xref: /openbmc/linux/mm/vmscan.c (revision 3bb598fb23b6040e67b5e6db9a00b28cd26e5809)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 
48 #include <linux/swapops.h>
49 
50 #include "internal.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/vmscan.h>
54 
55 /*
56  * reclaim_mode determines how the inactive list is shrunk
57  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
58  * RECLAIM_MODE_ASYNC:  Do not block
59  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
60  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
61  *			page from the LRU and reclaim all pages within a
62  *			naturally aligned range
63  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
64  *			order-0 pages and then compact the zone
65  */
66 typedef unsigned __bitwise__ reclaim_mode_t;
67 #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
68 #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
69 #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
70 #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
71 #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
72 
73 struct scan_control {
74 	/* Incremented by the number of inactive pages that were scanned */
75 	unsigned long nr_scanned;
76 
77 	/* Number of pages freed so far during a call to shrink_zones() */
78 	unsigned long nr_reclaimed;
79 
80 	/* How many pages shrink_list() should reclaim */
81 	unsigned long nr_to_reclaim;
82 
83 	unsigned long hibernation_mode;
84 
85 	/* This context's GFP mask */
86 	gfp_t gfp_mask;
87 
88 	int may_writepage;
89 
90 	/* Can mapped pages be reclaimed? */
91 	int may_unmap;
92 
93 	/* Can pages be swapped as part of reclaim? */
94 	int may_swap;
95 
96 	int swappiness;
97 
98 	int order;
99 
100 	/*
101 	 * Intend to reclaim enough continuous memory rather than reclaim
102 	 * enough amount of memory. i.e, mode for high order allocation.
103 	 */
104 	reclaim_mode_t reclaim_mode;
105 
106 	/* Which cgroup do we reclaim from */
107 	struct mem_cgroup *mem_cgroup;
108 
109 	/*
110 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 	 * are scanned.
112 	 */
113 	nodemask_t	*nodemask;
114 };
115 
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117 
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)			\
120 	do {								\
121 		if ((_page)->lru.prev != _base) {			\
122 			struct page *prev;				\
123 									\
124 			prev = lru_to_page(&(_page->lru));		\
125 			prefetch(&prev->_field);			\
126 		}							\
127 	} while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131 
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)			\
134 	do {								\
135 		if ((_page)->lru.prev != _base) {			\
136 			struct page *prev;				\
137 									\
138 			prev = lru_to_page(&(_page->lru));		\
139 			prefetchw(&prev->_field);			\
140 		}							\
141 	} while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145 
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;	/* The total number of pages which the VM controls */
151 
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154 
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc)	(1)
159 #endif
160 
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 						  struct scan_control *sc)
163 {
164 	if (!scanning_global_lru(sc))
165 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166 
167 	return &zone->reclaim_stat;
168 }
169 
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171 				struct scan_control *sc, enum lru_list lru)
172 {
173 	if (!scanning_global_lru(sc))
174 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
175 
176 	return zone_page_state(zone, NR_LRU_BASE + lru);
177 }
178 
179 
180 /*
181  * Add a shrinker callback to be called from the vm
182  */
183 void register_shrinker(struct shrinker *shrinker)
184 {
185 	shrinker->nr = 0;
186 	down_write(&shrinker_rwsem);
187 	list_add_tail(&shrinker->list, &shrinker_list);
188 	up_write(&shrinker_rwsem);
189 }
190 EXPORT_SYMBOL(register_shrinker);
191 
192 /*
193  * Remove one
194  */
195 void unregister_shrinker(struct shrinker *shrinker)
196 {
197 	down_write(&shrinker_rwsem);
198 	list_del(&shrinker->list);
199 	up_write(&shrinker_rwsem);
200 }
201 EXPORT_SYMBOL(unregister_shrinker);
202 
203 #define SHRINK_BATCH 128
204 /*
205  * Call the shrink functions to age shrinkable caches
206  *
207  * Here we assume it costs one seek to replace a lru page and that it also
208  * takes a seek to recreate a cache object.  With this in mind we age equal
209  * percentages of the lru and ageable caches.  This should balance the seeks
210  * generated by these structures.
211  *
212  * If the vm encountered mapped pages on the LRU it increase the pressure on
213  * slab to avoid swapping.
214  *
215  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
216  *
217  * `lru_pages' represents the number of on-LRU pages in all the zones which
218  * are eligible for the caller's allocation attempt.  It is used for balancing
219  * slab reclaim versus page reclaim.
220  *
221  * Returns the number of slab objects which we shrunk.
222  */
223 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
224 			unsigned long lru_pages)
225 {
226 	struct shrinker *shrinker;
227 	unsigned long ret = 0;
228 
229 	if (scanned == 0)
230 		scanned = SWAP_CLUSTER_MAX;
231 
232 	if (!down_read_trylock(&shrinker_rwsem))
233 		return 1;	/* Assume we'll be able to shrink next time */
234 
235 	list_for_each_entry(shrinker, &shrinker_list, list) {
236 		unsigned long long delta;
237 		unsigned long total_scan;
238 		unsigned long max_pass;
239 
240 		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
241 		delta = (4 * scanned) / shrinker->seeks;
242 		delta *= max_pass;
243 		do_div(delta, lru_pages + 1);
244 		shrinker->nr += delta;
245 		if (shrinker->nr < 0) {
246 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
247 			       "delete nr=%ld\n",
248 			       shrinker->shrink, shrinker->nr);
249 			shrinker->nr = max_pass;
250 		}
251 
252 		/*
253 		 * Avoid risking looping forever due to too large nr value:
254 		 * never try to free more than twice the estimate number of
255 		 * freeable entries.
256 		 */
257 		if (shrinker->nr > max_pass * 2)
258 			shrinker->nr = max_pass * 2;
259 
260 		total_scan = shrinker->nr;
261 		shrinker->nr = 0;
262 
263 		while (total_scan >= SHRINK_BATCH) {
264 			long this_scan = SHRINK_BATCH;
265 			int shrink_ret;
266 			int nr_before;
267 
268 			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
269 			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
270 								gfp_mask);
271 			if (shrink_ret == -1)
272 				break;
273 			if (shrink_ret < nr_before)
274 				ret += nr_before - shrink_ret;
275 			count_vm_events(SLABS_SCANNED, this_scan);
276 			total_scan -= this_scan;
277 
278 			cond_resched();
279 		}
280 
281 		shrinker->nr += total_scan;
282 	}
283 	up_read(&shrinker_rwsem);
284 	return ret;
285 }
286 
287 static void set_reclaim_mode(int priority, struct scan_control *sc,
288 				   bool sync)
289 {
290 	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
291 
292 	/*
293 	 * Initially assume we are entering either lumpy reclaim or
294 	 * reclaim/compaction.Depending on the order, we will either set the
295 	 * sync mode or just reclaim order-0 pages later.
296 	 */
297 	if (COMPACTION_BUILD)
298 		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
299 	else
300 		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
301 
302 	/*
303 	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
304 	 * restricting when its set to either costly allocations or when
305 	 * under memory pressure
306 	 */
307 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
308 		sc->reclaim_mode |= syncmode;
309 	else if (sc->order && priority < DEF_PRIORITY - 2)
310 		sc->reclaim_mode |= syncmode;
311 	else
312 		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
313 }
314 
315 static void reset_reclaim_mode(struct scan_control *sc)
316 {
317 	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
318 }
319 
320 static inline int is_page_cache_freeable(struct page *page)
321 {
322 	/*
323 	 * A freeable page cache page is referenced only by the caller
324 	 * that isolated the page, the page cache radix tree and
325 	 * optional buffer heads at page->private.
326 	 */
327 	return page_count(page) - page_has_private(page) == 2;
328 }
329 
330 static int may_write_to_queue(struct backing_dev_info *bdi,
331 			      struct scan_control *sc)
332 {
333 	if (current->flags & PF_SWAPWRITE)
334 		return 1;
335 	if (!bdi_write_congested(bdi))
336 		return 1;
337 	if (bdi == current->backing_dev_info)
338 		return 1;
339 
340 	/* lumpy reclaim for hugepage often need a lot of write */
341 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
342 		return 1;
343 	return 0;
344 }
345 
346 /*
347  * We detected a synchronous write error writing a page out.  Probably
348  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
349  * fsync(), msync() or close().
350  *
351  * The tricky part is that after writepage we cannot touch the mapping: nothing
352  * prevents it from being freed up.  But we have a ref on the page and once
353  * that page is locked, the mapping is pinned.
354  *
355  * We're allowed to run sleeping lock_page() here because we know the caller has
356  * __GFP_FS.
357  */
358 static void handle_write_error(struct address_space *mapping,
359 				struct page *page, int error)
360 {
361 	lock_page_nosync(page);
362 	if (page_mapping(page) == mapping)
363 		mapping_set_error(mapping, error);
364 	unlock_page(page);
365 }
366 
367 /* possible outcome of pageout() */
368 typedef enum {
369 	/* failed to write page out, page is locked */
370 	PAGE_KEEP,
371 	/* move page to the active list, page is locked */
372 	PAGE_ACTIVATE,
373 	/* page has been sent to the disk successfully, page is unlocked */
374 	PAGE_SUCCESS,
375 	/* page is clean and locked */
376 	PAGE_CLEAN,
377 } pageout_t;
378 
379 /*
380  * pageout is called by shrink_page_list() for each dirty page.
381  * Calls ->writepage().
382  */
383 static pageout_t pageout(struct page *page, struct address_space *mapping,
384 			 struct scan_control *sc)
385 {
386 	/*
387 	 * If the page is dirty, only perform writeback if that write
388 	 * will be non-blocking.  To prevent this allocation from being
389 	 * stalled by pagecache activity.  But note that there may be
390 	 * stalls if we need to run get_block().  We could test
391 	 * PagePrivate for that.
392 	 *
393 	 * If this process is currently in __generic_file_aio_write() against
394 	 * this page's queue, we can perform writeback even if that
395 	 * will block.
396 	 *
397 	 * If the page is swapcache, write it back even if that would
398 	 * block, for some throttling. This happens by accident, because
399 	 * swap_backing_dev_info is bust: it doesn't reflect the
400 	 * congestion state of the swapdevs.  Easy to fix, if needed.
401 	 */
402 	if (!is_page_cache_freeable(page))
403 		return PAGE_KEEP;
404 	if (!mapping) {
405 		/*
406 		 * Some data journaling orphaned pages can have
407 		 * page->mapping == NULL while being dirty with clean buffers.
408 		 */
409 		if (page_has_private(page)) {
410 			if (try_to_free_buffers(page)) {
411 				ClearPageDirty(page);
412 				printk("%s: orphaned page\n", __func__);
413 				return PAGE_CLEAN;
414 			}
415 		}
416 		return PAGE_KEEP;
417 	}
418 	if (mapping->a_ops->writepage == NULL)
419 		return PAGE_ACTIVATE;
420 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
421 		return PAGE_KEEP;
422 
423 	if (clear_page_dirty_for_io(page)) {
424 		int res;
425 		struct writeback_control wbc = {
426 			.sync_mode = WB_SYNC_NONE,
427 			.nr_to_write = SWAP_CLUSTER_MAX,
428 			.range_start = 0,
429 			.range_end = LLONG_MAX,
430 			.for_reclaim = 1,
431 		};
432 
433 		SetPageReclaim(page);
434 		res = mapping->a_ops->writepage(page, &wbc);
435 		if (res < 0)
436 			handle_write_error(mapping, page, res);
437 		if (res == AOP_WRITEPAGE_ACTIVATE) {
438 			ClearPageReclaim(page);
439 			return PAGE_ACTIVATE;
440 		}
441 
442 		/*
443 		 * Wait on writeback if requested to. This happens when
444 		 * direct reclaiming a large contiguous area and the
445 		 * first attempt to free a range of pages fails.
446 		 */
447 		if (PageWriteback(page) &&
448 		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
449 			wait_on_page_writeback(page);
450 
451 		if (!PageWriteback(page)) {
452 			/* synchronous write or broken a_ops? */
453 			ClearPageReclaim(page);
454 		}
455 		trace_mm_vmscan_writepage(page,
456 			trace_reclaim_flags(page, sc->reclaim_mode));
457 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
458 		return PAGE_SUCCESS;
459 	}
460 
461 	return PAGE_CLEAN;
462 }
463 
464 /*
465  * Same as remove_mapping, but if the page is removed from the mapping, it
466  * gets returned with a refcount of 0.
467  */
468 static int __remove_mapping(struct address_space *mapping, struct page *page)
469 {
470 	BUG_ON(!PageLocked(page));
471 	BUG_ON(mapping != page_mapping(page));
472 
473 	spin_lock_irq(&mapping->tree_lock);
474 	/*
475 	 * The non racy check for a busy page.
