1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/mutex.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 #include <linux/rculist_nulls.h> 59 #include <linux/random.h> 60 #include <linux/srcu.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 65 #include <linux/swapops.h> 66 #include <linux/balloon_compaction.h> 67 #include <linux/sched/sysctl.h> 68 69 #include "internal.h" 70 #include "swap.h" 71 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/vmscan.h> 74 75 struct scan_control { 76 /* How many pages shrink_list() should reclaim */ 77 unsigned long nr_to_reclaim; 78 79 /* 80 * Nodemask of nodes allowed by the caller. If NULL, all nodes 81 * are scanned. 82 */ 83 nodemask_t *nodemask; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Scan pressure balancing between anon and file LRUs 93 */ 94 unsigned long anon_cost; 95 unsigned long file_cost; 96 97 /* Can active folios be deactivated as part of reclaim? */ 98 #define DEACTIVATE_ANON 1 99 #define DEACTIVATE_FILE 2 100 unsigned int may_deactivate:2; 101 unsigned int force_deactivate:1; 102 unsigned int skipped_deactivate:1; 103 104 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 105 unsigned int may_writepage:1; 106 107 /* Can mapped folios be reclaimed? */ 108 unsigned int may_unmap:1; 109 110 /* Can folios be swapped as part of reclaim? */ 111 unsigned int may_swap:1; 112 113 /* Proactive reclaim invoked by userspace through memory.reclaim */ 114 unsigned int proactive:1; 115 116 /* 117 * Cgroup memory below memory.low is protected as long as we 118 * don't threaten to OOM. If any cgroup is reclaimed at 119 * reduced force or passed over entirely due to its memory.low 120 * setting (memcg_low_skipped), and nothing is reclaimed as a 121 * result, then go back for one more cycle that reclaims the protected 122 * memory (memcg_low_reclaim) to avert OOM. 123 */ 124 unsigned int memcg_low_reclaim:1; 125 unsigned int memcg_low_skipped:1; 126 127 unsigned int hibernation_mode:1; 128 129 /* One of the zones is ready for compaction */ 130 unsigned int compaction_ready:1; 131 132 /* There is easily reclaimable cold cache in the current node */ 133 unsigned int cache_trim_mode:1; 134 135 /* The file folios on the current node are dangerously low */ 136 unsigned int file_is_tiny:1; 137 138 /* Always discard instead of demoting to lower tier memory */ 139 unsigned int no_demotion:1; 140 141 /* Allocation order */ 142 s8 order; 143 144 /* Scan (total_size >> priority) pages at once */ 145 s8 priority; 146 147 /* The highest zone to isolate folios for reclaim from */ 148 s8 reclaim_idx; 149 150 /* This context's GFP mask */ 151 gfp_t gfp_mask; 152 153 /* Incremented by the number of inactive pages that were scanned */ 154 unsigned long nr_scanned; 155 156 /* Number of pages freed so far during a call to shrink_zones() */ 157 unsigned long nr_reclaimed; 158 159 struct { 160 unsigned int dirty; 161 unsigned int unqueued_dirty; 162 unsigned int congested; 163 unsigned int writeback; 164 unsigned int immediate; 165 unsigned int file_taken; 166 unsigned int taken; 167 } nr; 168 169 /* for recording the reclaimed slab by now */ 170 struct reclaim_state reclaim_state; 171 }; 172 173 #ifdef ARCH_HAS_PREFETCHW 174 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 175 do { \ 176 if ((_folio)->lru.prev != _base) { \ 177 struct folio *prev; \ 178 \ 179 prev = lru_to_folio(&(_folio->lru)); \ 180 prefetchw(&prev->_field); \ 181 } \ 182 } while (0) 183 #else 184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 185 #endif 186 187 /* 188 * From 0 .. 200. Higher means more swappy. 189 */ 190 int vm_swappiness = 60; 191 192 LIST_HEAD(shrinker_list); 193 DEFINE_MUTEX(shrinker_mutex); 194 DEFINE_SRCU(shrinker_srcu); 195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0); 196 197 #ifdef CONFIG_MEMCG 198 static int shrinker_nr_max; 199 200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 201 static inline int shrinker_map_size(int nr_items) 202 { 203 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 204 } 205 206 static inline int shrinker_defer_size(int nr_items) 207 { 208 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 209 } 210 211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 212 int nid) 213 { 214 return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info, 215 &shrinker_srcu, 216 lockdep_is_held(&shrinker_mutex)); 217 } 218 219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg, 220 int nid) 221 { 222 return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info, 223 &shrinker_srcu); 224 } 225 226 static void free_shrinker_info_rcu(struct rcu_head *head) 227 { 228 kvfree(container_of(head, struct shrinker_info, rcu)); 229 } 230 231 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 232 int map_size, int defer_size, 233 int old_map_size, int old_defer_size, 234 int new_nr_max) 235 { 236 struct shrinker_info *new, *old; 237 struct mem_cgroup_per_node *pn; 238 int nid; 239 int size = map_size + defer_size; 240 241 for_each_node(nid) { 242 pn = memcg->nodeinfo[nid]; 243 old = shrinker_info_protected(memcg, nid); 244 /* Not yet online memcg */ 245 if (!old) 246 return 0; 247 248 /* Already expanded this shrinker_info */ 249 if (new_nr_max <= old->map_nr_max) 250 continue; 251 252 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 253 if (!new) 254 return -ENOMEM; 255 256 new->nr_deferred = (atomic_long_t *)(new + 1); 257 new->map = (void *)new->nr_deferred + defer_size; 258 new->map_nr_max = new_nr_max; 259 260 /* map: set all old bits, clear all new bits */ 261 memset(new->map, (int)0xff, old_map_size); 262 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 263 /* nr_deferred: copy old values, clear all new values */ 264 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 265 memset((void *)new->nr_deferred + old_defer_size, 0, 266 defer_size - old_defer_size); 267 268 rcu_assign_pointer(pn->shrinker_info, new); 269 call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu); 270 } 271 272 return 0; 273 } 274 275 void free_shrinker_info(struct mem_cgroup *memcg) 276 { 277 struct mem_cgroup_per_node *pn; 278 struct shrinker_info *info; 279 int nid; 280 281 for_each_node(nid) { 282 pn = memcg->nodeinfo[nid]; 283 info = rcu_dereference_protected(pn->shrinker_info, true); 284 kvfree(info); 285 rcu_assign_pointer(pn->shrinker_info, NULL); 286 } 287 } 288 289 int alloc_shrinker_info(struct mem_cgroup *memcg) 290 { 291 struct shrinker_info *info; 292 int nid, size, ret = 0; 293 int map_size, defer_size = 0; 294 295 mutex_lock(&shrinker_mutex); 296 map_size = shrinker_map_size(shrinker_nr_max); 297 defer_size = shrinker_defer_size(shrinker_nr_max); 298 size = map_size + defer_size; 299 for_each_node(nid) { 300 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 301 if (!info) { 302 free_shrinker_info(memcg); 303 ret = -ENOMEM; 304 break; 305 } 306 info->nr_deferred = (atomic_long_t *)(info + 1); 307 info->map = (void *)info->nr_deferred + defer_size; 308 info->map_nr_max = shrinker_nr_max; 309 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 310 } 311 mutex_unlock(&shrinker_mutex); 312 313 return ret; 314 } 315 316 static int expand_shrinker_info(int new_id) 317 { 318 int ret = 0; 319 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG); 320 int map_size, defer_size = 0; 321 int old_map_size, old_defer_size = 0; 322 struct mem_cgroup *memcg; 323 324 if (!root_mem_cgroup) 325 goto out; 326 327 lockdep_assert_held(&shrinker_mutex); 328 329 map_size = shrinker_map_size(new_nr_max); 330 defer_size = shrinker_defer_size(new_nr_max); 331 old_map_size = shrinker_map_size(shrinker_nr_max); 332 old_defer_size = shrinker_defer_size(shrinker_nr_max); 333 334 memcg = mem_cgroup_iter(NULL, NULL, NULL); 335 do { 336 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 337 old_map_size, old_defer_size, 338 new_nr_max); 339 if (ret) { 340 mem_cgroup_iter_break(NULL, memcg); 341 goto out; 342 } 343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 344 out: 345 if (!ret) 346 shrinker_nr_max = new_nr_max; 347 348 return ret; 349 } 350 351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 352 { 353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 354 struct shrinker_info *info; 355 int srcu_idx; 356 357 srcu_idx = srcu_read_lock(&shrinker_srcu); 358 info = shrinker_info_srcu(memcg, nid); 359 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) { 360 /* Pairs with smp mb in shrink_slab() */ 361 smp_mb__before_atomic(); 362 set_bit(shrinker_id, info->map); 363 } 364 srcu_read_unlock(&shrinker_srcu, srcu_idx); 365 } 366 } 367 368 static DEFINE_IDR(shrinker_idr); 369 370 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 371 { 372 int id, ret = -ENOMEM; 373 374 if (mem_cgroup_disabled()) 375 return -ENOSYS; 376 377 mutex_lock(&shrinker_mutex); 378 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 379 if (id < 0) 380 goto unlock; 381 382 if (id >= shrinker_nr_max) { 383 if (expand_shrinker_info(id)) { 384 idr_remove(&shrinker_idr, id); 385 goto unlock; 386 } 387 } 388 shrinker->id = id; 389 ret = 0; 390 unlock: 391 mutex_unlock(&shrinker_mutex); 392 return ret; 393 } 394 395 static void unregister_memcg_shrinker(struct shrinker *shrinker) 396 { 397 int id = shrinker->id; 398 399 BUG_ON(id < 0); 400 401 lockdep_assert_held(&shrinker_mutex); 402 403 idr_remove(&shrinker_idr, id); 404 } 405 406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 407 struct mem_cgroup *memcg) 408 { 409 struct shrinker_info *info; 410 411 info = shrinker_info_srcu(memcg, nid); 412 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 413 } 414 415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 416 struct mem_cgroup *memcg) 417 { 418 struct shrinker_info *info; 419 420 info = shrinker_info_srcu(memcg, nid); 421 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 422 } 423 424 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 425 { 426 int i, nid; 427 long nr; 428 struct mem_cgroup *parent; 429 struct shrinker_info *child_info, *parent_info; 430 431 parent = parent_mem_cgroup(memcg); 432 if (!parent) 433 parent = root_mem_cgroup; 434 435 /* Prevent from concurrent shrinker_info expand */ 436 mutex_lock(&shrinker_mutex); 437 for_each_node(nid) { 438 child_info = shrinker_info_protected(memcg, nid); 439 parent_info = shrinker_info_protected(parent, nid); 440 for (i = 0; i < child_info->map_nr_max; i++) { 441 nr = atomic_long_read(&child_info->nr_deferred[i]); 442 atomic_long_add(nr, &parent_info->nr_deferred[i]); 443 } 444 } 445 mutex_unlock(&shrinker_mutex); 446 } 447 448 static bool cgroup_reclaim(struct scan_control *sc) 449 { 450 return sc->target_mem_cgroup; 451 } 452 453 static bool global_reclaim(struct scan_control *sc) 454 { 455 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 456 } 457 458 /** 459 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 460 * @sc: scan_control in question 461 * 462 * The normal page dirty throttling mechanism in balance_dirty_pages() is 463 * completely broken with the legacy memcg and direct stalling in 464 * shrink_folio_list() is used for throttling instead, which lacks all the 465 * niceties such as fairness, adaptive pausing, bandwidth proportional 466 * allocation and configurability. 467 * 468 * This function tests whether the vmscan currently in progress can assume 469 * that the normal dirty throttling mechanism is operational. 470 */ 471 static bool writeback_throttling_sane(struct scan_control *sc) 472 { 473 if (!cgroup_reclaim(sc)) 474 return true; 475 #ifdef CONFIG_CGROUP_WRITEBACK 476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 477 return true; 478 #endif 479 return false; 480 } 481 #else 482 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 483 { 484 return -ENOSYS; 485 } 486 487 static void unregister_memcg_shrinker(struct shrinker *shrinker) 488 { 489 } 490 491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 492 struct mem_cgroup *memcg) 493 { 494 return 0; 495 } 496 497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 498 struct mem_cgroup *memcg) 499 { 500 return 0; 501 } 502 503 static bool cgroup_reclaim(struct scan_control *sc) 504 { 505 return false; 506 } 507 508 static bool global_reclaim(struct scan_control *sc) 509 { 510 return true; 511 } 512 513 static bool writeback_throttling_sane(struct scan_control *sc) 514 { 515 return true; 516 } 517 #endif 518 519 static void set_task_reclaim_state(struct task_struct *task, 520 struct reclaim_state *rs) 521 { 522 /* Check for an overwrite */ 523 WARN_ON_ONCE(rs && task->reclaim_state); 524 525 /* Check for the nulling of an already-nulled member */ 526 WARN_ON_ONCE(!rs && !task->reclaim_state); 527 528 task->reclaim_state = rs; 529 } 530 531 /* 532 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 533 * scan_control->nr_reclaimed. 534 */ 535 static void flush_reclaim_state(struct scan_control *sc) 536 { 537 /* 538 * Currently, reclaim_state->reclaimed includes three types of pages 539 * freed outside of vmscan: 540 * (1) Slab pages. 541 * (2) Clean file pages from pruned inodes (on highmem systems). 542 * (3) XFS freed buffer pages. 543 * 544 * For all of these cases, we cannot universally link the pages to a 545 * single memcg. For example, a memcg-aware shrinker can free one object 546 * charged to the target memcg, causing an entire page to be freed. 547 * If we count the entire page as reclaimed from the memcg, we end up 548 * overestimating the reclaimed amount (potentially under-reclaiming). 549 * 550 * Only count such pages for global reclaim to prevent under-reclaiming 551 * from the target memcg; preventing unnecessary retries during memcg 552 * charging and false positives from proactive reclaim. 553 * 554 * For uncommon cases where the freed pages were actually mostly 555 * charged to the target memcg, we end up underestimating the reclaimed 556 * amount. This should be fine. The freed pages will be uncharged 557 * anyway, even if they are not counted here properly, and we will be 558 * able to make forward progress in charging (which is usually in a 559 * retry loop). 560 * 561 * We can go one step further, and report the uncharged objcg pages in 562 * memcg reclaim, to make reporting more accurate and reduce 563 * underestimation, but it's probably not worth the complexity for now. 564 */ 565 if (current->reclaim_state && global_reclaim(sc)) { 566 sc->nr_reclaimed += current->reclaim_state->reclaimed; 567 current->reclaim_state->reclaimed = 0; 568 } 569 } 570 571 static long xchg_nr_deferred(struct shrinker *shrinker, 572 struct shrink_control *sc) 573 { 574 int nid = sc->nid; 575 576 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 577 nid = 0; 578 579 if (sc->memcg && 580 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 581 return xchg_nr_deferred_memcg(nid, shrinker, 582 sc->memcg); 583 584 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 585 } 586 587 588 static long add_nr_deferred(long nr, struct shrinker *shrinker, 589 struct shrink_control *sc) 590 { 591 int nid = sc->nid; 592 593 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 594 nid = 0; 595 596 if (sc->memcg && 597 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 598 return add_nr_deferred_memcg(nr, nid, shrinker, 599 sc->memcg); 600 601 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 602 } 603 604 static bool can_demote(int nid, struct scan_control *sc) 605 { 606 if (!numa_demotion_enabled) 607 return false; 608 if (sc && sc->no_demotion) 609 return false; 610 if (next_demotion_node(nid) == NUMA_NO_NODE) 611 return false; 612 613 return true; 614 } 615 616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 617 int nid, 618 struct scan_control *sc) 619 { 620 if (memcg == NULL) { 621 /* 622 * For non-memcg reclaim, is there 623 * space in any swap device? 624 */ 625 if (get_nr_swap_pages() > 0) 626 return true; 627 } else { 628 /* Is the memcg below its swap limit? */ 629 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 630 return true; 631 } 632 633 /* 634 * The page can not be swapped. 635 * 636 * Can it be reclaimed from this node via demotion? 637 */ 638 return can_demote(nid, sc); 639 } 640 641 /* 642 * This misses isolated folios which are not accounted for to save counters. 643 * As the data only determines if reclaim or compaction continues, it is 644 * not expected that isolated folios will be a dominating factor. 645 */ 646 unsigned long zone_reclaimable_pages(struct zone *zone) 647 { 648 unsigned long nr; 649 650 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 651 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 652 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 653 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 654 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 655 656 return nr; 657 } 658 659 /** 660 * lruvec_lru_size - Returns the number of pages on the given LRU list. 661 * @lruvec: lru vector 662 * @lru: lru to use 663 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 664 */ 665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 666 int zone_idx) 667 { 668 unsigned long size = 0; 669 int zid; 670 671 for (zid = 0; zid <= zone_idx; zid++) { 672 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 673 674 if (!managed_zone(zone)) 675 continue; 676 677 if (!mem_cgroup_disabled()) 678 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 679 else 680 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 681 } 682 return size; 683 } 684 685 /* 686 * Add a shrinker callback to be called from the vm. 687 */ 688 static int __prealloc_shrinker(struct shrinker *shrinker) 689 { 690 unsigned int size; 691 int err; 692 693 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 694 err = prealloc_memcg_shrinker(shrinker); 695 if (err != -ENOSYS) 696 return err; 697 698 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 699 } 700 701 size = sizeof(*shrinker->nr_deferred); 702 if (shrinker->flags & SHRINKER_NUMA_AWARE) 703 size *= nr_node_ids; 704 705 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 706 if (!shrinker->nr_deferred) 707 return -ENOMEM; 708 709 return 0; 710 } 711 712 #ifdef CONFIG_SHRINKER_DEBUG 713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 714 { 715 va_list ap; 716 int err; 717 718 va_start(ap, fmt); 719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 720 va_end(ap); 721 if (!shrinker->name) 722 return -ENOMEM; 723 724 err = __prealloc_shrinker(shrinker); 725 if (err) { 726 kfree_const(shrinker->name); 727 shrinker->name = NULL; 728 } 729 730 return err; 731 } 732 #else 733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 734 { 735 return __prealloc_shrinker(shrinker); 736 } 737 #endif 738 739 void free_prealloced_shrinker(struct shrinker *shrinker) 740 { 741 #ifdef CONFIG_SHRINKER_DEBUG 742 kfree_const(shrinker->name); 743 shrinker->name = NULL; 744 #endif 745 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 746 mutex_lock(&shrinker_mutex); 747 unregister_memcg_shrinker(shrinker); 748 mutex_unlock(&shrinker_mutex); 749 return; 750 } 751 752 kfree(shrinker->nr_deferred); 753 shrinker->nr_deferred = NULL; 754 } 755 756 void register_shrinker_prepared(struct shrinker *shrinker) 757 { 758 mutex_lock(&shrinker_mutex); 759 list_add_tail_rcu(&shrinker->list, &shrinker_list); 760 shrinker->flags |= SHRINKER_REGISTERED; 761 shrinker_debugfs_add(shrinker); 762 mutex_unlock(&shrinker_mutex); 763 } 764 765 static int __register_shrinker(struct shrinker *shrinker) 766 { 767 int err = __prealloc_shrinker(shrinker); 768 769 if (err) 770 return err; 771 register_shrinker_prepared(shrinker); 772 return 0; 773 } 774 775 #ifdef CONFIG_SHRINKER_DEBUG 776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 777 { 778 va_list ap; 779 int err; 780 781 va_start(ap, fmt); 782 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 783 va_end(ap); 784 if (!shrinker->name) 785 return -ENOMEM; 786 787 err = __register_shrinker(shrinker); 788 if (err) { 789 kfree_const(shrinker->name); 790 shrinker->name = NULL; 791 } 792 return err; 793 } 794 #else 795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 796 { 797 return __register_shrinker(shrinker); 798 } 799 #endif 800 EXPORT_SYMBOL(register_shrinker); 801 802 /* 803 * Remove one 804 */ 805 void unregister_shrinker(struct shrinker *shrinker) 806 { 807 struct dentry *debugfs_entry; 808 809 if (!(shrinker->flags & SHRINKER_REGISTERED)) 810 return; 811 812 mutex_lock(&shrinker_mutex); 813 list_del_rcu(&shrinker->list); 814 shrinker->flags &= ~SHRINKER_REGISTERED; 815 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 816 unregister_memcg_shrinker(shrinker); 817 debugfs_entry = shrinker_debugfs_remove(shrinker); 818 mutex_unlock(&shrinker_mutex); 819 820 atomic_inc(&shrinker_srcu_generation); 821 synchronize_srcu(&shrinker_srcu); 822 823 debugfs_remove_recursive(debugfs_entry); 824 825 kfree(shrinker->nr_deferred); 826 shrinker->nr_deferred = NULL; 827 } 828 EXPORT_SYMBOL(unregister_shrinker); 829 830 /** 831 * synchronize_shrinkers - Wait for all running shrinkers to complete. 832 * 833 * This is useful to guarantee that all shrinker invocations have seen an 834 * update, before freeing memory. 835 */ 836 void synchronize_shrinkers(void) 837 { 838 atomic_inc(&shrinker_srcu_generation); 839 synchronize_srcu(&shrinker_srcu); 840 } 841 EXPORT_SYMBOL(synchronize_shrinkers); 842 843 #define SHRINK_BATCH 128 844 845 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 846 struct shrinker *shrinker, int priority) 847 { 848 unsigned long freed = 0; 849 unsigned long long delta; 850 long total_scan; 851 long freeable; 852 long nr; 853 long new_nr; 854 long batch_size = shrinker->batch ? shrinker->batch 855 : SHRINK_BATCH; 856 long scanned = 0, next_deferred; 857 858 freeable = shrinker->count_objects(shrinker, shrinkctl); 859 if (freeable == 0 || freeable == SHRINK_EMPTY) 860 return freeable; 861 862 /* 863 * copy the current shrinker scan count into a local variable 864 * and zero it so that other concurrent shrinker invocations 865 * don't also do this scanning work. 866 */ 867 nr = xchg_nr_deferred(shrinker, shrinkctl); 868 869 if (shrinker->seeks) { 870 delta = freeable >> priority; 871 delta *= 4; 872 do_div(delta, shrinker->seeks); 873 } else { 874 /* 875 * These objects don't require any IO to create. Trim 876 * them aggressively under memory pressure to keep 877 * them from causing refetches in the IO caches. 878 */ 879 delta = freeable / 2; 880 } 881 882 total_scan = nr >> priority; 883 total_scan += delta; 884 total_scan = min(total_scan, (2 * freeable)); 885 886 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 887 freeable, delta, total_scan, priority); 888 889 /* 890 * Normally, we should not scan less than batch_size objects in one 891 * pass to avoid too frequent shrinker calls, but if the slab has less 892 * than batch_size objects in total and we are really tight on memory, 893 * we will try to reclaim all available objects, otherwise we can end 894 * up failing allocations although there are plenty of reclaimable 895 * objects spread over several slabs with usage less than the 896 * batch_size. 897 * 898 * We detect the "tight on memory" situations by looking at the total 899 * number of objects we want to scan (total_scan). If it is greater 900 * than the total number of objects on slab (freeable), we must be 901 * scanning at high prio and therefore should try to reclaim as much as 902 * possible. 903 */ 904 while (total_scan >= batch_size || 905 total_scan >= freeable) { 906 unsigned long ret; 907 unsigned long nr_to_scan = min(batch_size, total_scan); 908 909 shrinkctl->nr_to_scan = nr_to_scan; 910 shrinkctl->nr_scanned = nr_to_scan; 911 ret = shrinker->scan_objects(shrinker, shrinkctl); 912 if (ret == SHRINK_STOP) 913 break; 914 freed += ret; 915 916 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 917 total_scan -= shrinkctl->nr_scanned; 918 scanned += shrinkctl->nr_scanned; 919 920 cond_resched(); 921 } 922 923 /* 924 * The deferred work is increased by any new work (delta) that wasn't 925 * done, decreased by old deferred work that was done now. 926 * 927 * And it is capped to two times of the freeable items. 928 */ 929 next_deferred = max_t(long, (nr + delta - scanned), 0); 930 next_deferred = min(next_deferred, (2 * freeable)); 931 932 /* 933 * move the unused scan count back into the shrinker in a 934 * manner that handles concurrent updates. 935 */ 936 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 937 938 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 939 return freed; 940 } 941 942 #ifdef CONFIG_MEMCG 943 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 944 struct mem_cgroup *memcg, int priority) 945 { 946 struct shrinker_info *info; 947 unsigned long ret, freed = 0; 948 int srcu_idx, generation; 949 int i = 0; 950 951 if (!mem_cgroup_online(memcg)) 952 return 0; 953 954 again: 955 srcu_idx = srcu_read_lock(&shrinker_srcu); 956 info = shrinker_info_srcu(memcg, nid); 957 if (unlikely(!info)) 958 goto unlock; 959 960 generation = atomic_read(&shrinker_srcu_generation); 961 for_each_set_bit_from(i, info->map, info->map_nr_max) { 962 struct shrink_control sc = { 963 .gfp_mask = gfp_mask, 964 .nid = nid, 965 .memcg = memcg, 966 }; 967 struct shrinker *shrinker; 968 969 shrinker = idr_find(&shrinker_idr, i); 970 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 971 if (!shrinker) 972 clear_bit(i, info->map); 973 continue; 974 } 975 976 /* Call non-slab shrinkers even though kmem is disabled */ 977 if (!memcg_kmem_online() && 978 !(shrinker->flags & SHRINKER_NONSLAB)) 979 continue; 980 981 ret = do_shrink_slab(&sc, shrinker, priority); 982 if (ret == SHRINK_EMPTY) { 983 clear_bit(i, info->map); 984 /* 985 * After the shrinker reported that it had no objects to 986 * free, but before we cleared the corresponding bit in 987 * the memcg shrinker map, a new object might have been 988 * added. To make sure, we have the bit set in this 989 * case, we invoke the shrinker one more time and reset 990 * the bit if it reports that it is not empty anymore. 991 * The memory barrier here pairs with the barrier in 992 * set_shrinker_bit(): 993 * 994 * list_lru_add() shrink_slab_memcg() 995 * list_add_tail() clear_bit() 996 * <MB> <MB> 997 * set_bit() do_shrink_slab() 998 */ 999 smp_mb__after_atomic(); 1000 ret = do_shrink_slab(&sc, shrinker, priority); 1001 if (ret == SHRINK_EMPTY) 1002 ret = 0; 1003 else 1004 set_shrinker_bit(memcg, nid, i); 1005 } 1006 freed += ret; 1007 if (atomic_read(&shrinker_srcu_generation) != generation) { 1008 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1009 i++; 1010 goto again; 1011 } 1012 } 1013 unlock: 1014 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1015 return freed; 1016 } 1017 #else /* CONFIG_MEMCG */ 1018 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 1019 struct mem_cgroup *memcg, int priority) 1020 { 1021 return 0; 1022 } 1023 #endif /* CONFIG_MEMCG */ 1024 1025 /** 1026 * shrink_slab - shrink slab caches 1027 * @gfp_mask: allocation context 1028 * @nid: node whose slab caches to target 1029 * @memcg: memory cgroup whose slab caches to target 1030 * @priority: the reclaim priority 1031 * 1032 * Call the shrink functions to age shrinkable caches. 1033 * 1034 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 1035 * unaware shrinkers will receive a node id of 0 instead. 1036 * 1037 * @memcg specifies the memory cgroup to target. Unaware shrinkers 1038 * are called only if it is the root cgroup. 1039 * 1040 * @priority is sc->priority, we take the number of objects and >> by priority 1041 * in order to get the scan target. 1042 * 1043 * Returns the number of reclaimed slab objects. 1044 */ 1045 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 1046 struct mem_cgroup *memcg, 1047 int priority) 1048 { 1049 unsigned long ret, freed = 0; 1050 struct shrinker *shrinker; 1051 int srcu_idx, generation; 1052 1053 /* 1054 * The root memcg might be allocated even though memcg is disabled 1055 * via "cgroup_disable=memory" boot parameter. This could make 1056 * mem_cgroup_is_root() return false, then just run memcg slab 1057 * shrink, but skip global shrink. This may result in premature 1058 * oom. 1059 */ 1060 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 1061 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 1062 1063 srcu_idx = srcu_read_lock(&shrinker_srcu); 1064 1065 generation = atomic_read(&shrinker_srcu_generation); 1066 list_for_each_entry_srcu(shrinker, &shrinker_list, list, 1067 srcu_read_lock_held(&shrinker_srcu)) { 1068 struct shrink_control sc = { 1069 .gfp_mask = gfp_mask, 1070 .nid = nid, 1071 .memcg = memcg, 1072 }; 1073 1074 ret = do_shrink_slab(&sc, shrinker, priority); 1075 if (ret == SHRINK_EMPTY) 1076 ret = 0; 1077 freed += ret; 1078 1079 if (atomic_read(&shrinker_srcu_generation) != generation) { 1080 freed = freed ? : 1; 1081 break; 1082 } 1083 } 1084 1085 srcu_read_unlock(&shrinker_srcu, srcu_idx); 1086 cond_resched(); 1087 return freed; 1088 } 1089 1090 static unsigned long drop_slab_node(int nid) 1091 { 1092 unsigned long freed = 0; 1093 struct mem_cgroup *memcg = NULL; 1094 1095 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1096 do { 1097 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1098 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1099 1100 return freed; 1101 } 1102 1103 void drop_slab(void) 1104 { 1105 int nid; 1106 int shift = 0; 1107 unsigned long freed; 1108 1109 do { 1110 freed = 0; 1111 for_each_online_node(nid) { 1112 if (fatal_signal_pending(current)) 1113 return; 1114 1115 freed += drop_slab_node(nid); 1116 } 1117 } while ((freed >> shift++) > 1); 1118 } 1119 1120 static int reclaimer_offset(void) 1121 { 1122 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1123 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1124 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1125 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1126 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1127 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1128 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1129 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1130 1131 if (current_is_kswapd()) 1132 return 0; 1133 if (current_is_khugepaged()) 1134 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1135 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1136 } 1137 1138 static inline int is_page_cache_freeable(struct folio *folio) 1139 { 1140 /* 1141 * A freeable page cache folio is referenced only by the caller 1142 * that isolated the folio, the page cache and optional filesystem 1143 * private data at folio->private. 