1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmpressure.h> 23 #include <linux/vmstat.h> 24 #include <linux/file.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> /* for try_to_release_page(), 28 buffer_heads_over_limit */ 29 #include <linux/mm_inline.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 #include <linux/oom.h> 45 #include <linux/prefetch.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 50 #include <linux/swapops.h> 51 #include <linux/balloon_compaction.h> 52 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/vmscan.h> 57 58 struct scan_control { 59 /* Incremented by the number of inactive pages that were scanned */ 60 unsigned long nr_scanned; 61 62 /* Number of pages freed so far during a call to shrink_zones() */ 63 unsigned long nr_reclaimed; 64 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 unsigned long hibernation_mode; 69 70 /* This context's GFP mask */ 71 gfp_t gfp_mask; 72 73 int may_writepage; 74 75 /* Can mapped pages be reclaimed? */ 76 int may_unmap; 77 78 /* Can pages be swapped as part of reclaim? */ 79 int may_swap; 80 81 int order; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 /* 87 * The memory cgroup that hit its limit and as a result is the 88 * primary target of this reclaim invocation. 89 */ 90 struct mem_cgroup *target_mem_cgroup; 91 92 /* 93 * Nodemask of nodes allowed by the caller. If NULL, all nodes 94 * are scanned. 95 */ 96 nodemask_t *nodemask; 97 }; 98 99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 100 101 #ifdef ARCH_HAS_PREFETCH 102 #define prefetch_prev_lru_page(_page, _base, _field) \ 103 do { \ 104 if ((_page)->lru.prev != _base) { \ 105 struct page *prev; \ 106 \ 107 prev = lru_to_page(&(_page->lru)); \ 108 prefetch(&prev->_field); \ 109 } \ 110 } while (0) 111 #else 112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 113 #endif 114 115 #ifdef ARCH_HAS_PREFETCHW 116 #define prefetchw_prev_lru_page(_page, _base, _field) \ 117 do { \ 118 if ((_page)->lru.prev != _base) { \ 119 struct page *prev; \ 120 \ 121 prev = lru_to_page(&(_page->lru)); \ 122 prefetchw(&prev->_field); \ 123 } \ 124 } while (0) 125 #else 126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 127 #endif 128 129 /* 130 * From 0 .. 100. Higher means more swappy. 131 */ 132 int vm_swappiness = 60; 133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 134 135 static LIST_HEAD(shrinker_list); 136 static DECLARE_RWSEM(shrinker_rwsem); 137 138 #ifdef CONFIG_MEMCG 139 static bool global_reclaim(struct scan_control *sc) 140 { 141 return !sc->target_mem_cgroup; 142 } 143 #else 144 static bool global_reclaim(struct scan_control *sc) 145 { 146 return true; 147 } 148 #endif 149 150 static unsigned long zone_reclaimable_pages(struct zone *zone) 151 { 152 int nr; 153 154 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 155 zone_page_state(zone, NR_INACTIVE_FILE); 156 157 if (get_nr_swap_pages() > 0) 158 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 159 zone_page_state(zone, NR_INACTIVE_ANON); 160 161 return nr; 162 } 163 164 bool zone_reclaimable(struct zone *zone) 165 { 166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 167 } 168 169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 170 { 171 if (!mem_cgroup_disabled()) 172 return mem_cgroup_get_lru_size(lruvec, lru); 173 174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 175 } 176 177 /* 178 * Add a shrinker callback to be called from the vm. 179 */ 180 int register_shrinker(struct shrinker *shrinker) 181 { 182 size_t size = sizeof(*shrinker->nr_deferred); 183 184 /* 185 * If we only have one possible node in the system anyway, save 186 * ourselves the trouble and disable NUMA aware behavior. This way we 187 * will save memory and some small loop time later. 188 */ 189 if (nr_node_ids == 1) 190 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 191 192 if (shrinker->flags & SHRINKER_NUMA_AWARE) 193 size *= nr_node_ids; 194 195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 196 if (!shrinker->nr_deferred) 197 return -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 list_add_tail(&shrinker->list, &shrinker_list); 201 up_write(&shrinker_rwsem); 202 return 0; 203 } 204 EXPORT_SYMBOL(register_shrinker); 205 206 /* 207 * Remove one 208 */ 209 void unregister_shrinker(struct shrinker *shrinker) 210 { 211 down_write(&shrinker_rwsem); 212 list_del(&shrinker->list); 213 up_write(&shrinker_rwsem); 214 kfree(shrinker->nr_deferred); 215 } 216 EXPORT_SYMBOL(unregister_shrinker); 217 218 #define SHRINK_BATCH 128 219 220 static unsigned long 221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, 222 unsigned long nr_pages_scanned, unsigned long lru_pages) 223 { 224 unsigned long freed = 0; 225 unsigned long long delta; 226 long total_scan; 227 long max_pass; 228 long nr; 229 long new_nr; 230 int nid = shrinkctl->nid; 231 long batch_size = shrinker->batch ? shrinker->batch 232 : SHRINK_BATCH; 233 234 max_pass = shrinker->count_objects(shrinker, shrinkctl); 235 if (max_pass == 0) 236 return 0; 237 238 /* 239 * copy the current shrinker scan count into a local variable 240 * and zero it so that other concurrent shrinker invocations 241 * don't also do this scanning work. 242 */ 243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 244 245 total_scan = nr; 246 delta = (4 * nr_pages_scanned) / shrinker->seeks; 247 delta *= max_pass; 248 do_div(delta, lru_pages + 1); 249 total_scan += delta; 250 if (total_scan < 0) { 251 printk(KERN_ERR 252 "shrink_slab: %pF negative objects to delete nr=%ld\n", 253 shrinker->scan_objects, total_scan); 254 total_scan = max_pass; 255 } 256 257 /* 258 * We need to avoid excessive windup on filesystem shrinkers 259 * due to large numbers of GFP_NOFS allocations causing the 260 * shrinkers to return -1 all the time. This results in a large 261 * nr being built up so when a shrink that can do some work 262 * comes along it empties the entire cache due to nr >>> 263 * max_pass. This is bad for sustaining a working set in 264 * memory. 265 * 266 * Hence only allow the shrinker to scan the entire cache when 267 * a large delta change is calculated directly. 268 */ 269 if (delta < max_pass / 4) 270 total_scan = min(total_scan, max_pass / 2); 271 272 /* 273 * Avoid risking looping forever due to too large nr value: 274 * never try to free more than twice the estimate number of 275 * freeable entries. 276 */ 277 if (total_scan > max_pass * 2) 278 total_scan = max_pass * 2; 279 280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 281 nr_pages_scanned, lru_pages, 282 max_pass, delta, total_scan); 283 284 /* 285 * Normally, we should not scan less than batch_size objects in one 286 * pass to avoid too frequent shrinker calls, but if the slab has less 287 * than batch_size objects in total and we are really tight on memory, 288 * we will try to reclaim all available objects, otherwise we can end 289 * up failing allocations although there are plenty of reclaimable 290 * objects spread over several slabs with usage less than the 291 * batch_size. 292 * 293 * We detect the "tight on memory" situations by looking at the total 294 * number of objects we want to scan (total_scan). If it is greater 295 * than the total number of objects on slab (max_pass), we must be 296 * scanning at high prio and therefore should try to reclaim as much as 297 * possible. 298 */ 299 while (total_scan >= batch_size || 300 total_scan >= max_pass) { 301 unsigned long ret; 302 unsigned long nr_to_scan = min(batch_size, total_scan); 303 304 shrinkctl->nr_to_scan = nr_to_scan; 305 ret = shrinker->scan_objects(shrinker, shrinkctl); 306 if (ret == SHRINK_STOP) 307 break; 308 freed += ret; 309 310 count_vm_events(SLABS_SCANNED, nr_to_scan); 311 total_scan -= nr_to_scan; 312 313 cond_resched(); 314 } 315 316 /* 317 * move the unused scan count back into the shrinker in a 318 * manner that handles concurrent updates. If we exhausted the 319 * scan, there is no need to do an update. 320 */ 321 if (total_scan > 0) 322 new_nr = atomic_long_add_return(total_scan, 323 &shrinker->nr_deferred[nid]); 324 else 325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 326 327 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr); 328 return freed; 329 } 330 331 /* 332 * Call the shrink functions to age shrinkable caches 333 * 334 * Here we assume it costs one seek to replace a lru page and that it also 335 * takes a seek to recreate a cache object. With this in mind we age equal 336 * percentages of the lru and ageable caches. This should balance the seeks 337 * generated by these structures. 338 * 339 * If the vm encountered mapped pages on the LRU it increase the pressure on 340 * slab to avoid swapping. 341 * 342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 343 * 344 * `lru_pages' represents the number of on-LRU pages in all the zones which 345 * are eligible for the caller's allocation attempt. It is used for balancing 346 * slab reclaim versus page reclaim. 347 * 348 * Returns the number of slab objects which we shrunk. 349 */ 350 unsigned long shrink_slab(struct shrink_control *shrinkctl, 351 unsigned long nr_pages_scanned, 352 unsigned long lru_pages) 353 { 354 struct shrinker *shrinker; 355 unsigned long freed = 0; 356 357 if (nr_pages_scanned == 0) 358 nr_pages_scanned = SWAP_CLUSTER_MAX; 359 360 if (!down_read_trylock(&shrinker_rwsem)) { 361 /* 362 * If we would return 0, our callers would understand that we 363 * have nothing else to shrink and give up trying. By returning 364 * 1 we keep it going and assume we'll be able to shrink next 365 * time. 366 */ 367 freed = 1; 368 goto out; 369 } 370 371 list_for_each_entry(shrinker, &shrinker_list, list) { 372 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) { 373 shrinkctl->nid = 0; 374 freed += shrink_slab_node(shrinkctl, shrinker, 375 nr_pages_scanned, lru_pages); 376 continue; 377 } 378 379 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { 380 if (node_online(shrinkctl->nid)) 381 freed += shrink_slab_node(shrinkctl, shrinker, 382 nr_pages_scanned, lru_pages); 383 384 } 385 } 386 up_read(&shrinker_rwsem); 387 out: 388 cond_resched(); 389 return freed; 390 } 391 392 static inline int is_page_cache_freeable(struct page *page) 393 { 394 /* 395 * A freeable page cache page is referenced only by the caller 396 * that isolated the page, the page cache radix tree and 397 * optional buffer heads at page->private. 398 */ 399 return page_count(page) - page_has_private(page) == 2; 400 } 401 402 static int may_write_to_queue(struct backing_dev_info *bdi, 403 struct scan_control *sc) 404 { 405 if (current->flags & PF_SWAPWRITE) 406 return 1; 407 if (!bdi_write_congested(bdi)) 408 return 1; 409 if (bdi == current->backing_dev_info) 410 return 1; 411 return 0; 412 } 413 414 /* 415 * We detected a synchronous write error writing a page out. Probably 416 * -ENOSPC. We need to propagate that into the address_space for a subsequent 417 * fsync(), msync() or close(). 418 * 419 * The tricky part is that after writepage we cannot touch the mapping: nothing 420 * prevents it from being freed up. But we have a ref on the page and once 421 * that page is locked, the mapping is pinned. 422 * 423 * We're allowed to run sleeping lock_page() here because we know the caller has 424 * __GFP_FS. 425 */ 426 static void handle_write_error(struct address_space *mapping, 427 struct page *page, int error) 428 { 429 lock_page(page); 430 if (page_mapping(page) == mapping) 431 mapping_set_error(mapping, error); 432 unlock_page(page); 433 } 434 435 /* possible outcome of pageout() */ 436 typedef enum { 437 /* failed to write page out, page is locked */ 438 PAGE_KEEP, 439 /* move page to the active list, page is locked */ 440 PAGE_ACTIVATE, 441 /* page has been sent to the disk successfully, page is unlocked */ 442 PAGE_SUCCESS, 443 /* page is clean and locked */ 444 PAGE_CLEAN, 445 } pageout_t; 446 447 /* 448 * pageout is called by shrink_page_list() for each dirty page. 449 * Calls ->writepage(). 450 */ 451 static pageout_t pageout(struct page *page, struct address_space *mapping, 452 struct scan_control *sc) 453 { 454 /* 455 * If the page is dirty, only perform writeback if that write 456 * will be non-blocking. To prevent this allocation from being 457 * stalled by pagecache activity. But note that there may be 458 * stalls if we need to run get_block(). We could test 459 * PagePrivate for that. 460 * 461 * If this process is currently in __generic_file_aio_write() against 462 * this page's queue, we can perform writeback even if that 463 * will block. 464 * 465 * If the page is swapcache, write it back even if that would 466 * block, for some throttling. This happens by accident, because 467 * swap_backing_dev_info is bust: it doesn't reflect the 468 * congestion state of the swapdevs. Easy to fix, if needed. 469 */ 470 if (!is_page_cache_freeable(page)) 471 return PAGE_KEEP; 472 if (!mapping) { 473 /* 474 * Some data journaling orphaned pages can have 475 * page->mapping == NULL while being dirty with clean buffers. 476 */ 477 if (page_has_private(page)) { 478 if (try_to_free_buffers(page)) { 479 ClearPageDirty(page); 480 printk("%s: orphaned page\n", __func__); 481 return PAGE_CLEAN; 482 } 483 } 484 return PAGE_KEEP; 485 } 486 if (mapping->a_ops->writepage == NULL) 487 return PAGE_ACTIVATE; 488 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 489 return PAGE_KEEP; 490 491 if (clear_page_dirty_for_io(page)) { 492 int res; 493 struct writeback_control wbc = { 494 .sync_mode = WB_SYNC_NONE, 495 .nr_to_write = SWAP_CLUSTER_MAX, 496 .range_start = 0, 497 .range_end = LLONG_MAX, 498 .for_reclaim = 1, 499 }; 500 501 SetPageReclaim(page); 502 res = mapping->a_ops->writepage(page, &wbc); 503 if (res < 0) 504 handle_write_error(mapping, page, res); 505 if (res == AOP_WRITEPAGE_ACTIVATE) { 506 ClearPageReclaim(page); 507 return PAGE_ACTIVATE; 508 } 509 510 if (!PageWriteback(page)) { 511 /* synchronous write or broken a_ops? */ 512 ClearPageReclaim(page); 513 } 514 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 515 inc_zone_page_state(page, NR_VMSCAN_WRITE); 516 return PAGE_SUCCESS; 517 } 518 519 return PAGE_CLEAN; 520 } 521 522 /* 523 * Same as remove_mapping, but if the page is removed from the mapping, it 524 * gets returned with a refcount of 0. 