xref: /openbmc/linux/mm/vmscan.c (revision 37be287c)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52 
53 #include "internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57 
58 struct scan_control {
59 	/* Incremented by the number of inactive pages that were scanned */
60 	unsigned long nr_scanned;
61 
62 	/* Number of pages freed so far during a call to shrink_zones() */
63 	unsigned long nr_reclaimed;
64 
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	unsigned long hibernation_mode;
69 
70 	/* This context's GFP mask */
71 	gfp_t gfp_mask;
72 
73 	int may_writepage;
74 
75 	/* Can mapped pages be reclaimed? */
76 	int may_unmap;
77 
78 	/* Can pages be swapped as part of reclaim? */
79 	int may_swap;
80 
81 	int order;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	/*
87 	 * The memory cgroup that hit its limit and as a result is the
88 	 * primary target of this reclaim invocation.
89 	 */
90 	struct mem_cgroup *target_mem_cgroup;
91 
92 	/*
93 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 	 * are scanned.
95 	 */
96 	nodemask_t	*nodemask;
97 };
98 
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)			\
103 	do {								\
104 		if ((_page)->lru.prev != _base) {			\
105 			struct page *prev;				\
106 									\
107 			prev = lru_to_page(&(_page->lru));		\
108 			prefetch(&prev->_field);			\
109 		}							\
110 	} while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114 
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)			\
117 	do {								\
118 		if ((_page)->lru.prev != _base) {			\
119 			struct page *prev;				\
120 									\
121 			prev = lru_to_page(&(_page->lru));		\
122 			prefetchw(&prev->_field);			\
123 		}							\
124 	} while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128 
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
134 
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137 
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 	return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 	return true;
147 }
148 #endif
149 
150 static unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152 	int nr;
153 
154 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 	     zone_page_state(zone, NR_INACTIVE_FILE);
156 
157 	if (get_nr_swap_pages() > 0)
158 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 		      zone_page_state(zone, NR_INACTIVE_ANON);
160 
161 	return nr;
162 }
163 
164 bool zone_reclaimable(struct zone *zone)
165 {
166 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168 
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171 	if (!mem_cgroup_disabled())
172 		return mem_cgroup_get_lru_size(lruvec, lru);
173 
174 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176 
177 /*
178  * Add a shrinker callback to be called from the vm.
179  */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182 	size_t size = sizeof(*shrinker->nr_deferred);
183 
184 	/*
185 	 * If we only have one possible node in the system anyway, save
186 	 * ourselves the trouble and disable NUMA aware behavior. This way we
187 	 * will save memory and some small loop time later.
188 	 */
189 	if (nr_node_ids == 1)
190 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191 
192 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 		size *= nr_node_ids;
194 
195 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 	if (!shrinker->nr_deferred)
197 		return -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	list_add_tail(&shrinker->list, &shrinker_list);
201 	up_write(&shrinker_rwsem);
202 	return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205 
206 /*
207  * Remove one
208  */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211 	down_write(&shrinker_rwsem);
212 	list_del(&shrinker->list);
213 	up_write(&shrinker_rwsem);
214 	kfree(shrinker->nr_deferred);
215 }
216 EXPORT_SYMBOL(unregister_shrinker);
217 
218 #define SHRINK_BATCH 128
219 
220 static unsigned long
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 		 unsigned long nr_pages_scanned, unsigned long lru_pages)
223 {
224 	unsigned long freed = 0;
225 	unsigned long long delta;
226 	long total_scan;
227 	long max_pass;
228 	long nr;
229 	long new_nr;
230 	int nid = shrinkctl->nid;
231 	long batch_size = shrinker->batch ? shrinker->batch
232 					  : SHRINK_BATCH;
233 
234 	max_pass = shrinker->count_objects(shrinker, shrinkctl);
235 	if (max_pass == 0)
236 		return 0;
237 
238 	/*
239 	 * copy the current shrinker scan count into a local variable
240 	 * and zero it so that other concurrent shrinker invocations
241 	 * don't also do this scanning work.
242 	 */
243 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244 
245 	total_scan = nr;
246 	delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 	delta *= max_pass;
248 	do_div(delta, lru_pages + 1);
249 	total_scan += delta;
250 	if (total_scan < 0) {
251 		printk(KERN_ERR
252 		"shrink_slab: %pF negative objects to delete nr=%ld\n",
253 		       shrinker->scan_objects, total_scan);
254 		total_scan = max_pass;
255 	}
256 
257 	/*
258 	 * We need to avoid excessive windup on filesystem shrinkers
259 	 * due to large numbers of GFP_NOFS allocations causing the
260 	 * shrinkers to return -1 all the time. This results in a large
261 	 * nr being built up so when a shrink that can do some work
262 	 * comes along it empties the entire cache due to nr >>>
263 	 * max_pass.  This is bad for sustaining a working set in
264 	 * memory.
265 	 *
266 	 * Hence only allow the shrinker to scan the entire cache when
267 	 * a large delta change is calculated directly.
268 	 */
269 	if (delta < max_pass / 4)
270 		total_scan = min(total_scan, max_pass / 2);
271 
272 	/*
273 	 * Avoid risking looping forever due to too large nr value:
274 	 * never try to free more than twice the estimate number of
275 	 * freeable entries.
276 	 */
277 	if (total_scan > max_pass * 2)
278 		total_scan = max_pass * 2;
279 
280 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 				nr_pages_scanned, lru_pages,
282 				max_pass, delta, total_scan);
283 
284 	/*
285 	 * Normally, we should not scan less than batch_size objects in one
286 	 * pass to avoid too frequent shrinker calls, but if the slab has less
287 	 * than batch_size objects in total and we are really tight on memory,
288 	 * we will try to reclaim all available objects, otherwise we can end
289 	 * up failing allocations although there are plenty of reclaimable
290 	 * objects spread over several slabs with usage less than the
291 	 * batch_size.
292 	 *
293 	 * We detect the "tight on memory" situations by looking at the total
294 	 * number of objects we want to scan (total_scan). If it is greater
295 	 * than the total number of objects on slab (max_pass), we must be
296 	 * scanning at high prio and therefore should try to reclaim as much as
297 	 * possible.
298 	 */
299 	while (total_scan >= batch_size ||
300 	       total_scan >= max_pass) {
301 		unsigned long ret;
302 		unsigned long nr_to_scan = min(batch_size, total_scan);
303 
304 		shrinkctl->nr_to_scan = nr_to_scan;
305 		ret = shrinker->scan_objects(shrinker, shrinkctl);
306 		if (ret == SHRINK_STOP)
307 			break;
308 		freed += ret;
309 
310 		count_vm_events(SLABS_SCANNED, nr_to_scan);
311 		total_scan -= nr_to_scan;
312 
313 		cond_resched();
314 	}
315 
316 	/*
317 	 * move the unused scan count back into the shrinker in a
318 	 * manner that handles concurrent updates. If we exhausted the
319 	 * scan, there is no need to do an update.
320 	 */
321 	if (total_scan > 0)
322 		new_nr = atomic_long_add_return(total_scan,
323 						&shrinker->nr_deferred[nid]);
324 	else
325 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
326 
327 	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
328 	return freed;
329 }
330 
331 /*
332  * Call the shrink functions to age shrinkable caches
333  *
334  * Here we assume it costs one seek to replace a lru page and that it also
335  * takes a seek to recreate a cache object.  With this in mind we age equal
336  * percentages of the lru and ageable caches.  This should balance the seeks
337  * generated by these structures.
338  *
339  * If the vm encountered mapped pages on the LRU it increase the pressure on
340  * slab to avoid swapping.
341  *
342  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
343  *
344  * `lru_pages' represents the number of on-LRU pages in all the zones which
345  * are eligible for the caller's allocation attempt.  It is used for balancing
346  * slab reclaim versus page reclaim.
347  *
348  * Returns the number of slab objects which we shrunk.
349  */
350 unsigned long shrink_slab(struct shrink_control *shrinkctl,
351 			  unsigned long nr_pages_scanned,
352 			  unsigned long lru_pages)
353 {
354 	struct shrinker *shrinker;
355 	unsigned long freed = 0;
356 
357 	if (nr_pages_scanned == 0)
358 		nr_pages_scanned = SWAP_CLUSTER_MAX;
359 
360 	if (!down_read_trylock(&shrinker_rwsem)) {
361 		/*
362 		 * If we would return 0, our callers would understand that we
363 		 * have nothing else to shrink and give up trying. By returning
364 		 * 1 we keep it going and assume we'll be able to shrink next
365 		 * time.
366 		 */
367 		freed = 1;
368 		goto out;
369 	}
370 
371 	list_for_each_entry(shrinker, &shrinker_list, list) {
372 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
373 			shrinkctl->nid = 0;
374 			freed += shrink_slab_node(shrinkctl, shrinker,
375 					nr_pages_scanned, lru_pages);
376 			continue;
377 		}
378 
379 		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380 			if (node_online(shrinkctl->nid))
381 				freed += shrink_slab_node(shrinkctl, shrinker,
382 						nr_pages_scanned, lru_pages);
383 
384 		}
385 	}
386 	up_read(&shrinker_rwsem);
387 out:
388 	cond_resched();
389 	return freed;
390 }
391 
392 static inline int is_page_cache_freeable(struct page *page)
393 {
394 	/*
395 	 * A freeable page cache page is referenced only by the caller
396 	 * that isolated the page, the page cache radix tree and
397 	 * optional buffer heads at page->private.
398 	 */
399 	return page_count(page) - page_has_private(page) == 2;
400 }
401 
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403 			      struct scan_control *sc)
404 {
405 	if (current->flags & PF_SWAPWRITE)
406 		return 1;
407 	if (!bdi_write_congested(bdi))
408 		return 1;
409 	if (bdi == current->backing_dev_info)
410 		return 1;
411 	return 0;
412 }
413 
414 /*
415  * We detected a synchronous write error writing a page out.  Probably
416  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
417  * fsync(), msync() or close().
418  *
419  * The tricky part is that after writepage we cannot touch the mapping: nothing
420  * prevents it from being freed up.  But we have a ref on the page and once
421  * that page is locked, the mapping is pinned.
422  *
423  * We're allowed to run sleeping lock_page() here because we know the caller has
424  * __GFP_FS.
425  */
426 static void handle_write_error(struct address_space *mapping,
427 				struct page *page, int error)
428 {
429 	lock_page(page);
430 	if (page_mapping(page) == mapping)
431 		mapping_set_error(mapping, error);
432 	unlock_page(page);
433 }
434 
435 /* possible outcome of pageout() */
436 typedef enum {
437 	/* failed to write page out, page is locked */
438 	PAGE_KEEP,
439 	/* move page to the active list, page is locked */
440 	PAGE_ACTIVATE,
441 	/* page has been sent to the disk successfully, page is unlocked */
442 	PAGE_SUCCESS,
443 	/* page is clean and locked */
444 	PAGE_CLEAN,
445 } pageout_t;
446 
447 /*
448  * pageout is called by shrink_page_list() for each dirty page.
449  * Calls ->writepage().
450  */
451 static pageout_t pageout(struct page *page, struct address_space *mapping,
452 			 struct scan_control *sc)
453 {
454 	/*
455 	 * If the page is dirty, only perform writeback if that write
456 	 * will be non-blocking.  To prevent this allocation from being
457 	 * stalled by pagecache activity.  But note that there may be
458 	 * stalls if we need to run get_block().  We could test
459 	 * PagePrivate for that.
460 	 *
461 	 * If this process is currently in __generic_file_aio_write() against
462 	 * this page's queue, we can perform writeback even if that
463 	 * will block.
464 	 *
465 	 * If the page is swapcache, write it back even if that would
466 	 * block, for some throttling. This happens by accident, because
467 	 * swap_backing_dev_info is bust: it doesn't reflect the
468 	 * congestion state of the swapdevs.  Easy to fix, if needed.
469 	 */
470 	if (!is_page_cache_freeable(page))
471 		return PAGE_KEEP;
472 	if (!mapping) {
473 		/*
474 		 * Some data journaling orphaned pages can have
475 		 * page->mapping == NULL while being dirty with clean buffers.
476 		 */
477 		if (page_has_private(page)) {
478 			if (try_to_free_buffers(page)) {
479 				ClearPageDirty(page);
480 				printk("%s: orphaned page\n", __func__);
481 				return PAGE_CLEAN;
482 			}
483 		}
484 		return PAGE_KEEP;
485 	}
486 	if (mapping->a_ops->writepage == NULL)
487 		return PAGE_ACTIVATE;
488 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
489 		return PAGE_KEEP;
490 
491 	if (clear_page_dirty_for_io(page)) {
492 		int res;
493 		struct writeback_control wbc = {
494 			.sync_mode = WB_SYNC_NONE,
495 			.nr_to_write = SWAP_CLUSTER_MAX,
496 			.range_start = 0,
497 			.range_end = LLONG_MAX,
498 			.for_reclaim = 1,
499 		};
500 
501 		SetPageReclaim(page);
502 		res = mapping->a_ops->writepage(page, &wbc);
503 		if (res < 0)
504 			handle_write_error(mapping, page, res);
505 		if (res == AOP_WRITEPAGE_ACTIVATE) {
506 			ClearPageReclaim(page);
507 			return PAGE_ACTIVATE;
508 		}
509 
510 		if (!PageWriteback(page)) {
511 			/* synchronous write or broken a_ops? */
512 			ClearPageReclaim(page);
513 		}
514 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
516 		return PAGE_SUCCESS;
517 	}
518 
519 	return PAGE_CLEAN;
520 }
521 
522 /*
523  * Same as remove_mapping, but if the page is removed from the mapping, it
524  * gets returned with a refcount of 0.
525  */
526 static int __remove_mapping(struct address_space *mapping, struct page *page)
527 {
528 	BUG_ON(!PageLocked(page));
529 	BUG_ON(mapping != page_mapping(page));
530 
531 	spin_lock_irq(&mapping->tree_lock);
532 	/*
533 	 * The non racy check for a busy page.
534 	 *
535 	 * Must be careful with the order of the tests. When someone has
536 	 * a ref to the page, it may be possible that they dirty it then
537 	 * drop the reference. So if PageDirty is tested before page_count
538 	 * here, then the following race may occur:
539 	 *
540 	 * get_user_pages(&page);
541 	 * [user mapping goes away]
542 	 * write_to(page);
543 	 *				!PageDirty(page)    [good]
544 	 * SetPageDirty(page);
545 	 * put_page(page);
546 	 *				!page_count(page)   [good, discard it]
547 	 *
548 	 * [oops, our write_to data is lost]
549 	 *
550 	 * Reversing the order of the tests ensures such a situation cannot
551 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
552 	 * load is not satisfied before that of page->_count.
553 	 *
554 	 * Note that if SetPageDirty is always performed via set_page_dirty,
555 	 * and thus under tree_lock, then this ordering is not required.
