xref: /openbmc/linux/mm/vmscan.c (revision 36bccb11)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52 
53 #include "internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57 
58 struct scan_control {
59 	/* Incremented by the number of inactive pages that were scanned */
60 	unsigned long nr_scanned;
61 
62 	/* Number of pages freed so far during a call to shrink_zones() */
63 	unsigned long nr_reclaimed;
64 
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	unsigned long hibernation_mode;
69 
70 	/* This context's GFP mask */
71 	gfp_t gfp_mask;
72 
73 	int may_writepage;
74 
75 	/* Can mapped pages be reclaimed? */
76 	int may_unmap;
77 
78 	/* Can pages be swapped as part of reclaim? */
79 	int may_swap;
80 
81 	int order;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	/*
87 	 * The memory cgroup that hit its limit and as a result is the
88 	 * primary target of this reclaim invocation.
89 	 */
90 	struct mem_cgroup *target_mem_cgroup;
91 
92 	/*
93 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 	 * are scanned.
95 	 */
96 	nodemask_t	*nodemask;
97 };
98 
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)			\
103 	do {								\
104 		if ((_page)->lru.prev != _base) {			\
105 			struct page *prev;				\
106 									\
107 			prev = lru_to_page(&(_page->lru));		\
108 			prefetch(&prev->_field);			\
109 		}							\
110 	} while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114 
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)			\
117 	do {								\
118 		if ((_page)->lru.prev != _base) {			\
119 			struct page *prev;				\
120 									\
121 			prev = lru_to_page(&(_page->lru));		\
122 			prefetchw(&prev->_field);			\
123 		}							\
124 	} while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128 
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
134 
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137 
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 	return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 	return true;
147 }
148 #endif
149 
150 static unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152 	int nr;
153 
154 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 	     zone_page_state(zone, NR_INACTIVE_FILE);
156 
157 	if (get_nr_swap_pages() > 0)
158 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 		      zone_page_state(zone, NR_INACTIVE_ANON);
160 
161 	return nr;
162 }
163 
164 bool zone_reclaimable(struct zone *zone)
165 {
166 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168 
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171 	if (!mem_cgroup_disabled())
172 		return mem_cgroup_get_lru_size(lruvec, lru);
173 
174 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176 
177 /*
178  * Add a shrinker callback to be called from the vm.
179  */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182 	size_t size = sizeof(*shrinker->nr_deferred);
183 
184 	/*
185 	 * If we only have one possible node in the system anyway, save
186 	 * ourselves the trouble and disable NUMA aware behavior. This way we
187 	 * will save memory and some small loop time later.
188 	 */
189 	if (nr_node_ids == 1)
190 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191 
192 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 		size *= nr_node_ids;
194 
195 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 	if (!shrinker->nr_deferred)
197 		return -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	list_add_tail(&shrinker->list, &shrinker_list);
201 	up_write(&shrinker_rwsem);
202 	return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205 
206 /*
207  * Remove one
208  */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211 	down_write(&shrinker_rwsem);
212 	list_del(&shrinker->list);
213 	up_write(&shrinker_rwsem);
214 	kfree(shrinker->nr_deferred);
215 }
216 EXPORT_SYMBOL(unregister_shrinker);
217 
218 #define SHRINK_BATCH 128
219 
220 static unsigned long
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 		 unsigned long nr_pages_scanned, unsigned long lru_pages)
223 {
224 	unsigned long freed = 0;
225 	unsigned long long delta;
226 	long total_scan;
227 	long freeable;
228 	long nr;
229 	long new_nr;
230 	int nid = shrinkctl->nid;
231 	long batch_size = shrinker->batch ? shrinker->batch
232 					  : SHRINK_BATCH;
233 
234 	freeable = shrinker->count_objects(shrinker, shrinkctl);
235 	if (freeable == 0)
236 		return 0;
237 
238 	/*
239 	 * copy the current shrinker scan count into a local variable
240 	 * and zero it so that other concurrent shrinker invocations
241 	 * don't also do this scanning work.
242 	 */
243 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244 
245 	total_scan = nr;
246 	delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 	delta *= freeable;
248 	do_div(delta, lru_pages + 1);
249 	total_scan += delta;
250 	if (total_scan < 0) {
251 		printk(KERN_ERR
252 		"shrink_slab: %pF negative objects to delete nr=%ld\n",
253 		       shrinker->scan_objects, total_scan);
254 		total_scan = freeable;
255 	}
256 
257 	/*
258 	 * We need to avoid excessive windup on filesystem shrinkers
259 	 * due to large numbers of GFP_NOFS allocations causing the
260 	 * shrinkers to return -1 all the time. This results in a large
261 	 * nr being built up so when a shrink that can do some work
262 	 * comes along it empties the entire cache due to nr >>>
263 	 * freeable. This is bad for sustaining a working set in
264 	 * memory.
265 	 *
266 	 * Hence only allow the shrinker to scan the entire cache when
267 	 * a large delta change is calculated directly.
268 	 */
269 	if (delta < freeable / 4)
270 		total_scan = min(total_scan, freeable / 2);
271 
272 	/*
273 	 * Avoid risking looping forever due to too large nr value:
274 	 * never try to free more than twice the estimate number of
275 	 * freeable entries.
276 	 */
277 	if (total_scan > freeable * 2)
278 		total_scan = freeable * 2;
279 
280 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 				nr_pages_scanned, lru_pages,
282 				freeable, delta, total_scan);
283 
284 	/*
285 	 * Normally, we should not scan less than batch_size objects in one
286 	 * pass to avoid too frequent shrinker calls, but if the slab has less
287 	 * than batch_size objects in total and we are really tight on memory,
288 	 * we will try to reclaim all available objects, otherwise we can end
289 	 * up failing allocations although there are plenty of reclaimable
290 	 * objects spread over several slabs with usage less than the
291 	 * batch_size.
292 	 *
293 	 * We detect the "tight on memory" situations by looking at the total
294 	 * number of objects we want to scan (total_scan). If it is greater
295 	 * than the total number of objects on slab (freeable), we must be
296 	 * scanning at high prio and therefore should try to reclaim as much as
297 	 * possible.
298 	 */
299 	while (total_scan >= batch_size ||
300 	       total_scan >= freeable) {
301 		unsigned long ret;
302 		unsigned long nr_to_scan = min(batch_size, total_scan);
303 
304 		shrinkctl->nr_to_scan = nr_to_scan;
305 		ret = shrinker->scan_objects(shrinker, shrinkctl);
306 		if (ret == SHRINK_STOP)
307 			break;
308 		freed += ret;
309 
310 		count_vm_events(SLABS_SCANNED, nr_to_scan);
311 		total_scan -= nr_to_scan;
312 
313 		cond_resched();
314 	}
315 
316 	/*
317 	 * move the unused scan count back into the shrinker in a
318 	 * manner that handles concurrent updates. If we exhausted the
319 	 * scan, there is no need to do an update.
320 	 */
321 	if (total_scan > 0)
322 		new_nr = atomic_long_add_return(total_scan,
323 						&shrinker->nr_deferred[nid]);
324 	else
325 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
326 
327 	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
328 	return freed;
329 }
330 
331 /*
332  * Call the shrink functions to age shrinkable caches
333  *
334  * Here we assume it costs one seek to replace a lru page and that it also
335  * takes a seek to recreate a cache object.  With this in mind we age equal
336  * percentages of the lru and ageable caches.  This should balance the seeks
337  * generated by these structures.
338  *
339  * If the vm encountered mapped pages on the LRU it increase the pressure on
340  * slab to avoid swapping.
341  *
342  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
343  *
344  * `lru_pages' represents the number of on-LRU pages in all the zones which
345  * are eligible for the caller's allocation attempt.  It is used for balancing
346  * slab reclaim versus page reclaim.
347  *
348  * Returns the number of slab objects which we shrunk.
349  */
350 unsigned long shrink_slab(struct shrink_control *shrinkctl,
351 			  unsigned long nr_pages_scanned,
352 			  unsigned long lru_pages)
353 {
354 	struct shrinker *shrinker;
355 	unsigned long freed = 0;
356 
357 	if (nr_pages_scanned == 0)
358 		nr_pages_scanned = SWAP_CLUSTER_MAX;
359 
360 	if (!down_read_trylock(&shrinker_rwsem)) {
361 		/*
362 		 * If we would return 0, our callers would understand that we
363 		 * have nothing else to shrink and give up trying. By returning
364 		 * 1 we keep it going and assume we'll be able to shrink next
365 		 * time.
366 		 */
367 		freed = 1;
368 		goto out;
369 	}
370 
371 	list_for_each_entry(shrinker, &shrinker_list, list) {
372 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
373 			shrinkctl->nid = 0;
374 			freed += shrink_slab_node(shrinkctl, shrinker,
375 					nr_pages_scanned, lru_pages);
376 			continue;
377 		}
378 
379 		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380 			if (node_online(shrinkctl->nid))
381 				freed += shrink_slab_node(shrinkctl, shrinker,
382 						nr_pages_scanned, lru_pages);
383 
384 		}
385 	}
386 	up_read(&shrinker_rwsem);
387 out:
388 	cond_resched();
389 	return freed;
390 }
391 
392 static inline int is_page_cache_freeable(struct page *page)
393 {
394 	/*
395 	 * A freeable page cache page is referenced only by the caller
396 	 * that isolated the page, the page cache radix tree and
397 	 * optional buffer heads at page->private.
398 	 */
399 	return page_count(page) - page_has_private(page) == 2;
400 }
401 
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403 			      struct scan_control *sc)
404 {
405 	if (current->flags & PF_SWAPWRITE)
406 		return 1;
407 	if (!bdi_write_congested(bdi))
408 		return 1;
409 	if (bdi == current->backing_dev_info)
410 		return 1;
411 	return 0;
412 }
413 
414 /*
415  * We detected a synchronous write error writing a page out.  Probably
416  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
417  * fsync(), msync() or close().
418  *
419  * The tricky part is that after writepage we cannot touch the mapping: nothing
420  * prevents it from being freed up.  But we have a ref on the page and once
421  * that page is locked, the mapping is pinned.
422  *
423  * We're allowed to run sleeping lock_page() here because we know the caller has
424  * __GFP_FS.
425  */
426 static void handle_write_error(struct address_space *mapping,
427 				struct page *page, int error)
428 {
429 	lock_page(page);
430 	if (page_mapping(page) == mapping)
431 		mapping_set_error(mapping, error);
432 	unlock_page(page);
433 }
434 
435 /* possible outcome of pageout() */
436 typedef enum {
437 	/* failed to write page out, page is locked */
438 	PAGE_KEEP,
439 	/* move page to the active list, page is locked */
440 	PAGE_ACTIVATE,
441 	/* page has been sent to the disk successfully, page is unlocked */
442 	PAGE_SUCCESS,
443 	/* page is clean and locked */
444 	PAGE_CLEAN,
445 } pageout_t;
446 
447 /*
448  * pageout is called by shrink_page_list() for each dirty page.
449  * Calls ->writepage().
450  */
451 static pageout_t pageout(struct page *page, struct address_space *mapping,
452 			 struct scan_control *sc)
453 {
454 	/*
455 	 * If the page is dirty, only perform writeback if that write
456 	 * will be non-blocking.  To prevent this allocation from being
457 	 * stalled by pagecache activity.  But note that there may be
458 	 * stalls if we need to run get_block().  We could test
459 	 * PagePrivate for that.
460 	 *
461 	 * If this process is currently in __generic_file_aio_write() against
462 	 * this page's queue, we can perform writeback even if that
463 	 * will block.
464 	 *
465 	 * If the page is swapcache, write it back even if that would
466 	 * block, for some throttling. This happens by accident, because
467 	 * swap_backing_dev_info is bust: it doesn't reflect the
468 	 * congestion state of the swapdevs.  Easy to fix, if needed.
469 	 */
470 	if (!is_page_cache_freeable(page))
471 		return PAGE_KEEP;
472 	if (!mapping) {
473 		/*
474 		 * Some data journaling orphaned pages can have
475 		 * page->mapping == NULL while being dirty with clean buffers.
476 		 */
477 		if (page_has_private(page)) {
478 			if (try_to_free_buffers(page)) {
479 				ClearPageDirty(page);
480 				printk("%s: orphaned page\n", __func__);
481 				return PAGE_CLEAN;
482 			}
483 		}
484 		return PAGE_KEEP;
485 	}
486 	if (mapping->a_ops->writepage == NULL)
487 		return PAGE_ACTIVATE;
488 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
489 		return PAGE_KEEP;
490 
491 	if (clear_page_dirty_for_io(page)) {
492 		int res;
493 		struct writeback_control wbc = {
494 			.sync_mode = WB_SYNC_NONE,
495 			.nr_to_write = SWAP_CLUSTER_MAX,
496 			.range_start = 0,
497 			.range_end = LLONG_MAX,
498 			.for_reclaim = 1,
499 		};
500 
501 		SetPageReclaim(page);
502 		res = mapping->a_ops->writepage(page, &wbc);
503 		if (res < 0)
504 			handle_write_error(mapping, page, res);
505 		if (res == AOP_WRITEPAGE_ACTIVATE) {
506 			ClearPageReclaim(page);
507 			return PAGE_ACTIVATE;
508 		}
509 
510 		if (!PageWriteback(page)) {
511 			/* synchronous write or broken a_ops? */
512 			ClearPageReclaim(page);
513 		}
514 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
516 		return PAGE_SUCCESS;
517 	}
518 
519 	return PAGE_CLEAN;
520 }
521 
522 /*
523  * Same as remove_mapping, but if the page is removed from the mapping, it
524  * gets returned with a refcount of 0.
525  */
526 static int __remove_mapping(struct address_space *mapping, struct page *page,
527 			    bool reclaimed)
528 {
529 	BUG_ON(!PageLocked(page));
530 	BUG_ON(mapping != page_mapping(page));
531 
532 	spin_lock_irq(&mapping->tree_lock);
533 	/*
534 	 * The non racy check for a busy page.
535 	 *
536 	 * Must be careful with the order of the tests. When someone has
537 	 * a ref to the page, it may be possible that they dirty it then
538 	 * drop the reference. So if PageDirty is tested before page_count
539 	 * here, then the following race may occur:
540 	 *
541 	 * get_user_pages(&page);
542 	 * [user mapping goes away]
543 	 * write_to(page);
544 	 *				!PageDirty(page)    [good]
545 	 * SetPageDirty(page);
546 	 * put_page(page);
547 	 *				!page_count(page)   [good, discard it]
548 	 *
549 	 * [oops, our write_to data is lost]
550 	 *
551 	 * Reversing the order of the tests ensures such a situation cannot
552 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
553 	 * load is not satisfied before that of page->_count.
554 	 *
555 	 * Note that if SetPageDirty is always performed via set_page_dirty,
556 	 * and thus under tree_lock, then this ordering is not required.
