targets[LRU_ACTIVE_ANON] + 1; 2271 lru = LRU_BASE; 2272 percentage = nr_anon * 100 / scan_target; 2273 } else { 2274 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2275 targets[LRU_ACTIVE_FILE] + 1; 2276 lru = LRU_FILE; 2277 percentage = nr_file * 100 / scan_target; 2278 } 2279 2280 /* Stop scanning the smaller of the LRU */ 2281 nr[lru] = 0; 2282 nr[lru + LRU_ACTIVE] = 0; 2283 2284 /* 2285 * Recalculate the other LRU scan count based on its original 2286 * scan target and the percentage scanning already complete 2287 */ 2288 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2289 nr_scanned = targets[lru] - nr[lru]; 2290 nr[lru] = targets[lru] * (100 - percentage) / 100; 2291 nr[lru] -= min(nr[lru], nr_scanned); 2292 2293 lru += LRU_ACTIVE; 2294 nr_scanned = targets[lru] - nr[lru]; 2295 nr[lru] = targets[lru] * (100 - percentage) / 100; 2296 nr[lru] -= min(nr[lru], nr_scanned); 2297 2298 scan_adjusted = true; 2299 } 2300 blk_finish_plug(&plug); 2301 sc->nr_reclaimed += nr_reclaimed; 2302 2303 /* 2304 * Even if we did not try to evict anon pages at all, we want to 2305 * rebalance the anon lru active/inactive ratio. 2306 */ 2307 if (inactive_anon_is_low(lruvec)) 2308 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2309 sc, LRU_ACTIVE_ANON); 2310 2311 throttle_vm_writeout(sc->gfp_mask); 2312 } 2313 2314 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2315 static bool in_reclaim_compaction(struct scan_control *sc) 2316 { 2317 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2318 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2319 sc->priority < DEF_PRIORITY - 2)) 2320 return true; 2321 2322 return false; 2323 } 2324 2325 /* 2326 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2327 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2328 * true if more pages should be reclaimed such that when the page allocator 2329 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2330 * It will give up earlier than that if there is difficulty reclaiming pages. 2331 */ 2332 static inline bool should_continue_reclaim(struct zone *zone, 2333 unsigned long nr_reclaimed, 2334 unsigned long nr_scanned, 2335 struct scan_control *sc) 2336 { 2337 unsigned long pages_for_compaction; 2338 unsigned long inactive_lru_pages; 2339 2340 /* If not in reclaim/compaction mode, stop */ 2341 if (!in_reclaim_compaction(sc)) 2342 return false; 2343 2344 /* Consider stopping depending on scan and reclaim activity */ 2345 if (sc->gfp_mask & __GFP_REPEAT) { 2346 /* 2347 * For __GFP_REPEAT allocations, stop reclaiming if the 2348 * full LRU list has been scanned and we are still failing 2349 * to reclaim pages. This full LRU scan is potentially 2350 * expensive but a __GFP_REPEAT caller really wants to succeed 2351 */ 2352 if (!nr_reclaimed && !nr_scanned) 2353 return false; 2354 } else { 2355 /* 2356 * For non-__GFP_REPEAT allocations which can presumably 2357 * fail without consequence, stop if we failed to reclaim 2358 * any pages from the last SWAP_CLUSTER_MAX number of 2359 * pages that were scanned. This will return to the 2360 * caller faster at the risk reclaim/compaction and 2361 * the resulting allocation attempt fails 2362 */ 2363 if (!nr_reclaimed) 2364 return false; 2365 } 2366 2367 /* 2368 * If we have not reclaimed enough pages for compaction and the 2369 * inactive lists are large enough, continue reclaiming 2370 */ 2371 pages_for_compaction = (2UL << sc->order); 2372 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2373 if (get_nr_swap_pages() > 0) 2374 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2375 if (sc->nr_reclaimed < pages_for_compaction && 2376 inactive_lru_pages > pages_for_compaction) 2377 return true; 2378 2379 /* If compaction would go ahead or the allocation would succeed, stop */ 2380 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2381 case COMPACT_PARTIAL: 2382 case COMPACT_CONTINUE: 2383 return false; 2384 default: 2385 return true; 2386 } 2387 } 2388 2389 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2390 bool is_classzone) 2391 { 2392 struct reclaim_state *reclaim_state = current->reclaim_state; 2393 unsigned long nr_reclaimed, nr_scanned; 2394 bool reclaimable = false; 2395 2396 do { 2397 struct mem_cgroup *root = sc->target_mem_cgroup; 2398 struct mem_cgroup_reclaim_cookie reclaim = { 2399 .zone = zone, 2400 .priority = sc->priority, 2401 }; 2402 unsigned long zone_lru_pages = 0; 2403 struct mem_cgroup *memcg; 2404 2405 nr_reclaimed = sc->nr_reclaimed; 2406 nr_scanned = sc->nr_scanned; 2407 2408 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2409 do { 2410 unsigned long lru_pages; 2411 unsigned long reclaimed; 2412 unsigned long scanned; 2413 2414 if (mem_cgroup_low(root, memcg)) { 2415 if (!sc->may_thrash) 2416 continue; 2417 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2418 } 2419 2420 reclaimed = sc->nr_reclaimed; 2421 scanned = sc->nr_scanned; 2422 2423 shrink_zone_memcg(zone, memcg, sc, &lru_pages); 2424 zone_lru_pages += lru_pages; 2425 2426 if (memcg && is_classzone) 2427 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2428 memcg, sc->nr_scanned - scanned, 2429 lru_pages); 2430 2431 /* Record the group's reclaim efficiency */ 2432 vmpressure(sc->gfp_mask, memcg, false, 2433 sc->nr_scanned - scanned, 2434 sc->nr_reclaimed - reclaimed); 2435 2436 /* 2437 * Direct reclaim and kswapd have to scan all memory 2438 * cgroups to fulfill the overall scan target for the 2439 * zone. 2440 * 2441 * Limit reclaim, on the other hand, only cares about 2442 * nr_to_reclaim pages to be reclaimed and it will 2443 * retry with decreasing priority if one round over the 2444 * whole hierarchy is not sufficient. 2445 */ 2446 if (!global_reclaim(sc) && 2447 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2448 mem_cgroup_iter_break(root, memcg); 2449 break; 2450 } 2451 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2452 2453 /* 2454 * Shrink the slab caches in the same proportion that 2455 * the eligible LRU pages were scanned. 