xref: /openbmc/linux/mm/vmscan.c (revision 3ac14b39)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	/* Allocation order */
72 	int order;
73 
74 	/*
75 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 	 * are scanned.
77 	 */
78 	nodemask_t	*nodemask;
79 
80 	/*
81 	 * The memory cgroup that hit its limit and as a result is the
82 	 * primary target of this reclaim invocation.
83 	 */
84 	struct mem_cgroup *target_mem_cgroup;
85 
86 	/* Scan (total_size >> priority) pages at once */
87 	int priority;
88 
89 	/* The highest zone to isolate pages for reclaim from */
90 	enum zone_type reclaim_idx;
91 
92 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 	unsigned int may_writepage:1;
94 
95 	/* Can mapped pages be reclaimed? */
96 	unsigned int may_unmap:1;
97 
98 	/* Can pages be swapped as part of reclaim? */
99 	unsigned int may_swap:1;
100 
101 	/*
102 	 * Cgroups are not reclaimed below their configured memory.low,
103 	 * unless we threaten to OOM. If any cgroups are skipped due to
104 	 * memory.low and nothing was reclaimed, go back for memory.low.
105 	 */
106 	unsigned int memcg_low_reclaim:1;
107 	unsigned int memcg_low_skipped:1;
108 
109 	unsigned int hibernation_mode:1;
110 
111 	/* One of the zones is ready for compaction */
112 	unsigned int compaction_ready:1;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 
120 	struct {
121 		unsigned int dirty;
122 		unsigned int unqueued_dirty;
123 		unsigned int congested;
124 		unsigned int writeback;
125 		unsigned int immediate;
126 		unsigned int file_taken;
127 		unsigned int taken;
128 	} nr;
129 };
130 
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)			\
133 	do {								\
134 		if ((_page)->lru.prev != _base) {			\
135 			struct page *prev;				\
136 									\
137 			prev = lru_to_page(&(_page->lru));		\
138 			prefetch(&prev->_field);			\
139 		}							\
140 	} while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144 
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)			\
147 	do {								\
148 		if ((_page)->lru.prev != _base) {			\
149 			struct page *prev;				\
150 									\
151 			prev = lru_to_page(&(_page->lru));		\
152 			prefetchw(&prev->_field);			\
153 		}							\
154 	} while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158 
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168 
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171 
172 #ifdef CONFIG_MEMCG
173 static bool global_reclaim(struct scan_control *sc)
174 {
175 	return !sc->target_mem_cgroup;
176 }
177 
178 /**
179  * sane_reclaim - is the usual dirty throttling mechanism operational?
180  * @sc: scan_control in question
181  *
182  * The normal page dirty throttling mechanism in balance_dirty_pages() is
183  * completely broken with the legacy memcg and direct stalling in
184  * shrink_page_list() is used for throttling instead, which lacks all the
185  * niceties such as fairness, adaptive pausing, bandwidth proportional
186  * allocation and configurability.
187  *
188  * This function tests whether the vmscan currently in progress can assume
189  * that the normal dirty throttling mechanism is operational.
190  */
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
194 
195 	if (!memcg)
196 		return true;
197 #ifdef CONFIG_CGROUP_WRITEBACK
198 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
199 		return true;
200 #endif
201 	return false;
202 }
203 
204 static void set_memcg_congestion(pg_data_t *pgdat,
205 				struct mem_cgroup *memcg,
206 				bool congested)
207 {
208 	struct mem_cgroup_per_node *mn;
209 
210 	if (!memcg)
211 		return;
212 
213 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
214 	WRITE_ONCE(mn->congested, congested);
215 }
216 
217 static bool memcg_congested(pg_data_t *pgdat,
218 			struct mem_cgroup *memcg)
219 {
220 	struct mem_cgroup_per_node *mn;
221 
222 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
223 	return READ_ONCE(mn->congested);
224 
225 }
226 #else
227 static bool global_reclaim(struct scan_control *sc)
228 {
229 	return true;
230 }
231 
232 static bool sane_reclaim(struct scan_control *sc)
233 {
234 	return true;
235 }
236 
237 static inline void set_memcg_congestion(struct pglist_data *pgdat,
238 				struct mem_cgroup *memcg, bool congested)
239 {
240 }
241 
242 static inline bool memcg_congested(struct pglist_data *pgdat,
243 			struct mem_cgroup *memcg)
244 {
245 	return false;
246 
247 }
248 #endif
249 
250 /*
251  * This misses isolated pages which are not accounted for to save counters.
252  * As the data only determines if reclaim or compaction continues, it is
253  * not expected that isolated pages will be a dominating factor.
254  */
255 unsigned long zone_reclaimable_pages(struct zone *zone)
256 {
257 	unsigned long nr;
258 
259 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
260 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
261 	if (get_nr_swap_pages() > 0)
262 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
263 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
264 
265 	return nr;
266 }
267 
268 /**
269  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
270  * @lruvec: lru vector
271  * @lru: lru to use
272  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
273  */
274 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
275 {
276 	unsigned long lru_size;
277 	int zid;
278 
279 	if (!mem_cgroup_disabled())
280 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
281 	else
282 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
283 
284 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
285 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
286 		unsigned long size;
287 
288 		if (!managed_zone(zone))
289 			continue;
290 
291 		if (!mem_cgroup_disabled())
292 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
293 		else
294 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
295 				       NR_ZONE_LRU_BASE + lru);
296 		lru_size -= min(size, lru_size);
297 	}
298 
299 	return lru_size;
300 
301 }
302 
303 /*
304  * Add a shrinker callback to be called from the vm.
305  */
306 int prealloc_shrinker(struct shrinker *shrinker)
307 {
308 	size_t size = sizeof(*shrinker->nr_deferred);
309 
310 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
311 		size *= nr_node_ids;
312 
313 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
314 	if (!shrinker->nr_deferred)
315 		return -ENOMEM;
316 	return 0;
317 }
318 
319 void free_prealloced_shrinker(struct shrinker *shrinker)
320 {
321 	kfree(shrinker->nr_deferred);
322 	shrinker->nr_deferred = NULL;
323 }
324 
325 void register_shrinker_prepared(struct shrinker *shrinker)
326 {
327 	down_write(&shrinker_rwsem);
328 	list_add_tail(&shrinker->list, &shrinker_list);
329 	up_write(&shrinker_rwsem);
330 }
331 
332 int register_shrinker(struct shrinker *shrinker)
333 {
334 	int err = prealloc_shrinker(shrinker);
335 
336 	if (err)
337 		return err;
338 	register_shrinker_prepared(shrinker);
339 	return 0;
340 }
341 EXPORT_SYMBOL(register_shrinker);
342 
343 /*
344  * Remove one
345  */
346 void unregister_shrinker(struct shrinker *shrinker)
347 {
348 	if (!shrinker->nr_deferred)
349 		return;
350 	down_write(&shrinker_rwsem);
351 	list_del(&shrinker->list);
352 	up_write(&shrinker_rwsem);
353 	kfree(shrinker->nr_deferred);
354 	shrinker->nr_deferred = NULL;
355 }
356 EXPORT_SYMBOL(unregister_shrinker);
357 
358 #define SHRINK_BATCH 128
359 
360 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
361 				    struct shrinker *shrinker, int priority)
362 {
363 	unsigned long freed = 0;
364 	unsigned long long delta;
365 	long total_scan;
366 	long freeable;
367 	long nr;
368 	long new_nr;
369 	int nid = shrinkctl->nid;
370 	long batch_size = shrinker->batch ? shrinker->batch
371 					  : SHRINK_BATCH;
372 	long scanned = 0, next_deferred;
373 
374 	freeable = shrinker->count_objects(shrinker, shrinkctl);
375 	if (freeable == 0)
376 		return 0;
377 
378 	/*
379 	 * copy the current shrinker scan count into a local variable
380 	 * and zero it so that other concurrent shrinker invocations
381 	 * don't also do this scanning work.
382 	 */
383 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
384 
385 	total_scan = nr;
386 	delta = freeable >> priority;
387 	delta *= 4;
388 	do_div(delta, shrinker->seeks);
389 	total_scan += delta;
390 	if (total_scan < 0) {
391 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
392 		       shrinker->scan_objects, total_scan);
393 		total_scan = freeable;
394 		next_deferred = nr;
395 	} else
396 		next_deferred = total_scan;
397 
398 	/*
399 	 * We need to avoid excessive windup on filesystem shrinkers
400 	 * due to large numbers of GFP_NOFS allocations causing the
401 	 * shrinkers to return -1 all the time. This results in a large
402 	 * nr being built up so when a shrink that can do some work
403 	 * comes along it empties the entire cache due to nr >>>
404 	 * freeable. This is bad for sustaining a working set in
405 	 * memory.
406 	 *
407 	 * Hence only allow the shrinker to scan the entire cache when
408 	 * a large delta change is calculated directly.
409 	 */
410 	if (delta < freeable / 4)
411 		total_scan = min(total_scan, freeable / 2);
412 
413 	/*
414 	 * Avoid risking looping forever due to too large nr value:
415 	 * never try to free more than twice the estimate number of
416 	 * freeable entries.
417 	 */
418 	if (total_scan > freeable * 2)
419 		total_scan = freeable * 2;
420 
421 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
422 				   freeable, delta, total_scan, priority);
423 
424 	/*
425 	 * Normally, we should not scan less than batch_size objects in one
426 	 * pass to avoid too frequent shrinker calls, but if the slab has less
427 	 * than batch_size objects in total and we are really tight on memory,
428 	 * we will try to reclaim all available objects, otherwise we can end
429 	 * up failing allocations although there are plenty of reclaimable
430 	 * objects spread over several slabs with usage less than the
431 	 * batch_size.
432 	 *
433 	 * We detect the "tight on memory" situations by looking at the total
434 	 * number of objects we want to scan (total_scan). If it is greater
435 	 * than the total number of objects on slab (freeable), we must be
436 	 * scanning at high prio and therefore should try to reclaim as much as
437 	 * possible.
438 	 */
439 	while (total_scan >= batch_size ||
440 	       total_scan >= freeable) {
441 		unsigned long ret;
442 		unsigned long nr_to_scan = min(batch_size, total_scan);
443 
444 		shrinkctl->nr_to_scan = nr_to_scan;
445 		shrinkctl->nr_scanned = nr_to_scan;
446 		ret = shrinker->scan_objects(shrinker, shrinkctl);
447 		if (ret == SHRINK_STOP)
448 			break;
449 		freed += ret;
450 
451 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
452 		total_scan -= shrinkctl->nr_scanned;
453 		scanned += shrinkctl->nr_scanned;
454 
455 		cond_resched();
456 	}
457 
458 	if (next_deferred >= scanned)
459 		next_deferred -= scanned;
460 	else
461 		next_deferred = 0;
462 	/*
463 	 * move the unused scan count back into the shrinker in a
464 	 * manner that handles concurrent updates. If we exhausted the
465 	 * scan, there is no need to do an update.
466 	 */
467 	if (next_deferred > 0)
468 		new_nr = atomic_long_add_return(next_deferred,
469 						&shrinker->nr_deferred[nid]);
470 	else
471 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
472 
473 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
474 	return freed;
475 }
476 
477 /**
478  * shrink_slab - shrink slab caches
479  * @gfp_mask: allocation context
480  * @nid: node whose slab caches to target
481  * @memcg: memory cgroup whose slab caches to target
482  * @priority: the reclaim priority
483  *
484  * Call the shrink functions to age shrinkable caches.
485  *
486  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
487  * unaware shrinkers will receive a node id of 0 instead.
488  *
489  * @memcg specifies the memory cgroup to target. If it is not NULL,
490  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
491  * objects from the memory cgroup specified. Otherwise, only unaware
492  * shrinkers are called.
493  *
494  * @priority is sc->priority, we take the number of objects and >> by priority
495  * in order to get the scan target.
496  *
497  * Returns the number of reclaimed slab objects.
498  */
499 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
500 				 struct mem_cgroup *memcg,
501 				 int priority)
502 {
503 	struct shrinker *shrinker;
504 	unsigned long freed = 0;
505 
506 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
507 		return 0;
508 
509 	if (!down_read_trylock(&shrinker_rwsem))
510 		goto out;
511 
512 	list_for_each_entry(shrinker, &shrinker_list, list) {
513 		struct shrink_control sc = {
514 			.gfp_mask = gfp_mask,
515 			.nid = nid,
516 			.memcg = memcg,
517 		};
518 
519 		/*
520 		 * If kernel memory accounting is disabled, we ignore
521 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
522 		 * passing NULL for memcg.
523 		 */
524 		if (memcg_kmem_enabled() &&
525 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
526 			continue;
527 
528 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
529 			sc.nid = 0;
530 
531 		freed += do_shrink_slab(&sc, shrinker, priority);
532 		/*
533 		 * Bail out if someone want to register a new shrinker to
534 		 * prevent the regsitration from being stalled for long periods
535 		 * by parallel ongoing shrinking.
536 		 */
537 		if (rwsem_is_contended(&shrinker_rwsem)) {
538 			freed = freed ? : 1;
539 			break;
540 		}
541 	}
542 
543 	up_read(&shrinker_rwsem);
544 out:
545 	cond_resched();
546 	return freed;
547 }
548 
549 void drop_slab_node(int nid)
550 {
551 	unsigned long freed;
552 
553 	do {
554 		struct mem_cgroup *memcg = NULL;
555 
556 		freed = 0;
557 		do {
558 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
559 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
560 	} while (freed > 10);
561 }
562 
563 void drop_slab(void)
564 {
565 	int nid;
566 
567 	for_each_online_node(nid)
568 		drop_slab_node(nid);
569 }
570 
571 static inline int is_page_cache_freeable(struct page *page)
572 {
573 	/*
574 	 * A freeable page cache page is referenced only by the caller
575 	 * that isolated the page, the page cache radix tree and
576 	 * optional buffer heads at page->private.
577 	 */
578 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
579 		HPAGE_PMD_NR : 1;
580 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
581 }
582 
583 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
584 {
585 	if (current->flags & PF_SWAPWRITE)
586 		return 1;
587 	if (!inode_write_congested(inode))
588 		return 1;
589 	if (inode_to_bdi(inode) == current->backing_dev_info)
590 		return 1;
591 	return 0;
592 }
593 
594 /*
595  * We detected a synchronous write error writing a page out.  Probably
596  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
597  * fsync(), msync() or close().
598  *
599  * The tricky part is that after writepage we cannot touch the mapping: nothing
600  * prevents it from being freed up.  But we have a ref on the page and once
601  * that page is locked, the mapping is pinned.
602  *
603  * We're allowed to run sleeping lock_page() here because we know the caller has
604  * __GFP_FS.
605  */
606 static void handle_write_error(struct address_space *mapping,
607 				struct page *page, int error)
608 {
609 	lock_page(page);
610 	if (page_mapping(page) == mapping)
611 		mapping_set_error(mapping, error);
612 	unlock_page(page);
613 }
614 
615 /* possible outcome of pageout() */
616 typedef enum {
617 	/* failed to write page out, page is locked */
618 	PAGE_KEEP,
619 	/* move page to the active list, page is locked */
620 	PAGE_ACTIVATE,
621 	/* page has been sent to the disk successfully, page is unlocked */
622 	PAGE_SUCCESS,
623 	/* page is clean and locked */
624 	PAGE_CLEAN,
625 } pageout_t;
626 
627 /*
628  * pageout is called by shrink_page_list() for each dirty page.
629  * Calls ->writepage().
630  */
631 static pageout_t pageout(struct page *page, struct address_space *mapping,
632 			 struct scan_control *sc)
633 {
634 	/*
635 	 * If the page is dirty, only perform writeback if that write
636 	 * will be non-blocking.  To prevent this allocation from being
637 	 * stalled by pagecache activity.  But note that there may be
638 	 * stalls if we need to run get_block().  We could test
639 	 * PagePrivate for that.
640 	 *
641 	 * If this process is currently in __generic_file_write_iter() against
642 	 * this page's queue, we can perform writeback even if that
643 	 * will block.