525 */ 526 static int __remove_mapping(struct address_space *mapping, struct page *page) 527 { 528 BUG_ON(!PageLocked(page)); 529 BUG_ON(mapping != page_mapping(page)); 530 531 spin_lock_irq(&mapping->tree_lock); 532 /* 533 * The non racy check for a busy page. 534 * 535 * Must be careful with the order of the tests. When someone has 536 * a ref to the page, it may be possible that they dirty it then 537 * drop the reference. So if PageDirty is tested before page_count 538 * here, then the following race may occur: 539 * 540 * get_user_pages(&page); 541 * [user mapping goes away] 542 * write_to(page); 543 * !PageDirty(page) [good] 544 * SetPageDirty(page); 545 * put_page(page); 546 * !page_count(page) [good, discard it] 547 * 548 * [oops, our write_to data is lost] 549 * 550 * Reversing the order of the tests ensures such a situation cannot 551 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 552 * load is not satisfied before that of page->_count. 553 * 554 * Note that if SetPageDirty is always performed via set_page_dirty, 555 * and thus under tree_lock, then this ordering is not required. 556 */ 557 if (!page_freeze_refs(page, 2)) 558 goto cannot_free; 559 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 560 if (unlikely(PageDirty(page))) { 561 page_unfreeze_refs(page, 2); 562 goto cannot_free; 563 } 564 565 if (PageSwapCache(page)) { 566 swp_entry_t swap = { .val = page_private(page) }; 567 __delete_from_swap_cache(page); 568 spin_unlock_irq(&mapping->tree_lock); 569 swapcache_free(swap, page); 570 } else { 571 void (*freepage)(struct page *); 572 573 freepage = mapping->a_ops->freepage; 574 575 __delete_from_page_cache(page); 576 spin_unlock_irq(&mapping->tree_lock); 577 mem_cgroup_uncharge_cache_page(page); 578 579 if (freepage != NULL) 580 freepage(page); 581 } 582 583 return 1; 584 585 cannot_free: 586 spin_unlock_irq(&mapping->tree_lock); 587 return 0; 588 } 589 590 /* 591 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 592 * someone else has a ref on the page, abort and return 0. If it was 593 * successfully detached, return 1. Assumes the caller has a single ref on 594 * this page. 595 */ 596 int remove_mapping(struct address_space *mapping, struct page *page) 597 { 598 if (__remove_mapping(mapping, page)) { 599 /* 600 * Unfreezing the refcount with 1 rather than 2 effectively 601 * drops the pagecache ref for us without requiring another 602 * atomic operation. 603 */ 604 page_unfreeze_refs(page, 1); 605 return 1; 606 } 607 return 0; 608 } 609 610 /** 611 * putback_lru_page - put previously isolated page onto appropriate LRU list 612 * @page: page to be put back to appropriate lru list 613 * 614 * Add previously isolated @page to appropriate LRU list. 615 * Page may still be unevictable for other reasons. 616 * 617 * lru_lock must not be held, interrupts must be enabled. 618 */ 619 void putback_lru_page(struct page *page) 620 { 621 bool is_unevictable; 622 int was_unevictable = PageUnevictable(page); 623 624 VM_BUG_ON_PAGE(PageLRU(page), page); 625 626 redo: 627 ClearPageUnevictable(page); 628 629 if (page_evictable(page)) { 630 /* 631 * For evictable pages, we can use the cache. 632 * In event of a race, worst case is we end up with an 633 * unevictable page on [in]active list. 634 * We know how to handle that. 635 */ 636 is_unevictable = false; 637 lru_cache_add(page); 638 } else { 639 /* 640 * Put unevictable pages directly on zone's unevictable 641 * list. 642 */ 643 is_unevictable = true; 644 add_page_to_unevictable_list(page); 645 /* 646 * When racing with an mlock or AS_UNEVICTABLE clearing 647 * (page is unlocked) make sure that if the other thread 648 * does not observe our setting of PG_lru and fails 649 * isolation/check_move_unevictable_pages, 650 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 651 * the page back to the evictable list. 652 * 653 * The other side is TestClearPageMlocked() or shmem_lock(). 654 */ 655 smp_mb(); 656 } 657 658 /* 659 * page's status can change while we move it among lru. If an evictable 660 * page is on unevictable list, it never be freed. To avoid that, 661 * check after we added it to the list, again. 662 */ 663 if (is_unevictable && page_evictable(page)) { 664 if (!isolate_lru_page(page)) { 665 put_page(page); 666 goto redo; 667 } 668 /* This means someone else dropped this page from LRU 669 * So, it will be freed or putback to LRU again. There is 670 * nothing to do here. 671 */ 672 } 673 674 if (was_unevictable && !is_unevictable) 675 count_vm_event(UNEVICTABLE_PGRESCUED); 676 else if (!was_unevictable && is_unevictable) 677 count_vm_event(UNEVICTABLE_PGCULLED); 678 679 put_page(page); /* drop ref from isolate */ 680 } 681 682 enum page_references { 683 PAGEREF_RECLAIM, 684 PAGEREF_RECLAIM_CLEAN, 685 PAGEREF_KEEP, 686 PAGEREF_ACTIVATE, 687 }; 688 689 static enum page_references page_check_references(struct page *page, 690 struct scan_control *sc) 691 { 692 int referenced_ptes, referenced_page; 693 unsigned long vm_flags; 694 695 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 696 &vm_flags); 697 referenced_page = TestClearPageReferenced(page); 698 699 /* 700 * Mlock lost the isolation race with us. Let try_to_unmap() 701 * move the page to the unevictable list. 702 */ 703 if (vm_flags & VM_LOCKED) 704 return PAGEREF_RECLAIM; 705 706 if (referenced_ptes) { 707 if (PageSwapBacked(page)) 708 return PAGEREF_ACTIVATE; 709 /* 710 * All mapped pages start out with page table 711 * references from the instantiating fault, so we need 712 * to look twice if a mapped file page is used more 713 * than once. 714 * 715 * Mark it and spare it for another trip around the 716 * inactive list. Another page table reference will 717 * lead to its activation. 718 * 719 * Note: the mark is set for activated pages as well 720 * so that recently deactivated but used pages are 721 * quickly recovered. 722 */ 723 SetPageReferenced(page); 724 725 if (referenced_page || referenced_ptes > 1) 726 return PAGEREF_ACTIVATE; 727 728 /* 729 * Activate file-backed executable pages after first usage. 730 */ 731 if (vm_flags & VM_EXEC) 732 return PAGEREF_ACTIVATE; 733 734 return PAGEREF_KEEP; 735 } 736 737 /* Reclaim if clean, defer dirty pages to writeback */ 738 if (referenced_page && !PageSwapBacked(page)) 739 return PAGEREF_RECLAIM_CLEAN; 740 741 return PAGEREF_RECLAIM; 742 } 743 744 /* Check if a page is dirty or under writeback */ 745 static void page_check_dirty_writeback(struct page *page, 746 bool *dirty, bool *writeback) 747 { 748 struct address_space *mapping; 749 750 /* 751 * Anonymous pages are not handled by flushers and must be written 752 * from reclaim context. Do not stall reclaim based on them 753 */ 754 if (!page_is_file_cache(page)) { 755 *dirty = false; 756 *writeback = false; 757 return; 758 } 759 760 /* By default assume that the page flags are accurate */ 761 *dirty = PageDirty(page); 762 *writeback = PageWriteback(page); 763 764 /* Verify dirty/writeback state if the filesystem supports it */ 765 if (!page_has_private(page)) 766 return; 767 768 mapping = page_mapping(page); 769 if (mapping && mapping->a_ops->is_dirty_writeback) 770 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 771 } 772 773 /* 774 * shrink_page_list() returns the number of reclaimed pages 775 */ 776 static unsigned long shrink_page_list(struct list_head *page_list, 777 struct zone *zone, 778 struct scan_control *sc, 779 enum ttu_flags ttu_flags, 780 unsigned long *ret_nr_dirty, 781 unsigned long *ret_nr_unqueued_dirty, 782 unsigned long *ret_nr_congested, 783 unsigned long *ret_nr_writeback, 784 unsigned long *ret_nr_immediate, 785 bool force_reclaim) 786 { 787 LIST_HEAD(ret_pages); 788 LIST_HEAD(free_pages); 789 int pgactivate = 0; 790 unsigned long nr_unqueued_dirty = 0; 791 unsigned long nr_dirty = 0; 792 unsigned long nr_congested = 0; 793 unsigned long nr_reclaimed = 0; 794 unsigned long nr_writeback = 0; 795 unsigned long nr_immediate = 0; 796 797 cond_resched(); 798 799 mem_cgroup_uncharge_start(); 800 while (!list_empty(page_list)) { 801 struct address_space *mapping; 802 struct page *page; 803 int may_enter_fs; 804 enum page_references references = PAGEREF_RECLAIM_CLEAN; 805 bool dirty, writeback; 806 807 cond_resched(); 808 809 page = lru_to_page(page_list); 810 list_del(&page->lru); 811 812 if (!trylock_page(page)) 813 goto keep; 814 815 VM_BUG_ON_PAGE(PageActive(page), page); 816 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 817 818 sc->nr_scanned++; 819 820 if (unlikely(!page_evictable(page))) 821 goto cull_mlocked; 822 823 if (!sc->may_unmap && page_mapped(page)) 824 goto keep_locked; 825 826 /* Double the slab pressure for mapped and swapcache pages */ 827 if (page_mapped(page) || PageSwapCache(page)) 828 sc->nr_scanned++; 829 830 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 831 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 832 833 /* 834 * The number of dirty pages determines if a zone is marked 835 * reclaim_congested which affects wait_iff_congested. kswapd 836 * will stall and start writing pages if the tail of the LRU 837 * is all dirty unqueued pages. 838 */ 839 page_check_dirty_writeback(page, &dirty, &writeback); 840 if (dirty || writeback) 841 nr_dirty++; 842 843 if (dirty && !writeback) 844 nr_unqueued_dirty++; 845 846 /* 847 * Treat this page as congested if the underlying BDI is or if 848 * pages are cycling through the LRU so quickly that the 849 * pages marked for immediate reclaim are making it to the 850 * end of the LRU a second time. 851 */ 852 mapping = page_mapping(page); 853 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 854 (writeback && PageReclaim(page))) 855 nr_congested++; 856 857 /* 858 * If a page at the tail of the LRU is under writeback, there 859 * are three cases to consider. 860 * 861 * 1) If reclaim is encountering an excessive number of pages 862 * under writeback and this page is both under writeback and 863 * PageReclaim then it indicates that pages are being queued 864 * for IO but are being recycled through the LRU before the 865 * IO can complete. Waiting on the page itself risks an 866 * indefinite stall if it is impossible to writeback the 867 * page due to IO error or disconnected storage so instead 868 * note that the LRU is being scanned too quickly and the 869 * caller can stall after page list has been processed. 870 * 871 * 2) Global reclaim encounters a page, memcg encounters a 872 * page that is not marked for immediate reclaim or 873 * the caller does not have __GFP_IO. In this case mark 874 * the page for immediate reclaim and continue scanning. 875 * 876 * __GFP_IO is checked because a loop driver thread might 877 * enter reclaim, and deadlock if it waits on a page for 878 * which it is needed to do the write (loop masks off 879 * __GFP_IO|__GFP_FS for this reason); but more thought 880 * would probably show more reasons. 881 * 882 * Don't require __GFP_FS, since we're not going into the 883 * FS, just waiting on its writeback completion. Worryingly, 884 * ext4 gfs2 and xfs allocate pages with 885 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 886 * may_enter_fs here is liable to OOM on them. 887 * 888 * 3) memcg encounters a page that is not already marked 889 * PageReclaim. memcg does not have any dirty pages 890 * throttling so we could easily OOM just because too many 891 * pages are in writeback and there is nothing else to 892 * reclaim. Wait for the writeback to complete. 893 */ 894 if (PageWriteback(page)) { 895 /* Case 1 above */ 896 if (current_is_kswapd() && 897 PageReclaim(page) && 898 zone_is_reclaim_writeback(zone)) { 899 nr_immediate++; 900 goto keep_locked; 901 902 /* Case 2 above */ 903 } else if (global_reclaim(sc) || 904 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 905 /* 906 * This is slightly racy - end_page_writeback() 907 * might have just cleared PageReclaim, then 908 * setting PageReclaim here end up interpreted 909 * as PageReadahead - but that does not matter 910 * enough to care. What we do want is for this 911 * page to have PageReclaim set next time memcg 912 * reclaim reaches the tests above, so it will 913 * then wait_on_page_writeback() to avoid OOM; 914 * and it's also appropriate in global reclaim. 915 */ 916 SetPageReclaim(page); 917 nr_writeback++; 918 919 goto keep_locked; 920 921 /* Case 3 above */ 922 } else { 923 wait_on_page_writeback(page); 924 } 925 } 926 927 if (!force_reclaim) 928 references = page_check_references(page, sc); 929 930 switch (references) { 931 case PAGEREF_ACTIVATE: 932 goto activate_locked; 933 case PAGEREF_KEEP: 934 goto keep_locked; 935 case PAGEREF_RECLAIM: 936 case PAGEREF_RECLAIM_CLEAN: 937 ; /* try to reclaim the page below */ 938 } 939 940 /* 941 * Anonymous process memory has backing store? 942 * Try to allocate it some swap space here. 943 */ 944 if (PageAnon(page) && !PageSwapCache(page)) { 945 if (!(sc->gfp_mask & __GFP_IO)) 946 goto keep_locked; 947 if (!add_to_swap(page, page_list)) 948 goto activate_locked; 949 may_enter_fs = 1; 950 951 /* Adding to swap updated mapping */ 952 mapping = page_mapping(page); 953 } 954 955 /* 956 * The page is mapped into the page tables of one or more 957 * processes. Try to unmap it here. 958 */ 959 if (page_mapped(page) && mapping) { 960 switch (try_to_unmap(page, ttu_flags)) { 961 case SWAP_FAIL: 962 goto activate_locked; 963 case SWAP_AGAIN: 964 goto keep_locked; 965 case SWAP_MLOCK: 966 goto cull_mlocked; 967 case SWAP_SUCCESS: 968 ; /* try to free the page below */ 969 } 970 } 971 972 if (PageDirty(page)) { 973 /* 974 * Only kswapd can writeback filesystem pages to 975 * avoid risk of stack overflow but only writeback 976 * if many dirty pages have been encountered. 977 */ 978 if (page_is_file_cache(page) && 979 (!current_is_kswapd() || 980 !zone_is_reclaim_dirty(zone))) { 981 /* 982 * Immediately reclaim when written back. 983 * Similar in principal to deactivate_page() 984 * except we already have the page isolated 985 * and know it's dirty 986 */ 987 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 988 SetPageReclaim(page); 989 990 goto keep_locked; 991 } 992 993 if (references == PAGEREF_RECLAIM_CLEAN) 994 goto keep_locked; 995 if (!may_enter_fs) 996 goto keep_locked; 997 if (!sc->may_writepage) 998 goto keep_locked; 999 1000 /* Page is dirty, try to write it out here */ 1001 switch (pageout(page, mapping, sc)) { 1002 case PAGE_KEEP: 1003 goto keep_locked; 1004 case PAGE_ACTIVATE: 1005 goto activate_locked; 1006 case PAGE_SUCCESS: 1007 if (PageWriteback(page)) 1008 goto keep; 1009 if (PageDirty(page)) 1010 goto keep; 1011 1012 /* 1013 * A synchronous write - probably a ramdisk. Go 1014 * ahead and try to reclaim the page. 1015 */ 1016 if (!trylock_page(page)) 1017 goto keep; 1018 if (PageDirty(page) || PageWriteback(page)) 1019 goto keep_locked; 1020 mapping = page_mapping(page); 1021 case PAGE_CLEAN: 1022 ; /* try to free the page below */ 1023 } 1024 } 1025 1026 /* 1027 * If the page has buffers, try to free the buffer mappings 1028 * associated with this page. If we succeed we try to free 1029 * the page as well. 1030 * 1031 * We do this even if the page is PageDirty(). 