xref: /openbmc/linux/mm/vmscan.c (revision 3b64b188)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 struct scan_control {
57 	/* Incremented by the number of inactive pages that were scanned */
58 	unsigned long nr_scanned;
59 
60 	/* Number of pages freed so far during a call to shrink_zones() */
61 	unsigned long nr_reclaimed;
62 
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	unsigned long hibernation_mode;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	int may_writepage;
72 
73 	/* Can mapped pages be reclaimed? */
74 	int may_unmap;
75 
76 	/* Can pages be swapped as part of reclaim? */
77 	int may_swap;
78 
79 	int order;
80 
81 	/* Scan (total_size >> priority) pages at once */
82 	int priority;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 	 * are scanned.
93 	 */
94 	nodemask_t	*nodemask;
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 	return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 	return true;
145 }
146 #endif
147 
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 	if (!mem_cgroup_disabled())
151 		return mem_cgroup_get_lru_size(lruvec, lru);
152 
153 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155 
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 	atomic_long_set(&shrinker->nr_in_batch, 0);
162 	down_write(&shrinker_rwsem);
163 	list_add_tail(&shrinker->list, &shrinker_list);
164 	up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167 
168 /*
169  * Remove one
170  */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 	down_write(&shrinker_rwsem);
174 	list_del(&shrinker->list);
175 	up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178 
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 				     struct shrink_control *sc,
181 				     unsigned long nr_to_scan)
182 {
183 	sc->nr_to_scan = nr_to_scan;
184 	return (*shrinker->shrink)(shrinker, sc);
185 }
186 
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object.  With this in mind we age equal
193  * percentages of the lru and ageable caches.  This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt.  It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 			  unsigned long nr_pages_scanned,
209 			  unsigned long lru_pages)
210 {
211 	struct shrinker *shrinker;
212 	unsigned long ret = 0;
213 
214 	if (nr_pages_scanned == 0)
215 		nr_pages_scanned = SWAP_CLUSTER_MAX;
216 
217 	if (!down_read_trylock(&shrinker_rwsem)) {
218 		/* Assume we'll be able to shrink next time */
219 		ret = 1;
220 		goto out;
221 	}
222 
223 	list_for_each_entry(shrinker, &shrinker_list, list) {
224 		unsigned long long delta;
225 		long total_scan;
226 		long max_pass;
227 		int shrink_ret = 0;
228 		long nr;
229 		long new_nr;
230 		long batch_size = shrinker->batch ? shrinker->batch
231 						  : SHRINK_BATCH;
232 
233 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 		if (max_pass <= 0)
235 			continue;
236 
237 		/*
238 		 * copy the current shrinker scan count into a local variable
239 		 * and zero it so that other concurrent shrinker invocations
240 		 * don't also do this scanning work.
241 		 */
242 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 
244 		total_scan = nr;
245 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 		delta *= max_pass;
247 		do_div(delta, lru_pages + 1);
248 		total_scan += delta;
249 		if (total_scan < 0) {
250 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 			       "delete nr=%ld\n",
252 			       shrinker->shrink, total_scan);
253 			total_scan = max_pass;
254 		}
255 
256 		/*
257 		 * We need to avoid excessive windup on filesystem shrinkers
258 		 * due to large numbers of GFP_NOFS allocations causing the
259 		 * shrinkers to return -1 all the time. This results in a large
260 		 * nr being built up so when a shrink that can do some work
261 		 * comes along it empties the entire cache due to nr >>>
262 		 * max_pass.  This is bad for sustaining a working set in
263 		 * memory.
264 		 *
265 		 * Hence only allow the shrinker to scan the entire cache when
266 		 * a large delta change is calculated directly.
267 		 */
268 		if (delta < max_pass / 4)
269 			total_scan = min(total_scan, max_pass / 2);
270 
271 		/*
272 		 * Avoid risking looping forever due to too large nr value:
273 		 * never try to free more than twice the estimate number of
274 		 * freeable entries.
275 		 */
276 		if (total_scan > max_pass * 2)
277 			total_scan = max_pass * 2;
278 
279 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 					nr_pages_scanned, lru_pages,
281 					max_pass, delta, total_scan);
282 
283 		while (total_scan >= batch_size) {
284 			int nr_before;
285 
286 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 							batch_size);
289 			if (shrink_ret == -1)
290 				break;
291 			if (shrink_ret < nr_before)
292 				ret += nr_before - shrink_ret;
293 			count_vm_events(SLABS_SCANNED, batch_size);
294 			total_scan -= batch_size;
295 
296 			cond_resched();
297 		}
298 
299 		/*
300 		 * move the unused scan count back into the shrinker in a
301 		 * manner that handles concurrent updates. If we exhausted the
302 		 * scan, there is no need to do an update.
303 		 */
304 		if (total_scan > 0)
305 			new_nr = atomic_long_add_return(total_scan,
306 					&shrinker->nr_in_batch);
307 		else
308 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 
310 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 	}
312 	up_read(&shrinker_rwsem);
313 out:
314 	cond_resched();
315 	return ret;
316 }
317 
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 	/*
321 	 * A freeable page cache page is referenced only by the caller
322 	 * that isolated the page, the page cache radix tree and
323 	 * optional buffer heads at page->private.
324 	 */
325 	return page_count(page) - page_has_private(page) == 2;
326 }
327 
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 			      struct scan_control *sc)
330 {
331 	if (current->flags & PF_SWAPWRITE)
332 		return 1;
333 	if (!bdi_write_congested(bdi))
334 		return 1;
335 	if (bdi == current->backing_dev_info)
336 		return 1;
337 	return 0;
338 }
339 
340 /*
341  * We detected a synchronous write error writing a page out.  Probably
342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up.  But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353 				struct page *page, int error)
354 {
355 	lock_page(page);
356 	if (page_mapping(page) == mapping)
357 		mapping_set_error(mapping, error);
358 	unlock_page(page);
359 }
360 
361 /* possible outcome of pageout() */
362 typedef enum {
363 	/* failed to write page out, page is locked */
364 	PAGE_KEEP,
365 	/* move page to the active list, page is locked */
366 	PAGE_ACTIVATE,
367 	/* page has been sent to the disk successfully, page is unlocked */
368 	PAGE_SUCCESS,
369 	/* page is clean and locked */
370 	PAGE_CLEAN,
371 } pageout_t;
372 
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 			 struct scan_control *sc)
379 {
380 	/*
381 	 * If the page is dirty, only perform writeback if that write
382 	 * will be non-blocking.  To prevent this allocation from being
383 	 * stalled by pagecache activity.  But note that there may be
384 	 * stalls if we need to run get_block().  We could test
385 	 * PagePrivate for that.
386 	 *
387 	 * If this process is currently in __generic_file_aio_write() against
388 	 * this page's queue, we can perform writeback even if that
389 	 * will block.
390 	 *
391 	 * If the page is swapcache, write it back even if that would
392 	 * block, for some throttling. This happens by accident, because
393 	 * swap_backing_dev_info is bust: it doesn't reflect the
394 	 * congestion state of the swapdevs.  Easy to fix, if needed.
395 	 */
396 	if (!is_page_cache_freeable(page))
397 		return PAGE_KEEP;
398 	if (!mapping) {
399 		/*
400 		 * Some data journaling orphaned pages can have
401 		 * page->mapping == NULL while being dirty with clean buffers.
402 		 */
403 		if (page_has_private(page)) {
404 			if (try_to_free_buffers(page)) {
405 				ClearPageDirty(page);
406 				printk("%s: orphaned page\n", __func__);
407 				return PAGE_CLEAN;
408 			}
409 		}
410 		return PAGE_KEEP;
411 	}
412 	if (mapping->a_ops->writepage == NULL)
413 		return PAGE_ACTIVATE;
414 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 		return PAGE_KEEP;
416 
417 	if (clear_page_dirty_for_io(page)) {
418 		int res;
419 		struct writeback_control wbc = {
420 			.sync_mode = WB_SYNC_NONE,
421 			.nr_to_write = SWAP_CLUSTER_MAX,
422 			.range_start = 0,
423 			.range_end = LLONG_MAX,
424 			.for_reclaim = 1,
425 		};
426 
427 		SetPageReclaim(page);
428 		res = mapping->a_ops->writepage(page, &wbc);
429 		if (res < 0)
430 			handle_write_error(mapping, page, res);
431 		if (res == AOP_WRITEPAGE_ACTIVATE) {
432 			ClearPageReclaim(page);
433 			return PAGE_ACTIVATE;
434 		}
435 
436 		if (!PageWriteback(page)) {
437 			/* synchronous write or broken a_ops? */
438 			ClearPageReclaim(page);
439 		}
440 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 		return PAGE_SUCCESS;
443 	}
444 
445 	return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 	BUG_ON(!PageLocked(page));
455 	BUG_ON(mapping != page_mapping(page));
456 
457 	spin_lock_irq(&mapping->tree_lock);
458 	/*
459 	 * The non racy check for a busy page.
460 	 *
461 	 * Must be careful with the order of the tests. When someone has
462 	 * a ref to the page, it may be possible that they dirty it then
463 	 * drop the reference. So if PageDirty is tested before page_count
464 	 * here, then the following race may occur:
465 	 *
466 	 * get_user_pages(&page);
467 	 * [user mapping goes away]
468 	 * write_to(page);
469 	 *				!PageDirty(page)    [good]
470 	 * SetPageDirty(page);
471 	 * put_page(page);
472 	 *				!page_count(page)   [good, discard it]
473 	 *
474 	 * [oops, our write_to data is lost]
475 	 *
476 	 * Reversing the order of the tests ensures such a situation cannot
477 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 	 * load is not satisfied before that of page->_count.
479 	 *
480 	 * Note that if SetPageDirty is always performed via set_page_dirty,
481 	 * and thus under tree_lock, then this ordering is not required.
482 	 */
483 	if (!page_freeze_refs(page, 2))
484 		goto cannot_free;
485 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 	if (unlikely(PageDirty(page))) {
487 		page_unfreeze_refs(page, 2);
488 		goto cannot_free;
489 	}
490 
491 	if (PageSwapCache(page)) {
492 		swp_entry_t swap = { .val = page_private(page) };
493 		__delete_from_swap_cache(page);
494 		spin_unlock_irq(&mapping->tree_lock);
495 		swapcache_free(swap, page);
496 	} else {
497 		void (*freepage)(struct page *);
498 
499 		freepage = mapping->a_ops->freepage;
500 
501 		__delete_from_page_cache(page);
502 		spin_unlock_irq(&mapping->tree_lock);
503 		mem_cgroup_uncharge_cache_page(page);
504 
505 		if (freepage != NULL)
506 			freepage(page);
507 	}
508 
509 	return 1;
510 
511 cannot_free:
512 	spin_unlock_irq(&mapping->tree_lock);
513 	return 0;
514 }
515 
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 	if (__remove_mapping(mapping, page)) {
525 		/*
526 		 * Unfreezing the refcount with 1 rather than 2 effectively
527 		 * drops the pagecache ref for us without requiring another
528 		 * atomic operation.
529 		 */
530 		page_unfreeze_refs(page, 1);
531 		return 1;
532 	}
533 	return 0;
534 }
535 
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547 	int lru;
548 	int active = !!TestClearPageActive(page);
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page, NULL)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = active + page_lru_base_type(page);
564 		lru_cache_add_lru(page, lru);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock or AS_UNEVICTABLE clearing
574 		 * (page is unlocked) make sure that if the other thread
575 		 * does not observe our setting of PG_lru and fails
576 		 * isolation/check_move_unevictable_pages,
577 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 		 * the page back to the evictable list.
579 		 *
580 		 * The other side is TestClearPageMlocked() or shmem_lock().
581 		 */
582 		smp_mb();
583 	}
584 
585 	/*
586 	 * page's status can change while we move it among lru. If an evictable
587 	 * page is on unevictable list, it never be freed. To avoid that,
588 	 * check after we added it to the list, again.
589 	 */
590 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 		if (!isolate_lru_page(page)) {
592 			put_page(page);
593 			goto redo;
594 		}
595 		/* This means someone else dropped this page from LRU
596 		 * So, it will be freed or putback to LRU again. There is
597 		 * nothing to do here.
598 		 */
599 	}
600 
601 	if (was_unevictable && lru != LRU_UNEVICTABLE)
602 		count_vm_event(UNEVICTABLE_PGRESCUED);
603 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 		count_vm_event(UNEVICTABLE_PGCULLED);
605 
606 	put_page(page);		/* drop ref from isolate */
607 }
608 
609 enum page_references {
610 	PAGEREF_RECLAIM,
611 	PAGEREF_RECLAIM_CLEAN,
612 	PAGEREF_KEEP,
613 	PAGEREF_ACTIVATE,
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617 						  struct scan_control *sc)
618 {
619 	int referenced_ptes, referenced_page;
620 	unsigned long vm_flags;
621 
622 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 					  &vm_flags);
624 	referenced_page = TestClearPageReferenced(page);
625 
626 	/*
627 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
628 	 * move the page to the unevictable list.
629 	 */
630 	if (vm_flags & VM_LOCKED)
631 		return PAGEREF_RECLAIM;
632 
633 	if (referenced_ptes) {
634 		if (PageSwapBacked(page))
635 			return PAGEREF_ACTIVATE;
636 		/*
637 		 * All mapped pages start out with page table
638 		 * references from the instantiating fault, so we need
639 		 * to look twice if a mapped file page is used more
640 		 * than once.
