xref: /openbmc/linux/mm/vmscan.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/*
83 	 * Scan pressure balancing between anon and file LRUs
84 	 */
85 	unsigned long	anon_cost;
86 	unsigned long	file_cost;
87 
88 	/* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 	unsigned int may_deactivate:2;
92 	unsigned int force_deactivate:1;
93 	unsigned int skipped_deactivate:1;
94 
95 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 	unsigned int may_writepage:1;
97 
98 	/* Can mapped pages be reclaimed? */
99 	unsigned int may_unmap:1;
100 
101 	/* Can pages be swapped as part of reclaim? */
102 	unsigned int may_swap:1;
103 
104 	/*
105 	 * Cgroup memory below memory.low is protected as long as we
106 	 * don't threaten to OOM. If any cgroup is reclaimed at
107 	 * reduced force or passed over entirely due to its memory.low
108 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
109 	 * result, then go back for one more cycle that reclaims the protected
110 	 * memory (memcg_low_reclaim) to avert OOM.
111 	 */
112 	unsigned int memcg_low_reclaim:1;
113 	unsigned int memcg_low_skipped:1;
114 
115 	unsigned int hibernation_mode:1;
116 
117 	/* One of the zones is ready for compaction */
118 	unsigned int compaction_ready:1;
119 
120 	/* There is easily reclaimable cold cache in the current node */
121 	unsigned int cache_trim_mode:1;
122 
123 	/* The file pages on the current node are dangerously low */
124 	unsigned int file_is_tiny:1;
125 
126 	/* Always discard instead of demoting to lower tier memory */
127 	unsigned int no_demotion:1;
128 
129 	/* Allocation order */
130 	s8 order;
131 
132 	/* Scan (total_size >> priority) pages at once */
133 	s8 priority;
134 
135 	/* The highest zone to isolate pages for reclaim from */
136 	s8 reclaim_idx;
137 
138 	/* This context's GFP mask */
139 	gfp_t gfp_mask;
140 
141 	/* Incremented by the number of inactive pages that were scanned */
142 	unsigned long nr_scanned;
143 
144 	/* Number of pages freed so far during a call to shrink_zones() */
145 	unsigned long nr_reclaimed;
146 
147 	struct {
148 		unsigned int dirty;
149 		unsigned int unqueued_dirty;
150 		unsigned int congested;
151 		unsigned int writeback;
152 		unsigned int immediate;
153 		unsigned int file_taken;
154 		unsigned int taken;
155 	} nr;
156 
157 	/* for recording the reclaimed slab by now */
158 	struct reclaim_state reclaim_state;
159 };
160 
161 #ifdef ARCH_HAS_PREFETCHW
162 #define prefetchw_prev_lru_page(_page, _base, _field)			\
163 	do {								\
164 		if ((_page)->lru.prev != _base) {			\
165 			struct page *prev;				\
166 									\
167 			prev = lru_to_page(&(_page->lru));		\
168 			prefetchw(&prev->_field);			\
169 		}							\
170 	} while (0)
171 #else
172 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
173 #endif
174 
175 /*
176  * From 0 .. 200.  Higher means more swappy.
177  */
178 int vm_swappiness = 60;
179 
180 static void set_task_reclaim_state(struct task_struct *task,
181 				   struct reclaim_state *rs)
182 {
183 	/* Check for an overwrite */
184 	WARN_ON_ONCE(rs && task->reclaim_state);
185 
186 	/* Check for the nulling of an already-nulled member */
187 	WARN_ON_ONCE(!rs && !task->reclaim_state);
188 
189 	task->reclaim_state = rs;
190 }
191 
192 static LIST_HEAD(shrinker_list);
193 static DECLARE_RWSEM(shrinker_rwsem);
194 
195 #ifdef CONFIG_MEMCG
196 static int shrinker_nr_max;
197 
198 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
199 static inline int shrinker_map_size(int nr_items)
200 {
201 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
202 }
203 
204 static inline int shrinker_defer_size(int nr_items)
205 {
206 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
207 }
208 
209 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
210 						     int nid)
211 {
212 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
213 					 lockdep_is_held(&shrinker_rwsem));
214 }
215 
216 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
217 				    int map_size, int defer_size,
218 				    int old_map_size, int old_defer_size)
219 {
220 	struct shrinker_info *new, *old;
221 	struct mem_cgroup_per_node *pn;
222 	int nid;
223 	int size = map_size + defer_size;
224 
225 	for_each_node(nid) {
226 		pn = memcg->nodeinfo[nid];
227 		old = shrinker_info_protected(memcg, nid);
228 		/* Not yet online memcg */
229 		if (!old)
230 			return 0;
231 
232 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
233 		if (!new)
234 			return -ENOMEM;
235 
236 		new->nr_deferred = (atomic_long_t *)(new + 1);
237 		new->map = (void *)new->nr_deferred + defer_size;
238 
239 		/* map: set all old bits, clear all new bits */
240 		memset(new->map, (int)0xff, old_map_size);
241 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
242 		/* nr_deferred: copy old values, clear all new values */
243 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
244 		memset((void *)new->nr_deferred + old_defer_size, 0,
245 		       defer_size - old_defer_size);
246 
247 		rcu_assign_pointer(pn->shrinker_info, new);
248 		kvfree_rcu(old, rcu);
249 	}
250 
251 	return 0;
252 }
253 
254 void free_shrinker_info(struct mem_cgroup *memcg)
255 {
256 	struct mem_cgroup_per_node *pn;
257 	struct shrinker_info *info;
258 	int nid;
259 
260 	for_each_node(nid) {
261 		pn = memcg->nodeinfo[nid];
262 		info = rcu_dereference_protected(pn->shrinker_info, true);
263 		kvfree(info);
264 		rcu_assign_pointer(pn->shrinker_info, NULL);
265 	}
266 }
267 
268 int alloc_shrinker_info(struct mem_cgroup *memcg)
269 {
270 	struct shrinker_info *info;
271 	int nid, size, ret = 0;
272 	int map_size, defer_size = 0;
273 
274 	down_write(&shrinker_rwsem);
275 	map_size = shrinker_map_size(shrinker_nr_max);
276 	defer_size = shrinker_defer_size(shrinker_nr_max);
277 	size = map_size + defer_size;
278 	for_each_node(nid) {
279 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
280 		if (!info) {
281 			free_shrinker_info(memcg);
282 			ret = -ENOMEM;
283 			break;
284 		}
285 		info->nr_deferred = (atomic_long_t *)(info + 1);
286 		info->map = (void *)info->nr_deferred + defer_size;
287 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
288 	}
289 	up_write(&shrinker_rwsem);
290 
291 	return ret;
292 }
293 
294 static inline bool need_expand(int nr_max)
295 {
296 	return round_up(nr_max, BITS_PER_LONG) >
297 	       round_up(shrinker_nr_max, BITS_PER_LONG);
298 }
299 
300 static int expand_shrinker_info(int new_id)
301 {
302 	int ret = 0;
303 	int new_nr_max = new_id + 1;
304 	int map_size, defer_size = 0;
305 	int old_map_size, old_defer_size = 0;
306 	struct mem_cgroup *memcg;
307 
308 	if (!need_expand(new_nr_max))
309 		goto out;
310 
311 	if (!root_mem_cgroup)
312 		goto out;
313 
314 	lockdep_assert_held(&shrinker_rwsem);
315 
316 	map_size = shrinker_map_size(new_nr_max);
317 	defer_size = shrinker_defer_size(new_nr_max);
318 	old_map_size = shrinker_map_size(shrinker_nr_max);
319 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
320 
321 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
322 	do {
323 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
324 					       old_map_size, old_defer_size);
325 		if (ret) {
326 			mem_cgroup_iter_break(NULL, memcg);
327 			goto out;
328 		}
329 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
330 out:
331 	if (!ret)
332 		shrinker_nr_max = new_nr_max;
333 
334 	return ret;
335 }
336 
337 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
338 {
339 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
340 		struct shrinker_info *info;
341 
342 		rcu_read_lock();
343 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
344 		/* Pairs with smp mb in shrink_slab() */
345 		smp_mb__before_atomic();
346 		set_bit(shrinker_id, info->map);
347 		rcu_read_unlock();
348 	}
349 }
350 
351 static DEFINE_IDR(shrinker_idr);
352 
353 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354 {
355 	int id, ret = -ENOMEM;
356 
357 	if (mem_cgroup_disabled())
358 		return -ENOSYS;
359 
360 	down_write(&shrinker_rwsem);
361 	/* This may call shrinker, so it must use down_read_trylock() */
362 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
363 	if (id < 0)
364 		goto unlock;
365 
366 	if (id >= shrinker_nr_max) {
367 		if (expand_shrinker_info(id)) {
368 			idr_remove(&shrinker_idr, id);
369 			goto unlock;
370 		}
371 	}
372 	shrinker->id = id;
373 	ret = 0;
374 unlock:
375 	up_write(&shrinker_rwsem);
376 	return ret;
377 }
378 
379 static void unregister_memcg_shrinker(struct shrinker *shrinker)
380 {
381 	int id = shrinker->id;
382 
383 	BUG_ON(id < 0);
384 
385 	lockdep_assert_held(&shrinker_rwsem);
386 
387 	idr_remove(&shrinker_idr, id);
388 }
389 
390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391 				   struct mem_cgroup *memcg)
392 {
393 	struct shrinker_info *info;
394 
395 	info = shrinker_info_protected(memcg, nid);
396 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
397 }
398 
399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 				  struct mem_cgroup *memcg)
401 {
402 	struct shrinker_info *info;
403 
404 	info = shrinker_info_protected(memcg, nid);
405 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
406 }
407 
408 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
409 {
410 	int i, nid;
411 	long nr;
412 	struct mem_cgroup *parent;
413 	struct shrinker_info *child_info, *parent_info;
414 
415 	parent = parent_mem_cgroup(memcg);
416 	if (!parent)
417 		parent = root_mem_cgroup;
418 
419 	/* Prevent from concurrent shrinker_info expand */
420 	down_read(&shrinker_rwsem);
421 	for_each_node(nid) {
422 		child_info = shrinker_info_protected(memcg, nid);
423 		parent_info = shrinker_info_protected(parent, nid);
424 		for (i = 0; i < shrinker_nr_max; i++) {
425 			nr = atomic_long_read(&child_info->nr_deferred[i]);
426 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
427 		}
428 	}
429 	up_read(&shrinker_rwsem);
430 }
431 
432 static bool cgroup_reclaim(struct scan_control *sc)
433 {
434 	return sc->target_mem_cgroup;
435 }
436 
437 /**
438  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
439  * @sc: scan_control in question
440  *
441  * The normal page dirty throttling mechanism in balance_dirty_pages() is
442  * completely broken with the legacy memcg and direct stalling in
443  * shrink_page_list() is used for throttling instead, which lacks all the
444  * niceties such as fairness, adaptive pausing, bandwidth proportional
445  * allocation and configurability.
446  *
447  * This function tests whether the vmscan currently in progress can assume
448  * that the normal dirty throttling mechanism is operational.
449  */
450 static bool writeback_throttling_sane(struct scan_control *sc)
451 {
452 	if (!cgroup_reclaim(sc))
453 		return true;
454 #ifdef CONFIG_CGROUP_WRITEBACK
455 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 		return true;
457 #endif
458 	return false;
459 }
460 #else
461 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
462 {
463 	return -ENOSYS;
464 }
465 
466 static void unregister_memcg_shrinker(struct shrinker *shrinker)
467 {
468 }
469 
470 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
471 				   struct mem_cgroup *memcg)
472 {
473 	return 0;
474 }
475 
476 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
477 				  struct mem_cgroup *memcg)
478 {
479 	return 0;
480 }
481 
482 static bool cgroup_reclaim(struct scan_control *sc)
483 {
484 	return false;
485 }
486 
487 static bool writeback_throttling_sane(struct scan_control *sc)
488 {
489 	return true;
490 }
491 #endif
492 
493 static long xchg_nr_deferred(struct shrinker *shrinker,
494 			     struct shrink_control *sc)
495 {
496 	int nid = sc->nid;
497 
498 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
499 		nid = 0;
500 
501 	if (sc->memcg &&
502 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
503 		return xchg_nr_deferred_memcg(nid, shrinker,
504 					      sc->memcg);
505 
506 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
507 }
508 
509 
510 static long add_nr_deferred(long nr, struct shrinker *shrinker,
511 			    struct shrink_control *sc)
512 {
513 	int nid = sc->nid;
514 
515 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
516 		nid = 0;
517 
518 	if (sc->memcg &&
519 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
520 		return add_nr_deferred_memcg(nr, nid, shrinker,
521 					     sc->memcg);
522 
523 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
524 }
525 
526 static bool can_demote(int nid, struct scan_control *sc)
527 {
528 	if (!numa_demotion_enabled)
529 		return false;
530 	if (sc) {
531 		if (sc->no_demotion)
532 			return false;
533 		/* It is pointless to do demotion in memcg reclaim */
534 		if (cgroup_reclaim(sc))
535 			return false;
536 	}
537 	if (next_demotion_node(nid) == NUMA_NO_NODE)
538 		return false;
539 
540 	return true;
541 }
542 
543 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
544 					  int nid,
545 					  struct scan_control *sc)
546 {
547 	if (memcg == NULL) {
548 		/*
549 		 * For non-memcg reclaim, is there
550 		 * space in any swap device?
551 		 */
552 		if (get_nr_swap_pages() > 0)
553 			return true;
554 	} else {
555 		/* Is the memcg below its swap limit? */
556 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
557 			return true;
558 	}
559 
560 	/*
561 	 * The page can not be swapped.
562 	 *
563 	 * Can it be reclaimed from this node via demotion?
564 	 */
565 	return can_demote(nid, sc);
566 }
567 
568 /*
569  * This misses isolated pages which are not accounted for to save counters.
570  * As the data only determines if reclaim or compaction continues, it is
571  * not expected that isolated pages will be a dominating factor.
572  */
573 unsigned long zone_reclaimable_pages(struct zone *zone)
574 {
575 	unsigned long nr;
576 
577 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
578 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
579 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
580 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
581 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
582 
583 	return nr;
584 }
585 
586 /**
587  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
588  * @lruvec: lru vector
589  * @lru: lru to use
590  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
591  */
592 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
593 				     int zone_idx)
594 {
595 	unsigned long size = 0;
596 	int zid;
597 
598 	for (zid = 0; zid <= zone_idx; zid++) {
599 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
600 
601 		if (!managed_zone(zone))
602 			continue;
603 
604 		if (!mem_cgroup_disabled())
605 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
606 		else
607 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
608 	}
609 	return size;
610 }
611 
612 /*
613  * Add a shrinker callback to be called from the vm.
614  */
615 int prealloc_shrinker(struct shrinker *shrinker)
616 {
617 	unsigned int size;
618 	int err;
619 
620 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
621 		err = prealloc_memcg_shrinker(shrinker);
622 		if (err != -ENOSYS)
623 			return err;
624 
625 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
626 	}
627 
628 	size = sizeof(*shrinker->nr_deferred);
629 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
630 		size *= nr_node_ids;
631 
632 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
633 	if (!shrinker->nr_deferred)
634 		return -ENOMEM;
635 
636 	return 0;
637 }
638 
639 void free_prealloced_shrinker(struct shrinker *shrinker)
640 {
641 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
642 		down_write(&shrinker_rwsem);
643 		unregister_memcg_shrinker(shrinker);
644 		up_write(&shrinker_rwsem);
645 		return;
646 	}
647 
648 	kfree(shrinker->nr_deferred);
649 	shrinker->nr_deferred = NULL;
650 }
651 
652 void register_shrinker_prepared(struct shrinker *shrinker)
653 {
654 	down_write(&shrinker_rwsem);
655 	list_add_tail(&shrinker->list, &shrinker_list);
656 	shrinker->flags |= SHRINKER_REGISTERED;
657 	up_write(&shrinker_rwsem);
658 }
659 
660 int register_shrinker(struct shrinker *shrinker)
661 {
662 	int err = prealloc_shrinker(shrinker);
663 
664 	if (err)
665 		return err;
666 	register_shrinker_prepared(shrinker);
667 	return 0;
668 }
669 EXPORT_SYMBOL(register_shrinker);
670 
671 /*
672  * Remove one
673  */
674 void unregister_shrinker(struct shrinker *shrinker)
675 {
676 	if (!(shrinker->flags & SHRINKER_REGISTERED))
677 		return;
678 
679 	down_write(&shrinker_rwsem);
680 	list_del(&shrinker->list);
681 	shrinker->flags &= ~SHRINKER_REGISTERED;
682 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
683 		unregister_memcg_shrinker(shrinker);
684 	up_write(&shrinker_rwsem);
685 
686 	kfree(shrinker->nr_deferred);
687 	shrinker->nr_deferred = NULL;
688 }
689 EXPORT_SYMBOL(unregister_shrinker);
690 
691 /**
692  * synchronize_shrinkers - Wait for all running shrinkers to complete.
693  *
694  * This is equivalent to calling unregister_shrink() and register_shrinker(),
695  * but atomically and with less overhead. This is useful to guarantee that all
696  * shrinker invocations have seen an update, before freeing memory, similar to
697  * rcu.
698  */
699 void synchronize_shrinkers(void)
700 {
701 	down_write(&shrinker_rwsem);
702 	up_write(&shrinker_rwsem);
703 }
704 EXPORT_SYMBOL(synchronize_shrinkers);
705 
706 #define SHRINK_BATCH 128
707 
708 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
709 				    struct shrinker *shrinker, int priority)
710 {
711 	unsigned long freed = 0;
712 	unsigned long long delta;
713 	long total_scan;
714 	long freeable;
715 	long nr;
716 	long new_nr;
717 	long batch_size = shrinker->batch ? shrinker->batch
718 					  : SHRINK_BATCH;
719 	long scanned = 0, next_deferred;
720 
721 	freeable = shrinker->count_objects(shrinker, shrinkctl);
722 	if (freeable == 0 || freeable == SHRINK_EMPTY)
723 		return freeable;
724 
725 	/*
726 	 * copy the current shrinker scan count into a local variable
727 	 * and zero it so that other concurrent shrinker invocations
728 	 * don't also do this scanning work.
729 	 */
730 	nr = xchg_nr_deferred(shrinker, shrinkctl);
731 
732 	if (shrinker->seeks) {
733 		delta = freeable >> priority;
734 		delta *= 4;
735 		do_div(delta, shrinker->seeks);
736 	} else {
737 		/*
738 		 * These objects don't require any IO to create. Trim
739 		 * them aggressively under memory pressure to keep
740 		 * them from causing refetches in the IO caches.
741 		 */
742 		delta = freeable / 2;
743 	}
744 
745 	total_scan = nr >> priority;
746 	total_scan += delta;
747 	total_scan = min(total_scan, (2 * freeable));
748 
749 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
750 				   freeable, delta, total_scan, priority);
751 
752 	/*
753 	 * Normally, we should not scan less than batch_size objects in one
754 	 * pass to avoid too frequent shrinker calls, but if the slab has less
755 	 * than batch_size objects in total and we are really tight on memory,
756 	 * we will try to reclaim all available objects, otherwise we can end
757 	 * up failing allocations although there are plenty of reclaimable
758 	 * objects spread over several slabs with usage less than the
759 	 * batch_size.
