1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* 81 * Scan pressure balancing between anon and file LRUs 82 */ 83 unsigned long anon_cost; 84 unsigned long file_cost; 85 86 /* Can active pages be deactivated as part of reclaim? */ 87 #define DEACTIVATE_ANON 1 88 #define DEACTIVATE_FILE 2 89 unsigned int may_deactivate:2; 90 unsigned int force_deactivate:1; 91 unsigned int skipped_deactivate:1; 92 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 94 unsigned int may_writepage:1; 95 96 /* Can mapped pages be reclaimed? */ 97 unsigned int may_unmap:1; 98 99 /* Can pages be swapped as part of reclaim? */ 100 unsigned int may_swap:1; 101 102 /* 103 * Cgroups are not reclaimed below their configured memory.low, 104 * unless we threaten to OOM. If any cgroups are skipped due to 105 * memory.low and nothing was reclaimed, go back for memory.low. 106 */ 107 unsigned int memcg_low_reclaim:1; 108 unsigned int memcg_low_skipped:1; 109 110 unsigned int hibernation_mode:1; 111 112 /* One of the zones is ready for compaction */ 113 unsigned int compaction_ready:1; 114 115 /* There is easily reclaimable cold cache in the current node */ 116 unsigned int cache_trim_mode:1; 117 118 /* The file pages on the current node are dangerously low */ 119 unsigned int file_is_tiny:1; 120 121 /* Allocation order */ 122 s8 order; 123 124 /* Scan (total_size >> priority) pages at once */ 125 s8 priority; 126 127 /* The highest zone to isolate pages for reclaim from */ 128 s8 reclaim_idx; 129 130 /* This context's GFP mask */ 131 gfp_t gfp_mask; 132 133 /* Incremented by the number of inactive pages that were scanned */ 134 unsigned long nr_scanned; 135 136 /* Number of pages freed so far during a call to shrink_zones() */ 137 unsigned long nr_reclaimed; 138 139 struct { 140 unsigned int dirty; 141 unsigned int unqueued_dirty; 142 unsigned int congested; 143 unsigned int writeback; 144 unsigned int immediate; 145 unsigned int file_taken; 146 unsigned int taken; 147 } nr; 148 149 /* for recording the reclaimed slab by now */ 150 struct reclaim_state reclaim_state; 151 }; 152 153 #ifdef ARCH_HAS_PREFETCHW 154 #define prefetchw_prev_lru_page(_page, _base, _field) \ 155 do { \ 156 if ((_page)->lru.prev != _base) { \ 157 struct page *prev; \ 158 \ 159 prev = lru_to_page(&(_page->lru)); \ 160 prefetchw(&prev->_field); \ 161 } \ 162 } while (0) 163 #else 164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 165 #endif 166 167 /* 168 * From 0 .. 200. Higher means more swappy. 169 */ 170 int vm_swappiness = 60; 171 172 static void set_task_reclaim_state(struct task_struct *task, 173 struct reclaim_state *rs) 174 { 175 /* Check for an overwrite */ 176 WARN_ON_ONCE(rs && task->reclaim_state); 177 178 /* Check for the nulling of an already-nulled member */ 179 WARN_ON_ONCE(!rs && !task->reclaim_state); 180 181 task->reclaim_state = rs; 182 } 183 184 static LIST_HEAD(shrinker_list); 185 static DECLARE_RWSEM(shrinker_rwsem); 186 187 #ifdef CONFIG_MEMCG 188 /* 189 * We allow subsystems to populate their shrinker-related 190 * LRU lists before register_shrinker_prepared() is called 191 * for the shrinker, since we don't want to impose 192 * restrictions on their internal registration order. 193 * In this case shrink_slab_memcg() may find corresponding 194 * bit is set in the shrinkers map. 195 * 196 * This value is used by the function to detect registering 197 * shrinkers and to skip do_shrink_slab() calls for them. 198 */ 199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 200 201 static DEFINE_IDR(shrinker_idr); 202 static int shrinker_nr_max; 203 204 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 205 { 206 int id, ret = -ENOMEM; 207 208 down_write(&shrinker_rwsem); 209 /* This may call shrinker, so it must use down_read_trylock() */ 210 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 211 if (id < 0) 212 goto unlock; 213 214 if (id >= shrinker_nr_max) { 215 if (memcg_expand_shrinker_maps(id)) { 216 idr_remove(&shrinker_idr, id); 217 goto unlock; 218 } 219 220 shrinker_nr_max = id + 1; 221 } 222 shrinker->id = id; 223 ret = 0; 224 unlock: 225 up_write(&shrinker_rwsem); 226 return ret; 227 } 228 229 static void unregister_memcg_shrinker(struct shrinker *shrinker) 230 { 231 int id = shrinker->id; 232 233 BUG_ON(id < 0); 234 235 down_write(&shrinker_rwsem); 236 idr_remove(&shrinker_idr, id); 237 up_write(&shrinker_rwsem); 238 } 239 240 static bool cgroup_reclaim(struct scan_control *sc) 241 { 242 return sc->target_mem_cgroup; 243 } 244 245 /** 246 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 247 * @sc: scan_control in question 248 * 249 * The normal page dirty throttling mechanism in balance_dirty_pages() is 250 * completely broken with the legacy memcg and direct stalling in 251 * shrink_page_list() is used for throttling instead, which lacks all the 252 * niceties such as fairness, adaptive pausing, bandwidth proportional 253 * allocation and configurability. 254 * 255 * This function tests whether the vmscan currently in progress can assume 256 * that the normal dirty throttling mechanism is operational. 257 */ 258 static bool writeback_throttling_sane(struct scan_control *sc) 259 { 260 if (!cgroup_reclaim(sc)) 261 return true; 262 #ifdef CONFIG_CGROUP_WRITEBACK 263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 264 return true; 265 #endif 266 return false; 267 } 268 #else 269 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 270 { 271 return 0; 272 } 273 274 static void unregister_memcg_shrinker(struct shrinker *shrinker) 275 { 276 } 277 278 static bool cgroup_reclaim(struct scan_control *sc) 279 { 280 return false; 281 } 282 283 static bool writeback_throttling_sane(struct scan_control *sc) 284 { 285 return true; 286 } 287 #endif 288 289 /* 290 * This misses isolated pages which are not accounted for to save counters. 291 * As the data only determines if reclaim or compaction continues, it is 292 * not expected that isolated pages will be a dominating factor. 293 */ 294 unsigned long zone_reclaimable_pages(struct zone *zone) 295 { 296 unsigned long nr; 297 298 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 299 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 300 if (get_nr_swap_pages() > 0) 301 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 302 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 303 304 return nr; 305 } 306 307 /** 308 * lruvec_lru_size - Returns the number of pages on the given LRU list. 309 * @lruvec: lru vector 310 * @lru: lru to use 311 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 312 */ 313 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 314 { 315 unsigned long size = 0; 316 int zid; 317 318 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 319 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 320 321 if (!managed_zone(zone)) 322 continue; 323 324 if (!mem_cgroup_disabled()) 325 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 326 else 327 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 328 } 329 return size; 330 } 331 332 /* 333 * Add a shrinker callback to be called from the vm. 334 */ 335 int prealloc_shrinker(struct shrinker *shrinker) 336 { 337 unsigned int size = sizeof(*shrinker->nr_deferred); 338 339 if (shrinker->flags & SHRINKER_NUMA_AWARE) 340 size *= nr_node_ids; 341 342 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 343 if (!shrinker->nr_deferred) 344 return -ENOMEM; 345 346 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 347 if (prealloc_memcg_shrinker(shrinker)) 348 goto free_deferred; 349 } 350 351 return 0; 352 353 free_deferred: 354 kfree(shrinker->nr_deferred); 355 shrinker->nr_deferred = NULL; 356 return -ENOMEM; 357 } 358 359 void free_prealloced_shrinker(struct shrinker *shrinker) 360 { 361 if (!shrinker->nr_deferred) 362 return; 363 364 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 365 unregister_memcg_shrinker(shrinker); 366 367 kfree(shrinker->nr_deferred); 368 shrinker->nr_deferred = NULL; 369 } 370 371 void register_shrinker_prepared(struct shrinker *shrinker) 372 { 373 down_write(&shrinker_rwsem); 374 list_add_tail(&shrinker->list, &shrinker_list); 375 #ifdef CONFIG_MEMCG 376 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 377 idr_replace(&shrinker_idr, shrinker, shrinker->id); 378 #endif 379 up_write(&shrinker_rwsem); 380 } 381 382 int register_shrinker(struct shrinker *shrinker) 383 { 384 int err = prealloc_shrinker(shrinker); 385 386 if (err) 387 return err; 388 register_shrinker_prepared(shrinker); 389 return 0; 390 } 391 EXPORT_SYMBOL(register_shrinker); 392 393 /* 394 * Remove one 395 */ 396 void unregister_shrinker(struct shrinker *shrinker) 397 { 398 if (!shrinker->nr_deferred) 399 return; 400 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 401 unregister_memcg_shrinker(shrinker); 402 down_write(&shrinker_rwsem); 403 list_del(&shrinker->list); 404 up_write(&shrinker_rwsem); 405 kfree(shrinker->nr_deferred); 406 shrinker->nr_deferred = NULL; 407 } 408 EXPORT_SYMBOL(unregister_shrinker); 409 410 #define SHRINK_BATCH 128 411 412 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 413 struct shrinker *shrinker, int priority) 414 { 415 unsigned long freed = 0; 416 unsigned long long delta; 417 long total_scan; 418 long freeable; 419 long nr; 420 long new_nr; 421 int nid = shrinkctl->nid; 422 long batch_size = shrinker->batch ? shrinker->batch 423 : SHRINK_BATCH; 424 long scanned = 0, next_deferred; 425 426 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 427 nid = 0; 428 429 freeable = shrinker->count_objects(shrinker, shrinkctl); 430 if (freeable == 0 || freeable == SHRINK_EMPTY) 431 return freeable; 432 433 /* 434 * copy the current shrinker scan count into a local variable 435 * and zero it so that other concurrent shrinker invocations 436 * don't also do this scanning work. 437 */ 438 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 439 440 total_scan = nr; 441 if (shrinker->seeks) { 442 delta = freeable >> priority; 443 delta *= 4; 444 do_div(delta, shrinker->seeks); 445 } else { 446 /* 447 * These objects don't require any IO to create. Trim 448 * them aggressively under memory pressure to keep 449 * them from causing refetches in the IO caches. 450 */ 451 delta = freeable / 2; 452 } 453 454 total_scan += delta; 455 if (total_scan < 0) { 456 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 457 shrinker->scan_objects, total_scan); 458 total_scan = freeable; 459 next_deferred = nr; 460 } else 461 next_deferred = total_scan; 462 463 /* 464 * We need to avoid excessive windup on filesystem shrinkers 465 * due to large numbers of GFP_NOFS allocations causing the 466 * shrinkers to return -1 all the time. This results in a large 467 * nr being built up so when a shrink that can do some work 468 * comes along it empties the entire cache due to nr >>> 469 * freeable. This is bad for sustaining a working set in 470 * memory. 471 * 472 * Hence only allow the shrinker to scan the entire cache when 473 * a large delta change is calculated directly. 474 */ 475 if (delta < freeable / 4) 476 total_scan = min(total_scan, freeable / 2); 477 478 /* 479 * Avoid risking looping forever due to too large nr value: 480 * never try to free more than twice the estimate number of 481 * freeable entries. 482 */ 483 if (total_scan > freeable * 2) 484 total_scan = freeable * 2; 485 486 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 487 freeable, delta, total_scan, priority); 488 489 /* 490 * Normally, we should not scan less than batch_size objects in one 491 * pass to avoid too frequent shrinker calls, but if the slab has less 492 * than batch_size objects in total and we are really tight on memory, 493 * we will try to reclaim all available objects, otherwise we can end 494 * up failing allocations although there are plenty of reclaimable 495 * objects spread over several slabs with usage less than the 496 * batch_size. 497 * 498 * We detect the "tight on memory" situations by looking at the total 499 * number of objects we want to scan (total_scan). If it is greater 500 * than the total number of objects on slab (freeable), we must be 501 * scanning at high prio and therefore should try to reclaim as much as 502 * possible. 503 */ 504 while (total_scan >= batch_size || 505 total_scan >= freeable) { 506 unsigned long ret; 507 unsigned long nr_to_scan = min(batch_size, total_scan); 508 509 shrinkctl->nr_to_scan = nr_to_scan; 510 shrinkctl->nr_scanned = nr_to_scan; 511 ret = shrinker->scan_objects(shrinker, shrinkctl); 512 if (ret == SHRINK_STOP) 513 break; 514 freed += ret; 515 516 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 517 total_scan -= shrinkctl->nr_scanned; 518 scanned += shrinkctl->nr_scanned; 519 520 cond_resched(); 521 } 522 523 if (next_deferred >= scanned) 524 next_deferred -= scanned; 525 else 526 next_deferred = 0; 527 /* 528 * move the unused scan count back into the shrinker in a 529 * manner that handles concurrent updates. If we exhausted the 530 * scan, there is no need to do an update. 531 */ 532 if (next_deferred > 0) 533 new_nr = atomic_long_add_return(next_deferred, 534 &shrinker->nr_deferred[nid]); 535 else 536 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 537 538 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 539 return freed; 540 } 541 542 #ifdef CONFIG_MEMCG 543 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 544 struct mem_cgroup *memcg, int priority) 545 { 546 struct memcg_shrinker_map *map; 547 unsigned long ret, freed = 0; 548 int i; 549 550 if (!mem_cgroup_online(memcg)) 551 return 0; 552 553 if (!down_read_trylock(&shrinker_rwsem)) 554 return 0; 555 556 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 557 true); 558 if (unlikely(!map)) 559 goto unlock; 560 561 for_each_set_bit(i, map->map, shrinker_nr_max) { 562 struct shrink_control sc = { 563 .gfp_mask = gfp_mask, 564 .nid = nid, 565 .memcg = memcg, 566 }; 567 struct shrinker *shrinker; 568 569 shrinker = idr_find(&shrinker_idr, i); 570 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 571 if (!shrinker) 572 clear_bit(i, map->map); 573 continue; 574 } 575 576 /* Call non-slab shrinkers even though kmem is disabled */ 577 if (!memcg_kmem_enabled() && 578 !(shrinker->flags & SHRINKER_NONSLAB)) 579 continue; 580 581 ret = do_shrink_slab(&sc, shrinker, priority); 582 if (ret == SHRINK_EMPTY) { 583 clear_bit(i, map->map); 584 /* 585 * After the shrinker reported that it had no objects to 586 * free, but before we cleared the corresponding bit in 587 * the memcg shrinker map, a new object might have been 588 * added. To make sure, we have the bit set in this 589 * case, we invoke the shrinker one more time and reset 590 * the bit if it reports that it is not empty anymore. 591 * The memory barrier here pairs with the barrier in 592 * memcg_set_shrinker_bit(): 593 * 594 * list_lru_add() shrink_slab_memcg() 595 * list_add_tail() clear_bit() 596 * <MB> <MB> 597 * set_bit() do_shrink_slab() 598 */ 599 smp_mb__after_atomic(); 600 ret = do_shrink_slab(&sc, shrinker, priority); 601 if (ret == SHRINK_EMPTY) 602 ret = 0; 603 else 604 memcg_set_shrinker_bit(memcg, nid, i); 605 } 606 freed += ret; 607 608 if (rwsem_is_contended(&shrinker_rwsem)) { 609 freed = freed ? : 1; 610 break; 611 } 612 } 613 unlock: 614 up_read(&shrinker_rwsem); 615 return freed; 616 } 617 #else /* CONFIG_MEMCG */ 618 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 619 struct mem_cgroup *memcg, int priority) 620 { 621 return 0; 622 } 623 #endif /* CONFIG_MEMCG */ 624 625 /** 626 * shrink_slab - shrink slab caches 627 * @gfp_mask: allocation context 628 * @nid: node whose slab caches to target 629 * @memcg: memory cgroup whose slab caches to target 630 * @priority: the reclaim priority 631 * 632 * Call the shrink functions to age shrinkable caches. 633 * 634 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 635 * unaware shrinkers will receive a node id of 0 instead. 636 * 637 * @memcg specifies the memory cgroup to target. Unaware shrinkers 638 * are called only if it is the root cgroup. 639 * 640 * @priority is sc->priority, we take the number of objects and >> by priority 641 * in order to get the scan target. 642 * 643 * Returns the number of reclaimed slab objects. 644 */ 645 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 646 struct mem_cgroup *memcg, 647 int priority) 648 { 649 unsigned long ret, freed = 0; 650 struct shrinker *shrinker; 651 652 /* 653 * The root memcg might be allocated even though memcg is disabled 654 * via "cgroup_disable=memory" boot parameter. This could make 655 * mem_cgroup_is_root() return false, then just run memcg slab 656 * shrink, but skip global shrink. This may result in premature 657 * oom. 658 */ 659 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 660 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 661 662 if (!down_read_trylock(&shrinker_rwsem)) 663 goto out; 664 665 list_for_each_entry(shrinker, &shrinker_list, list) { 666 struct shrink_control sc = { 667 .gfp_mask = gfp_mask, 668 .nid = nid, 669 .memcg = memcg, 670 }; 671 672 ret = do_shrink_slab(&sc, shrinker, priority); 673 if (ret == SHRINK_EMPTY) 674 ret = 0; 675 freed += ret; 676 /* 677 * Bail out if someone want to register a new shrinker to 678 * prevent the registration from being stalled for long periods 679 * by parallel ongoing shrinking. 