556 	 */
557 	if (!page_freeze_refs(page, 2))
558 		goto cannot_free;
559 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
560 	if (unlikely(PageDirty(page))) {
561 		page_unfreeze_refs(page, 2);
562 		goto cannot_free;
563 	}
564 
565 	if (PageSwapCache(page)) {
566 		swp_entry_t swap = { .val = page_private(page) };
567 		__delete_from_swap_cache(page);
568 		spin_unlock_irq(&mapping->tree_lock);
569 		swapcache_free(swap, page);
570 	} else {
571 		void (*freepage)(struct page *);
572 
573 		freepage = mapping->a_ops->freepage;
574 
575 		__delete_from_page_cache(page);
576 		spin_unlock_irq(&mapping->tree_lock);
577 		mem_cgroup_uncharge_cache_page(page);
578 
579 		if (freepage != NULL)
580 			freepage(page);
581 	}
582 
583 	return 1;
584 
585 cannot_free:
586 	spin_unlock_irq(&mapping->tree_lock);
587 	return 0;
588 }
589 
590 /*
591  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
592  * someone else has a ref on the page, abort and return 0.  If it was
593  * successfully detached, return 1.  Assumes the caller has a single ref on
594  * this page.
595  */
596 int remove_mapping(struct address_space *mapping, struct page *page)
597 {
598 	if (__remove_mapping(mapping, page)) {
599 		/*
600 		 * Unfreezing the refcount with 1 rather than 2 effectively
601 		 * drops the pagecache ref for us without requiring another
602 		 * atomic operation.
603 		 */
604 		page_unfreeze_refs(page, 1);
605 		return 1;
606 	}
607 	return 0;
608 }
609 
610 /**
611  * putback_lru_page - put previously isolated page onto appropriate LRU list
612  * @page: page to be put back to appropriate lru list
613  *
614  * Add previously isolated @page to appropriate LRU list.
615  * Page may still be unevictable for other reasons.
616  *
617  * lru_lock must not be held, interrupts must be enabled.
618  */
619 void putback_lru_page(struct page *page)
620 {
621 	bool is_unevictable;
622 	int was_unevictable = PageUnevictable(page);
623 
624 	VM_BUG_ON_PAGE(PageLRU(page), page);
625 
626 redo:
627 	ClearPageUnevictable(page);
628 
629 	if (page_evictable(page)) {
630 		/*
631 		 * For evictable pages, we can use the cache.
632 		 * In event of a race, worst case is we end up with an
633 		 * unevictable page on [in]active list.
634 		 * We know how to handle that.
635 		 */
636 		is_unevictable = false;
637 		lru_cache_add(page);
638 	} else {
639 		/*
640 		 * Put unevictable pages directly on zone's unevictable
641 		 * list.
642 		 */
643 		is_unevictable = true;
644 		add_page_to_unevictable_list(page);
645 		/*
646 		 * When racing with an mlock or AS_UNEVICTABLE clearing
647 		 * (page is unlocked) make sure that if the other thread
648 		 * does not observe our setting of PG_lru and fails
649 		 * isolation/check_move_unevictable_pages,
650 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
651 		 * the page back to the evictable list.
652 		 *
653 		 * The other side is TestClearPageMlocked() or shmem_lock().
654 		 */
655 		smp_mb();
656 	}
657 
658 	/*
659 	 * page's status can change while we move it among lru. If an evictable
660 	 * page is on unevictable list, it never be freed. To avoid that,
661 	 * check after we added it to the list, again.
662 	 */
663 	if (is_unevictable && page_evictable(page)) {
664 		if (!isolate_lru_page(page)) {
665 			put_page(page);
666 			goto redo;
667 		}
668 		/* This means someone else dropped this page from LRU
669 		 * So, it will be freed or putback to LRU again. There is
670 		 * nothing to do here.
671 		 */
672 	}
673 
674 	if (was_unevictable && !is_unevictable)
675 		count_vm_event(UNEVICTABLE_PGRESCUED);
676 	else if (!was_unevictable && is_unevictable)
677 		count_vm_event(UNEVICTABLE_PGCULLED);
678 
679 	put_page(page);		/* drop ref from isolate */
680 }
681 
682 enum page_references {
683 	PAGEREF_RECLAIM,
684 	PAGEREF_RECLAIM_CLEAN,
685 	PAGEREF_KEEP,
686 	PAGEREF_ACTIVATE,
687 };
688 
689 static enum page_references page_check_references(struct page *page,
690 						  struct scan_control *sc)
691 {
692 	int referenced_ptes, referenced_page;
693 	unsigned long vm_flags;
694 
695 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
696 					  &vm_flags);
697 	referenced_page = TestClearPageReferenced(page);
698 
699 	/*
700 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
701 	 * move the page to the unevictable list.
702 	 */
703 	if (vm_flags & VM_LOCKED)
704 		return PAGEREF_RECLAIM;
705 
706 	if (referenced_ptes) {
707 		if (PageSwapBacked(page))
708 			return PAGEREF_ACTIVATE;
709 		/*
710 		 * All mapped pages start out with page table
711 		 * references from the instantiating fault, so we need
712 		 * to look twice if a mapped file page is used more
713 		 * than once.
714 		 *
715 		 * Mark it and spare it for another trip around the
716 		 * inactive list.  Another page table reference will
717 		 * lead to its activation.
718 		 *
719 		 * Note: the mark is set for activated pages as well
720 		 * so that recently deactivated but used pages are
721 		 * quickly recovered.
722 		 */
723 		SetPageReferenced(page);
724 
725 		if (referenced_page || referenced_ptes > 1)
726 			return PAGEREF_ACTIVATE;
727 
728 		/*
729 		 * Activate file-backed executable pages after first usage.
730 		 */
731 		if (vm_flags & VM_EXEC)
732 			return PAGEREF_ACTIVATE;
733 
734 		return PAGEREF_KEEP;
735 	}
736 
737 	/* Reclaim if clean, defer dirty pages to writeback */
738 	if (referenced_page && !PageSwapBacked(page))
739 		return PAGEREF_RECLAIM_CLEAN;
740 
741 	return PAGEREF_RECLAIM;
742 }
743 
744 /* Check if a page is dirty or under writeback */
745 static void page_check_dirty_writeback(struct page *page,
746 				       bool *dirty, bool *writeback)
747 {
748 	struct address_space *mapping;
749 
750 	/*
751 	 * Anonymous pages are not handled by flushers and must be written
752 	 * from reclaim context. Do not stall reclaim based on them
753 	 */
754 	if (!page_is_file_cache(page)) {
755 		*dirty = false;
756 		*writeback = false;
757 		return;
758 	}
759 
760 	/* By default assume that the page flags are accurate */
761 	*dirty = PageDirty(page);
762 	*writeback = PageWriteback(page);
763 
764 	/* Verify dirty/writeback state if the filesystem supports it */
765 	if (!page_has_private(page))
766 		return;
767 
768 	mapping = page_mapping(page);
769 	if (mapping && mapping->a_ops->is_dirty_writeback)
770 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
771 }
772 
773 /*
774  * shrink_page_list() returns the number of reclaimed pages
775  */
776 static unsigned long shrink_page_list(struct list_head *page_list,
777 				      struct zone *zone,
778 				      struct scan_control *sc,
779 				      enum ttu_flags ttu_flags,
780 				      unsigned long *ret_nr_dirty,
781 				      unsigned long *ret_nr_unqueued_dirty,
782 				      unsigned long *ret_nr_congested,
783 				      unsigned long *ret_nr_writeback,
784 				      unsigned long *ret_nr_immediate,
785 				      bool force_reclaim)
786 {
787 	LIST_HEAD(ret_pages);
788 	LIST_HEAD(free_pages);
789 	int pgactivate = 0;
790 	unsigned long nr_unqueued_dirty = 0;
791 	unsigned long nr_dirty = 0;
792 	unsigned long nr_congested = 0;
793 	unsigned long nr_reclaimed = 0;
794 	unsigned long nr_writeback = 0;
795 	unsigned long nr_immediate = 0;
796 
797 	cond_resched();
798 
799 	mem_cgroup_uncharge_start();
800 	while (!list_empty(page_list)) {
801 		struct address_space *mapping;
802 		struct page *page;
803 		int may_enter_fs;
804 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
805 		bool dirty, writeback;
806 
807 		cond_resched();
808 
809 		page = lru_to_page(page_list);
810 		list_del(&page->lru);
811 
812 		if (!trylock_page(page))
813 			goto keep;
814 
815 		VM_BUG_ON_PAGE(PageActive(page), page);
816 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
817 
818 		sc->nr_scanned++;
819 
820 		if (unlikely(!page_evictable(page)))
821 			goto cull_mlocked;
822 
823 		if (!sc->may_unmap && page_mapped(page))
824 			goto keep_locked;
825 
826 		/* Double the slab pressure for mapped and swapcache pages */
827 		if (page_mapped(page) || PageSwapCache(page))
828 			sc->nr_scanned++;
829 
830 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
831 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
832 
833 		/*
834 		 * The number of dirty pages determines if a zone is marked
835 		 * reclaim_congested which affects wait_iff_congested. kswapd
836 		 * will stall and start writing pages if the tail of the LRU
837 		 * is all dirty unqueued pages.
838 		 */
839 		page_check_dirty_writeback(page, &dirty, &writeback);
840 		if (dirty || writeback)
841 			nr_dirty++;
842 
843 		if (dirty && !writeback)
844 			nr_unqueued_dirty++;
845 
846 		/*
847 		 * Treat this page as congested if the underlying BDI is or if
848 		 * pages are cycling through the LRU so quickly that the
849 		 * pages marked for immediate reclaim are making it to the
850 		 * end of the LRU a second time.
851 		 */
852 		mapping = page_mapping(page);
853 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
854 		    (writeback && PageReclaim(page)))
855 			nr_congested++;
856 
857 		/*
858 		 * If a page at the tail of the LRU is under writeback, there
859 		 * are three cases to consider.
860 		 *
861 		 * 1) If reclaim is encountering an excessive number of pages
862 		 *    under writeback and this page is both under writeback and
863 		 *    PageReclaim then it indicates that pages are being queued
864 		 *    for IO but are being recycled through the LRU before the
865 		 *    IO can complete. Waiting on the page itself risks an
866 		 *    indefinite stall if it is impossible to writeback the
867 		 *    page due to IO error or disconnected storage so instead
868 		 *    note that the LRU is being scanned too quickly and the
869 		 *    caller can stall after page list has been processed.
870 		 *
871 		 * 2) Global reclaim encounters a page, memcg encounters a
872 		 *    page that is not marked for immediate reclaim or
873 		 *    the caller does not have __GFP_IO. In this case mark
874 		 *    the page for immediate reclaim and continue scanning.
875 		 *
876 		 *    __GFP_IO is checked  because a loop driver thread might
877 		 *    enter reclaim, and deadlock if it waits on a page for
878 		 *    which it is needed to do the write (loop masks off
879 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
880 		 *    would probably show more reasons.
881 		 *
882 		 *    Don't require __GFP_FS, since we're not going into the
883 		 *    FS, just waiting on its writeback completion. Worryingly,
884 		 *    ext4 gfs2 and xfs allocate pages with
885 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
886 		 *    may_enter_fs here is liable to OOM on them.
887 		 *
888 		 * 3) memcg encounters a page that is not already marked
889 		 *    PageReclaim. memcg does not have any dirty pages
890 		 *    throttling so we could easily OOM just because too many
891 		 *    pages are in writeback and there is nothing else to
892 		 *    reclaim. Wait for the writeback to complete.
893 		 */
894 		if (PageWriteback(page)) {
895 			/* Case 1 above */
896 			if (current_is_kswapd() &&
897 			    PageReclaim(page) &&
898 			    zone_is_reclaim_writeback(zone)) {
899 				nr_immediate++;
900 				goto keep_locked;
901 
902 			/* Case 2 above */
903 			} else if (global_reclaim(sc) ||
904 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
905 				/*
906 				 * This is slightly racy - end_page_writeback()
907 				 * might have just cleared PageReclaim, then
908 				 * setting PageReclaim here end up interpreted
909 				 * as PageReadahead - but that does not matter
910 				 * enough to care.  What we do want is for this
911 				 * page to have PageReclaim set next time memcg
912 				 * reclaim reaches the tests above, so it will
913 				 * then wait_on_page_writeback() to avoid OOM;
914 				 * and it's also appropriate in global reclaim.
915 				 */
916 				SetPageReclaim(page);
917 				nr_writeback++;
918 
919 				goto keep_locked;
920 
921 			/* Case 3 above */
922 			} else {
923 				wait_on_page_writeback(page);
924 			}
925 		}
926 
927 		if (!force_reclaim)
928 			references = page_check_references(page, sc);
929 
930 		switch (references) {
931 		case PAGEREF_ACTIVATE:
932 			goto activate_locked;
933 		case PAGEREF_KEEP:
934 			goto keep_locked;
935 		case PAGEREF_RECLAIM:
936 		case PAGEREF_RECLAIM_CLEAN:
937 			; /* try to reclaim the page below */
938 		}
939 
940 		/*
941 		 * Anonymous process memory has backing store?
942 		 * Try to allocate it some swap space here.
943 		 */
944 		if (PageAnon(page) && !PageSwapCache(page)) {
945 			if (!(sc->gfp_mask & __GFP_IO))
946 				goto keep_locked;
947 			if (!add_to_swap(page, page_list))
948 				goto activate_locked;
949 			may_enter_fs = 1;
950 
951 			/* Adding to swap updated mapping */
952 			mapping = page_mapping(page);
953 		}
954 
955 		/*
956 		 * The page is mapped into the page tables of one or more
957 		 * processes. Try to unmap it here.
958 		 */
959 		if (page_mapped(page) && mapping) {
960 			switch (try_to_unmap(page, ttu_flags)) {
961 			case SWAP_FAIL:
962 				goto activate_locked;
963 			case SWAP_AGAIN:
964 				goto keep_locked;
965 			case SWAP_MLOCK:
966 				goto cull_mlocked;
967 			case SWAP_SUCCESS:
968 				; /* try to free the page below */
969 			}
970 		}
971 
972 		if (PageDirty(page)) {
973 			/*
974 			 * Only kswapd can writeback filesystem pages to
975 			 * avoid risk of stack overflow but only writeback
976 			 * if many dirty pages have been encountered.
977 			 */
978 			if (page_is_file_cache(page) &&
979 					(!current_is_kswapd() ||
980 					 !zone_is_reclaim_dirty(zone))) {
981 				/*
982 				 * Immediately reclaim when written back.
983 				 * Similar in principal to deactivate_page()
984 				 * except we already have the page isolated
985 				 * and know it's dirty
986 				 */
987 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
988 				SetPageReclaim(page);
989 
990 				goto keep_locked;
991 			}
992 
993 			if (references == PAGEREF_RECLAIM_CLEAN)
994 				goto keep_locked;
995 			if (!may_enter_fs)
996 				goto keep_locked;
997 			if (!sc->may_writepage)
998 				goto keep_locked;
999 
1000 			/* Page is dirty, try to write it out here */
1001 			switch (pageout(page, mapping, sc)) {
1002 			case PAGE_KEEP:
1003 				goto keep_locked;
1004 			case PAGE_ACTIVATE:
1005 				goto activate_locked;
1006 			case PAGE_SUCCESS:
1007 				if (PageWriteback(page))
1008 					goto keep;
1009 				if (PageDirty(page))
1010 					goto keep;
1011 
1012 				/*
1013 				 * A synchronous write - probably a ramdisk.  Go
1014 				 * ahead and try to reclaim the page.
