1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 45 #include <asm/tlbflush.h> 46 #include <asm/div64.h> 47 48 #include <linux/swapops.h> 49 50 #include "internal.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/vmscan.h> 54 55 /* 56 * reclaim_mode determines how the inactive list is shrunk 57 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages 58 * RECLAIM_MODE_ASYNC: Do not block 59 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback 60 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference 61 * page from the LRU and reclaim all pages within a 62 * naturally aligned range 63 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of 64 * order-0 pages and then compact the zone 65 */ 66 typedef unsigned __bitwise__ reclaim_mode_t; 67 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u) 68 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u) 69 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u) 70 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u) 71 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u) 72 73 struct scan_control { 74 /* Incremented by the number of inactive pages that were scanned */ 75 unsigned long nr_scanned; 76 77 /* Number of pages freed so far during a call to shrink_zones() */ 78 unsigned long nr_reclaimed; 79 80 /* How many pages shrink_list() should reclaim */ 81 unsigned long nr_to_reclaim; 82 83 unsigned long hibernation_mode; 84 85 /* This context's GFP mask */ 86 gfp_t gfp_mask; 87 88 int may_writepage; 89 90 /* Can mapped pages be reclaimed? */ 91 int may_unmap; 92 93 /* Can pages be swapped as part of reclaim? */ 94 int may_swap; 95 96 int swappiness; 97 98 int order; 99 100 /* 101 * Intend to reclaim enough continuous memory rather than reclaim 102 * enough amount of memory. i.e, mode for high order allocation. 103 */ 104 reclaim_mode_t reclaim_mode; 105 106 /* Which cgroup do we reclaim from */ 107 struct mem_cgroup *mem_cgroup; 108 109 /* 110 * Nodemask of nodes allowed by the caller. If NULL, all nodes 111 * are scanned. 112 */ 113 nodemask_t *nodemask; 114 }; 115 116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 117 118 #ifdef ARCH_HAS_PREFETCH 119 #define prefetch_prev_lru_page(_page, _base, _field) \ 120 do { \ 121 if ((_page)->lru.prev != _base) { \ 122 struct page *prev; \ 123 \ 124 prev = lru_to_page(&(_page->lru)); \ 125 prefetch(&prev->_field); \ 126 } \ 127 } while (0) 128 #else 129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 130 #endif 131 132 #ifdef ARCH_HAS_PREFETCHW 133 #define prefetchw_prev_lru_page(_page, _base, _field) \ 134 do { \ 135 if ((_page)->lru.prev != _base) { \ 136 struct page *prev; \ 137 \ 138 prev = lru_to_page(&(_page->lru)); \ 139 prefetchw(&prev->_field); \ 140 } \ 141 } while (0) 142 #else 143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 144 #endif 145 146 /* 147 * From 0 .. 100. Higher means more swappy. 148 */ 149 int vm_swappiness = 60; 150 long vm_total_pages; /* The total number of pages which the VM controls */ 151 152 static LIST_HEAD(shrinker_list); 153 static DECLARE_RWSEM(shrinker_rwsem); 154 155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 157 #else 158 #define scanning_global_lru(sc) (1) 159 #endif 160 161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 162 struct scan_control *sc) 163 { 164 if (!scanning_global_lru(sc)) 165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 166 167 return &zone->reclaim_stat; 168 } 169 170 static unsigned long zone_nr_lru_pages(struct zone *zone, 171 struct scan_control *sc, enum lru_list lru) 172 { 173 if (!scanning_global_lru(sc)) 174 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 175 176 return zone_page_state(zone, NR_LRU_BASE + lru); 177 } 178 179 180 /* 181 * Add a shrinker callback to be called from the vm 182 */ 183 void register_shrinker(struct shrinker *shrinker) 184 { 185 shrinker->nr = 0; 186 down_write(&shrinker_rwsem); 187 list_add_tail(&shrinker->list, &shrinker_list); 188 up_write(&shrinker_rwsem); 189 } 190 EXPORT_SYMBOL(register_shrinker); 191 192 /* 193 * Remove one 194 */ 195 void unregister_shrinker(struct shrinker *shrinker) 196 { 197 down_write(&shrinker_rwsem); 198 list_del(&shrinker->list); 199 up_write(&shrinker_rwsem); 200 } 201 EXPORT_SYMBOL(unregister_shrinker); 202 203 #define SHRINK_BATCH 128 204 /* 205 * Call the shrink functions to age shrinkable caches 206 * 207 * Here we assume it costs one seek to replace a lru page and that it also 208 * takes a seek to recreate a cache object. With this in mind we age equal 209 * percentages of the lru and ageable caches. This should balance the seeks 210 * generated by these structures. 211 * 212 * If the vm encountered mapped pages on the LRU it increase the pressure on 213 * slab to avoid swapping. 214 * 215 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 216 * 217 * `lru_pages' represents the number of on-LRU pages in all the zones which 218 * are eligible for the caller's allocation attempt. It is used for balancing 219 * slab reclaim versus page reclaim. 220 * 221 * Returns the number of slab objects which we shrunk. 222 */ 223 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 224 unsigned long lru_pages) 225 { 226 struct shrinker *shrinker; 227 unsigned long ret = 0; 228 229 if (scanned == 0) 230 scanned = SWAP_CLUSTER_MAX; 231 232 if (!down_read_trylock(&shrinker_rwsem)) 233 return 1; /* Assume we'll be able to shrink next time */ 234 235 list_for_each_entry(shrinker, &shrinker_list, list) { 236 unsigned long long delta; 237 unsigned long total_scan; 238 unsigned long max_pass; 239 240 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask); 241 delta = (4 * scanned) / shrinker->seeks; 242 delta *= max_pass; 243 do_div(delta, lru_pages + 1); 244 shrinker->nr += delta; 245 if (shrinker->nr < 0) { 246 printk(KERN_ERR "shrink_slab: %pF negative objects to " 247 "delete nr=%ld\n", 248 shrinker->shrink, shrinker->nr); 249 shrinker->nr = max_pass; 250 } 251 252 /* 253 * Avoid risking looping forever due to too large nr value: 254 * never try to free more than twice the estimate number of 255 * freeable entries. 256 */ 257 if (shrinker->nr > max_pass * 2) 258 shrinker->nr = max_pass * 2; 259 260 total_scan = shrinker->nr; 261 shrinker->nr = 0; 262 263 while (total_scan >= SHRINK_BATCH) { 264 long this_scan = SHRINK_BATCH; 265 int shrink_ret; 266 int nr_before; 267 268 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask); 269 shrink_ret = (*shrinker->shrink)(shrinker, this_scan, 270 gfp_mask); 271 if (shrink_ret == -1) 272 break; 273 if (shrink_ret < nr_before) 274 ret += nr_before - shrink_ret; 275 count_vm_events(SLABS_SCANNED, this_scan); 276 total_scan -= this_scan; 277 278 cond_resched(); 279 } 280 281 shrinker->nr += total_scan; 282 } 283 up_read(&shrinker_rwsem); 284 return ret; 285 } 286 287 static void set_reclaim_mode(int priority, struct scan_control *sc, 288 bool sync) 289 { 290 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC; 291 292 /* 293 * Initially assume we are entering either lumpy reclaim or 294 * reclaim/compaction.Depending on the order, we will either set the 295 * sync mode or just reclaim order-0 pages later. 296 */ 297 if (COMPACTION_BUILD) 298 sc->reclaim_mode = RECLAIM_MODE_COMPACTION; 299 else 300 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM; 301 302 /* 303 * Avoid using lumpy reclaim or reclaim/compaction if possible by 304 * restricting when its set to either costly allocations or when 305 * under memory pressure 306 */ 307 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 308 sc->reclaim_mode |= syncmode; 309 else if (sc->order && priority < DEF_PRIORITY - 2) 310 sc->reclaim_mode |= syncmode; 311 else 312 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC; 313 } 314 315 static void reset_reclaim_mode(struct scan_control *sc) 316 { 317 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC; 318 } 319 320 static inline int is_page_cache_freeable(struct page *page) 321 { 322 /* 323 * A freeable page cache page is referenced only by the caller 324 * that isolated the page, the page cache radix tree and 325 * optional buffer heads at page->private. 326 */ 327 return page_count(page) - page_has_private(page) == 2; 328 } 329 330 static int may_write_to_queue(struct backing_dev_info *bdi, 331 struct scan_control *sc) 332 { 333 if (current->flags & PF_SWAPWRITE) 334 return 1; 335 if (!bdi_write_congested(bdi)) 336 return 1; 337 if (bdi == current->backing_dev_info) 338 return 1; 339 340 /* lumpy reclaim for hugepage often need a lot of write */ 341 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 342 return 1; 343 return 0; 344 } 345 346 /* 347 * We detected a synchronous write error writing a page out. Probably 348 * -ENOSPC. We need to propagate that into the address_space for a subsequent 349 * fsync(), msync() or close(). 350 * 351 * The tricky part is that after writepage we cannot touch the mapping: nothing 352 * prevents it from being freed up. But we have a ref on the page and once 353 * that page is locked, the mapping is pinned. 354 * 355 * We're allowed to run sleeping lock_page() here because we know the caller has 356 * __GFP_FS. 357 */ 358 static void handle_write_error(struct address_space *mapping, 359 struct page *page, int error) 360 { 361 lock_page_nosync(page); 362 if (page_mapping(page) == mapping) 363 mapping_set_error(mapping, error); 364 unlock_page(page); 365 } 366 367 /* possible outcome of pageout() */ 368 typedef enum { 369 /* failed to write page out, page is locked */ 370 PAGE_KEEP, 371 /* move page to the active list, page is locked */ 372 PAGE_ACTIVATE, 373 /* page has been sent to the disk successfully, page is unlocked */ 374 PAGE_SUCCESS, 375 /* page is clean and locked */ 376 PAGE_CLEAN, 377 } pageout_t; 378 379 /* 380 * pageout is called by shrink_page_list() for each dirty page. 381 * Calls ->writepage(). 382 */ 383 static pageout_t pageout(struct page *page, struct address_space *mapping, 384 struct scan_control *sc) 385 { 386 /* 387 * If the page is dirty, only perform writeback if that write 388 * will be non-blocking. To prevent this allocation from being 389 * stalled by pagecache activity. But note that there may be 390 * stalls if we need to run get_block(). We could test 391 * PagePrivate for that. 392 * 393 * If this process is currently in __generic_file_aio_write() against 394 * this page's queue, we can perform writeback even if that 395 * will block. 396 * 397 * If the page is swapcache, write it back even if that would 398 * block, for some throttling. This happens by accident, because 399 * swap_backing_dev_info is bust: it doesn't reflect the 400 * congestion state of the swapdevs. Easy to fix, if needed. 401 */ 402 if (!is_page_cache_freeable(page)) 403 return PAGE_KEEP; 404 if (!mapping) { 405 /* 406 * Some data journaling orphaned pages can have 407 * page->mapping == NULL while being dirty with clean buffers. 408 */ 409 if (page_has_private(page)) { 410 if (try_to_free_buffers(page)) { 411 ClearPageDirty(page); 412 printk("%s: orphaned page\n", __func__); 413 return PAGE_CLEAN; 414 } 415 } 416 return PAGE_KEEP; 417 } 418 if (mapping->a_ops->writepage == NULL) 419 return PAGE_ACTIVATE; 420 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 421 return PAGE_KEEP; 422 423 if (clear_page_dirty_for_io(page)) { 424 int res; 425 struct writeback_control wbc = { 426 .sync_mode = WB_SYNC_NONE, 427 .nr_to_write = SWAP_CLUSTER_MAX, 428 .range_start = 0, 429 .range_end = LLONG_MAX, 430 .for_reclaim = 1, 431 }; 432 433 SetPageReclaim(page); 434 res = mapping->a_ops->writepage(page, &wbc); 435 if (res < 0) 436 handle_write_error(mapping, page, res); 437 if (res == AOP_WRITEPAGE_ACTIVATE) { 438 ClearPageReclaim(page); 439 return PAGE_ACTIVATE; 440 } 441 442 /* 443 * Wait on writeback if requested to. This happens when 444 * direct reclaiming a large contiguous area and the 445 * first attempt to free a range of pages fails. 446 */ 447 if (PageWriteback(page) && 448 (sc->reclaim_mode & RECLAIM_MODE_SYNC)) 449 wait_on_page_writeback(page); 450 451 if (!PageWriteback(page)) { 452 /* synchronous write or broken a_ops? */ 453 ClearPageReclaim(page); 454 } 455 trace_mm_vmscan_writepage(page, 456 trace_reclaim_flags(page, sc->reclaim_mode)); 457 inc_zone_page_state(page, NR_VMSCAN_WRITE); 458 return PAGE_SUCCESS; 459 } 460 461 return PAGE_CLEAN; 462 } 463 464 /* 465 * Same as remove_mapping, but if the page is removed from the mapping, it 466 * gets returned with a refcount of 0. 