1144 */ 1145 return folio_ref_count(folio) - folio_test_private(folio) == 1146 1 + folio_nr_pages(folio); 1147 } 1148 1149 /* 1150 * We detected a synchronous write error writing a folio out. Probably 1151 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1152 * fsync(), msync() or close(). 1153 * 1154 * The tricky part is that after writepage we cannot touch the mapping: nothing 1155 * prevents it from being freed up. But we have a ref on the folio and once 1156 * that folio is locked, the mapping is pinned. 1157 * 1158 * We're allowed to run sleeping folio_lock() here because we know the caller has 1159 * __GFP_FS. 1160 */ 1161 static void handle_write_error(struct address_space *mapping, 1162 struct folio *folio, int error) 1163 { 1164 folio_lock(folio); 1165 if (folio_mapping(folio) == mapping) 1166 mapping_set_error(mapping, error); 1167 folio_unlock(folio); 1168 } 1169 1170 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1171 { 1172 int reclaimable = 0, write_pending = 0; 1173 int i; 1174 1175 /* 1176 * If kswapd is disabled, reschedule if necessary but do not 1177 * throttle as the system is likely near OOM. 1178 */ 1179 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1180 return true; 1181 1182 /* 1183 * If there are a lot of dirty/writeback folios then do not 1184 * throttle as throttling will occur when the folios cycle 1185 * towards the end of the LRU if still under writeback. 1186 */ 1187 for (i = 0; i < MAX_NR_ZONES; i++) { 1188 struct zone *zone = pgdat->node_zones + i; 1189 1190 if (!managed_zone(zone)) 1191 continue; 1192 1193 reclaimable += zone_reclaimable_pages(zone); 1194 write_pending += zone_page_state_snapshot(zone, 1195 NR_ZONE_WRITE_PENDING); 1196 } 1197 if (2 * write_pending <= reclaimable) 1198 return true; 1199 1200 return false; 1201 } 1202 1203 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1204 { 1205 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1206 long timeout, ret; 1207 DEFINE_WAIT(wait); 1208 1209 /* 1210 * Do not throttle user workers, kthreads other than kswapd or 1211 * workqueues. They may be required for reclaim to make 1212 * forward progress (e.g. journalling workqueues or kthreads). 1213 */ 1214 if (!current_is_kswapd() && 1215 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 1216 cond_resched(); 1217 return; 1218 } 1219 1220 /* 1221 * These figures are pulled out of thin air. 1222 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1223 * parallel reclaimers which is a short-lived event so the timeout is 1224 * short. Failing to make progress or waiting on writeback are 1225 * potentially long-lived events so use a longer timeout. This is shaky 1226 * logic as a failure to make progress could be due to anything from 1227 * writeback to a slow device to excessive referenced folios at the tail 1228 * of the inactive LRU. 1229 */ 1230 switch(reason) { 1231 case VMSCAN_THROTTLE_WRITEBACK: 1232 timeout = HZ/10; 1233 1234 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1235 WRITE_ONCE(pgdat->nr_reclaim_start, 1236 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1237 } 1238 1239 break; 1240 case VMSCAN_THROTTLE_CONGESTED: 1241 fallthrough; 1242 case VMSCAN_THROTTLE_NOPROGRESS: 1243 if (skip_throttle_noprogress(pgdat)) { 1244 cond_resched(); 1245 return; 1246 } 1247 1248 timeout = 1; 1249 1250 break; 1251 case VMSCAN_THROTTLE_ISOLATED: 1252 timeout = HZ/50; 1253 break; 1254 default: 1255 WARN_ON_ONCE(1); 1256 timeout = HZ; 1257 break; 1258 } 1259 1260 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1261 ret = schedule_timeout(timeout); 1262 finish_wait(wqh, &wait); 1263 1264 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1265 atomic_dec(&pgdat->nr_writeback_throttled); 1266 1267 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1268 jiffies_to_usecs(timeout - ret), 1269 reason); 1270 } 1271 1272 /* 1273 * Account for folios written if tasks are throttled waiting on dirty 1274 * folios to clean. If enough folios have been cleaned since throttling 1275 * started then wakeup the throttled tasks. 1276 */ 1277 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1278 int nr_throttled) 1279 { 1280 unsigned long nr_written; 1281 1282 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1283 1284 /* 1285 * This is an inaccurate read as the per-cpu deltas may not 1286 * be synchronised. However, given that the system is 1287 * writeback throttled, it is not worth taking the penalty 1288 * of getting an accurate count. At worst, the throttle 1289 * timeout guarantees forward progress. 1290 */ 1291 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1292 READ_ONCE(pgdat->nr_reclaim_start); 1293 1294 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1295 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1296 } 1297 1298 /* possible outcome of pageout() */ 1299 typedef enum { 1300 /* failed to write folio out, folio is locked */ 1301 PAGE_KEEP, 1302 /* move folio to the active list, folio is locked */ 1303 PAGE_ACTIVATE, 1304 /* folio has been sent to the disk successfully, folio is unlocked */ 1305 PAGE_SUCCESS, 1306 /* folio is clean and locked */ 1307 PAGE_CLEAN, 1308 } pageout_t; 1309 1310 /* 1311 * pageout is called by shrink_folio_list() for each dirty folio. 1312 * Calls ->writepage(). 1313 */ 1314 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1315 struct swap_iocb **plug) 1316 { 1317 /* 1318 * If the folio is dirty, only perform writeback if that write 1319 * will be non-blocking. To prevent this allocation from being 1320 * stalled by pagecache activity. But note that there may be 1321 * stalls if we need to run get_block(). We could test 1322 * PagePrivate for that. 1323 * 1324 * If this process is currently in __generic_file_write_iter() against 1325 * this folio's queue, we can perform writeback even if that 1326 * will block. 1327 * 1328 * If the folio is swapcache, write it back even if that would 1329 * block, for some throttling. This happens by accident, because 1330 * swap_backing_dev_info is bust: it doesn't reflect the 1331 * congestion state of the swapdevs. Easy to fix, if needed. 1332 */ 1333 if (!is_page_cache_freeable(folio)) 1334 return PAGE_KEEP; 1335 if (!mapping) { 1336 /* 1337 * Some data journaling orphaned folios can have 1338 * folio->mapping == NULL while being dirty with clean buffers. 1339 */ 1340 if (folio_test_private(folio)) { 1341 if (try_to_free_buffers(folio)) { 1342 folio_clear_dirty(folio); 1343 pr_info("%s: orphaned folio\n", __func__); 1344 return PAGE_CLEAN; 1345 } 1346 } 1347 return PAGE_KEEP; 1348 } 1349 if (mapping->a_ops->writepage == NULL) 1350 return PAGE_ACTIVATE; 1351 1352 if (folio_clear_dirty_for_io(folio)) { 1353 int res; 1354 struct writeback_control wbc = { 1355 .sync_mode = WB_SYNC_NONE, 1356 .nr_to_write = SWAP_CLUSTER_MAX, 1357 .range_start = 0, 1358 .range_end = LLONG_MAX, 1359 .for_reclaim = 1, 1360 .swap_plug = plug, 1361 }; 1362 1363 folio_set_reclaim(folio); 1364 res = mapping->a_ops->writepage(&folio->page, &wbc); 1365 if (res < 0) 1366 handle_write_error(mapping, folio, res); 1367 if (res == AOP_WRITEPAGE_ACTIVATE) { 1368 folio_clear_reclaim(folio); 1369 return PAGE_ACTIVATE; 1370 } 1371 1372 if (!folio_test_writeback(folio)) { 1373 /* synchronous write or broken a_ops? */ 1374 folio_clear_reclaim(folio); 1375 } 1376 trace_mm_vmscan_write_folio(folio); 1377 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1378 return PAGE_SUCCESS; 1379 } 1380 1381 return PAGE_CLEAN; 1382 } 1383 1384 /* 1385 * Same as remove_mapping, but if the folio is removed from the mapping, it 1386 * gets returned with a refcount of 0. 1387 */ 1388 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1389 bool reclaimed, struct mem_cgroup *target_memcg) 1390 { 1391 int refcount; 1392 void *shadow = NULL; 1393 1394 BUG_ON(!folio_test_locked(folio)); 1395 BUG_ON(mapping != folio_mapping(folio)); 1396 1397 if (!folio_test_swapcache(folio)) 1398 spin_lock(&mapping->host->i_lock); 1399 xa_lock_irq(&mapping->i_pages); 1400 /* 1401 * The non racy check for a busy folio. 1402 * 1403 * Must be careful with the order of the tests. When someone has 1404 * a ref to the folio, it may be possible that they dirty it then 1405 * drop the reference. So if the dirty flag is tested before the 1406 * refcount here, then the following race may occur: 1407 * 1408 * get_user_pages(&page); 1409 * [user mapping goes away] 1410 * write_to(page); 1411 * !folio_test_dirty(folio) [good] 1412 * folio_set_dirty(folio); 1413 * folio_put(folio); 1414 * !refcount(folio) [good, discard it] 1415 * 1416 * [oops, our write_to data is lost] 1417 * 1418 * Reversing the order of the tests ensures such a situation cannot 1419 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1420 * load is not satisfied before that of folio->_refcount. 1421 * 1422 * Note that if the dirty flag is always set via folio_mark_dirty, 1423 * and thus under the i_pages lock, then this ordering is not required. 1424 */ 1425 refcount = 1 + folio_nr_pages(folio); 1426 if (!folio_ref_freeze(folio, refcount)) 1427 goto cannot_free; 1428 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1429 if (unlikely(folio_test_dirty(folio))) { 1430 folio_ref_unfreeze(folio, refcount); 1431 goto cannot_free; 1432 } 1433 1434 if (folio_test_swapcache(folio)) { 1435 swp_entry_t swap = folio_swap_entry(folio); 1436 1437 if (reclaimed && !mapping_exiting(mapping)) 1438 shadow = workingset_eviction(folio, target_memcg); 1439 __delete_from_swap_cache(folio, swap, shadow); 1440 mem_cgroup_swapout(folio, swap); 1441 xa_unlock_irq(&mapping->i_pages); 1442 put_swap_folio(folio, swap); 1443 } else { 1444 void (*free_folio)(struct folio *); 1445 1446 free_folio = mapping->a_ops->free_folio; 1447 /* 1448 * Remember a shadow entry for reclaimed file cache in 1449 * order to detect refaults, thus thrashing, later on. 1450 * 1451 * But don't store shadows in an address space that is 1452 * already exiting. This is not just an optimization, 1453 * inode reclaim needs to empty out the radix tree or 1454 * the nodes are lost. Don't plant shadows behind its 1455 * back. 1456 * 1457 * We also don't store shadows for DAX mappings because the 1458 * only page cache folios found in these are zero pages 1459 * covering holes, and because we don't want to mix DAX 1460 * exceptional entries and shadow exceptional entries in the 1461 * same address_space. 1462 */ 1463 if (reclaimed && folio_is_file_lru(folio) && 1464 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1465 shadow = workingset_eviction(folio, target_memcg); 1466 __filemap_remove_folio(folio, shadow); 1467 xa_unlock_irq(&mapping->i_pages); 1468 if (mapping_shrinkable(mapping)) 1469 inode_add_lru(mapping->host); 1470 spin_unlock(&mapping->host->i_lock); 1471 1472 if (free_folio) 1473 free_folio(folio); 1474 } 1475 1476 return 1; 1477 1478 cannot_free: 1479 xa_unlock_irq(&mapping->i_pages); 1480 if (!folio_test_swapcache(folio)) 1481 spin_unlock(&mapping->host->i_lock); 1482 return 0; 1483 } 1484 1485 /** 1486 * remove_mapping() - Attempt to remove a folio from its mapping. 1487 * @mapping: The address space. 1488 * @folio: The folio to remove. 1489 * 1490 * If the folio is dirty, under writeback or if someone else has a ref 1491 * on it, removal will fail. 1492 * Return: The number of pages removed from the mapping. 0 if the folio 1493 * could not be removed. 1494 * Context: The caller should have a single refcount on the folio and 1495 * hold its lock. 1496 */ 1497 long remove_mapping(struct address_space *mapping, struct folio *folio) 1498 { 1499 if (__remove_mapping(mapping, folio, false, NULL)) { 1500 /* 1501 * Unfreezing the refcount with 1 effectively 1502 * drops the pagecache ref for us without requiring another 1503 * atomic operation. 1504 */ 1505 folio_ref_unfreeze(folio, 1); 1506 return folio_nr_pages(folio); 1507 } 1508 return 0; 1509 } 1510 1511 /** 1512 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1513 * @folio: Folio to be returned to an LRU list. 1514 * 1515 * Add previously isolated @folio to appropriate LRU list. 1516 * The folio may still be unevictable for other reasons. 1517 * 1518 * Context: lru_lock must not be held, interrupts must be enabled. 1519 */ 1520 void folio_putback_lru(struct folio *folio) 1521 { 1522 folio_add_lru(folio); 1523 folio_put(folio); /* drop ref from isolate */ 1524 } 1525 1526 enum folio_references { 1527 FOLIOREF_RECLAIM, 1528 FOLIOREF_RECLAIM_CLEAN, 1529 FOLIOREF_KEEP, 1530 FOLIOREF_ACTIVATE, 1531 }; 1532 1533 static enum folio_references folio_check_references(struct folio *folio, 1534 struct scan_control *sc) 1535 { 1536 int referenced_ptes, referenced_folio; 1537 unsigned long vm_flags; 1538 1539 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1540 &vm_flags); 1541 referenced_folio = folio_test_clear_referenced(folio); 1542 1543 /* 1544 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1545 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1546 */ 1547 if (vm_flags & VM_LOCKED) 1548 return FOLIOREF_ACTIVATE; 1549 1550 /* rmap lock contention: rotate */ 1551 if (referenced_ptes == -1) 1552 return FOLIOREF_KEEP; 1553 1554 if (referenced_ptes) { 1555 /* 1556 * All mapped folios start out with page table 1557 * references from the instantiating fault, so we need 1558 * to look twice if a mapped file/anon folio is used more 1559 * than once. 1560 * 1561 * Mark it and spare it for another trip around the 1562 * inactive list. Another page table reference will 1563 * lead to its activation. 1564 * 1565 * Note: the mark is set for activated folios as well 1566 * so that recently deactivated but used folios are 1567 * quickly recovered. 1568 */ 1569 folio_set_referenced(folio); 1570 1571 if (referenced_folio || referenced_ptes > 1) 1572 return FOLIOREF_ACTIVATE; 1573 1574 /* 1575 * Activate file-backed executable folios after first usage. 1576 */ 1577 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1578 return FOLIOREF_ACTIVATE; 1579 1580 return FOLIOREF_KEEP; 1581 } 1582 1583 /* Reclaim if clean, defer dirty folios to writeback */ 1584 if (referenced_folio && folio_is_file_lru(folio)) 1585 return FOLIOREF_RECLAIM_CLEAN; 1586 1587 return FOLIOREF_RECLAIM; 1588 } 1589 1590 /* Check if a folio is dirty or under writeback */ 1591 static void folio_check_dirty_writeback(struct folio *folio, 1592 bool *dirty, bool *writeback) 1593 { 1594 struct address_space *mapping; 1595 1596 /* 1597 * Anonymous folios are not handled by flushers and must be written 1598 * from reclaim context. Do not stall reclaim based on them. 1599 * MADV_FREE anonymous folios are put into inactive file list too. 1600 * They could be mistakenly treated as file lru. So further anon 1601 * test is needed. 1602 */ 1603 if (!folio_is_file_lru(folio) || 1604 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1605 *dirty = false; 1606 *writeback = false; 1607 return; 1608 } 1609 1610 /* By default assume that the folio flags are accurate */ 1611 *dirty = folio_test_dirty(folio); 1612 *writeback = folio_test_writeback(folio); 1613 1614 /* Verify dirty/writeback state if the filesystem supports it */ 1615 if (!folio_test_private(folio)) 1616 return; 1617 1618 mapping = folio_mapping(folio); 1619 if (mapping && mapping->a_ops->is_dirty_writeback) 1620 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1621 } 1622 1623 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1624 { 1625 struct page *target_page; 1626 nodemask_t *allowed_mask; 1627 struct migration_target_control *mtc; 1628 1629 mtc = (struct migration_target_control *)private; 1630 1631 allowed_mask = mtc->nmask; 1632 /* 1633 * make sure we allocate from the target node first also trying to 1634 * demote or reclaim pages from the target node via kswapd if we are 1635 * low on free memory on target node. If we don't do this and if 1636 * we have free memory on the slower(lower) memtier, we would start 1637 * allocating pages from slower(lower) memory tiers without even forcing 1638 * a demotion of cold pages from the target memtier. This can result 1639 * in the kernel placing hot pages in slower(lower) memory tiers. 1640 */ 1641 mtc->nmask = NULL; 1642 mtc->gfp_mask |= __GFP_THISNODE; 1643 target_page = alloc_migration_target(page, (unsigned long)mtc); 1644 if (target_page) 1645 return target_page; 1646 1647 mtc->gfp_mask &= ~__GFP_THISNODE; 1648 mtc->nmask = allowed_mask; 1649 1650 return alloc_migration_target(page, (unsigned long)mtc); 1651 } 1652 1653 /* 1654 * Take folios on @demote_folios and attempt to demote them to another node. 1655 * Folios which are not demoted are left on @demote_folios. 1656 */ 1657 static unsigned int demote_folio_list(struct list_head *demote_folios, 1658 struct pglist_data *pgdat) 1659 { 1660 int target_nid = next_demotion_node(pgdat->node_id); 1661 unsigned int nr_succeeded; 1662 nodemask_t allowed_mask; 1663 1664 struct migration_target_control mtc = { 1665 /* 1666 * Allocate from 'node', or fail quickly and quietly. 1667 * When this happens, 'page' will likely just be discarded 1668 * instead of migrated. 1669 */ 1670 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1671 __GFP_NOMEMALLOC | GFP_NOWAIT, 1672 .nid = target_nid, 1673 .nmask = &allowed_mask 1674 }; 1675 1676 if (list_empty(demote_folios)) 1677 return 0; 1678 1679 if (target_nid == NUMA_NO_NODE) 1680 return 0; 1681 1682 node_get_allowed_targets(pgdat, &allowed_mask); 1683 1684 /* Demotion ignores all cpuset and mempolicy settings */ 1685 migrate_pages(demote_folios, alloc_demote_page, NULL, 1686 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1687 &nr_succeeded); 1688 1689 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1690 1691 return nr_succeeded; 1692 } 1693 1694 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1695 { 1696 if (gfp_mask & __GFP_FS) 1697 return true; 1698 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1699 return false; 1700 /* 1701 * We can "enter_fs" for swap-cache with only __GFP_IO 1702 * providing this isn't SWP_FS_OPS. 1703 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1704 * but that will never affect SWP_FS_OPS, so the data_race 1705 * is safe. 1706 */ 1707 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1708 } 1709 1710 /* 1711 * shrink_folio_list() returns the number of reclaimed pages 1712 */ 1713 static unsigned int shrink_folio_list(struct list_head *folio_list, 1714 struct pglist_data *pgdat, struct scan_control *sc, 1715 struct reclaim_stat *stat, bool ignore_references) 1716 { 1717 LIST_HEAD(ret_folios); 1718 LIST_HEAD(free_folios); 1719 LIST_HEAD(demote_folios); 1720 unsigned int nr_reclaimed = 0; 1721 unsigned int pgactivate = 0; 1722 bool do_demote_pass; 1723 struct swap_iocb *plug = NULL; 1724 1725 memset(stat, 0, sizeof(*stat)); 1726 cond_resched(); 1727 do_demote_pass = can_demote(pgdat->node_id, sc); 1728 1729 retry: 1730 while (!list_empty(folio_list)) { 1731 struct address_space *mapping; 1732 struct folio *folio; 1733 enum folio_references references = FOLIOREF_RECLAIM; 1734 bool dirty, writeback; 1735 unsigned int nr_pages; 1736 1737 cond_resched(); 1738 1739 folio = lru_to_folio(folio_list); 1740 list_del(&folio->lru); 1741 1742 if (!folio_trylock(folio)) 1743 goto keep; 1744 1745 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1746 1747 nr_pages = folio_nr_pages(folio); 1748 1749 /* Account the number of base pages */ 1750 sc->nr_scanned += nr_pages; 1751 1752 if (unlikely(!folio_evictable(folio))) 1753 goto activate_locked; 1754 1755 if (!sc->may_unmap && folio_mapped(folio)) 1756 goto keep_locked; 1757 1758 /* folio_update_gen() tried to promote this page? */ 1759 if (lru_gen_enabled() && !ignore_references && 1760 folio_mapped(folio) && folio_test_referenced(folio)) 1761 goto keep_locked; 1762 1763 /* 1764 * The number of dirty pages determines if a node is marked 1765 * reclaim_congested. kswapd will stall and start writing 1766 * folios if the tail of the LRU is all dirty unqueued folios. 1767 */ 1768 folio_check_dirty_writeback(folio, &dirty, &writeback); 1769 if (dirty || writeback) 1770 stat->nr_dirty += nr_pages; 1771 1772 if (dirty && !writeback) 1773 stat->nr_unqueued_dirty += nr_pages; 1774 1775 /* 1776 * Treat this folio as congested if folios are cycling 1777 * through the LRU so quickly that the folios marked 1778 * for immediate reclaim are making it to the end of 1779 * the LRU a second time. 1780 */ 1781 if (writeback && folio_test_reclaim(folio)) 1782 stat->nr_congested += nr_pages; 1783 1784 /* 1785 * If a folio at the tail of the LRU is under writeback, there 1786 * are three cases to consider. 1787 * 1788 * 1) If reclaim is encountering an excessive number 1789 * of folios under writeback and this folio has both 1790 * the writeback and reclaim flags set, then it 1791 * indicates that folios are being queued for I/O but 1792 * are being recycled through the LRU before the I/O 1793 * can complete. Waiting on the folio itself risks an 1794 * indefinite stall if it is impossible to writeback 1795 * the folio due to I/O error or disconnected storage 1796 * so instead note that the LRU is being scanned too 1797 * quickly and the caller can stall after the folio 1798 * list has been processed. 1799 * 1800 * 2) Global or new memcg reclaim encounters a folio that is 1801 * not marked for immediate reclaim, or the caller does not 1802 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1803 * not to fs). In this case mark the folio for immediate 1804 * reclaim and continue scanning. 1805 * 1806 * Require may_enter_fs() because we would wait on fs, which 1807 * may not have submitted I/O yet. And the loop driver might 1808 * enter reclaim, and deadlock if it waits on a folio for 1809 * which it is needed to do the write (loop masks off 1810 * __GFP_IO|__GFP_FS for this reason); but more thought 1811 * would probably show more reasons. 1812 * 1813 * 3) Legacy memcg encounters a folio that already has the 1814 * reclaim flag set. memcg does not have any dirty folio 1815 * throttling so we could easily OOM just because too many 1816 * folios are in writeback and there is nothing else to 1817 * reclaim. Wait for the writeback to complete. 1818 * 1819 * In cases 1) and 2) we activate the folios to get them out of 1820 * the way while we continue scanning for clean folios on the 1821 * inactive list and refilling from the active list. The 1822 * observation here is that waiting for disk writes is more 1823 * expensive than potentially causing reloads down the line. 1824 * Since they're marked for immediate reclaim, they won't put 1825 * memory pressure on the cache working set any longer than it 1826 * takes to write them to disk. 1827 */ 1828 if (folio_test_writeback(folio)) { 1829 /* Case 1 above */ 1830 if (current_is_kswapd() && 1831 folio_test_reclaim(folio) && 1832 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1833 stat->nr_immediate += nr_pages; 1834 goto activate_locked; 1835 1836 /* Case 2 above */ 1837 } else if (writeback_throttling_sane(sc) || 1838 !folio_test_reclaim(folio) || 1839 !may_enter_fs(folio, sc->gfp_mask)) { 1840 /* 1841 * This is slightly racy - 1842 * folio_end_writeback() might have 1843 * just cleared the reclaim flag, then 1844 * setting the reclaim flag here ends up 1845 * interpreted as the readahead flag - but 1846 * that does not matter enough to care. 1847 * What we do want is for this folio to 1848 * have the reclaim flag set next time 1849 * memcg reclaim reaches the tests above, 1850 * so it will then wait for writeback to 1851 * avoid OOM; and it's also appropriate 1852 * in global reclaim. 1853 */ 1854 folio_set_reclaim(folio); 1855 stat->nr_writeback += nr_pages; 1856 goto activate_locked; 1857 1858 /* Case 3 above */ 1859 } else { 1860 folio_unlock(folio); 1861 folio_wait_writeback(folio); 1862 /* then go back and try same folio again */ 1863 list_add_tail(&folio->lru, folio_list); 1864 continue; 1865 } 1866 } 1867 1868 if (!ignore_references) 1869 references = folio_check_references(folio, sc); 1870 1871 switch (references) { 1872 case FOLIOREF_ACTIVATE: 1873 goto activate_locked; 1874 case FOLIOREF_KEEP: 1875 stat->nr_ref_keep += nr_pages; 1876 goto keep_locked; 1877 case FOLIOREF_RECLAIM: 1878 case FOLIOREF_RECLAIM_CLEAN: 1879 ; /* try to reclaim the folio below */ 1880 } 1881 1882 /* 1883 * Before reclaiming the folio, try to relocate 1884 * its contents to another node. 1885 */ 1886 if (do_demote_pass && 1887 (thp_migration_supported() || !folio_test_large(folio))) { 1888 list_add(&folio->lru, &demote_folios); 1889 folio_unlock(folio); 1890 continue; 1891 } 1892 1893 /* 1894 * Anonymous process memory has backing store? 1895 * Try to allocate it some swap space here. 1896 * Lazyfree folio could be freed directly 1897 */ 1898 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1899 if (!folio_test_swapcache(folio)) { 1900 if (!(sc->gfp_mask & __GFP_IO)) 1901 goto keep_locked; 1902 if (folio_maybe_dma_pinned(folio)) 1903 goto keep_locked; 1904 if (folio_test_large(folio)) { 1905 /* cannot split folio, skip it */ 1906 if (!can_split_folio(folio, NULL)) 1907 goto activate_locked; 1908 /* 1909 * Split folios without a PMD map right 1910 * away. Chances are some or all of the 1911 * tail pages can be freed without IO. 1912 */ 1913 if (!folio_entire_mapcount(folio) && 1914 split_folio_to_list(folio, 1915 folio_list)) 1916 goto activate_locked; 1917 } 1918 if (!add_to_swap(folio)) { 1919 if (!folio_test_large(folio)) 1920 goto activate_locked_split; 1921 /* Fallback to swap normal pages */ 1922 if (split_folio_to_list(folio, 1923 folio_list)) 1924 goto activate_locked; 1925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1926 count_vm_event(THP_SWPOUT_FALLBACK); 1927 #endif 1928 if (!add_to_swap(folio)) 1929 goto activate_locked_split; 1930 } 1931 } 1932 } else if (folio_test_swapbacked(folio) && 1933 folio_test_large(folio)) { 1934 /* Split shmem folio */ 1935 if (split_folio_to_list(folio, folio_list)) 1936 goto keep_locked; 1937 } 1938 1939 /* 1940 * If the folio was split above, the tail pages will make 1941 * their own pass through this function and be accounted 1942 * then. 1943 */ 1944 if ((nr_pages > 1) && !folio_test_large(folio)) { 1945 sc->nr_scanned -= (nr_pages - 1); 1946 nr_pages = 1; 1947 } 1948 1949 /* 1950 * The folio is mapped into the page tables of one or more 1951 * processes. Try to unmap it here. 1952 */ 1953 if (folio_mapped(folio)) { 1954 enum ttu_flags flags = TTU_BATCH_FLUSH; 1955 bool was_swapbacked = folio_test_swapbacked(folio); 1956 1957 if (folio_test_pmd_mappable(folio)) 1958 flags |= TTU_SPLIT_HUGE_PMD; 1959 1960 try_to_unmap(folio, flags); 1961 if (folio_mapped(folio)) { 1962 stat->nr_unmap_fail += nr_pages; 1963 if (!was_swapbacked && 1964 folio_test_swapbacked(folio)) 1965 stat->nr_lazyfree_fail += nr_pages; 1966 goto activate_locked; 1967 } 1968 } 1969 1970 mapping = folio_mapping(folio); 1971 if (folio_test_dirty(folio)) { 1972 /* 1973 * Only kswapd can writeback filesystem folios 1974 * to avoid risk of stack overflow. But avoid 1975 * injecting inefficient single-folio I/O into 1976 * flusher writeback as much as possible: only 1977 * write folios when we've encountered many 1978 * dirty folios, and when we've already scanned 1979 * the rest of the LRU for clean folios and see 1980 * the same dirty folios again (with the reclaim 1981 * flag set). 1982 */ 1983 if (folio_is_file_lru(folio) && 1984 (!current_is_kswapd() || 1985 !folio_test_reclaim(folio) || 1986 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1987 /* 1988 * Immediately reclaim when written back. 1989 * Similar in principle to folio_deactivate() 1990 * except we already have the folio isolated 1991 * and know it's dirty 1992 */ 1993 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1994 nr_pages); 1995 folio_set_reclaim(folio); 1996 1997 goto activate_locked; 1998 } 1999 2000 if (references == FOLIOREF_RECLAIM_CLEAN) 2001 goto keep_locked; 2002 if (!may_enter_fs(folio, sc->gfp_mask)) 2003 goto keep_locked; 2004 if (!sc->may_writepage) 2005 goto keep_locked; 2006 2007 /* 2008 * Folio is dirty. Flush the TLB if a writable entry 2009 * potentially exists to avoid CPU writes after I/O 2010 * starts and then write it out here. 2011 */ 2012 try_to_unmap_flush_dirty(); 2013 switch (pageout(folio, mapping, &plug)) { 2014 case PAGE_KEEP: 2015 goto keep_locked; 2016 case PAGE_ACTIVATE: 2017 goto activate_locked; 2018 case PAGE_SUCCESS: 2019 stat->nr_pageout += nr_pages; 2020 2021 if (folio_test_writeback(folio)) 2022 goto keep; 2023 if (folio_test_dirty(folio)) 2024 goto keep; 2025 2026 /* 2027 * A synchronous write - probably a ramdisk. Go 2028 * ahead and try to reclaim the folio. 2029 */ 2030 if (!folio_trylock(folio)) 2031 goto keep; 2032 if (folio_test_dirty(folio) || 2033 folio_test_writeback(folio)) 2034 goto keep_locked; 2035 mapping = folio_mapping(folio); 2036 fallthrough; 2037 case PAGE_CLEAN: 2038 ; /* try to free the folio below */ 2039 } 2040 } 2041 2042 /* 2043 * If the folio has buffers, try to free the buffer 2044 * mappings associated with this folio. If we succeed 2045 * we try to free the folio as well. 2046 * 2047 * We do this even if the folio is dirty. 2048 * filemap_release_folio() does not perform I/O, but it 2049 * is possible for a folio to have the dirty flag set, 2050 * but it is actually clean (all its buffers are clean). 2051 * This happens if the buffers were written out directly, 2052 * with submit_bh(). ext3 will do this, as well as 2053 * the blockdev mapping. filemap_release_folio() will 2054 * discover that cleanness and will drop the buffers 2055 * and mark the folio clean - it can be freed. 2056 * 2057 * Rarely, folios can have buffers and no ->mapping. 2058 * These are the folios which were not successfully 2059 * invalidated in truncate_cleanup_folio(). We try to 2060 * drop those buffers here and if that worked, and the 2061 * folio is no longer mapped into process address space 2062 * (refcount == 1) it can be freed. Otherwise, leave 2063 * the folio on the LRU so it is swappable. 2064 */ 2065 if (folio_has_private(folio)) { 2066 if (!filemap_release_folio(folio, sc->gfp_mask)) 2067 goto activate_locked; 2068 if (!mapping && folio_ref_count(folio) == 1) { 2069 folio_unlock(folio); 2070 if (folio_put_testzero(folio)) 2071 goto free_it; 2072 else { 2073 /* 2074 * rare race with speculative reference. 