644 	 *
645 	 * If the page is swapcache, write it back even if that would
646 	 * block, for some throttling. This happens by accident, because
647 	 * swap_backing_dev_info is bust: it doesn't reflect the
648 	 * congestion state of the swapdevs.  Easy to fix, if needed.
649 	 */
650 	if (!is_page_cache_freeable(page))
651 		return PAGE_KEEP;
652 	if (!mapping) {
653 		/*
654 		 * Some data journaling orphaned pages can have
655 		 * page->mapping == NULL while being dirty with clean buffers.
656 		 */
657 		if (page_has_private(page)) {
658 			if (try_to_free_buffers(page)) {
659 				ClearPageDirty(page);
660 				pr_info("%s: orphaned page\n", __func__);
661 				return PAGE_CLEAN;
662 			}
663 		}
664 		return PAGE_KEEP;
665 	}
666 	if (mapping->a_ops->writepage == NULL)
667 		return PAGE_ACTIVATE;
668 	if (!may_write_to_inode(mapping->host, sc))
669 		return PAGE_KEEP;
670 
671 	if (clear_page_dirty_for_io(page)) {
672 		int res;
673 		struct writeback_control wbc = {
674 			.sync_mode = WB_SYNC_NONE,
675 			.nr_to_write = SWAP_CLUSTER_MAX,
676 			.range_start = 0,
677 			.range_end = LLONG_MAX,
678 			.for_reclaim = 1,
679 		};
680 
681 		SetPageReclaim(page);
682 		res = mapping->a_ops->writepage(page, &wbc);
683 		if (res < 0)
684 			handle_write_error(mapping, page, res);
685 		if (res == AOP_WRITEPAGE_ACTIVATE) {
686 			ClearPageReclaim(page);
687 			return PAGE_ACTIVATE;
688 		}
689 
690 		if (!PageWriteback(page)) {
691 			/* synchronous write or broken a_ops? */
692 			ClearPageReclaim(page);
693 		}
694 		trace_mm_vmscan_writepage(page);
695 		inc_node_page_state(page, NR_VMSCAN_WRITE);
696 		return PAGE_SUCCESS;
697 	}
698 
699 	return PAGE_CLEAN;
700 }
701 
702 /*
703  * Same as remove_mapping, but if the page is removed from the mapping, it
704  * gets returned with a refcount of 0.
705  */
706 static int __remove_mapping(struct address_space *mapping, struct page *page,
707 			    bool reclaimed)
708 {
709 	unsigned long flags;
710 	int refcount;
711 
712 	BUG_ON(!PageLocked(page));
713 	BUG_ON(mapping != page_mapping(page));
714 
715 	xa_lock_irqsave(&mapping->i_pages, flags);
716 	/*
717 	 * The non racy check for a busy page.
718 	 *
719 	 * Must be careful with the order of the tests. When someone has
720 	 * a ref to the page, it may be possible that they dirty it then
721 	 * drop the reference. So if PageDirty is tested before page_count
722 	 * here, then the following race may occur:
723 	 *
724 	 * get_user_pages(&page);
725 	 * [user mapping goes away]
726 	 * write_to(page);
727 	 *				!PageDirty(page)    [good]
728 	 * SetPageDirty(page);
729 	 * put_page(page);
730 	 *				!page_count(page)   [good, discard it]
731 	 *
732 	 * [oops, our write_to data is lost]
733 	 *
734 	 * Reversing the order of the tests ensures such a situation cannot
735 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
736 	 * load is not satisfied before that of page->_refcount.
737 	 *
738 	 * Note that if SetPageDirty is always performed via set_page_dirty,
739 	 * and thus under the i_pages lock, then this ordering is not required.
740 	 */
741 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
742 		refcount = 1 + HPAGE_PMD_NR;
743 	else
744 		refcount = 2;
745 	if (!page_ref_freeze(page, refcount))
746 		goto cannot_free;
747 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
748 	if (unlikely(PageDirty(page))) {
749 		page_ref_unfreeze(page, refcount);
750 		goto cannot_free;
751 	}
752 
753 	if (PageSwapCache(page)) {
754 		swp_entry_t swap = { .val = page_private(page) };
755 		mem_cgroup_swapout(page, swap);
756 		__delete_from_swap_cache(page);
757 		xa_unlock_irqrestore(&mapping->i_pages, flags);
758 		put_swap_page(page, swap);
759 	} else {
760 		void (*freepage)(struct page *);
761 		void *shadow = NULL;
762 
763 		freepage = mapping->a_ops->freepage;
764 		/*
765 		 * Remember a shadow entry for reclaimed file cache in
766 		 * order to detect refaults, thus thrashing, later on.
767 		 *
768 		 * But don't store shadows in an address space that is
769 		 * already exiting.  This is not just an optizimation,
770 		 * inode reclaim needs to empty out the radix tree or
771 		 * the nodes are lost.  Don't plant shadows behind its
772 		 * back.
773 		 *
774 		 * We also don't store shadows for DAX mappings because the
775 		 * only page cache pages found in these are zero pages
776 		 * covering holes, and because we don't want to mix DAX
777 		 * exceptional entries and shadow exceptional entries in the
778 		 * same address_space.
779 		 */
780 		if (reclaimed && page_is_file_cache(page) &&
781 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
782 			shadow = workingset_eviction(mapping, page);
783 		__delete_from_page_cache(page, shadow);
784 		xa_unlock_irqrestore(&mapping->i_pages, flags);
785 
786 		if (freepage != NULL)
787 			freepage(page);
788 	}
789 
790 	return 1;
791 
792 cannot_free:
793 	xa_unlock_irqrestore(&mapping->i_pages, flags);
794 	return 0;
795 }
796 
797 /*
798  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
799  * someone else has a ref on the page, abort and return 0.  If it was
800  * successfully detached, return 1.  Assumes the caller has a single ref on
801  * this page.
802  */
803 int remove_mapping(struct address_space *mapping, struct page *page)
804 {
805 	if (__remove_mapping(mapping, page, false)) {
806 		/*
807 		 * Unfreezing the refcount with 1 rather than 2 effectively
808 		 * drops the pagecache ref for us without requiring another
809 		 * atomic operation.
810 		 */
811 		page_ref_unfreeze(page, 1);
812 		return 1;
813 	}
814 	return 0;
815 }
816 
817 /**
818  * putback_lru_page - put previously isolated page onto appropriate LRU list
819  * @page: page to be put back to appropriate lru list
820  *
821  * Add previously isolated @page to appropriate LRU list.
822  * Page may still be unevictable for other reasons.
823  *
824  * lru_lock must not be held, interrupts must be enabled.
825  */
826 void putback_lru_page(struct page *page)
827 {
828 	lru_cache_add(page);
829 	put_page(page);		/* drop ref from isolate */
830 }
831 
832 enum page_references {
833 	PAGEREF_RECLAIM,
834 	PAGEREF_RECLAIM_CLEAN,
835 	PAGEREF_KEEP,
836 	PAGEREF_ACTIVATE,
837 };
838 
839 static enum page_references page_check_references(struct page *page,
840 						  struct scan_control *sc)
841 {
842 	int referenced_ptes, referenced_page;
843 	unsigned long vm_flags;
844 
845 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
846 					  &vm_flags);
847 	referenced_page = TestClearPageReferenced(page);
848 
849 	/*
850 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
851 	 * move the page to the unevictable list.
852 	 */
853 	if (vm_flags & VM_LOCKED)
854 		return PAGEREF_RECLAIM;
855 
856 	if (referenced_ptes) {
857 		if (PageSwapBacked(page))
858 			return PAGEREF_ACTIVATE;
859 		/*
860 		 * All mapped pages start out with page table
861 		 * references from the instantiating fault, so we need
862 		 * to look twice if a mapped file page is used more
863 		 * than once.
864 		 *
865 		 * Mark it and spare it for another trip around the
866 		 * inactive list.  Another page table reference will
867 		 * lead to its activation.
868 		 *
869 		 * Note: the mark is set for activated pages as well
870 		 * so that recently deactivated but used pages are
871 		 * quickly recovered.
872 		 */
873 		SetPageReferenced(page);
874 
875 		if (referenced_page || referenced_ptes > 1)
876 			return PAGEREF_ACTIVATE;
877 
878 		/*
879 		 * Activate file-backed executable pages after first usage.
880 		 */
881 		if (vm_flags & VM_EXEC)
882 			return PAGEREF_ACTIVATE;
883 
884 		return PAGEREF_KEEP;
885 	}
886 
887 	/* Reclaim if clean, defer dirty pages to writeback */
888 	if (referenced_page && !PageSwapBacked(page))
889 		return PAGEREF_RECLAIM_CLEAN;
890 
891 	return PAGEREF_RECLAIM;
892 }
893 
894 /* Check if a page is dirty or under writeback */
895 static void page_check_dirty_writeback(struct page *page,
896 				       bool *dirty, bool *writeback)
897 {
898 	struct address_space *mapping;
899 
900 	/*
901 	 * Anonymous pages are not handled by flushers and must be written
902 	 * from reclaim context. Do not stall reclaim based on them
903 	 */
904 	if (!page_is_file_cache(page) ||
905 	    (PageAnon(page) && !PageSwapBacked(page))) {
906 		*dirty = false;
907 		*writeback = false;
908 		return;
909 	}
910 
911 	/* By default assume that the page flags are accurate */
912 	*dirty = PageDirty(page);
913 	*writeback = PageWriteback(page);
914 
915 	/* Verify dirty/writeback state if the filesystem supports it */
916 	if (!page_has_private(page))
917 		return;
918 
919 	mapping = page_mapping(page);
920 	if (mapping && mapping->a_ops->is_dirty_writeback)
921 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
922 }
923 
924 /*
925  * shrink_page_list() returns the number of reclaimed pages
926  */
927 static unsigned long shrink_page_list(struct list_head *page_list,
928 				      struct pglist_data *pgdat,
929 				      struct scan_control *sc,
930 				      enum ttu_flags ttu_flags,
931 				      struct reclaim_stat *stat,
932 				      bool force_reclaim)
933 {
934 	LIST_HEAD(ret_pages);
935 	LIST_HEAD(free_pages);
936 	int pgactivate = 0;
937 	unsigned nr_unqueued_dirty = 0;
938 	unsigned nr_dirty = 0;
939 	unsigned nr_congested = 0;
940 	unsigned nr_reclaimed = 0;
941 	unsigned nr_writeback = 0;
942 	unsigned nr_immediate = 0;
943 	unsigned nr_ref_keep = 0;
944 	unsigned nr_unmap_fail = 0;
945 
946 	cond_resched();
947 
948 	while (!list_empty(page_list)) {
949 		struct address_space *mapping;
950 		struct page *page;
951 		int may_enter_fs;
952 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
953 		bool dirty, writeback;
954 
955 		cond_resched();
956 
957 		page = lru_to_page(page_list);
958 		list_del(&page->lru);
959 
960 		if (!trylock_page(page))
961 			goto keep;
962 
963 		VM_BUG_ON_PAGE(PageActive(page), page);
964 
965 		sc->nr_scanned++;
966 
967 		if (unlikely(!page_evictable(page)))
968 			goto activate_locked;
969 
970 		if (!sc->may_unmap && page_mapped(page))
971 			goto keep_locked;
972 
973 		/* Double the slab pressure for mapped and swapcache pages */
974 		if ((page_mapped(page) || PageSwapCache(page)) &&
975 		    !(PageAnon(page) && !PageSwapBacked(page)))
976 			sc->nr_scanned++;
977 
978 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
979 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
980 
981 		/*
982 		 * The number of dirty pages determines if a node is marked
983 		 * reclaim_congested which affects wait_iff_congested. kswapd
984 		 * will stall and start writing pages if the tail of the LRU
985 		 * is all dirty unqueued pages.
986 		 */
987 		page_check_dirty_writeback(page, &dirty, &writeback);
988 		if (dirty || writeback)
989 			nr_dirty++;
990 
991 		if (dirty && !writeback)
992 			nr_unqueued_dirty++;
993 
994 		/*
995 		 * Treat this page as congested if the underlying BDI is or if
996 		 * pages are cycling through the LRU so quickly that the
997 		 * pages marked for immediate reclaim are making it to the
998 		 * end of the LRU a second time.
999 		 */
1000 		mapping = page_mapping(page);
1001 		if (((dirty || writeback) && mapping &&
1002 		     inode_write_congested(mapping->host)) ||
1003 		    (writeback && PageReclaim(page)))
1004 			nr_congested++;
1005 
1006 		/*
1007 		 * If a page at the tail of the LRU is under writeback, there
1008 		 * are three cases to consider.
1009 		 *
1010 		 * 1) If reclaim is encountering an excessive number of pages
1011 		 *    under writeback and this page is both under writeback and
1012 		 *    PageReclaim then it indicates that pages are being queued
1013 		 *    for IO but are being recycled through the LRU before the
1014 		 *    IO can complete. Waiting on the page itself risks an
1015 		 *    indefinite stall if it is impossible to writeback the
1016 		 *    page due to IO error or disconnected storage so instead
1017 		 *    note that the LRU is being scanned too quickly and the
1018 		 *    caller can stall after page list has been processed.
1019 		 *
1020 		 * 2) Global or new memcg reclaim encounters a page that is
1021 		 *    not marked for immediate reclaim, or the caller does not
1022 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1023 		 *    not to fs). In this case mark the page for immediate
1024 		 *    reclaim and continue scanning.
1025 		 *
1026 		 *    Require may_enter_fs because we would wait on fs, which
1027 		 *    may not have submitted IO yet. And the loop driver might
1028 		 *    enter reclaim, and deadlock if it waits on a page for
1029 		 *    which it is needed to do the write (loop masks off
1030 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1031 		 *    would probably show more reasons.
1032 		 *
1033 		 * 3) Legacy memcg encounters a page that is already marked
1034 		 *    PageReclaim. memcg does not have any dirty pages
1035 		 *    throttling so we could easily OOM just because too many
1036 		 *    pages are in writeback and there is nothing else to
1037 		 *    reclaim. Wait for the writeback to complete.
1038 		 *
1039 		 * In cases 1) and 2) we activate the pages to get them out of
1040 		 * the way while we continue scanning for clean pages on the
1041 		 * inactive list and refilling from the active list. The
1042 		 * observation here is that waiting for disk writes is more
1043 		 * expensive than potentially causing reloads down the line.
1044 		 * Since they're marked for immediate reclaim, they won't put
1045 		 * memory pressure on the cache working set any longer than it
1046 		 * takes to write them to disk.
1047 		 */
1048 		if (PageWriteback(page)) {
1049 			/* Case 1 above */
1050 			if (current_is_kswapd() &&
1051 			    PageReclaim(page) &&
1052 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1053 				nr_immediate++;
1054 				goto activate_locked;
1055 
1056 			/* Case 2 above */
1057 			} else if (sane_reclaim(sc) ||
1058 			    !PageReclaim(page) || !may_enter_fs) {
1059 				/*
1060 				 * This is slightly racy - end_page_writeback()
1061 				 * might have just cleared PageReclaim, then
1062 				 * setting PageReclaim here end up interpreted
1063 				 * as PageReadahead - but that does not matter
1064 				 * enough to care.  What we do want is for this
1065 				 * page to have PageReclaim set next time memcg
1066 				 * reclaim reaches the tests above, so it will
1067 				 * then wait_on_page_writeback() to avoid OOM;
1068 				 * and it's also appropriate in global reclaim.
1069 				 */
1070 				SetPageReclaim(page);
1071 				nr_writeback++;
1072 				goto activate_locked;
1073 
1074 			/* Case 3 above */
1075 			} else {
1076 				unlock_page(page);
1077 				wait_on_page_writeback(page);
1078 				/* then go back and try same page again */
1079 				list_add_tail(&page->lru, page_list);
1080 				continue;
1081 			}
1082 		}
1083 
1084 		if (!force_reclaim)
1085 			references = page_check_references(page, sc);
1086 
1087 		switch (references) {
1088 		case PAGEREF_ACTIVATE:
1089 			goto activate_locked;
1090 		case PAGEREF_KEEP:
1091 			nr_ref_keep++;
1092 			goto keep_locked;
1093 		case PAGEREF_RECLAIM:
1094 		case PAGEREF_RECLAIM_CLEAN:
1095 			; /* try to reclaim the page below */
1096 		}
1097 
1098 		/*
1099 		 * Anonymous process memory has backing store?