641 		 *
642 		 * Mark it and spare it for another trip around the
643 		 * inactive list.  Another page table reference will
644 		 * lead to its activation.
645 		 *
646 		 * Note: the mark is set for activated pages as well
647 		 * so that recently deactivated but used pages are
648 		 * quickly recovered.
649 		 */
650 		SetPageReferenced(page);
651 
652 		if (referenced_page || referenced_ptes > 1)
653 			return PAGEREF_ACTIVATE;
654 
655 		/*
656 		 * Activate file-backed executable pages after first usage.
657 		 */
658 		if (vm_flags & VM_EXEC)
659 			return PAGEREF_ACTIVATE;
660 
661 		return PAGEREF_KEEP;
662 	}
663 
664 	/* Reclaim if clean, defer dirty pages to writeback */
665 	if (referenced_page && !PageSwapBacked(page))
666 		return PAGEREF_RECLAIM_CLEAN;
667 
668 	return PAGEREF_RECLAIM;
669 }
670 
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 				      struct zone *zone,
676 				      struct scan_control *sc,
677 				      unsigned long *ret_nr_dirty,
678 				      unsigned long *ret_nr_writeback)
679 {
680 	LIST_HEAD(ret_pages);
681 	LIST_HEAD(free_pages);
682 	int pgactivate = 0;
683 	unsigned long nr_dirty = 0;
684 	unsigned long nr_congested = 0;
685 	unsigned long nr_reclaimed = 0;
686 	unsigned long nr_writeback = 0;
687 
688 	cond_resched();
689 
690 	mem_cgroup_uncharge_start();
691 	while (!list_empty(page_list)) {
692 		enum page_references references;
693 		struct address_space *mapping;
694 		struct page *page;
695 		int may_enter_fs;
696 
697 		cond_resched();
698 
699 		page = lru_to_page(page_list);
700 		list_del(&page->lru);
701 
702 		if (!trylock_page(page))
703 			goto keep;
704 
705 		VM_BUG_ON(PageActive(page));
706 		VM_BUG_ON(page_zone(page) != zone);
707 
708 		sc->nr_scanned++;
709 
710 		if (unlikely(!page_evictable(page, NULL)))
711 			goto cull_mlocked;
712 
713 		if (!sc->may_unmap && page_mapped(page))
714 			goto keep_locked;
715 
716 		/* Double the slab pressure for mapped and swapcache pages */
717 		if (page_mapped(page) || PageSwapCache(page))
718 			sc->nr_scanned++;
719 
720 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
721 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
722 
723 		if (PageWriteback(page)) {
724 			/*
725 			 * memcg doesn't have any dirty pages throttling so we
726 			 * could easily OOM just because too many pages are in
727 			 * writeback and there is nothing else to reclaim.
728 			 *
729 			 * Check __GFP_IO, certainly because a loop driver
730 			 * thread might enter reclaim, and deadlock if it waits
731 			 * on a page for which it is needed to do the write
732 			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
733 			 * but more thought would probably show more reasons.
734 			 *
735 			 * Don't require __GFP_FS, since we're not going into
736 			 * the FS, just waiting on its writeback completion.
737 			 * Worryingly, ext4 gfs2 and xfs allocate pages with
738 			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
739 			 * testing may_enter_fs here is liable to OOM on them.
740 			 */
741 			if (global_reclaim(sc) ||
742 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
743 				/*
744 				 * This is slightly racy - end_page_writeback()
745 				 * might have just cleared PageReclaim, then
746 				 * setting PageReclaim here end up interpreted
747 				 * as PageReadahead - but that does not matter
748 				 * enough to care.  What we do want is for this
749 				 * page to have PageReclaim set next time memcg
750 				 * reclaim reaches the tests above, so it will
751 				 * then wait_on_page_writeback() to avoid OOM;
752 				 * and it's also appropriate in global reclaim.
753 				 */
754 				SetPageReclaim(page);
755 				nr_writeback++;
756 				goto keep_locked;
757 			}
758 			wait_on_page_writeback(page);
759 		}
760 
761 		references = page_check_references(page, sc);
762 		switch (references) {
763 		case PAGEREF_ACTIVATE:
764 			goto activate_locked;
765 		case PAGEREF_KEEP:
766 			goto keep_locked;
767 		case PAGEREF_RECLAIM:
768 		case PAGEREF_RECLAIM_CLEAN:
769 			; /* try to reclaim the page below */
770 		}
771 
772 		/*
773 		 * Anonymous process memory has backing store?
774 		 * Try to allocate it some swap space here.
775 		 */
776 		if (PageAnon(page) && !PageSwapCache(page)) {
777 			if (!(sc->gfp_mask & __GFP_IO))
778 				goto keep_locked;
779 			if (!add_to_swap(page))
780 				goto activate_locked;
781 			may_enter_fs = 1;
782 		}
783 
784 		mapping = page_mapping(page);
785 
786 		/*
787 		 * The page is mapped into the page tables of one or more
788 		 * processes. Try to unmap it here.
789 		 */
790 		if (page_mapped(page) && mapping) {
791 			switch (try_to_unmap(page, TTU_UNMAP)) {
792 			case SWAP_FAIL:
793 				goto activate_locked;
794 			case SWAP_AGAIN:
795 				goto keep_locked;
796 			case SWAP_MLOCK:
797 				goto cull_mlocked;
798 			case SWAP_SUCCESS:
799 				; /* try to free the page below */
800 			}
801 		}
802 
803 		if (PageDirty(page)) {
804 			nr_dirty++;
805 
806 			/*
807 			 * Only kswapd can writeback filesystem pages to
808 			 * avoid risk of stack overflow but do not writeback
809 			 * unless under significant pressure.
810 			 */
811 			if (page_is_file_cache(page) &&
812 					(!current_is_kswapd() ||
813 					 sc->priority >= DEF_PRIORITY - 2)) {
814 				/*
815 				 * Immediately reclaim when written back.
816 				 * Similar in principal to deactivate_page()
817 				 * except we already have the page isolated
818 				 * and know it's dirty
819 				 */
820 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
821 				SetPageReclaim(page);
822 
823 				goto keep_locked;
824 			}
825 
826 			if (references == PAGEREF_RECLAIM_CLEAN)
827 				goto keep_locked;
828 			if (!may_enter_fs)
829 				goto keep_locked;
830 			if (!sc->may_writepage)
831 				goto keep_locked;
832 
833 			/* Page is dirty, try to write it out here */
834 			switch (pageout(page, mapping, sc)) {
835 			case PAGE_KEEP:
836 				nr_congested++;
837 				goto keep_locked;
838 			case PAGE_ACTIVATE:
839 				goto activate_locked;
840 			case PAGE_SUCCESS:
841 				if (PageWriteback(page))
842 					goto keep;
843 				if (PageDirty(page))
844 					goto keep;
845 
846 				/*
847 				 * A synchronous write - probably a ramdisk.  Go
848 				 * ahead and try to reclaim the page.
849 				 */
850 				if (!trylock_page(page))
851 					goto keep;
852 				if (PageDirty(page) || PageWriteback(page))
853 					goto keep_locked;
854 				mapping = page_mapping(page);
855 			case PAGE_CLEAN:
856 				; /* try to free the page below */
857 			}
858 		}
859 
860 		/*
861 		 * If the page has buffers, try to free the buffer mappings
862 		 * associated with this page. If we succeed we try to free
863 		 * the page as well.
864 		 *
865 		 * We do this even if the page is PageDirty().
866 		 * try_to_release_page() does not perform I/O, but it is
867 		 * possible for a page to have PageDirty set, but it is actually
868 		 * clean (all its buffers are clean).  This happens if the
869 		 * buffers were written out directly, with submit_bh(). ext3
870 		 * will do this, as well as the blockdev mapping.
871 		 * try_to_release_page() will discover that cleanness and will
872 		 * drop the buffers and mark the page clean - it can be freed.
873 		 *
874 		 * Rarely, pages can have buffers and no ->mapping.  These are
875 		 * the pages which were not successfully invalidated in
876 		 * truncate_complete_page().  We try to drop those buffers here
877 		 * and if that worked, and the page is no longer mapped into
878 		 * process address space (page_count == 1) it can be freed.
879 		 * Otherwise, leave the page on the LRU so it is swappable.
880 		 */
881 		if (page_has_private(page)) {
882 			if (!try_to_release_page(page, sc->gfp_mask))
883 				goto activate_locked;
884 			if (!mapping && page_count(page) == 1) {
885 				unlock_page(page);
886 				if (put_page_testzero(page))
887 					goto free_it;
888 				else {
889 					/*
890 					 * rare race with speculative reference.
891 					 * the speculative reference will free
892 					 * this page shortly, so we may
893 					 * increment nr_reclaimed here (and
894 					 * leave it off the LRU).
895 					 */
896 					nr_reclaimed++;
897 					continue;
898 				}
899 			}
900 		}
901 
902 		if (!mapping || !__remove_mapping(mapping, page))
903 			goto keep_locked;
904 
905 		/*
906 		 * At this point, we have no other references and there is
907 		 * no way to pick any more up (removed from LRU, removed
908 		 * from pagecache). Can use non-atomic bitops now (and
909 		 * we obviously don't have to worry about waking up a process
910 		 * waiting on the page lock, because there are no references.
911 		 */
912 		__clear_page_locked(page);
913 free_it:
914 		nr_reclaimed++;
915 
916 		/*
917 		 * Is there need to periodically free_page_list? It would
918 		 * appear not as the counts should be low
919 		 */
920 		list_add(&page->lru, &free_pages);
921 		continue;
922 
923 cull_mlocked:
924 		if (PageSwapCache(page))
925 			try_to_free_swap(page);
926 		unlock_page(page);
927 		putback_lru_page(page);
928 		continue;
929 
930 activate_locked:
931 		/* Not a candidate for swapping, so reclaim swap space. */
932 		if (PageSwapCache(page) && vm_swap_full())
933 			try_to_free_swap(page);
934 		VM_BUG_ON(PageActive(page));
935 		SetPageActive(page);
936 		pgactivate++;
937 keep_locked:
938 		unlock_page(page);
939 keep:
940 		list_add(&page->lru, &ret_pages);
941 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
942 	}
943 
944 	/*
945 	 * Tag a zone as congested if all the dirty pages encountered were
946 	 * backed by a congested BDI. In this case, reclaimers should just
947 	 * back off and wait for congestion to clear because further reclaim
948 	 * will encounter the same problem
949 	 */
950 	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
951 		zone_set_flag(zone, ZONE_CONGESTED);
952 
953 	free_hot_cold_page_list(&free_pages, 1);
954 
955 	list_splice(&ret_pages, page_list);
956 	count_vm_events(PGACTIVATE, pgactivate);
957 	mem_cgroup_uncharge_end();
958 	*ret_nr_dirty += nr_dirty;
959 	*ret_nr_writeback += nr_writeback;
960 	return nr_reclaimed;
961 }
962 
963 /*
964  * Attempt to remove the specified page from its LRU.  Only take this page
965  * if it is of the appropriate PageActive status.  Pages which are being
966  * freed elsewhere are also ignored.
967  *
968  * page:	page to consider
969  * mode:	one of the LRU isolation modes defined above
970  *
971  * returns 0 on success, -ve errno on failure.
972  */
973 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
974 {
975 	int ret = -EINVAL;
976 
977 	/* Only take pages on the LRU. */
978 	if (!PageLRU(page))
979 		return ret;
980 
981 	/* Do not give back unevictable pages for compaction */
982 	if (PageUnevictable(page))
983 		return ret;
984 
985 	ret = -EBUSY;
986 
987 	/*
988 	 * To minimise LRU disruption, the caller can indicate that it only
989 	 * wants to isolate pages it will be able to operate on without
990 	 * blocking - clean pages for the most part.
991 	 *
992 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
993 	 * is used by reclaim when it is cannot write to backing storage
994 	 *
995 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
996 	 * that it is possible to migrate without blocking
997 	 */
998 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
999 		/* All the caller can do on PageWriteback is block */
1000 		if (PageWriteback(page))
1001 			return ret;
1002 
1003 		if (PageDirty(page)) {
1004 			struct address_space *mapping;
1005 
1006 			/* ISOLATE_CLEAN means only clean pages */
1007 			if (mode & ISOLATE_CLEAN)
1008 				return ret;
1009 
1010 			/*
1011 			 * Only pages without mappings or that have a
1012 			 * ->migratepage callback are possible to migrate
1013 			 * without blocking
1014 			 */
1015 			mapping = page_mapping(page);
1016 			if (mapping && !mapping->a_ops->migratepage)
1017 				return ret;
1018 		}
1019 	}
1020 
1021 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1022 		return ret;
1023 
1024 	if (likely(get_page_unless_zero(page))) {
1025 		/*
1026 		 * Be careful not to clear PageLRU until after we're
1027 		 * sure the page is not being freed elsewhere -- the
1028 		 * page release code relies on it.
1029 		 */
1030 		ClearPageLRU(page);
1031 		ret = 0;
1032 	}
1033 
1034 	return ret;
1035 }
1036 
1037 /*
1038  * zone->lru_lock is heavily contended.  Some of the functions that
1039  * shrink the lists perform better by taking out a batch of pages
1040  * and working on them outside the LRU lock.