557 	 */
558 	if (!page_freeze_refs(page, 2))
559 		goto cannot_free;
560 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
561 	if (unlikely(PageDirty(page))) {
562 		page_unfreeze_refs(page, 2);
563 		goto cannot_free;
564 	}
565 
566 	if (PageSwapCache(page)) {
567 		swp_entry_t swap = { .val = page_private(page) };
568 		__delete_from_swap_cache(page);
569 		spin_unlock_irq(&mapping->tree_lock);
570 		swapcache_free(swap, page);
571 	} else {
572 		void (*freepage)(struct page *);
573 		void *shadow = NULL;
574 
575 		freepage = mapping->a_ops->freepage;
576 		/*
577 		 * Remember a shadow entry for reclaimed file cache in
578 		 * order to detect refaults, thus thrashing, later on.
579 		 *
580 		 * But don't store shadows in an address space that is
581 		 * already exiting.  This is not just an optizimation,
582 		 * inode reclaim needs to empty out the radix tree or
583 		 * the nodes are lost.  Don't plant shadows behind its
584 		 * back.
585 		 */
586 		if (reclaimed && page_is_file_cache(page) &&
587 		    !mapping_exiting(mapping))
588 			shadow = workingset_eviction(mapping, page);
589 		__delete_from_page_cache(page, shadow);
590 		spin_unlock_irq(&mapping->tree_lock);
591 		mem_cgroup_uncharge_cache_page(page);
592 
593 		if (freepage != NULL)
594 			freepage(page);
595 	}
596 
597 	return 1;
598 
599 cannot_free:
600 	spin_unlock_irq(&mapping->tree_lock);
601 	return 0;
602 }
603 
604 /*
605  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
606  * someone else has a ref on the page, abort and return 0.  If it was
607  * successfully detached, return 1.  Assumes the caller has a single ref on
608  * this page.
609  */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612 	if (__remove_mapping(mapping, page, false)) {
613 		/*
614 		 * Unfreezing the refcount with 1 rather than 2 effectively
615 		 * drops the pagecache ref for us without requiring another
616 		 * atomic operation.
617 		 */
618 		page_unfreeze_refs(page, 1);
619 		return 1;
620 	}
621 	return 0;
622 }
623 
624 /**
625  * putback_lru_page - put previously isolated page onto appropriate LRU list
626  * @page: page to be put back to appropriate lru list
627  *
628  * Add previously isolated @page to appropriate LRU list.
629  * Page may still be unevictable for other reasons.
630  *
631  * lru_lock must not be held, interrupts must be enabled.
632  */
633 void putback_lru_page(struct page *page)
634 {
635 	bool is_unevictable;
636 	int was_unevictable = PageUnevictable(page);
637 
638 	VM_BUG_ON_PAGE(PageLRU(page), page);
639 
640 redo:
641 	ClearPageUnevictable(page);
642 
643 	if (page_evictable(page)) {
644 		/*
645 		 * For evictable pages, we can use the cache.
646 		 * In event of a race, worst case is we end up with an
647 		 * unevictable page on [in]active list.
648 		 * We know how to handle that.
649 		 */
650 		is_unevictable = false;
651 		lru_cache_add(page);
652 	} else {
653 		/*
654 		 * Put unevictable pages directly on zone's unevictable
655 		 * list.
656 		 */
657 		is_unevictable = true;
658 		add_page_to_unevictable_list(page);
659 		/*
660 		 * When racing with an mlock or AS_UNEVICTABLE clearing
661 		 * (page is unlocked) make sure that if the other thread
662 		 * does not observe our setting of PG_lru and fails
663 		 * isolation/check_move_unevictable_pages,
664 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665 		 * the page back to the evictable list.
666 		 *
667 		 * The other side is TestClearPageMlocked() or shmem_lock().
668 		 */
669 		smp_mb();
670 	}
671 
672 	/*
673 	 * page's status can change while we move it among lru. If an evictable
674 	 * page is on unevictable list, it never be freed. To avoid that,
675 	 * check after we added it to the list, again.
676 	 */
677 	if (is_unevictable && page_evictable(page)) {
678 		if (!isolate_lru_page(page)) {
679 			put_page(page);
680 			goto redo;
681 		}
682 		/* This means someone else dropped this page from LRU
683 		 * So, it will be freed or putback to LRU again. There is
684 		 * nothing to do here.
685 		 */
686 	}
687 
688 	if (was_unevictable && !is_unevictable)
689 		count_vm_event(UNEVICTABLE_PGRESCUED);
690 	else if (!was_unevictable && is_unevictable)
691 		count_vm_event(UNEVICTABLE_PGCULLED);
692 
693 	put_page(page);		/* drop ref from isolate */
694 }
695 
696 enum page_references {
697 	PAGEREF_RECLAIM,
698 	PAGEREF_RECLAIM_CLEAN,
699 	PAGEREF_KEEP,
700 	PAGEREF_ACTIVATE,
701 };
702 
703 static enum page_references page_check_references(struct page *page,
704 						  struct scan_control *sc)
705 {
706 	int referenced_ptes, referenced_page;
707 	unsigned long vm_flags;
708 
709 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
710 					  &vm_flags);
711 	referenced_page = TestClearPageReferenced(page);
712 
713 	/*
714 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
715 	 * move the page to the unevictable list.
716 	 */
717 	if (vm_flags & VM_LOCKED)
718 		return PAGEREF_RECLAIM;
719 
720 	if (referenced_ptes) {
721 		if (PageSwapBacked(page))
722 			return PAGEREF_ACTIVATE;
723 		/*
724 		 * All mapped pages start out with page table
725 		 * references from the instantiating fault, so we need
726 		 * to look twice if a mapped file page is used more
727 		 * than once.
728 		 *
729 		 * Mark it and spare it for another trip around the
730 		 * inactive list.  Another page table reference will
731 		 * lead to its activation.
732 		 *
733 		 * Note: the mark is set for activated pages as well
734 		 * so that recently deactivated but used pages are
735 		 * quickly recovered.
736 		 */
737 		SetPageReferenced(page);
738 
739 		if (referenced_page || referenced_ptes > 1)
740 			return PAGEREF_ACTIVATE;
741 
742 		/*
743 		 * Activate file-backed executable pages after first usage.
744 		 */
745 		if (vm_flags & VM_EXEC)
746 			return PAGEREF_ACTIVATE;
747 
748 		return PAGEREF_KEEP;
749 	}
750 
751 	/* Reclaim if clean, defer dirty pages to writeback */
752 	if (referenced_page && !PageSwapBacked(page))
753 		return PAGEREF_RECLAIM_CLEAN;
754 
755 	return PAGEREF_RECLAIM;
756 }
757 
758 /* Check if a page is dirty or under writeback */
759 static void page_check_dirty_writeback(struct page *page,
760 				       bool *dirty, bool *writeback)
761 {
762 	struct address_space *mapping;
763 
764 	/*
765 	 * Anonymous pages are not handled by flushers and must be written
766 	 * from reclaim context. Do not stall reclaim based on them
767 	 */
768 	if (!page_is_file_cache(page)) {
769 		*dirty = false;
770 		*writeback = false;
771 		return;
772 	}
773 
774 	/* By default assume that the page flags are accurate */
775 	*dirty = PageDirty(page);
776 	*writeback = PageWriteback(page);
777 
778 	/* Verify dirty/writeback state if the filesystem supports it */
779 	if (!page_has_private(page))
780 		return;
781 
782 	mapping = page_mapping(page);
783 	if (mapping && mapping->a_ops->is_dirty_writeback)
784 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
785 }
786 
787 /*
788  * shrink_page_list() returns the number of reclaimed pages
789  */
790 static unsigned long shrink_page_list(struct list_head *page_list,
791 				      struct zone *zone,
792 				      struct scan_control *sc,
793 				      enum ttu_flags ttu_flags,
794 				      unsigned long *ret_nr_dirty,
795 				      unsigned long *ret_nr_unqueued_dirty,
796 				      unsigned long *ret_nr_congested,
797 				      unsigned long *ret_nr_writeback,
798 				      unsigned long *ret_nr_immediate,
799 				      bool force_reclaim)
800 {
801 	LIST_HEAD(ret_pages);
802 	LIST_HEAD(free_pages);
803 	int pgactivate = 0;
804 	unsigned long nr_unqueued_dirty = 0;
805 	unsigned long nr_dirty = 0;
806 	unsigned long nr_congested = 0;
807 	unsigned long nr_reclaimed = 0;
808 	unsigned long nr_writeback = 0;
809 	unsigned long nr_immediate = 0;
810 
811 	cond_resched();
812 
813 	mem_cgroup_uncharge_start();
814 	while (!list_empty(page_list)) {
815 		struct address_space *mapping;
816 		struct page *page;
817 		int may_enter_fs;
818 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
819 		bool dirty, writeback;
820 
821 		cond_resched();
822 
823 		page = lru_to_page(page_list);
824 		list_del(&page->lru);
825 
826 		if (!trylock_page(page))
827 			goto keep;
828 
829 		VM_BUG_ON_PAGE(PageActive(page), page);
830 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
831 
832 		sc->nr_scanned++;
833 
834 		if (unlikely(!page_evictable(page)))
835 			goto cull_mlocked;
836 
837 		if (!sc->may_unmap && page_mapped(page))
838 			goto keep_locked;
839 
840 		/* Double the slab pressure for mapped and swapcache pages */
841 		if (page_mapped(page) || PageSwapCache(page))
842 			sc->nr_scanned++;
843 
844 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
845 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
846 
847 		/*
848 		 * The number of dirty pages determines if a zone is marked
849 		 * reclaim_congested which affects wait_iff_congested. kswapd
850 		 * will stall and start writing pages if the tail of the LRU
851 		 * is all dirty unqueued pages.
852 		 */
853 		page_check_dirty_writeback(page, &dirty, &writeback);
854 		if (dirty || writeback)
855 			nr_dirty++;
856 
857 		if (dirty && !writeback)
858 			nr_unqueued_dirty++;
859 
860 		/*
861 		 * Treat this page as congested if the underlying BDI is or if
862 		 * pages are cycling through the LRU so quickly that the
863 		 * pages marked for immediate reclaim are making it to the
864 		 * end of the LRU a second time.
865 		 */
866 		mapping = page_mapping(page);
867 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
868 		    (writeback && PageReclaim(page)))
869 			nr_congested++;
870 
871 		/*
872 		 * If a page at the tail of the LRU is under writeback, there
873 		 * are three cases to consider.
874 		 *
875 		 * 1) If reclaim is encountering an excessive number of pages
876 		 *    under writeback and this page is both under writeback and
877 		 *    PageReclaim then it indicates that pages are being queued
878 		 *    for IO but are being recycled through the LRU before the
879 		 *    IO can complete. Waiting on the page itself risks an
880 		 *    indefinite stall if it is impossible to writeback the
881 		 *    page due to IO error or disconnected storage so instead
882 		 *    note that the LRU is being scanned too quickly and the
883 		 *    caller can stall after page list has been processed.
884 		 *
885 		 * 2) Global reclaim encounters a page, memcg encounters a
886 		 *    page that is not marked for immediate reclaim or
887 		 *    the caller does not have __GFP_IO. In this case mark
888 		 *    the page for immediate reclaim and continue scanning.
889 		 *
890 		 *    __GFP_IO is checked  because a loop driver thread might
891 		 *    enter reclaim, and deadlock if it waits on a page for
892 		 *    which it is needed to do the write (loop masks off
893 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
894 		 *    would probably show more reasons.
895 		 *
896 		 *    Don't require __GFP_FS, since we're not going into the
897 		 *    FS, just waiting on its writeback completion. Worryingly,
898 		 *    ext4 gfs2 and xfs allocate pages with
899 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
900 		 *    may_enter_fs here is liable to OOM on them.
901 		 *
902 		 * 3) memcg encounters a page that is not already marked
903 		 *    PageReclaim. memcg does not have any dirty pages
904 		 *    throttling so we could easily OOM just because too many
905 		 *    pages are in writeback and there is nothing else to
906 		 *    reclaim. Wait for the writeback to complete.
907 		 */
908 		if (PageWriteback(page)) {
909 			/* Case 1 above */
910 			if (current_is_kswapd() &&
911 			    PageReclaim(page) &&
912 			    zone_is_reclaim_writeback(zone)) {
913 				nr_immediate++;
914 				goto keep_locked;
915 
916 			/* Case 2 above */
917 			} else if (global_reclaim(sc) ||
918 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
919 				/*
920 				 * This is slightly racy - end_page_writeback()
921 				 * might have just cleared PageReclaim, then
922 				 * setting PageReclaim here end up interpreted
923 				 * as PageReadahead - but that does not matter
924 				 * enough to care.  What we do want is for this
925 				 * page to have PageReclaim set next time memcg
926 				 * reclaim reaches the tests above, so it will
927 				 * then wait_on_page_writeback() to avoid OOM;
928 				 * and it's also appropriate in global reclaim.
929 				 */
930 				SetPageReclaim(page);
931 				nr_writeback++;
932 
933 				goto keep_locked;
934 
935 			/* Case 3 above */
936 			} else {
937 				wait_on_page_writeback(page);
938 			}
939 		}
940 
941 		if (!force_reclaim)
942 			references = page_check_references(page, sc);
943 
944 		switch (references) {
945 		case PAGEREF_ACTIVATE:
946 			goto activate_locked;
947 		case PAGEREF_KEEP:
948 			goto keep_locked;
949 		case PAGEREF_RECLAIM:
950 		case PAGEREF_RECLAIM_CLEAN:
951 			; /* try to reclaim the page below */
952 		}
953 
954 		/*
955 		 * Anonymous process memory has backing store?
956 		 * Try to allocate it some swap space here.
957 		 */
958 		if (PageAnon(page) && !PageSwapCache(page)) {
959 			if (!(sc->gfp_mask & __GFP_IO))
960 				goto keep_locked;
961 			if (!add_to_swap(page, page_list))
962 				goto activate_locked;
963 			may_enter_fs = 1;
964 
965 			/* Adding to swap updated mapping */
966 			mapping = page_mapping(page);
967 		}
968 
969 		/*
970 		 * The page is mapped into the page tables of one or more
971 		 * processes. Try to unmap it here.
972 		 */
973 		if (page_mapped(page) && mapping) {
974 			switch (try_to_unmap(page, ttu_flags)) {
975 			case SWAP_FAIL:
976 				goto activate_locked;
977 			case SWAP_AGAIN:
978 				goto keep_locked;
979 			case SWAP_MLOCK:
980 				goto cull_mlocked;
981 			case SWAP_SUCCESS:
982 				; /* try to free the page below */
983 			}
984 		}
985 
986 		if (PageDirty(page)) {
987 			/*
988 			 * Only kswapd can writeback filesystem pages to
989 			 * avoid risk of stack overflow but only writeback
990 			 * if many dirty pages have been encountered.
991 			 */
992 			if (page_is_file_cache(page) &&
993 					(!current_is_kswapd() ||
994 					 !zone_is_reclaim_dirty(zone))) {
995 				/*
996 				 * Immediately reclaim when written back.