1100 		 * Try to allocate it some swap space here.
1101 		 * Lazyfree page could be freed directly
1102 		 */
1103 		if (PageAnon(page) && PageSwapBacked(page)) {
1104 			if (!PageSwapCache(page)) {
1105 				if (!(sc->gfp_mask & __GFP_IO))
1106 					goto keep_locked;
1107 				if (PageTransHuge(page)) {
1108 					/* cannot split THP, skip it */
1109 					if (!can_split_huge_page(page, NULL))
1110 						goto activate_locked;
1111 					/*
1112 					 * Split pages without a PMD map right
1113 					 * away. Chances are some or all of the
1114 					 * tail pages can be freed without IO.
1115 					 */
1116 					if (!compound_mapcount(page) &&
1117 					    split_huge_page_to_list(page,
1118 								    page_list))
1119 						goto activate_locked;
1120 				}
1121 				if (!add_to_swap(page)) {
1122 					if (!PageTransHuge(page))
1123 						goto activate_locked;
1124 					/* Fallback to swap normal pages */
1125 					if (split_huge_page_to_list(page,
1126 								    page_list))
1127 						goto activate_locked;
1128 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1129 					count_vm_event(THP_SWPOUT_FALLBACK);
1130 #endif
1131 					if (!add_to_swap(page))
1132 						goto activate_locked;
1133 				}
1134 
1135 				may_enter_fs = 1;
1136 
1137 				/* Adding to swap updated mapping */
1138 				mapping = page_mapping(page);
1139 			}
1140 		} else if (unlikely(PageTransHuge(page))) {
1141 			/* Split file THP */
1142 			if (split_huge_page_to_list(page, page_list))
1143 				goto keep_locked;
1144 		}
1145 
1146 		/*
1147 		 * The page is mapped into the page tables of one or more
1148 		 * processes. Try to unmap it here.
1149 		 */
1150 		if (page_mapped(page)) {
1151 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1152 
1153 			if (unlikely(PageTransHuge(page)))
1154 				flags |= TTU_SPLIT_HUGE_PMD;
1155 			if (!try_to_unmap(page, flags)) {
1156 				nr_unmap_fail++;
1157 				goto activate_locked;
1158 			}
1159 		}
1160 
1161 		if (PageDirty(page)) {
1162 			/*
1163 			 * Only kswapd can writeback filesystem pages
1164 			 * to avoid risk of stack overflow. But avoid
1165 			 * injecting inefficient single-page IO into
1166 			 * flusher writeback as much as possible: only
1167 			 * write pages when we've encountered many
1168 			 * dirty pages, and when we've already scanned
1169 			 * the rest of the LRU for clean pages and see
1170 			 * the same dirty pages again (PageReclaim).
1171 			 */
1172 			if (page_is_file_cache(page) &&
1173 			    (!current_is_kswapd() || !PageReclaim(page) ||
1174 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175 				/*
1176 				 * Immediately reclaim when written back.
1177 				 * Similar in principal to deactivate_page()
1178 				 * except we already have the page isolated
1179 				 * and know it's dirty
1180 				 */
1181 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1182 				SetPageReclaim(page);
1183 
1184 				goto activate_locked;
1185 			}
1186 
1187 			if (references == PAGEREF_RECLAIM_CLEAN)
1188 				goto keep_locked;
1189 			if (!may_enter_fs)
1190 				goto keep_locked;
1191 			if (!sc->may_writepage)
1192 				goto keep_locked;
1193 
1194 			/*
1195 			 * Page is dirty. Flush the TLB if a writable entry
1196 			 * potentially exists to avoid CPU writes after IO
1197 			 * starts and then write it out here.
1198 			 */
1199 			try_to_unmap_flush_dirty();
1200 			switch (pageout(page, mapping, sc)) {
1201 			case PAGE_KEEP:
1202 				goto keep_locked;
1203 			case PAGE_ACTIVATE:
1204 				goto activate_locked;
1205 			case PAGE_SUCCESS:
1206 				if (PageWriteback(page))
1207 					goto keep;
1208 				if (PageDirty(page))
1209 					goto keep;
1210 
1211 				/*
1212 				 * A synchronous write - probably a ramdisk.  Go
1213 				 * ahead and try to reclaim the page.
1214 				 */
1215 				if (!trylock_page(page))
1216 					goto keep;
1217 				if (PageDirty(page) || PageWriteback(page))
1218 					goto keep_locked;
1219 				mapping = page_mapping(page);
1220 			case PAGE_CLEAN:
1221 				; /* try to free the page below */
1222 			}
1223 		}
1224 
1225 		/*
1226 		 * If the page has buffers, try to free the buffer mappings
1227 		 * associated with this page. If we succeed we try to free
1228 		 * the page as well.
1229 		 *
1230 		 * We do this even if the page is PageDirty().
1231 		 * try_to_release_page() does not perform I/O, but it is
1232 		 * possible for a page to have PageDirty set, but it is actually
1233 		 * clean (all its buffers are clean).  This happens if the
1234 		 * buffers were written out directly, with submit_bh(). ext3
1235 		 * will do this, as well as the blockdev mapping.
1236 		 * try_to_release_page() will discover that cleanness and will
1237 		 * drop the buffers and mark the page clean - it can be freed.
1238 		 *
1239 		 * Rarely, pages can have buffers and no ->mapping.  These are
1240 		 * the pages which were not successfully invalidated in
1241 		 * truncate_complete_page().  We try to drop those buffers here
1242 		 * and if that worked, and the page is no longer mapped into
1243 		 * process address space (page_count == 1) it can be freed.
1244 		 * Otherwise, leave the page on the LRU so it is swappable.
1245 		 */
1246 		if (page_has_private(page)) {
1247 			if (!try_to_release_page(page, sc->gfp_mask))
1248 				goto activate_locked;
1249 			if (!mapping && page_count(page) == 1) {
1250 				unlock_page(page);
1251 				if (put_page_testzero(page))
1252 					goto free_it;
1253 				else {
1254 					/*
1255 					 * rare race with speculative reference.
1256 					 * the speculative reference will free
1257 					 * this page shortly, so we may
1258 					 * increment nr_reclaimed here (and
1259 					 * leave it off the LRU).
1260 					 */
1261 					nr_reclaimed++;
1262 					continue;
1263 				}
1264 			}
1265 		}
1266 
1267 		if (PageAnon(page) && !PageSwapBacked(page)) {
1268 			/* follow __remove_mapping for reference */
1269 			if (!page_ref_freeze(page, 1))
1270 				goto keep_locked;
1271 			if (PageDirty(page)) {
1272 				page_ref_unfreeze(page, 1);
1273 				goto keep_locked;
1274 			}
1275 
1276 			count_vm_event(PGLAZYFREED);
1277 			count_memcg_page_event(page, PGLAZYFREED);
1278 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1279 			goto keep_locked;
1280 		/*
1281 		 * At this point, we have no other references and there is
1282 		 * no way to pick any more up (removed from LRU, removed
1283 		 * from pagecache). Can use non-atomic bitops now (and
1284 		 * we obviously don't have to worry about waking up a process
1285 		 * waiting on the page lock, because there are no references.
1286 		 */
1287 		__ClearPageLocked(page);
1288 free_it:
1289 		nr_reclaimed++;
1290 
1291 		/*
1292 		 * Is there need to periodically free_page_list? It would
1293 		 * appear not as the counts should be low
1294 		 */
1295 		if (unlikely(PageTransHuge(page))) {
1296 			mem_cgroup_uncharge(page);
1297 			(*get_compound_page_dtor(page))(page);
1298 		} else
1299 			list_add(&page->lru, &free_pages);
1300 		continue;
1301 
1302 activate_locked:
1303 		/* Not a candidate for swapping, so reclaim swap space. */
1304 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1305 						PageMlocked(page)))
1306 			try_to_free_swap(page);
1307 		VM_BUG_ON_PAGE(PageActive(page), page);
1308 		if (!PageMlocked(page)) {
1309 			SetPageActive(page);
1310 			pgactivate++;
1311 			count_memcg_page_event(page, PGACTIVATE);
1312 		}
1313 keep_locked:
1314 		unlock_page(page);
1315 keep:
1316 		list_add(&page->lru, &ret_pages);
1317 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1318 	}
1319 
1320 	mem_cgroup_uncharge_list(&free_pages);
1321 	try_to_unmap_flush();
1322 	free_unref_page_list(&free_pages);
1323 
1324 	list_splice(&ret_pages, page_list);
1325 	count_vm_events(PGACTIVATE, pgactivate);
1326 
1327 	if (stat) {
1328 		stat->nr_dirty = nr_dirty;
1329 		stat->nr_congested = nr_congested;
1330 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1331 		stat->nr_writeback = nr_writeback;
1332 		stat->nr_immediate = nr_immediate;
1333 		stat->nr_activate = pgactivate;
1334 		stat->nr_ref_keep = nr_ref_keep;
1335 		stat->nr_unmap_fail = nr_unmap_fail;
1336 	}
1337 	return nr_reclaimed;
1338 }
1339 
1340 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1341 					    struct list_head *page_list)
1342 {
1343 	struct scan_control sc = {
1344 		.gfp_mask = GFP_KERNEL,
1345 		.priority = DEF_PRIORITY,
1346 		.may_unmap = 1,
1347 	};
1348 	unsigned long ret;
1349 	struct page *page, *next;
1350 	LIST_HEAD(clean_pages);
1351 
1352 	list_for_each_entry_safe(page, next, page_list, lru) {
1353 		if (page_is_file_cache(page) && !PageDirty(page) &&
1354 		    !__PageMovable(page)) {
1355 			ClearPageActive(page);
1356 			list_move(&page->lru, &clean_pages);
1357 		}
1358 	}
1359 
1360 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1361 			TTU_IGNORE_ACCESS, NULL, true);
1362 	list_splice(&clean_pages, page_list);
1363 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364 	return ret;
1365 }
1366 
1367 /*
1368  * Attempt to remove the specified page from its LRU.  Only take this page
1369  * if it is of the appropriate PageActive status.  Pages which are being
1370  * freed elsewhere are also ignored.
1371  *
1372  * page:	page to consider
1373  * mode:	one of the LRU isolation modes defined above
1374  *
1375  * returns 0 on success, -ve errno on failure.
1376  */
1377 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1378 {
1379 	int ret = -EINVAL;
1380 
1381 	/* Only take pages on the LRU. */
1382 	if (!PageLRU(page))
1383 		return ret;
1384 
1385 	/* Compaction should not handle unevictable pages but CMA can do so */
1386 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1387 		return ret;
1388 
1389 	ret = -EBUSY;
1390 
1391 	/*
1392 	 * To minimise LRU disruption, the caller can indicate that it only
1393 	 * wants to isolate pages it will be able to operate on without
1394 	 * blocking - clean pages for the most part.
1395 	 *
1396 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1397 	 * that it is possible to migrate without blocking
1398 	 */
1399 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1400 		/* All the caller can do on PageWriteback is block */
1401 		if (PageWriteback(page))
1402 			return ret;
1403 
1404 		if (PageDirty(page)) {
1405 			struct address_space *mapping;
1406 			bool migrate_dirty;
1407 
1408 			/*
1409 			 * Only pages without mappings or that have a
1410 			 * ->migratepage callback are possible to migrate
1411 			 * without blocking. However, we can be racing with
1412 			 * truncation so it's necessary to lock the page
1413 			 * to stabilise the mapping as truncation holds
1414 			 * the page lock until after the page is removed
1415 			 * from the page cache.
1416 			 */
1417 			if (!trylock_page(page))
1418 				return ret;
1419 
1420 			mapping = page_mapping(page);
1421 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1422 			unlock_page(page);
1423 			if (!migrate_dirty)
1424 				return ret;
1425 		}
1426 	}
1427 
1428 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1429 		return ret;
1430 
1431 	if (likely(get_page_unless_zero(page))) {
1432 		/*
1433 		 * Be careful not to clear PageLRU until after we're
1434 		 * sure the page is not being freed elsewhere -- the
1435 		 * page release code relies on it.
1436 		 */
1437 		ClearPageLRU(page);
1438 		ret = 0;
1439 	}
1440 
1441 	return ret;
1442 }
1443 
1444 
1445 /*
1446  * Update LRU sizes after isolating pages. The LRU size updates must
1447  * be complete before mem_cgroup_update_lru_size due to a santity check.
1448  */
1449 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1450 			enum lru_list lru, unsigned long *nr_zone_taken)
1451 {
1452 	int zid;
1453 
1454 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 		if (!nr_zone_taken[zid])
1456 			continue;
1457 
1458 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1459 #ifdef CONFIG_MEMCG
1460 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1461 #endif
1462 	}
1463 
1464 }
1465 
1466 /*
1467  * zone_lru_lock is heavily contended.  Some of the functions that
1468  * shrink the lists perform better by taking out a batch of pages
1469  * and working on them outside the LRU lock.
1470  *
1471  * For pagecache intensive workloads, this function is the hottest
1472  * spot in the kernel (apart from copy_*_user functions).
1473  *
1474  * Appropriate locks must be held before calling this function.
1475  *
1476  * @nr_to_scan:	The number of eligible pages to look through on the list.
1477  * @lruvec:	The LRU vector to pull pages from.
1478  * @dst:	The temp list to put pages on to.
1479  * @nr_scanned:	The number of pages that were scanned.
1480  * @sc:		The scan_control struct for this reclaim session
1481  * @mode:	One of the LRU isolation modes
1482  * @lru:	LRU list id for isolating
1483  *
1484  * returns how many pages were moved onto *@dst.
1485  */
1486 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1487 		struct lruvec *lruvec, struct list_head *dst,
1488 		unsigned long *nr_scanned, struct scan_control *sc,
1489 		isolate_mode_t mode, enum lru_list lru)
1490 {
1491 	struct list_head *src = &lruvec->lists[lru];
1492 	unsigned long nr_taken = 0;
1493 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1494 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1495 	unsigned long skipped = 0;
1496 	unsigned long scan, total_scan, nr_pages;
1497 	LIST_HEAD(pages_skipped);
1498 
1499 	scan = 0;
1500 	for (total_scan = 0;
1501 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1502 	     total_scan++) {
1503 		struct page *page;
1504 
1505 		page = lru_to_page(src);
1506 		prefetchw_prev_lru_page(page, src, flags);
1507 
1508 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1509 
1510 		if (page_zonenum(page) > sc->reclaim_idx) {
1511 			list_move(&page->lru, &pages_skipped);
1512 			nr_skipped[page_zonenum(page)]++;
1513 			continue;
1514 		}
1515 
1516 		/*
1517 		 * Do not count skipped pages because that makes the function
1518 		 * return with no isolated pages if the LRU mostly contains
1519 		 * ineligible pages.  This causes the VM to not reclaim any
1520 		 * pages, triggering a premature OOM.
1521 		 */
1522 		scan++;
1523 		switch (__isolate_lru_page(page, mode)) {
1524 		case 0:
1525 			nr_pages = hpage_nr_pages(page);
1526 			nr_taken += nr_pages;
1527 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1528 			list_move(&page->lru, dst);
1529 			break;
1530 
1531 		case -EBUSY:
1532 			/* else it is being freed elsewhere */
1533 			list_move(&page->lru, src);
1534 			continue;
1535 
1536 		default:
1537 			BUG();
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Splice any skipped pages to the start of the LRU list. Note that
1543 	 * this disrupts the LRU order when reclaiming for lower zones but
1544 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1545 	 * scanning would soon rescan the same pages to skip and put the
1546 	 * system at risk of premature OOM.