760 	 *
761 	 * We detect the "tight on memory" situations by looking at the total
762 	 * number of objects we want to scan (total_scan). If it is greater
763 	 * than the total number of objects on slab (freeable), we must be
764 	 * scanning at high prio and therefore should try to reclaim as much as
765 	 * possible.
766 	 */
767 	while (total_scan >= batch_size ||
768 	       total_scan >= freeable) {
769 		unsigned long ret;
770 		unsigned long nr_to_scan = min(batch_size, total_scan);
771 
772 		shrinkctl->nr_to_scan = nr_to_scan;
773 		shrinkctl->nr_scanned = nr_to_scan;
774 		ret = shrinker->scan_objects(shrinker, shrinkctl);
775 		if (ret == SHRINK_STOP)
776 			break;
777 		freed += ret;
778 
779 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
780 		total_scan -= shrinkctl->nr_scanned;
781 		scanned += shrinkctl->nr_scanned;
782 
783 		cond_resched();
784 	}
785 
786 	/*
787 	 * The deferred work is increased by any new work (delta) that wasn't
788 	 * done, decreased by old deferred work that was done now.
789 	 *
790 	 * And it is capped to two times of the freeable items.
791 	 */
792 	next_deferred = max_t(long, (nr + delta - scanned), 0);
793 	next_deferred = min(next_deferred, (2 * freeable));
794 
795 	/*
796 	 * move the unused scan count back into the shrinker in a
797 	 * manner that handles concurrent updates.
798 	 */
799 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
800 
801 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
802 	return freed;
803 }
804 
805 #ifdef CONFIG_MEMCG
806 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
807 			struct mem_cgroup *memcg, int priority)
808 {
809 	struct shrinker_info *info;
810 	unsigned long ret, freed = 0;
811 	int i;
812 
813 	if (!mem_cgroup_online(memcg))
814 		return 0;
815 
816 	if (!down_read_trylock(&shrinker_rwsem))
817 		return 0;
818 
819 	info = shrinker_info_protected(memcg, nid);
820 	if (unlikely(!info))
821 		goto unlock;
822 
823 	for_each_set_bit(i, info->map, shrinker_nr_max) {
824 		struct shrink_control sc = {
825 			.gfp_mask = gfp_mask,
826 			.nid = nid,
827 			.memcg = memcg,
828 		};
829 		struct shrinker *shrinker;
830 
831 		shrinker = idr_find(&shrinker_idr, i);
832 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
833 			if (!shrinker)
834 				clear_bit(i, info->map);
835 			continue;
836 		}
837 
838 		/* Call non-slab shrinkers even though kmem is disabled */
839 		if (!memcg_kmem_enabled() &&
840 		    !(shrinker->flags & SHRINKER_NONSLAB))
841 			continue;
842 
843 		ret = do_shrink_slab(&sc, shrinker, priority);
844 		if (ret == SHRINK_EMPTY) {
845 			clear_bit(i, info->map);
846 			/*
847 			 * After the shrinker reported that it had no objects to
848 			 * free, but before we cleared the corresponding bit in
849 			 * the memcg shrinker map, a new object might have been
850 			 * added. To make sure, we have the bit set in this
851 			 * case, we invoke the shrinker one more time and reset
852 			 * the bit if it reports that it is not empty anymore.
853 			 * The memory barrier here pairs with the barrier in
854 			 * set_shrinker_bit():
855 			 *
856 			 * list_lru_add()     shrink_slab_memcg()
857 			 *   list_add_tail()    clear_bit()
858 			 *   <MB>               <MB>
859 			 *   set_bit()          do_shrink_slab()
860 			 */
861 			smp_mb__after_atomic();
862 			ret = do_shrink_slab(&sc, shrinker, priority);
863 			if (ret == SHRINK_EMPTY)
864 				ret = 0;
865 			else
866 				set_shrinker_bit(memcg, nid, i);
867 		}
868 		freed += ret;
869 
870 		if (rwsem_is_contended(&shrinker_rwsem)) {
871 			freed = freed ? : 1;
872 			break;
873 		}
874 	}
875 unlock:
876 	up_read(&shrinker_rwsem);
877 	return freed;
878 }
879 #else /* CONFIG_MEMCG */
880 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
881 			struct mem_cgroup *memcg, int priority)
882 {
883 	return 0;
884 }
885 #endif /* CONFIG_MEMCG */
886 
887 /**
888  * shrink_slab - shrink slab caches
889  * @gfp_mask: allocation context
890  * @nid: node whose slab caches to target
891  * @memcg: memory cgroup whose slab caches to target
892  * @priority: the reclaim priority
893  *
894  * Call the shrink functions to age shrinkable caches.
895  *
896  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
897  * unaware shrinkers will receive a node id of 0 instead.
898  *
899  * @memcg specifies the memory cgroup to target. Unaware shrinkers
900  * are called only if it is the root cgroup.
901  *
902  * @priority is sc->priority, we take the number of objects and >> by priority
903  * in order to get the scan target.
904  *
905  * Returns the number of reclaimed slab objects.
906  */
907 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
908 				 struct mem_cgroup *memcg,
909 				 int priority)
910 {
911 	unsigned long ret, freed = 0;
912 	struct shrinker *shrinker;
913 
914 	/*
915 	 * The root memcg might be allocated even though memcg is disabled
916 	 * via "cgroup_disable=memory" boot parameter.  This could make
917 	 * mem_cgroup_is_root() return false, then just run memcg slab
918 	 * shrink, but skip global shrink.  This may result in premature
919 	 * oom.
920 	 */
921 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
922 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
923 
924 	if (!down_read_trylock(&shrinker_rwsem))
925 		goto out;
926 
927 	list_for_each_entry(shrinker, &shrinker_list, list) {
928 		struct shrink_control sc = {
929 			.gfp_mask = gfp_mask,
930 			.nid = nid,
931 			.memcg = memcg,
932 		};
933 
934 		ret = do_shrink_slab(&sc, shrinker, priority);
935 		if (ret == SHRINK_EMPTY)
936 			ret = 0;
937 		freed += ret;
938 		/*
939 		 * Bail out if someone want to register a new shrinker to
940 		 * prevent the registration from being stalled for long periods
941 		 * by parallel ongoing shrinking.
942 		 */
943 		if (rwsem_is_contended(&shrinker_rwsem)) {
944 			freed = freed ? : 1;
945 			break;
946 		}
947 	}
948 
949 	up_read(&shrinker_rwsem);
950 out:
951 	cond_resched();
952 	return freed;
953 }
954 
955 static void drop_slab_node(int nid)
956 {
957 	unsigned long freed;
958 	int shift = 0;
959 
960 	do {
961 		struct mem_cgroup *memcg = NULL;
962 
963 		if (fatal_signal_pending(current))
964 			return;
965 
966 		freed = 0;
967 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
968 		do {
969 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
970 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
971 	} while ((freed >> shift++) > 1);
972 }
973 
974 void drop_slab(void)
975 {
976 	int nid;
977 
978 	for_each_online_node(nid)
979 		drop_slab_node(nid);
980 }
981 
982 static inline int is_page_cache_freeable(struct folio *folio)
983 {
984 	/*
985 	 * A freeable page cache page is referenced only by the caller
986 	 * that isolated the page, the page cache and optional buffer
987 	 * heads at page->private.
988 	 */
989 	return folio_ref_count(folio) - folio_test_private(folio) ==
990 		1 + folio_nr_pages(folio);
991 }
992 
993 /*
994  * We detected a synchronous write error writing a folio out.  Probably
995  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
996  * fsync(), msync() or close().
997  *
998  * The tricky part is that after writepage we cannot touch the mapping: nothing
999  * prevents it from being freed up.  But we have a ref on the folio and once
1000  * that folio is locked, the mapping is pinned.
1001  *
1002  * We're allowed to run sleeping folio_lock() here because we know the caller has
1003  * __GFP_FS.
1004  */
1005 static void handle_write_error(struct address_space *mapping,
1006 				struct folio *folio, int error)
1007 {
1008 	folio_lock(folio);
1009 	if (folio_mapping(folio) == mapping)
1010 		mapping_set_error(mapping, error);
1011 	folio_unlock(folio);
1012 }
1013 
1014 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1015 {
1016 	int reclaimable = 0, write_pending = 0;
1017 	int i;
1018 
1019 	/*
1020 	 * If kswapd is disabled, reschedule if necessary but do not
1021 	 * throttle as the system is likely near OOM.
1022 	 */
1023 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1024 		return true;
1025 
1026 	/*
1027 	 * If there are a lot of dirty/writeback pages then do not
1028 	 * throttle as throttling will occur when the pages cycle
1029 	 * towards the end of the LRU if still under writeback.
1030 	 */
1031 	for (i = 0; i < MAX_NR_ZONES; i++) {
1032 		struct zone *zone = pgdat->node_zones + i;
1033 
1034 		if (!managed_zone(zone))
1035 			continue;
1036 
1037 		reclaimable += zone_reclaimable_pages(zone);
1038 		write_pending += zone_page_state_snapshot(zone,
1039 						  NR_ZONE_WRITE_PENDING);
1040 	}
1041 	if (2 * write_pending <= reclaimable)
1042 		return true;
1043 
1044 	return false;
1045 }
1046 
1047 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1048 {
1049 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1050 	long timeout, ret;
1051 	DEFINE_WAIT(wait);
1052 
1053 	/*
1054 	 * Do not throttle IO workers, kthreads other than kswapd or
1055 	 * workqueues. They may be required for reclaim to make
1056 	 * forward progress (e.g. journalling workqueues or kthreads).
1057 	 */
1058 	if (!current_is_kswapd() &&
1059 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1060 		cond_resched();
1061 		return;
1062 	}
1063 
1064 	/*
1065 	 * These figures are pulled out of thin air.
1066 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1067 	 * parallel reclaimers which is a short-lived event so the timeout is
1068 	 * short. Failing to make progress or waiting on writeback are
1069 	 * potentially long-lived events so use a longer timeout. This is shaky
1070 	 * logic as a failure to make progress could be due to anything from
1071 	 * writeback to a slow device to excessive references pages at the tail
1072 	 * of the inactive LRU.
1073 	 */
1074 	switch(reason) {
1075 	case VMSCAN_THROTTLE_WRITEBACK:
1076 		timeout = HZ/10;
1077 
1078 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1079 			WRITE_ONCE(pgdat->nr_reclaim_start,
1080 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1081 		}
1082 
1083 		break;
1084 	case VMSCAN_THROTTLE_CONGESTED:
1085 		fallthrough;
1086 	case VMSCAN_THROTTLE_NOPROGRESS:
1087 		if (skip_throttle_noprogress(pgdat)) {
1088 			cond_resched();
1089 			return;
1090 		}
1091 
1092 		timeout = 1;
1093 
1094 		break;
1095 	case VMSCAN_THROTTLE_ISOLATED:
1096 		timeout = HZ/50;
1097 		break;
1098 	default:
1099 		WARN_ON_ONCE(1);
1100 		timeout = HZ;
1101 		break;
1102 	}
1103 
1104 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1105 	ret = schedule_timeout(timeout);
1106 	finish_wait(wqh, &wait);
1107 
1108 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1109 		atomic_dec(&pgdat->nr_writeback_throttled);
1110 
1111 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1112 				jiffies_to_usecs(timeout - ret),
1113 				reason);
1114 }
1115 
1116 /*
1117  * Account for pages written if tasks are throttled waiting on dirty
1118  * pages to clean. If enough pages have been cleaned since throttling
1119  * started then wakeup the throttled tasks.
1120  */
1121 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1122 							int nr_throttled)
1123 {
1124 	unsigned long nr_written;
1125 
1126 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1127 
1128 	/*
1129 	 * This is an inaccurate read as the per-cpu deltas may not
1130 	 * be synchronised. However, given that the system is
1131 	 * writeback throttled, it is not worth taking the penalty
1132 	 * of getting an accurate count. At worst, the throttle
1133 	 * timeout guarantees forward progress.
1134 	 */
1135 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1136 		READ_ONCE(pgdat->nr_reclaim_start);
1137 
1138 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1139 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1140 }
1141 
1142 /* possible outcome of pageout() */
1143 typedef enum {
1144 	/* failed to write page out, page is locked */
1145 	PAGE_KEEP,
1146 	/* move page to the active list, page is locked */
1147 	PAGE_ACTIVATE,
1148 	/* page has been sent to the disk successfully, page is unlocked */
1149 	PAGE_SUCCESS,
1150 	/* page is clean and locked */
1151 	PAGE_CLEAN,
1152 } pageout_t;
1153 
1154 /*
1155  * pageout is called by shrink_page_list() for each dirty page.
1156  * Calls ->writepage().
1157  */
1158 static pageout_t pageout(struct folio *folio, struct address_space *mapping)
1159 {
1160 	/*
1161 	 * If the folio is dirty, only perform writeback if that write
1162 	 * will be non-blocking.  To prevent this allocation from being
1163 	 * stalled by pagecache activity.  But note that there may be
1164 	 * stalls if we need to run get_block().  We could test
1165 	 * PagePrivate for that.
1166 	 *
1167 	 * If this process is currently in __generic_file_write_iter() against
1168 	 * this folio's queue, we can perform writeback even if that
1169 	 * will block.
1170 	 *
1171 	 * If the folio is swapcache, write it back even if that would
1172 	 * block, for some throttling. This happens by accident, because
1173 	 * swap_backing_dev_info is bust: it doesn't reflect the
1174 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1175 	 */
1176 	if (!is_page_cache_freeable(folio))
1177 		return PAGE_KEEP;
1178 	if (!mapping) {
1179 		/*
1180 		 * Some data journaling orphaned folios can have
1181 		 * folio->mapping == NULL while being dirty with clean buffers.
1182 		 */
1183 		if (folio_test_private(folio)) {
1184 			if (try_to_free_buffers(&folio->page)) {
1185 				folio_clear_dirty(folio);
1186 				pr_info("%s: orphaned folio\n", __func__);
1187 				return PAGE_CLEAN;
1188 			}
1189 		}
1190 		return PAGE_KEEP;
1191 	}
1192 	if (mapping->a_ops->writepage == NULL)
1193 		return PAGE_ACTIVATE;
1194 
1195 	if (folio_clear_dirty_for_io(folio)) {
1196 		int res;
1197 		struct writeback_control wbc = {
1198 			.sync_mode = WB_SYNC_NONE,
1199 			.nr_to_write = SWAP_CLUSTER_MAX,
1200 			.range_start = 0,
1201 			.range_end = LLONG_MAX,
1202 			.for_reclaim = 1,
1203 		};
1204 
1205 		folio_set_reclaim(folio);
1206 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1207 		if (res < 0)
1208 			handle_write_error(mapping, folio, res);
1209 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1210 			folio_clear_reclaim(folio);
1211 			return PAGE_ACTIVATE;
1212 		}
1213 
1214 		if (!folio_test_writeback(folio)) {
1215 			/* synchronous write or broken a_ops? */
1216 			folio_clear_reclaim(folio);
1217 		}
1218 		trace_mm_vmscan_write_folio(folio);
1219 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1220 		return PAGE_SUCCESS;
1221 	}
1222 
1223 	return PAGE_CLEAN;
1224 }
1225 
1226 /*
1227  * Same as remove_mapping, but if the page is removed from the mapping, it
1228  * gets returned with a refcount of 0.
1229  */
1230 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1231 			    bool reclaimed, struct mem_cgroup *target_memcg)
1232 {
1233 	int refcount;
1234 	void *shadow = NULL;
1235 
1236 	BUG_ON(!folio_test_locked(folio));
1237 	BUG_ON(mapping != folio_mapping(folio));
1238 
1239 	if (!folio_test_swapcache(folio))
1240 		spin_lock(&mapping->host->i_lock);
1241 	xa_lock_irq(&mapping->i_pages);
1242 	/*
1243 	 * The non racy check for a busy page.
1244 	 *
1245 	 * Must be careful with the order of the tests. When someone has
1246 	 * a ref to the page, it may be possible that they dirty it then
1247 	 * drop the reference. So if PageDirty is tested before page_count
1248 	 * here, then the following race may occur:
1249 	 *
1250 	 * get_user_pages(&page);
1251 	 * [user mapping goes away]
1252 	 * write_to(page);
1253 	 *				!PageDirty(page)    [good]
1254 	 * SetPageDirty(page);
1255 	 * put_page(page);
1256 	 *				!page_count(page)   [good, discard it]
1257 	 *
1258 	 * [oops, our write_to data is lost]
1259 	 *
1260 	 * Reversing the order of the tests ensures such a situation cannot
1261 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1262 	 * load is not satisfied before that of page->_refcount.
1263 	 *
1264 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1265 	 * and thus under the i_pages lock, then this ordering is not required.
1266 	 */
1267 	refcount = 1 + folio_nr_pages(folio);
1268 	if (!folio_ref_freeze(folio, refcount))
1269 		goto cannot_free;
1270 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1271 	if (unlikely(folio_test_dirty(folio))) {
1272 		folio_ref_unfreeze(folio, refcount);
1273 		goto cannot_free;
1274 	}
1275 
1276 	if (folio_test_swapcache(folio)) {
1277 		swp_entry_t swap = folio_swap_entry(folio);
1278 		mem_cgroup_swapout(folio, swap);
1279 		if (reclaimed && !mapping_exiting(mapping))
1280 			shadow = workingset_eviction(folio, target_memcg);
1281 		__delete_from_swap_cache(&folio->page, swap, shadow);
1282 		xa_unlock_irq(&mapping->i_pages);
1283 		put_swap_page(&folio->page, swap);
1284 	} else {
1285 		void (*freepage)(struct page *);
1286 
1287 		freepage = mapping->a_ops->freepage;
1288 		/*
1289 		 * Remember a shadow entry for reclaimed file cache in
1290 		 * order to detect refaults, thus thrashing, later on.
1291 		 *
1292 		 * But don't store shadows in an address space that is
1293 		 * already exiting.  This is not just an optimization,
1294 		 * inode reclaim needs to empty out the radix tree or
1295 		 * the nodes are lost.  Don't plant shadows behind its
1296 		 * back.
1297 		 *
1298 		 * We also don't store shadows for DAX mappings because the
1299 		 * only page cache pages found in these are zero pages
1300 		 * covering holes, and because we don't want to mix DAX
1301 		 * exceptional entries and shadow exceptional entries in the
1302 		 * same address_space.
1303 		 */
1304 		if (reclaimed && folio_is_file_lru(folio) &&
1305 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1306 			shadow = workingset_eviction(folio, target_memcg);
1307 		__filemap_remove_folio(folio, shadow);
1308 		xa_unlock_irq(&mapping->i_pages);
1309 		if (mapping_shrinkable(mapping))
1310 			inode_add_lru(mapping->host);
1311 		spin_unlock(&mapping->host->i_lock);
1312 
1313 		if (freepage != NULL)
1314 			freepage(&folio->page);
1315 	}
1316 
1317 	return 1;
1318 
1319 cannot_free:
1320 	xa_unlock_irq(&mapping->i_pages);
1321 	if (!folio_test_swapcache(folio))
1322 		spin_unlock(&mapping->host->i_lock);
1323 	return 0;
1324 }
1325 
1326 /**
1327  * remove_mapping() - Attempt to remove a folio from its mapping.