467 */ 468 static int __remove_mapping(struct address_space *mapping, struct page *page) 469 { 470 BUG_ON(!PageLocked(page)); 471 BUG_ON(mapping != page_mapping(page)); 472 473 spin_lock_irq(&mapping->tree_lock); 474 /* 475 * The non racy check for a busy page. 476 * 477 * Must be careful with the order of the tests. When someone has 478 * a ref to the page, it may be possible that they dirty it then 479 * drop the reference. So if PageDirty is tested before page_count 480 * here, then the following race may occur: 481 * 482 * get_user_pages(&page); 483 * [user mapping goes away] 484 * write_to(page); 485 * !PageDirty(page) [good] 486 * SetPageDirty(page); 487 * put_page(page); 488 * !page_count(page) [good, discard it] 489 * 490 * [oops, our write_to data is lost] 491 * 492 * Reversing the order of the tests ensures such a situation cannot 493 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 494 * load is not satisfied before that of page->_count. 495 * 496 * Note that if SetPageDirty is always performed via set_page_dirty, 497 * and thus under tree_lock, then this ordering is not required. 498 */ 499 if (!page_freeze_refs(page, 2)) 500 goto cannot_free; 501 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 502 if (unlikely(PageDirty(page))) { 503 page_unfreeze_refs(page, 2); 504 goto cannot_free; 505 } 506 507 if (PageSwapCache(page)) { 508 swp_entry_t swap = { .val = page_private(page) }; 509 __delete_from_swap_cache(page); 510 spin_unlock_irq(&mapping->tree_lock); 511 swapcache_free(swap, page); 512 } else { 513 void (*freepage)(struct page *); 514 515 freepage = mapping->a_ops->freepage; 516 517 __delete_from_page_cache(page); 518 spin_unlock_irq(&mapping->tree_lock); 519 mem_cgroup_uncharge_cache_page(page); 520 521 if (freepage != NULL) 522 freepage(page); 523 } 524 525 return 1; 526 527 cannot_free: 528 spin_unlock_irq(&mapping->tree_lock); 529 return 0; 530 } 531 532 /* 533 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 534 * someone else has a ref on the page, abort and return 0. If it was 535 * successfully detached, return 1. Assumes the caller has a single ref on 536 * this page. 537 */ 538 int remove_mapping(struct address_space *mapping, struct page *page) 539 { 540 if (__remove_mapping(mapping, page)) { 541 /* 542 * Unfreezing the refcount with 1 rather than 2 effectively 543 * drops the pagecache ref for us without requiring another 544 * atomic operation. 545 */ 546 page_unfreeze_refs(page, 1); 547 return 1; 548 } 549 return 0; 550 } 551 552 /** 553 * putback_lru_page - put previously isolated page onto appropriate LRU list 554 * @page: page to be put back to appropriate lru list 555 * 556 * Add previously isolated @page to appropriate LRU list. 557 * Page may still be unevictable for other reasons. 558 * 559 * lru_lock must not be held, interrupts must be enabled. 560 */ 561 void putback_lru_page(struct page *page) 562 { 563 int lru; 564 int active = !!TestClearPageActive(page); 565 int was_unevictable = PageUnevictable(page); 566 567 VM_BUG_ON(PageLRU(page)); 568 569 redo: 570 ClearPageUnevictable(page); 571 572 if (page_evictable(page, NULL)) { 573 /* 574 * For evictable pages, we can use the cache. 575 * In event of a race, worst case is we end up with an 576 * unevictable page on [in]active list. 577 * We know how to handle that. 578 */ 579 lru = active + page_lru_base_type(page); 580 lru_cache_add_lru(page, lru); 581 } else { 582 /* 583 * Put unevictable pages directly on zone's unevictable 584 * list. 585 */ 586 lru = LRU_UNEVICTABLE; 587 add_page_to_unevictable_list(page); 588 /* 589 * When racing with an mlock clearing (page is 590 * unlocked), make sure that if the other thread does 591 * not observe our setting of PG_lru and fails 592 * isolation, we see PG_mlocked cleared below and move 593 * the page back to the evictable list. 594 * 595 * The other side is TestClearPageMlocked(). 596 */ 597 smp_mb(); 598 } 599 600 /* 601 * page's status can change while we move it among lru. If an evictable 602 * page is on unevictable list, it never be freed. To avoid that, 603 * check after we added it to the list, again. 604 */ 605 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 606 if (!isolate_lru_page(page)) { 607 put_page(page); 608 goto redo; 609 } 610 /* This means someone else dropped this page from LRU 611 * So, it will be freed or putback to LRU again. There is 612 * nothing to do here. 613 */ 614 } 615 616 if (was_unevictable && lru != LRU_UNEVICTABLE) 617 count_vm_event(UNEVICTABLE_PGRESCUED); 618 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 619 count_vm_event(UNEVICTABLE_PGCULLED); 620 621 put_page(page); /* drop ref from isolate */ 622 } 623 624 enum page_references { 625 PAGEREF_RECLAIM, 626 PAGEREF_RECLAIM_CLEAN, 627 PAGEREF_KEEP, 628 PAGEREF_ACTIVATE, 629 }; 630 631 static enum page_references page_check_references(struct page *page, 632 struct scan_control *sc) 633 { 634 int referenced_ptes, referenced_page; 635 unsigned long vm_flags; 636 637 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags); 638 referenced_page = TestClearPageReferenced(page); 639 640 /* Lumpy reclaim - ignore references */ 641 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM) 642 return PAGEREF_RECLAIM; 643 644 /* 645 * Mlock lost the isolation race with us. Let try_to_unmap() 646 * move the page to the unevictable list. 647 */ 648 if (vm_flags & VM_LOCKED) 649 return PAGEREF_RECLAIM; 650 651 if (referenced_ptes) { 652 if (PageAnon(page)) 653 return PAGEREF_ACTIVATE; 654 /* 655 * All mapped pages start out with page table 656 * references from the instantiating fault, so we need 657 * to look twice if a mapped file page is used more 658 * than once. 659 * 660 * Mark it and spare it for another trip around the 661 * inactive list. Another page table reference will 662 * lead to its activation. 663 * 664 * Note: the mark is set for activated pages as well 665 * so that recently deactivated but used pages are 666 * quickly recovered. 667 */ 668 SetPageReferenced(page); 669 670 if (referenced_page) 671 return PAGEREF_ACTIVATE; 672 673 return PAGEREF_KEEP; 674 } 675 676 /* Reclaim if clean, defer dirty pages to writeback */ 677 if (referenced_page && !PageSwapBacked(page)) 678 return PAGEREF_RECLAIM_CLEAN; 679 680 return PAGEREF_RECLAIM; 681 } 682 683 static noinline_for_stack void free_page_list(struct list_head *free_pages) 684 { 685 struct pagevec freed_pvec; 686 struct page *page, *tmp; 687 688 pagevec_init(&freed_pvec, 1); 689 690 list_for_each_entry_safe(page, tmp, free_pages, lru) { 691 list_del(&page->lru); 692 if (!pagevec_add(&freed_pvec, page)) { 693 __pagevec_free(&freed_pvec); 694 pagevec_reinit(&freed_pvec); 695 } 696 } 697 698 pagevec_free(&freed_pvec); 699 } 700 701 /* 702 * shrink_page_list() returns the number of reclaimed pages 703 */ 704 static unsigned long shrink_page_list(struct list_head *page_list, 705 struct zone *zone, 706 struct scan_control *sc) 707 { 708 LIST_HEAD(ret_pages); 709 LIST_HEAD(free_pages); 710 int pgactivate = 0; 711 unsigned long nr_dirty = 0; 712 unsigned long nr_congested = 0; 713 unsigned long nr_reclaimed = 0; 714 715 cond_resched(); 716 717 while (!list_empty(page_list)) { 718 enum page_references references; 719 struct address_space *mapping; 720 struct page *page; 721 int may_enter_fs; 722 723 cond_resched(); 724 725 page = lru_to_page(page_list); 726 list_del(&page->lru); 727 728 if (!trylock_page(page)) 729 goto keep; 730 731 VM_BUG_ON(PageActive(page)); 732 VM_BUG_ON(page_zone(page) != zone); 733 734 sc->nr_scanned++; 735 736 if (unlikely(!page_evictable(page, NULL))) 737 goto cull_mlocked; 738 739 if (!sc->may_unmap && page_mapped(page)) 740 goto keep_locked; 741 742 /* Double the slab pressure for mapped and swapcache pages */ 743 if (page_mapped(page) || PageSwapCache(page)) 744 sc->nr_scanned++; 745 746 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 747 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 748 749 if (PageWriteback(page)) { 750 /* 751 * Synchronous reclaim is performed in two passes, 752 * first an asynchronous pass over the list to 753 * start parallel writeback, and a second synchronous 754 * pass to wait for the IO to complete. Wait here 755 * for any page for which writeback has already 756 * started. 757 */ 758 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) && 759 may_enter_fs) 760 wait_on_page_writeback(page); 761 else { 762 unlock_page(page); 763 goto keep_lumpy; 764 } 765 } 766 767 references = page_check_references(page, sc); 768 switch (references) { 769 case PAGEREF_ACTIVATE: 770 goto activate_locked; 771 case PAGEREF_KEEP: 772 goto keep_locked; 773 case PAGEREF_RECLAIM: 774 case PAGEREF_RECLAIM_CLEAN: 775 ; /* try to reclaim the page below */ 776 } 777 778 /* 779 * Anonymous process memory has backing store? 780 * Try to allocate it some swap space here. 781 */ 782 if (PageAnon(page) && !PageSwapCache(page)) { 783 if (!(sc->gfp_mask & __GFP_IO)) 784 goto keep_locked; 785 if (!add_to_swap(page)) 786 goto activate_locked; 787 may_enter_fs = 1; 788 } 789 790 mapping = page_mapping(page); 791 792 /* 793 * The page is mapped into the page tables of one or more 794 * processes. Try to unmap it here. 795 */ 796 if (page_mapped(page) && mapping) { 797 switch (try_to_unmap(page, TTU_UNMAP)) { 798 case SWAP_FAIL: 799 goto activate_locked; 800 case SWAP_AGAIN: 801 goto keep_locked; 802 case SWAP_MLOCK: 803 goto cull_mlocked; 804 case SWAP_SUCCESS: 805 ; /* try to free the page below */ 806 } 807 } 808 809 if (PageDirty(page)) { 810 nr_dirty++; 811 812 if (references == PAGEREF_RECLAIM_CLEAN) 813 goto keep_locked; 814 if (!may_enter_fs) 815 goto keep_locked; 816 if (!sc->may_writepage) 817 goto keep_locked; 818 819 /* Page is dirty, try to write it out here */ 820 switch (pageout(page, mapping, sc)) { 821 case PAGE_KEEP: 822 nr_congested++; 823 goto keep_locked; 824 case PAGE_ACTIVATE: 825 goto activate_locked; 826 case PAGE_SUCCESS: 827 if (PageWriteback(page)) 828 goto keep_lumpy; 829 if (PageDirty(page)) 830 goto keep; 831 832 /* 833 * A synchronous write - probably a ramdisk. Go 834 * ahead and try to reclaim the page. 835 */ 836 if (!trylock_page(page)) 837 goto keep; 838 if (PageDirty(page) || PageWriteback(page)) 839 goto keep_locked; 840 mapping = page_mapping(page); 841 case PAGE_CLEAN: 842 ; /* try to free the page below */ 843 } 844 } 845 846 /* 847 * If the page has buffers, try to free the buffer mappings 848 * associated with this page. If we succeed we try to free 849 * the page as well. 850 * 851 * We do this even if the page is PageDirty(). 852 * try_to_release_page() does not perform I/O, but it is 853 * possible for a page to have PageDirty set, but it is actually 854 * clean (all its buffers are clean). This happens if the 855 * buffers were written out directly, with submit_bh(). ext3 856 * will do this, as well as the blockdev mapping. 857 * try_to_release_page() will discover that cleanness and will 858 * drop the buffers and mark the page clean - it can be freed. 859 * 860 * Rarely, pages can have buffers and no ->mapping. These are 861 * the pages which were not successfully invalidated in 862 * truncate_complete_page(). We try to drop those buffers here 863 * and if that worked, and the page is no longer mapped into 864 * process address space (page_count == 1) it can be freed. 865 * Otherwise, leave the page on the LRU so it is swappable. 866 */ 867 if (page_has_private(page)) { 868 if (!try_to_release_page(page, sc->gfp_mask)) 869 goto activate_locked; 870 if (!mapping && page_count(page) == 1) { 871 unlock_page(page); 872 if (put_page_testzero(page)) 873 goto free_it; 874 else { 875 /* 876 * rare race with speculative reference. 877 * the speculative reference will free 878 * this page shortly, so we may 879 * increment nr_reclaimed here (and 880 * leave it off the LRU). 881 */ 882 nr_reclaimed++; 883 continue; 884 } 885 } 886 } 887 888 if (!mapping || !__remove_mapping(mapping, page)) 889 goto keep_locked; 890 891 /* 892 * At this point, we have no other references and there is 893 * no way to pick any more up (removed from LRU, removed 894 * from pagecache). Can use non-atomic bitops now (and 895 * we obviously don't have to worry about waking up a process 896 * waiting on the page lock, because there are no references. 