xref: /openbmc/linux/mm/vmscan.c (revision 33afd4b76393627477e878b3b195d606e585d816)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 	unsigned int may_deactivate:2;
101 	unsigned int force_deactivate:1;
102 	unsigned int skipped_deactivate:1;
103 
104 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
105 	unsigned int may_writepage:1;
106 
107 	/* Can mapped folios be reclaimed? */
108 	unsigned int may_unmap:1;
109 
110 	/* Can folios be swapped as part of reclaim? */
111 	unsigned int may_swap:1;
112 
113 	/* Proactive reclaim invoked by userspace through memory.reclaim */
114 	unsigned int proactive:1;
115 
116 	/*
117 	 * Cgroup memory below memory.low is protected as long as we
118 	 * don't threaten to OOM. If any cgroup is reclaimed at
119 	 * reduced force or passed over entirely due to its memory.low
120 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 	 * result, then go back for one more cycle that reclaims the protected
122 	 * memory (memcg_low_reclaim) to avert OOM.
123 	 */
124 	unsigned int memcg_low_reclaim:1;
125 	unsigned int memcg_low_skipped:1;
126 
127 	unsigned int hibernation_mode:1;
128 
129 	/* One of the zones is ready for compaction */
130 	unsigned int compaction_ready:1;
131 
132 	/* There is easily reclaimable cold cache in the current node */
133 	unsigned int cache_trim_mode:1;
134 
135 	/* The file folios on the current node are dangerously low */
136 	unsigned int file_is_tiny:1;
137 
138 	/* Always discard instead of demoting to lower tier memory */
139 	unsigned int no_demotion:1;
140 
141 	/* Allocation order */
142 	s8 order;
143 
144 	/* Scan (total_size >> priority) pages at once */
145 	s8 priority;
146 
147 	/* The highest zone to isolate folios for reclaim from */
148 	s8 reclaim_idx;
149 
150 	/* This context's GFP mask */
151 	gfp_t gfp_mask;
152 
153 	/* Incremented by the number of inactive pages that were scanned */
154 	unsigned long nr_scanned;
155 
156 	/* Number of pages freed so far during a call to shrink_zones() */
157 	unsigned long nr_reclaimed;
158 
159 	struct {
160 		unsigned int dirty;
161 		unsigned int unqueued_dirty;
162 		unsigned int congested;
163 		unsigned int writeback;
164 		unsigned int immediate;
165 		unsigned int file_taken;
166 		unsigned int taken;
167 	} nr;
168 
169 	/* for recording the reclaimed slab by now */
170 	struct reclaim_state reclaim_state;
171 };
172 
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
175 	do {								\
176 		if ((_folio)->lru.prev != _base) {			\
177 			struct folio *prev;				\
178 									\
179 			prev = lru_to_folio(&(_folio->lru));		\
180 			prefetchw(&prev->_field);			\
181 		}							\
182 	} while (0)
183 #else
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
185 #endif
186 
187 /*
188  * From 0 .. 200.  Higher means more swappy.
189  */
190 int vm_swappiness = 60;
191 
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
196 
197 #ifdef CONFIG_MEMCG
198 static int shrinker_nr_max;
199 
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
202 {
203 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
204 }
205 
206 static inline int shrinker_defer_size(int nr_items)
207 {
208 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
209 }
210 
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
212 						     int nid)
213 {
214 	return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
215 				      &shrinker_srcu,
216 				      lockdep_is_held(&shrinker_mutex));
217 }
218 
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
220 						     int nid)
221 {
222 	return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
223 				&shrinker_srcu);
224 }
225 
226 static void free_shrinker_info_rcu(struct rcu_head *head)
227 {
228 	kvfree(container_of(head, struct shrinker_info, rcu));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size,
234 				    int new_nr_max)
235 {
236 	struct shrinker_info *new, *old;
237 	struct mem_cgroup_per_node *pn;
238 	int nid;
239 	int size = map_size + defer_size;
240 
241 	for_each_node(nid) {
242 		pn = memcg->nodeinfo[nid];
243 		old = shrinker_info_protected(memcg, nid);
244 		/* Not yet online memcg */
245 		if (!old)
246 			return 0;
247 
248 		/* Already expanded this shrinker_info */
249 		if (new_nr_max <= old->map_nr_max)
250 			continue;
251 
252 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
253 		if (!new)
254 			return -ENOMEM;
255 
256 		new->nr_deferred = (atomic_long_t *)(new + 1);
257 		new->map = (void *)new->nr_deferred + defer_size;
258 		new->map_nr_max = new_nr_max;
259 
260 		/* map: set all old bits, clear all new bits */
261 		memset(new->map, (int)0xff, old_map_size);
262 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 		/* nr_deferred: copy old values, clear all new values */
264 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 		memset((void *)new->nr_deferred + old_defer_size, 0,
266 		       defer_size - old_defer_size);
267 
268 		rcu_assign_pointer(pn->shrinker_info, new);
269 		call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
270 	}
271 
272 	return 0;
273 }
274 
275 void free_shrinker_info(struct mem_cgroup *memcg)
276 {
277 	struct mem_cgroup_per_node *pn;
278 	struct shrinker_info *info;
279 	int nid;
280 
281 	for_each_node(nid) {
282 		pn = memcg->nodeinfo[nid];
283 		info = rcu_dereference_protected(pn->shrinker_info, true);
284 		kvfree(info);
285 		rcu_assign_pointer(pn->shrinker_info, NULL);
286 	}
287 }
288 
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
290 {
291 	struct shrinker_info *info;
292 	int nid, size, ret = 0;
293 	int map_size, defer_size = 0;
294 
295 	mutex_lock(&shrinker_mutex);
296 	map_size = shrinker_map_size(shrinker_nr_max);
297 	defer_size = shrinker_defer_size(shrinker_nr_max);
298 	size = map_size + defer_size;
299 	for_each_node(nid) {
300 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
301 		if (!info) {
302 			free_shrinker_info(memcg);
303 			ret = -ENOMEM;
304 			break;
305 		}
306 		info->nr_deferred = (atomic_long_t *)(info + 1);
307 		info->map = (void *)info->nr_deferred + defer_size;
308 		info->map_nr_max = shrinker_nr_max;
309 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
310 	}
311 	mutex_unlock(&shrinker_mutex);
312 
313 	return ret;
314 }
315 
316 static int expand_shrinker_info(int new_id)
317 {
318 	int ret = 0;
319 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 	int map_size, defer_size = 0;
321 	int old_map_size, old_defer_size = 0;
322 	struct mem_cgroup *memcg;
323 
324 	if (!root_mem_cgroup)
325 		goto out;
326 
327 	lockdep_assert_held(&shrinker_mutex);
328 
329 	map_size = shrinker_map_size(new_nr_max);
330 	defer_size = shrinker_defer_size(new_nr_max);
331 	old_map_size = shrinker_map_size(shrinker_nr_max);
332 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
333 
334 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
335 	do {
336 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 					       old_map_size, old_defer_size,
338 					       new_nr_max);
339 		if (ret) {
340 			mem_cgroup_iter_break(NULL, memcg);
341 			goto out;
342 		}
343 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
344 out:
345 	if (!ret)
346 		shrinker_nr_max = new_nr_max;
347 
348 	return ret;
349 }
350 
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352 {
353 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 		struct shrinker_info *info;
355 		int srcu_idx;
356 
357 		srcu_idx = srcu_read_lock(&shrinker_srcu);
358 		info = shrinker_info_srcu(memcg, nid);
359 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 			/* Pairs with smp mb in shrink_slab() */
361 			smp_mb__before_atomic();
362 			set_bit(shrinker_id, info->map);
363 		}
364 		srcu_read_unlock(&shrinker_srcu, srcu_idx);
365 	}
366 }
367 
368 static DEFINE_IDR(shrinker_idr);
369 
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
371 {
372 	int id, ret = -ENOMEM;
373 
374 	if (mem_cgroup_disabled())
375 		return -ENOSYS;
376 
377 	mutex_lock(&shrinker_mutex);
378 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
379 	if (id < 0)
380 		goto unlock;
381 
382 	if (id >= shrinker_nr_max) {
383 		if (expand_shrinker_info(id)) {
384 			idr_remove(&shrinker_idr, id);
385 			goto unlock;
386 		}
387 	}
388 	shrinker->id = id;
389 	ret = 0;
390 unlock:
391 	mutex_unlock(&shrinker_mutex);
392 	return ret;
393 }
394 
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
396 {
397 	int id = shrinker->id;
398 
399 	BUG_ON(id < 0);
400 
401 	lockdep_assert_held(&shrinker_mutex);
402 
403 	idr_remove(&shrinker_idr, id);
404 }
405 
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 				   struct mem_cgroup *memcg)
408 {
409 	struct shrinker_info *info;
410 
411 	info = shrinker_info_srcu(memcg, nid);
412 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
413 }
414 
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 				  struct mem_cgroup *memcg)
417 {
418 	struct shrinker_info *info;
419 
420 	info = shrinker_info_srcu(memcg, nid);
421 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
422 }
423 
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
425 {
426 	int i, nid;
427 	long nr;
428 	struct mem_cgroup *parent;
429 	struct shrinker_info *child_info, *parent_info;
430 
431 	parent = parent_mem_cgroup(memcg);
432 	if (!parent)
433 		parent = root_mem_cgroup;
434 
435 	/* Prevent from concurrent shrinker_info expand */
436 	mutex_lock(&shrinker_mutex);
437 	for_each_node(nid) {
438 		child_info = shrinker_info_protected(memcg, nid);
439 		parent_info = shrinker_info_protected(parent, nid);
440 		for (i = 0; i < child_info->map_nr_max; i++) {
441 			nr = atomic_long_read(&child_info->nr_deferred[i]);
442 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
443 		}
444 	}
445 	mutex_unlock(&shrinker_mutex);
446 }
447 
448 static bool cgroup_reclaim(struct scan_control *sc)
449 {
450 	return sc->target_mem_cgroup;
451 }
452 
453 static bool global_reclaim(struct scan_control *sc)
454 {
455 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
456 }
457 
458 /**
459  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460  * @sc: scan_control in question
461  *
462  * The normal page dirty throttling mechanism in balance_dirty_pages() is
463  * completely broken with the legacy memcg and direct stalling in
464  * shrink_folio_list() is used for throttling instead, which lacks all the
465  * niceties such as fairness, adaptive pausing, bandwidth proportional
466  * allocation and configurability.
467  *
468  * This function tests whether the vmscan currently in progress can assume
469  * that the normal dirty throttling mechanism is operational.
470  */
471 static bool writeback_throttling_sane(struct scan_control *sc)
472 {
473 	if (!cgroup_reclaim(sc))
474 		return true;
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
477 		return true;
478 #endif
479 	return false;
480 }
481 #else
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
483 {
484 	return -ENOSYS;
485 }
486 
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
488 {
489 }
490 
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 				   struct mem_cgroup *memcg)
493 {
494 	return 0;
495 }
496 
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 				  struct mem_cgroup *memcg)
499 {
500 	return 0;
501 }
502 
503 static bool cgroup_reclaim(struct scan_control *sc)
504 {
505 	return false;
506 }
507 
508 static bool global_reclaim(struct scan_control *sc)
509 {
510 	return true;
511 }
512 
513 static bool writeback_throttling_sane(struct scan_control *sc)
514 {
515 	return true;
516 }
517 #endif
518 
519 static void set_task_reclaim_state(struct task_struct *task,
520 				   struct reclaim_state *rs)
521 {
522 	/* Check for an overwrite */
523 	WARN_ON_ONCE(rs && task->reclaim_state);
524 
525 	/* Check for the nulling of an already-nulled member */
526 	WARN_ON_ONCE(!rs && !task->reclaim_state);
527 
528 	task->reclaim_state = rs;
529 }
530 
531 /*
532  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533  * scan_control->nr_reclaimed.
534  */
535 static void flush_reclaim_state(struct scan_control *sc)
536 {
537 	/*
538 	 * Currently, reclaim_state->reclaimed includes three types of pages
539 	 * freed outside of vmscan:
540 	 * (1) Slab pages.
541 	 * (2) Clean file pages from pruned inodes (on highmem systems).
542 	 * (3) XFS freed buffer pages.
543 	 *
544 	 * For all of these cases, we cannot universally link the pages to a
545 	 * single memcg. For example, a memcg-aware shrinker can free one object
546 	 * charged to the target memcg, causing an entire page to be freed.
547 	 * If we count the entire page as reclaimed from the memcg, we end up
548 	 * overestimating the reclaimed amount (potentially under-reclaiming).
549 	 *
550 	 * Only count such pages for global reclaim to prevent under-reclaiming
551 	 * from the target memcg; preventing unnecessary retries during memcg
552 	 * charging and false positives from proactive reclaim.
553 	 *
554 	 * For uncommon cases where the freed pages were actually mostly
555 	 * charged to the target memcg, we end up underestimating the reclaimed
556 	 * amount. This should be fine. The freed pages will be uncharged
557 	 * anyway, even if they are not counted here properly, and we will be
558 	 * able to make forward progress in charging (which is usually in a
559 	 * retry loop).
560 	 *
561 	 * We can go one step further, and report the uncharged objcg pages in
562 	 * memcg reclaim, to make reporting more accurate and reduce
563 	 * underestimation, but it's probably not worth the complexity for now.
564 	 */
565 	if (current->reclaim_state && global_reclaim(sc)) {
566 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 		current->reclaim_state->reclaimed = 0;
568 	}
569 }
570 
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 			     struct shrink_control *sc)
573 {
574 	int nid = sc->nid;
575 
576 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
577 		nid = 0;
578 
579 	if (sc->memcg &&
580 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 		return xchg_nr_deferred_memcg(nid, shrinker,
582 					      sc->memcg);
583 
584 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
585 }
586 
587 
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 			    struct shrink_control *sc)
590 {
591 	int nid = sc->nid;
592 
593 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
594 		nid = 0;
595 
596 	if (sc->memcg &&
597 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 		return add_nr_deferred_memcg(nr, nid, shrinker,
599 					     sc->memcg);
600 
601 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
602 }
603 
604 static bool can_demote(int nid, struct scan_control *sc)
605 {
606 	if (!numa_demotion_enabled)
607 		return false;
608 	if (sc && sc->no_demotion)
609 		return false;
610 	if (next_demotion_node(nid) == NUMA_NO_NODE)
611 		return false;
612 
613 	return true;
614 }
615 
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
617 					  int nid,
618 					  struct scan_control *sc)
619 {
620 	if (memcg == NULL) {
621 		/*
622 		 * For non-memcg reclaim, is there
623 		 * space in any swap device?
624 		 */
625 		if (get_nr_swap_pages() > 0)
626 			return true;
627 	} else {
628 		/* Is the memcg below its swap limit? */
629 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
630 			return true;
631 	}
632 
633 	/*
634 	 * The page can not be swapped.
635 	 *
636 	 * Can it be reclaimed from this node via demotion?
637 	 */
638 	return can_demote(nid, sc);
639 }
640 
641 /*
642  * This misses isolated folios which are not accounted for to save counters.
643  * As the data only determines if reclaim or compaction continues, it is
644  * not expected that isolated folios will be a dominating factor.
645  */
646 unsigned long zone_reclaimable_pages(struct zone *zone)
647 {
648 	unsigned long nr;
649 
650 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
655 
656 	return nr;
657 }
658 
659 /**
660  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
661  * @lruvec: lru vector
662  * @lru: lru to use
663  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
664  */
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
666 				     int zone_idx)
667 {
668 	unsigned long size = 0;
669 	int zid;
670 
671 	for (zid = 0; zid <= zone_idx; zid++) {
672 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
673 
674 		if (!managed_zone(zone))
675 			continue;
676 
677 		if (!mem_cgroup_disabled())
678 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
679 		else
680 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
681 	}
682 	return size;
683 }
684 
685 /*
686  * Add a shrinker callback to be called from the vm.
687  */
688 static int __prealloc_shrinker(struct shrinker *shrinker)
689 {
690 	unsigned int size;
691 	int err;
692 
693 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 		err = prealloc_memcg_shrinker(shrinker);
695 		if (err != -ENOSYS)
696 			return err;
697 
698 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
699 	}
700 
701 	size = sizeof(*shrinker->nr_deferred);
702 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
703 		size *= nr_node_ids;
704 
705 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 	if (!shrinker->nr_deferred)
707 		return -ENOMEM;
708 
709 	return 0;
710 }
711 
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	va_list ap;
716 	int err;
717 
718 	va_start(ap, fmt);
719 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
720 	va_end(ap);
721 	if (!shrinker->name)
722 		return -ENOMEM;
723 
724 	err = __prealloc_shrinker(shrinker);
725 	if (err) {
726 		kfree_const(shrinker->name);
727 		shrinker->name = NULL;
728 	}
729 
730 	return err;
731 }
732 #else
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
734 {
735 	return __prealloc_shrinker(shrinker);
736 }
737 #endif
738 
739 void free_prealloced_shrinker(struct shrinker *shrinker)
740 {
741 #ifdef CONFIG_SHRINKER_DEBUG
742 	kfree_const(shrinker->name);
743 	shrinker->name = NULL;
744 #endif
745 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 		mutex_lock(&shrinker_mutex);
747 		unregister_memcg_shrinker(shrinker);
748 		mutex_unlock(&shrinker_mutex);
749 		return;
750 	}
751 
752 	kfree(shrinker->nr_deferred);
753 	shrinker->nr_deferred = NULL;
754 }
755 
756 void register_shrinker_prepared(struct shrinker *shrinker)
757 {
758 	mutex_lock(&shrinker_mutex);
759 	list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 	shrinker->flags |= SHRINKER_REGISTERED;
761 	shrinker_debugfs_add(shrinker);
762 	mutex_unlock(&shrinker_mutex);
763 }
764 
765 static int __register_shrinker(struct shrinker *shrinker)
766 {
767 	int err = __prealloc_shrinker(shrinker);
768 
769 	if (err)
770 		return err;
771 	register_shrinker_prepared(shrinker);
772 	return 0;
773 }
774 
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
777 {
778 	va_list ap;
779 	int err;
780 
781 	va_start(ap, fmt);
782 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
783 	va_end(ap);
784 	if (!shrinker->name)
785 		return -ENOMEM;
786 
787 	err = __register_shrinker(shrinker);
788 	if (err) {
789 		kfree_const(shrinker->name);
790 		shrinker->name = NULL;
791 	}
792 	return err;
793 }
794 #else
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
796 {
797 	return __register_shrinker(shrinker);
798 }
799 #endif
800 EXPORT_SYMBOL(register_shrinker);
801 
802 /*
803  * Remove one
804  */
805 void unregister_shrinker(struct shrinker *shrinker)
806 {
807 	struct dentry *debugfs_entry;
808 
809 	if (!(shrinker->flags & SHRINKER_REGISTERED))
810 		return;
811 
812 	mutex_lock(&shrinker_mutex);
813 	list_del_rcu(&shrinker->list);
814 	shrinker->flags &= ~SHRINKER_REGISTERED;
815 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
816 		unregister_memcg_shrinker(shrinker);
817 	debugfs_entry = shrinker_debugfs_remove(shrinker);
818 	mutex_unlock(&shrinker_mutex);
819 
820 	atomic_inc(&shrinker_srcu_generation);
821 	synchronize_srcu(&shrinker_srcu);
822 
823 	debugfs_remove_recursive(debugfs_entry);
824 
825 	kfree(shrinker->nr_deferred);
826 	shrinker->nr_deferred = NULL;
827 }
828 EXPORT_SYMBOL(unregister_shrinker);
829 
830 /**
831  * synchronize_shrinkers - Wait for all running shrinkers to complete.
832  *
833  * This is useful to guarantee that all shrinker invocations have seen an
834  * update, before freeing memory.
835  */
836 void synchronize_shrinkers(void)
837 {
838 	atomic_inc(&shrinker_srcu_generation);
839 	synchronize_srcu(&shrinker_srcu);
840 }
841 EXPORT_SYMBOL(synchronize_shrinkers);
842 
843 #define SHRINK_BATCH 128
844 
845 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
846 				    struct shrinker *shrinker, int priority)
847 {
848 	unsigned long freed = 0;
849 	unsigned long long delta;
850 	long total_scan;
851 	long freeable;
852 	long nr;
853 	long new_nr;
854 	long batch_size = shrinker->batch ? shrinker->batch
855 					  : SHRINK_BATCH;
856 	long scanned = 0, next_deferred;
857 
858 	freeable = shrinker->count_objects(shrinker, shrinkctl);
859 	if (freeable == 0 || freeable == SHRINK_EMPTY)
860 		return freeable;
861 
862 	/*
863 	 * copy the current shrinker scan count into a local variable
864 	 * and zero it so that other concurrent shrinker invocations
865 	 * don't also do this scanning work.
866 	 */
867 	nr = xchg_nr_deferred(shrinker, shrinkctl);
868 
869 	if (shrinker->seeks) {
870 		delta = freeable >> priority;
871 		delta *= 4;
872 		do_div(delta, shrinker->seeks);
873 	} else {
874 		/*
875 		 * These objects don't require any IO to create. Trim
876 		 * them aggressively under memory pressure to keep
877 		 * them from causing refetches in the IO caches.
878 		 */
879 		delta = freeable / 2;
880 	}
881 
882 	total_scan = nr >> priority;
883 	total_scan += delta;
884 	total_scan = min(total_scan, (2 * freeable));
885 
886 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
887 				   freeable, delta, total_scan, priority);
888 
889 	/*
890 	 * Normally, we should not scan less than batch_size objects in one
891 	 * pass to avoid too frequent shrinker calls, but if the slab has less
892 	 * than batch_size objects in total and we are really tight on memory,
893 	 * we will try to reclaim all available objects, otherwise we can end
894 	 * up failing allocations although there are plenty of reclaimable
895 	 * objects spread over several slabs with usage less than the
896 	 * batch_size.