476 	 *
477 	 * Must be careful with the order of the tests. When someone has
478 	 * a ref to the page, it may be possible that they dirty it then
479 	 * drop the reference. So if PageDirty is tested before page_count
480 	 * here, then the following race may occur:
481 	 *
482 	 * get_user_pages(&page);
483 	 * [user mapping goes away]
484 	 * write_to(page);
485 	 *				!PageDirty(page)    [good]
486 	 * SetPageDirty(page);
487 	 * put_page(page);
488 	 *				!page_count(page)   [good, discard it]
489 	 *
490 	 * [oops, our write_to data is lost]
491 	 *
492 	 * Reversing the order of the tests ensures such a situation cannot
493 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
494 	 * load is not satisfied before that of page->_count.
495 	 *
496 	 * Note that if SetPageDirty is always performed via set_page_dirty,
497 	 * and thus under tree_lock, then this ordering is not required.
498 	 */
499 	if (!page_freeze_refs(page, 2))
500 		goto cannot_free;
501 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
502 	if (unlikely(PageDirty(page))) {
503 		page_unfreeze_refs(page, 2);
504 		goto cannot_free;
505 	}
506 
507 	if (PageSwapCache(page)) {
508 		swp_entry_t swap = { .val = page_private(page) };
509 		__delete_from_swap_cache(page);
510 		spin_unlock_irq(&mapping->tree_lock);
511 		swapcache_free(swap, page);
512 	} else {
513 		void (*freepage)(struct page *);
514 
515 		freepage = mapping->a_ops->freepage;
516 
517 		__delete_from_page_cache(page);
518 		spin_unlock_irq(&mapping->tree_lock);
519 		mem_cgroup_uncharge_cache_page(page);
520 
521 		if (freepage != NULL)
522 			freepage(page);
523 	}
524 
525 	return 1;
526 
527 cannot_free:
528 	spin_unlock_irq(&mapping->tree_lock);
529 	return 0;
530 }
531 
532 /*
533  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
534  * someone else has a ref on the page, abort and return 0.  If it was
535  * successfully detached, return 1.  Assumes the caller has a single ref on
536  * this page.
537  */
538 int remove_mapping(struct address_space *mapping, struct page *page)
539 {
540 	if (__remove_mapping(mapping, page)) {
541 		/*
542 		 * Unfreezing the refcount with 1 rather than 2 effectively
543 		 * drops the pagecache ref for us without requiring another
544 		 * atomic operation.
545 		 */
546 		page_unfreeze_refs(page, 1);
547 		return 1;
548 	}
549 	return 0;
550 }
551 
552 /**
553  * putback_lru_page - put previously isolated page onto appropriate LRU list
554  * @page: page to be put back to appropriate lru list
555  *
556  * Add previously isolated @page to appropriate LRU list.
557  * Page may still be unevictable for other reasons.
558  *
559  * lru_lock must not be held, interrupts must be enabled.
560  */
561 void putback_lru_page(struct page *page)
562 {
563 	int lru;
564 	int active = !!TestClearPageActive(page);
565 	int was_unevictable = PageUnevictable(page);
566 
567 	VM_BUG_ON(PageLRU(page));
568 
569 redo:
570 	ClearPageUnevictable(page);
571 
572 	if (page_evictable(page, NULL)) {
573 		/*
574 		 * For evictable pages, we can use the cache.
575 		 * In event of a race, worst case is we end up with an
576 		 * unevictable page on [in]active list.
577 		 * We know how to handle that.
578 		 */
579 		lru = active + page_lru_base_type(page);
580 		lru_cache_add_lru(page, lru);
581 	} else {
582 		/*
583 		 * Put unevictable pages directly on zone's unevictable
584 		 * list.
585 		 */
586 		lru = LRU_UNEVICTABLE;
587 		add_page_to_unevictable_list(page);
588 		/*
589 		 * When racing with an mlock clearing (page is
590 		 * unlocked), make sure that if the other thread does
591 		 * not observe our setting of PG_lru and fails
592 		 * isolation, we see PG_mlocked cleared below and move
593 		 * the page back to the evictable list.
594 		 *
595 		 * The other side is TestClearPageMlocked().
596 		 */
597 		smp_mb();
598 	}
599 
600 	/*
601 	 * page's status can change while we move it among lru. If an evictable
602 	 * page is on unevictable list, it never be freed. To avoid that,
603 	 * check after we added it to the list, again.
604 	 */
605 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606 		if (!isolate_lru_page(page)) {
607 			put_page(page);
608 			goto redo;
609 		}
610 		/* This means someone else dropped this page from LRU
611 		 * So, it will be freed or putback to LRU again. There is
612 		 * nothing to do here.
613 		 */
614 	}
615 
616 	if (was_unevictable && lru != LRU_UNEVICTABLE)
617 		count_vm_event(UNEVICTABLE_PGRESCUED);
618 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619 		count_vm_event(UNEVICTABLE_PGCULLED);
620 
621 	put_page(page);		/* drop ref from isolate */
622 }
623 
624 enum page_references {
625 	PAGEREF_RECLAIM,
626 	PAGEREF_RECLAIM_CLEAN,
627 	PAGEREF_KEEP,
628 	PAGEREF_ACTIVATE,
629 };
630 
631 static enum page_references page_check_references(struct page *page,
632 						  struct scan_control *sc)
633 {
634 	int referenced_ptes, referenced_page;
635 	unsigned long vm_flags;
636 
637 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
638 	referenced_page = TestClearPageReferenced(page);
639 
640 	/* Lumpy reclaim - ignore references */
641 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
642 		return PAGEREF_RECLAIM;
643 
644 	/*
645 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
646 	 * move the page to the unevictable list.
647 	 */
648 	if (vm_flags & VM_LOCKED)
649 		return PAGEREF_RECLAIM;
650 
651 	if (referenced_ptes) {
652 		if (PageAnon(page))
653 			return PAGEREF_ACTIVATE;
654 		/*
655 		 * All mapped pages start out with page table
656 		 * references from the instantiating fault, so we need
657 		 * to look twice if a mapped file page is used more
658 		 * than once.
659 		 *
660 		 * Mark it and spare it for another trip around the
661 		 * inactive list.  Another page table reference will
662 		 * lead to its activation.
663 		 *
664 		 * Note: the mark is set for activated pages as well
665 		 * so that recently deactivated but used pages are
666 		 * quickly recovered.
667 		 */
668 		SetPageReferenced(page);
669 
670 		if (referenced_page)
671 			return PAGEREF_ACTIVATE;
672 
673 		return PAGEREF_KEEP;
674 	}
675 
676 	/* Reclaim if clean, defer dirty pages to writeback */
677 	if (referenced_page && !PageSwapBacked(page))
678 		return PAGEREF_RECLAIM_CLEAN;
679 
680 	return PAGEREF_RECLAIM;
681 }
682 
683 static noinline_for_stack void free_page_list(struct list_head *free_pages)
684 {
685 	struct pagevec freed_pvec;
686 	struct page *page, *tmp;
687 
688 	pagevec_init(&freed_pvec, 1);
689 
690 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
691 		list_del(&page->lru);
692 		if (!pagevec_add(&freed_pvec, page)) {
693 			__pagevec_free(&freed_pvec);
694 			pagevec_reinit(&freed_pvec);
695 		}
696 	}
697 
698 	pagevec_free(&freed_pvec);
699 }
700 
701 /*
702  * shrink_page_list() returns the number of reclaimed pages
703  */
704 static unsigned long shrink_page_list(struct list_head *page_list,
705 				      struct zone *zone,
706 				      struct scan_control *sc)
707 {
708 	LIST_HEAD(ret_pages);
709 	LIST_HEAD(free_pages);
710 	int pgactivate = 0;
711 	unsigned long nr_dirty = 0;
712 	unsigned long nr_congested = 0;
713 	unsigned long nr_reclaimed = 0;
714 
715 	cond_resched();
716 
717 	while (!list_empty(page_list)) {
718 		enum page_references references;
719 		struct address_space *mapping;
720 		struct page *page;
721 		int may_enter_fs;
722 
723 		cond_resched();
724 
725 		page = lru_to_page(page_list);
726 		list_del(&page->lru);
727 
728 		if (!trylock_page(page))
729 			goto keep;
730 
731 		VM_BUG_ON(PageActive(page));
732 		VM_BUG_ON(page_zone(page) != zone);
733 
734 		sc->nr_scanned++;
735 
736 		if (unlikely(!page_evictable(page, NULL)))
737 			goto cull_mlocked;
738 
739 		if (!sc->may_unmap && page_mapped(page))
740 			goto keep_locked;
741 
742 		/* Double the slab pressure for mapped and swapcache pages */
743 		if (page_mapped(page) || PageSwapCache(page))
744 			sc->nr_scanned++;
745 
746 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
747 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
748 
749 		if (PageWriteback(page)) {
750 			/*
751 			 * Synchronous reclaim is performed in two passes,
752 			 * first an asynchronous pass over the list to
753 			 * start parallel writeback, and a second synchronous
754 			 * pass to wait for the IO to complete.  Wait here
755 			 * for any page for which writeback has already
756 			 * started.
757 			 */
758 			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
759 			    may_enter_fs)
760 				wait_on_page_writeback(page);
761 			else {
762 				unlock_page(page);
763 				goto keep_lumpy;
764 			}
765 		}
766 
767 		references = page_check_references(page, sc);
768 		switch (references) {
769 		case PAGEREF_ACTIVATE:
770 			goto activate_locked;
771 		case PAGEREF_KEEP:
772 			goto keep_locked;
773 		case PAGEREF_RECLAIM:
774 		case PAGEREF_RECLAIM_CLEAN:
775 			; /* try to reclaim the page below */
776 		}
777 
778 		/*
779 		 * Anonymous process memory has backing store?
780 		 * Try to allocate it some swap space here.
781 		 */
782 		if (PageAnon(page) && !PageSwapCache(page)) {
783 			if (!(sc->gfp_mask & __GFP_IO))
784 				goto keep_locked;
785 			if (!add_to_swap(page))
786 				goto activate_locked;
787 			may_enter_fs = 1;
788 		}
789 
790 		mapping = page_mapping(page);
791 
792 		/*
793 		 * The page is mapped into the page tables of one or more
794 		 * processes. Try to unmap it here.
795 		 */
796 		if (page_mapped(page) && mapping) {
797 			switch (try_to_unmap(page, TTU_UNMAP)) {
798 			case SWAP_FAIL:
799 				goto activate_locked;
800 			case SWAP_AGAIN:
801 				goto keep_locked;
802 			case SWAP_MLOCK:
803 				goto cull_mlocked;
804 			case SWAP_SUCCESS:
805 				; /* try to free the page below */
806 			}
807 		}
808 
809 		if (PageDirty(page)) {
810 			nr_dirty++;
811 
812 			if (references == PAGEREF_RECLAIM_CLEAN)
813 				goto keep_locked;
814 			if (!may_enter_fs)
815 				goto keep_locked;
816 			if (!sc->may_writepage)
817 				goto keep_locked;
818 
819 			/* Page is dirty, try to write it out here */
820 			switch (pageout(page, mapping, sc)) {
821 			case PAGE_KEEP:
822 				nr_congested++;
823 				goto keep_locked;
824 			case PAGE_ACTIVATE:
825 				goto activate_locked;
826 			case PAGE_SUCCESS:
827 				if (PageWriteback(page))
828 					goto keep_lumpy;
829 				if (PageDirty(page))
830 					goto keep;
831 
832 				/*
833 				 * A synchronous write - probably a ramdisk.  Go
834 				 * ahead and try to reclaim the page.
835 				 */
836 				if (!trylock_page(page))
837 					goto keep;
838 				if (PageDirty(page) || PageWriteback(page))
839 					goto keep_locked;
840 				mapping = page_mapping(page);
841 			case PAGE_CLEAN:
842 				; /* try to free the page below */
843 			}
844 		}
845 
846 		/*
847 		 * If the page has buffers, try to free the buffer mappings
848 		 * associated with this page. If we succeed we try to free
849 		 * the page as well.
850 		 *
851 		 * We do this even if the page is PageDirty().
852 		 * try_to_release_page() does not perform I/O, but it is
853 		 * possible for a page to have PageDirty set, but it is actually
854 		 * clean (all its buffers are clean).  This happens if the
855 		 * buffers were written out directly, with submit_bh(). ext3
856 		 * will do this, as well as the blockdev mapping.
857 		 * try_to_release_page() will discover that cleanness and will
858 		 * drop the buffers and mark the page clean - it can be freed.
859 		 *
860 		 * Rarely, pages can have buffers and no ->mapping.  These are
861 		 * the pages which were not successfully invalidated in
862 		 * truncate_complete_page().  We try to drop those buffers here
863 		 * and if that worked, and the page is no longer mapped into
864 		 * process address space (page_count == 1) it can be freed.
865 		 * Otherwise, leave the page on the LRU so it is swappable.
866 		 */
867 		if (page_has_private(page)) {
868 			if (!try_to_release_page(page, sc->gfp_mask))
869 				goto activate_locked;
870 			if (!mapping && page_count(page) == 1) {
871 				unlock_page(page);
872 				if (put_page_testzero(page))
873 					goto free_it;
874 				else {
875 					/*
876 					 * rare race with speculative reference.