1015 				 */
1016 				if (!trylock_page(page))
1017 					goto keep;
1018 				if (PageDirty(page) || PageWriteback(page))
1019 					goto keep_locked;
1020 				mapping = page_mapping(page);
1021 			case PAGE_CLEAN:
1022 				; /* try to free the page below */
1023 			}
1024 		}
1025 
1026 		/*
1027 		 * If the page has buffers, try to free the buffer mappings
1028 		 * associated with this page. If we succeed we try to free
1029 		 * the page as well.
1030 		 *
1031 		 * We do this even if the page is PageDirty().
1032 		 * try_to_release_page() does not perform I/O, but it is
1033 		 * possible for a page to have PageDirty set, but it is actually
1034 		 * clean (all its buffers are clean).  This happens if the
1035 		 * buffers were written out directly, with submit_bh(). ext3
1036 		 * will do this, as well as the blockdev mapping.
1037 		 * try_to_release_page() will discover that cleanness and will
1038 		 * drop the buffers and mark the page clean - it can be freed.
1039 		 *
1040 		 * Rarely, pages can have buffers and no ->mapping.  These are
1041 		 * the pages which were not successfully invalidated in
1042 		 * truncate_complete_page().  We try to drop those buffers here
1043 		 * and if that worked, and the page is no longer mapped into
1044 		 * process address space (page_count == 1) it can be freed.
1045 		 * Otherwise, leave the page on the LRU so it is swappable.
1046 		 */
1047 		if (page_has_private(page)) {
1048 			if (!try_to_release_page(page, sc->gfp_mask))
1049 				goto activate_locked;
1050 			if (!mapping && page_count(page) == 1) {
1051 				unlock_page(page);
1052 				if (put_page_testzero(page))
1053 					goto free_it;
1054 				else {
1055 					/*
1056 					 * rare race with speculative reference.
1057 					 * the speculative reference will free
1058 					 * this page shortly, so we may
1059 					 * increment nr_reclaimed here (and
1060 					 * leave it off the LRU).
1061 					 */
1062 					nr_reclaimed++;
1063 					continue;
1064 				}
1065 			}
1066 		}
1067 
1068 		if (!mapping || !__remove_mapping(mapping, page))
1069 			goto keep_locked;
1070 
1071 		/*
1072 		 * At this point, we have no other references and there is
1073 		 * no way to pick any more up (removed from LRU, removed
1074 		 * from pagecache). Can use non-atomic bitops now (and
1075 		 * we obviously don't have to worry about waking up a process
1076 		 * waiting on the page lock, because there are no references.
1077 		 */
1078 		__clear_page_locked(page);
1079 free_it:
1080 		nr_reclaimed++;
1081 
1082 		/*
1083 		 * Is there need to periodically free_page_list? It would
1084 		 * appear not as the counts should be low
1085 		 */
1086 		list_add(&page->lru, &free_pages);
1087 		continue;
1088 
1089 cull_mlocked:
1090 		if (PageSwapCache(page))
1091 			try_to_free_swap(page);
1092 		unlock_page(page);
1093 		putback_lru_page(page);
1094 		continue;
1095 
1096 activate_locked:
1097 		/* Not a candidate for swapping, so reclaim swap space. */
1098 		if (PageSwapCache(page) && vm_swap_full())
1099 			try_to_free_swap(page);
1100 		VM_BUG_ON_PAGE(PageActive(page), page);
1101 		SetPageActive(page);
1102 		pgactivate++;
1103 keep_locked:
1104 		unlock_page(page);
1105 keep:
1106 		list_add(&page->lru, &ret_pages);
1107 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1108 	}
1109 
1110 	free_hot_cold_page_list(&free_pages, 1);
1111 
1112 	list_splice(&ret_pages, page_list);
1113 	count_vm_events(PGACTIVATE, pgactivate);
1114 	mem_cgroup_uncharge_end();
1115 	*ret_nr_dirty += nr_dirty;
1116 	*ret_nr_congested += nr_congested;
1117 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1118 	*ret_nr_writeback += nr_writeback;
1119 	*ret_nr_immediate += nr_immediate;
1120 	return nr_reclaimed;
1121 }
1122 
1123 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1124 					    struct list_head *page_list)
1125 {
1126 	struct scan_control sc = {
1127 		.gfp_mask = GFP_KERNEL,
1128 		.priority = DEF_PRIORITY,
1129 		.may_unmap = 1,
1130 	};
1131 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1132 	struct page *page, *next;
1133 	LIST_HEAD(clean_pages);
1134 
1135 	list_for_each_entry_safe(page, next, page_list, lru) {
1136 		if (page_is_file_cache(page) && !PageDirty(page) &&
1137 		    !isolated_balloon_page(page)) {
1138 			ClearPageActive(page);
1139 			list_move(&page->lru, &clean_pages);
1140 		}
1141 	}
1142 
1143 	ret = shrink_page_list(&clean_pages, zone, &sc,
1144 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1145 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1146 	list_splice(&clean_pages, page_list);
1147 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Attempt to remove the specified page from its LRU.  Only take this page
1153  * if it is of the appropriate PageActive status.  Pages which are being
1154  * freed elsewhere are also ignored.
1155  *
1156  * page:	page to consider
1157  * mode:	one of the LRU isolation modes defined above
1158  *
1159  * returns 0 on success, -ve errno on failure.
1160  */
1161 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1162 {
1163 	int ret = -EINVAL;
1164 
1165 	/* Only take pages on the LRU. */
1166 	if (!PageLRU(page))
1167 		return ret;
1168 
1169 	/* Compaction should not handle unevictable pages but CMA can do so */
1170 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1171 		return ret;
1172 
1173 	ret = -EBUSY;
1174 
1175 	/*
1176 	 * To minimise LRU disruption, the caller can indicate that it only
1177 	 * wants to isolate pages it will be able to operate on without
1178 	 * blocking - clean pages for the most part.
1179 	 *
1180 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1181 	 * is used by reclaim when it is cannot write to backing storage
1182 	 *
1183 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1184 	 * that it is possible to migrate without blocking
1185 	 */
1186 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1187 		/* All the caller can do on PageWriteback is block */
1188 		if (PageWriteback(page))
1189 			return ret;
1190 
1191 		if (PageDirty(page)) {
1192 			struct address_space *mapping;
1193 
1194 			/* ISOLATE_CLEAN means only clean pages */
1195 			if (mode & ISOLATE_CLEAN)
1196 				return ret;
1197 
1198 			/*
1199 			 * Only pages without mappings or that have a
1200 			 * ->migratepage callback are possible to migrate
1201 			 * without blocking
1202 			 */
1203 			mapping = page_mapping(page);
1204 			if (mapping && !mapping->a_ops->migratepage)
1205 				return ret;
1206 		}
1207 	}
1208 
1209 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1210 		return ret;
1211 
1212 	if (likely(get_page_unless_zero(page))) {
1213 		/*
1214 		 * Be careful not to clear PageLRU until after we're
1215 		 * sure the page is not being freed elsewhere -- the
1216 		 * page release code relies on it.
1217 		 */
1218 		ClearPageLRU(page);
1219 		ret = 0;
1220 	}
1221 
1222 	return ret;
1223 }
1224 
1225 /*
1226  * zone->lru_lock is heavily contended.  Some of the functions that
1227  * shrink the lists perform better by taking out a batch of pages
1228  * and working on them outside the LRU lock.
1229  *
1230  * For pagecache intensive workloads, this function is the hottest
1231  * spot in the kernel (apart from copy_*_user functions).
1232  *
1233  * Appropriate locks must be held before calling this function.
1234  *
1235  * @nr_to_scan:	The number of pages to look through on the list.
1236  * @lruvec:	The LRU vector to pull pages from.
1237  * @dst:	The temp list to put pages on to.
1238  * @nr_scanned:	The number of pages that were scanned.
1239  * @sc:		The scan_control struct for this reclaim session
1240  * @mode:	One of the LRU isolation modes
1241  * @lru:	LRU list id for isolating
1242  *
1243  * returns how many pages were moved onto *@dst.
1244  */
1245 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1246 		struct lruvec *lruvec, struct list_head *dst,
1247 		unsigned long *nr_scanned, struct scan_control *sc,
1248 		isolate_mode_t mode, enum lru_list lru)
1249 {
1250 	struct list_head *src = &lruvec->lists[lru];
1251 	unsigned long nr_taken = 0;
1252 	unsigned long scan;
1253 
1254 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1255 		struct page *page;
1256 		int nr_pages;
1257 
1258 		page = lru_to_page(src);
1259 		prefetchw_prev_lru_page(page, src, flags);
1260 
1261 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1262 
1263 		switch (__isolate_lru_page(page, mode)) {
1264 		case 0:
1265 			nr_pages = hpage_nr_pages(page);
1266 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1267 			list_move(&page->lru, dst);
1268 			nr_taken += nr_pages;
1269 			break;
1270 
1271 		case -EBUSY:
1272 			/* else it is being freed elsewhere */
1273 			list_move(&page->lru, src);
1274 			continue;
1275 
1276 		default:
1277 			BUG();
1278 		}
1279 	}
1280 
1281 	*nr_scanned = scan;
1282 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1283 				    nr_taken, mode, is_file_lru(lru));
1284 	return nr_taken;
1285 }
1286 
1287 /**
1288  * isolate_lru_page - tries to isolate a page from its LRU list
1289  * @page: page to isolate from its LRU list
1290  *
1291  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1292  * vmstat statistic corresponding to whatever LRU list the page was on.
1293  *
1294  * Returns 0 if the page was removed from an LRU list.
1295  * Returns -EBUSY if the page was not on an LRU list.
1296  *
1297  * The returned page will have PageLRU() cleared.  If it was found on
1298  * the active list, it will have PageActive set.  If it was found on
1299  * the unevictable list, it will have the PageUnevictable bit set. That flag
1300  * may need to be cleared by the caller before letting the page go.
1301  *
1302  * The vmstat statistic corresponding to the list on which the page was
1303  * found will be decremented.
1304  *
1305  * Restrictions:
1306  * (1) Must be called with an elevated refcount on the page. This is a
1307  *     fundamentnal difference from isolate_lru_pages (which is called
1308  *     without a stable reference).
1309  * (2) the lru_lock must not be held.
1310  * (3) interrupts must be enabled.
1311  */
1312 int isolate_lru_page(struct page *page)
1313 {
1314 	int ret = -EBUSY;
1315 
1316 	VM_BUG_ON_PAGE(!page_count(page), page);
1317 
1318 	if (PageLRU(page)) {
1319 		struct zone *zone = page_zone(page);
1320 		struct lruvec *lruvec;
1321 
1322 		spin_lock_irq(&zone->lru_lock);
1323 		lruvec = mem_cgroup_page_lruvec(page, zone);
1324 		if (PageLRU(page)) {
1325 			int lru = page_lru(page);
1326 			get_page(page);
1327 			ClearPageLRU(page);
1328 			del_page_from_lru_list(page, lruvec, lru);
1329 			ret = 0;
1330 		}
1331 		spin_unlock_irq(&zone->lru_lock);
1332 	}
1333 	return ret;
1334 }
1335 
1336 /*
1337  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1338  * then get resheduled. When there are massive number of tasks doing page
1339  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1340  * the LRU list will go small and be scanned faster than necessary, leading to
1341  * unnecessary swapping, thrashing and OOM.
1342  */
1343 static int too_many_isolated(struct zone *zone, int file,
1344 		struct scan_control *sc)
1345 {
1346 	unsigned long inactive, isolated;
1347 
1348 	if (current_is_kswapd())
1349 		return 0;
1350 
1351 	if (!global_reclaim(sc))
1352 		return 0;
1353 
1354 	if (file) {
1355 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1356 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1357 	} else {
1358 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1359 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1360 	}
1361 
1362 	/*
1363 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1364 	 * won't get blocked by normal direct-reclaimers, forming a circular
1365 	 * deadlock.
1366 	 */
1367 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1368 		inactive >>= 3;
1369 
1370 	return isolated > inactive;
1371 }
1372 
1373 static noinline_for_stack void
1374 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1375 {
1376 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1377 	struct zone *zone = lruvec_zone(lruvec);
1378 	LIST_HEAD(pages_to_free);
1379 
1380 	/*
1381 	 * Put back any unfreeable pages.
1382 	 */
1383 	while (!list_empty(page_list)) {
1384 		struct page *page = lru_to_page(page_list);
1385 		int lru;
1386 
1387 		VM_BUG_ON_PAGE(PageLRU(page), page);
1388 		list_del(&page->lru);
1389 		if (unlikely(!page_evictable(page))) {
1390 			spin_unlock_irq(&zone->lru_lock);
1391 			putback_lru_page(page);
1392 			spin_lock_irq(&zone->lru_lock);
1393 			continue;
1394 		}
1395 
1396 		lruvec = mem_cgroup_page_lruvec(page, zone);
1397 
1398 		SetPageLRU(page);
1399 		lru = page_lru(page);
1400 		add_page_to_lru_list(page, lruvec, lru);
1401 
1402 		if (is_active_lru(lru)) {
1403 			int file = is_file_lru(lru);
1404 			int numpages = hpage_nr_pages(page);
1405 			reclaim_stat->recent_rotated[file] += numpages;
1406 		}
1407 		if (put_page_testzero(page)) {
1408 			__ClearPageLRU(page);
1409 			__ClearPageActive(page);
1410 			del_page_from_lru_list(page, lruvec, lru);
1411 
1412 			if (unlikely(PageCompound(page))) {
1413 				spin_unlock_irq(&zone->lru_lock);
1414 				(*get_compound_page_dtor(page))(page);
1415 				spin_lock_irq(&zone->lru_lock);
1416 			} else
1417 				list_add(&page->lru, &pages_to_free);
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * To save our caller's stack, now use input list for pages to free.