680 */ 681 if (rwsem_is_contended(&shrinker_rwsem)) { 682 freed = freed ? : 1; 683 break; 684 } 685 } 686 687 up_read(&shrinker_rwsem); 688 out: 689 cond_resched(); 690 return freed; 691 } 692 693 void drop_slab_node(int nid) 694 { 695 unsigned long freed; 696 697 do { 698 struct mem_cgroup *memcg = NULL; 699 700 if (fatal_signal_pending(current)) 701 return; 702 703 freed = 0; 704 memcg = mem_cgroup_iter(NULL, NULL, NULL); 705 do { 706 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 707 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 708 } while (freed > 10); 709 } 710 711 void drop_slab(void) 712 { 713 int nid; 714 715 for_each_online_node(nid) 716 drop_slab_node(nid); 717 } 718 719 static inline int is_page_cache_freeable(struct page *page) 720 { 721 /* 722 * A freeable page cache page is referenced only by the caller 723 * that isolated the page, the page cache and optional buffer 724 * heads at page->private. 725 */ 726 int page_cache_pins = thp_nr_pages(page); 727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 728 } 729 730 static int may_write_to_inode(struct inode *inode) 731 { 732 if (current->flags & PF_SWAPWRITE) 733 return 1; 734 if (!inode_write_congested(inode)) 735 return 1; 736 if (inode_to_bdi(inode) == current->backing_dev_info) 737 return 1; 738 return 0; 739 } 740 741 /* 742 * We detected a synchronous write error writing a page out. Probably 743 * -ENOSPC. We need to propagate that into the address_space for a subsequent 744 * fsync(), msync() or close(). 745 * 746 * The tricky part is that after writepage we cannot touch the mapping: nothing 747 * prevents it from being freed up. But we have a ref on the page and once 748 * that page is locked, the mapping is pinned. 749 * 750 * We're allowed to run sleeping lock_page() here because we know the caller has 751 * __GFP_FS. 752 */ 753 static void handle_write_error(struct address_space *mapping, 754 struct page *page, int error) 755 { 756 lock_page(page); 757 if (page_mapping(page) == mapping) 758 mapping_set_error(mapping, error); 759 unlock_page(page); 760 } 761 762 /* possible outcome of pageout() */ 763 typedef enum { 764 /* failed to write page out, page is locked */ 765 PAGE_KEEP, 766 /* move page to the active list, page is locked */ 767 PAGE_ACTIVATE, 768 /* page has been sent to the disk successfully, page is unlocked */ 769 PAGE_SUCCESS, 770 /* page is clean and locked */ 771 PAGE_CLEAN, 772 } pageout_t; 773 774 /* 775 * pageout is called by shrink_page_list() for each dirty page. 776 * Calls ->writepage(). 777 */ 778 static pageout_t pageout(struct page *page, struct address_space *mapping) 779 { 780 /* 781 * If the page is dirty, only perform writeback if that write 782 * will be non-blocking. To prevent this allocation from being 783 * stalled by pagecache activity. But note that there may be 784 * stalls if we need to run get_block(). We could test 785 * PagePrivate for that. 786 * 787 * If this process is currently in __generic_file_write_iter() against 788 * this page's queue, we can perform writeback even if that 789 * will block. 790 * 791 * If the page is swapcache, write it back even if that would 792 * block, for some throttling. This happens by accident, because 793 * swap_backing_dev_info is bust: it doesn't reflect the 794 * congestion state of the swapdevs. Easy to fix, if needed. 795 */ 796 if (!is_page_cache_freeable(page)) 797 return PAGE_KEEP; 798 if (!mapping) { 799 /* 800 * Some data journaling orphaned pages can have 801 * page->mapping == NULL while being dirty with clean buffers. 802 */ 803 if (page_has_private(page)) { 804 if (try_to_free_buffers(page)) { 805 ClearPageDirty(page); 806 pr_info("%s: orphaned page\n", __func__); 807 return PAGE_CLEAN; 808 } 809 } 810 return PAGE_KEEP; 811 } 812 if (mapping->a_ops->writepage == NULL) 813 return PAGE_ACTIVATE; 814 if (!may_write_to_inode(mapping->host)) 815 return PAGE_KEEP; 816 817 if (clear_page_dirty_for_io(page)) { 818 int res; 819 struct writeback_control wbc = { 820 .sync_mode = WB_SYNC_NONE, 821 .nr_to_write = SWAP_CLUSTER_MAX, 822 .range_start = 0, 823 .range_end = LLONG_MAX, 824 .for_reclaim = 1, 825 }; 826 827 SetPageReclaim(page); 828 res = mapping->a_ops->writepage(page, &wbc); 829 if (res < 0) 830 handle_write_error(mapping, page, res); 831 if (res == AOP_WRITEPAGE_ACTIVATE) { 832 ClearPageReclaim(page); 833 return PAGE_ACTIVATE; 834 } 835 836 if (!PageWriteback(page)) { 837 /* synchronous write or broken a_ops? */ 838 ClearPageReclaim(page); 839 } 840 trace_mm_vmscan_writepage(page); 841 inc_node_page_state(page, NR_VMSCAN_WRITE); 842 return PAGE_SUCCESS; 843 } 844 845 return PAGE_CLEAN; 846 } 847 848 /* 849 * Same as remove_mapping, but if the page is removed from the mapping, it 850 * gets returned with a refcount of 0. 851 */ 852 static int __remove_mapping(struct address_space *mapping, struct page *page, 853 bool reclaimed, struct mem_cgroup *target_memcg) 854 { 855 unsigned long flags; 856 int refcount; 857 void *shadow = NULL; 858 859 BUG_ON(!PageLocked(page)); 860 BUG_ON(mapping != page_mapping(page)); 861 862 xa_lock_irqsave(&mapping->i_pages, flags); 863 /* 864 * The non racy check for a busy page. 865 * 866 * Must be careful with the order of the tests. When someone has 867 * a ref to the page, it may be possible that they dirty it then 868 * drop the reference. So if PageDirty is tested before page_count 869 * here, then the following race may occur: 870 * 871 * get_user_pages(&page); 872 * [user mapping goes away] 873 * write_to(page); 874 * !PageDirty(page) [good] 875 * SetPageDirty(page); 876 * put_page(page); 877 * !page_count(page) [good, discard it] 878 * 879 * [oops, our write_to data is lost] 880 * 881 * Reversing the order of the tests ensures such a situation cannot 882 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 883 * load is not satisfied before that of page->_refcount. 884 * 885 * Note that if SetPageDirty is always performed via set_page_dirty, 886 * and thus under the i_pages lock, then this ordering is not required. 887 */ 888 refcount = 1 + compound_nr(page); 889 if (!page_ref_freeze(page, refcount)) 890 goto cannot_free; 891 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 892 if (unlikely(PageDirty(page))) { 893 page_ref_unfreeze(page, refcount); 894 goto cannot_free; 895 } 896 897 if (PageSwapCache(page)) { 898 swp_entry_t swap = { .val = page_private(page) }; 899 mem_cgroup_swapout(page, swap); 900 if (reclaimed && !mapping_exiting(mapping)) 901 shadow = workingset_eviction(page, target_memcg); 902 __delete_from_swap_cache(page, swap, shadow); 903 xa_unlock_irqrestore(&mapping->i_pages, flags); 904 put_swap_page(page, swap); 905 } else { 906 void (*freepage)(struct page *); 907 908 freepage = mapping->a_ops->freepage; 909 /* 910 * Remember a shadow entry for reclaimed file cache in 911 * order to detect refaults, thus thrashing, later on. 912 * 913 * But don't store shadows in an address space that is 914 * already exiting. This is not just an optimization, 915 * inode reclaim needs to empty out the radix tree or 916 * the nodes are lost. Don't plant shadows behind its 917 * back. 918 * 919 * We also don't store shadows for DAX mappings because the 920 * only page cache pages found in these are zero pages 921 * covering holes, and because we don't want to mix DAX 922 * exceptional entries and shadow exceptional entries in the 923 * same address_space. 924 */ 925 if (reclaimed && page_is_file_lru(page) && 926 !mapping_exiting(mapping) && !dax_mapping(mapping)) 927 shadow = workingset_eviction(page, target_memcg); 928 __delete_from_page_cache(page, shadow); 929 xa_unlock_irqrestore(&mapping->i_pages, flags); 930 931 if (freepage != NULL) 932 freepage(page); 933 } 934 935 return 1; 936 937 cannot_free: 938 xa_unlock_irqrestore(&mapping->i_pages, flags); 939 return 0; 940 } 941 942 /* 943 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 944 * someone else has a ref on the page, abort and return 0. If it was 945 * successfully detached, return 1. Assumes the caller has a single ref on 946 * this page. 947 */ 948 int remove_mapping(struct address_space *mapping, struct page *page) 949 { 950 if (__remove_mapping(mapping, page, false, NULL)) { 951 /* 952 * Unfreezing the refcount with 1 rather than 2 effectively 953 * drops the pagecache ref for us without requiring another 954 * atomic operation. 955 */ 956 page_ref_unfreeze(page, 1); 957 return 1; 958 } 959 return 0; 960 } 961 962 /** 963 * putback_lru_page - put previously isolated page onto appropriate LRU list 964 * @page: page to be put back to appropriate lru list 965 * 966 * Add previously isolated @page to appropriate LRU list. 967 * Page may still be unevictable for other reasons. 968 * 969 * lru_lock must not be held, interrupts must be enabled. 970 */ 971 void putback_lru_page(struct page *page) 972 { 973 lru_cache_add(page); 974 put_page(page); /* drop ref from isolate */ 975 } 976 977 enum page_references { 978 PAGEREF_RECLAIM, 979 PAGEREF_RECLAIM_CLEAN, 980 PAGEREF_KEEP, 981 PAGEREF_ACTIVATE, 982 }; 983 984 static enum page_references page_check_references(struct page *page, 985 struct scan_control *sc) 986 { 987 int referenced_ptes, referenced_page; 988 unsigned long vm_flags; 989 990 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 991 &vm_flags); 992 referenced_page = TestClearPageReferenced(page); 993 994 /* 995 * Mlock lost the isolation race with us. Let try_to_unmap() 996 * move the page to the unevictable list. 997 */ 998 if (vm_flags & VM_LOCKED) 999 return PAGEREF_RECLAIM; 1000 1001 if (referenced_ptes) { 1002 /* 1003 * All mapped pages start out with page table 1004 * references from the instantiating fault, so we need 1005 * to look twice if a mapped file page is used more 1006 * than once. 1007 * 1008 * Mark it and spare it for another trip around the 1009 * inactive list. Another page table reference will 1010 * lead to its activation. 1011 * 1012 * Note: the mark is set for activated pages as well 1013 * so that recently deactivated but used pages are 1014 * quickly recovered. 1015 */ 1016 SetPageReferenced(page); 1017 1018 if (referenced_page || referenced_ptes > 1) 1019 return PAGEREF_ACTIVATE; 1020 1021 /* 1022 * Activate file-backed executable pages after first usage. 1023 */ 1024 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1025 return PAGEREF_ACTIVATE; 1026 1027 return PAGEREF_KEEP; 1028 } 1029 1030 /* Reclaim if clean, defer dirty pages to writeback */ 1031 if (referenced_page && !PageSwapBacked(page)) 1032 return PAGEREF_RECLAIM_CLEAN; 1033 1034 return PAGEREF_RECLAIM; 1035 } 1036 1037 /* Check if a page is dirty or under writeback */ 1038 static void page_check_dirty_writeback(struct page *page, 1039 bool *dirty, bool *writeback) 1040 { 1041 struct address_space *mapping; 1042 1043 /* 1044 * Anonymous pages are not handled by flushers and must be written 1045 * from reclaim context. Do not stall reclaim based on them 1046 */ 1047 if (!page_is_file_lru(page) || 1048 (PageAnon(page) && !PageSwapBacked(page))) { 1049 *dirty = false; 1050 *writeback = false; 1051 return; 1052 } 1053 1054 /* By default assume that the page flags are accurate */ 1055 *dirty = PageDirty(page); 1056 *writeback = PageWriteback(page); 1057 1058 /* Verify dirty/writeback state if the filesystem supports it */ 1059 if (!page_has_private(page)) 1060 return; 1061 1062 mapping = page_mapping(page); 1063 if (mapping && mapping->a_ops->is_dirty_writeback) 1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1065 } 1066 1067 /* 1068 * shrink_page_list() returns the number of reclaimed pages 1069 */ 1070 static unsigned int shrink_page_list(struct list_head *page_list, 1071 struct pglist_data *pgdat, 1072 struct scan_control *sc, 1073 struct reclaim_stat *stat, 1074 bool ignore_references) 1075 { 1076 LIST_HEAD(ret_pages); 1077 LIST_HEAD(free_pages); 1078 unsigned int nr_reclaimed = 0; 1079 unsigned int pgactivate = 0; 1080 1081 memset(stat, 0, sizeof(*stat)); 1082 cond_resched(); 1083 1084 while (!list_empty(page_list)) { 1085 struct address_space *mapping; 1086 struct page *page; 1087 enum page_references references = PAGEREF_RECLAIM; 1088 bool dirty, writeback, may_enter_fs; 1089 unsigned int nr_pages; 1090 1091 cond_resched(); 1092 1093 page = lru_to_page(page_list); 1094 list_del(&page->lru); 1095 1096 if (!trylock_page(page)) 1097 goto keep; 1098 1099 VM_BUG_ON_PAGE(PageActive(page), page); 1100 1101 nr_pages = compound_nr(page); 1102 1103 /* Account the number of base pages even though THP */ 1104 sc->nr_scanned += nr_pages; 1105 1106 if (unlikely(!page_evictable(page))) 1107 goto activate_locked; 1108 1109 if (!sc->may_unmap && page_mapped(page)) 1110 goto keep_locked; 1111 1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1114 1115 /* 1116 * The number of dirty pages determines if a node is marked 1117 * reclaim_congested which affects wait_iff_congested. kswapd 1118 * will stall and start writing pages if the tail of the LRU 1119 * is all dirty unqueued pages. 1120 */ 1121 page_check_dirty_writeback(page, &dirty, &writeback); 1122 if (dirty || writeback) 1123 stat->nr_dirty++; 1124 1125 if (dirty && !writeback) 1126 stat->nr_unqueued_dirty++; 1127 1128 /* 1129 * Treat this page as congested if the underlying BDI is or if 1130 * pages are cycling through the LRU so quickly that the 1131 * pages marked for immediate reclaim are making it to the 1132 * end of the LRU a second time. 1133 */ 1134 mapping = page_mapping(page); 1135 if (((dirty || writeback) && mapping && 1136 inode_write_congested(mapping->host)) || 1137 (writeback && PageReclaim(page))) 1138 stat->nr_congested++; 1139 1140 /* 1141 * If a page at the tail of the LRU is under writeback, there 1142 * are three cases to consider. 1143 * 1144 * 1) If reclaim is encountering an excessive number of pages 1145 * under writeback and this page is both under writeback and 1146 * PageReclaim then it indicates that pages are being queued 1147 * for IO but are being recycled through the LRU before the 1148 * IO can complete. Waiting on the page itself risks an 1149 * indefinite stall if it is impossible to writeback the 1150 * page due to IO error or disconnected storage so instead 1151 * note that the LRU is being scanned too quickly and the 1152 * caller can stall after page list has been processed. 1153 * 1154 * 2) Global or new memcg reclaim encounters a page that is 1155 * not marked for immediate reclaim, or the caller does not 1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1157 * not to fs). In this case mark the page for immediate 1158 * reclaim and continue scanning. 1159 * 1160 * Require may_enter_fs because we would wait on fs, which 1161 * may not have submitted IO yet. And the loop driver might 1162 * enter reclaim, and deadlock if it waits on a page for 1163 * which it is needed to do the write (loop masks off 1164 * __GFP_IO|__GFP_FS for this reason); but more thought 1165 * would probably show more reasons. 1166 * 1167 * 3) Legacy memcg encounters a page that is already marked 1168 * PageReclaim. memcg does not have any dirty pages 1169 * throttling so we could easily OOM just because too many 1170 * pages are in writeback and there is nothing else to 1171 * reclaim. Wait for the writeback to complete. 1172 * 1173 * In cases 1) and 2) we activate the pages to get them out of 1174 * the way while we continue scanning for clean pages on the 1175 * inactive list and refilling from the active list. The 1176 * observation here is that waiting for disk writes is more 1177 * expensive than potentially causing reloads down the line. 1178 * Since they're marked for immediate reclaim, they won't put 1179 * memory pressure on the cache working set any longer than it 1180 * takes to write them to disk. 1181 */ 1182 if (PageWriteback(page)) { 1183 /* Case 1 above */ 1184 if (current_is_kswapd() && 1185 PageReclaim(page) && 1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1187 stat->nr_immediate++; 1188 goto activate_locked; 1189 1190 /* Case 2 above */ 1191 } else if (writeback_throttling_sane(sc) || 1192 !PageReclaim(page) || !may_enter_fs) { 1193 /* 1194 * This is slightly racy - end_page_writeback() 1195 * might have just cleared PageReclaim, then 1196 * setting PageReclaim here end up interpreted 1197 * as PageReadahead - but that does not matter 1198 * enough to care. What we do want is for this 1199 * page to have PageReclaim set next time memcg 1200 * reclaim reaches the tests above, so it will 1201 * then wait_on_page_writeback() to avoid OOM; 1202 * and it's also appropriate in global reclaim. 