877 					 * the speculative reference will free
878 					 * this page shortly, so we may
879 					 * increment nr_reclaimed here (and
880 					 * leave it off the LRU).
881 					 */
882 					nr_reclaimed++;
883 					continue;
884 				}
885 			}
886 		}
887 
888 		if (!mapping || !__remove_mapping(mapping, page))
889 			goto keep_locked;
890 
891 		/*
892 		 * At this point, we have no other references and there is
893 		 * no way to pick any more up (removed from LRU, removed
894 		 * from pagecache). Can use non-atomic bitops now (and
895 		 * we obviously don't have to worry about waking up a process
896 		 * waiting on the page lock, because there are no references.
897 		 */
898 		__clear_page_locked(page);
899 free_it:
900 		nr_reclaimed++;
901 
902 		/*
903 		 * Is there need to periodically free_page_list? It would
904 		 * appear not as the counts should be low
905 		 */
906 		list_add(&page->lru, &free_pages);
907 		continue;
908 
909 cull_mlocked:
910 		if (PageSwapCache(page))
911 			try_to_free_swap(page);
912 		unlock_page(page);
913 		putback_lru_page(page);
914 		reset_reclaim_mode(sc);
915 		continue;
916 
917 activate_locked:
918 		/* Not a candidate for swapping, so reclaim swap space. */
919 		if (PageSwapCache(page) && vm_swap_full())
920 			try_to_free_swap(page);
921 		VM_BUG_ON(PageActive(page));
922 		SetPageActive(page);
923 		pgactivate++;
924 keep_locked:
925 		unlock_page(page);
926 keep:
927 		reset_reclaim_mode(sc);
928 keep_lumpy:
929 		list_add(&page->lru, &ret_pages);
930 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
931 	}
932 
933 	/*
934 	 * Tag a zone as congested if all the dirty pages encountered were
935 	 * backed by a congested BDI. In this case, reclaimers should just
936 	 * back off and wait for congestion to clear because further reclaim
937 	 * will encounter the same problem
938 	 */
939 	if (nr_dirty == nr_congested && nr_dirty != 0)
940 		zone_set_flag(zone, ZONE_CONGESTED);
941 
942 	free_page_list(&free_pages);
943 
944 	list_splice(&ret_pages, page_list);
945 	count_vm_events(PGACTIVATE, pgactivate);
946 	return nr_reclaimed;
947 }
948 
949 /*
950  * Attempt to remove the specified page from its LRU.  Only take this page
951  * if it is of the appropriate PageActive status.  Pages which are being
952  * freed elsewhere are also ignored.
953  *
954  * page:	page to consider
955  * mode:	one of the LRU isolation modes defined above
956  *
957  * returns 0 on success, -ve errno on failure.
958  */
959 int __isolate_lru_page(struct page *page, int mode, int file)
960 {
961 	int ret = -EINVAL;
962 
963 	/* Only take pages on the LRU. */
964 	if (!PageLRU(page))
965 		return ret;
966 
967 	/*
968 	 * When checking the active state, we need to be sure we are
969 	 * dealing with comparible boolean values.  Take the logical not
970 	 * of each.
971 	 */
972 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
973 		return ret;
974 
975 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
976 		return ret;
977 
978 	/*
979 	 * When this function is being called for lumpy reclaim, we
980 	 * initially look into all LRU pages, active, inactive and
981 	 * unevictable; only give shrink_page_list evictable pages.
982 	 */
983 	if (PageUnevictable(page))
984 		return ret;
985 
986 	ret = -EBUSY;
987 
988 	if (likely(get_page_unless_zero(page))) {
989 		/*
990 		 * Be careful not to clear PageLRU until after we're
991 		 * sure the page is not being freed elsewhere -- the
992 		 * page release code relies on it.
993 		 */
994 		ClearPageLRU(page);
995 		ret = 0;
996 	}
997 
998 	return ret;
999 }
1000 
1001 /*
1002  * zone->lru_lock is heavily contended.  Some of the functions that
1003  * shrink the lists perform better by taking out a batch of pages
1004  * and working on them outside the LRU lock.
1005  *
1006  * For pagecache intensive workloads, this function is the hottest
1007  * spot in the kernel (apart from copy_*_user functions).
1008  *
1009  * Appropriate locks must be held before calling this function.
1010  *
1011  * @nr_to_scan:	The number of pages to look through on the list.
1012  * @src:	The LRU list to pull pages off.
1013  * @dst:	The temp list to put pages on to.
1014  * @scanned:	The number of pages that were scanned.
1015  * @order:	The caller's attempted allocation order
1016  * @mode:	One of the LRU isolation modes
1017  * @file:	True [1] if isolating file [!anon] pages
1018  *
1019  * returns how many pages were moved onto *@dst.
1020  */
1021 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1022 		struct list_head *src, struct list_head *dst,
1023 		unsigned long *scanned, int order, int mode, int file)
1024 {
1025 	unsigned long nr_taken = 0;
1026 	unsigned long nr_lumpy_taken = 0;
1027 	unsigned long nr_lumpy_dirty = 0;
1028 	unsigned long nr_lumpy_failed = 0;
1029 	unsigned long scan;
1030 
1031 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1032 		struct page *page;
1033 		unsigned long pfn;
1034 		unsigned long end_pfn;
1035 		unsigned long page_pfn;
1036 		int zone_id;
1037 
1038 		page = lru_to_page(src);
1039 		prefetchw_prev_lru_page(page, src, flags);
1040 
1041 		VM_BUG_ON(!PageLRU(page));
1042 
1043 		switch (__isolate_lru_page(page, mode, file)) {
1044 		case 0:
1045 			list_move(&page->lru, dst);
1046 			mem_cgroup_del_lru(page);
1047 			nr_taken += hpage_nr_pages(page);
1048 			break;
1049 
1050 		case -EBUSY:
1051 			/* else it is being freed elsewhere */
1052 			list_move(&page->lru, src);
1053 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1054 			continue;
1055 
1056 		default:
1057 			BUG();
1058 		}
1059 
1060 		if (!order)
1061 			continue;
1062 
1063 		/*
1064 		 * Attempt to take all pages in the order aligned region
1065 		 * surrounding the tag page.  Only take those pages of
1066 		 * the same active state as that tag page.  We may safely
1067 		 * round the target page pfn down to the requested order
1068 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
1069 		 * where that page is in a different zone we will detect
1070 		 * it from its zone id and abort this block scan.
1071 		 */
1072 		zone_id = page_zone_id(page);
1073 		page_pfn = page_to_pfn(page);
1074 		pfn = page_pfn & ~((1 << order) - 1);
1075 		end_pfn = pfn + (1 << order);
1076 		for (; pfn < end_pfn; pfn++) {
1077 			struct page *cursor_page;
1078 
1079 			/* The target page is in the block, ignore it. */
1080 			if (unlikely(pfn == page_pfn))
1081 				continue;
1082 
1083 			/* Avoid holes within the zone. */
1084 			if (unlikely(!pfn_valid_within(pfn)))
1085 				break;
1086 
1087 			cursor_page = pfn_to_page(pfn);
1088 
1089 			/* Check that we have not crossed a zone boundary. */
1090 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1091 				break;
1092 
1093 			/*
1094 			 * If we don't have enough swap space, reclaiming of
1095 			 * anon page which don't already have a swap slot is
1096 			 * pointless.
1097 			 */
1098 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1099 			    !PageSwapCache(cursor_page))
1100 				break;
1101 
1102 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1103 				list_move(&cursor_page->lru, dst);
1104 				mem_cgroup_del_lru(cursor_page);
1105 				nr_taken += hpage_nr_pages(page);
1106 				nr_lumpy_taken++;
1107 				if (PageDirty(cursor_page))
1108 					nr_lumpy_dirty++;
1109 				scan++;
1110 			} else {
1111 				/* the page is freed already. */
1112 				if (!page_count(cursor_page))
1113 					continue;
1114 				break;
1115 			}
1116 		}
1117 
1118 		/* If we break out of the loop above, lumpy reclaim failed */
1119 		if (pfn < end_pfn)
1120 			nr_lumpy_failed++;
1121 	}
1122 
1123 	*scanned = scan;
1124 
1125 	trace_mm_vmscan_lru_isolate(order,
1126 			nr_to_scan, scan,
1127 			nr_taken,
1128 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1129 			mode);
1130 	return nr_taken;
1131 }
1132 
1133 static unsigned long isolate_pages_global(unsigned long nr,
1134 					struct list_head *dst,
1135 					unsigned long *scanned, int order,
1136 					int mode, struct zone *z,
1137 					int active, int file)
1138 {
1139 	int lru = LRU_BASE;
1140 	if (active)
1141 		lru += LRU_ACTIVE;
1142 	if (file)
1143 		lru += LRU_FILE;
1144 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1145 								mode, file);
1146 }
1147 
1148 /*
1149  * clear_active_flags() is a helper for shrink_active_list(), clearing
1150  * any active bits from the pages in the list.
1151  */
1152 static unsigned long clear_active_flags(struct list_head *page_list,
1153 					unsigned int *count)
1154 {
1155 	int nr_active = 0;
1156 	int lru;
1157 	struct page *page;
1158 
1159 	list_for_each_entry(page, page_list, lru) {
1160 		int numpages = hpage_nr_pages(page);
1161 		lru = page_lru_base_type(page);
1162 		if (PageActive(page)) {
1163 			lru += LRU_ACTIVE;
1164 			ClearPageActive(page);
1165 			nr_active += numpages;
1166 		}
1167 		if (count)
1168 			count[lru] += numpages;
1169 	}
1170 
1171 	return nr_active;
1172 }
1173 
1174 /**
1175  * isolate_lru_page - tries to isolate a page from its LRU list
1176  * @page: page to isolate from its LRU list
1177  *
1178  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1179  * vmstat statistic corresponding to whatever LRU list the page was on.
1180  *
1181  * Returns 0 if the page was removed from an LRU list.
1182  * Returns -EBUSY if the page was not on an LRU list.
1183  *
1184  * The returned page will have PageLRU() cleared.  If it was found on
1185  * the active list, it will have PageActive set.  If it was found on
1186  * the unevictable list, it will have the PageUnevictable bit set. That flag
1187  * may need to be cleared by the caller before letting the page go.
1188  *
1189  * The vmstat statistic corresponding to the list on which the page was
1190  * found will be decremented.
1191  *
1192  * Restrictions:
1193  * (1) Must be called with an elevated refcount on the page. This is a
1194  *     fundamentnal difference from isolate_lru_pages (which is called
1195  *     without a stable reference).
1196  * (2) the lru_lock must not be held.
1197  * (3) interrupts must be enabled.
1198  */
1199 int isolate_lru_page(struct page *page)
1200 {
1201 	int ret = -EBUSY;
1202 
1203 	if (PageLRU(page)) {
1204 		struct zone *zone = page_zone(page);
1205 
1206 		spin_lock_irq(&zone->lru_lock);
1207 		if (PageLRU(page) && get_page_unless_zero(page)) {
1208 			int lru = page_lru(page);
1209 			ret = 0;
1210 			ClearPageLRU(page);
1211 
1212 			del_page_from_lru_list(zone, page, lru);
1213 		}
1214 		spin_unlock_irq(&zone->lru_lock);
1215 	}
1216 	return ret;
1217 }
1218 
1219 /*
1220  * Are there way too many processes in the direct reclaim path already?
1221  */
1222 static int too_many_isolated(struct zone *zone, int file,
1223 		struct scan_control *sc)
1224 {
1225 	unsigned long inactive, isolated;
1226 
1227 	if (current_is_kswapd())
1228 		return 0;
1229 
1230 	if (!scanning_global_lru(sc))
1231 		return 0;
1232 
1233 	if (file) {
1234 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1235 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1236 	} else {
1237 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1238 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1239 	}
1240 
1241 	return isolated > inactive;
1242 }
1243 
1244 /*
1245  * TODO: Try merging with migrations version of putback_lru_pages
1246  */
1247 static noinline_for_stack void
1248 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1249 				unsigned long nr_anon, unsigned long nr_file,
1250 				struct list_head *page_list)
1251 {
1252 	struct page *page;
1253 	struct pagevec pvec;
1254 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1255 
1256 	pagevec_init(&pvec, 1);
1257 
1258 	/*
1259 	 * Put back any unfreeable pages.