1041  *
1042  * For pagecache intensive workloads, this function is the hottest
1043  * spot in the kernel (apart from copy_*_user functions).
1044  *
1045  * Appropriate locks must be held before calling this function.
1046  *
1047  * @nr_to_scan:	The number of pages to look through on the list.
1048  * @lruvec:	The LRU vector to pull pages from.
1049  * @dst:	The temp list to put pages on to.
1050  * @nr_scanned:	The number of pages that were scanned.
1051  * @sc:		The scan_control struct for this reclaim session
1052  * @mode:	One of the LRU isolation modes
1053  * @lru:	LRU list id for isolating
1054  *
1055  * returns how many pages were moved onto *@dst.
1056  */
1057 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1058 		struct lruvec *lruvec, struct list_head *dst,
1059 		unsigned long *nr_scanned, struct scan_control *sc,
1060 		isolate_mode_t mode, enum lru_list lru)
1061 {
1062 	struct list_head *src = &lruvec->lists[lru];
1063 	unsigned long nr_taken = 0;
1064 	unsigned long scan;
1065 
1066 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1067 		struct page *page;
1068 		int nr_pages;
1069 
1070 		page = lru_to_page(src);
1071 		prefetchw_prev_lru_page(page, src, flags);
1072 
1073 		VM_BUG_ON(!PageLRU(page));
1074 
1075 		switch (__isolate_lru_page(page, mode)) {
1076 		case 0:
1077 			nr_pages = hpage_nr_pages(page);
1078 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1079 			list_move(&page->lru, dst);
1080 			nr_taken += nr_pages;
1081 			break;
1082 
1083 		case -EBUSY:
1084 			/* else it is being freed elsewhere */
1085 			list_move(&page->lru, src);
1086 			continue;
1087 
1088 		default:
1089 			BUG();
1090 		}
1091 	}
1092 
1093 	*nr_scanned = scan;
1094 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1095 				    nr_taken, mode, is_file_lru(lru));
1096 	return nr_taken;
1097 }
1098 
1099 /**
1100  * isolate_lru_page - tries to isolate a page from its LRU list
1101  * @page: page to isolate from its LRU list
1102  *
1103  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1104  * vmstat statistic corresponding to whatever LRU list the page was on.
1105  *
1106  * Returns 0 if the page was removed from an LRU list.
1107  * Returns -EBUSY if the page was not on an LRU list.
1108  *
1109  * The returned page will have PageLRU() cleared.  If it was found on
1110  * the active list, it will have PageActive set.  If it was found on
1111  * the unevictable list, it will have the PageUnevictable bit set. That flag
1112  * may need to be cleared by the caller before letting the page go.
1113  *
1114  * The vmstat statistic corresponding to the list on which the page was
1115  * found will be decremented.
1116  *
1117  * Restrictions:
1118  * (1) Must be called with an elevated refcount on the page. This is a
1119  *     fundamentnal difference from isolate_lru_pages (which is called
1120  *     without a stable reference).
1121  * (2) the lru_lock must not be held.
1122  * (3) interrupts must be enabled.
1123  */
1124 int isolate_lru_page(struct page *page)
1125 {
1126 	int ret = -EBUSY;
1127 
1128 	VM_BUG_ON(!page_count(page));
1129 
1130 	if (PageLRU(page)) {
1131 		struct zone *zone = page_zone(page);
1132 		struct lruvec *lruvec;
1133 
1134 		spin_lock_irq(&zone->lru_lock);
1135 		lruvec = mem_cgroup_page_lruvec(page, zone);
1136 		if (PageLRU(page)) {
1137 			int lru = page_lru(page);
1138 			get_page(page);
1139 			ClearPageLRU(page);
1140 			del_page_from_lru_list(page, lruvec, lru);
1141 			ret = 0;
1142 		}
1143 		spin_unlock_irq(&zone->lru_lock);
1144 	}
1145 	return ret;
1146 }
1147 
1148 /*
1149  * Are there way too many processes in the direct reclaim path already?
1150  */
1151 static int too_many_isolated(struct zone *zone, int file,
1152 		struct scan_control *sc)
1153 {
1154 	unsigned long inactive, isolated;
1155 
1156 	if (current_is_kswapd())
1157 		return 0;
1158 
1159 	if (!global_reclaim(sc))
1160 		return 0;
1161 
1162 	if (file) {
1163 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1164 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1165 	} else {
1166 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1167 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1168 	}
1169 
1170 	return isolated > inactive;
1171 }
1172 
1173 static noinline_for_stack void
1174 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1175 {
1176 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1177 	struct zone *zone = lruvec_zone(lruvec);
1178 	LIST_HEAD(pages_to_free);
1179 
1180 	/*
1181 	 * Put back any unfreeable pages.
1182 	 */
1183 	while (!list_empty(page_list)) {
1184 		struct page *page = lru_to_page(page_list);
1185 		int lru;
1186 
1187 		VM_BUG_ON(PageLRU(page));
1188 		list_del(&page->lru);
1189 		if (unlikely(!page_evictable(page, NULL))) {
1190 			spin_unlock_irq(&zone->lru_lock);
1191 			putback_lru_page(page);
1192 			spin_lock_irq(&zone->lru_lock);
1193 			continue;
1194 		}
1195 
1196 		lruvec = mem_cgroup_page_lruvec(page, zone);
1197 
1198 		SetPageLRU(page);
1199 		lru = page_lru(page);
1200 		add_page_to_lru_list(page, lruvec, lru);
1201 
1202 		if (is_active_lru(lru)) {
1203 			int file = is_file_lru(lru);
1204 			int numpages = hpage_nr_pages(page);
1205 			reclaim_stat->recent_rotated[file] += numpages;
1206 		}
1207 		if (put_page_testzero(page)) {
1208 			__ClearPageLRU(page);
1209 			__ClearPageActive(page);
1210 			del_page_from_lru_list(page, lruvec, lru);
1211 
1212 			if (unlikely(PageCompound(page))) {
1213 				spin_unlock_irq(&zone->lru_lock);
1214 				(*get_compound_page_dtor(page))(page);
1215 				spin_lock_irq(&zone->lru_lock);
1216 			} else
1217 				list_add(&page->lru, &pages_to_free);
1218 		}
1219 	}
1220 
1221 	/*
1222 	 * To save our caller's stack, now use input list for pages to free.
1223 	 */
1224 	list_splice(&pages_to_free, page_list);
1225 }
1226 
1227 /*
1228  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1229  * of reclaimed pages
1230  */
1231 static noinline_for_stack unsigned long
1232 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1233 		     struct scan_control *sc, enum lru_list lru)
1234 {
1235 	LIST_HEAD(page_list);
1236 	unsigned long nr_scanned;
1237 	unsigned long nr_reclaimed = 0;
1238 	unsigned long nr_taken;
1239 	unsigned long nr_dirty = 0;
1240 	unsigned long nr_writeback = 0;
1241 	isolate_mode_t isolate_mode = 0;
1242 	int file = is_file_lru(lru);
1243 	struct zone *zone = lruvec_zone(lruvec);
1244 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1245 
1246 	while (unlikely(too_many_isolated(zone, file, sc))) {
1247 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1248 
1249 		/* We are about to die and free our memory. Return now. */
1250 		if (fatal_signal_pending(current))
1251 			return SWAP_CLUSTER_MAX;
1252 	}
1253 
1254 	lru_add_drain();
1255 
1256 	if (!sc->may_unmap)
1257 		isolate_mode |= ISOLATE_UNMAPPED;
1258 	if (!sc->may_writepage)
1259 		isolate_mode |= ISOLATE_CLEAN;
1260 
1261 	spin_lock_irq(&zone->lru_lock);
1262 
1263 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1264 				     &nr_scanned, sc, isolate_mode, lru);
1265 
1266 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1267 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1268 
1269 	if (global_reclaim(sc)) {
1270 		zone->pages_scanned += nr_scanned;
1271 		if (current_is_kswapd())
1272 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1273 		else
1274 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1275 	}
1276 	spin_unlock_irq(&zone->lru_lock);
1277 
1278 	if (nr_taken == 0)
1279 		return 0;
1280 
1281 	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1282 						&nr_dirty, &nr_writeback);
1283 
1284 	spin_lock_irq(&zone->lru_lock);
1285 
1286 	reclaim_stat->recent_scanned[file] += nr_taken;
1287 
1288 	if (global_reclaim(sc)) {
1289 		if (current_is_kswapd())
1290 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1291 					       nr_reclaimed);
1292 		else
1293 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1294 					       nr_reclaimed);
1295 	}
1296 
1297 	putback_inactive_pages(lruvec, &page_list);
1298 
1299 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1300 
1301 	spin_unlock_irq(&zone->lru_lock);
1302 
1303 	free_hot_cold_page_list(&page_list, 1);
1304 
1305 	/*
1306 	 * If reclaim is isolating dirty pages under writeback, it implies
1307 	 * that the long-lived page allocation rate is exceeding the page
1308 	 * laundering rate. Either the global limits are not being effective
1309 	 * at throttling processes due to the page distribution throughout
1310 	 * zones or there is heavy usage of a slow backing device. The
1311 	 * only option is to throttle from reclaim context which is not ideal
1312 	 * as there is no guarantee the dirtying process is throttled in the
1313 	 * same way balance_dirty_pages() manages.
1314 	 *
1315 	 * This scales the number of dirty pages that must be under writeback
1316 	 * before throttling depending on priority. It is a simple backoff
1317 	 * function that has the most effect in the range DEF_PRIORITY to
1318 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1319 	 * in trouble and reclaim is considered to be in trouble.
1320 	 *
1321 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1322 	 * DEF_PRIORITY-1  50% must be PageWriteback
1323 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1324 	 * ...
1325 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1326 	 *                     isolated page is PageWriteback
1327 	 */
1328 	if (nr_writeback && nr_writeback >=
1329 			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1330 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1331 
1332 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1333 		zone_idx(zone),
1334 		nr_scanned, nr_reclaimed,
1335 		sc->priority,
1336 		trace_shrink_flags(file));
1337 	return nr_reclaimed;
1338 }
1339 
1340 /*
1341  * This moves pages from the active list to the inactive list.
1342  *
1343  * We move them the other way if the page is referenced by one or more
1344  * processes, from rmap.
1345  *
1346  * If the pages are mostly unmapped, the processing is fast and it is
1347  * appropriate to hold zone->lru_lock across the whole operation.  But if
1348  * the pages are mapped, the processing is slow (page_referenced()) so we
1349  * should drop zone->lru_lock around each page.  It's impossible to balance
1350  * this, so instead we remove the pages from the LRU while processing them.
1351  * It is safe to rely on PG_active against the non-LRU pages in here because
1352  * nobody will play with that bit on a non-LRU page.
1353  *
1354  * The downside is that we have to touch page->_count against each page.
1355  * But we had to alter page->flags anyway.
1356  */
1357 
1358 static void move_active_pages_to_lru(struct lruvec *lruvec,
1359 				     struct list_head *list,
1360 				     struct list_head *pages_to_free,
1361 				     enum lru_list lru)
1362 {
1363 	struct zone *zone = lruvec_zone(lruvec);
1364 	unsigned long pgmoved = 0;
1365 	struct page *page;
1366 	int nr_pages;
1367 
1368 	while (!list_empty(list)) {
1369 		page = lru_to_page(list);
1370 		lruvec = mem_cgroup_page_lruvec(page, zone);
1371 
1372 		VM_BUG_ON(PageLRU(page));
1373 		SetPageLRU(page);
1374 
1375 		nr_pages = hpage_nr_pages(page);
1376 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1377 		list_move(&page->lru, &lruvec->lists[lru]);
1378 		pgmoved += nr_pages;
1379 
1380 		if (put_page_testzero(page)) {
1381 			__ClearPageLRU(page);
1382 			__ClearPageActive(page);
1383 			del_page_from_lru_list(page, lruvec, lru);
1384 
1385 			if (unlikely(PageCompound(page))) {
1386 				spin_unlock_irq(&zone->lru_lock);
1387 				(*get_compound_page_dtor(page))(page);
1388 				spin_lock_irq(&zone->lru_lock);
1389 			} else
1390 				list_add(&page->lru, pages_to_free);
1391 		}
1392 	}
1393 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1394 	if (!is_active_lru(lru))
1395 		__count_vm_events(PGDEACTIVATE, pgmoved);
1396 }
1397 
1398 static void shrink_active_list(unsigned long nr_to_scan,
1399 			       struct lruvec *lruvec,
1400 			       struct scan_control *sc,
1401 			       enum lru_list lru)
1402 {
1403 	unsigned long nr_taken;
1404 	unsigned long nr_scanned;
1405 	unsigned long vm_flags;
1406 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1407 	LIST_HEAD(l_active);
1408 	LIST_HEAD(l_inactive);
1409 	struct page *page;
1410 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1411 	unsigned long nr_rotated = 0;
1412 	isolate_mode_t isolate_mode = 0;
1413 	int file = is_file_lru(lru);
1414 	struct zone *zone = lruvec_zone(lruvec);
1415 
1416 	lru_add_drain();
1417 
1418 	if (!sc->may_unmap)
1419 		isolate_mode |= ISOLATE_UNMAPPED;
1420 	if (!sc->may_writepage)
1421 		isolate_mode |= ISOLATE_CLEAN;
1422 
1423 	spin_lock_irq(&zone->lru_lock);
1424 
1425 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1426 				     &nr_scanned, sc, isolate_mode, lru);
1427 	if (global_reclaim(sc))
1428 		zone->pages_scanned += nr_scanned;
1429 
1430 	reclaim_stat->recent_scanned[file] += nr_taken;
1431 
1432 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1433 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1434 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1435 	spin_unlock_irq(&zone->lru_lock);
1436 
1437 	while (!list_empty(&l_hold)) {
1438 		cond_resched();
1439 		page = lru_to_page(&l_hold);
1440 		list_del(&page->lru);
1441 
1442 		if (unlikely(!page_evictable(page, NULL))) {
1443 			putback_lru_page(page);
1444 			continue;
1445 		}
1446 
1447 		if (unlikely(buffer_heads_over_limit)) {
1448 			if (page_has_private(page) && trylock_page(page)) {
1449 				if (page_has_private(page))
1450 					try_to_release_page(page, 0);
1451 				unlock_page(page);
1452 			}
1453 		}
1454 
1455 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1456 				    &vm_flags)) {
1457 			nr_rotated += hpage_nr_pages(page);
1458 			/*
1459 			 * Identify referenced, file-backed active pages and
1460 			 * give them one more trip around the active list. So
1461 			 * that executable code get better chances to stay in
1462 			 * memory under moderate memory pressure.  Anon pages
1463 			 * are not likely to be evicted by use-once streaming
1464 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1465 			 * so we ignore them here.