1547 	 */
1548 	if (!list_empty(&pages_skipped)) {
1549 		int zid;
1550 
1551 		list_splice(&pages_skipped, src);
1552 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1553 			if (!nr_skipped[zid])
1554 				continue;
1555 
1556 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1557 			skipped += nr_skipped[zid];
1558 		}
1559 	}
1560 	*nr_scanned = total_scan;
1561 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1562 				    total_scan, skipped, nr_taken, mode, lru);
1563 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1564 	return nr_taken;
1565 }
1566 
1567 /**
1568  * isolate_lru_page - tries to isolate a page from its LRU list
1569  * @page: page to isolate from its LRU list
1570  *
1571  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1572  * vmstat statistic corresponding to whatever LRU list the page was on.
1573  *
1574  * Returns 0 if the page was removed from an LRU list.
1575  * Returns -EBUSY if the page was not on an LRU list.
1576  *
1577  * The returned page will have PageLRU() cleared.  If it was found on
1578  * the active list, it will have PageActive set.  If it was found on
1579  * the unevictable list, it will have the PageUnevictable bit set. That flag
1580  * may need to be cleared by the caller before letting the page go.
1581  *
1582  * The vmstat statistic corresponding to the list on which the page was
1583  * found will be decremented.
1584  *
1585  * Restrictions:
1586  *
1587  * (1) Must be called with an elevated refcount on the page. This is a
1588  *     fundamentnal difference from isolate_lru_pages (which is called
1589  *     without a stable reference).
1590  * (2) the lru_lock must not be held.
1591  * (3) interrupts must be enabled.
1592  */
1593 int isolate_lru_page(struct page *page)
1594 {
1595 	int ret = -EBUSY;
1596 
1597 	VM_BUG_ON_PAGE(!page_count(page), page);
1598 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1599 
1600 	if (PageLRU(page)) {
1601 		struct zone *zone = page_zone(page);
1602 		struct lruvec *lruvec;
1603 
1604 		spin_lock_irq(zone_lru_lock(zone));
1605 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1606 		if (PageLRU(page)) {
1607 			int lru = page_lru(page);
1608 			get_page(page);
1609 			ClearPageLRU(page);
1610 			del_page_from_lru_list(page, lruvec, lru);
1611 			ret = 0;
1612 		}
1613 		spin_unlock_irq(zone_lru_lock(zone));
1614 	}
1615 	return ret;
1616 }
1617 
1618 /*
1619  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1620  * then get resheduled. When there are massive number of tasks doing page
1621  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1622  * the LRU list will go small and be scanned faster than necessary, leading to
1623  * unnecessary swapping, thrashing and OOM.
1624  */
1625 static int too_many_isolated(struct pglist_data *pgdat, int file,
1626 		struct scan_control *sc)
1627 {
1628 	unsigned long inactive, isolated;
1629 
1630 	if (current_is_kswapd())
1631 		return 0;
1632 
1633 	if (!sane_reclaim(sc))
1634 		return 0;
1635 
1636 	if (file) {
1637 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1638 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1639 	} else {
1640 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1641 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1642 	}
1643 
1644 	/*
1645 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1646 	 * won't get blocked by normal direct-reclaimers, forming a circular
1647 	 * deadlock.
1648 	 */
1649 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1650 		inactive >>= 3;
1651 
1652 	return isolated > inactive;
1653 }
1654 
1655 static noinline_for_stack void
1656 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1657 {
1658 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1659 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1660 	LIST_HEAD(pages_to_free);
1661 
1662 	/*
1663 	 * Put back any unfreeable pages.
1664 	 */
1665 	while (!list_empty(page_list)) {
1666 		struct page *page = lru_to_page(page_list);
1667 		int lru;
1668 
1669 		VM_BUG_ON_PAGE(PageLRU(page), page);
1670 		list_del(&page->lru);
1671 		if (unlikely(!page_evictable(page))) {
1672 			spin_unlock_irq(&pgdat->lru_lock);
1673 			putback_lru_page(page);
1674 			spin_lock_irq(&pgdat->lru_lock);
1675 			continue;
1676 		}
1677 
1678 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1679 
1680 		SetPageLRU(page);
1681 		lru = page_lru(page);
1682 		add_page_to_lru_list(page, lruvec, lru);
1683 
1684 		if (is_active_lru(lru)) {
1685 			int file = is_file_lru(lru);
1686 			int numpages = hpage_nr_pages(page);
1687 			reclaim_stat->recent_rotated[file] += numpages;
1688 		}
1689 		if (put_page_testzero(page)) {
1690 			__ClearPageLRU(page);
1691 			__ClearPageActive(page);
1692 			del_page_from_lru_list(page, lruvec, lru);
1693 
1694 			if (unlikely(PageCompound(page))) {
1695 				spin_unlock_irq(&pgdat->lru_lock);
1696 				mem_cgroup_uncharge(page);
1697 				(*get_compound_page_dtor(page))(page);
1698 				spin_lock_irq(&pgdat->lru_lock);
1699 			} else
1700 				list_add(&page->lru, &pages_to_free);
1701 		}
1702 	}
1703 
1704 	/*
1705 	 * To save our caller's stack, now use input list for pages to free.
1706 	 */
1707 	list_splice(&pages_to_free, page_list);
1708 }
1709 
1710 /*
1711  * If a kernel thread (such as nfsd for loop-back mounts) services
1712  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1713  * In that case we should only throttle if the backing device it is
1714  * writing to is congested.  In other cases it is safe to throttle.
1715  */
1716 static int current_may_throttle(void)
1717 {
1718 	return !(current->flags & PF_LESS_THROTTLE) ||
1719 		current->backing_dev_info == NULL ||
1720 		bdi_write_congested(current->backing_dev_info);
1721 }
1722 
1723 /*
1724  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1725  * of reclaimed pages
1726  */
1727 static noinline_for_stack unsigned long
1728 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1729 		     struct scan_control *sc, enum lru_list lru)
1730 {
1731 	LIST_HEAD(page_list);
1732 	unsigned long nr_scanned;
1733 	unsigned long nr_reclaimed = 0;
1734 	unsigned long nr_taken;
1735 	struct reclaim_stat stat = {};
1736 	isolate_mode_t isolate_mode = 0;
1737 	int file = is_file_lru(lru);
1738 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1739 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1740 	bool stalled = false;
1741 
1742 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1743 		if (stalled)
1744 			return 0;
1745 
1746 		/* wait a bit for the reclaimer. */
1747 		msleep(100);
1748 		stalled = true;
1749 
1750 		/* We are about to die and free our memory. Return now. */
1751 		if (fatal_signal_pending(current))
1752 			return SWAP_CLUSTER_MAX;
1753 	}
1754 
1755 	lru_add_drain();
1756 
1757 	if (!sc->may_unmap)
1758 		isolate_mode |= ISOLATE_UNMAPPED;
1759 
1760 	spin_lock_irq(&pgdat->lru_lock);
1761 
1762 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1763 				     &nr_scanned, sc, isolate_mode, lru);
1764 
1765 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1766 	reclaim_stat->recent_scanned[file] += nr_taken;
1767 
1768 	if (current_is_kswapd()) {
1769 		if (global_reclaim(sc))
1770 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1771 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1772 				   nr_scanned);
1773 	} else {
1774 		if (global_reclaim(sc))
1775 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1776 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1777 				   nr_scanned);
1778 	}
1779 	spin_unlock_irq(&pgdat->lru_lock);
1780 
1781 	if (nr_taken == 0)
1782 		return 0;
1783 
1784 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1785 				&stat, false);
1786 
1787 	spin_lock_irq(&pgdat->lru_lock);
1788 
1789 	if (current_is_kswapd()) {
1790 		if (global_reclaim(sc))
1791 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1792 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1793 				   nr_reclaimed);
1794 	} else {
1795 		if (global_reclaim(sc))
1796 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1797 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1798 				   nr_reclaimed);
1799 	}
1800 
1801 	putback_inactive_pages(lruvec, &page_list);
1802 
1803 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804 
1805 	spin_unlock_irq(&pgdat->lru_lock);
1806 
1807 	mem_cgroup_uncharge_list(&page_list);
1808 	free_unref_page_list(&page_list);
1809 
1810 	/*
1811 	 * If dirty pages are scanned that are not queued for IO, it
1812 	 * implies that flushers are not doing their job. This can
1813 	 * happen when memory pressure pushes dirty pages to the end of
1814 	 * the LRU before the dirty limits are breached and the dirty
1815 	 * data has expired. It can also happen when the proportion of
1816 	 * dirty pages grows not through writes but through memory
1817 	 * pressure reclaiming all the clean cache. And in some cases,
1818 	 * the flushers simply cannot keep up with the allocation
1819 	 * rate. Nudge the flusher threads in case they are asleep.
1820 	 */
1821 	if (stat.nr_unqueued_dirty == nr_taken)
1822 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1823 
1824 	sc->nr.dirty += stat.nr_dirty;
1825 	sc->nr.congested += stat.nr_congested;
1826 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1827 	sc->nr.writeback += stat.nr_writeback;
1828 	sc->nr.immediate += stat.nr_immediate;
1829 	sc->nr.taken += nr_taken;
1830 	if (file)
1831 		sc->nr.file_taken += nr_taken;
1832 
1833 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1834 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1835 	return nr_reclaimed;
1836 }
1837 
1838 /*
1839  * This moves pages from the active list to the inactive list.
1840  *
1841  * We move them the other way if the page is referenced by one or more
1842  * processes, from rmap.
1843  *
1844  * If the pages are mostly unmapped, the processing is fast and it is
1845  * appropriate to hold zone_lru_lock across the whole operation.  But if
1846  * the pages are mapped, the processing is slow (page_referenced()) so we
1847  * should drop zone_lru_lock around each page.  It's impossible to balance
1848  * this, so instead we remove the pages from the LRU while processing them.
1849  * It is safe to rely on PG_active against the non-LRU pages in here because
1850  * nobody will play with that bit on a non-LRU page.
1851  *
1852  * The downside is that we have to touch page->_refcount against each page.
1853  * But we had to alter page->flags anyway.
1854  *
1855  * Returns the number of pages moved to the given lru.
1856  */
1857 
1858 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1859 				     struct list_head *list,
1860 				     struct list_head *pages_to_free,
1861 				     enum lru_list lru)
1862 {
1863 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1864 	struct page *page;
1865 	int nr_pages;
1866 	int nr_moved = 0;
1867 
1868 	while (!list_empty(list)) {
1869 		page = lru_to_page(list);
1870 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1871 
1872 		VM_BUG_ON_PAGE(PageLRU(page), page);
1873 		SetPageLRU(page);
1874 
1875 		nr_pages = hpage_nr_pages(page);
1876 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1877 		list_move(&page->lru, &lruvec->lists[lru]);
1878 
1879 		if (put_page_testzero(page)) {
1880 			__ClearPageLRU(page);
1881 			__ClearPageActive(page);
1882 			del_page_from_lru_list(page, lruvec, lru);
1883 
1884 			if (unlikely(PageCompound(page))) {
1885 				spin_unlock_irq(&pgdat->lru_lock);
1886 				mem_cgroup_uncharge(page);
1887 				(*get_compound_page_dtor(page))(page);
1888 				spin_lock_irq(&pgdat->lru_lock);
1889 			} else
1890 				list_add(&page->lru, pages_to_free);
1891 		} else {
1892 			nr_moved += nr_pages;
1893 		}
1894 	}
1895 
1896 	if (!is_active_lru(lru)) {
1897 		__count_vm_events(PGDEACTIVATE, nr_moved);
1898 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1899 				   nr_moved);
1900 	}
1901 
1902 	return nr_moved;
1903 }
1904 
1905 static void shrink_active_list(unsigned long nr_to_scan,
1906 			       struct lruvec *lruvec,
1907 			       struct scan_control *sc,
1908 			       enum lru_list lru)
1909 {
1910 	unsigned long nr_taken;
1911 	unsigned long nr_scanned;
1912 	unsigned long vm_flags;
1913 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1914 	LIST_HEAD(l_active);
1915 	LIST_HEAD(l_inactive);
1916 	struct page *page;
1917 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1918 	unsigned nr_deactivate, nr_activate;
1919 	unsigned nr_rotated = 0;
1920 	isolate_mode_t isolate_mode = 0;
1921 	int file = is_file_lru(lru);
1922 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923 
1924 	lru_add_drain();
1925 
1926 	if (!sc->may_unmap)
1927 		isolate_mode |= ISOLATE_UNMAPPED;
1928 
1929 	spin_lock_irq(&pgdat->lru_lock);
1930 
1931 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1932 				     &nr_scanned, sc, isolate_mode, lru);
1933 
1934 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935 	reclaim_stat->recent_scanned[file] += nr_taken;
1936 
1937 	__count_vm_events(PGREFILL, nr_scanned);
1938 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1939 
1940 	spin_unlock_irq(&pgdat->lru_lock);
1941 
1942 	while (!list_empty(&l_hold)) {
1943 		cond_resched();
1944 		page = lru_to_page(&l_hold);
1945 		list_del(&page->lru);
1946 
1947 		if (unlikely(!page_evictable(page))) {
1948 			putback_lru_page(page);
1949 			continue;
1950 		}
1951 
1952 		if (unlikely(buffer_heads_over_limit)) {
1953 			if (page_has_private(page) && trylock_page(page)) {
1954 				if (page_has_private(page))
1955 					try_to_release_page(page, 0);
1956 				unlock_page(page);
1957 			}
1958 		}
1959 
1960 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1961 				    &vm_flags)) {
1962 			nr_rotated += hpage_nr_pages(page);
1963 			/*
1964 			 * Identify referenced, file-backed active pages and
1965 			 * give them one more trip around the active list. So
1966 			 * that executable code get better chances to stay in
1967 			 * memory under moderate memory pressure.  Anon pages
1968 			 * are not likely to be evicted by use-once streaming
1969 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1970 			 * so we ignore them here.
1971 			 */
1972 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973 				list_add(&page->lru, &l_active);
1974 				continue;
1975 			}
1976 		}
1977 
1978 		ClearPageActive(page);	/* we are de-activating */
1979 		list_add(&page->lru, &l_inactive);
1980 	}
1981 
1982 	/*
1983 	 * Move pages back to the lru list.
1984 	 */
1985 	spin_lock_irq(&pgdat->lru_lock);
1986 	/*
1987 	 * Count referenced pages from currently used mappings as rotated,
1988 	 * even though only some of them are actually re-activated.  This
1989 	 * helps balance scan pressure between file and anonymous pages in
1990 	 * get_scan_count.
1991 	 */
1992 	reclaim_stat->recent_rotated[file] += nr_rotated;
1993 
1994 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1995 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1996 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997 	spin_unlock_irq(&pgdat->lru_lock);
1998 
1999 	mem_cgroup_uncharge_list(&l_hold);
2000 	free_unref_page_list(&l_hold);
2001 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2002 			nr_deactivate, nr_rotated, sc->priority, file);
2003 }
2004 
2005 /*
2006  * The inactive anon list should be small enough that the VM never has
2007  * to do too much work.
2008  *
2009  * The inactive file list should be small enough to leave most memory
2010  * to the established workingset on the scan-resistant active list,
2011  * but large enough to avoid thrashing the aggregate readahead window.
2012  *
2013  * Both inactive lists should also be large enough that each inactive
2014  * page has a chance to be referenced again before it is reclaimed.
2015  *
2016  * If that fails and refaulting is observed, the inactive list grows.
2017  *
2018  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2019  * on this LRU, maintained by the pageout code. An inactive_ratio
2020  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2021  *
2022  * total     target    max
2023  * memory    ratio     inactive
2024  * -------------------------------------
2025  *   10MB       1         5MB
2026  *  100MB       1        50MB
2027  *    1GB       3       250MB
2028  *   10GB      10       0.9GB
2029  *  100GB      31         3GB
2030  *    1TB     101        10GB
2031  *   10TB     320        32GB
2032  */
2033 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2034 				 struct mem_cgroup *memcg,
2035 				 struct scan_control *sc, bool actual_reclaim)
2036 {
2037 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2039 	enum lru_list inactive_lru = file * LRU_FILE;
2040 	unsigned long inactive, active;
2041 	unsigned long inactive_ratio;
2042 	unsigned long refaults;
2043 	unsigned long gb;
2044 
2045 	/*
2046 	 * If we don't have swap space, anonymous page deactivation
2047 	 * is pointless.