897 */ 898 __clear_page_locked(page); 899 free_it: 900 nr_reclaimed++; 901 902 /* 903 * Is there need to periodically free_page_list? It would 904 * appear not as the counts should be low 905 */ 906 list_add(&page->lru, &free_pages); 907 continue; 908 909 cull_mlocked: 910 if (PageSwapCache(page)) 911 try_to_free_swap(page); 912 unlock_page(page); 913 putback_lru_page(page); 914 reset_reclaim_mode(sc); 915 continue; 916 917 activate_locked: 918 /* Not a candidate for swapping, so reclaim swap space. */ 919 if (PageSwapCache(page) && vm_swap_full()) 920 try_to_free_swap(page); 921 VM_BUG_ON(PageActive(page)); 922 SetPageActive(page); 923 pgactivate++; 924 keep_locked: 925 unlock_page(page); 926 keep: 927 reset_reclaim_mode(sc); 928 keep_lumpy: 929 list_add(&page->lru, &ret_pages); 930 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 931 } 932 933 /* 934 * Tag a zone as congested if all the dirty pages encountered were 935 * backed by a congested BDI. In this case, reclaimers should just 936 * back off and wait for congestion to clear because further reclaim 937 * will encounter the same problem 938 */ 939 if (nr_dirty == nr_congested && nr_dirty != 0) 940 zone_set_flag(zone, ZONE_CONGESTED); 941 942 free_page_list(&free_pages); 943 944 list_splice(&ret_pages, page_list); 945 count_vm_events(PGACTIVATE, pgactivate); 946 return nr_reclaimed; 947 } 948 949 /* 950 * Attempt to remove the specified page from its LRU. Only take this page 951 * if it is of the appropriate PageActive status. Pages which are being 952 * freed elsewhere are also ignored. 953 * 954 * page: page to consider 955 * mode: one of the LRU isolation modes defined above 956 * 957 * returns 0 on success, -ve errno on failure. 958 */ 959 int __isolate_lru_page(struct page *page, int mode, int file) 960 { 961 int ret = -EINVAL; 962 963 /* Only take pages on the LRU. */ 964 if (!PageLRU(page)) 965 return ret; 966 967 /* 968 * When checking the active state, we need to be sure we are 969 * dealing with comparible boolean values. Take the logical not 970 * of each. 971 */ 972 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 973 return ret; 974 975 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) 976 return ret; 977 978 /* 979 * When this function is being called for lumpy reclaim, we 980 * initially look into all LRU pages, active, inactive and 981 * unevictable; only give shrink_page_list evictable pages. 982 */ 983 if (PageUnevictable(page)) 984 return ret; 985 986 ret = -EBUSY; 987 988 if (likely(get_page_unless_zero(page))) { 989 /* 990 * Be careful not to clear PageLRU until after we're 991 * sure the page is not being freed elsewhere -- the 992 * page release code relies on it. 993 */ 994 ClearPageLRU(page); 995 ret = 0; 996 } 997 998 return ret; 999 } 1000 1001 /* 1002 * zone->lru_lock is heavily contended. Some of the functions that 1003 * shrink the lists perform better by taking out a batch of pages 1004 * and working on them outside the LRU lock. 1005 * 1006 * For pagecache intensive workloads, this function is the hottest 1007 * spot in the kernel (apart from copy_*_user functions). 1008 * 1009 * Appropriate locks must be held before calling this function. 1010 * 1011 * @nr_to_scan: The number of pages to look through on the list. 1012 * @src: The LRU list to pull pages off. 1013 * @dst: The temp list to put pages on to. 1014 * @scanned: The number of pages that were scanned. 1015 * @order: The caller's attempted allocation order 1016 * @mode: One of the LRU isolation modes 1017 * @file: True [1] if isolating file [!anon] pages 1018 * 1019 * returns how many pages were moved onto *@dst. 1020 */ 1021 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1022 struct list_head *src, struct list_head *dst, 1023 unsigned long *scanned, int order, int mode, int file) 1024 { 1025 unsigned long nr_taken = 0; 1026 unsigned long nr_lumpy_taken = 0; 1027 unsigned long nr_lumpy_dirty = 0; 1028 unsigned long nr_lumpy_failed = 0; 1029 unsigned long scan; 1030 1031 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1032 struct page *page; 1033 unsigned long pfn; 1034 unsigned long end_pfn; 1035 unsigned long page_pfn; 1036 int zone_id; 1037 1038 page = lru_to_page(src); 1039 prefetchw_prev_lru_page(page, src, flags); 1040 1041 VM_BUG_ON(!PageLRU(page)); 1042 1043 switch (__isolate_lru_page(page, mode, file)) { 1044 case 0: 1045 list_move(&page->lru, dst); 1046 mem_cgroup_del_lru(page); 1047 nr_taken += hpage_nr_pages(page); 1048 break; 1049 1050 case -EBUSY: 1051 /* else it is being freed elsewhere */ 1052 list_move(&page->lru, src); 1053 mem_cgroup_rotate_lru_list(page, page_lru(page)); 1054 continue; 1055 1056 default: 1057 BUG(); 1058 } 1059 1060 if (!order) 1061 continue; 1062 1063 /* 1064 * Attempt to take all pages in the order aligned region 1065 * surrounding the tag page. Only take those pages of 1066 * the same active state as that tag page. We may safely 1067 * round the target page pfn down to the requested order 1068 * as the mem_map is guarenteed valid out to MAX_ORDER, 1069 * where that page is in a different zone we will detect 1070 * it from its zone id and abort this block scan. 1071 */ 1072 zone_id = page_zone_id(page); 1073 page_pfn = page_to_pfn(page); 1074 pfn = page_pfn & ~((1 << order) - 1); 1075 end_pfn = pfn + (1 << order); 1076 for (; pfn < end_pfn; pfn++) { 1077 struct page *cursor_page; 1078 1079 /* The target page is in the block, ignore it. */ 1080 if (unlikely(pfn == page_pfn)) 1081 continue; 1082 1083 /* Avoid holes within the zone. */ 1084 if (unlikely(!pfn_valid_within(pfn))) 1085 break; 1086 1087 cursor_page = pfn_to_page(pfn); 1088 1089 /* Check that we have not crossed a zone boundary. */ 1090 if (unlikely(page_zone_id(cursor_page) != zone_id)) 1091 break; 1092 1093 /* 1094 * If we don't have enough swap space, reclaiming of 1095 * anon page which don't already have a swap slot is 1096 * pointless. 1097 */ 1098 if (nr_swap_pages <= 0 && PageAnon(cursor_page) && 1099 !PageSwapCache(cursor_page)) 1100 break; 1101 1102 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 1103 list_move(&cursor_page->lru, dst); 1104 mem_cgroup_del_lru(cursor_page); 1105 nr_taken += hpage_nr_pages(page); 1106 nr_lumpy_taken++; 1107 if (PageDirty(cursor_page)) 1108 nr_lumpy_dirty++; 1109 scan++; 1110 } else { 1111 /* the page is freed already. */ 1112 if (!page_count(cursor_page)) 1113 continue; 1114 break; 1115 } 1116 } 1117 1118 /* If we break out of the loop above, lumpy reclaim failed */ 1119 if (pfn < end_pfn) 1120 nr_lumpy_failed++; 1121 } 1122 1123 *scanned = scan; 1124 1125 trace_mm_vmscan_lru_isolate(order, 1126 nr_to_scan, scan, 1127 nr_taken, 1128 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed, 1129 mode); 1130 return nr_taken; 1131 } 1132 1133 static unsigned long isolate_pages_global(unsigned long nr, 1134 struct list_head *dst, 1135 unsigned long *scanned, int order, 1136 int mode, struct zone *z, 1137 int active, int file) 1138 { 1139 int lru = LRU_BASE; 1140 if (active) 1141 lru += LRU_ACTIVE; 1142 if (file) 1143 lru += LRU_FILE; 1144 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 1145 mode, file); 1146 } 1147 1148 /* 1149 * clear_active_flags() is a helper for shrink_active_list(), clearing 1150 * any active bits from the pages in the list. 1151 */ 1152 static unsigned long clear_active_flags(struct list_head *page_list, 1153 unsigned int *count) 1154 { 1155 int nr_active = 0; 1156 int lru; 1157 struct page *page; 1158 1159 list_for_each_entry(page, page_list, lru) { 1160 int numpages = hpage_nr_pages(page); 1161 lru = page_lru_base_type(page); 1162 if (PageActive(page)) { 1163 lru += LRU_ACTIVE; 1164 ClearPageActive(page); 1165 nr_active += numpages; 1166 } 1167 if (count) 1168 count[lru] += numpages; 1169 } 1170 1171 return nr_active; 1172 } 1173 1174 /** 1175 * isolate_lru_page - tries to isolate a page from its LRU list 1176 * @page: page to isolate from its LRU list 1177 * 1178 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1179 * vmstat statistic corresponding to whatever LRU list the page was on. 1180 * 1181 * Returns 0 if the page was removed from an LRU list. 1182 * Returns -EBUSY if the page was not on an LRU list. 1183 * 1184 * The returned page will have PageLRU() cleared. If it was found on 1185 * the active list, it will have PageActive set. If it was found on 1186 * the unevictable list, it will have the PageUnevictable bit set. That flag 1187 * may need to be cleared by the caller before letting the page go. 1188 * 1189 * The vmstat statistic corresponding to the list on which the page was 1190 * found will be decremented. 1191 * 1192 * Restrictions: 1193 * (1) Must be called with an elevated refcount on the page. This is a 1194 * fundamentnal difference from isolate_lru_pages (which is called 1195 * without a stable reference). 1196 * (2) the lru_lock must not be held. 1197 * (3) interrupts must be enabled. 1198 */ 1199 int isolate_lru_page(struct page *page) 1200 { 1201 int ret = -EBUSY; 1202 1203 if (PageLRU(page)) { 1204 struct zone *zone = page_zone(page); 1205 1206 spin_lock_irq(&zone->lru_lock); 1207 if (PageLRU(page) && get_page_unless_zero(page)) { 1208 int lru = page_lru(page); 1209 ret = 0; 1210 ClearPageLRU(page); 1211 1212 del_page_from_lru_list(zone, page, lru); 1213 } 1214 spin_unlock_irq(&zone->lru_lock); 1215 } 1216 return ret; 1217 } 1218 1219 /* 1220 * Are there way too many processes in the direct reclaim path already? 1221 */ 1222 static int too_many_isolated(struct zone *zone, int file, 1223 struct scan_control *sc) 1224 { 1225 unsigned long inactive, isolated; 1226 1227 if (current_is_kswapd()) 1228 return 0; 1229 1230 if (!scanning_global_lru(sc)) 1231 return 0; 1232 1233 if (file) { 1234 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1235 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1236 } else { 1237 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1238 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1239 } 1240 1241 return isolated > inactive; 1242 } 1243 1244 /* 1245 * TODO: Try merging with migrations version of putback_lru_pages 1246 */ 1247 static noinline_for_stack void 1248 putback_lru_pages(struct zone *zone, struct scan_control *sc, 1249 unsigned long nr_anon, unsigned long nr_file, 1250 struct list_head *page_list) 1251 { 1252 struct page *page; 1253 struct pagevec pvec; 1254 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1255 1256 pagevec_init(&pvec, 1); 1257 1258 /* 1259 * Put back any unfreeable pages. 1260 */ 1261 spin_lock(&zone->lru_lock); 1262 while (!list_empty(page_list)) { 1263 int lru; 1264 page = lru_to_page(page_list); 1265 VM_BUG_ON(PageLRU(page)); 1266 list_del(&page->lru); 1267 if (unlikely(!page_evictable(page, NULL))) { 1268 spin_unlock_irq(&zone->lru_lock); 1269 putback_lru_page(page); 1270 spin_lock_irq(&zone->lru_lock); 1271 continue; 1272 } 1273 SetPageLRU(page); 1274 lru = page_lru(page); 1275 add_page_to_lru_list(zone, page, lru); 1276 if (is_active_lru(lru)) { 1277 int file = is_file_lru(lru); 1278 int numpages = hpage_nr_pages(page); 1279 reclaim_stat->recent_rotated[file] += numpages; 1280 } 1281 if (!pagevec_add(&pvec, page)) { 1282 spin_unlock_irq(&zone->lru_lock); 1283 __pagevec_release(&pvec); 1284 spin_lock_irq(&zone->lru_lock); 1285 } 1286 } 1287 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); 1288 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); 1289 1290 spin_unlock_irq(&zone->lru_lock); 1291 pagevec_release(&pvec); 1292 } 1293 1294 static noinline_for_stack void update_isolated_counts(struct zone *zone, 1295 struct scan_control *sc, 1296 unsigned long *nr_anon, 1297 unsigned long *nr_file, 1298 struct list_head *isolated_list) 1299 { 1300 unsigned long nr_active; 1301 unsigned int count[NR_LRU_LISTS] = { 0, }; 1302 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1303 1304 nr_active = clear_active_flags(isolated_list, count); 1305 __count_vm_events(PGDEACTIVATE, nr_active); 1306 1307 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1308 -count[LRU_ACTIVE_FILE]); 1309 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1310 -count[LRU_INACTIVE_FILE]); 1311 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1312 -count[LRU_ACTIVE_ANON]); 1313 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1314 -count[LRU_INACTIVE_ANON]); 1315 1316 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 1317 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 1318 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon); 1319 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file); 1320 1321 reclaim_stat->recent_scanned[0] += *nr_anon; 1322 reclaim_stat->recent_scanned[1] += *nr_file; 1323 } 1324 1325 /* 1326 * Returns true if the caller should wait to clean dirty/writeback pages. 1327 * 1328 * If we are direct reclaiming for contiguous pages and we do not reclaim 1329 * everything in the list, try again and wait for writeback IO to complete. 1330 * This will stall high-order allocations noticeably. Only do that when really 1331 * need to free the pages under high memory pressure. 