1328  * @mapping: The address space.
1329  * @folio: The folio to remove.
1330  *
1331  * If the folio is dirty, under writeback or if someone else has a ref
1332  * on it, removal will fail.
1333  * Return: The number of pages removed from the mapping.  0 if the folio
1334  * could not be removed.
1335  * Context: The caller should have a single refcount on the folio and
1336  * hold its lock.
1337  */
1338 long remove_mapping(struct address_space *mapping, struct folio *folio)
1339 {
1340 	if (__remove_mapping(mapping, folio, false, NULL)) {
1341 		/*
1342 		 * Unfreezing the refcount with 1 effectively
1343 		 * drops the pagecache ref for us without requiring another
1344 		 * atomic operation.
1345 		 */
1346 		folio_ref_unfreeze(folio, 1);
1347 		return folio_nr_pages(folio);
1348 	}
1349 	return 0;
1350 }
1351 
1352 /**
1353  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1354  * @folio: Folio to be returned to an LRU list.
1355  *
1356  * Add previously isolated @folio to appropriate LRU list.
1357  * The folio may still be unevictable for other reasons.
1358  *
1359  * Context: lru_lock must not be held, interrupts must be enabled.
1360  */
1361 void folio_putback_lru(struct folio *folio)
1362 {
1363 	folio_add_lru(folio);
1364 	folio_put(folio);		/* drop ref from isolate */
1365 }
1366 
1367 enum page_references {
1368 	PAGEREF_RECLAIM,
1369 	PAGEREF_RECLAIM_CLEAN,
1370 	PAGEREF_KEEP,
1371 	PAGEREF_ACTIVATE,
1372 };
1373 
1374 static enum page_references folio_check_references(struct folio *folio,
1375 						  struct scan_control *sc)
1376 {
1377 	int referenced_ptes, referenced_folio;
1378 	unsigned long vm_flags;
1379 
1380 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1381 					   &vm_flags);
1382 	referenced_folio = folio_test_clear_referenced(folio);
1383 
1384 	/*
1385 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1386 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1387 	 */
1388 	if (vm_flags & VM_LOCKED)
1389 		return PAGEREF_ACTIVATE;
1390 
1391 	if (referenced_ptes) {
1392 		/*
1393 		 * All mapped folios start out with page table
1394 		 * references from the instantiating fault, so we need
1395 		 * to look twice if a mapped file/anon folio is used more
1396 		 * than once.
1397 		 *
1398 		 * Mark it and spare it for another trip around the
1399 		 * inactive list.  Another page table reference will
1400 		 * lead to its activation.
1401 		 *
1402 		 * Note: the mark is set for activated folios as well
1403 		 * so that recently deactivated but used folios are
1404 		 * quickly recovered.
1405 		 */
1406 		folio_set_referenced(folio);
1407 
1408 		if (referenced_folio || referenced_ptes > 1)
1409 			return PAGEREF_ACTIVATE;
1410 
1411 		/*
1412 		 * Activate file-backed executable folios after first usage.
1413 		 */
1414 		if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
1415 			return PAGEREF_ACTIVATE;
1416 
1417 		return PAGEREF_KEEP;
1418 	}
1419 
1420 	/* Reclaim if clean, defer dirty folios to writeback */
1421 	if (referenced_folio && !folio_test_swapbacked(folio))
1422 		return PAGEREF_RECLAIM_CLEAN;
1423 
1424 	return PAGEREF_RECLAIM;
1425 }
1426 
1427 /* Check if a page is dirty or under writeback */
1428 static void folio_check_dirty_writeback(struct folio *folio,
1429 				       bool *dirty, bool *writeback)
1430 {
1431 	struct address_space *mapping;
1432 
1433 	/*
1434 	 * Anonymous pages are not handled by flushers and must be written
1435 	 * from reclaim context. Do not stall reclaim based on them
1436 	 */
1437 	if (!folio_is_file_lru(folio) ||
1438 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1439 		*dirty = false;
1440 		*writeback = false;
1441 		return;
1442 	}
1443 
1444 	/* By default assume that the folio flags are accurate */
1445 	*dirty = folio_test_dirty(folio);
1446 	*writeback = folio_test_writeback(folio);
1447 
1448 	/* Verify dirty/writeback state if the filesystem supports it */
1449 	if (!folio_test_private(folio))
1450 		return;
1451 
1452 	mapping = folio_mapping(folio);
1453 	if (mapping && mapping->a_ops->is_dirty_writeback)
1454 		mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
1455 }
1456 
1457 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1458 {
1459 	struct migration_target_control mtc = {
1460 		/*
1461 		 * Allocate from 'node', or fail quickly and quietly.
1462 		 * When this happens, 'page' will likely just be discarded
1463 		 * instead of migrated.
1464 		 */
1465 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1466 			    __GFP_THISNODE  | __GFP_NOWARN |
1467 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1468 		.nid = node
1469 	};
1470 
1471 	return alloc_migration_target(page, (unsigned long)&mtc);
1472 }
1473 
1474 /*
1475  * Take pages on @demote_list and attempt to demote them to
1476  * another node.  Pages which are not demoted are left on
1477  * @demote_pages.
1478  */
1479 static unsigned int demote_page_list(struct list_head *demote_pages,
1480 				     struct pglist_data *pgdat)
1481 {
1482 	int target_nid = next_demotion_node(pgdat->node_id);
1483 	unsigned int nr_succeeded;
1484 
1485 	if (list_empty(demote_pages))
1486 		return 0;
1487 
1488 	if (target_nid == NUMA_NO_NODE)
1489 		return 0;
1490 
1491 	/* Demotion ignores all cpuset and mempolicy settings */
1492 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1493 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1494 			    &nr_succeeded);
1495 
1496 	if (current_is_kswapd())
1497 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1498 	else
1499 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1500 
1501 	return nr_succeeded;
1502 }
1503 
1504 /*
1505  * shrink_page_list() returns the number of reclaimed pages
1506  */
1507 static unsigned int shrink_page_list(struct list_head *page_list,
1508 				     struct pglist_data *pgdat,
1509 				     struct scan_control *sc,
1510 				     struct reclaim_stat *stat,
1511 				     bool ignore_references)
1512 {
1513 	LIST_HEAD(ret_pages);
1514 	LIST_HEAD(free_pages);
1515 	LIST_HEAD(demote_pages);
1516 	unsigned int nr_reclaimed = 0;
1517 	unsigned int pgactivate = 0;
1518 	bool do_demote_pass;
1519 
1520 	memset(stat, 0, sizeof(*stat));
1521 	cond_resched();
1522 	do_demote_pass = can_demote(pgdat->node_id, sc);
1523 
1524 retry:
1525 	while (!list_empty(page_list)) {
1526 		struct address_space *mapping;
1527 		struct page *page;
1528 		struct folio *folio;
1529 		enum page_references references = PAGEREF_RECLAIM;
1530 		bool dirty, writeback, may_enter_fs;
1531 		unsigned int nr_pages;
1532 
1533 		cond_resched();
1534 
1535 		folio = lru_to_folio(page_list);
1536 		list_del(&folio->lru);
1537 		page = &folio->page;
1538 
1539 		if (!trylock_page(page))
1540 			goto keep;
1541 
1542 		VM_BUG_ON_PAGE(PageActive(page), page);
1543 
1544 		nr_pages = compound_nr(page);
1545 
1546 		/* Account the number of base pages even though THP */
1547 		sc->nr_scanned += nr_pages;
1548 
1549 		if (unlikely(!page_evictable(page)))
1550 			goto activate_locked;
1551 
1552 		if (!sc->may_unmap && page_mapped(page))
1553 			goto keep_locked;
1554 
1555 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1556 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1557 
1558 		/*
1559 		 * The number of dirty pages determines if a node is marked
1560 		 * reclaim_congested. kswapd will stall and start writing
1561 		 * pages if the tail of the LRU is all dirty unqueued pages.
1562 		 */
1563 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1564 		if (dirty || writeback)
1565 			stat->nr_dirty += nr_pages;
1566 
1567 		if (dirty && !writeback)
1568 			stat->nr_unqueued_dirty += nr_pages;
1569 
1570 		/*
1571 		 * Treat this page as congested if the underlying BDI is or if
1572 		 * pages are cycling through the LRU so quickly that the
1573 		 * pages marked for immediate reclaim are making it to the
1574 		 * end of the LRU a second time.
1575 		 */
1576 		mapping = page_mapping(page);
1577 		if (writeback && PageReclaim(page))
1578 			stat->nr_congested += nr_pages;
1579 
1580 		/*
1581 		 * If a page at the tail of the LRU is under writeback, there
1582 		 * are three cases to consider.
1583 		 *
1584 		 * 1) If reclaim is encountering an excessive number of pages
1585 		 *    under writeback and this page is both under writeback and
1586 		 *    PageReclaim then it indicates that pages are being queued
1587 		 *    for IO but are being recycled through the LRU before the
1588 		 *    IO can complete. Waiting on the page itself risks an
1589 		 *    indefinite stall if it is impossible to writeback the
1590 		 *    page due to IO error or disconnected storage so instead
1591 		 *    note that the LRU is being scanned too quickly and the
1592 		 *    caller can stall after page list has been processed.
1593 		 *
1594 		 * 2) Global or new memcg reclaim encounters a page that is
1595 		 *    not marked for immediate reclaim, or the caller does not
1596 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1597 		 *    not to fs). In this case mark the page for immediate
1598 		 *    reclaim and continue scanning.
1599 		 *
1600 		 *    Require may_enter_fs because we would wait on fs, which
1601 		 *    may not have submitted IO yet. And the loop driver might
1602 		 *    enter reclaim, and deadlock if it waits on a page for
1603 		 *    which it is needed to do the write (loop masks off
1604 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1605 		 *    would probably show more reasons.
1606 		 *
1607 		 * 3) Legacy memcg encounters a page that is already marked
1608 		 *    PageReclaim. memcg does not have any dirty pages
1609 		 *    throttling so we could easily OOM just because too many
1610 		 *    pages are in writeback and there is nothing else to
1611 		 *    reclaim. Wait for the writeback to complete.
1612 		 *
1613 		 * In cases 1) and 2) we activate the pages to get them out of
1614 		 * the way while we continue scanning for clean pages on the
1615 		 * inactive list and refilling from the active list. The
1616 		 * observation here is that waiting for disk writes is more
1617 		 * expensive than potentially causing reloads down the line.
1618 		 * Since they're marked for immediate reclaim, they won't put
1619 		 * memory pressure on the cache working set any longer than it
1620 		 * takes to write them to disk.
1621 		 */
1622 		if (PageWriteback(page)) {
1623 			/* Case 1 above */
1624 			if (current_is_kswapd() &&
1625 			    PageReclaim(page) &&
1626 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1627 				stat->nr_immediate += nr_pages;
1628 				goto activate_locked;
1629 
1630 			/* Case 2 above */
1631 			} else if (writeback_throttling_sane(sc) ||
1632 			    !PageReclaim(page) || !may_enter_fs) {
1633 				/*
1634 				 * This is slightly racy - end_page_writeback()
1635 				 * might have just cleared PageReclaim, then
1636 				 * setting PageReclaim here end up interpreted
1637 				 * as PageReadahead - but that does not matter
1638 				 * enough to care.  What we do want is for this
1639 				 * page to have PageReclaim set next time memcg
1640 				 * reclaim reaches the tests above, so it will
1641 				 * then wait_on_page_writeback() to avoid OOM;
1642 				 * and it's also appropriate in global reclaim.
1643 				 */
1644 				SetPageReclaim(page);
1645 				stat->nr_writeback += nr_pages;
1646 				goto activate_locked;
1647 
1648 			/* Case 3 above */
1649 			} else {
1650 				unlock_page(page);
1651 				wait_on_page_writeback(page);
1652 				/* then go back and try same page again */
1653 				list_add_tail(&page->lru, page_list);
1654 				continue;
1655 			}
1656 		}
1657 
1658 		if (!ignore_references)
1659 			references = folio_check_references(folio, sc);
1660 
1661 		switch (references) {
1662 		case PAGEREF_ACTIVATE:
1663 			goto activate_locked;
1664 		case PAGEREF_KEEP:
1665 			stat->nr_ref_keep += nr_pages;
1666 			goto keep_locked;
1667 		case PAGEREF_RECLAIM:
1668 		case PAGEREF_RECLAIM_CLEAN:
1669 			; /* try to reclaim the page below */
1670 		}
1671 
1672 		/*
1673 		 * Before reclaiming the page, try to relocate
1674 		 * its contents to another node.
1675 		 */
1676 		if (do_demote_pass &&
1677 		    (thp_migration_supported() || !PageTransHuge(page))) {
1678 			list_add(&page->lru, &demote_pages);
1679 			unlock_page(page);
1680 			continue;
1681 		}
1682 
1683 		/*
1684 		 * Anonymous process memory has backing store?
1685 		 * Try to allocate it some swap space here.
1686 		 * Lazyfree page could be freed directly
1687 		 */
1688 		if (PageAnon(page) && PageSwapBacked(page)) {
1689 			if (!PageSwapCache(page)) {
1690 				if (!(sc->gfp_mask & __GFP_IO))
1691 					goto keep_locked;
1692 				if (folio_maybe_dma_pinned(folio))
1693 					goto keep_locked;
1694 				if (PageTransHuge(page)) {
1695 					/* cannot split THP, skip it */
1696 					if (!can_split_folio(folio, NULL))
1697 						goto activate_locked;
1698 					/*
1699 					 * Split pages without a PMD map right
1700 					 * away. Chances are some or all of the
1701 					 * tail pages can be freed without IO.
1702 					 */
1703 					if (!folio_entire_mapcount(folio) &&
1704 					    split_folio_to_list(folio,
1705 								page_list))
1706 						goto activate_locked;
1707 				}
1708 				if (!add_to_swap(page)) {
1709 					if (!PageTransHuge(page))
1710 						goto activate_locked_split;
1711 					/* Fallback to swap normal pages */
1712 					if (split_folio_to_list(folio,
1713 								page_list))
1714 						goto activate_locked;
1715 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1716 					count_vm_event(THP_SWPOUT_FALLBACK);
1717 #endif
1718 					if (!add_to_swap(page))
1719 						goto activate_locked_split;
1720 				}
1721 
1722 				may_enter_fs = true;
1723 
1724 				/* Adding to swap updated mapping */
1725 				mapping = page_mapping(page);
1726 			}
1727 		} else if (PageSwapBacked(page) && PageTransHuge(page)) {
1728 			/* Split shmem THP */
1729 			if (split_folio_to_list(folio, page_list))
1730 				goto keep_locked;
1731 		}
1732 
1733 		/*
1734 		 * THP may get split above, need minus tail pages and update
1735 		 * nr_pages to avoid accounting tail pages twice.
1736 		 *
1737 		 * The tail pages that are added into swap cache successfully
1738 		 * reach here.
1739 		 */
1740 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1741 			sc->nr_scanned -= (nr_pages - 1);
1742 			nr_pages = 1;
1743 		}
1744 
1745 		/*
1746 		 * The page is mapped into the page tables of one or more
1747 		 * processes. Try to unmap it here.
1748 		 */
1749 		if (page_mapped(page)) {
1750 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1751 			bool was_swapbacked = PageSwapBacked(page);
1752 
1753 			if (PageTransHuge(page) &&
1754 					thp_order(page) >= HPAGE_PMD_ORDER)
1755 				flags |= TTU_SPLIT_HUGE_PMD;
1756 
1757 			try_to_unmap(folio, flags);
1758 			if (page_mapped(page)) {
1759 				stat->nr_unmap_fail += nr_pages;
1760 				if (!was_swapbacked && PageSwapBacked(page))
1761 					stat->nr_lazyfree_fail += nr_pages;
1762 				goto activate_locked;
1763 			}
1764 		}
1765 
1766 		if (PageDirty(page)) {
1767 			/*
1768 			 * Only kswapd can writeback filesystem pages
1769 			 * to avoid risk of stack overflow. But avoid
1770 			 * injecting inefficient single-page IO into
1771 			 * flusher writeback as much as possible: only
1772 			 * write pages when we've encountered many
1773 			 * dirty pages, and when we've already scanned
1774 			 * the rest of the LRU for clean pages and see
1775 			 * the same dirty pages again (PageReclaim).
1776 			 */
1777 			if (page_is_file_lru(page) &&
1778 			    (!current_is_kswapd() || !PageReclaim(page) ||
1779 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1780 				/*
1781 				 * Immediately reclaim when written back.
1782 				 * Similar in principal to deactivate_page()
1783 				 * except we already have the page isolated
1784 				 * and know it's dirty
1785 				 */
1786 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1787 				SetPageReclaim(page);
1788 
1789 				goto activate_locked;
1790 			}
1791 
1792 			if (references == PAGEREF_RECLAIM_CLEAN)
1793 				goto keep_locked;
1794 			if (!may_enter_fs)
1795 				goto keep_locked;
1796 			if (!sc->may_writepage)
1797 				goto keep_locked;
1798 
1799 			/*
1800 			 * Page is dirty. Flush the TLB if a writable entry
1801 			 * potentially exists to avoid CPU writes after IO
1802 			 * starts and then write it out here.
1803 			 */
1804 			try_to_unmap_flush_dirty();
1805 			switch (pageout(folio, mapping)) {
1806 			case PAGE_KEEP:
1807 				goto keep_locked;
1808 			case PAGE_ACTIVATE:
1809 				goto activate_locked;
1810 			case PAGE_SUCCESS:
1811 				stat->nr_pageout += nr_pages;
1812 
1813 				if (PageWriteback(page))
1814 					goto keep;
1815 				if (PageDirty(page))
1816 					goto keep;
1817 
1818 				/*
1819 				 * A synchronous write - probably a ramdisk.  Go
1820 				 * ahead and try to reclaim the page.
1821 				 */
1822 				if (!trylock_page(page))
1823 					goto keep;
1824 				if (PageDirty(page) || PageWriteback(page))
1825 					goto keep_locked;
1826 				mapping = page_mapping(page);
1827 				fallthrough;
1828 			case PAGE_CLEAN:
1829 				; /* try to free the page below */
1830 			}
1831 		}
1832 
1833 		/*
1834 		 * If the page has buffers, try to free the buffer mappings
1835 		 * associated with this page. If we succeed we try to free
1836 		 * the page as well.
1837 		 *
1838 		 * We do this even if the page is PageDirty().
1839 		 * try_to_release_page() does not perform I/O, but it is
1840 		 * possible for a page to have PageDirty set, but it is actually
1841 		 * clean (all its buffers are clean).  This happens if the
1842 		 * buffers were written out directly, with submit_bh(). ext3
1843 		 * will do this, as well as the blockdev mapping.
1844 		 * try_to_release_page() will discover that cleanness and will
1845 		 * drop the buffers and mark the page clean - it can be freed.
1846 		 *
1847 		 * Rarely, pages can have buffers and no ->mapping.  These are
1848 		 * the pages which were not successfully invalidated in
1849 		 * truncate_cleanup_page().  We try to drop those buffers here
1850 		 * and if that worked, and the page is no longer mapped into
1851 		 * process address space (page_count == 1) it can be freed.