1423 	 */
1424 	list_splice(&pages_to_free, page_list);
1425 }
1426 
1427 /*
1428  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1429  * of reclaimed pages
1430  */
1431 static noinline_for_stack unsigned long
1432 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1433 		     struct scan_control *sc, enum lru_list lru)
1434 {
1435 	LIST_HEAD(page_list);
1436 	unsigned long nr_scanned;
1437 	unsigned long nr_reclaimed = 0;
1438 	unsigned long nr_taken;
1439 	unsigned long nr_dirty = 0;
1440 	unsigned long nr_congested = 0;
1441 	unsigned long nr_unqueued_dirty = 0;
1442 	unsigned long nr_writeback = 0;
1443 	unsigned long nr_immediate = 0;
1444 	isolate_mode_t isolate_mode = 0;
1445 	int file = is_file_lru(lru);
1446 	struct zone *zone = lruvec_zone(lruvec);
1447 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1448 
1449 	while (unlikely(too_many_isolated(zone, file, sc))) {
1450 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1451 
1452 		/* We are about to die and free our memory. Return now. */
1453 		if (fatal_signal_pending(current))
1454 			return SWAP_CLUSTER_MAX;
1455 	}
1456 
1457 	lru_add_drain();
1458 
1459 	if (!sc->may_unmap)
1460 		isolate_mode |= ISOLATE_UNMAPPED;
1461 	if (!sc->may_writepage)
1462 		isolate_mode |= ISOLATE_CLEAN;
1463 
1464 	spin_lock_irq(&zone->lru_lock);
1465 
1466 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1467 				     &nr_scanned, sc, isolate_mode, lru);
1468 
1469 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1470 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1471 
1472 	if (global_reclaim(sc)) {
1473 		zone->pages_scanned += nr_scanned;
1474 		if (current_is_kswapd())
1475 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1476 		else
1477 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1478 	}
1479 	spin_unlock_irq(&zone->lru_lock);
1480 
1481 	if (nr_taken == 0)
1482 		return 0;
1483 
1484 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1485 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1486 				&nr_writeback, &nr_immediate,
1487 				false);
1488 
1489 	spin_lock_irq(&zone->lru_lock);
1490 
1491 	reclaim_stat->recent_scanned[file] += nr_taken;
1492 
1493 	if (global_reclaim(sc)) {
1494 		if (current_is_kswapd())
1495 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1496 					       nr_reclaimed);
1497 		else
1498 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1499 					       nr_reclaimed);
1500 	}
1501 
1502 	putback_inactive_pages(lruvec, &page_list);
1503 
1504 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1505 
1506 	spin_unlock_irq(&zone->lru_lock);
1507 
1508 	free_hot_cold_page_list(&page_list, 1);
1509 
1510 	/*
1511 	 * If reclaim is isolating dirty pages under writeback, it implies
1512 	 * that the long-lived page allocation rate is exceeding the page
1513 	 * laundering rate. Either the global limits are not being effective
1514 	 * at throttling processes due to the page distribution throughout
1515 	 * zones or there is heavy usage of a slow backing device. The
1516 	 * only option is to throttle from reclaim context which is not ideal
1517 	 * as there is no guarantee the dirtying process is throttled in the
1518 	 * same way balance_dirty_pages() manages.
1519 	 *
1520 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1521 	 * of pages under pages flagged for immediate reclaim and stall if any
1522 	 * are encountered in the nr_immediate check below.
1523 	 */
1524 	if (nr_writeback && nr_writeback == nr_taken)
1525 		zone_set_flag(zone, ZONE_WRITEBACK);
1526 
1527 	/*
1528 	 * memcg will stall in page writeback so only consider forcibly
1529 	 * stalling for global reclaim
1530 	 */
1531 	if (global_reclaim(sc)) {
1532 		/*
1533 		 * Tag a zone as congested if all the dirty pages scanned were
1534 		 * backed by a congested BDI and wait_iff_congested will stall.
1535 		 */
1536 		if (nr_dirty && nr_dirty == nr_congested)
1537 			zone_set_flag(zone, ZONE_CONGESTED);
1538 
1539 		/*
1540 		 * If dirty pages are scanned that are not queued for IO, it
1541 		 * implies that flushers are not keeping up. In this case, flag
1542 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1543 		 * pages from reclaim context. It will forcibly stall in the
1544 		 * next check.
1545 		 */
1546 		if (nr_unqueued_dirty == nr_taken)
1547 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1548 
1549 		/*
1550 		 * In addition, if kswapd scans pages marked marked for
1551 		 * immediate reclaim and under writeback (nr_immediate), it
1552 		 * implies that pages are cycling through the LRU faster than
1553 		 * they are written so also forcibly stall.
1554 		 */
1555 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1556 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1557 	}
1558 
1559 	/*
1560 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1561 	 * is congested. Allow kswapd to continue until it starts encountering
1562 	 * unqueued dirty pages or cycling through the LRU too quickly.
1563 	 */
1564 	if (!sc->hibernation_mode && !current_is_kswapd())
1565 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1566 
1567 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1568 		zone_idx(zone),
1569 		nr_scanned, nr_reclaimed,
1570 		sc->priority,
1571 		trace_shrink_flags(file));
1572 	return nr_reclaimed;
1573 }
1574 
1575 /*
1576  * This moves pages from the active list to the inactive list.
1577  *
1578  * We move them the other way if the page is referenced by one or more
1579  * processes, from rmap.
1580  *
1581  * If the pages are mostly unmapped, the processing is fast and it is
1582  * appropriate to hold zone->lru_lock across the whole operation.  But if
1583  * the pages are mapped, the processing is slow (page_referenced()) so we
1584  * should drop zone->lru_lock around each page.  It's impossible to balance
1585  * this, so instead we remove the pages from the LRU while processing them.
1586  * It is safe to rely on PG_active against the non-LRU pages in here because
1587  * nobody will play with that bit on a non-LRU page.
1588  *
1589  * The downside is that we have to touch page->_count against each page.
1590  * But we had to alter page->flags anyway.
1591  */
1592 
1593 static void move_active_pages_to_lru(struct lruvec *lruvec,
1594 				     struct list_head *list,
1595 				     struct list_head *pages_to_free,
1596 				     enum lru_list lru)
1597 {
1598 	struct zone *zone = lruvec_zone(lruvec);
1599 	unsigned long pgmoved = 0;
1600 	struct page *page;
1601 	int nr_pages;
1602 
1603 	while (!list_empty(list)) {
1604 		page = lru_to_page(list);
1605 		lruvec = mem_cgroup_page_lruvec(page, zone);
1606 
1607 		VM_BUG_ON_PAGE(PageLRU(page), page);
1608 		SetPageLRU(page);
1609 
1610 		nr_pages = hpage_nr_pages(page);
1611 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1612 		list_move(&page->lru, &lruvec->lists[lru]);
1613 		pgmoved += nr_pages;
1614 
1615 		if (put_page_testzero(page)) {
1616 			__ClearPageLRU(page);
1617 			__ClearPageActive(page);
1618 			del_page_from_lru_list(page, lruvec, lru);
1619 
1620 			if (unlikely(PageCompound(page))) {
1621 				spin_unlock_irq(&zone->lru_lock);
1622 				(*get_compound_page_dtor(page))(page);
1623 				spin_lock_irq(&zone->lru_lock);
1624 			} else
1625 				list_add(&page->lru, pages_to_free);
1626 		}
1627 	}
1628 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1629 	if (!is_active_lru(lru))
1630 		__count_vm_events(PGDEACTIVATE, pgmoved);
1631 }
1632 
1633 static void shrink_active_list(unsigned long nr_to_scan,
1634 			       struct lruvec *lruvec,
1635 			       struct scan_control *sc,
1636 			       enum lru_list lru)
1637 {
1638 	unsigned long nr_taken;
1639 	unsigned long nr_scanned;
1640 	unsigned long vm_flags;
1641 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1642 	LIST_HEAD(l_active);
1643 	LIST_HEAD(l_inactive);
1644 	struct page *page;
1645 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1646 	unsigned long nr_rotated = 0;
1647 	isolate_mode_t isolate_mode = 0;
1648 	int file = is_file_lru(lru);
1649 	struct zone *zone = lruvec_zone(lruvec);
1650 
1651 	lru_add_drain();
1652 
1653 	if (!sc->may_unmap)
1654 		isolate_mode |= ISOLATE_UNMAPPED;
1655 	if (!sc->may_writepage)
1656 		isolate_mode |= ISOLATE_CLEAN;
1657 
1658 	spin_lock_irq(&zone->lru_lock);
1659 
1660 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1661 				     &nr_scanned, sc, isolate_mode, lru);
1662 	if (global_reclaim(sc))
1663 		zone->pages_scanned += nr_scanned;
1664 
1665 	reclaim_stat->recent_scanned[file] += nr_taken;
1666 
1667 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1668 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1669 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1670 	spin_unlock_irq(&zone->lru_lock);
1671 
1672 	while (!list_empty(&l_hold)) {
1673 		cond_resched();
1674 		page = lru_to_page(&l_hold);
1675 		list_del(&page->lru);
1676 
1677 		if (unlikely(!page_evictable(page))) {
1678 			putback_lru_page(page);
1679 			continue;
1680 		}
1681 
1682 		if (unlikely(buffer_heads_over_limit)) {
1683 			if (page_has_private(page) && trylock_page(page)) {
1684 				if (page_has_private(page))
1685 					try_to_release_page(page, 0);
1686 				unlock_page(page);
1687 			}
1688 		}
1689 
1690 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1691 				    &vm_flags)) {
1692 			nr_rotated += hpage_nr_pages(page);
1693 			/*
1694 			 * Identify referenced, file-backed active pages and
1695 			 * give them one more trip around the active list. So
1696 			 * that executable code get better chances to stay in
1697 			 * memory under moderate memory pressure.  Anon pages
1698 			 * are not likely to be evicted by use-once streaming
1699 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1700 			 * so we ignore them here.
1701 			 */
1702 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1703 				list_add(&page->lru, &l_active);
1704 				continue;
1705 			}
1706 		}
1707 
1708 		ClearPageActive(page);	/* we are de-activating */
1709 		list_add(&page->lru, &l_inactive);
1710 	}
1711 
1712 	/*
1713 	 * Move pages back to the lru list.
1714 	 */
1715 	spin_lock_irq(&zone->lru_lock);
1716 	/*
1717 	 * Count referenced pages from currently used mappings as rotated,
1718 	 * even though only some of them are actually re-activated.  This
1719 	 * helps balance scan pressure between file and anonymous pages in
1720 	 * get_scan_ratio.
1721 	 */
1722 	reclaim_stat->recent_rotated[file] += nr_rotated;
1723 
1724 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1725 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1726 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1727 	spin_unlock_irq(&zone->lru_lock);
1728 
1729 	free_hot_cold_page_list(&l_hold, 1);
1730 }
1731 
1732 #ifdef CONFIG_SWAP
1733 static int inactive_anon_is_low_global(struct zone *zone)
1734 {
1735 	unsigned long active, inactive;
1736 
1737 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1738 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1739 
1740 	if (inactive * zone->inactive_ratio < active)
1741 		return 1;
1742 
1743 	return 0;
1744 }
1745 
1746 /**
1747  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1748  * @lruvec: LRU vector to check
1749  *
1750  * Returns true if the zone does not have enough inactive anon pages,
1751  * meaning some active anon pages need to be deactivated.
1752  */
1753 static int inactive_anon_is_low(struct lruvec *lruvec)
1754 {
1755 	/*
1756 	 * If we don't have swap space, anonymous page deactivation
1757 	 * is pointless.
1758 	 */
1759 	if (!total_swap_pages)
1760 		return 0;
1761 
1762 	if (!mem_cgroup_disabled())
1763 		return mem_cgroup_inactive_anon_is_low(lruvec);
1764 
1765 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1766 }
1767 #else
1768 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1769 {
1770 	return 0;
1771 }
1772 #endif
1773 
1774 /**
1775  * inactive_file_is_low - check if file pages need to be deactivated
1776  * @lruvec: LRU vector to check
1777  *
1778  * When the system is doing streaming IO, memory pressure here
1779  * ensures that active file pages get deactivated, until more
1780  * than half of the file pages are on the inactive list.
1781  *
1782  * Once we get to that situation, protect the system's working
1783  * set from being evicted by disabling active file page aging.
1784  *
1785  * This uses a different ratio than the anonymous pages, because
1786  * the page cache uses a use-once replacement algorithm.
1787  */
1788 static int inactive_file_is_low(struct lruvec *lruvec)
1789 {
1790 	unsigned long inactive;
1791 	unsigned long active;
1792 
1793 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1794 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1795 
1796 	return active > inactive;
1797 }
1798 
1799 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1800 {
1801 	if (is_file_lru(lru))
1802 		return inactive_file_is_low(lruvec);
1803 	else
1804 		return inactive_anon_is_low(lruvec);
1805 }
1806 
1807 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1808 				 struct lruvec *lruvec, struct scan_control *sc)
1809 {
1810 	if (is_active_lru(lru)) {
1811 		if (inactive_list_is_low(lruvec, lru))
1812 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1813 		return 0;
1814 	}
1815 
1816 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1817 }
1818 
1819 static int vmscan_swappiness(struct scan_control *sc)
1820 {
1821 	if (global_reclaim(sc))
1822 		return vm_swappiness;
1823 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1824 }
1825 
1826 enum scan_balance {
1827 	SCAN_EQUAL,
1828 	SCAN_FRACT,
1829 	SCAN_ANON,
1830 	SCAN_FILE,
1831 };
1832 
1833 /*
1834  * Determine how aggressively the anon and file LRU lists should be
1835  * scanned.  The relative value of each set of LRU lists is determined
1836  * by looking at the fraction of the pages scanned we did rotate back
1837  * onto the active list instead of evict.
1838  *
1839  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1840  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1841  */
1842 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1843 			   unsigned long *nr)
1844 {
1845 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1846 	u64 fraction[2];
1847 	u64 denominator = 0;	/* gcc */
1848 	struct zone *zone = lruvec_zone(lruvec);
1849 	unsigned long anon_prio, file_prio;
1850 	enum scan_balance scan_balance;
1851 	unsigned long anon, file, free;
1852 	bool force_scan = false;
1853 	unsigned long ap, fp;
1854 	enum lru_list lru;
1855 
1856 	/*
1857 	 * If the zone or memcg is small, nr[l] can be 0.  This
1858 	 * results in no scanning on this priority and a potential
1859 	 * priority drop.  Global direct reclaim can go to the next
1860 	 * zone and tends to have no problems. Global kswapd is for
1861 	 * zone balancing and it needs to scan a minimum amount. When
1862 	 * reclaiming for a memcg, a priority drop can cause high
1863 	 * latencies, so it's better to scan a minimum amount there as
1864 	 * well.
1865 	 */
1866 	if (current_is_kswapd() && !zone_reclaimable(zone))
1867 		force_scan = true;
1868 	if (!global_reclaim(sc))
1869 		force_scan = true;
1870 
1871 	/* If we have no swap space, do not bother scanning anon pages. */
1872 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1873 		scan_balance = SCAN_FILE;
1874 		goto out;
1875 	}
1876 
1877 	/*
1878 	 * Global reclaim will swap to prevent OOM even with no
1879 	 * swappiness, but memcg users want to use this knob to
1880 	 * disable swapping for individual groups completely when
1881 	 * using the memory controller's swap limit feature would be
1882 	 * too expensive.
1883 	 */
1884 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1885 		scan_balance = SCAN_FILE;
1886 		goto out;
1887 	}
1888 
1889 	/*
1890 	 * Do not apply any pressure balancing cleverness when the
1891 	 * system is close to OOM, scan both anon and file equally
1892 	 * (unless the swappiness setting disagrees with swapping).