1260 	 */
1261 	spin_lock(&zone->lru_lock);
1262 	while (!list_empty(page_list)) {
1263 		int lru;
1264 		page = lru_to_page(page_list);
1265 		VM_BUG_ON(PageLRU(page));
1266 		list_del(&page->lru);
1267 		if (unlikely(!page_evictable(page, NULL))) {
1268 			spin_unlock_irq(&zone->lru_lock);
1269 			putback_lru_page(page);
1270 			spin_lock_irq(&zone->lru_lock);
1271 			continue;
1272 		}
1273 		SetPageLRU(page);
1274 		lru = page_lru(page);
1275 		add_page_to_lru_list(zone, page, lru);
1276 		if (is_active_lru(lru)) {
1277 			int file = is_file_lru(lru);
1278 			int numpages = hpage_nr_pages(page);
1279 			reclaim_stat->recent_rotated[file] += numpages;
1280 		}
1281 		if (!pagevec_add(&pvec, page)) {
1282 			spin_unlock_irq(&zone->lru_lock);
1283 			__pagevec_release(&pvec);
1284 			spin_lock_irq(&zone->lru_lock);
1285 		}
1286 	}
1287 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1288 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1289 
1290 	spin_unlock_irq(&zone->lru_lock);
1291 	pagevec_release(&pvec);
1292 }
1293 
1294 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1295 					struct scan_control *sc,
1296 					unsigned long *nr_anon,
1297 					unsigned long *nr_file,
1298 					struct list_head *isolated_list)
1299 {
1300 	unsigned long nr_active;
1301 	unsigned int count[NR_LRU_LISTS] = { 0, };
1302 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1303 
1304 	nr_active = clear_active_flags(isolated_list, count);
1305 	__count_vm_events(PGDEACTIVATE, nr_active);
1306 
1307 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1308 			      -count[LRU_ACTIVE_FILE]);
1309 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1310 			      -count[LRU_INACTIVE_FILE]);
1311 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1312 			      -count[LRU_ACTIVE_ANON]);
1313 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1314 			      -count[LRU_INACTIVE_ANON]);
1315 
1316 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1317 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1318 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1319 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1320 
1321 	reclaim_stat->recent_scanned[0] += *nr_anon;
1322 	reclaim_stat->recent_scanned[1] += *nr_file;
1323 }
1324 
1325 /*
1326  * Returns true if the caller should wait to clean dirty/writeback pages.
1327  *
1328  * If we are direct reclaiming for contiguous pages and we do not reclaim
1329  * everything in the list, try again and wait for writeback IO to complete.
1330  * This will stall high-order allocations noticeably. Only do that when really
1331  * need to free the pages under high memory pressure.
1332  */
1333 static inline bool should_reclaim_stall(unsigned long nr_taken,
1334 					unsigned long nr_freed,
1335 					int priority,
1336 					struct scan_control *sc)
1337 {
1338 	int lumpy_stall_priority;
1339 
1340 	/* kswapd should not stall on sync IO */
1341 	if (current_is_kswapd())
1342 		return false;
1343 
1344 	/* Only stall on lumpy reclaim */
1345 	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1346 		return false;
1347 
1348 	/* If we have relaimed everything on the isolated list, no stall */
1349 	if (nr_freed == nr_taken)
1350 		return false;
1351 
1352 	/*
1353 	 * For high-order allocations, there are two stall thresholds.
1354 	 * High-cost allocations stall immediately where as lower
1355 	 * order allocations such as stacks require the scanning
1356 	 * priority to be much higher before stalling.
1357 	 */
1358 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1359 		lumpy_stall_priority = DEF_PRIORITY;
1360 	else
1361 		lumpy_stall_priority = DEF_PRIORITY / 3;
1362 
1363 	return priority <= lumpy_stall_priority;
1364 }
1365 
1366 /*
1367  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1368  * of reclaimed pages
1369  */
1370 static noinline_for_stack unsigned long
1371 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1372 			struct scan_control *sc, int priority, int file)
1373 {
1374 	LIST_HEAD(page_list);
1375 	unsigned long nr_scanned;
1376 	unsigned long nr_reclaimed = 0;
1377 	unsigned long nr_taken;
1378 	unsigned long nr_anon;
1379 	unsigned long nr_file;
1380 
1381 	while (unlikely(too_many_isolated(zone, file, sc))) {
1382 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1383 
1384 		/* We are about to die and free our memory. Return now. */
1385 		if (fatal_signal_pending(current))
1386 			return SWAP_CLUSTER_MAX;
1387 	}
1388 
1389 	set_reclaim_mode(priority, sc, false);
1390 	lru_add_drain();
1391 	spin_lock_irq(&zone->lru_lock);
1392 
1393 	if (scanning_global_lru(sc)) {
1394 		nr_taken = isolate_pages_global(nr_to_scan,
1395 			&page_list, &nr_scanned, sc->order,
1396 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1397 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1398 			zone, 0, file);
1399 		zone->pages_scanned += nr_scanned;
1400 		if (current_is_kswapd())
1401 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1402 					       nr_scanned);
1403 		else
1404 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1405 					       nr_scanned);
1406 	} else {
1407 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1408 			&page_list, &nr_scanned, sc->order,
1409 			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1410 					ISOLATE_BOTH : ISOLATE_INACTIVE,
1411 			zone, sc->mem_cgroup,
1412 			0, file);
1413 		/*
1414 		 * mem_cgroup_isolate_pages() keeps track of
1415 		 * scanned pages on its own.
1416 		 */
1417 	}
1418 
1419 	if (nr_taken == 0) {
1420 		spin_unlock_irq(&zone->lru_lock);
1421 		return 0;
1422 	}
1423 
1424 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1425 
1426 	spin_unlock_irq(&zone->lru_lock);
1427 
1428 	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1429 
1430 	/* Check if we should syncronously wait for writeback */
1431 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1432 		set_reclaim_mode(priority, sc, true);
1433 		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1434 	}
1435 
1436 	local_irq_disable();
1437 	if (current_is_kswapd())
1438 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1439 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1440 
1441 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1442 
1443 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1444 		zone_idx(zone),
1445 		nr_scanned, nr_reclaimed,
1446 		priority,
1447 		trace_shrink_flags(file, sc->reclaim_mode));
1448 	return nr_reclaimed;
1449 }
1450 
1451 /*
1452  * This moves pages from the active list to the inactive list.
1453  *
1454  * We move them the other way if the page is referenced by one or more
1455  * processes, from rmap.
1456  *
1457  * If the pages are mostly unmapped, the processing is fast and it is
1458  * appropriate to hold zone->lru_lock across the whole operation.  But if
1459  * the pages are mapped, the processing is slow (page_referenced()) so we
1460  * should drop zone->lru_lock around each page.  It's impossible to balance
1461  * this, so instead we remove the pages from the LRU while processing them.
1462  * It is safe to rely on PG_active against the non-LRU pages in here because
1463  * nobody will play with that bit on a non-LRU page.
1464  *
1465  * The downside is that we have to touch page->_count against each page.
1466  * But we had to alter page->flags anyway.
1467  */
1468 
1469 static void move_active_pages_to_lru(struct zone *zone,
1470 				     struct list_head *list,
1471 				     enum lru_list lru)
1472 {
1473 	unsigned long pgmoved = 0;
1474 	struct pagevec pvec;
1475 	struct page *page;
1476 
1477 	pagevec_init(&pvec, 1);
1478 
1479 	while (!list_empty(list)) {
1480 		page = lru_to_page(list);
1481 
1482 		VM_BUG_ON(PageLRU(page));
1483 		SetPageLRU(page);
1484 
1485 		list_move(&page->lru, &zone->lru[lru].list);
1486 		mem_cgroup_add_lru_list(page, lru);
1487 		pgmoved += hpage_nr_pages(page);
1488 
1489 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1490 			spin_unlock_irq(&zone->lru_lock);
1491 			if (buffer_heads_over_limit)
1492 				pagevec_strip(&pvec);
1493 			__pagevec_release(&pvec);
1494 			spin_lock_irq(&zone->lru_lock);
1495 		}
1496 	}
1497 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1498 	if (!is_active_lru(lru))
1499 		__count_vm_events(PGDEACTIVATE, pgmoved);
1500 }
1501 
1502 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1503 			struct scan_control *sc, int priority, int file)
1504 {
1505 	unsigned long nr_taken;
1506 	unsigned long pgscanned;
1507 	unsigned long vm_flags;
1508 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1509 	LIST_HEAD(l_active);
1510 	LIST_HEAD(l_inactive);
1511 	struct page *page;
1512 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1513 	unsigned long nr_rotated = 0;
1514 
1515 	lru_add_drain();
1516 	spin_lock_irq(&zone->lru_lock);
1517 	if (scanning_global_lru(sc)) {
1518 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1519 						&pgscanned, sc->order,
1520 						ISOLATE_ACTIVE, zone,
1521 						1, file);
1522 		zone->pages_scanned += pgscanned;
1523 	} else {
1524 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1525 						&pgscanned, sc->order,
1526 						ISOLATE_ACTIVE, zone,
1527 						sc->mem_cgroup, 1, file);
1528 		/*
1529 		 * mem_cgroup_isolate_pages() keeps track of
1530 		 * scanned pages on its own.
1531 		 */
1532 	}
1533 
1534 	reclaim_stat->recent_scanned[file] += nr_taken;
1535 
1536 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1537 	if (file)
1538 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1539 	else
1540 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1541 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1542 	spin_unlock_irq(&zone->lru_lock);
1543 
1544 	while (!list_empty(&l_hold)) {
1545 		cond_resched();
1546 		page = lru_to_page(&l_hold);
1547 		list_del(&page->lru);
1548 
1549 		if (unlikely(!page_evictable(page, NULL))) {
1550 			putback_lru_page(page);
1551 			continue;
1552 		}
1553 
1554 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1555 			nr_rotated += hpage_nr_pages(page);
1556 			/*
1557 			 * Identify referenced, file-backed active pages and
1558 			 * give them one more trip around the active list. So
1559 			 * that executable code get better chances to stay in
1560 			 * memory under moderate memory pressure.  Anon pages
1561 			 * are not likely to be evicted by use-once streaming
1562 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1563 			 * so we ignore them here.
1564 			 */
1565 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1566 				list_add(&page->lru, &l_active);
1567 				continue;
1568 			}
1569 		}
1570 
1571 		ClearPageActive(page);	/* we are de-activating */
1572 		list_add(&page->lru, &l_inactive);
1573 	}
1574 
1575 	/*
1576 	 * Move pages back to the lru list.
1577 	 */
1578 	spin_lock_irq(&zone->lru_lock);
1579 	/*
1580 	 * Count referenced pages from currently used mappings as rotated,
1581 	 * even though only some of them are actually re-activated.  This
1582 	 * helps balance scan pressure between file and anonymous pages in
1583 	 * get_scan_ratio.
1584 	 */
1585 	reclaim_stat->recent_rotated[file] += nr_rotated;
1586 
1587 	move_active_pages_to_lru(zone, &l_active,
1588 						LRU_ACTIVE + file * LRU_FILE);
1589 	move_active_pages_to_lru(zone, &l_inactive,
1590 						LRU_BASE   + file * LRU_FILE);
1591 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1592 	spin_unlock_irq(&zone->lru_lock);
1593 }
1594 
1595 #ifdef CONFIG_SWAP
1596 static int inactive_anon_is_low_global(struct zone *zone)
1597 {
1598 	unsigned long active, inactive;
1599 
1600 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1601 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1602 
1603 	if (inactive * zone->inactive_ratio < active)
1604 		return 1;
1605 
1606 	return 0;
1607 }
1608 
1609 /**
1610  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1611  * @zone: zone to check
1612  * @sc:   scan control of this context
1613  *
1614  * Returns true if the zone does not have enough inactive anon pages,
1615  * meaning some active anon pages need to be deactivated.
1616  */
1617 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1618 {
1619 	int low;
1620 
1621 	/*
1622 	 * If we don't have swap space, anonymous page deactivation
1623 	 * is pointless.
1624 	 */
1625 	if (!total_swap_pages)
1626 		return 0;
1627 
1628 	if (scanning_global_lru(sc))
1629 		low = inactive_anon_is_low_global(zone);
1630 	else
1631 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1632 	return low;
1633 }
1634 #else
1635 static inline int inactive_anon_is_low(struct zone *zone,
1636 					struct scan_control *sc)
1637 {
1638 	return 0;
1639 }
1640 #endif
1641 
1642 static int inactive_file_is_low_global(struct zone *zone)
1643 {
1644 	unsigned long active, inactive;
1645 
1646 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1647 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1648 
1649 	return (active > inactive);
1650 }
1651 
1652 /**
1653  * inactive_file_is_low - check if file pages need to be deactivated
1654  * @zone: zone to check
1655  * @sc:   scan control of this context
1656  *
1657  * When the system is doing streaming IO, memory pressure here
1658  * ensures that active file pages get deactivated, until more
1659  * than half of the file pages are on the inactive list.
1660  *
1661  * Once we get to that situation, protect the system's working
1662  * set from being evicted by disabling active file page aging.
1663  *
1664  * This uses a different ratio than the anonymous pages, because
1665  * the page cache uses a use-once replacement algorithm.
1666  */
1667 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1668 {
1669 	int low;
1670 
1671 	if (scanning_global_lru(sc))
1672 		low = inactive_file_is_low_global(zone);
1673 	else
1674 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1675 	return low;
1676 }
1677 
1678 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1679 				int file)
1680 {
1681 	if (file)
1682 		return inactive_file_is_low(zone, sc);
1683 	else
1684 		return inactive_anon_is_low(zone, sc);
1685 }
1686 
1687 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1688 	struct zone *zone, struct scan_control *sc, int priority)
1689 {
1690 	int file = is_file_lru(lru);
1691 
1692 	if (is_active_lru(lru)) {
1693 		if (inactive_list_is_low(zone, sc, file))
1694 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1695 		return 0;
1696 	}
1697 
1698 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1699 }
1700 
1701 /*
1702  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1703  * until we collected @swap_cluster_max pages to scan.