2048 	 */
2049 	if (!file && !total_swap_pages)
2050 		return false;
2051 
2052 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2053 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2054 
2055 	if (memcg)
2056 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2057 	else
2058 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2059 
2060 	/*
2061 	 * When refaults are being observed, it means a new workingset
2062 	 * is being established. Disable active list protection to get
2063 	 * rid of the stale workingset quickly.
2064 	 */
2065 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2066 		inactive_ratio = 0;
2067 	} else {
2068 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2069 		if (gb)
2070 			inactive_ratio = int_sqrt(10 * gb);
2071 		else
2072 			inactive_ratio = 1;
2073 	}
2074 
2075 	if (actual_reclaim)
2076 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2077 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2078 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2079 			inactive_ratio, file);
2080 
2081 	return inactive * inactive_ratio < active;
2082 }
2083 
2084 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2086 				 struct scan_control *sc)
2087 {
2088 	if (is_active_lru(lru)) {
2089 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2090 					 memcg, sc, true))
2091 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092 		return 0;
2093 	}
2094 
2095 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096 }
2097 
2098 enum scan_balance {
2099 	SCAN_EQUAL,
2100 	SCAN_FRACT,
2101 	SCAN_ANON,
2102 	SCAN_FILE,
2103 };
2104 
2105 /*
2106  * Determine how aggressively the anon and file LRU lists should be
2107  * scanned.  The relative value of each set of LRU lists is determined
2108  * by looking at the fraction of the pages scanned we did rotate back
2109  * onto the active list instead of evict.
2110  *
2111  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113  */
2114 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115 			   struct scan_control *sc, unsigned long *nr,
2116 			   unsigned long *lru_pages)
2117 {
2118 	int swappiness = mem_cgroup_swappiness(memcg);
2119 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120 	u64 fraction[2];
2121 	u64 denominator = 0;	/* gcc */
2122 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123 	unsigned long anon_prio, file_prio;
2124 	enum scan_balance scan_balance;
2125 	unsigned long anon, file;
2126 	unsigned long ap, fp;
2127 	enum lru_list lru;
2128 
2129 	/* If we have no swap space, do not bother scanning anon pages. */
2130 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2131 		scan_balance = SCAN_FILE;
2132 		goto out;
2133 	}
2134 
2135 	/*
2136 	 * Global reclaim will swap to prevent OOM even with no
2137 	 * swappiness, but memcg users want to use this knob to
2138 	 * disable swapping for individual groups completely when
2139 	 * using the memory controller's swap limit feature would be
2140 	 * too expensive.
2141 	 */
2142 	if (!global_reclaim(sc) && !swappiness) {
2143 		scan_balance = SCAN_FILE;
2144 		goto out;
2145 	}
2146 
2147 	/*
2148 	 * Do not apply any pressure balancing cleverness when the
2149 	 * system is close to OOM, scan both anon and file equally
2150 	 * (unless the swappiness setting disagrees with swapping).
2151 	 */
2152 	if (!sc->priority && swappiness) {
2153 		scan_balance = SCAN_EQUAL;
2154 		goto out;
2155 	}
2156 
2157 	/*
2158 	 * Prevent the reclaimer from falling into the cache trap: as
2159 	 * cache pages start out inactive, every cache fault will tip
2160 	 * the scan balance towards the file LRU.  And as the file LRU
2161 	 * shrinks, so does the window for rotation from references.
2162 	 * This means we have a runaway feedback loop where a tiny
2163 	 * thrashing file LRU becomes infinitely more attractive than
2164 	 * anon pages.  Try to detect this based on file LRU size.
2165 	 */
2166 	if (global_reclaim(sc)) {
2167 		unsigned long pgdatfile;
2168 		unsigned long pgdatfree;
2169 		int z;
2170 		unsigned long total_high_wmark = 0;
2171 
2172 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2173 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2174 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2175 
2176 		for (z = 0; z < MAX_NR_ZONES; z++) {
2177 			struct zone *zone = &pgdat->node_zones[z];
2178 			if (!managed_zone(zone))
2179 				continue;
2180 
2181 			total_high_wmark += high_wmark_pages(zone);
2182 		}
2183 
2184 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2185 			/*
2186 			 * Force SCAN_ANON if there are enough inactive
2187 			 * anonymous pages on the LRU in eligible zones.
2188 			 * Otherwise, the small LRU gets thrashed.
2189 			 */
2190 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2191 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2192 					>> sc->priority) {
2193 				scan_balance = SCAN_ANON;
2194 				goto out;
2195 			}
2196 		}
2197 	}
2198 
2199 	/*
2200 	 * If there is enough inactive page cache, i.e. if the size of the
2201 	 * inactive list is greater than that of the active list *and* the
2202 	 * inactive list actually has some pages to scan on this priority, we
2203 	 * do not reclaim anything from the anonymous working set right now.
2204 	 * Without the second condition we could end up never scanning an
2205 	 * lruvec even if it has plenty of old anonymous pages unless the
2206 	 * system is under heavy pressure.
2207 	 */
2208 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2209 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2210 		scan_balance = SCAN_FILE;
2211 		goto out;
2212 	}
2213 
2214 	scan_balance = SCAN_FRACT;
2215 
2216 	/*
2217 	 * With swappiness at 100, anonymous and file have the same priority.
2218 	 * This scanning priority is essentially the inverse of IO cost.
2219 	 */
2220 	anon_prio = swappiness;
2221 	file_prio = 200 - anon_prio;
2222 
2223 	/*
2224 	 * OK, so we have swap space and a fair amount of page cache
2225 	 * pages.  We use the recently rotated / recently scanned
2226 	 * ratios to determine how valuable each cache is.
2227 	 *
2228 	 * Because workloads change over time (and to avoid overflow)
2229 	 * we keep these statistics as a floating average, which ends
2230 	 * up weighing recent references more than old ones.
2231 	 *
2232 	 * anon in [0], file in [1]
2233 	 */
2234 
2235 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2236 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2237 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2238 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239 
2240 	spin_lock_irq(&pgdat->lru_lock);
2241 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2242 		reclaim_stat->recent_scanned[0] /= 2;
2243 		reclaim_stat->recent_rotated[0] /= 2;
2244 	}
2245 
2246 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2247 		reclaim_stat->recent_scanned[1] /= 2;
2248 		reclaim_stat->recent_rotated[1] /= 2;
2249 	}
2250 
2251 	/*
2252 	 * The amount of pressure on anon vs file pages is inversely
2253 	 * proportional to the fraction of recently scanned pages on
2254 	 * each list that were recently referenced and in active use.
2255 	 */
2256 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2257 	ap /= reclaim_stat->recent_rotated[0] + 1;
2258 
2259 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2260 	fp /= reclaim_stat->recent_rotated[1] + 1;
2261 	spin_unlock_irq(&pgdat->lru_lock);
2262 
2263 	fraction[0] = ap;
2264 	fraction[1] = fp;
2265 	denominator = ap + fp + 1;
2266 out:
2267 	*lru_pages = 0;
2268 	for_each_evictable_lru(lru) {
2269 		int file = is_file_lru(lru);
2270 		unsigned long size;
2271 		unsigned long scan;
2272 
2273 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2274 		scan = size >> sc->priority;
2275 		/*
2276 		 * If the cgroup's already been deleted, make sure to
2277 		 * scrape out the remaining cache.
2278 		 */
2279 		if (!scan && !mem_cgroup_online(memcg))
2280 			scan = min(size, SWAP_CLUSTER_MAX);
2281 
2282 		switch (scan_balance) {
2283 		case SCAN_EQUAL:
2284 			/* Scan lists relative to size */
2285 			break;
2286 		case SCAN_FRACT:
2287 			/*
2288 			 * Scan types proportional to swappiness and
2289 			 * their relative recent reclaim efficiency.
2290 			 */
2291 			scan = div64_u64(scan * fraction[file],
2292 					 denominator);
2293 			break;
2294 		case SCAN_FILE:
2295 		case SCAN_ANON:
2296 			/* Scan one type exclusively */
2297 			if ((scan_balance == SCAN_FILE) != file) {
2298 				size = 0;
2299 				scan = 0;
2300 			}
2301 			break;
2302 		default:
2303 			/* Look ma, no brain */
2304 			BUG();
2305 		}
2306 
2307 		*lru_pages += size;
2308 		nr[lru] = scan;
2309 	}
2310 }
2311 
2312 /*
2313  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2314  */
2315 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2316 			      struct scan_control *sc, unsigned long *lru_pages)
2317 {
2318 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2319 	unsigned long nr[NR_LRU_LISTS];
2320 	unsigned long targets[NR_LRU_LISTS];
2321 	unsigned long nr_to_scan;
2322 	enum lru_list lru;
2323 	unsigned long nr_reclaimed = 0;
2324 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2325 	struct blk_plug plug;
2326 	bool scan_adjusted;
2327 
2328 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2329 
2330 	/* Record the original scan target for proportional adjustments later */
2331 	memcpy(targets, nr, sizeof(nr));
2332 
2333 	/*
2334 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2335 	 * event that can occur when there is little memory pressure e.g.
2336 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2337 	 * when the requested number of pages are reclaimed when scanning at
2338 	 * DEF_PRIORITY on the assumption that the fact we are direct
2339 	 * reclaiming implies that kswapd is not keeping up and it is best to
2340 	 * do a batch of work at once. For memcg reclaim one check is made to
2341 	 * abort proportional reclaim if either the file or anon lru has already
2342 	 * dropped to zero at the first pass.
2343 	 */
2344 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2345 			 sc->priority == DEF_PRIORITY);
2346 
2347 	blk_start_plug(&plug);
2348 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2349 					nr[LRU_INACTIVE_FILE]) {
2350 		unsigned long nr_anon, nr_file, percentage;
2351 		unsigned long nr_scanned;
2352 
2353 		for_each_evictable_lru(lru) {
2354 			if (nr[lru]) {
2355 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2356 				nr[lru] -= nr_to_scan;
2357 
2358 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2359 							    lruvec, memcg, sc);
2360 			}
2361 		}
2362 
2363 		cond_resched();
2364 
2365 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2366 			continue;
2367 
2368 		/*
2369 		 * For kswapd and memcg, reclaim at least the number of pages
2370 		 * requested. Ensure that the anon and file LRUs are scanned
2371 		 * proportionally what was requested by get_scan_count(). We
2372 		 * stop reclaiming one LRU and reduce the amount scanning
2373 		 * proportional to the original scan target.
2374 		 */
2375 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2376 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2377 
2378 		/*
2379 		 * It's just vindictive to attack the larger once the smaller
2380 		 * has gone to zero.  And given the way we stop scanning the
2381 		 * smaller below, this makes sure that we only make one nudge
2382 		 * towards proportionality once we've got nr_to_reclaim.
2383 		 */
2384 		if (!nr_file || !nr_anon)
2385 			break;
2386 
2387 		if (nr_file > nr_anon) {
2388 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2389 						targets[LRU_ACTIVE_ANON] + 1;
2390 			lru = LRU_BASE;
2391 			percentage = nr_anon * 100 / scan_target;
2392 		} else {
2393 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2394 						targets[LRU_ACTIVE_FILE] + 1;
2395 			lru = LRU_FILE;
2396 			percentage = nr_file * 100 / scan_target;
2397 		}
2398 
2399 		/* Stop scanning the smaller of the LRU */
2400 		nr[lru] = 0;
2401 		nr[lru + LRU_ACTIVE] = 0;
2402 
2403 		/*
2404 		 * Recalculate the other LRU scan count based on its original
2405 		 * scan target and the percentage scanning already complete
2406 		 */
2407 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2408 		nr_scanned = targets[lru] - nr[lru];
2409 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2410 		nr[lru] -= min(nr[lru], nr_scanned);
2411 
2412 		lru += LRU_ACTIVE;
2413 		nr_scanned = targets[lru] - nr[lru];
2414 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2415 		nr[lru] -= min(nr[lru], nr_scanned);
2416 
2417 		scan_adjusted = true;
2418 	}
2419 	blk_finish_plug(&plug);
2420 	sc->nr_reclaimed += nr_reclaimed;
2421 
2422 	/*
2423 	 * Even if we did not try to evict anon pages at all, we want to
2424 	 * rebalance the anon lru active/inactive ratio.
2425 	 */
2426 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2427 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2428 				   sc, LRU_ACTIVE_ANON);
2429 }
2430 
2431 /* Use reclaim/compaction for costly allocs or under memory pressure */
2432 static bool in_reclaim_compaction(struct scan_control *sc)
2433 {
2434 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2435 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2436 			 sc->priority < DEF_PRIORITY - 2))
2437 		return true;
2438 
2439 	return false;
2440 }
2441 
2442 /*
2443  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2444  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2445  * true if more pages should be reclaimed such that when the page allocator
2446  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2447  * It will give up earlier than that if there is difficulty reclaiming pages.
2448  */
2449 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2450 					unsigned long nr_reclaimed,
2451 					unsigned long nr_scanned,
2452 					struct scan_control *sc)
2453 {
2454 	unsigned long pages_for_compaction;
2455 	unsigned long inactive_lru_pages;
2456 	int z;
2457 
2458 	/* If not in reclaim/compaction mode, stop */
2459 	if (!in_reclaim_compaction(sc))
2460 		return false;
2461 
2462 	/* Consider stopping depending on scan and reclaim activity */
2463 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2464 		/*
2465 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2466 		 * full LRU list has been scanned and we are still failing
2467 		 * to reclaim pages. This full LRU scan is potentially
2468 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2469 		 */
2470 		if (!nr_reclaimed && !nr_scanned)
2471 			return false;
2472 	} else {
2473 		/*
2474 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2475 		 * fail without consequence, stop if we failed to reclaim
2476 		 * any pages from the last SWAP_CLUSTER_MAX number of
2477 		 * pages that were scanned. This will return to the
2478 		 * caller faster at the risk reclaim/compaction and
2479 		 * the resulting allocation attempt fails
2480 		 */
2481 		if (!nr_reclaimed)
2482 			return false;
2483 	}
2484 
2485 	/*
2486 	 * If we have not reclaimed enough pages for compaction and the
2487 	 * inactive lists are large enough, continue reclaiming
2488 	 */
2489 	pages_for_compaction = compact_gap(sc->order);
2490 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2491 	if (get_nr_swap_pages() > 0)
2492 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2493 	if (sc->nr_reclaimed < pages_for_compaction &&
2494 			inactive_lru_pages > pages_for_compaction)
2495 		return true;
2496 
2497 	/* If compaction would go ahead or the allocation would succeed, stop */
2498 	for (z = 0; z <= sc->reclaim_idx; z++) {
2499 		struct zone *zone = &pgdat->node_zones[z];
2500 		if (!managed_zone(zone))
2501 			continue;
2502 
2503 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2504 		case COMPACT_SUCCESS:
2505 		case COMPACT_CONTINUE:
2506 			return false;
2507 		default:
2508 			/* check next zone */
2509 			;
2510 		}
2511 	}
2512 	return true;
2513 }
2514 
2515 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2516 {
2517 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2518 		(memcg && memcg_congested(pgdat, memcg));
2519 }
2520 
2521 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2522 {
2523 	struct reclaim_state *reclaim_state = current->reclaim_state;
2524 	unsigned long nr_reclaimed, nr_scanned;
2525 	bool reclaimable = false;
2526 
2527 	do {
2528 		struct mem_cgroup *root = sc->target_mem_cgroup;
2529 		struct mem_cgroup_reclaim_cookie reclaim = {
2530 			.pgdat = pgdat,
2531 			.priority = sc->priority,
2532 		};
2533 		unsigned long node_lru_pages = 0;
2534 		struct mem_cgroup *memcg;
2535 
2536 		memset(&sc->nr, 0, sizeof(sc->nr));
2537 
2538 		nr_reclaimed = sc->nr_reclaimed;
2539 		nr_scanned = sc->nr_scanned;
2540 
2541 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2542 		do {
2543 			unsigned long lru_pages;
2544 			unsigned long reclaimed;
2545 			unsigned long scanned;
2546 
2547 			switch (mem_cgroup_protected(root, memcg)) {
2548 			case MEMCG_PROT_MIN:
2549 				/*
2550 				 * Hard protection.