1893 	 */
1894 	if (!sc->priority && vmscan_swappiness(sc)) {
1895 		scan_balance = SCAN_EQUAL;
1896 		goto out;
1897 	}
1898 
1899 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1900 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1901 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1902 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1903 
1904 	/*
1905 	 * If it's foreseeable that reclaiming the file cache won't be
1906 	 * enough to get the zone back into a desirable shape, we have
1907 	 * to swap.  Better start now and leave the - probably heavily
1908 	 * thrashing - remaining file pages alone.
1909 	 */
1910 	if (global_reclaim(sc)) {
1911 		free = zone_page_state(zone, NR_FREE_PAGES);
1912 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1913 			scan_balance = SCAN_ANON;
1914 			goto out;
1915 		}
1916 	}
1917 
1918 	/*
1919 	 * There is enough inactive page cache, do not reclaim
1920 	 * anything from the anonymous working set right now.
1921 	 */
1922 	if (!inactive_file_is_low(lruvec)) {
1923 		scan_balance = SCAN_FILE;
1924 		goto out;
1925 	}
1926 
1927 	scan_balance = SCAN_FRACT;
1928 
1929 	/*
1930 	 * With swappiness at 100, anonymous and file have the same priority.
1931 	 * This scanning priority is essentially the inverse of IO cost.
1932 	 */
1933 	anon_prio = vmscan_swappiness(sc);
1934 	file_prio = 200 - anon_prio;
1935 
1936 	/*
1937 	 * OK, so we have swap space and a fair amount of page cache
1938 	 * pages.  We use the recently rotated / recently scanned
1939 	 * ratios to determine how valuable each cache is.
1940 	 *
1941 	 * Because workloads change over time (and to avoid overflow)
1942 	 * we keep these statistics as a floating average, which ends
1943 	 * up weighing recent references more than old ones.
1944 	 *
1945 	 * anon in [0], file in [1]
1946 	 */
1947 	spin_lock_irq(&zone->lru_lock);
1948 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1949 		reclaim_stat->recent_scanned[0] /= 2;
1950 		reclaim_stat->recent_rotated[0] /= 2;
1951 	}
1952 
1953 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1954 		reclaim_stat->recent_scanned[1] /= 2;
1955 		reclaim_stat->recent_rotated[1] /= 2;
1956 	}
1957 
1958 	/*
1959 	 * The amount of pressure on anon vs file pages is inversely
1960 	 * proportional to the fraction of recently scanned pages on
1961 	 * each list that were recently referenced and in active use.
1962 	 */
1963 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1964 	ap /= reclaim_stat->recent_rotated[0] + 1;
1965 
1966 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1967 	fp /= reclaim_stat->recent_rotated[1] + 1;
1968 	spin_unlock_irq(&zone->lru_lock);
1969 
1970 	fraction[0] = ap;
1971 	fraction[1] = fp;
1972 	denominator = ap + fp + 1;
1973 out:
1974 	for_each_evictable_lru(lru) {
1975 		int file = is_file_lru(lru);
1976 		unsigned long size;
1977 		unsigned long scan;
1978 
1979 		size = get_lru_size(lruvec, lru);
1980 		scan = size >> sc->priority;
1981 
1982 		if (!scan && force_scan)
1983 			scan = min(size, SWAP_CLUSTER_MAX);
1984 
1985 		switch (scan_balance) {
1986 		case SCAN_EQUAL:
1987 			/* Scan lists relative to size */
1988 			break;
1989 		case SCAN_FRACT:
1990 			/*
1991 			 * Scan types proportional to swappiness and
1992 			 * their relative recent reclaim efficiency.
1993 			 */
1994 			scan = div64_u64(scan * fraction[file], denominator);
1995 			break;
1996 		case SCAN_FILE:
1997 		case SCAN_ANON:
1998 			/* Scan one type exclusively */
1999 			if ((scan_balance == SCAN_FILE) != file)
2000 				scan = 0;
2001 			break;
2002 		default:
2003 			/* Look ma, no brain */
2004 			BUG();
2005 		}
2006 		nr[lru] = scan;
2007 	}
2008 }
2009 
2010 /*
2011  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2012  */
2013 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2014 {
2015 	unsigned long nr[NR_LRU_LISTS];
2016 	unsigned long targets[NR_LRU_LISTS];
2017 	unsigned long nr_to_scan;
2018 	enum lru_list lru;
2019 	unsigned long nr_reclaimed = 0;
2020 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2021 	struct blk_plug plug;
2022 	bool scan_adjusted = false;
2023 
2024 	get_scan_count(lruvec, sc, nr);
2025 
2026 	/* Record the original scan target for proportional adjustments later */
2027 	memcpy(targets, nr, sizeof(nr));
2028 
2029 	blk_start_plug(&plug);
2030 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2031 					nr[LRU_INACTIVE_FILE]) {
2032 		unsigned long nr_anon, nr_file, percentage;
2033 		unsigned long nr_scanned;
2034 
2035 		for_each_evictable_lru(lru) {
2036 			if (nr[lru]) {
2037 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2038 				nr[lru] -= nr_to_scan;
2039 
2040 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2041 							    lruvec, sc);
2042 			}
2043 		}
2044 
2045 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2046 			continue;
2047 
2048 		/*
2049 		 * For global direct reclaim, reclaim only the number of pages
2050 		 * requested. Less care is taken to scan proportionally as it
2051 		 * is more important to minimise direct reclaim stall latency
2052 		 * than it is to properly age the LRU lists.
2053 		 */
2054 		if (global_reclaim(sc) && !current_is_kswapd())
2055 			break;
2056 
2057 		/*
2058 		 * For kswapd and memcg, reclaim at least the number of pages
2059 		 * requested. Ensure that the anon and file LRUs shrink
2060 		 * proportionally what was requested by get_scan_count(). We
2061 		 * stop reclaiming one LRU and reduce the amount scanning
2062 		 * proportional to the original scan target.
2063 		 */
2064 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2065 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2066 
2067 		if (nr_file > nr_anon) {
2068 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2069 						targets[LRU_ACTIVE_ANON] + 1;
2070 			lru = LRU_BASE;
2071 			percentage = nr_anon * 100 / scan_target;
2072 		} else {
2073 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2074 						targets[LRU_ACTIVE_FILE] + 1;
2075 			lru = LRU_FILE;
2076 			percentage = nr_file * 100 / scan_target;
2077 		}
2078 
2079 		/* Stop scanning the smaller of the LRU */
2080 		nr[lru] = 0;
2081 		nr[lru + LRU_ACTIVE] = 0;
2082 
2083 		/*
2084 		 * Recalculate the other LRU scan count based on its original
2085 		 * scan target and the percentage scanning already complete
2086 		 */
2087 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2088 		nr_scanned = targets[lru] - nr[lru];
2089 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2090 		nr[lru] -= min(nr[lru], nr_scanned);
2091 
2092 		lru += LRU_ACTIVE;
2093 		nr_scanned = targets[lru] - nr[lru];
2094 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2095 		nr[lru] -= min(nr[lru], nr_scanned);
2096 
2097 		scan_adjusted = true;
2098 	}
2099 	blk_finish_plug(&plug);
2100 	sc->nr_reclaimed += nr_reclaimed;
2101 
2102 	/*
2103 	 * Even if we did not try to evict anon pages at all, we want to
2104 	 * rebalance the anon lru active/inactive ratio.
2105 	 */
2106 	if (inactive_anon_is_low(lruvec))
2107 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2108 				   sc, LRU_ACTIVE_ANON);
2109 
2110 	throttle_vm_writeout(sc->gfp_mask);
2111 }
2112 
2113 /* Use reclaim/compaction for costly allocs or under memory pressure */
2114 static bool in_reclaim_compaction(struct scan_control *sc)
2115 {
2116 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2117 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2118 			 sc->priority < DEF_PRIORITY - 2))
2119 		return true;
2120 
2121 	return false;
2122 }
2123 
2124 /*
2125  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2126  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2127  * true if more pages should be reclaimed such that when the page allocator
2128  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2129  * It will give up earlier than that if there is difficulty reclaiming pages.
2130  */
2131 static inline bool should_continue_reclaim(struct zone *zone,
2132 					unsigned long nr_reclaimed,
2133 					unsigned long nr_scanned,
2134 					struct scan_control *sc)
2135 {
2136 	unsigned long pages_for_compaction;
2137 	unsigned long inactive_lru_pages;
2138 
2139 	/* If not in reclaim/compaction mode, stop */
2140 	if (!in_reclaim_compaction(sc))
2141 		return false;
2142 
2143 	/* Consider stopping depending on scan and reclaim activity */
2144 	if (sc->gfp_mask & __GFP_REPEAT) {
2145 		/*
2146 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2147 		 * full LRU list has been scanned and we are still failing
2148 		 * to reclaim pages. This full LRU scan is potentially
2149 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2150 		 */
2151 		if (!nr_reclaimed && !nr_scanned)
2152 			return false;
2153 	} else {
2154 		/*
2155 		 * For non-__GFP_REPEAT allocations which can presumably
2156 		 * fail without consequence, stop if we failed to reclaim
2157 		 * any pages from the last SWAP_CLUSTER_MAX number of
2158 		 * pages that were scanned. This will return to the
2159 		 * caller faster at the risk reclaim/compaction and
2160 		 * the resulting allocation attempt fails
2161 		 */
2162 		if (!nr_reclaimed)
2163 			return false;
2164 	}
2165 
2166 	/*
2167 	 * If we have not reclaimed enough pages for compaction and the
2168 	 * inactive lists are large enough, continue reclaiming
2169 	 */
2170 	pages_for_compaction = (2UL << sc->order);
2171 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2172 	if (get_nr_swap_pages() > 0)
2173 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2174 	if (sc->nr_reclaimed < pages_for_compaction &&
2175 			inactive_lru_pages > pages_for_compaction)
2176 		return true;
2177 
2178 	/* If compaction would go ahead or the allocation would succeed, stop */
2179 	switch (compaction_suitable(zone, sc->order)) {
2180 	case COMPACT_PARTIAL:
2181 	case COMPACT_CONTINUE:
2182 		return false;
2183 	default:
2184 		return true;
2185 	}
2186 }
2187 
2188 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2189 {
2190 	unsigned long nr_reclaimed, nr_scanned;
2191 
2192 	do {
2193 		struct mem_cgroup *root = sc->target_mem_cgroup;
2194 		struct mem_cgroup_reclaim_cookie reclaim = {
2195 			.zone = zone,
2196 			.priority = sc->priority,
2197 		};
2198 		struct mem_cgroup *memcg;
2199 
2200 		nr_reclaimed = sc->nr_reclaimed;
2201 		nr_scanned = sc->nr_scanned;
2202 
2203 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2204 		do {
2205 			struct lruvec *lruvec;
2206 
2207 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2208 
2209 			shrink_lruvec(lruvec, sc);
2210 
2211 			/*
2212 			 * Direct reclaim and kswapd have to scan all memory
2213 			 * cgroups to fulfill the overall scan target for the
2214 			 * zone.
2215 			 *
2216 			 * Limit reclaim, on the other hand, only cares about
2217 			 * nr_to_reclaim pages to be reclaimed and it will
2218 			 * retry with decreasing priority if one round over the
2219 			 * whole hierarchy is not sufficient.
2220 			 */
2221 			if (!global_reclaim(sc) &&
2222 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2223 				mem_cgroup_iter_break(root, memcg);
2224 				break;
2225 			}
2226 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2227 		} while (memcg);
2228 
2229 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2230 			   sc->nr_scanned - nr_scanned,
2231 			   sc->nr_reclaimed - nr_reclaimed);
2232 
2233 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2234 					 sc->nr_scanned - nr_scanned, sc));
2235 }
2236 
2237 /* Returns true if compaction should go ahead for a high-order request */
2238 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2239 {
2240 	unsigned long balance_gap, watermark;
2241 	bool watermark_ok;
2242 
2243 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2244 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2245 		return false;
2246 
2247 	/*
2248 	 * Compaction takes time to run and there are potentially other
2249 	 * callers using the pages just freed. Continue reclaiming until
2250 	 * there is a buffer of free pages available to give compaction
2251 	 * a reasonable chance of completing and allocating the page
2252 	 */
2253 	balance_gap = min(low_wmark_pages(zone),
2254 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2255 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2256 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2257 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2258 
2259 	/*
2260 	 * If compaction is deferred, reclaim up to a point where
2261 	 * compaction will have a chance of success when re-enabled
2262 	 */
2263 	if (compaction_deferred(zone, sc->order))
2264 		return watermark_ok;
2265 
2266 	/* If compaction is not ready to start, keep reclaiming */
2267 	if (!compaction_suitable(zone, sc->order))
2268 		return false;
2269 
2270 	return watermark_ok;
2271 }
2272 
2273 /*
2274  * This is the direct reclaim path, for page-allocating processes.  We only
2275  * try to reclaim pages from zones which will satisfy the caller's allocation
2276  * request.
2277  *
2278  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2279  * Because:
2280  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2281  *    allocation or
2282  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2283  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2284  *    zone defense algorithm.
2285  *
2286  * If a zone is deemed to be full of pinned pages then just give it a light
2287  * scan then give up on it.
2288  *
2289  * This function returns true if a zone is being reclaimed for a costly
2290  * high-order allocation and compaction is ready to begin. This indicates to
2291  * the caller that it should consider retrying the allocation instead of
2292  * further reclaim.
2293  */
2294 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2295 {
2296 	struct zoneref *z;
2297 	struct zone *zone;
2298 	unsigned long nr_soft_reclaimed;
2299 	unsigned long nr_soft_scanned;
2300 	bool aborted_reclaim = false;
2301 
2302 	/*
2303 	 * If the number of buffer_heads in the machine exceeds the maximum
2304 	 * allowed level, force direct reclaim to scan the highmem zone as
2305 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2306 	 */
2307 	if (buffer_heads_over_limit)
2308 		sc->gfp_mask |= __GFP_HIGHMEM;
2309 
2310 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2311 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2312 		if (!populated_zone(zone))
2313 			continue;
2314 		/*
2315 		 * Take care memory controller reclaiming has small influence
2316 		 * to global LRU.
2317 		 */
2318 		if (global_reclaim(sc)) {
2319 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2320 				continue;
2321 			if (sc->priority != DEF_PRIORITY &&
2322 			    !zone_reclaimable(zone))
2323 				continue;	/* Let kswapd poll it */
2324 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2325 				/*
2326 				 * If we already have plenty of memory free for
2327 				 * compaction in this zone, don't free any more.
2328 				 * Even though compaction is invoked for any
2329 				 * non-zero order, only frequent costly order
2330 				 * reclamation is disruptive enough to become a
2331 				 * noticeable problem, like transparent huge
2332 				 * page allocations.
2333 				 */
2334 				if (compaction_ready(zone, sc)) {
2335 					aborted_reclaim = true;
2336 					continue;
2337 				}
2338 			}
2339 			/*
2340 			 * This steals pages from memory cgroups over softlimit
2341 			 * and returns the number of reclaimed pages and
2342 			 * scanned pages. This works for global memory pressure
2343 			 * and balancing, not for a memcg's limit.