2456 */ 2457 if (global_reclaim(sc) && is_classzone) 2458 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2459 sc->nr_scanned - nr_scanned, 2460 zone_lru_pages); 2461 2462 if (reclaim_state) { 2463 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2464 reclaim_state->reclaimed_slab = 0; 2465 } 2466 2467 /* Record the subtree's reclaim efficiency */ 2468 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2469 sc->nr_scanned - nr_scanned, 2470 sc->nr_reclaimed - nr_reclaimed); 2471 2472 if (sc->nr_reclaimed - nr_reclaimed) 2473 reclaimable = true; 2474 2475 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2476 sc->nr_scanned - nr_scanned, sc)); 2477 2478 return reclaimable; 2479 } 2480 2481 /* 2482 * Returns true if compaction should go ahead for a high-order request, or 2483 * the high-order allocation would succeed without compaction. 2484 */ 2485 static inline bool compaction_ready(struct zone *zone, int order) 2486 { 2487 unsigned long balance_gap, watermark; 2488 bool watermark_ok; 2489 2490 /* 2491 * Compaction takes time to run and there are potentially other 2492 * callers using the pages just freed. Continue reclaiming until 2493 * there is a buffer of free pages available to give compaction 2494 * a reasonable chance of completing and allocating the page 2495 */ 2496 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2497 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2498 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2499 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0); 2500 2501 /* 2502 * If compaction is deferred, reclaim up to a point where 2503 * compaction will have a chance of success when re-enabled 2504 */ 2505 if (compaction_deferred(zone, order)) 2506 return watermark_ok; 2507 2508 /* 2509 * If compaction is not ready to start and allocation is not likely 2510 * to succeed without it, then keep reclaiming. 2511 */ 2512 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2513 return false; 2514 2515 return watermark_ok; 2516 } 2517 2518 /* 2519 * This is the direct reclaim path, for page-allocating processes. We only 2520 * try to reclaim pages from zones which will satisfy the caller's allocation 2521 * request. 2522 * 2523 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2524 * Because: 2525 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2526 * allocation or 2527 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2528 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2529 * zone defense algorithm. 2530 * 2531 * If a zone is deemed to be full of pinned pages then just give it a light 2532 * scan then give up on it. 2533 * 2534 * Returns true if a zone was reclaimable. 2535 */ 2536 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2537 { 2538 struct zoneref *z; 2539 struct zone *zone; 2540 unsigned long nr_soft_reclaimed; 2541 unsigned long nr_soft_scanned; 2542 gfp_t orig_mask; 2543 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2544 bool reclaimable = false; 2545 2546 /* 2547 * If the number of buffer_heads in the machine exceeds the maximum 2548 * allowed level, force direct reclaim to scan the highmem zone as 2549 * highmem pages could be pinning lowmem pages storing buffer_heads 2550 */ 2551 orig_mask = sc->gfp_mask; 2552 if (buffer_heads_over_limit) 2553 sc->gfp_mask |= __GFP_HIGHMEM; 2554 2555 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2556 gfp_zone(sc->gfp_mask), sc->nodemask) { 2557 enum zone_type classzone_idx; 2558 2559 if (!populated_zone(zone)) 2560 continue; 2561 2562 classzone_idx = requested_highidx; 2563 while (!populated_zone(zone->zone_pgdat->node_zones + 2564 classzone_idx)) 2565 classzone_idx--; 2566 2567 /* 2568 * Take care memory controller reclaiming has small influence 2569 * to global LRU. 2570 */ 2571 if (global_reclaim(sc)) { 2572 if (!cpuset_zone_allowed(zone, 2573 GFP_KERNEL | __GFP_HARDWALL)) 2574 continue; 2575 2576 if (sc->priority != DEF_PRIORITY && 2577 !zone_reclaimable(zone)) 2578 continue; /* Let kswapd poll it */ 2579 2580 /* 2581 * If we already have plenty of memory free for 2582 * compaction in this zone, don't free any more. 2583 * Even though compaction is invoked for any 2584 * non-zero order, only frequent costly order 2585 * reclamation is disruptive enough to become a 2586 * noticeable problem, like transparent huge 2587 * page allocations. 2588 */ 2589 if (IS_ENABLED(CONFIG_COMPACTION) && 2590 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2591 zonelist_zone_idx(z) <= requested_highidx && 2592 compaction_ready(zone, sc->order)) { 2593 sc->compaction_ready = true; 2594 continue; 2595 } 2596 2597 /* 2598 * This steals pages from memory cgroups over softlimit 2599 * and returns the number of reclaimed pages and 2600 * scanned pages. This works for global memory pressure 2601 * and balancing, not for a memcg's limit. 2602 */ 2603 nr_soft_scanned = 0; 2604 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2605 sc->order, sc->gfp_mask, 2606 &nr_soft_scanned); 2607 sc->nr_reclaimed += nr_soft_reclaimed; 2608 sc->nr_scanned += nr_soft_scanned; 2609 if (nr_soft_reclaimed) 2610 reclaimable = true; 2611 /* need some check for avoid more shrink_zone() */ 2612 } 2613 2614 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2615 reclaimable = true; 2616 2617 if (global_reclaim(sc) && 2618 !reclaimable && zone_reclaimable(zone)) 2619 reclaimable = true; 2620 } 2621 2622 /* 2623 * Restore to original mask to avoid the impact on the caller if we 2624 * promoted it to __GFP_HIGHMEM. 2625 */ 2626 sc->gfp_mask = orig_mask; 2627 2628 return reclaimable; 2629 } 2630 2631 /* 2632 * This is the main entry point to direct page reclaim. 2633 * 2634 * If a full scan of the inactive list fails to free enough memory then we 2635 * are "out of memory" and something needs to be killed. 2636 * 2637 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2638 * high - the zone may be full of dirty or under-writeback pages, which this 2639 * caller can't do much about. We kick the writeback threads and take explicit 2640 * naps in the hope that some of these pages can be written. But if the 2641 * allocating task holds filesystem locks which prevent writeout this might not 2642 * work, and the allocation attempt will fail. 2643 * 2644 * returns: 0, if no pages reclaimed 2645 * else, the number of pages reclaimed 2646 */ 2647 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2648 struct scan_control *sc) 2649 { 2650 int initial_priority = sc->priority; 2651 unsigned long total_scanned = 0; 2652 unsigned long writeback_threshold; 2653 bool zones_reclaimable; 2654 retry: 2655 delayacct_freepages_start(); 2656 2657 if (global_reclaim(sc)) 2658 count_vm_event(ALLOCSTALL); 2659 2660 do { 2661 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2662 sc->priority); 2663 sc->nr_scanned = 0; 2664 zones_reclaimable = shrink_zones(zonelist, sc); 2665 2666 total_scanned += sc->nr_scanned; 2667 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2668 break; 2669 2670 if (sc->compaction_ready) 2671 break; 2672 2673 /* 2674 * If we're getting trouble reclaiming, start doing 2675 * writepage even in laptop mode. 2676 */ 2677 if (sc->priority < DEF_PRIORITY - 2) 2678 sc->may_writepage = 1; 2679 2680 /* 2681 * Try to write back as many pages as we just scanned. This 2682 * tends to cause slow streaming writers to write data to the 2683 * disk smoothly, at the dirtying rate, which is nice. But 2684 * that's undesirable in laptop mode, where we *want* lumpy 2685 * writeout. So in laptop mode, write out the whole world. 