1852 		 * Otherwise, leave the page on the LRU so it is swappable.
1853 		 */
1854 		if (page_has_private(page)) {
1855 			if (!try_to_release_page(page, sc->gfp_mask))
1856 				goto activate_locked;
1857 			if (!mapping && page_count(page) == 1) {
1858 				unlock_page(page);
1859 				if (put_page_testzero(page))
1860 					goto free_it;
1861 				else {
1862 					/*
1863 					 * rare race with speculative reference.
1864 					 * the speculative reference will free
1865 					 * this page shortly, so we may
1866 					 * increment nr_reclaimed here (and
1867 					 * leave it off the LRU).
1868 					 */
1869 					nr_reclaimed++;
1870 					continue;
1871 				}
1872 			}
1873 		}
1874 
1875 		if (PageAnon(page) && !PageSwapBacked(page)) {
1876 			/* follow __remove_mapping for reference */
1877 			if (!page_ref_freeze(page, 1))
1878 				goto keep_locked;
1879 			/*
1880 			 * The page has only one reference left, which is
1881 			 * from the isolation. After the caller puts the
1882 			 * page back on lru and drops the reference, the
1883 			 * page will be freed anyway. It doesn't matter
1884 			 * which lru it goes. So we don't bother checking
1885 			 * PageDirty here.
1886 			 */
1887 			count_vm_event(PGLAZYFREED);
1888 			count_memcg_page_event(page, PGLAZYFREED);
1889 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1890 							 sc->target_mem_cgroup))
1891 			goto keep_locked;
1892 
1893 		unlock_page(page);
1894 free_it:
1895 		/*
1896 		 * THP may get swapped out in a whole, need account
1897 		 * all base pages.
1898 		 */
1899 		nr_reclaimed += nr_pages;
1900 
1901 		/*
1902 		 * Is there need to periodically free_page_list? It would
1903 		 * appear not as the counts should be low
1904 		 */
1905 		if (unlikely(PageTransHuge(page)))
1906 			destroy_compound_page(page);
1907 		else
1908 			list_add(&page->lru, &free_pages);
1909 		continue;
1910 
1911 activate_locked_split:
1912 		/*
1913 		 * The tail pages that are failed to add into swap cache
1914 		 * reach here.  Fixup nr_scanned and nr_pages.
1915 		 */
1916 		if (nr_pages > 1) {
1917 			sc->nr_scanned -= (nr_pages - 1);
1918 			nr_pages = 1;
1919 		}
1920 activate_locked:
1921 		/* Not a candidate for swapping, so reclaim swap space. */
1922 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1923 						PageMlocked(page)))
1924 			try_to_free_swap(page);
1925 		VM_BUG_ON_PAGE(PageActive(page), page);
1926 		if (!PageMlocked(page)) {
1927 			int type = page_is_file_lru(page);
1928 			SetPageActive(page);
1929 			stat->nr_activate[type] += nr_pages;
1930 			count_memcg_page_event(page, PGACTIVATE);
1931 		}
1932 keep_locked:
1933 		unlock_page(page);
1934 keep:
1935 		list_add(&page->lru, &ret_pages);
1936 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1937 	}
1938 	/* 'page_list' is always empty here */
1939 
1940 	/* Migrate pages selected for demotion */
1941 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1942 	/* Pages that could not be demoted are still in @demote_pages */
1943 	if (!list_empty(&demote_pages)) {
1944 		/* Pages which failed to demoted go back on @page_list for retry: */
1945 		list_splice_init(&demote_pages, page_list);
1946 		do_demote_pass = false;
1947 		goto retry;
1948 	}
1949 
1950 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1951 
1952 	mem_cgroup_uncharge_list(&free_pages);
1953 	try_to_unmap_flush();
1954 	free_unref_page_list(&free_pages);
1955 
1956 	list_splice(&ret_pages, page_list);
1957 	count_vm_events(PGACTIVATE, pgactivate);
1958 
1959 	return nr_reclaimed;
1960 }
1961 
1962 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1963 					    struct list_head *page_list)
1964 {
1965 	struct scan_control sc = {
1966 		.gfp_mask = GFP_KERNEL,
1967 		.may_unmap = 1,
1968 	};
1969 	struct reclaim_stat stat;
1970 	unsigned int nr_reclaimed;
1971 	struct page *page, *next;
1972 	LIST_HEAD(clean_pages);
1973 	unsigned int noreclaim_flag;
1974 
1975 	list_for_each_entry_safe(page, next, page_list, lru) {
1976 		if (!PageHuge(page) && page_is_file_lru(page) &&
1977 		    !PageDirty(page) && !__PageMovable(page) &&
1978 		    !PageUnevictable(page)) {
1979 			ClearPageActive(page);
1980 			list_move(&page->lru, &clean_pages);
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * We should be safe here since we are only dealing with file pages and
1986 	 * we are not kswapd and therefore cannot write dirty file pages. But
1987 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1988 	 * change in the future.
1989 	 */
1990 	noreclaim_flag = memalloc_noreclaim_save();
1991 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1992 					&stat, true);
1993 	memalloc_noreclaim_restore(noreclaim_flag);
1994 
1995 	list_splice(&clean_pages, page_list);
1996 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1997 			    -(long)nr_reclaimed);
1998 	/*
1999 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2000 	 * they will rotate back to anonymous LRU in the end if it failed to
2001 	 * discard so isolated count will be mismatched.
2002 	 * Compensate the isolated count for both LRU lists.
2003 	 */
2004 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2005 			    stat.nr_lazyfree_fail);
2006 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2007 			    -(long)stat.nr_lazyfree_fail);
2008 	return nr_reclaimed;
2009 }
2010 
2011 /*
2012  * Update LRU sizes after isolating pages. The LRU size updates must
2013  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2014  */
2015 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2016 			enum lru_list lru, unsigned long *nr_zone_taken)
2017 {
2018 	int zid;
2019 
2020 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2021 		if (!nr_zone_taken[zid])
2022 			continue;
2023 
2024 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2025 	}
2026 
2027 }
2028 
2029 /*
2030  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2031  *
2032  * lruvec->lru_lock is heavily contended.  Some of the functions that
2033  * shrink the lists perform better by taking out a batch of pages
2034  * and working on them outside the LRU lock.
2035  *
2036  * For pagecache intensive workloads, this function is the hottest
2037  * spot in the kernel (apart from copy_*_user functions).
2038  *
2039  * Lru_lock must be held before calling this function.
2040  *
2041  * @nr_to_scan:	The number of eligible pages to look through on the list.
2042  * @lruvec:	The LRU vector to pull pages from.
2043  * @dst:	The temp list to put pages on to.
2044  * @nr_scanned:	The number of pages that were scanned.
2045  * @sc:		The scan_control struct for this reclaim session
2046  * @lru:	LRU list id for isolating
2047  *
2048  * returns how many pages were moved onto *@dst.
2049  */
2050 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2051 		struct lruvec *lruvec, struct list_head *dst,
2052 		unsigned long *nr_scanned, struct scan_control *sc,
2053 		enum lru_list lru)
2054 {
2055 	struct list_head *src = &lruvec->lists[lru];
2056 	unsigned long nr_taken = 0;
2057 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2058 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2059 	unsigned long skipped = 0;
2060 	unsigned long scan, total_scan, nr_pages;
2061 	LIST_HEAD(pages_skipped);
2062 
2063 	total_scan = 0;
2064 	scan = 0;
2065 	while (scan < nr_to_scan && !list_empty(src)) {
2066 		struct list_head *move_to = src;
2067 		struct page *page;
2068 
2069 		page = lru_to_page(src);
2070 		prefetchw_prev_lru_page(page, src, flags);
2071 
2072 		nr_pages = compound_nr(page);
2073 		total_scan += nr_pages;
2074 
2075 		if (page_zonenum(page) > sc->reclaim_idx) {
2076 			nr_skipped[page_zonenum(page)] += nr_pages;
2077 			move_to = &pages_skipped;
2078 			goto move;
2079 		}
2080 
2081 		/*
2082 		 * Do not count skipped pages because that makes the function
2083 		 * return with no isolated pages if the LRU mostly contains
2084 		 * ineligible pages.  This causes the VM to not reclaim any
2085 		 * pages, triggering a premature OOM.
2086 		 * Account all tail pages of THP.
2087 		 */
2088 		scan += nr_pages;
2089 
2090 		if (!PageLRU(page))
2091 			goto move;
2092 		if (!sc->may_unmap && page_mapped(page))
2093 			goto move;
2094 
2095 		/*
2096 		 * Be careful not to clear PageLRU until after we're
2097 		 * sure the page is not being freed elsewhere -- the
2098 		 * page release code relies on it.
2099 		 */
2100 		if (unlikely(!get_page_unless_zero(page)))
2101 			goto move;
2102 
2103 		if (!TestClearPageLRU(page)) {
2104 			/* Another thread is already isolating this page */
2105 			put_page(page);
2106 			goto move;
2107 		}
2108 
2109 		nr_taken += nr_pages;
2110 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2111 		move_to = dst;
2112 move:
2113 		list_move(&page->lru, move_to);
2114 	}
2115 
2116 	/*
2117 	 * Splice any skipped pages to the start of the LRU list. Note that
2118 	 * this disrupts the LRU order when reclaiming for lower zones but
2119 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2120 	 * scanning would soon rescan the same pages to skip and waste lots
2121 	 * of cpu cycles.
2122 	 */
2123 	if (!list_empty(&pages_skipped)) {
2124 		int zid;
2125 
2126 		list_splice(&pages_skipped, src);
2127 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2128 			if (!nr_skipped[zid])
2129 				continue;
2130 
2131 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2132 			skipped += nr_skipped[zid];
2133 		}
2134 	}
2135 	*nr_scanned = total_scan;
2136 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2137 				    total_scan, skipped, nr_taken,
2138 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2139 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2140 	return nr_taken;
2141 }
2142 
2143 /**
2144  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2145  * @folio: Folio to isolate from its LRU list.
2146  *
2147  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2148  * corresponding to whatever LRU list the folio was on.
2149  *
2150  * The folio will have its LRU flag cleared.  If it was found on the
2151  * active list, it will have the Active flag set.  If it was found on the
2152  * unevictable list, it will have the Unevictable flag set.  These flags
2153  * may need to be cleared by the caller before letting the page go.
2154  *
2155  * Context:
2156  *
2157  * (1) Must be called with an elevated refcount on the page. This is a
2158  *     fundamental difference from isolate_lru_pages() (which is called
2159  *     without a stable reference).
2160  * (2) The lru_lock must not be held.
2161  * (3) Interrupts must be enabled.
2162  *
2163  * Return: 0 if the folio was removed from an LRU list.
2164  * -EBUSY if the folio was not on an LRU list.
2165  */
2166 int folio_isolate_lru(struct folio *folio)
2167 {
2168 	int ret = -EBUSY;
2169 
2170 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2171 
2172 	if (folio_test_clear_lru(folio)) {
2173 		struct lruvec *lruvec;
2174 
2175 		folio_get(folio);
2176 		lruvec = folio_lruvec_lock_irq(folio);
2177 		lruvec_del_folio(lruvec, folio);
2178 		unlock_page_lruvec_irq(lruvec);
2179 		ret = 0;
2180 	}
2181 
2182 	return ret;
2183 }
2184 
2185 /*
2186  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2187  * then get rescheduled. When there are massive number of tasks doing page
2188  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2189  * the LRU list will go small and be scanned faster than necessary, leading to
2190  * unnecessary swapping, thrashing and OOM.
2191  */
2192 static int too_many_isolated(struct pglist_data *pgdat, int file,
2193 		struct scan_control *sc)
2194 {
2195 	unsigned long inactive, isolated;
2196 	bool too_many;
2197 
2198 	if (current_is_kswapd())
2199 		return 0;
2200 
2201 	if (!writeback_throttling_sane(sc))
2202 		return 0;
2203 
2204 	if (file) {
2205 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2206 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2207 	} else {
2208 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2209 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2210 	}
2211 
2212 	/*
2213 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2214 	 * won't get blocked by normal direct-reclaimers, forming a circular
2215 	 * deadlock.
2216 	 */
2217 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2218 		inactive >>= 3;
2219 
2220 	too_many = isolated > inactive;
2221 
2222 	/* Wake up tasks throttled due to too_many_isolated. */
2223 	if (!too_many)
2224 		wake_throttle_isolated(pgdat);
2225 
2226 	return too_many;
2227 }
2228 
2229 /*
2230  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2231  * On return, @list is reused as a list of pages to be freed by the caller.
2232  *
2233  * Returns the number of pages moved to the given lruvec.
2234  */
2235 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2236 				      struct list_head *list)
2237 {
2238 	int nr_pages, nr_moved = 0;
2239 	LIST_HEAD(pages_to_free);
2240 	struct page *page;
2241 
2242 	while (!list_empty(list)) {
2243 		page = lru_to_page(list);
2244 		VM_BUG_ON_PAGE(PageLRU(page), page);
2245 		list_del(&page->lru);
2246 		if (unlikely(!page_evictable(page))) {
2247 			spin_unlock_irq(&lruvec->lru_lock);
2248 			putback_lru_page(page);
2249 			spin_lock_irq(&lruvec->lru_lock);
2250 			continue;
2251 		}
2252 
2253 		/*
2254 		 * The SetPageLRU needs to be kept here for list integrity.
2255 		 * Otherwise:
2256 		 *   #0 move_pages_to_lru             #1 release_pages
2257 		 *   if !put_page_testzero
2258 		 *				      if (put_page_testzero())
2259 		 *				        !PageLRU //skip lru_lock
2260 		 *     SetPageLRU()
2261 		 *     list_add(&page->lru,)
2262 		 *                                        list_add(&page->lru,)
2263 		 */
2264 		SetPageLRU(page);
2265 
2266 		if (unlikely(put_page_testzero(page))) {
2267 			__clear_page_lru_flags(page);
2268 
2269 			if (unlikely(PageCompound(page))) {
2270 				spin_unlock_irq(&lruvec->lru_lock);
2271 				destroy_compound_page(page);
2272 				spin_lock_irq(&lruvec->lru_lock);
2273 			} else
2274 				list_add(&page->lru, &pages_to_free);
2275 
2276 			continue;
2277 		}
2278 
2279 		/*
2280 		 * All pages were isolated from the same lruvec (and isolation
2281 		 * inhibits memcg migration).
2282 		 */
2283 		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2284 		add_page_to_lru_list(page, lruvec);
2285 		nr_pages = thp_nr_pages(page);
2286 		nr_moved += nr_pages;
2287 		if (PageActive(page))
2288 			workingset_age_nonresident(lruvec, nr_pages);
2289 	}
2290 
2291 	/*
2292 	 * To save our caller's stack, now use input list for pages to free.
2293 	 */
2294 	list_splice(&pages_to_free, list);
2295 
2296 	return nr_moved;
2297 }
2298 
2299 /*
2300  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2301  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2302  * we should not throttle.  Otherwise it is safe to do so.
2303  */
2304 static int current_may_throttle(void)
2305 {
2306 	return !(current->flags & PF_LOCAL_THROTTLE);
2307 }
2308 
2309 /*
2310  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2311  * of reclaimed pages
2312  */
2313 static unsigned long
2314 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2315 		     struct scan_control *sc, enum lru_list lru)
2316 {
2317 	LIST_HEAD(page_list);
2318 	unsigned long nr_scanned;
2319 	unsigned int nr_reclaimed = 0;
2320 	unsigned long nr_taken;
2321 	struct reclaim_stat stat;
2322 	bool file = is_file_lru(lru);
2323 	enum vm_event_item item;
2324 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2325 	bool stalled = false;
2326 
2327 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2328 		if (stalled)
2329 			return 0;
2330 
2331 		/* wait a bit for the reclaimer. */
2332 		stalled = true;
2333 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2334 
2335 		/* We are about to die and free our memory. Return now. */
2336 		if (fatal_signal_pending(current))
2337 			return SWAP_CLUSTER_MAX;
2338 	}
2339 
2340 	lru_add_drain();
2341 
2342 	spin_lock_irq(&lruvec->lru_lock);
2343 
2344 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2345 				     &nr_scanned, sc, lru);
2346 
2347 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2348 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2349 	if (!cgroup_reclaim(sc))
2350 		__count_vm_events(item, nr_scanned);
2351 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2352 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2353 
2354 	spin_unlock_irq(&lruvec->lru_lock);
2355 
2356 	if (nr_taken == 0)
2357 		return 0;
2358 
2359 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2360 
2361 	spin_lock_irq(&lruvec->lru_lock);
2362 	move_pages_to_lru(lruvec, &page_list);
2363 
2364 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2365 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2366 	if (!cgroup_reclaim(sc))
2367 		__count_vm_events(item, nr_reclaimed);
2368 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2369 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2370 	spin_unlock_irq(&lruvec->lru_lock);
2371 
2372 	lru_note_cost(lruvec, file, stat.nr_pageout);
2373 	mem_cgroup_uncharge_list(&page_list);
2374 	free_unref_page_list(&page_list);
2375 
2376 	/*
2377 	 * If dirty pages are scanned that are not queued for IO, it
2378 	 * implies that flushers are not doing their job. This can
2379 	 * happen when memory pressure pushes dirty pages to the end of
2380 	 * the LRU before the dirty limits are breached and the dirty
2381 	 * data has expired. It can also happen when the proportion of
2382 	 * dirty pages grows not through writes but through memory
2383 	 * pressure reclaiming all the clean cache. And in some cases,
2384 	 * the flushers simply cannot keep up with the allocation
2385 	 * rate. Nudge the flusher threads in case they are asleep.
2386 	 */
2387 	if (stat.nr_unqueued_dirty == nr_taken)
2388 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2389 
2390 	sc->nr.dirty += stat.nr_dirty;
2391 	sc->nr.congested += stat.nr_congested;
2392 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2393 	sc->nr.writeback += stat.nr_writeback;
2394 	sc->nr.immediate += stat.nr_immediate;
2395 	sc->nr.taken += nr_taken;
2396 	if (file)
2397 		sc->nr.file_taken += nr_taken;
2398 
2399 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2400 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2401 	return nr_reclaimed;
2402 }
2403 
2404 /*
2405  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2406  *
2407  * We move them the other way if the page is referenced by one or more
2408  * processes.
2409  *
2410  * If the pages are mostly unmapped, the processing is fast and it is
2411  * appropriate to hold lru_lock across the whole operation.  But if
2412  * the pages are mapped, the processing is slow (folio_referenced()), so
2413  * we should drop lru_lock around each page.  It's impossible to balance
2414  * this, so instead we remove the pages from the LRU while processing them.
2415  * It is safe to rely on PG_active against the non-LRU pages in here because
2416  * nobody will play with that bit on a non-LRU page.
2417  *
2418  * The downside is that we have to touch page->_refcount against each page.
2419  * But we had to alter page->flags anyway.