1466 			 */
1467 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1468 				list_add(&page->lru, &l_active);
1469 				continue;
1470 			}
1471 		}
1472 
1473 		ClearPageActive(page);	/* we are de-activating */
1474 		list_add(&page->lru, &l_inactive);
1475 	}
1476 
1477 	/*
1478 	 * Move pages back to the lru list.
1479 	 */
1480 	spin_lock_irq(&zone->lru_lock);
1481 	/*
1482 	 * Count referenced pages from currently used mappings as rotated,
1483 	 * even though only some of them are actually re-activated.  This
1484 	 * helps balance scan pressure between file and anonymous pages in
1485 	 * get_scan_ratio.
1486 	 */
1487 	reclaim_stat->recent_rotated[file] += nr_rotated;
1488 
1489 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1490 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1491 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1492 	spin_unlock_irq(&zone->lru_lock);
1493 
1494 	free_hot_cold_page_list(&l_hold, 1);
1495 }
1496 
1497 #ifdef CONFIG_SWAP
1498 static int inactive_anon_is_low_global(struct zone *zone)
1499 {
1500 	unsigned long active, inactive;
1501 
1502 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1503 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1504 
1505 	if (inactive * zone->inactive_ratio < active)
1506 		return 1;
1507 
1508 	return 0;
1509 }
1510 
1511 /**
1512  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1513  * @lruvec: LRU vector to check
1514  *
1515  * Returns true if the zone does not have enough inactive anon pages,
1516  * meaning some active anon pages need to be deactivated.
1517  */
1518 static int inactive_anon_is_low(struct lruvec *lruvec)
1519 {
1520 	/*
1521 	 * If we don't have swap space, anonymous page deactivation
1522 	 * is pointless.
1523 	 */
1524 	if (!total_swap_pages)
1525 		return 0;
1526 
1527 	if (!mem_cgroup_disabled())
1528 		return mem_cgroup_inactive_anon_is_low(lruvec);
1529 
1530 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1531 }
1532 #else
1533 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1534 {
1535 	return 0;
1536 }
1537 #endif
1538 
1539 static int inactive_file_is_low_global(struct zone *zone)
1540 {
1541 	unsigned long active, inactive;
1542 
1543 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1544 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1545 
1546 	return (active > inactive);
1547 }
1548 
1549 /**
1550  * inactive_file_is_low - check if file pages need to be deactivated
1551  * @lruvec: LRU vector to check
1552  *
1553  * When the system is doing streaming IO, memory pressure here
1554  * ensures that active file pages get deactivated, until more
1555  * than half of the file pages are on the inactive list.
1556  *
1557  * Once we get to that situation, protect the system's working
1558  * set from being evicted by disabling active file page aging.
1559  *
1560  * This uses a different ratio than the anonymous pages, because
1561  * the page cache uses a use-once replacement algorithm.
1562  */
1563 static int inactive_file_is_low(struct lruvec *lruvec)
1564 {
1565 	if (!mem_cgroup_disabled())
1566 		return mem_cgroup_inactive_file_is_low(lruvec);
1567 
1568 	return inactive_file_is_low_global(lruvec_zone(lruvec));
1569 }
1570 
1571 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1572 {
1573 	if (is_file_lru(lru))
1574 		return inactive_file_is_low(lruvec);
1575 	else
1576 		return inactive_anon_is_low(lruvec);
1577 }
1578 
1579 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1580 				 struct lruvec *lruvec, struct scan_control *sc)
1581 {
1582 	if (is_active_lru(lru)) {
1583 		if (inactive_list_is_low(lruvec, lru))
1584 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1585 		return 0;
1586 	}
1587 
1588 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1589 }
1590 
1591 static int vmscan_swappiness(struct scan_control *sc)
1592 {
1593 	if (global_reclaim(sc))
1594 		return vm_swappiness;
1595 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1596 }
1597 
1598 /*
1599  * Determine how aggressively the anon and file LRU lists should be
1600  * scanned.  The relative value of each set of LRU lists is determined
1601  * by looking at the fraction of the pages scanned we did rotate back
1602  * onto the active list instead of evict.
1603  *
1604  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1605  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1606  */
1607 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1608 			   unsigned long *nr)
1609 {
1610 	unsigned long anon, file, free;
1611 	unsigned long anon_prio, file_prio;
1612 	unsigned long ap, fp;
1613 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1614 	u64 fraction[2], denominator;
1615 	enum lru_list lru;
1616 	int noswap = 0;
1617 	bool force_scan = false;
1618 	struct zone *zone = lruvec_zone(lruvec);
1619 
1620 	/*
1621 	 * If the zone or memcg is small, nr[l] can be 0.  This
1622 	 * results in no scanning on this priority and a potential
1623 	 * priority drop.  Global direct reclaim can go to the next
1624 	 * zone and tends to have no problems. Global kswapd is for
1625 	 * zone balancing and it needs to scan a minimum amount. When
1626 	 * reclaiming for a memcg, a priority drop can cause high
1627 	 * latencies, so it's better to scan a minimum amount there as
1628 	 * well.
1629 	 */
1630 	if (current_is_kswapd() && zone->all_unreclaimable)
1631 		force_scan = true;
1632 	if (!global_reclaim(sc))
1633 		force_scan = true;
1634 
1635 	/* If we have no swap space, do not bother scanning anon pages. */
1636 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1637 		noswap = 1;
1638 		fraction[0] = 0;
1639 		fraction[1] = 1;
1640 		denominator = 1;
1641 		goto out;
1642 	}
1643 
1644 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1645 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1646 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1647 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1648 
1649 	if (global_reclaim(sc)) {
1650 		free  = zone_page_state(zone, NR_FREE_PAGES);
1651 		/* If we have very few page cache pages,
1652 		   force-scan anon pages. */
1653 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1654 			fraction[0] = 1;
1655 			fraction[1] = 0;
1656 			denominator = 1;
1657 			goto out;
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * With swappiness at 100, anonymous and file have the same priority.
1663 	 * This scanning priority is essentially the inverse of IO cost.
1664 	 */
1665 	anon_prio = vmscan_swappiness(sc);
1666 	file_prio = 200 - anon_prio;
1667 
1668 	/*
1669 	 * OK, so we have swap space and a fair amount of page cache
1670 	 * pages.  We use the recently rotated / recently scanned
1671 	 * ratios to determine how valuable each cache is.
1672 	 *
1673 	 * Because workloads change over time (and to avoid overflow)
1674 	 * we keep these statistics as a floating average, which ends
1675 	 * up weighing recent references more than old ones.
1676 	 *
1677 	 * anon in [0], file in [1]
1678 	 */
1679 	spin_lock_irq(&zone->lru_lock);
1680 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1681 		reclaim_stat->recent_scanned[0] /= 2;
1682 		reclaim_stat->recent_rotated[0] /= 2;
1683 	}
1684 
1685 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1686 		reclaim_stat->recent_scanned[1] /= 2;
1687 		reclaim_stat->recent_rotated[1] /= 2;
1688 	}
1689 
1690 	/*
1691 	 * The amount of pressure on anon vs file pages is inversely
1692 	 * proportional to the fraction of recently scanned pages on
1693 	 * each list that were recently referenced and in active use.
1694 	 */
1695 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1696 	ap /= reclaim_stat->recent_rotated[0] + 1;
1697 
1698 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1699 	fp /= reclaim_stat->recent_rotated[1] + 1;
1700 	spin_unlock_irq(&zone->lru_lock);
1701 
1702 	fraction[0] = ap;
1703 	fraction[1] = fp;
1704 	denominator = ap + fp + 1;
1705 out:
1706 	for_each_evictable_lru(lru) {
1707 		int file = is_file_lru(lru);
1708 		unsigned long scan;
1709 
1710 		scan = get_lru_size(lruvec, lru);
1711 		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1712 			scan >>= sc->priority;
1713 			if (!scan && force_scan)
1714 				scan = SWAP_CLUSTER_MAX;
1715 			scan = div64_u64(scan * fraction[file], denominator);
1716 		}
1717 		nr[lru] = scan;
1718 	}
1719 }
1720 
1721 /* Use reclaim/compaction for costly allocs or under memory pressure */
1722 static bool in_reclaim_compaction(struct scan_control *sc)
1723 {
1724 	if (COMPACTION_BUILD && sc->order &&
1725 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1726 			 sc->priority < DEF_PRIORITY - 2))
1727 		return true;
1728 
1729 	return false;
1730 }
1731 
1732 /*
1733  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1734  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1735  * true if more pages should be reclaimed such that when the page allocator
1736  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1737  * It will give up earlier than that if there is difficulty reclaiming pages.
1738  */
1739 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1740 					unsigned long nr_reclaimed,
1741 					unsigned long nr_scanned,
1742 					struct scan_control *sc)
1743 {
1744 	unsigned long pages_for_compaction;
1745 	unsigned long inactive_lru_pages;
1746 
1747 	/* If not in reclaim/compaction mode, stop */
1748 	if (!in_reclaim_compaction(sc))
1749 		return false;
1750 
1751 	/* Consider stopping depending on scan and reclaim activity */
1752 	if (sc->gfp_mask & __GFP_REPEAT) {
1753 		/*
1754 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1755 		 * full LRU list has been scanned and we are still failing
1756 		 * to reclaim pages. This full LRU scan is potentially
1757 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1758 		 */
1759 		if (!nr_reclaimed && !nr_scanned)
1760 			return false;
1761 	} else {
1762 		/*
1763 		 * For non-__GFP_REPEAT allocations which can presumably
1764 		 * fail without consequence, stop if we failed to reclaim
1765 		 * any pages from the last SWAP_CLUSTER_MAX number of
1766 		 * pages that were scanned. This will return to the
1767 		 * caller faster at the risk reclaim/compaction and
1768 		 * the resulting allocation attempt fails
1769 		 */
1770 		if (!nr_reclaimed)
1771 			return false;
1772 	}
1773 
1774 	/*
1775 	 * If we have not reclaimed enough pages for compaction and the
1776 	 * inactive lists are large enough, continue reclaiming
1777 	 */
1778 	pages_for_compaction = (2UL << sc->order);
1779 	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1780 	if (nr_swap_pages > 0)
1781 		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1782 	if (sc->nr_reclaimed < pages_for_compaction &&
1783 			inactive_lru_pages > pages_for_compaction)
1784 		return true;
1785 
1786 	/* If compaction would go ahead or the allocation would succeed, stop */
1787 	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1788 	case COMPACT_PARTIAL:
1789 	case COMPACT_CONTINUE:
1790 		return false;
1791 	default:
1792 		return true;
1793 	}
1794 }
1795 
1796 /*
1797  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1798  */
1799 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1800 {
1801 	unsigned long nr[NR_LRU_LISTS];
1802 	unsigned long nr_to_scan;
1803 	enum lru_list lru;
1804 	unsigned long nr_reclaimed, nr_scanned;
1805 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1806 	struct blk_plug plug;
1807 
1808 restart:
1809 	nr_reclaimed = 0;
1810 	nr_scanned = sc->nr_scanned;
1811 	get_scan_count(lruvec, sc, nr);
1812 
1813 	blk_start_plug(&plug);
1814 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1815 					nr[LRU_INACTIVE_FILE]) {
1816 		for_each_evictable_lru(lru) {
1817 			if (nr[lru]) {
1818 				nr_to_scan = min_t(unsigned long,
1819 						   nr[lru], SWAP_CLUSTER_MAX);
1820 				nr[lru] -= nr_to_scan;
1821 
1822 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1823 							    lruvec, sc);
1824 			}
1825 		}
1826 		/*
1827 		 * On large memory systems, scan >> priority can become
1828 		 * really large. This is fine for the starting priority;
1829 		 * we want to put equal scanning pressure on each zone.
1830 		 * However, if the VM has a harder time of freeing pages,
1831 		 * with multiple processes reclaiming pages, the total
1832 		 * freeing target can get unreasonably large.