2686 */ 2687 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2688 if (total_scanned > writeback_threshold) { 2689 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2690 WB_REASON_TRY_TO_FREE_PAGES); 2691 sc->may_writepage = 1; 2692 } 2693 } while (--sc->priority >= 0); 2694 2695 delayacct_freepages_end(); 2696 2697 if (sc->nr_reclaimed) 2698 return sc->nr_reclaimed; 2699 2700 /* Aborted reclaim to try compaction? don't OOM, then */ 2701 if (sc->compaction_ready) 2702 return 1; 2703 2704 /* Untapped cgroup reserves? Don't OOM, retry. */ 2705 if (!sc->may_thrash) { 2706 sc->priority = initial_priority; 2707 sc->may_thrash = 1; 2708 goto retry; 2709 } 2710 2711 /* Any of the zones still reclaimable? Don't OOM. */ 2712 if (zones_reclaimable) 2713 return 1; 2714 2715 return 0; 2716 } 2717 2718 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2719 { 2720 struct zone *zone; 2721 unsigned long pfmemalloc_reserve = 0; 2722 unsigned long free_pages = 0; 2723 int i; 2724 bool wmark_ok; 2725 2726 for (i = 0; i <= ZONE_NORMAL; i++) { 2727 zone = &pgdat->node_zones[i]; 2728 if (!populated_zone(zone) || 2729 zone_reclaimable_pages(zone) == 0) 2730 continue; 2731 2732 pfmemalloc_reserve += min_wmark_pages(zone); 2733 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2734 } 2735 2736 /* If there are no reserves (unexpected config) then do not throttle */ 2737 if (!pfmemalloc_reserve) 2738 return true; 2739 2740 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2741 2742 /* kswapd must be awake if processes are being throttled */ 2743 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2744 pgdat->classzone_idx = min(pgdat->classzone_idx, 2745 (enum zone_type)ZONE_NORMAL); 2746 wake_up_interruptible(&pgdat->kswapd_wait); 2747 } 2748 2749 return wmark_ok; 2750 } 2751 2752 /* 2753 * Throttle direct reclaimers if backing storage is backed by the network 2754 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2755 * depleted. kswapd will continue to make progress and wake the processes 2756 * when the low watermark is reached. 2757 * 2758 * Returns true if a fatal signal was delivered during throttling. If this 2759 * happens, the page allocator should not consider triggering the OOM killer. 2760 */ 2761 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2762 nodemask_t *nodemask) 2763 { 2764 struct zoneref *z; 2765 struct zone *zone; 2766 pg_data_t *pgdat = NULL; 2767 2768 /* 2769 * Kernel threads should not be throttled as they may be indirectly 2770 * responsible for cleaning pages necessary for reclaim to make forward 2771 * progress. kjournald for example may enter direct reclaim while 2772 * committing a transaction where throttling it could forcing other 2773 * processes to block on log_wait_commit(). 2774 */ 2775 if (current->flags & PF_KTHREAD) 2776 goto out; 2777 2778 /* 2779 * If a fatal signal is pending, this process should not throttle. 2780 * It should return quickly so it can exit and free its memory 2781 */ 2782 if (fatal_signal_pending(current)) 2783 goto out; 2784 2785 /* 2786 * Check if the pfmemalloc reserves are ok by finding the first node 2787 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2788 * GFP_KERNEL will be required for allocating network buffers when 2789 * swapping over the network so ZONE_HIGHMEM is unusable. 2790 * 2791 * Throttling is based on the first usable node and throttled processes 2792 * wait on a queue until kswapd makes progress and wakes them. There 2793 * is an affinity then between processes waking up and where reclaim 2794 * progress has been made assuming the process wakes on the same node. 2795 * More importantly, processes running on remote nodes will not compete 2796 * for remote pfmemalloc reserves and processes on different nodes 2797 * should make reasonable progress. 2798 */ 2799 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2800 gfp_zone(gfp_mask), nodemask) { 2801 if (zone_idx(zone) > ZONE_NORMAL) 2802 continue; 2803 2804 /* Throttle based on the first usable node */ 2805 pgdat = zone->zone_pgdat; 2806 if (pfmemalloc_watermark_ok(pgdat)) 2807 goto out; 2808 break; 2809 } 2810 2811 /* If no zone was usable by the allocation flags then do not throttle */ 2812 if (!pgdat) 2813 goto out; 2814 2815 /* Account for the throttling */ 2816 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2817 2818 /* 2819 * If the caller cannot enter the filesystem, it's possible that it 2820 * is due to the caller holding an FS lock or performing a journal 2821 * transaction in the case of a filesystem like ext[3|4]. In this case, 2822 * it is not safe to block on pfmemalloc_wait as kswapd could be 2823 * blocked waiting on the same lock. Instead, throttle for up to a 2824 * second before continuing. 2825 */ 2826 if (!(gfp_mask & __GFP_FS)) { 2827 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2828 pfmemalloc_watermark_ok(pgdat), HZ); 2829 2830 goto check_pending; 2831 } 2832 2833 /* Throttle until kswapd wakes the process */ 2834 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2835 pfmemalloc_watermark_ok(pgdat)); 2836 2837 check_pending: 2838 if (fatal_signal_pending(current)) 2839 return true; 2840 2841 out: 2842 return false; 2843 } 2844 2845 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2846 gfp_t gfp_mask, nodemask_t *nodemask) 2847 { 2848 unsigned long nr_reclaimed; 2849 struct scan_control sc = { 2850 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2851 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2852 .order = order, 2853 .nodemask = nodemask, 2854 .priority = DEF_PRIORITY, 2855 .may_writepage = !laptop_mode, 2856 .may_unmap = 1, 2857 .may_swap = 1, 2858 }; 2859 2860 /* 2861 * Do not enter reclaim if fatal signal was delivered while throttled. 