897 	 *
898 	 * We detect the "tight on memory" situations by looking at the total
899 	 * number of objects we want to scan (total_scan). If it is greater
900 	 * than the total number of objects on slab (freeable), we must be
901 	 * scanning at high prio and therefore should try to reclaim as much as
902 	 * possible.
903 	 */
904 	while (total_scan >= batch_size ||
905 	       total_scan >= freeable) {
906 		unsigned long ret;
907 		unsigned long nr_to_scan = min(batch_size, total_scan);
908 
909 		shrinkctl->nr_to_scan = nr_to_scan;
910 		shrinkctl->nr_scanned = nr_to_scan;
911 		ret = shrinker->scan_objects(shrinker, shrinkctl);
912 		if (ret == SHRINK_STOP)
913 			break;
914 		freed += ret;
915 
916 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
917 		total_scan -= shrinkctl->nr_scanned;
918 		scanned += shrinkctl->nr_scanned;
919 
920 		cond_resched();
921 	}
922 
923 	/*
924 	 * The deferred work is increased by any new work (delta) that wasn't
925 	 * done, decreased by old deferred work that was done now.
926 	 *
927 	 * And it is capped to two times of the freeable items.
928 	 */
929 	next_deferred = max_t(long, (nr + delta - scanned), 0);
930 	next_deferred = min(next_deferred, (2 * freeable));
931 
932 	/*
933 	 * move the unused scan count back into the shrinker in a
934 	 * manner that handles concurrent updates.
935 	 */
936 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
937 
938 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
939 	return freed;
940 }
941 
942 #ifdef CONFIG_MEMCG
943 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
944 			struct mem_cgroup *memcg, int priority)
945 {
946 	struct shrinker_info *info;
947 	unsigned long ret, freed = 0;
948 	int srcu_idx, generation;
949 	int i = 0;
950 
951 	if (!mem_cgroup_online(memcg))
952 		return 0;
953 
954 again:
955 	srcu_idx = srcu_read_lock(&shrinker_srcu);
956 	info = shrinker_info_srcu(memcg, nid);
957 	if (unlikely(!info))
958 		goto unlock;
959 
960 	generation = atomic_read(&shrinker_srcu_generation);
961 	for_each_set_bit_from(i, info->map, info->map_nr_max) {
962 		struct shrink_control sc = {
963 			.gfp_mask = gfp_mask,
964 			.nid = nid,
965 			.memcg = memcg,
966 		};
967 		struct shrinker *shrinker;
968 
969 		shrinker = idr_find(&shrinker_idr, i);
970 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
971 			if (!shrinker)
972 				clear_bit(i, info->map);
973 			continue;
974 		}
975 
976 		/* Call non-slab shrinkers even though kmem is disabled */
977 		if (!memcg_kmem_online() &&
978 		    !(shrinker->flags & SHRINKER_NONSLAB))
979 			continue;
980 
981 		ret = do_shrink_slab(&sc, shrinker, priority);
982 		if (ret == SHRINK_EMPTY) {
983 			clear_bit(i, info->map);
984 			/*
985 			 * After the shrinker reported that it had no objects to
986 			 * free, but before we cleared the corresponding bit in
987 			 * the memcg shrinker map, a new object might have been
988 			 * added. To make sure, we have the bit set in this
989 			 * case, we invoke the shrinker one more time and reset
990 			 * the bit if it reports that it is not empty anymore.
991 			 * The memory barrier here pairs with the barrier in
992 			 * set_shrinker_bit():
993 			 *
994 			 * list_lru_add()     shrink_slab_memcg()
995 			 *   list_add_tail()    clear_bit()
996 			 *   <MB>               <MB>
997 			 *   set_bit()          do_shrink_slab()
998 			 */
999 			smp_mb__after_atomic();
1000 			ret = do_shrink_slab(&sc, shrinker, priority);
1001 			if (ret == SHRINK_EMPTY)
1002 				ret = 0;
1003 			else
1004 				set_shrinker_bit(memcg, nid, i);
1005 		}
1006 		freed += ret;
1007 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1008 			srcu_read_unlock(&shrinker_srcu, srcu_idx);
1009 			i++;
1010 			goto again;
1011 		}
1012 	}
1013 unlock:
1014 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1015 	return freed;
1016 }
1017 #else /* CONFIG_MEMCG */
1018 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1019 			struct mem_cgroup *memcg, int priority)
1020 {
1021 	return 0;
1022 }
1023 #endif /* CONFIG_MEMCG */
1024 
1025 /**
1026  * shrink_slab - shrink slab caches
1027  * @gfp_mask: allocation context
1028  * @nid: node whose slab caches to target
1029  * @memcg: memory cgroup whose slab caches to target
1030  * @priority: the reclaim priority
1031  *
1032  * Call the shrink functions to age shrinkable caches.
1033  *
1034  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1035  * unaware shrinkers will receive a node id of 0 instead.
1036  *
1037  * @memcg specifies the memory cgroup to target. Unaware shrinkers
1038  * are called only if it is the root cgroup.
1039  *
1040  * @priority is sc->priority, we take the number of objects and >> by priority
1041  * in order to get the scan target.
1042  *
1043  * Returns the number of reclaimed slab objects.
1044  */
1045 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1046 				 struct mem_cgroup *memcg,
1047 				 int priority)
1048 {
1049 	unsigned long ret, freed = 0;
1050 	struct shrinker *shrinker;
1051 	int srcu_idx, generation;
1052 
1053 	/*
1054 	 * The root memcg might be allocated even though memcg is disabled
1055 	 * via "cgroup_disable=memory" boot parameter.  This could make
1056 	 * mem_cgroup_is_root() return false, then just run memcg slab
1057 	 * shrink, but skip global shrink.  This may result in premature
1058 	 * oom.
1059 	 */
1060 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1061 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1062 
1063 	srcu_idx = srcu_read_lock(&shrinker_srcu);
1064 
1065 	generation = atomic_read(&shrinker_srcu_generation);
1066 	list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1067 				 srcu_read_lock_held(&shrinker_srcu)) {
1068 		struct shrink_control sc = {
1069 			.gfp_mask = gfp_mask,
1070 			.nid = nid,
1071 			.memcg = memcg,
1072 		};
1073 
1074 		ret = do_shrink_slab(&sc, shrinker, priority);
1075 		if (ret == SHRINK_EMPTY)
1076 			ret = 0;
1077 		freed += ret;
1078 
1079 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1080 			freed = freed ? : 1;
1081 			break;
1082 		}
1083 	}
1084 
1085 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1086 	cond_resched();
1087 	return freed;
1088 }
1089 
1090 static unsigned long drop_slab_node(int nid)
1091 {
1092 	unsigned long freed = 0;
1093 	struct mem_cgroup *memcg = NULL;
1094 
1095 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1096 	do {
1097 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1098 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1099 
1100 	return freed;
1101 }
1102 
1103 void drop_slab(void)
1104 {
1105 	int nid;
1106 	int shift = 0;
1107 	unsigned long freed;
1108 
1109 	do {
1110 		freed = 0;
1111 		for_each_online_node(nid) {
1112 			if (fatal_signal_pending(current))
1113 				return;
1114 
1115 			freed += drop_slab_node(nid);
1116 		}
1117 	} while ((freed >> shift++) > 1);
1118 }
1119 
1120 static int reclaimer_offset(void)
1121 {
1122 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1123 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1124 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1125 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1126 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1127 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1128 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1129 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1130 
1131 	if (current_is_kswapd())
1132 		return 0;
1133 	if (current_is_khugepaged())
1134 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1135 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1136 }
1137 
1138 static inline int is_page_cache_freeable(struct folio *folio)
1139 {
1140 	/*
1141 	 * A freeable page cache folio is referenced only by the caller
1142 	 * that isolated the folio, the page cache and optional filesystem
1143 	 * private data at folio->private.
1144 	 */
1145 	return folio_ref_count(folio) - folio_test_private(folio) ==
1146 		1 + folio_nr_pages(folio);
1147 }
1148 
1149 /*
1150  * We detected a synchronous write error writing a folio out.  Probably
1151  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1152  * fsync(), msync() or close().
1153  *
1154  * The tricky part is that after writepage we cannot touch the mapping: nothing
1155  * prevents it from being freed up.  But we have a ref on the folio and once
1156  * that folio is locked, the mapping is pinned.
1157  *
1158  * We're allowed to run sleeping folio_lock() here because we know the caller has
1159  * __GFP_FS.
1160  */
1161 static void handle_write_error(struct address_space *mapping,
1162 				struct folio *folio, int error)
1163 {
1164 	folio_lock(folio);
1165 	if (folio_mapping(folio) == mapping)
1166 		mapping_set_error(mapping, error);
1167 	folio_unlock(folio);
1168 }
1169 
1170 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1171 {
1172 	int reclaimable = 0, write_pending = 0;
1173 	int i;
1174 
1175 	/*
1176 	 * If kswapd is disabled, reschedule if necessary but do not
1177 	 * throttle as the system is likely near OOM.
1178 	 */
1179 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1180 		return true;
1181 
1182 	/*
1183 	 * If there are a lot of dirty/writeback folios then do not
1184 	 * throttle as throttling will occur when the folios cycle
1185 	 * towards the end of the LRU if still under writeback.
1186 	 */
1187 	for (i = 0; i < MAX_NR_ZONES; i++) {
1188 		struct zone *zone = pgdat->node_zones + i;
1189 
1190 		if (!managed_zone(zone))
1191 			continue;
1192 
1193 		reclaimable += zone_reclaimable_pages(zone);
1194 		write_pending += zone_page_state_snapshot(zone,
1195 						  NR_ZONE_WRITE_PENDING);
1196 	}
1197 	if (2 * write_pending <= reclaimable)
1198 		return true;
1199 
1200 	return false;
1201 }
1202 
1203 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1204 {
1205 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1206 	long timeout, ret;
1207 	DEFINE_WAIT(wait);
1208 
1209 	/*
1210 	 * Do not throttle user workers, kthreads other than kswapd or
1211 	 * workqueues. They may be required for reclaim to make
1212 	 * forward progress (e.g. journalling workqueues or kthreads).
1213 	 */
1214 	if (!current_is_kswapd() &&
1215 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1216 		cond_resched();
1217 		return;
1218 	}
1219 
1220 	/*
1221 	 * These figures are pulled out of thin air.
1222 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1223 	 * parallel reclaimers which is a short-lived event so the timeout is
1224 	 * short. Failing to make progress or waiting on writeback are
1225 	 * potentially long-lived events so use a longer timeout. This is shaky
1226 	 * logic as a failure to make progress could be due to anything from
1227 	 * writeback to a slow device to excessive referenced folios at the tail
1228 	 * of the inactive LRU.
1229 	 */
1230 	switch(reason) {
1231 	case VMSCAN_THROTTLE_WRITEBACK:
1232 		timeout = HZ/10;
1233 
1234 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1235 			WRITE_ONCE(pgdat->nr_reclaim_start,
1236 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1237 		}
1238 
1239 		break;
1240 	case VMSCAN_THROTTLE_CONGESTED:
1241 		fallthrough;
1242 	case VMSCAN_THROTTLE_NOPROGRESS:
1243 		if (skip_throttle_noprogress(pgdat)) {
1244 			cond_resched();
1245 			return;
1246 		}
1247 
1248 		timeout = 1;
1249 
1250 		break;
1251 	case VMSCAN_THROTTLE_ISOLATED:
1252 		timeout = HZ/50;
1253 		break;
1254 	default:
1255 		WARN_ON_ONCE(1);
1256 		timeout = HZ;
1257 		break;
1258 	}
1259 
1260 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1261 	ret = schedule_timeout(timeout);
1262 	finish_wait(wqh, &wait);
1263 
1264 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1265 		atomic_dec(&pgdat->nr_writeback_throttled);
1266 
1267 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1268 				jiffies_to_usecs(timeout - ret),
1269 				reason);
1270 }
1271 
1272 /*
1273  * Account for folios written if tasks are throttled waiting on dirty
1274  * folios to clean. If enough folios have been cleaned since throttling
1275  * started then wakeup the throttled tasks.
1276  */
1277 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1278 							int nr_throttled)
1279 {
1280 	unsigned long nr_written;
1281 
1282 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1283 
1284 	/*
1285 	 * This is an inaccurate read as the per-cpu deltas may not
1286 	 * be synchronised. However, given that the system is
1287 	 * writeback throttled, it is not worth taking the penalty
1288 	 * of getting an accurate count. At worst, the throttle
1289 	 * timeout guarantees forward progress.
1290 	 */
1291 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1292 		READ_ONCE(pgdat->nr_reclaim_start);
1293 
1294 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1295 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1296 }
1297 
1298 /* possible outcome of pageout() */
1299 typedef enum {
1300 	/* failed to write folio out, folio is locked */
1301 	PAGE_KEEP,
1302 	/* move folio to the active list, folio is locked */
1303 	PAGE_ACTIVATE,
1304 	/* folio has been sent to the disk successfully, folio is unlocked */
1305 	PAGE_SUCCESS,
1306 	/* folio is clean and locked */
1307 	PAGE_CLEAN,
1308 } pageout_t;
1309 
1310 /*
1311  * pageout is called by shrink_folio_list() for each dirty folio.
1312  * Calls ->writepage().
1313  */
1314 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1315 			 struct swap_iocb **plug)
1316 {
1317 	/*
1318 	 * If the folio is dirty, only perform writeback if that write
1319 	 * will be non-blocking.  To prevent this allocation from being
1320 	 * stalled by pagecache activity.  But note that there may be
1321 	 * stalls if we need to run get_block().  We could test
1322 	 * PagePrivate for that.
1323 	 *
1324 	 * If this process is currently in __generic_file_write_iter() against
1325 	 * this folio's queue, we can perform writeback even if that
1326 	 * will block.
1327 	 *
1328 	 * If the folio is swapcache, write it back even if that would
1329 	 * block, for some throttling. This happens by accident, because
1330 	 * swap_backing_dev_info is bust: it doesn't reflect the
1331 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1332 	 */
1333 	if (!is_page_cache_freeable(folio))
1334 		return PAGE_KEEP;
1335 	if (!mapping) {
1336 		/*
1337 		 * Some data journaling orphaned folios can have
1338 		 * folio->mapping == NULL while being dirty with clean buffers.
1339 		 */
1340 		if (folio_test_private(folio)) {
1341 			if (try_to_free_buffers(folio)) {
1342 				folio_clear_dirty(folio);
1343 				pr_info("%s: orphaned folio\n", __func__);
1344 				return PAGE_CLEAN;
1345 			}
1346 		}
1347 		return PAGE_KEEP;
1348 	}
1349 	if (mapping->a_ops->writepage == NULL)
1350 		return PAGE_ACTIVATE;
1351 
1352 	if (folio_clear_dirty_for_io(folio)) {
1353 		int res;
1354 		struct writeback_control wbc = {
1355 			.sync_mode = WB_SYNC_NONE,
1356 			.nr_to_write = SWAP_CLUSTER_MAX,
1357 			.range_start = 0,
1358 			.range_end = LLONG_MAX,
1359 			.for_reclaim = 1,
1360 			.swap_plug = plug,
1361 		};
1362 
1363 		folio_set_reclaim(folio);
1364 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1365 		if (res < 0)
1366 			handle_write_error(mapping, folio, res);
1367 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1368 			folio_clear_reclaim(folio);
1369 			return PAGE_ACTIVATE;
1370 		}
1371 
1372 		if (!folio_test_writeback(folio)) {
1373 			/* synchronous write or broken a_ops? */
1374 			folio_clear_reclaim(folio);
1375 		}
1376 		trace_mm_vmscan_write_folio(folio);
1377 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1378 		return PAGE_SUCCESS;
1379 	}
1380 
1381 	return PAGE_CLEAN;
1382 }
1383 
1384 /*
1385  * Same as remove_mapping, but if the folio is removed from the mapping, it
1386  * gets returned with a refcount of 0.
1387  */
1388 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1389 			    bool reclaimed, struct mem_cgroup *target_memcg)
1390 {
1391 	int refcount;
1392 	void *shadow = NULL;
1393 
1394 	BUG_ON(!folio_test_locked(folio));
1395 	BUG_ON(mapping != folio_mapping(folio));
1396 
1397 	if (!folio_test_swapcache(folio))
1398 		spin_lock(&mapping->host->i_lock);
1399 	xa_lock_irq(&mapping->i_pages);
1400 	/*
1401 	 * The non racy check for a busy folio.
1402 	 *
1403 	 * Must be careful with the order of the tests. When someone has
1404 	 * a ref to the folio, it may be possible that they dirty it then
1405 	 * drop the reference. So if the dirty flag is tested before the
1406 	 * refcount here, then the following race may occur:
1407 	 *
1408 	 * get_user_pages(&page);
1409 	 * [user mapping goes away]
1410 	 * write_to(page);
1411 	 *				!folio_test_dirty(folio)    [good]
1412 	 * folio_set_dirty(folio);
1413 	 * folio_put(folio);
1414 	 *				!refcount(folio)   [good, discard it]
1415 	 *
1416 	 * [oops, our write_to data is lost]
1417 	 *
1418 	 * Reversing the order of the tests ensures such a situation cannot
1419 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1420 	 * load is not satisfied before that of folio->_refcount.
1421 	 *
1422 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1423 	 * and thus under the i_pages lock, then this ordering is not required.
1424 	 */
1425 	refcount = 1 + folio_nr_pages(folio);
1426 	if (!folio_ref_freeze(folio, refcount))
1427 		goto cannot_free;
1428 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1429 	if (unlikely(folio_test_dirty(folio))) {
1430 		folio_ref_unfreeze(folio, refcount);
1431 		goto cannot_free;
1432 	}
1433 
1434 	if (folio_test_swapcache(folio)) {
1435 		swp_entry_t swap = folio_swap_entry(folio);
1436 
1437 		if (reclaimed && !mapping_exiting(mapping))
1438 			shadow = workingset_eviction(folio, target_memcg);
1439 		__delete_from_swap_cache(folio, swap, shadow);
1440 		mem_cgroup_swapout(folio, swap);
1441 		xa_unlock_irq(&mapping->i_pages);
1442 		put_swap_folio(folio, swap);
1443 	} else {
1444 		void (*free_folio)(struct folio *);
1445 
1446 		free_folio = mapping->a_ops->free_folio;
1447 		/*
1448 		 * Remember a shadow entry for reclaimed file cache in
1449 		 * order to detect refaults, thus thrashing, later on.
1450 		 *
1451 		 * But don't store shadows in an address space that is
1452 		 * already exiting.  This is not just an optimization,
1453 		 * inode reclaim needs to empty out the radix tree or
1454 		 * the nodes are lost.  Don't plant shadows behind its
1455 		 * back.
1456 		 *
1457 		 * We also don't store shadows for DAX mappings because the
1458 		 * only page cache folios found in these are zero pages
1459 		 * covering holes, and because we don't want to mix DAX
1460 		 * exceptional entries and shadow exceptional entries in the
1461 		 * same address_space.
1462 		 */
1463 		if (reclaimed && folio_is_file_lru(folio) &&
1464 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1465 			shadow = workingset_eviction(folio, target_memcg);
1466 		__filemap_remove_folio(folio, shadow);
1467 		xa_unlock_irq(&mapping->i_pages);
1468 		if (mapping_shrinkable(mapping))
1469 			inode_add_lru(mapping->host);
1470 		spin_unlock(&mapping->host->i_lock);
1471 
1472 		if (free_folio)
1473 			free_folio(folio);
1474 	}
1475 
1476 	return 1;
1477 
1478 cannot_free:
1479 	xa_unlock_irq(&mapping->i_pages);
1480 	if (!folio_test_swapcache(folio))
1481 		spin_unlock(&mapping->host->i_lock);
1482 	return 0;
1483 }
1484 
1485 /**
1486  * remove_mapping() - Attempt to remove a folio from its mapping.
1487  * @mapping: The address space.
1488  * @folio: The folio to remove.
1489  *
1490  * If the folio is dirty, under writeback or if someone else has a ref
1491  * on it, removal will fail.
1492  * Return: The number of pages removed from the mapping.  0 if the folio
1493  * could not be removed.
1494  * Context: The caller should have a single refcount on the folio and
1495  * hold its lock.
1496  */
1497 long remove_mapping(struct address_space *mapping, struct folio *folio)
1498 {
1499 	if (__remove_mapping(mapping, folio, false, NULL)) {
1500 		/*
1501 		 * Unfreezing the refcount with 1 effectively
1502 		 * drops the pagecache ref for us without requiring another
1503 		 * atomic operation.
1504 		 */
1505 		folio_ref_unfreeze(folio, 1);
1506 		return folio_nr_pages(folio);
1507 	}
1508 	return 0;
1509 }
1510 
1511 /**
1512  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1513  * @folio: Folio to be returned to an LRU list.
1514  *
1515  * Add previously isolated @folio to appropriate LRU list.
1516  * The folio may still be unevictable for other reasons.
1517  *
1518  * Context: lru_lock must not be held, interrupts must be enabled.
1519  */
1520 void folio_putback_lru(struct folio *folio)
1521 {
1522 	folio_add_lru(folio);
1523 	folio_put(folio);		/* drop ref from isolate */
1524 }
1525 
1526 enum folio_references {
1527 	FOLIOREF_RECLAIM,
1528 	FOLIOREF_RECLAIM_CLEAN,
1529 	FOLIOREF_KEEP,
1530 	FOLIOREF_ACTIVATE,
1531 };
1532 
1533 static enum folio_references folio_check_references(struct folio *folio,
1534 						  struct scan_control *sc)
1535 {
1536 	int referenced_ptes, referenced_folio;
1537 	unsigned long vm_flags;
1538 
1539 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1540 					   &vm_flags);
1541 	referenced_folio = folio_test_clear_referenced(folio);
1542 
1543 	/*
1544 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1545 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1546 	 */
1547 	if (vm_flags & VM_LOCKED)
1548 		return FOLIOREF_ACTIVATE;
1549 
1550 	/* rmap lock contention: rotate */
1551 	if (referenced_ptes == -1)
1552 		return FOLIOREF_KEEP;
1553 
1554 	if (referenced_ptes) {
1555 		/*
1556 		 * All mapped folios start out with page table
1557 		 * references from the instantiating fault, so we need
1558 		 * to look twice if a mapped file/anon folio is used more
1559 		 * than once.