1833 		 */
1834 		if (nr_reclaimed >= nr_to_reclaim &&
1835 		    sc->priority < DEF_PRIORITY)
1836 			break;
1837 	}
1838 	blk_finish_plug(&plug);
1839 	sc->nr_reclaimed += nr_reclaimed;
1840 
1841 	/*
1842 	 * Even if we did not try to evict anon pages at all, we want to
1843 	 * rebalance the anon lru active/inactive ratio.
1844 	 */
1845 	if (inactive_anon_is_low(lruvec))
1846 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1847 				   sc, LRU_ACTIVE_ANON);
1848 
1849 	/* reclaim/compaction might need reclaim to continue */
1850 	if (should_continue_reclaim(lruvec, nr_reclaimed,
1851 				    sc->nr_scanned - nr_scanned, sc))
1852 		goto restart;
1853 
1854 	throttle_vm_writeout(sc->gfp_mask);
1855 }
1856 
1857 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1858 {
1859 	struct mem_cgroup *root = sc->target_mem_cgroup;
1860 	struct mem_cgroup_reclaim_cookie reclaim = {
1861 		.zone = zone,
1862 		.priority = sc->priority,
1863 	};
1864 	struct mem_cgroup *memcg;
1865 
1866 	memcg = mem_cgroup_iter(root, NULL, &reclaim);
1867 	do {
1868 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1869 
1870 		shrink_lruvec(lruvec, sc);
1871 
1872 		/*
1873 		 * Limit reclaim has historically picked one memcg and
1874 		 * scanned it with decreasing priority levels until
1875 		 * nr_to_reclaim had been reclaimed.  This priority
1876 		 * cycle is thus over after a single memcg.
1877 		 *
1878 		 * Direct reclaim and kswapd, on the other hand, have
1879 		 * to scan all memory cgroups to fulfill the overall
1880 		 * scan target for the zone.
1881 		 */
1882 		if (!global_reclaim(sc)) {
1883 			mem_cgroup_iter_break(root, memcg);
1884 			break;
1885 		}
1886 		memcg = mem_cgroup_iter(root, memcg, &reclaim);
1887 	} while (memcg);
1888 }
1889 
1890 /* Returns true if compaction should go ahead for a high-order request */
1891 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1892 {
1893 	unsigned long balance_gap, watermark;
1894 	bool watermark_ok;
1895 
1896 	/* Do not consider compaction for orders reclaim is meant to satisfy */
1897 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1898 		return false;
1899 
1900 	/*
1901 	 * Compaction takes time to run and there are potentially other
1902 	 * callers using the pages just freed. Continue reclaiming until
1903 	 * there is a buffer of free pages available to give compaction
1904 	 * a reasonable chance of completing and allocating the page
1905 	 */
1906 	balance_gap = min(low_wmark_pages(zone),
1907 		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1908 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
1909 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1910 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1911 
1912 	/*
1913 	 * If compaction is deferred, reclaim up to a point where
1914 	 * compaction will have a chance of success when re-enabled
1915 	 */
1916 	if (compaction_deferred(zone, sc->order))
1917 		return watermark_ok;
1918 
1919 	/* If compaction is not ready to start, keep reclaiming */
1920 	if (!compaction_suitable(zone, sc->order))
1921 		return false;
1922 
1923 	return watermark_ok;
1924 }
1925 
1926 /*
1927  * This is the direct reclaim path, for page-allocating processes.  We only
1928  * try to reclaim pages from zones which will satisfy the caller's allocation
1929  * request.
1930  *
1931  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1932  * Because:
1933  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1934  *    allocation or
1935  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1936  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1937  *    zone defense algorithm.
1938  *
1939  * If a zone is deemed to be full of pinned pages then just give it a light
1940  * scan then give up on it.
1941  *
1942  * This function returns true if a zone is being reclaimed for a costly
1943  * high-order allocation and compaction is ready to begin. This indicates to
1944  * the caller that it should consider retrying the allocation instead of
1945  * further reclaim.
1946  */
1947 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1948 {
1949 	struct zoneref *z;
1950 	struct zone *zone;
1951 	unsigned long nr_soft_reclaimed;
1952 	unsigned long nr_soft_scanned;
1953 	bool aborted_reclaim = false;
1954 
1955 	/*
1956 	 * If the number of buffer_heads in the machine exceeds the maximum
1957 	 * allowed level, force direct reclaim to scan the highmem zone as
1958 	 * highmem pages could be pinning lowmem pages storing buffer_heads
1959 	 */
1960 	if (buffer_heads_over_limit)
1961 		sc->gfp_mask |= __GFP_HIGHMEM;
1962 
1963 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1964 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1965 		if (!populated_zone(zone))
1966 			continue;
1967 		/*
1968 		 * Take care memory controller reclaiming has small influence
1969 		 * to global LRU.
1970 		 */
1971 		if (global_reclaim(sc)) {
1972 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1973 				continue;
1974 			if (zone->all_unreclaimable &&
1975 					sc->priority != DEF_PRIORITY)
1976 				continue;	/* Let kswapd poll it */
1977 			if (COMPACTION_BUILD) {
1978 				/*
1979 				 * If we already have plenty of memory free for
1980 				 * compaction in this zone, don't free any more.
1981 				 * Even though compaction is invoked for any
1982 				 * non-zero order, only frequent costly order
1983 				 * reclamation is disruptive enough to become a
1984 				 * noticeable problem, like transparent huge
1985 				 * page allocations.
1986 				 */
1987 				if (compaction_ready(zone, sc)) {
1988 					aborted_reclaim = true;
1989 					continue;
1990 				}
1991 			}
1992 			/*
1993 			 * This steals pages from memory cgroups over softlimit
1994 			 * and returns the number of reclaimed pages and
1995 			 * scanned pages. This works for global memory pressure
1996 			 * and balancing, not for a memcg's limit.
1997 			 */
1998 			nr_soft_scanned = 0;
1999 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2000 						sc->order, sc->gfp_mask,
2001 						&nr_soft_scanned);
2002 			sc->nr_reclaimed += nr_soft_reclaimed;
2003 			sc->nr_scanned += nr_soft_scanned;
2004 			/* need some check for avoid more shrink_zone() */
2005 		}
2006 
2007 		shrink_zone(zone, sc);
2008 	}
2009 
2010 	return aborted_reclaim;
2011 }
2012 
2013 static bool zone_reclaimable(struct zone *zone)
2014 {
2015 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2016 }
2017 
2018 /* All zones in zonelist are unreclaimable? */
2019 static bool all_unreclaimable(struct zonelist *zonelist,
2020 		struct scan_control *sc)
2021 {
2022 	struct zoneref *z;
2023 	struct zone *zone;
2024 
2025 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2026 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2027 		if (!populated_zone(zone))
2028 			continue;
2029 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2030 			continue;
2031 		if (!zone->all_unreclaimable)
2032 			return false;
2033 	}
2034 
2035 	return true;
2036 }
2037 
2038 /*
2039  * This is the main entry point to direct page reclaim.
2040  *
2041  * If a full scan of the inactive list fails to free enough memory then we
2042  * are "out of memory" and something needs to be killed.
2043  *
2044  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2045  * high - the zone may be full of dirty or under-writeback pages, which this
2046  * caller can't do much about.  We kick the writeback threads and take explicit
2047  * naps in the hope that some of these pages can be written.  But if the
2048  * allocating task holds filesystem locks which prevent writeout this might not
2049  * work, and the allocation attempt will fail.
2050  *
2051  * returns:	0, if no pages reclaimed
2052  * 		else, the number of pages reclaimed
2053  */
2054 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2055 					struct scan_control *sc,
2056 					struct shrink_control *shrink)
2057 {
2058 	unsigned long total_scanned = 0;
2059 	struct reclaim_state *reclaim_state = current->reclaim_state;
2060 	struct zoneref *z;
2061 	struct zone *zone;
2062 	unsigned long writeback_threshold;
2063 	bool aborted_reclaim;
2064 
2065 	delayacct_freepages_start();
2066 
2067 	if (global_reclaim(sc))
2068 		count_vm_event(ALLOCSTALL);
2069 
2070 	do {
2071 		sc->nr_scanned = 0;
2072 		aborted_reclaim = shrink_zones(zonelist, sc);
2073 
2074 		/*
2075 		 * Don't shrink slabs when reclaiming memory from
2076 		 * over limit cgroups
2077 		 */
2078 		if (global_reclaim(sc)) {
2079 			unsigned long lru_pages = 0;
2080 			for_each_zone_zonelist(zone, z, zonelist,
2081 					gfp_zone(sc->gfp_mask)) {
2082 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2083 					continue;
2084 
2085 				lru_pages += zone_reclaimable_pages(zone);
2086 			}
2087 
2088 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2089 			if (reclaim_state) {
2090 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2091 				reclaim_state->reclaimed_slab = 0;
2092 			}
2093 		}
2094 		total_scanned += sc->nr_scanned;
2095 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2096 			goto out;
2097 
2098 		/*
2099 		 * Try to write back as many pages as we just scanned.  This
2100 		 * tends to cause slow streaming writers to write data to the
2101 		 * disk smoothly, at the dirtying rate, which is nice.   But
2102 		 * that's undesirable in laptop mode, where we *want* lumpy
2103 		 * writeout.  So in laptop mode, write out the whole world.
2104 		 */
2105 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2106 		if (total_scanned > writeback_threshold) {
2107 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2108 						WB_REASON_TRY_TO_FREE_PAGES);
2109 			sc->may_writepage = 1;
2110 		}
2111 
2112 		/* Take a nap, wait for some writeback to complete */
2113 		if (!sc->hibernation_mode && sc->nr_scanned &&
2114 		    sc->priority < DEF_PRIORITY - 2) {
2115 			struct zone *preferred_zone;
2116 
2117 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2118 						&cpuset_current_mems_allowed,
2119 						&preferred_zone);
2120 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2121 		}
2122 	} while (--sc->priority >= 0);
2123 
2124 out:
2125 	delayacct_freepages_end();
2126 
2127 	if (sc->nr_reclaimed)
2128 		return sc->nr_reclaimed;
2129 
2130 	/*
2131 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2132 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2133 	 * check.
2134 	 */
2135 	if (oom_killer_disabled)
2136 		return 0;
2137 
2138 	/* Aborted reclaim to try compaction? don't OOM, then */
2139 	if (aborted_reclaim)
2140 		return 1;
2141 
2142 	/* top priority shrink_zones still had more to do? don't OOM, then */
2143 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2144 		return 1;
2145 
2146 	return 0;
2147 }
2148 
2149 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2150 {
2151 	struct zone *zone;
2152 	unsigned long pfmemalloc_reserve = 0;
2153 	unsigned long free_pages = 0;
2154 	int i;
2155 	bool wmark_ok;
2156 
2157 	for (i = 0; i <= ZONE_NORMAL; i++) {
2158 		zone = &pgdat->node_zones[i];
2159 		pfmemalloc_reserve += min_wmark_pages(zone);
2160 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2161 	}
2162 
2163 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2164 
2165 	/* kswapd must be awake if processes are being throttled */
2166 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2167 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2168 						(enum zone_type)ZONE_NORMAL);
2169 		wake_up_interruptible(&pgdat->kswapd_wait);
2170 	}
2171 
2172 	return wmark_ok;
2173 }
2174 
2175 /*
2176  * Throttle direct reclaimers if backing storage is backed by the network
2177  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2178  * depleted. kswapd will continue to make progress and wake the processes
2179  * when the low watermark is reached
2180  */
2181 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2182 					nodemask_t *nodemask)
2183 {
2184 	struct zone *zone;
2185 	int high_zoneidx = gfp_zone(gfp_mask);
2186 	pg_data_t *pgdat;
2187 
2188 	/*
2189 	 * Kernel threads should not be throttled as they may be indirectly
2190 	 * responsible for cleaning pages necessary for reclaim to make forward
2191 	 * progress. kjournald for example may enter direct reclaim while
2192 	 * committing a transaction where throttling it could forcing other
2193 	 * processes to block on log_wait_commit().
2194 	 */
2195 	if (current->flags & PF_KTHREAD)
2196 		return;
2197 
2198 	/* Check if the pfmemalloc reserves are ok */
2199 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2200 	pgdat = zone->zone_pgdat;
2201 	if (pfmemalloc_watermark_ok(pgdat))
2202 		return;
2203 
2204 	/* Account for the throttling */
2205 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2206 
2207 	/*
2208 	 * If the caller cannot enter the filesystem, it's possible that it
2209 	 * is due to the caller holding an FS lock or performing a journal
2210 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2211 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2212 	 * blocked waiting on the same lock. Instead, throttle for up to a
2213 	 * second before continuing.