1032 * try_to_release_page() does not perform I/O, but it is 1033 * possible for a page to have PageDirty set, but it is actually 1034 * clean (all its buffers are clean). This happens if the 1035 * buffers were written out directly, with submit_bh(). ext3 1036 * will do this, as well as the blockdev mapping. 1037 * try_to_release_page() will discover that cleanness and will 1038 * drop the buffers and mark the page clean - it can be freed. 1039 * 1040 * Rarely, pages can have buffers and no ->mapping. These are 1041 * the pages which were not successfully invalidated in 1042 * truncate_complete_page(). We try to drop those buffers here 1043 * and if that worked, and the page is no longer mapped into 1044 * process address space (page_count == 1) it can be freed. 1045 * Otherwise, leave the page on the LRU so it is swappable. 1046 */ 1047 if (page_has_private(page)) { 1048 if (!try_to_release_page(page, sc->gfp_mask)) 1049 goto activate_locked; 1050 if (!mapping && page_count(page) == 1) { 1051 unlock_page(page); 1052 if (put_page_testzero(page)) 1053 goto free_it; 1054 else { 1055 /* 1056 * rare race with speculative reference. 1057 * the speculative reference will free 1058 * this page shortly, so we may 1059 * increment nr_reclaimed here (and 1060 * leave it off the LRU). 1061 */ 1062 nr_reclaimed++; 1063 continue; 1064 } 1065 } 1066 } 1067 1068 if (!mapping || !__remove_mapping(mapping, page)) 1069 goto keep_locked; 1070 1071 /* 1072 * At this point, we have no other references and there is 1073 * no way to pick any more up (removed from LRU, removed 1074 * from pagecache). Can use non-atomic bitops now (and 1075 * we obviously don't have to worry about waking up a process 1076 * waiting on the page lock, because there are no references. 1077 */ 1078 __clear_page_locked(page); 1079 free_it: 1080 nr_reclaimed++; 1081 1082 /* 1083 * Is there need to periodically free_page_list? It would 1084 * appear not as the counts should be low 1085 */ 1086 list_add(&page->lru, &free_pages); 1087 continue; 1088 1089 cull_mlocked: 1090 if (PageSwapCache(page)) 1091 try_to_free_swap(page); 1092 unlock_page(page); 1093 putback_lru_page(page); 1094 continue; 1095 1096 activate_locked: 1097 /* Not a candidate for swapping, so reclaim swap space. */ 1098 if (PageSwapCache(page) && vm_swap_full()) 1099 try_to_free_swap(page); 1100 VM_BUG_ON_PAGE(PageActive(page), page); 1101 SetPageActive(page); 1102 pgactivate++; 1103 keep_locked: 1104 unlock_page(page); 1105 keep: 1106 list_add(&page->lru, &ret_pages); 1107 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1108 } 1109 1110 free_hot_cold_page_list(&free_pages, 1); 1111 1112 list_splice(&ret_pages, page_list); 1113 count_vm_events(PGACTIVATE, pgactivate); 1114 mem_cgroup_uncharge_end(); 1115 *ret_nr_dirty += nr_dirty; 1116 *ret_nr_congested += nr_congested; 1117 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1118 *ret_nr_writeback += nr_writeback; 1119 *ret_nr_immediate += nr_immediate; 1120 return nr_reclaimed; 1121 } 1122 1123 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1124 struct list_head *page_list) 1125 { 1126 struct scan_control sc = { 1127 .gfp_mask = GFP_KERNEL, 1128 .priority = DEF_PRIORITY, 1129 .may_unmap = 1, 1130 }; 1131 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1132 struct page *page, *next; 1133 LIST_HEAD(clean_pages); 1134 1135 list_for_each_entry_safe(page, next, page_list, lru) { 1136 if (page_is_file_cache(page) && !PageDirty(page) && 1137 !isolated_balloon_page(page)) { 1138 ClearPageActive(page); 1139 list_move(&page->lru, &clean_pages); 1140 } 1141 } 1142 1143 ret = shrink_page_list(&clean_pages, zone, &sc, 1144 TTU_UNMAP|TTU_IGNORE_ACCESS, 1145 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1146 list_splice(&clean_pages, page_list); 1147 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1148 return ret; 1149 } 1150 1151 /* 1152 * Attempt to remove the specified page from its LRU. Only take this page 1153 * if it is of the appropriate PageActive status. Pages which are being 1154 * freed elsewhere are also ignored. 1155 * 1156 * page: page to consider 1157 * mode: one of the LRU isolation modes defined above 1158 * 1159 * returns 0 on success, -ve errno on failure. 1160 */ 1161 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1162 { 1163 int ret = -EINVAL; 1164 1165 /* Only take pages on the LRU. */ 1166 if (!PageLRU(page)) 1167 return ret; 1168 1169 /* Compaction should not handle unevictable pages but CMA can do so */ 1170 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1171 return ret; 1172 1173 ret = -EBUSY; 1174 1175 /* 1176 * To minimise LRU disruption, the caller can indicate that it only 1177 * wants to isolate pages it will be able to operate on without 1178 * blocking - clean pages for the most part. 1179 * 1180 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1181 * is used by reclaim when it is cannot write to backing storage 1182 * 1183 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1184 * that it is possible to migrate without blocking 1185 */ 1186 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1187 /* All the caller can do on PageWriteback is block */ 1188 if (PageWriteback(page)) 1189 return ret; 1190 1191 if (PageDirty(page)) { 1192 struct address_space *mapping; 1193 1194 /* ISOLATE_CLEAN means only clean pages */ 1195 if (mode & ISOLATE_CLEAN) 1196 return ret; 1197 1198 /* 1199 * Only pages without mappings or that have a 1200 * ->migratepage callback are possible to migrate 1201 * without blocking 1202 */ 1203 mapping = page_mapping(page); 1204 if (mapping && !mapping->a_ops->migratepage) 1205 return ret; 1206 } 1207 } 1208 1209 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1210 return ret; 1211 1212 if (likely(get_page_unless_zero(page))) { 1213 /* 1214 * Be careful not to clear PageLRU until after we're 1215 * sure the page is not being freed elsewhere -- the 1216 * page release code relies on it. 1217 */ 1218 ClearPageLRU(page); 1219 ret = 0; 1220 } 1221 1222 return ret; 1223 } 1224 1225 /* 1226 * zone->lru_lock is heavily contended. Some of the functions that 1227 * shrink the lists perform better by taking out a batch of pages 1228 * and working on them outside the LRU lock. 1229 * 1230 * For pagecache intensive workloads, this function is the hottest 1231 * spot in the kernel (apart from copy_*_user functions). 1232 * 1233 * Appropriate locks must be held before calling this function. 1234 * 1235 * @nr_to_scan: The number of pages to look through on the list. 1236 * @lruvec: The LRU vector to pull pages from. 1237 * @dst: The temp list to put pages on to. 1238 * @nr_scanned: The number of pages that were scanned. 1239 * @sc: The scan_control struct for this reclaim session 1240 * @mode: One of the LRU isolation modes 1241 * @lru: LRU list id for isolating 1242 * 1243 * returns how many pages were moved onto *@dst. 1244 */ 1245 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1246 struct lruvec *lruvec, struct list_head *dst, 1247 unsigned long *nr_scanned, struct scan_control *sc, 1248 isolate_mode_t mode, enum lru_list lru) 1249 { 1250 struct list_head *src = &lruvec->lists[lru]; 1251 unsigned long nr_taken = 0; 1252 unsigned long scan; 1253 1254 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1255 struct page *page; 1256 int nr_pages; 1257 1258 page = lru_to_page(src); 1259 prefetchw_prev_lru_page(page, src, flags); 1260 1261 VM_BUG_ON_PAGE(!PageLRU(page), page); 1262 1263 switch (__isolate_lru_page(page, mode)) { 1264 case 0: 1265 nr_pages = hpage_nr_pages(page); 1266 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1267 list_move(&page->lru, dst); 1268 nr_taken += nr_pages; 1269 break; 1270 1271 case -EBUSY: 1272 /* else it is being freed elsewhere */ 1273 list_move(&page->lru, src); 1274 continue; 1275 1276 default: 1277 BUG(); 1278 } 1279 } 1280 1281 *nr_scanned = scan; 1282 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1283 nr_taken, mode, is_file_lru(lru)); 1284 return nr_taken; 1285 } 1286 1287 /** 1288 * isolate_lru_page - tries to isolate a page from its LRU list 1289 * @page: page to isolate from its LRU list 1290 * 1291 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1292 * vmstat statistic corresponding to whatever LRU list the page was on. 1293 * 1294 * Returns 0 if the page was removed from an LRU list. 1295 * Returns -EBUSY if the page was not on an LRU list. 1296 * 1297 * The returned page will have PageLRU() cleared. If it was found on 1298 * the active list, it will have PageActive set. If it was found on 1299 * the unevictable list, it will have the PageUnevictable bit set. That flag 1300 * may need to be cleared by the caller before letting the page go. 1301 * 1302 * The vmstat statistic corresponding to the list on which the page was 1303 * found will be decremented. 1304 * 1305 * Restrictions: 1306 * (1) Must be called with an elevated refcount on the page. This is a 1307 * fundamentnal difference from isolate_lru_pages (which is called 1308 * without a stable reference). 1309 * (2) the lru_lock must not be held. 1310 * (3) interrupts must be enabled. 1311 */ 1312 int isolate_lru_page(struct page *page) 1313 { 1314 int ret = -EBUSY; 1315 1316 VM_BUG_ON_PAGE(!page_count(page), page); 1317 1318 if (PageLRU(page)) { 1319 struct zone *zone = page_zone(page); 1320 struct lruvec *lruvec; 1321 1322 spin_lock_irq(&zone->lru_lock); 1323 lruvec = mem_cgroup_page_lruvec(page, zone); 1324 if (PageLRU(page)) { 1325 int lru = page_lru(page); 1326 get_page(page); 1327 ClearPageLRU(page); 1328 del_page_from_lru_list(page, lruvec, lru); 1329 ret = 0; 1330 } 1331 spin_unlock_irq(&zone->lru_lock); 1332 } 1333 return ret; 1334 } 1335 1336 /* 1337 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1338 * then get resheduled. When there are massive number of tasks doing page 1339 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1340 * the LRU list will go small and be scanned faster than necessary, leading to 1341 * unnecessary swapping, thrashing and OOM. 1342 */ 1343 static int too_many_isolated(struct zone *zone, int file, 1344 struct scan_control *sc) 1345 { 1346 unsigned long inactive, isolated; 1347 1348 if (current_is_kswapd()) 1349 return 0; 1350 1351 if (!global_reclaim(sc)) 1352 return 0; 1353 1354 if (file) { 1355 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1356 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1357 } else { 1358 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1359 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1360 } 1361 1362 /* 1363 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1364 * won't get blocked by normal direct-reclaimers, forming a circular 1365 * deadlock. 1366 */ 1367 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1368 inactive >>= 3; 1369 1370 return isolated > inactive; 1371 } 1372 1373 static noinline_for_stack void 1374 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1375 { 1376 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1377 struct zone *zone = lruvec_zone(lruvec); 1378 LIST_HEAD(pages_to_free); 1379 1380 /* 1381 * Put back any unfreeable pages. 1382 */ 1383 while (!list_empty(page_list)) { 1384 struct page *page = lru_to_page(page_list); 1385 int lru; 1386 1387 VM_BUG_ON_PAGE(PageLRU(page), page); 1388 list_del(&page->lru); 1389 if (unlikely(!page_evictable(page))) { 1390 spin_unlock_irq(&zone->lru_lock); 1391 putback_lru_page(page); 1392 spin_lock_irq(&zone->lru_lock); 1393 continue; 1394 } 1395 1396 lruvec = mem_cgroup_page_lruvec(page, zone); 1397 1398 SetPageLRU(page); 1399 lru = page_lru(page); 1400 add_page_to_lru_list(page, lruvec, lru); 1401 1402 if (is_active_lru(lru)) { 1403 int file = is_file_lru(lru); 1404 int numpages = hpage_nr_pages(page); 1405 reclaim_stat->recent_rotated[file] += numpages; 1406 } 1407 if (put_page_testzero(page)) { 1408 __ClearPageLRU(page); 1409 __ClearPageActive(page); 1410 del_page_from_lru_list(page, lruvec, lru); 1411 1412 if (unlikely(PageCompound(page))) { 1413 spin_unlock_irq(&zone->lru_lock); 1414 (*get_compound_page_dtor(page))(page); 1415 spin_lock_irq(&zone->lru_lock); 1416 } else 1417 list_add(&page->lru, &pages_to_free); 1418 } 1419 } 1420 1421 /* 1422 * To save our caller's stack, now use input list for pages to free. 1423 */ 1424 list_splice(&pages_to_free, page_list); 1425 } 1426 1427 /* 1428 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1429 * of reclaimed pages 1430 */ 1431 static noinline_for_stack unsigned long 1432 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1433 struct scan_control *sc, enum lru_list lru) 1434 { 1435 LIST_HEAD(page_list); 1436 unsigned long nr_scanned; 1437 unsigned long nr_reclaimed = 0; 1438 unsigned long nr_taken; 1439 unsigned long nr_dirty = 0; 1440 unsigned long nr_congested = 0; 1441 unsigned long nr_unqueued_dirty = 0; 1442 unsigned long nr_writeback = 0; 1443 unsigned long nr_immediate = 0; 1444 isolate_mode_t isolate_mode = 0; 1445 int file = is_file_lru(lru); 1446 struct zone *zone = lruvec_zone(lruvec); 1447 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1448 1449 while (unlikely(too_many_isolated(zone, file, sc))) { 1450 congestion_wait(BLK_RW_ASYNC, HZ/10); 1451 1452 /* We are about to die and free our memory. Return now. */ 1453 if (fatal_signal_pending(current)) 1454 return SWAP_CLUSTER_MAX; 1455 } 1456 1457 lru_add_drain(); 1458 1459 if (!sc->may_unmap) 1460 isolate_mode |= ISOLATE_UNMAPPED; 1461 if (!sc->may_writepage) 1462 isolate_mode |= ISOLATE_CLEAN; 1463 1464 spin_lock_irq(&zone->lru_lock); 1465 1466 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1467 &nr_scanned, sc, isolate_mode, lru); 1468 1469 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1470 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1471 1472 if (global_reclaim(sc)) { 1473 zone->pages_scanned += nr_scanned; 1474 if (current_is_kswapd()) 1475 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1476 else 1477 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1478 } 1479 spin_unlock_irq(&zone->lru_lock); 1480 1481 if (nr_taken == 0) 1482 return 0; 1483 1484 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1485 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1486 &nr_writeback, &nr_immediate, 1487 false); 1488 1489 spin_lock_irq(&zone->lru_lock); 1490 1491 reclaim_stat->recent_scanned[file] += nr_taken; 1492 1493 if (global_reclaim(sc)) { 1494 if (current_is_kswapd()) 1495 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1496 nr_reclaimed); 1497 else 1498 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1499 nr_reclaimed); 1500 } 1501 1502 putback_inactive_pages(lruvec, &page_list); 1503 1504 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1505 1506 spin_unlock_irq(&zone->lru_lock); 1507 1508 free_hot_cold_page_list(&page_list, 1); 1509 1510 /* 1511 * If reclaim is isolating dirty pages under writeback, it implies 1512 * that the long-lived page allocation rate is exceeding the page 1513 * laundering rate. Either the global limits are not being effective 1514 * at throttling processes due to the page distribution throughout 1515 * zones or there is heavy usage of a slow backing device. The 1516 * only option is to throttle from reclaim context which is not ideal 1517 * as there is no guarantee the dirtying process is throttled in the 1518 * same way balance_dirty_pages() manages. 