1704  */
1705 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1706 				       unsigned long *nr_saved_scan)
1707 {
1708 	unsigned long nr;
1709 
1710 	*nr_saved_scan += nr_to_scan;
1711 	nr = *nr_saved_scan;
1712 
1713 	if (nr >= SWAP_CLUSTER_MAX)
1714 		*nr_saved_scan = 0;
1715 	else
1716 		nr = 0;
1717 
1718 	return nr;
1719 }
1720 
1721 /*
1722  * Determine how aggressively the anon and file LRU lists should be
1723  * scanned.  The relative value of each set of LRU lists is determined
1724  * by looking at the fraction of the pages scanned we did rotate back
1725  * onto the active list instead of evict.
1726  *
1727  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1728  */
1729 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1730 					unsigned long *nr, int priority)
1731 {
1732 	unsigned long anon, file, free;
1733 	unsigned long anon_prio, file_prio;
1734 	unsigned long ap, fp;
1735 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1736 	u64 fraction[2], denominator;
1737 	enum lru_list l;
1738 	int noswap = 0;
1739 
1740 	/* If we have no swap space, do not bother scanning anon pages. */
1741 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1742 		noswap = 1;
1743 		fraction[0] = 0;
1744 		fraction[1] = 1;
1745 		denominator = 1;
1746 		goto out;
1747 	}
1748 
1749 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1750 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1751 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1752 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1753 
1754 	if (scanning_global_lru(sc)) {
1755 		free  = zone_page_state(zone, NR_FREE_PAGES);
1756 		/* If we have very few page cache pages,
1757 		   force-scan anon pages. */
1758 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1759 			fraction[0] = 1;
1760 			fraction[1] = 0;
1761 			denominator = 1;
1762 			goto out;
1763 		}
1764 	}
1765 
1766 	/*
1767 	 * With swappiness at 100, anonymous and file have the same priority.
1768 	 * This scanning priority is essentially the inverse of IO cost.
1769 	 */
1770 	anon_prio = sc->swappiness;
1771 	file_prio = 200 - sc->swappiness;
1772 
1773 	/*
1774 	 * OK, so we have swap space and a fair amount of page cache
1775 	 * pages.  We use the recently rotated / recently scanned
1776 	 * ratios to determine how valuable each cache is.
1777 	 *
1778 	 * Because workloads change over time (and to avoid overflow)
1779 	 * we keep these statistics as a floating average, which ends
1780 	 * up weighing recent references more than old ones.
1781 	 *
1782 	 * anon in [0], file in [1]
1783 	 */
1784 	spin_lock_irq(&zone->lru_lock);
1785 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1786 		reclaim_stat->recent_scanned[0] /= 2;
1787 		reclaim_stat->recent_rotated[0] /= 2;
1788 	}
1789 
1790 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1791 		reclaim_stat->recent_scanned[1] /= 2;
1792 		reclaim_stat->recent_rotated[1] /= 2;
1793 	}
1794 
1795 	/*
1796 	 * The amount of pressure on anon vs file pages is inversely
1797 	 * proportional to the fraction of recently scanned pages on
1798 	 * each list that were recently referenced and in active use.
1799 	 */
1800 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1801 	ap /= reclaim_stat->recent_rotated[0] + 1;
1802 
1803 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1804 	fp /= reclaim_stat->recent_rotated[1] + 1;
1805 	spin_unlock_irq(&zone->lru_lock);
1806 
1807 	fraction[0] = ap;
1808 	fraction[1] = fp;
1809 	denominator = ap + fp + 1;
1810 out:
1811 	for_each_evictable_lru(l) {
1812 		int file = is_file_lru(l);
1813 		unsigned long scan;
1814 
1815 		scan = zone_nr_lru_pages(zone, sc, l);
1816 		if (priority || noswap) {
1817 			scan >>= priority;
1818 			scan = div64_u64(scan * fraction[file], denominator);
1819 		}
1820 		nr[l] = nr_scan_try_batch(scan,
1821 					  &reclaim_stat->nr_saved_scan[l]);
1822 	}
1823 }
1824 
1825 /*
1826  * Reclaim/compaction depends on a number of pages being freed. To avoid
1827  * disruption to the system, a small number of order-0 pages continue to be
1828  * rotated and reclaimed in the normal fashion. However, by the time we get
1829  * back to the allocator and call try_to_compact_zone(), we ensure that
1830  * there are enough free pages for it to be likely successful
1831  */
1832 static inline bool should_continue_reclaim(struct zone *zone,
1833 					unsigned long nr_reclaimed,
1834 					unsigned long nr_scanned,
1835 					struct scan_control *sc)
1836 {
1837 	unsigned long pages_for_compaction;
1838 	unsigned long inactive_lru_pages;
1839 
1840 	/* If not in reclaim/compaction mode, stop */
1841 	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1842 		return false;
1843 
1844 	/* Consider stopping depending on scan and reclaim activity */
1845 	if (sc->gfp_mask & __GFP_REPEAT) {
1846 		/*
1847 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1848 		 * full LRU list has been scanned and we are still failing
1849 		 * to reclaim pages. This full LRU scan is potentially
1850 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1851 		 */
1852 		if (!nr_reclaimed && !nr_scanned)
1853 			return false;
1854 	} else {
1855 		/*
1856 		 * For non-__GFP_REPEAT allocations which can presumably
1857 		 * fail without consequence, stop if we failed to reclaim
1858 		 * any pages from the last SWAP_CLUSTER_MAX number of
1859 		 * pages that were scanned. This will return to the
1860 		 * caller faster at the risk reclaim/compaction and
1861 		 * the resulting allocation attempt fails
1862 		 */
1863 		if (!nr_reclaimed)
1864 			return false;
1865 	}
1866 
1867 	/*
1868 	 * If we have not reclaimed enough pages for compaction and the
1869 	 * inactive lists are large enough, continue reclaiming
1870 	 */
1871 	pages_for_compaction = (2UL << sc->order);
1872 	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1873 				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1874 	if (sc->nr_reclaimed < pages_for_compaction &&
1875 			inactive_lru_pages > pages_for_compaction)
1876 		return true;
1877 
1878 	/* If compaction would go ahead or the allocation would succeed, stop */
1879 	switch (compaction_suitable(zone, sc->order)) {
1880 	case COMPACT_PARTIAL:
1881 	case COMPACT_CONTINUE:
1882 		return false;
1883 	default:
1884 		return true;
1885 	}
1886 }
1887 
1888 /*
1889  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1890  */
1891 static void shrink_zone(int priority, struct zone *zone,
1892 				struct scan_control *sc)
1893 {
1894 	unsigned long nr[NR_LRU_LISTS];
1895 	unsigned long nr_to_scan;
1896 	enum lru_list l;
1897 	unsigned long nr_reclaimed, nr_scanned;
1898 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1899 
1900 restart:
1901 	nr_reclaimed = 0;
1902 	nr_scanned = sc->nr_scanned;
1903 	get_scan_count(zone, sc, nr, priority);
1904 
1905 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1906 					nr[LRU_INACTIVE_FILE]) {
1907 		for_each_evictable_lru(l) {
1908 			if (nr[l]) {
1909 				nr_to_scan = min_t(unsigned long,
1910 						   nr[l], SWAP_CLUSTER_MAX);
1911 				nr[l] -= nr_to_scan;
1912 
1913 				nr_reclaimed += shrink_list(l, nr_to_scan,
1914 							    zone, sc, priority);
1915 			}
1916 		}
1917 		/*
1918 		 * On large memory systems, scan >> priority can become
1919 		 * really large. This is fine for the starting priority;
1920 		 * we want to put equal scanning pressure on each zone.
1921 		 * However, if the VM has a harder time of freeing pages,
1922 		 * with multiple processes reclaiming pages, the total
1923 		 * freeing target can get unreasonably large.
1924 		 */
1925 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1926 			break;
1927 	}
1928 	sc->nr_reclaimed += nr_reclaimed;
1929 
1930 	/*
1931 	 * Even if we did not try to evict anon pages at all, we want to
1932 	 * rebalance the anon lru active/inactive ratio.
1933 	 */
1934 	if (inactive_anon_is_low(zone, sc))
1935 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1936 
1937 	/* reclaim/compaction might need reclaim to continue */
1938 	if (should_continue_reclaim(zone, nr_reclaimed,
1939 					sc->nr_scanned - nr_scanned, sc))
1940 		goto restart;
1941 
1942 	throttle_vm_writeout(sc->gfp_mask);
1943 }
1944 
1945 /*
1946  * This is the direct reclaim path, for page-allocating processes.  We only
1947  * try to reclaim pages from zones which will satisfy the caller's allocation
1948  * request.
1949  *
1950  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1951  * Because:
1952  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1953  *    allocation or
1954  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1955  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1956  *    zone defense algorithm.
1957  *
1958  * If a zone is deemed to be full of pinned pages then just give it a light
1959  * scan then give up on it.
1960  */
1961 static void shrink_zones(int priority, struct zonelist *zonelist,
1962 					struct scan_control *sc)
1963 {
1964 	struct zoneref *z;
1965 	struct zone *zone;
1966 
1967 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1968 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1969 		if (!populated_zone(zone))
1970 			continue;
1971 		/*
1972 		 * Take care memory controller reclaiming has small influence
1973 		 * to global LRU.
1974 		 */
1975 		if (scanning_global_lru(sc)) {
1976 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1977 				continue;
1978 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1979 				continue;	/* Let kswapd poll it */
1980 		}
1981 
1982 		shrink_zone(priority, zone, sc);
1983 	}
1984 }
1985 
1986 static bool zone_reclaimable(struct zone *zone)
1987 {
1988 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1989 }
1990 
1991 /*
1992  * As hibernation is going on, kswapd is freezed so that it can't mark
1993  * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1994  * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1995  */
1996 static bool all_unreclaimable(struct zonelist *zonelist,
1997 		struct scan_control *sc)
1998 {
1999 	struct zoneref *z;
2000 	struct zone *zone;
2001 	bool all_unreclaimable = true;
2002 
2003 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2004 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2005 		if (!populated_zone(zone))
2006 			continue;
2007 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2008 			continue;
2009 		if (zone_reclaimable(zone)) {
2010 			all_unreclaimable = false;
2011 			break;
2012 		}
2013 	}
2014 
2015 	return all_unreclaimable;
2016 }
2017 
2018 /*
2019  * This is the main entry point to direct page reclaim.
2020  *
2021  * If a full scan of the inactive list fails to free enough memory then we
2022  * are "out of memory" and something needs to be killed.
2023  *
2024  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2025  * high - the zone may be full of dirty or under-writeback pages, which this
2026  * caller can't do much about.  We kick the writeback threads and take explicit
2027  * naps in the hope that some of these pages can be written.  But if the
2028  * allocating task holds filesystem locks which prevent writeout this might not
2029  * work, and the allocation attempt will fail.
2030  *
2031  * returns:	0, if no pages reclaimed
2032  * 		else, the number of pages reclaimed
2033  */
2034 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2035 					struct scan_control *sc)
2036 {
2037 	int priority;
2038 	unsigned long total_scanned = 0;
2039 	struct reclaim_state *reclaim_state = current->reclaim_state;
2040 	struct zoneref *z;
2041 	struct zone *zone;
2042 	unsigned long writeback_threshold;
2043 
2044 	get_mems_allowed();
2045 	delayacct_freepages_start();
2046 
2047 	if (scanning_global_lru(sc))
2048 		count_vm_event(ALLOCSTALL);
2049 
2050 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2051 		sc->nr_scanned = 0;
2052 		if (!priority)
2053 			disable_swap_token();
2054 		shrink_zones(priority, zonelist, sc);
2055 		/*
2056 		 * Don't shrink slabs when reclaiming memory from
2057 		 * over limit cgroups
2058 		 */
2059 		if (scanning_global_lru(sc)) {
2060 			unsigned long lru_pages = 0;
2061 			for_each_zone_zonelist(zone, z, zonelist,
2062 					gfp_zone(sc->gfp_mask)) {
2063 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2064 					continue;
2065 
2066 				lru_pages += zone_reclaimable_pages(zone);
2067 			}
2068 
2069 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2070 			if (reclaim_state) {
2071 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2072 				reclaim_state->reclaimed_slab = 0;
2073 			}
2074 		}
2075 		total_scanned += sc->nr_scanned;
2076 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2077 			goto out;
2078 
2079 		/*
2080 		 * Try to write back as many pages as we just scanned.  This
2081 		 * tends to cause slow streaming writers to write data to the
2082 		 * disk smoothly, at the dirtying rate, which is nice.   But
2083 		 * that's undesirable in laptop mode, where we *want* lumpy
2084 		 * writeout.  So in laptop mode, write out the whole world.