1203 */ 1204 SetPageReclaim(page); 1205 stat->nr_writeback++; 1206 goto activate_locked; 1207 1208 /* Case 3 above */ 1209 } else { 1210 unlock_page(page); 1211 wait_on_page_writeback(page); 1212 /* then go back and try same page again */ 1213 list_add_tail(&page->lru, page_list); 1214 continue; 1215 } 1216 } 1217 1218 if (!ignore_references) 1219 references = page_check_references(page, sc); 1220 1221 switch (references) { 1222 case PAGEREF_ACTIVATE: 1223 goto activate_locked; 1224 case PAGEREF_KEEP: 1225 stat->nr_ref_keep += nr_pages; 1226 goto keep_locked; 1227 case PAGEREF_RECLAIM: 1228 case PAGEREF_RECLAIM_CLEAN: 1229 ; /* try to reclaim the page below */ 1230 } 1231 1232 /* 1233 * Anonymous process memory has backing store? 1234 * Try to allocate it some swap space here. 1235 * Lazyfree page could be freed directly 1236 */ 1237 if (PageAnon(page) && PageSwapBacked(page)) { 1238 if (!PageSwapCache(page)) { 1239 if (!(sc->gfp_mask & __GFP_IO)) 1240 goto keep_locked; 1241 if (PageTransHuge(page)) { 1242 /* cannot split THP, skip it */ 1243 if (!can_split_huge_page(page, NULL)) 1244 goto activate_locked; 1245 /* 1246 * Split pages without a PMD map right 1247 * away. Chances are some or all of the 1248 * tail pages can be freed without IO. 1249 */ 1250 if (!compound_mapcount(page) && 1251 split_huge_page_to_list(page, 1252 page_list)) 1253 goto activate_locked; 1254 } 1255 if (!add_to_swap(page)) { 1256 if (!PageTransHuge(page)) 1257 goto activate_locked_split; 1258 /* Fallback to swap normal pages */ 1259 if (split_huge_page_to_list(page, 1260 page_list)) 1261 goto activate_locked; 1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1263 count_vm_event(THP_SWPOUT_FALLBACK); 1264 #endif 1265 if (!add_to_swap(page)) 1266 goto activate_locked_split; 1267 } 1268 1269 may_enter_fs = true; 1270 1271 /* Adding to swap updated mapping */ 1272 mapping = page_mapping(page); 1273 } 1274 } else if (unlikely(PageTransHuge(page))) { 1275 /* Split file THP */ 1276 if (split_huge_page_to_list(page, page_list)) 1277 goto keep_locked; 1278 } 1279 1280 /* 1281 * THP may get split above, need minus tail pages and update 1282 * nr_pages to avoid accounting tail pages twice. 1283 * 1284 * The tail pages that are added into swap cache successfully 1285 * reach here. 1286 */ 1287 if ((nr_pages > 1) && !PageTransHuge(page)) { 1288 sc->nr_scanned -= (nr_pages - 1); 1289 nr_pages = 1; 1290 } 1291 1292 /* 1293 * The page is mapped into the page tables of one or more 1294 * processes. Try to unmap it here. 1295 */ 1296 if (page_mapped(page)) { 1297 enum ttu_flags flags = TTU_BATCH_FLUSH; 1298 bool was_swapbacked = PageSwapBacked(page); 1299 1300 if (unlikely(PageTransHuge(page))) 1301 flags |= TTU_SPLIT_HUGE_PMD; 1302 1303 if (!try_to_unmap(page, flags)) { 1304 stat->nr_unmap_fail += nr_pages; 1305 if (!was_swapbacked && PageSwapBacked(page)) 1306 stat->nr_lazyfree_fail += nr_pages; 1307 goto activate_locked; 1308 } 1309 } 1310 1311 if (PageDirty(page)) { 1312 /* 1313 * Only kswapd can writeback filesystem pages 1314 * to avoid risk of stack overflow. But avoid 1315 * injecting inefficient single-page IO into 1316 * flusher writeback as much as possible: only 1317 * write pages when we've encountered many 1318 * dirty pages, and when we've already scanned 1319 * the rest of the LRU for clean pages and see 1320 * the same dirty pages again (PageReclaim). 1321 */ 1322 if (page_is_file_lru(page) && 1323 (!current_is_kswapd() || !PageReclaim(page) || 1324 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1325 /* 1326 * Immediately reclaim when written back. 1327 * Similar in principal to deactivate_page() 1328 * except we already have the page isolated 1329 * and know it's dirty 1330 */ 1331 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1332 SetPageReclaim(page); 1333 1334 goto activate_locked; 1335 } 1336 1337 if (references == PAGEREF_RECLAIM_CLEAN) 1338 goto keep_locked; 1339 if (!may_enter_fs) 1340 goto keep_locked; 1341 if (!sc->may_writepage) 1342 goto keep_locked; 1343 1344 /* 1345 * Page is dirty. Flush the TLB if a writable entry 1346 * potentially exists to avoid CPU writes after IO 1347 * starts and then write it out here. 1348 */ 1349 try_to_unmap_flush_dirty(); 1350 switch (pageout(page, mapping)) { 1351 case PAGE_KEEP: 1352 goto keep_locked; 1353 case PAGE_ACTIVATE: 1354 goto activate_locked; 1355 case PAGE_SUCCESS: 1356 stat->nr_pageout += thp_nr_pages(page); 1357 1358 if (PageWriteback(page)) 1359 goto keep; 1360 if (PageDirty(page)) 1361 goto keep; 1362 1363 /* 1364 * A synchronous write - probably a ramdisk. Go 1365 * ahead and try to reclaim the page. 1366 */ 1367 if (!trylock_page(page)) 1368 goto keep; 1369 if (PageDirty(page) || PageWriteback(page)) 1370 goto keep_locked; 1371 mapping = page_mapping(page); 1372 fallthrough; 1373 case PAGE_CLEAN: 1374 ; /* try to free the page below */ 1375 } 1376 } 1377 1378 /* 1379 * If the page has buffers, try to free the buffer mappings 1380 * associated with this page. If we succeed we try to free 1381 * the page as well. 1382 * 1383 * We do this even if the page is PageDirty(). 1384 * try_to_release_page() does not perform I/O, but it is 1385 * possible for a page to have PageDirty set, but it is actually 1386 * clean (all its buffers are clean). This happens if the 1387 * buffers were written out directly, with submit_bh(). ext3 1388 * will do this, as well as the blockdev mapping. 1389 * try_to_release_page() will discover that cleanness and will 1390 * drop the buffers and mark the page clean - it can be freed. 1391 * 1392 * Rarely, pages can have buffers and no ->mapping. These are 1393 * the pages which were not successfully invalidated in 1394 * truncate_cleanup_page(). We try to drop those buffers here 1395 * and if that worked, and the page is no longer mapped into 1396 * process address space (page_count == 1) it can be freed. 1397 * Otherwise, leave the page on the LRU so it is swappable. 1398 */ 1399 if (page_has_private(page)) { 1400 if (!try_to_release_page(page, sc->gfp_mask)) 1401 goto activate_locked; 1402 if (!mapping && page_count(page) == 1) { 1403 unlock_page(page); 1404 if (put_page_testzero(page)) 1405 goto free_it; 1406 else { 1407 /* 1408 * rare race with speculative reference. 1409 * the speculative reference will free 1410 * this page shortly, so we may 1411 * increment nr_reclaimed here (and 1412 * leave it off the LRU). 1413 */ 1414 nr_reclaimed++; 1415 continue; 1416 } 1417 } 1418 } 1419 1420 if (PageAnon(page) && !PageSwapBacked(page)) { 1421 /* follow __remove_mapping for reference */ 1422 if (!page_ref_freeze(page, 1)) 1423 goto keep_locked; 1424 if (PageDirty(page)) { 1425 page_ref_unfreeze(page, 1); 1426 goto keep_locked; 1427 } 1428 1429 count_vm_event(PGLAZYFREED); 1430 count_memcg_page_event(page, PGLAZYFREED); 1431 } else if (!mapping || !__remove_mapping(mapping, page, true, 1432 sc->target_mem_cgroup)) 1433 goto keep_locked; 1434 1435 unlock_page(page); 1436 free_it: 1437 /* 1438 * THP may get swapped out in a whole, need account 1439 * all base pages. 1440 */ 1441 nr_reclaimed += nr_pages; 1442 1443 /* 1444 * Is there need to periodically free_page_list? It would 1445 * appear not as the counts should be low 1446 */ 1447 if (unlikely(PageTransHuge(page))) 1448 destroy_compound_page(page); 1449 else 1450 list_add(&page->lru, &free_pages); 1451 continue; 1452 1453 activate_locked_split: 1454 /* 1455 * The tail pages that are failed to add into swap cache 1456 * reach here. Fixup nr_scanned and nr_pages. 1457 */ 1458 if (nr_pages > 1) { 1459 sc->nr_scanned -= (nr_pages - 1); 1460 nr_pages = 1; 1461 } 1462 activate_locked: 1463 /* Not a candidate for swapping, so reclaim swap space. */ 1464 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1465 PageMlocked(page))) 1466 try_to_free_swap(page); 1467 VM_BUG_ON_PAGE(PageActive(page), page); 1468 if (!PageMlocked(page)) { 1469 int type = page_is_file_lru(page); 1470 SetPageActive(page); 1471 stat->nr_activate[type] += nr_pages; 1472 count_memcg_page_event(page, PGACTIVATE); 1473 } 1474 keep_locked: 1475 unlock_page(page); 1476 keep: 1477 list_add(&page->lru, &ret_pages); 1478 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1479 } 1480 1481 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1482 1483 mem_cgroup_uncharge_list(&free_pages); 1484 try_to_unmap_flush(); 1485 free_unref_page_list(&free_pages); 1486 1487 list_splice(&ret_pages, page_list); 1488 count_vm_events(PGACTIVATE, pgactivate); 1489 1490 return nr_reclaimed; 1491 } 1492 1493 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1494 struct list_head *page_list) 1495 { 1496 struct scan_control sc = { 1497 .gfp_mask = GFP_KERNEL, 1498 .priority = DEF_PRIORITY, 1499 .may_unmap = 1, 1500 }; 1501 struct reclaim_stat stat; 1502 unsigned int nr_reclaimed; 1503 struct page *page, *next; 1504 LIST_HEAD(clean_pages); 1505 1506 list_for_each_entry_safe(page, next, page_list, lru) { 1507 if (page_is_file_lru(page) && !PageDirty(page) && 1508 !__PageMovable(page) && !PageUnevictable(page)) { 1509 ClearPageActive(page); 1510 list_move(&page->lru, &clean_pages); 1511 } 1512 } 1513 1514 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1515 &stat, true); 1516 list_splice(&clean_pages, page_list); 1517 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1518 -(long)nr_reclaimed); 1519 /* 1520 * Since lazyfree pages are isolated from file LRU from the beginning, 1521 * they will rotate back to anonymous LRU in the end if it failed to 1522 * discard so isolated count will be mismatched. 1523 * Compensate the isolated count for both LRU lists. 1524 */ 1525 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1526 stat.nr_lazyfree_fail); 1527 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1528 -(long)stat.nr_lazyfree_fail); 1529 return nr_reclaimed; 1530 } 1531 1532 /* 1533 * Attempt to remove the specified page from its LRU. Only take this page 1534 * if it is of the appropriate PageActive status. Pages which are being 1535 * freed elsewhere are also ignored. 1536 * 1537 * page: page to consider 1538 * mode: one of the LRU isolation modes defined above 1539 * 1540 * returns 0 on success, -ve errno on failure. 1541 */ 1542 int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1543 { 1544 int ret = -EBUSY; 1545 1546 /* Only take pages on the LRU. */ 1547 if (!PageLRU(page)) 1548 return ret; 1549 1550 /* Compaction should not handle unevictable pages but CMA can do so */ 1551 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1552 return ret; 1553 1554 /* 1555 * To minimise LRU disruption, the caller can indicate that it only 1556 * wants to isolate pages it will be able to operate on without 1557 * blocking - clean pages for the most part. 1558 * 1559 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1560 * that it is possible to migrate without blocking 1561 */ 1562 if (mode & ISOLATE_ASYNC_MIGRATE) { 1563 /* All the caller can do on PageWriteback is block */ 1564 if (PageWriteback(page)) 1565 return ret; 1566 1567 if (PageDirty(page)) { 1568 struct address_space *mapping; 1569 bool migrate_dirty; 1570 1571 /* 1572 * Only pages without mappings or that have a 1573 * ->migratepage callback are possible to migrate 1574 * without blocking. However, we can be racing with 1575 * truncation so it's necessary to lock the page 1576 * to stabilise the mapping as truncation holds 1577 * the page lock until after the page is removed 1578 * from the page cache. 1579 */ 1580 if (!trylock_page(page)) 1581 return ret; 1582 1583 mapping = page_mapping(page); 1584 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1585 unlock_page(page); 1586 if (!migrate_dirty) 1587 return ret; 1588 } 1589 } 1590 1591 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1592 return ret; 1593 1594 return 0; 1595 } 1596 1597 /* 1598 * Update LRU sizes after isolating pages. The LRU size updates must 1599 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1600 */ 1601 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1602 enum lru_list lru, unsigned long *nr_zone_taken) 1603 { 1604 int zid; 1605 1606 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1607 if (!nr_zone_taken[zid]) 1608 continue; 1609 1610 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1611 } 1612 1613 } 1614 1615 /** 1616 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1617 * 1618 * lruvec->lru_lock is heavily contended. Some of the functions that 1619 * shrink the lists perform better by taking out a batch of pages 1620 * and working on them outside the LRU lock. 1621 * 1622 * For pagecache intensive workloads, this function is the hottest 1623 * spot in the kernel (apart from copy_*_user functions). 1624 * 1625 * Lru_lock must be held before calling this function. 1626 * 1627 * @nr_to_scan: The number of eligible pages to look through on the list. 1628 * @lruvec: The LRU vector to pull pages from. 1629 * @dst: The temp list to put pages on to. 1630 * @nr_scanned: The number of pages that were scanned. 1631 * @sc: The scan_control struct for this reclaim session 1632 * @lru: LRU list id for isolating 1633 * 1634 * returns how many pages were moved onto *@dst. 1635 */ 1636 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1637 struct lruvec *lruvec, struct list_head *dst, 1638 unsigned long *nr_scanned, struct scan_control *sc, 1639 enum lru_list lru) 1640 { 1641 struct list_head *src = &lruvec->lists[lru]; 1642 unsigned long nr_taken = 0; 1643 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1644 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1645 unsigned long skipped = 0; 1646 unsigned long scan, total_scan, nr_pages; 1647 LIST_HEAD(pages_skipped); 1648 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1649 1650 total_scan = 0; 1651 scan = 0; 1652 while (scan < nr_to_scan && !list_empty(src)) { 1653 struct page *page; 1654 1655 page = lru_to_page(src); 1656 prefetchw_prev_lru_page(page, src, flags); 1657 1658 nr_pages = compound_nr(page); 1659 total_scan += nr_pages; 1660 1661 if (page_zonenum(page) > sc->reclaim_idx) { 1662 list_move(&page->lru, &pages_skipped); 1663 nr_skipped[page_zonenum(page)] += nr_pages; 1664 continue; 1665 } 1666 1667 /* 1668 * Do not count skipped pages because that makes the function 1669 * return with no isolated pages if the LRU mostly contains 1670 * ineligible pages. This causes the VM to not reclaim any 1671 * pages, triggering a premature OOM. 1672 * 1673 * Account all tail pages of THP. This would not cause 1674 * premature OOM since __isolate_lru_page() returns -EBUSY 1675 * only when the page is being freed somewhere else. 1676 */ 1677 scan += nr_pages; 1678 switch (__isolate_lru_page_prepare(page, mode)) { 1679 case 0: 1680 /* 1681 * Be careful not to clear PageLRU until after we're 1682 * sure the page is not being freed elsewhere -- the 1683 * page release code relies on it. 1684 */ 1685 if (unlikely(!get_page_unless_zero(page))) 1686 goto busy; 1687 1688 if (!TestClearPageLRU(page)) { 1689 /* 1690 * This page may in other isolation path, 1691 * but we still hold lru_lock. 1692 */ 1693 put_page(page); 1694 goto busy; 1695 } 1696 1697 nr_taken += nr_pages; 1698 nr_zone_taken[page_zonenum(page)] += nr_pages; 1699 list_move(&page->lru, dst); 1700 break; 1701 1702 default: 1703 busy: 1704 /* else it is being freed elsewhere */ 1705 list_move(&page->lru, src); 1706 } 1707 } 1708 1709 /* 1710 * Splice any skipped pages to the start of the LRU list. Note that 1711 * this disrupts the LRU order when reclaiming for lower zones but 1712 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1713 * scanning would soon rescan the same pages to skip and put the 1714 * system at risk of premature OOM. 1715 */ 1716 if (!list_empty(&pages_skipped)) { 1717 int zid; 1718 1719 list_splice(&pages_skipped, src); 1720 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1721 if (!nr_skipped[zid]) 1722 continue; 1723 1724 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1725 skipped += nr_skipped[zid]; 1726 } 1727 } 1728 *nr_scanned = total_scan; 1729 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1730 total_scan, skipped, nr_taken, mode, lru); 1731 update_lru_sizes(lruvec, lru, nr_zone_taken); 1732 return nr_taken; 1733 } 1734 1735 /** 1736 * isolate_lru_page - tries to isolate a page from its LRU list 1737 * @page: page to isolate from its LRU list 1738 * 1739 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1740 * vmstat statistic corresponding to whatever LRU list the page was on. 1741 * 1742 * Returns 0 if the page was removed from an LRU list. 1743 * Returns -EBUSY if the page was not on an LRU list. 1744 * 1745 * The returned page will have PageLRU() cleared. If it was found on 1746 * the active list, it will have PageActive set. If it was found on 1747 * the unevictable list, it will have the PageUnevictable bit set. That flag 1748 * may need to be cleared by the caller before letting the page go. 1749 * 1750 * The vmstat statistic corresponding to the list on which the page was 1751 * found will be decremented. 