2420  */
2421 static void shrink_active_list(unsigned long nr_to_scan,
2422 			       struct lruvec *lruvec,
2423 			       struct scan_control *sc,
2424 			       enum lru_list lru)
2425 {
2426 	unsigned long nr_taken;
2427 	unsigned long nr_scanned;
2428 	unsigned long vm_flags;
2429 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2430 	LIST_HEAD(l_active);
2431 	LIST_HEAD(l_inactive);
2432 	unsigned nr_deactivate, nr_activate;
2433 	unsigned nr_rotated = 0;
2434 	int file = is_file_lru(lru);
2435 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2436 
2437 	lru_add_drain();
2438 
2439 	spin_lock_irq(&lruvec->lru_lock);
2440 
2441 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2442 				     &nr_scanned, sc, lru);
2443 
2444 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2445 
2446 	if (!cgroup_reclaim(sc))
2447 		__count_vm_events(PGREFILL, nr_scanned);
2448 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2449 
2450 	spin_unlock_irq(&lruvec->lru_lock);
2451 
2452 	while (!list_empty(&l_hold)) {
2453 		struct folio *folio;
2454 		struct page *page;
2455 
2456 		cond_resched();
2457 		folio = lru_to_folio(&l_hold);
2458 		list_del(&folio->lru);
2459 		page = &folio->page;
2460 
2461 		if (unlikely(!page_evictable(page))) {
2462 			putback_lru_page(page);
2463 			continue;
2464 		}
2465 
2466 		if (unlikely(buffer_heads_over_limit)) {
2467 			if (page_has_private(page) && trylock_page(page)) {
2468 				if (page_has_private(page))
2469 					try_to_release_page(page, 0);
2470 				unlock_page(page);
2471 			}
2472 		}
2473 
2474 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2475 				     &vm_flags)) {
2476 			/*
2477 			 * Identify referenced, file-backed active pages and
2478 			 * give them one more trip around the active list. So
2479 			 * that executable code get better chances to stay in
2480 			 * memory under moderate memory pressure.  Anon pages
2481 			 * are not likely to be evicted by use-once streaming
2482 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2483 			 * so we ignore them here.
2484 			 */
2485 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2486 				nr_rotated += thp_nr_pages(page);
2487 				list_add(&page->lru, &l_active);
2488 				continue;
2489 			}
2490 		}
2491 
2492 		ClearPageActive(page);	/* we are de-activating */
2493 		SetPageWorkingset(page);
2494 		list_add(&page->lru, &l_inactive);
2495 	}
2496 
2497 	/*
2498 	 * Move pages back to the lru list.
2499 	 */
2500 	spin_lock_irq(&lruvec->lru_lock);
2501 
2502 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2503 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2504 	/* Keep all free pages in l_active list */
2505 	list_splice(&l_inactive, &l_active);
2506 
2507 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2508 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2509 
2510 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2511 	spin_unlock_irq(&lruvec->lru_lock);
2512 
2513 	mem_cgroup_uncharge_list(&l_active);
2514 	free_unref_page_list(&l_active);
2515 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2516 			nr_deactivate, nr_rotated, sc->priority, file);
2517 }
2518 
2519 unsigned long reclaim_pages(struct list_head *page_list)
2520 {
2521 	int nid = NUMA_NO_NODE;
2522 	unsigned int nr_reclaimed = 0;
2523 	LIST_HEAD(node_page_list);
2524 	struct reclaim_stat dummy_stat;
2525 	struct page *page;
2526 	unsigned int noreclaim_flag;
2527 	struct scan_control sc = {
2528 		.gfp_mask = GFP_KERNEL,
2529 		.may_writepage = 1,
2530 		.may_unmap = 1,
2531 		.may_swap = 1,
2532 		.no_demotion = 1,
2533 	};
2534 
2535 	noreclaim_flag = memalloc_noreclaim_save();
2536 
2537 	while (!list_empty(page_list)) {
2538 		page = lru_to_page(page_list);
2539 		if (nid == NUMA_NO_NODE) {
2540 			nid = page_to_nid(page);
2541 			INIT_LIST_HEAD(&node_page_list);
2542 		}
2543 
2544 		if (nid == page_to_nid(page)) {
2545 			ClearPageActive(page);
2546 			list_move(&page->lru, &node_page_list);
2547 			continue;
2548 		}
2549 
2550 		nr_reclaimed += shrink_page_list(&node_page_list,
2551 						NODE_DATA(nid),
2552 						&sc, &dummy_stat, false);
2553 		while (!list_empty(&node_page_list)) {
2554 			page = lru_to_page(&node_page_list);
2555 			list_del(&page->lru);
2556 			putback_lru_page(page);
2557 		}
2558 
2559 		nid = NUMA_NO_NODE;
2560 	}
2561 
2562 	if (!list_empty(&node_page_list)) {
2563 		nr_reclaimed += shrink_page_list(&node_page_list,
2564 						NODE_DATA(nid),
2565 						&sc, &dummy_stat, false);
2566 		while (!list_empty(&node_page_list)) {
2567 			page = lru_to_page(&node_page_list);
2568 			list_del(&page->lru);
2569 			putback_lru_page(page);
2570 		}
2571 	}
2572 
2573 	memalloc_noreclaim_restore(noreclaim_flag);
2574 
2575 	return nr_reclaimed;
2576 }
2577 
2578 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2579 				 struct lruvec *lruvec, struct scan_control *sc)
2580 {
2581 	if (is_active_lru(lru)) {
2582 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2583 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2584 		else
2585 			sc->skipped_deactivate = 1;
2586 		return 0;
2587 	}
2588 
2589 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2590 }
2591 
2592 /*
2593  * The inactive anon list should be small enough that the VM never has
2594  * to do too much work.
2595  *
2596  * The inactive file list should be small enough to leave most memory
2597  * to the established workingset on the scan-resistant active list,
2598  * but large enough to avoid thrashing the aggregate readahead window.
2599  *
2600  * Both inactive lists should also be large enough that each inactive
2601  * page has a chance to be referenced again before it is reclaimed.
2602  *
2603  * If that fails and refaulting is observed, the inactive list grows.
2604  *
2605  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2606  * on this LRU, maintained by the pageout code. An inactive_ratio
2607  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2608  *
2609  * total     target    max
2610  * memory    ratio     inactive
2611  * -------------------------------------
2612  *   10MB       1         5MB
2613  *  100MB       1        50MB
2614  *    1GB       3       250MB
2615  *   10GB      10       0.9GB
2616  *  100GB      31         3GB
2617  *    1TB     101        10GB
2618  *   10TB     320        32GB
2619  */
2620 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2621 {
2622 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2623 	unsigned long inactive, active;
2624 	unsigned long inactive_ratio;
2625 	unsigned long gb;
2626 
2627 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2628 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2629 
2630 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2631 	if (gb)
2632 		inactive_ratio = int_sqrt(10 * gb);
2633 	else
2634 		inactive_ratio = 1;
2635 
2636 	return inactive * inactive_ratio < active;
2637 }
2638 
2639 enum scan_balance {
2640 	SCAN_EQUAL,
2641 	SCAN_FRACT,
2642 	SCAN_ANON,
2643 	SCAN_FILE,
2644 };
2645 
2646 /*
2647  * Determine how aggressively the anon and file LRU lists should be
2648  * scanned.
2649  *
2650  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2651  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2652  */
2653 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2654 			   unsigned long *nr)
2655 {
2656 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2657 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2658 	unsigned long anon_cost, file_cost, total_cost;
2659 	int swappiness = mem_cgroup_swappiness(memcg);
2660 	u64 fraction[ANON_AND_FILE];
2661 	u64 denominator = 0;	/* gcc */
2662 	enum scan_balance scan_balance;
2663 	unsigned long ap, fp;
2664 	enum lru_list lru;
2665 
2666 	/* If we have no swap space, do not bother scanning anon pages. */
2667 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2668 		scan_balance = SCAN_FILE;
2669 		goto out;
2670 	}
2671 
2672 	/*
2673 	 * Global reclaim will swap to prevent OOM even with no
2674 	 * swappiness, but memcg users want to use this knob to
2675 	 * disable swapping for individual groups completely when
2676 	 * using the memory controller's swap limit feature would be
2677 	 * too expensive.
2678 	 */
2679 	if (cgroup_reclaim(sc) && !swappiness) {
2680 		scan_balance = SCAN_FILE;
2681 		goto out;
2682 	}
2683 
2684 	/*
2685 	 * Do not apply any pressure balancing cleverness when the
2686 	 * system is close to OOM, scan both anon and file equally
2687 	 * (unless the swappiness setting disagrees with swapping).
2688 	 */
2689 	if (!sc->priority && swappiness) {
2690 		scan_balance = SCAN_EQUAL;
2691 		goto out;
2692 	}
2693 
2694 	/*
2695 	 * If the system is almost out of file pages, force-scan anon.
2696 	 */
2697 	if (sc->file_is_tiny) {
2698 		scan_balance = SCAN_ANON;
2699 		goto out;
2700 	}
2701 
2702 	/*
2703 	 * If there is enough inactive page cache, we do not reclaim
2704 	 * anything from the anonymous working right now.
2705 	 */
2706 	if (sc->cache_trim_mode) {
2707 		scan_balance = SCAN_FILE;
2708 		goto out;
2709 	}
2710 
2711 	scan_balance = SCAN_FRACT;
2712 	/*
2713 	 * Calculate the pressure balance between anon and file pages.
2714 	 *
2715 	 * The amount of pressure we put on each LRU is inversely
2716 	 * proportional to the cost of reclaiming each list, as
2717 	 * determined by the share of pages that are refaulting, times
2718 	 * the relative IO cost of bringing back a swapped out
2719 	 * anonymous page vs reloading a filesystem page (swappiness).
2720 	 *
2721 	 * Although we limit that influence to ensure no list gets
2722 	 * left behind completely: at least a third of the pressure is
2723 	 * applied, before swappiness.
2724 	 *
2725 	 * With swappiness at 100, anon and file have equal IO cost.
2726 	 */
2727 	total_cost = sc->anon_cost + sc->file_cost;
2728 	anon_cost = total_cost + sc->anon_cost;
2729 	file_cost = total_cost + sc->file_cost;
2730 	total_cost = anon_cost + file_cost;
2731 
2732 	ap = swappiness * (total_cost + 1);
2733 	ap /= anon_cost + 1;
2734 
2735 	fp = (200 - swappiness) * (total_cost + 1);
2736 	fp /= file_cost + 1;
2737 
2738 	fraction[0] = ap;
2739 	fraction[1] = fp;
2740 	denominator = ap + fp;
2741 out:
2742 	for_each_evictable_lru(lru) {
2743 		int file = is_file_lru(lru);
2744 		unsigned long lruvec_size;
2745 		unsigned long low, min;
2746 		unsigned long scan;
2747 
2748 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2749 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2750 				      &min, &low);
2751 
2752 		if (min || low) {
2753 			/*
2754 			 * Scale a cgroup's reclaim pressure by proportioning
2755 			 * its current usage to its memory.low or memory.min
2756 			 * setting.
2757 			 *
2758 			 * This is important, as otherwise scanning aggression
2759 			 * becomes extremely binary -- from nothing as we
2760 			 * approach the memory protection threshold, to totally
2761 			 * nominal as we exceed it.  This results in requiring
2762 			 * setting extremely liberal protection thresholds. It
2763 			 * also means we simply get no protection at all if we
2764 			 * set it too low, which is not ideal.
2765 			 *
2766 			 * If there is any protection in place, we reduce scan
2767 			 * pressure by how much of the total memory used is
2768 			 * within protection thresholds.
2769 			 *
2770 			 * There is one special case: in the first reclaim pass,
2771 			 * we skip over all groups that are within their low
2772 			 * protection. If that fails to reclaim enough pages to
2773 			 * satisfy the reclaim goal, we come back and override
2774 			 * the best-effort low protection. However, we still
2775 			 * ideally want to honor how well-behaved groups are in
2776 			 * that case instead of simply punishing them all
2777 			 * equally. As such, we reclaim them based on how much
2778 			 * memory they are using, reducing the scan pressure
2779 			 * again by how much of the total memory used is under
2780 			 * hard protection.
2781 			 */
2782 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2783 			unsigned long protection;
2784 
2785 			/* memory.low scaling, make sure we retry before OOM */
2786 			if (!sc->memcg_low_reclaim && low > min) {
2787 				protection = low;
2788 				sc->memcg_low_skipped = 1;
2789 			} else {
2790 				protection = min;
2791 			}
2792 
2793 			/* Avoid TOCTOU with earlier protection check */
2794 			cgroup_size = max(cgroup_size, protection);
2795 
2796 			scan = lruvec_size - lruvec_size * protection /
2797 				(cgroup_size + 1);
2798 
2799 			/*
2800 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2801 			 * reclaim moving forwards, avoiding decrementing
2802 			 * sc->priority further than desirable.
2803 			 */
2804 			scan = max(scan, SWAP_CLUSTER_MAX);
2805 		} else {
2806 			scan = lruvec_size;
2807 		}
2808 
2809 		scan >>= sc->priority;
2810 
2811 		/*
2812 		 * If the cgroup's already been deleted, make sure to
2813 		 * scrape out the remaining cache.
2814 		 */
2815 		if (!scan && !mem_cgroup_online(memcg))
2816 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2817 
2818 		switch (scan_balance) {
2819 		case SCAN_EQUAL:
2820 			/* Scan lists relative to size */
2821 			break;
2822 		case SCAN_FRACT:
2823 			/*
2824 			 * Scan types proportional to swappiness and
2825 			 * their relative recent reclaim efficiency.
2826 			 * Make sure we don't miss the last page on
2827 			 * the offlined memory cgroups because of a
2828 			 * round-off error.
2829 			 */
2830 			scan = mem_cgroup_online(memcg) ?
2831 			       div64_u64(scan * fraction[file], denominator) :
2832 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2833 						  denominator);
2834 			break;
2835 		case SCAN_FILE:
2836 		case SCAN_ANON:
2837 			/* Scan one type exclusively */
2838 			if ((scan_balance == SCAN_FILE) != file)
2839 				scan = 0;
2840 			break;
2841 		default:
2842 			/* Look ma, no brain */
2843 			BUG();
2844 		}
2845 
2846 		nr[lru] = scan;
2847 	}
2848 }
2849 
2850 /*
2851  * Anonymous LRU management is a waste if there is
2852  * ultimately no way to reclaim the memory.
2853  */
2854 static bool can_age_anon_pages(struct pglist_data *pgdat,
2855 			       struct scan_control *sc)
2856 {
2857 	/* Aging the anon LRU is valuable if swap is present: */
2858 	if (total_swap_pages > 0)
2859 		return true;
2860 
2861 	/* Also valuable if anon pages can be demoted: */
2862 	return can_demote(pgdat->node_id, sc);
2863 }
2864 
2865 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2866 {
2867 	unsigned long nr[NR_LRU_LISTS];
2868 	unsigned long targets[NR_LRU_LISTS];
2869 	unsigned long nr_to_scan;
2870 	enum lru_list lru;
2871 	unsigned long nr_reclaimed = 0;
2872 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2873 	struct blk_plug plug;
2874 	bool scan_adjusted;
2875 
2876 	get_scan_count(lruvec, sc, nr);
2877 
2878 	/* Record the original scan target for proportional adjustments later */
2879 	memcpy(targets, nr, sizeof(nr));
2880 
2881 	/*
2882 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2883 	 * event that can occur when there is little memory pressure e.g.
2884 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2885 	 * when the requested number of pages are reclaimed when scanning at
2886 	 * DEF_PRIORITY on the assumption that the fact we are direct
2887 	 * reclaiming implies that kswapd is not keeping up and it is best to
2888 	 * do a batch of work at once. For memcg reclaim one check is made to
2889 	 * abort proportional reclaim if either the file or anon lru has already
2890 	 * dropped to zero at the first pass.
2891 	 */
2892 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2893 			 sc->priority == DEF_PRIORITY);
2894 
2895 	blk_start_plug(&plug);
2896 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2897 					nr[LRU_INACTIVE_FILE]) {
2898 		unsigned long nr_anon, nr_file, percentage;
2899 		unsigned long nr_scanned;
2900 
2901 		for_each_evictable_lru(lru) {
2902 			if (nr[lru]) {
2903 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2904 				nr[lru] -= nr_to_scan;
2905 
2906 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2907 							    lruvec, sc);
2908 			}
2909 		}
2910 
2911 		cond_resched();
2912 
2913 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2914 			continue;
2915 
2916 		/*
2917 		 * For kswapd and memcg, reclaim at least the number of pages
2918 		 * requested. Ensure that the anon and file LRUs are scanned
2919 		 * proportionally what was requested by get_scan_count(). We
2920 		 * stop reclaiming one LRU and reduce the amount scanning
2921 		 * proportional to the original scan target.
2922 		 */
2923 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2924 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2925 
2926 		/*
2927 		 * It's just vindictive to attack the larger once the smaller
2928 		 * has gone to zero.  And given the way we stop scanning the
2929 		 * smaller below, this makes sure that we only make one nudge
2930 		 * towards proportionality once we've got nr_to_reclaim.
2931 		 */
2932 		if (!nr_file || !nr_anon)
2933 			break;
2934 
2935 		if (nr_file > nr_anon) {
2936 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2937 						targets[LRU_ACTIVE_ANON] + 1;
2938 			lru = LRU_BASE;
2939 			percentage = nr_anon * 100 / scan_target;
2940 		} else {
2941 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2942 						targets[LRU_ACTIVE_FILE] + 1;
2943 			lru = LRU_FILE;
2944 			percentage = nr_file * 100 / scan_target;
2945 		}
2946 
2947 		/* Stop scanning the smaller of the LRU */
2948 		nr[lru] = 0;
2949 		nr[lru + LRU_ACTIVE] = 0;
2950 
2951 		/*
2952 		 * Recalculate the other LRU scan count based on its original
2953 		 * scan target and the percentage scanning already complete
2954 		 */
2955 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2956 		nr_scanned = targets[lru] - nr[lru];
2957 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2958 		nr[lru] -= min(nr[lru], nr_scanned);
2959 
2960 		lru += LRU_ACTIVE;
2961 		nr_scanned = targets[lru] - nr[lru];
2962 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2963 		nr[lru] -= min(nr[lru], nr_scanned);
2964 
2965 		scan_adjusted = true;
2966 	}
2967 	blk_finish_plug(&plug);
2968 	sc->nr_reclaimed += nr_reclaimed;
2969 
2970 	/*
2971 	 * Even if we did not try to evict anon pages at all, we want to
2972 	 * rebalance the anon lru active/inactive ratio.
2973 	 */
2974 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2975 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2976 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2977 				   sc, LRU_ACTIVE_ANON);
2978 }
2979 
2980 /* Use reclaim/compaction for costly allocs or under memory pressure */
2981 static bool in_reclaim_compaction(struct scan_control *sc)
2982 {
2983 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2984 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2985 			 sc->priority < DEF_PRIORITY - 2))
2986 		return true;
2987 
2988 	return false;
2989 }
2990 
2991 /*
2992  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2993  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2994  * true if more pages should be reclaimed such that when the page allocator
2995  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2996  * It will give up earlier than that if there is difficulty reclaiming pages.