2085 		 */
2086 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2087 		if (total_scanned > writeback_threshold) {
2088 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2089 			sc->may_writepage = 1;
2090 		}
2091 
2092 		/* Take a nap, wait for some writeback to complete */
2093 		if (!sc->hibernation_mode && sc->nr_scanned &&
2094 		    priority < DEF_PRIORITY - 2) {
2095 			struct zone *preferred_zone;
2096 
2097 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2098 						&cpuset_current_mems_allowed,
2099 						&preferred_zone);
2100 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2101 		}
2102 	}
2103 
2104 out:
2105 	delayacct_freepages_end();
2106 	put_mems_allowed();
2107 
2108 	if (sc->nr_reclaimed)
2109 		return sc->nr_reclaimed;
2110 
2111 	/* top priority shrink_zones still had more to do? don't OOM, then */
2112 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2113 		return 1;
2114 
2115 	return 0;
2116 }
2117 
2118 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2119 				gfp_t gfp_mask, nodemask_t *nodemask)
2120 {
2121 	unsigned long nr_reclaimed;
2122 	struct scan_control sc = {
2123 		.gfp_mask = gfp_mask,
2124 		.may_writepage = !laptop_mode,
2125 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2126 		.may_unmap = 1,
2127 		.may_swap = 1,
2128 		.swappiness = vm_swappiness,
2129 		.order = order,
2130 		.mem_cgroup = NULL,
2131 		.nodemask = nodemask,
2132 	};
2133 
2134 	trace_mm_vmscan_direct_reclaim_begin(order,
2135 				sc.may_writepage,
2136 				gfp_mask);
2137 
2138 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2139 
2140 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2141 
2142 	return nr_reclaimed;
2143 }
2144 
2145 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2146 
2147 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2148 						gfp_t gfp_mask, bool noswap,
2149 						unsigned int swappiness,
2150 						struct zone *zone)
2151 {
2152 	struct scan_control sc = {
2153 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2154 		.may_writepage = !laptop_mode,
2155 		.may_unmap = 1,
2156 		.may_swap = !noswap,
2157 		.swappiness = swappiness,
2158 		.order = 0,
2159 		.mem_cgroup = mem,
2160 	};
2161 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2162 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2163 
2164 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2165 						      sc.may_writepage,
2166 						      sc.gfp_mask);
2167 
2168 	/*
2169 	 * NOTE: Although we can get the priority field, using it
2170 	 * here is not a good idea, since it limits the pages we can scan.
2171 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2172 	 * will pick up pages from other mem cgroup's as well. We hack
2173 	 * the priority and make it zero.
2174 	 */
2175 	shrink_zone(0, zone, &sc);
2176 
2177 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2178 
2179 	return sc.nr_reclaimed;
2180 }
2181 
2182 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2183 					   gfp_t gfp_mask,
2184 					   bool noswap,
2185 					   unsigned int swappiness)
2186 {
2187 	struct zonelist *zonelist;
2188 	unsigned long nr_reclaimed;
2189 	struct scan_control sc = {
2190 		.may_writepage = !laptop_mode,
2191 		.may_unmap = 1,
2192 		.may_swap = !noswap,
2193 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2194 		.swappiness = swappiness,
2195 		.order = 0,
2196 		.mem_cgroup = mem_cont,
2197 		.nodemask = NULL, /* we don't care the placement */
2198 	};
2199 
2200 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2201 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2202 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2203 
2204 	trace_mm_vmscan_memcg_reclaim_begin(0,
2205 					    sc.may_writepage,
2206 					    sc.gfp_mask);
2207 
2208 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2209 
2210 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2211 
2212 	return nr_reclaimed;
2213 }
2214 #endif
2215 
2216 /*
2217  * pgdat_balanced is used when checking if a node is balanced for high-order
2218  * allocations. Only zones that meet watermarks and are in a zone allowed
2219  * by the callers classzone_idx are added to balanced_pages. The total of
2220  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2221  * for the node to be considered balanced. Forcing all zones to be balanced
2222  * for high orders can cause excessive reclaim when there are imbalanced zones.
2223  * The choice of 25% is due to
2224  *   o a 16M DMA zone that is balanced will not balance a zone on any
2225  *     reasonable sized machine
2226  *   o On all other machines, the top zone must be at least a reasonable
2227  *     precentage of the middle zones. For example, on 32-bit x86, highmem
2228  *     would need to be at least 256M for it to be balance a whole node.
2229  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2230  *     to balance a node on its own. These seemed like reasonable ratios.
2231  */
2232 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2233 						int classzone_idx)
2234 {
2235 	unsigned long present_pages = 0;
2236 	int i;
2237 
2238 	for (i = 0; i <= classzone_idx; i++)
2239 		present_pages += pgdat->node_zones[i].present_pages;
2240 
2241 	return balanced_pages > (present_pages >> 2);
2242 }
2243 
2244 /* is kswapd sleeping prematurely? */
2245 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2246 					int classzone_idx)
2247 {
2248 	int i;
2249 	unsigned long balanced = 0;
2250 	bool all_zones_ok = true;
2251 
2252 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2253 	if (remaining)
2254 		return true;
2255 
2256 	/* Check the watermark levels */
2257 	for (i = 0; i < pgdat->nr_zones; i++) {
2258 		struct zone *zone = pgdat->node_zones + i;
2259 
2260 		if (!populated_zone(zone))
2261 			continue;
2262 
2263 		/*
2264 		 * balance_pgdat() skips over all_unreclaimable after
2265 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2266 		 * they must be considered balanced here as well if kswapd
2267 		 * is to sleep
2268 		 */
2269 		if (zone->all_unreclaimable) {
2270 			balanced += zone->present_pages;
2271 			continue;
2272 		}
2273 
2274 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2275 							classzone_idx, 0))
2276 			all_zones_ok = false;
2277 		else
2278 			balanced += zone->present_pages;
2279 	}
2280 
2281 	/*
2282 	 * For high-order requests, the balanced zones must contain at least
2283 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2284 	 * must be balanced
2285 	 */
2286 	if (order)
2287 		return pgdat_balanced(pgdat, balanced, classzone_idx);
2288 	else
2289 		return !all_zones_ok;
2290 }
2291 
2292 /*
2293  * For kswapd, balance_pgdat() will work across all this node's zones until
2294  * they are all at high_wmark_pages(zone).
2295  *
2296  * Returns the final order kswapd was reclaiming at
2297  *
2298  * There is special handling here for zones which are full of pinned pages.
2299  * This can happen if the pages are all mlocked, or if they are all used by
2300  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2301  * What we do is to detect the case where all pages in the zone have been
2302  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2303  * dead and from now on, only perform a short scan.  Basically we're polling
2304  * the zone for when the problem goes away.
2305  *
2306  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2307  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2308  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2309  * lower zones regardless of the number of free pages in the lower zones. This
2310  * interoperates with the page allocator fallback scheme to ensure that aging
2311  * of pages is balanced across the zones.
2312  */
2313 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2314 							int *classzone_idx)
2315 {
2316 	int all_zones_ok;
2317 	unsigned long balanced;
2318 	int priority;
2319 	int i;
2320 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2321 	unsigned long total_scanned;
2322 	struct reclaim_state *reclaim_state = current->reclaim_state;
2323 	struct scan_control sc = {
2324 		.gfp_mask = GFP_KERNEL,
2325 		.may_unmap = 1,
2326 		.may_swap = 1,
2327 		/*
2328 		 * kswapd doesn't want to be bailed out while reclaim. because
2329 		 * we want to put equal scanning pressure on each zone.
2330 		 */
2331 		.nr_to_reclaim = ULONG_MAX,
2332 		.swappiness = vm_swappiness,
2333 		.order = order,
2334 		.mem_cgroup = NULL,
2335 	};
2336 loop_again:
2337 	total_scanned = 0;
2338 	sc.nr_reclaimed = 0;
2339 	sc.may_writepage = !laptop_mode;
2340 	count_vm_event(PAGEOUTRUN);
2341 
2342 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2343 		unsigned long lru_pages = 0;
2344 		int has_under_min_watermark_zone = 0;
2345 
2346 		/* The swap token gets in the way of swapout... */
2347 		if (!priority)
2348 			disable_swap_token();
2349 
2350 		all_zones_ok = 1;
2351 		balanced = 0;
2352 
2353 		/*
2354 		 * Scan in the highmem->dma direction for the highest
2355 		 * zone which needs scanning
2356 		 */
2357 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2358 			struct zone *zone = pgdat->node_zones + i;
2359 
2360 			if (!populated_zone(zone))
2361 				continue;
2362 
2363 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2364 				continue;
2365 
2366 			/*
2367 			 * Do some background aging of the anon list, to give
2368 			 * pages a chance to be referenced before reclaiming.
2369 			 */
2370 			if (inactive_anon_is_low(zone, &sc))
2371 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2372 							&sc, priority, 0);
2373 
2374 			if (!zone_watermark_ok_safe(zone, order,
2375 					high_wmark_pages(zone), 0, 0)) {
2376 				end_zone = i;
2377 				*classzone_idx = i;
2378 				break;
2379 			}
2380 		}
2381 		if (i < 0)
2382 			goto out;
2383 
2384 		for (i = 0; i <= end_zone; i++) {
2385 			struct zone *zone = pgdat->node_zones + i;
2386 
2387 			lru_pages += zone_reclaimable_pages(zone);
2388 		}
2389 
2390 		/*
2391 		 * Now scan the zone in the dma->highmem direction, stopping
2392 		 * at the last zone which needs scanning.
2393 		 *
2394 		 * We do this because the page allocator works in the opposite
2395 		 * direction.  This prevents the page allocator from allocating
2396 		 * pages behind kswapd's direction of progress, which would
2397 		 * cause too much scanning of the lower zones.
2398 		 */
2399 		for (i = 0; i <= end_zone; i++) {
2400 			struct zone *zone = pgdat->node_zones + i;
2401 			int nr_slab;
2402 			unsigned long balance_gap;
2403 
2404 			if (!populated_zone(zone))
2405 				continue;
2406 
2407 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2408 				continue;
2409 
2410 			sc.nr_scanned = 0;
2411 
2412 			/*
2413 			 * Call soft limit reclaim before calling shrink_zone.
2414 			 * For now we ignore the return value
2415 			 */
2416 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2417 
2418 			/*
2419 			 * We put equal pressure on every zone, unless
2420 			 * one zone has way too many pages free
2421 			 * already. The "too many pages" is defined
2422 			 * as the high wmark plus a "gap" where the
2423 			 * gap is either the low watermark or 1%
2424 			 * of the zone, whichever is smaller.
2425 			 */
2426 			balance_gap = min(low_wmark_pages(zone),
2427 				(zone->present_pages +
2428 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2429 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2430 			if (!zone_watermark_ok_safe(zone, order,
2431 					high_wmark_pages(zone) + balance_gap,
2432 					end_zone, 0))
2433 				shrink_zone(priority, zone, &sc);
2434 			reclaim_state->reclaimed_slab = 0;
2435 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2436 						lru_pages);
2437 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2438 			total_scanned += sc.nr_scanned;
2439 
2440 			if (zone->all_unreclaimable)
2441 				continue;
2442 			if (nr_slab == 0 &&
2443 			    !zone_reclaimable(zone))
2444 				zone->all_unreclaimable = 1;
2445 			/*
2446 			 * If we've done a decent amount of scanning and
2447 			 * the reclaim ratio is low, start doing writepage
2448 			 * even in laptop mode
2449 			 */
2450 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2451 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2452 				sc.may_writepage = 1;
2453 
2454 			if (!zone_watermark_ok_safe(zone, order,
2455 					high_wmark_pages(zone), end_zone, 0)) {
2456 				all_zones_ok = 0;
2457 				/*
2458 				 * We are still under min water mark.  This
2459 				 * means that we have a GFP_ATOMIC allocation
2460 				 * failure risk. Hurry up!
2461 				 */
2462 				if (!zone_watermark_ok_safe(zone, order,
2463 					    min_wmark_pages(zone), end_zone, 0))
2464 					has_under_min_watermark_zone = 1;
2465 			} else {
2466 				/*
2467 				 * If a zone reaches its high watermark,
2468 				 * consider it to be no longer congested. It's
2469 				 * possible there are dirty pages backed by
2470 				 * congested BDIs but as pressure is relieved,
2471 				 * spectulatively avoid congestion waits
2472 				 */
2473 				zone_clear_flag(zone, ZONE_CONGESTED);
2474 				if (i <= *classzone_idx)
2475 					balanced += zone->present_pages;
2476 			}
2477 
2478 		}
2479 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2480 			break;		/* kswapd: all done */
2481 		/*
2482 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2483 		 * another pass across the zones.
2484 		 */
2485 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2486 			if (has_under_min_watermark_zone)
2487 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2488 			else
2489 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2490 		}
2491 
2492 		/*
2493 		 * We do this so kswapd doesn't build up large priorities for
2494 		 * example when it is freeing in parallel with allocators. It
2495 		 * matches the direct reclaim path behaviour in terms of impact
2496 		 * on zone->*_priority.