1560 		 *
1561 		 * Mark it and spare it for another trip around the
1562 		 * inactive list.  Another page table reference will
1563 		 * lead to its activation.
1564 		 *
1565 		 * Note: the mark is set for activated folios as well
1566 		 * so that recently deactivated but used folios are
1567 		 * quickly recovered.
1568 		 */
1569 		folio_set_referenced(folio);
1570 
1571 		if (referenced_folio || referenced_ptes > 1)
1572 			return FOLIOREF_ACTIVATE;
1573 
1574 		/*
1575 		 * Activate file-backed executable folios after first usage.
1576 		 */
1577 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1578 			return FOLIOREF_ACTIVATE;
1579 
1580 		return FOLIOREF_KEEP;
1581 	}
1582 
1583 	/* Reclaim if clean, defer dirty folios to writeback */
1584 	if (referenced_folio && folio_is_file_lru(folio))
1585 		return FOLIOREF_RECLAIM_CLEAN;
1586 
1587 	return FOLIOREF_RECLAIM;
1588 }
1589 
1590 /* Check if a folio is dirty or under writeback */
1591 static void folio_check_dirty_writeback(struct folio *folio,
1592 				       bool *dirty, bool *writeback)
1593 {
1594 	struct address_space *mapping;
1595 
1596 	/*
1597 	 * Anonymous folios are not handled by flushers and must be written
1598 	 * from reclaim context. Do not stall reclaim based on them.
1599 	 * MADV_FREE anonymous folios are put into inactive file list too.
1600 	 * They could be mistakenly treated as file lru. So further anon
1601 	 * test is needed.
1602 	 */
1603 	if (!folio_is_file_lru(folio) ||
1604 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1605 		*dirty = false;
1606 		*writeback = false;
1607 		return;
1608 	}
1609 
1610 	/* By default assume that the folio flags are accurate */
1611 	*dirty = folio_test_dirty(folio);
1612 	*writeback = folio_test_writeback(folio);
1613 
1614 	/* Verify dirty/writeback state if the filesystem supports it */
1615 	if (!folio_test_private(folio))
1616 		return;
1617 
1618 	mapping = folio_mapping(folio);
1619 	if (mapping && mapping->a_ops->is_dirty_writeback)
1620 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1621 }
1622 
1623 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1624 {
1625 	struct page *target_page;
1626 	nodemask_t *allowed_mask;
1627 	struct migration_target_control *mtc;
1628 
1629 	mtc = (struct migration_target_control *)private;
1630 
1631 	allowed_mask = mtc->nmask;
1632 	/*
1633 	 * make sure we allocate from the target node first also trying to
1634 	 * demote or reclaim pages from the target node via kswapd if we are
1635 	 * low on free memory on target node. If we don't do this and if
1636 	 * we have free memory on the slower(lower) memtier, we would start
1637 	 * allocating pages from slower(lower) memory tiers without even forcing
1638 	 * a demotion of cold pages from the target memtier. This can result
1639 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1640 	 */
1641 	mtc->nmask = NULL;
1642 	mtc->gfp_mask |= __GFP_THISNODE;
1643 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1644 	if (target_page)
1645 		return target_page;
1646 
1647 	mtc->gfp_mask &= ~__GFP_THISNODE;
1648 	mtc->nmask = allowed_mask;
1649 
1650 	return alloc_migration_target(page, (unsigned long)mtc);
1651 }
1652 
1653 /*
1654  * Take folios on @demote_folios and attempt to demote them to another node.
1655  * Folios which are not demoted are left on @demote_folios.
1656  */
1657 static unsigned int demote_folio_list(struct list_head *demote_folios,
1658 				     struct pglist_data *pgdat)
1659 {
1660 	int target_nid = next_demotion_node(pgdat->node_id);
1661 	unsigned int nr_succeeded;
1662 	nodemask_t allowed_mask;
1663 
1664 	struct migration_target_control mtc = {
1665 		/*
1666 		 * Allocate from 'node', or fail quickly and quietly.
1667 		 * When this happens, 'page' will likely just be discarded
1668 		 * instead of migrated.
1669 		 */
1670 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1671 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1672 		.nid = target_nid,
1673 		.nmask = &allowed_mask
1674 	};
1675 
1676 	if (list_empty(demote_folios))
1677 		return 0;
1678 
1679 	if (target_nid == NUMA_NO_NODE)
1680 		return 0;
1681 
1682 	node_get_allowed_targets(pgdat, &allowed_mask);
1683 
1684 	/* Demotion ignores all cpuset and mempolicy settings */
1685 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1686 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1687 		      &nr_succeeded);
1688 
1689 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1690 
1691 	return nr_succeeded;
1692 }
1693 
1694 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1695 {
1696 	if (gfp_mask & __GFP_FS)
1697 		return true;
1698 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1699 		return false;
1700 	/*
1701 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1702 	 * providing this isn't SWP_FS_OPS.
1703 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1704 	 * but that will never affect SWP_FS_OPS, so the data_race
1705 	 * is safe.
1706 	 */
1707 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1708 }
1709 
1710 /*
1711  * shrink_folio_list() returns the number of reclaimed pages
1712  */
1713 static unsigned int shrink_folio_list(struct list_head *folio_list,
1714 		struct pglist_data *pgdat, struct scan_control *sc,
1715 		struct reclaim_stat *stat, bool ignore_references)
1716 {
1717 	LIST_HEAD(ret_folios);
1718 	LIST_HEAD(free_folios);
1719 	LIST_HEAD(demote_folios);
1720 	unsigned int nr_reclaimed = 0;
1721 	unsigned int pgactivate = 0;
1722 	bool do_demote_pass;
1723 	struct swap_iocb *plug = NULL;
1724 
1725 	memset(stat, 0, sizeof(*stat));
1726 	cond_resched();
1727 	do_demote_pass = can_demote(pgdat->node_id, sc);
1728 
1729 retry:
1730 	while (!list_empty(folio_list)) {
1731 		struct address_space *mapping;
1732 		struct folio *folio;
1733 		enum folio_references references = FOLIOREF_RECLAIM;
1734 		bool dirty, writeback;
1735 		unsigned int nr_pages;
1736 
1737 		cond_resched();
1738 
1739 		folio = lru_to_folio(folio_list);
1740 		list_del(&folio->lru);
1741 
1742 		if (!folio_trylock(folio))
1743 			goto keep;
1744 
1745 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1746 
1747 		nr_pages = folio_nr_pages(folio);
1748 
1749 		/* Account the number of base pages */
1750 		sc->nr_scanned += nr_pages;
1751 
1752 		if (unlikely(!folio_evictable(folio)))
1753 			goto activate_locked;
1754 
1755 		if (!sc->may_unmap && folio_mapped(folio))
1756 			goto keep_locked;
1757 
1758 		/* folio_update_gen() tried to promote this page? */
1759 		if (lru_gen_enabled() && !ignore_references &&
1760 		    folio_mapped(folio) && folio_test_referenced(folio))
1761 			goto keep_locked;
1762 
1763 		/*
1764 		 * The number of dirty pages determines if a node is marked
1765 		 * reclaim_congested. kswapd will stall and start writing
1766 		 * folios if the tail of the LRU is all dirty unqueued folios.
1767 		 */
1768 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1769 		if (dirty || writeback)
1770 			stat->nr_dirty += nr_pages;
1771 
1772 		if (dirty && !writeback)
1773 			stat->nr_unqueued_dirty += nr_pages;
1774 
1775 		/*
1776 		 * Treat this folio as congested if folios are cycling
1777 		 * through the LRU so quickly that the folios marked
1778 		 * for immediate reclaim are making it to the end of
1779 		 * the LRU a second time.
1780 		 */
1781 		if (writeback && folio_test_reclaim(folio))
1782 			stat->nr_congested += nr_pages;
1783 
1784 		/*
1785 		 * If a folio at the tail of the LRU is under writeback, there
1786 		 * are three cases to consider.
1787 		 *
1788 		 * 1) If reclaim is encountering an excessive number
1789 		 *    of folios under writeback and this folio has both
1790 		 *    the writeback and reclaim flags set, then it
1791 		 *    indicates that folios are being queued for I/O but
1792 		 *    are being recycled through the LRU before the I/O
1793 		 *    can complete. Waiting on the folio itself risks an
1794 		 *    indefinite stall if it is impossible to writeback
1795 		 *    the folio due to I/O error or disconnected storage
1796 		 *    so instead note that the LRU is being scanned too
1797 		 *    quickly and the caller can stall after the folio
1798 		 *    list has been processed.
1799 		 *
1800 		 * 2) Global or new memcg reclaim encounters a folio that is
1801 		 *    not marked for immediate reclaim, or the caller does not
1802 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1803 		 *    not to fs). In this case mark the folio for immediate
1804 		 *    reclaim and continue scanning.
1805 		 *
1806 		 *    Require may_enter_fs() because we would wait on fs, which
1807 		 *    may not have submitted I/O yet. And the loop driver might
1808 		 *    enter reclaim, and deadlock if it waits on a folio for
1809 		 *    which it is needed to do the write (loop masks off
1810 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1811 		 *    would probably show more reasons.
1812 		 *
1813 		 * 3) Legacy memcg encounters a folio that already has the
1814 		 *    reclaim flag set. memcg does not have any dirty folio
1815 		 *    throttling so we could easily OOM just because too many
1816 		 *    folios are in writeback and there is nothing else to
1817 		 *    reclaim. Wait for the writeback to complete.
1818 		 *
1819 		 * In cases 1) and 2) we activate the folios to get them out of
1820 		 * the way while we continue scanning for clean folios on the
1821 		 * inactive list and refilling from the active list. The
1822 		 * observation here is that waiting for disk writes is more
1823 		 * expensive than potentially causing reloads down the line.
1824 		 * Since they're marked for immediate reclaim, they won't put
1825 		 * memory pressure on the cache working set any longer than it
1826 		 * takes to write them to disk.
1827 		 */
1828 		if (folio_test_writeback(folio)) {
1829 			/* Case 1 above */
1830 			if (current_is_kswapd() &&
1831 			    folio_test_reclaim(folio) &&
1832 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1833 				stat->nr_immediate += nr_pages;
1834 				goto activate_locked;
1835 
1836 			/* Case 2 above */
1837 			} else if (writeback_throttling_sane(sc) ||
1838 			    !folio_test_reclaim(folio) ||
1839 			    !may_enter_fs(folio, sc->gfp_mask)) {
1840 				/*
1841 				 * This is slightly racy -
1842 				 * folio_end_writeback() might have
1843 				 * just cleared the reclaim flag, then
1844 				 * setting the reclaim flag here ends up
1845 				 * interpreted as the readahead flag - but
1846 				 * that does not matter enough to care.
1847 				 * What we do want is for this folio to
1848 				 * have the reclaim flag set next time
1849 				 * memcg reclaim reaches the tests above,
1850 				 * so it will then wait for writeback to
1851 				 * avoid OOM; and it's also appropriate
1852 				 * in global reclaim.
1853 				 */
1854 				folio_set_reclaim(folio);
1855 				stat->nr_writeback += nr_pages;
1856 				goto activate_locked;
1857 
1858 			/* Case 3 above */
1859 			} else {
1860 				folio_unlock(folio);
1861 				folio_wait_writeback(folio);
1862 				/* then go back and try same folio again */
1863 				list_add_tail(&folio->lru, folio_list);
1864 				continue;
1865 			}
1866 		}
1867 
1868 		if (!ignore_references)
1869 			references = folio_check_references(folio, sc);
1870 
1871 		switch (references) {
1872 		case FOLIOREF_ACTIVATE:
1873 			goto activate_locked;
1874 		case FOLIOREF_KEEP:
1875 			stat->nr_ref_keep += nr_pages;
1876 			goto keep_locked;
1877 		case FOLIOREF_RECLAIM:
1878 		case FOLIOREF_RECLAIM_CLEAN:
1879 			; /* try to reclaim the folio below */
1880 		}
1881 
1882 		/*
1883 		 * Before reclaiming the folio, try to relocate
1884 		 * its contents to another node.
1885 		 */
1886 		if (do_demote_pass &&
1887 		    (thp_migration_supported() || !folio_test_large(folio))) {
1888 			list_add(&folio->lru, &demote_folios);
1889 			folio_unlock(folio);
1890 			continue;
1891 		}
1892 
1893 		/*
1894 		 * Anonymous process memory has backing store?
1895 		 * Try to allocate it some swap space here.
1896 		 * Lazyfree folio could be freed directly
1897 		 */
1898 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1899 			if (!folio_test_swapcache(folio)) {
1900 				if (!(sc->gfp_mask & __GFP_IO))
1901 					goto keep_locked;
1902 				if (folio_maybe_dma_pinned(folio))
1903 					goto keep_locked;
1904 				if (folio_test_large(folio)) {
1905 					/* cannot split folio, skip it */
1906 					if (!can_split_folio(folio, NULL))
1907 						goto activate_locked;
1908 					/*
1909 					 * Split folios without a PMD map right
1910 					 * away. Chances are some or all of the
1911 					 * tail pages can be freed without IO.
1912 					 */
1913 					if (!folio_entire_mapcount(folio) &&
1914 					    split_folio_to_list(folio,
1915 								folio_list))
1916 						goto activate_locked;
1917 				}
1918 				if (!add_to_swap(folio)) {
1919 					if (!folio_test_large(folio))
1920 						goto activate_locked_split;
1921 					/* Fallback to swap normal pages */
1922 					if (split_folio_to_list(folio,
1923 								folio_list))
1924 						goto activate_locked;
1925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1926 					count_vm_event(THP_SWPOUT_FALLBACK);
1927 #endif
1928 					if (!add_to_swap(folio))
1929 						goto activate_locked_split;
1930 				}
1931 			}
1932 		} else if (folio_test_swapbacked(folio) &&
1933 			   folio_test_large(folio)) {
1934 			/* Split shmem folio */
1935 			if (split_folio_to_list(folio, folio_list))
1936 				goto keep_locked;
1937 		}
1938 
1939 		/*
1940 		 * If the folio was split above, the tail pages will make
1941 		 * their own pass through this function and be accounted
1942 		 * then.
1943 		 */
1944 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1945 			sc->nr_scanned -= (nr_pages - 1);
1946 			nr_pages = 1;
1947 		}
1948 
1949 		/*
1950 		 * The folio is mapped into the page tables of one or more
1951 		 * processes. Try to unmap it here.
1952 		 */
1953 		if (folio_mapped(folio)) {
1954 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1955 			bool was_swapbacked = folio_test_swapbacked(folio);
1956 
1957 			if (folio_test_pmd_mappable(folio))
1958 				flags |= TTU_SPLIT_HUGE_PMD;
1959 
1960 			try_to_unmap(folio, flags);
1961 			if (folio_mapped(folio)) {
1962 				stat->nr_unmap_fail += nr_pages;
1963 				if (!was_swapbacked &&
1964 				    folio_test_swapbacked(folio))
1965 					stat->nr_lazyfree_fail += nr_pages;
1966 				goto activate_locked;
1967 			}
1968 		}
1969 
1970 		mapping = folio_mapping(folio);
1971 		if (folio_test_dirty(folio)) {
1972 			/*
1973 			 * Only kswapd can writeback filesystem folios
1974 			 * to avoid risk of stack overflow. But avoid
1975 			 * injecting inefficient single-folio I/O into
1976 			 * flusher writeback as much as possible: only
1977 			 * write folios when we've encountered many
1978 			 * dirty folios, and when we've already scanned
1979 			 * the rest of the LRU for clean folios and see
1980 			 * the same dirty folios again (with the reclaim
1981 			 * flag set).
1982 			 */
1983 			if (folio_is_file_lru(folio) &&
1984 			    (!current_is_kswapd() ||
1985 			     !folio_test_reclaim(folio) ||
1986 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1987 				/*
1988 				 * Immediately reclaim when written back.
1989 				 * Similar in principle to folio_deactivate()
1990 				 * except we already have the folio isolated
1991 				 * and know it's dirty
1992 				 */
1993 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1994 						nr_pages);
1995 				folio_set_reclaim(folio);
1996 
1997 				goto activate_locked;
1998 			}
1999 
2000 			if (references == FOLIOREF_RECLAIM_CLEAN)
2001 				goto keep_locked;
2002 			if (!may_enter_fs(folio, sc->gfp_mask))
2003 				goto keep_locked;
2004 			if (!sc->may_writepage)
2005 				goto keep_locked;
2006 
2007 			/*
2008 			 * Folio is dirty. Flush the TLB if a writable entry
2009 			 * potentially exists to avoid CPU writes after I/O
2010 			 * starts and then write it out here.
2011 			 */
2012 			try_to_unmap_flush_dirty();
2013 			switch (pageout(folio, mapping, &plug)) {
2014 			case PAGE_KEEP:
2015 				goto keep_locked;
2016 			case PAGE_ACTIVATE:
2017 				goto activate_locked;
2018 			case PAGE_SUCCESS:
2019 				stat->nr_pageout += nr_pages;
2020 
2021 				if (folio_test_writeback(folio))
2022 					goto keep;
2023 				if (folio_test_dirty(folio))
2024 					goto keep;
2025 
2026 				/*
2027 				 * A synchronous write - probably a ramdisk.  Go
2028 				 * ahead and try to reclaim the folio.
2029 				 */
2030 				if (!folio_trylock(folio))
2031 					goto keep;
2032 				if (folio_test_dirty(folio) ||
2033 				    folio_test_writeback(folio))
2034 					goto keep_locked;
2035 				mapping = folio_mapping(folio);
2036 				fallthrough;
2037 			case PAGE_CLEAN:
2038 				; /* try to free the folio below */
2039 			}
2040 		}
2041 
2042 		/*
2043 		 * If the folio has buffers, try to free the buffer
2044 		 * mappings associated with this folio. If we succeed
2045 		 * we try to free the folio as well.
2046 		 *
2047 		 * We do this even if the folio is dirty.
2048 		 * filemap_release_folio() does not perform I/O, but it
2049 		 * is possible for a folio to have the dirty flag set,
2050 		 * but it is actually clean (all its buffers are clean).
2051 		 * This happens if the buffers were written out directly,
2052 		 * with submit_bh(). ext3 will do this, as well as
2053 		 * the blockdev mapping.  filemap_release_folio() will
2054 		 * discover that cleanness and will drop the buffers
2055 		 * and mark the folio clean - it can be freed.
2056 		 *
2057 		 * Rarely, folios can have buffers and no ->mapping.
2058 		 * These are the folios which were not successfully
2059 		 * invalidated in truncate_cleanup_folio().  We try to
2060 		 * drop those buffers here and if that worked, and the
2061 		 * folio is no longer mapped into process address space
2062 		 * (refcount == 1) it can be freed.  Otherwise, leave
2063 		 * the folio on the LRU so it is swappable.
2064 		 */
2065 		if (folio_has_private(folio)) {
2066 			if (!filemap_release_folio(folio, sc->gfp_mask))
2067 				goto activate_locked;
2068 			if (!mapping && folio_ref_count(folio) == 1) {
2069 				folio_unlock(folio);
2070 				if (folio_put_testzero(folio))
2071 					goto free_it;
2072 				else {
2073 					/*
2074 					 * rare race with speculative reference.
2075 					 * the speculative reference will free
2076 					 * this folio shortly, so we may
2077 					 * increment nr_reclaimed here (and
2078 					 * leave it off the LRU).
2079 					 */
2080 					nr_reclaimed += nr_pages;
2081 					continue;
2082 				}
2083 			}
2084 		}
2085 
2086 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2087 			/* follow __remove_mapping for reference */
2088 			if (!folio_ref_freeze(folio, 1))
2089 				goto keep_locked;
2090 			/*
2091 			 * The folio has only one reference left, which is
2092 			 * from the isolation. After the caller puts the
2093 			 * folio back on the lru and drops the reference, the
2094 			 * folio will be freed anyway. It doesn't matter
2095 			 * which lru it goes on. So we don't bother checking
2096 			 * the dirty flag here.
2097 			 */
2098 			count_vm_events(PGLAZYFREED, nr_pages);
2099 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2100 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2101 							 sc->target_mem_cgroup))
2102 			goto keep_locked;
2103 
2104 		folio_unlock(folio);
2105 free_it:
2106 		/*
2107 		 * Folio may get swapped out as a whole, need to account
2108 		 * all pages in it.
2109 		 */
2110 		nr_reclaimed += nr_pages;
2111 
2112 		/*
2113 		 * Is there need to periodically free_folio_list? It would
2114 		 * appear not as the counts should be low
2115 		 */
2116 		if (unlikely(folio_test_large(folio)))
2117 			destroy_large_folio(folio);
2118 		else
2119 			list_add(&folio->lru, &free_folios);
2120 		continue;
2121 
2122 activate_locked_split:
2123 		/*
2124 		 * The tail pages that are failed to add into swap cache
2125 		 * reach here.  Fixup nr_scanned and nr_pages.
2126 		 */
2127 		if (nr_pages > 1) {
2128 			sc->nr_scanned -= (nr_pages - 1);
2129 			nr_pages = 1;
2130 		}
2131 activate_locked:
2132 		/* Not a candidate for swapping, so reclaim swap space. */
2133 		if (folio_test_swapcache(folio) &&
2134 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2135 			folio_free_swap(folio);
2136 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2137 		if (!folio_test_mlocked(folio)) {
2138 			int type = folio_is_file_lru(folio);
2139 			folio_set_active(folio);
2140 			stat->nr_activate[type] += nr_pages;
2141 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2142 		}
2143 keep_locked:
2144 		folio_unlock(folio);
2145 keep:
2146 		list_add(&folio->lru, &ret_folios);
2147 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2148 				folio_test_unevictable(folio), folio);
2149 	}
2150 	/* 'folio_list' is always empty here */
2151 
2152 	/* Migrate folios selected for demotion */
2153 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2154 	/* Folios that could not be demoted are still in @demote_folios */
2155 	if (!list_empty(&demote_folios)) {
2156 		/* Folios which weren't demoted go back on @folio_list */
2157 		list_splice_init(&demote_folios, folio_list);
2158 
2159 		/*
2160 		 * goto retry to reclaim the undemoted folios in folio_list if
2161 		 * desired.