1752 * 1753 * Restrictions: 1754 * 1755 * (1) Must be called with an elevated refcount on the page. This is a 1756 * fundamental difference from isolate_lru_pages (which is called 1757 * without a stable reference). 1758 * (2) the lru_lock must not be held. 1759 * (3) interrupts must be enabled. 1760 */ 1761 int isolate_lru_page(struct page *page) 1762 { 1763 int ret = -EBUSY; 1764 1765 VM_BUG_ON_PAGE(!page_count(page), page); 1766 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1767 1768 if (TestClearPageLRU(page)) { 1769 struct lruvec *lruvec; 1770 1771 get_page(page); 1772 lruvec = lock_page_lruvec_irq(page); 1773 del_page_from_lru_list(page, lruvec, page_lru(page)); 1774 unlock_page_lruvec_irq(lruvec); 1775 ret = 0; 1776 } 1777 1778 return ret; 1779 } 1780 1781 /* 1782 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1783 * then get rescheduled. When there are massive number of tasks doing page 1784 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1785 * the LRU list will go small and be scanned faster than necessary, leading to 1786 * unnecessary swapping, thrashing and OOM. 1787 */ 1788 static int too_many_isolated(struct pglist_data *pgdat, int file, 1789 struct scan_control *sc) 1790 { 1791 unsigned long inactive, isolated; 1792 1793 if (current_is_kswapd()) 1794 return 0; 1795 1796 if (!writeback_throttling_sane(sc)) 1797 return 0; 1798 1799 if (file) { 1800 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1801 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1802 } else { 1803 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1804 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1805 } 1806 1807 /* 1808 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1809 * won't get blocked by normal direct-reclaimers, forming a circular 1810 * deadlock. 1811 */ 1812 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1813 inactive >>= 3; 1814 1815 return isolated > inactive; 1816 } 1817 1818 /* 1819 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 1820 * On return, @list is reused as a list of pages to be freed by the caller. 1821 * 1822 * Returns the number of pages moved to the given lruvec. 1823 */ 1824 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1825 struct list_head *list) 1826 { 1827 int nr_pages, nr_moved = 0; 1828 LIST_HEAD(pages_to_free); 1829 struct page *page; 1830 enum lru_list lru; 1831 1832 while (!list_empty(list)) { 1833 page = lru_to_page(list); 1834 VM_BUG_ON_PAGE(PageLRU(page), page); 1835 list_del(&page->lru); 1836 if (unlikely(!page_evictable(page))) { 1837 spin_unlock_irq(&lruvec->lru_lock); 1838 putback_lru_page(page); 1839 spin_lock_irq(&lruvec->lru_lock); 1840 continue; 1841 } 1842 1843 /* 1844 * The SetPageLRU needs to be kept here for list integrity. 1845 * Otherwise: 1846 * #0 move_pages_to_lru #1 release_pages 1847 * if !put_page_testzero 1848 * if (put_page_testzero()) 1849 * !PageLRU //skip lru_lock 1850 * SetPageLRU() 1851 * list_add(&page->lru,) 1852 * list_add(&page->lru,) 1853 */ 1854 SetPageLRU(page); 1855 1856 if (unlikely(put_page_testzero(page))) { 1857 __ClearPageLRU(page); 1858 __ClearPageActive(page); 1859 1860 if (unlikely(PageCompound(page))) { 1861 spin_unlock_irq(&lruvec->lru_lock); 1862 destroy_compound_page(page); 1863 spin_lock_irq(&lruvec->lru_lock); 1864 } else 1865 list_add(&page->lru, &pages_to_free); 1866 1867 continue; 1868 } 1869 1870 /* 1871 * All pages were isolated from the same lruvec (and isolation 1872 * inhibits memcg migration). 1873 */ 1874 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page); 1875 lru = page_lru(page); 1876 nr_pages = thp_nr_pages(page); 1877 1878 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1879 list_add(&page->lru, &lruvec->lists[lru]); 1880 nr_moved += nr_pages; 1881 if (PageActive(page)) 1882 workingset_age_nonresident(lruvec, nr_pages); 1883 } 1884 1885 /* 1886 * To save our caller's stack, now use input list for pages to free. 1887 */ 1888 list_splice(&pages_to_free, list); 1889 1890 return nr_moved; 1891 } 1892 1893 /* 1894 * If a kernel thread (such as nfsd for loop-back mounts) services 1895 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1896 * In that case we should only throttle if the backing device it is 1897 * writing to is congested. In other cases it is safe to throttle. 1898 */ 1899 static int current_may_throttle(void) 1900 { 1901 return !(current->flags & PF_LOCAL_THROTTLE) || 1902 current->backing_dev_info == NULL || 1903 bdi_write_congested(current->backing_dev_info); 1904 } 1905 1906 /* 1907 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1908 * of reclaimed pages 1909 */ 1910 static noinline_for_stack unsigned long 1911 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1912 struct scan_control *sc, enum lru_list lru) 1913 { 1914 LIST_HEAD(page_list); 1915 unsigned long nr_scanned; 1916 unsigned int nr_reclaimed = 0; 1917 unsigned long nr_taken; 1918 struct reclaim_stat stat; 1919 bool file = is_file_lru(lru); 1920 enum vm_event_item item; 1921 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1922 bool stalled = false; 1923 1924 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1925 if (stalled) 1926 return 0; 1927 1928 /* wait a bit for the reclaimer. */ 1929 msleep(100); 1930 stalled = true; 1931 1932 /* We are about to die and free our memory. Return now. */ 1933 if (fatal_signal_pending(current)) 1934 return SWAP_CLUSTER_MAX; 1935 } 1936 1937 lru_add_drain(); 1938 1939 spin_lock_irq(&lruvec->lru_lock); 1940 1941 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1942 &nr_scanned, sc, lru); 1943 1944 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1945 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1946 if (!cgroup_reclaim(sc)) 1947 __count_vm_events(item, nr_scanned); 1948 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1949 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1950 1951 spin_unlock_irq(&lruvec->lru_lock); 1952 1953 if (nr_taken == 0) 1954 return 0; 1955 1956 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 1957 1958 spin_lock_irq(&lruvec->lru_lock); 1959 move_pages_to_lru(lruvec, &page_list); 1960 1961 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1962 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1963 if (!cgroup_reclaim(sc)) 1964 __count_vm_events(item, nr_reclaimed); 1965 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1966 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1967 spin_unlock_irq(&lruvec->lru_lock); 1968 1969 lru_note_cost(lruvec, file, stat.nr_pageout); 1970 mem_cgroup_uncharge_list(&page_list); 1971 free_unref_page_list(&page_list); 1972 1973 /* 1974 * If dirty pages are scanned that are not queued for IO, it 1975 * implies that flushers are not doing their job. This can 1976 * happen when memory pressure pushes dirty pages to the end of 1977 * the LRU before the dirty limits are breached and the dirty 1978 * data has expired. It can also happen when the proportion of 1979 * dirty pages grows not through writes but through memory 1980 * pressure reclaiming all the clean cache. And in some cases, 1981 * the flushers simply cannot keep up with the allocation 1982 * rate. Nudge the flusher threads in case they are asleep. 1983 */ 1984 if (stat.nr_unqueued_dirty == nr_taken) 1985 wakeup_flusher_threads(WB_REASON_VMSCAN); 1986 1987 sc->nr.dirty += stat.nr_dirty; 1988 sc->nr.congested += stat.nr_congested; 1989 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1990 sc->nr.writeback += stat.nr_writeback; 1991 sc->nr.immediate += stat.nr_immediate; 1992 sc->nr.taken += nr_taken; 1993 if (file) 1994 sc->nr.file_taken += nr_taken; 1995 1996 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1997 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1998 return nr_reclaimed; 1999 } 2000 2001 /* 2002 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2003 * 2004 * We move them the other way if the page is referenced by one or more 2005 * processes. 2006 * 2007 * If the pages are mostly unmapped, the processing is fast and it is 2008 * appropriate to hold lru_lock across the whole operation. But if 2009 * the pages are mapped, the processing is slow (page_referenced()), so 2010 * we should drop lru_lock around each page. It's impossible to balance 2011 * this, so instead we remove the pages from the LRU while processing them. 2012 * It is safe to rely on PG_active against the non-LRU pages in here because 2013 * nobody will play with that bit on a non-LRU page. 2014 * 2015 * The downside is that we have to touch page->_refcount against each page. 2016 * But we had to alter page->flags anyway. 2017 */ 2018 static void shrink_active_list(unsigned long nr_to_scan, 2019 struct lruvec *lruvec, 2020 struct scan_control *sc, 2021 enum lru_list lru) 2022 { 2023 unsigned long nr_taken; 2024 unsigned long nr_scanned; 2025 unsigned long vm_flags; 2026 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2027 LIST_HEAD(l_active); 2028 LIST_HEAD(l_inactive); 2029 struct page *page; 2030 unsigned nr_deactivate, nr_activate; 2031 unsigned nr_rotated = 0; 2032 int file = is_file_lru(lru); 2033 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2034 2035 lru_add_drain(); 2036 2037 spin_lock_irq(&lruvec->lru_lock); 2038 2039 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2040 &nr_scanned, sc, lru); 2041 2042 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2043 2044 if (!cgroup_reclaim(sc)) 2045 __count_vm_events(PGREFILL, nr_scanned); 2046 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2047 2048 spin_unlock_irq(&lruvec->lru_lock); 2049 2050 while (!list_empty(&l_hold)) { 2051 cond_resched(); 2052 page = lru_to_page(&l_hold); 2053 list_del(&page->lru); 2054 2055 if (unlikely(!page_evictable(page))) { 2056 putback_lru_page(page); 2057 continue; 2058 } 2059 2060 if (unlikely(buffer_heads_over_limit)) { 2061 if (page_has_private(page) && trylock_page(page)) { 2062 if (page_has_private(page)) 2063 try_to_release_page(page, 0); 2064 unlock_page(page); 2065 } 2066 } 2067 2068 if (page_referenced(page, 0, sc->target_mem_cgroup, 2069 &vm_flags)) { 2070 /* 2071 * Identify referenced, file-backed active pages and 2072 * give them one more trip around the active list. So 2073 * that executable code get better chances to stay in 2074 * memory under moderate memory pressure. Anon pages 2075 * are not likely to be evicted by use-once streaming 2076 * IO, plus JVM can create lots of anon VM_EXEC pages, 2077 * so we ignore them here. 2078 */ 2079 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2080 nr_rotated += thp_nr_pages(page); 2081 list_add(&page->lru, &l_active); 2082 continue; 2083 } 2084 } 2085 2086 ClearPageActive(page); /* we are de-activating */ 2087 SetPageWorkingset(page); 2088 list_add(&page->lru, &l_inactive); 2089 } 2090 2091 /* 2092 * Move pages back to the lru list. 2093 */ 2094 spin_lock_irq(&lruvec->lru_lock); 2095 2096 nr_activate = move_pages_to_lru(lruvec, &l_active); 2097 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2098 /* Keep all free pages in l_active list */ 2099 list_splice(&l_inactive, &l_active); 2100 2101 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2102 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2103 2104 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2105 spin_unlock_irq(&lruvec->lru_lock); 2106 2107 mem_cgroup_uncharge_list(&l_active); 2108 free_unref_page_list(&l_active); 2109 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2110 nr_deactivate, nr_rotated, sc->priority, file); 2111 } 2112 2113 unsigned long reclaim_pages(struct list_head *page_list) 2114 { 2115 int nid = NUMA_NO_NODE; 2116 unsigned int nr_reclaimed = 0; 2117 LIST_HEAD(node_page_list); 2118 struct reclaim_stat dummy_stat; 2119 struct page *page; 2120 struct scan_control sc = { 2121 .gfp_mask = GFP_KERNEL, 2122 .priority = DEF_PRIORITY, 2123 .may_writepage = 1, 2124 .may_unmap = 1, 2125 .may_swap = 1, 2126 }; 2127 2128 while (!list_empty(page_list)) { 2129 page = lru_to_page(page_list); 2130 if (nid == NUMA_NO_NODE) { 2131 nid = page_to_nid(page); 2132 INIT_LIST_HEAD(&node_page_list); 2133 } 2134 2135 if (nid == page_to_nid(page)) { 2136 ClearPageActive(page); 2137 list_move(&page->lru, &node_page_list); 2138 continue; 2139 } 2140 2141 nr_reclaimed += shrink_page_list(&node_page_list, 2142 NODE_DATA(nid), 2143 &sc, &dummy_stat, false); 2144 while (!list_empty(&node_page_list)) { 2145 page = lru_to_page(&node_page_list); 2146 list_del(&page->lru); 2147 putback_lru_page(page); 2148 } 2149 2150 nid = NUMA_NO_NODE; 2151 } 2152 2153 if (!list_empty(&node_page_list)) { 2154 nr_reclaimed += shrink_page_list(&node_page_list, 2155 NODE_DATA(nid), 2156 &sc, &dummy_stat, false); 2157 while (!list_empty(&node_page_list)) { 2158 page = lru_to_page(&node_page_list); 2159 list_del(&page->lru); 2160 putback_lru_page(page); 2161 } 2162 } 2163 2164 return nr_reclaimed; 2165 } 2166 2167 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2168 struct lruvec *lruvec, struct scan_control *sc) 2169 { 2170 if (is_active_lru(lru)) { 2171 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2172 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2173 else 2174 sc->skipped_deactivate = 1; 2175 return 0; 2176 } 2177 2178 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2179 } 2180 2181 /* 2182 * The inactive anon list should be small enough that the VM never has 2183 * to do too much work. 2184 * 2185 * The inactive file list should be small enough to leave most memory 2186 * to the established workingset on the scan-resistant active list, 2187 * but large enough to avoid thrashing the aggregate readahead window. 2188 * 2189 * Both inactive lists should also be large enough that each inactive 2190 * page has a chance to be referenced again before it is reclaimed. 2191 * 2192 * If that fails and refaulting is observed, the inactive list grows. 2193 * 2194 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2195 * on this LRU, maintained by the pageout code. An inactive_ratio 2196 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2197 * 2198 * total target max 2199 * memory ratio inactive 2200 * ------------------------------------- 2201 * 10MB 1 5MB 2202 * 100MB 1 50MB 2203 * 1GB 3 250MB 2204 * 10GB 10 0.9GB 2205 * 100GB 31 3GB 2206 * 1TB 101 10GB 2207 * 10TB 320 32GB 2208 */ 2209 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2210 { 2211 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2212 unsigned long inactive, active; 2213 unsigned long inactive_ratio; 2214 unsigned long gb; 2215 2216 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2217 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2218 2219 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2220 if (gb) 2221 inactive_ratio = int_sqrt(10 * gb); 2222 else 2223 inactive_ratio = 1; 2224 2225 return inactive * inactive_ratio < active; 2226 } 2227 2228 enum scan_balance { 2229 SCAN_EQUAL, 2230 SCAN_FRACT, 2231 SCAN_ANON, 2232 SCAN_FILE, 2233 }; 2234 2235 /* 2236 * Determine how aggressively the anon and file LRU lists should be 2237 * scanned. The relative value of each set of LRU lists is determined 2238 * by looking at the fraction of the pages scanned we did rotate back 2239 * onto the active list instead of evict. 2240 * 2241 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2242 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2243 */ 2244 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2245 unsigned long *nr) 2246 { 2247 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2248 unsigned long anon_cost, file_cost, total_cost; 2249 int swappiness = mem_cgroup_swappiness(memcg); 2250 u64 fraction[ANON_AND_FILE]; 2251 u64 denominator = 0; /* gcc */ 2252 enum scan_balance scan_balance; 2253 unsigned long ap, fp; 2254 enum lru_list lru; 2255 2256 /* If we have no swap space, do not bother scanning anon pages. */ 2257 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2258 scan_balance = SCAN_FILE; 2259 goto out; 2260 } 2261 2262 /* 2263 * Global reclaim will swap to prevent OOM even with no 2264 * swappiness, but memcg users want to use this knob to 2265 * disable swapping for individual groups completely when 2266 * using the memory controller's swap limit feature would be 2267 * too expensive. 