1332 */ 1333 static inline bool should_reclaim_stall(unsigned long nr_taken, 1334 unsigned long nr_freed, 1335 int priority, 1336 struct scan_control *sc) 1337 { 1338 int lumpy_stall_priority; 1339 1340 /* kswapd should not stall on sync IO */ 1341 if (current_is_kswapd()) 1342 return false; 1343 1344 /* Only stall on lumpy reclaim */ 1345 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE) 1346 return false; 1347 1348 /* If we have relaimed everything on the isolated list, no stall */ 1349 if (nr_freed == nr_taken) 1350 return false; 1351 1352 /* 1353 * For high-order allocations, there are two stall thresholds. 1354 * High-cost allocations stall immediately where as lower 1355 * order allocations such as stacks require the scanning 1356 * priority to be much higher before stalling. 1357 */ 1358 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1359 lumpy_stall_priority = DEF_PRIORITY; 1360 else 1361 lumpy_stall_priority = DEF_PRIORITY / 3; 1362 1363 return priority <= lumpy_stall_priority; 1364 } 1365 1366 /* 1367 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1368 * of reclaimed pages 1369 */ 1370 static noinline_for_stack unsigned long 1371 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, 1372 struct scan_control *sc, int priority, int file) 1373 { 1374 LIST_HEAD(page_list); 1375 unsigned long nr_scanned; 1376 unsigned long nr_reclaimed = 0; 1377 unsigned long nr_taken; 1378 unsigned long nr_anon; 1379 unsigned long nr_file; 1380 1381 while (unlikely(too_many_isolated(zone, file, sc))) { 1382 congestion_wait(BLK_RW_ASYNC, HZ/10); 1383 1384 /* We are about to die and free our memory. Return now. */ 1385 if (fatal_signal_pending(current)) 1386 return SWAP_CLUSTER_MAX; 1387 } 1388 1389 set_reclaim_mode(priority, sc, false); 1390 lru_add_drain(); 1391 spin_lock_irq(&zone->lru_lock); 1392 1393 if (scanning_global_lru(sc)) { 1394 nr_taken = isolate_pages_global(nr_to_scan, 1395 &page_list, &nr_scanned, sc->order, 1396 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ? 1397 ISOLATE_BOTH : ISOLATE_INACTIVE, 1398 zone, 0, file); 1399 zone->pages_scanned += nr_scanned; 1400 if (current_is_kswapd()) 1401 __count_zone_vm_events(PGSCAN_KSWAPD, zone, 1402 nr_scanned); 1403 else 1404 __count_zone_vm_events(PGSCAN_DIRECT, zone, 1405 nr_scanned); 1406 } else { 1407 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, 1408 &page_list, &nr_scanned, sc->order, 1409 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ? 1410 ISOLATE_BOTH : ISOLATE_INACTIVE, 1411 zone, sc->mem_cgroup, 1412 0, file); 1413 /* 1414 * mem_cgroup_isolate_pages() keeps track of 1415 * scanned pages on its own. 1416 */ 1417 } 1418 1419 if (nr_taken == 0) { 1420 spin_unlock_irq(&zone->lru_lock); 1421 return 0; 1422 } 1423 1424 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list); 1425 1426 spin_unlock_irq(&zone->lru_lock); 1427 1428 nr_reclaimed = shrink_page_list(&page_list, zone, sc); 1429 1430 /* Check if we should syncronously wait for writeback */ 1431 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { 1432 set_reclaim_mode(priority, sc, true); 1433 nr_reclaimed += shrink_page_list(&page_list, zone, sc); 1434 } 1435 1436 local_irq_disable(); 1437 if (current_is_kswapd()) 1438 __count_vm_events(KSWAPD_STEAL, nr_reclaimed); 1439 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); 1440 1441 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); 1442 1443 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1444 zone_idx(zone), 1445 nr_scanned, nr_reclaimed, 1446 priority, 1447 trace_shrink_flags(file, sc->reclaim_mode)); 1448 return nr_reclaimed; 1449 } 1450 1451 /* 1452 * This moves pages from the active list to the inactive list. 1453 * 1454 * We move them the other way if the page is referenced by one or more 1455 * processes, from rmap. 1456 * 1457 * If the pages are mostly unmapped, the processing is fast and it is 1458 * appropriate to hold zone->lru_lock across the whole operation. But if 1459 * the pages are mapped, the processing is slow (page_referenced()) so we 1460 * should drop zone->lru_lock around each page. It's impossible to balance 1461 * this, so instead we remove the pages from the LRU while processing them. 1462 * It is safe to rely on PG_active against the non-LRU pages in here because 1463 * nobody will play with that bit on a non-LRU page. 1464 * 1465 * The downside is that we have to touch page->_count against each page. 1466 * But we had to alter page->flags anyway. 1467 */ 1468 1469 static void move_active_pages_to_lru(struct zone *zone, 1470 struct list_head *list, 1471 enum lru_list lru) 1472 { 1473 unsigned long pgmoved = 0; 1474 struct pagevec pvec; 1475 struct page *page; 1476 1477 pagevec_init(&pvec, 1); 1478 1479 while (!list_empty(list)) { 1480 page = lru_to_page(list); 1481 1482 VM_BUG_ON(PageLRU(page)); 1483 SetPageLRU(page); 1484 1485 list_move(&page->lru, &zone->lru[lru].list); 1486 mem_cgroup_add_lru_list(page, lru); 1487 pgmoved += hpage_nr_pages(page); 1488 1489 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1490 spin_unlock_irq(&zone->lru_lock); 1491 if (buffer_heads_over_limit) 1492 pagevec_strip(&pvec); 1493 __pagevec_release(&pvec); 1494 spin_lock_irq(&zone->lru_lock); 1495 } 1496 } 1497 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1498 if (!is_active_lru(lru)) 1499 __count_vm_events(PGDEACTIVATE, pgmoved); 1500 } 1501 1502 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1503 struct scan_control *sc, int priority, int file) 1504 { 1505 unsigned long nr_taken; 1506 unsigned long pgscanned; 1507 unsigned long vm_flags; 1508 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1509 LIST_HEAD(l_active); 1510 LIST_HEAD(l_inactive); 1511 struct page *page; 1512 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1513 unsigned long nr_rotated = 0; 1514 1515 lru_add_drain(); 1516 spin_lock_irq(&zone->lru_lock); 1517 if (scanning_global_lru(sc)) { 1518 nr_taken = isolate_pages_global(nr_pages, &l_hold, 1519 &pgscanned, sc->order, 1520 ISOLATE_ACTIVE, zone, 1521 1, file); 1522 zone->pages_scanned += pgscanned; 1523 } else { 1524 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold, 1525 &pgscanned, sc->order, 1526 ISOLATE_ACTIVE, zone, 1527 sc->mem_cgroup, 1, file); 1528 /* 1529 * mem_cgroup_isolate_pages() keeps track of 1530 * scanned pages on its own. 1531 */ 1532 } 1533 1534 reclaim_stat->recent_scanned[file] += nr_taken; 1535 1536 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1537 if (file) 1538 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); 1539 else 1540 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); 1541 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1542 spin_unlock_irq(&zone->lru_lock); 1543 1544 while (!list_empty(&l_hold)) { 1545 cond_resched(); 1546 page = lru_to_page(&l_hold); 1547 list_del(&page->lru); 1548 1549 if (unlikely(!page_evictable(page, NULL))) { 1550 putback_lru_page(page); 1551 continue; 1552 } 1553 1554 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1555 nr_rotated += hpage_nr_pages(page); 1556 /* 1557 * Identify referenced, file-backed active pages and 1558 * give them one more trip around the active list. So 1559 * that executable code get better chances to stay in 1560 * memory under moderate memory pressure. Anon pages 1561 * are not likely to be evicted by use-once streaming 1562 * IO, plus JVM can create lots of anon VM_EXEC pages, 1563 * so we ignore them here. 1564 */ 1565 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1566 list_add(&page->lru, &l_active); 1567 continue; 1568 } 1569 } 1570 1571 ClearPageActive(page); /* we are de-activating */ 1572 list_add(&page->lru, &l_inactive); 1573 } 1574 1575 /* 1576 * Move pages back to the lru list. 1577 */ 1578 spin_lock_irq(&zone->lru_lock); 1579 /* 1580 * Count referenced pages from currently used mappings as rotated, 1581 * even though only some of them are actually re-activated. This 1582 * helps balance scan pressure between file and anonymous pages in 1583 * get_scan_ratio. 1584 */ 1585 reclaim_stat->recent_rotated[file] += nr_rotated; 1586 1587 move_active_pages_to_lru(zone, &l_active, 1588 LRU_ACTIVE + file * LRU_FILE); 1589 move_active_pages_to_lru(zone, &l_inactive, 1590 LRU_BASE + file * LRU_FILE); 1591 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1592 spin_unlock_irq(&zone->lru_lock); 1593 } 1594 1595 #ifdef CONFIG_SWAP 1596 static int inactive_anon_is_low_global(struct zone *zone) 1597 { 1598 unsigned long active, inactive; 1599 1600 active = zone_page_state(zone, NR_ACTIVE_ANON); 1601 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1602 1603 if (inactive * zone->inactive_ratio < active) 1604 return 1; 1605 1606 return 0; 1607 } 1608 1609 /** 1610 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1611 * @zone: zone to check 1612 * @sc: scan control of this context 1613 * 1614 * Returns true if the zone does not have enough inactive anon pages, 1615 * meaning some active anon pages need to be deactivated. 1616 */ 1617 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1618 { 1619 int low; 1620 1621 /* 1622 * If we don't have swap space, anonymous page deactivation 1623 * is pointless. 1624 */ 1625 if (!total_swap_pages) 1626 return 0; 1627 1628 if (scanning_global_lru(sc)) 1629 low = inactive_anon_is_low_global(zone); 1630 else 1631 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1632 return low; 1633 } 1634 #else 1635 static inline int inactive_anon_is_low(struct zone *zone, 1636 struct scan_control *sc) 1637 { 1638 return 0; 1639 } 1640 #endif 1641 1642 static int inactive_file_is_low_global(struct zone *zone) 1643 { 1644 unsigned long active, inactive; 1645 1646 active = zone_page_state(zone, NR_ACTIVE_FILE); 1647 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1648 1649 return (active > inactive); 1650 } 1651 1652 /** 1653 * inactive_file_is_low - check if file pages need to be deactivated 1654 * @zone: zone to check 1655 * @sc: scan control of this context 1656 * 1657 * When the system is doing streaming IO, memory pressure here 1658 * ensures that active file pages get deactivated, until more 1659 * than half of the file pages are on the inactive list. 1660 * 1661 * Once we get to that situation, protect the system's working 1662 * set from being evicted by disabling active file page aging. 1663 * 1664 * This uses a different ratio than the anonymous pages, because 1665 * the page cache uses a use-once replacement algorithm. 1666 */ 1667 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1668 { 1669 int low; 1670 1671 if (scanning_global_lru(sc)) 1672 low = inactive_file_is_low_global(zone); 1673 else 1674 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1675 return low; 1676 } 1677 1678 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc, 1679 int file) 1680 { 1681 if (file) 1682 return inactive_file_is_low(zone, sc); 1683 else 1684 return inactive_anon_is_low(zone, sc); 1685 } 1686 1687 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1688 struct zone *zone, struct scan_control *sc, int priority) 1689 { 1690 int file = is_file_lru(lru); 1691 1692 if (is_active_lru(lru)) { 1693 if (inactive_list_is_low(zone, sc, file)) 1694 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1695 return 0; 1696 } 1697 1698 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1699 } 1700 1701 /* 1702 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1703 * until we collected @swap_cluster_max pages to scan. 1704 */ 1705 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1706 unsigned long *nr_saved_scan) 1707 { 1708 unsigned long nr; 1709 1710 *nr_saved_scan += nr_to_scan; 1711 nr = *nr_saved_scan; 1712 1713 if (nr >= SWAP_CLUSTER_MAX) 1714 *nr_saved_scan = 0; 1715 else 1716 nr = 0; 1717 1718 return nr; 1719 } 1720 1721 /* 1722 * Determine how aggressively the anon and file LRU lists should be 1723 * scanned. The relative value of each set of LRU lists is determined 1724 * by looking at the fraction of the pages scanned we did rotate back 1725 * onto the active list instead of evict. 1726 * 1727 * nr[0] = anon pages to scan; nr[1] = file pages to scan 1728 */ 1729 static void get_scan_count(struct zone *zone, struct scan_control *sc, 1730 unsigned long *nr, int priority) 1731 { 1732 unsigned long anon, file, free; 1733 unsigned long anon_prio, file_prio; 1734 unsigned long ap, fp; 1735 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1736 u64 fraction[2], denominator; 1737 enum lru_list l; 1738 int noswap = 0; 1739 1740 /* If we have no swap space, do not bother scanning anon pages. */ 1741 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1742 noswap = 1; 1743 fraction[0] = 0; 1744 fraction[1] = 1; 1745 denominator = 1; 1746 goto out; 1747 } 1748 1749 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + 1750 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); 1751 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + 1752 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1753 1754 if (scanning_global_lru(sc)) { 1755 free = zone_page_state(zone, NR_FREE_PAGES); 1756 /* If we have very few page cache pages, 1757 force-scan anon pages. */ 1758 if (unlikely(file + free <= high_wmark_pages(zone))) { 1759 fraction[0] = 1; 1760 fraction[1] = 0; 1761 denominator = 1; 1762 goto out; 1763 } 1764 } 1765 1766 /* 1767 * With swappiness at 100, anonymous and file have the same priority. 