1519 * 1520 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1521 * of pages under pages flagged for immediate reclaim and stall if any 1522 * are encountered in the nr_immediate check below. 1523 */ 1524 if (nr_writeback && nr_writeback == nr_taken) 1525 zone_set_flag(zone, ZONE_WRITEBACK); 1526 1527 /* 1528 * memcg will stall in page writeback so only consider forcibly 1529 * stalling for global reclaim 1530 */ 1531 if (global_reclaim(sc)) { 1532 /* 1533 * Tag a zone as congested if all the dirty pages scanned were 1534 * backed by a congested BDI and wait_iff_congested will stall. 1535 */ 1536 if (nr_dirty && nr_dirty == nr_congested) 1537 zone_set_flag(zone, ZONE_CONGESTED); 1538 1539 /* 1540 * If dirty pages are scanned that are not queued for IO, it 1541 * implies that flushers are not keeping up. In this case, flag 1542 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1543 * pages from reclaim context. It will forcibly stall in the 1544 * next check. 1545 */ 1546 if (nr_unqueued_dirty == nr_taken) 1547 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1548 1549 /* 1550 * In addition, if kswapd scans pages marked marked for 1551 * immediate reclaim and under writeback (nr_immediate), it 1552 * implies that pages are cycling through the LRU faster than 1553 * they are written so also forcibly stall. 1554 */ 1555 if (nr_unqueued_dirty == nr_taken || nr_immediate) 1556 congestion_wait(BLK_RW_ASYNC, HZ/10); 1557 } 1558 1559 /* 1560 * Stall direct reclaim for IO completions if underlying BDIs or zone 1561 * is congested. Allow kswapd to continue until it starts encountering 1562 * unqueued dirty pages or cycling through the LRU too quickly. 1563 */ 1564 if (!sc->hibernation_mode && !current_is_kswapd()) 1565 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1566 1567 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1568 zone_idx(zone), 1569 nr_scanned, nr_reclaimed, 1570 sc->priority, 1571 trace_shrink_flags(file)); 1572 return nr_reclaimed; 1573 } 1574 1575 /* 1576 * This moves pages from the active list to the inactive list. 1577 * 1578 * We move them the other way if the page is referenced by one or more 1579 * processes, from rmap. 1580 * 1581 * If the pages are mostly unmapped, the processing is fast and it is 1582 * appropriate to hold zone->lru_lock across the whole operation. But if 1583 * the pages are mapped, the processing is slow (page_referenced()) so we 1584 * should drop zone->lru_lock around each page. It's impossible to balance 1585 * this, so instead we remove the pages from the LRU while processing them. 1586 * It is safe to rely on PG_active against the non-LRU pages in here because 1587 * nobody will play with that bit on a non-LRU page. 1588 * 1589 * The downside is that we have to touch page->_count against each page. 1590 * But we had to alter page->flags anyway. 1591 */ 1592 1593 static void move_active_pages_to_lru(struct lruvec *lruvec, 1594 struct list_head *list, 1595 struct list_head *pages_to_free, 1596 enum lru_list lru) 1597 { 1598 struct zone *zone = lruvec_zone(lruvec); 1599 unsigned long pgmoved = 0; 1600 struct page *page; 1601 int nr_pages; 1602 1603 while (!list_empty(list)) { 1604 page = lru_to_page(list); 1605 lruvec = mem_cgroup_page_lruvec(page, zone); 1606 1607 VM_BUG_ON_PAGE(PageLRU(page), page); 1608 SetPageLRU(page); 1609 1610 nr_pages = hpage_nr_pages(page); 1611 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1612 list_move(&page->lru, &lruvec->lists[lru]); 1613 pgmoved += nr_pages; 1614 1615 if (put_page_testzero(page)) { 1616 __ClearPageLRU(page); 1617 __ClearPageActive(page); 1618 del_page_from_lru_list(page, lruvec, lru); 1619 1620 if (unlikely(PageCompound(page))) { 1621 spin_unlock_irq(&zone->lru_lock); 1622 (*get_compound_page_dtor(page))(page); 1623 spin_lock_irq(&zone->lru_lock); 1624 } else 1625 list_add(&page->lru, pages_to_free); 1626 } 1627 } 1628 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1629 if (!is_active_lru(lru)) 1630 __count_vm_events(PGDEACTIVATE, pgmoved); 1631 } 1632 1633 static void shrink_active_list(unsigned long nr_to_scan, 1634 struct lruvec *lruvec, 1635 struct scan_control *sc, 1636 enum lru_list lru) 1637 { 1638 unsigned long nr_taken; 1639 unsigned long nr_scanned; 1640 unsigned long vm_flags; 1641 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1642 LIST_HEAD(l_active); 1643 LIST_HEAD(l_inactive); 1644 struct page *page; 1645 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1646 unsigned long nr_rotated = 0; 1647 isolate_mode_t isolate_mode = 0; 1648 int file = is_file_lru(lru); 1649 struct zone *zone = lruvec_zone(lruvec); 1650 1651 lru_add_drain(); 1652 1653 if (!sc->may_unmap) 1654 isolate_mode |= ISOLATE_UNMAPPED; 1655 if (!sc->may_writepage) 1656 isolate_mode |= ISOLATE_CLEAN; 1657 1658 spin_lock_irq(&zone->lru_lock); 1659 1660 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1661 &nr_scanned, sc, isolate_mode, lru); 1662 if (global_reclaim(sc)) 1663 zone->pages_scanned += nr_scanned; 1664 1665 reclaim_stat->recent_scanned[file] += nr_taken; 1666 1667 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1668 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1669 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1670 spin_unlock_irq(&zone->lru_lock); 1671 1672 while (!list_empty(&l_hold)) { 1673 cond_resched(); 1674 page = lru_to_page(&l_hold); 1675 list_del(&page->lru); 1676 1677 if (unlikely(!page_evictable(page))) { 1678 putback_lru_page(page); 1679 continue; 1680 } 1681 1682 if (unlikely(buffer_heads_over_limit)) { 1683 if (page_has_private(page) && trylock_page(page)) { 1684 if (page_has_private(page)) 1685 try_to_release_page(page, 0); 1686 unlock_page(page); 1687 } 1688 } 1689 1690 if (page_referenced(page, 0, sc->target_mem_cgroup, 1691 &vm_flags)) { 1692 nr_rotated += hpage_nr_pages(page); 1693 /* 1694 * Identify referenced, file-backed active pages and 1695 * give them one more trip around the active list. So 1696 * that executable code get better chances to stay in 1697 * memory under moderate memory pressure. Anon pages 1698 * are not likely to be evicted by use-once streaming 1699 * IO, plus JVM can create lots of anon VM_EXEC pages, 1700 * so we ignore them here. 1701 */ 1702 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1703 list_add(&page->lru, &l_active); 1704 continue; 1705 } 1706 } 1707 1708 ClearPageActive(page); /* we are de-activating */ 1709 list_add(&page->lru, &l_inactive); 1710 } 1711 1712 /* 1713 * Move pages back to the lru list. 1714 */ 1715 spin_lock_irq(&zone->lru_lock); 1716 /* 1717 * Count referenced pages from currently used mappings as rotated, 1718 * even though only some of them are actually re-activated. This 1719 * helps balance scan pressure between file and anonymous pages in 1720 * get_scan_ratio. 1721 */ 1722 reclaim_stat->recent_rotated[file] += nr_rotated; 1723 1724 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1725 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1726 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1727 spin_unlock_irq(&zone->lru_lock); 1728 1729 free_hot_cold_page_list(&l_hold, 1); 1730 } 1731 1732 #ifdef CONFIG_SWAP 1733 static int inactive_anon_is_low_global(struct zone *zone) 1734 { 1735 unsigned long active, inactive; 1736 1737 active = zone_page_state(zone, NR_ACTIVE_ANON); 1738 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1739 1740 if (inactive * zone->inactive_ratio < active) 1741 return 1; 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1748 * @lruvec: LRU vector to check 1749 * 1750 * Returns true if the zone does not have enough inactive anon pages, 1751 * meaning some active anon pages need to be deactivated. 1752 */ 1753 static int inactive_anon_is_low(struct lruvec *lruvec) 1754 { 1755 /* 1756 * If we don't have swap space, anonymous page deactivation 1757 * is pointless. 1758 */ 1759 if (!total_swap_pages) 1760 return 0; 1761 1762 if (!mem_cgroup_disabled()) 1763 return mem_cgroup_inactive_anon_is_low(lruvec); 1764 1765 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1766 } 1767 #else 1768 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1769 { 1770 return 0; 1771 } 1772 #endif 1773 1774 /** 1775 * inactive_file_is_low - check if file pages need to be deactivated 1776 * @lruvec: LRU vector to check 1777 * 1778 * When the system is doing streaming IO, memory pressure here 1779 * ensures that active file pages get deactivated, until more 1780 * than half of the file pages are on the inactive list. 1781 * 1782 * Once we get to that situation, protect the system's working 1783 * set from being evicted by disabling active file page aging. 1784 * 1785 * This uses a different ratio than the anonymous pages, because 1786 * the page cache uses a use-once replacement algorithm. 1787 */ 1788 static int inactive_file_is_low(struct lruvec *lruvec) 1789 { 1790 unsigned long inactive; 1791 unsigned long active; 1792 1793 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1794 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1795 1796 return active > inactive; 1797 } 1798 1799 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1800 { 1801 if (is_file_lru(lru)) 1802 return inactive_file_is_low(lruvec); 1803 else 1804 return inactive_anon_is_low(lruvec); 1805 } 1806 1807 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1808 struct lruvec *lruvec, struct scan_control *sc) 1809 { 1810 if (is_active_lru(lru)) { 1811 if (inactive_list_is_low(lruvec, lru)) 1812 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1813 return 0; 1814 } 1815 1816 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1817 } 1818 1819 static int vmscan_swappiness(struct scan_control *sc) 1820 { 1821 if (global_reclaim(sc)) 1822 return vm_swappiness; 1823 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1824 } 1825 1826 enum scan_balance { 1827 SCAN_EQUAL, 1828 SCAN_FRACT, 1829 SCAN_ANON, 1830 SCAN_FILE, 1831 }; 1832 1833 /* 1834 * Determine how aggressively the anon and file LRU lists should be 1835 * scanned. The relative value of each set of LRU lists is determined 1836 * by looking at the fraction of the pages scanned we did rotate back 1837 * onto the active list instead of evict. 1838 * 1839 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1840 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1841 */ 1842 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1843 unsigned long *nr) 1844 { 1845 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1846 u64 fraction[2]; 1847 u64 denominator = 0; /* gcc */ 1848 struct zone *zone = lruvec_zone(lruvec); 1849 unsigned long anon_prio, file_prio; 1850 enum scan_balance scan_balance; 1851 unsigned long anon, file, free; 1852 bool force_scan = false; 1853 unsigned long ap, fp; 1854 enum lru_list lru; 1855 1856 /* 1857 * If the zone or memcg is small, nr[l] can be 0. This 1858 * results in no scanning on this priority and a potential 1859 * priority drop. Global direct reclaim can go to the next 1860 * zone and tends to have no problems. Global kswapd is for 1861 * zone balancing and it needs to scan a minimum amount. When 1862 * reclaiming for a memcg, a priority drop can cause high 1863 * latencies, so it's better to scan a minimum amount there as 1864 * well. 1865 */ 1866 if (current_is_kswapd() && !zone_reclaimable(zone)) 1867 force_scan = true; 1868 if (!global_reclaim(sc)) 1869 force_scan = true; 1870 1871 /* If we have no swap space, do not bother scanning anon pages. */ 1872 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1873 scan_balance = SCAN_FILE; 1874 goto out; 1875 } 1876 1877 /* 1878 * Global reclaim will swap to prevent OOM even with no 1879 * swappiness, but memcg users want to use this knob to 1880 * disable swapping for individual groups completely when 1881 * using the memory controller's swap limit feature would be 1882 * too expensive. 1883 */ 1884 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { 1885 scan_balance = SCAN_FILE; 1886 goto out; 1887 } 1888 1889 /* 1890 * Do not apply any pressure balancing cleverness when the 1891 * system is close to OOM, scan both anon and file equally 1892 * (unless the swappiness setting disagrees with swapping). 1893 */ 1894 if (!sc->priority && vmscan_swappiness(sc)) { 1895 scan_balance = SCAN_EQUAL; 1896 goto out; 1897 } 1898 1899 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1900 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1901 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1902 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1903 1904 /* 1905 * If it's foreseeable that reclaiming the file cache won't be 1906 * enough to get the zone back into a desirable shape, we have 1907 * to swap. Better start now and leave the - probably heavily 1908 * thrashing - remaining file pages alone. 1909 */ 1910 if (global_reclaim(sc)) { 1911 free = zone_page_state(zone, NR_FREE_PAGES); 1912 if (unlikely(file + free <= high_wmark_pages(zone))) { 1913 scan_balance = SCAN_ANON; 1914 goto out; 1915 } 1916 } 1917 1918 /* 1919 * There is enough inactive page cache, do not reclaim 1920 * anything from the anonymous working set right now. 1921 */ 1922 if (!inactive_file_is_low(lruvec)) { 1923 scan_balance = SCAN_FILE; 1924 goto out; 1925 } 1926 1927 scan_balance = SCAN_FRACT; 1928 1929 /* 1930 * With swappiness at 100, anonymous and file have the same priority. 