2862 * 1 is returned so that the page allocator does not OOM kill at this 2863 * point. 2864 */ 2865 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2866 return 1; 2867 2868 trace_mm_vmscan_direct_reclaim_begin(order, 2869 sc.may_writepage, 2870 gfp_mask); 2871 2872 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2873 2874 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2875 2876 return nr_reclaimed; 2877 } 2878 2879 #ifdef CONFIG_MEMCG 2880 2881 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2882 gfp_t gfp_mask, bool noswap, 2883 struct zone *zone, 2884 unsigned long *nr_scanned) 2885 { 2886 struct scan_control sc = { 2887 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2888 .target_mem_cgroup = memcg, 2889 .may_writepage = !laptop_mode, 2890 .may_unmap = 1, 2891 .may_swap = !noswap, 2892 }; 2893 unsigned long lru_pages; 2894 2895 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2896 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2897 2898 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2899 sc.may_writepage, 2900 sc.gfp_mask); 2901 2902 /* 2903 * NOTE: Although we can get the priority field, using it 2904 * here is not a good idea, since it limits the pages we can scan. 2905 * if we don't reclaim here, the shrink_zone from balance_pgdat 2906 * will pick up pages from other mem cgroup's as well. We hack 2907 * the priority and make it zero. 2908 */ 2909 shrink_zone_memcg(zone, memcg, &sc, &lru_pages); 2910 2911 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2912 2913 *nr_scanned = sc.nr_scanned; 2914 return sc.nr_reclaimed; 2915 } 2916 2917 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2918 unsigned long nr_pages, 2919 gfp_t gfp_mask, 2920 bool may_swap) 2921 { 2922 struct zonelist *zonelist; 2923 unsigned long nr_reclaimed; 2924 int nid; 2925 struct scan_control sc = { 2926 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2927 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2928 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2929 .target_mem_cgroup = memcg, 2930 .priority = DEF_PRIORITY, 2931 .may_writepage = !laptop_mode, 2932 .may_unmap = 1, 2933 .may_swap = may_swap, 2934 }; 2935 2936 /* 2937 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2938 * take care of from where we get pages. So the node where we start the 2939 * scan does not need to be the current node. 2940 */ 2941 nid = mem_cgroup_select_victim_node(memcg); 2942 2943 zonelist = NODE_DATA(nid)->node_zonelists; 2944 2945 trace_mm_vmscan_memcg_reclaim_begin(0, 2946 sc.may_writepage, 2947 sc.gfp_mask); 2948 2949 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2950 2951 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2952 2953 return nr_reclaimed; 2954 } 2955 #endif 2956 2957 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2958 { 2959 struct mem_cgroup *memcg; 2960 2961 if (!total_swap_pages) 2962 return; 2963 2964 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2965 do { 2966 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2967 2968 if (inactive_anon_is_low(lruvec)) 2969 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2970 sc, LRU_ACTIVE_ANON); 2971 2972 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2973 } while (memcg); 2974 } 2975 2976 static bool zone_balanced(struct zone *zone, int order, bool highorder, 2977 unsigned long balance_gap, int classzone_idx) 2978 { 2979 unsigned long mark = high_wmark_pages(zone) + balance_gap; 2980 2981 /* 2982 * When checking from pgdat_balanced(), kswapd should stop and sleep 2983 * when it reaches the high order-0 watermark and let kcompactd take 2984 * over. Other callers such as wakeup_kswapd() want to determine the 2985 * true high-order watermark. 2986 */ 2987 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) { 2988 mark += (1UL << order); 2989 order = 0; 2990 } 2991 2992 return zone_watermark_ok_safe(zone, order, mark, classzone_idx); 2993 } 2994 2995 /* 2996 * pgdat_balanced() is used when checking if a node is balanced. 2997 * 2998 * For order-0, all zones must be balanced! 2999 * 3000 * For high-order allocations only zones that meet watermarks and are in a 3001 * zone allowed by the callers classzone_idx are added to balanced_pages. The 3002 * total of balanced pages must be at least 25% of the zones allowed by 3003 * classzone_idx for the node to be considered balanced. Forcing all zones to 3004 * be balanced for high orders can cause excessive reclaim when there are 3005 * imbalanced zones. 3006 * The choice of 25% is due to 3007 * o a 16M DMA zone that is balanced will not balance a zone on any 3008 * reasonable sized machine 3009 * o On all other machines, the top zone must be at least a reasonable 3010 * percentage of the middle zones. For example, on 32-bit x86, highmem 3011 * would need to be at least 256M for it to be balance a whole node. 3012 * Similarly, on x86-64 the Normal zone would need to be at least 1G 3013 * to balance a node on its own. These seemed like reasonable ratios. 3014 */ 3015 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3016 { 3017 unsigned long managed_pages = 0; 3018 unsigned long balanced_pages = 0; 3019 int i; 3020 3021 /* Check the watermark levels */ 3022 for (i = 0; i <= classzone_idx; i++) { 3023 struct zone *zone = pgdat->node_zones + i; 3024 3025 if (!populated_zone(zone)) 3026 continue; 3027 3028 managed_pages += zone->managed_pages; 3029 3030 /* 3031 * A special case here: 3032 * 3033 * balance_pgdat() skips over all_unreclaimable after 3034 * DEF_PRIORITY. Effectively, it considers them balanced so 3035 * they must be considered balanced here as well! 3036 */ 3037 if (!zone_reclaimable(zone)) { 3038 balanced_pages += zone->managed_pages; 3039 continue; 3040 } 3041 3042 if (zone_balanced(zone, order, false, 0, i)) 3043 balanced_pages += zone->managed_pages; 3044 else if (!order) 3045 return false; 3046 } 3047 3048 if (order) 3049 return balanced_pages >= (managed_pages >> 2); 3050 else 3051 return true; 3052 } 3053 3054 /* 3055 * Prepare kswapd for sleeping. This verifies that there are no processes 3056 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3057 * 