2268 */ 2269 if (cgroup_reclaim(sc) && !swappiness) { 2270 scan_balance = SCAN_FILE; 2271 goto out; 2272 } 2273 2274 /* 2275 * Do not apply any pressure balancing cleverness when the 2276 * system is close to OOM, scan both anon and file equally 2277 * (unless the swappiness setting disagrees with swapping). 2278 */ 2279 if (!sc->priority && swappiness) { 2280 scan_balance = SCAN_EQUAL; 2281 goto out; 2282 } 2283 2284 /* 2285 * If the system is almost out of file pages, force-scan anon. 2286 */ 2287 if (sc->file_is_tiny) { 2288 scan_balance = SCAN_ANON; 2289 goto out; 2290 } 2291 2292 /* 2293 * If there is enough inactive page cache, we do not reclaim 2294 * anything from the anonymous working right now. 2295 */ 2296 if (sc->cache_trim_mode) { 2297 scan_balance = SCAN_FILE; 2298 goto out; 2299 } 2300 2301 scan_balance = SCAN_FRACT; 2302 /* 2303 * Calculate the pressure balance between anon and file pages. 2304 * 2305 * The amount of pressure we put on each LRU is inversely 2306 * proportional to the cost of reclaiming each list, as 2307 * determined by the share of pages that are refaulting, times 2308 * the relative IO cost of bringing back a swapped out 2309 * anonymous page vs reloading a filesystem page (swappiness). 2310 * 2311 * Although we limit that influence to ensure no list gets 2312 * left behind completely: at least a third of the pressure is 2313 * applied, before swappiness. 2314 * 2315 * With swappiness at 100, anon and file have equal IO cost. 2316 */ 2317 total_cost = sc->anon_cost + sc->file_cost; 2318 anon_cost = total_cost + sc->anon_cost; 2319 file_cost = total_cost + sc->file_cost; 2320 total_cost = anon_cost + file_cost; 2321 2322 ap = swappiness * (total_cost + 1); 2323 ap /= anon_cost + 1; 2324 2325 fp = (200 - swappiness) * (total_cost + 1); 2326 fp /= file_cost + 1; 2327 2328 fraction[0] = ap; 2329 fraction[1] = fp; 2330 denominator = ap + fp; 2331 out: 2332 for_each_evictable_lru(lru) { 2333 int file = is_file_lru(lru); 2334 unsigned long lruvec_size; 2335 unsigned long scan; 2336 unsigned long protection; 2337 2338 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2339 protection = mem_cgroup_protection(sc->target_mem_cgroup, 2340 memcg, 2341 sc->memcg_low_reclaim); 2342 2343 if (protection) { 2344 /* 2345 * Scale a cgroup's reclaim pressure by proportioning 2346 * its current usage to its memory.low or memory.min 2347 * setting. 2348 * 2349 * This is important, as otherwise scanning aggression 2350 * becomes extremely binary -- from nothing as we 2351 * approach the memory protection threshold, to totally 2352 * nominal as we exceed it. This results in requiring 2353 * setting extremely liberal protection thresholds. It 2354 * also means we simply get no protection at all if we 2355 * set it too low, which is not ideal. 2356 * 2357 * If there is any protection in place, we reduce scan 2358 * pressure by how much of the total memory used is 2359 * within protection thresholds. 2360 * 2361 * There is one special case: in the first reclaim pass, 2362 * we skip over all groups that are within their low 2363 * protection. If that fails to reclaim enough pages to 2364 * satisfy the reclaim goal, we come back and override 2365 * the best-effort low protection. However, we still 2366 * ideally want to honor how well-behaved groups are in 2367 * that case instead of simply punishing them all 2368 * equally. As such, we reclaim them based on how much 2369 * memory they are using, reducing the scan pressure 2370 * again by how much of the total memory used is under 2371 * hard protection. 2372 */ 2373 unsigned long cgroup_size = mem_cgroup_size(memcg); 2374 2375 /* Avoid TOCTOU with earlier protection check */ 2376 cgroup_size = max(cgroup_size, protection); 2377 2378 scan = lruvec_size - lruvec_size * protection / 2379 cgroup_size; 2380 2381 /* 2382 * Minimally target SWAP_CLUSTER_MAX pages to keep 2383 * reclaim moving forwards, avoiding decrementing 2384 * sc->priority further than desirable. 2385 */ 2386 scan = max(scan, SWAP_CLUSTER_MAX); 2387 } else { 2388 scan = lruvec_size; 2389 } 2390 2391 scan >>= sc->priority; 2392 2393 /* 2394 * If the cgroup's already been deleted, make sure to 2395 * scrape out the remaining cache. 2396 */ 2397 if (!scan && !mem_cgroup_online(memcg)) 2398 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2399 2400 switch (scan_balance) { 2401 case SCAN_EQUAL: 2402 /* Scan lists relative to size */ 2403 break; 2404 case SCAN_FRACT: 2405 /* 2406 * Scan types proportional to swappiness and 2407 * their relative recent reclaim efficiency. 2408 * Make sure we don't miss the last page on 2409 * the offlined memory cgroups because of a 2410 * round-off error. 2411 */ 2412 scan = mem_cgroup_online(memcg) ? 2413 div64_u64(scan * fraction[file], denominator) : 2414 DIV64_U64_ROUND_UP(scan * fraction[file], 2415 denominator); 2416 break; 2417 case SCAN_FILE: 2418 case SCAN_ANON: 2419 /* Scan one type exclusively */ 2420 if ((scan_balance == SCAN_FILE) != file) 2421 scan = 0; 2422 break; 2423 default: 2424 /* Look ma, no brain */ 2425 BUG(); 2426 } 2427 2428 nr[lru] = scan; 2429 } 2430 } 2431 2432 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2433 { 2434 unsigned long nr[NR_LRU_LISTS]; 2435 unsigned long targets[NR_LRU_LISTS]; 2436 unsigned long nr_to_scan; 2437 enum lru_list lru; 2438 unsigned long nr_reclaimed = 0; 2439 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2440 struct blk_plug plug; 2441 bool scan_adjusted; 2442 2443 get_scan_count(lruvec, sc, nr); 2444 2445 /* Record the original scan target for proportional adjustments later */ 2446 memcpy(targets, nr, sizeof(nr)); 2447 2448 /* 2449 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2450 * event that can occur when there is little memory pressure e.g. 2451 * multiple streaming readers/writers. Hence, we do not abort scanning 2452 * when the requested number of pages are reclaimed when scanning at 2453 * DEF_PRIORITY on the assumption that the fact we are direct 2454 * reclaiming implies that kswapd is not keeping up and it is best to 2455 * do a batch of work at once. For memcg reclaim one check is made to 2456 * abort proportional reclaim if either the file or anon lru has already 2457 * dropped to zero at the first pass. 2458 */ 2459 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2460 sc->priority == DEF_PRIORITY); 2461 2462 blk_start_plug(&plug); 2463 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2464 nr[LRU_INACTIVE_FILE]) { 2465 unsigned long nr_anon, nr_file, percentage; 2466 unsigned long nr_scanned; 2467 2468 for_each_evictable_lru(lru) { 2469 if (nr[lru]) { 2470 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2471 nr[lru] -= nr_to_scan; 2472 2473 nr_reclaimed += shrink_list(lru, nr_to_scan, 2474 lruvec, sc); 2475 } 2476 } 2477 2478 cond_resched(); 2479 2480 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2481 continue; 2482 2483 /* 2484 * For kswapd and memcg, reclaim at least the number of pages 2485 * requested. Ensure that the anon and file LRUs are scanned 2486 * proportionally what was requested by get_scan_count(). We 2487 * stop reclaiming one LRU and reduce the amount scanning 2488 * proportional to the original scan target. 2489 */ 2490 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2491 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2492 2493 /* 2494 * It's just vindictive to attack the larger once the smaller 2495 * has gone to zero. And given the way we stop scanning the 2496 * smaller below, this makes sure that we only make one nudge 2497 * towards proportionality once we've got nr_to_reclaim. 2498 */ 2499 if (!nr_file || !nr_anon) 2500 break; 2501 2502 if (nr_file > nr_anon) { 2503 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2504 targets[LRU_ACTIVE_ANON] + 1; 2505 lru = LRU_BASE; 2506 percentage = nr_anon * 100 / scan_target; 2507 } else { 2508 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2509 targets[LRU_ACTIVE_FILE] + 1; 2510 lru = LRU_FILE; 2511 percentage = nr_file * 100 / scan_target; 2512 } 2513 2514 /* Stop scanning the smaller of the LRU */ 2515 nr[lru] = 0; 2516 nr[lru + LRU_ACTIVE] = 0; 2517 2518 /* 2519 * Recalculate the other LRU scan count based on its original 2520 * scan target and the percentage scanning already complete 2521 */ 2522 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2523 nr_scanned = targets[lru] - nr[lru]; 2524 nr[lru] = targets[lru] * (100 - percentage) / 100; 2525 nr[lru] -= min(nr[lru], nr_scanned); 2526 2527 lru += LRU_ACTIVE; 2528 nr_scanned = targets[lru] - nr[lru]; 2529 nr[lru] = targets[lru] * (100 - percentage) / 100; 2530 nr[lru] -= min(nr[lru], nr_scanned); 2531 2532 scan_adjusted = true; 2533 } 2534 blk_finish_plug(&plug); 2535 sc->nr_reclaimed += nr_reclaimed; 2536 2537 /* 2538 * Even if we did not try to evict anon pages at all, we want to 2539 * rebalance the anon lru active/inactive ratio. 2540 */ 2541 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2542 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2543 sc, LRU_ACTIVE_ANON); 2544 } 2545 2546 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2547 static bool in_reclaim_compaction(struct scan_control *sc) 2548 { 2549 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2550 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2551 sc->priority < DEF_PRIORITY - 2)) 2552 return true; 2553 2554 return false; 2555 } 2556 2557 /* 2558 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2559 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2560 * true if more pages should be reclaimed such that when the page allocator 2561 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2562 * It will give up earlier than that if there is difficulty reclaiming pages. 2563 */ 2564 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2565 unsigned long nr_reclaimed, 2566 struct scan_control *sc) 2567 { 2568 unsigned long pages_for_compaction; 2569 unsigned long inactive_lru_pages; 2570 int z; 2571 2572 /* If not in reclaim/compaction mode, stop */ 2573 if (!in_reclaim_compaction(sc)) 2574 return false; 2575 2576 /* 2577 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2578 * number of pages that were scanned. This will return to the caller 2579 * with the risk reclaim/compaction and the resulting allocation attempt 2580 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2581 * allocations through requiring that the full LRU list has been scanned 2582 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2583 * scan, but that approximation was wrong, and there were corner cases 2584 * where always a non-zero amount of pages were scanned. 2585 */ 2586 if (!nr_reclaimed) 2587 return false; 2588 2589 /* If compaction would go ahead or the allocation would succeed, stop */ 2590 for (z = 0; z <= sc->reclaim_idx; z++) { 2591 struct zone *zone = &pgdat->node_zones[z]; 2592 if (!managed_zone(zone)) 2593 continue; 2594 2595 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2596 case COMPACT_SUCCESS: 2597 case COMPACT_CONTINUE: 2598 return false; 2599 default: 2600 /* check next zone */ 2601 ; 2602 } 2603 } 2604 2605 /* 2606 * If we have not reclaimed enough pages for compaction and the 2607 * inactive lists are large enough, continue reclaiming 2608 */ 2609 pages_for_compaction = compact_gap(sc->order); 2610 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2611 if (get_nr_swap_pages() > 0) 2612 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2613 2614 return inactive_lru_pages > pages_for_compaction; 2615 } 2616 2617 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2618 { 2619 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2620 struct mem_cgroup *memcg; 2621 2622 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2623 do { 2624 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2625 unsigned long reclaimed; 2626 unsigned long scanned; 2627 2628 /* 2629 * This loop can become CPU-bound when target memcgs 2630 * aren't eligible for reclaim - either because they 2631 * don't have any reclaimable pages, or because their 2632 * memory is explicitly protected. Avoid soft lockups. 2633 */ 2634 cond_resched(); 2635 2636 mem_cgroup_calculate_protection(target_memcg, memcg); 2637 2638 if (mem_cgroup_below_min(memcg)) { 2639 /* 2640 * Hard protection. 2641 * If there is no reclaimable memory, OOM. 2642 */ 2643 continue; 2644 } else if (mem_cgroup_below_low(memcg)) { 2645 /* 2646 * Soft protection. 2647 * Respect the protection only as long as 2648 * there is an unprotected supply 2649 * of reclaimable memory from other cgroups. 2650 */ 2651 if (!sc->memcg_low_reclaim) { 2652 sc->memcg_low_skipped = 1; 2653 continue; 2654 } 2655 memcg_memory_event(memcg, MEMCG_LOW); 2656 } 2657 2658 reclaimed = sc->nr_reclaimed; 2659 scanned = sc->nr_scanned; 2660 2661 shrink_lruvec(lruvec, sc); 2662 2663 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2664 sc->priority); 2665 2666 /* Record the group's reclaim efficiency */ 2667 vmpressure(sc->gfp_mask, memcg, false, 2668 sc->nr_scanned - scanned, 2669 sc->nr_reclaimed - reclaimed); 2670 2671 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2672 } 2673 2674 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2675 { 2676 struct reclaim_state *reclaim_state = current->reclaim_state; 2677 unsigned long nr_reclaimed, nr_scanned; 2678 struct lruvec *target_lruvec; 2679 bool reclaimable = false; 2680 unsigned long file; 2681 2682 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2683 2684 again: 2685 memset(&sc->nr, 0, sizeof(sc->nr)); 2686 2687 nr_reclaimed = sc->nr_reclaimed; 2688 nr_scanned = sc->nr_scanned; 2689 2690 /* 2691 * Determine the scan balance between anon and file LRUs. 2692 */ 2693 spin_lock_irq(&target_lruvec->lru_lock); 2694 sc->anon_cost = target_lruvec->anon_cost; 2695 sc->file_cost = target_lruvec->file_cost; 2696 spin_unlock_irq(&target_lruvec->lru_lock); 2697 2698 /* 2699 * Target desirable inactive:active list ratios for the anon 2700 * and file LRU lists. 2701 */ 2702 if (!sc->force_deactivate) { 2703 unsigned long refaults; 2704 2705 refaults = lruvec_page_state(target_lruvec, 2706 WORKINGSET_ACTIVATE_ANON); 2707 if (refaults != target_lruvec->refaults[0] || 2708 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2709 sc->may_deactivate |= DEACTIVATE_ANON; 2710 else 2711 sc->may_deactivate &= ~DEACTIVATE_ANON; 2712 2713 /* 2714 * When refaults are being observed, it means a new 2715 * workingset is being established. Deactivate to get 2716 * rid of any stale active pages quickly. 2717 */ 2718 refaults = lruvec_page_state(target_lruvec, 2719 WORKINGSET_ACTIVATE_FILE); 2720 if (refaults != target_lruvec->refaults[1] || 2721 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2722 sc->may_deactivate |= DEACTIVATE_FILE; 2723 else 2724 sc->may_deactivate &= ~DEACTIVATE_FILE; 2725 } else 2726 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2727 2728 /* 2729 * If we have plenty of inactive file pages that aren't 2730 * thrashing, try to reclaim those first before touching 2731 * anonymous pages. 2732 */ 2733 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2734 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2735 sc->cache_trim_mode = 1; 2736 else 2737 sc->cache_trim_mode = 0; 2738 2739 /* 2740 * Prevent the reclaimer from falling into the cache trap: as 2741 * cache pages start out inactive, every cache fault will tip 2742 * the scan balance towards the file LRU. And as the file LRU 2743 * shrinks, so does the window for rotation from references. 2744 * This means we have a runaway feedback loop where a tiny 2745 * thrashing file LRU becomes infinitely more attractive than 2746 * anon pages. Try to detect this based on file LRU size. 2747 */ 2748 if (!cgroup_reclaim(sc)) { 2749 unsigned long total_high_wmark = 0; 2750 unsigned long free, anon; 2751 int z; 2752 2753 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2754 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2755 node_page_state(pgdat, NR_INACTIVE_FILE); 2756 2757 for (z = 0; z < MAX_NR_ZONES; z++) { 2758 struct zone *zone = &pgdat->node_zones[z]; 2759 if (!managed_zone(zone)) 2760 continue; 2761 2762 total_high_wmark += high_wmark_pages(zone); 2763 } 2764 2765 /* 2766 * Consider anon: if that's low too, this isn't a 2767 * runaway file reclaim problem, but rather just 2768 * extreme pressure. Reclaim as per usual then. 2769 */ 2770 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2771 2772 sc->file_is_tiny = 2773 file + free <= total_high_wmark && 2774 !