997 				 * Similar in principal to deactivate_page()
998 				 * except we already have the page isolated
999 				 * and know it's dirty
1000 				 */
1001 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1002 				SetPageReclaim(page);
1003 
1004 				goto keep_locked;
1005 			}
1006 
1007 			if (references == PAGEREF_RECLAIM_CLEAN)
1008 				goto keep_locked;
1009 			if (!may_enter_fs)
1010 				goto keep_locked;
1011 			if (!sc->may_writepage)
1012 				goto keep_locked;
1013 
1014 			/* Page is dirty, try to write it out here */
1015 			switch (pageout(page, mapping, sc)) {
1016 			case PAGE_KEEP:
1017 				goto keep_locked;
1018 			case PAGE_ACTIVATE:
1019 				goto activate_locked;
1020 			case PAGE_SUCCESS:
1021 				if (PageWriteback(page))
1022 					goto keep;
1023 				if (PageDirty(page))
1024 					goto keep;
1025 
1026 				/*
1027 				 * A synchronous write - probably a ramdisk.  Go
1028 				 * ahead and try to reclaim the page.
1029 				 */
1030 				if (!trylock_page(page))
1031 					goto keep;
1032 				if (PageDirty(page) || PageWriteback(page))
1033 					goto keep_locked;
1034 				mapping = page_mapping(page);
1035 			case PAGE_CLEAN:
1036 				; /* try to free the page below */
1037 			}
1038 		}
1039 
1040 		/*
1041 		 * If the page has buffers, try to free the buffer mappings
1042 		 * associated with this page. If we succeed we try to free
1043 		 * the page as well.
1044 		 *
1045 		 * We do this even if the page is PageDirty().
1046 		 * try_to_release_page() does not perform I/O, but it is
1047 		 * possible for a page to have PageDirty set, but it is actually
1048 		 * clean (all its buffers are clean).  This happens if the
1049 		 * buffers were written out directly, with submit_bh(). ext3
1050 		 * will do this, as well as the blockdev mapping.
1051 		 * try_to_release_page() will discover that cleanness and will
1052 		 * drop the buffers and mark the page clean - it can be freed.
1053 		 *
1054 		 * Rarely, pages can have buffers and no ->mapping.  These are
1055 		 * the pages which were not successfully invalidated in
1056 		 * truncate_complete_page().  We try to drop those buffers here
1057 		 * and if that worked, and the page is no longer mapped into
1058 		 * process address space (page_count == 1) it can be freed.
1059 		 * Otherwise, leave the page on the LRU so it is swappable.
1060 		 */
1061 		if (page_has_private(page)) {
1062 			if (!try_to_release_page(page, sc->gfp_mask))
1063 				goto activate_locked;
1064 			if (!mapping && page_count(page) == 1) {
1065 				unlock_page(page);
1066 				if (put_page_testzero(page))
1067 					goto free_it;
1068 				else {
1069 					/*
1070 					 * rare race with speculative reference.
1071 					 * the speculative reference will free
1072 					 * this page shortly, so we may
1073 					 * increment nr_reclaimed here (and
1074 					 * leave it off the LRU).
1075 					 */
1076 					nr_reclaimed++;
1077 					continue;
1078 				}
1079 			}
1080 		}
1081 
1082 		if (!mapping || !__remove_mapping(mapping, page, true))
1083 			goto keep_locked;
1084 
1085 		/*
1086 		 * At this point, we have no other references and there is
1087 		 * no way to pick any more up (removed from LRU, removed
1088 		 * from pagecache). Can use non-atomic bitops now (and
1089 		 * we obviously don't have to worry about waking up a process
1090 		 * waiting on the page lock, because there are no references.
1091 		 */
1092 		__clear_page_locked(page);
1093 free_it:
1094 		nr_reclaimed++;
1095 
1096 		/*
1097 		 * Is there need to periodically free_page_list? It would
1098 		 * appear not as the counts should be low
1099 		 */
1100 		list_add(&page->lru, &free_pages);
1101 		continue;
1102 
1103 cull_mlocked:
1104 		if (PageSwapCache(page))
1105 			try_to_free_swap(page);
1106 		unlock_page(page);
1107 		putback_lru_page(page);
1108 		continue;
1109 
1110 activate_locked:
1111 		/* Not a candidate for swapping, so reclaim swap space. */
1112 		if (PageSwapCache(page) && vm_swap_full())
1113 			try_to_free_swap(page);
1114 		VM_BUG_ON_PAGE(PageActive(page), page);
1115 		SetPageActive(page);
1116 		pgactivate++;
1117 keep_locked:
1118 		unlock_page(page);
1119 keep:
1120 		list_add(&page->lru, &ret_pages);
1121 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1122 	}
1123 
1124 	free_hot_cold_page_list(&free_pages, 1);
1125 
1126 	list_splice(&ret_pages, page_list);
1127 	count_vm_events(PGACTIVATE, pgactivate);
1128 	mem_cgroup_uncharge_end();
1129 	*ret_nr_dirty += nr_dirty;
1130 	*ret_nr_congested += nr_congested;
1131 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132 	*ret_nr_writeback += nr_writeback;
1133 	*ret_nr_immediate += nr_immediate;
1134 	return nr_reclaimed;
1135 }
1136 
1137 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1138 					    struct list_head *page_list)
1139 {
1140 	struct scan_control sc = {
1141 		.gfp_mask = GFP_KERNEL,
1142 		.priority = DEF_PRIORITY,
1143 		.may_unmap = 1,
1144 	};
1145 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1146 	struct page *page, *next;
1147 	LIST_HEAD(clean_pages);
1148 
1149 	list_for_each_entry_safe(page, next, page_list, lru) {
1150 		if (page_is_file_cache(page) && !PageDirty(page) &&
1151 		    !isolated_balloon_page(page)) {
1152 			ClearPageActive(page);
1153 			list_move(&page->lru, &clean_pages);
1154 		}
1155 	}
1156 
1157 	ret = shrink_page_list(&clean_pages, zone, &sc,
1158 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1159 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1160 	list_splice(&clean_pages, page_list);
1161 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1162 	return ret;
1163 }
1164 
1165 /*
1166  * Attempt to remove the specified page from its LRU.  Only take this page
1167  * if it is of the appropriate PageActive status.  Pages which are being
1168  * freed elsewhere are also ignored.
1169  *
1170  * page:	page to consider
1171  * mode:	one of the LRU isolation modes defined above
1172  *
1173  * returns 0 on success, -ve errno on failure.
1174  */
1175 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1176 {
1177 	int ret = -EINVAL;
1178 
1179 	/* Only take pages on the LRU. */
1180 	if (!PageLRU(page))
1181 		return ret;
1182 
1183 	/* Compaction should not handle unevictable pages but CMA can do so */
1184 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1185 		return ret;
1186 
1187 	ret = -EBUSY;
1188 
1189 	/*
1190 	 * To minimise LRU disruption, the caller can indicate that it only
1191 	 * wants to isolate pages it will be able to operate on without
1192 	 * blocking - clean pages for the most part.
1193 	 *
1194 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1195 	 * is used by reclaim when it is cannot write to backing storage
1196 	 *
1197 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1198 	 * that it is possible to migrate without blocking
1199 	 */
1200 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1201 		/* All the caller can do on PageWriteback is block */
1202 		if (PageWriteback(page))
1203 			return ret;
1204 
1205 		if (PageDirty(page)) {
1206 			struct address_space *mapping;
1207 
1208 			/* ISOLATE_CLEAN means only clean pages */
1209 			if (mode & ISOLATE_CLEAN)
1210 				return ret;
1211 
1212 			/*
1213 			 * Only pages without mappings or that have a
1214 			 * ->migratepage callback are possible to migrate
1215 			 * without blocking
1216 			 */
1217 			mapping = page_mapping(page);
1218 			if (mapping && !mapping->a_ops->migratepage)
1219 				return ret;
1220 		}
1221 	}
1222 
1223 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1224 		return ret;
1225 
1226 	if (likely(get_page_unless_zero(page))) {
1227 		/*
1228 		 * Be careful not to clear PageLRU until after we're
1229 		 * sure the page is not being freed elsewhere -- the
1230 		 * page release code relies on it.
1231 		 */
1232 		ClearPageLRU(page);
1233 		ret = 0;
1234 	}
1235 
1236 	return ret;
1237 }
1238 
1239 /*
1240  * zone->lru_lock is heavily contended.  Some of the functions that
1241  * shrink the lists perform better by taking out a batch of pages
1242  * and working on them outside the LRU lock.
1243  *
1244  * For pagecache intensive workloads, this function is the hottest
1245  * spot in the kernel (apart from copy_*_user functions).
1246  *
1247  * Appropriate locks must be held before calling this function.
1248  *
1249  * @nr_to_scan:	The number of pages to look through on the list.
1250  * @lruvec:	The LRU vector to pull pages from.
1251  * @dst:	The temp list to put pages on to.
1252  * @nr_scanned:	The number of pages that were scanned.
1253  * @sc:		The scan_control struct for this reclaim session
1254  * @mode:	One of the LRU isolation modes
1255  * @lru:	LRU list id for isolating
1256  *
1257  * returns how many pages were moved onto *@dst.
1258  */
1259 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260 		struct lruvec *lruvec, struct list_head *dst,
1261 		unsigned long *nr_scanned, struct scan_control *sc,
1262 		isolate_mode_t mode, enum lru_list lru)
1263 {
1264 	struct list_head *src = &lruvec->lists[lru];
1265 	unsigned long nr_taken = 0;
1266 	unsigned long scan;
1267 
1268 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1269 		struct page *page;
1270 		int nr_pages;
1271 
1272 		page = lru_to_page(src);
1273 		prefetchw_prev_lru_page(page, src, flags);
1274 
1275 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1276 
1277 		switch (__isolate_lru_page(page, mode)) {
1278 		case 0:
1279 			nr_pages = hpage_nr_pages(page);
1280 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1281 			list_move(&page->lru, dst);
1282 			nr_taken += nr_pages;
1283 			break;
1284 
1285 		case -EBUSY:
1286 			/* else it is being freed elsewhere */
1287 			list_move(&page->lru, src);
1288 			continue;
1289 
1290 		default:
1291 			BUG();
1292 		}
1293 	}
1294 
1295 	*nr_scanned = scan;
1296 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1297 				    nr_taken, mode, is_file_lru(lru));
1298 	return nr_taken;
1299 }
1300 
1301 /**
1302  * isolate_lru_page - tries to isolate a page from its LRU list
1303  * @page: page to isolate from its LRU list
1304  *
1305  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1306  * vmstat statistic corresponding to whatever LRU list the page was on.
1307  *
1308  * Returns 0 if the page was removed from an LRU list.
1309  * Returns -EBUSY if the page was not on an LRU list.
1310  *
1311  * The returned page will have PageLRU() cleared.  If it was found on
1312  * the active list, it will have PageActive set.  If it was found on
1313  * the unevictable list, it will have the PageUnevictable bit set. That flag
1314  * may need to be cleared by the caller before letting the page go.
1315  *
1316  * The vmstat statistic corresponding to the list on which the page was
1317  * found will be decremented.
1318  *
1319  * Restrictions:
1320  * (1) Must be called with an elevated refcount on the page. This is a
1321  *     fundamentnal difference from isolate_lru_pages (which is called
1322  *     without a stable reference).
1323  * (2) the lru_lock must not be held.
1324  * (3) interrupts must be enabled.
1325  */
1326 int isolate_lru_page(struct page *page)
1327 {
1328 	int ret = -EBUSY;
1329 
1330 	VM_BUG_ON_PAGE(!page_count(page), page);
1331 
1332 	if (PageLRU(page)) {
1333 		struct zone *zone = page_zone(page);
1334 		struct lruvec *lruvec;
1335 
1336 		spin_lock_irq(&zone->lru_lock);
1337 		lruvec = mem_cgroup_page_lruvec(page, zone);
1338 		if (PageLRU(page)) {
1339 			int lru = page_lru(page);
1340 			get_page(page);
1341 			ClearPageLRU(page);
1342 			del_page_from_lru_list(page, lruvec, lru);
1343 			ret = 0;
1344 		}
1345 		spin_unlock_irq(&zone->lru_lock);
1346 	}
1347 	return ret;
1348 }
1349 
1350 /*
1351  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1352  * then get resheduled. When there are massive number of tasks doing page
1353  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1354  * the LRU list will go small and be scanned faster than necessary, leading to
1355  * unnecessary swapping, thrashing and OOM.
1356  */
1357 static int too_many_isolated(struct zone *zone, int file,
1358 		struct scan_control *sc)
1359 {
1360 	unsigned long inactive, isolated;
1361 
1362 	if (current_is_kswapd())
1363 		return 0;
1364 
1365 	if (!global_reclaim(sc))
1366 		return 0;
1367 
1368 	if (file) {
1369 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371 	} else {
1372 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374 	}
1375 
1376 	/*
1377 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1378 	 * won't get blocked by normal direct-reclaimers, forming a circular
1379 	 * deadlock.
1380 	 */
1381 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1382 		inactive >>= 3;
1383 
1384 	return isolated > inactive;
1385 }
1386 
1387 static noinline_for_stack void
1388 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1389 {
1390 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1391 	struct zone *zone = lruvec_zone(lruvec);
1392 	LIST_HEAD(pages_to_free);
1393 
1394 	/*
1395 	 * Put back any unfreeable pages.
1396 	 */
1397 	while (!list_empty(page_list)) {
1398 		struct page *page = lru_to_page(page_list);
1399 		int lru;
1400 
1401 		VM_BUG_ON_PAGE(PageLRU(page), page);
1402 		list_del(&page->lru);
1403 		if (unlikely(!page_evictable(page))) {
1404 			spin_unlock_irq(&zone->lru_lock);
1405 			putback_lru_page(page);
1406 			spin_lock_irq(&zone->lru_lock);
1407 			continue;
1408 		}
1409 
1410 		lruvec = mem_cgroup_page_lruvec(page, zone);
1411 
1412 		SetPageLRU(page);
1413 		lru = page_lru(page);
1414 		add_page_to_lru_list(page, lruvec, lru);
1415 
1416 		if (is_active_lru(lru)) {
1417 			int file = is_file_lru(lru);
1418 			int numpages = hpage_nr_pages(page);
1419 			reclaim_stat->recent_rotated[file] += numpages;
1420 		}
1421 		if (put_page_testzero(page)) {
1422 			__ClearPageLRU(page);
1423 			__ClearPageActive(page);
1424 			del_page_from_lru_list(page, lruvec, lru);
1425 
1426 			if (unlikely(PageCompound(page))) {
1427 				spin_unlock_irq(&zone->lru_lock);
1428 				(*get_compound_page_dtor(page))(page);
1429 				spin_lock_irq(&zone->lru_lock);
1430 			} else
1431 				list_add(&page->lru, &pages_to_free);
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * To save our caller's stack, now use input list for pages to free.