2344 			 */
2345 			nr_soft_scanned = 0;
2346 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2347 						sc->order, sc->gfp_mask,
2348 						&nr_soft_scanned);
2349 			sc->nr_reclaimed += nr_soft_reclaimed;
2350 			sc->nr_scanned += nr_soft_scanned;
2351 			/* need some check for avoid more shrink_zone() */
2352 		}
2353 
2354 		shrink_zone(zone, sc);
2355 	}
2356 
2357 	return aborted_reclaim;
2358 }
2359 
2360 /* All zones in zonelist are unreclaimable? */
2361 static bool all_unreclaimable(struct zonelist *zonelist,
2362 		struct scan_control *sc)
2363 {
2364 	struct zoneref *z;
2365 	struct zone *zone;
2366 
2367 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2368 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2369 		if (!populated_zone(zone))
2370 			continue;
2371 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2372 			continue;
2373 		if (zone_reclaimable(zone))
2374 			return false;
2375 	}
2376 
2377 	return true;
2378 }
2379 
2380 /*
2381  * This is the main entry point to direct page reclaim.
2382  *
2383  * If a full scan of the inactive list fails to free enough memory then we
2384  * are "out of memory" and something needs to be killed.
2385  *
2386  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2387  * high - the zone may be full of dirty or under-writeback pages, which this
2388  * caller can't do much about.  We kick the writeback threads and take explicit
2389  * naps in the hope that some of these pages can be written.  But if the
2390  * allocating task holds filesystem locks which prevent writeout this might not
2391  * work, and the allocation attempt will fail.
2392  *
2393  * returns:	0, if no pages reclaimed
2394  * 		else, the number of pages reclaimed
2395  */
2396 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2397 					struct scan_control *sc,
2398 					struct shrink_control *shrink)
2399 {
2400 	unsigned long total_scanned = 0;
2401 	struct reclaim_state *reclaim_state = current->reclaim_state;
2402 	struct zoneref *z;
2403 	struct zone *zone;
2404 	unsigned long writeback_threshold;
2405 	bool aborted_reclaim;
2406 
2407 	delayacct_freepages_start();
2408 
2409 	if (global_reclaim(sc))
2410 		count_vm_event(ALLOCSTALL);
2411 
2412 	do {
2413 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2414 				sc->priority);
2415 		sc->nr_scanned = 0;
2416 		aborted_reclaim = shrink_zones(zonelist, sc);
2417 
2418 		/*
2419 		 * Don't shrink slabs when reclaiming memory from over limit
2420 		 * cgroups but do shrink slab at least once when aborting
2421 		 * reclaim for compaction to avoid unevenly scanning file/anon
2422 		 * LRU pages over slab pages.
2423 		 */
2424 		if (global_reclaim(sc)) {
2425 			unsigned long lru_pages = 0;
2426 
2427 			nodes_clear(shrink->nodes_to_scan);
2428 			for_each_zone_zonelist(zone, z, zonelist,
2429 					gfp_zone(sc->gfp_mask)) {
2430 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2431 					continue;
2432 
2433 				lru_pages += zone_reclaimable_pages(zone);
2434 				node_set(zone_to_nid(zone),
2435 					 shrink->nodes_to_scan);
2436 			}
2437 
2438 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2439 			if (reclaim_state) {
2440 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2441 				reclaim_state->reclaimed_slab = 0;
2442 			}
2443 		}
2444 		total_scanned += sc->nr_scanned;
2445 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2446 			goto out;
2447 
2448 		/*
2449 		 * If we're getting trouble reclaiming, start doing
2450 		 * writepage even in laptop mode.
2451 		 */
2452 		if (sc->priority < DEF_PRIORITY - 2)
2453 			sc->may_writepage = 1;
2454 
2455 		/*
2456 		 * Try to write back as many pages as we just scanned.  This
2457 		 * tends to cause slow streaming writers to write data to the
2458 		 * disk smoothly, at the dirtying rate, which is nice.   But
2459 		 * that's undesirable in laptop mode, where we *want* lumpy
2460 		 * writeout.  So in laptop mode, write out the whole world.
2461 		 */
2462 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2463 		if (total_scanned > writeback_threshold) {
2464 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2465 						WB_REASON_TRY_TO_FREE_PAGES);
2466 			sc->may_writepage = 1;
2467 		}
2468 	} while (--sc->priority >= 0 && !aborted_reclaim);
2469 
2470 out:
2471 	delayacct_freepages_end();
2472 
2473 	if (sc->nr_reclaimed)
2474 		return sc->nr_reclaimed;
2475 
2476 	/*
2477 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2478 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2479 	 * check.
2480 	 */
2481 	if (oom_killer_disabled)
2482 		return 0;
2483 
2484 	/* Aborted reclaim to try compaction? don't OOM, then */
2485 	if (aborted_reclaim)
2486 		return 1;
2487 
2488 	/* top priority shrink_zones still had more to do? don't OOM, then */
2489 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2490 		return 1;
2491 
2492 	return 0;
2493 }
2494 
2495 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2496 {
2497 	struct zone *zone;
2498 	unsigned long pfmemalloc_reserve = 0;
2499 	unsigned long free_pages = 0;
2500 	int i;
2501 	bool wmark_ok;
2502 
2503 	for (i = 0; i <= ZONE_NORMAL; i++) {
2504 		zone = &pgdat->node_zones[i];
2505 		pfmemalloc_reserve += min_wmark_pages(zone);
2506 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2507 	}
2508 
2509 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2510 
2511 	/* kswapd must be awake if processes are being throttled */
2512 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2513 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2514 						(enum zone_type)ZONE_NORMAL);
2515 		wake_up_interruptible(&pgdat->kswapd_wait);
2516 	}
2517 
2518 	return wmark_ok;
2519 }
2520 
2521 /*
2522  * Throttle direct reclaimers if backing storage is backed by the network
2523  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2524  * depleted. kswapd will continue to make progress and wake the processes
2525  * when the low watermark is reached.
2526  *
2527  * Returns true if a fatal signal was delivered during throttling. If this
2528  * happens, the page allocator should not consider triggering the OOM killer.
2529  */
2530 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2531 					nodemask_t *nodemask)
2532 {
2533 	struct zone *zone;
2534 	int high_zoneidx = gfp_zone(gfp_mask);
2535 	pg_data_t *pgdat;
2536 
2537 	/*
2538 	 * Kernel threads should not be throttled as they may be indirectly
2539 	 * responsible for cleaning pages necessary for reclaim to make forward
2540 	 * progress. kjournald for example may enter direct reclaim while
2541 	 * committing a transaction where throttling it could forcing other
2542 	 * processes to block on log_wait_commit().
2543 	 */
2544 	if (current->flags & PF_KTHREAD)
2545 		goto out;
2546 
2547 	/*
2548 	 * If a fatal signal is pending, this process should not throttle.
2549 	 * It should return quickly so it can exit and free its memory
2550 	 */
2551 	if (fatal_signal_pending(current))
2552 		goto out;
2553 
2554 	/* Check if the pfmemalloc reserves are ok */
2555 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2556 	pgdat = zone->zone_pgdat;
2557 	if (pfmemalloc_watermark_ok(pgdat))
2558 		goto out;
2559 
2560 	/* Account for the throttling */
2561 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2562 
2563 	/*
2564 	 * If the caller cannot enter the filesystem, it's possible that it
2565 	 * is due to the caller holding an FS lock or performing a journal
2566 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2567 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2568 	 * blocked waiting on the same lock. Instead, throttle for up to a
2569 	 * second before continuing.
2570 	 */
2571 	if (!(gfp_mask & __GFP_FS)) {
2572 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2573 			pfmemalloc_watermark_ok(pgdat), HZ);
2574 
2575 		goto check_pending;
2576 	}
2577 
2578 	/* Throttle until kswapd wakes the process */
2579 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2580 		pfmemalloc_watermark_ok(pgdat));
2581 
2582 check_pending:
2583 	if (fatal_signal_pending(current))
2584 		return true;
2585 
2586 out:
2587 	return false;
2588 }
2589 
2590 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2591 				gfp_t gfp_mask, nodemask_t *nodemask)
2592 {
2593 	unsigned long nr_reclaimed;
2594 	struct scan_control sc = {
2595 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2596 		.may_writepage = !laptop_mode,
2597 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2598 		.may_unmap = 1,
2599 		.may_swap = 1,
2600 		.order = order,
2601 		.priority = DEF_PRIORITY,
2602 		.target_mem_cgroup = NULL,
2603 		.nodemask = nodemask,
2604 	};
2605 	struct shrink_control shrink = {
2606 		.gfp_mask = sc.gfp_mask,
2607 	};
2608 
2609 	/*
2610 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2611 	 * 1 is returned so that the page allocator does not OOM kill at this
2612 	 * point.
2613 	 */
2614 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2615 		return 1;
2616 
2617 	trace_mm_vmscan_direct_reclaim_begin(order,
2618 				sc.may_writepage,
2619 				gfp_mask);
2620 
2621 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2622 
2623 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2624 
2625 	return nr_reclaimed;
2626 }
2627 
2628 #ifdef CONFIG_MEMCG
2629 
2630 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2631 						gfp_t gfp_mask, bool noswap,
2632 						struct zone *zone,
2633 						unsigned long *nr_scanned)
2634 {
2635 	struct scan_control sc = {
2636 		.nr_scanned = 0,
2637 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2638 		.may_writepage = !laptop_mode,
2639 		.may_unmap = 1,
2640 		.may_swap = !noswap,
2641 		.order = 0,
2642 		.priority = 0,
2643 		.target_mem_cgroup = memcg,
2644 	};
2645 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2646 
2647 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2648 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2649 
2650 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2651 						      sc.may_writepage,
2652 						      sc.gfp_mask);
2653 
2654 	/*
2655 	 * NOTE: Although we can get the priority field, using it
2656 	 * here is not a good idea, since it limits the pages we can scan.
2657 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2658 	 * will pick up pages from other mem cgroup's as well. We hack
2659 	 * the priority and make it zero.
2660 	 */
2661 	shrink_lruvec(lruvec, &sc);
2662 
2663 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2664 
2665 	*nr_scanned = sc.nr_scanned;
2666 	return sc.nr_reclaimed;
2667 }
2668 
2669 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2670 					   gfp_t gfp_mask,
2671 					   bool noswap)
2672 {
2673 	struct zonelist *zonelist;
2674 	unsigned long nr_reclaimed;
2675 	int nid;
2676 	struct scan_control sc = {
2677 		.may_writepage = !laptop_mode,
2678 		.may_unmap = 1,
2679 		.may_swap = !noswap,
2680 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2681 		.order = 0,
2682 		.priority = DEF_PRIORITY,
2683 		.target_mem_cgroup = memcg,
2684 		.nodemask = NULL, /* we don't care the placement */
2685 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2686 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2687 	};
2688 	struct shrink_control shrink = {
2689 		.gfp_mask = sc.gfp_mask,
2690 	};
2691 
2692 	/*
2693 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2694 	 * take care of from where we get pages. So the node where we start the
2695 	 * scan does not need to be the current node.
2696 	 */
2697 	nid = mem_cgroup_select_victim_node(memcg);
2698 
2699 	zonelist = NODE_DATA(nid)->node_zonelists;
2700 
2701 	trace_mm_vmscan_memcg_reclaim_begin(0,
2702 					    sc.may_writepage,
2703 					    sc.gfp_mask);
2704 
2705 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2706 
2707 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2708 
2709 	return nr_reclaimed;
2710 }
2711 #endif
2712 
2713 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2714 {
2715 	struct mem_cgroup *memcg;
2716 
2717 	if (!total_swap_pages)
2718 		return;
2719 
2720 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2721 	do {
2722 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2723 
2724 		if (inactive_anon_is_low(lruvec))
2725 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2726 					   sc, LRU_ACTIVE_ANON);
2727 
2728 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2729 	} while (memcg);
2730 }
2731 
2732 static bool zone_balanced(struct zone *zone, int order,
2733 			  unsigned long balance_gap, int classzone_idx)
2734 {
2735 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2736 				    balance_gap, classzone_idx, 0))
2737 		return false;
2738 
2739 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2740 	    !compaction_suitable(zone, order))
2741 		return false;
2742 
2743 	return true;
2744 }
2745 
2746 /*
2747  * pgdat_balanced() is used when checking if a node is balanced.
2748  *
2749  * For order-0, all zones must be balanced!
2750  *
2751  * For high-order allocations only zones that meet watermarks and are in a
2752  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2753  * total of balanced pages must be at least 25% of the zones allowed by
2754  * classzone_idx for the node to be considered balanced. Forcing all zones to
2755  * be balanced for high orders can cause excessive reclaim when there are
2756  * imbalanced zones.
2757  * The choice of 25% is due to
2758  *   o a 16M DMA zone that is balanced will not balance a zone on any
2759  *     reasonable sized machine
2760  *   o On all other machines, the top zone must be at least a reasonable
2761  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2762  *     would need to be at least 256M for it to be balance a whole node.
2763  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2764  *     to balance a node on its own. These seemed like reasonable ratios.
2765  */
2766 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2767 {
2768 	unsigned long managed_pages = 0;
2769 	unsigned long balanced_pages = 0;
2770 	int i;
2771 
2772 	/* Check the watermark levels */
2773 	for (i = 0; i <= classzone_idx; i++) {
2774 		struct zone *zone = pgdat->node_zones + i;
2775 
2776 		if (!populated_zone(zone))
2777 			continue;
2778 
2779 		managed_pages += zone->managed_pages;
2780 
2781 		/*
2782 		 * A special case here:
2783 		 *
2784 		 * balance_pgdat() skips over all_unreclaimable after
2785 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2786 		 * they must be considered balanced here as well!
2787 		 */
2788 		if (!zone_reclaimable(zone)) {
2789 			balanced_pages += zone->managed_pages;
2790 			continue;
2791 		}
2792 
2793 		if (zone_balanced(zone, order, 0, i))
2794 			balanced_pages += zone->managed_pages;
2795 		else if (!order)
2796 			return false;
2797 	}
2798 
2799 	if (order)
2800 		return balanced_pages >= (managed_pages >> 2);
2801 	else
2802 		return true;
2803 }
2804 
2805 /*
2806  * Prepare kswapd for sleeping. This verifies that there are no processes
2807  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2808  *
2809  * Returns true if kswapd is ready to sleep
2810  */
2811 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2812 					int classzone_idx)
2813 {
2814 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2815 	if (remaining)
2816 		return false;
2817 
2818 	/*
2819 	 * There is a potential race between when kswapd checks its watermarks
2820 	 * and a process gets throttled. There is also a potential race if
2821 	 * processes get throttled, kswapd wakes, a large process exits therby
2822 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2823 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2824 	 * so wake them now if necessary. If necessary, processes will wake
2825 	 * kswapd and get throttled again
2826 	 */
2827 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2828 		wake_up(&pgdat->pfmemalloc_wait);
2829 		return false;
2830 	}
2831 
2832 	return pgdat_balanced(pgdat, order, classzone_idx);
2833 }
2834 
2835 /*
2836  * kswapd shrinks the zone by the number of pages required to reach
2837  * the high watermark.