1768 * This scanning priority is essentially the inverse of IO cost. 1769 */ 1770 anon_prio = sc->swappiness; 1771 file_prio = 200 - sc->swappiness; 1772 1773 /* 1774 * OK, so we have swap space and a fair amount of page cache 1775 * pages. We use the recently rotated / recently scanned 1776 * ratios to determine how valuable each cache is. 1777 * 1778 * Because workloads change over time (and to avoid overflow) 1779 * we keep these statistics as a floating average, which ends 1780 * up weighing recent references more than old ones. 1781 * 1782 * anon in [0], file in [1] 1783 */ 1784 spin_lock_irq(&zone->lru_lock); 1785 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1786 reclaim_stat->recent_scanned[0] /= 2; 1787 reclaim_stat->recent_rotated[0] /= 2; 1788 } 1789 1790 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1791 reclaim_stat->recent_scanned[1] /= 2; 1792 reclaim_stat->recent_rotated[1] /= 2; 1793 } 1794 1795 /* 1796 * The amount of pressure on anon vs file pages is inversely 1797 * proportional to the fraction of recently scanned pages on 1798 * each list that were recently referenced and in active use. 1799 */ 1800 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1801 ap /= reclaim_stat->recent_rotated[0] + 1; 1802 1803 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1804 fp /= reclaim_stat->recent_rotated[1] + 1; 1805 spin_unlock_irq(&zone->lru_lock); 1806 1807 fraction[0] = ap; 1808 fraction[1] = fp; 1809 denominator = ap + fp + 1; 1810 out: 1811 for_each_evictable_lru(l) { 1812 int file = is_file_lru(l); 1813 unsigned long scan; 1814 1815 scan = zone_nr_lru_pages(zone, sc, l); 1816 if (priority || noswap) { 1817 scan >>= priority; 1818 scan = div64_u64(scan * fraction[file], denominator); 1819 } 1820 nr[l] = nr_scan_try_batch(scan, 1821 &reclaim_stat->nr_saved_scan[l]); 1822 } 1823 } 1824 1825 /* 1826 * Reclaim/compaction depends on a number of pages being freed. To avoid 1827 * disruption to the system, a small number of order-0 pages continue to be 1828 * rotated and reclaimed in the normal fashion. However, by the time we get 1829 * back to the allocator and call try_to_compact_zone(), we ensure that 1830 * there are enough free pages for it to be likely successful 1831 */ 1832 static inline bool should_continue_reclaim(struct zone *zone, 1833 unsigned long nr_reclaimed, 1834 unsigned long nr_scanned, 1835 struct scan_control *sc) 1836 { 1837 unsigned long pages_for_compaction; 1838 unsigned long inactive_lru_pages; 1839 1840 /* If not in reclaim/compaction mode, stop */ 1841 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION)) 1842 return false; 1843 1844 /* Consider stopping depending on scan and reclaim activity */ 1845 if (sc->gfp_mask & __GFP_REPEAT) { 1846 /* 1847 * For __GFP_REPEAT allocations, stop reclaiming if the 1848 * full LRU list has been scanned and we are still failing 1849 * to reclaim pages. This full LRU scan is potentially 1850 * expensive but a __GFP_REPEAT caller really wants to succeed 1851 */ 1852 if (!nr_reclaimed && !nr_scanned) 1853 return false; 1854 } else { 1855 /* 1856 * For non-__GFP_REPEAT allocations which can presumably 1857 * fail without consequence, stop if we failed to reclaim 1858 * any pages from the last SWAP_CLUSTER_MAX number of 1859 * pages that were scanned. This will return to the 1860 * caller faster at the risk reclaim/compaction and 1861 * the resulting allocation attempt fails 1862 */ 1863 if (!nr_reclaimed) 1864 return false; 1865 } 1866 1867 /* 1868 * If we have not reclaimed enough pages for compaction and the 1869 * inactive lists are large enough, continue reclaiming 1870 */ 1871 pages_for_compaction = (2UL << sc->order); 1872 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) + 1873 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1874 if (sc->nr_reclaimed < pages_for_compaction && 1875 inactive_lru_pages > pages_for_compaction) 1876 return true; 1877 1878 /* If compaction would go ahead or the allocation would succeed, stop */ 1879 switch (compaction_suitable(zone, sc->order)) { 1880 case COMPACT_PARTIAL: 1881 case COMPACT_CONTINUE: 1882 return false; 1883 default: 1884 return true; 1885 } 1886 } 1887 1888 /* 1889 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1890 */ 1891 static void shrink_zone(int priority, struct zone *zone, 1892 struct scan_control *sc) 1893 { 1894 unsigned long nr[NR_LRU_LISTS]; 1895 unsigned long nr_to_scan; 1896 enum lru_list l; 1897 unsigned long nr_reclaimed, nr_scanned; 1898 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1899 1900 restart: 1901 nr_reclaimed = 0; 1902 nr_scanned = sc->nr_scanned; 1903 get_scan_count(zone, sc, nr, priority); 1904 1905 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1906 nr[LRU_INACTIVE_FILE]) { 1907 for_each_evictable_lru(l) { 1908 if (nr[l]) { 1909 nr_to_scan = min_t(unsigned long, 1910 nr[l], SWAP_CLUSTER_MAX); 1911 nr[l] -= nr_to_scan; 1912 1913 nr_reclaimed += shrink_list(l, nr_to_scan, 1914 zone, sc, priority); 1915 } 1916 } 1917 /* 1918 * On large memory systems, scan >> priority can become 1919 * really large. This is fine for the starting priority; 1920 * we want to put equal scanning pressure on each zone. 1921 * However, if the VM has a harder time of freeing pages, 1922 * with multiple processes reclaiming pages, the total 1923 * freeing target can get unreasonably large. 1924 */ 1925 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY) 1926 break; 1927 } 1928 sc->nr_reclaimed += nr_reclaimed; 1929 1930 /* 1931 * Even if we did not try to evict anon pages at all, we want to 1932 * rebalance the anon lru active/inactive ratio. 1933 */ 1934 if (inactive_anon_is_low(zone, sc)) 1935 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1936 1937 /* reclaim/compaction might need reclaim to continue */ 1938 if (should_continue_reclaim(zone, nr_reclaimed, 1939 sc->nr_scanned - nr_scanned, sc)) 1940 goto restart; 1941 1942 throttle_vm_writeout(sc->gfp_mask); 1943 } 1944 1945 /* 1946 * This is the direct reclaim path, for page-allocating processes. We only 1947 * try to reclaim pages from zones which will satisfy the caller's allocation 1948 * request. 1949 * 1950 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1951 * Because: 1952 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1953 * allocation or 1954 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1955 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1956 * zone defense algorithm. 1957 * 1958 * If a zone is deemed to be full of pinned pages then just give it a light 1959 * scan then give up on it. 1960 */ 1961 static void shrink_zones(int priority, struct zonelist *zonelist, 1962 struct scan_control *sc) 1963 { 1964 struct zoneref *z; 1965 struct zone *zone; 1966 1967 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1968 gfp_zone(sc->gfp_mask), sc->nodemask) { 1969 if (!populated_zone(zone)) 1970 continue; 1971 /* 1972 * Take care memory controller reclaiming has small influence 1973 * to global LRU. 1974 */ 1975 if (scanning_global_lru(sc)) { 1976 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1977 continue; 1978 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1979 continue; /* Let kswapd poll it */ 1980 } 1981 1982 shrink_zone(priority, zone, sc); 1983 } 1984 } 1985 1986 static bool zone_reclaimable(struct zone *zone) 1987 { 1988 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 1989 } 1990 1991 /* 1992 * As hibernation is going on, kswapd is freezed so that it can't mark 1993 * the zone into all_unreclaimable. It can't handle OOM during hibernation. 1994 * So let's check zone's unreclaimable in direct reclaim as well as kswapd. 1995 */ 1996 static bool all_unreclaimable(struct zonelist *zonelist, 1997 struct scan_control *sc) 1998 { 1999 struct zoneref *z; 2000 struct zone *zone; 2001 bool all_unreclaimable = true; 2002 2003 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2004 gfp_zone(sc->gfp_mask), sc->nodemask) { 2005 if (!populated_zone(zone)) 2006 continue; 2007 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2008 continue; 2009 if (zone_reclaimable(zone)) { 2010 all_unreclaimable = false; 2011 break; 2012 } 2013 } 2014 2015 return all_unreclaimable; 2016 } 2017 2018 /* 2019 * This is the main entry point to direct page reclaim. 2020 * 2021 * If a full scan of the inactive list fails to free enough memory then we 2022 * are "out of memory" and something needs to be killed. 2023 * 2024 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2025 * high - the zone may be full of dirty or under-writeback pages, which this 2026 * caller can't do much about. We kick the writeback threads and take explicit 2027 * naps in the hope that some of these pages can be written. But if the 2028 * allocating task holds filesystem locks which prevent writeout this might not 2029 * work, and the allocation attempt will fail. 2030 * 2031 * returns: 0, if no pages reclaimed 2032 * else, the number of pages reclaimed 2033 */ 2034 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2035 struct scan_control *sc) 2036 { 2037 int priority; 2038 unsigned long total_scanned = 0; 2039 struct reclaim_state *reclaim_state = current->reclaim_state; 2040 struct zoneref *z; 2041 struct zone *zone; 2042 unsigned long writeback_threshold; 2043 2044 get_mems_allowed(); 2045 delayacct_freepages_start(); 2046 2047 if (scanning_global_lru(sc)) 2048 count_vm_event(ALLOCSTALL); 2049 2050 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 2051 sc->nr_scanned = 0; 2052 if (!priority) 2053 disable_swap_token(); 2054 shrink_zones(priority, zonelist, sc); 2055 /* 2056 * Don't shrink slabs when reclaiming memory from 2057 * over limit cgroups 2058 */ 2059 if (scanning_global_lru(sc)) { 2060 unsigned long lru_pages = 0; 2061 for_each_zone_zonelist(zone, z, zonelist, 2062 gfp_zone(sc->gfp_mask)) { 2063 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2064 continue; 2065 2066 lru_pages += zone_reclaimable_pages(zone); 2067 } 2068 2069 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 2070 if (reclaim_state) { 2071 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2072 reclaim_state->reclaimed_slab = 0; 2073 } 2074 } 2075 total_scanned += sc->nr_scanned; 2076 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2077 goto out; 2078 2079 /* 2080 * Try to write back as many pages as we just scanned. This 2081 * tends to cause slow streaming writers to write data to the 2082 * disk smoothly, at the dirtying rate, which is nice. But 2083 * that's undesirable in laptop mode, where we *want* lumpy 2084 * writeout. So in laptop mode, write out the whole world. 