2162 		 *
2163 		 * Reclaiming directly from top tier nodes is not often desired
2164 		 * due to it breaking the LRU ordering: in general memory
2165 		 * should be reclaimed from lower tier nodes and demoted from
2166 		 * top tier nodes.
2167 		 *
2168 		 * However, disabling reclaim from top tier nodes entirely
2169 		 * would cause ooms in edge scenarios where lower tier memory
2170 		 * is unreclaimable for whatever reason, eg memory being
2171 		 * mlocked or too hot to reclaim. We can disable reclaim
2172 		 * from top tier nodes in proactive reclaim though as that is
2173 		 * not real memory pressure.
2174 		 */
2175 		if (!sc->proactive) {
2176 			do_demote_pass = false;
2177 			goto retry;
2178 		}
2179 	}
2180 
2181 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2182 
2183 	mem_cgroup_uncharge_list(&free_folios);
2184 	try_to_unmap_flush();
2185 	free_unref_page_list(&free_folios);
2186 
2187 	list_splice(&ret_folios, folio_list);
2188 	count_vm_events(PGACTIVATE, pgactivate);
2189 
2190 	if (plug)
2191 		swap_write_unplug(plug);
2192 	return nr_reclaimed;
2193 }
2194 
2195 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2196 					   struct list_head *folio_list)
2197 {
2198 	struct scan_control sc = {
2199 		.gfp_mask = GFP_KERNEL,
2200 		.may_unmap = 1,
2201 	};
2202 	struct reclaim_stat stat;
2203 	unsigned int nr_reclaimed;
2204 	struct folio *folio, *next;
2205 	LIST_HEAD(clean_folios);
2206 	unsigned int noreclaim_flag;
2207 
2208 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2209 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2210 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2211 		    !folio_test_unevictable(folio)) {
2212 			folio_clear_active(folio);
2213 			list_move(&folio->lru, &clean_folios);
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * We should be safe here since we are only dealing with file pages and
2219 	 * we are not kswapd and therefore cannot write dirty file pages. But
2220 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2221 	 * change in the future.
2222 	 */
2223 	noreclaim_flag = memalloc_noreclaim_save();
2224 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2225 					&stat, true);
2226 	memalloc_noreclaim_restore(noreclaim_flag);
2227 
2228 	list_splice(&clean_folios, folio_list);
2229 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2230 			    -(long)nr_reclaimed);
2231 	/*
2232 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2233 	 * they will rotate back to anonymous LRU in the end if it failed to
2234 	 * discard so isolated count will be mismatched.
2235 	 * Compensate the isolated count for both LRU lists.
2236 	 */
2237 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2238 			    stat.nr_lazyfree_fail);
2239 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2240 			    -(long)stat.nr_lazyfree_fail);
2241 	return nr_reclaimed;
2242 }
2243 
2244 /*
2245  * Update LRU sizes after isolating pages. The LRU size updates must
2246  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2247  */
2248 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2249 			enum lru_list lru, unsigned long *nr_zone_taken)
2250 {
2251 	int zid;
2252 
2253 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2254 		if (!nr_zone_taken[zid])
2255 			continue;
2256 
2257 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2258 	}
2259 
2260 }
2261 
2262 /*
2263  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2264  *
2265  * lruvec->lru_lock is heavily contended.  Some of the functions that
2266  * shrink the lists perform better by taking out a batch of pages
2267  * and working on them outside the LRU lock.
2268  *
2269  * For pagecache intensive workloads, this function is the hottest
2270  * spot in the kernel (apart from copy_*_user functions).
2271  *
2272  * Lru_lock must be held before calling this function.
2273  *
2274  * @nr_to_scan:	The number of eligible pages to look through on the list.
2275  * @lruvec:	The LRU vector to pull pages from.
2276  * @dst:	The temp list to put pages on to.
2277  * @nr_scanned:	The number of pages that were scanned.
2278  * @sc:		The scan_control struct for this reclaim session
2279  * @lru:	LRU list id for isolating
2280  *
2281  * returns how many pages were moved onto *@dst.
2282  */
2283 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2284 		struct lruvec *lruvec, struct list_head *dst,
2285 		unsigned long *nr_scanned, struct scan_control *sc,
2286 		enum lru_list lru)
2287 {
2288 	struct list_head *src = &lruvec->lists[lru];
2289 	unsigned long nr_taken = 0;
2290 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2291 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2292 	unsigned long skipped = 0;
2293 	unsigned long scan, total_scan, nr_pages;
2294 	LIST_HEAD(folios_skipped);
2295 
2296 	total_scan = 0;
2297 	scan = 0;
2298 	while (scan < nr_to_scan && !list_empty(src)) {
2299 		struct list_head *move_to = src;
2300 		struct folio *folio;
2301 
2302 		folio = lru_to_folio(src);
2303 		prefetchw_prev_lru_folio(folio, src, flags);
2304 
2305 		nr_pages = folio_nr_pages(folio);
2306 		total_scan += nr_pages;
2307 
2308 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2309 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2310 			move_to = &folios_skipped;
2311 			goto move;
2312 		}
2313 
2314 		/*
2315 		 * Do not count skipped folios because that makes the function
2316 		 * return with no isolated folios if the LRU mostly contains
2317 		 * ineligible folios.  This causes the VM to not reclaim any
2318 		 * folios, triggering a premature OOM.
2319 		 * Account all pages in a folio.
2320 		 */
2321 		scan += nr_pages;
2322 
2323 		if (!folio_test_lru(folio))
2324 			goto move;
2325 		if (!sc->may_unmap && folio_mapped(folio))
2326 			goto move;
2327 
2328 		/*
2329 		 * Be careful not to clear the lru flag until after we're
2330 		 * sure the folio is not being freed elsewhere -- the
2331 		 * folio release code relies on it.
2332 		 */
2333 		if (unlikely(!folio_try_get(folio)))
2334 			goto move;
2335 
2336 		if (!folio_test_clear_lru(folio)) {
2337 			/* Another thread is already isolating this folio */
2338 			folio_put(folio);
2339 			goto move;
2340 		}
2341 
2342 		nr_taken += nr_pages;
2343 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2344 		move_to = dst;
2345 move:
2346 		list_move(&folio->lru, move_to);
2347 	}
2348 
2349 	/*
2350 	 * Splice any skipped folios to the start of the LRU list. Note that
2351 	 * this disrupts the LRU order when reclaiming for lower zones but
2352 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2353 	 * scanning would soon rescan the same folios to skip and waste lots
2354 	 * of cpu cycles.
2355 	 */
2356 	if (!list_empty(&folios_skipped)) {
2357 		int zid;
2358 
2359 		list_splice(&folios_skipped, src);
2360 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2361 			if (!nr_skipped[zid])
2362 				continue;
2363 
2364 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2365 			skipped += nr_skipped[zid];
2366 		}
2367 	}
2368 	*nr_scanned = total_scan;
2369 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2370 				    total_scan, skipped, nr_taken,
2371 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2372 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2373 	return nr_taken;
2374 }
2375 
2376 /**
2377  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2378  * @folio: Folio to isolate from its LRU list.
2379  *
2380  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2381  * corresponding to whatever LRU list the folio was on.
2382  *
2383  * The folio will have its LRU flag cleared.  If it was found on the
2384  * active list, it will have the Active flag set.  If it was found on the
2385  * unevictable list, it will have the Unevictable flag set.  These flags
2386  * may need to be cleared by the caller before letting the page go.
2387  *
2388  * Context:
2389  *
2390  * (1) Must be called with an elevated refcount on the folio. This is a
2391  *     fundamental difference from isolate_lru_folios() (which is called
2392  *     without a stable reference).
2393  * (2) The lru_lock must not be held.
2394  * (3) Interrupts must be enabled.
2395  *
2396  * Return: true if the folio was removed from an LRU list.
2397  * false if the folio was not on an LRU list.
2398  */
2399 bool folio_isolate_lru(struct folio *folio)
2400 {
2401 	bool ret = false;
2402 
2403 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2404 
2405 	if (folio_test_clear_lru(folio)) {
2406 		struct lruvec *lruvec;
2407 
2408 		folio_get(folio);
2409 		lruvec = folio_lruvec_lock_irq(folio);
2410 		lruvec_del_folio(lruvec, folio);
2411 		unlock_page_lruvec_irq(lruvec);
2412 		ret = true;
2413 	}
2414 
2415 	return ret;
2416 }
2417 
2418 /*
2419  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2420  * then get rescheduled. When there are massive number of tasks doing page
2421  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2422  * the LRU list will go small and be scanned faster than necessary, leading to
2423  * unnecessary swapping, thrashing and OOM.
2424  */
2425 static int too_many_isolated(struct pglist_data *pgdat, int file,
2426 		struct scan_control *sc)
2427 {
2428 	unsigned long inactive, isolated;
2429 	bool too_many;
2430 
2431 	if (current_is_kswapd())
2432 		return 0;
2433 
2434 	if (!writeback_throttling_sane(sc))
2435 		return 0;
2436 
2437 	if (file) {
2438 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2439 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2440 	} else {
2441 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2442 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2443 	}
2444 
2445 	/*
2446 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2447 	 * won't get blocked by normal direct-reclaimers, forming a circular
2448 	 * deadlock.
2449 	 */
2450 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2451 		inactive >>= 3;
2452 
2453 	too_many = isolated > inactive;
2454 
2455 	/* Wake up tasks throttled due to too_many_isolated. */
2456 	if (!too_many)
2457 		wake_throttle_isolated(pgdat);
2458 
2459 	return too_many;
2460 }
2461 
2462 /*
2463  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2464  * On return, @list is reused as a list of folios to be freed by the caller.
2465  *
2466  * Returns the number of pages moved to the given lruvec.
2467  */
2468 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2469 		struct list_head *list)
2470 {
2471 	int nr_pages, nr_moved = 0;
2472 	LIST_HEAD(folios_to_free);
2473 
2474 	while (!list_empty(list)) {
2475 		struct folio *folio = lru_to_folio(list);
2476 
2477 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2478 		list_del(&folio->lru);
2479 		if (unlikely(!folio_evictable(folio))) {
2480 			spin_unlock_irq(&lruvec->lru_lock);
2481 			folio_putback_lru(folio);
2482 			spin_lock_irq(&lruvec->lru_lock);
2483 			continue;
2484 		}
2485 
2486 		/*
2487 		 * The folio_set_lru needs to be kept here for list integrity.
2488 		 * Otherwise:
2489 		 *   #0 move_folios_to_lru             #1 release_pages
2490 		 *   if (!folio_put_testzero())
2491 		 *				      if (folio_put_testzero())
2492 		 *				        !lru //skip lru_lock
2493 		 *     folio_set_lru()
2494 		 *     list_add(&folio->lru,)
2495 		 *                                        list_add(&folio->lru,)
2496 		 */
2497 		folio_set_lru(folio);
2498 
2499 		if (unlikely(folio_put_testzero(folio))) {
2500 			__folio_clear_lru_flags(folio);
2501 
2502 			if (unlikely(folio_test_large(folio))) {
2503 				spin_unlock_irq(&lruvec->lru_lock);
2504 				destroy_large_folio(folio);
2505 				spin_lock_irq(&lruvec->lru_lock);
2506 			} else
2507 				list_add(&folio->lru, &folios_to_free);
2508 
2509 			continue;
2510 		}
2511 
2512 		/*
2513 		 * All pages were isolated from the same lruvec (and isolation
2514 		 * inhibits memcg migration).
2515 		 */
2516 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2517 		lruvec_add_folio(lruvec, folio);
2518 		nr_pages = folio_nr_pages(folio);
2519 		nr_moved += nr_pages;
2520 		if (folio_test_active(folio))
2521 			workingset_age_nonresident(lruvec, nr_pages);
2522 	}
2523 
2524 	/*
2525 	 * To save our caller's stack, now use input list for pages to free.
2526 	 */
2527 	list_splice(&folios_to_free, list);
2528 
2529 	return nr_moved;
2530 }
2531 
2532 /*
2533  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2534  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2535  * we should not throttle.  Otherwise it is safe to do so.
2536  */
2537 static int current_may_throttle(void)
2538 {
2539 	return !(current->flags & PF_LOCAL_THROTTLE);
2540 }
2541 
2542 /*
2543  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2544  * of reclaimed pages
2545  */
2546 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2547 		struct lruvec *lruvec, struct scan_control *sc,
2548 		enum lru_list lru)
2549 {
2550 	LIST_HEAD(folio_list);
2551 	unsigned long nr_scanned;
2552 	unsigned int nr_reclaimed = 0;
2553 	unsigned long nr_taken;
2554 	struct reclaim_stat stat;
2555 	bool file = is_file_lru(lru);
2556 	enum vm_event_item item;
2557 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2558 	bool stalled = false;
2559 
2560 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2561 		if (stalled)
2562 			return 0;
2563 
2564 		/* wait a bit for the reclaimer. */
2565 		stalled = true;
2566 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2567 
2568 		/* We are about to die and free our memory. Return now. */
2569 		if (fatal_signal_pending(current))
2570 			return SWAP_CLUSTER_MAX;
2571 	}
2572 
2573 	lru_add_drain();
2574 
2575 	spin_lock_irq(&lruvec->lru_lock);
2576 
2577 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2578 				     &nr_scanned, sc, lru);
2579 
2580 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2581 	item = PGSCAN_KSWAPD + reclaimer_offset();
2582 	if (!cgroup_reclaim(sc))
2583 		__count_vm_events(item, nr_scanned);
2584 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2585 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2586 
2587 	spin_unlock_irq(&lruvec->lru_lock);
2588 
2589 	if (nr_taken == 0)
2590 		return 0;
2591 
2592 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2593 
2594 	spin_lock_irq(&lruvec->lru_lock);
2595 	move_folios_to_lru(lruvec, &folio_list);
2596 
2597 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2598 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2599 	if (!cgroup_reclaim(sc))
2600 		__count_vm_events(item, nr_reclaimed);
2601 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2602 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2603 	spin_unlock_irq(&lruvec->lru_lock);
2604 
2605 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2606 	mem_cgroup_uncharge_list(&folio_list);
2607 	free_unref_page_list(&folio_list);
2608 
2609 	/*
2610 	 * If dirty folios are scanned that are not queued for IO, it
2611 	 * implies that flushers are not doing their job. This can
2612 	 * happen when memory pressure pushes dirty folios to the end of
2613 	 * the LRU before the dirty limits are breached and the dirty
2614 	 * data has expired. It can also happen when the proportion of
2615 	 * dirty folios grows not through writes but through memory
2616 	 * pressure reclaiming all the clean cache. And in some cases,
2617 	 * the flushers simply cannot keep up with the allocation
2618 	 * rate. Nudge the flusher threads in case they are asleep.
2619 	 */
2620 	if (stat.nr_unqueued_dirty == nr_taken) {
2621 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2622 		/*
2623 		 * For cgroupv1 dirty throttling is achieved by waking up
2624 		 * the kernel flusher here and later waiting on folios
2625 		 * which are in writeback to finish (see shrink_folio_list()).
2626 		 *
2627 		 * Flusher may not be able to issue writeback quickly
2628 		 * enough for cgroupv1 writeback throttling to work
2629 		 * on a large system.
2630 		 */
2631 		if (!writeback_throttling_sane(sc))
2632 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2633 	}
2634 
2635 	sc->nr.dirty += stat.nr_dirty;
2636 	sc->nr.congested += stat.nr_congested;
2637 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2638 	sc->nr.writeback += stat.nr_writeback;
2639 	sc->nr.immediate += stat.nr_immediate;
2640 	sc->nr.taken += nr_taken;
2641 	if (file)
2642 		sc->nr.file_taken += nr_taken;
2643 
2644 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2645 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2646 	return nr_reclaimed;
2647 }
2648 
2649 /*
2650  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2651  *
2652  * We move them the other way if the folio is referenced by one or more
2653  * processes.
2654  *
2655  * If the folios are mostly unmapped, the processing is fast and it is
2656  * appropriate to hold lru_lock across the whole operation.  But if
2657  * the folios are mapped, the processing is slow (folio_referenced()), so
2658  * we should drop lru_lock around each folio.  It's impossible to balance
2659  * this, so instead we remove the folios from the LRU while processing them.
2660  * It is safe to rely on the active flag against the non-LRU folios in here
2661  * because nobody will play with that bit on a non-LRU folio.
2662  *
2663  * The downside is that we have to touch folio->_refcount against each folio.
2664  * But we had to alter folio->flags anyway.
2665  */
2666 static void shrink_active_list(unsigned long nr_to_scan,
2667 			       struct lruvec *lruvec,
2668 			       struct scan_control *sc,
2669 			       enum lru_list lru)
2670 {
2671 	unsigned long nr_taken;
2672 	unsigned long nr_scanned;
2673 	unsigned long vm_flags;
2674 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2675 	LIST_HEAD(l_active);
2676 	LIST_HEAD(l_inactive);
2677 	unsigned nr_deactivate, nr_activate;
2678 	unsigned nr_rotated = 0;
2679 	int file = is_file_lru(lru);
2680 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2681 
2682 	lru_add_drain();
2683 
2684 	spin_lock_irq(&lruvec->lru_lock);
2685 
2686 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2687 				     &nr_scanned, sc, lru);
2688 
2689 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2690 
2691 	if (!cgroup_reclaim(sc))
2692 		__count_vm_events(PGREFILL, nr_scanned);
2693 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2694 
2695 	spin_unlock_irq(&lruvec->lru_lock);
2696 
2697 	while (!list_empty(&l_hold)) {
2698 		struct folio *folio;
2699 
2700 		cond_resched();
2701 		folio = lru_to_folio(&l_hold);
2702 		list_del(&folio->lru);
2703 
2704 		if (unlikely(!folio_evictable(folio))) {
2705 			folio_putback_lru(folio);
2706 			continue;
2707 		}
2708 
2709 		if (unlikely(buffer_heads_over_limit)) {
2710 			if (folio_test_private(folio) && folio_trylock(folio)) {
2711 				if (folio_test_private(folio))
2712 					filemap_release_folio(folio, 0);
2713 				folio_unlock(folio);
2714 			}
2715 		}
2716 
2717 		/* Referenced or rmap lock contention: rotate */
2718 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2719 				     &vm_flags) != 0) {
2720 			/*
2721 			 * Identify referenced, file-backed active folios and
2722 			 * give them one more trip around the active list. So
2723 			 * that executable code get better chances to stay in
2724 			 * memory under moderate memory pressure.  Anon folios
2725 			 * are not likely to be evicted by use-once streaming
2726 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2727 			 * so we ignore them here.
2728 			 */
2729 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2730 				nr_rotated += folio_nr_pages(folio);
2731 				list_add(&folio->lru, &l_active);
2732 				continue;
2733 			}
2734 		}
2735 
2736 		folio_clear_active(folio);	/* we are de-activating */
2737 		folio_set_workingset(folio);
2738 		list_add(&folio->lru, &l_inactive);
2739 	}
2740 
2741 	/*
2742 	 * Move folios back to the lru list.
2743 	 */
2744 	spin_lock_irq(&lruvec->lru_lock);
2745 
2746 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2747 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2748 	/* Keep all free folios in l_active list */
2749 	list_splice(&l_inactive, &l_active);
2750 
2751 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2752 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2753 
2754 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2755 	spin_unlock_irq(&lruvec->lru_lock);
2756 
2757 	if (nr_rotated)
2758 		lru_note_cost(lruvec, file, 0, nr_rotated);
2759 	mem_cgroup_uncharge_list(&l_active);
2760 	free_unref_page_list(&l_active);
2761 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2762 			nr_deactivate, nr_rotated, sc->priority, file);
2763 }
2764 
2765 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2766 				      struct pglist_data *pgdat)
2767 {
2768 	struct reclaim_stat dummy_stat;
2769 	unsigned int nr_reclaimed;
2770 	struct folio *folio;
2771 	struct scan_control sc = {
2772 		.gfp_mask = GFP_KERNEL,
2773 		.may_writepage = 1,
2774 		.may_unmap = 1,
2775 		.may_swap = 1,
2776 		.no_demotion = 1,
2777 	};
2778 
2779 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2780 	while (!list_empty(folio_list)) {
2781 		folio = lru_to_folio(folio_list);
2782 		list_del(&folio->lru);
2783 		folio_putback_lru(folio);
2784 	}
2785 
2786 	return nr_reclaimed;
2787 }
2788 
2789 unsigned long reclaim_pages(struct list_head *folio_list)
2790 {
2791 	int nid;
2792 	unsigned int nr_reclaimed = 0;
2793 	LIST_HEAD(node_folio_list);
2794 	unsigned int noreclaim_flag;
2795 
2796 	if (list_empty(folio_list))
2797 		return nr_reclaimed;
2798 
2799 	noreclaim_flag = memalloc_noreclaim_save();
2800 
2801 	nid = folio_nid(lru_to_folio(folio_list));
2802 	do {
2803 		struct folio *folio = lru_to_folio(folio_list);
2804 
2805 		if (nid == folio_nid(folio)) {
2806 			folio_clear_active(folio);
2807 			list_move(&folio->lru, &node_folio_list);
2808 			continue;
2809 		}
2810 
2811 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2812 		nid = folio_nid(lru_to_folio(folio_list));
2813 	} while (!list_empty(folio_list));
2814 
2815 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2816 
2817 	memalloc_noreclaim_restore(noreclaim_flag);
2818 
2819 	return nr_reclaimed;
2820 }
2821 
2822 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2823 				 struct lruvec *lruvec, struct scan_control *sc)
2824 {
2825 	if (is_active_lru(lru)) {
2826 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2827 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2828 		else
2829 			sc->skipped_deactivate = 1;
2830 		return 0;
2831 	}
2832 
2833 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2834 }
2835 
2836 /*
2837  * The inactive anon list should be small enough that the VM never has
2838  * to do too much work.