2075 * the speculative reference will free 2076 * this folio shortly, so we may 2077 * increment nr_reclaimed here (and 2078 * leave it off the LRU). 2079 */ 2080 nr_reclaimed += nr_pages; 2081 continue; 2082 } 2083 } 2084 } 2085 2086 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2087 /* follow __remove_mapping for reference */ 2088 if (!folio_ref_freeze(folio, 1)) 2089 goto keep_locked; 2090 /* 2091 * The folio has only one reference left, which is 2092 * from the isolation. After the caller puts the 2093 * folio back on the lru and drops the reference, the 2094 * folio will be freed anyway. It doesn't matter 2095 * which lru it goes on. So we don't bother checking 2096 * the dirty flag here. 2097 */ 2098 count_vm_events(PGLAZYFREED, nr_pages); 2099 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2100 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2101 sc->target_mem_cgroup)) 2102 goto keep_locked; 2103 2104 folio_unlock(folio); 2105 free_it: 2106 /* 2107 * Folio may get swapped out as a whole, need to account 2108 * all pages in it. 2109 */ 2110 nr_reclaimed += nr_pages; 2111 2112 /* 2113 * Is there need to periodically free_folio_list? It would 2114 * appear not as the counts should be low 2115 */ 2116 if (unlikely(folio_test_large(folio))) 2117 destroy_large_folio(folio); 2118 else 2119 list_add(&folio->lru, &free_folios); 2120 continue; 2121 2122 activate_locked_split: 2123 /* 2124 * The tail pages that are failed to add into swap cache 2125 * reach here. Fixup nr_scanned and nr_pages. 2126 */ 2127 if (nr_pages > 1) { 2128 sc->nr_scanned -= (nr_pages - 1); 2129 nr_pages = 1; 2130 } 2131 activate_locked: 2132 /* Not a candidate for swapping, so reclaim swap space. */ 2133 if (folio_test_swapcache(folio) && 2134 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2135 folio_free_swap(folio); 2136 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2137 if (!folio_test_mlocked(folio)) { 2138 int type = folio_is_file_lru(folio); 2139 folio_set_active(folio); 2140 stat->nr_activate[type] += nr_pages; 2141 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2142 } 2143 keep_locked: 2144 folio_unlock(folio); 2145 keep: 2146 list_add(&folio->lru, &ret_folios); 2147 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2148 folio_test_unevictable(folio), folio); 2149 } 2150 /* 'folio_list' is always empty here */ 2151 2152 /* Migrate folios selected for demotion */ 2153 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2154 /* Folios that could not be demoted are still in @demote_folios */ 2155 if (!list_empty(&demote_folios)) { 2156 /* Folios which weren't demoted go back on @folio_list */ 2157 list_splice_init(&demote_folios, folio_list); 2158 2159 /* 2160 * goto retry to reclaim the undemoted folios in folio_list if 2161 * desired. 2162 * 2163 * Reclaiming directly from top tier nodes is not often desired 2164 * due to it breaking the LRU ordering: in general memory 2165 * should be reclaimed from lower tier nodes and demoted from 2166 * top tier nodes. 2167 * 2168 * However, disabling reclaim from top tier nodes entirely 2169 * would cause ooms in edge scenarios where lower tier memory 2170 * is unreclaimable for whatever reason, eg memory being 2171 * mlocked or too hot to reclaim. We can disable reclaim 2172 * from top tier nodes in proactive reclaim though as that is 2173 * not real memory pressure. 2174 */ 2175 if (!sc->proactive) { 2176 do_demote_pass = false; 2177 goto retry; 2178 } 2179 } 2180 2181 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2182 2183 mem_cgroup_uncharge_list(&free_folios); 2184 try_to_unmap_flush(); 2185 free_unref_page_list(&free_folios); 2186 2187 list_splice(&ret_folios, folio_list); 2188 count_vm_events(PGACTIVATE, pgactivate); 2189 2190 if (plug) 2191 swap_write_unplug(plug); 2192 return nr_reclaimed; 2193 } 2194 2195 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2196 struct list_head *folio_list) 2197 { 2198 struct scan_control sc = { 2199 .gfp_mask = GFP_KERNEL, 2200 .may_unmap = 1, 2201 }; 2202 struct reclaim_stat stat; 2203 unsigned int nr_reclaimed; 2204 struct folio *folio, *next; 2205 LIST_HEAD(clean_folios); 2206 unsigned int noreclaim_flag; 2207 2208 list_for_each_entry_safe(folio, next, folio_list, lru) { 2209 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2210 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2211 !folio_test_unevictable(folio)) { 2212 folio_clear_active(folio); 2213 list_move(&folio->lru, &clean_folios); 2214 } 2215 } 2216 2217 /* 2218 * We should be safe here since we are only dealing with file pages and 2219 * we are not kswapd and therefore cannot write dirty file pages. But 2220 * call memalloc_noreclaim_save() anyway, just in case these conditions 2221 * change in the future. 2222 */ 2223 noreclaim_flag = memalloc_noreclaim_save(); 2224 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2225 &stat, true); 2226 memalloc_noreclaim_restore(noreclaim_flag); 2227 2228 list_splice(&clean_folios, folio_list); 2229 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2230 -(long)nr_reclaimed); 2231 /* 2232 * Since lazyfree pages are isolated from file LRU from the beginning, 2233 * they will rotate back to anonymous LRU in the end if it failed to 2234 * discard so isolated count will be mismatched. 2235 * Compensate the isolated count for both LRU lists. 2236 */ 2237 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2238 stat.nr_lazyfree_fail); 2239 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2240 -(long)stat.nr_lazyfree_fail); 2241 return nr_reclaimed; 2242 } 2243 2244 /* 2245 * Update LRU sizes after isolating pages. The LRU size updates must 2246 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2247 */ 2248 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2249 enum lru_list lru, unsigned long *nr_zone_taken) 2250 { 2251 int zid; 2252 2253 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2254 if (!nr_zone_taken[zid]) 2255 continue; 2256 2257 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2258 } 2259 2260 } 2261 2262 /* 2263 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2264 * 2265 * lruvec->lru_lock is heavily contended. Some of the functions that 2266 * shrink the lists perform better by taking out a batch of pages 2267 * and working on them outside the LRU lock. 2268 * 2269 * For pagecache intensive workloads, this function is the hottest 2270 * spot in the kernel (apart from copy_*_user functions). 2271 * 2272 * Lru_lock must be held before calling this function. 2273 * 2274 * @nr_to_scan: The number of eligible pages to look through on the list. 2275 * @lruvec: The LRU vector to pull pages from. 2276 * @dst: The temp list to put pages on to. 2277 * @nr_scanned: The number of pages that were scanned. 2278 * @sc: The scan_control struct for this reclaim session 2279 * @lru: LRU list id for isolating 2280 * 2281 * returns how many pages were moved onto *@dst. 2282 */ 2283 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2284 struct lruvec *lruvec, struct list_head *dst, 2285 unsigned long *nr_scanned, struct scan_control *sc, 2286 enum lru_list lru) 2287 { 2288 struct list_head *src = &lruvec->lists[lru]; 2289 unsigned long nr_taken = 0; 2290 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2291 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2292 unsigned long skipped = 0; 2293 unsigned long scan, total_scan, nr_pages; 2294 LIST_HEAD(folios_skipped); 2295 2296 total_scan = 0; 2297 scan = 0; 2298 while (scan < nr_to_scan && !list_empty(src)) { 2299 struct list_head *move_to = src; 2300 struct folio *folio; 2301 2302 folio = lru_to_folio(src); 2303 prefetchw_prev_lru_folio(folio, src, flags); 2304 2305 nr_pages = folio_nr_pages(folio); 2306 total_scan += nr_pages; 2307 2308 if (folio_zonenum(folio) > sc->reclaim_idx) { 2309 nr_skipped[folio_zonenum(folio)] += nr_pages; 2310 move_to = &folios_skipped; 2311 goto move; 2312 } 2313 2314 /* 2315 * Do not count skipped folios because that makes the function 2316 * return with no isolated folios if the LRU mostly contains 2317 * ineligible folios. This causes the VM to not reclaim any 2318 * folios, triggering a premature OOM. 2319 * Account all pages in a folio. 2320 */ 2321 scan += nr_pages; 2322 2323 if (!folio_test_lru(folio)) 2324 goto move; 2325 if (!sc->may_unmap && folio_mapped(folio)) 2326 goto move; 2327 2328 /* 2329 * Be careful not to clear the lru flag until after we're 2330 * sure the folio is not being freed elsewhere -- the 2331 * folio release code relies on it. 2332 */ 2333 if (unlikely(!folio_try_get(folio))) 2334 goto move; 2335 2336 if (!folio_test_clear_lru(folio)) { 2337 /* Another thread is already isolating this folio */ 2338 folio_put(folio); 2339 goto move; 2340 } 2341 2342 nr_taken += nr_pages; 2343 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2344 move_to = dst; 2345 move: 2346 list_move(&folio->lru, move_to); 2347 } 2348 2349 /* 2350 * Splice any skipped folios to the start of the LRU list. Note that 2351 * this disrupts the LRU order when reclaiming for lower zones but 2352 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2353 * scanning would soon rescan the same folios to skip and waste lots 2354 * of cpu cycles. 2355 */ 2356 if (!list_empty(&folios_skipped)) { 2357 int zid; 2358 2359 list_splice(&folios_skipped, src); 2360 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2361 if (!nr_skipped[zid]) 2362 continue; 2363 2364 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2365 skipped += nr_skipped[zid]; 2366 } 2367 } 2368 *nr_scanned = total_scan; 2369 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2370 total_scan, skipped, nr_taken, 2371 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2372 update_lru_sizes(lruvec, lru, nr_zone_taken); 2373 return nr_taken; 2374 } 2375 2376 /** 2377 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2378 * @folio: Folio to isolate from its LRU list. 2379 * 2380 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2381 * corresponding to whatever LRU list the folio was on. 2382 * 2383 * The folio will have its LRU flag cleared. If it was found on the 2384 * active list, it will have the Active flag set. If it was found on the 2385 * unevictable list, it will have the Unevictable flag set. These flags 2386 * may need to be cleared by the caller before letting the page go. 2387 * 2388 * Context: 2389 * 2390 * (1) Must be called with an elevated refcount on the folio. This is a 2391 * fundamental difference from isolate_lru_folios() (which is called 2392 * without a stable reference). 2393 * (2) The lru_lock must not be held. 2394 * (3) Interrupts must be enabled. 2395 * 2396 * Return: true if the folio was removed from an LRU list. 2397 * false if the folio was not on an LRU list. 2398 */ 2399 bool folio_isolate_lru(struct folio *folio) 2400 { 2401 bool ret = false; 2402 2403 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2404 2405 if (folio_test_clear_lru(folio)) { 2406 struct lruvec *lruvec; 2407 2408 folio_get(folio); 2409 lruvec = folio_lruvec_lock_irq(folio); 2410 lruvec_del_folio(lruvec, folio); 2411 unlock_page_lruvec_irq(lruvec); 2412 ret = true; 2413 } 2414 2415 return ret; 2416 } 2417 2418 /* 2419 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2420 * then get rescheduled. When there are massive number of tasks doing page 2421 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2422 * the LRU list will go small and be scanned faster than necessary, leading to 2423 * unnecessary swapping, thrashing and OOM. 2424 */ 2425 static int too_many_isolated(struct pglist_data *pgdat, int file, 2426 struct scan_control *sc) 2427 { 2428 unsigned long inactive, isolated; 2429 bool too_many; 2430 2431 if (current_is_kswapd()) 2432 return 0; 2433 2434 if (!writeback_throttling_sane(sc)) 2435 return 0; 2436 2437 if (file) { 2438 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2439 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2440 } else { 2441 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2442 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2443 } 2444 2445 /* 2446 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2447 * won't get blocked by normal direct-reclaimers, forming a circular 2448 * deadlock. 2449 */ 2450 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2451 inactive >>= 3; 2452 2453 too_many = isolated > inactive; 2454 2455 /* Wake up tasks throttled due to too_many_isolated. */ 2456 if (!too_many) 2457 wake_throttle_isolated(pgdat); 2458 2459 return too_many; 2460 } 2461 2462 /* 2463 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2464 * On return, @list is reused as a list of folios to be freed by the caller. 2465 * 2466 * Returns the number of pages moved to the given lruvec. 2467 */ 2468 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2469 struct list_head *list) 2470 { 2471 int nr_pages, nr_moved = 0; 2472 LIST_HEAD(folios_to_free); 2473 2474 while (!list_empty(list)) { 2475 struct folio *folio = lru_to_folio(list); 2476 2477 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2478 list_del(&folio->lru); 2479 if (unlikely(!folio_evictable(folio))) { 2480 spin_unlock_irq(&lruvec->lru_lock); 2481 folio_putback_lru(folio); 2482 spin_lock_irq(&lruvec->lru_lock); 2483 continue; 2484 } 2485 2486 /* 2487 * The folio_set_lru needs to be kept here for list integrity. 2488 * Otherwise: 2489 * #0 move_folios_to_lru #1 release_pages 2490 * if (!folio_put_testzero()) 2491 * if (folio_put_testzero()) 2492 * !lru //skip lru_lock 2493 * folio_set_lru() 2494 * list_add(&folio->lru,) 2495 * list_add(&folio->lru,) 2496 */ 2497 folio_set_lru(folio); 2498 2499 if (unlikely(folio_put_testzero(folio))) { 2500 __folio_clear_lru_flags(folio); 2501 2502 if (unlikely(folio_test_large(folio))) { 2503 spin_unlock_irq(&lruvec->lru_lock); 2504 destroy_large_folio(folio); 2505 spin_lock_irq(&lruvec->lru_lock); 2506 } else 2507 list_add(&folio->lru, &folios_to_free); 2508 2509 continue; 2510 } 2511 2512 /* 2513 * All pages were isolated from the same lruvec (and isolation 2514 * inhibits memcg migration). 2515 */ 2516 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2517 lruvec_add_folio(lruvec, folio); 2518 nr_pages = folio_nr_pages(folio); 2519 nr_moved += nr_pages; 2520 if (folio_test_active(folio)) 2521 workingset_age_nonresident(lruvec, nr_pages); 2522 } 2523 2524 /* 2525 * To save our caller's stack, now use input list for pages to free. 2526 */ 2527 list_splice(&folios_to_free, list); 2528 2529 return nr_moved; 2530 } 2531 2532 /* 2533 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2534 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2535 * we should not throttle. Otherwise it is safe to do so. 2536 */ 2537 static int current_may_throttle(void) 2538 { 2539 return !(current->flags & PF_LOCAL_THROTTLE); 2540 } 2541 2542 /* 2543 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2544 * of reclaimed pages 2545 */ 2546 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2547 struct lruvec *lruvec, struct scan_control *sc, 2548 enum lru_list lru) 2549 { 2550 LIST_HEAD(folio_list); 2551 unsigned long nr_scanned; 2552 unsigned int nr_reclaimed = 0; 2553 unsigned long nr_taken; 2554 struct reclaim_stat stat; 2555 bool file = is_file_lru(lru); 2556 enum vm_event_item item; 2557 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2558 bool stalled = false; 2559 2560 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2561 if (stalled) 2562 return 0; 2563 2564 /* wait a bit for the reclaimer. */ 2565 stalled = true; 2566 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2567 2568 /* We are about to die and free our memory. Return now. */ 2569 if (fatal_signal_pending(current)) 2570 return SWAP_CLUSTER_MAX; 2571 } 2572 2573 lru_add_drain(); 2574 2575 spin_lock_irq(&lruvec->lru_lock); 2576 2577 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2578 &nr_scanned, sc, lru); 2579 2580 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2581 item = PGSCAN_KSWAPD + reclaimer_offset(); 2582 if (!cgroup_reclaim(sc)) 2583 __count_vm_events(item, nr_scanned); 2584 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2585 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2586 2587 spin_unlock_irq(&lruvec->lru_lock); 2588 2589 if (nr_taken == 0) 2590 return 0; 2591 2592 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2593 2594 spin_lock_irq(&lruvec->lru_lock); 2595 move_folios_to_lru(lruvec, &folio_list); 2596 2597 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2598 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2599 if (!cgroup_reclaim(sc)) 2600 __count_vm_events(item, nr_reclaimed); 2601 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2602 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2603 spin_unlock_irq(&lruvec->lru_lock); 2604 2605 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2606 mem_cgroup_uncharge_list(&folio_list); 2607 free_unref_page_list(&folio_list); 2608 2609 /* 2610 * If dirty folios are scanned that are not queued for IO, it 2611 * implies that flushers are not doing their job. This can 2612 * happen when memory pressure pushes dirty folios to the end of 2613 * the LRU before the dirty limits are breached and the dirty 2614 * data has expired. It can also happen when the proportion of 2615 * dirty folios grows not through writes but through memory 2616 * pressure reclaiming all the clean cache. And in some cases, 2617 * the flushers simply cannot keep up with the allocation 2618 * rate. Nudge the flusher threads in case they are asleep. 2619 */ 2620 if (stat.nr_unqueued_dirty == nr_taken) { 2621 wakeup_flusher_threads(WB_REASON_VMSCAN); 2622 /* 2623 * For cgroupv1 dirty throttling is achieved by waking up 2624 * the kernel flusher here and later waiting on folios 2625 * which are in writeback to finish (see shrink_folio_list()). 2626 * 2627 * Flusher may not be able to issue writeback quickly 2628 * enough for cgroupv1 writeback throttling to work 2629 * on a large system. 2630 */ 2631 if (!writeback_throttling_sane(sc)) 2632 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2633 } 2634 2635 sc->nr.dirty += stat.nr_dirty; 2636 sc->nr.congested += stat.nr_congested; 2637 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2638 sc->nr.writeback += stat.nr_writeback; 2639 sc->nr.immediate += stat.nr_immediate; 2640 sc->nr.taken += nr_taken; 2641 if (file) 2642 sc->nr.file_taken += nr_taken; 2643 2644 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2645 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2646 return nr_reclaimed; 2647 } 2648 2649 /* 2650 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2651 * 2652 * We move them the other way if the folio is referenced by one or more 2653 * processes. 2654 * 2655 * If the folios are mostly unmapped, the processing is fast and it is 2656 * appropriate to hold lru_lock across the whole operation. But if 2657 * the folios are mapped, the processing is slow (folio_referenced()), so 2658 * we should drop lru_lock around each folio. It's impossible to balance 2659 * this, so instead we remove the folios from the LRU while processing them. 2660 * It is safe to rely on the active flag against the non-LRU folios in here 2661 * because nobody will play with that bit on a non-LRU folio. 2662 * 2663 * The downside is that we have to touch folio->_refcount against each folio. 2664 * But we had to alter folio->flags anyway. 2665 */ 2666 static void shrink_active_list(unsigned long nr_to_scan, 2667 struct lruvec *lruvec, 2668 struct scan_control *sc, 2669 enum lru_list lru) 2670 { 2671 unsigned long nr_taken; 2672 unsigned long nr_scanned; 2673 unsigned long vm_flags; 2674 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2675 LIST_HEAD(l_active); 2676 LIST_HEAD(l_inactive); 2677 unsigned nr_deactivate, nr_activate; 2678 unsigned nr_rotated = 0; 2679 int file = is_file_lru(lru); 2680 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2681 2682 lru_add_drain(); 2683 2684 spin_lock_irq(&lruvec->lru_lock); 2685 2686 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2687 &nr_scanned, sc, lru); 2688 2689 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2690 2691 if (!cgroup_reclaim(sc)) 2692 __count_vm_events(PGREFILL, nr_scanned); 2693 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2694 2695 spin_unlock_irq(&lruvec->lru_lock); 2696 2697 while (!list_empty(&l_hold)) { 2698 struct folio *folio; 2699 2700 cond_resched(); 2701 folio = lru_to_folio(&l_hold); 2702 list_del(&folio->lru); 2703 2704 if (unlikely(!folio_evictable(folio))) { 2705 folio_putback_lru(folio); 2706 continue; 2707 } 2708 2709 if (unlikely(buffer_heads_over_limit)) { 2710 if (folio_test_private(folio) && folio_trylock(folio)) { 2711 if (folio_test_private(folio)) 2712 filemap_release_folio(folio, 0); 2713 folio_unlock(folio); 2714 } 2715 } 2716 2717 /* Referenced or rmap lock contention: rotate */ 2718 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2719 &vm_flags) != 0) { 2720 /* 2721 * Identify referenced, file-backed active folios and 2722 * give them one more trip around the active list. So 2723 * that executable code get better chances to stay in 2724 * memory under moderate memory pressure. Anon folios 2725 * are not likely to be evicted by use-once streaming 2726 * IO, plus JVM can create lots of anon VM_EXEC folios, 2727 * so we ignore them here. 2728 */ 2729 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2730 nr_rotated += folio_nr_pages(folio); 2731 list_add(&folio->lru, &l_active); 2732 continue; 2733 } 2734 } 2735 2736 folio_clear_active(folio); /* we are de-activating */ 2737 folio_set_workingset(folio); 2738 list_add(&folio->lru, &l_inactive); 2739 } 2740 2741 /* 2742 * Move folios back to the lru list. 2743 */ 2744 spin_lock_irq(&lruvec->lru_lock); 2745 2746 nr_activate = move_folios_to_lru(lruvec, &l_active); 2747 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2748 /* Keep all free folios in l_active list */ 2749 list_splice(&l_inactive, &l_active); 2750 2751 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2752 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2753 2754 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2755 spin_unlock_irq(&lruvec->lru_lock); 2756 2757 if (nr_rotated) 2758 lru_note_cost(lruvec, file, 0, nr_rotated); 2759 mem_cgroup_uncharge_list(&l_active); 2760 free_unref_page_list(&l_active); 2761 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2762 nr_deactivate, nr_rotated, sc->priority, file); 2763 } 2764 2765 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2766 struct pglist_data *pgdat) 2767 { 2768 struct reclaim_stat dummy_stat; 2769 unsigned int nr_reclaimed; 2770 struct folio *folio; 2771 struct scan_control sc = { 2772 .gfp_mask = GFP_KERNEL, 2773 .may_writepage = 1, 2774 .may_unmap = 1, 2775 .may_swap = 1, 2776 .no_demotion = 1, 2777 }; 2778 2779 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2780 while (!list_empty(folio_list)) { 2781 folio = lru_to_folio(folio_list); 2782 list_del(&folio->lru); 2783 folio_putback_lru(folio); 2784 } 2785 2786 return nr_reclaimed; 2787 } 2788 2789 unsigned long reclaim_pages(struct list_head *folio_list) 2790 { 2791 int nid; 2792 unsigned int nr_reclaimed = 0; 2793 LIST_HEAD(node_folio_list); 2794 unsigned int noreclaim_flag; 2795 2796 if (list_empty(folio_list)) 2797 return nr_reclaimed; 2798 2799 noreclaim_flag = memalloc_noreclaim_save(); 2800 2801 nid = folio_nid(lru_to_folio(folio_list)); 2802 do { 2803 struct folio *folio = lru_to_folio(folio_list); 2804 2805 if (nid == folio_nid(folio)) { 2806 folio_clear_active(folio); 2807 list_move(&folio->lru, &node_folio_list); 2808 continue; 2809 } 2810 2811 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2812 nid = folio_nid(lru_to_folio(folio_list)); 2813 } while (!list_empty(folio_list)); 2814 2815 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2816 2817 memalloc_noreclaim_restore(noreclaim_flag); 2818 2819 return nr_reclaimed; 2820 } 2821 2822 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2823 struct lruvec *lruvec, struct scan_control *sc) 2824 { 2825 if (is_active_lru(lru)) { 2826 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2827 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2828 else 2829 sc->skipped_deactivate = 1; 2830 return 0; 2831 } 2832 2833 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2834 } 2835 2836 /* 2837 * The inactive anon list should be small enough that the VM never has 2838 * to do too much work. 2839 * 2840 * The inactive file list should be small enough to leave most memory 2841 * to the established workingset on the scan-resistant active list, 2842 * but large enough to avoid thrashing the aggregate readahead window. 2843 * 2844 * Both inactive lists should also be large enough that each inactive 2845 * folio has a chance to be referenced again before it is reclaimed. 2846 * 2847 * If that fails and refaulting is observed, the inactive list grows. 2848 * 2849 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2850 * on this LRU, maintained by the pageout code. An inactive_ratio 2851 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2852 * 2853 * total target max 2854 * memory ratio inactive 2855 * ------------------------------------- 2856 * 10MB 1 5MB 2857 * 100MB 1 50MB 2858 * 1GB 3 250MB 2859 * 10GB 10 0.9GB 2860 * 100GB 31 3GB 2861 * 1TB 101 10GB 2862 * 10TB 320 32GB 2863 */ 2864 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2865 { 2866 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2867 unsigned long inactive, active; 2868 unsigned long inactive_ratio; 2869 unsigned long gb; 2870 2871 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2872 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2873 2874 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2875 if (gb) 2876 inactive_ratio = int_sqrt(10 * gb); 2877 else 2878 inactive_ratio = 1; 2879 2880 return inactive * inactive_ratio < active; 2881 } 2882 2883 enum scan_balance { 2884 SCAN_EQUAL, 2885 SCAN_FRACT, 2886 SCAN_ANON, 2887 SCAN_FILE, 2888 }; 2889 2890 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2891 { 2892 unsigned long file; 2893 struct lruvec *target_lruvec; 2894 2895 if (lru_gen_enabled()) 2896 return; 2897 2898 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2899 2900 /* 2901 * Flush the memory cgroup stats, so that we read accurate per-memcg 2902 * lruvec stats for heuristics. 2903 */ 2904 mem_cgroup_flush_stats(); 2905 2906 /* 2907 * Determine the scan balance between anon and file LRUs. 2908 */ 2909 spin_lock_irq(&target_lruvec->lru_lock); 2910 sc->anon_cost = target_lruvec->anon_cost; 2911 sc->file_cost = target_lruvec->file_cost; 2912 spin_unlock_irq(&target_lruvec->lru_lock); 2913 2914 /* 2915 * Target desirable inactive:active list ratios for the anon 2916 * and file LRU lists. 2917 */ 2918 if (!sc->force_deactivate) { 2919 unsigned long refaults; 2920 2921 /* 2922 * When refaults are being observed, it means a new 2923 * workingset is being established. Deactivate to get 2924 * rid of any stale active pages quickly. 2925 */ 2926 refaults = lruvec_page_state(target_lruvec, 2927 WORKINGSET_ACTIVATE_ANON); 2928 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2929 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2930 sc->may_deactivate |= DEACTIVATE_ANON; 2931 else 2932 sc->may_deactivate &= ~DEACTIVATE_ANON; 2933 2934 refaults = lruvec_page_state(target_lruvec, 2935 WORKINGSET_ACTIVATE_FILE); 2936 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2937 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2938 sc->may_deactivate |= DEACTIVATE_FILE; 2939 else 2940 sc->may_deactivate &= ~DEACTIVATE_FILE; 2941 } else 2942 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2943 2944 /* 2945 * If we have plenty of inactive file pages that aren't 2946 * thrashing, try to reclaim those first before touching 2947 * anonymous pages. 2948 */ 2949 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2950 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2951 sc->cache_trim_mode = 1; 2952 else 2953 sc->cache_trim_mode = 0; 2954 2955 /* 2956 * Prevent the reclaimer from falling into the cache trap: as 2957 * cache pages start out inactive, every cache fault will tip 2958 * the scan balance towards the file LRU. And as the file LRU 2959 * shrinks, so does the window for rotation from references. 2960 * This means we have a runaway feedback loop where a tiny 2961 * thrashing file LRU becomes infinitely more attractive than 2962 * anon pages. Try to detect this based on file LRU size. 2963 */ 2964 if (!cgroup_reclaim(sc)) { 2965 unsigned long total_high_wmark = 0; 2966 unsigned long free, anon; 2967 int z; 2968 2969 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2970 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2971 node_page_state(pgdat, NR_INACTIVE_FILE); 2972 2973 for (z = 0; z < MAX_NR_ZONES; z++) { 2974 struct zone *zone = &pgdat->node_zones[z]; 2975 2976 if (!managed_zone(zone)) 2977 continue; 2978 2979 total_high_wmark += high_wmark_pages(zone); 2980 } 2981 2982 /* 2983 * Consider anon: if that's low too, this isn't a 2984 * runaway file reclaim problem, but rather just 2985 * extreme pressure. Reclaim as per usual then. 2986 */ 2987 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2988 2989 sc->file_is_tiny = 2990 file + free <= total_high_wmark && 2991 !(sc->may_deactivate & DEACTIVATE_ANON) && 2992 anon >> sc->priority; 2993 } 2994 } 2995 2996 /* 2997 * Determine how aggressively the anon and file LRU lists should be 2998 * scanned. 2999 * 3000 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 3001 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 3002 */ 3003 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 3004 unsigned long *nr) 3005 { 3006 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3007 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3008 unsigned long anon_cost, file_cost, total_cost; 3009 int swappiness = mem_cgroup_swappiness(memcg); 3010 u64 fraction[ANON_AND_FILE]; 3011 u64 denominator = 0; /* gcc */ 3012 enum scan_balance scan_balance; 3013 unsigned long ap, fp; 3014 enum lru_list lru; 3015 3016 /* If we have no swap space, do not bother scanning anon folios. */ 3017 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 3018 scan_balance = SCAN_FILE; 3019 goto out; 3020 } 3021 3022 /* 3023 * Global reclaim will swap to prevent OOM even with no 3024 * swappiness, but memcg users want to use this knob to 3025 * disable swapping for individual groups completely when 3026 * using the memory controller's swap limit feature would be 3027 * too expensive. 