(sc->may_deactivate & DEACTIVATE_ANON) && 2775 anon >> sc->priority; 2776 } 2777 2778 shrink_node_memcgs(pgdat, sc); 2779 2780 if (reclaim_state) { 2781 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2782 reclaim_state->reclaimed_slab = 0; 2783 } 2784 2785 /* Record the subtree's reclaim efficiency */ 2786 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2787 sc->nr_scanned - nr_scanned, 2788 sc->nr_reclaimed - nr_reclaimed); 2789 2790 if (sc->nr_reclaimed - nr_reclaimed) 2791 reclaimable = true; 2792 2793 if (current_is_kswapd()) { 2794 /* 2795 * If reclaim is isolating dirty pages under writeback, 2796 * it implies that the long-lived page allocation rate 2797 * is exceeding the page laundering rate. Either the 2798 * global limits are not being effective at throttling 2799 * processes due to the page distribution throughout 2800 * zones or there is heavy usage of a slow backing 2801 * device. The only option is to throttle from reclaim 2802 * context which is not ideal as there is no guarantee 2803 * the dirtying process is throttled in the same way 2804 * balance_dirty_pages() manages. 2805 * 2806 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2807 * count the number of pages under pages flagged for 2808 * immediate reclaim and stall if any are encountered 2809 * in the nr_immediate check below. 2810 */ 2811 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2812 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2813 2814 /* Allow kswapd to start writing pages during reclaim.*/ 2815 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2816 set_bit(PGDAT_DIRTY, &pgdat->flags); 2817 2818 /* 2819 * If kswapd scans pages marked for immediate 2820 * reclaim and under writeback (nr_immediate), it 2821 * implies that pages are cycling through the LRU 2822 * faster than they are written so also forcibly stall. 2823 */ 2824 if (sc->nr.immediate) 2825 congestion_wait(BLK_RW_ASYNC, HZ/10); 2826 } 2827 2828 /* 2829 * Tag a node/memcg as congested if all the dirty pages 2830 * scanned were backed by a congested BDI and 2831 * wait_iff_congested will stall. 2832 * 2833 * Legacy memcg will stall in page writeback so avoid forcibly 2834 * stalling in wait_iff_congested(). 2835 */ 2836 if ((current_is_kswapd() || 2837 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2838 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2839 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2840 2841 /* 2842 * Stall direct reclaim for IO completions if underlying BDIs 2843 * and node is congested. Allow kswapd to continue until it 2844 * starts encountering unqueued dirty pages or cycling through 2845 * the LRU too quickly. 2846 */ 2847 if (!current_is_kswapd() && current_may_throttle() && 2848 !sc->hibernation_mode && 2849 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2850 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2851 2852 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2853 sc)) 2854 goto again; 2855 2856 /* 2857 * Kswapd gives up on balancing particular nodes after too 2858 * many failures to reclaim anything from them and goes to 2859 * sleep. On reclaim progress, reset the failure counter. A 2860 * successful direct reclaim run will revive a dormant kswapd. 2861 */ 2862 if (reclaimable) 2863 pgdat->kswapd_failures = 0; 2864 } 2865 2866 /* 2867 * Returns true if compaction should go ahead for a costly-order request, or 2868 * the allocation would already succeed without compaction. Return false if we 2869 * should reclaim first. 2870 */ 2871 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2872 { 2873 unsigned long watermark; 2874 enum compact_result suitable; 2875 2876 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2877 if (suitable == COMPACT_SUCCESS) 2878 /* Allocation should succeed already. Don't reclaim. */ 2879 return true; 2880 if (suitable == COMPACT_SKIPPED) 2881 /* Compaction cannot yet proceed. Do reclaim. */ 2882 return false; 2883 2884 /* 2885 * Compaction is already possible, but it takes time to run and there 2886 * are potentially other callers using the pages just freed. So proceed 2887 * with reclaim to make a buffer of free pages available to give 2888 * compaction a reasonable chance of completing and allocating the page. 2889 * Note that we won't actually reclaim the whole buffer in one attempt 2890 * as the target watermark in should_continue_reclaim() is lower. But if 2891 * we are already above the high+gap watermark, don't reclaim at all. 2892 */ 2893 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2894 2895 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2896 } 2897 2898 /* 2899 * This is the direct reclaim path, for page-allocating processes. We only 2900 * try to reclaim pages from zones which will satisfy the caller's allocation 2901 * request. 2902 * 2903 * If a zone is deemed to be full of pinned pages then just give it a light 2904 * scan then give up on it. 2905 */ 2906 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2907 { 2908 struct zoneref *z; 2909 struct zone *zone; 2910 unsigned long nr_soft_reclaimed; 2911 unsigned long nr_soft_scanned; 2912 gfp_t orig_mask; 2913 pg_data_t *last_pgdat = NULL; 2914 2915 /* 2916 * If the number of buffer_heads in the machine exceeds the maximum 2917 * allowed level, force direct reclaim to scan the highmem zone as 2918 * highmem pages could be pinning lowmem pages storing buffer_heads 2919 */ 2920 orig_mask = sc->gfp_mask; 2921 if (buffer_heads_over_limit) { 2922 sc->gfp_mask |= __GFP_HIGHMEM; 2923 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2924 } 2925 2926 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2927 sc->reclaim_idx, sc->nodemask) { 2928 /* 2929 * Take care memory controller reclaiming has small influence 2930 * to global LRU. 2931 */ 2932 if (!cgroup_reclaim(sc)) { 2933 if (!cpuset_zone_allowed(zone, 2934 GFP_KERNEL | __GFP_HARDWALL)) 2935 continue; 2936 2937 /* 2938 * If we already have plenty of memory free for 2939 * compaction in this zone, don't free any more. 2940 * Even though compaction is invoked for any 2941 * non-zero order, only frequent costly order 2942 * reclamation is disruptive enough to become a 2943 * noticeable problem, like transparent huge 2944 * page allocations. 2945 */ 2946 if (IS_ENABLED(CONFIG_COMPACTION) && 2947 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2948 compaction_ready(zone, sc)) { 2949 sc->compaction_ready = true; 2950 continue; 2951 } 2952 2953 /* 2954 * Shrink each node in the zonelist once. If the 2955 * zonelist is ordered by zone (not the default) then a 2956 * node may be shrunk multiple times but in that case 2957 * the user prefers lower zones being preserved. 2958 */ 2959 if (zone->zone_pgdat == last_pgdat) 2960 continue; 2961 2962 /* 2963 * This steals pages from memory cgroups over softlimit 2964 * and returns the number of reclaimed pages and 2965 * scanned pages. This works for global memory pressure 2966 * and balancing, not for a memcg's limit. 2967 */ 2968 nr_soft_scanned = 0; 2969 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2970 sc->order, sc->gfp_mask, 2971 &nr_soft_scanned); 2972 sc->nr_reclaimed += nr_soft_reclaimed; 2973 sc->nr_scanned += nr_soft_scanned; 2974 /* need some check for avoid more shrink_zone() */ 2975 } 2976 2977 /* See comment about same check for global reclaim above */ 2978 if (zone->zone_pgdat == last_pgdat) 2979 continue; 2980 last_pgdat = zone->zone_pgdat; 2981 shrink_node(zone->zone_pgdat, sc); 2982 } 2983 2984 /* 2985 * Restore to original mask to avoid the impact on the caller if we 2986 * promoted it to __GFP_HIGHMEM. 2987 */ 2988 sc->gfp_mask = orig_mask; 2989 } 2990 2991 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2992 { 2993 struct lruvec *target_lruvec; 2994 unsigned long refaults; 2995 2996 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2997 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 2998 target_lruvec->refaults[0] = refaults; 2999 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3000 target_lruvec->refaults[1] = refaults; 3001 } 3002 3003 /* 3004 * This is the main entry point to direct page reclaim. 3005 * 3006 * If a full scan of the inactive list fails to free enough memory then we 3007 * are "out of memory" and something needs to be killed. 3008 * 3009 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3010 * high - the zone may be full of dirty or under-writeback pages, which this 3011 * caller can't do much about. We kick the writeback threads and take explicit 3012 * naps in the hope that some of these pages can be written. But if the 3013 * allocating task holds filesystem locks which prevent writeout this might not 3014 * work, and the allocation attempt will fail. 3015 * 3016 * returns: 0, if no pages reclaimed 3017 * else, the number of pages reclaimed 3018 */ 3019 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3020 struct scan_control *sc) 3021 { 3022 int initial_priority = sc->priority; 3023 pg_data_t *last_pgdat; 3024 struct zoneref *z; 3025 struct zone *zone; 3026 retry: 3027 delayacct_freepages_start(); 3028 3029 if (!cgroup_reclaim(sc)) 3030 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3031 3032 do { 3033 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3034 sc->priority); 3035 sc->nr_scanned = 0; 3036 shrink_zones(zonelist, sc); 3037 3038 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3039 break; 3040 3041 if (sc->compaction_ready) 3042 break; 3043 3044 /* 3045 * If we're getting trouble reclaiming, start doing 3046 * writepage even in laptop mode. 3047 */ 3048 if (sc->priority < DEF_PRIORITY - 2) 3049 sc->may_writepage = 1; 3050 } while (--sc->priority >= 0); 3051 3052 last_pgdat = NULL; 3053 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3054 sc->nodemask) { 3055 if (zone->zone_pgdat == last_pgdat) 3056 continue; 3057 last_pgdat = zone->zone_pgdat; 3058 3059 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3060 3061 if (cgroup_reclaim(sc)) { 3062 struct lruvec *lruvec; 3063 3064 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3065 zone->zone_pgdat); 3066 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3067 } 3068 } 3069 3070 delayacct_freepages_end(); 3071 3072 if (sc->nr_reclaimed) 3073 return sc->nr_reclaimed; 3074 3075 /* Aborted reclaim to try compaction? don't OOM, then */ 3076 if (sc->compaction_ready) 3077 return 1; 3078 3079 /* 3080 * We make inactive:active ratio decisions based on the node's 3081 * composition of memory, but a restrictive reclaim_idx or a 3082 * memory.low cgroup setting can exempt large amounts of 3083 * memory from reclaim. Neither of which are very common, so 3084 * instead of doing costly eligibility calculations of the 3085 * entire cgroup subtree up front, we assume the estimates are 3086 * good, and retry with forcible deactivation if that fails. 3087 */ 3088 if (sc->skipped_deactivate) { 3089 sc->priority = initial_priority; 3090 sc->force_deactivate = 1; 3091 sc->skipped_deactivate = 0; 3092 goto retry; 3093 } 3094 3095 /* Untapped cgroup reserves? Don't OOM, retry. */ 3096 if (sc->memcg_low_skipped) { 3097 sc->priority = initial_priority; 3098 sc->force_deactivate = 0; 3099 sc->memcg_low_reclaim = 1; 3100 sc->memcg_low_skipped = 0; 3101 goto retry; 3102 } 3103 3104 return 0; 3105 } 3106 3107 static bool allow_direct_reclaim(pg_data_t *pgdat) 3108 { 3109 struct zone *zone; 3110 unsigned long pfmemalloc_reserve = 0; 3111 unsigned long free_pages = 0; 3112 int i; 3113 bool wmark_ok; 3114 3115 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3116 return true; 3117 3118 for (i = 0; i <= ZONE_NORMAL; i++) { 3119 zone = &pgdat->node_zones[i]; 3120 if (!managed_zone(zone)) 3121 continue; 3122 3123 if (!zone_reclaimable_pages(zone)) 3124 continue; 3125 3126 pfmemalloc_reserve += min_wmark_pages(zone); 3127 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3128 } 3129 3130 /* If there are no reserves (unexpected config) then do not throttle */ 3131 if (!pfmemalloc_reserve) 3132 return true; 3133 3134 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3135 3136 /* kswapd must be awake if processes are being throttled */ 3137 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3138 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3139 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3140 3141 wake_up_interruptible(&pgdat->kswapd_wait); 3142 } 3143 3144 return wmark_ok; 3145 } 3146 3147 /* 3148 * Throttle direct reclaimers if backing storage is backed by the network 3149 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3150 * depleted. kswapd will continue to make progress and wake the processes 3151 * when the low watermark is reached. 3152 * 3153 * Returns true if a fatal signal was delivered during throttling. If this 3154 * happens, the page allocator should not consider triggering the OOM killer. 3155 */ 3156 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3157 nodemask_t *nodemask) 3158 { 3159 struct zoneref *z; 3160 struct zone *zone; 3161 pg_data_t *pgdat = NULL; 3162 3163 /* 3164 * Kernel threads should not be throttled as they may be indirectly 3165 * responsible for cleaning pages necessary for reclaim to make forward 3166 * progress. kjournald for example may enter direct reclaim while 3167 * committing a transaction where throttling it could forcing other 3168 * processes to block on log_wait_commit(). 3169 */ 3170 if (current->flags & PF_KTHREAD) 3171 goto out; 3172 3173 /* 3174 * If a fatal signal is pending, this process should not throttle. 3175 * It should return quickly so it can exit and free its memory 3176 */ 3177 if (fatal_signal_pending(current)) 3178 goto out; 3179 3180 /* 3181 * Check if the pfmemalloc reserves are ok by finding the first node 3182 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3183 * GFP_KERNEL will be required for allocating network buffers when 3184 * swapping over the network so ZONE_HIGHMEM is unusable. 3185 * 3186 * Throttling is based on the first usable node and throttled processes 3187 * wait on a queue until kswapd makes progress and wakes them. There 3188 * is an affinity then between processes waking up and where reclaim 3189 * progress has been made assuming the process wakes on the same node. 3190 * More importantly, processes running on remote nodes will not compete 3191 * for remote pfmemalloc reserves and processes on different nodes 3192 * should make reasonable progress. 3193 */ 3194 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3195 gfp_zone(gfp_mask), nodemask) { 3196 if (zone_idx(zone) > ZONE_NORMAL) 3197 continue; 3198 3199 /* Throttle based on the first usable node */ 3200 pgdat = zone->zone_pgdat; 3201 if (allow_direct_reclaim(pgdat)) 3202 goto out; 3203 break; 3204 } 3205 3206 /* If no zone was usable by the allocation flags then do not throttle */ 3207 if (!pgdat) 3208 goto out; 3209 3210 /* Account for the throttling */ 3211 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3212 3213 /* 3214 * If the caller cannot enter the filesystem, it's possible that it 3215 * is due to the caller holding an FS lock or performing a journal 3216 * transaction in the case of a filesystem like ext[3|4]. In this case, 3217 * it is not safe to block on pfmemalloc_wait as kswapd could be 3218 * blocked waiting on the same lock. Instead, throttle for up to a 3219 * second before continuing. 3220 */ 3221 if (!(gfp_mask & __GFP_FS)) { 3222 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3223 allow_direct_reclaim(pgdat), HZ); 3224 3225 goto check_pending; 3226 } 3227 3228 /* Throttle until kswapd wakes the process */ 3229 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3230 allow_direct_reclaim(pgdat)); 3231 3232 check_pending: 3233 if (fatal_signal_pending(current)) 3234 return true; 3235 3236 out: 3237 return false; 3238 } 3239 3240 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3241 gfp_t gfp_mask, nodemask_t *nodemask) 3242 { 3243 unsigned long nr_reclaimed; 3244 struct scan_control sc = { 3245 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3246 .gfp_mask = current_gfp_context(gfp_mask), 3247 .reclaim_idx = gfp_zone(gfp_mask), 3248 .order = order, 3249 .nodemask = nodemask, 3250 .priority = DEF_PRIORITY, 3251 .may_writepage = !laptop_mode, 3252 .may_unmap = 1, 3253 .may_swap = 1, 3254 }; 3255 3256 /* 3257 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3258 * Confirm they are large enough for max values. 3259 */ 3260 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3261 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3262 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3263 3264 /* 3265 * Do not enter reclaim if fatal signal was delivered while throttled. 3266 * 1 is returned so that the page allocator does not OOM kill at this 3267 * point. 