2839  *
2840  * The inactive file list should be small enough to leave most memory
2841  * to the established workingset on the scan-resistant active list,
2842  * but large enough to avoid thrashing the aggregate readahead window.
2843  *
2844  * Both inactive lists should also be large enough that each inactive
2845  * folio has a chance to be referenced again before it is reclaimed.
2846  *
2847  * If that fails and refaulting is observed, the inactive list grows.
2848  *
2849  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2850  * on this LRU, maintained by the pageout code. An inactive_ratio
2851  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2852  *
2853  * total     target    max
2854  * memory    ratio     inactive
2855  * -------------------------------------
2856  *   10MB       1         5MB
2857  *  100MB       1        50MB
2858  *    1GB       3       250MB
2859  *   10GB      10       0.9GB
2860  *  100GB      31         3GB
2861  *    1TB     101        10GB
2862  *   10TB     320        32GB
2863  */
2864 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2865 {
2866 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2867 	unsigned long inactive, active;
2868 	unsigned long inactive_ratio;
2869 	unsigned long gb;
2870 
2871 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2872 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2873 
2874 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2875 	if (gb)
2876 		inactive_ratio = int_sqrt(10 * gb);
2877 	else
2878 		inactive_ratio = 1;
2879 
2880 	return inactive * inactive_ratio < active;
2881 }
2882 
2883 enum scan_balance {
2884 	SCAN_EQUAL,
2885 	SCAN_FRACT,
2886 	SCAN_ANON,
2887 	SCAN_FILE,
2888 };
2889 
2890 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2891 {
2892 	unsigned long file;
2893 	struct lruvec *target_lruvec;
2894 
2895 	if (lru_gen_enabled())
2896 		return;
2897 
2898 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2899 
2900 	/*
2901 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2902 	 * lruvec stats for heuristics.
2903 	 */
2904 	mem_cgroup_flush_stats();
2905 
2906 	/*
2907 	 * Determine the scan balance between anon and file LRUs.
2908 	 */
2909 	spin_lock_irq(&target_lruvec->lru_lock);
2910 	sc->anon_cost = target_lruvec->anon_cost;
2911 	sc->file_cost = target_lruvec->file_cost;
2912 	spin_unlock_irq(&target_lruvec->lru_lock);
2913 
2914 	/*
2915 	 * Target desirable inactive:active list ratios for the anon
2916 	 * and file LRU lists.
2917 	 */
2918 	if (!sc->force_deactivate) {
2919 		unsigned long refaults;
2920 
2921 		/*
2922 		 * When refaults are being observed, it means a new
2923 		 * workingset is being established. Deactivate to get
2924 		 * rid of any stale active pages quickly.
2925 		 */
2926 		refaults = lruvec_page_state(target_lruvec,
2927 				WORKINGSET_ACTIVATE_ANON);
2928 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2929 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2930 			sc->may_deactivate |= DEACTIVATE_ANON;
2931 		else
2932 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2933 
2934 		refaults = lruvec_page_state(target_lruvec,
2935 				WORKINGSET_ACTIVATE_FILE);
2936 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2937 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2938 			sc->may_deactivate |= DEACTIVATE_FILE;
2939 		else
2940 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2941 	} else
2942 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2943 
2944 	/*
2945 	 * If we have plenty of inactive file pages that aren't
2946 	 * thrashing, try to reclaim those first before touching
2947 	 * anonymous pages.
2948 	 */
2949 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2950 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2951 		sc->cache_trim_mode = 1;
2952 	else
2953 		sc->cache_trim_mode = 0;
2954 
2955 	/*
2956 	 * Prevent the reclaimer from falling into the cache trap: as
2957 	 * cache pages start out inactive, every cache fault will tip
2958 	 * the scan balance towards the file LRU.  And as the file LRU
2959 	 * shrinks, so does the window for rotation from references.
2960 	 * This means we have a runaway feedback loop where a tiny
2961 	 * thrashing file LRU becomes infinitely more attractive than
2962 	 * anon pages.  Try to detect this based on file LRU size.
2963 	 */
2964 	if (!cgroup_reclaim(sc)) {
2965 		unsigned long total_high_wmark = 0;
2966 		unsigned long free, anon;
2967 		int z;
2968 
2969 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2970 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2971 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2972 
2973 		for (z = 0; z < MAX_NR_ZONES; z++) {
2974 			struct zone *zone = &pgdat->node_zones[z];
2975 
2976 			if (!managed_zone(zone))
2977 				continue;
2978 
2979 			total_high_wmark += high_wmark_pages(zone);
2980 		}
2981 
2982 		/*
2983 		 * Consider anon: if that's low too, this isn't a
2984 		 * runaway file reclaim problem, but rather just
2985 		 * extreme pressure. Reclaim as per usual then.
2986 		 */
2987 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2988 
2989 		sc->file_is_tiny =
2990 			file + free <= total_high_wmark &&
2991 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2992 			anon >> sc->priority;
2993 	}
2994 }
2995 
2996 /*
2997  * Determine how aggressively the anon and file LRU lists should be
2998  * scanned.
2999  *
3000  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3001  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3002  */
3003 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3004 			   unsigned long *nr)
3005 {
3006 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3007 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3008 	unsigned long anon_cost, file_cost, total_cost;
3009 	int swappiness = mem_cgroup_swappiness(memcg);
3010 	u64 fraction[ANON_AND_FILE];
3011 	u64 denominator = 0;	/* gcc */
3012 	enum scan_balance scan_balance;
3013 	unsigned long ap, fp;
3014 	enum lru_list lru;
3015 
3016 	/* If we have no swap space, do not bother scanning anon folios. */
3017 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3018 		scan_balance = SCAN_FILE;
3019 		goto out;
3020 	}
3021 
3022 	/*
3023 	 * Global reclaim will swap to prevent OOM even with no
3024 	 * swappiness, but memcg users want to use this knob to
3025 	 * disable swapping for individual groups completely when
3026 	 * using the memory controller's swap limit feature would be
3027 	 * too expensive.
3028 	 */
3029 	if (cgroup_reclaim(sc) && !swappiness) {
3030 		scan_balance = SCAN_FILE;
3031 		goto out;
3032 	}
3033 
3034 	/*
3035 	 * Do not apply any pressure balancing cleverness when the
3036 	 * system is close to OOM, scan both anon and file equally
3037 	 * (unless the swappiness setting disagrees with swapping).
3038 	 */
3039 	if (!sc->priority && swappiness) {
3040 		scan_balance = SCAN_EQUAL;
3041 		goto out;
3042 	}
3043 
3044 	/*
3045 	 * If the system is almost out of file pages, force-scan anon.
3046 	 */
3047 	if (sc->file_is_tiny) {
3048 		scan_balance = SCAN_ANON;
3049 		goto out;
3050 	}
3051 
3052 	/*
3053 	 * If there is enough inactive page cache, we do not reclaim
3054 	 * anything from the anonymous working right now.
3055 	 */
3056 	if (sc->cache_trim_mode) {
3057 		scan_balance = SCAN_FILE;
3058 		goto out;
3059 	}
3060 
3061 	scan_balance = SCAN_FRACT;
3062 	/*
3063 	 * Calculate the pressure balance between anon and file pages.
3064 	 *
3065 	 * The amount of pressure we put on each LRU is inversely
3066 	 * proportional to the cost of reclaiming each list, as
3067 	 * determined by the share of pages that are refaulting, times
3068 	 * the relative IO cost of bringing back a swapped out
3069 	 * anonymous page vs reloading a filesystem page (swappiness).
3070 	 *
3071 	 * Although we limit that influence to ensure no list gets
3072 	 * left behind completely: at least a third of the pressure is
3073 	 * applied, before swappiness.
3074 	 *
3075 	 * With swappiness at 100, anon and file have equal IO cost.
3076 	 */
3077 	total_cost = sc->anon_cost + sc->file_cost;
3078 	anon_cost = total_cost + sc->anon_cost;
3079 	file_cost = total_cost + sc->file_cost;
3080 	total_cost = anon_cost + file_cost;
3081 
3082 	ap = swappiness * (total_cost + 1);
3083 	ap /= anon_cost + 1;
3084 
3085 	fp = (200 - swappiness) * (total_cost + 1);
3086 	fp /= file_cost + 1;
3087 
3088 	fraction[0] = ap;
3089 	fraction[1] = fp;
3090 	denominator = ap + fp;
3091 out:
3092 	for_each_evictable_lru(lru) {
3093 		int file = is_file_lru(lru);
3094 		unsigned long lruvec_size;
3095 		unsigned long low, min;
3096 		unsigned long scan;
3097 
3098 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3099 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3100 				      &min, &low);
3101 
3102 		if (min || low) {
3103 			/*
3104 			 * Scale a cgroup's reclaim pressure by proportioning
3105 			 * its current usage to its memory.low or memory.min
3106 			 * setting.
3107 			 *
3108 			 * This is important, as otherwise scanning aggression
3109 			 * becomes extremely binary -- from nothing as we
3110 			 * approach the memory protection threshold, to totally
3111 			 * nominal as we exceed it.  This results in requiring
3112 			 * setting extremely liberal protection thresholds. It
3113 			 * also means we simply get no protection at all if we
3114 			 * set it too low, which is not ideal.
3115 			 *
3116 			 * If there is any protection in place, we reduce scan
3117 			 * pressure by how much of the total memory used is
3118 			 * within protection thresholds.
3119 			 *
3120 			 * There is one special case: in the first reclaim pass,
3121 			 * we skip over all groups that are within their low
3122 			 * protection. If that fails to reclaim enough pages to
3123 			 * satisfy the reclaim goal, we come back and override
3124 			 * the best-effort low protection. However, we still
3125 			 * ideally want to honor how well-behaved groups are in
3126 			 * that case instead of simply punishing them all
3127 			 * equally. As such, we reclaim them based on how much
3128 			 * memory they are using, reducing the scan pressure
3129 			 * again by how much of the total memory used is under
3130 			 * hard protection.
3131 			 */
3132 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3133 			unsigned long protection;
3134 
3135 			/* memory.low scaling, make sure we retry before OOM */
3136 			if (!sc->memcg_low_reclaim && low > min) {
3137 				protection = low;
3138 				sc->memcg_low_skipped = 1;
3139 			} else {
3140 				protection = min;
3141 			}
3142 
3143 			/* Avoid TOCTOU with earlier protection check */
3144 			cgroup_size = max(cgroup_size, protection);
3145 
3146 			scan = lruvec_size - lruvec_size * protection /
3147 				(cgroup_size + 1);
3148 
3149 			/*
3150 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3151 			 * reclaim moving forwards, avoiding decrementing
3152 			 * sc->priority further than desirable.
3153 			 */
3154 			scan = max(scan, SWAP_CLUSTER_MAX);
3155 		} else {
3156 			scan = lruvec_size;
3157 		}
3158 
3159 		scan >>= sc->priority;
3160 
3161 		/*
3162 		 * If the cgroup's already been deleted, make sure to
3163 		 * scrape out the remaining cache.
3164 		 */
3165 		if (!scan && !mem_cgroup_online(memcg))
3166 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3167 
3168 		switch (scan_balance) {
3169 		case SCAN_EQUAL:
3170 			/* Scan lists relative to size */
3171 			break;
3172 		case SCAN_FRACT:
3173 			/*
3174 			 * Scan types proportional to swappiness and
3175 			 * their relative recent reclaim efficiency.
3176 			 * Make sure we don't miss the last page on
3177 			 * the offlined memory cgroups because of a
3178 			 * round-off error.
3179 			 */
3180 			scan = mem_cgroup_online(memcg) ?
3181 			       div64_u64(scan * fraction[file], denominator) :
3182 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3183 						  denominator);
3184 			break;
3185 		case SCAN_FILE:
3186 		case SCAN_ANON:
3187 			/* Scan one type exclusively */
3188 			if ((scan_balance == SCAN_FILE) != file)
3189 				scan = 0;
3190 			break;
3191 		default:
3192 			/* Look ma, no brain */
3193 			BUG();
3194 		}
3195 
3196 		nr[lru] = scan;
3197 	}
3198 }
3199 
3200 /*
3201  * Anonymous LRU management is a waste if there is
3202  * ultimately no way to reclaim the memory.
3203  */
3204 static bool can_age_anon_pages(struct pglist_data *pgdat,
3205 			       struct scan_control *sc)
3206 {
3207 	/* Aging the anon LRU is valuable if swap is present: */
3208 	if (total_swap_pages > 0)
3209 		return true;
3210 
3211 	/* Also valuable if anon pages can be demoted: */
3212 	return can_demote(pgdat->node_id, sc);
3213 }
3214 
3215 #ifdef CONFIG_LRU_GEN
3216 
3217 #ifdef CONFIG_LRU_GEN_ENABLED
3218 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3219 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3220 #else
3221 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3222 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3223 #endif
3224 
3225 /******************************************************************************
3226  *                          shorthand helpers
3227  ******************************************************************************/
3228 
3229 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3230 
3231 #define DEFINE_MAX_SEQ(lruvec)						\
3232 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3233 
3234 #define DEFINE_MIN_SEQ(lruvec)						\
3235 	unsigned long min_seq[ANON_AND_FILE] = {			\
3236 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3237 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3238 	}
3239 
3240 #define for_each_gen_type_zone(gen, type, zone)				\
3241 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3242 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3243 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3244 
3245 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3246 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3247 
3248 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3249 {
3250 	struct pglist_data *pgdat = NODE_DATA(nid);
3251 
3252 #ifdef CONFIG_MEMCG
3253 	if (memcg) {
3254 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3255 
3256 		/* see the comment in mem_cgroup_lruvec() */
3257 		if (!lruvec->pgdat)
3258 			lruvec->pgdat = pgdat;
3259 
3260 		return lruvec;
3261 	}
3262 #endif
3263 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3264 
3265 	return &pgdat->__lruvec;
3266 }
3267 
3268 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3269 {
3270 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3271 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3272 
3273 	if (!sc->may_swap)
3274 		return 0;
3275 
3276 	if (!can_demote(pgdat->node_id, sc) &&
3277 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3278 		return 0;
3279 
3280 	return mem_cgroup_swappiness(memcg);
3281 }
3282 
3283 static int get_nr_gens(struct lruvec *lruvec, int type)
3284 {
3285 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3286 }
3287 
3288 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3289 {
3290 	/* see the comment on lru_gen_folio */
3291 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3292 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3293 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3294 }
3295 
3296 /******************************************************************************
3297  *                          Bloom filters
3298  ******************************************************************************/
3299 
3300 /*
3301  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3302  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3303  * bits in a bitmap, k is the number of hash functions and n is the number of
3304  * inserted items.
3305  *
3306  * Page table walkers use one of the two filters to reduce their search space.
3307  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3308  * aging uses the double-buffering technique to flip to the other filter each
3309  * time it produces a new generation. For non-leaf entries that have enough
3310  * leaf entries, the aging carries them over to the next generation in
3311  * walk_pmd_range(); the eviction also report them when walking the rmap
3312  * in lru_gen_look_around().
3313  *
3314  * For future optimizations:
3315  * 1. It's not necessary to keep both filters all the time. The spare one can be
3316  *    freed after the RCU grace period and reallocated if needed again.
3317  * 2. And when reallocating, it's worth scaling its size according to the number
3318  *    of inserted entries in the other filter, to reduce the memory overhead on
3319  *    small systems and false positives on large systems.
3320  * 3. Jenkins' hash function is an alternative to Knuth's.
3321  */
3322 #define BLOOM_FILTER_SHIFT	15
3323 
3324 static inline int filter_gen_from_seq(unsigned long seq)
3325 {
3326 	return seq % NR_BLOOM_FILTERS;
3327 }
3328 
3329 static void get_item_key(void *item, int *key)
3330 {
3331 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3332 
3333 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3334 
3335 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3336 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3337 }
3338 
3339 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3340 {
3341 	int key[2];
3342 	unsigned long *filter;
3343 	int gen = filter_gen_from_seq(seq);
3344 
3345 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3346 	if (!filter)
3347 		return true;
3348 
3349 	get_item_key(item, key);
3350 
3351 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3352 }
3353 
3354 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3355 {
3356 	int key[2];
3357 	unsigned long *filter;
3358 	int gen = filter_gen_from_seq(seq);
3359 
3360 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3361 	if (!filter)
3362 		return;
3363 
3364 	get_item_key(item, key);
3365 
3366 	if (!test_bit(key[0], filter))
3367 		set_bit(key[0], filter);
3368 	if (!test_bit(key[1], filter))
3369 		set_bit(key[1], filter);
3370 }
3371 
3372 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3373 {
3374 	unsigned long *filter;
3375 	int gen = filter_gen_from_seq(seq);
3376 
3377 	filter = lruvec->mm_state.filters[gen];
3378 	if (filter) {
3379 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3380 		return;
3381 	}
3382 
3383 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3384 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3385 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3386 }
3387 
3388 /******************************************************************************
3389  *                          mm_struct list
3390  ******************************************************************************/
3391 
3392 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3393 {
3394 	static struct lru_gen_mm_list mm_list = {
3395 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3396 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3397 	};
3398 
3399 #ifdef CONFIG_MEMCG
3400 	if (memcg)
3401 		return &memcg->mm_list;
3402 #endif
3403 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3404 
3405 	return &mm_list;
3406 }
3407 
3408 void lru_gen_add_mm(struct mm_struct *mm)
3409 {
3410 	int nid;
3411 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3412 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3413 
3414 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3415 #ifdef CONFIG_MEMCG
3416 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3417 	mm->lru_gen.memcg = memcg;
3418 #endif
3419 	spin_lock(&mm_list->lock);
3420 
3421 	for_each_node_state(nid, N_MEMORY) {
3422 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3423 
3424 		/* the first addition since the last iteration */
3425 		if (lruvec->mm_state.tail == &mm_list->fifo)
3426 			lruvec->mm_state.tail = &mm->lru_gen.list;
3427 	}
3428 
3429 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3430 
3431 	spin_unlock(&mm_list->lock);
3432 }
3433 
3434 void lru_gen_del_mm(struct mm_struct *mm)
3435 {
3436 	int nid;
3437 	struct lru_gen_mm_list *mm_list;
3438 	struct mem_cgroup *memcg = NULL;
3439 
3440 	if (list_empty(&mm->lru_gen.list))
3441 		return;
3442 
3443 #ifdef CONFIG_MEMCG
3444 	memcg = mm->lru_gen.memcg;
3445 #endif
3446 	mm_list = get_mm_list(memcg);
3447 
3448 	spin_lock(&mm_list->lock);
3449 
3450 	for_each_node(nid) {
3451 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3452 
3453 		/* where the current iteration continues after */
3454 		if (lruvec->mm_state.head == &mm->lru_gen.list)
3455 			lruvec->mm_state.head = lruvec->mm_state.head->prev;
3456 
3457 		/* where the last iteration ended before */
3458 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3459 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3460 	}
3461 
3462 	list_del_init(&mm->lru_gen.list);
3463 
3464 	spin_unlock(&mm_list->lock);
3465 
3466 #ifdef CONFIG_MEMCG
3467 	mem_cgroup_put(mm->lru_gen.memcg);
3468 	mm->lru_gen.memcg = NULL;
3469 #endif
3470 }
3471 
3472 #ifdef CONFIG_MEMCG
3473 void lru_gen_migrate_mm(struct mm_struct *mm)
3474 {
3475 	struct mem_cgroup *memcg;
3476 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3477 
3478 	VM_WARN_ON_ONCE(task->mm != mm);
3479 	lockdep_assert_held(&task->alloc_lock);
3480 
3481 	/* for mm_update_next_owner() */
3482 	if (mem_cgroup_disabled())
3483 		return;
3484 
3485 	/* migration can happen before addition */
3486 	if (!mm->lru_gen.memcg)
3487 		return;
3488 
3489 	rcu_read_lock();
3490 	memcg = mem_cgroup_from_task(task);
3491 	rcu_read_unlock();
3492 	if (memcg == mm->lru_gen.memcg)
3493 		return;
3494 
3495 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3496 
3497 	lru_gen_del_mm(mm);
3498 	lru_gen_add_mm(mm);
3499 }
3500 #endif
3501 
3502 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3503 {
3504 	int i;
3505 	int hist;
3506 
3507 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3508 
3509 	if (walk) {
3510 		hist = lru_hist_from_seq(walk->max_seq);
3511 
3512 		for (i = 0; i < NR_MM_STATS; i++) {
3513 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3514 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3515 			walk->mm_stats[i] = 0;
3516 		}
3517 	}
3518 
3519 	if (NR_HIST_GENS > 1 && last) {
3520 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3521 
3522 		for (i = 0; i < NR_MM_STATS; i++)
3523 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3524 	}
3525 }
3526 
3527 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3528 {
3529 	int type;
3530 	unsigned long size = 0;
3531 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3532 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3533 
3534 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3535 		return true;
3536 
3537 	clear_bit(key, &mm->lru_gen.bitmap);
3538 
3539 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3540 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3541 			       get_mm_counter(mm, MM_ANONPAGES) +
3542 			       get_mm_counter(mm, MM_SHMEMPAGES);
3543 	}
3544 
3545 	if (size < MIN_LRU_BATCH)
3546 		return true;
3547 
3548 	return !mmget_not_zero(mm);
3549 }
3550 
3551 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3552 			    struct mm_struct **iter)
3553 {
3554 	bool first = false;
3555 	bool last = false;
3556 	struct mm_struct *mm = NULL;
3557 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3558 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3559 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3560 
3561 	/*
3562 	 * mm_state->seq is incremented after each iteration of mm_list. There
3563 	 * are three interesting cases for this page table walker:
3564 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3565 	 *    nothing left to do.
3566 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3567 	 *    so that a fresh set of PTE tables can be recorded.