2551 				 * If there is no reclaimable memory, OOM.
2552 				 */
2553 				continue;
2554 			case MEMCG_PROT_LOW:
2555 				/*
2556 				 * Soft protection.
2557 				 * Respect the protection only as long as
2558 				 * there is an unprotected supply
2559 				 * of reclaimable memory from other cgroups.
2560 				 */
2561 				if (!sc->memcg_low_reclaim) {
2562 					sc->memcg_low_skipped = 1;
2563 					continue;
2564 				}
2565 				memcg_memory_event(memcg, MEMCG_LOW);
2566 				break;
2567 			case MEMCG_PROT_NONE:
2568 				break;
2569 			}
2570 
2571 			reclaimed = sc->nr_reclaimed;
2572 			scanned = sc->nr_scanned;
2573 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2574 			node_lru_pages += lru_pages;
2575 
2576 			if (memcg)
2577 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2578 					    memcg, sc->priority);
2579 
2580 			/* Record the group's reclaim efficiency */
2581 			vmpressure(sc->gfp_mask, memcg, false,
2582 				   sc->nr_scanned - scanned,
2583 				   sc->nr_reclaimed - reclaimed);
2584 
2585 			/*
2586 			 * Direct reclaim and kswapd have to scan all memory
2587 			 * cgroups to fulfill the overall scan target for the
2588 			 * node.
2589 			 *
2590 			 * Limit reclaim, on the other hand, only cares about
2591 			 * nr_to_reclaim pages to be reclaimed and it will
2592 			 * retry with decreasing priority if one round over the
2593 			 * whole hierarchy is not sufficient.
2594 			 */
2595 			if (!global_reclaim(sc) &&
2596 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2597 				mem_cgroup_iter_break(root, memcg);
2598 				break;
2599 			}
2600 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2601 
2602 		if (global_reclaim(sc))
2603 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2604 				    sc->priority);
2605 
2606 		if (reclaim_state) {
2607 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2608 			reclaim_state->reclaimed_slab = 0;
2609 		}
2610 
2611 		/* Record the subtree's reclaim efficiency */
2612 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2613 			   sc->nr_scanned - nr_scanned,
2614 			   sc->nr_reclaimed - nr_reclaimed);
2615 
2616 		if (sc->nr_reclaimed - nr_reclaimed)
2617 			reclaimable = true;
2618 
2619 		if (current_is_kswapd()) {
2620 			/*
2621 			 * If reclaim is isolating dirty pages under writeback,
2622 			 * it implies that the long-lived page allocation rate
2623 			 * is exceeding the page laundering rate. Either the
2624 			 * global limits are not being effective at throttling
2625 			 * processes due to the page distribution throughout
2626 			 * zones or there is heavy usage of a slow backing
2627 			 * device. The only option is to throttle from reclaim
2628 			 * context which is not ideal as there is no guarantee
2629 			 * the dirtying process is throttled in the same way
2630 			 * balance_dirty_pages() manages.
2631 			 *
2632 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2633 			 * count the number of pages under pages flagged for
2634 			 * immediate reclaim and stall if any are encountered
2635 			 * in the nr_immediate check below.
2636 			 */
2637 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2638 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2639 
2640 			/*
2641 			 * Tag a node as congested if all the dirty pages
2642 			 * scanned were backed by a congested BDI and
2643 			 * wait_iff_congested will stall.
2644 			 */
2645 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2646 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2647 
2648 			/* Allow kswapd to start writing pages during reclaim.*/
2649 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2650 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2651 
2652 			/*
2653 			 * If kswapd scans pages marked marked for immediate
2654 			 * reclaim and under writeback (nr_immediate), it
2655 			 * implies that pages are cycling through the LRU
2656 			 * faster than they are written so also forcibly stall.
2657 			 */
2658 			if (sc->nr.immediate)
2659 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2660 		}
2661 
2662 		/*
2663 		 * Legacy memcg will stall in page writeback so avoid forcibly
2664 		 * stalling in wait_iff_congested().
2665 		 */
2666 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2667 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2668 			set_memcg_congestion(pgdat, root, true);
2669 
2670 		/*
2671 		 * Stall direct reclaim for IO completions if underlying BDIs
2672 		 * and node is congested. Allow kswapd to continue until it
2673 		 * starts encountering unqueued dirty pages or cycling through
2674 		 * the LRU too quickly.
2675 		 */
2676 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2677 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2678 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2679 
2680 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2681 					 sc->nr_scanned - nr_scanned, sc));
2682 
2683 	/*
2684 	 * Kswapd gives up on balancing particular nodes after too
2685 	 * many failures to reclaim anything from them and goes to
2686 	 * sleep. On reclaim progress, reset the failure counter. A
2687 	 * successful direct reclaim run will revive a dormant kswapd.
2688 	 */
2689 	if (reclaimable)
2690 		pgdat->kswapd_failures = 0;
2691 
2692 	return reclaimable;
2693 }
2694 
2695 /*
2696  * Returns true if compaction should go ahead for a costly-order request, or
2697  * the allocation would already succeed without compaction. Return false if we
2698  * should reclaim first.
2699  */
2700 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2701 {
2702 	unsigned long watermark;
2703 	enum compact_result suitable;
2704 
2705 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2706 	if (suitable == COMPACT_SUCCESS)
2707 		/* Allocation should succeed already. Don't reclaim. */
2708 		return true;
2709 	if (suitable == COMPACT_SKIPPED)
2710 		/* Compaction cannot yet proceed. Do reclaim. */
2711 		return false;
2712 
2713 	/*
2714 	 * Compaction is already possible, but it takes time to run and there
2715 	 * are potentially other callers using the pages just freed. So proceed
2716 	 * with reclaim to make a buffer of free pages available to give
2717 	 * compaction a reasonable chance of completing and allocating the page.
2718 	 * Note that we won't actually reclaim the whole buffer in one attempt
2719 	 * as the target watermark in should_continue_reclaim() is lower. But if
2720 	 * we are already above the high+gap watermark, don't reclaim at all.
2721 	 */
2722 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2723 
2724 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2725 }
2726 
2727 /*
2728  * This is the direct reclaim path, for page-allocating processes.  We only
2729  * try to reclaim pages from zones which will satisfy the caller's allocation
2730  * request.
2731  *
2732  * If a zone is deemed to be full of pinned pages then just give it a light
2733  * scan then give up on it.
2734  */
2735 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2736 {
2737 	struct zoneref *z;
2738 	struct zone *zone;
2739 	unsigned long nr_soft_reclaimed;
2740 	unsigned long nr_soft_scanned;
2741 	gfp_t orig_mask;
2742 	pg_data_t *last_pgdat = NULL;
2743 
2744 	/*
2745 	 * If the number of buffer_heads in the machine exceeds the maximum
2746 	 * allowed level, force direct reclaim to scan the highmem zone as
2747 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2748 	 */
2749 	orig_mask = sc->gfp_mask;
2750 	if (buffer_heads_over_limit) {
2751 		sc->gfp_mask |= __GFP_HIGHMEM;
2752 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2753 	}
2754 
2755 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2756 					sc->reclaim_idx, sc->nodemask) {
2757 		/*
2758 		 * Take care memory controller reclaiming has small influence
2759 		 * to global LRU.
2760 		 */
2761 		if (global_reclaim(sc)) {
2762 			if (!cpuset_zone_allowed(zone,
2763 						 GFP_KERNEL | __GFP_HARDWALL))
2764 				continue;
2765 
2766 			/*
2767 			 * If we already have plenty of memory free for
2768 			 * compaction in this zone, don't free any more.
2769 			 * Even though compaction is invoked for any
2770 			 * non-zero order, only frequent costly order
2771 			 * reclamation is disruptive enough to become a
2772 			 * noticeable problem, like transparent huge
2773 			 * page allocations.
2774 			 */
2775 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2776 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2777 			    compaction_ready(zone, sc)) {
2778 				sc->compaction_ready = true;
2779 				continue;
2780 			}
2781 
2782 			/*
2783 			 * Shrink each node in the zonelist once. If the
2784 			 * zonelist is ordered by zone (not the default) then a
2785 			 * node may be shrunk multiple times but in that case
2786 			 * the user prefers lower zones being preserved.
2787 			 */
2788 			if (zone->zone_pgdat == last_pgdat)
2789 				continue;
2790 
2791 			/*
2792 			 * This steals pages from memory cgroups over softlimit
2793 			 * and returns the number of reclaimed pages and
2794 			 * scanned pages. This works for global memory pressure
2795 			 * and balancing, not for a memcg's limit.
2796 			 */
2797 			nr_soft_scanned = 0;
2798 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2799 						sc->order, sc->gfp_mask,
2800 						&nr_soft_scanned);
2801 			sc->nr_reclaimed += nr_soft_reclaimed;
2802 			sc->nr_scanned += nr_soft_scanned;
2803 			/* need some check for avoid more shrink_zone() */
2804 		}
2805 
2806 		/* See comment about same check for global reclaim above */
2807 		if (zone->zone_pgdat == last_pgdat)
2808 			continue;
2809 		last_pgdat = zone->zone_pgdat;
2810 		shrink_node(zone->zone_pgdat, sc);
2811 	}
2812 
2813 	/*
2814 	 * Restore to original mask to avoid the impact on the caller if we
2815 	 * promoted it to __GFP_HIGHMEM.
2816 	 */
2817 	sc->gfp_mask = orig_mask;
2818 }
2819 
2820 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2821 {
2822 	struct mem_cgroup *memcg;
2823 
2824 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2825 	do {
2826 		unsigned long refaults;
2827 		struct lruvec *lruvec;
2828 
2829 		if (memcg)
2830 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2831 		else
2832 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2833 
2834 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2835 		lruvec->refaults = refaults;
2836 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2837 }
2838 
2839 /*
2840  * This is the main entry point to direct page reclaim.
2841  *
2842  * If a full scan of the inactive list fails to free enough memory then we
2843  * are "out of memory" and something needs to be killed.
2844  *
2845  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2846  * high - the zone may be full of dirty or under-writeback pages, which this
2847  * caller can't do much about.  We kick the writeback threads and take explicit
2848  * naps in the hope that some of these pages can be written.  But if the
2849  * allocating task holds filesystem locks which prevent writeout this might not
2850  * work, and the allocation attempt will fail.
2851  *
2852  * returns:	0, if no pages reclaimed
2853  * 		else, the number of pages reclaimed
2854  */
2855 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2856 					  struct scan_control *sc)
2857 {
2858 	int initial_priority = sc->priority;
2859 	pg_data_t *last_pgdat;
2860 	struct zoneref *z;
2861 	struct zone *zone;
2862 retry:
2863 	delayacct_freepages_start();
2864 
2865 	if (global_reclaim(sc))
2866 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2867 
2868 	do {
2869 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2870 				sc->priority);
2871 		sc->nr_scanned = 0;
2872 		shrink_zones(zonelist, sc);
2873 
2874 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2875 			break;
2876 
2877 		if (sc->compaction_ready)
2878 			break;
2879 
2880 		/*
2881 		 * If we're getting trouble reclaiming, start doing
2882 		 * writepage even in laptop mode.
2883 		 */
2884 		if (sc->priority < DEF_PRIORITY - 2)
2885 			sc->may_writepage = 1;
2886 	} while (--sc->priority >= 0);
2887 
2888 	last_pgdat = NULL;
2889 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2890 					sc->nodemask) {
2891 		if (zone->zone_pgdat == last_pgdat)
2892 			continue;
2893 		last_pgdat = zone->zone_pgdat;
2894 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2895 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2896 	}
2897 
2898 	delayacct_freepages_end();
2899 
2900 	if (sc->nr_reclaimed)
2901 		return sc->nr_reclaimed;
2902 
2903 	/* Aborted reclaim to try compaction? don't OOM, then */
2904 	if (sc->compaction_ready)
2905 		return 1;
2906 
2907 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2908 	if (sc->memcg_low_skipped) {
2909 		sc->priority = initial_priority;
2910 		sc->memcg_low_reclaim = 1;
2911 		sc->memcg_low_skipped = 0;
2912 		goto retry;
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 static bool allow_direct_reclaim(pg_data_t *pgdat)
2919 {
2920 	struct zone *zone;
2921 	unsigned long pfmemalloc_reserve = 0;
2922 	unsigned long free_pages = 0;
2923 	int i;
2924 	bool wmark_ok;
2925 
2926 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2927 		return true;
2928 
2929 	for (i = 0; i <= ZONE_NORMAL; i++) {
2930 		zone = &pgdat->node_zones[i];
2931 		if (!managed_zone(zone))
2932 			continue;
2933 
2934 		if (!zone_reclaimable_pages(zone))
2935 			continue;
2936 
2937 		pfmemalloc_reserve += min_wmark_pages(zone);
2938 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2939 	}
2940 
2941 	/* If there are no reserves (unexpected config) then do not throttle */
2942 	if (!pfmemalloc_reserve)
2943 		return true;
2944 
2945 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2946 
2947 	/* kswapd must be awake if processes are being throttled */
2948 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2949 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2950 						(enum zone_type)ZONE_NORMAL);
2951 		wake_up_interruptible(&pgdat->kswapd_wait);
2952 	}
2953 
2954 	return wmark_ok;
2955 }
2956 
2957 /*
2958  * Throttle direct reclaimers if backing storage is backed by the network
2959  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2960  * depleted. kswapd will continue to make progress and wake the processes
2961  * when the low watermark is reached.
2962  *
2963  * Returns true if a fatal signal was delivered during throttling. If this
2964  * happens, the page allocator should not consider triggering the OOM killer.
2965  */
2966 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2967 					nodemask_t *nodemask)
2968 {
2969 	struct zoneref *z;
2970 	struct zone *zone;
2971 	pg_data_t *pgdat = NULL;
2972 
2973 	/*
2974 	 * Kernel threads should not be throttled as they may be indirectly
2975 	 * responsible for cleaning pages necessary for reclaim to make forward
2976 	 * progress. kjournald for example may enter direct reclaim while
2977 	 * committing a transaction where throttling it could forcing other
2978 	 * processes to block on log_wait_commit().
2979 	 */
2980 	if (current->flags & PF_KTHREAD)
2981 		goto out;
2982 
2983 	/*
2984 	 * If a fatal signal is pending, this process should not throttle.
2985 	 * It should return quickly so it can exit and free its memory
2986 	 */
2987 	if (fatal_signal_pending(current))
2988 		goto out;
2989 
2990 	/*
2991 	 * Check if the pfmemalloc reserves are ok by finding the first node
2992 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2993 	 * GFP_KERNEL will be required for allocating network buffers when
2994 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2995 	 *
2996 	 * Throttling is based on the first usable node and throttled processes
2997 	 * wait on a queue until kswapd makes progress and wakes them. There
2998 	 * is an affinity then between processes waking up and where reclaim
2999 	 * progress has been made assuming the process wakes on the same node.
3000 	 * More importantly, processes running on remote nodes will not compete
3001 	 * for remote pfmemalloc reserves and processes on different nodes
3002 	 * should make reasonable progress.