3268 */ 3269 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3270 return 1; 3271 3272 set_task_reclaim_state(current, &sc.reclaim_state); 3273 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3274 3275 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3276 3277 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3278 set_task_reclaim_state(current, NULL); 3279 3280 return nr_reclaimed; 3281 } 3282 3283 #ifdef CONFIG_MEMCG 3284 3285 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3286 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3287 gfp_t gfp_mask, bool noswap, 3288 pg_data_t *pgdat, 3289 unsigned long *nr_scanned) 3290 { 3291 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3292 struct scan_control sc = { 3293 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3294 .target_mem_cgroup = memcg, 3295 .may_writepage = !laptop_mode, 3296 .may_unmap = 1, 3297 .reclaim_idx = MAX_NR_ZONES - 1, 3298 .may_swap = !noswap, 3299 }; 3300 3301 WARN_ON_ONCE(!current->reclaim_state); 3302 3303 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3304 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3305 3306 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3307 sc.gfp_mask); 3308 3309 /* 3310 * NOTE: Although we can get the priority field, using it 3311 * here is not a good idea, since it limits the pages we can scan. 3312 * if we don't reclaim here, the shrink_node from balance_pgdat 3313 * will pick up pages from other mem cgroup's as well. We hack 3314 * the priority and make it zero. 3315 */ 3316 shrink_lruvec(lruvec, &sc); 3317 3318 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3319 3320 *nr_scanned = sc.nr_scanned; 3321 3322 return sc.nr_reclaimed; 3323 } 3324 3325 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3326 unsigned long nr_pages, 3327 gfp_t gfp_mask, 3328 bool may_swap) 3329 { 3330 unsigned long nr_reclaimed; 3331 unsigned int noreclaim_flag; 3332 struct scan_control sc = { 3333 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3334 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3335 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3336 .reclaim_idx = MAX_NR_ZONES - 1, 3337 .target_mem_cgroup = memcg, 3338 .priority = DEF_PRIORITY, 3339 .may_writepage = !laptop_mode, 3340 .may_unmap = 1, 3341 .may_swap = may_swap, 3342 }; 3343 /* 3344 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3345 * equal pressure on all the nodes. This is based on the assumption that 3346 * the reclaim does not bail out early. 3347 */ 3348 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3349 3350 set_task_reclaim_state(current, &sc.reclaim_state); 3351 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3352 noreclaim_flag = memalloc_noreclaim_save(); 3353 3354 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3355 3356 memalloc_noreclaim_restore(noreclaim_flag); 3357 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3358 set_task_reclaim_state(current, NULL); 3359 3360 return nr_reclaimed; 3361 } 3362 #endif 3363 3364 static void age_active_anon(struct pglist_data *pgdat, 3365 struct scan_control *sc) 3366 { 3367 struct mem_cgroup *memcg; 3368 struct lruvec *lruvec; 3369 3370 if (!total_swap_pages) 3371 return; 3372 3373 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3374 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3375 return; 3376 3377 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3378 do { 3379 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3380 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3381 sc, LRU_ACTIVE_ANON); 3382 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3383 } while (memcg); 3384 } 3385 3386 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3387 { 3388 int i; 3389 struct zone *zone; 3390 3391 /* 3392 * Check for watermark boosts top-down as the higher zones 3393 * are more likely to be boosted. Both watermarks and boosts 3394 * should not be checked at the same time as reclaim would 3395 * start prematurely when there is no boosting and a lower 3396 * zone is balanced. 3397 */ 3398 for (i = highest_zoneidx; i >= 0; i--) { 3399 zone = pgdat->node_zones + i; 3400 if (!managed_zone(zone)) 3401 continue; 3402 3403 if (zone->watermark_boost) 3404 return true; 3405 } 3406 3407 return false; 3408 } 3409 3410 /* 3411 * Returns true if there is an eligible zone balanced for the request order 3412 * and highest_zoneidx 3413 */ 3414 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3415 { 3416 int i; 3417 unsigned long mark = -1; 3418 struct zone *zone; 3419 3420 /* 3421 * Check watermarks bottom-up as lower zones are more likely to 3422 * meet watermarks. 3423 */ 3424 for (i = 0; i <= highest_zoneidx; i++) { 3425 zone = pgdat->node_zones + i; 3426 3427 if (!managed_zone(zone)) 3428 continue; 3429 3430 mark = high_wmark_pages(zone); 3431 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3432 return true; 3433 } 3434 3435 /* 3436 * If a node has no populated zone within highest_zoneidx, it does not 3437 * need balancing by definition. This can happen if a zone-restricted 3438 * allocation tries to wake a remote kswapd. 3439 */ 3440 if (mark == -1) 3441 return true; 3442 3443 return false; 3444 } 3445 3446 /* Clear pgdat state for congested, dirty or under writeback. */ 3447 static void clear_pgdat_congested(pg_data_t *pgdat) 3448 { 3449 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3450 3451 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3452 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3453 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3454 } 3455 3456 /* 3457 * Prepare kswapd for sleeping. This verifies that there are no processes 3458 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3459 * 3460 * Returns true if kswapd is ready to sleep 3461 */ 3462 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3463 int highest_zoneidx) 3464 { 3465 /* 3466 * The throttled processes are normally woken up in balance_pgdat() as 3467 * soon as allow_direct_reclaim() is true. But there is a potential 3468 * race between when kswapd checks the watermarks and a process gets 3469 * throttled. There is also a potential race if processes get 3470 * throttled, kswapd wakes, a large process exits thereby balancing the 3471 * zones, which causes kswapd to exit balance_pgdat() before reaching 3472 * the wake up checks. If kswapd is going to sleep, no process should 3473 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3474 * the wake up is premature, processes will wake kswapd and get 3475 * throttled again. The difference from wake ups in balance_pgdat() is 3476 * that here we are under prepare_to_wait(). 3477 */ 3478 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3479 wake_up_all(&pgdat->pfmemalloc_wait); 3480 3481 /* Hopeless node, leave it to direct reclaim */ 3482 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3483 return true; 3484 3485 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3486 clear_pgdat_congested(pgdat); 3487 return true; 3488 } 3489 3490 return false; 3491 } 3492 3493 /* 3494 * kswapd shrinks a node of pages that are at or below the highest usable 3495 * zone that is currently unbalanced. 3496 * 3497 * Returns true if kswapd scanned at least the requested number of pages to 3498 * reclaim or if the lack of progress was due to pages under writeback. 3499 * This is used to determine if the scanning priority needs to be raised. 3500 */ 3501 static bool kswapd_shrink_node(pg_data_t *pgdat, 3502 struct scan_control *sc) 3503 { 3504 struct zone *zone; 3505 int z; 3506 3507 /* Reclaim a number of pages proportional to the number of zones */ 3508 sc->nr_to_reclaim = 0; 3509 for (z = 0; z <= sc->reclaim_idx; z++) { 3510 zone = pgdat->node_zones + z; 3511 if (!managed_zone(zone)) 3512 continue; 3513 3514 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3515 } 3516 3517 /* 3518 * Historically care was taken to put equal pressure on all zones but 3519 * now pressure is applied based on node LRU order. 3520 */ 3521 shrink_node(pgdat, sc); 3522 3523 /* 3524 * Fragmentation may mean that the system cannot be rebalanced for 3525 * high-order allocations. If twice the allocation size has been 3526 * reclaimed then recheck watermarks only at order-0 to prevent 3527 * excessive reclaim. Assume that a process requested a high-order 3528 * can direct reclaim/compact. 3529 */ 3530 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3531 sc->order = 0; 3532 3533 return sc->nr_scanned >= sc->nr_to_reclaim; 3534 } 3535 3536 /* 3537 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3538 * that are eligible for use by the caller until at least one zone is 3539 * balanced. 3540 * 3541 * Returns the order kswapd finished reclaiming at. 3542 * 3543 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3544 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3545 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3546 * or lower is eligible for reclaim until at least one usable zone is 3547 * balanced. 3548 */ 3549 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3550 { 3551 int i; 3552 unsigned long nr_soft_reclaimed; 3553 unsigned long nr_soft_scanned; 3554 unsigned long pflags; 3555 unsigned long nr_boost_reclaim; 3556 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3557 bool boosted; 3558 struct zone *zone; 3559 struct scan_control sc = { 3560 .gfp_mask = GFP_KERNEL, 3561 .order = order, 3562 .may_unmap = 1, 3563 }; 3564 3565 set_task_reclaim_state(current, &sc.reclaim_state); 3566 psi_memstall_enter(&pflags); 3567 __fs_reclaim_acquire(); 3568 3569 count_vm_event(PAGEOUTRUN); 3570 3571 /* 3572 * Account for the reclaim boost. Note that the zone boost is left in 3573 * place so that parallel allocations that are near the watermark will 3574 * stall or direct reclaim until kswapd is finished. 3575 */ 3576 nr_boost_reclaim = 0; 3577 for (i = 0; i <= highest_zoneidx; i++) { 3578 zone = pgdat->node_zones + i; 3579 if (!managed_zone(zone)) 3580 continue; 3581 3582 nr_boost_reclaim += zone->watermark_boost; 3583 zone_boosts[i] = zone->watermark_boost; 3584 } 3585 boosted = nr_boost_reclaim; 3586 3587 restart: 3588 sc.priority = DEF_PRIORITY; 3589 do { 3590 unsigned long nr_reclaimed = sc.nr_reclaimed; 3591 bool raise_priority = true; 3592 bool balanced; 3593 bool ret; 3594 3595 sc.reclaim_idx = highest_zoneidx; 3596 3597 /* 3598 * If the number of buffer_heads exceeds the maximum allowed 3599 * then consider reclaiming from all zones. This has a dual 3600 * purpose -- on 64-bit systems it is expected that 3601 * buffer_heads are stripped during active rotation. On 32-bit 3602 * systems, highmem pages can pin lowmem memory and shrinking 3603 * buffers can relieve lowmem pressure. Reclaim may still not 3604 * go ahead if all eligible zones for the original allocation 3605 * request are balanced to avoid excessive reclaim from kswapd. 3606 */ 3607 if (buffer_heads_over_limit) { 3608 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3609 zone = pgdat->node_zones + i; 3610 if (!managed_zone(zone)) 3611 continue; 3612 3613 sc.reclaim_idx = i; 3614 break; 3615 } 3616 } 3617 3618 /* 3619 * If the pgdat is imbalanced then ignore boosting and preserve 3620 * the watermarks for a later time and restart. Note that the 3621 * zone watermarks will be still reset at the end of balancing 3622 * on the grounds that the normal reclaim should be enough to 3623 * re-evaluate if boosting is required when kswapd next wakes. 3624 */ 3625 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3626 if (!balanced && nr_boost_reclaim) { 3627 nr_boost_reclaim = 0; 3628 goto restart; 3629 } 3630 3631 /* 3632 * If boosting is not active then only reclaim if there are no 3633 * eligible zones. Note that sc.reclaim_idx is not used as 3634 * buffer_heads_over_limit may have adjusted it. 3635 */ 3636 if (!nr_boost_reclaim && balanced) 3637 goto out; 3638 3639 /* Limit the priority of boosting to avoid reclaim writeback */ 3640 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3641 raise_priority = false; 3642 3643 /* 3644 * Do not writeback or swap pages for boosted reclaim. The 3645 * intent is to relieve pressure not issue sub-optimal IO 3646 * from reclaim context. If no pages are reclaimed, the 3647 * reclaim will be aborted. 3648 */ 3649 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3650 sc.may_swap = !nr_boost_reclaim; 3651 3652 /* 3653 * Do some background aging of the anon list, to give 3654 * pages a chance to be referenced before reclaiming. All 3655 * pages are rotated regardless of classzone as this is 3656 * about consistent aging. 3657 */ 3658 age_active_anon(pgdat, &sc); 3659 3660 /* 3661 * If we're getting trouble reclaiming, start doing writepage 3662 * even in laptop mode. 3663 */ 3664 if (sc.priority < DEF_PRIORITY - 2) 3665 sc.may_writepage = 1; 3666 3667 /* Call soft limit reclaim before calling shrink_node. */ 3668 sc.nr_scanned = 0; 3669 nr_soft_scanned = 0; 3670 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3671 sc.gfp_mask, &nr_soft_scanned); 3672 sc.nr_reclaimed += nr_soft_reclaimed; 3673 3674 /* 3675 * There should be no need to raise the scanning priority if 3676 * enough pages are already being scanned that that high 3677 * watermark would be met at 100% efficiency. 3678 */ 3679 if (kswapd_shrink_node(pgdat, &sc)) 3680 raise_priority = false; 3681 3682 /* 3683 * If the low watermark is met there is no need for processes 3684 * to be throttled on pfmemalloc_wait as they should not be 3685 * able to safely make forward progress. Wake them 3686 */ 3687 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3688 allow_direct_reclaim(pgdat)) 3689 wake_up_all(&pgdat->pfmemalloc_wait); 3690 3691 /* Check if kswapd should be suspending */ 3692 __fs_reclaim_release(); 3693 ret = try_to_freeze(); 3694 __fs_reclaim_acquire(); 3695 if (ret || kthread_should_stop()) 3696 break; 3697 3698 /* 3699 * Raise priority if scanning rate is too low or there was no 3700 * progress in reclaiming pages 3701 */ 3702 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3703 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3704 3705 /* 3706 * If reclaim made no progress for a boost, stop reclaim as 3707 * IO cannot be queued and it could be an infinite loop in 3708 * extreme circumstances. 3709 */ 3710 if (nr_boost_reclaim && !nr_reclaimed) 3711 break; 3712 3713 if (raise_priority || !nr_reclaimed) 3714 sc.priority--; 3715 } while (sc.priority >= 1); 3716 3717 if (!sc.nr_reclaimed) 3718 pgdat->kswapd_failures++; 3719 3720 out: 3721 /* If reclaim was boosted, account for the reclaim done in this pass */ 3722 if (boosted) { 3723 unsigned long flags; 3724 3725 for (i = 0; i <= highest_zoneidx; i++) { 3726 if (!zone_boosts[i]) 3727 continue; 3728 3729 /* Increments are under the zone lock */ 3730 zone = pgdat->node_zones + i; 3731 spin_lock_irqsave(&zone->lock, flags); 3732 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3733 spin_unlock_irqrestore(&zone->lock, flags); 3734 } 3735 3736 /* 3737 * As there is now likely space, wakeup kcompact to defragment 3738 * pageblocks. 3739 */ 3740 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3741 } 3742 3743 snapshot_refaults(NULL, pgdat); 3744 __fs_reclaim_release(); 3745 psi_memstall_leave(&pflags); 3746 set_task_reclaim_state(current, NULL); 3747 3748 /* 3749 * Return the order kswapd stopped reclaiming at as 3750 * prepare_kswapd_sleep() takes it into account. If another caller 3751 * entered the allocator slow path while kswapd was awake, order will 3752 * remain at the higher level. 3753 */ 3754 return sc.order; 3755 } 3756 3757 /* 3758 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3759 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3760 * not a valid index then either kswapd runs for first time or kswapd couldn't 3761 * sleep after previous reclaim attempt (node is still unbalanced). In that 3762 * case return the zone index of the previous kswapd reclaim cycle. 3763 */ 3764 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3765 enum zone_type prev_highest_zoneidx) 3766 { 3767 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3768 3769 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3770 } 3771 3772 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3773 unsigned int highest_zoneidx) 3774 { 3775 long remaining = 0; 3776 DEFINE_WAIT(wait); 3777 3778 if (freezing(current) || kthread_should_stop()) 3779 return; 3780 3781 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3782 3783 /* 3784 * Try to sleep for a short interval. Note that kcompactd will only be 3785 * woken if it is possible to sleep for a short interval. This is 3786 * deliberate on the assumption that if reclaim cannot keep an 3787 * eligible zone balanced that it's also unlikely that compaction will 3788 * succeed. 3789 */ 3790 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3791 /* 3792 * Compaction records what page blocks it recently failed to 3793 * isolate pages from and skips them in the future scanning. 