3568 	 * 3. It ended the current iteration: it needs to reset the mm stats
3569 	 *    counters and tell its caller to increment max_seq.
3570 	 */
3571 	spin_lock(&mm_list->lock);
3572 
3573 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3574 
3575 	if (walk->max_seq <= mm_state->seq)
3576 		goto done;
3577 
3578 	if (!mm_state->head)
3579 		mm_state->head = &mm_list->fifo;
3580 
3581 	if (mm_state->head == &mm_list->fifo)
3582 		first = true;
3583 
3584 	do {
3585 		mm_state->head = mm_state->head->next;
3586 		if (mm_state->head == &mm_list->fifo) {
3587 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3588 			last = true;
3589 			break;
3590 		}
3591 
3592 		/* force scan for those added after the last iteration */
3593 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3594 			mm_state->tail = mm_state->head->next;
3595 			walk->force_scan = true;
3596 		}
3597 
3598 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3599 		if (should_skip_mm(mm, walk))
3600 			mm = NULL;
3601 	} while (!mm);
3602 done:
3603 	if (*iter || last)
3604 		reset_mm_stats(lruvec, walk, last);
3605 
3606 	spin_unlock(&mm_list->lock);
3607 
3608 	if (mm && first)
3609 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3610 
3611 	if (*iter)
3612 		mmput_async(*iter);
3613 
3614 	*iter = mm;
3615 
3616 	return last;
3617 }
3618 
3619 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3620 {
3621 	bool success = false;
3622 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3623 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3624 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3625 
3626 	spin_lock(&mm_list->lock);
3627 
3628 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3629 
3630 	if (max_seq > mm_state->seq) {
3631 		mm_state->head = NULL;
3632 		mm_state->tail = NULL;
3633 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3634 		reset_mm_stats(lruvec, NULL, true);
3635 		success = true;
3636 	}
3637 
3638 	spin_unlock(&mm_list->lock);
3639 
3640 	return success;
3641 }
3642 
3643 /******************************************************************************
3644  *                          PID controller
3645  ******************************************************************************/
3646 
3647 /*
3648  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3649  *
3650  * The P term is refaulted/(evicted+protected) from a tier in the generation
3651  * currently being evicted; the I term is the exponential moving average of the
3652  * P term over the generations previously evicted, using the smoothing factor
3653  * 1/2; the D term isn't supported.
3654  *
3655  * The setpoint (SP) is always the first tier of one type; the process variable
3656  * (PV) is either any tier of the other type or any other tier of the same
3657  * type.
3658  *
3659  * The error is the difference between the SP and the PV; the correction is to
3660  * turn off protection when SP>PV or turn on protection when SP<PV.
3661  *
3662  * For future optimizations:
3663  * 1. The D term may discount the other two terms over time so that long-lived
3664  *    generations can resist stale information.
3665  */
3666 struct ctrl_pos {
3667 	unsigned long refaulted;
3668 	unsigned long total;
3669 	int gain;
3670 };
3671 
3672 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3673 			  struct ctrl_pos *pos)
3674 {
3675 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3676 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3677 
3678 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3679 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3680 	pos->total = lrugen->avg_total[type][tier] +
3681 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3682 	if (tier)
3683 		pos->total += lrugen->protected[hist][type][tier - 1];
3684 	pos->gain = gain;
3685 }
3686 
3687 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3688 {
3689 	int hist, tier;
3690 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3691 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3692 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3693 
3694 	lockdep_assert_held(&lruvec->lru_lock);
3695 
3696 	if (!carryover && !clear)
3697 		return;
3698 
3699 	hist = lru_hist_from_seq(seq);
3700 
3701 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3702 		if (carryover) {
3703 			unsigned long sum;
3704 
3705 			sum = lrugen->avg_refaulted[type][tier] +
3706 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3707 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3708 
3709 			sum = lrugen->avg_total[type][tier] +
3710 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3711 			if (tier)
3712 				sum += lrugen->protected[hist][type][tier - 1];
3713 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3714 		}
3715 
3716 		if (clear) {
3717 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3718 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3719 			if (tier)
3720 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3721 		}
3722 	}
3723 }
3724 
3725 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3726 {
3727 	/*
3728 	 * Return true if the PV has a limited number of refaults or a lower
3729 	 * refaulted/total than the SP.
3730 	 */
3731 	return pv->refaulted < MIN_LRU_BATCH ||
3732 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3733 	       (sp->refaulted + 1) * pv->total * pv->gain;
3734 }
3735 
3736 /******************************************************************************
3737  *                          the aging
3738  ******************************************************************************/
3739 
3740 /* promote pages accessed through page tables */
3741 static int folio_update_gen(struct folio *folio, int gen)
3742 {
3743 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3744 
3745 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3746 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3747 
3748 	do {
3749 		/* lru_gen_del_folio() has isolated this page? */
3750 		if (!(old_flags & LRU_GEN_MASK)) {
3751 			/* for shrink_folio_list() */
3752 			new_flags = old_flags | BIT(PG_referenced);
3753 			continue;
3754 		}
3755 
3756 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3757 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3758 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3759 
3760 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3761 }
3762 
3763 /* protect pages accessed multiple times through file descriptors */
3764 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3765 {
3766 	int type = folio_is_file_lru(folio);
3767 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3768 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3769 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3770 
3771 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3772 
3773 	do {
3774 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3775 		/* folio_update_gen() has promoted this page? */
3776 		if (new_gen >= 0 && new_gen != old_gen)
3777 			return new_gen;
3778 
3779 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3780 
3781 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3782 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3783 		/* for folio_end_writeback() */
3784 		if (reclaiming)
3785 			new_flags |= BIT(PG_reclaim);
3786 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3787 
3788 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3789 
3790 	return new_gen;
3791 }
3792 
3793 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3794 			      int old_gen, int new_gen)
3795 {
3796 	int type = folio_is_file_lru(folio);
3797 	int zone = folio_zonenum(folio);
3798 	int delta = folio_nr_pages(folio);
3799 
3800 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3801 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3802 
3803 	walk->batched++;
3804 
3805 	walk->nr_pages[old_gen][type][zone] -= delta;
3806 	walk->nr_pages[new_gen][type][zone] += delta;
3807 }
3808 
3809 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3810 {
3811 	int gen, type, zone;
3812 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3813 
3814 	walk->batched = 0;
3815 
3816 	for_each_gen_type_zone(gen, type, zone) {
3817 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3818 		int delta = walk->nr_pages[gen][type][zone];
3819 
3820 		if (!delta)
3821 			continue;
3822 
3823 		walk->nr_pages[gen][type][zone] = 0;
3824 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3825 			   lrugen->nr_pages[gen][type][zone] + delta);
3826 
3827 		if (lru_gen_is_active(lruvec, gen))
3828 			lru += LRU_ACTIVE;
3829 		__update_lru_size(lruvec, lru, zone, delta);
3830 	}
3831 }
3832 
3833 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3834 {
3835 	struct address_space *mapping;
3836 	struct vm_area_struct *vma = args->vma;
3837 	struct lru_gen_mm_walk *walk = args->private;
3838 
3839 	if (!vma_is_accessible(vma))
3840 		return true;
3841 
3842 	if (is_vm_hugetlb_page(vma))
3843 		return true;
3844 
3845 	if (!vma_has_recency(vma))
3846 		return true;
3847 
3848 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3849 		return true;
3850 
3851 	if (vma == get_gate_vma(vma->vm_mm))
3852 		return true;
3853 
3854 	if (vma_is_anonymous(vma))
3855 		return !walk->can_swap;
3856 
3857 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3858 		return true;
3859 
3860 	mapping = vma->vm_file->f_mapping;
3861 	if (mapping_unevictable(mapping))
3862 		return true;
3863 
3864 	if (shmem_mapping(mapping))
3865 		return !walk->can_swap;
3866 
3867 	/* to exclude special mappings like dax, etc. */
3868 	return !mapping->a_ops->read_folio;
3869 }
3870 
3871 /*
3872  * Some userspace memory allocators map many single-page VMAs. Instead of
3873  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3874  * table to reduce zigzags and improve cache performance.
3875  */
3876 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3877 			 unsigned long *vm_start, unsigned long *vm_end)
3878 {
3879 	unsigned long start = round_up(*vm_end, size);
3880 	unsigned long end = (start | ~mask) + 1;
3881 	VMA_ITERATOR(vmi, args->mm, start);
3882 
3883 	VM_WARN_ON_ONCE(mask & size);
3884 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3885 
3886 	for_each_vma(vmi, args->vma) {
3887 		if (end && end <= args->vma->vm_start)
3888 			return false;
3889 
3890 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3891 			continue;
3892 
3893 		*vm_start = max(start, args->vma->vm_start);
3894 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3895 
3896 		return true;
3897 	}
3898 
3899 	return false;
3900 }
3901 
3902 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3903 {
3904 	unsigned long pfn = pte_pfn(pte);
3905 
3906 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3907 
3908 	if (!pte_present(pte) || is_zero_pfn(pfn))
3909 		return -1;
3910 
3911 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3912 		return -1;
3913 
3914 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3915 		return -1;
3916 
3917 	return pfn;
3918 }
3919 
3920 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3921 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3922 {
3923 	unsigned long pfn = pmd_pfn(pmd);
3924 
3925 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3926 
3927 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3928 		return -1;
3929 
3930 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3931 		return -1;
3932 
3933 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3934 		return -1;
3935 
3936 	return pfn;
3937 }
3938 #endif
3939 
3940 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3941 				   struct pglist_data *pgdat, bool can_swap)
3942 {
3943 	struct folio *folio;
3944 
3945 	/* try to avoid unnecessary memory loads */
3946 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3947 		return NULL;
3948 
3949 	folio = pfn_folio(pfn);
3950 	if (folio_nid(folio) != pgdat->node_id)
3951 		return NULL;
3952 
3953 	if (folio_memcg_rcu(folio) != memcg)
3954 		return NULL;
3955 
3956 	/* file VMAs can contain anon pages from COW */
3957 	if (!folio_is_file_lru(folio) && !can_swap)
3958 		return NULL;
3959 
3960 	return folio;
3961 }
3962 
3963 static bool suitable_to_scan(int total, int young)
3964 {
3965 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3966 
3967 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3968 	return young * n >= total;
3969 }
3970 
3971 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3972 			   struct mm_walk *args)
3973 {
3974 	int i;
3975 	pte_t *pte;
3976 	spinlock_t *ptl;
3977 	unsigned long addr;
3978 	int total = 0;
3979 	int young = 0;
3980 	struct lru_gen_mm_walk *walk = args->private;
3981 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3982 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3983 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3984 
3985 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3986 
3987 	ptl = pte_lockptr(args->mm, pmd);
3988 	if (!spin_trylock(ptl))
3989 		return false;
3990 
3991 	arch_enter_lazy_mmu_mode();
3992 
3993 	pte = pte_offset_map(pmd, start & PMD_MASK);
3994 restart:
3995 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3996 		unsigned long pfn;
3997 		struct folio *folio;
3998 
3999 		total++;
4000 		walk->mm_stats[MM_LEAF_TOTAL]++;
4001 
4002 		pfn = get_pte_pfn(pte[i], args->vma, addr);
4003 		if (pfn == -1)
4004 			continue;
4005 
4006 		if (!pte_young(pte[i])) {
4007 			walk->mm_stats[MM_LEAF_OLD]++;
4008 			continue;
4009 		}
4010 
4011 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4012 		if (!folio)
4013 			continue;
4014 
4015 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4016 			VM_WARN_ON_ONCE(true);
4017 
4018 		young++;
4019 		walk->mm_stats[MM_LEAF_YOUNG]++;
4020 
4021 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4022 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4023 		      !folio_test_swapcache(folio)))
4024 			folio_mark_dirty(folio);
4025 
4026 		old_gen = folio_update_gen(folio, new_gen);
4027 		if (old_gen >= 0 && old_gen != new_gen)
4028 			update_batch_size(walk, folio, old_gen, new_gen);
4029 	}
4030 
4031 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4032 		goto restart;
4033 
4034 	pte_unmap(pte);
4035 
4036 	arch_leave_lazy_mmu_mode();
4037 	spin_unlock(ptl);
4038 
4039 	return suitable_to_scan(total, young);
4040 }
4041 
4042 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4043 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4044 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4045 {
4046 	int i;
4047 	pmd_t *pmd;
4048 	spinlock_t *ptl;
4049 	struct lru_gen_mm_walk *walk = args->private;
4050 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4051 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4052 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4053 
4054 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4055 
4056 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4057 	if (*first == -1) {
4058 		*first = addr;
4059 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4060 		return;
4061 	}
4062 
4063 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4064 	if (i && i <= MIN_LRU_BATCH) {
4065 		__set_bit(i - 1, bitmap);
4066 		return;
4067 	}
4068 
4069 	pmd = pmd_offset(pud, *first);
4070 
4071 	ptl = pmd_lockptr(args->mm, pmd);
4072 	if (!spin_trylock(ptl))
4073 		goto done;
4074 
4075 	arch_enter_lazy_mmu_mode();
4076 
4077 	do {
4078 		unsigned long pfn;
4079 		struct folio *folio;
4080 
4081 		/* don't round down the first address */
4082 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4083 
4084 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4085 		if (pfn == -1)
4086 			goto next;
4087 
4088 		if (!pmd_trans_huge(pmd[i])) {
4089 			if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4090 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4091 			goto next;
4092 		}
4093 
4094 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4095 		if (!folio)
4096 			goto next;
4097 
4098 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4099 			goto next;
4100 
4101 		walk->mm_stats[MM_LEAF_YOUNG]++;
4102 
4103 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4104 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4105 		      !folio_test_swapcache(folio)))
4106 			folio_mark_dirty(folio);
4107 
4108 		old_gen = folio_update_gen(folio, new_gen);
4109 		if (old_gen >= 0 && old_gen != new_gen)
4110 			update_batch_size(walk, folio, old_gen, new_gen);
4111 next:
4112 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4113 	} while (i <= MIN_LRU_BATCH);
4114 
4115 	arch_leave_lazy_mmu_mode();
4116 	spin_unlock(ptl);
4117 done:
4118 	*first = -1;
4119 }
4120 #else
4121 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4122 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4123 {
4124 }
4125 #endif
4126 
4127 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4128 			   struct mm_walk *args)
4129 {
4130 	int i;
4131 	pmd_t *pmd;
4132 	unsigned long next;
4133 	unsigned long addr;
4134 	struct vm_area_struct *vma;
4135 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4136 	unsigned long first = -1;
4137 	struct lru_gen_mm_walk *walk = args->private;
4138 
4139 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4140 
4141 	/*
4142 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4143 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4144 	 * the PMD lock to clear the accessed bit in PMD entries.
4145 	 */
4146 	pmd = pmd_offset(pud, start & PUD_MASK);
4147 restart:
4148 	/* walk_pte_range() may call get_next_vma() */
4149 	vma = args->vma;
4150 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4151 		pmd_t val = pmdp_get_lockless(pmd + i);
4152 
4153 		next = pmd_addr_end(addr, end);
4154 
4155 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4156 			walk->mm_stats[MM_LEAF_TOTAL]++;
4157 			continue;
4158 		}
4159 
4160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4161 		if (pmd_trans_huge(val)) {
4162 			unsigned long pfn = pmd_pfn(val);
4163 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4164 
4165 			walk->mm_stats[MM_LEAF_TOTAL]++;
4166 
4167 			if (!pmd_young(val)) {
4168 				walk->mm_stats[MM_LEAF_OLD]++;
4169 				continue;
4170 			}
4171 
4172 			/* try to avoid unnecessary memory loads */
4173 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4174 				continue;
4175 
4176 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4177 			continue;
4178 		}
4179 #endif
4180 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4181 
4182 		if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4183 			if (!pmd_young(val))
4184 				continue;
4185 
4186 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4187 		}
4188 
4189 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4190 			continue;
4191 
4192 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4193 
4194 		if (!walk_pte_range(&val, addr, next, args))
4195 			continue;
4196 
4197 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4198 
4199 		/* carry over to the next generation */
4200 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4201 	}
4202 
4203 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4204 
4205 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4206 		goto restart;
4207 }
4208 
4209 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4210 			  struct mm_walk *args)
4211 {
4212 	int i;
4213 	pud_t *pud;
4214 	unsigned long addr;
4215 	unsigned long next;
4216 	struct lru_gen_mm_walk *walk = args->private;
4217 
4218 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4219 
4220 	pud = pud_offset(p4d, start & P4D_MASK);
4221 restart:
4222 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4223 		pud_t val = READ_ONCE(pud[i]);
4224 
4225 		next = pud_addr_end(addr, end);
4226 
4227 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4228 			continue;
4229 
4230 		walk_pmd_range(&val, addr, next, args);
4231 
4232 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4233 			end = (addr | ~PUD_MASK) + 1;
4234 			goto done;
4235 		}
4236 	}
4237 
4238 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4239 		goto restart;
4240 
4241 	end = round_up(end, P4D_SIZE);
4242 done:
4243 	if (!end || !args->vma)
4244 		return 1;
4245 
4246 	walk->next_addr = max(end, args->vma->vm_start);
4247 
4248 	return -EAGAIN;
4249 }
4250 
4251 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4252 {
4253 	static const struct mm_walk_ops mm_walk_ops = {
4254 		.test_walk = should_skip_vma,
4255 		.p4d_entry = walk_pud_range,
4256 	};
4257 
4258 	int err;
4259 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4260 
4261 	walk->next_addr = FIRST_USER_ADDRESS;
4262 
4263 	do {
4264 		DEFINE_MAX_SEQ(lruvec);
4265 
4266 		err = -EBUSY;
4267 
4268 		/* another thread might have called inc_max_seq() */
4269 		if (walk->max_seq != max_seq)
4270 			break;
4271 
4272 		/* folio_update_gen() requires stable folio_memcg() */
4273 		if (!mem_cgroup_trylock_pages(memcg))
4274 			break;
4275 
4276 		/* the caller might be holding the lock for write */
4277 		if (mmap_read_trylock(mm)) {
4278 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4279 
4280 			mmap_read_unlock(mm);
4281 		}
4282 
4283 		mem_cgroup_unlock_pages();
4284 
4285 		if (walk->batched) {
4286 			spin_lock_irq(&lruvec->lru_lock);
4287 			reset_batch_size(lruvec, walk);
4288 			spin_unlock_irq(&lruvec->lru_lock);
4289 		}
4290 
4291 		cond_resched();
4292 	} while (err == -EAGAIN);
4293 }
4294 
4295 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4296 {
4297 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4298 
4299 	if (pgdat && current_is_kswapd()) {
4300 		VM_WARN_ON_ONCE(walk);
4301 
4302 		walk = &pgdat->mm_walk;
4303 	} else if (!walk && force_alloc) {
4304 		VM_WARN_ON_ONCE(current_is_kswapd());
4305 
4306 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4307 	}
4308 
4309 	current->reclaim_state->mm_walk = walk;
4310 
4311 	return walk;
4312 }
4313 
4314 static void clear_mm_walk(void)
4315 {
4316 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4317 
4318 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4319 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4320 
4321 	current->reclaim_state->mm_walk = NULL;
4322 
4323 	if (!current_is_kswapd())
4324 		kfree(walk);
4325 }
4326 
4327 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4328 {
4329 	int zone;
4330 	int remaining = MAX_LRU_BATCH;
4331 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4332 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4333 
4334 	if (type == LRU_GEN_ANON && !can_swap)
4335 		goto done;
4336 
4337 	/* prevent cold/hot inversion if force_scan is true */
4338 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4339 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4340 
4341 		while (!list_empty(head)) {
4342 			struct folio *folio = lru_to_folio(head);
4343 
4344 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4345 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4346 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4347 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4348 
4349 			new_gen = folio_inc_gen(lruvec, folio, false);
4350 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4351 
4352 			if (!--remaining)
4353 				return false;
4354 		}
4355 	}
4356 done:
4357 	reset_ctrl_pos(lruvec, type, true);
4358 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4359 
4360 	return true;
4361 }
4362 
4363 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4364 {
4365 	int gen, type, zone;
4366 	bool success = false;
4367 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4368 	DEFINE_MIN_SEQ(lruvec);
4369 
4370 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4371 
4372 	/* find the oldest populated generation */
4373 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4374 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4375 			gen = lru_gen_from_seq(min_seq[type]);
4376 
4377 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4378 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4379 					goto next;
4380 			}
4381 
4382 			min_seq[type]++;
4383 		}
4384 next:
4385 		;
4386 	}
4387 
4388 	/* see the comment on lru_gen_folio */
4389 	if (can_swap) {
4390 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4391 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4392 	}
4393 
4394 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4395 		if (min_seq[type] == lrugen->min_seq[type])
4396 			continue;
4397 
4398 		reset_ctrl_pos(lruvec, type, true);
4399 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4400 		success = true;
4401 	}
4402 
4403 	return success;
4404 }
4405 
4406 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4407 {
4408 	int prev, next;
4409 	int type, zone;
4410 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4411 
4412 	spin_lock_irq(&lruvec->lru_lock);
4413 
4414 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4415 
4416 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4417 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4418 			continue;
4419 
4420 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4421 
4422 		while (!inc_min_seq(lruvec, type, can_swap)) {
4423 			spin_unlock_irq(&lruvec->lru_lock);
4424 			cond_resched();
4425 			spin_lock_irq(&lruvec->lru_lock);
4426 		}
4427 	}
4428 
4429 	/*
4430 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4431 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4432 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4433 	 * overlap, cold/hot inversion happens.