3028 */ 3029 if (cgroup_reclaim(sc) && !swappiness) { 3030 scan_balance = SCAN_FILE; 3031 goto out; 3032 } 3033 3034 /* 3035 * Do not apply any pressure balancing cleverness when the 3036 * system is close to OOM, scan both anon and file equally 3037 * (unless the swappiness setting disagrees with swapping). 3038 */ 3039 if (!sc->priority && swappiness) { 3040 scan_balance = SCAN_EQUAL; 3041 goto out; 3042 } 3043 3044 /* 3045 * If the system is almost out of file pages, force-scan anon. 3046 */ 3047 if (sc->file_is_tiny) { 3048 scan_balance = SCAN_ANON; 3049 goto out; 3050 } 3051 3052 /* 3053 * If there is enough inactive page cache, we do not reclaim 3054 * anything from the anonymous working right now. 3055 */ 3056 if (sc->cache_trim_mode) { 3057 scan_balance = SCAN_FILE; 3058 goto out; 3059 } 3060 3061 scan_balance = SCAN_FRACT; 3062 /* 3063 * Calculate the pressure balance between anon and file pages. 3064 * 3065 * The amount of pressure we put on each LRU is inversely 3066 * proportional to the cost of reclaiming each list, as 3067 * determined by the share of pages that are refaulting, times 3068 * the relative IO cost of bringing back a swapped out 3069 * anonymous page vs reloading a filesystem page (swappiness). 3070 * 3071 * Although we limit that influence to ensure no list gets 3072 * left behind completely: at least a third of the pressure is 3073 * applied, before swappiness. 3074 * 3075 * With swappiness at 100, anon and file have equal IO cost. 3076 */ 3077 total_cost = sc->anon_cost + sc->file_cost; 3078 anon_cost = total_cost + sc->anon_cost; 3079 file_cost = total_cost + sc->file_cost; 3080 total_cost = anon_cost + file_cost; 3081 3082 ap = swappiness * (total_cost + 1); 3083 ap /= anon_cost + 1; 3084 3085 fp = (200 - swappiness) * (total_cost + 1); 3086 fp /= file_cost + 1; 3087 3088 fraction[0] = ap; 3089 fraction[1] = fp; 3090 denominator = ap + fp; 3091 out: 3092 for_each_evictable_lru(lru) { 3093 int file = is_file_lru(lru); 3094 unsigned long lruvec_size; 3095 unsigned long low, min; 3096 unsigned long scan; 3097 3098 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3099 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3100 &min, &low); 3101 3102 if (min || low) { 3103 /* 3104 * Scale a cgroup's reclaim pressure by proportioning 3105 * its current usage to its memory.low or memory.min 3106 * setting. 3107 * 3108 * This is important, as otherwise scanning aggression 3109 * becomes extremely binary -- from nothing as we 3110 * approach the memory protection threshold, to totally 3111 * nominal as we exceed it. This results in requiring 3112 * setting extremely liberal protection thresholds. It 3113 * also means we simply get no protection at all if we 3114 * set it too low, which is not ideal. 3115 * 3116 * If there is any protection in place, we reduce scan 3117 * pressure by how much of the total memory used is 3118 * within protection thresholds. 3119 * 3120 * There is one special case: in the first reclaim pass, 3121 * we skip over all groups that are within their low 3122 * protection. If that fails to reclaim enough pages to 3123 * satisfy the reclaim goal, we come back and override 3124 * the best-effort low protection. However, we still 3125 * ideally want to honor how well-behaved groups are in 3126 * that case instead of simply punishing them all 3127 * equally. As such, we reclaim them based on how much 3128 * memory they are using, reducing the scan pressure 3129 * again by how much of the total memory used is under 3130 * hard protection. 3131 */ 3132 unsigned long cgroup_size = mem_cgroup_size(memcg); 3133 unsigned long protection; 3134 3135 /* memory.low scaling, make sure we retry before OOM */ 3136 if (!sc->memcg_low_reclaim && low > min) { 3137 protection = low; 3138 sc->memcg_low_skipped = 1; 3139 } else { 3140 protection = min; 3141 } 3142 3143 /* Avoid TOCTOU with earlier protection check */ 3144 cgroup_size = max(cgroup_size, protection); 3145 3146 scan = lruvec_size - lruvec_size * protection / 3147 (cgroup_size + 1); 3148 3149 /* 3150 * Minimally target SWAP_CLUSTER_MAX pages to keep 3151 * reclaim moving forwards, avoiding decrementing 3152 * sc->priority further than desirable. 3153 */ 3154 scan = max(scan, SWAP_CLUSTER_MAX); 3155 } else { 3156 scan = lruvec_size; 3157 } 3158 3159 scan >>= sc->priority; 3160 3161 /* 3162 * If the cgroup's already been deleted, make sure to 3163 * scrape out the remaining cache. 3164 */ 3165 if (!scan && !mem_cgroup_online(memcg)) 3166 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3167 3168 switch (scan_balance) { 3169 case SCAN_EQUAL: 3170 /* Scan lists relative to size */ 3171 break; 3172 case SCAN_FRACT: 3173 /* 3174 * Scan types proportional to swappiness and 3175 * their relative recent reclaim efficiency. 3176 * Make sure we don't miss the last page on 3177 * the offlined memory cgroups because of a 3178 * round-off error. 3179 */ 3180 scan = mem_cgroup_online(memcg) ? 3181 div64_u64(scan * fraction[file], denominator) : 3182 DIV64_U64_ROUND_UP(scan * fraction[file], 3183 denominator); 3184 break; 3185 case SCAN_FILE: 3186 case SCAN_ANON: 3187 /* Scan one type exclusively */ 3188 if ((scan_balance == SCAN_FILE) != file) 3189 scan = 0; 3190 break; 3191 default: 3192 /* Look ma, no brain */ 3193 BUG(); 3194 } 3195 3196 nr[lru] = scan; 3197 } 3198 } 3199 3200 /* 3201 * Anonymous LRU management is a waste if there is 3202 * ultimately no way to reclaim the memory. 3203 */ 3204 static bool can_age_anon_pages(struct pglist_data *pgdat, 3205 struct scan_control *sc) 3206 { 3207 /* Aging the anon LRU is valuable if swap is present: */ 3208 if (total_swap_pages > 0) 3209 return true; 3210 3211 /* Also valuable if anon pages can be demoted: */ 3212 return can_demote(pgdat->node_id, sc); 3213 } 3214 3215 #ifdef CONFIG_LRU_GEN 3216 3217 #ifdef CONFIG_LRU_GEN_ENABLED 3218 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3219 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3220 #else 3221 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3222 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3223 #endif 3224 3225 /****************************************************************************** 3226 * shorthand helpers 3227 ******************************************************************************/ 3228 3229 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3230 3231 #define DEFINE_MAX_SEQ(lruvec) \ 3232 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3233 3234 #define DEFINE_MIN_SEQ(lruvec) \ 3235 unsigned long min_seq[ANON_AND_FILE] = { \ 3236 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3237 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3238 } 3239 3240 #define for_each_gen_type_zone(gen, type, zone) \ 3241 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3242 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3243 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3244 3245 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 3246 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 3247 3248 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3249 { 3250 struct pglist_data *pgdat = NODE_DATA(nid); 3251 3252 #ifdef CONFIG_MEMCG 3253 if (memcg) { 3254 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3255 3256 /* see the comment in mem_cgroup_lruvec() */ 3257 if (!lruvec->pgdat) 3258 lruvec->pgdat = pgdat; 3259 3260 return lruvec; 3261 } 3262 #endif 3263 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3264 3265 return &pgdat->__lruvec; 3266 } 3267 3268 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3269 { 3270 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3271 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3272 3273 if (!sc->may_swap) 3274 return 0; 3275 3276 if (!can_demote(pgdat->node_id, sc) && 3277 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3278 return 0; 3279 3280 return mem_cgroup_swappiness(memcg); 3281 } 3282 3283 static int get_nr_gens(struct lruvec *lruvec, int type) 3284 { 3285 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3286 } 3287 3288 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3289 { 3290 /* see the comment on lru_gen_folio */ 3291 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3292 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3293 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3294 } 3295 3296 /****************************************************************************** 3297 * Bloom filters 3298 ******************************************************************************/ 3299 3300 /* 3301 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3302 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3303 * bits in a bitmap, k is the number of hash functions and n is the number of 3304 * inserted items. 3305 * 3306 * Page table walkers use one of the two filters to reduce their search space. 3307 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3308 * aging uses the double-buffering technique to flip to the other filter each 3309 * time it produces a new generation. For non-leaf entries that have enough 3310 * leaf entries, the aging carries them over to the next generation in 3311 * walk_pmd_range(); the eviction also report them when walking the rmap 3312 * in lru_gen_look_around(). 3313 * 3314 * For future optimizations: 3315 * 1. It's not necessary to keep both filters all the time. The spare one can be 3316 * freed after the RCU grace period and reallocated if needed again. 3317 * 2. And when reallocating, it's worth scaling its size according to the number 3318 * of inserted entries in the other filter, to reduce the memory overhead on 3319 * small systems and false positives on large systems. 3320 * 3. Jenkins' hash function is an alternative to Knuth's. 3321 */ 3322 #define BLOOM_FILTER_SHIFT 15 3323 3324 static inline int filter_gen_from_seq(unsigned long seq) 3325 { 3326 return seq % NR_BLOOM_FILTERS; 3327 } 3328 3329 static void get_item_key(void *item, int *key) 3330 { 3331 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3332 3333 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3334 3335 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3336 key[1] = hash >> BLOOM_FILTER_SHIFT; 3337 } 3338 3339 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3340 { 3341 int key[2]; 3342 unsigned long *filter; 3343 int gen = filter_gen_from_seq(seq); 3344 3345 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3346 if (!filter) 3347 return true; 3348 3349 get_item_key(item, key); 3350 3351 return test_bit(key[0], filter) && test_bit(key[1], filter); 3352 } 3353 3354 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3355 { 3356 int key[2]; 3357 unsigned long *filter; 3358 int gen = filter_gen_from_seq(seq); 3359 3360 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3361 if (!filter) 3362 return; 3363 3364 get_item_key(item, key); 3365 3366 if (!test_bit(key[0], filter)) 3367 set_bit(key[0], filter); 3368 if (!test_bit(key[1], filter)) 3369 set_bit(key[1], filter); 3370 } 3371 3372 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3373 { 3374 unsigned long *filter; 3375 int gen = filter_gen_from_seq(seq); 3376 3377 filter = lruvec->mm_state.filters[gen]; 3378 if (filter) { 3379 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3380 return; 3381 } 3382 3383 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3384 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3385 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3386 } 3387 3388 /****************************************************************************** 3389 * mm_struct list 3390 ******************************************************************************/ 3391 3392 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3393 { 3394 static struct lru_gen_mm_list mm_list = { 3395 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3396 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3397 }; 3398 3399 #ifdef CONFIG_MEMCG 3400 if (memcg) 3401 return &memcg->mm_list; 3402 #endif 3403 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3404 3405 return &mm_list; 3406 } 3407 3408 void lru_gen_add_mm(struct mm_struct *mm) 3409 { 3410 int nid; 3411 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3412 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3413 3414 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3415 #ifdef CONFIG_MEMCG 3416 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3417 mm->lru_gen.memcg = memcg; 3418 #endif 3419 spin_lock(&mm_list->lock); 3420 3421 for_each_node_state(nid, N_MEMORY) { 3422 struct lruvec *lruvec = get_lruvec(memcg, nid); 3423 3424 /* the first addition since the last iteration */ 3425 if (lruvec->mm_state.tail == &mm_list->fifo) 3426 lruvec->mm_state.tail = &mm->lru_gen.list; 3427 } 3428 3429 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3430 3431 spin_unlock(&mm_list->lock); 3432 } 3433 3434 void lru_gen_del_mm(struct mm_struct *mm) 3435 { 3436 int nid; 3437 struct lru_gen_mm_list *mm_list; 3438 struct mem_cgroup *memcg = NULL; 3439 3440 if (list_empty(&mm->lru_gen.list)) 3441 return; 3442 3443 #ifdef CONFIG_MEMCG 3444 memcg = mm->lru_gen.memcg; 3445 #endif 3446 mm_list = get_mm_list(memcg); 3447 3448 spin_lock(&mm_list->lock); 3449 3450 for_each_node(nid) { 3451 struct lruvec *lruvec = get_lruvec(memcg, nid); 3452 3453 /* where the current iteration continues after */ 3454 if (lruvec->mm_state.head == &mm->lru_gen.list) 3455 lruvec->mm_state.head = lruvec->mm_state.head->prev; 3456 3457 /* where the last iteration ended before */ 3458 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3459 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3460 } 3461 3462 list_del_init(&mm->lru_gen.list); 3463 3464 spin_unlock(&mm_list->lock); 3465 3466 #ifdef CONFIG_MEMCG 3467 mem_cgroup_put(mm->lru_gen.memcg); 3468 mm->lru_gen.memcg = NULL; 3469 #endif 3470 } 3471 3472 #ifdef CONFIG_MEMCG 3473 void lru_gen_migrate_mm(struct mm_struct *mm) 3474 { 3475 struct mem_cgroup *memcg; 3476 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3477 3478 VM_WARN_ON_ONCE(task->mm != mm); 3479 lockdep_assert_held(&task->alloc_lock); 3480 3481 /* for mm_update_next_owner() */ 3482 if (mem_cgroup_disabled()) 3483 return; 3484 3485 /* migration can happen before addition */ 3486 if (!mm->lru_gen.memcg) 3487 return; 3488 3489 rcu_read_lock(); 3490 memcg = mem_cgroup_from_task(task); 3491 rcu_read_unlock(); 3492 if (memcg == mm->lru_gen.memcg) 3493 return; 3494 3495 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3496 3497 lru_gen_del_mm(mm); 3498 lru_gen_add_mm(mm); 3499 } 3500 #endif 3501 3502 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3503 { 3504 int i; 3505 int hist; 3506 3507 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3508 3509 if (walk) { 3510 hist = lru_hist_from_seq(walk->max_seq); 3511 3512 for (i = 0; i < NR_MM_STATS; i++) { 3513 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3514 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3515 walk->mm_stats[i] = 0; 3516 } 3517 } 3518 3519 if (NR_HIST_GENS > 1 && last) { 3520 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3521 3522 for (i = 0; i < NR_MM_STATS; i++) 3523 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3524 } 3525 } 3526 3527 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3528 { 3529 int type; 3530 unsigned long size = 0; 3531 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3532 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3533 3534 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3535 return true; 3536 3537 clear_bit(key, &mm->lru_gen.bitmap); 3538 3539 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3540 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3541 get_mm_counter(mm, MM_ANONPAGES) + 3542 get_mm_counter(mm, MM_SHMEMPAGES); 3543 } 3544 3545 if (size < MIN_LRU_BATCH) 3546 return true; 3547 3548 return !mmget_not_zero(mm); 3549 } 3550 3551 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3552 struct mm_struct **iter) 3553 { 3554 bool first = false; 3555 bool last = false; 3556 struct mm_struct *mm = NULL; 3557 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3558 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3559 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3560 3561 /* 3562 * mm_state->seq is incremented after each iteration of mm_list. There 3563 * are three interesting cases for this page table walker: 3564 * 1. It tries to start a new iteration with a stale max_seq: there is 3565 * nothing left to do. 3566 * 2. It started the next iteration: it needs to reset the Bloom filter 3567 * so that a fresh set of PTE tables can be recorded. 3568 * 3. It ended the current iteration: it needs to reset the mm stats 3569 * counters and tell its caller to increment max_seq. 3570 */ 3571 spin_lock(&mm_list->lock); 3572 3573 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3574 3575 if (walk->max_seq <= mm_state->seq) 3576 goto done; 3577 3578 if (!mm_state->head) 3579 mm_state->head = &mm_list->fifo; 3580 3581 if (mm_state->head == &mm_list->fifo) 3582 first = true; 3583 3584 do { 3585 mm_state->head = mm_state->head->next; 3586 if (mm_state->head == &mm_list->fifo) { 3587 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3588 last = true; 3589 break; 3590 } 3591 3592 /* force scan for those added after the last iteration */ 3593 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3594 mm_state->tail = mm_state->head->next; 3595 walk->force_scan = true; 3596 } 3597 3598 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3599 if (should_skip_mm(mm, walk)) 3600 mm = NULL; 3601 } while (!mm); 3602 done: 3603 if (*iter || last) 3604 reset_mm_stats(lruvec, walk, last); 3605 3606 spin_unlock(&mm_list->lock); 3607 3608 if (mm && first) 3609 reset_bloom_filter(lruvec, walk->max_seq + 1); 3610 3611 if (*iter) 3612 mmput_async(*iter); 3613 3614 *iter = mm; 3615 3616 return last; 3617 } 3618 3619 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3620 { 3621 bool success = false; 3622 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3623 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3624 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3625 3626 spin_lock(&mm_list->lock); 3627 3628 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3629 3630 if (max_seq > mm_state->seq) { 3631 mm_state->head = NULL; 3632 mm_state->tail = NULL; 3633 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3634 reset_mm_stats(lruvec, NULL, true); 3635 success = true; 3636 } 3637 3638 spin_unlock(&mm_list->lock); 3639 3640 return success; 3641 } 3642 3643 /****************************************************************************** 3644 * PID controller 3645 ******************************************************************************/ 3646 3647 /* 3648 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3649 * 3650 * The P term is refaulted/(evicted+protected) from a tier in the generation 3651 * currently being evicted; the I term is the exponential moving average of the 3652 * P term over the generations previously evicted, using the smoothing factor 3653 * 1/2; the D term isn't supported. 3654 * 3655 * The setpoint (SP) is always the first tier of one type; the process variable 3656 * (PV) is either any tier of the other type or any other tier of the same 3657 * type. 3658 * 3659 * The error is the difference between the SP and the PV; the correction is to 3660 * turn off protection when SP>PV or turn on protection when SP<PV. 3661 * 3662 * For future optimizations: 3663 * 1. The D term may discount the other two terms over time so that long-lived 3664 * generations can resist stale information. 3665 */ 3666 struct ctrl_pos { 3667 unsigned long refaulted; 3668 unsigned long total; 3669 int gain; 3670 }; 3671 3672 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3673 struct ctrl_pos *pos) 3674 { 3675 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3676 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3677 3678 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3679 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3680 pos->total = lrugen->avg_total[type][tier] + 3681 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3682 if (tier) 3683 pos->total += lrugen->protected[hist][type][tier - 1]; 3684 pos->gain = gain; 3685 } 3686 3687 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3688 { 3689 int hist, tier; 3690 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3691 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3692 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3693 3694 lockdep_assert_held(&lruvec->lru_lock); 3695 3696 if (!carryover && !clear) 3697 return; 3698 3699 hist = lru_hist_from_seq(seq); 3700 3701 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3702 if (carryover) { 3703 unsigned long sum; 3704 3705 sum = lrugen->avg_refaulted[type][tier] + 3706 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3707 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3708 3709 sum = lrugen->avg_total[type][tier] + 3710 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3711 if (tier) 3712 sum += lrugen->protected[hist][type][tier - 1]; 3713 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3714 } 3715 3716 if (clear) { 3717 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3718 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3719 if (tier) 3720 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3721 } 3722 } 3723 } 3724 3725 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3726 { 3727 /* 3728 * Return true if the PV has a limited number of refaults or a lower 3729 * refaulted/total than the SP. 3730 */ 3731 return pv->refaulted < MIN_LRU_BATCH || 3732 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3733 (sp->refaulted + 1) * pv->total * pv->gain; 3734 } 3735 3736 /****************************************************************************** 3737 * the aging 3738 ******************************************************************************/ 3739 3740 /* promote pages accessed through page tables */ 3741 static int folio_update_gen(struct folio *folio, int gen) 3742 { 3743 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3744 3745 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3746 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3747 3748 do { 3749 /* lru_gen_del_folio() has isolated this page? */ 3750 if (!(old_flags & LRU_GEN_MASK)) { 3751 /* for shrink_folio_list() */ 3752 new_flags = old_flags | BIT(PG_referenced); 3753 continue; 3754 } 3755 3756 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3757 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3758 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3759 3760 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3761 } 3762 3763 /* protect pages accessed multiple times through file descriptors */ 3764 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3765 { 3766 int type = folio_is_file_lru(folio); 3767 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3768 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3769 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3770 3771 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3772 3773 do { 3774 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3775 /* folio_update_gen() has promoted this page? */ 3776 if (new_gen >= 0 && new_gen != old_gen) 3777 return new_gen; 3778 3779 new_gen = (old_gen + 1) % MAX_NR_GENS; 3780 3781 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3782 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3783 /* for folio_end_writeback() */ 3784 if (reclaiming) 3785 new_flags |= BIT(PG_reclaim); 3786 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3787 3788 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3789 3790 return new_gen; 3791 } 3792 3793 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3794 int old_gen, int new_gen) 3795 { 3796 int type = folio_is_file_lru(folio); 3797 int zone = folio_zonenum(folio); 3798 int delta = folio_nr_pages(folio); 3799 3800 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3801 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3802 3803 walk->batched++; 3804 3805 walk->nr_pages[old_gen][type][zone] -= delta; 3806 walk->nr_pages[new_gen][type][zone] += delta; 3807 } 3808 3809 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3810 { 3811 int gen, type, zone; 3812 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3813 3814 walk->batched = 0; 3815 3816 for_each_gen_type_zone(gen, type, zone) { 3817 enum lru_list lru = type * LRU_INACTIVE_FILE; 3818 int delta = walk->nr_pages[gen][type][zone]; 3819 3820 if (!delta) 3821 continue; 3822 3823 walk->nr_pages[gen][type][zone] = 0; 3824 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3825 lrugen->nr_pages[gen][type][zone] + delta); 3826 3827 if (lru_gen_is_active(lruvec, gen)) 3828 lru += LRU_ACTIVE; 3829 __update_lru_size(lruvec, lru, zone, delta); 3830 } 3831 } 3832 3833 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3834 { 3835 struct address_space *mapping; 3836 struct vm_area_struct *vma = args->vma; 3837 struct lru_gen_mm_walk *walk = args->private; 3838 3839 if (!vma_is_accessible(vma)) 3840 return true; 3841 3842 if (is_vm_hugetlb_page(vma)) 3843 return true; 3844 3845 if (!vma_has_recency(vma)) 3846 return true; 3847 3848 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3849 return true; 3850 3851 if (vma == get_gate_vma(vma->vm_mm)) 3852 return true; 3853 3854 if (vma_is_anonymous(vma)) 3855 return !walk->can_swap; 3856 3857 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3858 return true; 3859 3860 mapping = vma->vm_file->f_mapping; 3861 if (mapping_unevictable(mapping)) 3862 return true; 3863 3864 if (shmem_mapping(mapping)) 3865 return !walk->can_swap; 3866 3867 /* to exclude special mappings like dax, etc. */ 3868 return !mapping->a_ops->read_folio; 3869 } 3870 3871 /* 3872 * Some userspace memory allocators map many single-page VMAs. Instead of 3873 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3874 * table to reduce zigzags and improve cache performance. 3875 */ 3876 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3877 unsigned long *vm_start, unsigned long *vm_end) 3878 { 3879 unsigned long start = round_up(*vm_end, size); 3880 unsigned long end = (start | ~mask) + 1; 3881 VMA_ITERATOR(vmi, args->mm, start); 3882 3883 VM_WARN_ON_ONCE(mask & size); 3884 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3885 3886 for_each_vma(vmi, args->vma) { 3887 if (end && end <= args->vma->vm_start) 3888 return false; 3889 3890 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3891 continue; 3892 3893 *vm_start = max(start, args->vma->vm_start); 3894 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3895 3896 return true; 3897 } 3898 3899 return false; 3900 } 3901 3902 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3903 { 3904 unsigned long pfn = pte_pfn(pte); 3905 3906 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3907 3908 if (!pte_present(pte) || is_zero_pfn(pfn)) 3909 return -1; 3910 3911 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3912 return -1; 3913 3914 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3915 return -1; 3916 3917 return pfn; 3918 } 3919 3920 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3921 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3922 { 3923 unsigned long pfn = pmd_pfn(pmd); 3924 3925 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3926 3927 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3928 return -1; 3929 3930 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3931 return -1; 3932 3933 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3934 return -1; 3935 3936 return pfn; 3937 } 3938 #endif 3939 3940 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3941 struct pglist_data *pgdat, bool can_swap) 3942 { 3943 struct folio *folio; 3944 3945 /* try to avoid unnecessary memory loads */ 3946 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3947 return NULL; 3948 3949 folio = pfn_folio(pfn); 3950 if (folio_nid(folio) != pgdat->node_id) 3951 return NULL; 3952 3953 if (folio_memcg_rcu(folio) != memcg) 3954 return NULL; 3955 3956 /* file VMAs can contain anon pages from COW */ 3957 if (!folio_is_file_lru(folio) && !can_swap) 3958 return NULL; 3959 3960 return folio; 3961 } 3962 3963 static bool suitable_to_scan(int total, int young) 3964 { 3965 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3966 3967 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3968 return young * n >= total; 3969 } 3970 3971 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3972 struct mm_walk *args) 3973 { 3974 int i; 3975 pte_t *pte; 3976 spinlock_t *ptl; 3977 unsigned long addr; 3978 int total = 0; 3979 int young = 0; 3980 struct lru_gen_mm_walk *walk = args->private; 3981 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3982 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3983 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3984 3985 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3986 3987 ptl = pte_lockptr(args->mm, pmd); 3988 if (!spin_trylock(ptl)) 3989 return false; 3990 3991 arch_enter_lazy_mmu_mode(); 3992 3993 pte = pte_offset_map(pmd, start & PMD_MASK); 3994 restart: 3995 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3996 unsigned long pfn; 3997 struct folio *folio; 3998 3999 total++; 4000 walk->mm_stats[MM_LEAF_TOTAL]++; 4001 4002 pfn = get_pte_pfn(pte[i], args->vma, addr); 4003 if (pfn == -1) 4004 continue; 4005 4006 if (!pte_young(pte[i])) { 4007 walk->mm_stats[MM_LEAF_OLD]++; 4008 continue; 4009 } 4010 4011 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4012 if (!folio) 4013 continue; 4014 4015 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 4016 VM_WARN_ON_ONCE(true); 4017 4018 young++; 4019 walk->mm_stats[MM_LEAF_YOUNG]++; 4020 4021 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4022 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4023 !folio_test_swapcache(folio))) 4024 folio_mark_dirty(folio); 4025 4026 old_gen = folio_update_gen(folio, new_gen); 4027 if (old_gen >= 0 && old_gen != new_gen) 4028 update_batch_size(walk, folio, old_gen, new_gen); 4029 } 4030 4031 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 4032 goto restart; 4033 4034 pte_unmap(pte); 4035 4036 arch_leave_lazy_mmu_mode(); 4037 spin_unlock(ptl); 4038 4039 return suitable_to_scan(total, young); 4040 } 4041 4042 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 4043 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4044 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4045 { 4046 int i; 4047 pmd_t *pmd; 4048 spinlock_t *ptl; 4049 struct lru_gen_mm_walk *walk = args->private; 4050 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4051 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4052 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4053 4054 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4055 4056 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4057 if (*first == -1) { 4058 *first = addr; 4059 bitmap_zero(bitmap, MIN_LRU_BATCH); 4060 return; 4061 } 4062 4063 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 4064 if (i && i <= MIN_LRU_BATCH) { 4065 __set_bit(i - 1, bitmap); 4066 return; 4067 } 4068 4069 pmd = pmd_offset(pud, *first); 4070 4071 ptl = pmd_lockptr(args->mm, pmd); 4072 if (!spin_trylock(ptl)) 4073 goto done; 4074 4075 arch_enter_lazy_mmu_mode(); 4076 4077 do { 4078 unsigned long pfn; 4079 struct folio *folio; 4080 4081 /* don't round down the first address */ 4082 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 4083 4084 pfn = get_pmd_pfn(pmd[i], vma, addr); 4085 if (pfn == -1) 4086 goto next; 4087 4088 if (!pmd_trans_huge(pmd[i])) { 4089 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 4090 pmdp_test_and_clear_young(vma, addr, pmd + i); 4091 goto next; 4092 } 4093 4094 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4095 if (!folio) 4096 goto next; 4097 4098 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4099 goto next; 4100 4101 walk->mm_stats[MM_LEAF_YOUNG]++; 4102 4103 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4104 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4105 !folio_test_swapcache(folio))) 4106 folio_mark_dirty(folio); 4107 4108 old_gen = folio_update_gen(folio, new_gen); 4109 if (old_gen >= 0 && old_gen != new_gen) 4110 update_batch_size(walk, folio, old_gen, new_gen); 4111 next: 4112 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4113 } while (i <= MIN_LRU_BATCH); 4114 4115 arch_leave_lazy_mmu_mode(); 4116 spin_unlock(ptl); 4117 done: 4118 *first = -1; 4119 } 4120 #else 4121 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4122 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4123 { 4124 } 4125 #endif 4126 4127 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4128 struct mm_walk *args) 4129 { 4130 int i; 4131 pmd_t *pmd; 4132 unsigned long next; 4133 unsigned long addr; 4134 struct vm_area_struct *vma; 4135 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)]; 4136 unsigned long first = -1; 4137 struct lru_gen_mm_walk *walk = args->private; 4138 4139 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4140 4141 /* 4142 * Finish an entire PMD in two passes: the first only reaches to PTE 4143 * tables to avoid taking the PMD lock; the second, if necessary, takes 4144 * the PMD lock to clear the accessed bit in PMD entries. 