2997  */
2998 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2999 					unsigned long nr_reclaimed,
3000 					struct scan_control *sc)
3001 {
3002 	unsigned long pages_for_compaction;
3003 	unsigned long inactive_lru_pages;
3004 	int z;
3005 
3006 	/* If not in reclaim/compaction mode, stop */
3007 	if (!in_reclaim_compaction(sc))
3008 		return false;
3009 
3010 	/*
3011 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3012 	 * number of pages that were scanned. This will return to the caller
3013 	 * with the risk reclaim/compaction and the resulting allocation attempt
3014 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3015 	 * allocations through requiring that the full LRU list has been scanned
3016 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3017 	 * scan, but that approximation was wrong, and there were corner cases
3018 	 * where always a non-zero amount of pages were scanned.
3019 	 */
3020 	if (!nr_reclaimed)
3021 		return false;
3022 
3023 	/* If compaction would go ahead or the allocation would succeed, stop */
3024 	for (z = 0; z <= sc->reclaim_idx; z++) {
3025 		struct zone *zone = &pgdat->node_zones[z];
3026 		if (!managed_zone(zone))
3027 			continue;
3028 
3029 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3030 		case COMPACT_SUCCESS:
3031 		case COMPACT_CONTINUE:
3032 			return false;
3033 		default:
3034 			/* check next zone */
3035 			;
3036 		}
3037 	}
3038 
3039 	/*
3040 	 * If we have not reclaimed enough pages for compaction and the
3041 	 * inactive lists are large enough, continue reclaiming
3042 	 */
3043 	pages_for_compaction = compact_gap(sc->order);
3044 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3045 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3046 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3047 
3048 	return inactive_lru_pages > pages_for_compaction;
3049 }
3050 
3051 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3052 {
3053 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3054 	struct mem_cgroup *memcg;
3055 
3056 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3057 	do {
3058 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3059 		unsigned long reclaimed;
3060 		unsigned long scanned;
3061 
3062 		/*
3063 		 * This loop can become CPU-bound when target memcgs
3064 		 * aren't eligible for reclaim - either because they
3065 		 * don't have any reclaimable pages, or because their
3066 		 * memory is explicitly protected. Avoid soft lockups.
3067 		 */
3068 		cond_resched();
3069 
3070 		mem_cgroup_calculate_protection(target_memcg, memcg);
3071 
3072 		if (mem_cgroup_below_min(memcg)) {
3073 			/*
3074 			 * Hard protection.
3075 			 * If there is no reclaimable memory, OOM.
3076 			 */
3077 			continue;
3078 		} else if (mem_cgroup_below_low(memcg)) {
3079 			/*
3080 			 * Soft protection.
3081 			 * Respect the protection only as long as
3082 			 * there is an unprotected supply
3083 			 * of reclaimable memory from other cgroups.
3084 			 */
3085 			if (!sc->memcg_low_reclaim) {
3086 				sc->memcg_low_skipped = 1;
3087 				continue;
3088 			}
3089 			memcg_memory_event(memcg, MEMCG_LOW);
3090 		}
3091 
3092 		reclaimed = sc->nr_reclaimed;
3093 		scanned = sc->nr_scanned;
3094 
3095 		shrink_lruvec(lruvec, sc);
3096 
3097 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3098 			    sc->priority);
3099 
3100 		/* Record the group's reclaim efficiency */
3101 		vmpressure(sc->gfp_mask, memcg, false,
3102 			   sc->nr_scanned - scanned,
3103 			   sc->nr_reclaimed - reclaimed);
3104 
3105 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3106 }
3107 
3108 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3109 {
3110 	struct reclaim_state *reclaim_state = current->reclaim_state;
3111 	unsigned long nr_reclaimed, nr_scanned;
3112 	struct lruvec *target_lruvec;
3113 	bool reclaimable = false;
3114 	unsigned long file;
3115 
3116 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3117 
3118 again:
3119 	/*
3120 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3121 	 * lruvec stats for heuristics.
3122 	 */
3123 	mem_cgroup_flush_stats();
3124 
3125 	memset(&sc->nr, 0, sizeof(sc->nr));
3126 
3127 	nr_reclaimed = sc->nr_reclaimed;
3128 	nr_scanned = sc->nr_scanned;
3129 
3130 	/*
3131 	 * Determine the scan balance between anon and file LRUs.
3132 	 */
3133 	spin_lock_irq(&target_lruvec->lru_lock);
3134 	sc->anon_cost = target_lruvec->anon_cost;
3135 	sc->file_cost = target_lruvec->file_cost;
3136 	spin_unlock_irq(&target_lruvec->lru_lock);
3137 
3138 	/*
3139 	 * Target desirable inactive:active list ratios for the anon
3140 	 * and file LRU lists.
3141 	 */
3142 	if (!sc->force_deactivate) {
3143 		unsigned long refaults;
3144 
3145 		refaults = lruvec_page_state(target_lruvec,
3146 				WORKINGSET_ACTIVATE_ANON);
3147 		if (refaults != target_lruvec->refaults[0] ||
3148 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3149 			sc->may_deactivate |= DEACTIVATE_ANON;
3150 		else
3151 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3152 
3153 		/*
3154 		 * When refaults are being observed, it means a new
3155 		 * workingset is being established. Deactivate to get
3156 		 * rid of any stale active pages quickly.
3157 		 */
3158 		refaults = lruvec_page_state(target_lruvec,
3159 				WORKINGSET_ACTIVATE_FILE);
3160 		if (refaults != target_lruvec->refaults[1] ||
3161 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3162 			sc->may_deactivate |= DEACTIVATE_FILE;
3163 		else
3164 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3165 	} else
3166 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3167 
3168 	/*
3169 	 * If we have plenty of inactive file pages that aren't
3170 	 * thrashing, try to reclaim those first before touching
3171 	 * anonymous pages.
3172 	 */
3173 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3174 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3175 		sc->cache_trim_mode = 1;
3176 	else
3177 		sc->cache_trim_mode = 0;
3178 
3179 	/*
3180 	 * Prevent the reclaimer from falling into the cache trap: as
3181 	 * cache pages start out inactive, every cache fault will tip
3182 	 * the scan balance towards the file LRU.  And as the file LRU
3183 	 * shrinks, so does the window for rotation from references.
3184 	 * This means we have a runaway feedback loop where a tiny
3185 	 * thrashing file LRU becomes infinitely more attractive than
3186 	 * anon pages.  Try to detect this based on file LRU size.
3187 	 */
3188 	if (!cgroup_reclaim(sc)) {
3189 		unsigned long total_high_wmark = 0;
3190 		unsigned long free, anon;
3191 		int z;
3192 
3193 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3194 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3195 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3196 
3197 		for (z = 0; z < MAX_NR_ZONES; z++) {
3198 			struct zone *zone = &pgdat->node_zones[z];
3199 			if (!managed_zone(zone))
3200 				continue;
3201 
3202 			total_high_wmark += high_wmark_pages(zone);
3203 		}
3204 
3205 		/*
3206 		 * Consider anon: if that's low too, this isn't a
3207 		 * runaway file reclaim problem, but rather just
3208 		 * extreme pressure. Reclaim as per usual then.
3209 		 */
3210 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3211 
3212 		sc->file_is_tiny =
3213 			file + free <= total_high_wmark &&
3214 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3215 			anon >> sc->priority;
3216 	}
3217 
3218 	shrink_node_memcgs(pgdat, sc);
3219 
3220 	if (reclaim_state) {
3221 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3222 		reclaim_state->reclaimed_slab = 0;
3223 	}
3224 
3225 	/* Record the subtree's reclaim efficiency */
3226 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3227 		   sc->nr_scanned - nr_scanned,
3228 		   sc->nr_reclaimed - nr_reclaimed);
3229 
3230 	if (sc->nr_reclaimed - nr_reclaimed)
3231 		reclaimable = true;
3232 
3233 	if (current_is_kswapd()) {
3234 		/*
3235 		 * If reclaim is isolating dirty pages under writeback,
3236 		 * it implies that the long-lived page allocation rate
3237 		 * is exceeding the page laundering rate. Either the
3238 		 * global limits are not being effective at throttling
3239 		 * processes due to the page distribution throughout
3240 		 * zones or there is heavy usage of a slow backing
3241 		 * device. The only option is to throttle from reclaim
3242 		 * context which is not ideal as there is no guarantee
3243 		 * the dirtying process is throttled in the same way
3244 		 * balance_dirty_pages() manages.
3245 		 *
3246 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3247 		 * count the number of pages under pages flagged for
3248 		 * immediate reclaim and stall if any are encountered
3249 		 * in the nr_immediate check below.
3250 		 */
3251 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3252 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3253 
3254 		/* Allow kswapd to start writing pages during reclaim.*/
3255 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3256 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3257 
3258 		/*
3259 		 * If kswapd scans pages marked for immediate
3260 		 * reclaim and under writeback (nr_immediate), it
3261 		 * implies that pages are cycling through the LRU
3262 		 * faster than they are written so forcibly stall
3263 		 * until some pages complete writeback.
3264 		 */
3265 		if (sc->nr.immediate)
3266 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3267 	}
3268 
3269 	/*
3270 	 * Tag a node/memcg as congested if all the dirty pages were marked
3271 	 * for writeback and immediate reclaim (counted in nr.congested).
3272 	 *
3273 	 * Legacy memcg will stall in page writeback so avoid forcibly
3274 	 * stalling in reclaim_throttle().
3275 	 */
3276 	if ((current_is_kswapd() ||
3277 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3278 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3279 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3280 
3281 	/*
3282 	 * Stall direct reclaim for IO completions if the lruvec is
3283 	 * node is congested. Allow kswapd to continue until it
3284 	 * starts encountering unqueued dirty pages or cycling through
3285 	 * the LRU too quickly.
3286 	 */
3287 	if (!current_is_kswapd() && current_may_throttle() &&
3288 	    !sc->hibernation_mode &&
3289 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3290 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3291 
3292 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3293 				    sc))
3294 		goto again;
3295 
3296 	/*
3297 	 * Kswapd gives up on balancing particular nodes after too
3298 	 * many failures to reclaim anything from them and goes to
3299 	 * sleep. On reclaim progress, reset the failure counter. A
3300 	 * successful direct reclaim run will revive a dormant kswapd.
3301 	 */
3302 	if (reclaimable)
3303 		pgdat->kswapd_failures = 0;
3304 }
3305 
3306 /*
3307  * Returns true if compaction should go ahead for a costly-order request, or
3308  * the allocation would already succeed without compaction. Return false if we
3309  * should reclaim first.
3310  */
3311 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3312 {
3313 	unsigned long watermark;
3314 	enum compact_result suitable;
3315 
3316 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3317 	if (suitable == COMPACT_SUCCESS)
3318 		/* Allocation should succeed already. Don't reclaim. */
3319 		return true;
3320 	if (suitable == COMPACT_SKIPPED)
3321 		/* Compaction cannot yet proceed. Do reclaim. */
3322 		return false;
3323 
3324 	/*
3325 	 * Compaction is already possible, but it takes time to run and there
3326 	 * are potentially other callers using the pages just freed. So proceed
3327 	 * with reclaim to make a buffer of free pages available to give
3328 	 * compaction a reasonable chance of completing and allocating the page.
3329 	 * Note that we won't actually reclaim the whole buffer in one attempt
3330 	 * as the target watermark in should_continue_reclaim() is lower. But if
3331 	 * we are already above the high+gap watermark, don't reclaim at all.
3332 	 */
3333 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3334 
3335 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3336 }
3337 
3338 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3339 {
3340 	/*
3341 	 * If reclaim is making progress greater than 12% efficiency then
3342 	 * wake all the NOPROGRESS throttled tasks.
3343 	 */
3344 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3345 		wait_queue_head_t *wqh;
3346 
3347 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3348 		if (waitqueue_active(wqh))
3349 			wake_up(wqh);
3350 
3351 		return;
3352 	}
3353 
3354 	/*
3355 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3356 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3357 	 * under writeback and marked for immediate reclaim at the tail of the
3358 	 * LRU.
3359 	 */
3360 	if (current_is_kswapd() || cgroup_reclaim(sc))
3361 		return;
3362 
3363 	/* Throttle if making no progress at high prioities. */
3364 	if (sc->priority == 1 && !sc->nr_reclaimed)
3365 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3366 }
3367 
3368 /*
3369  * This is the direct reclaim path, for page-allocating processes.  We only
3370  * try to reclaim pages from zones which will satisfy the caller's allocation
3371  * request.
3372  *
3373  * If a zone is deemed to be full of pinned pages then just give it a light
3374  * scan then give up on it.
3375  */
3376 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3377 {
3378 	struct zoneref *z;
3379 	struct zone *zone;
3380 	unsigned long nr_soft_reclaimed;
3381 	unsigned long nr_soft_scanned;
3382 	gfp_t orig_mask;
3383 	pg_data_t *last_pgdat = NULL;
3384 	pg_data_t *first_pgdat = NULL;
3385 
3386 	/*
3387 	 * If the number of buffer_heads in the machine exceeds the maximum
3388 	 * allowed level, force direct reclaim to scan the highmem zone as
3389 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3390 	 */
3391 	orig_mask = sc->gfp_mask;
3392 	if (buffer_heads_over_limit) {
3393 		sc->gfp_mask |= __GFP_HIGHMEM;
3394 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3395 	}
3396 
3397 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3398 					sc->reclaim_idx, sc->nodemask) {
3399 		/*
3400 		 * Take care memory controller reclaiming has small influence
3401 		 * to global LRU.
3402 		 */
3403 		if (!cgroup_reclaim(sc)) {
3404 			if (!cpuset_zone_allowed(zone,
3405 						 GFP_KERNEL | __GFP_HARDWALL))
3406 				continue;
3407 
3408 			/*
3409 			 * If we already have plenty of memory free for
3410 			 * compaction in this zone, don't free any more.
3411 			 * Even though compaction is invoked for any
3412 			 * non-zero order, only frequent costly order
3413 			 * reclamation is disruptive enough to become a
3414 			 * noticeable problem, like transparent huge
3415 			 * page allocations.
3416 			 */
3417 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3418 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3419 			    compaction_ready(zone, sc)) {
3420 				sc->compaction_ready = true;
3421 				continue;
3422 			}
3423 
3424 			/*
3425 			 * Shrink each node in the zonelist once. If the
3426 			 * zonelist is ordered by zone (not the default) then a
3427 			 * node may be shrunk multiple times but in that case
3428 			 * the user prefers lower zones being preserved.
3429 			 */
3430 			if (zone->zone_pgdat == last_pgdat)
3431 				continue;
3432 
3433 			/*
3434 			 * This steals pages from memory cgroups over softlimit
3435 			 * and returns the number of reclaimed pages and
3436 			 * scanned pages. This works for global memory pressure
3437 			 * and balancing, not for a memcg's limit.
3438 			 */
3439 			nr_soft_scanned = 0;
3440 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3441 						sc->order, sc->gfp_mask,
3442 						&nr_soft_scanned);
3443 			sc->nr_reclaimed += nr_soft_reclaimed;
3444 			sc->nr_scanned += nr_soft_scanned;
3445 			/* need some check for avoid more shrink_zone() */
3446 		}
3447 
3448 		if (!first_pgdat)
3449 			first_pgdat = zone->zone_pgdat;
3450 
3451 		/* See comment about same check for global reclaim above */
3452 		if (zone->zone_pgdat == last_pgdat)
3453 			continue;
3454 		last_pgdat = zone->zone_pgdat;
3455 		shrink_node(zone->zone_pgdat, sc);
3456 	}
3457 
3458 	if (first_pgdat)
3459 		consider_reclaim_throttle(first_pgdat, sc);
3460 
3461 	/*
3462 	 * Restore to original mask to avoid the impact on the caller if we
3463 	 * promoted it to __GFP_HIGHMEM.
3464 	 */
3465 	sc->gfp_mask = orig_mask;
3466 }
3467 
3468 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3469 {
3470 	struct lruvec *target_lruvec;
3471 	unsigned long refaults;
3472 
3473 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3474 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3475 	target_lruvec->refaults[0] = refaults;
3476 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3477 	target_lruvec->refaults[1] = refaults;
3478 }
3479 
3480 /*
3481  * This is the main entry point to direct page reclaim.
3482  *
3483  * If a full scan of the inactive list fails to free enough memory then we
3484  * are "out of memory" and something needs to be killed.
3485  *
3486  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3487  * high - the zone may be full of dirty or under-writeback pages, which this
3488  * caller can't do much about.  We kick the writeback threads and take explicit
3489  * naps in the hope that some of these pages can be written.  But if the
3490  * allocating task holds filesystem locks which prevent writeout this might not
3491  * work, and the allocation attempt will fail.
3492  *
3493  * returns:	0, if no pages reclaimed
3494  * 		else, the number of pages reclaimed
3495  */
3496 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3497 					  struct scan_control *sc)
3498 {
3499 	int initial_priority = sc->priority;
3500 	pg_data_t *last_pgdat;
3501 	struct zoneref *z;
3502 	struct zone *zone;
3503 retry:
3504 	delayacct_freepages_start();
3505 
3506 	if (!cgroup_reclaim(sc))
3507 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3508 
3509 	do {
3510 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3511 				sc->priority);
3512 		sc->nr_scanned = 0;
3513 		shrink_zones(zonelist, sc);
3514 
3515 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3516 			break;
3517 
3518 		if (sc->compaction_ready)
3519 			break;
3520 
3521 		/*
3522 		 * If we're getting trouble reclaiming, start doing
3523 		 * writepage even in laptop mode.
3524 		 */
3525 		if (sc->priority < DEF_PRIORITY - 2)
3526 			sc->may_writepage = 1;
3527 	} while (--sc->priority >= 0);
3528 
3529 	last_pgdat = NULL;
3530 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3531 					sc->nodemask) {
3532 		if (zone->zone_pgdat == last_pgdat)
3533 			continue;
3534 		last_pgdat = zone->zone_pgdat;
3535 
3536 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3537 
3538 		if (cgroup_reclaim(sc)) {
3539 			struct lruvec *lruvec;
3540 
3541 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3542 						   zone->zone_pgdat);
3543 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3544 		}
3545 	}
3546 
3547 	delayacct_freepages_end();
3548 
3549 	if (sc->nr_reclaimed)
3550 		return sc->nr_reclaimed;
3551 
3552 	/* Aborted reclaim to try compaction? don't OOM, then */
3553 	if (sc->compaction_ready)
3554 		return 1;
3555 
3556 	/*
3557 	 * We make inactive:active ratio decisions based on the node's
3558 	 * composition of memory, but a restrictive reclaim_idx or a
3559 	 * memory.low cgroup setting can exempt large amounts of
3560 	 * memory from reclaim. Neither of which are very common, so
3561 	 * instead of doing costly eligibility calculations of the
3562 	 * entire cgroup subtree up front, we assume the estimates are
3563 	 * good, and retry with forcible deactivation if that fails.