2085 */ 2086 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2087 if (total_scanned > writeback_threshold) { 2088 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 2089 sc->may_writepage = 1; 2090 } 2091 2092 /* Take a nap, wait for some writeback to complete */ 2093 if (!sc->hibernation_mode && sc->nr_scanned && 2094 priority < DEF_PRIORITY - 2) { 2095 struct zone *preferred_zone; 2096 2097 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), 2098 &cpuset_current_mems_allowed, 2099 &preferred_zone); 2100 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); 2101 } 2102 } 2103 2104 out: 2105 delayacct_freepages_end(); 2106 put_mems_allowed(); 2107 2108 if (sc->nr_reclaimed) 2109 return sc->nr_reclaimed; 2110 2111 /* top priority shrink_zones still had more to do? don't OOM, then */ 2112 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc)) 2113 return 1; 2114 2115 return 0; 2116 } 2117 2118 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2119 gfp_t gfp_mask, nodemask_t *nodemask) 2120 { 2121 unsigned long nr_reclaimed; 2122 struct scan_control sc = { 2123 .gfp_mask = gfp_mask, 2124 .may_writepage = !laptop_mode, 2125 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2126 .may_unmap = 1, 2127 .may_swap = 1, 2128 .swappiness = vm_swappiness, 2129 .order = order, 2130 .mem_cgroup = NULL, 2131 .nodemask = nodemask, 2132 }; 2133 2134 trace_mm_vmscan_direct_reclaim_begin(order, 2135 sc.may_writepage, 2136 gfp_mask); 2137 2138 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2139 2140 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2141 2142 return nr_reclaimed; 2143 } 2144 2145 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 2146 2147 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, 2148 gfp_t gfp_mask, bool noswap, 2149 unsigned int swappiness, 2150 struct zone *zone) 2151 { 2152 struct scan_control sc = { 2153 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2154 .may_writepage = !laptop_mode, 2155 .may_unmap = 1, 2156 .may_swap = !noswap, 2157 .swappiness = swappiness, 2158 .order = 0, 2159 .mem_cgroup = mem, 2160 }; 2161 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2162 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2163 2164 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, 2165 sc.may_writepage, 2166 sc.gfp_mask); 2167 2168 /* 2169 * NOTE: Although we can get the priority field, using it 2170 * here is not a good idea, since it limits the pages we can scan. 2171 * if we don't reclaim here, the shrink_zone from balance_pgdat 2172 * will pick up pages from other mem cgroup's as well. We hack 2173 * the priority and make it zero. 2174 */ 2175 shrink_zone(0, zone, &sc); 2176 2177 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2178 2179 return sc.nr_reclaimed; 2180 } 2181 2182 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 2183 gfp_t gfp_mask, 2184 bool noswap, 2185 unsigned int swappiness) 2186 { 2187 struct zonelist *zonelist; 2188 unsigned long nr_reclaimed; 2189 struct scan_control sc = { 2190 .may_writepage = !laptop_mode, 2191 .may_unmap = 1, 2192 .may_swap = !noswap, 2193 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2194 .swappiness = swappiness, 2195 .order = 0, 2196 .mem_cgroup = mem_cont, 2197 .nodemask = NULL, /* we don't care the placement */ 2198 }; 2199 2200 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2201 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2202 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 2203 2204 trace_mm_vmscan_memcg_reclaim_begin(0, 2205 sc.may_writepage, 2206 sc.gfp_mask); 2207 2208 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2209 2210 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2211 2212 return nr_reclaimed; 2213 } 2214 #endif 2215 2216 /* 2217 * pgdat_balanced is used when checking if a node is balanced for high-order 2218 * allocations. Only zones that meet watermarks and are in a zone allowed 2219 * by the callers classzone_idx are added to balanced_pages. The total of 2220 * balanced pages must be at least 25% of the zones allowed by classzone_idx 2221 * for the node to be considered balanced. Forcing all zones to be balanced 2222 * for high orders can cause excessive reclaim when there are imbalanced zones. 2223 * The choice of 25% is due to 2224 * o a 16M DMA zone that is balanced will not balance a zone on any 2225 * reasonable sized machine 2226 * o On all other machines, the top zone must be at least a reasonable 2227 * precentage of the middle zones. For example, on 32-bit x86, highmem 2228 * would need to be at least 256M for it to be balance a whole node. 2229 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2230 * to balance a node on its own. These seemed like reasonable ratios. 2231 */ 2232 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages, 2233 int classzone_idx) 2234 { 2235 unsigned long present_pages = 0; 2236 int i; 2237 2238 for (i = 0; i <= classzone_idx; i++) 2239 present_pages += pgdat->node_zones[i].present_pages; 2240 2241 return balanced_pages > (present_pages >> 2); 2242 } 2243 2244 /* is kswapd sleeping prematurely? */ 2245 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining, 2246 int classzone_idx) 2247 { 2248 int i; 2249 unsigned long balanced = 0; 2250 bool all_zones_ok = true; 2251 2252 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2253 if (remaining) 2254 return true; 2255 2256 /* Check the watermark levels */ 2257 for (i = 0; i < pgdat->nr_zones; i++) { 2258 struct zone *zone = pgdat->node_zones + i; 2259 2260 if (!populated_zone(zone)) 2261 continue; 2262 2263 /* 2264 * balance_pgdat() skips over all_unreclaimable after 2265 * DEF_PRIORITY. Effectively, it considers them balanced so 2266 * they must be considered balanced here as well if kswapd 2267 * is to sleep 2268 */ 2269 if (zone->all_unreclaimable) { 2270 balanced += zone->present_pages; 2271 continue; 2272 } 2273 2274 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone), 2275 classzone_idx, 0)) 2276 all_zones_ok = false; 2277 else 2278 balanced += zone->present_pages; 2279 } 2280 2281 /* 2282 * For high-order requests, the balanced zones must contain at least 2283 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones 2284 * must be balanced 2285 */ 2286 if (order) 2287 return pgdat_balanced(pgdat, balanced, classzone_idx); 2288 else 2289 return !all_zones_ok; 2290 } 2291 2292 /* 2293 * For kswapd, balance_pgdat() will work across all this node's zones until 2294 * they are all at high_wmark_pages(zone). 2295 * 2296 * Returns the final order kswapd was reclaiming at 2297 * 2298 * There is special handling here for zones which are full of pinned pages. 2299 * This can happen if the pages are all mlocked, or if they are all used by 2300 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2301 * What we do is to detect the case where all pages in the zone have been 2302 * scanned twice and there has been zero successful reclaim. Mark the zone as 2303 * dead and from now on, only perform a short scan. Basically we're polling 2304 * the zone for when the problem goes away. 2305 * 2306 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2307 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2308 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2309 * lower zones regardless of the number of free pages in the lower zones. This 2310 * interoperates with the page allocator fallback scheme to ensure that aging 2311 * of pages is balanced across the zones. 2312 */ 2313 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2314 int *classzone_idx) 2315 { 2316 int all_zones_ok; 2317 unsigned long balanced; 2318 int priority; 2319 int i; 2320 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2321 unsigned long total_scanned; 2322 struct reclaim_state *reclaim_state = current->reclaim_state; 2323 struct scan_control sc = { 2324 .gfp_mask = GFP_KERNEL, 2325 .may_unmap = 1, 2326 .may_swap = 1, 2327 /* 2328 * kswapd doesn't want to be bailed out while reclaim. because 2329 * we want to put equal scanning pressure on each zone. 2330 */ 2331 .nr_to_reclaim = ULONG_MAX, 2332 .swappiness = vm_swappiness, 2333 .order = order, 2334 .mem_cgroup = NULL, 2335 }; 2336 loop_again: 2337 total_scanned = 0; 2338 sc.nr_reclaimed = 0; 2339 sc.may_writepage = !laptop_mode; 2340 count_vm_event(PAGEOUTRUN); 2341 2342 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 2343 unsigned long lru_pages = 0; 2344 int has_under_min_watermark_zone = 0; 2345 2346 /* The swap token gets in the way of swapout... */ 2347 if (!priority) 2348 disable_swap_token(); 2349 2350 all_zones_ok = 1; 2351 balanced = 0; 2352 2353 /* 2354 * Scan in the highmem->dma direction for the highest 2355 * zone which needs scanning 2356 */ 2357 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2358 struct zone *zone = pgdat->node_zones + i; 2359 2360 if (!populated_zone(zone)) 2361 continue; 2362 2363 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2364 continue; 2365 2366 /* 2367 * Do some background aging of the anon list, to give 2368 * pages a chance to be referenced before reclaiming. 2369 */ 2370 if (inactive_anon_is_low(zone, &sc)) 2371 shrink_active_list(SWAP_CLUSTER_MAX, zone, 2372 &sc, priority, 0); 2373 2374 if (!zone_watermark_ok_safe(zone, order, 2375 high_wmark_pages(zone), 0, 0)) { 2376 end_zone = i; 2377 *classzone_idx = i; 2378 break; 2379 } 2380 } 2381 if (i < 0) 2382 goto out; 2383 2384 for (i = 0; i <= end_zone; i++) { 2385 struct zone *zone = pgdat->node_zones + i; 2386 2387 lru_pages += zone_reclaimable_pages(zone); 2388 } 2389 2390 /* 2391 * Now scan the zone in the dma->highmem direction, stopping 2392 * at the last zone which needs scanning. 2393 * 2394 * We do this because the page allocator works in the opposite 2395 * direction. This prevents the page allocator from allocating 2396 * pages behind kswapd's direction of progress, which would 2397 * cause too much scanning of the lower zones. 2398 */ 2399 for (i = 0; i <= end_zone; i++) { 2400 struct zone *zone = pgdat->node_zones + i; 2401 int nr_slab; 2402 unsigned long balance_gap; 2403 2404 if (!populated_zone(zone)) 2405 continue; 2406 2407 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2408 continue; 2409 2410 sc.nr_scanned = 0; 2411 2412 /* 2413 * Call soft limit reclaim before calling shrink_zone. 2414 * For now we ignore the return value 2415 */ 2416 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); 2417 2418 /* 2419 * We put equal pressure on every zone, unless 2420 * one zone has way too many pages free 2421 * already. The "too many pages" is defined 2422 * as the high wmark plus a "gap" where the 2423 * gap is either the low watermark or 1% 2424 * of the zone, whichever is smaller. 2425 */ 2426 balance_gap = min(low_wmark_pages(zone), 2427 (zone->present_pages + 2428 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2429 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2430 if (!zone_watermark_ok_safe(zone, order, 2431 high_wmark_pages(zone) + balance_gap, 2432 end_zone, 0)) 2433 shrink_zone(priority, zone, &sc); 2434 reclaim_state->reclaimed_slab = 0; 2435 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 2436 lru_pages); 2437 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2438 total_scanned += sc.nr_scanned; 2439 2440 if (zone->all_unreclaimable) 2441 continue; 2442 if (nr_slab == 0 && 2443 !zone_reclaimable(zone)) 2444 zone->all_unreclaimable = 1; 2445 /* 2446 * If we've done a decent amount of scanning and 2447 * the reclaim ratio is low, start doing writepage 2448 * even in laptop mode 2449 */ 2450 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2451 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2452 sc.may_writepage = 1; 2453 2454 if (!zone_watermark_ok_safe(zone, order, 2455 high_wmark_pages(zone), end_zone, 0)) { 2456 all_zones_ok = 0; 2457 /* 2458 * We are still under min water mark. This 2459 * means that we have a GFP_ATOMIC allocation 2460 * failure risk. Hurry up! 2461 */ 2462 if (!zone_watermark_ok_safe(zone, order, 2463 min_wmark_pages(zone), end_zone, 0)) 2464 has_under_min_watermark_zone = 1; 2465 } else { 2466 /* 2467 * If a zone reaches its high watermark, 2468 * consider it to be no longer congested. It's 2469 * possible there are dirty pages backed by 2470 * congested BDIs but as pressure is relieved, 2471 * spectulatively avoid congestion waits 2472 */ 2473 zone_clear_flag(zone, ZONE_CONGESTED); 2474 if (i <= *classzone_idx) 2475 balanced += zone->present_pages; 2476 } 2477 2478 } 2479 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx))) 2480 break; /* kswapd: all done */ 2481 /* 2482 * OK, kswapd is getting into trouble. Take a nap, then take 2483 * another pass across the zones. 2484 */ 2485 if (total_scanned && (priority < DEF_PRIORITY - 2)) { 2486 if (has_under_min_watermark_zone) 2487 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2488 else 2489 congestion_wait(BLK_RW_ASYNC, HZ/10); 2490 } 2491 2492 /* 2493 * We do this so kswapd doesn't build up large priorities for 2494 * example when it is freeing in parallel with allocators. It 2495 * matches the direct reclaim path behaviour in terms of impact 2496 * on zone->*_priority. 2497 */ 2498 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2499 break; 2500 } 2501 out: 2502 2503 /* 2504 * order-0: All zones must meet high watermark for a balanced node 2505 * high-order: Balanced zones must make up at least 25% of the node 2506 * for the node to be balanced 2507 */ 2508 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) { 2509 cond_resched(); 2510 2511 try_to_freeze(); 2512 2513 /* 2514 * Fragmentation may mean that the system cannot be 2515 * rebalanced for high-order allocations in all zones. 