2497 		 */
2498 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2499 			break;
2500 	}
2501 out:
2502 
2503 	/*
2504 	 * order-0: All zones must meet high watermark for a balanced node
2505 	 * high-order: Balanced zones must make up at least 25% of the node
2506 	 *             for the node to be balanced
2507 	 */
2508 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2509 		cond_resched();
2510 
2511 		try_to_freeze();
2512 
2513 		/*
2514 		 * Fragmentation may mean that the system cannot be
2515 		 * rebalanced for high-order allocations in all zones.
2516 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2517 		 * it means the zones have been fully scanned and are still
2518 		 * not balanced. For high-order allocations, there is
2519 		 * little point trying all over again as kswapd may
2520 		 * infinite loop.
2521 		 *
2522 		 * Instead, recheck all watermarks at order-0 as they
2523 		 * are the most important. If watermarks are ok, kswapd will go
2524 		 * back to sleep. High-order users can still perform direct
2525 		 * reclaim if they wish.
2526 		 */
2527 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2528 			order = sc.order = 0;
2529 
2530 		goto loop_again;
2531 	}
2532 
2533 	/*
2534 	 * If kswapd was reclaiming at a higher order, it has the option of
2535 	 * sleeping without all zones being balanced. Before it does, it must
2536 	 * ensure that the watermarks for order-0 on *all* zones are met and
2537 	 * that the congestion flags are cleared. The congestion flag must
2538 	 * be cleared as kswapd is the only mechanism that clears the flag
2539 	 * and it is potentially going to sleep here.
2540 	 */
2541 	if (order) {
2542 		for (i = 0; i <= end_zone; i++) {
2543 			struct zone *zone = pgdat->node_zones + i;
2544 
2545 			if (!populated_zone(zone))
2546 				continue;
2547 
2548 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2549 				continue;
2550 
2551 			/* Confirm the zone is balanced for order-0 */
2552 			if (!zone_watermark_ok(zone, 0,
2553 					high_wmark_pages(zone), 0, 0)) {
2554 				order = sc.order = 0;
2555 				goto loop_again;
2556 			}
2557 
2558 			/* If balanced, clear the congested flag */
2559 			zone_clear_flag(zone, ZONE_CONGESTED);
2560 		}
2561 	}
2562 
2563 	/*
2564 	 * Return the order we were reclaiming at so sleeping_prematurely()
2565 	 * makes a decision on the order we were last reclaiming at. However,
2566 	 * if another caller entered the allocator slow path while kswapd
2567 	 * was awake, order will remain at the higher level
2568 	 */
2569 	*classzone_idx = end_zone;
2570 	return order;
2571 }
2572 
2573 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2574 {
2575 	long remaining = 0;
2576 	DEFINE_WAIT(wait);
2577 
2578 	if (freezing(current) || kthread_should_stop())
2579 		return;
2580 
2581 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2582 
2583 	/* Try to sleep for a short interval */
2584 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2585 		remaining = schedule_timeout(HZ/10);
2586 		finish_wait(&pgdat->kswapd_wait, &wait);
2587 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2588 	}
2589 
2590 	/*
2591 	 * After a short sleep, check if it was a premature sleep. If not, then
2592 	 * go fully to sleep until explicitly woken up.
2593 	 */
2594 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2595 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2596 
2597 		/*
2598 		 * vmstat counters are not perfectly accurate and the estimated
2599 		 * value for counters such as NR_FREE_PAGES can deviate from the
2600 		 * true value by nr_online_cpus * threshold. To avoid the zone
2601 		 * watermarks being breached while under pressure, we reduce the
2602 		 * per-cpu vmstat threshold while kswapd is awake and restore
2603 		 * them before going back to sleep.
2604 		 */
2605 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2606 		schedule();
2607 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2608 	} else {
2609 		if (remaining)
2610 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2611 		else
2612 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2613 	}
2614 	finish_wait(&pgdat->kswapd_wait, &wait);
2615 }
2616 
2617 /*
2618  * The background pageout daemon, started as a kernel thread
2619  * from the init process.
2620  *
2621  * This basically trickles out pages so that we have _some_
2622  * free memory available even if there is no other activity
2623  * that frees anything up. This is needed for things like routing
2624  * etc, where we otherwise might have all activity going on in
2625  * asynchronous contexts that cannot page things out.
2626  *
2627  * If there are applications that are active memory-allocators
2628  * (most normal use), this basically shouldn't matter.
2629  */
2630 static int kswapd(void *p)
2631 {
2632 	unsigned long order;
2633 	int classzone_idx;
2634 	pg_data_t *pgdat = (pg_data_t*)p;
2635 	struct task_struct *tsk = current;
2636 
2637 	struct reclaim_state reclaim_state = {
2638 		.reclaimed_slab = 0,
2639 	};
2640 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2641 
2642 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2643 
2644 	if (!cpumask_empty(cpumask))
2645 		set_cpus_allowed_ptr(tsk, cpumask);
2646 	current->reclaim_state = &reclaim_state;
2647 
2648 	/*
2649 	 * Tell the memory management that we're a "memory allocator",
2650 	 * and that if we need more memory we should get access to it
2651 	 * regardless (see "__alloc_pages()"). "kswapd" should
2652 	 * never get caught in the normal page freeing logic.
2653 	 *
2654 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2655 	 * you need a small amount of memory in order to be able to
2656 	 * page out something else, and this flag essentially protects
2657 	 * us from recursively trying to free more memory as we're
2658 	 * trying to free the first piece of memory in the first place).
2659 	 */
2660 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2661 	set_freezable();
2662 
2663 	order = 0;
2664 	classzone_idx = MAX_NR_ZONES - 1;
2665 	for ( ; ; ) {
2666 		unsigned long new_order;
2667 		int new_classzone_idx;
2668 		int ret;
2669 
2670 		new_order = pgdat->kswapd_max_order;
2671 		new_classzone_idx = pgdat->classzone_idx;
2672 		pgdat->kswapd_max_order = 0;
2673 		pgdat->classzone_idx = MAX_NR_ZONES - 1;
2674 		if (order < new_order || classzone_idx > new_classzone_idx) {
2675 			/*
2676 			 * Don't sleep if someone wants a larger 'order'
2677 			 * allocation or has tigher zone constraints
2678 			 */
2679 			order = new_order;
2680 			classzone_idx = new_classzone_idx;
2681 		} else {
2682 			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2683 			order = pgdat->kswapd_max_order;
2684 			classzone_idx = pgdat->classzone_idx;
2685 			pgdat->kswapd_max_order = 0;
2686 			pgdat->classzone_idx = MAX_NR_ZONES - 1;
2687 		}
2688 
2689 		ret = try_to_freeze();
2690 		if (kthread_should_stop())
2691 			break;
2692 
2693 		/*
2694 		 * We can speed up thawing tasks if we don't call balance_pgdat
2695 		 * after returning from the refrigerator
2696 		 */
2697 		if (!ret) {
2698 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2699 			order = balance_pgdat(pgdat, order, &classzone_idx);
2700 		}
2701 	}
2702 	return 0;
2703 }
2704 
2705 /*
2706  * A zone is low on free memory, so wake its kswapd task to service it.
2707  */
2708 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2709 {
2710 	pg_data_t *pgdat;
2711 
2712 	if (!populated_zone(zone))
2713 		return;
2714 
2715 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2716 		return;
2717 	pgdat = zone->zone_pgdat;
2718 	if (pgdat->kswapd_max_order < order) {
2719 		pgdat->kswapd_max_order = order;
2720 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2721 	}
2722 	if (!waitqueue_active(&pgdat->kswapd_wait))
2723 		return;
2724 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2725 		return;
2726 
2727 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2728 	wake_up_interruptible(&pgdat->kswapd_wait);
2729 }
2730 
2731 /*
2732  * The reclaimable count would be mostly accurate.
2733  * The less reclaimable pages may be
2734  * - mlocked pages, which will be moved to unevictable list when encountered
2735  * - mapped pages, which may require several travels to be reclaimed
2736  * - dirty pages, which is not "instantly" reclaimable
2737  */
2738 unsigned long global_reclaimable_pages(void)
2739 {
2740 	int nr;
2741 
2742 	nr = global_page_state(NR_ACTIVE_FILE) +
2743 	     global_page_state(NR_INACTIVE_FILE);
2744 
2745 	if (nr_swap_pages > 0)
2746 		nr += global_page_state(NR_ACTIVE_ANON) +
2747 		      global_page_state(NR_INACTIVE_ANON);
2748 
2749 	return nr;
2750 }
2751 
2752 unsigned long zone_reclaimable_pages(struct zone *zone)
2753 {
2754 	int nr;
2755 
2756 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2757 	     zone_page_state(zone, NR_INACTIVE_FILE);
2758 
2759 	if (nr_swap_pages > 0)
2760 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2761 		      zone_page_state(zone, NR_INACTIVE_ANON);
2762 
2763 	return nr;
2764 }
2765 
2766 #ifdef CONFIG_HIBERNATION
2767 /*
2768  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2769  * freed pages.
2770  *
2771  * Rather than trying to age LRUs the aim is to preserve the overall
2772  * LRU order by reclaiming preferentially
2773  * inactive > active > active referenced > active mapped
2774  */
2775 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2776 {
2777 	struct reclaim_state reclaim_state;
2778 	struct scan_control sc = {
2779 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2780 		.may_swap = 1,
2781 		.may_unmap = 1,
2782 		.may_writepage = 1,
2783 		.nr_to_reclaim = nr_to_reclaim,
2784 		.hibernation_mode = 1,
2785 		.swappiness = vm_swappiness,
2786 		.order = 0,
2787 	};
2788 	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2789 	struct task_struct *p = current;
2790 	unsigned long nr_reclaimed;
2791 
2792 	p->flags |= PF_MEMALLOC;
2793 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2794 	reclaim_state.reclaimed_slab = 0;
2795 	p->reclaim_state = &reclaim_state;
2796 
2797 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2798 
2799 	p->reclaim_state = NULL;
2800 	lockdep_clear_current_reclaim_state();
2801 	p->flags &= ~PF_MEMALLOC;
2802 
2803 	return nr_reclaimed;
2804 }
2805 #endif /* CONFIG_HIBERNATION */
2806 
2807 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2808    not required for correctness.  So if the last cpu in a node goes
2809    away, we get changed to run anywhere: as the first one comes back,
2810    restore their cpu bindings. */
2811 static int __devinit cpu_callback(struct notifier_block *nfb,
2812 				  unsigned long action, void *hcpu)
2813 {
2814 	int nid;
2815 
2816 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2817 		for_each_node_state(nid, N_HIGH_MEMORY) {
2818 			pg_data_t *pgdat = NODE_DATA(nid);
2819 			const struct cpumask *mask;
2820 
2821 			mask = cpumask_of_node(pgdat->node_id);
2822 
2823 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2824 				/* One of our CPUs online: restore mask */
2825 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2826 		}
2827 	}
2828 	return NOTIFY_OK;
2829 }
2830 
2831 /*
2832  * This kswapd start function will be called by init and node-hot-add.
2833  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2834  */
2835 int kswapd_run(int nid)
2836 {
2837 	pg_data_t *pgdat = NODE_DATA(nid);
2838 	int ret = 0;
2839 
2840 	if (pgdat->kswapd)
2841 		return 0;
2842 
2843 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2844 	if (IS_ERR(pgdat->kswapd)) {
2845 		/* failure at boot is fatal */
2846 		BUG_ON(system_state == SYSTEM_BOOTING);
2847 		printk("Failed to start kswapd on node %d\n",nid);
2848 		ret = -1;
2849 	}
2850 	return ret;
2851 }
2852 
2853 /*
2854  * Called by memory hotplug when all memory in a node is offlined.
2855  */
2856 void kswapd_stop(int nid)
2857 {
2858 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2859 
2860 	if (kswapd)
2861 		kthread_stop(kswapd);
2862 }
2863 
2864 static int __init kswapd_init(void)
2865 {
2866 	int nid;
2867 
2868 	swap_setup();
2869 	for_each_node_state(nid, N_HIGH_MEMORY)
2870  		kswapd_run(nid);
2871 	hotcpu_notifier(cpu_callback, 0);
2872 	return 0;
2873 }
2874 
2875 module_init(kswapd_init)
2876 
2877 #ifdef CONFIG_NUMA
2878 /*
2879  * Zone reclaim mode
2880  *
2881  * If non-zero call zone_reclaim when the number of free pages falls below
2882  * the watermarks.
2883  */
2884 int zone_reclaim_mode __read_mostly;
2885 
2886 #define RECLAIM_OFF 0
2887 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2888 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2889 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2890 
2891 /*
2892  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2893  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2894  * a zone.
2895  */
2896 #define ZONE_RECLAIM_PRIORITY 4
2897 
2898 /*
2899  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2900  * occur.