2838  *
2839  * Returns true if kswapd scanned at least the requested number of pages to
2840  * reclaim or if the lack of progress was due to pages under writeback.
2841  * This is used to determine if the scanning priority needs to be raised.
2842  */
2843 static bool kswapd_shrink_zone(struct zone *zone,
2844 			       int classzone_idx,
2845 			       struct scan_control *sc,
2846 			       unsigned long lru_pages,
2847 			       unsigned long *nr_attempted)
2848 {
2849 	int testorder = sc->order;
2850 	unsigned long balance_gap;
2851 	struct reclaim_state *reclaim_state = current->reclaim_state;
2852 	struct shrink_control shrink = {
2853 		.gfp_mask = sc->gfp_mask,
2854 	};
2855 	bool lowmem_pressure;
2856 
2857 	/* Reclaim above the high watermark. */
2858 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2859 
2860 	/*
2861 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2862 	 * too hard to reclaim until contiguous free pages have become
2863 	 * available can hurt performance by evicting too much useful data
2864 	 * from memory. Do not reclaim more than needed for compaction.
2865 	 */
2866 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2867 			compaction_suitable(zone, sc->order) !=
2868 				COMPACT_SKIPPED)
2869 		testorder = 0;
2870 
2871 	/*
2872 	 * We put equal pressure on every zone, unless one zone has way too
2873 	 * many pages free already. The "too many pages" is defined as the
2874 	 * high wmark plus a "gap" where the gap is either the low
2875 	 * watermark or 1% of the zone, whichever is smaller.
2876 	 */
2877 	balance_gap = min(low_wmark_pages(zone),
2878 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2879 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2880 
2881 	/*
2882 	 * If there is no low memory pressure or the zone is balanced then no
2883 	 * reclaim is necessary
2884 	 */
2885 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2886 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2887 						balance_gap, classzone_idx))
2888 		return true;
2889 
2890 	shrink_zone(zone, sc);
2891 	nodes_clear(shrink.nodes_to_scan);
2892 	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2893 
2894 	reclaim_state->reclaimed_slab = 0;
2895 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2896 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2897 
2898 	/* Account for the number of pages attempted to reclaim */
2899 	*nr_attempted += sc->nr_to_reclaim;
2900 
2901 	zone_clear_flag(zone, ZONE_WRITEBACK);
2902 
2903 	/*
2904 	 * If a zone reaches its high watermark, consider it to be no longer
2905 	 * congested. It's possible there are dirty pages backed by congested
2906 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2907 	 * waits.
2908 	 */
2909 	if (zone_reclaimable(zone) &&
2910 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2911 		zone_clear_flag(zone, ZONE_CONGESTED);
2912 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2913 	}
2914 
2915 	return sc->nr_scanned >= sc->nr_to_reclaim;
2916 }
2917 
2918 /*
2919  * For kswapd, balance_pgdat() will work across all this node's zones until
2920  * they are all at high_wmark_pages(zone).
2921  *
2922  * Returns the final order kswapd was reclaiming at
2923  *
2924  * There is special handling here for zones which are full of pinned pages.
2925  * This can happen if the pages are all mlocked, or if they are all used by
2926  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2927  * What we do is to detect the case where all pages in the zone have been
2928  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2929  * dead and from now on, only perform a short scan.  Basically we're polling
2930  * the zone for when the problem goes away.
2931  *
2932  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2933  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2934  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2935  * lower zones regardless of the number of free pages in the lower zones. This
2936  * interoperates with the page allocator fallback scheme to ensure that aging
2937  * of pages is balanced across the zones.
2938  */
2939 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2940 							int *classzone_idx)
2941 {
2942 	int i;
2943 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2944 	unsigned long nr_soft_reclaimed;
2945 	unsigned long nr_soft_scanned;
2946 	struct scan_control sc = {
2947 		.gfp_mask = GFP_KERNEL,
2948 		.priority = DEF_PRIORITY,
2949 		.may_unmap = 1,
2950 		.may_swap = 1,
2951 		.may_writepage = !laptop_mode,
2952 		.order = order,
2953 		.target_mem_cgroup = NULL,
2954 	};
2955 	count_vm_event(PAGEOUTRUN);
2956 
2957 	do {
2958 		unsigned long lru_pages = 0;
2959 		unsigned long nr_attempted = 0;
2960 		bool raise_priority = true;
2961 		bool pgdat_needs_compaction = (order > 0);
2962 
2963 		sc.nr_reclaimed = 0;
2964 
2965 		/*
2966 		 * Scan in the highmem->dma direction for the highest
2967 		 * zone which needs scanning
2968 		 */
2969 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2970 			struct zone *zone = pgdat->node_zones + i;
2971 
2972 			if (!populated_zone(zone))
2973 				continue;
2974 
2975 			if (sc.priority != DEF_PRIORITY &&
2976 			    !zone_reclaimable(zone))
2977 				continue;
2978 
2979 			/*
2980 			 * Do some background aging of the anon list, to give
2981 			 * pages a chance to be referenced before reclaiming.
2982 			 */
2983 			age_active_anon(zone, &sc);
2984 
2985 			/*
2986 			 * If the number of buffer_heads in the machine
2987 			 * exceeds the maximum allowed level and this node
2988 			 * has a highmem zone, force kswapd to reclaim from
2989 			 * it to relieve lowmem pressure.
2990 			 */
2991 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2992 				end_zone = i;
2993 				break;
2994 			}
2995 
2996 			if (!zone_balanced(zone, order, 0, 0)) {
2997 				end_zone = i;
2998 				break;
2999 			} else {
3000 				/*
3001 				 * If balanced, clear the dirty and congested
3002 				 * flags
3003 				 */
3004 				zone_clear_flag(zone, ZONE_CONGESTED);
3005 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3006 			}
3007 		}
3008 
3009 		if (i < 0)
3010 			goto out;
3011 
3012 		for (i = 0; i <= end_zone; i++) {
3013 			struct zone *zone = pgdat->node_zones + i;
3014 
3015 			if (!populated_zone(zone))
3016 				continue;
3017 
3018 			lru_pages += zone_reclaimable_pages(zone);
3019 
3020 			/*
3021 			 * If any zone is currently balanced then kswapd will
3022 			 * not call compaction as it is expected that the
3023 			 * necessary pages are already available.
3024 			 */
3025 			if (pgdat_needs_compaction &&
3026 					zone_watermark_ok(zone, order,
3027 						low_wmark_pages(zone),
3028 						*classzone_idx, 0))
3029 				pgdat_needs_compaction = false;
3030 		}
3031 
3032 		/*
3033 		 * If we're getting trouble reclaiming, start doing writepage
3034 		 * even in laptop mode.
3035 		 */
3036 		if (sc.priority < DEF_PRIORITY - 2)
3037 			sc.may_writepage = 1;
3038 
3039 		/*
3040 		 * Now scan the zone in the dma->highmem direction, stopping
3041 		 * at the last zone which needs scanning.
3042 		 *
3043 		 * We do this because the page allocator works in the opposite
3044 		 * direction.  This prevents the page allocator from allocating
3045 		 * pages behind kswapd's direction of progress, which would
3046 		 * cause too much scanning of the lower zones.
3047 		 */
3048 		for (i = 0; i <= end_zone; i++) {
3049 			struct zone *zone = pgdat->node_zones + i;
3050 
3051 			if (!populated_zone(zone))
3052 				continue;
3053 
3054 			if (sc.priority != DEF_PRIORITY &&
3055 			    !zone_reclaimable(zone))
3056 				continue;
3057 
3058 			sc.nr_scanned = 0;
3059 
3060 			nr_soft_scanned = 0;
3061 			/*
3062 			 * Call soft limit reclaim before calling shrink_zone.
3063 			 */
3064 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3065 							order, sc.gfp_mask,
3066 							&nr_soft_scanned);
3067 			sc.nr_reclaimed += nr_soft_reclaimed;
3068 
3069 			/*
3070 			 * There should be no need to raise the scanning
3071 			 * priority if enough pages are already being scanned
3072 			 * that that high watermark would be met at 100%
3073 			 * efficiency.
3074 			 */
3075 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3076 					lru_pages, &nr_attempted))
3077 				raise_priority = false;
3078 		}
3079 
3080 		/*
3081 		 * If the low watermark is met there is no need for processes
3082 		 * to be throttled on pfmemalloc_wait as they should not be
3083 		 * able to safely make forward progress. Wake them
3084 		 */
3085 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3086 				pfmemalloc_watermark_ok(pgdat))
3087 			wake_up(&pgdat->pfmemalloc_wait);
3088 
3089 		/*
3090 		 * Fragmentation may mean that the system cannot be rebalanced
3091 		 * for high-order allocations in all zones. If twice the
3092 		 * allocation size has been reclaimed and the zones are still
3093 		 * not balanced then recheck the watermarks at order-0 to
3094 		 * prevent kswapd reclaiming excessively. Assume that a
3095 		 * process requested a high-order can direct reclaim/compact.
3096 		 */
3097 		if (order && sc.nr_reclaimed >= 2UL << order)
3098 			order = sc.order = 0;
3099 
3100 		/* Check if kswapd should be suspending */
3101 		if (try_to_freeze() || kthread_should_stop())
3102 			break;
3103 
3104 		/*
3105 		 * Compact if necessary and kswapd is reclaiming at least the
3106 		 * high watermark number of pages as requsted
3107 		 */
3108 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3109 			compact_pgdat(pgdat, order);
3110 
3111 		/*
3112 		 * Raise priority if scanning rate is too low or there was no
3113 		 * progress in reclaiming pages
3114 		 */
3115 		if (raise_priority || !sc.nr_reclaimed)
3116 			sc.priority--;
3117 	} while (sc.priority >= 1 &&
3118 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3119 
3120 out:
3121 	/*
3122 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3123 	 * makes a decision on the order we were last reclaiming at. However,
3124 	 * if another caller entered the allocator slow path while kswapd
3125 	 * was awake, order will remain at the higher level
3126 	 */
3127 	*classzone_idx = end_zone;
3128 	return order;
3129 }
3130 
3131 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3132 {
3133 	long remaining = 0;
3134 	DEFINE_WAIT(wait);
3135 
3136 	if (freezing(current) || kthread_should_stop())
3137 		return;
3138 
3139 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3140 
3141 	/* Try to sleep for a short interval */
3142 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3143 		remaining = schedule_timeout(HZ/10);
3144 		finish_wait(&pgdat->kswapd_wait, &wait);
3145 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3146 	}
3147 
3148 	/*
3149 	 * After a short sleep, check if it was a premature sleep. If not, then
3150 	 * go fully to sleep until explicitly woken up.
3151 	 */
3152 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3153 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3154 
3155 		/*
3156 		 * vmstat counters are not perfectly accurate and the estimated
3157 		 * value for counters such as NR_FREE_PAGES can deviate from the
3158 		 * true value by nr_online_cpus * threshold. To avoid the zone
3159 		 * watermarks being breached while under pressure, we reduce the
3160 		 * per-cpu vmstat threshold while kswapd is awake and restore
3161 		 * them before going back to sleep.
3162 		 */
3163 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3164 
3165 		/*
3166 		 * Compaction records what page blocks it recently failed to
3167 		 * isolate pages from and skips them in the future scanning.
3168 		 * When kswapd is going to sleep, it is reasonable to assume
3169 		 * that pages and compaction may succeed so reset the cache.
3170 		 */
3171 		reset_isolation_suitable(pgdat);
3172 
3173 		if (!kthread_should_stop())
3174 			schedule();
3175 
3176 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3177 	} else {
3178 		if (remaining)
3179 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3180 		else
3181 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3182 	}
3183 	finish_wait(&pgdat->kswapd_wait, &wait);
3184 }
3185 
3186 /*
3187  * The background pageout daemon, started as a kernel thread
3188  * from the init process.
3189  *
3190  * This basically trickles out pages so that we have _some_
3191  * free memory available even if there is no other activity
3192  * that frees anything up. This is needed for things like routing
3193  * etc, where we otherwise might have all activity going on in
3194  * asynchronous contexts that cannot page things out.
3195  *
3196  * If there are applications that are active memory-allocators
3197  * (most normal use), this basically shouldn't matter.
3198  */
3199 static int kswapd(void *p)
3200 {
3201 	unsigned long order, new_order;
3202 	unsigned balanced_order;
3203 	int classzone_idx, new_classzone_idx;
3204 	int balanced_classzone_idx;
3205 	pg_data_t *pgdat = (pg_data_t*)p;
3206 	struct task_struct *tsk = current;
3207 
3208 	struct reclaim_state reclaim_state = {
3209 		.reclaimed_slab = 0,
3210 	};
3211 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3212 
3213 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3214 
3215 	if (!cpumask_empty(cpumask))
3216 		set_cpus_allowed_ptr(tsk, cpumask);
3217 	current->reclaim_state = &reclaim_state;
3218 
3219 	/*
3220 	 * Tell the memory management that we're a "memory allocator",
3221 	 * and that if we need more memory we should get access to it
3222 	 * regardless (see "__alloc_pages()"). "kswapd" should
3223 	 * never get caught in the normal page freeing logic.
3224 	 *
3225 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3226 	 * you need a small amount of memory in order to be able to
3227 	 * page out something else, and this flag essentially protects
3228 	 * us from recursively trying to free more memory as we're
3229 	 * trying to free the first piece of memory in the first place).
3230 	 */
3231 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3232 	set_freezable();
3233 
3234 	order = new_order = 0;
3235 	balanced_order = 0;
3236 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3237 	balanced_classzone_idx = classzone_idx;
3238 	for ( ; ; ) {
3239 		bool ret;
3240 
3241 		/*
3242 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3243 		 * new request of a similar or harder type will succeed soon
3244 		 * so consider going to sleep on the basis we reclaimed at
3245 		 */
3246 		if (balanced_classzone_idx >= new_classzone_idx &&
3247 					balanced_order == new_order) {
3248 			new_order = pgdat->kswapd_max_order;
3249 			new_classzone_idx = pgdat->classzone_idx;
3250 			pgdat->kswapd_max_order =  0;
3251 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3252 		}
3253 
3254 		if (order < new_order || classzone_idx > new_classzone_idx) {
3255 			/*
3256 			 * Don't sleep if someone wants a larger 'order'
3257 			 * allocation or has tigher zone constraints
3258 			 */
3259 			order = new_order;
3260 			classzone_idx = new_classzone_idx;
3261 		} else {
3262 			kswapd_try_to_sleep(pgdat, balanced_order,
3263 						balanced_classzone_idx);
3264 			order = pgdat->kswapd_max_order;
3265 			classzone_idx = pgdat->classzone_idx;
3266 			new_order = order;
3267 			new_classzone_idx = classzone_idx;
3268 			pgdat->kswapd_max_order = 0;
3269 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3270 		}
3271 
3272 		ret = try_to_freeze();
3273 		if (kthread_should_stop())
3274 			break;
3275 
3276 		/*
3277 		 * We can speed up thawing tasks if we don't call balance_pgdat
3278 		 * after returning from the refrigerator
3279 		 */
3280 		if (!ret) {
3281 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3282 			balanced_classzone_idx = classzone_idx;
3283 			balanced_order = balance_pgdat(pgdat, order,
3284 						&balanced_classzone_idx);
3285 		}
3286 	}
3287 
3288 	current->reclaim_state = NULL;
3289 	return 0;
3290 }
3291 
3292 /*
3293  * A zone is low on free memory, so wake its kswapd task to service it.