3058 * Returns true if kswapd is ready to sleep 3059 */ 3060 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 3061 int classzone_idx) 3062 { 3063 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 3064 if (remaining) 3065 return false; 3066 3067 /* 3068 * The throttled processes are normally woken up in balance_pgdat() as 3069 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3070 * race between when kswapd checks the watermarks and a process gets 3071 * throttled. There is also a potential race if processes get 3072 * throttled, kswapd wakes, a large process exits thereby balancing the 3073 * zones, which causes kswapd to exit balance_pgdat() before reaching 3074 * the wake up checks. If kswapd is going to sleep, no process should 3075 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3076 * the wake up is premature, processes will wake kswapd and get 3077 * throttled again. The difference from wake ups in balance_pgdat() is 3078 * that here we are under prepare_to_wait(). 3079 */ 3080 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3081 wake_up_all(&pgdat->pfmemalloc_wait); 3082 3083 return pgdat_balanced(pgdat, order, classzone_idx); 3084 } 3085 3086 /* 3087 * kswapd shrinks the zone by the number of pages required to reach 3088 * the high watermark. 3089 * 3090 * Returns true if kswapd scanned at least the requested number of pages to 3091 * reclaim or if the lack of progress was due to pages under writeback. 3092 * This is used to determine if the scanning priority needs to be raised. 3093 */ 3094 static bool kswapd_shrink_zone(struct zone *zone, 3095 int classzone_idx, 3096 struct scan_control *sc) 3097 { 3098 unsigned long balance_gap; 3099 bool lowmem_pressure; 3100 3101 /* Reclaim above the high watermark. */ 3102 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3103 3104 /* 3105 * We put equal pressure on every zone, unless one zone has way too 3106 * many pages free already. The "too many pages" is defined as the 3107 * high wmark plus a "gap" where the gap is either the low 3108 * watermark or 1% of the zone, whichever is smaller. 3109 */ 3110 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3111 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3112 3113 /* 3114 * If there is no low memory pressure or the zone is balanced then no 3115 * reclaim is necessary 3116 */ 3117 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3118 if (!lowmem_pressure && zone_balanced(zone, sc->order, false, 3119 balance_gap, classzone_idx)) 3120 return true; 3121 3122 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3123 3124 clear_bit(ZONE_WRITEBACK, &zone->flags); 3125 3126 /* 3127 * If a zone reaches its high watermark, consider it to be no longer 3128 * congested. It's possible there are dirty pages backed by congested 3129 * BDIs but as pressure is relieved, speculatively avoid congestion 3130 * waits. 3131 */ 3132 if (zone_reclaimable(zone) && 3133 zone_balanced(zone, sc->order, false, 0, classzone_idx)) { 3134 clear_bit(ZONE_CONGESTED, &zone->flags); 3135 clear_bit(ZONE_DIRTY, &zone->flags); 3136 } 3137 3138 return sc->nr_scanned >= sc->nr_to_reclaim; 3139 } 3140 3141 /* 3142 * For kswapd, balance_pgdat() will work across all this node's zones until 3143 * they are all at high_wmark_pages(zone). 3144 * 3145 * Returns the highest zone idx kswapd was reclaiming at 3146 * 3147 * There is special handling here for zones which are full of pinned pages. 3148 * This can happen if the pages are all mlocked, or if they are all used by 3149 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3150 * What we do is to detect the case where all pages in the zone have been 3151 * scanned twice and there has been zero successful reclaim. Mark the zone as 3152 * dead and from now on, only perform a short scan. Basically we're polling 3153 * the zone for when the problem goes away. 3154 * 3155 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3156 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3157 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3158 * lower zones regardless of the number of free pages in the lower zones. This 3159 * interoperates with the page allocator fallback scheme to ensure that aging 3160 * of pages is balanced across the zones. 3161 */ 3162 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3163 { 3164 int i; 3165 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3166 unsigned long nr_soft_reclaimed; 3167 unsigned long nr_soft_scanned; 3168 struct scan_control sc = { 3169 .gfp_mask = GFP_KERNEL, 3170 .order = order, 3171 .priority = DEF_PRIORITY, 3172 .may_writepage = !laptop_mode, 3173 .may_unmap = 1, 3174 .may_swap = 1, 3175 }; 3176 count_vm_event(PAGEOUTRUN); 3177 3178 do { 3179 bool raise_priority = true; 3180 3181 sc.nr_reclaimed = 0; 3182 3183 /* 3184 * Scan in the highmem->dma direction for the highest 3185 * zone which needs scanning 3186 */ 3187 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3188 struct zone *zone = pgdat->node_zones + i; 3189 3190 if (!populated_zone(zone)) 3191 continue; 3192 3193 if (sc.priority != DEF_PRIORITY && 3194 !zone_reclaimable(zone)) 3195 continue; 3196 3197 /* 3198 * Do some background aging of the anon list, to give 3199 * pages a chance to be referenced before reclaiming. 3200 */ 3201 age_active_anon(zone, &sc); 3202 3203 /* 3204 * If the number of buffer_heads in the machine 3205 * exceeds the maximum allowed level and this node 3206 * has a highmem zone, force kswapd to reclaim from 3207 * it to relieve lowmem pressure. 3208 */ 3209 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3210 end_zone = i; 3211 break; 3212 } 3213 3214 if (!zone_balanced(zone, order, false, 0, 0)) { 3215 end_zone = i; 3216 break; 3217 } else { 3218 /* 3219 * If balanced, clear the dirty and congested 3220 * flags 3221 */ 3222 clear_bit(ZONE_CONGESTED, &zone->flags); 3223 clear_bit(ZONE_DIRTY, &zone->flags); 3224 } 3225 } 3226 3227 if (i < 0) 3228 goto out; 3229 3230 /* 3231 * If we're getting trouble reclaiming, start doing writepage 3232 * even in laptop mode. 3233 */ 3234 if (sc.priority < DEF_PRIORITY - 2) 3235 sc.may_writepage = 1; 3236 3237 /* 3238 * Now scan the zone in the dma->highmem direction, stopping 3239 * at the last zone which needs scanning. 