4434 	 */
4435 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4436 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4437 
4438 	for (type = 0; type < ANON_AND_FILE; type++) {
4439 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4440 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4441 			long delta = lrugen->nr_pages[prev][type][zone] -
4442 				     lrugen->nr_pages[next][type][zone];
4443 
4444 			if (!delta)
4445 				continue;
4446 
4447 			__update_lru_size(lruvec, lru, zone, delta);
4448 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4449 		}
4450 	}
4451 
4452 	for (type = 0; type < ANON_AND_FILE; type++)
4453 		reset_ctrl_pos(lruvec, type, false);
4454 
4455 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4456 	/* make sure preceding modifications appear */
4457 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4458 
4459 	spin_unlock_irq(&lruvec->lru_lock);
4460 }
4461 
4462 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4463 			       struct scan_control *sc, bool can_swap, bool force_scan)
4464 {
4465 	bool success;
4466 	struct lru_gen_mm_walk *walk;
4467 	struct mm_struct *mm = NULL;
4468 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4469 
4470 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4471 
4472 	/* see the comment in iterate_mm_list() */
4473 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4474 		success = false;
4475 		goto done;
4476 	}
4477 
4478 	/*
4479 	 * If the hardware doesn't automatically set the accessed bit, fallback
4480 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4481 	 * handful of PTEs. Spreading the work out over a period of time usually
4482 	 * is less efficient, but it avoids bursty page faults.
4483 	 */
4484 	if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4485 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4486 		goto done;
4487 	}
4488 
4489 	walk = set_mm_walk(NULL, true);
4490 	if (!walk) {
4491 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4492 		goto done;
4493 	}
4494 
4495 	walk->lruvec = lruvec;
4496 	walk->max_seq = max_seq;
4497 	walk->can_swap = can_swap;
4498 	walk->force_scan = force_scan;
4499 
4500 	do {
4501 		success = iterate_mm_list(lruvec, walk, &mm);
4502 		if (mm)
4503 			walk_mm(lruvec, mm, walk);
4504 	} while (mm);
4505 done:
4506 	if (success)
4507 		inc_max_seq(lruvec, can_swap, force_scan);
4508 
4509 	return success;
4510 }
4511 
4512 /******************************************************************************
4513  *                          working set protection
4514  ******************************************************************************/
4515 
4516 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4517 {
4518 	int gen, type, zone;
4519 	unsigned long total = 0;
4520 	bool can_swap = get_swappiness(lruvec, sc);
4521 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4522 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4523 	DEFINE_MAX_SEQ(lruvec);
4524 	DEFINE_MIN_SEQ(lruvec);
4525 
4526 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4527 		unsigned long seq;
4528 
4529 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4530 			gen = lru_gen_from_seq(seq);
4531 
4532 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4533 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4534 		}
4535 	}
4536 
4537 	/* whether the size is big enough to be helpful */
4538 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4539 }
4540 
4541 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4542 				  unsigned long min_ttl)
4543 {
4544 	int gen;
4545 	unsigned long birth;
4546 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4547 	DEFINE_MIN_SEQ(lruvec);
4548 
4549 	/* see the comment on lru_gen_folio */
4550 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4551 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4552 
4553 	if (time_is_after_jiffies(birth + min_ttl))
4554 		return false;
4555 
4556 	if (!lruvec_is_sizable(lruvec, sc))
4557 		return false;
4558 
4559 	mem_cgroup_calculate_protection(NULL, memcg);
4560 
4561 	return !mem_cgroup_below_min(NULL, memcg);
4562 }
4563 
4564 /* to protect the working set of the last N jiffies */
4565 static unsigned long lru_gen_min_ttl __read_mostly;
4566 
4567 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4568 {
4569 	struct mem_cgroup *memcg;
4570 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4571 
4572 	VM_WARN_ON_ONCE(!current_is_kswapd());
4573 
4574 	/* check the order to exclude compaction-induced reclaim */
4575 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4576 		return;
4577 
4578 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4579 	do {
4580 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4581 
4582 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4583 			mem_cgroup_iter_break(NULL, memcg);
4584 			return;
4585 		}
4586 
4587 		cond_resched();
4588 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4589 
4590 	/*
4591 	 * The main goal is to OOM kill if every generation from all memcgs is
4592 	 * younger than min_ttl. However, another possibility is all memcgs are
4593 	 * either too small or below min.
4594 	 */
4595 	if (mutex_trylock(&oom_lock)) {
4596 		struct oom_control oc = {
4597 			.gfp_mask = sc->gfp_mask,
4598 		};
4599 
4600 		out_of_memory(&oc);
4601 
4602 		mutex_unlock(&oom_lock);
4603 	}
4604 }
4605 
4606 /******************************************************************************
4607  *                          rmap/PT walk feedback
4608  ******************************************************************************/
4609 
4610 /*
4611  * This function exploits spatial locality when shrink_folio_list() walks the
4612  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4613  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4614  * the PTE table to the Bloom filter. This forms a feedback loop between the
4615  * eviction and the aging.
4616  */
4617 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4618 {
4619 	int i;
4620 	unsigned long start;
4621 	unsigned long end;
4622 	struct lru_gen_mm_walk *walk;
4623 	int young = 0;
4624 	pte_t *pte = pvmw->pte;
4625 	unsigned long addr = pvmw->address;
4626 	struct folio *folio = pfn_folio(pvmw->pfn);
4627 	struct mem_cgroup *memcg = folio_memcg(folio);
4628 	struct pglist_data *pgdat = folio_pgdat(folio);
4629 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4630 	DEFINE_MAX_SEQ(lruvec);
4631 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4632 
4633 	lockdep_assert_held(pvmw->ptl);
4634 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4635 
4636 	if (spin_is_contended(pvmw->ptl))
4637 		return;
4638 
4639 	/* avoid taking the LRU lock under the PTL when possible */
4640 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4641 
4642 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4643 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4644 
4645 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4646 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4647 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4648 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4649 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4650 		else {
4651 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4652 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4653 		}
4654 	}
4655 
4656 	/* folio_update_gen() requires stable folio_memcg() */
4657 	if (!mem_cgroup_trylock_pages(memcg))
4658 		return;
4659 
4660 	arch_enter_lazy_mmu_mode();
4661 
4662 	pte -= (addr - start) / PAGE_SIZE;
4663 
4664 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4665 		unsigned long pfn;
4666 
4667 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4668 		if (pfn == -1)
4669 			continue;
4670 
4671 		if (!pte_young(pte[i]))
4672 			continue;
4673 
4674 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4675 		if (!folio)
4676 			continue;
4677 
4678 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4679 			VM_WARN_ON_ONCE(true);
4680 
4681 		young++;
4682 
4683 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4684 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4685 		      !folio_test_swapcache(folio)))
4686 			folio_mark_dirty(folio);
4687 
4688 		if (walk) {
4689 			old_gen = folio_update_gen(folio, new_gen);
4690 			if (old_gen >= 0 && old_gen != new_gen)
4691 				update_batch_size(walk, folio, old_gen, new_gen);
4692 
4693 			continue;
4694 		}
4695 
4696 		old_gen = folio_lru_gen(folio);
4697 		if (old_gen < 0)
4698 			folio_set_referenced(folio);
4699 		else if (old_gen != new_gen)
4700 			folio_activate(folio);
4701 	}
4702 
4703 	arch_leave_lazy_mmu_mode();
4704 	mem_cgroup_unlock_pages();
4705 
4706 	/* feedback from rmap walkers to page table walkers */
4707 	if (suitable_to_scan(i, young))
4708 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4709 }
4710 
4711 /******************************************************************************
4712  *                          memcg LRU
4713  ******************************************************************************/
4714 
4715 /* see the comment on MEMCG_NR_GENS */
4716 enum {
4717 	MEMCG_LRU_NOP,
4718 	MEMCG_LRU_HEAD,
4719 	MEMCG_LRU_TAIL,
4720 	MEMCG_LRU_OLD,
4721 	MEMCG_LRU_YOUNG,
4722 };
4723 
4724 #ifdef CONFIG_MEMCG
4725 
4726 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4727 {
4728 	return READ_ONCE(lruvec->lrugen.seg);
4729 }
4730 
4731 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4732 {
4733 	int seg;
4734 	int old, new;
4735 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4736 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4737 
4738 	spin_lock(&pgdat->memcg_lru.lock);
4739 
4740 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4741 
4742 	seg = 0;
4743 	new = old = lruvec->lrugen.gen;
4744 
4745 	/* see the comment on MEMCG_NR_GENS */
4746 	if (op == MEMCG_LRU_HEAD)
4747 		seg = MEMCG_LRU_HEAD;
4748 	else if (op == MEMCG_LRU_TAIL)
4749 		seg = MEMCG_LRU_TAIL;
4750 	else if (op == MEMCG_LRU_OLD)
4751 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4752 	else if (op == MEMCG_LRU_YOUNG)
4753 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4754 	else
4755 		VM_WARN_ON_ONCE(true);
4756 
4757 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4758 
4759 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4760 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4761 	else
4762 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4763 
4764 	pgdat->memcg_lru.nr_memcgs[old]--;
4765 	pgdat->memcg_lru.nr_memcgs[new]++;
4766 
4767 	lruvec->lrugen.gen = new;
4768 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4769 
4770 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4771 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4772 
4773 	spin_unlock(&pgdat->memcg_lru.lock);
4774 }
4775 
4776 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4777 {
4778 	int gen;
4779 	int nid;
4780 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4781 
4782 	for_each_node(nid) {
4783 		struct pglist_data *pgdat = NODE_DATA(nid);
4784 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4785 
4786 		spin_lock(&pgdat->memcg_lru.lock);
4787 
4788 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4789 
4790 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4791 
4792 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4793 		pgdat->memcg_lru.nr_memcgs[gen]++;
4794 
4795 		lruvec->lrugen.gen = gen;
4796 
4797 		spin_unlock(&pgdat->memcg_lru.lock);
4798 	}
4799 }
4800 
4801 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4802 {
4803 	int nid;
4804 
4805 	for_each_node(nid) {
4806 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4807 
4808 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4809 	}
4810 }
4811 
4812 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4813 {
4814 	int gen;
4815 	int nid;
4816 
4817 	for_each_node(nid) {
4818 		struct pglist_data *pgdat = NODE_DATA(nid);
4819 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4820 
4821 		spin_lock(&pgdat->memcg_lru.lock);
4822 
4823 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4824 
4825 		gen = lruvec->lrugen.gen;
4826 
4827 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
4828 		pgdat->memcg_lru.nr_memcgs[gen]--;
4829 
4830 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4831 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4832 
4833 		spin_unlock(&pgdat->memcg_lru.lock);
4834 	}
4835 }
4836 
4837 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4838 {
4839 	/* see the comment on MEMCG_NR_GENS */
4840 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4841 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4842 }
4843 
4844 #else /* !CONFIG_MEMCG */
4845 
4846 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4847 {
4848 	return 0;
4849 }
4850 
4851 #endif
4852 
4853 /******************************************************************************
4854  *                          the eviction
4855  ******************************************************************************/
4856 
4857 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4858 {
4859 	bool success;
4860 	int gen = folio_lru_gen(folio);
4861 	int type = folio_is_file_lru(folio);
4862 	int zone = folio_zonenum(folio);
4863 	int delta = folio_nr_pages(folio);
4864 	int refs = folio_lru_refs(folio);
4865 	int tier = lru_tier_from_refs(refs);
4866 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4867 
4868 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4869 
4870 	/* unevictable */
4871 	if (!folio_evictable(folio)) {
4872 		success = lru_gen_del_folio(lruvec, folio, true);
4873 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4874 		folio_set_unevictable(folio);
4875 		lruvec_add_folio(lruvec, folio);
4876 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4877 		return true;
4878 	}
4879 
4880 	/* dirty lazyfree */
4881 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4882 		success = lru_gen_del_folio(lruvec, folio, true);
4883 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4884 		folio_set_swapbacked(folio);
4885 		lruvec_add_folio_tail(lruvec, folio);
4886 		return true;
4887 	}
4888 
4889 	/* promoted */
4890 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4891 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4892 		return true;
4893 	}
4894 
4895 	/* protected */
4896 	if (tier > tier_idx) {
4897 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4898 
4899 		gen = folio_inc_gen(lruvec, folio, false);
4900 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4901 
4902 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4903 			   lrugen->protected[hist][type][tier - 1] + delta);
4904 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4905 		return true;
4906 	}
4907 
4908 	/* waiting for writeback */
4909 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4910 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4911 		gen = folio_inc_gen(lruvec, folio, true);
4912 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4913 		return true;
4914 	}
4915 
4916 	return false;
4917 }
4918 
4919 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4920 {
4921 	bool success;
4922 
4923 	/* swapping inhibited */
4924 	if (!(sc->gfp_mask & __GFP_IO) &&
4925 	    (folio_test_dirty(folio) ||
4926 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4927 		return false;
4928 
4929 	/* raced with release_pages() */
4930 	if (!folio_try_get(folio))
4931 		return false;
4932 
4933 	/* raced with another isolation */
4934 	if (!folio_test_clear_lru(folio)) {
4935 		folio_put(folio);
4936 		return false;
4937 	}
4938 
4939 	/* see the comment on MAX_NR_TIERS */
4940 	if (!folio_test_referenced(folio))
4941 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4942 
4943 	/* for shrink_folio_list() */
4944 	folio_clear_reclaim(folio);
4945 	folio_clear_referenced(folio);
4946 
4947 	success = lru_gen_del_folio(lruvec, folio, true);
4948 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4949 
4950 	return true;
4951 }
4952 
4953 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4954 		       int type, int tier, struct list_head *list)
4955 {
4956 	int gen, zone;
4957 	enum vm_event_item item;
4958 	int sorted = 0;
4959 	int scanned = 0;
4960 	int isolated = 0;
4961 	int remaining = MAX_LRU_BATCH;
4962 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4963 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4964 
4965 	VM_WARN_ON_ONCE(!list_empty(list));
4966 
4967 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4968 		return 0;
4969 
4970 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4971 
4972 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4973 		LIST_HEAD(moved);
4974 		int skipped = 0;
4975 		struct list_head *head = &lrugen->folios[gen][type][zone];
4976 
4977 		while (!list_empty(head)) {
4978 			struct folio *folio = lru_to_folio(head);
4979 			int delta = folio_nr_pages(folio);
4980 
4981 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4982 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4983 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4984 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4985 
4986 			scanned += delta;
4987 
4988 			if (sort_folio(lruvec, folio, tier))
4989 				sorted += delta;
4990 			else if (isolate_folio(lruvec, folio, sc)) {
4991 				list_add(&folio->lru, list);
4992 				isolated += delta;
4993 			} else {
4994 				list_move(&folio->lru, &moved);
4995 				skipped += delta;
4996 			}
4997 
4998 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4999 				break;
5000 		}
5001 
5002 		if (skipped) {
5003 			list_splice(&moved, head);
5004 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5005 		}
5006 
5007 		if (!remaining || isolated >= MIN_LRU_BATCH)
5008 			break;
5009 	}
5010 
5011 	item = PGSCAN_KSWAPD + reclaimer_offset();
5012 	if (!cgroup_reclaim(sc)) {
5013 		__count_vm_events(item, isolated);
5014 		__count_vm_events(PGREFILL, sorted);
5015 	}
5016 	__count_memcg_events(memcg, item, isolated);
5017 	__count_memcg_events(memcg, PGREFILL, sorted);
5018 	__count_vm_events(PGSCAN_ANON + type, isolated);
5019 
5020 	/*
5021 	 * There might not be eligible folios due to reclaim_idx. Check the
5022 	 * remaining to prevent livelock if it's not making progress.
5023 	 */
5024 	return isolated || !remaining ? scanned : 0;
5025 }
5026 
5027 static int get_tier_idx(struct lruvec *lruvec, int type)
5028 {
5029 	int tier;
5030 	struct ctrl_pos sp, pv;
5031 
5032 	/*
5033 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5034 	 * This value is chosen because any other tier would have at least twice
5035 	 * as many refaults as the first tier.
5036 	 */
5037 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5038 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5039 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5040 		if (!positive_ctrl_err(&sp, &pv))
5041 			break;
5042 	}
5043 
5044 	return tier - 1;
5045 }
5046 
5047 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5048 {
5049 	int type, tier;
5050 	struct ctrl_pos sp, pv;
5051 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5052 
5053 	/*
5054 	 * Compare the first tier of anon with that of file to determine which
5055 	 * type to scan. Also need to compare other tiers of the selected type
5056 	 * with the first tier of the other type to determine the last tier (of
5057 	 * the selected type) to evict.
5058 	 */
5059 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5060 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5061 	type = positive_ctrl_err(&sp, &pv);
5062 
5063 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5064 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5065 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5066 		if (!positive_ctrl_err(&sp, &pv))
5067 			break;
5068 	}
5069 
5070 	*tier_idx = tier - 1;
5071 
5072 	return type;
5073 }
5074 
5075 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5076 			  int *type_scanned, struct list_head *list)
5077 {
5078 	int i;
5079 	int type;
5080 	int scanned;
5081 	int tier = -1;
5082 	DEFINE_MIN_SEQ(lruvec);
5083 
5084 	/*
5085 	 * Try to make the obvious choice first. When anon and file are both
5086 	 * available from the same generation, interpret swappiness 1 as file
5087 	 * first and 200 as anon first.
5088 	 */
5089 	if (!swappiness)
5090 		type = LRU_GEN_FILE;
5091 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5092 		type = LRU_GEN_ANON;
5093 	else if (swappiness == 1)
5094 		type = LRU_GEN_FILE;
5095 	else if (swappiness == 200)
5096 		type = LRU_GEN_ANON;
5097 	else
5098 		type = get_type_to_scan(lruvec, swappiness, &tier);
5099 
5100 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5101 		if (tier < 0)
5102 			tier = get_tier_idx(lruvec, type);
5103 
5104 		scanned = scan_folios(lruvec, sc, type, tier, list);
5105 		if (scanned)
5106 			break;
5107 
5108 		type = !type;
5109 		tier = -1;
5110 	}
5111 
5112 	*type_scanned = type;
5113 
5114 	return scanned;
5115 }
5116 
5117 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5118 {
5119 	int type;
5120 	int scanned;
5121 	int reclaimed;
5122 	LIST_HEAD(list);
5123 	LIST_HEAD(clean);
5124 	struct folio *folio;
5125 	struct folio *next;
5126 	enum vm_event_item item;
5127 	struct reclaim_stat stat;
5128 	struct lru_gen_mm_walk *walk;
5129 	bool skip_retry = false;
5130 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5131 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5132 
5133 	spin_lock_irq(&lruvec->lru_lock);
5134 
5135 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5136 
5137 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5138 
5139 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5140 		scanned = 0;
5141 
5142 	spin_unlock_irq(&lruvec->lru_lock);
5143 
5144 	if (list_empty(&list))
5145 		return scanned;
5146 retry:
5147 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5148 	sc->nr_reclaimed += reclaimed;
5149 
5150 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5151 		if (!folio_evictable(folio)) {
5152 			list_del(&folio->lru);
5153 			folio_putback_lru(folio);
5154 			continue;
5155 		}
5156 
5157 		if (folio_test_reclaim(folio) &&
5158 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5159 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5160 			if (folio_test_workingset(folio))
5161 				folio_set_referenced(folio);
5162 			continue;
5163 		}
5164 
5165 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5166 		    folio_mapped(folio) || folio_test_locked(folio) ||
5167 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5168 			/* don't add rejected folios to the oldest generation */
5169 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5170 				      BIT(PG_active));
5171 			continue;
5172 		}
5173 
5174 		/* retry folios that may have missed folio_rotate_reclaimable() */
5175 		list_move(&folio->lru, &clean);
5176 		sc->nr_scanned -= folio_nr_pages(folio);
5177 	}
5178 
5179 	spin_lock_irq(&lruvec->lru_lock);
5180 
5181 	move_folios_to_lru(lruvec, &list);
5182 
5183 	walk = current->reclaim_state->mm_walk;
5184 	if (walk && walk->batched)
5185 		reset_batch_size(lruvec, walk);
5186 
5187 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5188 	if (!cgroup_reclaim(sc))
5189 		__count_vm_events(item, reclaimed);
5190 	__count_memcg_events(memcg, item, reclaimed);
5191 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5192 
5193 	spin_unlock_irq(&lruvec->lru_lock);
5194 
5195 	mem_cgroup_uncharge_list(&list);
5196 	free_unref_page_list(&list);
5197 
5198 	INIT_LIST_HEAD(&list);
5199 	list_splice_init(&clean, &list);
5200 
5201 	if (!list_empty(&list)) {
5202 		skip_retry = true;
5203 		goto retry;
5204 	}
5205 
5206 	return scanned;
5207 }
5208 
5209 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5210 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5211 {
5212 	int gen, type, zone;
5213 	unsigned long old = 0;
5214 	unsigned long young = 0;
5215 	unsigned long total = 0;
5216 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5217 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5218 	DEFINE_MIN_SEQ(lruvec);
5219 
5220 	/* whether this lruvec is completely out of cold folios */
5221 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5222 		*nr_to_scan = 0;
5223 		return true;
5224 	}
5225 
5226 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5227 		unsigned long seq;
5228 
5229 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5230 			unsigned long size = 0;
5231 
5232 			gen = lru_gen_from_seq(seq);
5233 
5234 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5235 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5236 
5237 			total += size;
5238 			if (seq == max_seq)
5239 				young += size;
5240 			else if (seq + MIN_NR_GENS == max_seq)
5241 				old += size;
5242 		}
5243 	}
5244 
5245 	/* try to scrape all its memory if this memcg was deleted */
5246 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5247 
5248 	/*
5249 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5250 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5251 	 * ideal number of generations is MIN_NR_GENS+1.
5252 	 */
5253 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5254 		return false;
5255 
5256 	/*
5257 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5258 	 * of the total number of pages for each generation. A reasonable range
5259 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5260 	 * aging cares about the upper bound of hot pages, while the eviction
5261 	 * cares about the lower bound of cold pages.
5262 	 */
5263 	if (young * MIN_NR_GENS > total)
5264 		return true;
5265 	if (old * (MIN_NR_GENS + 2) < total)
5266 		return true;
5267 
5268 	return false;
5269 }
5270 
5271 /*
5272  * For future optimizations:
5273  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5274  *    reclaim.