3294  */
3295 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3296 {
3297 	pg_data_t *pgdat;
3298 
3299 	if (!populated_zone(zone))
3300 		return;
3301 
3302 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3303 		return;
3304 	pgdat = zone->zone_pgdat;
3305 	if (pgdat->kswapd_max_order < order) {
3306 		pgdat->kswapd_max_order = order;
3307 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3308 	}
3309 	if (!waitqueue_active(&pgdat->kswapd_wait))
3310 		return;
3311 	if (zone_balanced(zone, order, 0, 0))
3312 		return;
3313 
3314 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3315 	wake_up_interruptible(&pgdat->kswapd_wait);
3316 }
3317 
3318 #ifdef CONFIG_HIBERNATION
3319 /*
3320  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3321  * freed pages.
3322  *
3323  * Rather than trying to age LRUs the aim is to preserve the overall
3324  * LRU order by reclaiming preferentially
3325  * inactive > active > active referenced > active mapped
3326  */
3327 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3328 {
3329 	struct reclaim_state reclaim_state;
3330 	struct scan_control sc = {
3331 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3332 		.may_swap = 1,
3333 		.may_unmap = 1,
3334 		.may_writepage = 1,
3335 		.nr_to_reclaim = nr_to_reclaim,
3336 		.hibernation_mode = 1,
3337 		.order = 0,
3338 		.priority = DEF_PRIORITY,
3339 	};
3340 	struct shrink_control shrink = {
3341 		.gfp_mask = sc.gfp_mask,
3342 	};
3343 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3344 	struct task_struct *p = current;
3345 	unsigned long nr_reclaimed;
3346 
3347 	p->flags |= PF_MEMALLOC;
3348 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3349 	reclaim_state.reclaimed_slab = 0;
3350 	p->reclaim_state = &reclaim_state;
3351 
3352 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3353 
3354 	p->reclaim_state = NULL;
3355 	lockdep_clear_current_reclaim_state();
3356 	p->flags &= ~PF_MEMALLOC;
3357 
3358 	return nr_reclaimed;
3359 }
3360 #endif /* CONFIG_HIBERNATION */
3361 
3362 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3363    not required for correctness.  So if the last cpu in a node goes
3364    away, we get changed to run anywhere: as the first one comes back,
3365    restore their cpu bindings. */
3366 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3367 			void *hcpu)
3368 {
3369 	int nid;
3370 
3371 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3372 		for_each_node_state(nid, N_MEMORY) {
3373 			pg_data_t *pgdat = NODE_DATA(nid);
3374 			const struct cpumask *mask;
3375 
3376 			mask = cpumask_of_node(pgdat->node_id);
3377 
3378 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3379 				/* One of our CPUs online: restore mask */
3380 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3381 		}
3382 	}
3383 	return NOTIFY_OK;
3384 }
3385 
3386 /*
3387  * This kswapd start function will be called by init and node-hot-add.
3388  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3389  */
3390 int kswapd_run(int nid)
3391 {
3392 	pg_data_t *pgdat = NODE_DATA(nid);
3393 	int ret = 0;
3394 
3395 	if (pgdat->kswapd)
3396 		return 0;
3397 
3398 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3399 	if (IS_ERR(pgdat->kswapd)) {
3400 		/* failure at boot is fatal */
3401 		BUG_ON(system_state == SYSTEM_BOOTING);
3402 		pr_err("Failed to start kswapd on node %d\n", nid);
3403 		ret = PTR_ERR(pgdat->kswapd);
3404 		pgdat->kswapd = NULL;
3405 	}
3406 	return ret;
3407 }
3408 
3409 /*
3410  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3411  * hold lock_memory_hotplug().
3412  */
3413 void kswapd_stop(int nid)
3414 {
3415 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3416 
3417 	if (kswapd) {
3418 		kthread_stop(kswapd);
3419 		NODE_DATA(nid)->kswapd = NULL;
3420 	}
3421 }
3422 
3423 static int __init kswapd_init(void)
3424 {
3425 	int nid;
3426 
3427 	swap_setup();
3428 	for_each_node_state(nid, N_MEMORY)
3429  		kswapd_run(nid);
3430 	hotcpu_notifier(cpu_callback, 0);
3431 	return 0;
3432 }
3433 
3434 module_init(kswapd_init)
3435 
3436 #ifdef CONFIG_NUMA
3437 /*
3438  * Zone reclaim mode
3439  *
3440  * If non-zero call zone_reclaim when the number of free pages falls below
3441  * the watermarks.
3442  */
3443 int zone_reclaim_mode __read_mostly;
3444 
3445 #define RECLAIM_OFF 0
3446 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3447 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3448 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3449 
3450 /*
3451  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3452  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3453  * a zone.
3454  */
3455 #define ZONE_RECLAIM_PRIORITY 4
3456 
3457 /*
3458  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3459  * occur.
3460  */
3461 int sysctl_min_unmapped_ratio = 1;
3462 
3463 /*
3464  * If the number of slab pages in a zone grows beyond this percentage then
3465  * slab reclaim needs to occur.
3466  */
3467 int sysctl_min_slab_ratio = 5;
3468 
3469 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3470 {
3471 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3472 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3473 		zone_page_state(zone, NR_ACTIVE_FILE);
3474 
3475 	/*
3476 	 * It's possible for there to be more file mapped pages than
3477 	 * accounted for by the pages on the file LRU lists because
3478 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3479 	 */
3480 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3481 }
3482 
3483 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3484 static long zone_pagecache_reclaimable(struct zone *zone)
3485 {
3486 	long nr_pagecache_reclaimable;
3487 	long delta = 0;
3488 
3489 	/*
3490 	 * If RECLAIM_SWAP is set, then all file pages are considered
3491 	 * potentially reclaimable. Otherwise, we have to worry about
3492 	 * pages like swapcache and zone_unmapped_file_pages() provides
3493 	 * a better estimate
3494 	 */
3495 	if (zone_reclaim_mode & RECLAIM_SWAP)
3496 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3497 	else
3498 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3499 
3500 	/* If we can't clean pages, remove dirty pages from consideration */
3501 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3502 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3503 
3504 	/* Watch for any possible underflows due to delta */
3505 	if (unlikely(delta > nr_pagecache_reclaimable))
3506 		delta = nr_pagecache_reclaimable;
3507 
3508 	return nr_pagecache_reclaimable - delta;
3509 }
3510 
3511 /*
3512  * Try to free up some pages from this zone through reclaim.
3513  */
3514 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3515 {
3516 	/* Minimum pages needed in order to stay on node */
3517 	const unsigned long nr_pages = 1 << order;
3518 	struct task_struct *p = current;
3519 	struct reclaim_state reclaim_state;
3520 	struct scan_control sc = {
3521 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3522 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3523 		.may_swap = 1,
3524 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3525 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3526 		.order = order,
3527 		.priority = ZONE_RECLAIM_PRIORITY,
3528 	};
3529 	struct shrink_control shrink = {
3530 		.gfp_mask = sc.gfp_mask,
3531 	};
3532 	unsigned long nr_slab_pages0, nr_slab_pages1;
3533 
3534 	cond_resched();
3535 	/*
3536 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3537 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3538 	 * and RECLAIM_SWAP.
3539 	 */
3540 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3541 	lockdep_set_current_reclaim_state(gfp_mask);
3542 	reclaim_state.reclaimed_slab = 0;
3543 	p->reclaim_state = &reclaim_state;
3544 
3545 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3546 		/*
3547 		 * Free memory by calling shrink zone with increasing
3548 		 * priorities until we have enough memory freed.
3549 		 */
3550 		do {
3551 			shrink_zone(zone, &sc);
3552 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3553 	}
3554 
3555 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3556 	if (nr_slab_pages0 > zone->min_slab_pages) {
3557 		/*
3558 		 * shrink_slab() does not currently allow us to determine how
3559 		 * many pages were freed in this zone. So we take the current
3560 		 * number of slab pages and shake the slab until it is reduced
3561 		 * by the same nr_pages that we used for reclaiming unmapped
3562 		 * pages.
3563 		 */
3564 		nodes_clear(shrink.nodes_to_scan);
3565 		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3566 		for (;;) {
3567 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3568 
3569 			/* No reclaimable slab or very low memory pressure */
3570 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3571 				break;
3572 
3573 			/* Freed enough memory */
3574 			nr_slab_pages1 = zone_page_state(zone,
3575 							NR_SLAB_RECLAIMABLE);
3576 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3577 				break;
3578 		}
3579 
3580 		/*
3581 		 * Update nr_reclaimed by the number of slab pages we
3582 		 * reclaimed from this zone.
3583 		 */
3584 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3585 		if (nr_slab_pages1 < nr_slab_pages0)
3586 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3587 	}
3588 
3589 	p->reclaim_state = NULL;
3590 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3591 	lockdep_clear_current_reclaim_state();
3592 	return sc.nr_reclaimed >= nr_pages;
3593 }
3594 
3595 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3596 {
3597 	int node_id;
3598 	int ret;
3599 
3600 	/*
3601 	 * Zone reclaim reclaims unmapped file backed pages and
3602 	 * slab pages if we are over the defined limits.
3603 	 *
3604 	 * A small portion of unmapped file backed pages is needed for
3605 	 * file I/O otherwise pages read by file I/O will be immediately
3606 	 * thrown out if the zone is overallocated. So we do not reclaim
3607 	 * if less than a specified percentage of the zone is used by
3608 	 * unmapped file backed pages.
3609 	 */
3610 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3611 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3612 		return ZONE_RECLAIM_FULL;
3613 
3614 	if (!zone_reclaimable(zone))
3615 		return ZONE_RECLAIM_FULL;
3616 
3617 	/*
3618 	 * Do not scan if the allocation should not be delayed.
3619 	 */
3620 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3621 		return ZONE_RECLAIM_NOSCAN;
3622 
3623 	/*
3624 	 * Only run zone reclaim on the local zone or on zones that do not
3625 	 * have associated processors. This will favor the local processor
3626 	 * over remote processors and spread off node memory allocations
3627 	 * as wide as possible.
3628 	 */
3629 	node_id = zone_to_nid(zone);
3630 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3631 		return ZONE_RECLAIM_NOSCAN;
3632 
3633 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3634 		return ZONE_RECLAIM_NOSCAN;
3635 
3636 	ret = __zone_reclaim(zone, gfp_mask, order);
3637 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3638 
3639 	if (!ret)
3640 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3641 
3642 	return ret;
3643 }
3644 #endif
3645 
3646 /*
3647  * page_evictable - test whether a page is evictable
3648  * @page: the page to test
3649  *
3650  * Test whether page is evictable--i.e., should be placed on active/inactive
3651  * lists vs unevictable list.
3652  *
3653  * Reasons page might not be evictable:
3654  * (1) page's mapping marked unevictable
3655  * (2) page is part of an mlocked VMA
3656  *
3657  */
3658 int page_evictable(struct page *page)
3659 {
3660 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3661 }
3662 
3663 #ifdef CONFIG_SHMEM
3664 /**
3665  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3666  * @pages:	array of pages to check
3667  * @nr_pages:	number of pages to check
3668  *
3669  * Checks pages for evictability and moves them to the appropriate lru list.
3670  *
3671  * This function is only used for SysV IPC SHM_UNLOCK.
3672  */
3673 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3674 {
3675 	struct lruvec *lruvec;
3676 	struct zone *zone = NULL;
3677 	int pgscanned = 0;
3678 	int pgrescued = 0;
3679 	int i;
3680 
3681 	for (i = 0; i < nr_pages; i++) {
3682 		struct page *page = pages[i];
3683 		struct zone *pagezone;
3684 
3685 		pgscanned++;
3686 		pagezone = page_zone(page);
3687 		if (pagezone != zone) {
3688 			if (zone)
3689 				spin_unlock_irq(&zone->lru_lock);
3690 			zone = pagezone;
3691 			spin_lock_irq(&zone->lru_lock);
3692 		}
3693 		lruvec = mem_cgroup_page_lruvec(page, zone);
3694 
3695 		if (!PageLRU(page) || !PageUnevictable(page))
3696 			continue;
3697 
3698 		if (page_evictable(page)) {
3699 			enum lru_list lru = page_lru_base_type(page);
3700 
3701 			VM_BUG_ON_PAGE(PageActive(page), page);
3702 			ClearPageUnevictable(page);
3703 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3704 			add_page_to_lru_list(page, lruvec, lru);
3705 			pgrescued++;
3706 		}
3707 	}
3708 
3709 	if (zone) {
3710 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3711 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3712 		spin_unlock_irq(&zone->lru_lock);
3713 	}
3714 }
3715 #endif /* CONFIG_SHMEM */
3716 
3717 static void warn_scan_unevictable_pages(void)
3718 {
3719 	printk_once(KERN_WARNING
3720 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3721 		    "disabled for lack of a legitimate use case.  If you have "
3722 		    "one, please send an email to linux-mm@kvack.org.\n",
3723 		    current->comm);
3724 }
3725 
3726 /*
3727  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3728  * all nodes' unevictable lists for evictable pages
3729  */
3730 unsigned long scan_unevictable_pages;
3731 
3732 int scan_unevictable_handler(struct ctl_table *table, int write,
3733 			   void __user *buffer,
3734 			   size_t *length, loff_t *ppos)
3735 {
3736 	warn_scan_unevictable_pages();
3737 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3738 	scan_unevictable_pages = 0;
3739 	return 0;
3740 }
3741 
3742 #ifdef CONFIG_NUMA
3743 /*
3744  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3745  * a specified node's per zone unevictable lists for evictable pages.
3746  */
3747 
3748 static ssize_t read_scan_unevictable_node(struct device *dev,
3749 					  struct device_attribute *attr,
3750 					  char *buf)
3751 {
3752 	warn_scan_unevictable_pages();
3753 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3754 }
3755 
3756 static ssize_t write_scan_unevictable_node(struct device *dev,
3757 					   struct device_attribute *attr,
3758 					const char *buf, size_t count)
3759 {
3760 	warn_scan_unevictable_pages();
3761 	return 1;
3762 }
3763 
3764 
3765 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3766 			read_scan_unevictable_node,
3767 			write_scan_unevictable_node);
3768 
3769 int scan_unevictable_register_node(struct node *node)
3770 {
3771 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3772 }
3773 
3774 void scan_unevictable_unregister_node(struct node *node)
3775 {
3776 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3777 }
3778 #endif
3779