1437 	 */
1438 	list_splice(&pages_to_free, page_list);
1439 }
1440 
1441 /*
1442  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1443  * of reclaimed pages
1444  */
1445 static noinline_for_stack unsigned long
1446 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1447 		     struct scan_control *sc, enum lru_list lru)
1448 {
1449 	LIST_HEAD(page_list);
1450 	unsigned long nr_scanned;
1451 	unsigned long nr_reclaimed = 0;
1452 	unsigned long nr_taken;
1453 	unsigned long nr_dirty = 0;
1454 	unsigned long nr_congested = 0;
1455 	unsigned long nr_unqueued_dirty = 0;
1456 	unsigned long nr_writeback = 0;
1457 	unsigned long nr_immediate = 0;
1458 	isolate_mode_t isolate_mode = 0;
1459 	int file = is_file_lru(lru);
1460 	struct zone *zone = lruvec_zone(lruvec);
1461 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1462 
1463 	while (unlikely(too_many_isolated(zone, file, sc))) {
1464 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1465 
1466 		/* We are about to die and free our memory. Return now. */
1467 		if (fatal_signal_pending(current))
1468 			return SWAP_CLUSTER_MAX;
1469 	}
1470 
1471 	lru_add_drain();
1472 
1473 	if (!sc->may_unmap)
1474 		isolate_mode |= ISOLATE_UNMAPPED;
1475 	if (!sc->may_writepage)
1476 		isolate_mode |= ISOLATE_CLEAN;
1477 
1478 	spin_lock_irq(&zone->lru_lock);
1479 
1480 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1481 				     &nr_scanned, sc, isolate_mode, lru);
1482 
1483 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1484 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1485 
1486 	if (global_reclaim(sc)) {
1487 		zone->pages_scanned += nr_scanned;
1488 		if (current_is_kswapd())
1489 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1490 		else
1491 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1492 	}
1493 	spin_unlock_irq(&zone->lru_lock);
1494 
1495 	if (nr_taken == 0)
1496 		return 0;
1497 
1498 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1499 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1500 				&nr_writeback, &nr_immediate,
1501 				false);
1502 
1503 	spin_lock_irq(&zone->lru_lock);
1504 
1505 	reclaim_stat->recent_scanned[file] += nr_taken;
1506 
1507 	if (global_reclaim(sc)) {
1508 		if (current_is_kswapd())
1509 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1510 					       nr_reclaimed);
1511 		else
1512 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1513 					       nr_reclaimed);
1514 	}
1515 
1516 	putback_inactive_pages(lruvec, &page_list);
1517 
1518 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1519 
1520 	spin_unlock_irq(&zone->lru_lock);
1521 
1522 	free_hot_cold_page_list(&page_list, 1);
1523 
1524 	/*
1525 	 * If reclaim is isolating dirty pages under writeback, it implies
1526 	 * that the long-lived page allocation rate is exceeding the page
1527 	 * laundering rate. Either the global limits are not being effective
1528 	 * at throttling processes due to the page distribution throughout
1529 	 * zones or there is heavy usage of a slow backing device. The
1530 	 * only option is to throttle from reclaim context which is not ideal
1531 	 * as there is no guarantee the dirtying process is throttled in the
1532 	 * same way balance_dirty_pages() manages.
1533 	 *
1534 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1535 	 * of pages under pages flagged for immediate reclaim and stall if any
1536 	 * are encountered in the nr_immediate check below.
1537 	 */
1538 	if (nr_writeback && nr_writeback == nr_taken)
1539 		zone_set_flag(zone, ZONE_WRITEBACK);
1540 
1541 	/*
1542 	 * memcg will stall in page writeback so only consider forcibly
1543 	 * stalling for global reclaim
1544 	 */
1545 	if (global_reclaim(sc)) {
1546 		/*
1547 		 * Tag a zone as congested if all the dirty pages scanned were
1548 		 * backed by a congested BDI and wait_iff_congested will stall.
1549 		 */
1550 		if (nr_dirty && nr_dirty == nr_congested)
1551 			zone_set_flag(zone, ZONE_CONGESTED);
1552 
1553 		/*
1554 		 * If dirty pages are scanned that are not queued for IO, it
1555 		 * implies that flushers are not keeping up. In this case, flag
1556 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1557 		 * pages from reclaim context. It will forcibly stall in the
1558 		 * next check.
1559 		 */
1560 		if (nr_unqueued_dirty == nr_taken)
1561 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1562 
1563 		/*
1564 		 * In addition, if kswapd scans pages marked marked for
1565 		 * immediate reclaim and under writeback (nr_immediate), it
1566 		 * implies that pages are cycling through the LRU faster than
1567 		 * they are written so also forcibly stall.
1568 		 */
1569 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1570 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1571 	}
1572 
1573 	/*
1574 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1575 	 * is congested. Allow kswapd to continue until it starts encountering
1576 	 * unqueued dirty pages or cycling through the LRU too quickly.
1577 	 */
1578 	if (!sc->hibernation_mode && !current_is_kswapd())
1579 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580 
1581 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582 		zone_idx(zone),
1583 		nr_scanned, nr_reclaimed,
1584 		sc->priority,
1585 		trace_shrink_flags(file));
1586 	return nr_reclaimed;
1587 }
1588 
1589 /*
1590  * This moves pages from the active list to the inactive list.
1591  *
1592  * We move them the other way if the page is referenced by one or more
1593  * processes, from rmap.
1594  *
1595  * If the pages are mostly unmapped, the processing is fast and it is
1596  * appropriate to hold zone->lru_lock across the whole operation.  But if
1597  * the pages are mapped, the processing is slow (page_referenced()) so we
1598  * should drop zone->lru_lock around each page.  It's impossible to balance
1599  * this, so instead we remove the pages from the LRU while processing them.
1600  * It is safe to rely on PG_active against the non-LRU pages in here because
1601  * nobody will play with that bit on a non-LRU page.
1602  *
1603  * The downside is that we have to touch page->_count against each page.
1604  * But we had to alter page->flags anyway.
1605  */
1606 
1607 static void move_active_pages_to_lru(struct lruvec *lruvec,
1608 				     struct list_head *list,
1609 				     struct list_head *pages_to_free,
1610 				     enum lru_list lru)
1611 {
1612 	struct zone *zone = lruvec_zone(lruvec);
1613 	unsigned long pgmoved = 0;
1614 	struct page *page;
1615 	int nr_pages;
1616 
1617 	while (!list_empty(list)) {
1618 		page = lru_to_page(list);
1619 		lruvec = mem_cgroup_page_lruvec(page, zone);
1620 
1621 		VM_BUG_ON_PAGE(PageLRU(page), page);
1622 		SetPageLRU(page);
1623 
1624 		nr_pages = hpage_nr_pages(page);
1625 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1626 		list_move(&page->lru, &lruvec->lists[lru]);
1627 		pgmoved += nr_pages;
1628 
1629 		if (put_page_testzero(page)) {
1630 			__ClearPageLRU(page);
1631 			__ClearPageActive(page);
1632 			del_page_from_lru_list(page, lruvec, lru);
1633 
1634 			if (unlikely(PageCompound(page))) {
1635 				spin_unlock_irq(&zone->lru_lock);
1636 				(*get_compound_page_dtor(page))(page);
1637 				spin_lock_irq(&zone->lru_lock);
1638 			} else
1639 				list_add(&page->lru, pages_to_free);
1640 		}
1641 	}
1642 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1643 	if (!is_active_lru(lru))
1644 		__count_vm_events(PGDEACTIVATE, pgmoved);
1645 }
1646 
1647 static void shrink_active_list(unsigned long nr_to_scan,
1648 			       struct lruvec *lruvec,
1649 			       struct scan_control *sc,
1650 			       enum lru_list lru)
1651 {
1652 	unsigned long nr_taken;
1653 	unsigned long nr_scanned;
1654 	unsigned long vm_flags;
1655 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1656 	LIST_HEAD(l_active);
1657 	LIST_HEAD(l_inactive);
1658 	struct page *page;
1659 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660 	unsigned long nr_rotated = 0;
1661 	isolate_mode_t isolate_mode = 0;
1662 	int file = is_file_lru(lru);
1663 	struct zone *zone = lruvec_zone(lruvec);
1664 
1665 	lru_add_drain();
1666 
1667 	if (!sc->may_unmap)
1668 		isolate_mode |= ISOLATE_UNMAPPED;
1669 	if (!sc->may_writepage)
1670 		isolate_mode |= ISOLATE_CLEAN;
1671 
1672 	spin_lock_irq(&zone->lru_lock);
1673 
1674 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1675 				     &nr_scanned, sc, isolate_mode, lru);
1676 	if (global_reclaim(sc))
1677 		zone->pages_scanned += nr_scanned;
1678 
1679 	reclaim_stat->recent_scanned[file] += nr_taken;
1680 
1681 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1682 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1683 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1684 	spin_unlock_irq(&zone->lru_lock);
1685 
1686 	while (!list_empty(&l_hold)) {
1687 		cond_resched();
1688 		page = lru_to_page(&l_hold);
1689 		list_del(&page->lru);
1690 
1691 		if (unlikely(!page_evictable(page))) {
1692 			putback_lru_page(page);
1693 			continue;
1694 		}
1695 
1696 		if (unlikely(buffer_heads_over_limit)) {
1697 			if (page_has_private(page) && trylock_page(page)) {
1698 				if (page_has_private(page))
1699 					try_to_release_page(page, 0);
1700 				unlock_page(page);
1701 			}
1702 		}
1703 
1704 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1705 				    &vm_flags)) {
1706 			nr_rotated += hpage_nr_pages(page);
1707 			/*
1708 			 * Identify referenced, file-backed active pages and
1709 			 * give them one more trip around the active list. So
1710 			 * that executable code get better chances to stay in
1711 			 * memory under moderate memory pressure.  Anon pages
1712 			 * are not likely to be evicted by use-once streaming
1713 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1714 			 * so we ignore them here.
1715 			 */
1716 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1717 				list_add(&page->lru, &l_active);
1718 				continue;
1719 			}
1720 		}
1721 
1722 		ClearPageActive(page);	/* we are de-activating */
1723 		list_add(&page->lru, &l_inactive);
1724 	}
1725 
1726 	/*
1727 	 * Move pages back to the lru list.
1728 	 */
1729 	spin_lock_irq(&zone->lru_lock);
1730 	/*
1731 	 * Count referenced pages from currently used mappings as rotated,
1732 	 * even though only some of them are actually re-activated.  This
1733 	 * helps balance scan pressure between file and anonymous pages in
1734 	 * get_scan_ratio.
1735 	 */
1736 	reclaim_stat->recent_rotated[file] += nr_rotated;
1737 
1738 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1739 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1740 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1741 	spin_unlock_irq(&zone->lru_lock);
1742 
1743 	free_hot_cold_page_list(&l_hold, 1);
1744 }
1745 
1746 #ifdef CONFIG_SWAP
1747 static int inactive_anon_is_low_global(struct zone *zone)
1748 {
1749 	unsigned long active, inactive;
1750 
1751 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1752 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1753 
1754 	if (inactive * zone->inactive_ratio < active)
1755 		return 1;
1756 
1757 	return 0;
1758 }
1759 
1760 /**
1761  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762  * @lruvec: LRU vector to check
1763  *
1764  * Returns true if the zone does not have enough inactive anon pages,
1765  * meaning some active anon pages need to be deactivated.
1766  */
1767 static int inactive_anon_is_low(struct lruvec *lruvec)
1768 {
1769 	/*
1770 	 * If we don't have swap space, anonymous page deactivation
1771 	 * is pointless.
1772 	 */
1773 	if (!total_swap_pages)
1774 		return 0;
1775 
1776 	if (!mem_cgroup_disabled())
1777 		return mem_cgroup_inactive_anon_is_low(lruvec);
1778 
1779 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1780 }
1781 #else
1782 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1783 {
1784 	return 0;
1785 }
1786 #endif
1787 
1788 /**
1789  * inactive_file_is_low - check if file pages need to be deactivated
1790  * @lruvec: LRU vector to check
1791  *
1792  * When the system is doing streaming IO, memory pressure here
1793  * ensures that active file pages get deactivated, until more
1794  * than half of the file pages are on the inactive list.
1795  *
1796  * Once we get to that situation, protect the system's working
1797  * set from being evicted by disabling active file page aging.
1798  *
1799  * This uses a different ratio than the anonymous pages, because
1800  * the page cache uses a use-once replacement algorithm.
1801  */
1802 static int inactive_file_is_low(struct lruvec *lruvec)
1803 {
1804 	unsigned long inactive;
1805 	unsigned long active;
1806 
1807 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1808 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1809 
1810 	return active > inactive;
1811 }
1812 
1813 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1814 {
1815 	if (is_file_lru(lru))
1816 		return inactive_file_is_low(lruvec);
1817 	else
1818 		return inactive_anon_is_low(lruvec);
1819 }
1820 
1821 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1822 				 struct lruvec *lruvec, struct scan_control *sc)
1823 {
1824 	if (is_active_lru(lru)) {
1825 		if (inactive_list_is_low(lruvec, lru))
1826 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1827 		return 0;
1828 	}
1829 
1830 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1831 }
1832 
1833 static int vmscan_swappiness(struct scan_control *sc)
1834 {
1835 	if (global_reclaim(sc))
1836 		return vm_swappiness;
1837 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1838 }
1839 
1840 enum scan_balance {
1841 	SCAN_EQUAL,
1842 	SCAN_FRACT,
1843 	SCAN_ANON,
1844 	SCAN_FILE,
1845 };
1846 
1847 /*
1848  * Determine how aggressively the anon and file LRU lists should be
1849  * scanned.  The relative value of each set of LRU lists is determined
1850  * by looking at the fraction of the pages scanned we did rotate back
1851  * onto the active list instead of evict.
1852  *
1853  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1854  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1855  */
1856 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1857 			   unsigned long *nr)
1858 {
1859 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1860 	u64 fraction[2];
1861 	u64 denominator = 0;	/* gcc */
1862 	struct zone *zone = lruvec_zone(lruvec);
1863 	unsigned long anon_prio, file_prio;
1864 	enum scan_balance scan_balance;
1865 	unsigned long anon, file;
1866 	bool force_scan = false;
1867 	unsigned long ap, fp;
1868 	enum lru_list lru;
1869 
1870 	/*
1871 	 * If the zone or memcg is small, nr[l] can be 0.  This
1872 	 * results in no scanning on this priority and a potential
1873 	 * priority drop.  Global direct reclaim can go to the next
1874 	 * zone and tends to have no problems. Global kswapd is for
1875 	 * zone balancing and it needs to scan a minimum amount. When
1876 	 * reclaiming for a memcg, a priority drop can cause high
1877 	 * latencies, so it's better to scan a minimum amount there as
1878 	 * well.
1879 	 */
1880 	if (current_is_kswapd() && !zone_reclaimable(zone))
1881 		force_scan = true;
1882 	if (!global_reclaim(sc))
1883 		force_scan = true;
1884 
1885 	/* If we have no swap space, do not bother scanning anon pages. */
1886 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1887 		scan_balance = SCAN_FILE;
1888 		goto out;
1889 	}
1890 
1891 	/*
1892 	 * Global reclaim will swap to prevent OOM even with no
1893 	 * swappiness, but memcg users want to use this knob to
1894 	 * disable swapping for individual groups completely when
1895 	 * using the memory controller's swap limit feature would be
1896 	 * too expensive.