2516 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2517 * it means the zones have been fully scanned and are still 2518 * not balanced. For high-order allocations, there is 2519 * little point trying all over again as kswapd may 2520 * infinite loop. 2521 * 2522 * Instead, recheck all watermarks at order-0 as they 2523 * are the most important. If watermarks are ok, kswapd will go 2524 * back to sleep. High-order users can still perform direct 2525 * reclaim if they wish. 2526 */ 2527 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2528 order = sc.order = 0; 2529 2530 goto loop_again; 2531 } 2532 2533 /* 2534 * If kswapd was reclaiming at a higher order, it has the option of 2535 * sleeping without all zones being balanced. Before it does, it must 2536 * ensure that the watermarks for order-0 on *all* zones are met and 2537 * that the congestion flags are cleared. The congestion flag must 2538 * be cleared as kswapd is the only mechanism that clears the flag 2539 * and it is potentially going to sleep here. 2540 */ 2541 if (order) { 2542 for (i = 0; i <= end_zone; i++) { 2543 struct zone *zone = pgdat->node_zones + i; 2544 2545 if (!populated_zone(zone)) 2546 continue; 2547 2548 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2549 continue; 2550 2551 /* Confirm the zone is balanced for order-0 */ 2552 if (!zone_watermark_ok(zone, 0, 2553 high_wmark_pages(zone), 0, 0)) { 2554 order = sc.order = 0; 2555 goto loop_again; 2556 } 2557 2558 /* If balanced, clear the congested flag */ 2559 zone_clear_flag(zone, ZONE_CONGESTED); 2560 } 2561 } 2562 2563 /* 2564 * Return the order we were reclaiming at so sleeping_prematurely() 2565 * makes a decision on the order we were last reclaiming at. However, 2566 * if another caller entered the allocator slow path while kswapd 2567 * was awake, order will remain at the higher level 2568 */ 2569 *classzone_idx = end_zone; 2570 return order; 2571 } 2572 2573 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 2574 { 2575 long remaining = 0; 2576 DEFINE_WAIT(wait); 2577 2578 if (freezing(current) || kthread_should_stop()) 2579 return; 2580 2581 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2582 2583 /* Try to sleep for a short interval */ 2584 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) { 2585 remaining = schedule_timeout(HZ/10); 2586 finish_wait(&pgdat->kswapd_wait, &wait); 2587 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2588 } 2589 2590 /* 2591 * After a short sleep, check if it was a premature sleep. If not, then 2592 * go fully to sleep until explicitly woken up. 2593 */ 2594 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) { 2595 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 2596 2597 /* 2598 * vmstat counters are not perfectly accurate and the estimated 2599 * value for counters such as NR_FREE_PAGES can deviate from the 2600 * true value by nr_online_cpus * threshold. To avoid the zone 2601 * watermarks being breached while under pressure, we reduce the 2602 * per-cpu vmstat threshold while kswapd is awake and restore 2603 * them before going back to sleep. 2604 */ 2605 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 2606 schedule(); 2607 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 2608 } else { 2609 if (remaining) 2610 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2611 else 2612 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2613 } 2614 finish_wait(&pgdat->kswapd_wait, &wait); 2615 } 2616 2617 /* 2618 * The background pageout daemon, started as a kernel thread 2619 * from the init process. 2620 * 2621 * This basically trickles out pages so that we have _some_ 2622 * free memory available even if there is no other activity 2623 * that frees anything up. This is needed for things like routing 2624 * etc, where we otherwise might have all activity going on in 2625 * asynchronous contexts that cannot page things out. 2626 * 2627 * If there are applications that are active memory-allocators 2628 * (most normal use), this basically shouldn't matter. 2629 */ 2630 static int kswapd(void *p) 2631 { 2632 unsigned long order; 2633 int classzone_idx; 2634 pg_data_t *pgdat = (pg_data_t*)p; 2635 struct task_struct *tsk = current; 2636 2637 struct reclaim_state reclaim_state = { 2638 .reclaimed_slab = 0, 2639 }; 2640 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2641 2642 lockdep_set_current_reclaim_state(GFP_KERNEL); 2643 2644 if (!cpumask_empty(cpumask)) 2645 set_cpus_allowed_ptr(tsk, cpumask); 2646 current->reclaim_state = &reclaim_state; 2647 2648 /* 2649 * Tell the memory management that we're a "memory allocator", 2650 * and that if we need more memory we should get access to it 2651 * regardless (see "__alloc_pages()"). "kswapd" should 2652 * never get caught in the normal page freeing logic. 2653 * 2654 * (Kswapd normally doesn't need memory anyway, but sometimes 2655 * you need a small amount of memory in order to be able to 2656 * page out something else, and this flag essentially protects 2657 * us from recursively trying to free more memory as we're 2658 * trying to free the first piece of memory in the first place). 2659 */ 2660 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2661 set_freezable(); 2662 2663 order = 0; 2664 classzone_idx = MAX_NR_ZONES - 1; 2665 for ( ; ; ) { 2666 unsigned long new_order; 2667 int new_classzone_idx; 2668 int ret; 2669 2670 new_order = pgdat->kswapd_max_order; 2671 new_classzone_idx = pgdat->classzone_idx; 2672 pgdat->kswapd_max_order = 0; 2673 pgdat->classzone_idx = MAX_NR_ZONES - 1; 2674 if (order < new_order || classzone_idx > new_classzone_idx) { 2675 /* 2676 * Don't sleep if someone wants a larger 'order' 2677 * allocation or has tigher zone constraints 2678 */ 2679 order = new_order; 2680 classzone_idx = new_classzone_idx; 2681 } else { 2682 kswapd_try_to_sleep(pgdat, order, classzone_idx); 2683 order = pgdat->kswapd_max_order; 2684 classzone_idx = pgdat->classzone_idx; 2685 pgdat->kswapd_max_order = 0; 2686 pgdat->classzone_idx = MAX_NR_ZONES - 1; 2687 } 2688 2689 ret = try_to_freeze(); 2690 if (kthread_should_stop()) 2691 break; 2692 2693 /* 2694 * We can speed up thawing tasks if we don't call balance_pgdat 2695 * after returning from the refrigerator 2696 */ 2697 if (!ret) { 2698 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 2699 order = balance_pgdat(pgdat, order, &classzone_idx); 2700 } 2701 } 2702 return 0; 2703 } 2704 2705 /* 2706 * A zone is low on free memory, so wake its kswapd task to service it. 2707 */ 2708 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 2709 { 2710 pg_data_t *pgdat; 2711 2712 if (!populated_zone(zone)) 2713 return; 2714 2715 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2716 return; 2717 pgdat = zone->zone_pgdat; 2718 if (pgdat->kswapd_max_order < order) { 2719 pgdat->kswapd_max_order = order; 2720 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 2721 } 2722 if (!waitqueue_active(&pgdat->kswapd_wait)) 2723 return; 2724 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) 2725 return; 2726 2727 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 2728 wake_up_interruptible(&pgdat->kswapd_wait); 2729 } 2730 2731 /* 2732 * The reclaimable count would be mostly accurate. 2733 * The less reclaimable pages may be 2734 * - mlocked pages, which will be moved to unevictable list when encountered 2735 * - mapped pages, which may require several travels to be reclaimed 2736 * - dirty pages, which is not "instantly" reclaimable 2737 */ 2738 unsigned long global_reclaimable_pages(void) 2739 { 2740 int nr; 2741 2742 nr = global_page_state(NR_ACTIVE_FILE) + 2743 global_page_state(NR_INACTIVE_FILE); 2744 2745 if (nr_swap_pages > 0) 2746 nr += global_page_state(NR_ACTIVE_ANON) + 2747 global_page_state(NR_INACTIVE_ANON); 2748 2749 return nr; 2750 } 2751 2752 unsigned long zone_reclaimable_pages(struct zone *zone) 2753 { 2754 int nr; 2755 2756 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 2757 zone_page_state(zone, NR_INACTIVE_FILE); 2758 2759 if (nr_swap_pages > 0) 2760 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 2761 zone_page_state(zone, NR_INACTIVE_ANON); 2762 2763 return nr; 2764 } 2765 2766 #ifdef CONFIG_HIBERNATION 2767 /* 2768 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 2769 * freed pages. 2770 * 2771 * Rather than trying to age LRUs the aim is to preserve the overall 2772 * LRU order by reclaiming preferentially 2773 * inactive > active > active referenced > active mapped 2774 */ 2775 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 2776 { 2777 struct reclaim_state reclaim_state; 2778 struct scan_control sc = { 2779 .gfp_mask = GFP_HIGHUSER_MOVABLE, 2780 .may_swap = 1, 2781 .may_unmap = 1, 2782 .may_writepage = 1, 2783 .nr_to_reclaim = nr_to_reclaim, 2784 .hibernation_mode = 1, 2785 .swappiness = vm_swappiness, 2786 .order = 0, 2787 }; 2788 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 2789 struct task_struct *p = current; 2790 unsigned long nr_reclaimed; 2791 2792 p->flags |= PF_MEMALLOC; 2793 lockdep_set_current_reclaim_state(sc.gfp_mask); 2794 reclaim_state.reclaimed_slab = 0; 2795 p->reclaim_state = &reclaim_state; 2796 2797 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2798 2799 p->reclaim_state = NULL; 2800 lockdep_clear_current_reclaim_state(); 2801 p->flags &= ~PF_MEMALLOC; 2802 2803 return nr_reclaimed; 2804 } 2805 #endif /* CONFIG_HIBERNATION */ 2806 2807 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2808 not required for correctness. So if the last cpu in a node goes 2809 away, we get changed to run anywhere: as the first one comes back, 2810 restore their cpu bindings. */ 2811 static int __devinit cpu_callback(struct notifier_block *nfb, 2812 unsigned long action, void *hcpu) 2813 { 2814 int nid; 2815 2816 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2817 for_each_node_state(nid, N_HIGH_MEMORY) { 2818 pg_data_t *pgdat = NODE_DATA(nid); 2819 const struct cpumask *mask; 2820 2821 mask = cpumask_of_node(pgdat->node_id); 2822 2823 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2824 /* One of our CPUs online: restore mask */ 2825 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2826 } 2827 } 2828 return NOTIFY_OK; 2829 } 2830 2831 /* 2832 * This kswapd start function will be called by init and node-hot-add. 2833 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2834 */ 2835 int kswapd_run(int nid) 2836 { 2837 pg_data_t *pgdat = NODE_DATA(nid); 2838 int ret = 0; 2839 2840 if (pgdat->kswapd) 2841 return 0; 2842 2843 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2844 if (IS_ERR(pgdat->kswapd)) { 2845 /* failure at boot is fatal */ 2846 BUG_ON(system_state == SYSTEM_BOOTING); 2847 printk("Failed to start kswapd on node %d\n",nid); 2848 ret = -1; 2849 } 2850 return ret; 2851 } 2852 2853 /* 2854 * Called by memory hotplug when all memory in a node is offlined. 2855 */ 2856 void kswapd_stop(int nid) 2857 { 2858 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 2859 2860 if (kswapd) 2861 kthread_stop(kswapd); 2862 } 2863 2864 static int __init kswapd_init(void) 2865 { 2866 int nid; 2867 2868 swap_setup(); 2869 for_each_node_state(nid, N_HIGH_MEMORY) 2870 kswapd_run(nid); 2871 hotcpu_notifier(cpu_callback, 0); 2872 return 0; 2873 } 2874 2875 module_init(kswapd_init) 2876 2877 #ifdef CONFIG_NUMA 2878 /* 2879 * Zone reclaim mode 2880 * 2881 * If non-zero call zone_reclaim when the number of free pages falls below 2882 * the watermarks. 2883 */ 2884 int zone_reclaim_mode __read_mostly; 2885 2886 #define RECLAIM_OFF 0 2887 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2888 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2889 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2890 2891 /* 2892 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2893 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2894 * a zone. 2895 */ 2896 #define ZONE_RECLAIM_PRIORITY 4 2897 2898 /* 2899 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2900 * occur. 2901 */ 2902 int sysctl_min_unmapped_ratio = 1; 2903 2904 /* 2905 * If the number of slab pages in a zone grows beyond this percentage then 2906 * slab reclaim needs to occur. 2907 */ 2908 int sysctl_min_slab_ratio = 5; 2909 2910 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2911 { 2912 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2913 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2914 zone_page_state(zone, NR_ACTIVE_FILE); 2915 2916 /* 2917 * It's possible for there to be more file mapped pages than 2918 * accounted for by the pages on the file LRU lists because 2919 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2920 */ 2921 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2922 } 2923 2924 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2925 static long zone_pagecache_reclaimable(struct zone *zone) 2926 { 2927 long nr_pagecache_reclaimable; 2928 long delta = 0; 2929 2930 /* 2931 * If RECLAIM_SWAP is set, then all file pages are considered 2932 * potentially reclaimable. Otherwise, we have to worry about 2933 * pages like swapcache and zone_unmapped_file_pages() provides 2934 * a better estimate 2935 */ 2936 if (zone_reclaim_mode & RECLAIM_SWAP) 2937 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2938 else 2939 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2940 2941 /* If we can't clean pages, remove dirty pages from consideration */ 2942 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2943 delta += zone_page_state(zone, NR_FILE_DIRTY); 2944 2945 /* Watch for any possible underflows due to delta */ 2946 if (unlikely(delta > nr_pagecache_reclaimable)) 2947 delta = nr_pagecache_reclaimable; 2948 2949 return nr_pagecache_reclaimable - delta; 2950 } 2951 2952 /* 2953 * Try to free up some pages from this zone through reclaim. 