4145 */ 4146 pmd = pmd_offset(pud, start & PUD_MASK); 4147 restart: 4148 /* walk_pte_range() may call get_next_vma() */ 4149 vma = args->vma; 4150 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4151 pmd_t val = pmdp_get_lockless(pmd + i); 4152 4153 next = pmd_addr_end(addr, end); 4154 4155 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4156 walk->mm_stats[MM_LEAF_TOTAL]++; 4157 continue; 4158 } 4159 4160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4161 if (pmd_trans_huge(val)) { 4162 unsigned long pfn = pmd_pfn(val); 4163 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4164 4165 walk->mm_stats[MM_LEAF_TOTAL]++; 4166 4167 if (!pmd_young(val)) { 4168 walk->mm_stats[MM_LEAF_OLD]++; 4169 continue; 4170 } 4171 4172 /* try to avoid unnecessary memory loads */ 4173 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4174 continue; 4175 4176 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4177 continue; 4178 } 4179 #endif 4180 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4181 4182 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4183 if (!pmd_young(val)) 4184 continue; 4185 4186 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4187 } 4188 4189 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4190 continue; 4191 4192 walk->mm_stats[MM_NONLEAF_FOUND]++; 4193 4194 if (!walk_pte_range(&val, addr, next, args)) 4195 continue; 4196 4197 walk->mm_stats[MM_NONLEAF_ADDED]++; 4198 4199 /* carry over to the next generation */ 4200 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4201 } 4202 4203 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 4204 4205 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4206 goto restart; 4207 } 4208 4209 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4210 struct mm_walk *args) 4211 { 4212 int i; 4213 pud_t *pud; 4214 unsigned long addr; 4215 unsigned long next; 4216 struct lru_gen_mm_walk *walk = args->private; 4217 4218 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4219 4220 pud = pud_offset(p4d, start & P4D_MASK); 4221 restart: 4222 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4223 pud_t val = READ_ONCE(pud[i]); 4224 4225 next = pud_addr_end(addr, end); 4226 4227 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4228 continue; 4229 4230 walk_pmd_range(&val, addr, next, args); 4231 4232 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4233 end = (addr | ~PUD_MASK) + 1; 4234 goto done; 4235 } 4236 } 4237 4238 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4239 goto restart; 4240 4241 end = round_up(end, P4D_SIZE); 4242 done: 4243 if (!end || !args->vma) 4244 return 1; 4245 4246 walk->next_addr = max(end, args->vma->vm_start); 4247 4248 return -EAGAIN; 4249 } 4250 4251 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4252 { 4253 static const struct mm_walk_ops mm_walk_ops = { 4254 .test_walk = should_skip_vma, 4255 .p4d_entry = walk_pud_range, 4256 }; 4257 4258 int err; 4259 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4260 4261 walk->next_addr = FIRST_USER_ADDRESS; 4262 4263 do { 4264 DEFINE_MAX_SEQ(lruvec); 4265 4266 err = -EBUSY; 4267 4268 /* another thread might have called inc_max_seq() */ 4269 if (walk->max_seq != max_seq) 4270 break; 4271 4272 /* folio_update_gen() requires stable folio_memcg() */ 4273 if (!mem_cgroup_trylock_pages(memcg)) 4274 break; 4275 4276 /* the caller might be holding the lock for write */ 4277 if (mmap_read_trylock(mm)) { 4278 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4279 4280 mmap_read_unlock(mm); 4281 } 4282 4283 mem_cgroup_unlock_pages(); 4284 4285 if (walk->batched) { 4286 spin_lock_irq(&lruvec->lru_lock); 4287 reset_batch_size(lruvec, walk); 4288 spin_unlock_irq(&lruvec->lru_lock); 4289 } 4290 4291 cond_resched(); 4292 } while (err == -EAGAIN); 4293 } 4294 4295 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 4296 { 4297 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4298 4299 if (pgdat && current_is_kswapd()) { 4300 VM_WARN_ON_ONCE(walk); 4301 4302 walk = &pgdat->mm_walk; 4303 } else if (!walk && force_alloc) { 4304 VM_WARN_ON_ONCE(current_is_kswapd()); 4305 4306 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4307 } 4308 4309 current->reclaim_state->mm_walk = walk; 4310 4311 return walk; 4312 } 4313 4314 static void clear_mm_walk(void) 4315 { 4316 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4317 4318 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4319 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4320 4321 current->reclaim_state->mm_walk = NULL; 4322 4323 if (!current_is_kswapd()) 4324 kfree(walk); 4325 } 4326 4327 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4328 { 4329 int zone; 4330 int remaining = MAX_LRU_BATCH; 4331 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4332 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4333 4334 if (type == LRU_GEN_ANON && !can_swap) 4335 goto done; 4336 4337 /* prevent cold/hot inversion if force_scan is true */ 4338 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4339 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4340 4341 while (!list_empty(head)) { 4342 struct folio *folio = lru_to_folio(head); 4343 4344 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4345 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4346 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4347 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4348 4349 new_gen = folio_inc_gen(lruvec, folio, false); 4350 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4351 4352 if (!--remaining) 4353 return false; 4354 } 4355 } 4356 done: 4357 reset_ctrl_pos(lruvec, type, true); 4358 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4359 4360 return true; 4361 } 4362 4363 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4364 { 4365 int gen, type, zone; 4366 bool success = false; 4367 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4368 DEFINE_MIN_SEQ(lruvec); 4369 4370 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4371 4372 /* find the oldest populated generation */ 4373 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4374 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4375 gen = lru_gen_from_seq(min_seq[type]); 4376 4377 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4378 if (!list_empty(&lrugen->folios[gen][type][zone])) 4379 goto next; 4380 } 4381 4382 min_seq[type]++; 4383 } 4384 next: 4385 ; 4386 } 4387 4388 /* see the comment on lru_gen_folio */ 4389 if (can_swap) { 4390 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4391 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4392 } 4393 4394 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4395 if (min_seq[type] == lrugen->min_seq[type]) 4396 continue; 4397 4398 reset_ctrl_pos(lruvec, type, true); 4399 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4400 success = true; 4401 } 4402 4403 return success; 4404 } 4405 4406 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4407 { 4408 int prev, next; 4409 int type, zone; 4410 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4411 4412 spin_lock_irq(&lruvec->lru_lock); 4413 4414 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4415 4416 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4417 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4418 continue; 4419 4420 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4421 4422 while (!inc_min_seq(lruvec, type, can_swap)) { 4423 spin_unlock_irq(&lruvec->lru_lock); 4424 cond_resched(); 4425 spin_lock_irq(&lruvec->lru_lock); 4426 } 4427 } 4428 4429 /* 4430 * Update the active/inactive LRU sizes for compatibility. Both sides of 4431 * the current max_seq need to be covered, since max_seq+1 can overlap 4432 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4433 * overlap, cold/hot inversion happens. 4434 */ 4435 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4436 next = lru_gen_from_seq(lrugen->max_seq + 1); 4437 4438 for (type = 0; type < ANON_AND_FILE; type++) { 4439 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4440 enum lru_list lru = type * LRU_INACTIVE_FILE; 4441 long delta = lrugen->nr_pages[prev][type][zone] - 4442 lrugen->nr_pages[next][type][zone]; 4443 4444 if (!delta) 4445 continue; 4446 4447 __update_lru_size(lruvec, lru, zone, delta); 4448 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4449 } 4450 } 4451 4452 for (type = 0; type < ANON_AND_FILE; type++) 4453 reset_ctrl_pos(lruvec, type, false); 4454 4455 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4456 /* make sure preceding modifications appear */ 4457 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4458 4459 spin_unlock_irq(&lruvec->lru_lock); 4460 } 4461 4462 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4463 struct scan_control *sc, bool can_swap, bool force_scan) 4464 { 4465 bool success; 4466 struct lru_gen_mm_walk *walk; 4467 struct mm_struct *mm = NULL; 4468 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4469 4470 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4471 4472 /* see the comment in iterate_mm_list() */ 4473 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4474 success = false; 4475 goto done; 4476 } 4477 4478 /* 4479 * If the hardware doesn't automatically set the accessed bit, fallback 4480 * to lru_gen_look_around(), which only clears the accessed bit in a 4481 * handful of PTEs. Spreading the work out over a period of time usually 4482 * is less efficient, but it avoids bursty page faults. 4483 */ 4484 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) { 4485 success = iterate_mm_list_nowalk(lruvec, max_seq); 4486 goto done; 4487 } 4488 4489 walk = set_mm_walk(NULL, true); 4490 if (!walk) { 4491 success = iterate_mm_list_nowalk(lruvec, max_seq); 4492 goto done; 4493 } 4494 4495 walk->lruvec = lruvec; 4496 walk->max_seq = max_seq; 4497 walk->can_swap = can_swap; 4498 walk->force_scan = force_scan; 4499 4500 do { 4501 success = iterate_mm_list(lruvec, walk, &mm); 4502 if (mm) 4503 walk_mm(lruvec, mm, walk); 4504 } while (mm); 4505 done: 4506 if (success) 4507 inc_max_seq(lruvec, can_swap, force_scan); 4508 4509 return success; 4510 } 4511 4512 /****************************************************************************** 4513 * working set protection 4514 ******************************************************************************/ 4515 4516 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4517 { 4518 int gen, type, zone; 4519 unsigned long total = 0; 4520 bool can_swap = get_swappiness(lruvec, sc); 4521 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4522 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4523 DEFINE_MAX_SEQ(lruvec); 4524 DEFINE_MIN_SEQ(lruvec); 4525 4526 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4527 unsigned long seq; 4528 4529 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4530 gen = lru_gen_from_seq(seq); 4531 4532 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4533 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4534 } 4535 } 4536 4537 /* whether the size is big enough to be helpful */ 4538 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4539 } 4540 4541 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4542 unsigned long min_ttl) 4543 { 4544 int gen; 4545 unsigned long birth; 4546 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4547 DEFINE_MIN_SEQ(lruvec); 4548 4549 /* see the comment on lru_gen_folio */ 4550 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4551 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4552 4553 if (time_is_after_jiffies(birth + min_ttl)) 4554 return false; 4555 4556 if (!lruvec_is_sizable(lruvec, sc)) 4557 return false; 4558 4559 mem_cgroup_calculate_protection(NULL, memcg); 4560 4561 return !mem_cgroup_below_min(NULL, memcg); 4562 } 4563 4564 /* to protect the working set of the last N jiffies */ 4565 static unsigned long lru_gen_min_ttl __read_mostly; 4566 4567 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4568 { 4569 struct mem_cgroup *memcg; 4570 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4571 4572 VM_WARN_ON_ONCE(!current_is_kswapd()); 4573 4574 /* check the order to exclude compaction-induced reclaim */ 4575 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 4576 return; 4577 4578 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4579 do { 4580 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4581 4582 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 4583 mem_cgroup_iter_break(NULL, memcg); 4584 return; 4585 } 4586 4587 cond_resched(); 4588 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4589 4590 /* 4591 * The main goal is to OOM kill if every generation from all memcgs is 4592 * younger than min_ttl. However, another possibility is all memcgs are 4593 * either too small or below min. 4594 */ 4595 if (mutex_trylock(&oom_lock)) { 4596 struct oom_control oc = { 4597 .gfp_mask = sc->gfp_mask, 4598 }; 4599 4600 out_of_memory(&oc); 4601 4602 mutex_unlock(&oom_lock); 4603 } 4604 } 4605 4606 /****************************************************************************** 4607 * rmap/PT walk feedback 4608 ******************************************************************************/ 4609 4610 /* 4611 * This function exploits spatial locality when shrink_folio_list() walks the 4612 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4613 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4614 * the PTE table to the Bloom filter. This forms a feedback loop between the 4615 * eviction and the aging. 4616 */ 4617 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4618 { 4619 int i; 4620 unsigned long start; 4621 unsigned long end; 4622 struct lru_gen_mm_walk *walk; 4623 int young = 0; 4624 pte_t *pte = pvmw->pte; 4625 unsigned long addr = pvmw->address; 4626 struct folio *folio = pfn_folio(pvmw->pfn); 4627 struct mem_cgroup *memcg = folio_memcg(folio); 4628 struct pglist_data *pgdat = folio_pgdat(folio); 4629 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4630 DEFINE_MAX_SEQ(lruvec); 4631 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4632 4633 lockdep_assert_held(pvmw->ptl); 4634 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4635 4636 if (spin_is_contended(pvmw->ptl)) 4637 return; 4638 4639 /* avoid taking the LRU lock under the PTL when possible */ 4640 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4641 4642 start = max(addr & PMD_MASK, pvmw->vma->vm_start); 4643 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4644 4645 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4646 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4647 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4648 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4649 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4650 else { 4651 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4652 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4653 } 4654 } 4655 4656 /* folio_update_gen() requires stable folio_memcg() */ 4657 if (!mem_cgroup_trylock_pages(memcg)) 4658 return; 4659 4660 arch_enter_lazy_mmu_mode(); 4661 4662 pte -= (addr - start) / PAGE_SIZE; 4663 4664 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4665 unsigned long pfn; 4666 4667 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4668 if (pfn == -1) 4669 continue; 4670 4671 if (!pte_young(pte[i])) 4672 continue; 4673 4674 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4675 if (!folio) 4676 continue; 4677 4678 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4679 VM_WARN_ON_ONCE(true); 4680 4681 young++; 4682 4683 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4684 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4685 !folio_test_swapcache(folio))) 4686 folio_mark_dirty(folio); 4687 4688 if (walk) { 4689 old_gen = folio_update_gen(folio, new_gen); 4690 if (old_gen >= 0 && old_gen != new_gen) 4691 update_batch_size(walk, folio, old_gen, new_gen); 4692 4693 continue; 4694 } 4695 4696 old_gen = folio_lru_gen(folio); 4697 if (old_gen < 0) 4698 folio_set_referenced(folio); 4699 else if (old_gen != new_gen) 4700 folio_activate(folio); 4701 } 4702 4703 arch_leave_lazy_mmu_mode(); 4704 mem_cgroup_unlock_pages(); 4705 4706 /* feedback from rmap walkers to page table walkers */ 4707 if (suitable_to_scan(i, young)) 4708 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4709 } 4710 4711 /****************************************************************************** 4712 * memcg LRU 4713 ******************************************************************************/ 4714 4715 /* see the comment on MEMCG_NR_GENS */ 4716 enum { 4717 MEMCG_LRU_NOP, 4718 MEMCG_LRU_HEAD, 4719 MEMCG_LRU_TAIL, 4720 MEMCG_LRU_OLD, 4721 MEMCG_LRU_YOUNG, 4722 }; 4723 4724 #ifdef CONFIG_MEMCG 4725 4726 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4727 { 4728 return READ_ONCE(lruvec->lrugen.seg); 4729 } 4730 4731 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4732 { 4733 int seg; 4734 int old, new; 4735 int bin = get_random_u32_below(MEMCG_NR_BINS); 4736 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4737 4738 spin_lock(&pgdat->memcg_lru.lock); 4739 4740 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4741 4742 seg = 0; 4743 new = old = lruvec->lrugen.gen; 4744 4745 /* see the comment on MEMCG_NR_GENS */ 4746 if (op == MEMCG_LRU_HEAD) 4747 seg = MEMCG_LRU_HEAD; 4748 else if (op == MEMCG_LRU_TAIL) 4749 seg = MEMCG_LRU_TAIL; 4750 else if (op == MEMCG_LRU_OLD) 4751 new = get_memcg_gen(pgdat->memcg_lru.seq); 4752 else if (op == MEMCG_LRU_YOUNG) 4753 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4754 else 4755 VM_WARN_ON_ONCE(true); 4756 4757 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4758 4759 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4760 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4761 else 4762 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4763 4764 pgdat->memcg_lru.nr_memcgs[old]--; 4765 pgdat->memcg_lru.nr_memcgs[new]++; 4766 4767 lruvec->lrugen.gen = new; 4768 WRITE_ONCE(lruvec->lrugen.seg, seg); 4769 4770 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4771 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4772 4773 spin_unlock(&pgdat->memcg_lru.lock); 4774 } 4775 4776 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4777 { 4778 int gen; 4779 int nid; 4780 int bin = get_random_u32_below(MEMCG_NR_BINS); 4781 4782 for_each_node(nid) { 4783 struct pglist_data *pgdat = NODE_DATA(nid); 4784 struct lruvec *lruvec = get_lruvec(memcg, nid); 4785 4786 spin_lock(&pgdat->memcg_lru.lock); 4787 4788 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4789 4790 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4791 4792 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4793 pgdat->memcg_lru.nr_memcgs[gen]++; 4794 4795 lruvec->lrugen.gen = gen; 4796 4797 spin_unlock(&pgdat->memcg_lru.lock); 4798 } 4799 } 4800 4801 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4802 { 4803 int nid; 4804 4805 for_each_node(nid) { 4806 struct lruvec *lruvec = get_lruvec(memcg, nid); 4807 4808 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4809 } 4810 } 4811 4812 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4813 { 4814 int gen; 4815 int nid; 4816 4817 for_each_node(nid) { 4818 struct pglist_data *pgdat = NODE_DATA(nid); 4819 struct lruvec *lruvec = get_lruvec(memcg, nid); 4820 4821 spin_lock(&pgdat->memcg_lru.lock); 4822 4823 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4824 4825 gen = lruvec->lrugen.gen; 4826 4827 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4828 pgdat->memcg_lru.nr_memcgs[gen]--; 4829 4830 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4831 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4832 4833 spin_unlock(&pgdat->memcg_lru.lock); 4834 } 4835 } 4836 4837 void lru_gen_soft_reclaim(struct lruvec *lruvec) 4838 { 4839 /* see the comment on MEMCG_NR_GENS */ 4840 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 4841 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4842 } 4843 4844 #else /* !CONFIG_MEMCG */ 4845 4846 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4847 { 4848 return 0; 4849 } 4850 4851 #endif 4852 4853 /****************************************************************************** 4854 * the eviction 4855 ******************************************************************************/ 4856 4857 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4858 { 4859 bool success; 4860 int gen = folio_lru_gen(folio); 4861 int type = folio_is_file_lru(folio); 4862 int zone = folio_zonenum(folio); 4863 int delta = folio_nr_pages(folio); 4864 int refs = folio_lru_refs(folio); 4865 int tier = lru_tier_from_refs(refs); 4866 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4867 4868 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4869 4870 /* unevictable */ 4871 if (!folio_evictable(folio)) { 4872 success = lru_gen_del_folio(lruvec, folio, true); 4873 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4874 folio_set_unevictable(folio); 4875 lruvec_add_folio(lruvec, folio); 4876 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4877 return true; 4878 } 4879 4880 /* dirty lazyfree */ 4881 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4882 success = lru_gen_del_folio(lruvec, folio, true); 4883 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4884 folio_set_swapbacked(folio); 4885 lruvec_add_folio_tail(lruvec, folio); 4886 return true; 4887 } 4888 4889 /* promoted */ 4890 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4891 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4892 return true; 4893 } 4894 4895 /* protected */ 4896 if (tier > tier_idx) { 4897 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4898 4899 gen = folio_inc_gen(lruvec, folio, false); 4900 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4901 4902 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4903 lrugen->protected[hist][type][tier - 1] + delta); 4904 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4905 return true; 4906 } 4907 4908 /* waiting for writeback */ 4909 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4910 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4911 gen = folio_inc_gen(lruvec, folio, true); 4912 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4913 return true; 4914 } 4915 4916 return false; 4917 } 4918 4919 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4920 { 4921 bool success; 4922 4923 /* swapping inhibited */ 4924 if (!(sc->gfp_mask & __GFP_IO) && 4925 (folio_test_dirty(folio) || 4926 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4927 return false; 4928 4929 /* raced with release_pages() */ 4930 if (!folio_try_get(folio)) 4931 return false; 4932 4933 /* raced with another isolation */ 4934 if (!folio_test_clear_lru(folio)) { 4935 folio_put(folio); 4936 return false; 4937 } 4938 4939 /* see the comment on MAX_NR_TIERS */ 4940 if (!folio_test_referenced(folio)) 4941 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4942 4943 /* for shrink_folio_list() */ 4944 folio_clear_reclaim(folio); 4945 folio_clear_referenced(folio); 4946 4947 success = lru_gen_del_folio(lruvec, folio, true); 4948 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4949 4950 return true; 4951 } 4952 4953 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4954 int type, int tier, struct list_head *list) 4955 { 4956 int gen, zone; 4957 enum vm_event_item item; 4958 int sorted = 0; 4959 int scanned = 0; 4960 int isolated = 0; 4961 int remaining = MAX_LRU_BATCH; 4962 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4963 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4964 4965 VM_WARN_ON_ONCE(!list_empty(list)); 4966 4967 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4968 return 0; 4969 4970 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4971 4972 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4973 LIST_HEAD(moved); 4974 int skipped = 0; 4975 struct list_head *head = &lrugen->folios[gen][type][zone]; 4976 4977 while (!list_empty(head)) { 4978 struct folio *folio = lru_to_folio(head); 4979 int delta = folio_nr_pages(folio); 4980 4981 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4982 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4983 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4984 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4985 4986 scanned += delta; 4987 4988 if (sort_folio(lruvec, folio, tier)) 4989 sorted += delta; 4990 else if (isolate_folio(lruvec, folio, sc)) { 4991 list_add(&folio->lru, list); 4992 isolated += delta; 4993 } else { 4994 list_move(&folio->lru, &moved); 4995 skipped += delta; 4996 } 4997 4998 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 4999 break; 5000 } 5001 5002 if (skipped) { 5003 list_splice(&moved, head); 5004 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 5005 } 5006 5007 if (!remaining || isolated >= MIN_LRU_BATCH) 5008 break; 5009 } 5010 5011 item = PGSCAN_KSWAPD + reclaimer_offset(); 5012 if (!cgroup_reclaim(sc)) { 5013 __count_vm_events(item, isolated); 5014 __count_vm_events(PGREFILL, sorted); 5015 } 5016 __count_memcg_events(memcg, item, isolated); 5017 __count_memcg_events(memcg, PGREFILL, sorted); 5018 __count_vm_events(PGSCAN_ANON + type, isolated); 5019 5020 /* 5021 * There might not be eligible folios due to reclaim_idx. Check the 5022 * remaining to prevent livelock if it's not making progress. 5023 */ 5024 return isolated || !remaining ? scanned : 0; 5025 } 5026 5027 static int get_tier_idx(struct lruvec *lruvec, int type) 5028 { 5029 int tier; 5030 struct ctrl_pos sp, pv; 5031 5032 /* 5033 * To leave a margin for fluctuations, use a larger gain factor (1:2). 5034 * This value is chosen because any other tier would have at least twice 5035 * as many refaults as the first tier. 5036 */ 5037 read_ctrl_pos(lruvec, type, 0, 1, &sp); 5038 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5039 read_ctrl_pos(lruvec, type, tier, 2, &pv); 5040 if (!positive_ctrl_err(&sp, &pv)) 5041 break; 5042 } 5043 5044 return tier - 1; 5045 } 5046 5047 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 5048 { 5049 int type, tier; 5050 struct ctrl_pos sp, pv; 5051 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 5052 5053 /* 5054 * Compare the first tier of anon with that of file to determine which 5055 * type to scan. Also need to compare other tiers of the selected type 5056 * with the first tier of the other type to determine the last tier (of 5057 * the selected type) to evict. 5058 */ 5059 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 5060 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 5061 type = positive_ctrl_err(&sp, &pv); 5062 5063 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 5064 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5065 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 5066 if (!positive_ctrl_err(&sp, &pv)) 5067 break; 5068 } 5069 5070 *tier_idx = tier - 1; 5071 5072 return type; 5073 } 5074 5075 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 5076 int *type_scanned, struct list_head *list) 5077 { 5078 int i; 5079 int type; 5080 int scanned; 5081 int tier = -1; 5082 DEFINE_MIN_SEQ(lruvec); 5083 5084 /* 5085 * Try to make the obvious choice first. When anon and file are both 5086 * available from the same generation, interpret swappiness 1 as file 5087 * first and 200 as anon first. 