2214 	 */
2215 	if (!(gfp_mask & __GFP_FS)) {
2216 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2217 			pfmemalloc_watermark_ok(pgdat), HZ);
2218 		return;
2219 	}
2220 
2221 	/* Throttle until kswapd wakes the process */
2222 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2223 		pfmemalloc_watermark_ok(pgdat));
2224 }
2225 
2226 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2227 				gfp_t gfp_mask, nodemask_t *nodemask)
2228 {
2229 	unsigned long nr_reclaimed;
2230 	struct scan_control sc = {
2231 		.gfp_mask = gfp_mask,
2232 		.may_writepage = !laptop_mode,
2233 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2234 		.may_unmap = 1,
2235 		.may_swap = 1,
2236 		.order = order,
2237 		.priority = DEF_PRIORITY,
2238 		.target_mem_cgroup = NULL,
2239 		.nodemask = nodemask,
2240 	};
2241 	struct shrink_control shrink = {
2242 		.gfp_mask = sc.gfp_mask,
2243 	};
2244 
2245 	throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2246 
2247 	/*
2248 	 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2249 	 * that the page allocator does not consider triggering OOM
2250 	 */
2251 	if (fatal_signal_pending(current))
2252 		return 1;
2253 
2254 	trace_mm_vmscan_direct_reclaim_begin(order,
2255 				sc.may_writepage,
2256 				gfp_mask);
2257 
2258 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2259 
2260 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2261 
2262 	return nr_reclaimed;
2263 }
2264 
2265 #ifdef CONFIG_MEMCG
2266 
2267 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2268 						gfp_t gfp_mask, bool noswap,
2269 						struct zone *zone,
2270 						unsigned long *nr_scanned)
2271 {
2272 	struct scan_control sc = {
2273 		.nr_scanned = 0,
2274 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2275 		.may_writepage = !laptop_mode,
2276 		.may_unmap = 1,
2277 		.may_swap = !noswap,
2278 		.order = 0,
2279 		.priority = 0,
2280 		.target_mem_cgroup = memcg,
2281 	};
2282 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2283 
2284 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2285 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2286 
2287 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2288 						      sc.may_writepage,
2289 						      sc.gfp_mask);
2290 
2291 	/*
2292 	 * NOTE: Although we can get the priority field, using it
2293 	 * here is not a good idea, since it limits the pages we can scan.
2294 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2295 	 * will pick up pages from other mem cgroup's as well. We hack
2296 	 * the priority and make it zero.
2297 	 */
2298 	shrink_lruvec(lruvec, &sc);
2299 
2300 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2301 
2302 	*nr_scanned = sc.nr_scanned;
2303 	return sc.nr_reclaimed;
2304 }
2305 
2306 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2307 					   gfp_t gfp_mask,
2308 					   bool noswap)
2309 {
2310 	struct zonelist *zonelist;
2311 	unsigned long nr_reclaimed;
2312 	int nid;
2313 	struct scan_control sc = {
2314 		.may_writepage = !laptop_mode,
2315 		.may_unmap = 1,
2316 		.may_swap = !noswap,
2317 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2318 		.order = 0,
2319 		.priority = DEF_PRIORITY,
2320 		.target_mem_cgroup = memcg,
2321 		.nodemask = NULL, /* we don't care the placement */
2322 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2323 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2324 	};
2325 	struct shrink_control shrink = {
2326 		.gfp_mask = sc.gfp_mask,
2327 	};
2328 
2329 	/*
2330 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2331 	 * take care of from where we get pages. So the node where we start the
2332 	 * scan does not need to be the current node.
2333 	 */
2334 	nid = mem_cgroup_select_victim_node(memcg);
2335 
2336 	zonelist = NODE_DATA(nid)->node_zonelists;
2337 
2338 	trace_mm_vmscan_memcg_reclaim_begin(0,
2339 					    sc.may_writepage,
2340 					    sc.gfp_mask);
2341 
2342 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2343 
2344 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2345 
2346 	return nr_reclaimed;
2347 }
2348 #endif
2349 
2350 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2351 {
2352 	struct mem_cgroup *memcg;
2353 
2354 	if (!total_swap_pages)
2355 		return;
2356 
2357 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2358 	do {
2359 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2360 
2361 		if (inactive_anon_is_low(lruvec))
2362 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2363 					   sc, LRU_ACTIVE_ANON);
2364 
2365 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2366 	} while (memcg);
2367 }
2368 
2369 /*
2370  * pgdat_balanced is used when checking if a node is balanced for high-order
2371  * allocations. Only zones that meet watermarks and are in a zone allowed
2372  * by the callers classzone_idx are added to balanced_pages. The total of
2373  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2374  * for the node to be considered balanced. Forcing all zones to be balanced
2375  * for high orders can cause excessive reclaim when there are imbalanced zones.
2376  * The choice of 25% is due to
2377  *   o a 16M DMA zone that is balanced will not balance a zone on any
2378  *     reasonable sized machine
2379  *   o On all other machines, the top zone must be at least a reasonable
2380  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2381  *     would need to be at least 256M for it to be balance a whole node.
2382  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2383  *     to balance a node on its own. These seemed like reasonable ratios.
2384  */
2385 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2386 						int classzone_idx)
2387 {
2388 	unsigned long present_pages = 0;
2389 	int i;
2390 
2391 	for (i = 0; i <= classzone_idx; i++)
2392 		present_pages += pgdat->node_zones[i].present_pages;
2393 
2394 	/* A special case here: if zone has no page, we think it's balanced */
2395 	return balanced_pages >= (present_pages >> 2);
2396 }
2397 
2398 /*
2399  * Prepare kswapd for sleeping. This verifies that there are no processes
2400  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2401  *
2402  * Returns true if kswapd is ready to sleep
2403  */
2404 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2405 					int classzone_idx)
2406 {
2407 	int i;
2408 	unsigned long balanced = 0;
2409 	bool all_zones_ok = true;
2410 
2411 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2412 	if (remaining)
2413 		return false;
2414 
2415 	/*
2416 	 * There is a potential race between when kswapd checks its watermarks
2417 	 * and a process gets throttled. There is also a potential race if
2418 	 * processes get throttled, kswapd wakes, a large process exits therby
2419 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2420 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2421 	 * so wake them now if necessary. If necessary, processes will wake
2422 	 * kswapd and get throttled again
2423 	 */
2424 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2425 		wake_up(&pgdat->pfmemalloc_wait);
2426 		return false;
2427 	}
2428 
2429 	/* Check the watermark levels */
2430 	for (i = 0; i <= classzone_idx; i++) {
2431 		struct zone *zone = pgdat->node_zones + i;
2432 
2433 		if (!populated_zone(zone))
2434 			continue;
2435 
2436 		/*
2437 		 * balance_pgdat() skips over all_unreclaimable after
2438 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2439 		 * they must be considered balanced here as well if kswapd
2440 		 * is to sleep
2441 		 */
2442 		if (zone->all_unreclaimable) {
2443 			balanced += zone->present_pages;
2444 			continue;
2445 		}
2446 
2447 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2448 							i, 0))
2449 			all_zones_ok = false;
2450 		else
2451 			balanced += zone->present_pages;
2452 	}
2453 
2454 	/*
2455 	 * For high-order requests, the balanced zones must contain at least
2456 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2457 	 * must be balanced
2458 	 */
2459 	if (order)
2460 		return pgdat_balanced(pgdat, balanced, classzone_idx);
2461 	else
2462 		return all_zones_ok;
2463 }
2464 
2465 /*
2466  * For kswapd, balance_pgdat() will work across all this node's zones until
2467  * they are all at high_wmark_pages(zone).
2468  *
2469  * Returns the final order kswapd was reclaiming at
2470  *
2471  * There is special handling here for zones which are full of pinned pages.
2472  * This can happen if the pages are all mlocked, or if they are all used by
2473  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2474  * What we do is to detect the case where all pages in the zone have been
2475  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2476  * dead and from now on, only perform a short scan.  Basically we're polling
2477  * the zone for when the problem goes away.
2478  *
2479  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2480  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2481  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2482  * lower zones regardless of the number of free pages in the lower zones. This
2483  * interoperates with the page allocator fallback scheme to ensure that aging
2484  * of pages is balanced across the zones.
2485  */
2486 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2487 							int *classzone_idx)
2488 {
2489 	int all_zones_ok;
2490 	unsigned long balanced;
2491 	int i;
2492 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2493 	unsigned long total_scanned;
2494 	struct reclaim_state *reclaim_state = current->reclaim_state;
2495 	unsigned long nr_soft_reclaimed;
2496 	unsigned long nr_soft_scanned;
2497 	struct scan_control sc = {
2498 		.gfp_mask = GFP_KERNEL,
2499 		.may_unmap = 1,
2500 		.may_swap = 1,
2501 		/*
2502 		 * kswapd doesn't want to be bailed out while reclaim. because
2503 		 * we want to put equal scanning pressure on each zone.
2504 		 */
2505 		.nr_to_reclaim = ULONG_MAX,
2506 		.order = order,
2507 		.target_mem_cgroup = NULL,
2508 	};
2509 	struct shrink_control shrink = {
2510 		.gfp_mask = sc.gfp_mask,
2511 	};
2512 loop_again:
2513 	total_scanned = 0;
2514 	sc.priority = DEF_PRIORITY;
2515 	sc.nr_reclaimed = 0;
2516 	sc.may_writepage = !laptop_mode;
2517 	count_vm_event(PAGEOUTRUN);
2518 
2519 	do {
2520 		unsigned long lru_pages = 0;
2521 		int has_under_min_watermark_zone = 0;
2522 
2523 		all_zones_ok = 1;
2524 		balanced = 0;
2525 
2526 		/*
2527 		 * Scan in the highmem->dma direction for the highest
2528 		 * zone which needs scanning
2529 		 */
2530 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2531 			struct zone *zone = pgdat->node_zones + i;
2532 
2533 			if (!populated_zone(zone))
2534 				continue;
2535 
2536 			if (zone->all_unreclaimable &&
2537 			    sc.priority != DEF_PRIORITY)
2538 				continue;
2539 
2540 			/*
2541 			 * Do some background aging of the anon list, to give
2542 			 * pages a chance to be referenced before reclaiming.
2543 			 */
2544 			age_active_anon(zone, &sc);
2545 
2546 			/*
2547 			 * If the number of buffer_heads in the machine
2548 			 * exceeds the maximum allowed level and this node
2549 			 * has a highmem zone, force kswapd to reclaim from
2550 			 * it to relieve lowmem pressure.
2551 			 */
2552 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2553 				end_zone = i;
2554 				break;
2555 			}
2556 
2557 			if (!zone_watermark_ok_safe(zone, order,
2558 					high_wmark_pages(zone), 0, 0)) {
2559 				end_zone = i;
2560 				break;
2561 			} else {
2562 				/* If balanced, clear the congested flag */
2563 				zone_clear_flag(zone, ZONE_CONGESTED);
2564 			}
2565 		}
2566 		if (i < 0)
2567 			goto out;
2568 
2569 		for (i = 0; i <= end_zone; i++) {
2570 			struct zone *zone = pgdat->node_zones + i;
2571 
2572 			lru_pages += zone_reclaimable_pages(zone);
2573 		}
2574 
2575 		/*
2576 		 * Now scan the zone in the dma->highmem direction, stopping
2577 		 * at the last zone which needs scanning.
2578 		 *
2579 		 * We do this because the page allocator works in the opposite
2580 		 * direction.  This prevents the page allocator from allocating
2581 		 * pages behind kswapd's direction of progress, which would
2582 		 * cause too much scanning of the lower zones.
2583 		 */
2584 		for (i = 0; i <= end_zone; i++) {
2585 			struct zone *zone = pgdat->node_zones + i;
2586 			int nr_slab, testorder;
2587 			unsigned long balance_gap;
2588 
2589 			if (!populated_zone(zone))
2590 				continue;
2591 
2592 			if (zone->all_unreclaimable &&
2593 			    sc.priority != DEF_PRIORITY)
2594 				continue;
2595 
2596 			sc.nr_scanned = 0;
2597 
2598 			nr_soft_scanned = 0;
2599 			/*
2600 			 * Call soft limit reclaim before calling shrink_zone.
2601 			 */
2602 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2603 							order, sc.gfp_mask,
2604 							&nr_soft_scanned);
2605 			sc.nr_reclaimed += nr_soft_reclaimed;
2606 			total_scanned += nr_soft_scanned;
2607 
2608 			/*
2609 			 * We put equal pressure on every zone, unless
2610 			 * one zone has way too many pages free
2611 			 * already. The "too many pages" is defined
2612 			 * as the high wmark plus a "gap" where the
2613 			 * gap is either the low watermark or 1%
2614 			 * of the zone, whichever is smaller.
2615 			 */
2616 			balance_gap = min(low_wmark_pages(zone),
2617 				(zone->present_pages +
2618 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2619 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2620 			/*
2621 			 * Kswapd reclaims only single pages with compaction
2622 			 * enabled. Trying too hard to reclaim until contiguous
2623 			 * free pages have become available can hurt performance
2624 			 * by evicting too much useful data from memory.
2625 			 * Do not reclaim more than needed for compaction.
2626 			 */
2627 			testorder = order;
2628 			if (COMPACTION_BUILD && order &&
2629 					compaction_suitable(zone, order) !=
2630 						COMPACT_SKIPPED)
2631 				testorder = 0;
2632 
2633 			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2634 				    !zone_watermark_ok_safe(zone, testorder,
2635 					high_wmark_pages(zone) + balance_gap,
2636 					end_zone, 0)) {
2637 				shrink_zone(zone, &sc);
2638 
2639 				reclaim_state->reclaimed_slab = 0;
2640 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2641 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2642 				total_scanned += sc.nr_scanned;
2643 
2644 				if (nr_slab == 0 && !zone_reclaimable(zone))
2645 					zone->all_unreclaimable = 1;
2646 			}
2647 
2648 			/*
2649 			 * If we've done a decent amount of scanning and
2650 			 * the reclaim ratio is low, start doing writepage
2651 			 * even in laptop mode
2652 			 */
2653 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2654 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2655 				sc.may_writepage = 1;
2656 
2657 			if (zone->all_unreclaimable) {
2658 				if (end_zone && end_zone == i)
2659 					end_zone--;
2660 				continue;
2661 			}
2662 
2663 			if (!zone_watermark_ok_safe(zone, testorder,
2664 					high_wmark_pages(zone), end_zone, 0)) {
2665 				all_zones_ok = 0;
2666 				/*
2667 				 * We are still under min water mark.  This
2668 				 * means that we have a GFP_ATOMIC allocation
2669 				 * failure risk. Hurry up!