1897 	 */
1898 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1899 		scan_balance = SCAN_FILE;
1900 		goto out;
1901 	}
1902 
1903 	/*
1904 	 * Do not apply any pressure balancing cleverness when the
1905 	 * system is close to OOM, scan both anon and file equally
1906 	 * (unless the swappiness setting disagrees with swapping).
1907 	 */
1908 	if (!sc->priority && vmscan_swappiness(sc)) {
1909 		scan_balance = SCAN_EQUAL;
1910 		goto out;
1911 	}
1912 
1913 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1914 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1915 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1916 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917 
1918 	/*
1919 	 * Prevent the reclaimer from falling into the cache trap: as
1920 	 * cache pages start out inactive, every cache fault will tip
1921 	 * the scan balance towards the file LRU.  And as the file LRU
1922 	 * shrinks, so does the window for rotation from references.
1923 	 * This means we have a runaway feedback loop where a tiny
1924 	 * thrashing file LRU becomes infinitely more attractive than
1925 	 * anon pages.  Try to detect this based on file LRU size.
1926 	 */
1927 	if (global_reclaim(sc)) {
1928 		unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1929 
1930 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1931 			scan_balance = SCAN_ANON;
1932 			goto out;
1933 		}
1934 	}
1935 
1936 	/*
1937 	 * There is enough inactive page cache, do not reclaim
1938 	 * anything from the anonymous working set right now.
1939 	 */
1940 	if (!inactive_file_is_low(lruvec)) {
1941 		scan_balance = SCAN_FILE;
1942 		goto out;
1943 	}
1944 
1945 	scan_balance = SCAN_FRACT;
1946 
1947 	/*
1948 	 * With swappiness at 100, anonymous and file have the same priority.
1949 	 * This scanning priority is essentially the inverse of IO cost.
1950 	 */
1951 	anon_prio = vmscan_swappiness(sc);
1952 	file_prio = 200 - anon_prio;
1953 
1954 	/*
1955 	 * OK, so we have swap space and a fair amount of page cache
1956 	 * pages.  We use the recently rotated / recently scanned
1957 	 * ratios to determine how valuable each cache is.
1958 	 *
1959 	 * Because workloads change over time (and to avoid overflow)
1960 	 * we keep these statistics as a floating average, which ends
1961 	 * up weighing recent references more than old ones.
1962 	 *
1963 	 * anon in [0], file in [1]
1964 	 */
1965 	spin_lock_irq(&zone->lru_lock);
1966 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1967 		reclaim_stat->recent_scanned[0] /= 2;
1968 		reclaim_stat->recent_rotated[0] /= 2;
1969 	}
1970 
1971 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1972 		reclaim_stat->recent_scanned[1] /= 2;
1973 		reclaim_stat->recent_rotated[1] /= 2;
1974 	}
1975 
1976 	/*
1977 	 * The amount of pressure on anon vs file pages is inversely
1978 	 * proportional to the fraction of recently scanned pages on
1979 	 * each list that were recently referenced and in active use.
1980 	 */
1981 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1982 	ap /= reclaim_stat->recent_rotated[0] + 1;
1983 
1984 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1985 	fp /= reclaim_stat->recent_rotated[1] + 1;
1986 	spin_unlock_irq(&zone->lru_lock);
1987 
1988 	fraction[0] = ap;
1989 	fraction[1] = fp;
1990 	denominator = ap + fp + 1;
1991 out:
1992 	for_each_evictable_lru(lru) {
1993 		int file = is_file_lru(lru);
1994 		unsigned long size;
1995 		unsigned long scan;
1996 
1997 		size = get_lru_size(lruvec, lru);
1998 		scan = size >> sc->priority;
1999 
2000 		if (!scan && force_scan)
2001 			scan = min(size, SWAP_CLUSTER_MAX);
2002 
2003 		switch (scan_balance) {
2004 		case SCAN_EQUAL:
2005 			/* Scan lists relative to size */
2006 			break;
2007 		case SCAN_FRACT:
2008 			/*
2009 			 * Scan types proportional to swappiness and
2010 			 * their relative recent reclaim efficiency.
2011 			 */
2012 			scan = div64_u64(scan * fraction[file], denominator);
2013 			break;
2014 		case SCAN_FILE:
2015 		case SCAN_ANON:
2016 			/* Scan one type exclusively */
2017 			if ((scan_balance == SCAN_FILE) != file)
2018 				scan = 0;
2019 			break;
2020 		default:
2021 			/* Look ma, no brain */
2022 			BUG();
2023 		}
2024 		nr[lru] = scan;
2025 	}
2026 }
2027 
2028 /*
2029  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2030  */
2031 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2032 {
2033 	unsigned long nr[NR_LRU_LISTS];
2034 	unsigned long targets[NR_LRU_LISTS];
2035 	unsigned long nr_to_scan;
2036 	enum lru_list lru;
2037 	unsigned long nr_reclaimed = 0;
2038 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2039 	struct blk_plug plug;
2040 	bool scan_adjusted = false;
2041 
2042 	get_scan_count(lruvec, sc, nr);
2043 
2044 	/* Record the original scan target for proportional adjustments later */
2045 	memcpy(targets, nr, sizeof(nr));
2046 
2047 	blk_start_plug(&plug);
2048 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2049 					nr[LRU_INACTIVE_FILE]) {
2050 		unsigned long nr_anon, nr_file, percentage;
2051 		unsigned long nr_scanned;
2052 
2053 		for_each_evictable_lru(lru) {
2054 			if (nr[lru]) {
2055 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2056 				nr[lru] -= nr_to_scan;
2057 
2058 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2059 							    lruvec, sc);
2060 			}
2061 		}
2062 
2063 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2064 			continue;
2065 
2066 		/*
2067 		 * For global direct reclaim, reclaim only the number of pages
2068 		 * requested. Less care is taken to scan proportionally as it
2069 		 * is more important to minimise direct reclaim stall latency
2070 		 * than it is to properly age the LRU lists.
2071 		 */
2072 		if (global_reclaim(sc) && !current_is_kswapd())
2073 			break;
2074 
2075 		/*
2076 		 * For kswapd and memcg, reclaim at least the number of pages
2077 		 * requested. Ensure that the anon and file LRUs shrink
2078 		 * proportionally what was requested by get_scan_count(). We
2079 		 * stop reclaiming one LRU and reduce the amount scanning
2080 		 * proportional to the original scan target.
2081 		 */
2082 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2083 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2084 
2085 		if (nr_file > nr_anon) {
2086 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2087 						targets[LRU_ACTIVE_ANON] + 1;
2088 			lru = LRU_BASE;
2089 			percentage = nr_anon * 100 / scan_target;
2090 		} else {
2091 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2092 						targets[LRU_ACTIVE_FILE] + 1;
2093 			lru = LRU_FILE;
2094 			percentage = nr_file * 100 / scan_target;
2095 		}
2096 
2097 		/* Stop scanning the smaller of the LRU */
2098 		nr[lru] = 0;
2099 		nr[lru + LRU_ACTIVE] = 0;
2100 
2101 		/*
2102 		 * Recalculate the other LRU scan count based on its original
2103 		 * scan target and the percentage scanning already complete
2104 		 */
2105 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2106 		nr_scanned = targets[lru] - nr[lru];
2107 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2108 		nr[lru] -= min(nr[lru], nr_scanned);
2109 
2110 		lru += LRU_ACTIVE;
2111 		nr_scanned = targets[lru] - nr[lru];
2112 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2113 		nr[lru] -= min(nr[lru], nr_scanned);
2114 
2115 		scan_adjusted = true;
2116 	}
2117 	blk_finish_plug(&plug);
2118 	sc->nr_reclaimed += nr_reclaimed;
2119 
2120 	/*
2121 	 * Even if we did not try to evict anon pages at all, we want to
2122 	 * rebalance the anon lru active/inactive ratio.
2123 	 */
2124 	if (inactive_anon_is_low(lruvec))
2125 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2126 				   sc, LRU_ACTIVE_ANON);
2127 
2128 	throttle_vm_writeout(sc->gfp_mask);
2129 }
2130 
2131 /* Use reclaim/compaction for costly allocs or under memory pressure */
2132 static bool in_reclaim_compaction(struct scan_control *sc)
2133 {
2134 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2135 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2136 			 sc->priority < DEF_PRIORITY - 2))
2137 		return true;
2138 
2139 	return false;
2140 }
2141 
2142 /*
2143  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2144  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2145  * true if more pages should be reclaimed such that when the page allocator
2146  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2147  * It will give up earlier than that if there is difficulty reclaiming pages.
2148  */
2149 static inline bool should_continue_reclaim(struct zone *zone,
2150 					unsigned long nr_reclaimed,
2151 					unsigned long nr_scanned,
2152 					struct scan_control *sc)
2153 {
2154 	unsigned long pages_for_compaction;
2155 	unsigned long inactive_lru_pages;
2156 
2157 	/* If not in reclaim/compaction mode, stop */
2158 	if (!in_reclaim_compaction(sc))
2159 		return false;
2160 
2161 	/* Consider stopping depending on scan and reclaim activity */
2162 	if (sc->gfp_mask & __GFP_REPEAT) {
2163 		/*
2164 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2165 		 * full LRU list has been scanned and we are still failing
2166 		 * to reclaim pages. This full LRU scan is potentially
2167 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2168 		 */
2169 		if (!nr_reclaimed && !nr_scanned)
2170 			return false;
2171 	} else {
2172 		/*
2173 		 * For non-__GFP_REPEAT allocations which can presumably
2174 		 * fail without consequence, stop if we failed to reclaim
2175 		 * any pages from the last SWAP_CLUSTER_MAX number of
2176 		 * pages that were scanned. This will return to the
2177 		 * caller faster at the risk reclaim/compaction and
2178 		 * the resulting allocation attempt fails
2179 		 */
2180 		if (!nr_reclaimed)
2181 			return false;
2182 	}
2183 
2184 	/*
2185 	 * If we have not reclaimed enough pages for compaction and the
2186 	 * inactive lists are large enough, continue reclaiming
2187 	 */
2188 	pages_for_compaction = (2UL << sc->order);
2189 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2190 	if (get_nr_swap_pages() > 0)
2191 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2192 	if (sc->nr_reclaimed < pages_for_compaction &&
2193 			inactive_lru_pages > pages_for_compaction)
2194 		return true;
2195 
2196 	/* If compaction would go ahead or the allocation would succeed, stop */
2197 	switch (compaction_suitable(zone, sc->order)) {
2198 	case COMPACT_PARTIAL:
2199 	case COMPACT_CONTINUE:
2200 		return false;
2201 	default:
2202 		return true;
2203 	}
2204 }
2205 
2206 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2207 {
2208 	unsigned long nr_reclaimed, nr_scanned;
2209 
2210 	do {
2211 		struct mem_cgroup *root = sc->target_mem_cgroup;
2212 		struct mem_cgroup_reclaim_cookie reclaim = {
2213 			.zone = zone,
2214 			.priority = sc->priority,
2215 		};
2216 		struct mem_cgroup *memcg;
2217 
2218 		nr_reclaimed = sc->nr_reclaimed;
2219 		nr_scanned = sc->nr_scanned;
2220 
2221 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2222 		do {
2223 			struct lruvec *lruvec;
2224 
2225 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2226 
2227 			shrink_lruvec(lruvec, sc);
2228 
2229 			/*
2230 			 * Direct reclaim and kswapd have to scan all memory
2231 			 * cgroups to fulfill the overall scan target for the
2232 			 * zone.
2233 			 *
2234 			 * Limit reclaim, on the other hand, only cares about
2235 			 * nr_to_reclaim pages to be reclaimed and it will
2236 			 * retry with decreasing priority if one round over the
2237 			 * whole hierarchy is not sufficient.
2238 			 */
2239 			if (!global_reclaim(sc) &&
2240 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2241 				mem_cgroup_iter_break(root, memcg);
2242 				break;
2243 			}
2244 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2245 		} while (memcg);
2246 
2247 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2248 			   sc->nr_scanned - nr_scanned,
2249 			   sc->nr_reclaimed - nr_reclaimed);
2250 
2251 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2252 					 sc->nr_scanned - nr_scanned, sc));
2253 }
2254 
2255 /* Returns true if compaction should go ahead for a high-order request */
2256 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2257 {
2258 	unsigned long balance_gap, watermark;
2259 	bool watermark_ok;
2260 
2261 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2262 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2263 		return false;
2264 
2265 	/*
2266 	 * Compaction takes time to run and there are potentially other
2267 	 * callers using the pages just freed. Continue reclaiming until
2268 	 * there is a buffer of free pages available to give compaction
2269 	 * a reasonable chance of completing and allocating the page
2270 	 */
2271 	balance_gap = min(low_wmark_pages(zone),
2272 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2273 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2274 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2275 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2276 
2277 	/*
2278 	 * If compaction is deferred, reclaim up to a point where
2279 	 * compaction will have a chance of success when re-enabled
2280 	 */
2281 	if (compaction_deferred(zone, sc->order))
2282 		return watermark_ok;
2283 
2284 	/* If compaction is not ready to start, keep reclaiming */
2285 	if (!compaction_suitable(zone, sc->order))
2286 		return false;
2287 
2288 	return watermark_ok;
2289 }
2290 
2291 /*
2292  * This is the direct reclaim path, for page-allocating processes.  We only
2293  * try to reclaim pages from zones which will satisfy the caller's allocation
2294  * request.
2295  *
2296  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2297  * Because:
2298  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2299  *    allocation or
2300  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2301  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2302  *    zone defense algorithm.
2303  *
2304  * If a zone is deemed to be full of pinned pages then just give it a light
2305  * scan then give up on it.
2306  *
2307  * This function returns true if a zone is being reclaimed for a costly
2308  * high-order allocation and compaction is ready to begin. This indicates to
2309  * the caller that it should consider retrying the allocation instead of
2310  * further reclaim.
2311  */
2312 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2313 {
2314 	struct zoneref *z;
2315 	struct zone *zone;
2316 	unsigned long nr_soft_reclaimed;
2317 	unsigned long nr_soft_scanned;
2318 	unsigned long lru_pages = 0;
2319 	bool aborted_reclaim = false;
2320 	struct reclaim_state *reclaim_state = current->reclaim_state;
2321 	gfp_t orig_mask;
2322 	struct shrink_control shrink = {
2323 		.gfp_mask = sc->gfp_mask,
2324 	};
2325 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2326 
2327 	/*
2328 	 * If the number of buffer_heads in the machine exceeds the maximum
2329 	 * allowed level, force direct reclaim to scan the highmem zone as
2330 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2331 	 */
2332 	orig_mask = sc->gfp_mask;
2333 	if (buffer_heads_over_limit)
2334 		sc->gfp_mask |= __GFP_HIGHMEM;
2335 
2336 	nodes_clear(shrink.nodes_to_scan);
2337 
2338 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2339 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2340 		if (!populated_zone(zone))
2341 			continue;
2342 		/*
2343 		 * Take care memory controller reclaiming has small influence
2344 		 * to global LRU.