5088 */ 5089 if (!swappiness) 5090 type = LRU_GEN_FILE; 5091 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 5092 type = LRU_GEN_ANON; 5093 else if (swappiness == 1) 5094 type = LRU_GEN_FILE; 5095 else if (swappiness == 200) 5096 type = LRU_GEN_ANON; 5097 else 5098 type = get_type_to_scan(lruvec, swappiness, &tier); 5099 5100 for (i = !swappiness; i < ANON_AND_FILE; i++) { 5101 if (tier < 0) 5102 tier = get_tier_idx(lruvec, type); 5103 5104 scanned = scan_folios(lruvec, sc, type, tier, list); 5105 if (scanned) 5106 break; 5107 5108 type = !type; 5109 tier = -1; 5110 } 5111 5112 *type_scanned = type; 5113 5114 return scanned; 5115 } 5116 5117 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 5118 { 5119 int type; 5120 int scanned; 5121 int reclaimed; 5122 LIST_HEAD(list); 5123 LIST_HEAD(clean); 5124 struct folio *folio; 5125 struct folio *next; 5126 enum vm_event_item item; 5127 struct reclaim_stat stat; 5128 struct lru_gen_mm_walk *walk; 5129 bool skip_retry = false; 5130 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5131 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5132 5133 spin_lock_irq(&lruvec->lru_lock); 5134 5135 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5136 5137 scanned += try_to_inc_min_seq(lruvec, swappiness); 5138 5139 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5140 scanned = 0; 5141 5142 spin_unlock_irq(&lruvec->lru_lock); 5143 5144 if (list_empty(&list)) 5145 return scanned; 5146 retry: 5147 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5148 sc->nr_reclaimed += reclaimed; 5149 5150 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5151 if (!folio_evictable(folio)) { 5152 list_del(&folio->lru); 5153 folio_putback_lru(folio); 5154 continue; 5155 } 5156 5157 if (folio_test_reclaim(folio) && 5158 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5159 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5160 if (folio_test_workingset(folio)) 5161 folio_set_referenced(folio); 5162 continue; 5163 } 5164 5165 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5166 folio_mapped(folio) || folio_test_locked(folio) || 5167 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5168 /* don't add rejected folios to the oldest generation */ 5169 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5170 BIT(PG_active)); 5171 continue; 5172 } 5173 5174 /* retry folios that may have missed folio_rotate_reclaimable() */ 5175 list_move(&folio->lru, &clean); 5176 sc->nr_scanned -= folio_nr_pages(folio); 5177 } 5178 5179 spin_lock_irq(&lruvec->lru_lock); 5180 5181 move_folios_to_lru(lruvec, &list); 5182 5183 walk = current->reclaim_state->mm_walk; 5184 if (walk && walk->batched) 5185 reset_batch_size(lruvec, walk); 5186 5187 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5188 if (!cgroup_reclaim(sc)) 5189 __count_vm_events(item, reclaimed); 5190 __count_memcg_events(memcg, item, reclaimed); 5191 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5192 5193 spin_unlock_irq(&lruvec->lru_lock); 5194 5195 mem_cgroup_uncharge_list(&list); 5196 free_unref_page_list(&list); 5197 5198 INIT_LIST_HEAD(&list); 5199 list_splice_init(&clean, &list); 5200 5201 if (!list_empty(&list)) { 5202 skip_retry = true; 5203 goto retry; 5204 } 5205 5206 return scanned; 5207 } 5208 5209 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 5210 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 5211 { 5212 int gen, type, zone; 5213 unsigned long old = 0; 5214 unsigned long young = 0; 5215 unsigned long total = 0; 5216 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5217 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5218 DEFINE_MIN_SEQ(lruvec); 5219 5220 /* whether this lruvec is completely out of cold folios */ 5221 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 5222 *nr_to_scan = 0; 5223 return true; 5224 } 5225 5226 for (type = !can_swap; type < ANON_AND_FILE; type++) { 5227 unsigned long seq; 5228 5229 for (seq = min_seq[type]; seq <= max_seq; seq++) { 5230 unsigned long size = 0; 5231 5232 gen = lru_gen_from_seq(seq); 5233 5234 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5235 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5236 5237 total += size; 5238 if (seq == max_seq) 5239 young += size; 5240 else if (seq + MIN_NR_GENS == max_seq) 5241 old += size; 5242 } 5243 } 5244 5245 /* try to scrape all its memory if this memcg was deleted */ 5246 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 5247 5248 /* 5249 * The aging tries to be lazy to reduce the overhead, while the eviction 5250 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 5251 * ideal number of generations is MIN_NR_GENS+1. 5252 */ 5253 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 5254 return false; 5255 5256 /* 5257 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 5258 * of the total number of pages for each generation. A reasonable range 5259 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 5260 * aging cares about the upper bound of hot pages, while the eviction 5261 * cares about the lower bound of cold pages. 5262 */ 5263 if (young * MIN_NR_GENS > total) 5264 return true; 5265 if (old * (MIN_NR_GENS + 2) < total) 5266 return true; 5267 5268 return false; 5269 } 5270 5271 /* 5272 * For future optimizations: 5273 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5274 * reclaim. 5275 */ 5276 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 5277 { 5278 unsigned long nr_to_scan; 5279 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5280 DEFINE_MAX_SEQ(lruvec); 5281 5282 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 5283 return 0; 5284 5285 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5286 return nr_to_scan; 5287 5288 /* skip the aging path at the default priority */ 5289 if (sc->priority == DEF_PRIORITY) 5290 return nr_to_scan; 5291 5292 /* skip this lruvec as it's low on cold folios */ 5293 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 5294 } 5295 5296 static unsigned long get_nr_to_reclaim(struct scan_control *sc) 5297 { 5298 /* don't abort memcg reclaim to ensure fairness */ 5299 if (!global_reclaim(sc)) 5300 return -1; 5301 5302 return max(sc->nr_to_reclaim, compact_gap(sc->order)); 5303 } 5304 5305 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5306 { 5307 long nr_to_scan; 5308 unsigned long scanned = 0; 5309 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5310 int swappiness = get_swappiness(lruvec, sc); 5311 5312 /* clean file folios are more likely to exist */ 5313 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 5314 swappiness = 1; 5315 5316 while (true) { 5317 int delta; 5318 5319 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5320 if (nr_to_scan <= 0) 5321 break; 5322 5323 delta = evict_folios(lruvec, sc, swappiness); 5324 if (!delta) 5325 break; 5326 5327 scanned += delta; 5328 if (scanned >= nr_to_scan) 5329 break; 5330 5331 if (sc->nr_reclaimed >= nr_to_reclaim) 5332 break; 5333 5334 cond_resched(); 5335 } 5336 5337 /* whether try_to_inc_max_seq() was successful */ 5338 return nr_to_scan < 0; 5339 } 5340 5341 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 5342 { 5343 bool success; 5344 unsigned long scanned = sc->nr_scanned; 5345 unsigned long reclaimed = sc->nr_reclaimed; 5346 int seg = lru_gen_memcg_seg(lruvec); 5347 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5348 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5349 5350 /* see the comment on MEMCG_NR_GENS */ 5351 if (!lruvec_is_sizable(lruvec, sc)) 5352 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 5353 5354 mem_cgroup_calculate_protection(NULL, memcg); 5355 5356 if (mem_cgroup_below_min(NULL, memcg)) 5357 return MEMCG_LRU_YOUNG; 5358 5359 if (mem_cgroup_below_low(NULL, memcg)) { 5360 /* see the comment on MEMCG_NR_GENS */ 5361 if (seg != MEMCG_LRU_TAIL) 5362 return MEMCG_LRU_TAIL; 5363 5364 memcg_memory_event(memcg, MEMCG_LOW); 5365 } 5366 5367 success = try_to_shrink_lruvec(lruvec, sc); 5368 5369 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 5370 5371 if (!sc->proactive) 5372 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 5373 sc->nr_reclaimed - reclaimed); 5374 5375 flush_reclaim_state(sc); 5376 5377 return success ? MEMCG_LRU_YOUNG : 0; 5378 } 5379 5380 #ifdef CONFIG_MEMCG 5381 5382 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5383 { 5384 int op; 5385 int gen; 5386 int bin; 5387 int first_bin; 5388 struct lruvec *lruvec; 5389 struct lru_gen_folio *lrugen; 5390 struct mem_cgroup *memcg; 5391 const struct hlist_nulls_node *pos; 5392 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5393 5394 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 5395 restart: 5396 op = 0; 5397 memcg = NULL; 5398 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 5399 5400 rcu_read_lock(); 5401 5402 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 5403 if (op) 5404 lru_gen_rotate_memcg(lruvec, op); 5405 5406 mem_cgroup_put(memcg); 5407 5408 lruvec = container_of(lrugen, struct lruvec, lrugen); 5409 memcg = lruvec_memcg(lruvec); 5410 5411 if (!mem_cgroup_tryget(memcg)) { 5412 op = 0; 5413 memcg = NULL; 5414 continue; 5415 } 5416 5417 rcu_read_unlock(); 5418 5419 op = shrink_one(lruvec, sc); 5420 5421 rcu_read_lock(); 5422 5423 if (sc->nr_reclaimed >= nr_to_reclaim) 5424 break; 5425 } 5426 5427 rcu_read_unlock(); 5428 5429 if (op) 5430 lru_gen_rotate_memcg(lruvec, op); 5431 5432 mem_cgroup_put(memcg); 5433 5434 if (sc->nr_reclaimed >= nr_to_reclaim) 5435 return; 5436 5437 /* restart if raced with lru_gen_rotate_memcg() */ 5438 if (gen != get_nulls_value(pos)) 5439 goto restart; 5440 5441 /* try the rest of the bins of the current generation */ 5442 bin = get_memcg_bin(bin + 1); 5443 if (bin != first_bin) 5444 goto restart; 5445 } 5446 5447 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5448 { 5449 struct blk_plug plug; 5450 5451 VM_WARN_ON_ONCE(global_reclaim(sc)); 5452 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5453 5454 lru_add_drain(); 5455 5456 blk_start_plug(&plug); 5457 5458 set_mm_walk(NULL, sc->proactive); 5459 5460 if (try_to_shrink_lruvec(lruvec, sc)) 5461 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5462 5463 clear_mm_walk(); 5464 5465 blk_finish_plug(&plug); 5466 } 5467 5468 #else /* !CONFIG_MEMCG */ 5469 5470 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5471 { 5472 BUILD_BUG(); 5473 } 5474 5475 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5476 { 5477 BUILD_BUG(); 5478 } 5479 5480 #endif 5481 5482 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 5483 { 5484 int priority; 5485 unsigned long reclaimable; 5486 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 5487 5488 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 5489 return; 5490 /* 5491 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >> 5492 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the 5493 * estimated reclaimed_to_scanned_ratio = inactive / total. 5494 */ 5495 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 5496 if (get_swappiness(lruvec, sc)) 5497 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 5498 5499 reclaimable /= MEMCG_NR_GENS; 5500 5501 /* round down reclaimable and round up sc->nr_to_reclaim */ 5502 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 5503 5504 sc->priority = clamp(priority, 0, DEF_PRIORITY); 5505 } 5506 5507 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5508 { 5509 struct blk_plug plug; 5510 unsigned long reclaimed = sc->nr_reclaimed; 5511 5512 VM_WARN_ON_ONCE(!global_reclaim(sc)); 5513 5514 /* 5515 * Unmapped clean folios are already prioritized. Scanning for more of 5516 * them is likely futile and can cause high reclaim latency when there 5517 * is a large number of memcgs. 5518 */ 5519 if (!sc->may_writepage || !sc->may_unmap) 5520 goto done; 5521 5522 lru_add_drain(); 5523 5524 blk_start_plug(&plug); 5525 5526 set_mm_walk(pgdat, sc->proactive); 5527 5528 set_initial_priority(pgdat, sc); 5529 5530 if (current_is_kswapd()) 5531 sc->nr_reclaimed = 0; 5532 5533 if (mem_cgroup_disabled()) 5534 shrink_one(&pgdat->__lruvec, sc); 5535 else 5536 shrink_many(pgdat, sc); 5537 5538 if (current_is_kswapd()) 5539 sc->nr_reclaimed += reclaimed; 5540 5541 clear_mm_walk(); 5542 5543 blk_finish_plug(&plug); 5544 done: 5545 /* kswapd should never fail */ 5546 pgdat->kswapd_failures = 0; 5547 } 5548 5549 /****************************************************************************** 5550 * state change 5551 ******************************************************************************/ 5552 5553 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5554 { 5555 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5556 5557 if (lrugen->enabled) { 5558 enum lru_list lru; 5559 5560 for_each_evictable_lru(lru) { 5561 if (!list_empty(&lruvec->lists[lru])) 5562 return false; 5563 } 5564 } else { 5565 int gen, type, zone; 5566 5567 for_each_gen_type_zone(gen, type, zone) { 5568 if (!list_empty(&lrugen->folios[gen][type][zone])) 5569 return false; 5570 } 5571 } 5572 5573 return true; 5574 } 5575 5576 static bool fill_evictable(struct lruvec *lruvec) 5577 { 5578 enum lru_list lru; 5579 int remaining = MAX_LRU_BATCH; 5580 5581 for_each_evictable_lru(lru) { 5582 int type = is_file_lru(lru); 5583 bool active = is_active_lru(lru); 5584 struct list_head *head = &lruvec->lists[lru]; 5585 5586 while (!list_empty(head)) { 5587 bool success; 5588 struct folio *folio = lru_to_folio(head); 5589 5590 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5591 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5592 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5593 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5594 5595 lruvec_del_folio(lruvec, folio); 5596 success = lru_gen_add_folio(lruvec, folio, false); 5597 VM_WARN_ON_ONCE(!success); 5598 5599 if (!--remaining) 5600 return false; 5601 } 5602 } 5603 5604 return true; 5605 } 5606 5607 static bool drain_evictable(struct lruvec *lruvec) 5608 { 5609 int gen, type, zone; 5610 int remaining = MAX_LRU_BATCH; 5611 5612 for_each_gen_type_zone(gen, type, zone) { 5613 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5614 5615 while (!list_empty(head)) { 5616 bool success; 5617 struct folio *folio = lru_to_folio(head); 5618 5619 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5620 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5621 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5622 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5623 5624 success = lru_gen_del_folio(lruvec, folio, false); 5625 VM_WARN_ON_ONCE(!success); 5626 lruvec_add_folio(lruvec, folio); 5627 5628 if (!--remaining) 5629 return false; 5630 } 5631 } 5632 5633 return true; 5634 } 5635 5636 static void lru_gen_change_state(bool enabled) 5637 { 5638 static DEFINE_MUTEX(state_mutex); 5639 5640 struct mem_cgroup *memcg; 5641 5642 cgroup_lock(); 5643 cpus_read_lock(); 5644 get_online_mems(); 5645 mutex_lock(&state_mutex); 5646 5647 if (enabled == lru_gen_enabled()) 5648 goto unlock; 5649 5650 if (enabled) 5651 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5652 else 5653 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5654 5655 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5656 do { 5657 int nid; 5658 5659 for_each_node(nid) { 5660 struct lruvec *lruvec = get_lruvec(memcg, nid); 5661 5662 spin_lock_irq(&lruvec->lru_lock); 5663 5664 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5665 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5666 5667 lruvec->lrugen.enabled = enabled; 5668 5669 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5670 spin_unlock_irq(&lruvec->lru_lock); 5671 cond_resched(); 5672 spin_lock_irq(&lruvec->lru_lock); 5673 } 5674 5675 spin_unlock_irq(&lruvec->lru_lock); 5676 } 5677 5678 cond_resched(); 5679 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5680 unlock: 5681 mutex_unlock(&state_mutex); 5682 put_online_mems(); 5683 cpus_read_unlock(); 5684 cgroup_unlock(); 5685 } 5686 5687 /****************************************************************************** 5688 * sysfs interface 5689 ******************************************************************************/ 5690 5691 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5692 { 5693 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5694 } 5695 5696 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5697 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5698 const char *buf, size_t len) 5699 { 5700 unsigned int msecs; 5701 5702 if (kstrtouint(buf, 0, &msecs)) 5703 return -EINVAL; 5704 5705 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5706 5707 return len; 5708 } 5709 5710 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5711 5712 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5713 { 5714 unsigned int caps = 0; 5715 5716 if (get_cap(LRU_GEN_CORE)) 5717 caps |= BIT(LRU_GEN_CORE); 5718 5719 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5720 caps |= BIT(LRU_GEN_MM_WALK); 5721 5722 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5723 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5724 5725 return sysfs_emit(buf, "0x%04x\n", caps); 5726 } 5727 5728 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5729 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5730 const char *buf, size_t len) 5731 { 5732 int i; 5733 unsigned int caps; 5734 5735 if (tolower(*buf) == 'n') 5736 caps = 0; 5737 else if (tolower(*buf) == 'y') 5738 caps = -1; 5739 else if (kstrtouint(buf, 0, &caps)) 5740 return -EINVAL; 5741 5742 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5743 bool enabled = caps & BIT(i); 5744 5745 if (i == LRU_GEN_CORE) 5746 lru_gen_change_state(enabled); 5747 else if (enabled) 5748 static_branch_enable(&lru_gen_caps[i]); 5749 else 5750 static_branch_disable(&lru_gen_caps[i]); 5751 } 5752 5753 return len; 5754 } 5755 5756 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5757 5758 static struct attribute *lru_gen_attrs[] = { 5759 &lru_gen_min_ttl_attr.attr, 5760 &lru_gen_enabled_attr.attr, 5761 NULL 5762 }; 5763 5764 static const struct attribute_group lru_gen_attr_group = { 5765 .name = "lru_gen", 5766 .attrs = lru_gen_attrs, 5767 }; 5768 5769 /****************************************************************************** 5770 * debugfs interface 5771 ******************************************************************************/ 5772 5773 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5774 { 5775 struct mem_cgroup *memcg; 5776 loff_t nr_to_skip = *pos; 5777 5778 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5779 if (!m->private) 5780 return ERR_PTR(-ENOMEM); 5781 5782 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5783 do { 5784 int nid; 5785 5786 for_each_node_state(nid, N_MEMORY) { 5787 if (!nr_to_skip--) 5788 return get_lruvec(memcg, nid); 5789 } 5790 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5791 5792 return NULL; 5793 } 5794 5795 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5796 { 5797 if (!IS_ERR_OR_NULL(v)) 5798 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5799 5800 kvfree(m->private); 5801 m->private = NULL; 5802 } 5803 5804 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5805 { 5806 int nid = lruvec_pgdat(v)->node_id; 5807 struct mem_cgroup *memcg = lruvec_memcg(v); 5808 5809 ++*pos; 5810 5811 nid = next_memory_node(nid); 5812 if (nid == MAX_NUMNODES) { 5813 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5814 if (!memcg) 5815 return NULL; 5816 5817 nid = first_memory_node; 5818 } 5819 5820 return get_lruvec(memcg, nid); 5821 } 5822 5823 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5824 unsigned long max_seq, unsigned long *min_seq, 5825 unsigned long seq) 5826 { 5827 int i; 5828 int type, tier; 5829 int hist = lru_hist_from_seq(seq); 5830 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5831 5832 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5833 seq_printf(m, " %10d", tier); 5834 for (type = 0; type < ANON_AND_FILE; type++) { 5835 const char *s = " "; 5836 unsigned long n[3] = {}; 5837 5838 if (seq == max_seq) { 5839 s = "RT "; 5840 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5841 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5842 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5843 s = "rep"; 5844 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5845 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5846 if (tier) 5847 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5848 } 5849 5850 for (i = 0; i < 3; i++) 5851 seq_printf(m, " %10lu%c", n[i], s[i]); 5852 } 5853 seq_putc(m, '\n'); 5854 } 5855 5856 seq_puts(m, " "); 5857 for (i = 0; i < NR_MM_STATS; i++) { 5858 const char *s = " "; 5859 unsigned long n = 0; 5860 5861 if (seq == max_seq && NR_HIST_GENS == 1) { 5862 s = "LOYNFA"; 5863 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5864 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5865 s = "loynfa"; 5866 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5867 } 5868 5869 seq_printf(m, " %10lu%c", n, s[i]); 5870 } 5871 seq_putc(m, '\n'); 5872 } 5873 5874 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5875 static int lru_gen_seq_show(struct seq_file *m, void *v) 5876 { 5877 unsigned long seq; 5878 bool full = !debugfs_real_fops(m->file)->write; 5879 struct lruvec *lruvec = v; 5880 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5881 int nid = lruvec_pgdat(lruvec)->node_id; 5882 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5883 DEFINE_MAX_SEQ(lruvec); 5884 DEFINE_MIN_SEQ(lruvec); 5885 5886 if (nid == first_memory_node) { 5887 const char *path = memcg ? m->private : ""; 5888 5889 #ifdef CONFIG_MEMCG 5890 if (memcg) 5891 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5892 #endif 5893 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5894 } 5895 5896 seq_printf(m, " node %5d\n", nid); 5897 5898 if (!full) 5899 seq = min_seq[LRU_GEN_ANON]; 5900 else if (max_seq >= MAX_NR_GENS) 5901 seq = max_seq - MAX_NR_GENS + 1; 5902 else 5903 seq = 0; 5904 5905 for (; seq <= max_seq; seq++) { 5906 int type, zone; 5907 int gen = lru_gen_from_seq(seq); 5908 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5909 5910 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5911 5912 for (type = 0; type < ANON_AND_FILE; type++) { 5913 unsigned long size = 0; 5914 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5915 5916 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5917 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5918 5919 seq_printf(m, " %10lu%c", size, mark); 5920 } 5921 5922 seq_putc(m, '\n'); 5923 5924 if (full) 5925 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5926 } 5927 5928 return 0; 5929 } 5930 5931 static const struct seq_operations lru_gen_seq_ops = { 5932 .start = lru_gen_seq_start, 5933 .stop = lru_gen_seq_stop, 5934 .next = lru_gen_seq_next, 5935 .show = lru_gen_seq_show, 5936 }; 5937 5938 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5939 bool can_swap, bool force_scan) 5940 { 5941 DEFINE_MAX_SEQ(lruvec); 5942 DEFINE_MIN_SEQ(lruvec); 5943 5944 if (seq < max_seq) 5945 return 0; 5946 5947 if (seq > max_seq) 5948 return -EINVAL; 5949 5950 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5951 return -ERANGE; 5952 5953 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5954 5955 return 0; 5956 } 5957 5958 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5959 int swappiness, unsigned long nr_to_reclaim) 5960 { 5961 DEFINE_MAX_SEQ(lruvec); 5962 5963 if (seq + MIN_NR_GENS > max_seq) 5964 return -EINVAL; 5965 5966 sc->nr_reclaimed = 0; 5967 5968 while (!signal_pending(current)) { 5969 DEFINE_MIN_SEQ(lruvec); 5970 5971 if (seq < min_seq[!swappiness]) 5972 return 0; 5973 5974 if (sc->nr_reclaimed >= nr_to_reclaim) 5975 return 0; 5976 5977 if (!evict_folios(lruvec, sc, swappiness)) 5978 return 0; 5979 5980 cond_resched(); 5981 } 5982 5983 return -EINTR; 5984 } 5985 5986 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5987 struct scan_control *sc, int swappiness, unsigned long opt) 5988 { 5989 struct lruvec *lruvec; 5990 int err = -EINVAL; 5991 struct mem_cgroup *memcg = NULL; 5992 5993 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5994 return -EINVAL; 5995 5996 if (!mem_cgroup_disabled()) { 5997 rcu_read_lock(); 5998 5999 memcg = mem_cgroup_from_id(memcg_id); 6000 if (!mem_cgroup_tryget(memcg)) 6001 memcg = NULL; 6002 6003 rcu_read_unlock(); 6004 6005 if (!memcg) 6006 return -EINVAL; 6007 } 6008 6009 if (memcg_id != mem_cgroup_id(memcg)) 6010 goto done; 6011 6012 lruvec = get_lruvec(memcg, nid); 6013 6014 if (swappiness < 0) 6015 swappiness = get_swappiness(lruvec, sc); 6016 else if (swappiness > 200) 6017 goto done; 6018 6019 switch (cmd) { 6020 case '+': 6021 err = run_aging(lruvec, seq, sc, swappiness, opt); 6022 break; 6023 case '-': 6024 err = run_eviction(lruvec, seq, sc, swappiness, opt); 6025 break; 6026 } 6027 done: 6028 mem_cgroup_put(memcg); 6029 6030 return err; 6031 } 6032 6033 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 6034 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 6035 size_t len, loff_t *pos) 6036 { 6037 void *buf; 6038 char *cur, *next; 6039 unsigned int flags; 6040 struct blk_plug plug; 6041 int err = -EINVAL; 6042 struct scan_control sc = { 6043 .may_writepage = true, 6044 .may_unmap = true, 6045 .may_swap = true, 6046 .reclaim_idx = MAX_NR_ZONES - 1, 6047 .gfp_mask = GFP_KERNEL, 6048 }; 6049 6050 buf = kvmalloc(len + 1, GFP_KERNEL); 6051 if (!buf) 6052 return -ENOMEM; 6053 6054 if (copy_from_user(buf, src, len)) { 6055 kvfree(buf); 6056 return -EFAULT; 6057 } 6058 6059 set_task_reclaim_state(current, &sc.reclaim_state); 6060 flags = memalloc_noreclaim_save(); 6061 blk_start_plug(&plug); 6062 if (!set_mm_walk(NULL, true)) { 6063 err = -ENOMEM; 6064 goto done; 6065 } 6066 6067 next = buf; 6068 next[len] = '\0'; 6069 6070 while ((cur = strsep(&next, ",;\n"))) { 6071 int n; 6072 int end; 6073 char cmd; 6074 unsigned int memcg_id; 6075 unsigned int nid; 6076 unsigned long seq; 6077 unsigned int swappiness = -1; 6078 unsigned long opt = -1; 6079 6080 cur = skip_spaces(cur); 6081 if (!*cur) 6082 continue; 6083 6084 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 6085 &seq, &end, &swappiness, &end, &opt, &end); 6086 if (n < 4 || cur[end]) { 6087 err = -EINVAL; 6088 break; 6089 } 6090 6091 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 6092 if (err) 6093 break; 6094 } 6095 done: 6096 clear_mm_walk(); 6097 blk_finish_plug(&plug); 6098 memalloc_noreclaim_restore(flags); 6099 set_task_reclaim_state(current, NULL); 6100 6101 kvfree(buf); 6102 6103 return err ? : len; 6104 } 6105 6106 static int lru_gen_seq_open(struct inode *inode, struct file *file) 6107 { 6108 return seq_open(file, &lru_gen_seq_ops); 6109 } 6110 6111 static const struct file_operations lru_gen_rw_fops = { 6112 .open = lru_gen_seq_open, 6113 .read = seq_read, 6114 .write = lru_gen_seq_write, 6115 .llseek = seq_lseek, 6116 .release = seq_release, 6117 }; 6118 6119 static const struct file_operations lru_gen_ro_fops = { 6120 .open = lru_gen_seq_open, 6121 .read = seq_read, 6122 .llseek = seq_lseek, 6123 .release = seq_release, 6124 }; 6125 6126 /****************************************************************************** 6127 * initialization 6128 ******************************************************************************/ 6129 6130 void lru_gen_init_lruvec(struct lruvec *lruvec) 6131 { 6132 int i; 6133 int gen, type, zone; 6134 struct lru_gen_folio *lrugen = &lruvec->lrugen; 6135 6136 lrugen->max_seq = MIN_NR_GENS + 1; 6137 lrugen->enabled = lru_gen_enabled(); 6138 6139 for (i = 0; i <= MIN_NR_GENS + 1; i++) 6140 lrugen->timestamps[i] = jiffies; 6141 6142 for_each_gen_type_zone(gen, type, zone) 6143 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 6144 6145 lruvec->mm_state.seq = MIN_NR_GENS; 6146 } 6147 6148 #ifdef CONFIG_MEMCG 6149 6150 void lru_gen_init_pgdat(struct pglist_data *pgdat) 6151 { 6152 int i, j; 6153 6154 spin_lock_init(&pgdat->memcg_lru.lock); 6155 6156 for (i = 0; i < MEMCG_NR_GENS; i++) { 6157 for (j = 0; j < MEMCG_NR_BINS; j++) 6158 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 6159 } 6160 } 6161 6162 void lru_gen_init_memcg(struct mem_cgroup *memcg) 6163 { 6164 INIT_LIST_HEAD(&memcg->mm_list.fifo); 6165 spin_lock_init(&memcg->mm_list.lock); 6166 } 6167 6168 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 6169 { 6170 int i; 6171 int nid; 6172 6173 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); 6174 6175 for_each_node(nid) { 6176 struct lruvec *lruvec = get_lruvec(memcg, nid); 6177 6178 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 6179 sizeof(lruvec->lrugen.nr_pages))); 6180 6181 lruvec->lrugen.list.next = LIST_POISON1; 6182 6183 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 6184 bitmap_free(lruvec->mm_state.filters[i]); 6185 lruvec->mm_state.filters[i] = NULL; 6186 } 6187 } 6188 } 6189 6190 #endif /* CONFIG_MEMCG */ 6191 6192 static int __init init_lru_gen(void) 6193 { 6194 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 6195 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 6196 6197 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 6198 pr_err("lru_gen: failed to create sysfs group\n"); 6199 6200 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 6201 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 6202 6203 return 0; 6204 }; 6205 late_initcall(init_lru_gen); 6206 6207 #else /* !CONFIG_LRU_GEN */ 6208 6209 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6210 { 6211 } 6212 6213 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6214 { 6215 } 6216 6217 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 6218 { 6219 } 6220 6221 #endif /* CONFIG_LRU_GEN */ 6222 6223 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6224 { 6225 unsigned long nr[NR_LRU_LISTS]; 6226 unsigned long targets[NR_LRU_LISTS]; 6227 unsigned long nr_to_scan; 6228 enum lru_list lru; 6229 unsigned long nr_reclaimed = 0; 6230 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 6231 bool proportional_reclaim; 6232 struct blk_plug plug; 6233 6234 if (lru_gen_enabled() && !global_reclaim(sc)) { 6235 lru_gen_shrink_lruvec(lruvec, sc); 6236 return; 6237 } 6238 6239 get_scan_count(lruvec, sc, nr); 6240 6241 /* Record the original scan target for proportional adjustments later */ 6242 memcpy(targets, nr, sizeof(nr)); 6243 6244 /* 6245 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 6246 * event that can occur when there is little memory pressure e.g. 6247 * multiple streaming readers/writers. Hence, we do not abort scanning 6248 * when the requested number of pages are reclaimed when scanning at 6249 * DEF_PRIORITY on the assumption that the fact we are direct 6250 * reclaiming implies that kswapd is not keeping up and it is best to 6251 * do a batch of work at once. For memcg reclaim one check is made to 6252 * abort proportional reclaim if either the file or anon lru has already 6253 * dropped to zero at the first pass. 6254 */ 6255 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 6256 sc->priority == DEF_PRIORITY); 6257 6258 blk_start_plug(&plug); 6259 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 6260 nr[LRU_INACTIVE_FILE]) { 6261 unsigned long nr_anon, nr_file, percentage; 6262 unsigned long nr_scanned; 6263 6264 for_each_evictable_lru(lru) { 6265 if (nr[lru]) { 6266 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 6267 nr[lru] -= nr_to_scan; 6268 6269 nr_reclaimed += shrink_list(lru, nr_to_scan, 6270 lruvec, sc); 6271 } 6272 } 6273 6274 cond_resched(); 6275 6276 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 6277 continue; 6278 6279 /* 6280 * For kswapd and memcg, reclaim at least the number of pages 6281 * requested. Ensure that the anon and file LRUs are scanned 6282 * proportionally what was requested by get_scan_count(). We 6283 * stop reclaiming one LRU and reduce the amount scanning 6284 * proportional to the original scan target. 