3240 * 3241 * We do this because the page allocator works in the opposite 3242 * direction. This prevents the page allocator from allocating 3243 * pages behind kswapd's direction of progress, which would 3244 * cause too much scanning of the lower zones. 3245 */ 3246 for (i = 0; i <= end_zone; i++) { 3247 struct zone *zone = pgdat->node_zones + i; 3248 3249 if (!populated_zone(zone)) 3250 continue; 3251 3252 if (sc.priority != DEF_PRIORITY && 3253 !zone_reclaimable(zone)) 3254 continue; 3255 3256 sc.nr_scanned = 0; 3257 3258 nr_soft_scanned = 0; 3259 /* 3260 * Call soft limit reclaim before calling shrink_zone. 3261 */ 3262 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3263 order, sc.gfp_mask, 3264 &nr_soft_scanned); 3265 sc.nr_reclaimed += nr_soft_reclaimed; 3266 3267 /* 3268 * There should be no need to raise the scanning 3269 * priority if enough pages are already being scanned 3270 * that that high watermark would be met at 100% 3271 * efficiency. 3272 */ 3273 if (kswapd_shrink_zone(zone, end_zone, &sc)) 3274 raise_priority = false; 3275 } 3276 3277 /* 3278 * If the low watermark is met there is no need for processes 3279 * to be throttled on pfmemalloc_wait as they should not be 3280 * able to safely make forward progress. Wake them 3281 */ 3282 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3283 pfmemalloc_watermark_ok(pgdat)) 3284 wake_up_all(&pgdat->pfmemalloc_wait); 3285 3286 /* Check if kswapd should be suspending */ 3287 if (try_to_freeze() || kthread_should_stop()) 3288 break; 3289 3290 /* 3291 * Raise priority if scanning rate is too low or there was no 3292 * progress in reclaiming pages 3293 */ 3294 if (raise_priority || !sc.nr_reclaimed) 3295 sc.priority--; 3296 } while (sc.priority >= 1 && 3297 !pgdat_balanced(pgdat, order, classzone_idx)); 3298 3299 out: 3300 /* 3301 * Return the highest zone idx we were reclaiming at so 3302 * prepare_kswapd_sleep() makes the same decisions as here. 3303 */ 3304 return end_zone; 3305 } 3306 3307 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, 3308 int classzone_idx, int balanced_classzone_idx) 3309 { 3310 long remaining = 0; 3311 DEFINE_WAIT(wait); 3312 3313 if (freezing(current) || kthread_should_stop()) 3314 return; 3315 3316 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3317 3318 /* Try to sleep for a short interval */ 3319 if (prepare_kswapd_sleep(pgdat, order, remaining, 3320 balanced_classzone_idx)) { 3321 /* 3322 * Compaction records what page blocks it recently failed to 3323 * isolate pages from and skips them in the future scanning. 3324 * When kswapd is going to sleep, it is reasonable to assume 3325 * that pages and compaction may succeed so reset the cache. 3326 */ 3327 reset_isolation_suitable(pgdat); 3328 3329 /* 3330 * We have freed the memory, now we should compact it to make 3331 * allocation of the requested order possible. 3332 */ 3333 wakeup_kcompactd(pgdat, order, classzone_idx); 3334 3335 remaining = schedule_timeout(HZ/10); 3336 finish_wait(&pgdat->kswapd_wait, &wait); 3337 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3338 } 3339 3340 /* 3341 * After a short sleep, check if it was a premature sleep. If not, then 3342 * go fully to sleep until explicitly woken up. 3343 */ 3344 if (prepare_kswapd_sleep(pgdat, order, remaining, 3345 balanced_classzone_idx)) { 3346 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3347 3348 /* 3349 * vmstat counters are not perfectly accurate and the estimated 3350 * value for counters such as NR_FREE_PAGES can deviate from the 3351 * true value by nr_online_cpus * threshold. To avoid the zone 3352 * watermarks being breached while under pressure, we reduce the 3353 * per-cpu vmstat threshold while kswapd is awake and restore 3354 * them before going back to sleep. 3355 */ 3356 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3357 3358 if (!kthread_should_stop()) 3359 schedule(); 3360 3361 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3362 } else { 3363 if (remaining) 3364 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3365 else 3366 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3367 } 3368 finish_wait(&pgdat->kswapd_wait, &wait); 3369 } 3370 3371 /* 3372 * The background pageout daemon, started as a kernel thread 3373 * from the init process. 3374 * 3375 * This basically trickles out pages so that we have _some_ 3376 * free memory available even if there is no other activity 3377 * that frees anything up. This is needed for things like routing 3378 * etc, where we otherwise might have all activity going on in 3379 * asynchronous contexts that cannot page things out. 3380 * 3381 * If there are applications that are active memory-allocators 3382 * (most normal use), this basically shouldn't matter. 3383 */ 3384 static int kswapd(void *p) 3385 { 3386 unsigned long order, new_order; 3387 int classzone_idx, new_classzone_idx; 3388 int balanced_classzone_idx; 3389 pg_data_t *pgdat = (pg_data_t*)p; 3390 struct task_struct *tsk = current; 3391 3392 struct reclaim_state reclaim_state = { 3393 .reclaimed_slab = 0, 3394 }; 3395 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3396 3397 lockdep_set_current_reclaim_state(GFP_KERNEL); 3398 3399 if (!cpumask_empty(cpumask)) 3400 set_cpus_allowed_ptr(tsk, cpumask); 3401 current->reclaim_state = &reclaim_state; 3402 3403 /* 3404 * Tell the memory management that we're a "memory allocator", 3405 * and that if we need more memory we should get access to it 3406 * regardless (see "__alloc_pages()"). "kswapd" should 3407 * never get caught in the normal page freeing logic. 3408 * 3409 * (Kswapd normally doesn't need memory anyway, but sometimes 3410 * you need a small amount of memory in order to be able to 3411 * page out something else, and this flag essentially protects 3412 * us from recursively trying to free more memory as we're 3413 * trying to free the first piece of memory in the first place). 3414 */ 3415 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3416 set_freezable(); 3417 3418 order = new_order = 0; 3419 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3420 balanced_classzone_idx = classzone_idx; 3421 for ( ; ; ) { 3422 bool ret; 3423 3424 /* 3425 * While we were reclaiming, there might have been another 3426 * wakeup, so check the values. 