2345 		 */
2346 		if (global_reclaim(sc)) {
2347 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2348 				continue;
2349 
2350 			lru_pages += zone_reclaimable_pages(zone);
2351 			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2352 
2353 			if (sc->priority != DEF_PRIORITY &&
2354 			    !zone_reclaimable(zone))
2355 				continue;	/* Let kswapd poll it */
2356 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2357 				/*
2358 				 * If we already have plenty of memory free for
2359 				 * compaction in this zone, don't free any more.
2360 				 * Even though compaction is invoked for any
2361 				 * non-zero order, only frequent costly order
2362 				 * reclamation is disruptive enough to become a
2363 				 * noticeable problem, like transparent huge
2364 				 * page allocations.
2365 				 */
2366 				if ((zonelist_zone_idx(z) <= requested_highidx)
2367 				    && compaction_ready(zone, sc)) {
2368 					aborted_reclaim = true;
2369 					continue;
2370 				}
2371 			}
2372 			/*
2373 			 * This steals pages from memory cgroups over softlimit
2374 			 * and returns the number of reclaimed pages and
2375 			 * scanned pages. This works for global memory pressure
2376 			 * and balancing, not for a memcg's limit.
2377 			 */
2378 			nr_soft_scanned = 0;
2379 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2380 						sc->order, sc->gfp_mask,
2381 						&nr_soft_scanned);
2382 			sc->nr_reclaimed += nr_soft_reclaimed;
2383 			sc->nr_scanned += nr_soft_scanned;
2384 			/* need some check for avoid more shrink_zone() */
2385 		}
2386 
2387 		shrink_zone(zone, sc);
2388 	}
2389 
2390 	/*
2391 	 * Don't shrink slabs when reclaiming memory from over limit cgroups
2392 	 * but do shrink slab at least once when aborting reclaim for
2393 	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2394 	 * pages.
2395 	 */
2396 	if (global_reclaim(sc)) {
2397 		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2398 		if (reclaim_state) {
2399 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2400 			reclaim_state->reclaimed_slab = 0;
2401 		}
2402 	}
2403 
2404 	/*
2405 	 * Restore to original mask to avoid the impact on the caller if we
2406 	 * promoted it to __GFP_HIGHMEM.
2407 	 */
2408 	sc->gfp_mask = orig_mask;
2409 
2410 	return aborted_reclaim;
2411 }
2412 
2413 /* All zones in zonelist are unreclaimable? */
2414 static bool all_unreclaimable(struct zonelist *zonelist,
2415 		struct scan_control *sc)
2416 {
2417 	struct zoneref *z;
2418 	struct zone *zone;
2419 
2420 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2421 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2422 		if (!populated_zone(zone))
2423 			continue;
2424 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2425 			continue;
2426 		if (zone_reclaimable(zone))
2427 			return false;
2428 	}
2429 
2430 	return true;
2431 }
2432 
2433 /*
2434  * This is the main entry point to direct page reclaim.
2435  *
2436  * If a full scan of the inactive list fails to free enough memory then we
2437  * are "out of memory" and something needs to be killed.
2438  *
2439  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2440  * high - the zone may be full of dirty or under-writeback pages, which this
2441  * caller can't do much about.  We kick the writeback threads and take explicit
2442  * naps in the hope that some of these pages can be written.  But if the
2443  * allocating task holds filesystem locks which prevent writeout this might not
2444  * work, and the allocation attempt will fail.
2445  *
2446  * returns:	0, if no pages reclaimed
2447  * 		else, the number of pages reclaimed
2448  */
2449 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2450 					  struct scan_control *sc)
2451 {
2452 	unsigned long total_scanned = 0;
2453 	unsigned long writeback_threshold;
2454 	bool aborted_reclaim;
2455 
2456 	delayacct_freepages_start();
2457 
2458 	if (global_reclaim(sc))
2459 		count_vm_event(ALLOCSTALL);
2460 
2461 	do {
2462 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2463 				sc->priority);
2464 		sc->nr_scanned = 0;
2465 		aborted_reclaim = shrink_zones(zonelist, sc);
2466 
2467 		total_scanned += sc->nr_scanned;
2468 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2469 			goto out;
2470 
2471 		/*
2472 		 * If we're getting trouble reclaiming, start doing
2473 		 * writepage even in laptop mode.
2474 		 */
2475 		if (sc->priority < DEF_PRIORITY - 2)
2476 			sc->may_writepage = 1;
2477 
2478 		/*
2479 		 * Try to write back as many pages as we just scanned.  This
2480 		 * tends to cause slow streaming writers to write data to the
2481 		 * disk smoothly, at the dirtying rate, which is nice.   But
2482 		 * that's undesirable in laptop mode, where we *want* lumpy
2483 		 * writeout.  So in laptop mode, write out the whole world.
2484 		 */
2485 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2486 		if (total_scanned > writeback_threshold) {
2487 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2488 						WB_REASON_TRY_TO_FREE_PAGES);
2489 			sc->may_writepage = 1;
2490 		}
2491 	} while (--sc->priority >= 0 && !aborted_reclaim);
2492 
2493 out:
2494 	delayacct_freepages_end();
2495 
2496 	if (sc->nr_reclaimed)
2497 		return sc->nr_reclaimed;
2498 
2499 	/*
2500 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2501 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2502 	 * check.
2503 	 */
2504 	if (oom_killer_disabled)
2505 		return 0;
2506 
2507 	/* Aborted reclaim to try compaction? don't OOM, then */
2508 	if (aborted_reclaim)
2509 		return 1;
2510 
2511 	/* top priority shrink_zones still had more to do? don't OOM, then */
2512 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2513 		return 1;
2514 
2515 	return 0;
2516 }
2517 
2518 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2519 {
2520 	struct zone *zone;
2521 	unsigned long pfmemalloc_reserve = 0;
2522 	unsigned long free_pages = 0;
2523 	int i;
2524 	bool wmark_ok;
2525 
2526 	for (i = 0; i <= ZONE_NORMAL; i++) {
2527 		zone = &pgdat->node_zones[i];
2528 		pfmemalloc_reserve += min_wmark_pages(zone);
2529 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2530 	}
2531 
2532 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2533 
2534 	/* kswapd must be awake if processes are being throttled */
2535 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2536 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2537 						(enum zone_type)ZONE_NORMAL);
2538 		wake_up_interruptible(&pgdat->kswapd_wait);
2539 	}
2540 
2541 	return wmark_ok;
2542 }
2543 
2544 /*
2545  * Throttle direct reclaimers if backing storage is backed by the network
2546  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2547  * depleted. kswapd will continue to make progress and wake the processes
2548  * when the low watermark is reached.
2549  *
2550  * Returns true if a fatal signal was delivered during throttling. If this
2551  * happens, the page allocator should not consider triggering the OOM killer.
2552  */
2553 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2554 					nodemask_t *nodemask)
2555 {
2556 	struct zone *zone;
2557 	int high_zoneidx = gfp_zone(gfp_mask);
2558 	pg_data_t *pgdat;
2559 
2560 	/*
2561 	 * Kernel threads should not be throttled as they may be indirectly
2562 	 * responsible for cleaning pages necessary for reclaim to make forward
2563 	 * progress. kjournald for example may enter direct reclaim while
2564 	 * committing a transaction where throttling it could forcing other
2565 	 * processes to block on log_wait_commit().
2566 	 */
2567 	if (current->flags & PF_KTHREAD)
2568 		goto out;
2569 
2570 	/*
2571 	 * If a fatal signal is pending, this process should not throttle.
2572 	 * It should return quickly so it can exit and free its memory
2573 	 */
2574 	if (fatal_signal_pending(current))
2575 		goto out;
2576 
2577 	/* Check if the pfmemalloc reserves are ok */
2578 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2579 	pgdat = zone->zone_pgdat;
2580 	if (pfmemalloc_watermark_ok(pgdat))
2581 		goto out;
2582 
2583 	/* Account for the throttling */
2584 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2585 
2586 	/*
2587 	 * If the caller cannot enter the filesystem, it's possible that it
2588 	 * is due to the caller holding an FS lock or performing a journal
2589 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2590 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2591 	 * blocked waiting on the same lock. Instead, throttle for up to a
2592 	 * second before continuing.
2593 	 */
2594 	if (!(gfp_mask & __GFP_FS)) {
2595 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2596 			pfmemalloc_watermark_ok(pgdat), HZ);
2597 
2598 		goto check_pending;
2599 	}
2600 
2601 	/* Throttle until kswapd wakes the process */
2602 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2603 		pfmemalloc_watermark_ok(pgdat));
2604 
2605 check_pending:
2606 	if (fatal_signal_pending(current))
2607 		return true;
2608 
2609 out:
2610 	return false;
2611 }
2612 
2613 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2614 				gfp_t gfp_mask, nodemask_t *nodemask)
2615 {
2616 	unsigned long nr_reclaimed;
2617 	struct scan_control sc = {
2618 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2619 		.may_writepage = !laptop_mode,
2620 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2621 		.may_unmap = 1,
2622 		.may_swap = 1,
2623 		.order = order,
2624 		.priority = DEF_PRIORITY,
2625 		.target_mem_cgroup = NULL,
2626 		.nodemask = nodemask,
2627 	};
2628 
2629 	/*
2630 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2631 	 * 1 is returned so that the page allocator does not OOM kill at this
2632 	 * point.
2633 	 */
2634 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2635 		return 1;
2636 
2637 	trace_mm_vmscan_direct_reclaim_begin(order,
2638 				sc.may_writepage,
2639 				gfp_mask);
2640 
2641 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2642 
2643 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2644 
2645 	return nr_reclaimed;
2646 }
2647 
2648 #ifdef CONFIG_MEMCG
2649 
2650 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2651 						gfp_t gfp_mask, bool noswap,
2652 						struct zone *zone,
2653 						unsigned long *nr_scanned)
2654 {
2655 	struct scan_control sc = {
2656 		.nr_scanned = 0,
2657 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2658 		.may_writepage = !laptop_mode,
2659 		.may_unmap = 1,
2660 		.may_swap = !noswap,
2661 		.order = 0,
2662 		.priority = 0,
2663 		.target_mem_cgroup = memcg,
2664 	};
2665 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2666 
2667 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2668 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2669 
2670 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2671 						      sc.may_writepage,
2672 						      sc.gfp_mask);
2673 
2674 	/*
2675 	 * NOTE: Although we can get the priority field, using it
2676 	 * here is not a good idea, since it limits the pages we can scan.
2677 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2678 	 * will pick up pages from other mem cgroup's as well. We hack
2679 	 * the priority and make it zero.
2680 	 */
2681 	shrink_lruvec(lruvec, &sc);
2682 
2683 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2684 
2685 	*nr_scanned = sc.nr_scanned;
2686 	return sc.nr_reclaimed;
2687 }
2688 
2689 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2690 					   gfp_t gfp_mask,
2691 					   bool noswap)
2692 {
2693 	struct zonelist *zonelist;
2694 	unsigned long nr_reclaimed;
2695 	int nid;
2696 	struct scan_control sc = {
2697 		.may_writepage = !laptop_mode,
2698 		.may_unmap = 1,
2699 		.may_swap = !noswap,
2700 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2701 		.order = 0,
2702 		.priority = DEF_PRIORITY,
2703 		.target_mem_cgroup = memcg,
2704 		.nodemask = NULL, /* we don't care the placement */
2705 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2706 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2707 	};
2708 
2709 	/*
2710 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2711 	 * take care of from where we get pages. So the node where we start the
2712 	 * scan does not need to be the current node.
2713 	 */
2714 	nid = mem_cgroup_select_victim_node(memcg);
2715 
2716 	zonelist = NODE_DATA(nid)->node_zonelists;
2717 
2718 	trace_mm_vmscan_memcg_reclaim_begin(0,
2719 					    sc.may_writepage,
2720 					    sc.gfp_mask);
2721 
2722 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2723 
2724 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2725 
2726 	return nr_reclaimed;
2727 }
2728 #endif
2729 
2730 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2731 {
2732 	struct mem_cgroup *memcg;
2733 
2734 	if (!total_swap_pages)
2735 		return;
2736 
2737 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2738 	do {
2739 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2740 
2741 		if (inactive_anon_is_low(lruvec))
2742 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2743 					   sc, LRU_ACTIVE_ANON);
2744 
2745 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2746 	} while (memcg);
2747 }
2748 
2749 static bool zone_balanced(struct zone *zone, int order,
2750 			  unsigned long balance_gap, int classzone_idx)
2751 {
2752 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2753 				    balance_gap, classzone_idx, 0))
2754 		return false;
2755 
2756 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2757 	    !compaction_suitable(zone, order))
2758 		return false;
2759 
2760 	return true;
2761 }
2762 
2763 /*
2764  * pgdat_balanced() is used when checking if a node is balanced.
2765  *
2766  * For order-0, all zones must be balanced!
2767  *
2768  * For high-order allocations only zones that meet watermarks and are in a
2769  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2770  * total of balanced pages must be at least 25% of the zones allowed by
2771  * classzone_idx for the node to be considered balanced. Forcing all zones to
2772  * be balanced for high orders can cause excessive reclaim when there are
2773  * imbalanced zones.
2774  * The choice of 25% is due to
2775  *   o a 16M DMA zone that is balanced will not balance a zone on any
2776  *     reasonable sized machine
2777  *   o On all other machines, the top zone must be at least a reasonable
2778  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2779  *     would need to be at least 256M for it to be balance a whole node.
2780  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2781  *     to balance a node on its own. These seemed like reasonable ratios.
2782  */
2783 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2784 {
2785 	unsigned long managed_pages = 0;
2786 	unsigned long balanced_pages = 0;
2787 	int i;
2788 
2789 	/* Check the watermark levels */
2790 	for (i = 0; i <= classzone_idx; i++) {
2791 		struct zone *zone = pgdat->node_zones + i;
2792 
2793 		if (!populated_zone(zone))
2794 			continue;
2795 
2796 		managed_pages += zone->managed_pages;
2797 
2798 		/*
2799 		 * A special case here:
2800 		 *
2801 		 * balance_pgdat() skips over all_unreclaimable after
2802 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2803 		 * they must be considered balanced here as well!
2804 		 */
2805 		if (!zone_reclaimable(zone)) {
2806 			balanced_pages += zone->managed_pages;
2807 			continue;
2808 		}
2809 
2810 		if (zone_balanced(zone, order, 0, i))
2811 			balanced_pages += zone->managed_pages;
2812 		else if (!order)
2813 			return false;
2814 	}
2815 
2816 	if (order)
2817 		return balanced_pages >= (managed_pages >> 2);
2818 	else
2819 		return true;
2820 }
2821 
2822 /*
2823  * Prepare kswapd for sleeping. This verifies that there are no processes
2824  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2825  *
2826  * Returns true if kswapd is ready to sleep
2827  */
2828 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2829 					int classzone_idx)
2830 {
2831 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2832 	if (remaining)
2833 		return false;
2834 
2835 	/*
2836 	 * There is a potential race between when kswapd checks its watermarks
2837 	 * and a process gets throttled. There is also a potential race if
2838 	 * processes get throttled, kswapd wakes, a large process exits therby
2839 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2840 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2841 	 * so wake them now if necessary. If necessary, processes will wake
2842 	 * kswapd and get throttled again
2843 	 */
2844 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2845 		wake_up(&pgdat->pfmemalloc_wait);
2846 		return false;
2847 	}
2848 
2849 	return pgdat_balanced(pgdat, order, classzone_idx);
2850 }
2851 
2852 /*
2853  * kswapd shrinks the zone by the number of pages required to reach
2854  * the high watermark.