1931 * This scanning priority is essentially the inverse of IO cost. 1932 */ 1933 anon_prio = vmscan_swappiness(sc); 1934 file_prio = 200 - anon_prio; 1935 1936 /* 1937 * OK, so we have swap space and a fair amount of page cache 1938 * pages. We use the recently rotated / recently scanned 1939 * ratios to determine how valuable each cache is. 1940 * 1941 * Because workloads change over time (and to avoid overflow) 1942 * we keep these statistics as a floating average, which ends 1943 * up weighing recent references more than old ones. 1944 * 1945 * anon in [0], file in [1] 1946 */ 1947 spin_lock_irq(&zone->lru_lock); 1948 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1949 reclaim_stat->recent_scanned[0] /= 2; 1950 reclaim_stat->recent_rotated[0] /= 2; 1951 } 1952 1953 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1954 reclaim_stat->recent_scanned[1] /= 2; 1955 reclaim_stat->recent_rotated[1] /= 2; 1956 } 1957 1958 /* 1959 * The amount of pressure on anon vs file pages is inversely 1960 * proportional to the fraction of recently scanned pages on 1961 * each list that were recently referenced and in active use. 1962 */ 1963 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1964 ap /= reclaim_stat->recent_rotated[0] + 1; 1965 1966 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1967 fp /= reclaim_stat->recent_rotated[1] + 1; 1968 spin_unlock_irq(&zone->lru_lock); 1969 1970 fraction[0] = ap; 1971 fraction[1] = fp; 1972 denominator = ap + fp + 1; 1973 out: 1974 for_each_evictable_lru(lru) { 1975 int file = is_file_lru(lru); 1976 unsigned long size; 1977 unsigned long scan; 1978 1979 size = get_lru_size(lruvec, lru); 1980 scan = size >> sc->priority; 1981 1982 if (!scan && force_scan) 1983 scan = min(size, SWAP_CLUSTER_MAX); 1984 1985 switch (scan_balance) { 1986 case SCAN_EQUAL: 1987 /* Scan lists relative to size */ 1988 break; 1989 case SCAN_FRACT: 1990 /* 1991 * Scan types proportional to swappiness and 1992 * their relative recent reclaim efficiency. 1993 */ 1994 scan = div64_u64(scan * fraction[file], denominator); 1995 break; 1996 case SCAN_FILE: 1997 case SCAN_ANON: 1998 /* Scan one type exclusively */ 1999 if ((scan_balance == SCAN_FILE) != file) 2000 scan = 0; 2001 break; 2002 default: 2003 /* Look ma, no brain */ 2004 BUG(); 2005 } 2006 nr[lru] = scan; 2007 } 2008 } 2009 2010 /* 2011 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2012 */ 2013 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2014 { 2015 unsigned long nr[NR_LRU_LISTS]; 2016 unsigned long targets[NR_LRU_LISTS]; 2017 unsigned long nr_to_scan; 2018 enum lru_list lru; 2019 unsigned long nr_reclaimed = 0; 2020 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2021 struct blk_plug plug; 2022 bool scan_adjusted = false; 2023 2024 get_scan_count(lruvec, sc, nr); 2025 2026 /* Record the original scan target for proportional adjustments later */ 2027 memcpy(targets, nr, sizeof(nr)); 2028 2029 blk_start_plug(&plug); 2030 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2031 nr[LRU_INACTIVE_FILE]) { 2032 unsigned long nr_anon, nr_file, percentage; 2033 unsigned long nr_scanned; 2034 2035 for_each_evictable_lru(lru) { 2036 if (nr[lru]) { 2037 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2038 nr[lru] -= nr_to_scan; 2039 2040 nr_reclaimed += shrink_list(lru, nr_to_scan, 2041 lruvec, sc); 2042 } 2043 } 2044 2045 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2046 continue; 2047 2048 /* 2049 * For global direct reclaim, reclaim only the number of pages 2050 * requested. Less care is taken to scan proportionally as it 2051 * is more important to minimise direct reclaim stall latency 2052 * than it is to properly age the LRU lists. 2053 */ 2054 if (global_reclaim(sc) && !current_is_kswapd()) 2055 break; 2056 2057 /* 2058 * For kswapd and memcg, reclaim at least the number of pages 2059 * requested. Ensure that the anon and file LRUs shrink 2060 * proportionally what was requested by get_scan_count(). We 2061 * stop reclaiming one LRU and reduce the amount scanning 2062 * proportional to the original scan target. 2063 */ 2064 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2065 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2066 2067 if (nr_file > nr_anon) { 2068 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2069 targets[LRU_ACTIVE_ANON] + 1; 2070 lru = LRU_BASE; 2071 percentage = nr_anon * 100 / scan_target; 2072 } else { 2073 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2074 targets[LRU_ACTIVE_FILE] + 1; 2075 lru = LRU_FILE; 2076 percentage = nr_file * 100 / scan_target; 2077 } 2078 2079 /* Stop scanning the smaller of the LRU */ 2080 nr[lru] = 0; 2081 nr[lru + LRU_ACTIVE] = 0; 2082 2083 /* 2084 * Recalculate the other LRU scan count based on its original 2085 * scan target and the percentage scanning already complete 2086 */ 2087 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2088 nr_scanned = targets[lru] - nr[lru]; 2089 nr[lru] = targets[lru] * (100 - percentage) / 100; 2090 nr[lru] -= min(nr[lru], nr_scanned); 2091 2092 lru += LRU_ACTIVE; 2093 nr_scanned = targets[lru] - nr[lru]; 2094 nr[lru] = targets[lru] * (100 - percentage) / 100; 2095 nr[lru] -= min(nr[lru], nr_scanned); 2096 2097 scan_adjusted = true; 2098 } 2099 blk_finish_plug(&plug); 2100 sc->nr_reclaimed += nr_reclaimed; 2101 2102 /* 2103 * Even if we did not try to evict anon pages at all, we want to 2104 * rebalance the anon lru active/inactive ratio. 2105 */ 2106 if (inactive_anon_is_low(lruvec)) 2107 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2108 sc, LRU_ACTIVE_ANON); 2109 2110 throttle_vm_writeout(sc->gfp_mask); 2111 } 2112 2113 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2114 static bool in_reclaim_compaction(struct scan_control *sc) 2115 { 2116 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2117 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2118 sc->priority < DEF_PRIORITY - 2)) 2119 return true; 2120 2121 return false; 2122 } 2123 2124 /* 2125 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2126 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2127 * true if more pages should be reclaimed such that when the page allocator 2128 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2129 * It will give up earlier than that if there is difficulty reclaiming pages. 2130 */ 2131 static inline bool should_continue_reclaim(struct zone *zone, 2132 unsigned long nr_reclaimed, 2133 unsigned long nr_scanned, 2134 struct scan_control *sc) 2135 { 2136 unsigned long pages_for_compaction; 2137 unsigned long inactive_lru_pages; 2138 2139 /* If not in reclaim/compaction mode, stop */ 2140 if (!in_reclaim_compaction(sc)) 2141 return false; 2142 2143 /* Consider stopping depending on scan and reclaim activity */ 2144 if (sc->gfp_mask & __GFP_REPEAT) { 2145 /* 2146 * For __GFP_REPEAT allocations, stop reclaiming if the 2147 * full LRU list has been scanned and we are still failing 2148 * to reclaim pages. This full LRU scan is potentially 2149 * expensive but a __GFP_REPEAT caller really wants to succeed 2150 */ 2151 if (!nr_reclaimed && !nr_scanned) 2152 return false; 2153 } else { 2154 /* 2155 * For non-__GFP_REPEAT allocations which can presumably 2156 * fail without consequence, stop if we failed to reclaim 2157 * any pages from the last SWAP_CLUSTER_MAX number of 2158 * pages that were scanned. This will return to the 2159 * caller faster at the risk reclaim/compaction and 2160 * the resulting allocation attempt fails 2161 */ 2162 if (!nr_reclaimed) 2163 return false; 2164 } 2165 2166 /* 2167 * If we have not reclaimed enough pages for compaction and the 2168 * inactive lists are large enough, continue reclaiming 2169 */ 2170 pages_for_compaction = (2UL << sc->order); 2171 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2172 if (get_nr_swap_pages() > 0) 2173 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2174 if (sc->nr_reclaimed < pages_for_compaction && 2175 inactive_lru_pages > pages_for_compaction) 2176 return true; 2177 2178 /* If compaction would go ahead or the allocation would succeed, stop */ 2179 switch (compaction_suitable(zone, sc->order)) { 2180 case COMPACT_PARTIAL: 2181 case COMPACT_CONTINUE: 2182 return false; 2183 default: 2184 return true; 2185 } 2186 } 2187 2188 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2189 { 2190 unsigned long nr_reclaimed, nr_scanned; 2191 2192 do { 2193 struct mem_cgroup *root = sc->target_mem_cgroup; 2194 struct mem_cgroup_reclaim_cookie reclaim = { 2195 .zone = zone, 2196 .priority = sc->priority, 2197 }; 2198 struct mem_cgroup *memcg; 2199 2200 nr_reclaimed = sc->nr_reclaimed; 2201 nr_scanned = sc->nr_scanned; 2202 2203 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2204 do { 2205 struct lruvec *lruvec; 2206 2207 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2208 2209 shrink_lruvec(lruvec, sc); 2210 2211 /* 2212 * Direct reclaim and kswapd have to scan all memory 2213 * cgroups to fulfill the overall scan target for the 2214 * zone. 2215 * 2216 * Limit reclaim, on the other hand, only cares about 2217 * nr_to_reclaim pages to be reclaimed and it will 2218 * retry with decreasing priority if one round over the 2219 * whole hierarchy is not sufficient. 2220 */ 2221 if (!global_reclaim(sc) && 2222 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2223 mem_cgroup_iter_break(root, memcg); 2224 break; 2225 } 2226 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2227 } while (memcg); 2228 2229 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2230 sc->nr_scanned - nr_scanned, 2231 sc->nr_reclaimed - nr_reclaimed); 2232 2233 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2234 sc->nr_scanned - nr_scanned, sc)); 2235 } 2236 2237 /* Returns true if compaction should go ahead for a high-order request */ 2238 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2239 { 2240 unsigned long balance_gap, watermark; 2241 bool watermark_ok; 2242 2243 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2244 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2245 return false; 2246 2247 /* 2248 * Compaction takes time to run and there are potentially other 2249 * callers using the pages just freed. Continue reclaiming until 2250 * there is a buffer of free pages available to give compaction 2251 * a reasonable chance of completing and allocating the page 2252 */ 2253 balance_gap = min(low_wmark_pages(zone), 2254 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2255 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2256 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2257 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2258 2259 /* 2260 * If compaction is deferred, reclaim up to a point where 2261 * compaction will have a chance of success when re-enabled 2262 */ 2263 if (compaction_deferred(zone, sc->order)) 2264 return watermark_ok; 2265 2266 /* If compaction is not ready to start, keep reclaiming */ 2267 if (!compaction_suitable(zone, sc->order)) 2268 return false; 2269 2270 return watermark_ok; 2271 } 2272 2273 /* 2274 * This is the direct reclaim path, for page-allocating processes. We only 2275 * try to reclaim pages from zones which will satisfy the caller's allocation 2276 * request. 2277 * 2278 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2279 * Because: 2280 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2281 * allocation or 2282 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2283 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2284 * zone defense algorithm. 2285 * 2286 * If a zone is deemed to be full of pinned pages then just give it a light 2287 * scan then give up on it. 2288 * 2289 * This function returns true if a zone is being reclaimed for a costly 2290 * high-order allocation and compaction is ready to begin. This indicates to 2291 * the caller that it should consider retrying the allocation instead of 2292 * further reclaim. 2293 */ 2294 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2295 { 2296 struct zoneref *z; 2297 struct zone *zone; 2298 unsigned long nr_soft_reclaimed; 2299 unsigned long nr_soft_scanned; 2300 bool aborted_reclaim = false; 2301 2302 /* 2303 * If the number of buffer_heads in the machine exceeds the maximum 2304 * allowed level, force direct reclaim to scan the highmem zone as 2305 * highmem pages could be pinning lowmem pages storing buffer_heads 2306 */ 2307 if (buffer_heads_over_limit) 2308 sc->gfp_mask |= __GFP_HIGHMEM; 2309 2310 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2311 gfp_zone(sc->gfp_mask), sc->nodemask) { 2312 if (!populated_zone(zone)) 2313 continue; 2314 /* 2315 * Take care memory controller reclaiming has small influence 2316 * to global LRU. 2317 */ 2318 if (global_reclaim(sc)) { 2319 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2320 continue; 2321 if (sc->priority != DEF_PRIORITY && 2322 !zone_reclaimable(zone)) 2323 continue; /* Let kswapd poll it */ 2324 if (IS_ENABLED(CONFIG_COMPACTION)) { 2325 /* 2326 * If we already have plenty of memory free for 2327 * compaction in this zone, don't free any more. 2328 * Even though compaction is invoked for any 2329 * non-zero order, only frequent costly order 2330 * reclamation is disruptive enough to become a 2331 * noticeable problem, like transparent huge 2332 * page allocations. 2333 */ 2334 if (compaction_ready(zone, sc)) { 2335 aborted_reclaim = true; 2336 continue; 2337 } 2338 } 2339 /* 2340 * This steals pages from memory cgroups over softlimit 2341 * and returns the number of reclaimed pages and 2342 * scanned pages. This works for global memory pressure 2343 * and balancing, not for a memcg's limit. 2344 */ 2345 nr_soft_scanned = 0; 2346 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2347 sc->order, sc->gfp_mask, 2348 &nr_soft_scanned); 2349 sc->nr_reclaimed += nr_soft_reclaimed; 2350 sc->nr_scanned += nr_soft_scanned; 2351 /* need some check for avoid more shrink_zone() */ 2352 } 2353 2354 shrink_zone(zone, sc); 2355 } 2356 2357 return aborted_reclaim; 2358 } 2359 2360 /* All zones in zonelist are unreclaimable? */ 2361 static bool all_unreclaimable(struct zonelist *zonelist, 2362 struct scan_control *sc) 2363 { 2364 struct zoneref *z; 2365 struct zone *zone; 2366 2367 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2368 gfp_zone(sc->gfp_mask), sc->nodemask) { 2369 if (!populated_zone(zone)) 2370 continue; 2371 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2372 continue; 2373 if (zone_reclaimable(zone)) 2374 return false; 2375 } 2376 2377 return true; 2378 } 2379 2380 /* 2381 * This is the main entry point to direct page reclaim. 2382 * 2383 * If a full scan of the inactive list fails to free enough memory then we 2384 * are "out of memory" and something needs to be killed. 