3003 	 */
3004 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3005 					gfp_zone(gfp_mask), nodemask) {
3006 		if (zone_idx(zone) > ZONE_NORMAL)
3007 			continue;
3008 
3009 		/* Throttle based on the first usable node */
3010 		pgdat = zone->zone_pgdat;
3011 		if (allow_direct_reclaim(pgdat))
3012 			goto out;
3013 		break;
3014 	}
3015 
3016 	/* If no zone was usable by the allocation flags then do not throttle */
3017 	if (!pgdat)
3018 		goto out;
3019 
3020 	/* Account for the throttling */
3021 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3022 
3023 	/*
3024 	 * If the caller cannot enter the filesystem, it's possible that it
3025 	 * is due to the caller holding an FS lock or performing a journal
3026 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3027 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3028 	 * blocked waiting on the same lock. Instead, throttle for up to a
3029 	 * second before continuing.
3030 	 */
3031 	if (!(gfp_mask & __GFP_FS)) {
3032 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3033 			allow_direct_reclaim(pgdat), HZ);
3034 
3035 		goto check_pending;
3036 	}
3037 
3038 	/* Throttle until kswapd wakes the process */
3039 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3040 		allow_direct_reclaim(pgdat));
3041 
3042 check_pending:
3043 	if (fatal_signal_pending(current))
3044 		return true;
3045 
3046 out:
3047 	return false;
3048 }
3049 
3050 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3051 				gfp_t gfp_mask, nodemask_t *nodemask)
3052 {
3053 	unsigned long nr_reclaimed;
3054 	struct scan_control sc = {
3055 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3056 		.gfp_mask = current_gfp_context(gfp_mask),
3057 		.reclaim_idx = gfp_zone(gfp_mask),
3058 		.order = order,
3059 		.nodemask = nodemask,
3060 		.priority = DEF_PRIORITY,
3061 		.may_writepage = !laptop_mode,
3062 		.may_unmap = 1,
3063 		.may_swap = 1,
3064 	};
3065 
3066 	/*
3067 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3068 	 * 1 is returned so that the page allocator does not OOM kill at this
3069 	 * point.
3070 	 */
3071 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3072 		return 1;
3073 
3074 	trace_mm_vmscan_direct_reclaim_begin(order,
3075 				sc.may_writepage,
3076 				sc.gfp_mask,
3077 				sc.reclaim_idx);
3078 
3079 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3080 
3081 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3082 
3083 	return nr_reclaimed;
3084 }
3085 
3086 #ifdef CONFIG_MEMCG
3087 
3088 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3089 						gfp_t gfp_mask, bool noswap,
3090 						pg_data_t *pgdat,
3091 						unsigned long *nr_scanned)
3092 {
3093 	struct scan_control sc = {
3094 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3095 		.target_mem_cgroup = memcg,
3096 		.may_writepage = !laptop_mode,
3097 		.may_unmap = 1,
3098 		.reclaim_idx = MAX_NR_ZONES - 1,
3099 		.may_swap = !noswap,
3100 	};
3101 	unsigned long lru_pages;
3102 
3103 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3104 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3105 
3106 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3107 						      sc.may_writepage,
3108 						      sc.gfp_mask,
3109 						      sc.reclaim_idx);
3110 
3111 	/*
3112 	 * NOTE: Although we can get the priority field, using it
3113 	 * here is not a good idea, since it limits the pages we can scan.
3114 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3115 	 * will pick up pages from other mem cgroup's as well. We hack
3116 	 * the priority and make it zero.
3117 	 */
3118 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3119 
3120 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3121 
3122 	*nr_scanned = sc.nr_scanned;
3123 	return sc.nr_reclaimed;
3124 }
3125 
3126 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3127 					   unsigned long nr_pages,
3128 					   gfp_t gfp_mask,
3129 					   bool may_swap)
3130 {
3131 	struct zonelist *zonelist;
3132 	unsigned long nr_reclaimed;
3133 	int nid;
3134 	unsigned int noreclaim_flag;
3135 	struct scan_control sc = {
3136 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3137 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3138 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3139 		.reclaim_idx = MAX_NR_ZONES - 1,
3140 		.target_mem_cgroup = memcg,
3141 		.priority = DEF_PRIORITY,
3142 		.may_writepage = !laptop_mode,
3143 		.may_unmap = 1,
3144 		.may_swap = may_swap,
3145 	};
3146 
3147 	/*
3148 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3149 	 * take care of from where we get pages. So the node where we start the
3150 	 * scan does not need to be the current node.
3151 	 */
3152 	nid = mem_cgroup_select_victim_node(memcg);
3153 
3154 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3155 
3156 	trace_mm_vmscan_memcg_reclaim_begin(0,
3157 					    sc.may_writepage,
3158 					    sc.gfp_mask,
3159 					    sc.reclaim_idx);
3160 
3161 	noreclaim_flag = memalloc_noreclaim_save();
3162 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3163 	memalloc_noreclaim_restore(noreclaim_flag);
3164 
3165 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3166 
3167 	return nr_reclaimed;
3168 }
3169 #endif
3170 
3171 static void age_active_anon(struct pglist_data *pgdat,
3172 				struct scan_control *sc)
3173 {
3174 	struct mem_cgroup *memcg;
3175 
3176 	if (!total_swap_pages)
3177 		return;
3178 
3179 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3180 	do {
3181 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3182 
3183 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3184 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3185 					   sc, LRU_ACTIVE_ANON);
3186 
3187 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3188 	} while (memcg);
3189 }
3190 
3191 /*
3192  * Returns true if there is an eligible zone balanced for the request order
3193  * and classzone_idx
3194  */
3195 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3196 {
3197 	int i;
3198 	unsigned long mark = -1;
3199 	struct zone *zone;
3200 
3201 	for (i = 0; i <= classzone_idx; i++) {
3202 		zone = pgdat->node_zones + i;
3203 
3204 		if (!managed_zone(zone))
3205 			continue;
3206 
3207 		mark = high_wmark_pages(zone);
3208 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3209 			return true;
3210 	}
3211 
3212 	/*
3213 	 * If a node has no populated zone within classzone_idx, it does not
3214 	 * need balancing by definition. This can happen if a zone-restricted
3215 	 * allocation tries to wake a remote kswapd.
3216 	 */
3217 	if (mark == -1)
3218 		return true;
3219 
3220 	return false;
3221 }
3222 
3223 /* Clear pgdat state for congested, dirty or under writeback. */
3224 static void clear_pgdat_congested(pg_data_t *pgdat)
3225 {
3226 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3227 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3228 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3229 }
3230 
3231 /*
3232  * Prepare kswapd for sleeping. This verifies that there are no processes
3233  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3234  *
3235  * Returns true if kswapd is ready to sleep
3236  */
3237 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3238 {
3239 	/*
3240 	 * The throttled processes are normally woken up in balance_pgdat() as
3241 	 * soon as allow_direct_reclaim() is true. But there is a potential
3242 	 * race between when kswapd checks the watermarks and a process gets
3243 	 * throttled. There is also a potential race if processes get
3244 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3245 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3246 	 * the wake up checks. If kswapd is going to sleep, no process should
3247 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3248 	 * the wake up is premature, processes will wake kswapd and get
3249 	 * throttled again. The difference from wake ups in balance_pgdat() is
3250 	 * that here we are under prepare_to_wait().
3251 	 */
3252 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3253 		wake_up_all(&pgdat->pfmemalloc_wait);
3254 
3255 	/* Hopeless node, leave it to direct reclaim */
3256 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3257 		return true;
3258 
3259 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3260 		clear_pgdat_congested(pgdat);
3261 		return true;
3262 	}
3263 
3264 	return false;
3265 }
3266 
3267 /*
3268  * kswapd shrinks a node of pages that are at or below the highest usable
3269  * zone that is currently unbalanced.
3270  *
3271  * Returns true if kswapd scanned at least the requested number of pages to
3272  * reclaim or if the lack of progress was due to pages under writeback.
3273  * This is used to determine if the scanning priority needs to be raised.
3274  */
3275 static bool kswapd_shrink_node(pg_data_t *pgdat,
3276 			       struct scan_control *sc)
3277 {
3278 	struct zone *zone;
3279 	int z;
3280 
3281 	/* Reclaim a number of pages proportional to the number of zones */
3282 	sc->nr_to_reclaim = 0;
3283 	for (z = 0; z <= sc->reclaim_idx; z++) {
3284 		zone = pgdat->node_zones + z;
3285 		if (!managed_zone(zone))
3286 			continue;
3287 
3288 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3289 	}
3290 
3291 	/*
3292 	 * Historically care was taken to put equal pressure on all zones but
3293 	 * now pressure is applied based on node LRU order.
3294 	 */
3295 	shrink_node(pgdat, sc);
3296 
3297 	/*
3298 	 * Fragmentation may mean that the system cannot be rebalanced for
3299 	 * high-order allocations. If twice the allocation size has been
3300 	 * reclaimed then recheck watermarks only at order-0 to prevent
3301 	 * excessive reclaim. Assume that a process requested a high-order
3302 	 * can direct reclaim/compact.
3303 	 */
3304 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3305 		sc->order = 0;
3306 
3307 	return sc->nr_scanned >= sc->nr_to_reclaim;
3308 }
3309 
3310 /*
3311  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3312  * that are eligible for use by the caller until at least one zone is
3313  * balanced.
3314  *
3315  * Returns the order kswapd finished reclaiming at.
3316  *
3317  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3318  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3319  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3320  * or lower is eligible for reclaim until at least one usable zone is
3321  * balanced.
3322  */
3323 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3324 {
3325 	int i;
3326 	unsigned long nr_soft_reclaimed;
3327 	unsigned long nr_soft_scanned;
3328 	struct zone *zone;
3329 	struct scan_control sc = {
3330 		.gfp_mask = GFP_KERNEL,
3331 		.order = order,
3332 		.priority = DEF_PRIORITY,
3333 		.may_writepage = !laptop_mode,
3334 		.may_unmap = 1,
3335 		.may_swap = 1,
3336 	};
3337 
3338 	__fs_reclaim_acquire();
3339 
3340 	count_vm_event(PAGEOUTRUN);
3341 
3342 	do {
3343 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3344 		bool raise_priority = true;
3345 		bool ret;
3346 
3347 		sc.reclaim_idx = classzone_idx;
3348 
3349 		/*
3350 		 * If the number of buffer_heads exceeds the maximum allowed
3351 		 * then consider reclaiming from all zones. This has a dual
3352 		 * purpose -- on 64-bit systems it is expected that
3353 		 * buffer_heads are stripped during active rotation. On 32-bit
3354 		 * systems, highmem pages can pin lowmem memory and shrinking
3355 		 * buffers can relieve lowmem pressure. Reclaim may still not
3356 		 * go ahead if all eligible zones for the original allocation
3357 		 * request are balanced to avoid excessive reclaim from kswapd.
3358 		 */
3359 		if (buffer_heads_over_limit) {
3360 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3361 				zone = pgdat->node_zones + i;
3362 				if (!managed_zone(zone))
3363 					continue;
3364 
3365 				sc.reclaim_idx = i;
3366 				break;
3367 			}
3368 		}
3369 
3370 		/*
3371 		 * Only reclaim if there are no eligible zones. Note that
3372 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3373 		 * have adjusted it.
3374 		 */
3375 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3376 			goto out;
3377 
3378 		/*
3379 		 * Do some background aging of the anon list, to give
3380 		 * pages a chance to be referenced before reclaiming. All
3381 		 * pages are rotated regardless of classzone as this is
3382 		 * about consistent aging.
3383 		 */
3384 		age_active_anon(pgdat, &sc);
3385 
3386 		/*
3387 		 * If we're getting trouble reclaiming, start doing writepage
3388 		 * even in laptop mode.
3389 		 */
3390 		if (sc.priority < DEF_PRIORITY - 2)
3391 			sc.may_writepage = 1;
3392 
3393 		/* Call soft limit reclaim before calling shrink_node. */
3394 		sc.nr_scanned = 0;
3395 		nr_soft_scanned = 0;
3396 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3397 						sc.gfp_mask, &nr_soft_scanned);
3398 		sc.nr_reclaimed += nr_soft_reclaimed;
3399 
3400 		/*
3401 		 * There should be no need to raise the scanning priority if
3402 		 * enough pages are already being scanned that that high
3403 		 * watermark would be met at 100% efficiency.
3404 		 */
3405 		if (kswapd_shrink_node(pgdat, &sc))
3406 			raise_priority = false;
3407 
3408 		/*
3409 		 * If the low watermark is met there is no need for processes
3410 		 * to be throttled on pfmemalloc_wait as they should not be
3411 		 * able to safely make forward progress. Wake them
3412 		 */
3413 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3414 				allow_direct_reclaim(pgdat))
3415 			wake_up_all(&pgdat->pfmemalloc_wait);
3416 
3417 		/* Check if kswapd should be suspending */
3418 		__fs_reclaim_release();
3419 		ret = try_to_freeze();
3420 		__fs_reclaim_acquire();
3421 		if (ret || kthread_should_stop())
3422 			break;
3423 
3424 		/*
3425 		 * Raise priority if scanning rate is too low or there was no
3426 		 * progress in reclaiming pages
3427 		 */
3428 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3429 		if (raise_priority || !nr_reclaimed)
3430 			sc.priority--;
3431 	} while (sc.priority >= 1);
3432 
3433 	if (!sc.nr_reclaimed)
3434 		pgdat->kswapd_failures++;
3435 
3436 out:
3437 	snapshot_refaults(NULL, pgdat);
3438 	__fs_reclaim_release();
3439 	/*
3440 	 * Return the order kswapd stopped reclaiming at as
3441 	 * prepare_kswapd_sleep() takes it into account. If another caller
3442 	 * entered the allocator slow path while kswapd was awake, order will
3443 	 * remain at the higher level.
3444 	 */
3445 	return sc.order;
3446 }
3447 
3448 /*
3449  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3450  * allocation request woke kswapd for. When kswapd has not woken recently,
3451  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3452  * given classzone and returns it or the highest classzone index kswapd
3453  * was recently woke for.
3454  */
3455 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3456 					   enum zone_type classzone_idx)
3457 {
3458 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3459 		return classzone_idx;
3460 
3461 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3462 }
3463 
3464 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3465 				unsigned int classzone_idx)
3466 {
3467 	long remaining = 0;
3468 	DEFINE_WAIT(wait);
3469 
3470 	if (freezing(current) || kthread_should_stop())
3471 		return;
3472 
3473 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3474 
3475 	/*
3476 	 * Try to sleep for a short interval. Note that kcompactd will only be
3477 	 * woken if it is possible to sleep for a short interval. This is
3478 	 * deliberate on the assumption that if reclaim cannot keep an
3479 	 * eligible zone balanced that it's also unlikely that compaction will
3480 	 * succeed.
3481 	 */
3482 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3483 		/*
3484 		 * Compaction records what page blocks it recently failed to
3485 		 * isolate pages from and skips them in the future scanning.
3486 		 * When kswapd is going to sleep, it is reasonable to assume
3487 		 * that pages and compaction may succeed so reset the cache.
3488 		 */
3489 		reset_isolation_suitable(pgdat);
3490 
3491 		/*
3492 		 * We have freed the memory, now we should compact it to make
3493 		 * allocation of the requested order possible.
3494 		 */
3495 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3496 
3497 		remaining = schedule_timeout(HZ/10);
3498 
3499 		/*
3500 		 * If woken prematurely then reset kswapd_classzone_idx and
3501 		 * order. The values will either be from a wakeup request or
3502 		 * the previous request that slept prematurely.
3503 		 */
3504 		if (remaining) {
3505 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3506 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3507 		}
3508 
3509 		finish_wait(&pgdat->kswapd_wait, &wait);
3510 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3511 	}
3512 
3513 	/*
3514 	 * After a short sleep, check if it was a premature sleep. If not, then
3515 	 * go fully to sleep until explicitly woken up.
3516 	 */
3517 	if (!remaining &&
3518 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3519 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3520 
3521 		/*
3522 		 * vmstat counters are not perfectly accurate and the estimated
3523 		 * value for counters such as NR_FREE_PAGES can deviate from the
3524 		 * true value by nr_online_cpus * threshold. To avoid the zone
3525 		 * watermarks being breached while under pressure, we reduce the
3526 		 * per-cpu vmstat threshold while kswapd is awake and restore
3527 		 * them before going back to sleep.