2855  *
2856  * Returns true if kswapd scanned at least the requested number of pages to
2857  * reclaim or if the lack of progress was due to pages under writeback.
2858  * This is used to determine if the scanning priority needs to be raised.
2859  */
2860 static bool kswapd_shrink_zone(struct zone *zone,
2861 			       int classzone_idx,
2862 			       struct scan_control *sc,
2863 			       unsigned long lru_pages,
2864 			       unsigned long *nr_attempted)
2865 {
2866 	int testorder = sc->order;
2867 	unsigned long balance_gap;
2868 	struct reclaim_state *reclaim_state = current->reclaim_state;
2869 	struct shrink_control shrink = {
2870 		.gfp_mask = sc->gfp_mask,
2871 	};
2872 	bool lowmem_pressure;
2873 
2874 	/* Reclaim above the high watermark. */
2875 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2876 
2877 	/*
2878 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2879 	 * too hard to reclaim until contiguous free pages have become
2880 	 * available can hurt performance by evicting too much useful data
2881 	 * from memory. Do not reclaim more than needed for compaction.
2882 	 */
2883 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2884 			compaction_suitable(zone, sc->order) !=
2885 				COMPACT_SKIPPED)
2886 		testorder = 0;
2887 
2888 	/*
2889 	 * We put equal pressure on every zone, unless one zone has way too
2890 	 * many pages free already. The "too many pages" is defined as the
2891 	 * high wmark plus a "gap" where the gap is either the low
2892 	 * watermark or 1% of the zone, whichever is smaller.
2893 	 */
2894 	balance_gap = min(low_wmark_pages(zone),
2895 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2896 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2897 
2898 	/*
2899 	 * If there is no low memory pressure or the zone is balanced then no
2900 	 * reclaim is necessary
2901 	 */
2902 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2903 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2904 						balance_gap, classzone_idx))
2905 		return true;
2906 
2907 	shrink_zone(zone, sc);
2908 	nodes_clear(shrink.nodes_to_scan);
2909 	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2910 
2911 	reclaim_state->reclaimed_slab = 0;
2912 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2913 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2914 
2915 	/* Account for the number of pages attempted to reclaim */
2916 	*nr_attempted += sc->nr_to_reclaim;
2917 
2918 	zone_clear_flag(zone, ZONE_WRITEBACK);
2919 
2920 	/*
2921 	 * If a zone reaches its high watermark, consider it to be no longer
2922 	 * congested. It's possible there are dirty pages backed by congested
2923 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2924 	 * waits.
2925 	 */
2926 	if (zone_reclaimable(zone) &&
2927 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2928 		zone_clear_flag(zone, ZONE_CONGESTED);
2929 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2930 	}
2931 
2932 	return sc->nr_scanned >= sc->nr_to_reclaim;
2933 }
2934 
2935 /*
2936  * For kswapd, balance_pgdat() will work across all this node's zones until
2937  * they are all at high_wmark_pages(zone).
2938  *
2939  * Returns the final order kswapd was reclaiming at
2940  *
2941  * There is special handling here for zones which are full of pinned pages.
2942  * This can happen if the pages are all mlocked, or if they are all used by
2943  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2944  * What we do is to detect the case where all pages in the zone have been
2945  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2946  * dead and from now on, only perform a short scan.  Basically we're polling
2947  * the zone for when the problem goes away.
2948  *
2949  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2950  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2951  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2952  * lower zones regardless of the number of free pages in the lower zones. This
2953  * interoperates with the page allocator fallback scheme to ensure that aging
2954  * of pages is balanced across the zones.
2955  */
2956 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2957 							int *classzone_idx)
2958 {
2959 	int i;
2960 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2961 	unsigned long nr_soft_reclaimed;
2962 	unsigned long nr_soft_scanned;
2963 	struct scan_control sc = {
2964 		.gfp_mask = GFP_KERNEL,
2965 		.priority = DEF_PRIORITY,
2966 		.may_unmap = 1,
2967 		.may_swap = 1,
2968 		.may_writepage = !laptop_mode,
2969 		.order = order,
2970 		.target_mem_cgroup = NULL,
2971 	};
2972 	count_vm_event(PAGEOUTRUN);
2973 
2974 	do {
2975 		unsigned long lru_pages = 0;
2976 		unsigned long nr_attempted = 0;
2977 		bool raise_priority = true;
2978 		bool pgdat_needs_compaction = (order > 0);
2979 
2980 		sc.nr_reclaimed = 0;
2981 
2982 		/*
2983 		 * Scan in the highmem->dma direction for the highest
2984 		 * zone which needs scanning
2985 		 */
2986 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2987 			struct zone *zone = pgdat->node_zones + i;
2988 
2989 			if (!populated_zone(zone))
2990 				continue;
2991 
2992 			if (sc.priority != DEF_PRIORITY &&
2993 			    !zone_reclaimable(zone))
2994 				continue;
2995 
2996 			/*
2997 			 * Do some background aging of the anon list, to give
2998 			 * pages a chance to be referenced before reclaiming.
2999 			 */
3000 			age_active_anon(zone, &sc);
3001 
3002 			/*
3003 			 * If the number of buffer_heads in the machine
3004 			 * exceeds the maximum allowed level and this node
3005 			 * has a highmem zone, force kswapd to reclaim from
3006 			 * it to relieve lowmem pressure.
3007 			 */
3008 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3009 				end_zone = i;
3010 				break;
3011 			}
3012 
3013 			if (!zone_balanced(zone, order, 0, 0)) {
3014 				end_zone = i;
3015 				break;
3016 			} else {
3017 				/*
3018 				 * If balanced, clear the dirty and congested
3019 				 * flags
3020 				 */
3021 				zone_clear_flag(zone, ZONE_CONGESTED);
3022 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3023 			}
3024 		}
3025 
3026 		if (i < 0)
3027 			goto out;
3028 
3029 		for (i = 0; i <= end_zone; i++) {
3030 			struct zone *zone = pgdat->node_zones + i;
3031 
3032 			if (!populated_zone(zone))
3033 				continue;
3034 
3035 			lru_pages += zone_reclaimable_pages(zone);
3036 
3037 			/*
3038 			 * If any zone is currently balanced then kswapd will
3039 			 * not call compaction as it is expected that the
3040 			 * necessary pages are already available.
3041 			 */
3042 			if (pgdat_needs_compaction &&
3043 					zone_watermark_ok(zone, order,
3044 						low_wmark_pages(zone),
3045 						*classzone_idx, 0))
3046 				pgdat_needs_compaction = false;
3047 		}
3048 
3049 		/*
3050 		 * If we're getting trouble reclaiming, start doing writepage
3051 		 * even in laptop mode.
3052 		 */
3053 		if (sc.priority < DEF_PRIORITY - 2)
3054 			sc.may_writepage = 1;
3055 
3056 		/*
3057 		 * Now scan the zone in the dma->highmem direction, stopping
3058 		 * at the last zone which needs scanning.
3059 		 *
3060 		 * We do this because the page allocator works in the opposite
3061 		 * direction.  This prevents the page allocator from allocating
3062 		 * pages behind kswapd's direction of progress, which would
3063 		 * cause too much scanning of the lower zones.
3064 		 */
3065 		for (i = 0; i <= end_zone; i++) {
3066 			struct zone *zone = pgdat->node_zones + i;
3067 
3068 			if (!populated_zone(zone))
3069 				continue;
3070 
3071 			if (sc.priority != DEF_PRIORITY &&
3072 			    !zone_reclaimable(zone))
3073 				continue;
3074 
3075 			sc.nr_scanned = 0;
3076 
3077 			nr_soft_scanned = 0;
3078 			/*
3079 			 * Call soft limit reclaim before calling shrink_zone.
3080 			 */
3081 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3082 							order, sc.gfp_mask,
3083 							&nr_soft_scanned);
3084 			sc.nr_reclaimed += nr_soft_reclaimed;
3085 
3086 			/*
3087 			 * There should be no need to raise the scanning
3088 			 * priority if enough pages are already being scanned
3089 			 * that that high watermark would be met at 100%
3090 			 * efficiency.
3091 			 */
3092 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3093 					lru_pages, &nr_attempted))
3094 				raise_priority = false;
3095 		}
3096 
3097 		/*
3098 		 * If the low watermark is met there is no need for processes
3099 		 * to be throttled on pfmemalloc_wait as they should not be
3100 		 * able to safely make forward progress. Wake them
3101 		 */
3102 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3103 				pfmemalloc_watermark_ok(pgdat))
3104 			wake_up(&pgdat->pfmemalloc_wait);
3105 
3106 		/*
3107 		 * Fragmentation may mean that the system cannot be rebalanced
3108 		 * for high-order allocations in all zones. If twice the
3109 		 * allocation size has been reclaimed and the zones are still
3110 		 * not balanced then recheck the watermarks at order-0 to
3111 		 * prevent kswapd reclaiming excessively. Assume that a
3112 		 * process requested a high-order can direct reclaim/compact.
3113 		 */
3114 		if (order && sc.nr_reclaimed >= 2UL << order)
3115 			order = sc.order = 0;
3116 
3117 		/* Check if kswapd should be suspending */
3118 		if (try_to_freeze() || kthread_should_stop())
3119 			break;
3120 
3121 		/*
3122 		 * Compact if necessary and kswapd is reclaiming at least the
3123 		 * high watermark number of pages as requsted
3124 		 */
3125 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3126 			compact_pgdat(pgdat, order);
3127 
3128 		/*
3129 		 * Raise priority if scanning rate is too low or there was no
3130 		 * progress in reclaiming pages
3131 		 */
3132 		if (raise_priority || !sc.nr_reclaimed)
3133 			sc.priority--;
3134 	} while (sc.priority >= 1 &&
3135 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3136 
3137 out:
3138 	/*
3139 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3140 	 * makes a decision on the order we were last reclaiming at. However,
3141 	 * if another caller entered the allocator slow path while kswapd
3142 	 * was awake, order will remain at the higher level
3143 	 */
3144 	*classzone_idx = end_zone;
3145 	return order;
3146 }
3147 
3148 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3149 {
3150 	long remaining = 0;
3151 	DEFINE_WAIT(wait);
3152 
3153 	if (freezing(current) || kthread_should_stop())
3154 		return;
3155 
3156 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3157 
3158 	/* Try to sleep for a short interval */
3159 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3160 		remaining = schedule_timeout(HZ/10);
3161 		finish_wait(&pgdat->kswapd_wait, &wait);
3162 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3163 	}
3164 
3165 	/*
3166 	 * After a short sleep, check if it was a premature sleep. If not, then
3167 	 * go fully to sleep until explicitly woken up.
3168 	 */
3169 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3170 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3171 
3172 		/*
3173 		 * vmstat counters are not perfectly accurate and the estimated
3174 		 * value for counters such as NR_FREE_PAGES can deviate from the
3175 		 * true value by nr_online_cpus * threshold. To avoid the zone
3176 		 * watermarks being breached while under pressure, we reduce the
3177 		 * per-cpu vmstat threshold while kswapd is awake and restore
3178 		 * them before going back to sleep.
3179 		 */
3180 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3181 
3182 		/*
3183 		 * Compaction records what page blocks it recently failed to
3184 		 * isolate pages from and skips them in the future scanning.
3185 		 * When kswapd is going to sleep, it is reasonable to assume
3186 		 * that pages and compaction may succeed so reset the cache.
3187 		 */
3188 		reset_isolation_suitable(pgdat);
3189 
3190 		if (!kthread_should_stop())
3191 			schedule();
3192 
3193 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3194 	} else {
3195 		if (remaining)
3196 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3197 		else
3198 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3199 	}
3200 	finish_wait(&pgdat->kswapd_wait, &wait);
3201 }
3202 
3203 /*
3204  * The background pageout daemon, started as a kernel thread
3205  * from the init process.
3206  *
3207  * This basically trickles out pages so that we have _some_
3208  * free memory available even if there is no other activity
3209  * that frees anything up. This is needed for things like routing
3210  * etc, where we otherwise might have all activity going on in
3211  * asynchronous contexts that cannot page things out.
3212  *
3213  * If there are applications that are active memory-allocators
3214  * (most normal use), this basically shouldn't matter.
3215  */
3216 static int kswapd(void *p)
3217 {
3218 	unsigned long order, new_order;
3219 	unsigned balanced_order;
3220 	int classzone_idx, new_classzone_idx;
3221 	int balanced_classzone_idx;
3222 	pg_data_t *pgdat = (pg_data_t*)p;
3223 	struct task_struct *tsk = current;
3224 
3225 	struct reclaim_state reclaim_state = {
3226 		.reclaimed_slab = 0,
3227 	};
3228 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3229 
3230 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3231 
3232 	if (!cpumask_empty(cpumask))
3233 		set_cpus_allowed_ptr(tsk, cpumask);
3234 	current->reclaim_state = &reclaim_state;
3235 
3236 	/*
3237 	 * Tell the memory management that we're a "memory allocator",
3238 	 * and that if we need more memory we should get access to it
3239 	 * regardless (see "__alloc_pages()"). "kswapd" should
3240 	 * never get caught in the normal page freeing logic.
3241 	 *
3242 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3243 	 * you need a small amount of memory in order to be able to
3244 	 * page out something else, and this flag essentially protects
3245 	 * us from recursively trying to free more memory as we're
3246 	 * trying to free the first piece of memory in the first place).
3247 	 */
3248 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3249 	set_freezable();
3250 
3251 	order = new_order = 0;
3252 	balanced_order = 0;
3253 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3254 	balanced_classzone_idx = classzone_idx;
3255 	for ( ; ; ) {
3256 		bool ret;
3257 
3258 		/*
3259 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3260 		 * new request of a similar or harder type will succeed soon
3261 		 * so consider going to sleep on the basis we reclaimed at
3262 		 */
3263 		if (balanced_classzone_idx >= new_classzone_idx &&
3264 					balanced_order == new_order) {
3265 			new_order = pgdat->kswapd_max_order;
3266 			new_classzone_idx = pgdat->classzone_idx;
3267 			pgdat->kswapd_max_order =  0;
3268 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3269 		}
3270 
3271 		if (order < new_order || classzone_idx > new_classzone_idx) {
3272 			/*
3273 			 * Don't sleep if someone wants a larger 'order'
3274 			 * allocation or has tigher zone constraints
3275 			 */
3276 			order = new_order;
3277 			classzone_idx = new_classzone_idx;
3278 		} else {
3279 			kswapd_try_to_sleep(pgdat, balanced_order,
3280 						balanced_classzone_idx);
3281 			order = pgdat->kswapd_max_order;
3282 			classzone_idx = pgdat->classzone_idx;
3283 			new_order = order;
3284 			new_classzone_idx = classzone_idx;
3285 			pgdat->kswapd_max_order = 0;
3286 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3287 		}
3288 
3289 		ret = try_to_freeze();
3290 		if (kthread_should_stop())
3291 			break;
3292 
3293 		/*
3294 		 * We can speed up thawing tasks if we don't call balance_pgdat
3295 		 * after returning from the refrigerator
3296 		 */
3297 		if (!ret) {
3298 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3299 			balanced_classzone_idx = classzone_idx;
3300 			balanced_order = balance_pgdat(pgdat, order,
3301 						&balanced_classzone_idx);
3302 		}
3303 	}
3304 
3305 	current->reclaim_state = NULL;
3306 	return 0;
3307 }
3308 
3309 /*
3310  * A zone is low on free memory, so wake its kswapd task to service it.