2385 * 2386 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2387 * high - the zone may be full of dirty or under-writeback pages, which this 2388 * caller can't do much about. We kick the writeback threads and take explicit 2389 * naps in the hope that some of these pages can be written. But if the 2390 * allocating task holds filesystem locks which prevent writeout this might not 2391 * work, and the allocation attempt will fail. 2392 * 2393 * returns: 0, if no pages reclaimed 2394 * else, the number of pages reclaimed 2395 */ 2396 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2397 struct scan_control *sc, 2398 struct shrink_control *shrink) 2399 { 2400 unsigned long total_scanned = 0; 2401 struct reclaim_state *reclaim_state = current->reclaim_state; 2402 struct zoneref *z; 2403 struct zone *zone; 2404 unsigned long writeback_threshold; 2405 bool aborted_reclaim; 2406 2407 delayacct_freepages_start(); 2408 2409 if (global_reclaim(sc)) 2410 count_vm_event(ALLOCSTALL); 2411 2412 do { 2413 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2414 sc->priority); 2415 sc->nr_scanned = 0; 2416 aborted_reclaim = shrink_zones(zonelist, sc); 2417 2418 /* 2419 * Don't shrink slabs when reclaiming memory from over limit 2420 * cgroups but do shrink slab at least once when aborting 2421 * reclaim for compaction to avoid unevenly scanning file/anon 2422 * LRU pages over slab pages. 2423 */ 2424 if (global_reclaim(sc)) { 2425 unsigned long lru_pages = 0; 2426 2427 nodes_clear(shrink->nodes_to_scan); 2428 for_each_zone_zonelist(zone, z, zonelist, 2429 gfp_zone(sc->gfp_mask)) { 2430 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2431 continue; 2432 2433 lru_pages += zone_reclaimable_pages(zone); 2434 node_set(zone_to_nid(zone), 2435 shrink->nodes_to_scan); 2436 } 2437 2438 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2439 if (reclaim_state) { 2440 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2441 reclaim_state->reclaimed_slab = 0; 2442 } 2443 } 2444 total_scanned += sc->nr_scanned; 2445 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2446 goto out; 2447 2448 /* 2449 * If we're getting trouble reclaiming, start doing 2450 * writepage even in laptop mode. 2451 */ 2452 if (sc->priority < DEF_PRIORITY - 2) 2453 sc->may_writepage = 1; 2454 2455 /* 2456 * Try to write back as many pages as we just scanned. This 2457 * tends to cause slow streaming writers to write data to the 2458 * disk smoothly, at the dirtying rate, which is nice. But 2459 * that's undesirable in laptop mode, where we *want* lumpy 2460 * writeout. So in laptop mode, write out the whole world. 2461 */ 2462 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2463 if (total_scanned > writeback_threshold) { 2464 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2465 WB_REASON_TRY_TO_FREE_PAGES); 2466 sc->may_writepage = 1; 2467 } 2468 } while (--sc->priority >= 0 && !aborted_reclaim); 2469 2470 out: 2471 delayacct_freepages_end(); 2472 2473 if (sc->nr_reclaimed) 2474 return sc->nr_reclaimed; 2475 2476 /* 2477 * As hibernation is going on, kswapd is freezed so that it can't mark 2478 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2479 * check. 2480 */ 2481 if (oom_killer_disabled) 2482 return 0; 2483 2484 /* Aborted reclaim to try compaction? don't OOM, then */ 2485 if (aborted_reclaim) 2486 return 1; 2487 2488 /* top priority shrink_zones still had more to do? don't OOM, then */ 2489 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2490 return 1; 2491 2492 return 0; 2493 } 2494 2495 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2496 { 2497 struct zone *zone; 2498 unsigned long pfmemalloc_reserve = 0; 2499 unsigned long free_pages = 0; 2500 int i; 2501 bool wmark_ok; 2502 2503 for (i = 0; i <= ZONE_NORMAL; i++) { 2504 zone = &pgdat->node_zones[i]; 2505 pfmemalloc_reserve += min_wmark_pages(zone); 2506 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2507 } 2508 2509 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2510 2511 /* kswapd must be awake if processes are being throttled */ 2512 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2513 pgdat->classzone_idx = min(pgdat->classzone_idx, 2514 (enum zone_type)ZONE_NORMAL); 2515 wake_up_interruptible(&pgdat->kswapd_wait); 2516 } 2517 2518 return wmark_ok; 2519 } 2520 2521 /* 2522 * Throttle direct reclaimers if backing storage is backed by the network 2523 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2524 * depleted. kswapd will continue to make progress and wake the processes 2525 * when the low watermark is reached. 2526 * 2527 * Returns true if a fatal signal was delivered during throttling. If this 2528 * happens, the page allocator should not consider triggering the OOM killer. 2529 */ 2530 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2531 nodemask_t *nodemask) 2532 { 2533 struct zone *zone; 2534 int high_zoneidx = gfp_zone(gfp_mask); 2535 pg_data_t *pgdat; 2536 2537 /* 2538 * Kernel threads should not be throttled as they may be indirectly 2539 * responsible for cleaning pages necessary for reclaim to make forward 2540 * progress. kjournald for example may enter direct reclaim while 2541 * committing a transaction where throttling it could forcing other 2542 * processes to block on log_wait_commit(). 2543 */ 2544 if (current->flags & PF_KTHREAD) 2545 goto out; 2546 2547 /* 2548 * If a fatal signal is pending, this process should not throttle. 2549 * It should return quickly so it can exit and free its memory 2550 */ 2551 if (fatal_signal_pending(current)) 2552 goto out; 2553 2554 /* Check if the pfmemalloc reserves are ok */ 2555 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2556 pgdat = zone->zone_pgdat; 2557 if (pfmemalloc_watermark_ok(pgdat)) 2558 goto out; 2559 2560 /* Account for the throttling */ 2561 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2562 2563 /* 2564 * If the caller cannot enter the filesystem, it's possible that it 2565 * is due to the caller holding an FS lock or performing a journal 2566 * transaction in the case of a filesystem like ext[3|4]. In this case, 2567 * it is not safe to block on pfmemalloc_wait as kswapd could be 2568 * blocked waiting on the same lock. Instead, throttle for up to a 2569 * second before continuing. 2570 */ 2571 if (!(gfp_mask & __GFP_FS)) { 2572 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2573 pfmemalloc_watermark_ok(pgdat), HZ); 2574 2575 goto check_pending; 2576 } 2577 2578 /* Throttle until kswapd wakes the process */ 2579 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2580 pfmemalloc_watermark_ok(pgdat)); 2581 2582 check_pending: 2583 if (fatal_signal_pending(current)) 2584 return true; 2585 2586 out: 2587 return false; 2588 } 2589 2590 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2591 gfp_t gfp_mask, nodemask_t *nodemask) 2592 { 2593 unsigned long nr_reclaimed; 2594 struct scan_control sc = { 2595 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2596 .may_writepage = !laptop_mode, 2597 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2598 .may_unmap = 1, 2599 .may_swap = 1, 2600 .order = order, 2601 .priority = DEF_PRIORITY, 2602 .target_mem_cgroup = NULL, 2603 .nodemask = nodemask, 2604 }; 2605 struct shrink_control shrink = { 2606 .gfp_mask = sc.gfp_mask, 2607 }; 2608 2609 /* 2610 * Do not enter reclaim if fatal signal was delivered while throttled. 2611 * 1 is returned so that the page allocator does not OOM kill at this 2612 * point. 2613 */ 2614 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2615 return 1; 2616 2617 trace_mm_vmscan_direct_reclaim_begin(order, 2618 sc.may_writepage, 2619 gfp_mask); 2620 2621 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2622 2623 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2624 2625 return nr_reclaimed; 2626 } 2627 2628 #ifdef CONFIG_MEMCG 2629 2630 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2631 gfp_t gfp_mask, bool noswap, 2632 struct zone *zone, 2633 unsigned long *nr_scanned) 2634 { 2635 struct scan_control sc = { 2636 .nr_scanned = 0, 2637 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2638 .may_writepage = !laptop_mode, 2639 .may_unmap = 1, 2640 .may_swap = !noswap, 2641 .order = 0, 2642 .priority = 0, 2643 .target_mem_cgroup = memcg, 2644 }; 2645 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2646 2647 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2648 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2649 2650 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2651 sc.may_writepage, 2652 sc.gfp_mask); 2653 2654 /* 2655 * NOTE: Although we can get the priority field, using it 2656 * here is not a good idea, since it limits the pages we can scan. 2657 * if we don't reclaim here, the shrink_zone from balance_pgdat 2658 * will pick up pages from other mem cgroup's as well. We hack 2659 * the priority and make it zero. 2660 */ 2661 shrink_lruvec(lruvec, &sc); 2662 2663 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2664 2665 *nr_scanned = sc.nr_scanned; 2666 return sc.nr_reclaimed; 2667 } 2668 2669 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2670 gfp_t gfp_mask, 2671 bool noswap) 2672 { 2673 struct zonelist *zonelist; 2674 unsigned long nr_reclaimed; 2675 int nid; 2676 struct scan_control sc = { 2677 .may_writepage = !laptop_mode, 2678 .may_unmap = 1, 2679 .may_swap = !noswap, 2680 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2681 .order = 0, 2682 .priority = DEF_PRIORITY, 2683 .target_mem_cgroup = memcg, 2684 .nodemask = NULL, /* we don't care the placement */ 2685 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2686 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2687 }; 2688 struct shrink_control shrink = { 2689 .gfp_mask = sc.gfp_mask, 2690 }; 2691 2692 /* 2693 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2694 * take care of from where we get pages. So the node where we start the 2695 * scan does not need to be the current node. 2696 */ 2697 nid = mem_cgroup_select_victim_node(memcg); 2698 2699 zonelist = NODE_DATA(nid)->node_zonelists; 2700 2701 trace_mm_vmscan_memcg_reclaim_begin(0, 2702 sc.may_writepage, 2703 sc.gfp_mask); 2704 2705 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2706 2707 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2708 2709 return nr_reclaimed; 2710 } 2711 #endif 2712 2713 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2714 { 2715 struct mem_cgroup *memcg; 2716 2717 if (!total_swap_pages) 2718 return; 2719 2720 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2721 do { 2722 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2723 2724 if (inactive_anon_is_low(lruvec)) 2725 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2726 sc, LRU_ACTIVE_ANON); 2727 2728 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2729 } while (memcg); 2730 } 2731 2732 static bool zone_balanced(struct zone *zone, int order, 2733 unsigned long balance_gap, int classzone_idx) 2734 { 2735 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2736 balance_gap, classzone_idx, 0)) 2737 return false; 2738 2739 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2740 !compaction_suitable(zone, order)) 2741 return false; 2742 2743 return true; 2744 } 2745 2746 /* 2747 * pgdat_balanced() is used when checking if a node is balanced. 2748 * 2749 * For order-0, all zones must be balanced! 2750 * 2751 * For high-order allocations only zones that meet watermarks and are in a 2752 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2753 * total of balanced pages must be at least 25% of the zones allowed by 2754 * classzone_idx for the node to be considered balanced. Forcing all zones to 2755 * be balanced for high orders can cause excessive reclaim when there are 2756 * imbalanced zones. 2757 * The choice of 25% is due to 2758 * o a 16M DMA zone that is balanced will not balance a zone on any 2759 * reasonable sized machine 2760 * o On all other machines, the top zone must be at least a reasonable 2761 * percentage of the middle zones. For example, on 32-bit x86, highmem 2762 * would need to be at least 256M for it to be balance a whole node. 2763 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2764 * to balance a node on its own. These seemed like reasonable ratios. 2765 */ 2766 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2767 { 2768 unsigned long managed_pages = 0; 2769 unsigned long balanced_pages = 0; 2770 int i; 2771 2772 /* Check the watermark levels */ 2773 for (i = 0; i <= classzone_idx; i++) { 2774 struct zone *zone = pgdat->node_zones + i; 2775 2776 if (!populated_zone(zone)) 2777 continue; 2778 2779 managed_pages += zone->managed_pages; 2780 2781 /* 2782 * A special case here: 2783 * 2784 * balance_pgdat() skips over all_unreclaimable after 2785 * DEF_PRIORITY. Effectively, it considers them balanced so 2786 * they must be considered balanced here as well! 2787 */ 2788 if (!zone_reclaimable(zone)) { 2789 balanced_pages += zone->managed_pages; 2790 continue; 2791 } 2792 2793 if (zone_balanced(zone, order, 0, i)) 2794 balanced_pages += zone->managed_pages; 2795 else if (!order) 2796 return false; 2797 } 2798 2799 if (order) 2800 return balanced_pages >= (managed_pages >> 2); 2801 else 2802 return true; 2803 } 2804 2805 /* 2806 * Prepare kswapd for sleeping. This verifies that there are no processes 2807 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2808 * 2809 * Returns true if kswapd is ready to sleep 2810 */ 2811 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2812 int classzone_idx) 2813 { 2814 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2815 if (remaining) 2816 return false; 2817 2818 /* 2819 * There is a potential race between when kswapd checks its watermarks 2820 * and a process gets throttled. There is also a potential race if 2821 * processes get throttled, kswapd wakes, a large process exits therby 2822 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2823 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2824 * so wake them now if necessary. If necessary, processes will wake 2825 * kswapd and get throttled again 2826 */ 2827 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2828 wake_up(&pgdat->pfmemalloc_wait); 2829 return false; 2830 } 2831 2832 return pgdat_balanced(pgdat, order, classzone_idx); 2833 } 2834 2835 /* 2836 * kswapd shrinks the zone by the number of pages required to reach 2837 * the high watermark. 2838 * 2839 * Returns true if kswapd scanned at least the requested number of pages to 2840 * reclaim or if the lack of progress was due to pages under writeback. 2841 * This is used to determine if the scanning priority needs to be raised. 