6285 */ 6286 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 6287 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 6288 6289 /* 6290 * It's just vindictive to attack the larger once the smaller 6291 * has gone to zero. And given the way we stop scanning the 6292 * smaller below, this makes sure that we only make one nudge 6293 * towards proportionality once we've got nr_to_reclaim. 6294 */ 6295 if (!nr_file || !nr_anon) 6296 break; 6297 6298 if (nr_file > nr_anon) { 6299 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 6300 targets[LRU_ACTIVE_ANON] + 1; 6301 lru = LRU_BASE; 6302 percentage = nr_anon * 100 / scan_target; 6303 } else { 6304 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 6305 targets[LRU_ACTIVE_FILE] + 1; 6306 lru = LRU_FILE; 6307 percentage = nr_file * 100 / scan_target; 6308 } 6309 6310 /* Stop scanning the smaller of the LRU */ 6311 nr[lru] = 0; 6312 nr[lru + LRU_ACTIVE] = 0; 6313 6314 /* 6315 * Recalculate the other LRU scan count based on its original 6316 * scan target and the percentage scanning already complete 6317 */ 6318 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6319 nr_scanned = targets[lru] - nr[lru]; 6320 nr[lru] = targets[lru] * (100 - percentage) / 100; 6321 nr[lru] -= min(nr[lru], nr_scanned); 6322 6323 lru += LRU_ACTIVE; 6324 nr_scanned = targets[lru] - nr[lru]; 6325 nr[lru] = targets[lru] * (100 - percentage) / 100; 6326 nr[lru] -= min(nr[lru], nr_scanned); 6327 } 6328 blk_finish_plug(&plug); 6329 sc->nr_reclaimed += nr_reclaimed; 6330 6331 /* 6332 * Even if we did not try to evict anon pages at all, we want to 6333 * rebalance the anon lru active/inactive ratio. 6334 */ 6335 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6336 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6337 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6338 sc, LRU_ACTIVE_ANON); 6339 } 6340 6341 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6342 static bool in_reclaim_compaction(struct scan_control *sc) 6343 { 6344 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 6345 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6346 sc->priority < DEF_PRIORITY - 2)) 6347 return true; 6348 6349 return false; 6350 } 6351 6352 /* 6353 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6354 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6355 * true if more pages should be reclaimed such that when the page allocator 6356 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6357 * It will give up earlier than that if there is difficulty reclaiming pages. 6358 */ 6359 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6360 unsigned long nr_reclaimed, 6361 struct scan_control *sc) 6362 { 6363 unsigned long pages_for_compaction; 6364 unsigned long inactive_lru_pages; 6365 int z; 6366 6367 /* If not in reclaim/compaction mode, stop */ 6368 if (!in_reclaim_compaction(sc)) 6369 return false; 6370 6371 /* 6372 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6373 * number of pages that were scanned. This will return to the caller 6374 * with the risk reclaim/compaction and the resulting allocation attempt 6375 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6376 * allocations through requiring that the full LRU list has been scanned 6377 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6378 * scan, but that approximation was wrong, and there were corner cases 6379 * where always a non-zero amount of pages were scanned. 6380 */ 6381 if (!nr_reclaimed) 6382 return false; 6383 6384 /* If compaction would go ahead or the allocation would succeed, stop */ 6385 for (z = 0; z <= sc->reclaim_idx; z++) { 6386 struct zone *zone = &pgdat->node_zones[z]; 6387 if (!managed_zone(zone)) 6388 continue; 6389 6390 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6391 case COMPACT_SUCCESS: 6392 case COMPACT_CONTINUE: 6393 return false; 6394 default: 6395 /* check next zone */ 6396 ; 6397 } 6398 } 6399 6400 /* 6401 * If we have not reclaimed enough pages for compaction and the 6402 * inactive lists are large enough, continue reclaiming 6403 */ 6404 pages_for_compaction = compact_gap(sc->order); 6405 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6406 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6407 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6408 6409 return inactive_lru_pages > pages_for_compaction; 6410 } 6411 6412 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6413 { 6414 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6415 struct mem_cgroup *memcg; 6416 6417 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6418 do { 6419 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6420 unsigned long reclaimed; 6421 unsigned long scanned; 6422 6423 /* 6424 * This loop can become CPU-bound when target memcgs 6425 * aren't eligible for reclaim - either because they 6426 * don't have any reclaimable pages, or because their 6427 * memory is explicitly protected. Avoid soft lockups. 6428 */ 6429 cond_resched(); 6430 6431 mem_cgroup_calculate_protection(target_memcg, memcg); 6432 6433 if (mem_cgroup_below_min(target_memcg, memcg)) { 6434 /* 6435 * Hard protection. 6436 * If there is no reclaimable memory, OOM. 6437 */ 6438 continue; 6439 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6440 /* 6441 * Soft protection. 6442 * Respect the protection only as long as 6443 * there is an unprotected supply 6444 * of reclaimable memory from other cgroups. 6445 */ 6446 if (!sc->memcg_low_reclaim) { 6447 sc->memcg_low_skipped = 1; 6448 continue; 6449 } 6450 memcg_memory_event(memcg, MEMCG_LOW); 6451 } 6452 6453 reclaimed = sc->nr_reclaimed; 6454 scanned = sc->nr_scanned; 6455 6456 shrink_lruvec(lruvec, sc); 6457 6458 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6459 sc->priority); 6460 6461 /* Record the group's reclaim efficiency */ 6462 if (!sc->proactive) 6463 vmpressure(sc->gfp_mask, memcg, false, 6464 sc->nr_scanned - scanned, 6465 sc->nr_reclaimed - reclaimed); 6466 6467 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6468 } 6469 6470 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6471 { 6472 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6473 struct lruvec *target_lruvec; 6474 bool reclaimable = false; 6475 6476 if (lru_gen_enabled() && global_reclaim(sc)) { 6477 lru_gen_shrink_node(pgdat, sc); 6478 return; 6479 } 6480 6481 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6482 6483 again: 6484 memset(&sc->nr, 0, sizeof(sc->nr)); 6485 6486 nr_reclaimed = sc->nr_reclaimed; 6487 nr_scanned = sc->nr_scanned; 6488 6489 prepare_scan_count(pgdat, sc); 6490 6491 shrink_node_memcgs(pgdat, sc); 6492 6493 flush_reclaim_state(sc); 6494 6495 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6496 6497 /* Record the subtree's reclaim efficiency */ 6498 if (!sc->proactive) 6499 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6500 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6501 6502 if (nr_node_reclaimed) 6503 reclaimable = true; 6504 6505 if (current_is_kswapd()) { 6506 /* 6507 * If reclaim is isolating dirty pages under writeback, 6508 * it implies that the long-lived page allocation rate 6509 * is exceeding the page laundering rate. Either the 6510 * global limits are not being effective at throttling 6511 * processes due to the page distribution throughout 6512 * zones or there is heavy usage of a slow backing 6513 * device. The only option is to throttle from reclaim 6514 * context which is not ideal as there is no guarantee 6515 * the dirtying process is throttled in the same way 6516 * balance_dirty_pages() manages. 6517 * 6518 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6519 * count the number of pages under pages flagged for 6520 * immediate reclaim and stall if any are encountered 6521 * in the nr_immediate check below. 6522 */ 6523 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6524 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6525 6526 /* Allow kswapd to start writing pages during reclaim.*/ 6527 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6528 set_bit(PGDAT_DIRTY, &pgdat->flags); 6529 6530 /* 6531 * If kswapd scans pages marked for immediate 6532 * reclaim and under writeback (nr_immediate), it 6533 * implies that pages are cycling through the LRU 6534 * faster than they are written so forcibly stall 6535 * until some pages complete writeback. 6536 */ 6537 if (sc->nr.immediate) 6538 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6539 } 6540 6541 /* 6542 * Tag a node/memcg as congested if all the dirty pages were marked 6543 * for writeback and immediate reclaim (counted in nr.congested). 6544 * 6545 * Legacy memcg will stall in page writeback so avoid forcibly 6546 * stalling in reclaim_throttle(). 6547 */ 6548 if ((current_is_kswapd() || 6549 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6550 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6551 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6552 6553 /* 6554 * Stall direct reclaim for IO completions if the lruvec is 6555 * node is congested. Allow kswapd to continue until it 6556 * starts encountering unqueued dirty pages or cycling through 6557 * the LRU too quickly. 6558 */ 6559 if (!current_is_kswapd() && current_may_throttle() && 6560 !sc->hibernation_mode && 6561 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6562 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6563 6564 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6565 goto again; 6566 6567 /* 6568 * Kswapd gives up on balancing particular nodes after too 6569 * many failures to reclaim anything from them and goes to 6570 * sleep. On reclaim progress, reset the failure counter. A 6571 * successful direct reclaim run will revive a dormant kswapd. 6572 */ 6573 if (reclaimable) 6574 pgdat->kswapd_failures = 0; 6575 } 6576 6577 /* 6578 * Returns true if compaction should go ahead for a costly-order request, or 6579 * the allocation would already succeed without compaction. Return false if we 6580 * should reclaim first. 6581 */ 6582 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6583 { 6584 unsigned long watermark; 6585 enum compact_result suitable; 6586 6587 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6588 if (suitable == COMPACT_SUCCESS) 6589 /* Allocation should succeed already. Don't reclaim. */ 6590 return true; 6591 if (suitable == COMPACT_SKIPPED) 6592 /* Compaction cannot yet proceed. Do reclaim. */ 6593 return false; 6594 6595 /* 6596 * Compaction is already possible, but it takes time to run and there 6597 * are potentially other callers using the pages just freed. So proceed 6598 * with reclaim to make a buffer of free pages available to give 6599 * compaction a reasonable chance of completing and allocating the page. 6600 * Note that we won't actually reclaim the whole buffer in one attempt 6601 * as the target watermark in should_continue_reclaim() is lower. But if 6602 * we are already above the high+gap watermark, don't reclaim at all. 6603 */ 6604 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6605 6606 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6607 } 6608 6609 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6610 { 6611 /* 6612 * If reclaim is making progress greater than 12% efficiency then 6613 * wake all the NOPROGRESS throttled tasks. 6614 */ 6615 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6616 wait_queue_head_t *wqh; 6617 6618 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6619 if (waitqueue_active(wqh)) 6620 wake_up(wqh); 6621 6622 return; 6623 } 6624 6625 /* 6626 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6627 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6628 * under writeback and marked for immediate reclaim at the tail of the 6629 * LRU. 6630 */ 6631 if (current_is_kswapd() || cgroup_reclaim(sc)) 6632 return; 6633 6634 /* Throttle if making no progress at high prioities. */ 6635 if (sc->priority == 1 && !sc->nr_reclaimed) 6636 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6637 } 6638 6639 /* 6640 * This is the direct reclaim path, for page-allocating processes. We only 6641 * try to reclaim pages from zones which will satisfy the caller's allocation 6642 * request. 6643 * 6644 * If a zone is deemed to be full of pinned pages then just give it a light 6645 * scan then give up on it. 6646 */ 6647 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6648 { 6649 struct zoneref *z; 6650 struct zone *zone; 6651 unsigned long nr_soft_reclaimed; 6652 unsigned long nr_soft_scanned; 6653 gfp_t orig_mask; 6654 pg_data_t *last_pgdat = NULL; 6655 pg_data_t *first_pgdat = NULL; 6656 6657 /* 6658 * If the number of buffer_heads in the machine exceeds the maximum 6659 * allowed level, force direct reclaim to scan the highmem zone as 6660 * highmem pages could be pinning lowmem pages storing buffer_heads 6661 */ 6662 orig_mask = sc->gfp_mask; 6663 if (buffer_heads_over_limit) { 6664 sc->gfp_mask |= __GFP_HIGHMEM; 6665 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6666 } 6667 6668 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6669 sc->reclaim_idx, sc->nodemask) { 6670 /* 6671 * Take care memory controller reclaiming has small influence 6672 * to global LRU. 6673 */ 6674 if (!cgroup_reclaim(sc)) { 6675 if (!cpuset_zone_allowed(zone, 6676 GFP_KERNEL | __GFP_HARDWALL)) 6677 continue; 6678 6679 /* 6680 * If we already have plenty of memory free for 6681 * compaction in this zone, don't free any more. 6682 * Even though compaction is invoked for any 6683 * non-zero order, only frequent costly order 6684 * reclamation is disruptive enough to become a 6685 * noticeable problem, like transparent huge 6686 * page allocations. 6687 */ 6688 if (IS_ENABLED(CONFIG_COMPACTION) && 6689 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6690 compaction_ready(zone, sc)) { 6691 sc->compaction_ready = true; 6692 continue; 6693 } 6694 6695 /* 6696 * Shrink each node in the zonelist once. If the 6697 * zonelist is ordered by zone (not the default) then a 6698 * node may be shrunk multiple times but in that case 6699 * the user prefers lower zones being preserved. 6700 */ 6701 if (zone->zone_pgdat == last_pgdat) 6702 continue; 6703 6704 /* 6705 * This steals pages from memory cgroups over softlimit 6706 * and returns the number of reclaimed pages and 6707 * scanned pages. This works for global memory pressure 6708 * and balancing, not for a memcg's limit. 6709 */ 6710 nr_soft_scanned = 0; 6711 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6712 sc->order, sc->gfp_mask, 6713 &nr_soft_scanned); 6714 sc->nr_reclaimed += nr_soft_reclaimed; 6715 sc->nr_scanned += nr_soft_scanned; 6716 /* need some check for avoid more shrink_zone() */ 6717 } 6718 6719 if (!first_pgdat) 6720 first_pgdat = zone->zone_pgdat; 6721 6722 /* See comment about same check for global reclaim above */ 6723 if (zone->zone_pgdat == last_pgdat) 6724 continue; 6725 last_pgdat = zone->zone_pgdat; 6726 shrink_node(zone->zone_pgdat, sc); 6727 } 6728 6729 if (first_pgdat) 6730 consider_reclaim_throttle(first_pgdat, sc); 6731 6732 /* 6733 * Restore to original mask to avoid the impact on the caller if we 6734 * promoted it to __GFP_HIGHMEM. 6735 */ 6736 sc->gfp_mask = orig_mask; 6737 } 6738 6739 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6740 { 6741 struct lruvec *target_lruvec; 6742 unsigned long refaults; 6743 6744 if (lru_gen_enabled()) 6745 return; 6746 6747 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6748 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6749 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6750 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6751 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6752 } 6753 6754 /* 6755 * This is the main entry point to direct page reclaim. 6756 * 6757 * If a full scan of the inactive list fails to free enough memory then we 6758 * are "out of memory" and something needs to be killed. 6759 * 6760 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6761 * high - the zone may be full of dirty or under-writeback pages, which this 6762 * caller can't do much about. We kick the writeback threads and take explicit 6763 * naps in the hope that some of these pages can be written. But if the 6764 * allocating task holds filesystem locks which prevent writeout this might not 6765 * work, and the allocation attempt will fail. 6766 * 6767 * returns: 0, if no pages reclaimed 6768 * else, the number of pages reclaimed 6769 */ 6770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6771 struct scan_control *sc) 6772 { 6773 int initial_priority = sc->priority; 6774 pg_data_t *last_pgdat; 6775 struct zoneref *z; 6776 struct zone *zone; 6777 retry: 6778 delayacct_freepages_start(); 6779 6780 if (!cgroup_reclaim(sc)) 6781 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6782 6783 do { 6784 if (!sc->proactive) 6785 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6786 sc->priority); 6787 sc->nr_scanned = 0; 6788 shrink_zones(zonelist, sc); 6789 6790 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6791 break; 6792 6793 if (sc->compaction_ready) 6794 break; 6795 6796 /* 6797 * If we're getting trouble reclaiming, start doing 6798 * writepage even in laptop mode. 6799 */ 6800 if (sc->priority < DEF_PRIORITY - 2) 6801 sc->may_writepage = 1; 6802 } while (--sc->priority >= 0); 6803 6804 last_pgdat = NULL; 6805 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6806 sc->nodemask) { 6807 if (zone->zone_pgdat == last_pgdat) 6808 continue; 6809 last_pgdat = zone->zone_pgdat; 6810 6811 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6812 6813 if (cgroup_reclaim(sc)) { 6814 struct lruvec *lruvec; 6815 6816 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6817 zone->zone_pgdat); 6818 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6819 } 6820 } 6821 6822 delayacct_freepages_end(); 6823 6824 if (sc->nr_reclaimed) 6825 return sc->nr_reclaimed; 6826 6827 /* Aborted reclaim to try compaction? don't OOM, then */ 6828 if (sc->compaction_ready) 6829 return 1; 6830 6831 /* 6832 * We make inactive:active ratio decisions based on the node's 6833 * composition of memory, but a restrictive reclaim_idx or a 6834 * memory.low cgroup setting can exempt large amounts of 6835 * memory from reclaim. Neither of which are very common, so 6836 * instead of doing costly eligibility calculations of the 6837 * entire cgroup subtree up front, we assume the estimates are 6838 * good, and retry with forcible deactivation if that fails. 6839 */ 6840 if (sc->skipped_deactivate) { 6841 sc->priority = initial_priority; 6842 sc->force_deactivate = 1; 6843 sc->skipped_deactivate = 0; 6844 goto retry; 6845 } 6846 6847 /* Untapped cgroup reserves? Don't OOM, retry. */ 6848 if (sc->memcg_low_skipped) { 6849 sc->priority = initial_priority; 6850 sc->force_deactivate = 0; 6851 sc->memcg_low_reclaim = 1; 6852 sc->memcg_low_skipped = 0; 6853 goto retry; 6854 } 6855 6856 return 0; 6857 } 6858 6859 static bool allow_direct_reclaim(pg_data_t *pgdat) 6860 { 6861 struct zone *zone; 6862 unsigned long pfmemalloc_reserve = 0; 6863 unsigned long free_pages = 0; 6864 int i; 6865 bool wmark_ok; 6866 6867 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6868 return true; 6869 6870 for (i = 0; i <= ZONE_NORMAL; i++) { 6871 zone = &pgdat->node_zones[i]; 6872 if (!managed_zone(zone)) 6873 continue; 6874 6875 if (!zone_reclaimable_pages(zone)) 6876 continue; 6877 6878 pfmemalloc_reserve += min_wmark_pages(zone); 6879 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6880 } 6881 6882 /* If there are no reserves (unexpected config) then do not throttle */ 6883 if (!pfmemalloc_reserve) 6884 return true; 6885 6886 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6887 6888 /* kswapd must be awake if processes are being throttled */ 6889 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6890 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6891 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6892 6893 wake_up_interruptible(&pgdat->kswapd_wait); 6894 } 6895 6896 return wmark_ok; 6897 } 6898 6899 /* 6900 * Throttle direct reclaimers if backing storage is backed by the network 6901 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6902 * depleted. kswapd will continue to make progress and wake the processes 6903 * when the low watermark is reached. 6904 * 6905 * Returns true if a fatal signal was delivered during throttling. If this 6906 * happens, the page allocator should not consider triggering the OOM killer. 6907 */ 6908 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6909 nodemask_t *nodemask) 6910 { 6911 struct zoneref *z; 6912 struct zone *zone; 6913 pg_data_t *pgdat = NULL; 6914 6915 /* 6916 * Kernel threads should not be throttled as they may be indirectly 6917 * responsible for cleaning pages necessary for reclaim to make forward 6918 * progress. kjournald for example may enter direct reclaim while 6919 * committing a transaction where throttling it could forcing other 6920 * processes to block on log_wait_commit(). 6921 */ 6922 if (current->flags & PF_KTHREAD) 6923 goto out; 6924 6925 /* 6926 * If a fatal signal is pending, this process should not throttle. 6927 * It should return quickly so it can exit and free its memory 6928 */ 6929 if (fatal_signal_pending(current)) 6930 goto out; 6931 6932 /* 6933 * Check if the pfmemalloc reserves are ok by finding the first node 6934 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6935 * GFP_KERNEL will be required for allocating network buffers when 6936 * swapping over the network so ZONE_HIGHMEM is unusable. 6937 * 6938 * Throttling is based on the first usable node and throttled processes 6939 * wait on a queue until kswapd makes progress and wakes them. There 6940 * is an affinity then between processes waking up and where reclaim 6941 * progress has been made assuming the process wakes on the same node. 6942 * More importantly, processes running on remote nodes will not compete 6943 * for remote pfmemalloc reserves and processes on different nodes 6944 * should make reasonable progress. 6945 */ 6946 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6947 gfp_zone(gfp_mask), nodemask) { 6948 if (zone_idx(zone) > ZONE_NORMAL) 6949 continue; 6950 6951 /* Throttle based on the first usable node */ 6952 pgdat = zone->zone_pgdat; 6953 if (allow_direct_reclaim(pgdat)) 6954 goto out; 6955 break; 6956 } 6957 6958 /* If no zone was usable by the allocation flags then do not throttle */ 6959 if (!pgdat) 6960 goto out; 6961 6962 /* Account for the throttling */ 6963 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6964 6965 /* 6966 * If the caller cannot enter the filesystem, it's possible that it 6967 * is due to the caller holding an FS lock or performing a journal 6968 * transaction in the case of a filesystem like ext[3|4]. In this case, 6969 * it is not safe to block on pfmemalloc_wait as kswapd could be 6970 * blocked waiting on the same lock. Instead, throttle for up to a 6971 * second before continuing. 6972 */ 6973 if (!(gfp_mask & __GFP_FS)) 6974 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6975 allow_direct_reclaim(pgdat), HZ); 6976 else 6977 /* Throttle until kswapd wakes the process */ 6978 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6979 allow_direct_reclaim(pgdat)); 6980 6981 if (fatal_signal_pending(current)) 6982 return true; 6983 6984 out: 6985 return false; 6986 } 6987 6988 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6989 gfp_t gfp_mask, nodemask_t *nodemask) 6990 { 6991 unsigned long nr_reclaimed; 6992 struct scan_control sc = { 6993 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6994 .gfp_mask = current_gfp_context(gfp_mask), 6995 .reclaim_idx = gfp_zone(gfp_mask), 6996 .order = order, 6997 .nodemask = nodemask, 6998 .priority = DEF_PRIORITY, 6999 .may_writepage = !laptop_mode, 7000 .may_unmap = 1, 7001 .may_swap = 1, 7002 }; 7003 7004 /* 7005 * scan_control uses s8 fields for order, priority, and reclaim_idx. 7006 * Confirm they are large enough for max values. 7007 */ 7008 BUILD_BUG_ON(MAX_ORDER >= S8_MAX); 7009 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 7010 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 7011 7012 /* 7013 * Do not enter reclaim if fatal signal was delivered while throttled. 7014 * 1 is returned so that the page allocator does not OOM kill at this 7015 * point. 7016 */ 7017 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 7018 return 1; 7019 7020 set_task_reclaim_state(current, &sc.reclaim_state); 7021 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 7022 7023 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7024 7025 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 7026 set_task_reclaim_state(current, NULL); 7027 7028 return nr_reclaimed; 7029 } 7030 7031 #ifdef CONFIG_MEMCG 7032 7033 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 7034 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 7035 gfp_t gfp_mask, bool noswap, 7036 pg_data_t *pgdat, 7037 unsigned long *nr_scanned) 7038 { 7039 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 7040 struct scan_control sc = { 7041 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7042 .target_mem_cgroup = memcg, 7043 .may_writepage = !laptop_mode, 7044 .may_unmap = 1, 7045 .reclaim_idx = MAX_NR_ZONES - 1, 7046 .may_swap = !noswap, 7047 }; 7048 7049 WARN_ON_ONCE(!current->reclaim_state); 7050 7051 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 7052 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 7053 7054 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 7055 sc.gfp_mask); 7056 7057 /* 7058 * NOTE: Although we can get the priority field, using it 7059 * here is not a good idea, since it limits the pages we can scan. 7060 * if we don't reclaim here, the shrink_node from balance_pgdat 7061 * will pick up pages from other mem cgroup's as well. We hack 7062 * the priority and make it zero. 7063 */ 7064 shrink_lruvec(lruvec, &sc); 7065 7066 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 7067 7068 *nr_scanned = sc.nr_scanned; 7069 7070 return sc.nr_reclaimed; 7071 } 7072 7073 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 7074 unsigned long nr_pages, 7075 gfp_t gfp_mask, 7076 unsigned int reclaim_options) 7077 { 7078 unsigned long nr_reclaimed; 7079 unsigned int noreclaim_flag; 7080 struct scan_control sc = { 7081 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7082 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 7083 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 7084 .reclaim_idx = MAX_NR_ZONES - 1, 7085 .target_mem_cgroup = memcg, 7086 .priority = DEF_PRIORITY, 7087 .may_writepage = !laptop_mode, 7088 .may_unmap = 1, 7089 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 7090 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 7091 }; 7092 /* 7093 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 7094 * equal pressure on all the nodes. This is based on the assumption that 7095 * the reclaim does not bail out early. 7096 */ 7097 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7098 7099 set_task_reclaim_state(current, &sc.reclaim_state); 7100 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 7101 noreclaim_flag = memalloc_noreclaim_save(); 7102 7103 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7104 7105 memalloc_noreclaim_restore(noreclaim_flag); 7106 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 7107 set_task_reclaim_state(current, NULL); 7108 7109 return nr_reclaimed; 7110 } 7111 #endif 7112 7113 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 7114 { 7115 struct mem_cgroup *memcg; 7116 struct lruvec *lruvec; 7117 7118 if (lru_gen_enabled()) { 7119 lru_gen_age_node(pgdat, sc); 7120 return; 7121 } 7122 7123 if (!can_age_anon_pages(pgdat, sc)) 7124 return; 7125 7126 lruvec = mem_cgroup_lruvec(NULL, pgdat); 7127 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 7128 return; 7129 7130 memcg = mem_cgroup_iter(NULL, NULL, NULL); 7131 do { 7132 lruvec = mem_cgroup_lruvec(memcg, pgdat); 7133 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 7134 sc, LRU_ACTIVE_ANON); 7135 memcg = mem_cgroup_iter(NULL, memcg, NULL); 7136 } while (memcg); 7137 } 7138 7139 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 7140 { 7141 int i; 7142 struct zone *zone; 7143 7144 /* 7145 * Check for watermark boosts top-down as the higher zones 7146 * are more likely to be boosted. Both watermarks and boosts 7147 * should not be checked at the same time as reclaim would 7148 * start prematurely when there is no boosting and a lower 7149 * zone is balanced. 7150 */ 7151 for (i = highest_zoneidx; i >= 0; i--) { 7152 zone = pgdat->node_zones + i; 7153 if (!managed_zone(zone)) 7154 continue; 7155 7156 if (zone->watermark_boost) 7157 return true; 7158 } 7159 7160 return false; 7161 } 7162 7163 /* 7164 * Returns true if there is an eligible zone balanced for the request order 7165 * and highest_zoneidx 7166 */ 7167 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 7168 { 7169 int i; 7170 unsigned long mark = -1; 7171 struct zone *zone; 7172 7173 /* 7174 * Check watermarks bottom-up as lower zones are more likely to 7175 * meet watermarks. 