2954 */ 2955 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2956 { 2957 /* Minimum pages needed in order to stay on node */ 2958 const unsigned long nr_pages = 1 << order; 2959 struct task_struct *p = current; 2960 struct reclaim_state reclaim_state; 2961 int priority; 2962 struct scan_control sc = { 2963 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2964 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2965 .may_swap = 1, 2966 .nr_to_reclaim = max_t(unsigned long, nr_pages, 2967 SWAP_CLUSTER_MAX), 2968 .gfp_mask = gfp_mask, 2969 .swappiness = vm_swappiness, 2970 .order = order, 2971 }; 2972 unsigned long nr_slab_pages0, nr_slab_pages1; 2973 2974 cond_resched(); 2975 /* 2976 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2977 * and we also need to be able to write out pages for RECLAIM_WRITE 2978 * and RECLAIM_SWAP. 2979 */ 2980 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2981 lockdep_set_current_reclaim_state(gfp_mask); 2982 reclaim_state.reclaimed_slab = 0; 2983 p->reclaim_state = &reclaim_state; 2984 2985 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2986 /* 2987 * Free memory by calling shrink zone with increasing 2988 * priorities until we have enough memory freed. 2989 */ 2990 priority = ZONE_RECLAIM_PRIORITY; 2991 do { 2992 shrink_zone(priority, zone, &sc); 2993 priority--; 2994 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2995 } 2996 2997 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2998 if (nr_slab_pages0 > zone->min_slab_pages) { 2999 /* 3000 * shrink_slab() does not currently allow us to determine how 3001 * many pages were freed in this zone. So we take the current 3002 * number of slab pages and shake the slab until it is reduced 3003 * by the same nr_pages that we used for reclaiming unmapped 3004 * pages. 3005 * 3006 * Note that shrink_slab will free memory on all zones and may 3007 * take a long time. 3008 */ 3009 for (;;) { 3010 unsigned long lru_pages = zone_reclaimable_pages(zone); 3011 3012 /* No reclaimable slab or very low memory pressure */ 3013 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages)) 3014 break; 3015 3016 /* Freed enough memory */ 3017 nr_slab_pages1 = zone_page_state(zone, 3018 NR_SLAB_RECLAIMABLE); 3019 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3020 break; 3021 } 3022 3023 /* 3024 * Update nr_reclaimed by the number of slab pages we 3025 * reclaimed from this zone. 3026 */ 3027 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3028 if (nr_slab_pages1 < nr_slab_pages0) 3029 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3030 } 3031 3032 p->reclaim_state = NULL; 3033 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3034 lockdep_clear_current_reclaim_state(); 3035 return sc.nr_reclaimed >= nr_pages; 3036 } 3037 3038 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3039 { 3040 int node_id; 3041 int ret; 3042 3043 /* 3044 * Zone reclaim reclaims unmapped file backed pages and 3045 * slab pages if we are over the defined limits. 3046 * 3047 * A small portion of unmapped file backed pages is needed for 3048 * file I/O otherwise pages read by file I/O will be immediately 3049 * thrown out if the zone is overallocated. So we do not reclaim 3050 * if less than a specified percentage of the zone is used by 3051 * unmapped file backed pages. 3052 */ 3053 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3054 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3055 return ZONE_RECLAIM_FULL; 3056 3057 if (zone->all_unreclaimable) 3058 return ZONE_RECLAIM_FULL; 3059 3060 /* 3061 * Do not scan if the allocation should not be delayed. 3062 */ 3063 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3064 return ZONE_RECLAIM_NOSCAN; 3065 3066 /* 3067 * Only run zone reclaim on the local zone or on zones that do not 3068 * have associated processors. This will favor the local processor 3069 * over remote processors and spread off node memory allocations 3070 * as wide as possible. 3071 */ 3072 node_id = zone_to_nid(zone); 3073 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3074 return ZONE_RECLAIM_NOSCAN; 3075 3076 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3077 return ZONE_RECLAIM_NOSCAN; 3078 3079 ret = __zone_reclaim(zone, gfp_mask, order); 3080 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3081 3082 if (!ret) 3083 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3084 3085 return ret; 3086 } 3087 #endif 3088 3089 /* 3090 * page_evictable - test whether a page is evictable 3091 * @page: the page to test 3092 * @vma: the VMA in which the page is or will be mapped, may be NULL 3093 * 3094 * Test whether page is evictable--i.e., should be placed on active/inactive 3095 * lists vs unevictable list. The vma argument is !NULL when called from the 3096 * fault path to determine how to instantate a new page. 3097 * 3098 * Reasons page might not be evictable: 3099 * (1) page's mapping marked unevictable 3100 * (2) page is part of an mlocked VMA 3101 * 3102 */ 3103 int page_evictable(struct page *page, struct vm_area_struct *vma) 3104 { 3105 3106 if (mapping_unevictable(page_mapping(page))) 3107 return 0; 3108 3109 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 3110 return 0; 3111 3112 return 1; 3113 } 3114 3115 /** 3116 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 3117 * @page: page to check evictability and move to appropriate lru list 3118 * @zone: zone page is in 3119 * 3120 * Checks a page for evictability and moves the page to the appropriate 3121 * zone lru list. 3122 * 3123 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 3124 * have PageUnevictable set. 3125 */ 3126 static void check_move_unevictable_page(struct page *page, struct zone *zone) 3127 { 3128 VM_BUG_ON(PageActive(page)); 3129 3130 retry: 3131 ClearPageUnevictable(page); 3132 if (page_evictable(page, NULL)) { 3133 enum lru_list l = page_lru_base_type(page); 3134 3135 __dec_zone_state(zone, NR_UNEVICTABLE); 3136 list_move(&page->lru, &zone->lru[l].list); 3137 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 3138 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 3139 __count_vm_event(UNEVICTABLE_PGRESCUED); 3140 } else { 3141 /* 3142 * rotate unevictable list 3143 */ 3144 SetPageUnevictable(page); 3145 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 3146 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 3147 if (page_evictable(page, NULL)) 3148 goto retry; 3149 } 3150 } 3151 3152 /** 3153 * scan_mapping_unevictable_pages - scan an address space for evictable pages 3154 * @mapping: struct address_space to scan for evictable pages 3155 * 3156 * Scan all pages in mapping. Check unevictable pages for 3157 * evictability and move them to the appropriate zone lru list. 3158 */ 3159 void scan_mapping_unevictable_pages(struct address_space *mapping) 3160 { 3161 pgoff_t next = 0; 3162 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 3163 PAGE_CACHE_SHIFT; 3164 struct zone *zone; 3165 struct pagevec pvec; 3166 3167 if (mapping->nrpages == 0) 3168 return; 3169 3170 pagevec_init(&pvec, 0); 3171 while (next < end && 3172 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 3173 int i; 3174 int pg_scanned = 0; 3175 3176 zone = NULL; 3177 3178 for (i = 0; i < pagevec_count(&pvec); i++) { 3179 struct page *page = pvec.pages[i]; 3180 pgoff_t page_index = page->index; 3181 struct zone *pagezone = page_zone(page); 3182 3183 pg_scanned++; 3184 if (page_index > next) 3185 next = page_index; 3186 next++; 3187 3188 if (pagezone != zone) { 3189 if (zone) 3190 spin_unlock_irq(&zone->lru_lock); 3191 zone = pagezone; 3192 spin_lock_irq(&zone->lru_lock); 3193 } 3194 3195 if (PageLRU(page) && PageUnevictable(page)) 3196 check_move_unevictable_page(page, zone); 3197 } 3198 if (zone) 3199 spin_unlock_irq(&zone->lru_lock); 3200 pagevec_release(&pvec); 3201 3202 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 3203 } 3204 3205 } 3206 3207 /** 3208 * scan_zone_unevictable_pages - check unevictable list for evictable pages 3209 * @zone - zone of which to scan the unevictable list 3210 * 3211 * Scan @zone's unevictable LRU lists to check for pages that have become 3212 * evictable. Move those that have to @zone's inactive list where they 3213 * become candidates for reclaim, unless shrink_inactive_zone() decides 3214 * to reactivate them. Pages that are still unevictable are rotated 3215 * back onto @zone's unevictable list. 3216 */ 3217 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 3218 static void scan_zone_unevictable_pages(struct zone *zone) 3219 { 3220 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 3221 unsigned long scan; 3222 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 3223 3224 while (nr_to_scan > 0) { 3225 unsigned long batch_size = min(nr_to_scan, 3226 SCAN_UNEVICTABLE_BATCH_SIZE); 3227 3228 spin_lock_irq(&zone->lru_lock); 3229 for (scan = 0; scan < batch_size; scan++) { 3230 struct page *page = lru_to_page(l_unevictable); 3231 3232 if (!trylock_page(page)) 3233 continue; 3234 3235 prefetchw_prev_lru_page(page, l_unevictable, flags); 3236 3237 if (likely(PageLRU(page) && PageUnevictable(page))) 3238 check_move_unevictable_page(page, zone); 3239 3240 unlock_page(page); 3241 } 3242 spin_unlock_irq(&zone->lru_lock); 3243 3244 nr_to_scan -= batch_size; 3245 } 3246 } 3247 3248 3249 /** 3250 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 3251 * 3252 * A really big hammer: scan all zones' unevictable LRU lists to check for 3253 * pages that have become evictable. Move those back to the zones' 3254 * inactive list where they become candidates for reclaim. 3255 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 3256 * and we add swap to the system. As such, it runs in the context of a task 3257 * that has possibly/probably made some previously unevictable pages 3258 * evictable. 3259 */ 3260 static void scan_all_zones_unevictable_pages(void) 3261 { 3262 struct zone *zone; 3263 3264 for_each_zone(zone) { 3265 scan_zone_unevictable_pages(zone); 3266 } 3267 } 3268 3269 /* 3270 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3271 * all nodes' unevictable lists for evictable pages 3272 */ 3273 unsigned long scan_unevictable_pages; 3274 3275 int scan_unevictable_handler(struct ctl_table *table, int write, 3276 void __user *buffer, 3277 size_t *length, loff_t *ppos) 3278 { 3279 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3280 3281 if (write && *(unsigned long *)table->data) 3282 scan_all_zones_unevictable_pages(); 3283 3284 scan_unevictable_pages = 0; 3285 return 0; 3286 } 3287 3288 #ifdef CONFIG_NUMA 3289 /* 3290 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3291 * a specified node's per zone unevictable lists for evictable pages. 3292 */ 3293 3294 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 3295 struct sysdev_attribute *attr, 3296 char *buf) 3297 { 3298 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3299 } 3300 3301 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 3302 struct sysdev_attribute *attr, 3303 const char *buf, size_t count) 3304 { 3305 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 3306 struct zone *zone; 3307 unsigned long res; 3308 unsigned long req = strict_strtoul(buf, 10, &res); 3309 3310 if (!req) 3311 return 1; /* zero is no-op */ 3312 3313 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 3314 if (!populated_zone(zone)) 3315 continue; 3316 scan_zone_unevictable_pages(zone); 3317 } 3318 return 1; 3319 } 3320 3321 3322 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3323 read_scan_unevictable_node, 3324 write_scan_unevictable_node); 3325 3326 int scan_unevictable_register_node(struct node *node) 3327 { 3328 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 3329 } 3330 3331 void scan_unevictable_unregister_node(struct node *node) 3332 { 3333 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 3334 } 3335 #endif 3336