2842 */ 2843 static bool kswapd_shrink_zone(struct zone *zone, 2844 int classzone_idx, 2845 struct scan_control *sc, 2846 unsigned long lru_pages, 2847 unsigned long *nr_attempted) 2848 { 2849 int testorder = sc->order; 2850 unsigned long balance_gap; 2851 struct reclaim_state *reclaim_state = current->reclaim_state; 2852 struct shrink_control shrink = { 2853 .gfp_mask = sc->gfp_mask, 2854 }; 2855 bool lowmem_pressure; 2856 2857 /* Reclaim above the high watermark. */ 2858 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2859 2860 /* 2861 * Kswapd reclaims only single pages with compaction enabled. Trying 2862 * too hard to reclaim until contiguous free pages have become 2863 * available can hurt performance by evicting too much useful data 2864 * from memory. Do not reclaim more than needed for compaction. 2865 */ 2866 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2867 compaction_suitable(zone, sc->order) != 2868 COMPACT_SKIPPED) 2869 testorder = 0; 2870 2871 /* 2872 * We put equal pressure on every zone, unless one zone has way too 2873 * many pages free already. The "too many pages" is defined as the 2874 * high wmark plus a "gap" where the gap is either the low 2875 * watermark or 1% of the zone, whichever is smaller. 2876 */ 2877 balance_gap = min(low_wmark_pages(zone), 2878 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2879 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2880 2881 /* 2882 * If there is no low memory pressure or the zone is balanced then no 2883 * reclaim is necessary 2884 */ 2885 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2886 if (!lowmem_pressure && zone_balanced(zone, testorder, 2887 balance_gap, classzone_idx)) 2888 return true; 2889 2890 shrink_zone(zone, sc); 2891 nodes_clear(shrink.nodes_to_scan); 2892 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2893 2894 reclaim_state->reclaimed_slab = 0; 2895 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2896 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2897 2898 /* Account for the number of pages attempted to reclaim */ 2899 *nr_attempted += sc->nr_to_reclaim; 2900 2901 zone_clear_flag(zone, ZONE_WRITEBACK); 2902 2903 /* 2904 * If a zone reaches its high watermark, consider it to be no longer 2905 * congested. It's possible there are dirty pages backed by congested 2906 * BDIs but as pressure is relieved, speculatively avoid congestion 2907 * waits. 2908 */ 2909 if (zone_reclaimable(zone) && 2910 zone_balanced(zone, testorder, 0, classzone_idx)) { 2911 zone_clear_flag(zone, ZONE_CONGESTED); 2912 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2913 } 2914 2915 return sc->nr_scanned >= sc->nr_to_reclaim; 2916 } 2917 2918 /* 2919 * For kswapd, balance_pgdat() will work across all this node's zones until 2920 * they are all at high_wmark_pages(zone). 2921 * 2922 * Returns the final order kswapd was reclaiming at 2923 * 2924 * There is special handling here for zones which are full of pinned pages. 2925 * This can happen if the pages are all mlocked, or if they are all used by 2926 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2927 * What we do is to detect the case where all pages in the zone have been 2928 * scanned twice and there has been zero successful reclaim. Mark the zone as 2929 * dead and from now on, only perform a short scan. Basically we're polling 2930 * the zone for when the problem goes away. 2931 * 2932 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2933 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2934 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2935 * lower zones regardless of the number of free pages in the lower zones. This 2936 * interoperates with the page allocator fallback scheme to ensure that aging 2937 * of pages is balanced across the zones. 2938 */ 2939 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2940 int *classzone_idx) 2941 { 2942 int i; 2943 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2944 unsigned long nr_soft_reclaimed; 2945 unsigned long nr_soft_scanned; 2946 struct scan_control sc = { 2947 .gfp_mask = GFP_KERNEL, 2948 .priority = DEF_PRIORITY, 2949 .may_unmap = 1, 2950 .may_swap = 1, 2951 .may_writepage = !laptop_mode, 2952 .order = order, 2953 .target_mem_cgroup = NULL, 2954 }; 2955 count_vm_event(PAGEOUTRUN); 2956 2957 do { 2958 unsigned long lru_pages = 0; 2959 unsigned long nr_attempted = 0; 2960 bool raise_priority = true; 2961 bool pgdat_needs_compaction = (order > 0); 2962 2963 sc.nr_reclaimed = 0; 2964 2965 /* 2966 * Scan in the highmem->dma direction for the highest 2967 * zone which needs scanning 2968 */ 2969 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2970 struct zone *zone = pgdat->node_zones + i; 2971 2972 if (!populated_zone(zone)) 2973 continue; 2974 2975 if (sc.priority != DEF_PRIORITY && 2976 !zone_reclaimable(zone)) 2977 continue; 2978 2979 /* 2980 * Do some background aging of the anon list, to give 2981 * pages a chance to be referenced before reclaiming. 2982 */ 2983 age_active_anon(zone, &sc); 2984 2985 /* 2986 * If the number of buffer_heads in the machine 2987 * exceeds the maximum allowed level and this node 2988 * has a highmem zone, force kswapd to reclaim from 2989 * it to relieve lowmem pressure. 2990 */ 2991 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2992 end_zone = i; 2993 break; 2994 } 2995 2996 if (!zone_balanced(zone, order, 0, 0)) { 2997 end_zone = i; 2998 break; 2999 } else { 3000 /* 3001 * If balanced, clear the dirty and congested 3002 * flags 3003 */ 3004 zone_clear_flag(zone, ZONE_CONGESTED); 3005 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 3006 } 3007 } 3008 3009 if (i < 0) 3010 goto out; 3011 3012 for (i = 0; i <= end_zone; i++) { 3013 struct zone *zone = pgdat->node_zones + i; 3014 3015 if (!populated_zone(zone)) 3016 continue; 3017 3018 lru_pages += zone_reclaimable_pages(zone); 3019 3020 /* 3021 * If any zone is currently balanced then kswapd will 3022 * not call compaction as it is expected that the 3023 * necessary pages are already available. 3024 */ 3025 if (pgdat_needs_compaction && 3026 zone_watermark_ok(zone, order, 3027 low_wmark_pages(zone), 3028 *classzone_idx, 0)) 3029 pgdat_needs_compaction = false; 3030 } 3031 3032 /* 3033 * If we're getting trouble reclaiming, start doing writepage 3034 * even in laptop mode. 3035 */ 3036 if (sc.priority < DEF_PRIORITY - 2) 3037 sc.may_writepage = 1; 3038 3039 /* 3040 * Now scan the zone in the dma->highmem direction, stopping 3041 * at the last zone which needs scanning. 3042 * 3043 * We do this because the page allocator works in the opposite 3044 * direction. This prevents the page allocator from allocating 3045 * pages behind kswapd's direction of progress, which would 3046 * cause too much scanning of the lower zones. 3047 */ 3048 for (i = 0; i <= end_zone; i++) { 3049 struct zone *zone = pgdat->node_zones + i; 3050 3051 if (!populated_zone(zone)) 3052 continue; 3053 3054 if (sc.priority != DEF_PRIORITY && 3055 !zone_reclaimable(zone)) 3056 continue; 3057 3058 sc.nr_scanned = 0; 3059 3060 nr_soft_scanned = 0; 3061 /* 3062 * Call soft limit reclaim before calling shrink_zone. 3063 */ 3064 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3065 order, sc.gfp_mask, 3066 &nr_soft_scanned); 3067 sc.nr_reclaimed += nr_soft_reclaimed; 3068 3069 /* 3070 * There should be no need to raise the scanning 3071 * priority if enough pages are already being scanned 3072 * that that high watermark would be met at 100% 3073 * efficiency. 3074 */ 3075 if (kswapd_shrink_zone(zone, end_zone, &sc, 3076 lru_pages, &nr_attempted)) 3077 raise_priority = false; 3078 } 3079 3080 /* 3081 * If the low watermark is met there is no need for processes 3082 * to be throttled on pfmemalloc_wait as they should not be 3083 * able to safely make forward progress. Wake them 3084 */ 3085 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3086 pfmemalloc_watermark_ok(pgdat)) 3087 wake_up(&pgdat->pfmemalloc_wait); 3088 3089 /* 3090 * Fragmentation may mean that the system cannot be rebalanced 3091 * for high-order allocations in all zones. If twice the 3092 * allocation size has been reclaimed and the zones are still 3093 * not balanced then recheck the watermarks at order-0 to 3094 * prevent kswapd reclaiming excessively. Assume that a 3095 * process requested a high-order can direct reclaim/compact. 3096 */ 3097 if (order && sc.nr_reclaimed >= 2UL << order) 3098 order = sc.order = 0; 3099 3100 /* Check if kswapd should be suspending */ 3101 if (try_to_freeze() || kthread_should_stop()) 3102 break; 3103 3104 /* 3105 * Compact if necessary and kswapd is reclaiming at least the 3106 * high watermark number of pages as requsted 3107 */ 3108 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3109 compact_pgdat(pgdat, order); 3110 3111 /* 3112 * Raise priority if scanning rate is too low or there was no 3113 * progress in reclaiming pages 3114 */ 3115 if (raise_priority || !sc.nr_reclaimed) 3116 sc.priority--; 3117 } while (sc.priority >= 1 && 3118 !pgdat_balanced(pgdat, order, *classzone_idx)); 3119 3120 out: 3121 /* 3122 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3123 * makes a decision on the order we were last reclaiming at. However, 3124 * if another caller entered the allocator slow path while kswapd 3125 * was awake, order will remain at the higher level 3126 */ 3127 *classzone_idx = end_zone; 3128 return order; 3129 } 3130 3131 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3132 { 3133 long remaining = 0; 3134 DEFINE_WAIT(wait); 3135 3136 if (freezing(current) || kthread_should_stop()) 3137 return; 3138 3139 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3140 3141 /* Try to sleep for a short interval */ 3142 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3143 remaining = schedule_timeout(HZ/10); 3144 finish_wait(&pgdat->kswapd_wait, &wait); 3145 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3146 } 3147 3148 /* 3149 * After a short sleep, check if it was a premature sleep. If not, then 3150 * go fully to sleep until explicitly woken up. 3151 */ 3152 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3153 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3154 3155 /* 3156 * vmstat counters are not perfectly accurate and the estimated 3157 * value for counters such as NR_FREE_PAGES can deviate from the 3158 * true value by nr_online_cpus * threshold. To avoid the zone 3159 * watermarks being breached while under pressure, we reduce the 3160 * per-cpu vmstat threshold while kswapd is awake and restore 3161 * them before going back to sleep. 3162 */ 3163 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3164 3165 /* 3166 * Compaction records what page blocks it recently failed to 3167 * isolate pages from and skips them in the future scanning. 3168 * When kswapd is going to sleep, it is reasonable to assume 3169 * that pages and compaction may succeed so reset the cache. 3170 */ 3171 reset_isolation_suitable(pgdat); 3172 3173 if (!kthread_should_stop()) 3174 schedule(); 3175 3176 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3177 } else { 3178 if (remaining) 3179 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3180 else 3181 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3182 } 3183 finish_wait(&pgdat->kswapd_wait, &wait); 3184 } 3185 3186 /* 3187 * The background pageout daemon, started as a kernel thread 3188 * from the init process. 3189 * 3190 * This basically trickles out pages so that we have _some_ 3191 * free memory available even if there is no other activity 3192 * that frees anything up. This is needed for things like routing 3193 * etc, where we otherwise might have all activity going on in 3194 * asynchronous contexts that cannot page things out. 3195 * 3196 * If there are applications that are active memory-allocators 3197 * (most normal use), this basically shouldn't matter. 3198 */ 3199 static int kswapd(void *p) 3200 { 3201 unsigned long order, new_order; 3202 unsigned balanced_order; 3203 int classzone_idx, new_classzone_idx; 3204 int balanced_classzone_idx; 3205 pg_data_t *pgdat = (pg_data_t*)p; 3206 struct task_struct *tsk = current; 3207 3208 struct reclaim_state reclaim_state = { 3209 .reclaimed_slab = 0, 3210 }; 3211 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3212 3213 lockdep_set_current_reclaim_state(GFP_KERNEL); 3214 3215 if (!cpumask_empty(cpumask)) 3216 set_cpus_allowed_ptr(tsk, cpumask); 3217 current->reclaim_state = &reclaim_state; 3218 3219 /* 3220 * Tell the memory management that we're a "memory allocator", 3221 * and that if we need more memory we should get access to it 3222 * regardless (see "__alloc_pages()"). "kswapd" should 3223 * never get caught in the normal page freeing logic. 3224 * 3225 * (Kswapd normally doesn't need memory anyway, but sometimes 3226 * you need a small amount of memory in order to be able to 3227 * page out something else, and this flag essentially protects 3228 * us from recursively trying to free more memory as we're 3229 * trying to free the first piece of memory in the first place). 3230 */ 3231 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3232 set_freezable(); 3233 3234 order = new_order = 0; 3235 balanced_order = 0; 3236 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3237 balanced_classzone_idx = classzone_idx; 3238 for ( ; ; ) { 3239 bool ret; 3240 3241 /* 3242 * If the last balance_pgdat was unsuccessful it's unlikely a 3243 * new request of a similar or harder type will succeed soon 3244 * so consider going to sleep on the basis we reclaimed at 3245 */ 3246 if (balanced_classzone_idx >= new_classzone_idx && 3247 balanced_order == new_order) { 3248 new_order = pgdat->kswapd_max_order; 3249 new_classzone_idx = pgdat->classzone_idx; 3250 pgdat->kswapd_max_order = 0; 3251 pgdat->classzone_idx = pgdat->nr_zones - 1; 3252 } 3253 3254 if (order < new_order || classzone_idx > new_classzone_idx) { 3255 /* 3256 * Don't sleep if someone wants a larger 'order' 3257 * allocation or has tigher zone constraints 3258 */ 3259 order = new_order; 3260 classzone_idx = new_classzone_idx; 3261 } else { 3262 kswapd_try_to_sleep(pgdat, balanced_order, 3263 balanced_classzone_idx); 3264 order = pgdat->kswapd_max_order; 3265 classzone_idx = pgdat->classzone_idx; 3266 new_order = order; 3267 new_classzone_idx = classzone_idx; 3268 pgdat->kswapd_max_order = 0; 3269 pgdat->classzone_idx = pgdat->nr_zones - 1; 3270 } 3271 3272 ret = try_to_freeze(); 3273 if (kthread_should_stop()) 3274 break; 3275 3276 /* 3277 * We can speed up thawing tasks if we don't call balance_pgdat 3278 * after returning from the refrigerator 3279 */ 3280 if (!ret) { 3281 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3282 balanced_classzone_idx = classzone_idx; 3283 balanced_order = balance_pgdat(pgdat, order, 3284 &balanced_classzone_idx); 3285 } 3286 } 3287 3288 current->reclaim_state = NULL; 3289 return 0; 3290 } 3291 3292 /* 3293 * A zone is low on free memory, so wake its kswapd task to service it. 3294 */ 3295 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3296 { 3297 pg_data_t *pgdat; 3298 3299 if (!populated_zone(zone)) 3300 return; 3301 3302 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3303 return; 3304 pgdat = zone->zone_pgdat; 3305 if (pgdat->kswapd_max_order < order) { 3306 pgdat->kswapd_max_order = order; 3307 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3308 } 3309 if (!waitqueue_active(&pgdat->kswapd_wait)) 3310 return; 3311 if (zone_balanced(zone, order, 0, 0)) 3312 return; 3313 3314 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3315 wake_up_interruptible(&pgdat->kswapd_wait); 3316 } 3317 3318 #ifdef CONFIG_HIBERNATION 3319 /* 3320 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3321 * freed pages. 