3564 	 */
3565 	if (sc->skipped_deactivate) {
3566 		sc->priority = initial_priority;
3567 		sc->force_deactivate = 1;
3568 		sc->skipped_deactivate = 0;
3569 		goto retry;
3570 	}
3571 
3572 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3573 	if (sc->memcg_low_skipped) {
3574 		sc->priority = initial_priority;
3575 		sc->force_deactivate = 0;
3576 		sc->memcg_low_reclaim = 1;
3577 		sc->memcg_low_skipped = 0;
3578 		goto retry;
3579 	}
3580 
3581 	return 0;
3582 }
3583 
3584 static bool allow_direct_reclaim(pg_data_t *pgdat)
3585 {
3586 	struct zone *zone;
3587 	unsigned long pfmemalloc_reserve = 0;
3588 	unsigned long free_pages = 0;
3589 	int i;
3590 	bool wmark_ok;
3591 
3592 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3593 		return true;
3594 
3595 	for (i = 0; i <= ZONE_NORMAL; i++) {
3596 		zone = &pgdat->node_zones[i];
3597 		if (!managed_zone(zone))
3598 			continue;
3599 
3600 		if (!zone_reclaimable_pages(zone))
3601 			continue;
3602 
3603 		pfmemalloc_reserve += min_wmark_pages(zone);
3604 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3605 	}
3606 
3607 	/* If there are no reserves (unexpected config) then do not throttle */
3608 	if (!pfmemalloc_reserve)
3609 		return true;
3610 
3611 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3612 
3613 	/* kswapd must be awake if processes are being throttled */
3614 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3615 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3616 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3617 
3618 		wake_up_interruptible(&pgdat->kswapd_wait);
3619 	}
3620 
3621 	return wmark_ok;
3622 }
3623 
3624 /*
3625  * Throttle direct reclaimers if backing storage is backed by the network
3626  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3627  * depleted. kswapd will continue to make progress and wake the processes
3628  * when the low watermark is reached.
3629  *
3630  * Returns true if a fatal signal was delivered during throttling. If this
3631  * happens, the page allocator should not consider triggering the OOM killer.
3632  */
3633 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3634 					nodemask_t *nodemask)
3635 {
3636 	struct zoneref *z;
3637 	struct zone *zone;
3638 	pg_data_t *pgdat = NULL;
3639 
3640 	/*
3641 	 * Kernel threads should not be throttled as they may be indirectly
3642 	 * responsible for cleaning pages necessary for reclaim to make forward
3643 	 * progress. kjournald for example may enter direct reclaim while
3644 	 * committing a transaction where throttling it could forcing other
3645 	 * processes to block on log_wait_commit().
3646 	 */
3647 	if (current->flags & PF_KTHREAD)
3648 		goto out;
3649 
3650 	/*
3651 	 * If a fatal signal is pending, this process should not throttle.
3652 	 * It should return quickly so it can exit and free its memory
3653 	 */
3654 	if (fatal_signal_pending(current))
3655 		goto out;
3656 
3657 	/*
3658 	 * Check if the pfmemalloc reserves are ok by finding the first node
3659 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3660 	 * GFP_KERNEL will be required for allocating network buffers when
3661 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3662 	 *
3663 	 * Throttling is based on the first usable node and throttled processes
3664 	 * wait on a queue until kswapd makes progress and wakes them. There
3665 	 * is an affinity then between processes waking up and where reclaim
3666 	 * progress has been made assuming the process wakes on the same node.
3667 	 * More importantly, processes running on remote nodes will not compete
3668 	 * for remote pfmemalloc reserves and processes on different nodes
3669 	 * should make reasonable progress.
3670 	 */
3671 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3672 					gfp_zone(gfp_mask), nodemask) {
3673 		if (zone_idx(zone) > ZONE_NORMAL)
3674 			continue;
3675 
3676 		/* Throttle based on the first usable node */
3677 		pgdat = zone->zone_pgdat;
3678 		if (allow_direct_reclaim(pgdat))
3679 			goto out;
3680 		break;
3681 	}
3682 
3683 	/* If no zone was usable by the allocation flags then do not throttle */
3684 	if (!pgdat)
3685 		goto out;
3686 
3687 	/* Account for the throttling */
3688 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3689 
3690 	/*
3691 	 * If the caller cannot enter the filesystem, it's possible that it
3692 	 * is due to the caller holding an FS lock or performing a journal
3693 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3694 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3695 	 * blocked waiting on the same lock. Instead, throttle for up to a
3696 	 * second before continuing.
3697 	 */
3698 	if (!(gfp_mask & __GFP_FS))
3699 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3700 			allow_direct_reclaim(pgdat), HZ);
3701 	else
3702 		/* Throttle until kswapd wakes the process */
3703 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3704 			allow_direct_reclaim(pgdat));
3705 
3706 	if (fatal_signal_pending(current))
3707 		return true;
3708 
3709 out:
3710 	return false;
3711 }
3712 
3713 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3714 				gfp_t gfp_mask, nodemask_t *nodemask)
3715 {
3716 	unsigned long nr_reclaimed;
3717 	struct scan_control sc = {
3718 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3719 		.gfp_mask = current_gfp_context(gfp_mask),
3720 		.reclaim_idx = gfp_zone(gfp_mask),
3721 		.order = order,
3722 		.nodemask = nodemask,
3723 		.priority = DEF_PRIORITY,
3724 		.may_writepage = !laptop_mode,
3725 		.may_unmap = 1,
3726 		.may_swap = 1,
3727 	};
3728 
3729 	/*
3730 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3731 	 * Confirm they are large enough for max values.
3732 	 */
3733 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3734 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3735 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3736 
3737 	/*
3738 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3739 	 * 1 is returned so that the page allocator does not OOM kill at this
3740 	 * point.
3741 	 */
3742 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3743 		return 1;
3744 
3745 	set_task_reclaim_state(current, &sc.reclaim_state);
3746 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3747 
3748 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3749 
3750 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3751 	set_task_reclaim_state(current, NULL);
3752 
3753 	return nr_reclaimed;
3754 }
3755 
3756 #ifdef CONFIG_MEMCG
3757 
3758 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3759 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3760 						gfp_t gfp_mask, bool noswap,
3761 						pg_data_t *pgdat,
3762 						unsigned long *nr_scanned)
3763 {
3764 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3765 	struct scan_control sc = {
3766 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3767 		.target_mem_cgroup = memcg,
3768 		.may_writepage = !laptop_mode,
3769 		.may_unmap = 1,
3770 		.reclaim_idx = MAX_NR_ZONES - 1,
3771 		.may_swap = !noswap,
3772 	};
3773 
3774 	WARN_ON_ONCE(!current->reclaim_state);
3775 
3776 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3777 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3778 
3779 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3780 						      sc.gfp_mask);
3781 
3782 	/*
3783 	 * NOTE: Although we can get the priority field, using it
3784 	 * here is not a good idea, since it limits the pages we can scan.
3785 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3786 	 * will pick up pages from other mem cgroup's as well. We hack
3787 	 * the priority and make it zero.
3788 	 */
3789 	shrink_lruvec(lruvec, &sc);
3790 
3791 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3792 
3793 	*nr_scanned = sc.nr_scanned;
3794 
3795 	return sc.nr_reclaimed;
3796 }
3797 
3798 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3799 					   unsigned long nr_pages,
3800 					   gfp_t gfp_mask,
3801 					   bool may_swap)
3802 {
3803 	unsigned long nr_reclaimed;
3804 	unsigned int noreclaim_flag;
3805 	struct scan_control sc = {
3806 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3807 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3808 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3809 		.reclaim_idx = MAX_NR_ZONES - 1,
3810 		.target_mem_cgroup = memcg,
3811 		.priority = DEF_PRIORITY,
3812 		.may_writepage = !laptop_mode,
3813 		.may_unmap = 1,
3814 		.may_swap = may_swap,
3815 	};
3816 	/*
3817 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3818 	 * equal pressure on all the nodes. This is based on the assumption that
3819 	 * the reclaim does not bail out early.
3820 	 */
3821 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3822 
3823 	set_task_reclaim_state(current, &sc.reclaim_state);
3824 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3825 	noreclaim_flag = memalloc_noreclaim_save();
3826 
3827 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3828 
3829 	memalloc_noreclaim_restore(noreclaim_flag);
3830 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3831 	set_task_reclaim_state(current, NULL);
3832 
3833 	return nr_reclaimed;
3834 }
3835 #endif
3836 
3837 static void age_active_anon(struct pglist_data *pgdat,
3838 				struct scan_control *sc)
3839 {
3840 	struct mem_cgroup *memcg;
3841 	struct lruvec *lruvec;
3842 
3843 	if (!can_age_anon_pages(pgdat, sc))
3844 		return;
3845 
3846 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3847 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3848 		return;
3849 
3850 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3851 	do {
3852 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3853 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3854 				   sc, LRU_ACTIVE_ANON);
3855 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3856 	} while (memcg);
3857 }
3858 
3859 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3860 {
3861 	int i;
3862 	struct zone *zone;
3863 
3864 	/*
3865 	 * Check for watermark boosts top-down as the higher zones
3866 	 * are more likely to be boosted. Both watermarks and boosts
3867 	 * should not be checked at the same time as reclaim would
3868 	 * start prematurely when there is no boosting and a lower
3869 	 * zone is balanced.
3870 	 */
3871 	for (i = highest_zoneidx; i >= 0; i--) {
3872 		zone = pgdat->node_zones + i;
3873 		if (!managed_zone(zone))
3874 			continue;
3875 
3876 		if (zone->watermark_boost)
3877 			return true;
3878 	}
3879 
3880 	return false;
3881 }
3882 
3883 /*
3884  * Returns true if there is an eligible zone balanced for the request order
3885  * and highest_zoneidx
3886  */
3887 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3888 {
3889 	int i;
3890 	unsigned long mark = -1;
3891 	struct zone *zone;
3892 
3893 	/*
3894 	 * Check watermarks bottom-up as lower zones are more likely to
3895 	 * meet watermarks.
3896 	 */
3897 	for (i = 0; i <= highest_zoneidx; i++) {
3898 		zone = pgdat->node_zones + i;
3899 
3900 		if (!managed_zone(zone))
3901 			continue;
3902 
3903 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3904 			mark = wmark_pages(zone, WMARK_PROMO);
3905 		else
3906 			mark = high_wmark_pages(zone);
3907 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3908 			return true;
3909 	}
3910 
3911 	/*
3912 	 * If a node has no managed zone within highest_zoneidx, it does not
3913 	 * need balancing by definition. This can happen if a zone-restricted
3914 	 * allocation tries to wake a remote kswapd.
3915 	 */
3916 	if (mark == -1)
3917 		return true;
3918 
3919 	return false;
3920 }
3921 
3922 /* Clear pgdat state for congested, dirty or under writeback. */
3923 static void clear_pgdat_congested(pg_data_t *pgdat)
3924 {
3925 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3926 
3927 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3928 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3929 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3930 }
3931 
3932 /*
3933  * Prepare kswapd for sleeping. This verifies that there are no processes
3934  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3935  *
3936  * Returns true if kswapd is ready to sleep
3937  */
3938 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3939 				int highest_zoneidx)
3940 {
3941 	/*
3942 	 * The throttled processes are normally woken up in balance_pgdat() as
3943 	 * soon as allow_direct_reclaim() is true. But there is a potential
3944 	 * race between when kswapd checks the watermarks and a process gets
3945 	 * throttled. There is also a potential race if processes get
3946 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3947 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3948 	 * the wake up checks. If kswapd is going to sleep, no process should
3949 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3950 	 * the wake up is premature, processes will wake kswapd and get
3951 	 * throttled again. The difference from wake ups in balance_pgdat() is
3952 	 * that here we are under prepare_to_wait().
3953 	 */
3954 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3955 		wake_up_all(&pgdat->pfmemalloc_wait);
3956 
3957 	/* Hopeless node, leave it to direct reclaim */
3958 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3959 		return true;
3960 
3961 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3962 		clear_pgdat_congested(pgdat);
3963 		return true;
3964 	}
3965 
3966 	return false;
3967 }
3968 
3969 /*
3970  * kswapd shrinks a node of pages that are at or below the highest usable
3971  * zone that is currently unbalanced.
3972  *
3973  * Returns true if kswapd scanned at least the requested number of pages to
3974  * reclaim or if the lack of progress was due to pages under writeback.
3975  * This is used to determine if the scanning priority needs to be raised.
3976  */
3977 static bool kswapd_shrink_node(pg_data_t *pgdat,
3978 			       struct scan_control *sc)
3979 {
3980 	struct zone *zone;
3981 	int z;
3982 
3983 	/* Reclaim a number of pages proportional to the number of zones */
3984 	sc->nr_to_reclaim = 0;
3985 	for (z = 0; z <= sc->reclaim_idx; z++) {
3986 		zone = pgdat->node_zones + z;
3987 		if (!managed_zone(zone))
3988 			continue;
3989 
3990 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3991 	}
3992 
3993 	/*
3994 	 * Historically care was taken to put equal pressure on all zones but
3995 	 * now pressure is applied based on node LRU order.
3996 	 */
3997 	shrink_node(pgdat, sc);
3998 
3999 	/*
4000 	 * Fragmentation may mean that the system cannot be rebalanced for
4001 	 * high-order allocations. If twice the allocation size has been
4002 	 * reclaimed then recheck watermarks only at order-0 to prevent
4003 	 * excessive reclaim. Assume that a process requested a high-order
4004 	 * can direct reclaim/compact.
4005 	 */
4006 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4007 		sc->order = 0;
4008 
4009 	return sc->nr_scanned >= sc->nr_to_reclaim;
4010 }
4011 
4012 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4013 static inline void
4014 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4015 {
4016 	int i;
4017 	struct zone *zone;
4018 
4019 	for (i = 0; i <= highest_zoneidx; i++) {
4020 		zone = pgdat->node_zones + i;
4021 
4022 		if (!managed_zone(zone))
4023 			continue;
4024 
4025 		if (active)
4026 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4027 		else
4028 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4029 	}
4030 }
4031 
4032 static inline void
4033 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4034 {
4035 	update_reclaim_active(pgdat, highest_zoneidx, true);
4036 }
4037 
4038 static inline void
4039 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4040 {
4041 	update_reclaim_active(pgdat, highest_zoneidx, false);
4042 }
4043 
4044 /*
4045  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4046  * that are eligible for use by the caller until at least one zone is
4047  * balanced.
4048  *
4049  * Returns the order kswapd finished reclaiming at.
4050  *
4051  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4052  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4053  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4054  * or lower is eligible for reclaim until at least one usable zone is
4055  * balanced.
4056  */
4057 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4058 {
4059 	int i;
4060 	unsigned long nr_soft_reclaimed;
4061 	unsigned long nr_soft_scanned;
4062 	unsigned long pflags;
4063 	unsigned long nr_boost_reclaim;
4064 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4065 	bool boosted;
4066 	struct zone *zone;
4067 	struct scan_control sc = {
4068 		.gfp_mask = GFP_KERNEL,
4069 		.order = order,
4070 		.may_unmap = 1,
4071 	};
4072 
4073 	set_task_reclaim_state(current, &sc.reclaim_state);
4074 	psi_memstall_enter(&pflags);
4075 	__fs_reclaim_acquire(_THIS_IP_);
4076 
4077 	count_vm_event(PAGEOUTRUN);
4078 
4079 	/*
4080 	 * Account for the reclaim boost. Note that the zone boost is left in
4081 	 * place so that parallel allocations that are near the watermark will
4082 	 * stall or direct reclaim until kswapd is finished.
4083 	 */
4084 	nr_boost_reclaim = 0;
4085 	for (i = 0; i <= highest_zoneidx; i++) {
4086 		zone = pgdat->node_zones + i;
4087 		if (!managed_zone(zone))
4088 			continue;
4089 
4090 		nr_boost_reclaim += zone->watermark_boost;
4091 		zone_boosts[i] = zone->watermark_boost;
4092 	}
4093 	boosted = nr_boost_reclaim;
4094 
4095 restart:
4096 	set_reclaim_active(pgdat, highest_zoneidx);
4097 	sc.priority = DEF_PRIORITY;
4098 	do {
4099 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4100 		bool raise_priority = true;
4101 		bool balanced;
4102 		bool ret;
4103 
4104 		sc.reclaim_idx = highest_zoneidx;
4105 
4106 		/*
4107 		 * If the number of buffer_heads exceeds the maximum allowed
4108 		 * then consider reclaiming from all zones. This has a dual
4109 		 * purpose -- on 64-bit systems it is expected that
4110 		 * buffer_heads are stripped during active rotation. On 32-bit
4111 		 * systems, highmem pages can pin lowmem memory and shrinking
4112 		 * buffers can relieve lowmem pressure. Reclaim may still not
4113 		 * go ahead if all eligible zones for the original allocation
4114 		 * request are balanced to avoid excessive reclaim from kswapd.
4115 		 */
4116 		if (buffer_heads_over_limit) {
4117 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4118 				zone = pgdat->node_zones + i;
4119 				if (!managed_zone(zone))
4120 					continue;
4121 
4122 				sc.reclaim_idx = i;
4123 				break;
4124 			}
4125 		}
4126 
4127 		/*
4128 		 * If the pgdat is imbalanced then ignore boosting and preserve
4129 		 * the watermarks for a later time and restart. Note that the
4130 		 * zone watermarks will be still reset at the end of balancing
4131 		 * on the grounds that the normal reclaim should be enough to
4132 		 * re-evaluate if boosting is required when kswapd next wakes.
4133 		 */
4134 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4135 		if (!balanced && nr_boost_reclaim) {
4136 			nr_boost_reclaim = 0;
4137 			goto restart;
4138 		}
4139 
4140 		/*
4141 		 * If boosting is not active then only reclaim if there are no
4142 		 * eligible zones. Note that sc.reclaim_idx is not used as
4143 		 * buffer_heads_over_limit may have adjusted it.
4144 		 */
4145 		if (!nr_boost_reclaim && balanced)
4146 			goto out;
4147 
4148 		/* Limit the priority of boosting to avoid reclaim writeback */
4149 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4150 			raise_priority = false;
4151 
4152 		/*
4153 		 * Do not writeback or swap pages for boosted reclaim. The
4154 		 * intent is to relieve pressure not issue sub-optimal IO
4155 		 * from reclaim context. If no pages are reclaimed, the
4156 		 * reclaim will be aborted.
4157 		 */
4158 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4159 		sc.may_swap = !nr_boost_reclaim;
4160 
4161 		/*
4162 		 * Do some background aging of the anon list, to give
4163 		 * pages a chance to be referenced before reclaiming. All
4164 		 * pages are rotated regardless of classzone as this is
4165 		 * about consistent aging.
4166 		 */
4167 		age_active_anon(pgdat, &sc);
4168 
4169 		/*
4170 		 * If we're getting trouble reclaiming, start doing writepage
4171 		 * even in laptop mode.
4172 		 */
4173 		if (sc.priority < DEF_PRIORITY - 2)
4174 			sc.may_writepage = 1;
4175 
4176 		/* Call soft limit reclaim before calling shrink_node. */
4177 		sc.nr_scanned = 0;
4178 		nr_soft_scanned = 0;
4179 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4180 						sc.gfp_mask, &nr_soft_scanned);
4181 		sc.nr_reclaimed += nr_soft_reclaimed;
4182 
4183 		/*
4184 		 * There should be no need to raise the scanning priority if
4185 		 * enough pages are already being scanned that that high
4186 		 * watermark would be met at 100% efficiency.