2670 				 */
2671 				if (!zone_watermark_ok_safe(zone, order,
2672 					    min_wmark_pages(zone), end_zone, 0))
2673 					has_under_min_watermark_zone = 1;
2674 			} else {
2675 				/*
2676 				 * If a zone reaches its high watermark,
2677 				 * consider it to be no longer congested. It's
2678 				 * possible there are dirty pages backed by
2679 				 * congested BDIs but as pressure is relieved,
2680 				 * speculatively avoid congestion waits
2681 				 */
2682 				zone_clear_flag(zone, ZONE_CONGESTED);
2683 				if (i <= *classzone_idx)
2684 					balanced += zone->present_pages;
2685 			}
2686 
2687 		}
2688 
2689 		/*
2690 		 * If the low watermark is met there is no need for processes
2691 		 * to be throttled on pfmemalloc_wait as they should not be
2692 		 * able to safely make forward progress. Wake them
2693 		 */
2694 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2695 				pfmemalloc_watermark_ok(pgdat))
2696 			wake_up(&pgdat->pfmemalloc_wait);
2697 
2698 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2699 			break;		/* kswapd: all done */
2700 		/*
2701 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2702 		 * another pass across the zones.
2703 		 */
2704 		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2705 			if (has_under_min_watermark_zone)
2706 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2707 			else
2708 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2709 		}
2710 
2711 		/*
2712 		 * We do this so kswapd doesn't build up large priorities for
2713 		 * example when it is freeing in parallel with allocators. It
2714 		 * matches the direct reclaim path behaviour in terms of impact
2715 		 * on zone->*_priority.
2716 		 */
2717 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2718 			break;
2719 	} while (--sc.priority >= 0);
2720 out:
2721 
2722 	/*
2723 	 * order-0: All zones must meet high watermark for a balanced node
2724 	 * high-order: Balanced zones must make up at least 25% of the node
2725 	 *             for the node to be balanced
2726 	 */
2727 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2728 		cond_resched();
2729 
2730 		try_to_freeze();
2731 
2732 		/*
2733 		 * Fragmentation may mean that the system cannot be
2734 		 * rebalanced for high-order allocations in all zones.
2735 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2736 		 * it means the zones have been fully scanned and are still
2737 		 * not balanced. For high-order allocations, there is
2738 		 * little point trying all over again as kswapd may
2739 		 * infinite loop.
2740 		 *
2741 		 * Instead, recheck all watermarks at order-0 as they
2742 		 * are the most important. If watermarks are ok, kswapd will go
2743 		 * back to sleep. High-order users can still perform direct
2744 		 * reclaim if they wish.
2745 		 */
2746 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2747 			order = sc.order = 0;
2748 
2749 		goto loop_again;
2750 	}
2751 
2752 	/*
2753 	 * If kswapd was reclaiming at a higher order, it has the option of
2754 	 * sleeping without all zones being balanced. Before it does, it must
2755 	 * ensure that the watermarks for order-0 on *all* zones are met and
2756 	 * that the congestion flags are cleared. The congestion flag must
2757 	 * be cleared as kswapd is the only mechanism that clears the flag
2758 	 * and it is potentially going to sleep here.
2759 	 */
2760 	if (order) {
2761 		int zones_need_compaction = 1;
2762 
2763 		for (i = 0; i <= end_zone; i++) {
2764 			struct zone *zone = pgdat->node_zones + i;
2765 
2766 			if (!populated_zone(zone))
2767 				continue;
2768 
2769 			if (zone->all_unreclaimable &&
2770 			    sc.priority != DEF_PRIORITY)
2771 				continue;
2772 
2773 			/* Would compaction fail due to lack of free memory? */
2774 			if (COMPACTION_BUILD &&
2775 			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2776 				goto loop_again;
2777 
2778 			/* Confirm the zone is balanced for order-0 */
2779 			if (!zone_watermark_ok(zone, 0,
2780 					high_wmark_pages(zone), 0, 0)) {
2781 				order = sc.order = 0;
2782 				goto loop_again;
2783 			}
2784 
2785 			/* Check if the memory needs to be defragmented. */
2786 			if (zone_watermark_ok(zone, order,
2787 				    low_wmark_pages(zone), *classzone_idx, 0))
2788 				zones_need_compaction = 0;
2789 
2790 			/* If balanced, clear the congested flag */
2791 			zone_clear_flag(zone, ZONE_CONGESTED);
2792 		}
2793 
2794 		if (zones_need_compaction)
2795 			compact_pgdat(pgdat, order);
2796 	}
2797 
2798 	/*
2799 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2800 	 * makes a decision on the order we were last reclaiming at. However,
2801 	 * if another caller entered the allocator slow path while kswapd
2802 	 * was awake, order will remain at the higher level
2803 	 */
2804 	*classzone_idx = end_zone;
2805 	return order;
2806 }
2807 
2808 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2809 {
2810 	long remaining = 0;
2811 	DEFINE_WAIT(wait);
2812 
2813 	if (freezing(current) || kthread_should_stop())
2814 		return;
2815 
2816 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2817 
2818 	/* Try to sleep for a short interval */
2819 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2820 		remaining = schedule_timeout(HZ/10);
2821 		finish_wait(&pgdat->kswapd_wait, &wait);
2822 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2823 	}
2824 
2825 	/*
2826 	 * After a short sleep, check if it was a premature sleep. If not, then
2827 	 * go fully to sleep until explicitly woken up.
2828 	 */
2829 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2830 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2831 
2832 		/*
2833 		 * vmstat counters are not perfectly accurate and the estimated
2834 		 * value for counters such as NR_FREE_PAGES can deviate from the
2835 		 * true value by nr_online_cpus * threshold. To avoid the zone
2836 		 * watermarks being breached while under pressure, we reduce the
2837 		 * per-cpu vmstat threshold while kswapd is awake and restore
2838 		 * them before going back to sleep.
2839 		 */
2840 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2841 
2842 		if (!kthread_should_stop())
2843 			schedule();
2844 
2845 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2846 	} else {
2847 		if (remaining)
2848 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2849 		else
2850 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2851 	}
2852 	finish_wait(&pgdat->kswapd_wait, &wait);
2853 }
2854 
2855 /*
2856  * The background pageout daemon, started as a kernel thread
2857  * from the init process.
2858  *
2859  * This basically trickles out pages so that we have _some_
2860  * free memory available even if there is no other activity
2861  * that frees anything up. This is needed for things like routing
2862  * etc, where we otherwise might have all activity going on in
2863  * asynchronous contexts that cannot page things out.
2864  *
2865  * If there are applications that are active memory-allocators
2866  * (most normal use), this basically shouldn't matter.
2867  */
2868 static int kswapd(void *p)
2869 {
2870 	unsigned long order, new_order;
2871 	unsigned balanced_order;
2872 	int classzone_idx, new_classzone_idx;
2873 	int balanced_classzone_idx;
2874 	pg_data_t *pgdat = (pg_data_t*)p;
2875 	struct task_struct *tsk = current;
2876 
2877 	struct reclaim_state reclaim_state = {
2878 		.reclaimed_slab = 0,
2879 	};
2880 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2881 
2882 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2883 
2884 	if (!cpumask_empty(cpumask))
2885 		set_cpus_allowed_ptr(tsk, cpumask);
2886 	current->reclaim_state = &reclaim_state;
2887 
2888 	/*
2889 	 * Tell the memory management that we're a "memory allocator",
2890 	 * and that if we need more memory we should get access to it
2891 	 * regardless (see "__alloc_pages()"). "kswapd" should
2892 	 * never get caught in the normal page freeing logic.
2893 	 *
2894 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2895 	 * you need a small amount of memory in order to be able to
2896 	 * page out something else, and this flag essentially protects
2897 	 * us from recursively trying to free more memory as we're
2898 	 * trying to free the first piece of memory in the first place).
2899 	 */
2900 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2901 	set_freezable();
2902 
2903 	order = new_order = 0;
2904 	balanced_order = 0;
2905 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2906 	balanced_classzone_idx = classzone_idx;
2907 	for ( ; ; ) {
2908 		int ret;
2909 
2910 		/*
2911 		 * If the last balance_pgdat was unsuccessful it's unlikely a
2912 		 * new request of a similar or harder type will succeed soon
2913 		 * so consider going to sleep on the basis we reclaimed at
2914 		 */
2915 		if (balanced_classzone_idx >= new_classzone_idx &&
2916 					balanced_order == new_order) {
2917 			new_order = pgdat->kswapd_max_order;
2918 			new_classzone_idx = pgdat->classzone_idx;
2919 			pgdat->kswapd_max_order =  0;
2920 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2921 		}
2922 
2923 		if (order < new_order || classzone_idx > new_classzone_idx) {
2924 			/*
2925 			 * Don't sleep if someone wants a larger 'order'
2926 			 * allocation or has tigher zone constraints
2927 			 */
2928 			order = new_order;
2929 			classzone_idx = new_classzone_idx;
2930 		} else {
2931 			kswapd_try_to_sleep(pgdat, balanced_order,
2932 						balanced_classzone_idx);
2933 			order = pgdat->kswapd_max_order;
2934 			classzone_idx = pgdat->classzone_idx;
2935 			new_order = order;
2936 			new_classzone_idx = classzone_idx;
2937 			pgdat->kswapd_max_order = 0;
2938 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2939 		}
2940 
2941 		ret = try_to_freeze();
2942 		if (kthread_should_stop())
2943 			break;
2944 
2945 		/*
2946 		 * We can speed up thawing tasks if we don't call balance_pgdat
2947 		 * after returning from the refrigerator
2948 		 */
2949 		if (!ret) {
2950 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2951 			balanced_classzone_idx = classzone_idx;
2952 			balanced_order = balance_pgdat(pgdat, order,
2953 						&balanced_classzone_idx);
2954 		}
2955 	}
2956 	return 0;
2957 }
2958 
2959 /*
2960  * A zone is low on free memory, so wake its kswapd task to service it.
2961  */
2962 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2963 {
2964 	pg_data_t *pgdat;
2965 
2966 	if (!populated_zone(zone))
2967 		return;
2968 
2969 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2970 		return;
2971 	pgdat = zone->zone_pgdat;
2972 	if (pgdat->kswapd_max_order < order) {
2973 		pgdat->kswapd_max_order = order;
2974 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2975 	}
2976 	if (!waitqueue_active(&pgdat->kswapd_wait))
2977 		return;
2978 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2979 		return;
2980 
2981 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2982 	wake_up_interruptible(&pgdat->kswapd_wait);
2983 }
2984 
2985 /*
2986  * The reclaimable count would be mostly accurate.
2987  * The less reclaimable pages may be
2988  * - mlocked pages, which will be moved to unevictable list when encountered
2989  * - mapped pages, which may require several travels to be reclaimed
2990  * - dirty pages, which is not "instantly" reclaimable
2991  */
2992 unsigned long global_reclaimable_pages(void)
2993 {
2994 	int nr;
2995 
2996 	nr = global_page_state(NR_ACTIVE_FILE) +
2997 	     global_page_state(NR_INACTIVE_FILE);
2998 
2999 	if (nr_swap_pages > 0)
3000 		nr += global_page_state(NR_ACTIVE_ANON) +
3001 		      global_page_state(NR_INACTIVE_ANON);
3002 
3003 	return nr;
3004 }
3005 
3006 unsigned long zone_reclaimable_pages(struct zone *zone)
3007 {
3008 	int nr;
3009 
3010 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3011 	     zone_page_state(zone, NR_INACTIVE_FILE);
3012 
3013 	if (nr_swap_pages > 0)
3014 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3015 		      zone_page_state(zone, NR_INACTIVE_ANON);
3016 
3017 	return nr;
3018 }
3019 
3020 #ifdef CONFIG_HIBERNATION
3021 /*
3022  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3023  * freed pages.