3427 */ 3428 new_order = pgdat->kswapd_max_order; 3429 new_classzone_idx = pgdat->classzone_idx; 3430 pgdat->kswapd_max_order = 0; 3431 pgdat->classzone_idx = pgdat->nr_zones - 1; 3432 3433 if (order < new_order || classzone_idx > new_classzone_idx) { 3434 /* 3435 * Don't sleep if someone wants a larger 'order' 3436 * allocation or has tigher zone constraints 3437 */ 3438 order = new_order; 3439 classzone_idx = new_classzone_idx; 3440 } else { 3441 kswapd_try_to_sleep(pgdat, order, classzone_idx, 3442 balanced_classzone_idx); 3443 order = pgdat->kswapd_max_order; 3444 classzone_idx = pgdat->classzone_idx; 3445 new_order = order; 3446 new_classzone_idx = classzone_idx; 3447 pgdat->kswapd_max_order = 0; 3448 pgdat->classzone_idx = pgdat->nr_zones - 1; 3449 } 3450 3451 ret = try_to_freeze(); 3452 if (kthread_should_stop()) 3453 break; 3454 3455 /* 3456 * We can speed up thawing tasks if we don't call balance_pgdat 3457 * after returning from the refrigerator 3458 */ 3459 if (!ret) { 3460 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3461 balanced_classzone_idx = balance_pgdat(pgdat, order, 3462 classzone_idx); 3463 } 3464 } 3465 3466 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3467 current->reclaim_state = NULL; 3468 lockdep_clear_current_reclaim_state(); 3469 3470 return 0; 3471 } 3472 3473 /* 3474 * A zone is low on free memory, so wake its kswapd task to service it. 3475 */ 3476 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3477 { 3478 pg_data_t *pgdat; 3479 3480 if (!populated_zone(zone)) 3481 return; 3482 3483 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3484 return; 3485 pgdat = zone->zone_pgdat; 3486 if (pgdat->kswapd_max_order < order) { 3487 pgdat->kswapd_max_order = order; 3488 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3489 } 3490 if (!waitqueue_active(&pgdat->kswapd_wait)) 3491 return; 3492 if (zone_balanced(zone, order, true, 0, 0)) 3493 return; 3494 3495 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3496 wake_up_interruptible(&pgdat->kswapd_wait); 3497 } 3498 3499 #ifdef CONFIG_HIBERNATION 3500 /* 3501 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3502 * freed pages. 3503 * 3504 * Rather than trying to age LRUs the aim is to preserve the overall 3505 * LRU order by reclaiming preferentially 3506 * inactive > active > active referenced > active mapped 3507 */ 3508 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3509 { 3510 struct reclaim_state reclaim_state; 3511 struct scan_control sc = { 3512 .nr_to_reclaim = nr_to_reclaim, 3513 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3514 .priority = DEF_PRIORITY, 3515 .may_writepage = 1, 3516 .may_unmap = 1, 3517 .may_swap = 1, 3518 .hibernation_mode = 1, 3519 }; 3520 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3521 struct task_struct *p = current; 3522 unsigned long nr_reclaimed; 3523 3524 p->flags |= PF_MEMALLOC; 3525 lockdep_set_current_reclaim_state(sc.gfp_mask); 3526 reclaim_state.reclaimed_slab = 0; 3527 p->reclaim_state = &reclaim_state; 3528 3529 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3530 3531 p->reclaim_state = NULL; 3532 lockdep_clear_current_reclaim_state(); 3533 p->flags &= ~PF_MEMALLOC; 3534 3535 return nr_reclaimed; 3536 } 3537 #endif /* CONFIG_HIBERNATION */ 3538 3539 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3540 not required for correctness. So if the last cpu in a node goes 3541 away, we get changed to run anywhere: as the first one comes back, 3542 restore their cpu bindings. */ 3543 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3544 void *hcpu) 3545 { 3546 int nid; 3547 3548 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3549 for_each_node_state(nid, N_MEMORY) { 3550 pg_data_t *pgdat = NODE_DATA(nid); 3551 const struct cpumask *mask; 3552 3553 mask = cpumask_of_node(pgdat->node_id); 3554 3555 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3556 /* One of our CPUs online: restore mask */ 3557 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3558 } 3559 } 3560 return NOTIFY_OK; 3561 } 3562 3563 /* 3564 * This kswapd start function will be called by init and node-hot-add. 3565 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3566 */ 3567 int kswapd_run(int nid) 3568 { 3569 pg_data_t *pgdat = NODE_DATA(nid); 3570 int ret = 0; 3571 3572 if (pgdat->kswapd) 3573 return 0; 3574 3575 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3576 if (IS_ERR(pgdat->kswapd)) { 3577 /* failure at boot is fatal */ 3578 BUG_ON(system_state == SYSTEM_BOOTING); 3579 pr_err("Failed to start kswapd on node %d\n", nid); 3580 ret = PTR_ERR(pgdat->kswapd); 3581 pgdat->kswapd = NULL; 3582 } 3583 return ret; 3584 } 3585 3586 /* 3587 * Called by memory hotplug when all memory in a node is offlined. Caller must 3588 * hold mem_hotplug_begin/end(). 3589 */ 3590 void kswapd_stop(int nid) 3591 { 3592 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3593 3594 if (kswapd) { 3595 kthread_stop(kswapd); 3596 NODE_DATA(nid)->kswapd = NULL; 3597 } 3598 } 3599 3600 static int __init kswapd_init(void) 3601 { 3602 int nid; 3603 3604 swap_setup(); 3605 for_each_node_state(nid, N_MEMORY) 3606 kswapd_run(nid); 3607 hotcpu_notifier(cpu_callback, 0); 3608 return 0; 3609 } 3610 3611 module_init(kswapd_init) 3612 3613 #ifdef CONFIG_NUMA 3614 /* 3615 * Zone reclaim mode 3616 * 3617 * If non-zero call zone_reclaim when the number of free pages falls below 3618 * the watermarks. 3619 */ 3620 int zone_reclaim_mode __read_mostly; 3621 3622 #define RECLAIM_OFF 0 3623 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3624 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3625 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3626 3627 /* 3628 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3629 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3630 * a zone. 3631 */ 3632 #define ZONE_RECLAIM_PRIORITY 4 3633 3634 /* 3635 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3636 * occur. 3637 */ 3638 int sysctl_min_unmapped_ratio = 1; 3639 3640 /* 3641 * If the number of slab pages in a zone grows beyond this percentage then 3642 * slab reclaim needs to occur. 