3322 * 3323 * Rather than trying to age LRUs the aim is to preserve the overall 3324 * LRU order by reclaiming preferentially 3325 * inactive > active > active referenced > active mapped 3326 */ 3327 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3328 { 3329 struct reclaim_state reclaim_state; 3330 struct scan_control sc = { 3331 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3332 .may_swap = 1, 3333 .may_unmap = 1, 3334 .may_writepage = 1, 3335 .nr_to_reclaim = nr_to_reclaim, 3336 .hibernation_mode = 1, 3337 .order = 0, 3338 .priority = DEF_PRIORITY, 3339 }; 3340 struct shrink_control shrink = { 3341 .gfp_mask = sc.gfp_mask, 3342 }; 3343 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3344 struct task_struct *p = current; 3345 unsigned long nr_reclaimed; 3346 3347 p->flags |= PF_MEMALLOC; 3348 lockdep_set_current_reclaim_state(sc.gfp_mask); 3349 reclaim_state.reclaimed_slab = 0; 3350 p->reclaim_state = &reclaim_state; 3351 3352 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3353 3354 p->reclaim_state = NULL; 3355 lockdep_clear_current_reclaim_state(); 3356 p->flags &= ~PF_MEMALLOC; 3357 3358 return nr_reclaimed; 3359 } 3360 #endif /* CONFIG_HIBERNATION */ 3361 3362 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3363 not required for correctness. So if the last cpu in a node goes 3364 away, we get changed to run anywhere: as the first one comes back, 3365 restore their cpu bindings. */ 3366 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3367 void *hcpu) 3368 { 3369 int nid; 3370 3371 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3372 for_each_node_state(nid, N_MEMORY) { 3373 pg_data_t *pgdat = NODE_DATA(nid); 3374 const struct cpumask *mask; 3375 3376 mask = cpumask_of_node(pgdat->node_id); 3377 3378 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3379 /* One of our CPUs online: restore mask */ 3380 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3381 } 3382 } 3383 return NOTIFY_OK; 3384 } 3385 3386 /* 3387 * This kswapd start function will be called by init and node-hot-add. 3388 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3389 */ 3390 int kswapd_run(int nid) 3391 { 3392 pg_data_t *pgdat = NODE_DATA(nid); 3393 int ret = 0; 3394 3395 if (pgdat->kswapd) 3396 return 0; 3397 3398 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3399 if (IS_ERR(pgdat->kswapd)) { 3400 /* failure at boot is fatal */ 3401 BUG_ON(system_state == SYSTEM_BOOTING); 3402 pr_err("Failed to start kswapd on node %d\n", nid); 3403 ret = PTR_ERR(pgdat->kswapd); 3404 pgdat->kswapd = NULL; 3405 } 3406 return ret; 3407 } 3408 3409 /* 3410 * Called by memory hotplug when all memory in a node is offlined. Caller must 3411 * hold lock_memory_hotplug(). 3412 */ 3413 void kswapd_stop(int nid) 3414 { 3415 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3416 3417 if (kswapd) { 3418 kthread_stop(kswapd); 3419 NODE_DATA(nid)->kswapd = NULL; 3420 } 3421 } 3422 3423 static int __init kswapd_init(void) 3424 { 3425 int nid; 3426 3427 swap_setup(); 3428 for_each_node_state(nid, N_MEMORY) 3429 kswapd_run(nid); 3430 hotcpu_notifier(cpu_callback, 0); 3431 return 0; 3432 } 3433 3434 module_init(kswapd_init) 3435 3436 #ifdef CONFIG_NUMA 3437 /* 3438 * Zone reclaim mode 3439 * 3440 * If non-zero call zone_reclaim when the number of free pages falls below 3441 * the watermarks. 3442 */ 3443 int zone_reclaim_mode __read_mostly; 3444 3445 #define RECLAIM_OFF 0 3446 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3447 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3448 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3449 3450 /* 3451 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3452 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3453 * a zone. 3454 */ 3455 #define ZONE_RECLAIM_PRIORITY 4 3456 3457 /* 3458 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3459 * occur. 3460 */ 3461 int sysctl_min_unmapped_ratio = 1; 3462 3463 /* 3464 * If the number of slab pages in a zone grows beyond this percentage then 3465 * slab reclaim needs to occur. 3466 */ 3467 int sysctl_min_slab_ratio = 5; 3468 3469 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3470 { 3471 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3472 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3473 zone_page_state(zone, NR_ACTIVE_FILE); 3474 3475 /* 3476 * It's possible for there to be more file mapped pages than 3477 * accounted for by the pages on the file LRU lists because 3478 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3479 */ 3480 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3481 } 3482 3483 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3484 static long zone_pagecache_reclaimable(struct zone *zone) 3485 { 3486 long nr_pagecache_reclaimable; 3487 long delta = 0; 3488 3489 /* 3490 * If RECLAIM_SWAP is set, then all file pages are considered 3491 * potentially reclaimable. Otherwise, we have to worry about 3492 * pages like swapcache and zone_unmapped_file_pages() provides 3493 * a better estimate 3494 */ 3495 if (zone_reclaim_mode & RECLAIM_SWAP) 3496 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3497 else 3498 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3499 3500 /* If we can't clean pages, remove dirty pages from consideration */ 3501 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3502 delta += zone_page_state(zone, NR_FILE_DIRTY); 3503 3504 /* Watch for any possible underflows due to delta */ 3505 if (unlikely(delta > nr_pagecache_reclaimable)) 3506 delta = nr_pagecache_reclaimable; 3507 3508 return nr_pagecache_reclaimable - delta; 3509 } 3510 3511 /* 3512 * Try to free up some pages from this zone through reclaim. 3513 */ 3514 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3515 { 3516 /* Minimum pages needed in order to stay on node */ 3517 const unsigned long nr_pages = 1 << order; 3518 struct task_struct *p = current; 3519 struct reclaim_state reclaim_state; 3520 struct scan_control sc = { 3521 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3522 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3523 .may_swap = 1, 3524 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3525 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3526 .order = order, 3527 .priority = ZONE_RECLAIM_PRIORITY, 3528 }; 3529 struct shrink_control shrink = { 3530 .gfp_mask = sc.gfp_mask, 3531 }; 3532 unsigned long nr_slab_pages0, nr_slab_pages1; 3533 3534 cond_resched(); 3535 /* 3536 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3537 * and we also need to be able to write out pages for RECLAIM_WRITE 3538 * and RECLAIM_SWAP. 3539 */ 3540 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3541 lockdep_set_current_reclaim_state(gfp_mask); 3542 reclaim_state.reclaimed_slab = 0; 3543 p->reclaim_state = &reclaim_state; 3544 3545 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3546 /* 3547 * Free memory by calling shrink zone with increasing 3548 * priorities until we have enough memory freed. 3549 */ 3550 do { 3551 shrink_zone(zone, &sc); 3552 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3553 } 3554 3555 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3556 if (nr_slab_pages0 > zone->min_slab_pages) { 3557 /* 3558 * shrink_slab() does not currently allow us to determine how 3559 * many pages were freed in this zone. So we take the current 3560 * number of slab pages and shake the slab until it is reduced 3561 * by the same nr_pages that we used for reclaiming unmapped 3562 * pages. 3563 */ 3564 nodes_clear(shrink.nodes_to_scan); 3565 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 3566 for (;;) { 3567 unsigned long lru_pages = zone_reclaimable_pages(zone); 3568 3569 /* No reclaimable slab or very low memory pressure */ 3570 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3571 break; 3572 3573 /* Freed enough memory */ 3574 nr_slab_pages1 = zone_page_state(zone, 3575 NR_SLAB_RECLAIMABLE); 3576 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3577 break; 3578 } 3579 3580 /* 3581 * Update nr_reclaimed by the number of slab pages we 3582 * reclaimed from this zone. 3583 */ 3584 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3585 if (nr_slab_pages1 < nr_slab_pages0) 3586 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3587 } 3588 3589 p->reclaim_state = NULL; 3590 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3591 lockdep_clear_current_reclaim_state(); 3592 return sc.nr_reclaimed >= nr_pages; 3593 } 3594 3595 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3596 { 3597 int node_id; 3598 int ret; 3599 3600 /* 3601 * Zone reclaim reclaims unmapped file backed pages and 3602 * slab pages if we are over the defined limits. 3603 * 3604 * A small portion of unmapped file backed pages is needed for 3605 * file I/O otherwise pages read by file I/O will be immediately 3606 * thrown out if the zone is overallocated. So we do not reclaim 3607 * if less than a specified percentage of the zone is used by 3608 * unmapped file backed pages. 3609 */ 3610 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3611 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3612 return ZONE_RECLAIM_FULL; 3613 3614 if (!zone_reclaimable(zone)) 3615 return ZONE_RECLAIM_FULL; 3616 3617 /* 3618 * Do not scan if the allocation should not be delayed. 3619 */ 3620 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3621 return ZONE_RECLAIM_NOSCAN; 3622 3623 /* 3624 * Only run zone reclaim on the local zone or on zones that do not 3625 * have associated processors. This will favor the local processor 3626 * over remote processors and spread off node memory allocations 3627 * as wide as possible. 3628 */ 3629 node_id = zone_to_nid(zone); 3630 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3631 return ZONE_RECLAIM_NOSCAN; 3632 3633 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3634 return ZONE_RECLAIM_NOSCAN; 3635 3636 ret = __zone_reclaim(zone, gfp_mask, order); 3637 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3638 3639 if (!ret) 3640 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3641 3642 return ret; 3643 } 3644 #endif 3645 3646 /* 3647 * page_evictable - test whether a page is evictable 3648 * @page: the page to test 3649 * 3650 * Test whether page is evictable--i.e., should be placed on active/inactive 3651 * lists vs unevictable list. 3652 * 3653 * Reasons page might not be evictable: 3654 * (1) page's mapping marked unevictable 3655 * (2) page is part of an mlocked VMA 3656 * 3657 */ 3658 int page_evictable(struct page *page) 3659 { 3660 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3661 } 3662 3663 #ifdef CONFIG_SHMEM 3664 /** 3665 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3666 * @pages: array of pages to check 3667 * @nr_pages: number of pages to check 3668 * 3669 * Checks pages for evictability and moves them to the appropriate lru list. 3670 * 3671 * This function is only used for SysV IPC SHM_UNLOCK. 3672 */ 3673 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3674 { 3675 struct lruvec *lruvec; 3676 struct zone *zone = NULL; 3677 int pgscanned = 0; 3678 int pgrescued = 0; 3679 int i; 3680 3681 for (i = 0; i < nr_pages; i++) { 3682 struct page *page = pages[i]; 3683 struct zone *pagezone; 3684 3685 pgscanned++; 3686 pagezone = page_zone(page); 3687 if (pagezone != zone) { 3688 if (zone) 3689 spin_unlock_irq(&zone->lru_lock); 3690 zone = pagezone; 3691 spin_lock_irq(&zone->lru_lock); 3692 } 3693 lruvec = mem_cgroup_page_lruvec(page, zone); 3694 3695 if (!PageLRU(page) || !PageUnevictable(page)) 3696 continue; 3697 3698 if (page_evictable(page)) { 3699 enum lru_list lru = page_lru_base_type(page); 3700 3701 VM_BUG_ON_PAGE(PageActive(page), page); 3702 ClearPageUnevictable(page); 3703 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3704 add_page_to_lru_list(page, lruvec, lru); 3705 pgrescued++; 3706 } 3707 } 3708 3709 if (zone) { 3710 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3711 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3712 spin_unlock_irq(&zone->lru_lock); 3713 } 3714 } 3715 #endif /* CONFIG_SHMEM */ 3716 3717 static void warn_scan_unevictable_pages(void) 3718 { 3719 printk_once(KERN_WARNING 3720 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3721 "disabled for lack of a legitimate use case. If you have " 3722 "one, please send an email to linux-mm@kvack.org.\n", 3723 current->comm); 3724 } 3725 3726 /* 3727 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3728 * all nodes' unevictable lists for evictable pages 3729 */ 3730 unsigned long scan_unevictable_pages; 3731 3732 int scan_unevictable_handler(struct ctl_table *table, int write, 3733 void __user *buffer, 3734 size_t *length, loff_t *ppos) 3735 { 3736 warn_scan_unevictable_pages(); 3737 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3738 scan_unevictable_pages = 0; 3739 return 0; 3740 } 3741 3742 #ifdef CONFIG_NUMA 3743 /* 3744 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3745 * a specified node's per zone unevictable lists for evictable pages. 3746 */ 3747 3748 static ssize_t read_scan_unevictable_node(struct device *dev, 3749 struct device_attribute *attr, 3750 char *buf) 3751 { 3752 warn_scan_unevictable_pages(); 3753 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3754 } 3755 3756 static ssize_t write_scan_unevictable_node(struct device *dev, 3757 struct device_attribute *attr, 3758 const char *buf, size_t count) 3759 { 3760 warn_scan_unevictable_pages(); 3761 return 1; 3762 } 3763 3764 3765 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3766 read_scan_unevictable_node, 3767 write_scan_unevictable_node); 3768 3769 int scan_unevictable_register_node(struct node *node) 3770 { 3771 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3772 } 3773 3774 void scan_unevictable_unregister_node(struct node *node) 3775 { 3776 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3777 } 3778 #endif 3779