4187 		 */
4188 		if (kswapd_shrink_node(pgdat, &sc))
4189 			raise_priority = false;
4190 
4191 		/*
4192 		 * If the low watermark is met there is no need for processes
4193 		 * to be throttled on pfmemalloc_wait as they should not be
4194 		 * able to safely make forward progress. Wake them
4195 		 */
4196 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4197 				allow_direct_reclaim(pgdat))
4198 			wake_up_all(&pgdat->pfmemalloc_wait);
4199 
4200 		/* Check if kswapd should be suspending */
4201 		__fs_reclaim_release(_THIS_IP_);
4202 		ret = try_to_freeze();
4203 		__fs_reclaim_acquire(_THIS_IP_);
4204 		if (ret || kthread_should_stop())
4205 			break;
4206 
4207 		/*
4208 		 * Raise priority if scanning rate is too low or there was no
4209 		 * progress in reclaiming pages
4210 		 */
4211 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4212 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4213 
4214 		/*
4215 		 * If reclaim made no progress for a boost, stop reclaim as
4216 		 * IO cannot be queued and it could be an infinite loop in
4217 		 * extreme circumstances.
4218 		 */
4219 		if (nr_boost_reclaim && !nr_reclaimed)
4220 			break;
4221 
4222 		if (raise_priority || !nr_reclaimed)
4223 			sc.priority--;
4224 	} while (sc.priority >= 1);
4225 
4226 	if (!sc.nr_reclaimed)
4227 		pgdat->kswapd_failures++;
4228 
4229 out:
4230 	clear_reclaim_active(pgdat, highest_zoneidx);
4231 
4232 	/* If reclaim was boosted, account for the reclaim done in this pass */
4233 	if (boosted) {
4234 		unsigned long flags;
4235 
4236 		for (i = 0; i <= highest_zoneidx; i++) {
4237 			if (!zone_boosts[i])
4238 				continue;
4239 
4240 			/* Increments are under the zone lock */
4241 			zone = pgdat->node_zones + i;
4242 			spin_lock_irqsave(&zone->lock, flags);
4243 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4244 			spin_unlock_irqrestore(&zone->lock, flags);
4245 		}
4246 
4247 		/*
4248 		 * As there is now likely space, wakeup kcompact to defragment
4249 		 * pageblocks.
4250 		 */
4251 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4252 	}
4253 
4254 	snapshot_refaults(NULL, pgdat);
4255 	__fs_reclaim_release(_THIS_IP_);
4256 	psi_memstall_leave(&pflags);
4257 	set_task_reclaim_state(current, NULL);
4258 
4259 	/*
4260 	 * Return the order kswapd stopped reclaiming at as
4261 	 * prepare_kswapd_sleep() takes it into account. If another caller
4262 	 * entered the allocator slow path while kswapd was awake, order will
4263 	 * remain at the higher level.
4264 	 */
4265 	return sc.order;
4266 }
4267 
4268 /*
4269  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4270  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4271  * not a valid index then either kswapd runs for first time or kswapd couldn't
4272  * sleep after previous reclaim attempt (node is still unbalanced). In that
4273  * case return the zone index of the previous kswapd reclaim cycle.
4274  */
4275 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4276 					   enum zone_type prev_highest_zoneidx)
4277 {
4278 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4279 
4280 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4281 }
4282 
4283 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4284 				unsigned int highest_zoneidx)
4285 {
4286 	long remaining = 0;
4287 	DEFINE_WAIT(wait);
4288 
4289 	if (freezing(current) || kthread_should_stop())
4290 		return;
4291 
4292 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4293 
4294 	/*
4295 	 * Try to sleep for a short interval. Note that kcompactd will only be
4296 	 * woken if it is possible to sleep for a short interval. This is
4297 	 * deliberate on the assumption that if reclaim cannot keep an
4298 	 * eligible zone balanced that it's also unlikely that compaction will
4299 	 * succeed.
4300 	 */
4301 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4302 		/*
4303 		 * Compaction records what page blocks it recently failed to
4304 		 * isolate pages from and skips them in the future scanning.
4305 		 * When kswapd is going to sleep, it is reasonable to assume
4306 		 * that pages and compaction may succeed so reset the cache.
4307 		 */
4308 		reset_isolation_suitable(pgdat);
4309 
4310 		/*
4311 		 * We have freed the memory, now we should compact it to make
4312 		 * allocation of the requested order possible.
4313 		 */
4314 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4315 
4316 		remaining = schedule_timeout(HZ/10);
4317 
4318 		/*
4319 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4320 		 * order. The values will either be from a wakeup request or
4321 		 * the previous request that slept prematurely.
4322 		 */
4323 		if (remaining) {
4324 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4325 					kswapd_highest_zoneidx(pgdat,
4326 							highest_zoneidx));
4327 
4328 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4329 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4330 		}
4331 
4332 		finish_wait(&pgdat->kswapd_wait, &wait);
4333 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4334 	}
4335 
4336 	/*
4337 	 * After a short sleep, check if it was a premature sleep. If not, then
4338 	 * go fully to sleep until explicitly woken up.
4339 	 */
4340 	if (!remaining &&
4341 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4342 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4343 
4344 		/*
4345 		 * vmstat counters are not perfectly accurate and the estimated
4346 		 * value for counters such as NR_FREE_PAGES can deviate from the
4347 		 * true value by nr_online_cpus * threshold. To avoid the zone
4348 		 * watermarks being breached while under pressure, we reduce the
4349 		 * per-cpu vmstat threshold while kswapd is awake and restore
4350 		 * them before going back to sleep.
4351 		 */
4352 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4353 
4354 		if (!kthread_should_stop())
4355 			schedule();
4356 
4357 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4358 	} else {
4359 		if (remaining)
4360 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4361 		else
4362 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4363 	}
4364 	finish_wait(&pgdat->kswapd_wait, &wait);
4365 }
4366 
4367 /*
4368  * The background pageout daemon, started as a kernel thread
4369  * from the init process.
4370  *
4371  * This basically trickles out pages so that we have _some_
4372  * free memory available even if there is no other activity
4373  * that frees anything up. This is needed for things like routing
4374  * etc, where we otherwise might have all activity going on in
4375  * asynchronous contexts that cannot page things out.
4376  *
4377  * If there are applications that are active memory-allocators
4378  * (most normal use), this basically shouldn't matter.
4379  */
4380 static int kswapd(void *p)
4381 {
4382 	unsigned int alloc_order, reclaim_order;
4383 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4384 	pg_data_t *pgdat = (pg_data_t *)p;
4385 	struct task_struct *tsk = current;
4386 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4387 
4388 	if (!cpumask_empty(cpumask))
4389 		set_cpus_allowed_ptr(tsk, cpumask);
4390 
4391 	/*
4392 	 * Tell the memory management that we're a "memory allocator",
4393 	 * and that if we need more memory we should get access to it
4394 	 * regardless (see "__alloc_pages()"). "kswapd" should
4395 	 * never get caught in the normal page freeing logic.
4396 	 *
4397 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4398 	 * you need a small amount of memory in order to be able to
4399 	 * page out something else, and this flag essentially protects
4400 	 * us from recursively trying to free more memory as we're
4401 	 * trying to free the first piece of memory in the first place).
4402 	 */
4403 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4404 	set_freezable();
4405 
4406 	WRITE_ONCE(pgdat->kswapd_order, 0);
4407 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4408 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4409 	for ( ; ; ) {
4410 		bool ret;
4411 
4412 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4413 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4414 							highest_zoneidx);
4415 
4416 kswapd_try_sleep:
4417 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4418 					highest_zoneidx);
4419 
4420 		/* Read the new order and highest_zoneidx */
4421 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4422 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4423 							highest_zoneidx);
4424 		WRITE_ONCE(pgdat->kswapd_order, 0);
4425 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4426 
4427 		ret = try_to_freeze();
4428 		if (kthread_should_stop())
4429 			break;
4430 
4431 		/*
4432 		 * We can speed up thawing tasks if we don't call balance_pgdat
4433 		 * after returning from the refrigerator
4434 		 */
4435 		if (ret)
4436 			continue;
4437 
4438 		/*
4439 		 * Reclaim begins at the requested order but if a high-order
4440 		 * reclaim fails then kswapd falls back to reclaiming for
4441 		 * order-0. If that happens, kswapd will consider sleeping
4442 		 * for the order it finished reclaiming at (reclaim_order)
4443 		 * but kcompactd is woken to compact for the original
4444 		 * request (alloc_order).
4445 		 */
4446 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4447 						alloc_order);
4448 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4449 						highest_zoneidx);
4450 		if (reclaim_order < alloc_order)
4451 			goto kswapd_try_sleep;
4452 	}
4453 
4454 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4455 
4456 	return 0;
4457 }
4458 
4459 /*
4460  * A zone is low on free memory or too fragmented for high-order memory.  If
4461  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4462  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4463  * has failed or is not needed, still wake up kcompactd if only compaction is
4464  * needed.
4465  */
4466 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4467 		   enum zone_type highest_zoneidx)
4468 {
4469 	pg_data_t *pgdat;
4470 	enum zone_type curr_idx;
4471 
4472 	if (!managed_zone(zone))
4473 		return;
4474 
4475 	if (!cpuset_zone_allowed(zone, gfp_flags))
4476 		return;
4477 
4478 	pgdat = zone->zone_pgdat;
4479 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4480 
4481 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4482 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4483 
4484 	if (READ_ONCE(pgdat->kswapd_order) < order)
4485 		WRITE_ONCE(pgdat->kswapd_order, order);
4486 
4487 	if (!waitqueue_active(&pgdat->kswapd_wait))
4488 		return;
4489 
4490 	/* Hopeless node, leave it to direct reclaim if possible */
4491 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4492 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4493 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4494 		/*
4495 		 * There may be plenty of free memory available, but it's too
4496 		 * fragmented for high-order allocations.  Wake up kcompactd
4497 		 * and rely on compaction_suitable() to determine if it's
4498 		 * needed.  If it fails, it will defer subsequent attempts to
4499 		 * ratelimit its work.
4500 		 */
4501 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4502 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4503 		return;
4504 	}
4505 
4506 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4507 				      gfp_flags);
4508 	wake_up_interruptible(&pgdat->kswapd_wait);
4509 }
4510 
4511 #ifdef CONFIG_HIBERNATION
4512 /*
4513  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4514  * freed pages.
4515  *
4516  * Rather than trying to age LRUs the aim is to preserve the overall
4517  * LRU order by reclaiming preferentially
4518  * inactive > active > active referenced > active mapped
4519  */
4520 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4521 {
4522 	struct scan_control sc = {
4523 		.nr_to_reclaim = nr_to_reclaim,
4524 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4525 		.reclaim_idx = MAX_NR_ZONES - 1,
4526 		.priority = DEF_PRIORITY,
4527 		.may_writepage = 1,
4528 		.may_unmap = 1,
4529 		.may_swap = 1,
4530 		.hibernation_mode = 1,
4531 	};
4532 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4533 	unsigned long nr_reclaimed;
4534 	unsigned int noreclaim_flag;
4535 
4536 	fs_reclaim_acquire(sc.gfp_mask);
4537 	noreclaim_flag = memalloc_noreclaim_save();
4538 	set_task_reclaim_state(current, &sc.reclaim_state);
4539 
4540 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4541 
4542 	set_task_reclaim_state(current, NULL);
4543 	memalloc_noreclaim_restore(noreclaim_flag);
4544 	fs_reclaim_release(sc.gfp_mask);
4545 
4546 	return nr_reclaimed;
4547 }
4548 #endif /* CONFIG_HIBERNATION */
4549 
4550 /*
4551  * This kswapd start function will be called by init and node-hot-add.
4552  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4553  */
4554 void kswapd_run(int nid)
4555 {
4556 	pg_data_t *pgdat = NODE_DATA(nid);
4557 
4558 	if (pgdat->kswapd)
4559 		return;
4560 
4561 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4562 	if (IS_ERR(pgdat->kswapd)) {
4563 		/* failure at boot is fatal */
4564 		BUG_ON(system_state < SYSTEM_RUNNING);
4565 		pr_err("Failed to start kswapd on node %d\n", nid);
4566 		pgdat->kswapd = NULL;
4567 	}
4568 }
4569 
4570 /*
4571  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4572  * hold mem_hotplug_begin/end().
4573  */
4574 void kswapd_stop(int nid)
4575 {
4576 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4577 
4578 	if (kswapd) {
4579 		kthread_stop(kswapd);
4580 		NODE_DATA(nid)->kswapd = NULL;
4581 	}
4582 }
4583 
4584 static int __init kswapd_init(void)
4585 {
4586 	int nid;
4587 
4588 	swap_setup();
4589 	for_each_node_state(nid, N_MEMORY)
4590  		kswapd_run(nid);
4591 	return 0;
4592 }
4593 
4594 module_init(kswapd_init)
4595 
4596 #ifdef CONFIG_NUMA
4597 /*
4598  * Node reclaim mode
4599  *
4600  * If non-zero call node_reclaim when the number of free pages falls below
4601  * the watermarks.
4602  */
4603 int node_reclaim_mode __read_mostly;
4604 
4605 /*
4606  * Priority for NODE_RECLAIM. This determines the fraction of pages
4607  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4608  * a zone.
4609  */
4610 #define NODE_RECLAIM_PRIORITY 4
4611 
4612 /*
4613  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4614  * occur.
4615  */
4616 int sysctl_min_unmapped_ratio = 1;
4617 
4618 /*
4619  * If the number of slab pages in a zone grows beyond this percentage then
4620  * slab reclaim needs to occur.
4621  */
4622 int sysctl_min_slab_ratio = 5;
4623 
4624 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4625 {
4626 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4627 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4628 		node_page_state(pgdat, NR_ACTIVE_FILE);
4629 
4630 	/*
4631 	 * It's possible for there to be more file mapped pages than
4632 	 * accounted for by the pages on the file LRU lists because
4633 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4634 	 */
4635 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4636 }
4637 
4638 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4639 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4640 {
4641 	unsigned long nr_pagecache_reclaimable;
4642 	unsigned long delta = 0;
4643 
4644 	/*
4645 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4646 	 * potentially reclaimable. Otherwise, we have to worry about
4647 	 * pages like swapcache and node_unmapped_file_pages() provides
4648 	 * a better estimate
4649 	 */
4650 	if (node_reclaim_mode & RECLAIM_UNMAP)
4651 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4652 	else
4653 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4654 
4655 	/* If we can't clean pages, remove dirty pages from consideration */
4656 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4657 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4658 
4659 	/* Watch for any possible underflows due to delta */
4660 	if (unlikely(delta > nr_pagecache_reclaimable))
4661 		delta = nr_pagecache_reclaimable;
4662 
4663 	return nr_pagecache_reclaimable - delta;
4664 }
4665 
4666 /*
4667  * Try to free up some pages from this node through reclaim.
4668  */
4669 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4670 {
4671 	/* Minimum pages needed in order to stay on node */
4672 	const unsigned long nr_pages = 1 << order;
4673 	struct task_struct *p = current;
4674 	unsigned int noreclaim_flag;
4675 	struct scan_control sc = {
4676 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4677 		.gfp_mask = current_gfp_context(gfp_mask),
4678 		.order = order,
4679 		.priority = NODE_RECLAIM_PRIORITY,
4680 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4681 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4682 		.may_swap = 1,
4683 		.reclaim_idx = gfp_zone(gfp_mask),
4684 	};
4685 	unsigned long pflags;
4686 
4687 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4688 					   sc.gfp_mask);
4689 
4690 	cond_resched();
4691 	psi_memstall_enter(&pflags);
4692 	fs_reclaim_acquire(sc.gfp_mask);
4693 	/*
4694 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4695 	 */
4696 	noreclaim_flag = memalloc_noreclaim_save();
4697 	set_task_reclaim_state(p, &sc.reclaim_state);
4698 
4699 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4700 		/*
4701 		 * Free memory by calling shrink node with increasing
4702 		 * priorities until we have enough memory freed.
4703 		 */
4704 		do {
4705 			shrink_node(pgdat, &sc);
4706 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4707 	}
4708 
4709 	set_task_reclaim_state(p, NULL);
4710 	memalloc_noreclaim_restore(noreclaim_flag);
4711 	fs_reclaim_release(sc.gfp_mask);
4712 	psi_memstall_leave(&pflags);
4713 
4714 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4715 
4716 	return sc.nr_reclaimed >= nr_pages;
4717 }
4718 
4719 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4720 {
4721 	int ret;
4722 
4723 	/*
4724 	 * Node reclaim reclaims unmapped file backed pages and
4725 	 * slab pages if we are over the defined limits.
4726 	 *
4727 	 * A small portion of unmapped file backed pages is needed for
4728 	 * file I/O otherwise pages read by file I/O will be immediately
4729 	 * thrown out if the node is overallocated. So we do not reclaim
4730 	 * if less than a specified percentage of the node is used by
4731 	 * unmapped file backed pages.
4732 	 */
4733 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4734 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4735 	    pgdat->min_slab_pages)
4736 		return NODE_RECLAIM_FULL;
4737 
4738 	/*
4739 	 * Do not scan if the allocation should not be delayed.
4740 	 */
4741 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4742 		return NODE_RECLAIM_NOSCAN;
4743 
4744 	/*
4745 	 * Only run node reclaim on the local node or on nodes that do not
4746 	 * have associated processors. This will favor the local processor
4747 	 * over remote processors and spread off node memory allocations
4748 	 * as wide as possible.
4749 	 */
4750 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4751 		return NODE_RECLAIM_NOSCAN;
4752 
4753 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4754 		return NODE_RECLAIM_NOSCAN;
4755 
4756 	ret = __node_reclaim(pgdat, gfp_mask, order);
4757 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4758 
4759 	if (!ret)
4760 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4761 
4762 	return ret;
4763 }
4764 #endif
4765 
4766 /**
4767  * check_move_unevictable_pages - check pages for evictability and move to
4768  * appropriate zone lru list
4769  * @pvec: pagevec with lru pages to check
4770  *
4771  * Checks pages for evictability, if an evictable page is in the unevictable
4772  * lru list, moves it to the appropriate evictable lru list. This function
4773  * should be only used for lru pages.
4774  */
4775 void check_move_unevictable_pages(struct pagevec *pvec)
4776 {
4777 	struct lruvec *lruvec = NULL;
4778 	int pgscanned = 0;
4779 	int pgrescued = 0;
4780 	int i;
4781 
4782 	for (i = 0; i < pvec->nr; i++) {
4783 		struct page *page = pvec->pages[i];
4784 		struct folio *folio = page_folio(page);
4785 		int nr_pages;
4786 
4787 		if (PageTransTail(page))
4788 			continue;
4789 
4790 		nr_pages = thp_nr_pages(page);
4791 		pgscanned += nr_pages;
4792 
4793 		/* block memcg migration during page moving between lru */
4794 		if (!TestClearPageLRU(page))
4795 			continue;
4796 
4797 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4798 		if (page_evictable(page) && PageUnevictable(page)) {
4799 			del_page_from_lru_list(page, lruvec);
4800 			ClearPageUnevictable(page);
4801 			add_page_to_lru_list(page, lruvec);
4802 			pgrescued += nr_pages;
4803 		}
4804 		SetPageLRU(page);
4805 	}
4806 
4807 	if (lruvec) {
4808 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4809 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4810 		unlock_page_lruvec_irq(lruvec);
4811 	} else if (pgscanned) {
4812 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4813 	}
4814 }
4815 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4816