3528 		 */
3529 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3530 
3531 		if (!kthread_should_stop())
3532 			schedule();
3533 
3534 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3535 	} else {
3536 		if (remaining)
3537 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3538 		else
3539 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3540 	}
3541 	finish_wait(&pgdat->kswapd_wait, &wait);
3542 }
3543 
3544 /*
3545  * The background pageout daemon, started as a kernel thread
3546  * from the init process.
3547  *
3548  * This basically trickles out pages so that we have _some_
3549  * free memory available even if there is no other activity
3550  * that frees anything up. This is needed for things like routing
3551  * etc, where we otherwise might have all activity going on in
3552  * asynchronous contexts that cannot page things out.
3553  *
3554  * If there are applications that are active memory-allocators
3555  * (most normal use), this basically shouldn't matter.
3556  */
3557 static int kswapd(void *p)
3558 {
3559 	unsigned int alloc_order, reclaim_order;
3560 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3561 	pg_data_t *pgdat = (pg_data_t*)p;
3562 	struct task_struct *tsk = current;
3563 
3564 	struct reclaim_state reclaim_state = {
3565 		.reclaimed_slab = 0,
3566 	};
3567 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3568 
3569 	if (!cpumask_empty(cpumask))
3570 		set_cpus_allowed_ptr(tsk, cpumask);
3571 	current->reclaim_state = &reclaim_state;
3572 
3573 	/*
3574 	 * Tell the memory management that we're a "memory allocator",
3575 	 * and that if we need more memory we should get access to it
3576 	 * regardless (see "__alloc_pages()"). "kswapd" should
3577 	 * never get caught in the normal page freeing logic.
3578 	 *
3579 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3580 	 * you need a small amount of memory in order to be able to
3581 	 * page out something else, and this flag essentially protects
3582 	 * us from recursively trying to free more memory as we're
3583 	 * trying to free the first piece of memory in the first place).
3584 	 */
3585 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3586 	set_freezable();
3587 
3588 	pgdat->kswapd_order = 0;
3589 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3590 	for ( ; ; ) {
3591 		bool ret;
3592 
3593 		alloc_order = reclaim_order = pgdat->kswapd_order;
3594 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3595 
3596 kswapd_try_sleep:
3597 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3598 					classzone_idx);
3599 
3600 		/* Read the new order and classzone_idx */
3601 		alloc_order = reclaim_order = pgdat->kswapd_order;
3602 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3603 		pgdat->kswapd_order = 0;
3604 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3605 
3606 		ret = try_to_freeze();
3607 		if (kthread_should_stop())
3608 			break;
3609 
3610 		/*
3611 		 * We can speed up thawing tasks if we don't call balance_pgdat
3612 		 * after returning from the refrigerator
3613 		 */
3614 		if (ret)
3615 			continue;
3616 
3617 		/*
3618 		 * Reclaim begins at the requested order but if a high-order
3619 		 * reclaim fails then kswapd falls back to reclaiming for
3620 		 * order-0. If that happens, kswapd will consider sleeping
3621 		 * for the order it finished reclaiming at (reclaim_order)
3622 		 * but kcompactd is woken to compact for the original
3623 		 * request (alloc_order).
3624 		 */
3625 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3626 						alloc_order);
3627 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3628 		if (reclaim_order < alloc_order)
3629 			goto kswapd_try_sleep;
3630 	}
3631 
3632 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3633 	current->reclaim_state = NULL;
3634 
3635 	return 0;
3636 }
3637 
3638 /*
3639  * A zone is low on free memory or too fragmented for high-order memory.  If
3640  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3641  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3642  * has failed or is not needed, still wake up kcompactd if only compaction is
3643  * needed.
3644  */
3645 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3646 		   enum zone_type classzone_idx)
3647 {
3648 	pg_data_t *pgdat;
3649 
3650 	if (!managed_zone(zone))
3651 		return;
3652 
3653 	if (!cpuset_zone_allowed(zone, gfp_flags))
3654 		return;
3655 	pgdat = zone->zone_pgdat;
3656 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3657 							   classzone_idx);
3658 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3659 	if (!waitqueue_active(&pgdat->kswapd_wait))
3660 		return;
3661 
3662 	/* Hopeless node, leave it to direct reclaim if possible */
3663 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3664 	    pgdat_balanced(pgdat, order, classzone_idx)) {
3665 		/*
3666 		 * There may be plenty of free memory available, but it's too
3667 		 * fragmented for high-order allocations.  Wake up kcompactd
3668 		 * and rely on compaction_suitable() to determine if it's
3669 		 * needed.  If it fails, it will defer subsequent attempts to
3670 		 * ratelimit its work.
3671 		 */
3672 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3673 			wakeup_kcompactd(pgdat, order, classzone_idx);
3674 		return;
3675 	}
3676 
3677 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3678 				      gfp_flags);
3679 	wake_up_interruptible(&pgdat->kswapd_wait);
3680 }
3681 
3682 #ifdef CONFIG_HIBERNATION
3683 /*
3684  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3685  * freed pages.
3686  *
3687  * Rather than trying to age LRUs the aim is to preserve the overall
3688  * LRU order by reclaiming preferentially
3689  * inactive > active > active referenced > active mapped
3690  */
3691 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3692 {
3693 	struct reclaim_state reclaim_state;
3694 	struct scan_control sc = {
3695 		.nr_to_reclaim = nr_to_reclaim,
3696 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3697 		.reclaim_idx = MAX_NR_ZONES - 1,
3698 		.priority = DEF_PRIORITY,
3699 		.may_writepage = 1,
3700 		.may_unmap = 1,
3701 		.may_swap = 1,
3702 		.hibernation_mode = 1,
3703 	};
3704 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3705 	struct task_struct *p = current;
3706 	unsigned long nr_reclaimed;
3707 	unsigned int noreclaim_flag;
3708 
3709 	fs_reclaim_acquire(sc.gfp_mask);
3710 	noreclaim_flag = memalloc_noreclaim_save();
3711 	reclaim_state.reclaimed_slab = 0;
3712 	p->reclaim_state = &reclaim_state;
3713 
3714 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3715 
3716 	p->reclaim_state = NULL;
3717 	memalloc_noreclaim_restore(noreclaim_flag);
3718 	fs_reclaim_release(sc.gfp_mask);
3719 
3720 	return nr_reclaimed;
3721 }
3722 #endif /* CONFIG_HIBERNATION */
3723 
3724 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3725    not required for correctness.  So if the last cpu in a node goes
3726    away, we get changed to run anywhere: as the first one comes back,
3727    restore their cpu bindings. */
3728 static int kswapd_cpu_online(unsigned int cpu)
3729 {
3730 	int nid;
3731 
3732 	for_each_node_state(nid, N_MEMORY) {
3733 		pg_data_t *pgdat = NODE_DATA(nid);
3734 		const struct cpumask *mask;
3735 
3736 		mask = cpumask_of_node(pgdat->node_id);
3737 
3738 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3739 			/* One of our CPUs online: restore mask */
3740 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3741 	}
3742 	return 0;
3743 }
3744 
3745 /*
3746  * This kswapd start function will be called by init and node-hot-add.
3747  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3748  */
3749 int kswapd_run(int nid)
3750 {
3751 	pg_data_t *pgdat = NODE_DATA(nid);
3752 	int ret = 0;
3753 
3754 	if (pgdat->kswapd)
3755 		return 0;
3756 
3757 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3758 	if (IS_ERR(pgdat->kswapd)) {
3759 		/* failure at boot is fatal */
3760 		BUG_ON(system_state < SYSTEM_RUNNING);
3761 		pr_err("Failed to start kswapd on node %d\n", nid);
3762 		ret = PTR_ERR(pgdat->kswapd);
3763 		pgdat->kswapd = NULL;
3764 	}
3765 	return ret;
3766 }
3767 
3768 /*
3769  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3770  * hold mem_hotplug_begin/end().
3771  */
3772 void kswapd_stop(int nid)
3773 {
3774 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3775 
3776 	if (kswapd) {
3777 		kthread_stop(kswapd);
3778 		NODE_DATA(nid)->kswapd = NULL;
3779 	}
3780 }
3781 
3782 static int __init kswapd_init(void)
3783 {
3784 	int nid, ret;
3785 
3786 	swap_setup();
3787 	for_each_node_state(nid, N_MEMORY)
3788  		kswapd_run(nid);
3789 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3790 					"mm/vmscan:online", kswapd_cpu_online,
3791 					NULL);
3792 	WARN_ON(ret < 0);
3793 	return 0;
3794 }
3795 
3796 module_init(kswapd_init)
3797 
3798 #ifdef CONFIG_NUMA
3799 /*
3800  * Node reclaim mode
3801  *
3802  * If non-zero call node_reclaim when the number of free pages falls below
3803  * the watermarks.
3804  */
3805 int node_reclaim_mode __read_mostly;
3806 
3807 #define RECLAIM_OFF 0
3808 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3809 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3810 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3811 
3812 /*
3813  * Priority for NODE_RECLAIM. This determines the fraction of pages
3814  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3815  * a zone.
3816  */
3817 #define NODE_RECLAIM_PRIORITY 4
3818 
3819 /*
3820  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3821  * occur.
3822  */
3823 int sysctl_min_unmapped_ratio = 1;
3824 
3825 /*
3826  * If the number of slab pages in a zone grows beyond this percentage then
3827  * slab reclaim needs to occur.
3828  */
3829 int sysctl_min_slab_ratio = 5;
3830 
3831 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3832 {
3833 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3834 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3835 		node_page_state(pgdat, NR_ACTIVE_FILE);
3836 
3837 	/*
3838 	 * It's possible for there to be more file mapped pages than
3839 	 * accounted for by the pages on the file LRU lists because
3840 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3841 	 */
3842 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3843 }
3844 
3845 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3846 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3847 {
3848 	unsigned long nr_pagecache_reclaimable;
3849 	unsigned long delta = 0;
3850 
3851 	/*
3852 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3853 	 * potentially reclaimable. Otherwise, we have to worry about
3854 	 * pages like swapcache and node_unmapped_file_pages() provides
3855 	 * a better estimate
3856 	 */
3857 	if (node_reclaim_mode & RECLAIM_UNMAP)
3858 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3859 	else
3860 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3861 
3862 	/* If we can't clean pages, remove dirty pages from consideration */
3863 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3864 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3865 
3866 	/* Watch for any possible underflows due to delta */
3867 	if (unlikely(delta > nr_pagecache_reclaimable))
3868 		delta = nr_pagecache_reclaimable;
3869 
3870 	return nr_pagecache_reclaimable - delta;
3871 }
3872 
3873 /*
3874  * Try to free up some pages from this node through reclaim.
3875  */
3876 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3877 {
3878 	/* Minimum pages needed in order to stay on node */
3879 	const unsigned long nr_pages = 1 << order;
3880 	struct task_struct *p = current;
3881 	struct reclaim_state reclaim_state;
3882 	unsigned int noreclaim_flag;
3883 	struct scan_control sc = {
3884 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3885 		.gfp_mask = current_gfp_context(gfp_mask),
3886 		.order = order,
3887 		.priority = NODE_RECLAIM_PRIORITY,
3888 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3889 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3890 		.may_swap = 1,
3891 		.reclaim_idx = gfp_zone(gfp_mask),
3892 	};
3893 
3894 	cond_resched();
3895 	fs_reclaim_acquire(sc.gfp_mask);
3896 	/*
3897 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3898 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3899 	 * and RECLAIM_UNMAP.
3900 	 */
3901 	noreclaim_flag = memalloc_noreclaim_save();
3902 	p->flags |= PF_SWAPWRITE;
3903 	reclaim_state.reclaimed_slab = 0;
3904 	p->reclaim_state = &reclaim_state;
3905 
3906 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3907 		/*
3908 		 * Free memory by calling shrink node with increasing
3909 		 * priorities until we have enough memory freed.
3910 		 */
3911 		do {
3912 			shrink_node(pgdat, &sc);
3913 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3914 	}
3915 
3916 	p->reclaim_state = NULL;
3917 	current->flags &= ~PF_SWAPWRITE;
3918 	memalloc_noreclaim_restore(noreclaim_flag);
3919 	fs_reclaim_release(sc.gfp_mask);
3920 	return sc.nr_reclaimed >= nr_pages;
3921 }
3922 
3923 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3924 {
3925 	int ret;
3926 
3927 	/*
3928 	 * Node reclaim reclaims unmapped file backed pages and
3929 	 * slab pages if we are over the defined limits.
3930 	 *
3931 	 * A small portion of unmapped file backed pages is needed for
3932 	 * file I/O otherwise pages read by file I/O will be immediately
3933 	 * thrown out if the node is overallocated. So we do not reclaim
3934 	 * if less than a specified percentage of the node is used by
3935 	 * unmapped file backed pages.
3936 	 */
3937 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3938 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3939 		return NODE_RECLAIM_FULL;
3940 
3941 	/*
3942 	 * Do not scan if the allocation should not be delayed.
3943 	 */
3944 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3945 		return NODE_RECLAIM_NOSCAN;
3946 
3947 	/*
3948 	 * Only run node reclaim on the local node or on nodes that do not
3949 	 * have associated processors. This will favor the local processor
3950 	 * over remote processors and spread off node memory allocations
3951 	 * as wide as possible.
3952 	 */
3953 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3954 		return NODE_RECLAIM_NOSCAN;
3955 
3956 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3957 		return NODE_RECLAIM_NOSCAN;
3958 
3959 	ret = __node_reclaim(pgdat, gfp_mask, order);
3960 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3961 
3962 	if (!ret)
3963 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3964 
3965 	return ret;
3966 }
3967 #endif
3968 
3969 /*
3970  * page_evictable - test whether a page is evictable
3971  * @page: the page to test
3972  *
3973  * Test whether page is evictable--i.e., should be placed on active/inactive
3974  * lists vs unevictable list.
3975  *
3976  * Reasons page might not be evictable:
3977  * (1) page's mapping marked unevictable
3978  * (2) page is part of an mlocked VMA
3979  *
3980  */
3981 int page_evictable(struct page *page)
3982 {
3983 	int ret;
3984 
3985 	/* Prevent address_space of inode and swap cache from being freed */
3986 	rcu_read_lock();
3987 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3988 	rcu_read_unlock();
3989 	return ret;
3990 }
3991 
3992 #ifdef CONFIG_SHMEM
3993 /**
3994  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3995  * @pages:	array of pages to check
3996  * @nr_pages:	number of pages to check
3997  *
3998  * Checks pages for evictability and moves them to the appropriate lru list.
3999  *
4000  * This function is only used for SysV IPC SHM_UNLOCK.
4001  */
4002 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4003 {
4004 	struct lruvec *lruvec;
4005 	struct pglist_data *pgdat = NULL;
4006 	int pgscanned = 0;
4007 	int pgrescued = 0;
4008 	int i;
4009 
4010 	for (i = 0; i < nr_pages; i++) {
4011 		struct page *page = pages[i];
4012 		struct pglist_data *pagepgdat = page_pgdat(page);
4013 
4014 		pgscanned++;
4015 		if (pagepgdat != pgdat) {
4016 			if (pgdat)
4017 				spin_unlock_irq(&pgdat->lru_lock);
4018 			pgdat = pagepgdat;
4019 			spin_lock_irq(&pgdat->lru_lock);
4020 		}
4021 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4022 
4023 		if (!PageLRU(page) || !PageUnevictable(page))
4024 			continue;
4025 
4026 		if (page_evictable(page)) {
4027 			enum lru_list lru = page_lru_base_type(page);
4028 
4029 			VM_BUG_ON_PAGE(PageActive(page), page);
4030 			ClearPageUnevictable(page);
4031 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4032 			add_page_to_lru_list(page, lruvec, lru);
4033 			pgrescued++;
4034 		}
4035 	}
4036 
4037 	if (pgdat) {
4038 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4039 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4040 		spin_unlock_irq(&pgdat->lru_lock);
4041 	}
4042 }
4043 #endif /* CONFIG_SHMEM */
4044