3024  *
3025  * Rather than trying to age LRUs the aim is to preserve the overall
3026  * LRU order by reclaiming preferentially
3027  * inactive > active > active referenced > active mapped
3028  */
3029 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3030 {
3031 	struct reclaim_state reclaim_state;
3032 	struct scan_control sc = {
3033 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3034 		.may_swap = 1,
3035 		.may_unmap = 1,
3036 		.may_writepage = 1,
3037 		.nr_to_reclaim = nr_to_reclaim,
3038 		.hibernation_mode = 1,
3039 		.order = 0,
3040 		.priority = DEF_PRIORITY,
3041 	};
3042 	struct shrink_control shrink = {
3043 		.gfp_mask = sc.gfp_mask,
3044 	};
3045 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3046 	struct task_struct *p = current;
3047 	unsigned long nr_reclaimed;
3048 
3049 	p->flags |= PF_MEMALLOC;
3050 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3051 	reclaim_state.reclaimed_slab = 0;
3052 	p->reclaim_state = &reclaim_state;
3053 
3054 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3055 
3056 	p->reclaim_state = NULL;
3057 	lockdep_clear_current_reclaim_state();
3058 	p->flags &= ~PF_MEMALLOC;
3059 
3060 	return nr_reclaimed;
3061 }
3062 #endif /* CONFIG_HIBERNATION */
3063 
3064 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3065    not required for correctness.  So if the last cpu in a node goes
3066    away, we get changed to run anywhere: as the first one comes back,
3067    restore their cpu bindings. */
3068 static int __devinit cpu_callback(struct notifier_block *nfb,
3069 				  unsigned long action, void *hcpu)
3070 {
3071 	int nid;
3072 
3073 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3074 		for_each_node_state(nid, N_HIGH_MEMORY) {
3075 			pg_data_t *pgdat = NODE_DATA(nid);
3076 			const struct cpumask *mask;
3077 
3078 			mask = cpumask_of_node(pgdat->node_id);
3079 
3080 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3081 				/* One of our CPUs online: restore mask */
3082 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3083 		}
3084 	}
3085 	return NOTIFY_OK;
3086 }
3087 
3088 /*
3089  * This kswapd start function will be called by init and node-hot-add.
3090  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3091  */
3092 int kswapd_run(int nid)
3093 {
3094 	pg_data_t *pgdat = NODE_DATA(nid);
3095 	int ret = 0;
3096 
3097 	if (pgdat->kswapd)
3098 		return 0;
3099 
3100 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3101 	if (IS_ERR(pgdat->kswapd)) {
3102 		/* failure at boot is fatal */
3103 		BUG_ON(system_state == SYSTEM_BOOTING);
3104 		printk("Failed to start kswapd on node %d\n",nid);
3105 		pgdat->kswapd = NULL;
3106 		ret = -1;
3107 	}
3108 	return ret;
3109 }
3110 
3111 /*
3112  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3113  * hold lock_memory_hotplug().
3114  */
3115 void kswapd_stop(int nid)
3116 {
3117 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3118 
3119 	if (kswapd) {
3120 		kthread_stop(kswapd);
3121 		NODE_DATA(nid)->kswapd = NULL;
3122 	}
3123 }
3124 
3125 static int __init kswapd_init(void)
3126 {
3127 	int nid;
3128 
3129 	swap_setup();
3130 	for_each_node_state(nid, N_HIGH_MEMORY)
3131  		kswapd_run(nid);
3132 	hotcpu_notifier(cpu_callback, 0);
3133 	return 0;
3134 }
3135 
3136 module_init(kswapd_init)
3137 
3138 #ifdef CONFIG_NUMA
3139 /*
3140  * Zone reclaim mode
3141  *
3142  * If non-zero call zone_reclaim when the number of free pages falls below
3143  * the watermarks.
3144  */
3145 int zone_reclaim_mode __read_mostly;
3146 
3147 #define RECLAIM_OFF 0
3148 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3149 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3150 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3151 
3152 /*
3153  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3154  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3155  * a zone.
3156  */
3157 #define ZONE_RECLAIM_PRIORITY 4
3158 
3159 /*
3160  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3161  * occur.
3162  */
3163 int sysctl_min_unmapped_ratio = 1;
3164 
3165 /*
3166  * If the number of slab pages in a zone grows beyond this percentage then
3167  * slab reclaim needs to occur.
3168  */
3169 int sysctl_min_slab_ratio = 5;
3170 
3171 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3172 {
3173 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3174 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3175 		zone_page_state(zone, NR_ACTIVE_FILE);
3176 
3177 	/*
3178 	 * It's possible for there to be more file mapped pages than
3179 	 * accounted for by the pages on the file LRU lists because
3180 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3181 	 */
3182 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3183 }
3184 
3185 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3186 static long zone_pagecache_reclaimable(struct zone *zone)
3187 {
3188 	long nr_pagecache_reclaimable;
3189 	long delta = 0;
3190 
3191 	/*
3192 	 * If RECLAIM_SWAP is set, then all file pages are considered
3193 	 * potentially reclaimable. Otherwise, we have to worry about
3194 	 * pages like swapcache and zone_unmapped_file_pages() provides
3195 	 * a better estimate
3196 	 */
3197 	if (zone_reclaim_mode & RECLAIM_SWAP)
3198 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3199 	else
3200 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3201 
3202 	/* If we can't clean pages, remove dirty pages from consideration */
3203 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3204 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3205 
3206 	/* Watch for any possible underflows due to delta */
3207 	if (unlikely(delta > nr_pagecache_reclaimable))
3208 		delta = nr_pagecache_reclaimable;
3209 
3210 	return nr_pagecache_reclaimable - delta;
3211 }
3212 
3213 /*
3214  * Try to free up some pages from this zone through reclaim.
3215  */
3216 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3217 {
3218 	/* Minimum pages needed in order to stay on node */
3219 	const unsigned long nr_pages = 1 << order;
3220 	struct task_struct *p = current;
3221 	struct reclaim_state reclaim_state;
3222 	struct scan_control sc = {
3223 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3224 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3225 		.may_swap = 1,
3226 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3227 				       SWAP_CLUSTER_MAX),
3228 		.gfp_mask = gfp_mask,
3229 		.order = order,
3230 		.priority = ZONE_RECLAIM_PRIORITY,
3231 	};
3232 	struct shrink_control shrink = {
3233 		.gfp_mask = sc.gfp_mask,
3234 	};
3235 	unsigned long nr_slab_pages0, nr_slab_pages1;
3236 
3237 	cond_resched();
3238 	/*
3239 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3240 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3241 	 * and RECLAIM_SWAP.
3242 	 */
3243 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3244 	lockdep_set_current_reclaim_state(gfp_mask);
3245 	reclaim_state.reclaimed_slab = 0;
3246 	p->reclaim_state = &reclaim_state;
3247 
3248 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3249 		/*
3250 		 * Free memory by calling shrink zone with increasing
3251 		 * priorities until we have enough memory freed.
3252 		 */
3253 		do {
3254 			shrink_zone(zone, &sc);
3255 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3256 	}
3257 
3258 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3259 	if (nr_slab_pages0 > zone->min_slab_pages) {
3260 		/*
3261 		 * shrink_slab() does not currently allow us to determine how
3262 		 * many pages were freed in this zone. So we take the current
3263 		 * number of slab pages and shake the slab until it is reduced
3264 		 * by the same nr_pages that we used for reclaiming unmapped
3265 		 * pages.
3266 		 *
3267 		 * Note that shrink_slab will free memory on all zones and may
3268 		 * take a long time.
3269 		 */
3270 		for (;;) {
3271 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3272 
3273 			/* No reclaimable slab or very low memory pressure */
3274 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3275 				break;
3276 
3277 			/* Freed enough memory */
3278 			nr_slab_pages1 = zone_page_state(zone,
3279 							NR_SLAB_RECLAIMABLE);
3280 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3281 				break;
3282 		}
3283 
3284 		/*
3285 		 * Update nr_reclaimed by the number of slab pages we
3286 		 * reclaimed from this zone.
3287 		 */
3288 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3289 		if (nr_slab_pages1 < nr_slab_pages0)
3290 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3291 	}
3292 
3293 	p->reclaim_state = NULL;
3294 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3295 	lockdep_clear_current_reclaim_state();
3296 	return sc.nr_reclaimed >= nr_pages;
3297 }
3298 
3299 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3300 {
3301 	int node_id;
3302 	int ret;
3303 
3304 	/*
3305 	 * Zone reclaim reclaims unmapped file backed pages and
3306 	 * slab pages if we are over the defined limits.
3307 	 *
3308 	 * A small portion of unmapped file backed pages is needed for
3309 	 * file I/O otherwise pages read by file I/O will be immediately
3310 	 * thrown out if the zone is overallocated. So we do not reclaim
3311 	 * if less than a specified percentage of the zone is used by
3312 	 * unmapped file backed pages.
3313 	 */
3314 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3315 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3316 		return ZONE_RECLAIM_FULL;
3317 
3318 	if (zone->all_unreclaimable)
3319 		return ZONE_RECLAIM_FULL;
3320 
3321 	/*
3322 	 * Do not scan if the allocation should not be delayed.
3323 	 */
3324 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3325 		return ZONE_RECLAIM_NOSCAN;
3326 
3327 	/*
3328 	 * Only run zone reclaim on the local zone or on zones that do not
3329 	 * have associated processors. This will favor the local processor
3330 	 * over remote processors and spread off node memory allocations
3331 	 * as wide as possible.
3332 	 */
3333 	node_id = zone_to_nid(zone);
3334 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3335 		return ZONE_RECLAIM_NOSCAN;
3336 
3337 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3338 		return ZONE_RECLAIM_NOSCAN;
3339 
3340 	ret = __zone_reclaim(zone, gfp_mask, order);
3341 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3342 
3343 	if (!ret)
3344 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3345 
3346 	return ret;
3347 }
3348 #endif
3349 
3350 /*
3351  * page_evictable - test whether a page is evictable
3352  * @page: the page to test
3353  * @vma: the VMA in which the page is or will be mapped, may be NULL
3354  *
3355  * Test whether page is evictable--i.e., should be placed on active/inactive
3356  * lists vs unevictable list.  The vma argument is !NULL when called from the
3357  * fault path to determine how to instantate a new page.
3358  *
3359  * Reasons page might not be evictable:
3360  * (1) page's mapping marked unevictable
3361  * (2) page is part of an mlocked VMA
3362  *
3363  */
3364 int page_evictable(struct page *page, struct vm_area_struct *vma)
3365 {
3366 
3367 	if (mapping_unevictable(page_mapping(page)))
3368 		return 0;
3369 
3370 	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3371 		return 0;
3372 
3373 	return 1;
3374 }
3375 
3376 #ifdef CONFIG_SHMEM
3377 /**
3378  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3379  * @pages:	array of pages to check
3380  * @nr_pages:	number of pages to check
3381  *
3382  * Checks pages for evictability and moves them to the appropriate lru list.
3383  *
3384  * This function is only used for SysV IPC SHM_UNLOCK.
3385  */
3386 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3387 {
3388 	struct lruvec *lruvec;
3389 	struct zone *zone = NULL;
3390 	int pgscanned = 0;
3391 	int pgrescued = 0;
3392 	int i;
3393 
3394 	for (i = 0; i < nr_pages; i++) {
3395 		struct page *page = pages[i];
3396 		struct zone *pagezone;
3397 
3398 		pgscanned++;
3399 		pagezone = page_zone(page);
3400 		if (pagezone != zone) {
3401 			if (zone)
3402 				spin_unlock_irq(&zone->lru_lock);
3403 			zone = pagezone;
3404 			spin_lock_irq(&zone->lru_lock);
3405 		}
3406 		lruvec = mem_cgroup_page_lruvec(page, zone);
3407 
3408 		if (!PageLRU(page) || !PageUnevictable(page))
3409 			continue;
3410 
3411 		if (page_evictable(page, NULL)) {
3412 			enum lru_list lru = page_lru_base_type(page);
3413 
3414 			VM_BUG_ON(PageActive(page));
3415 			ClearPageUnevictable(page);
3416 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3417 			add_page_to_lru_list(page, lruvec, lru);
3418 			pgrescued++;
3419 		}
3420 	}
3421 
3422 	if (zone) {
3423 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3424 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3425 		spin_unlock_irq(&zone->lru_lock);
3426 	}
3427 }
3428 #endif /* CONFIG_SHMEM */
3429 
3430 static void warn_scan_unevictable_pages(void)
3431 {
3432 	printk_once(KERN_WARNING
3433 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3434 		    "disabled for lack of a legitimate use case.  If you have "
3435 		    "one, please send an email to linux-mm@kvack.org.\n",
3436 		    current->comm);
3437 }
3438 
3439 /*
3440  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3441  * all nodes' unevictable lists for evictable pages
3442  */
3443 unsigned long scan_unevictable_pages;
3444 
3445 int scan_unevictable_handler(struct ctl_table *table, int write,
3446 			   void __user *buffer,
3447 			   size_t *length, loff_t *ppos)
3448 {
3449 	warn_scan_unevictable_pages();
3450 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3451 	scan_unevictable_pages = 0;
3452 	return 0;
3453 }
3454 
3455 #ifdef CONFIG_NUMA
3456 /*
3457  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3458  * a specified node's per zone unevictable lists for evictable pages.
3459  */
3460 
3461 static ssize_t read_scan_unevictable_node(struct device *dev,
3462 					  struct device_attribute *attr,
3463 					  char *buf)
3464 {
3465 	warn_scan_unevictable_pages();
3466 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3467 }
3468 
3469 static ssize_t write_scan_unevictable_node(struct device *dev,
3470 					   struct device_attribute *attr,
3471 					const char *buf, size_t count)
3472 {
3473 	warn_scan_unevictable_pages();
3474 	return 1;
3475 }
3476 
3477 
3478 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3479 			read_scan_unevictable_node,
3480 			write_scan_unevictable_node);
3481 
3482 int scan_unevictable_register_node(struct node *node)
3483 {
3484 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3485 }
3486 
3487 void scan_unevictable_unregister_node(struct node *node)
3488 {
3489 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3490 }
3491 #endif
3492