7176 */ 7177 for (i = 0; i <= highest_zoneidx; i++) { 7178 zone = pgdat->node_zones + i; 7179 7180 if (!managed_zone(zone)) 7181 continue; 7182 7183 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 7184 mark = wmark_pages(zone, WMARK_PROMO); 7185 else 7186 mark = high_wmark_pages(zone); 7187 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 7188 return true; 7189 } 7190 7191 /* 7192 * If a node has no managed zone within highest_zoneidx, it does not 7193 * need balancing by definition. This can happen if a zone-restricted 7194 * allocation tries to wake a remote kswapd. 7195 */ 7196 if (mark == -1) 7197 return true; 7198 7199 return false; 7200 } 7201 7202 /* Clear pgdat state for congested, dirty or under writeback. */ 7203 static void clear_pgdat_congested(pg_data_t *pgdat) 7204 { 7205 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 7206 7207 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 7208 clear_bit(PGDAT_DIRTY, &pgdat->flags); 7209 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 7210 } 7211 7212 /* 7213 * Prepare kswapd for sleeping. This verifies that there are no processes 7214 * waiting in throttle_direct_reclaim() and that watermarks have been met. 7215 * 7216 * Returns true if kswapd is ready to sleep 7217 */ 7218 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 7219 int highest_zoneidx) 7220 { 7221 /* 7222 * The throttled processes are normally woken up in balance_pgdat() as 7223 * soon as allow_direct_reclaim() is true. But there is a potential 7224 * race between when kswapd checks the watermarks and a process gets 7225 * throttled. There is also a potential race if processes get 7226 * throttled, kswapd wakes, a large process exits thereby balancing the 7227 * zones, which causes kswapd to exit balance_pgdat() before reaching 7228 * the wake up checks. If kswapd is going to sleep, no process should 7229 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 7230 * the wake up is premature, processes will wake kswapd and get 7231 * throttled again. The difference from wake ups in balance_pgdat() is 7232 * that here we are under prepare_to_wait(). 7233 */ 7234 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 7235 wake_up_all(&pgdat->pfmemalloc_wait); 7236 7237 /* Hopeless node, leave it to direct reclaim */ 7238 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 7239 return true; 7240 7241 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 7242 clear_pgdat_congested(pgdat); 7243 return true; 7244 } 7245 7246 return false; 7247 } 7248 7249 /* 7250 * kswapd shrinks a node of pages that are at or below the highest usable 7251 * zone that is currently unbalanced. 7252 * 7253 * Returns true if kswapd scanned at least the requested number of pages to 7254 * reclaim or if the lack of progress was due to pages under writeback. 7255 * This is used to determine if the scanning priority needs to be raised. 7256 */ 7257 static bool kswapd_shrink_node(pg_data_t *pgdat, 7258 struct scan_control *sc) 7259 { 7260 struct zone *zone; 7261 int z; 7262 7263 /* Reclaim a number of pages proportional to the number of zones */ 7264 sc->nr_to_reclaim = 0; 7265 for (z = 0; z <= sc->reclaim_idx; z++) { 7266 zone = pgdat->node_zones + z; 7267 if (!managed_zone(zone)) 7268 continue; 7269 7270 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 7271 } 7272 7273 /* 7274 * Historically care was taken to put equal pressure on all zones but 7275 * now pressure is applied based on node LRU order. 7276 */ 7277 shrink_node(pgdat, sc); 7278 7279 /* 7280 * Fragmentation may mean that the system cannot be rebalanced for 7281 * high-order allocations. If twice the allocation size has been 7282 * reclaimed then recheck watermarks only at order-0 to prevent 7283 * excessive reclaim. Assume that a process requested a high-order 7284 * can direct reclaim/compact. 7285 */ 7286 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 7287 sc->order = 0; 7288 7289 return sc->nr_scanned >= sc->nr_to_reclaim; 7290 } 7291 7292 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 7293 static inline void 7294 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 7295 { 7296 int i; 7297 struct zone *zone; 7298 7299 for (i = 0; i <= highest_zoneidx; i++) { 7300 zone = pgdat->node_zones + i; 7301 7302 if (!managed_zone(zone)) 7303 continue; 7304 7305 if (active) 7306 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7307 else 7308 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7309 } 7310 } 7311 7312 static inline void 7313 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7314 { 7315 update_reclaim_active(pgdat, highest_zoneidx, true); 7316 } 7317 7318 static inline void 7319 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7320 { 7321 update_reclaim_active(pgdat, highest_zoneidx, false); 7322 } 7323 7324 /* 7325 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7326 * that are eligible for use by the caller until at least one zone is 7327 * balanced. 7328 * 7329 * Returns the order kswapd finished reclaiming at. 7330 * 7331 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7332 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7333 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7334 * or lower is eligible for reclaim until at least one usable zone is 7335 * balanced. 7336 */ 7337 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7338 { 7339 int i; 7340 unsigned long nr_soft_reclaimed; 7341 unsigned long nr_soft_scanned; 7342 unsigned long pflags; 7343 unsigned long nr_boost_reclaim; 7344 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7345 bool boosted; 7346 struct zone *zone; 7347 struct scan_control sc = { 7348 .gfp_mask = GFP_KERNEL, 7349 .order = order, 7350 .may_unmap = 1, 7351 }; 7352 7353 set_task_reclaim_state(current, &sc.reclaim_state); 7354 psi_memstall_enter(&pflags); 7355 __fs_reclaim_acquire(_THIS_IP_); 7356 7357 count_vm_event(PAGEOUTRUN); 7358 7359 /* 7360 * Account for the reclaim boost. Note that the zone boost is left in 7361 * place so that parallel allocations that are near the watermark will 7362 * stall or direct reclaim until kswapd is finished. 7363 */ 7364 nr_boost_reclaim = 0; 7365 for (i = 0; i <= highest_zoneidx; i++) { 7366 zone = pgdat->node_zones + i; 7367 if (!managed_zone(zone)) 7368 continue; 7369 7370 nr_boost_reclaim += zone->watermark_boost; 7371 zone_boosts[i] = zone->watermark_boost; 7372 } 7373 boosted = nr_boost_reclaim; 7374 7375 restart: 7376 set_reclaim_active(pgdat, highest_zoneidx); 7377 sc.priority = DEF_PRIORITY; 7378 do { 7379 unsigned long nr_reclaimed = sc.nr_reclaimed; 7380 bool raise_priority = true; 7381 bool balanced; 7382 bool ret; 7383 7384 sc.reclaim_idx = highest_zoneidx; 7385 7386 /* 7387 * If the number of buffer_heads exceeds the maximum allowed 7388 * then consider reclaiming from all zones. This has a dual 7389 * purpose -- on 64-bit systems it is expected that 7390 * buffer_heads are stripped during active rotation. On 32-bit 7391 * systems, highmem pages can pin lowmem memory and shrinking 7392 * buffers can relieve lowmem pressure. Reclaim may still not 7393 * go ahead if all eligible zones for the original allocation 7394 * request are balanced to avoid excessive reclaim from kswapd. 7395 */ 7396 if (buffer_heads_over_limit) { 7397 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7398 zone = pgdat->node_zones + i; 7399 if (!managed_zone(zone)) 7400 continue; 7401 7402 sc.reclaim_idx = i; 7403 break; 7404 } 7405 } 7406 7407 /* 7408 * If the pgdat is imbalanced then ignore boosting and preserve 7409 * the watermarks for a later time and restart. Note that the 7410 * zone watermarks will be still reset at the end of balancing 7411 * on the grounds that the normal reclaim should be enough to 7412 * re-evaluate if boosting is required when kswapd next wakes. 7413 */ 7414 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7415 if (!balanced && nr_boost_reclaim) { 7416 nr_boost_reclaim = 0; 7417 goto restart; 7418 } 7419 7420 /* 7421 * If boosting is not active then only reclaim if there are no 7422 * eligible zones. Note that sc.reclaim_idx is not used as 7423 * buffer_heads_over_limit may have adjusted it. 7424 */ 7425 if (!nr_boost_reclaim && balanced) 7426 goto out; 7427 7428 /* Limit the priority of boosting to avoid reclaim writeback */ 7429 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7430 raise_priority = false; 7431 7432 /* 7433 * Do not writeback or swap pages for boosted reclaim. The 7434 * intent is to relieve pressure not issue sub-optimal IO 7435 * from reclaim context. If no pages are reclaimed, the 7436 * reclaim will be aborted. 7437 */ 7438 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7439 sc.may_swap = !nr_boost_reclaim; 7440 7441 /* 7442 * Do some background aging, to give pages a chance to be 7443 * referenced before reclaiming. All pages are rotated 7444 * regardless of classzone as this is about consistent aging. 7445 */ 7446 kswapd_age_node(pgdat, &sc); 7447 7448 /* 7449 * If we're getting trouble reclaiming, start doing writepage 7450 * even in laptop mode. 7451 */ 7452 if (sc.priority < DEF_PRIORITY - 2) 7453 sc.may_writepage = 1; 7454 7455 /* Call soft limit reclaim before calling shrink_node. */ 7456 sc.nr_scanned = 0; 7457 nr_soft_scanned = 0; 7458 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7459 sc.gfp_mask, &nr_soft_scanned); 7460 sc.nr_reclaimed += nr_soft_reclaimed; 7461 7462 /* 7463 * There should be no need to raise the scanning priority if 7464 * enough pages are already being scanned that that high 7465 * watermark would be met at 100% efficiency. 7466 */ 7467 if (kswapd_shrink_node(pgdat, &sc)) 7468 raise_priority = false; 7469 7470 /* 7471 * If the low watermark is met there is no need for processes 7472 * to be throttled on pfmemalloc_wait as they should not be 7473 * able to safely make forward progress. Wake them 7474 */ 7475 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7476 allow_direct_reclaim(pgdat)) 7477 wake_up_all(&pgdat->pfmemalloc_wait); 7478 7479 /* Check if kswapd should be suspending */ 7480 __fs_reclaim_release(_THIS_IP_); 7481 ret = try_to_freeze(); 7482 __fs_reclaim_acquire(_THIS_IP_); 7483 if (ret || kthread_should_stop()) 7484 break; 7485 7486 /* 7487 * Raise priority if scanning rate is too low or there was no 7488 * progress in reclaiming pages 7489 */ 7490 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7491 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7492 7493 /* 7494 * If reclaim made no progress for a boost, stop reclaim as 7495 * IO cannot be queued and it could be an infinite loop in 7496 * extreme circumstances. 7497 */ 7498 if (nr_boost_reclaim && !nr_reclaimed) 7499 break; 7500 7501 if (raise_priority || !nr_reclaimed) 7502 sc.priority--; 7503 } while (sc.priority >= 1); 7504 7505 if (!sc.nr_reclaimed) 7506 pgdat->kswapd_failures++; 7507 7508 out: 7509 clear_reclaim_active(pgdat, highest_zoneidx); 7510 7511 /* If reclaim was boosted, account for the reclaim done in this pass */ 7512 if (boosted) { 7513 unsigned long flags; 7514 7515 for (i = 0; i <= highest_zoneidx; i++) { 7516 if (!zone_boosts[i]) 7517 continue; 7518 7519 /* Increments are under the zone lock */ 7520 zone = pgdat->node_zones + i; 7521 spin_lock_irqsave(&zone->lock, flags); 7522 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7523 spin_unlock_irqrestore(&zone->lock, flags); 7524 } 7525 7526 /* 7527 * As there is now likely space, wakeup kcompact to defragment 7528 * pageblocks. 7529 */ 7530 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7531 } 7532 7533 snapshot_refaults(NULL, pgdat); 7534 __fs_reclaim_release(_THIS_IP_); 7535 psi_memstall_leave(&pflags); 7536 set_task_reclaim_state(current, NULL); 7537 7538 /* 7539 * Return the order kswapd stopped reclaiming at as 7540 * prepare_kswapd_sleep() takes it into account. If another caller 7541 * entered the allocator slow path while kswapd was awake, order will 7542 * remain at the higher level. 7543 */ 7544 return sc.order; 7545 } 7546 7547 /* 7548 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7549 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7550 * not a valid index then either kswapd runs for first time or kswapd couldn't 7551 * sleep after previous reclaim attempt (node is still unbalanced). In that 7552 * case return the zone index of the previous kswapd reclaim cycle. 7553 */ 7554 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7555 enum zone_type prev_highest_zoneidx) 7556 { 7557 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7558 7559 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7560 } 7561 7562 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7563 unsigned int highest_zoneidx) 7564 { 7565 long remaining = 0; 7566 DEFINE_WAIT(wait); 7567 7568 if (freezing(current) || kthread_should_stop()) 7569 return; 7570 7571 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7572 7573 /* 7574 * Try to sleep for a short interval. Note that kcompactd will only be 7575 * woken if it is possible to sleep for a short interval. This is 7576 * deliberate on the assumption that if reclaim cannot keep an 7577 * eligible zone balanced that it's also unlikely that compaction will 7578 * succeed. 7579 */ 7580 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7581 /* 7582 * Compaction records what page blocks it recently failed to 7583 * isolate pages from and skips them in the future scanning. 7584 * When kswapd is going to sleep, it is reasonable to assume 7585 * that pages and compaction may succeed so reset the cache. 7586 */ 7587 reset_isolation_suitable(pgdat); 7588 7589 /* 7590 * We have freed the memory, now we should compact it to make 7591 * allocation of the requested order possible. 7592 */ 7593 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7594 7595 remaining = schedule_timeout(HZ/10); 7596 7597 /* 7598 * If woken prematurely then reset kswapd_highest_zoneidx and 7599 * order. The values will either be from a wakeup request or 7600 * the previous request that slept prematurely. 7601 */ 7602 if (remaining) { 7603 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7604 kswapd_highest_zoneidx(pgdat, 7605 highest_zoneidx)); 7606 7607 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7608 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7609 } 7610 7611 finish_wait(&pgdat->kswapd_wait, &wait); 7612 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7613 } 7614 7615 /* 7616 * After a short sleep, check if it was a premature sleep. If not, then 7617 * go fully to sleep until explicitly woken up. 7618 */ 7619 if (!remaining && 7620 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7621 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7622 7623 /* 7624 * vmstat counters are not perfectly accurate and the estimated 7625 * value for counters such as NR_FREE_PAGES can deviate from the 7626 * true value by nr_online_cpus * threshold. To avoid the zone 7627 * watermarks being breached while under pressure, we reduce the 7628 * per-cpu vmstat threshold while kswapd is awake and restore 7629 * them before going back to sleep. 7630 */ 7631 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7632 7633 if (!kthread_should_stop()) 7634 schedule(); 7635 7636 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7637 } else { 7638 if (remaining) 7639 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7640 else 7641 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7642 } 7643 finish_wait(&pgdat->kswapd_wait, &wait); 7644 } 7645 7646 /* 7647 * The background pageout daemon, started as a kernel thread 7648 * from the init process. 7649 * 7650 * This basically trickles out pages so that we have _some_ 7651 * free memory available even if there is no other activity 7652 * that frees anything up. This is needed for things like routing 7653 * etc, where we otherwise might have all activity going on in 7654 * asynchronous contexts that cannot page things out. 7655 * 7656 * If there are applications that are active memory-allocators 7657 * (most normal use), this basically shouldn't matter. 7658 */ 7659 static int kswapd(void *p) 7660 { 7661 unsigned int alloc_order, reclaim_order; 7662 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7663 pg_data_t *pgdat = (pg_data_t *)p; 7664 struct task_struct *tsk = current; 7665 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7666 7667 if (!cpumask_empty(cpumask)) 7668 set_cpus_allowed_ptr(tsk, cpumask); 7669 7670 /* 7671 * Tell the memory management that we're a "memory allocator", 7672 * and that if we need more memory we should get access to it 7673 * regardless (see "__alloc_pages()"). "kswapd" should 7674 * never get caught in the normal page freeing logic. 7675 * 7676 * (Kswapd normally doesn't need memory anyway, but sometimes 7677 * you need a small amount of memory in order to be able to 7678 * page out something else, and this flag essentially protects 7679 * us from recursively trying to free more memory as we're 7680 * trying to free the first piece of memory in the first place). 7681 */ 7682 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7683 set_freezable(); 7684 7685 WRITE_ONCE(pgdat->kswapd_order, 0); 7686 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7687 atomic_set(&pgdat->nr_writeback_throttled, 0); 7688 for ( ; ; ) { 7689 bool ret; 7690 7691 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7692 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7693 highest_zoneidx); 7694 7695 kswapd_try_sleep: 7696 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7697 highest_zoneidx); 7698 7699 /* Read the new order and highest_zoneidx */ 7700 alloc_order = READ_ONCE(pgdat->kswapd_order); 7701 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7702 highest_zoneidx); 7703 WRITE_ONCE(pgdat->kswapd_order, 0); 7704 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7705 7706 ret = try_to_freeze(); 7707 if (kthread_should_stop()) 7708 break; 7709 7710 /* 7711 * We can speed up thawing tasks if we don't call balance_pgdat 7712 * after returning from the refrigerator 7713 */ 7714 if (ret) 7715 continue; 7716 7717 /* 7718 * Reclaim begins at the requested order but if a high-order 7719 * reclaim fails then kswapd falls back to reclaiming for 7720 * order-0. If that happens, kswapd will consider sleeping 7721 * for the order it finished reclaiming at (reclaim_order) 7722 * but kcompactd is woken to compact for the original 7723 * request (alloc_order). 7724 */ 7725 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7726 alloc_order); 7727 reclaim_order = balance_pgdat(pgdat, alloc_order, 7728 highest_zoneidx); 7729 if (reclaim_order < alloc_order) 7730 goto kswapd_try_sleep; 7731 } 7732 7733 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7734 7735 return 0; 7736 } 7737 7738 /* 7739 * A zone is low on free memory or too fragmented for high-order memory. If 7740 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7741 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7742 * has failed or is not needed, still wake up kcompactd if only compaction is 7743 * needed. 7744 */ 7745 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7746 enum zone_type highest_zoneidx) 7747 { 7748 pg_data_t *pgdat; 7749 enum zone_type curr_idx; 7750 7751 if (!managed_zone(zone)) 7752 return; 7753 7754 if (!cpuset_zone_allowed(zone, gfp_flags)) 7755 return; 7756 7757 pgdat = zone->zone_pgdat; 7758 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7759 7760 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7761 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7762 7763 if (READ_ONCE(pgdat->kswapd_order) < order) 7764 WRITE_ONCE(pgdat->kswapd_order, order); 7765 7766 if (!waitqueue_active(&pgdat->kswapd_wait)) 7767 return; 7768 7769 /* Hopeless node, leave it to direct reclaim if possible */ 7770 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7771 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7772 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7773 /* 7774 * There may be plenty of free memory available, but it's too 7775 * fragmented for high-order allocations. Wake up kcompactd 7776 * and rely on compaction_suitable() to determine if it's 7777 * needed. If it fails, it will defer subsequent attempts to 7778 * ratelimit its work. 7779 */ 7780 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7781 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7782 return; 7783 } 7784 7785 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7786 gfp_flags); 7787 wake_up_interruptible(&pgdat->kswapd_wait); 7788 } 7789 7790 #ifdef CONFIG_HIBERNATION 7791 /* 7792 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7793 * freed pages. 7794 * 7795 * Rather than trying to age LRUs the aim is to preserve the overall 7796 * LRU order by reclaiming preferentially 7797 * inactive > active > active referenced > active mapped 7798 */ 7799 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7800 { 7801 struct scan_control sc = { 7802 .nr_to_reclaim = nr_to_reclaim, 7803 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7804 .reclaim_idx = MAX_NR_ZONES - 1, 7805 .priority = DEF_PRIORITY, 7806 .may_writepage = 1, 7807 .may_unmap = 1, 7808 .may_swap = 1, 7809 .hibernation_mode = 1, 7810 }; 7811 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7812 unsigned long nr_reclaimed; 7813 unsigned int noreclaim_flag; 7814 7815 fs_reclaim_acquire(sc.gfp_mask); 7816 noreclaim_flag = memalloc_noreclaim_save(); 7817 set_task_reclaim_state(current, &sc.reclaim_state); 7818 7819 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7820 7821 set_task_reclaim_state(current, NULL); 7822 memalloc_noreclaim_restore(noreclaim_flag); 7823 fs_reclaim_release(sc.gfp_mask); 7824 7825 return nr_reclaimed; 7826 } 7827 #endif /* CONFIG_HIBERNATION */ 7828 7829 /* 7830 * This kswapd start function will be called by init and node-hot-add. 7831 */ 7832 void kswapd_run(int nid) 7833 { 7834 pg_data_t *pgdat = NODE_DATA(nid); 7835 7836 pgdat_kswapd_lock(pgdat); 7837 if (!pgdat->kswapd) { 7838 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7839 if (IS_ERR(pgdat->kswapd)) { 7840 /* failure at boot is fatal */ 7841 BUG_ON(system_state < SYSTEM_RUNNING); 7842 pr_err("Failed to start kswapd on node %d\n", nid); 7843 pgdat->kswapd = NULL; 7844 } 7845 } 7846 pgdat_kswapd_unlock(pgdat); 7847 } 7848 7849 /* 7850 * Called by memory hotplug when all memory in a node is offlined. Caller must 7851 * be holding mem_hotplug_begin/done(). 7852 */ 7853 void kswapd_stop(int nid) 7854 { 7855 pg_data_t *pgdat = NODE_DATA(nid); 7856 struct task_struct *kswapd; 7857 7858 pgdat_kswapd_lock(pgdat); 7859 kswapd = pgdat->kswapd; 7860 if (kswapd) { 7861 kthread_stop(kswapd); 7862 pgdat->kswapd = NULL; 7863 } 7864 pgdat_kswapd_unlock(pgdat); 7865 } 7866 7867 static int __init kswapd_init(void) 7868 { 7869 int nid; 7870 7871 swap_setup(); 7872 for_each_node_state(nid, N_MEMORY) 7873 kswapd_run(nid); 7874 return 0; 7875 } 7876 7877 module_init(kswapd_init) 7878 7879 #ifdef CONFIG_NUMA 7880 /* 7881 * Node reclaim mode 7882 * 7883 * If non-zero call node_reclaim when the number of free pages falls below 7884 * the watermarks. 7885 */ 7886 int node_reclaim_mode __read_mostly; 7887 7888 /* 7889 * Priority for NODE_RECLAIM. This determines the fraction of pages 7890 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7891 * a zone. 7892 */ 7893 #define NODE_RECLAIM_PRIORITY 4 7894 7895 /* 7896 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7897 * occur. 7898 */ 7899 int sysctl_min_unmapped_ratio = 1; 7900 7901 /* 7902 * If the number of slab pages in a zone grows beyond this percentage then 7903 * slab reclaim needs to occur. 7904 */ 7905 int sysctl_min_slab_ratio = 5; 7906 7907 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7908 { 7909 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7910 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7911 node_page_state(pgdat, NR_ACTIVE_FILE); 7912 7913 /* 7914 * It's possible for there to be more file mapped pages than 7915 * accounted for by the pages on the file LRU lists because 7916 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7917 */ 7918 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7919 } 7920 7921 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7922 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7923 { 7924 unsigned long nr_pagecache_reclaimable; 7925 unsigned long delta = 0; 7926 7927 /* 7928 * If RECLAIM_UNMAP is set, then all file pages are considered 7929 * potentially reclaimable. Otherwise, we have to worry about 7930 * pages like swapcache and node_unmapped_file_pages() provides 7931 * a better estimate 7932 */ 7933 if (node_reclaim_mode & RECLAIM_UNMAP) 7934 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7935 else 7936 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7937 7938 /* If we can't clean pages, remove dirty pages from consideration */ 7939 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7940 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7941 7942 /* Watch for any possible underflows due to delta */ 7943 if (unlikely(delta > nr_pagecache_reclaimable)) 7944 delta = nr_pagecache_reclaimable; 7945 7946 return nr_pagecache_reclaimable - delta; 7947 } 7948 7949 /* 7950 * Try to free up some pages from this node through reclaim. 7951 */ 7952 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7953 { 7954 /* Minimum pages needed in order to stay on node */ 7955 const unsigned long nr_pages = 1 << order; 7956 struct task_struct *p = current; 7957 unsigned int noreclaim_flag; 7958 struct scan_control sc = { 7959 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7960 .gfp_mask = current_gfp_context(gfp_mask), 7961 .order = order, 7962 .priority = NODE_RECLAIM_PRIORITY, 7963 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7964 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7965 .may_swap = 1, 7966 .reclaim_idx = gfp_zone(gfp_mask), 7967 }; 7968 unsigned long pflags; 7969 7970 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7971 sc.gfp_mask); 7972 7973 cond_resched(); 7974 psi_memstall_enter(&pflags); 7975 fs_reclaim_acquire(sc.gfp_mask); 7976 /* 7977 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7978 */ 7979 noreclaim_flag = memalloc_noreclaim_save(); 7980 set_task_reclaim_state(p, &sc.reclaim_state); 7981 7982 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7983 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7984 /* 7985 * Free memory by calling shrink node with increasing 7986 * priorities until we have enough memory freed. 7987 */ 7988 do { 7989 shrink_node(pgdat, &sc); 7990 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7991 } 7992 7993 set_task_reclaim_state(p, NULL); 7994 memalloc_noreclaim_restore(noreclaim_flag); 7995 fs_reclaim_release(sc.gfp_mask); 7996 psi_memstall_leave(&pflags); 7997 7998 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7999 8000 return sc.nr_reclaimed >= nr_pages; 8001 } 8002 8003 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 8004 { 8005 int ret; 8006 8007 /* 8008 * Node reclaim reclaims unmapped file backed pages and 8009 * slab pages if we are over the defined limits. 8010 * 8011 * A small portion of unmapped file backed pages is needed for 8012 * file I/O otherwise pages read by file I/O will be immediately 8013 * thrown out if the node is overallocated. So we do not reclaim 8014 * if less than a specified percentage of the node is used by 8015 * unmapped file backed pages. 8016 */ 8017 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 8018 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 8019 pgdat->min_slab_pages) 8020 return NODE_RECLAIM_FULL; 8021 8022 /* 8023 * Do not scan if the allocation should not be delayed. 8024 */ 8025 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 8026 return NODE_RECLAIM_NOSCAN; 8027 8028 /* 8029 * Only run node reclaim on the local node or on nodes that do not 8030 * have associated processors. This will favor the local processor 8031 * over remote processors and spread off node memory allocations 8032 * as wide as possible. 8033 */ 8034 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 8035 return NODE_RECLAIM_NOSCAN; 8036 8037 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 8038 return NODE_RECLAIM_NOSCAN; 8039 8040 ret = __node_reclaim(pgdat, gfp_mask, order); 8041 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 8042 8043 if (!ret) 8044 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 8045 8046 return ret; 8047 } 8048 #endif 8049 8050 void check_move_unevictable_pages(struct pagevec *pvec) 8051 { 8052 struct folio_batch fbatch; 8053 unsigned i; 8054 8055 folio_batch_init(&fbatch); 8056 for (i = 0; i < pvec->nr; i++) { 8057 struct page *page = pvec->pages[i]; 8058 8059 if (PageTransTail(page)) 8060 continue; 8061 folio_batch_add(&fbatch, page_folio(page)); 8062 } 8063 check_move_unevictable_folios(&fbatch); 8064 } 8065 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 8066 8067 /** 8068 * check_move_unevictable_folios - Move evictable folios to appropriate zone 8069 * lru list 8070 * @fbatch: Batch of lru folios to check. 8071 * 8072 * Checks folios for evictability, if an evictable folio is in the unevictable 8073 * lru list, moves it to the appropriate evictable lru list. This function 8074 * should be only used for lru folios. 8075 */ 8076 void check_move_unevictable_folios(struct folio_batch *fbatch) 8077 { 8078 struct lruvec *lruvec = NULL; 8079 int pgscanned = 0; 8080 int pgrescued = 0; 8081 int i; 8082 8083 for (i = 0; i < fbatch->nr; i++) { 8084 struct folio *folio = fbatch->folios[i]; 8085 int nr_pages = folio_nr_pages(folio); 8086 8087 pgscanned += nr_pages; 8088 8089 /* block memcg migration while the folio moves between lrus */ 8090 if (!folio_test_clear_lru(folio)) 8091 continue; 8092 8093 lruvec = folio_lruvec_relock_irq(folio, lruvec); 8094 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 8095 lruvec_del_folio(lruvec, folio); 8096 folio_clear_unevictable(folio); 8097 lruvec_add_folio(lruvec, folio); 8098 pgrescued += nr_pages; 8099 } 8100 folio_set_lru(folio); 8101 } 8102 8103 if (lruvec) { 8104 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 8105 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8106 unlock_page_lruvec_irq(lruvec); 8107 } else if (pgscanned) { 8108 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8109 } 8110 } 8111 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 8112