3794 * When kswapd is going to sleep, it is reasonable to assume 3795 * that pages and compaction may succeed so reset the cache. 3796 */ 3797 reset_isolation_suitable(pgdat); 3798 3799 /* 3800 * We have freed the memory, now we should compact it to make 3801 * allocation of the requested order possible. 3802 */ 3803 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3804 3805 remaining = schedule_timeout(HZ/10); 3806 3807 /* 3808 * If woken prematurely then reset kswapd_highest_zoneidx and 3809 * order. The values will either be from a wakeup request or 3810 * the previous request that slept prematurely. 3811 */ 3812 if (remaining) { 3813 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3814 kswapd_highest_zoneidx(pgdat, 3815 highest_zoneidx)); 3816 3817 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3818 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3819 } 3820 3821 finish_wait(&pgdat->kswapd_wait, &wait); 3822 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3823 } 3824 3825 /* 3826 * After a short sleep, check if it was a premature sleep. If not, then 3827 * go fully to sleep until explicitly woken up. 3828 */ 3829 if (!remaining && 3830 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3831 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3832 3833 /* 3834 * vmstat counters are not perfectly accurate and the estimated 3835 * value for counters such as NR_FREE_PAGES can deviate from the 3836 * true value by nr_online_cpus * threshold. To avoid the zone 3837 * watermarks being breached while under pressure, we reduce the 3838 * per-cpu vmstat threshold while kswapd is awake and restore 3839 * them before going back to sleep. 3840 */ 3841 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3842 3843 if (!kthread_should_stop()) 3844 schedule(); 3845 3846 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3847 } else { 3848 if (remaining) 3849 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3850 else 3851 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3852 } 3853 finish_wait(&pgdat->kswapd_wait, &wait); 3854 } 3855 3856 /* 3857 * The background pageout daemon, started as a kernel thread 3858 * from the init process. 3859 * 3860 * This basically trickles out pages so that we have _some_ 3861 * free memory available even if there is no other activity 3862 * that frees anything up. This is needed for things like routing 3863 * etc, where we otherwise might have all activity going on in 3864 * asynchronous contexts that cannot page things out. 3865 * 3866 * If there are applications that are active memory-allocators 3867 * (most normal use), this basically shouldn't matter. 3868 */ 3869 static int kswapd(void *p) 3870 { 3871 unsigned int alloc_order, reclaim_order; 3872 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3873 pg_data_t *pgdat = (pg_data_t*)p; 3874 struct task_struct *tsk = current; 3875 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3876 3877 if (!cpumask_empty(cpumask)) 3878 set_cpus_allowed_ptr(tsk, cpumask); 3879 3880 /* 3881 * Tell the memory management that we're a "memory allocator", 3882 * and that if we need more memory we should get access to it 3883 * regardless (see "__alloc_pages()"). "kswapd" should 3884 * never get caught in the normal page freeing logic. 3885 * 3886 * (Kswapd normally doesn't need memory anyway, but sometimes 3887 * you need a small amount of memory in order to be able to 3888 * page out something else, and this flag essentially protects 3889 * us from recursively trying to free more memory as we're 3890 * trying to free the first piece of memory in the first place). 3891 */ 3892 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3893 set_freezable(); 3894 3895 WRITE_ONCE(pgdat->kswapd_order, 0); 3896 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3897 for ( ; ; ) { 3898 bool ret; 3899 3900 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3901 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3902 highest_zoneidx); 3903 3904 kswapd_try_sleep: 3905 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3906 highest_zoneidx); 3907 3908 /* Read the new order and highest_zoneidx */ 3909 alloc_order = READ_ONCE(pgdat->kswapd_order); 3910 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3911 highest_zoneidx); 3912 WRITE_ONCE(pgdat->kswapd_order, 0); 3913 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3914 3915 ret = try_to_freeze(); 3916 if (kthread_should_stop()) 3917 break; 3918 3919 /* 3920 * We can speed up thawing tasks if we don't call balance_pgdat 3921 * after returning from the refrigerator 3922 */ 3923 if (ret) 3924 continue; 3925 3926 /* 3927 * Reclaim begins at the requested order but if a high-order 3928 * reclaim fails then kswapd falls back to reclaiming for 3929 * order-0. If that happens, kswapd will consider sleeping 3930 * for the order it finished reclaiming at (reclaim_order) 3931 * but kcompactd is woken to compact for the original 3932 * request (alloc_order). 3933 */ 3934 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3935 alloc_order); 3936 reclaim_order = balance_pgdat(pgdat, alloc_order, 3937 highest_zoneidx); 3938 if (reclaim_order < alloc_order) 3939 goto kswapd_try_sleep; 3940 } 3941 3942 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3943 3944 return 0; 3945 } 3946 3947 /* 3948 * A zone is low on free memory or too fragmented for high-order memory. If 3949 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3950 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3951 * has failed or is not needed, still wake up kcompactd if only compaction is 3952 * needed. 3953 */ 3954 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3955 enum zone_type highest_zoneidx) 3956 { 3957 pg_data_t *pgdat; 3958 enum zone_type curr_idx; 3959 3960 if (!managed_zone(zone)) 3961 return; 3962 3963 if (!cpuset_zone_allowed(zone, gfp_flags)) 3964 return; 3965 3966 pgdat = zone->zone_pgdat; 3967 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3968 3969 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3970 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3971 3972 if (READ_ONCE(pgdat->kswapd_order) < order) 3973 WRITE_ONCE(pgdat->kswapd_order, order); 3974 3975 if (!waitqueue_active(&pgdat->kswapd_wait)) 3976 return; 3977 3978 /* Hopeless node, leave it to direct reclaim if possible */ 3979 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3980 (pgdat_balanced(pgdat, order, highest_zoneidx) && 3981 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 3982 /* 3983 * There may be plenty of free memory available, but it's too 3984 * fragmented for high-order allocations. Wake up kcompactd 3985 * and rely on compaction_suitable() to determine if it's 3986 * needed. If it fails, it will defer subsequent attempts to 3987 * ratelimit its work. 3988 */ 3989 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3990 wakeup_kcompactd(pgdat, order, highest_zoneidx); 3991 return; 3992 } 3993 3994 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 3995 gfp_flags); 3996 wake_up_interruptible(&pgdat->kswapd_wait); 3997 } 3998 3999 #ifdef CONFIG_HIBERNATION 4000 /* 4001 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4002 * freed pages. 4003 * 4004 * Rather than trying to age LRUs the aim is to preserve the overall 4005 * LRU order by reclaiming preferentially 4006 * inactive > active > active referenced > active mapped 4007 */ 4008 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4009 { 4010 struct scan_control sc = { 4011 .nr_to_reclaim = nr_to_reclaim, 4012 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4013 .reclaim_idx = MAX_NR_ZONES - 1, 4014 .priority = DEF_PRIORITY, 4015 .may_writepage = 1, 4016 .may_unmap = 1, 4017 .may_swap = 1, 4018 .hibernation_mode = 1, 4019 }; 4020 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4021 unsigned long nr_reclaimed; 4022 unsigned int noreclaim_flag; 4023 4024 fs_reclaim_acquire(sc.gfp_mask); 4025 noreclaim_flag = memalloc_noreclaim_save(); 4026 set_task_reclaim_state(current, &sc.reclaim_state); 4027 4028 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4029 4030 set_task_reclaim_state(current, NULL); 4031 memalloc_noreclaim_restore(noreclaim_flag); 4032 fs_reclaim_release(sc.gfp_mask); 4033 4034 return nr_reclaimed; 4035 } 4036 #endif /* CONFIG_HIBERNATION */ 4037 4038 /* 4039 * This kswapd start function will be called by init and node-hot-add. 4040 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4041 */ 4042 int kswapd_run(int nid) 4043 { 4044 pg_data_t *pgdat = NODE_DATA(nid); 4045 int ret = 0; 4046 4047 if (pgdat->kswapd) 4048 return 0; 4049 4050 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4051 if (IS_ERR(pgdat->kswapd)) { 4052 /* failure at boot is fatal */ 4053 BUG_ON(system_state < SYSTEM_RUNNING); 4054 pr_err("Failed to start kswapd on node %d\n", nid); 4055 ret = PTR_ERR(pgdat->kswapd); 4056 pgdat->kswapd = NULL; 4057 } 4058 return ret; 4059 } 4060 4061 /* 4062 * Called by memory hotplug when all memory in a node is offlined. Caller must 4063 * hold mem_hotplug_begin/end(). 4064 */ 4065 void kswapd_stop(int nid) 4066 { 4067 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4068 4069 if (kswapd) { 4070 kthread_stop(kswapd); 4071 NODE_DATA(nid)->kswapd = NULL; 4072 } 4073 } 4074 4075 static int __init kswapd_init(void) 4076 { 4077 int nid; 4078 4079 swap_setup(); 4080 for_each_node_state(nid, N_MEMORY) 4081 kswapd_run(nid); 4082 return 0; 4083 } 4084 4085 module_init(kswapd_init) 4086 4087 #ifdef CONFIG_NUMA 4088 /* 4089 * Node reclaim mode 4090 * 4091 * If non-zero call node_reclaim when the number of free pages falls below 4092 * the watermarks. 4093 */ 4094 int node_reclaim_mode __read_mostly; 4095 4096 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4097 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4098 4099 /* 4100 * Priority for NODE_RECLAIM. This determines the fraction of pages 4101 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4102 * a zone. 4103 */ 4104 #define NODE_RECLAIM_PRIORITY 4 4105 4106 /* 4107 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4108 * occur. 4109 */ 4110 int sysctl_min_unmapped_ratio = 1; 4111 4112 /* 4113 * If the number of slab pages in a zone grows beyond this percentage then 4114 * slab reclaim needs to occur. 4115 */ 4116 int sysctl_min_slab_ratio = 5; 4117 4118 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4119 { 4120 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4121 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4122 node_page_state(pgdat, NR_ACTIVE_FILE); 4123 4124 /* 4125 * It's possible for there to be more file mapped pages than 4126 * accounted for by the pages on the file LRU lists because 4127 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4128 */ 4129 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4130 } 4131 4132 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4133 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4134 { 4135 unsigned long nr_pagecache_reclaimable; 4136 unsigned long delta = 0; 4137 4138 /* 4139 * If RECLAIM_UNMAP is set, then all file pages are considered 4140 * potentially reclaimable. Otherwise, we have to worry about 4141 * pages like swapcache and node_unmapped_file_pages() provides 4142 * a better estimate 4143 */ 4144 if (node_reclaim_mode & RECLAIM_UNMAP) 4145 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4146 else 4147 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4148 4149 /* If we can't clean pages, remove dirty pages from consideration */ 4150 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4151 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4152 4153 /* Watch for any possible underflows due to delta */ 4154 if (unlikely(delta > nr_pagecache_reclaimable)) 4155 delta = nr_pagecache_reclaimable; 4156 4157 return nr_pagecache_reclaimable - delta; 4158 } 4159 4160 /* 4161 * Try to free up some pages from this node through reclaim. 4162 */ 4163 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4164 { 4165 /* Minimum pages needed in order to stay on node */ 4166 const unsigned long nr_pages = 1 << order; 4167 struct task_struct *p = current; 4168 unsigned int noreclaim_flag; 4169 struct scan_control sc = { 4170 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4171 .gfp_mask = current_gfp_context(gfp_mask), 4172 .order = order, 4173 .priority = NODE_RECLAIM_PRIORITY, 4174 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4175 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4176 .may_swap = 1, 4177 .reclaim_idx = gfp_zone(gfp_mask), 4178 }; 4179 4180 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4181 sc.gfp_mask); 4182 4183 cond_resched(); 4184 fs_reclaim_acquire(sc.gfp_mask); 4185 /* 4186 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4187 * and we also need to be able to write out pages for RECLAIM_WRITE 4188 * and RECLAIM_UNMAP. 4189 */ 4190 noreclaim_flag = memalloc_noreclaim_save(); 4191 p->flags |= PF_SWAPWRITE; 4192 set_task_reclaim_state(p, &sc.reclaim_state); 4193 4194 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4195 /* 4196 * Free memory by calling shrink node with increasing 4197 * priorities until we have enough memory freed. 4198 */ 4199 do { 4200 shrink_node(pgdat, &sc); 4201 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4202 } 4203 4204 set_task_reclaim_state(p, NULL); 4205 current->flags &= ~PF_SWAPWRITE; 4206 memalloc_noreclaim_restore(noreclaim_flag); 4207 fs_reclaim_release(sc.gfp_mask); 4208 4209 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4210 4211 return sc.nr_reclaimed >= nr_pages; 4212 } 4213 4214 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4215 { 4216 int ret; 4217 4218 /* 4219 * Node reclaim reclaims unmapped file backed pages and 4220 * slab pages if we are over the defined limits. 4221 * 4222 * A small portion of unmapped file backed pages is needed for 4223 * file I/O otherwise pages read by file I/O will be immediately 4224 * thrown out if the node is overallocated. So we do not reclaim 4225 * if less than a specified percentage of the node is used by 4226 * unmapped file backed pages. 4227 */ 4228 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4229 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4230 pgdat->min_slab_pages) 4231 return NODE_RECLAIM_FULL; 4232 4233 /* 4234 * Do not scan if the allocation should not be delayed. 4235 */ 4236 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4237 return NODE_RECLAIM_NOSCAN; 4238 4239 /* 4240 * Only run node reclaim on the local node or on nodes that do not 4241 * have associated processors. This will favor the local processor 4242 * over remote processors and spread off node memory allocations 4243 * as wide as possible. 4244 */ 4245 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4246 return NODE_RECLAIM_NOSCAN; 4247 4248 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4249 return NODE_RECLAIM_NOSCAN; 4250 4251 ret = __node_reclaim(pgdat, gfp_mask, order); 4252 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4253 4254 if (!ret) 4255 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4256 4257 return ret; 4258 } 4259 #endif 4260 4261 /** 4262 * check_move_unevictable_pages - check pages for evictability and move to 4263 * appropriate zone lru list 4264 * @pvec: pagevec with lru pages to check 4265 * 4266 * Checks pages for evictability, if an evictable page is in the unevictable 4267 * lru list, moves it to the appropriate evictable lru list. This function 4268 * should be only used for lru pages. 4269 */ 4270 void check_move_unevictable_pages(struct pagevec *pvec) 4271 { 4272 struct lruvec *lruvec = NULL; 4273 int pgscanned = 0; 4274 int pgrescued = 0; 4275 int i; 4276 4277 for (i = 0; i < pvec->nr; i++) { 4278 struct page *page = pvec->pages[i]; 4279 int nr_pages; 4280 4281 if (PageTransTail(page)) 4282 continue; 4283 4284 nr_pages = thp_nr_pages(page); 4285 pgscanned += nr_pages; 4286 4287 /* block memcg migration during page moving between lru */ 4288 if (!TestClearPageLRU(page)) 4289 continue; 4290 4291 lruvec = relock_page_lruvec_irq(page, lruvec); 4292 if (page_evictable(page) && PageUnevictable(page)) { 4293 enum lru_list lru = page_lru_base_type(page); 4294 4295 VM_BUG_ON_PAGE(PageActive(page), page); 4296 ClearPageUnevictable(page); 4297 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4298 add_page_to_lru_list(page, lruvec, lru); 4299 pgrescued += nr_pages; 4300 } 4301 SetPageLRU(page); 4302 } 4303 4304 if (lruvec) { 4305 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4306 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4307 unlock_page_lruvec_irq(lruvec); 4308 } else if (pgscanned) { 4309 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4310 } 4311 } 4312 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4313