3643 */ 3644 int sysctl_min_slab_ratio = 5; 3645 3646 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3647 { 3648 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3649 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3650 zone_page_state(zone, NR_ACTIVE_FILE); 3651 3652 /* 3653 * It's possible for there to be more file mapped pages than 3654 * accounted for by the pages on the file LRU lists because 3655 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3656 */ 3657 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3658 } 3659 3660 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3661 static unsigned long zone_pagecache_reclaimable(struct zone *zone) 3662 { 3663 unsigned long nr_pagecache_reclaimable; 3664 unsigned long delta = 0; 3665 3666 /* 3667 * If RECLAIM_UNMAP is set, then all file pages are considered 3668 * potentially reclaimable. Otherwise, we have to worry about 3669 * pages like swapcache and zone_unmapped_file_pages() provides 3670 * a better estimate 3671 */ 3672 if (zone_reclaim_mode & RECLAIM_UNMAP) 3673 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3674 else 3675 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3676 3677 /* If we can't clean pages, remove dirty pages from consideration */ 3678 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3679 delta += zone_page_state(zone, NR_FILE_DIRTY); 3680 3681 /* Watch for any possible underflows due to delta */ 3682 if (unlikely(delta > nr_pagecache_reclaimable)) 3683 delta = nr_pagecache_reclaimable; 3684 3685 return nr_pagecache_reclaimable - delta; 3686 } 3687 3688 /* 3689 * Try to free up some pages from this zone through reclaim. 3690 */ 3691 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3692 { 3693 /* Minimum pages needed in order to stay on node */ 3694 const unsigned long nr_pages = 1 << order; 3695 struct task_struct *p = current; 3696 struct reclaim_state reclaim_state; 3697 struct scan_control sc = { 3698 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3699 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3700 .order = order, 3701 .priority = ZONE_RECLAIM_PRIORITY, 3702 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3703 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), 3704 .may_swap = 1, 3705 }; 3706 3707 cond_resched(); 3708 /* 3709 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3710 * and we also need to be able to write out pages for RECLAIM_WRITE 3711 * and RECLAIM_UNMAP. 3712 */ 3713 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3714 lockdep_set_current_reclaim_state(gfp_mask); 3715 reclaim_state.reclaimed_slab = 0; 3716 p->reclaim_state = &reclaim_state; 3717 3718 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3719 /* 3720 * Free memory by calling shrink zone with increasing 3721 * priorities until we have enough memory freed. 3722 */ 3723 do { 3724 shrink_zone(zone, &sc, true); 3725 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3726 } 3727 3728 p->reclaim_state = NULL; 3729 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3730 lockdep_clear_current_reclaim_state(); 3731 return sc.nr_reclaimed >= nr_pages; 3732 } 3733 3734 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3735 { 3736 int node_id; 3737 int ret; 3738 3739 /* 3740 * Zone reclaim reclaims unmapped file backed pages and 3741 * slab pages if we are over the defined limits. 3742 * 3743 * A small portion of unmapped file backed pages is needed for 3744 * file I/O otherwise pages read by file I/O will be immediately 3745 * thrown out if the zone is overallocated. So we do not reclaim 3746 * if less than a specified percentage of the zone is used by 3747 * unmapped file backed pages. 3748 */ 3749 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3750 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3751 return ZONE_RECLAIM_FULL; 3752 3753 if (!zone_reclaimable(zone)) 3754 return ZONE_RECLAIM_FULL; 3755 3756 /* 3757 * Do not scan if the allocation should not be delayed. 3758 */ 3759 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3760 return ZONE_RECLAIM_NOSCAN; 3761 3762 /* 3763 * Only run zone reclaim on the local zone or on zones that do not 3764 * have associated processors. This will favor the local processor 3765 * over remote processors and spread off node memory allocations 3766 * as wide as possible. 3767 */ 3768 node_id = zone_to_nid(zone); 3769 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3770 return ZONE_RECLAIM_NOSCAN; 3771 3772 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3773 return ZONE_RECLAIM_NOSCAN; 3774 3775 ret = __zone_reclaim(zone, gfp_mask, order); 3776 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3777 3778 if (!ret) 3779 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3780 3781 return ret; 3782 } 3783 #endif 3784 3785 /* 3786 * page_evictable - test whether a page is evictable 3787 * @page: the page to test 3788 * 3789 * Test whether page is evictable--i.e., should be placed on active/inactive 3790 * lists vs unevictable list. 3791 * 3792 * Reasons page might not be evictable: 3793 * (1) page's mapping marked unevictable 3794 * (2) page is part of an mlocked VMA 3795 * 3796 */ 3797 int page_evictable(struct page *page) 3798 { 3799 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3800 } 3801 3802 #ifdef CONFIG_SHMEM 3803 /** 3804 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3805 * @pages: array of pages to check 3806 * @nr_pages: number of pages to check 3807 * 3808 * Checks pages for evictability and moves them to the appropriate lru list. 3809 * 3810 * This function is only used for SysV IPC SHM_UNLOCK. 3811 */ 3812 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3813 { 3814 struct lruvec *lruvec; 3815 struct zone *zone = NULL; 3816 int pgscanned = 0; 3817 int pgrescued = 0; 3818 int i; 3819 3820 for (i = 0; i < nr_pages; i++) { 3821 struct page *page = pages[i]; 3822 struct zone *pagezone; 3823 3824 pgscanned++; 3825 pagezone = page_zone(page); 3826 if (pagezone != zone) { 3827 if (zone) 3828 spin_unlock_irq(&zone->lru_lock); 3829 zone = pagezone; 3830 spin_lock_irq(&zone->lru_lock); 3831 } 3832 lruvec = mem_cgroup_page_lruvec(page, zone); 3833 3834 if (!PageLRU(page) || !PageUnevictable(page)) 3835 continue; 3836 3837 if (page_evictable(page)) { 3838 enum lru_list lru = page_lru_base_type(page); 3839 3840 VM_BUG_ON_PAGE(PageActive(page), page); 3841 ClearPageUnevictable(page); 3842 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3843 add_page_to_lru_list(page, lruvec, lru); 3844 pgrescued++; 3845 } 3846 } 3847 3848 if (zone) { 3849 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3850 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3851 spin_unlock_irq(&zone->lru_lock); 3852 } 3853 } 3854 #endif /* CONFIG_SHMEM */ 3855