3311  */
3312 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3313 {
3314 	pg_data_t *pgdat;
3315 
3316 	if (!populated_zone(zone))
3317 		return;
3318 
3319 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3320 		return;
3321 	pgdat = zone->zone_pgdat;
3322 	if (pgdat->kswapd_max_order < order) {
3323 		pgdat->kswapd_max_order = order;
3324 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3325 	}
3326 	if (!waitqueue_active(&pgdat->kswapd_wait))
3327 		return;
3328 	if (zone_balanced(zone, order, 0, 0))
3329 		return;
3330 
3331 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3332 	wake_up_interruptible(&pgdat->kswapd_wait);
3333 }
3334 
3335 #ifdef CONFIG_HIBERNATION
3336 /*
3337  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3338  * freed pages.
3339  *
3340  * Rather than trying to age LRUs the aim is to preserve the overall
3341  * LRU order by reclaiming preferentially
3342  * inactive > active > active referenced > active mapped
3343  */
3344 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3345 {
3346 	struct reclaim_state reclaim_state;
3347 	struct scan_control sc = {
3348 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3349 		.may_swap = 1,
3350 		.may_unmap = 1,
3351 		.may_writepage = 1,
3352 		.nr_to_reclaim = nr_to_reclaim,
3353 		.hibernation_mode = 1,
3354 		.order = 0,
3355 		.priority = DEF_PRIORITY,
3356 	};
3357 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3358 	struct task_struct *p = current;
3359 	unsigned long nr_reclaimed;
3360 
3361 	p->flags |= PF_MEMALLOC;
3362 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3363 	reclaim_state.reclaimed_slab = 0;
3364 	p->reclaim_state = &reclaim_state;
3365 
3366 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3367 
3368 	p->reclaim_state = NULL;
3369 	lockdep_clear_current_reclaim_state();
3370 	p->flags &= ~PF_MEMALLOC;
3371 
3372 	return nr_reclaimed;
3373 }
3374 #endif /* CONFIG_HIBERNATION */
3375 
3376 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3377    not required for correctness.  So if the last cpu in a node goes
3378    away, we get changed to run anywhere: as the first one comes back,
3379    restore their cpu bindings. */
3380 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3381 			void *hcpu)
3382 {
3383 	int nid;
3384 
3385 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3386 		for_each_node_state(nid, N_MEMORY) {
3387 			pg_data_t *pgdat = NODE_DATA(nid);
3388 			const struct cpumask *mask;
3389 
3390 			mask = cpumask_of_node(pgdat->node_id);
3391 
3392 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3393 				/* One of our CPUs online: restore mask */
3394 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3395 		}
3396 	}
3397 	return NOTIFY_OK;
3398 }
3399 
3400 /*
3401  * This kswapd start function will be called by init and node-hot-add.
3402  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3403  */
3404 int kswapd_run(int nid)
3405 {
3406 	pg_data_t *pgdat = NODE_DATA(nid);
3407 	int ret = 0;
3408 
3409 	if (pgdat->kswapd)
3410 		return 0;
3411 
3412 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3413 	if (IS_ERR(pgdat->kswapd)) {
3414 		/* failure at boot is fatal */
3415 		BUG_ON(system_state == SYSTEM_BOOTING);
3416 		pr_err("Failed to start kswapd on node %d\n", nid);
3417 		ret = PTR_ERR(pgdat->kswapd);
3418 		pgdat->kswapd = NULL;
3419 	}
3420 	return ret;
3421 }
3422 
3423 /*
3424  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3425  * hold lock_memory_hotplug().
3426  */
3427 void kswapd_stop(int nid)
3428 {
3429 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3430 
3431 	if (kswapd) {
3432 		kthread_stop(kswapd);
3433 		NODE_DATA(nid)->kswapd = NULL;
3434 	}
3435 }
3436 
3437 static int __init kswapd_init(void)
3438 {
3439 	int nid;
3440 
3441 	swap_setup();
3442 	for_each_node_state(nid, N_MEMORY)
3443  		kswapd_run(nid);
3444 	hotcpu_notifier(cpu_callback, 0);
3445 	return 0;
3446 }
3447 
3448 module_init(kswapd_init)
3449 
3450 #ifdef CONFIG_NUMA
3451 /*
3452  * Zone reclaim mode
3453  *
3454  * If non-zero call zone_reclaim when the number of free pages falls below
3455  * the watermarks.
3456  */
3457 int zone_reclaim_mode __read_mostly;
3458 
3459 #define RECLAIM_OFF 0
3460 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3461 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3462 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3463 
3464 /*
3465  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3466  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3467  * a zone.
3468  */
3469 #define ZONE_RECLAIM_PRIORITY 4
3470 
3471 /*
3472  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3473  * occur.
3474  */
3475 int sysctl_min_unmapped_ratio = 1;
3476 
3477 /*
3478  * If the number of slab pages in a zone grows beyond this percentage then
3479  * slab reclaim needs to occur.
3480  */
3481 int sysctl_min_slab_ratio = 5;
3482 
3483 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3484 {
3485 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3486 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3487 		zone_page_state(zone, NR_ACTIVE_FILE);
3488 
3489 	/*
3490 	 * It's possible for there to be more file mapped pages than
3491 	 * accounted for by the pages on the file LRU lists because
3492 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3493 	 */
3494 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3495 }
3496 
3497 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3498 static long zone_pagecache_reclaimable(struct zone *zone)
3499 {
3500 	long nr_pagecache_reclaimable;
3501 	long delta = 0;
3502 
3503 	/*
3504 	 * If RECLAIM_SWAP is set, then all file pages are considered
3505 	 * potentially reclaimable. Otherwise, we have to worry about
3506 	 * pages like swapcache and zone_unmapped_file_pages() provides
3507 	 * a better estimate
3508 	 */
3509 	if (zone_reclaim_mode & RECLAIM_SWAP)
3510 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3511 	else
3512 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3513 
3514 	/* If we can't clean pages, remove dirty pages from consideration */
3515 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3516 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3517 
3518 	/* Watch for any possible underflows due to delta */
3519 	if (unlikely(delta > nr_pagecache_reclaimable))
3520 		delta = nr_pagecache_reclaimable;
3521 
3522 	return nr_pagecache_reclaimable - delta;
3523 }
3524 
3525 /*
3526  * Try to free up some pages from this zone through reclaim.
3527  */
3528 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3529 {
3530 	/* Minimum pages needed in order to stay on node */
3531 	const unsigned long nr_pages = 1 << order;
3532 	struct task_struct *p = current;
3533 	struct reclaim_state reclaim_state;
3534 	struct scan_control sc = {
3535 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3536 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3537 		.may_swap = 1,
3538 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3539 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3540 		.order = order,
3541 		.priority = ZONE_RECLAIM_PRIORITY,
3542 	};
3543 	struct shrink_control shrink = {
3544 		.gfp_mask = sc.gfp_mask,
3545 	};
3546 	unsigned long nr_slab_pages0, nr_slab_pages1;
3547 
3548 	cond_resched();
3549 	/*
3550 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3551 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3552 	 * and RECLAIM_SWAP.
3553 	 */
3554 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3555 	lockdep_set_current_reclaim_state(gfp_mask);
3556 	reclaim_state.reclaimed_slab = 0;
3557 	p->reclaim_state = &reclaim_state;
3558 
3559 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3560 		/*
3561 		 * Free memory by calling shrink zone with increasing
3562 		 * priorities until we have enough memory freed.
3563 		 */
3564 		do {
3565 			shrink_zone(zone, &sc);
3566 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3567 	}
3568 
3569 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3570 	if (nr_slab_pages0 > zone->min_slab_pages) {
3571 		/*
3572 		 * shrink_slab() does not currently allow us to determine how
3573 		 * many pages were freed in this zone. So we take the current
3574 		 * number of slab pages and shake the slab until it is reduced
3575 		 * by the same nr_pages that we used for reclaiming unmapped
3576 		 * pages.
3577 		 */
3578 		nodes_clear(shrink.nodes_to_scan);
3579 		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3580 		for (;;) {
3581 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3582 
3583 			/* No reclaimable slab or very low memory pressure */
3584 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3585 				break;
3586 
3587 			/* Freed enough memory */
3588 			nr_slab_pages1 = zone_page_state(zone,
3589 							NR_SLAB_RECLAIMABLE);
3590 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3591 				break;
3592 		}
3593 
3594 		/*
3595 		 * Update nr_reclaimed by the number of slab pages we
3596 		 * reclaimed from this zone.
3597 		 */
3598 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3599 		if (nr_slab_pages1 < nr_slab_pages0)
3600 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3601 	}
3602 
3603 	p->reclaim_state = NULL;
3604 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3605 	lockdep_clear_current_reclaim_state();
3606 	return sc.nr_reclaimed >= nr_pages;
3607 }
3608 
3609 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3610 {
3611 	int node_id;
3612 	int ret;
3613 
3614 	/*
3615 	 * Zone reclaim reclaims unmapped file backed pages and
3616 	 * slab pages if we are over the defined limits.
3617 	 *
3618 	 * A small portion of unmapped file backed pages is needed for
3619 	 * file I/O otherwise pages read by file I/O will be immediately
3620 	 * thrown out if the zone is overallocated. So we do not reclaim
3621 	 * if less than a specified percentage of the zone is used by
3622 	 * unmapped file backed pages.
3623 	 */
3624 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3625 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3626 		return ZONE_RECLAIM_FULL;
3627 
3628 	if (!zone_reclaimable(zone))
3629 		return ZONE_RECLAIM_FULL;
3630 
3631 	/*
3632 	 * Do not scan if the allocation should not be delayed.
3633 	 */
3634 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3635 		return ZONE_RECLAIM_NOSCAN;
3636 
3637 	/*
3638 	 * Only run zone reclaim on the local zone or on zones that do not
3639 	 * have associated processors. This will favor the local processor
3640 	 * over remote processors and spread off node memory allocations
3641 	 * as wide as possible.
3642 	 */
3643 	node_id = zone_to_nid(zone);
3644 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3645 		return ZONE_RECLAIM_NOSCAN;
3646 
3647 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3648 		return ZONE_RECLAIM_NOSCAN;
3649 
3650 	ret = __zone_reclaim(zone, gfp_mask, order);
3651 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3652 
3653 	if (!ret)
3654 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3655 
3656 	return ret;
3657 }
3658 #endif
3659 
3660 /*
3661  * page_evictable - test whether a page is evictable
3662  * @page: the page to test
3663  *
3664  * Test whether page is evictable--i.e., should be placed on active/inactive
3665  * lists vs unevictable list.
3666  *
3667  * Reasons page might not be evictable:
3668  * (1) page's mapping marked unevictable
3669  * (2) page is part of an mlocked VMA
3670  *
3671  */
3672 int page_evictable(struct page *page)
3673 {
3674 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3675 }
3676 
3677 #ifdef CONFIG_SHMEM
3678 /**
3679  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3680  * @pages:	array of pages to check
3681  * @nr_pages:	number of pages to check
3682  *
3683  * Checks pages for evictability and moves them to the appropriate lru list.
3684  *
3685  * This function is only used for SysV IPC SHM_UNLOCK.
3686  */
3687 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3688 {
3689 	struct lruvec *lruvec;
3690 	struct zone *zone = NULL;
3691 	int pgscanned = 0;
3692 	int pgrescued = 0;
3693 	int i;
3694 
3695 	for (i = 0; i < nr_pages; i++) {
3696 		struct page *page = pages[i];
3697 		struct zone *pagezone;
3698 
3699 		pgscanned++;
3700 		pagezone = page_zone(page);
3701 		if (pagezone != zone) {
3702 			if (zone)
3703 				spin_unlock_irq(&zone->lru_lock);
3704 			zone = pagezone;
3705 			spin_lock_irq(&zone->lru_lock);
3706 		}
3707 		lruvec = mem_cgroup_page_lruvec(page, zone);
3708 
3709 		if (!PageLRU(page) || !PageUnevictable(page))
3710 			continue;
3711 
3712 		if (page_evictable(page)) {
3713 			enum lru_list lru = page_lru_base_type(page);
3714 
3715 			VM_BUG_ON_PAGE(PageActive(page), page);
3716 			ClearPageUnevictable(page);
3717 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3718 			add_page_to_lru_list(page, lruvec, lru);
3719 			pgrescued++;
3720 		}
3721 	}
3722 
3723 	if (zone) {
3724 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3725 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3726 		spin_unlock_irq(&zone->lru_lock);
3727 	}
3728 }
3729 #endif /* CONFIG_SHMEM */
3730 
3731 static void warn_scan_unevictable_pages(void)
3732 {
3733 	printk_once(KERN_WARNING
3734 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3735 		    "disabled for lack of a legitimate use case.  If you have "
3736 		    "one, please send an email to linux-mm@kvack.org.\n",
3737 		    current->comm);
3738 }
3739 
3740 /*
3741  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3742  * all nodes' unevictable lists for evictable pages
3743  */
3744 unsigned long scan_unevictable_pages;
3745 
3746 int scan_unevictable_handler(struct ctl_table *table, int write,
3747 			   void __user *buffer,
3748 			   size_t *length, loff_t *ppos)
3749 {
3750 	warn_scan_unevictable_pages();
3751 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3752 	scan_unevictable_pages = 0;
3753 	return 0;
3754 }
3755 
3756 #ifdef CONFIG_NUMA
3757 /*
3758  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3759  * a specified node's per zone unevictable lists for evictable pages.
3760  */
3761 
3762 static ssize_t read_scan_unevictable_node(struct device *dev,
3763 					  struct device_attribute *attr,
3764 					  char *buf)
3765 {
3766 	warn_scan_unevictable_pages();
3767 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3768 }
3769 
3770 static ssize_t write_scan_unevictable_node(struct device *dev,
3771 					   struct device_attribute *attr,
3772 					const char *buf, size_t count)
3773 {
3774 	warn_scan_unevictable_pages();
3775 	return 1;
3776 }
3777 
3778 
3779 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3780 			read_scan_unevictable_node,
3781 			write_scan_unevictable_node);
3782 
3783 int scan_unevictable_register_node(struct node *node)
3784 {
3785 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3786 }
3787 
3788 void scan_unevictable_unregister_node(struct node *node)
3789 {
3790 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3791 }
3792 #endif
3793