2901  */
2902 int sysctl_min_unmapped_ratio = 1;
2903 
2904 /*
2905  * If the number of slab pages in a zone grows beyond this percentage then
2906  * slab reclaim needs to occur.
2907  */
2908 int sysctl_min_slab_ratio = 5;
2909 
2910 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2911 {
2912 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2913 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2914 		zone_page_state(zone, NR_ACTIVE_FILE);
2915 
2916 	/*
2917 	 * It's possible for there to be more file mapped pages than
2918 	 * accounted for by the pages on the file LRU lists because
2919 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2920 	 */
2921 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2922 }
2923 
2924 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2925 static long zone_pagecache_reclaimable(struct zone *zone)
2926 {
2927 	long nr_pagecache_reclaimable;
2928 	long delta = 0;
2929 
2930 	/*
2931 	 * If RECLAIM_SWAP is set, then all file pages are considered
2932 	 * potentially reclaimable. Otherwise, we have to worry about
2933 	 * pages like swapcache and zone_unmapped_file_pages() provides
2934 	 * a better estimate
2935 	 */
2936 	if (zone_reclaim_mode & RECLAIM_SWAP)
2937 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2938 	else
2939 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2940 
2941 	/* If we can't clean pages, remove dirty pages from consideration */
2942 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2943 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2944 
2945 	/* Watch for any possible underflows due to delta */
2946 	if (unlikely(delta > nr_pagecache_reclaimable))
2947 		delta = nr_pagecache_reclaimable;
2948 
2949 	return nr_pagecache_reclaimable - delta;
2950 }
2951 
2952 /*
2953  * Try to free up some pages from this zone through reclaim.
2954  */
2955 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2956 {
2957 	/* Minimum pages needed in order to stay on node */
2958 	const unsigned long nr_pages = 1 << order;
2959 	struct task_struct *p = current;
2960 	struct reclaim_state reclaim_state;
2961 	int priority;
2962 	struct scan_control sc = {
2963 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2964 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2965 		.may_swap = 1,
2966 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2967 				       SWAP_CLUSTER_MAX),
2968 		.gfp_mask = gfp_mask,
2969 		.swappiness = vm_swappiness,
2970 		.order = order,
2971 	};
2972 	unsigned long nr_slab_pages0, nr_slab_pages1;
2973 
2974 	cond_resched();
2975 	/*
2976 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2977 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2978 	 * and RECLAIM_SWAP.
2979 	 */
2980 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2981 	lockdep_set_current_reclaim_state(gfp_mask);
2982 	reclaim_state.reclaimed_slab = 0;
2983 	p->reclaim_state = &reclaim_state;
2984 
2985 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2986 		/*
2987 		 * Free memory by calling shrink zone with increasing
2988 		 * priorities until we have enough memory freed.
2989 		 */
2990 		priority = ZONE_RECLAIM_PRIORITY;
2991 		do {
2992 			shrink_zone(priority, zone, &sc);
2993 			priority--;
2994 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2995 	}
2996 
2997 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2998 	if (nr_slab_pages0 > zone->min_slab_pages) {
2999 		/*
3000 		 * shrink_slab() does not currently allow us to determine how
3001 		 * many pages were freed in this zone. So we take the current
3002 		 * number of slab pages and shake the slab until it is reduced
3003 		 * by the same nr_pages that we used for reclaiming unmapped
3004 		 * pages.
3005 		 *
3006 		 * Note that shrink_slab will free memory on all zones and may
3007 		 * take a long time.
3008 		 */
3009 		for (;;) {
3010 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3011 
3012 			/* No reclaimable slab or very low memory pressure */
3013 			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3014 				break;
3015 
3016 			/* Freed enough memory */
3017 			nr_slab_pages1 = zone_page_state(zone,
3018 							NR_SLAB_RECLAIMABLE);
3019 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3020 				break;
3021 		}
3022 
3023 		/*
3024 		 * Update nr_reclaimed by the number of slab pages we
3025 		 * reclaimed from this zone.
3026 		 */
3027 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3028 		if (nr_slab_pages1 < nr_slab_pages0)
3029 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3030 	}
3031 
3032 	p->reclaim_state = NULL;
3033 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3034 	lockdep_clear_current_reclaim_state();
3035 	return sc.nr_reclaimed >= nr_pages;
3036 }
3037 
3038 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3039 {
3040 	int node_id;
3041 	int ret;
3042 
3043 	/*
3044 	 * Zone reclaim reclaims unmapped file backed pages and
3045 	 * slab pages if we are over the defined limits.
3046 	 *
3047 	 * A small portion of unmapped file backed pages is needed for
3048 	 * file I/O otherwise pages read by file I/O will be immediately
3049 	 * thrown out if the zone is overallocated. So we do not reclaim
3050 	 * if less than a specified percentage of the zone is used by
3051 	 * unmapped file backed pages.
3052 	 */
3053 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3054 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3055 		return ZONE_RECLAIM_FULL;
3056 
3057 	if (zone->all_unreclaimable)
3058 		return ZONE_RECLAIM_FULL;
3059 
3060 	/*
3061 	 * Do not scan if the allocation should not be delayed.
3062 	 */
3063 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3064 		return ZONE_RECLAIM_NOSCAN;
3065 
3066 	/*
3067 	 * Only run zone reclaim on the local zone or on zones that do not
3068 	 * have associated processors. This will favor the local processor
3069 	 * over remote processors and spread off node memory allocations
3070 	 * as wide as possible.
3071 	 */
3072 	node_id = zone_to_nid(zone);
3073 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3074 		return ZONE_RECLAIM_NOSCAN;
3075 
3076 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3077 		return ZONE_RECLAIM_NOSCAN;
3078 
3079 	ret = __zone_reclaim(zone, gfp_mask, order);
3080 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3081 
3082 	if (!ret)
3083 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3084 
3085 	return ret;
3086 }
3087 #endif
3088 
3089 /*
3090  * page_evictable - test whether a page is evictable
3091  * @page: the page to test
3092  * @vma: the VMA in which the page is or will be mapped, may be NULL
3093  *
3094  * Test whether page is evictable--i.e., should be placed on active/inactive
3095  * lists vs unevictable list.  The vma argument is !NULL when called from the
3096  * fault path to determine how to instantate a new page.
3097  *
3098  * Reasons page might not be evictable:
3099  * (1) page's mapping marked unevictable
3100  * (2) page is part of an mlocked VMA
3101  *
3102  */
3103 int page_evictable(struct page *page, struct vm_area_struct *vma)
3104 {
3105 
3106 	if (mapping_unevictable(page_mapping(page)))
3107 		return 0;
3108 
3109 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3110 		return 0;
3111 
3112 	return 1;
3113 }
3114 
3115 /**
3116  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3117  * @page: page to check evictability and move to appropriate lru list
3118  * @zone: zone page is in
3119  *
3120  * Checks a page for evictability and moves the page to the appropriate
3121  * zone lru list.
3122  *
3123  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3124  * have PageUnevictable set.
3125  */
3126 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3127 {
3128 	VM_BUG_ON(PageActive(page));
3129 
3130 retry:
3131 	ClearPageUnevictable(page);
3132 	if (page_evictable(page, NULL)) {
3133 		enum lru_list l = page_lru_base_type(page);
3134 
3135 		__dec_zone_state(zone, NR_UNEVICTABLE);
3136 		list_move(&page->lru, &zone->lru[l].list);
3137 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3138 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3139 		__count_vm_event(UNEVICTABLE_PGRESCUED);
3140 	} else {
3141 		/*
3142 		 * rotate unevictable list
3143 		 */
3144 		SetPageUnevictable(page);
3145 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3146 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3147 		if (page_evictable(page, NULL))
3148 			goto retry;
3149 	}
3150 }
3151 
3152 /**
3153  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3154  * @mapping: struct address_space to scan for evictable pages
3155  *
3156  * Scan all pages in mapping.  Check unevictable pages for
3157  * evictability and move them to the appropriate zone lru list.
3158  */
3159 void scan_mapping_unevictable_pages(struct address_space *mapping)
3160 {
3161 	pgoff_t next = 0;
3162 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3163 			 PAGE_CACHE_SHIFT;
3164 	struct zone *zone;
3165 	struct pagevec pvec;
3166 
3167 	if (mapping->nrpages == 0)
3168 		return;
3169 
3170 	pagevec_init(&pvec, 0);
3171 	while (next < end &&
3172 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3173 		int i;
3174 		int pg_scanned = 0;
3175 
3176 		zone = NULL;
3177 
3178 		for (i = 0; i < pagevec_count(&pvec); i++) {
3179 			struct page *page = pvec.pages[i];
3180 			pgoff_t page_index = page->index;
3181 			struct zone *pagezone = page_zone(page);
3182 
3183 			pg_scanned++;
3184 			if (page_index > next)
3185 				next = page_index;
3186 			next++;
3187 
3188 			if (pagezone != zone) {
3189 				if (zone)
3190 					spin_unlock_irq(&zone->lru_lock);
3191 				zone = pagezone;
3192 				spin_lock_irq(&zone->lru_lock);
3193 			}
3194 
3195 			if (PageLRU(page) && PageUnevictable(page))
3196 				check_move_unevictable_page(page, zone);
3197 		}
3198 		if (zone)
3199 			spin_unlock_irq(&zone->lru_lock);
3200 		pagevec_release(&pvec);
3201 
3202 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3203 	}
3204 
3205 }
3206 
3207 /**
3208  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3209  * @zone - zone of which to scan the unevictable list
3210  *
3211  * Scan @zone's unevictable LRU lists to check for pages that have become
3212  * evictable.  Move those that have to @zone's inactive list where they
3213  * become candidates for reclaim, unless shrink_inactive_zone() decides
3214  * to reactivate them.  Pages that are still unevictable are rotated
3215  * back onto @zone's unevictable list.
3216  */
3217 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3218 static void scan_zone_unevictable_pages(struct zone *zone)
3219 {
3220 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3221 	unsigned long scan;
3222 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3223 
3224 	while (nr_to_scan > 0) {
3225 		unsigned long batch_size = min(nr_to_scan,
3226 						SCAN_UNEVICTABLE_BATCH_SIZE);
3227 
3228 		spin_lock_irq(&zone->lru_lock);
3229 		for (scan = 0;  scan < batch_size; scan++) {
3230 			struct page *page = lru_to_page(l_unevictable);
3231 
3232 			if (!trylock_page(page))
3233 				continue;
3234 
3235 			prefetchw_prev_lru_page(page, l_unevictable, flags);
3236 
3237 			if (likely(PageLRU(page) && PageUnevictable(page)))
3238 				check_move_unevictable_page(page, zone);
3239 
3240 			unlock_page(page);
3241 		}
3242 		spin_unlock_irq(&zone->lru_lock);
3243 
3244 		nr_to_scan -= batch_size;
3245 	}
3246 }
3247 
3248 
3249 /**
3250  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3251  *
3252  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3253  * pages that have become evictable.  Move those back to the zones'
3254  * inactive list where they become candidates for reclaim.
3255  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3256  * and we add swap to the system.  As such, it runs in the context of a task
3257  * that has possibly/probably made some previously unevictable pages
3258  * evictable.
3259  */
3260 static void scan_all_zones_unevictable_pages(void)
3261 {
3262 	struct zone *zone;
3263 
3264 	for_each_zone(zone) {
3265 		scan_zone_unevictable_pages(zone);
3266 	}
3267 }
3268 
3269 /*
3270  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3271  * all nodes' unevictable lists for evictable pages
3272  */
3273 unsigned long scan_unevictable_pages;
3274 
3275 int scan_unevictable_handler(struct ctl_table *table, int write,
3276 			   void __user *buffer,
3277 			   size_t *length, loff_t *ppos)
3278 {
3279 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3280 
3281 	if (write && *(unsigned long *)table->data)
3282 		scan_all_zones_unevictable_pages();
3283 
3284 	scan_unevictable_pages = 0;
3285 	return 0;
3286 }
3287 
3288 #ifdef CONFIG_NUMA
3289 /*
3290  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3291  * a specified node's per zone unevictable lists for evictable pages.
3292  */
3293 
3294 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3295 					  struct sysdev_attribute *attr,
3296 					  char *buf)
3297 {
3298 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3299 }
3300 
3301 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3302 					   struct sysdev_attribute *attr,
3303 					const char *buf, size_t count)
3304 {
3305 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3306 	struct zone *zone;
3307 	unsigned long res;
3308 	unsigned long req = strict_strtoul(buf, 10, &res);
3309 
3310 	if (!req)
3311 		return 1;	/* zero is no-op */
3312 
3313 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3314 		if (!populated_zone(zone))
3315 			continue;
3316 		scan_zone_unevictable_pages(zone);
3317 	}
3318 	return 1;
3319 }
3320 
3321 
3322 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3323 			read_scan_unevictable_node,
3324 			write_scan_unevictable_node);
3325 
3326 int scan_unevictable_register_node(struct node *node)
3327 {
3328 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3329 }
3330 
3331 void scan_unevictable_unregister_node(struct node *node)
3332 {
3333 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3334 }
3335 #endif
3336