5275  */
5276 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5277 {
5278 	unsigned long nr_to_scan;
5279 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5280 	DEFINE_MAX_SEQ(lruvec);
5281 
5282 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5283 		return 0;
5284 
5285 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5286 		return nr_to_scan;
5287 
5288 	/* skip the aging path at the default priority */
5289 	if (sc->priority == DEF_PRIORITY)
5290 		return nr_to_scan;
5291 
5292 	/* skip this lruvec as it's low on cold folios */
5293 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5294 }
5295 
5296 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5297 {
5298 	/* don't abort memcg reclaim to ensure fairness */
5299 	if (!global_reclaim(sc))
5300 		return -1;
5301 
5302 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5303 }
5304 
5305 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5306 {
5307 	long nr_to_scan;
5308 	unsigned long scanned = 0;
5309 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5310 	int swappiness = get_swappiness(lruvec, sc);
5311 
5312 	/* clean file folios are more likely to exist */
5313 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5314 		swappiness = 1;
5315 
5316 	while (true) {
5317 		int delta;
5318 
5319 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5320 		if (nr_to_scan <= 0)
5321 			break;
5322 
5323 		delta = evict_folios(lruvec, sc, swappiness);
5324 		if (!delta)
5325 			break;
5326 
5327 		scanned += delta;
5328 		if (scanned >= nr_to_scan)
5329 			break;
5330 
5331 		if (sc->nr_reclaimed >= nr_to_reclaim)
5332 			break;
5333 
5334 		cond_resched();
5335 	}
5336 
5337 	/* whether try_to_inc_max_seq() was successful */
5338 	return nr_to_scan < 0;
5339 }
5340 
5341 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5342 {
5343 	bool success;
5344 	unsigned long scanned = sc->nr_scanned;
5345 	unsigned long reclaimed = sc->nr_reclaimed;
5346 	int seg = lru_gen_memcg_seg(lruvec);
5347 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5348 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5349 
5350 	/* see the comment on MEMCG_NR_GENS */
5351 	if (!lruvec_is_sizable(lruvec, sc))
5352 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5353 
5354 	mem_cgroup_calculate_protection(NULL, memcg);
5355 
5356 	if (mem_cgroup_below_min(NULL, memcg))
5357 		return MEMCG_LRU_YOUNG;
5358 
5359 	if (mem_cgroup_below_low(NULL, memcg)) {
5360 		/* see the comment on MEMCG_NR_GENS */
5361 		if (seg != MEMCG_LRU_TAIL)
5362 			return MEMCG_LRU_TAIL;
5363 
5364 		memcg_memory_event(memcg, MEMCG_LOW);
5365 	}
5366 
5367 	success = try_to_shrink_lruvec(lruvec, sc);
5368 
5369 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5370 
5371 	if (!sc->proactive)
5372 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5373 			   sc->nr_reclaimed - reclaimed);
5374 
5375 	flush_reclaim_state(sc);
5376 
5377 	return success ? MEMCG_LRU_YOUNG : 0;
5378 }
5379 
5380 #ifdef CONFIG_MEMCG
5381 
5382 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5383 {
5384 	int op;
5385 	int gen;
5386 	int bin;
5387 	int first_bin;
5388 	struct lruvec *lruvec;
5389 	struct lru_gen_folio *lrugen;
5390 	struct mem_cgroup *memcg;
5391 	const struct hlist_nulls_node *pos;
5392 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5393 
5394 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5395 restart:
5396 	op = 0;
5397 	memcg = NULL;
5398 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5399 
5400 	rcu_read_lock();
5401 
5402 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5403 		if (op)
5404 			lru_gen_rotate_memcg(lruvec, op);
5405 
5406 		mem_cgroup_put(memcg);
5407 
5408 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5409 		memcg = lruvec_memcg(lruvec);
5410 
5411 		if (!mem_cgroup_tryget(memcg)) {
5412 			op = 0;
5413 			memcg = NULL;
5414 			continue;
5415 		}
5416 
5417 		rcu_read_unlock();
5418 
5419 		op = shrink_one(lruvec, sc);
5420 
5421 		rcu_read_lock();
5422 
5423 		if (sc->nr_reclaimed >= nr_to_reclaim)
5424 			break;
5425 	}
5426 
5427 	rcu_read_unlock();
5428 
5429 	if (op)
5430 		lru_gen_rotate_memcg(lruvec, op);
5431 
5432 	mem_cgroup_put(memcg);
5433 
5434 	if (sc->nr_reclaimed >= nr_to_reclaim)
5435 		return;
5436 
5437 	/* restart if raced with lru_gen_rotate_memcg() */
5438 	if (gen != get_nulls_value(pos))
5439 		goto restart;
5440 
5441 	/* try the rest of the bins of the current generation */
5442 	bin = get_memcg_bin(bin + 1);
5443 	if (bin != first_bin)
5444 		goto restart;
5445 }
5446 
5447 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5448 {
5449 	struct blk_plug plug;
5450 
5451 	VM_WARN_ON_ONCE(global_reclaim(sc));
5452 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5453 
5454 	lru_add_drain();
5455 
5456 	blk_start_plug(&plug);
5457 
5458 	set_mm_walk(NULL, sc->proactive);
5459 
5460 	if (try_to_shrink_lruvec(lruvec, sc))
5461 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5462 
5463 	clear_mm_walk();
5464 
5465 	blk_finish_plug(&plug);
5466 }
5467 
5468 #else /* !CONFIG_MEMCG */
5469 
5470 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5471 {
5472 	BUILD_BUG();
5473 }
5474 
5475 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5476 {
5477 	BUILD_BUG();
5478 }
5479 
5480 #endif
5481 
5482 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5483 {
5484 	int priority;
5485 	unsigned long reclaimable;
5486 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5487 
5488 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5489 		return;
5490 	/*
5491 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5492 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5493 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5494 	 */
5495 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5496 	if (get_swappiness(lruvec, sc))
5497 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5498 
5499 	reclaimable /= MEMCG_NR_GENS;
5500 
5501 	/* round down reclaimable and round up sc->nr_to_reclaim */
5502 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5503 
5504 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5505 }
5506 
5507 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5508 {
5509 	struct blk_plug plug;
5510 	unsigned long reclaimed = sc->nr_reclaimed;
5511 
5512 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5513 
5514 	/*
5515 	 * Unmapped clean folios are already prioritized. Scanning for more of
5516 	 * them is likely futile and can cause high reclaim latency when there
5517 	 * is a large number of memcgs.
5518 	 */
5519 	if (!sc->may_writepage || !sc->may_unmap)
5520 		goto done;
5521 
5522 	lru_add_drain();
5523 
5524 	blk_start_plug(&plug);
5525 
5526 	set_mm_walk(pgdat, sc->proactive);
5527 
5528 	set_initial_priority(pgdat, sc);
5529 
5530 	if (current_is_kswapd())
5531 		sc->nr_reclaimed = 0;
5532 
5533 	if (mem_cgroup_disabled())
5534 		shrink_one(&pgdat->__lruvec, sc);
5535 	else
5536 		shrink_many(pgdat, sc);
5537 
5538 	if (current_is_kswapd())
5539 		sc->nr_reclaimed += reclaimed;
5540 
5541 	clear_mm_walk();
5542 
5543 	blk_finish_plug(&plug);
5544 done:
5545 	/* kswapd should never fail */
5546 	pgdat->kswapd_failures = 0;
5547 }
5548 
5549 /******************************************************************************
5550  *                          state change
5551  ******************************************************************************/
5552 
5553 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5554 {
5555 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5556 
5557 	if (lrugen->enabled) {
5558 		enum lru_list lru;
5559 
5560 		for_each_evictable_lru(lru) {
5561 			if (!list_empty(&lruvec->lists[lru]))
5562 				return false;
5563 		}
5564 	} else {
5565 		int gen, type, zone;
5566 
5567 		for_each_gen_type_zone(gen, type, zone) {
5568 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5569 				return false;
5570 		}
5571 	}
5572 
5573 	return true;
5574 }
5575 
5576 static bool fill_evictable(struct lruvec *lruvec)
5577 {
5578 	enum lru_list lru;
5579 	int remaining = MAX_LRU_BATCH;
5580 
5581 	for_each_evictable_lru(lru) {
5582 		int type = is_file_lru(lru);
5583 		bool active = is_active_lru(lru);
5584 		struct list_head *head = &lruvec->lists[lru];
5585 
5586 		while (!list_empty(head)) {
5587 			bool success;
5588 			struct folio *folio = lru_to_folio(head);
5589 
5590 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5591 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5592 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5593 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5594 
5595 			lruvec_del_folio(lruvec, folio);
5596 			success = lru_gen_add_folio(lruvec, folio, false);
5597 			VM_WARN_ON_ONCE(!success);
5598 
5599 			if (!--remaining)
5600 				return false;
5601 		}
5602 	}
5603 
5604 	return true;
5605 }
5606 
5607 static bool drain_evictable(struct lruvec *lruvec)
5608 {
5609 	int gen, type, zone;
5610 	int remaining = MAX_LRU_BATCH;
5611 
5612 	for_each_gen_type_zone(gen, type, zone) {
5613 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5614 
5615 		while (!list_empty(head)) {
5616 			bool success;
5617 			struct folio *folio = lru_to_folio(head);
5618 
5619 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5620 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5621 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5622 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5623 
5624 			success = lru_gen_del_folio(lruvec, folio, false);
5625 			VM_WARN_ON_ONCE(!success);
5626 			lruvec_add_folio(lruvec, folio);
5627 
5628 			if (!--remaining)
5629 				return false;
5630 		}
5631 	}
5632 
5633 	return true;
5634 }
5635 
5636 static void lru_gen_change_state(bool enabled)
5637 {
5638 	static DEFINE_MUTEX(state_mutex);
5639 
5640 	struct mem_cgroup *memcg;
5641 
5642 	cgroup_lock();
5643 	cpus_read_lock();
5644 	get_online_mems();
5645 	mutex_lock(&state_mutex);
5646 
5647 	if (enabled == lru_gen_enabled())
5648 		goto unlock;
5649 
5650 	if (enabled)
5651 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5652 	else
5653 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5654 
5655 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5656 	do {
5657 		int nid;
5658 
5659 		for_each_node(nid) {
5660 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5661 
5662 			spin_lock_irq(&lruvec->lru_lock);
5663 
5664 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5665 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5666 
5667 			lruvec->lrugen.enabled = enabled;
5668 
5669 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5670 				spin_unlock_irq(&lruvec->lru_lock);
5671 				cond_resched();
5672 				spin_lock_irq(&lruvec->lru_lock);
5673 			}
5674 
5675 			spin_unlock_irq(&lruvec->lru_lock);
5676 		}
5677 
5678 		cond_resched();
5679 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5680 unlock:
5681 	mutex_unlock(&state_mutex);
5682 	put_online_mems();
5683 	cpus_read_unlock();
5684 	cgroup_unlock();
5685 }
5686 
5687 /******************************************************************************
5688  *                          sysfs interface
5689  ******************************************************************************/
5690 
5691 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5692 {
5693 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5694 }
5695 
5696 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5697 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5698 				const char *buf, size_t len)
5699 {
5700 	unsigned int msecs;
5701 
5702 	if (kstrtouint(buf, 0, &msecs))
5703 		return -EINVAL;
5704 
5705 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5706 
5707 	return len;
5708 }
5709 
5710 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5711 
5712 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5713 {
5714 	unsigned int caps = 0;
5715 
5716 	if (get_cap(LRU_GEN_CORE))
5717 		caps |= BIT(LRU_GEN_CORE);
5718 
5719 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5720 		caps |= BIT(LRU_GEN_MM_WALK);
5721 
5722 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5723 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5724 
5725 	return sysfs_emit(buf, "0x%04x\n", caps);
5726 }
5727 
5728 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5729 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5730 			     const char *buf, size_t len)
5731 {
5732 	int i;
5733 	unsigned int caps;
5734 
5735 	if (tolower(*buf) == 'n')
5736 		caps = 0;
5737 	else if (tolower(*buf) == 'y')
5738 		caps = -1;
5739 	else if (kstrtouint(buf, 0, &caps))
5740 		return -EINVAL;
5741 
5742 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5743 		bool enabled = caps & BIT(i);
5744 
5745 		if (i == LRU_GEN_CORE)
5746 			lru_gen_change_state(enabled);
5747 		else if (enabled)
5748 			static_branch_enable(&lru_gen_caps[i]);
5749 		else
5750 			static_branch_disable(&lru_gen_caps[i]);
5751 	}
5752 
5753 	return len;
5754 }
5755 
5756 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5757 
5758 static struct attribute *lru_gen_attrs[] = {
5759 	&lru_gen_min_ttl_attr.attr,
5760 	&lru_gen_enabled_attr.attr,
5761 	NULL
5762 };
5763 
5764 static const struct attribute_group lru_gen_attr_group = {
5765 	.name = "lru_gen",
5766 	.attrs = lru_gen_attrs,
5767 };
5768 
5769 /******************************************************************************
5770  *                          debugfs interface
5771  ******************************************************************************/
5772 
5773 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5774 {
5775 	struct mem_cgroup *memcg;
5776 	loff_t nr_to_skip = *pos;
5777 
5778 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5779 	if (!m->private)
5780 		return ERR_PTR(-ENOMEM);
5781 
5782 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5783 	do {
5784 		int nid;
5785 
5786 		for_each_node_state(nid, N_MEMORY) {
5787 			if (!nr_to_skip--)
5788 				return get_lruvec(memcg, nid);
5789 		}
5790 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5791 
5792 	return NULL;
5793 }
5794 
5795 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5796 {
5797 	if (!IS_ERR_OR_NULL(v))
5798 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5799 
5800 	kvfree(m->private);
5801 	m->private = NULL;
5802 }
5803 
5804 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5805 {
5806 	int nid = lruvec_pgdat(v)->node_id;
5807 	struct mem_cgroup *memcg = lruvec_memcg(v);
5808 
5809 	++*pos;
5810 
5811 	nid = next_memory_node(nid);
5812 	if (nid == MAX_NUMNODES) {
5813 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5814 		if (!memcg)
5815 			return NULL;
5816 
5817 		nid = first_memory_node;
5818 	}
5819 
5820 	return get_lruvec(memcg, nid);
5821 }
5822 
5823 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5824 				  unsigned long max_seq, unsigned long *min_seq,
5825 				  unsigned long seq)
5826 {
5827 	int i;
5828 	int type, tier;
5829 	int hist = lru_hist_from_seq(seq);
5830 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5831 
5832 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5833 		seq_printf(m, "            %10d", tier);
5834 		for (type = 0; type < ANON_AND_FILE; type++) {
5835 			const char *s = "   ";
5836 			unsigned long n[3] = {};
5837 
5838 			if (seq == max_seq) {
5839 				s = "RT ";
5840 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5841 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5842 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5843 				s = "rep";
5844 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5845 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5846 				if (tier)
5847 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5848 			}
5849 
5850 			for (i = 0; i < 3; i++)
5851 				seq_printf(m, " %10lu%c", n[i], s[i]);
5852 		}
5853 		seq_putc(m, '\n');
5854 	}
5855 
5856 	seq_puts(m, "                      ");
5857 	for (i = 0; i < NR_MM_STATS; i++) {
5858 		const char *s = "      ";
5859 		unsigned long n = 0;
5860 
5861 		if (seq == max_seq && NR_HIST_GENS == 1) {
5862 			s = "LOYNFA";
5863 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5864 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5865 			s = "loynfa";
5866 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5867 		}
5868 
5869 		seq_printf(m, " %10lu%c", n, s[i]);
5870 	}
5871 	seq_putc(m, '\n');
5872 }
5873 
5874 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5875 static int lru_gen_seq_show(struct seq_file *m, void *v)
5876 {
5877 	unsigned long seq;
5878 	bool full = !debugfs_real_fops(m->file)->write;
5879 	struct lruvec *lruvec = v;
5880 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5881 	int nid = lruvec_pgdat(lruvec)->node_id;
5882 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5883 	DEFINE_MAX_SEQ(lruvec);
5884 	DEFINE_MIN_SEQ(lruvec);
5885 
5886 	if (nid == first_memory_node) {
5887 		const char *path = memcg ? m->private : "";
5888 
5889 #ifdef CONFIG_MEMCG
5890 		if (memcg)
5891 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5892 #endif
5893 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5894 	}
5895 
5896 	seq_printf(m, " node %5d\n", nid);
5897 
5898 	if (!full)
5899 		seq = min_seq[LRU_GEN_ANON];
5900 	else if (max_seq >= MAX_NR_GENS)
5901 		seq = max_seq - MAX_NR_GENS + 1;
5902 	else
5903 		seq = 0;
5904 
5905 	for (; seq <= max_seq; seq++) {
5906 		int type, zone;
5907 		int gen = lru_gen_from_seq(seq);
5908 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5909 
5910 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5911 
5912 		for (type = 0; type < ANON_AND_FILE; type++) {
5913 			unsigned long size = 0;
5914 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5915 
5916 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5917 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5918 
5919 			seq_printf(m, " %10lu%c", size, mark);
5920 		}
5921 
5922 		seq_putc(m, '\n');
5923 
5924 		if (full)
5925 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5926 	}
5927 
5928 	return 0;
5929 }
5930 
5931 static const struct seq_operations lru_gen_seq_ops = {
5932 	.start = lru_gen_seq_start,
5933 	.stop = lru_gen_seq_stop,
5934 	.next = lru_gen_seq_next,
5935 	.show = lru_gen_seq_show,
5936 };
5937 
5938 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5939 		     bool can_swap, bool force_scan)
5940 {
5941 	DEFINE_MAX_SEQ(lruvec);
5942 	DEFINE_MIN_SEQ(lruvec);
5943 
5944 	if (seq < max_seq)
5945 		return 0;
5946 
5947 	if (seq > max_seq)
5948 		return -EINVAL;
5949 
5950 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5951 		return -ERANGE;
5952 
5953 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5954 
5955 	return 0;
5956 }
5957 
5958 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5959 			int swappiness, unsigned long nr_to_reclaim)
5960 {
5961 	DEFINE_MAX_SEQ(lruvec);
5962 
5963 	if (seq + MIN_NR_GENS > max_seq)
5964 		return -EINVAL;
5965 
5966 	sc->nr_reclaimed = 0;
5967 
5968 	while (!signal_pending(current)) {
5969 		DEFINE_MIN_SEQ(lruvec);
5970 
5971 		if (seq < min_seq[!swappiness])
5972 			return 0;
5973 
5974 		if (sc->nr_reclaimed >= nr_to_reclaim)
5975 			return 0;
5976 
5977 		if (!evict_folios(lruvec, sc, swappiness))
5978 			return 0;
5979 
5980 		cond_resched();
5981 	}
5982 
5983 	return -EINTR;
5984 }
5985 
5986 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5987 		   struct scan_control *sc, int swappiness, unsigned long opt)
5988 {
5989 	struct lruvec *lruvec;
5990 	int err = -EINVAL;
5991 	struct mem_cgroup *memcg = NULL;
5992 
5993 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5994 		return -EINVAL;
5995 
5996 	if (!mem_cgroup_disabled()) {
5997 		rcu_read_lock();
5998 
5999 		memcg = mem_cgroup_from_id(memcg_id);
6000 		if (!mem_cgroup_tryget(memcg))
6001 			memcg = NULL;
6002 
6003 		rcu_read_unlock();
6004 
6005 		if (!memcg)
6006 			return -EINVAL;
6007 	}
6008 
6009 	if (memcg_id != mem_cgroup_id(memcg))
6010 		goto done;
6011 
6012 	lruvec = get_lruvec(memcg, nid);
6013 
6014 	if (swappiness < 0)
6015 		swappiness = get_swappiness(lruvec, sc);
6016 	else if (swappiness > 200)
6017 		goto done;
6018 
6019 	switch (cmd) {
6020 	case '+':
6021 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6022 		break;
6023 	case '-':
6024 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6025 		break;
6026 	}
6027 done:
6028 	mem_cgroup_put(memcg);
6029 
6030 	return err;
6031 }
6032 
6033 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6034 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6035 				 size_t len, loff_t *pos)
6036 {
6037 	void *buf;
6038 	char *cur, *next;
6039 	unsigned int flags;
6040 	struct blk_plug plug;
6041 	int err = -EINVAL;
6042 	struct scan_control sc = {
6043 		.may_writepage = true,
6044 		.may_unmap = true,
6045 		.may_swap = true,
6046 		.reclaim_idx = MAX_NR_ZONES - 1,
6047 		.gfp_mask = GFP_KERNEL,
6048 	};
6049 
6050 	buf = kvmalloc(len + 1, GFP_KERNEL);
6051 	if (!buf)
6052 		return -ENOMEM;
6053 
6054 	if (copy_from_user(buf, src, len)) {
6055 		kvfree(buf);
6056 		return -EFAULT;
6057 	}
6058 
6059 	set_task_reclaim_state(current, &sc.reclaim_state);
6060 	flags = memalloc_noreclaim_save();
6061 	blk_start_plug(&plug);
6062 	if (!set_mm_walk(NULL, true)) {
6063 		err = -ENOMEM;
6064 		goto done;
6065 	}
6066 
6067 	next = buf;
6068 	next[len] = '\0';
6069 
6070 	while ((cur = strsep(&next, ",;\n"))) {
6071 		int n;
6072 		int end;
6073 		char cmd;
6074 		unsigned int memcg_id;
6075 		unsigned int nid;
6076 		unsigned long seq;
6077 		unsigned int swappiness = -1;
6078 		unsigned long opt = -1;
6079 
6080 		cur = skip_spaces(cur);
6081 		if (!*cur)
6082 			continue;
6083 
6084 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6085 			   &seq, &end, &swappiness, &end, &opt, &end);
6086 		if (n < 4 || cur[end]) {
6087 			err = -EINVAL;
6088 			break;
6089 		}
6090 
6091 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6092 		if (err)
6093 			break;
6094 	}
6095 done:
6096 	clear_mm_walk();
6097 	blk_finish_plug(&plug);
6098 	memalloc_noreclaim_restore(flags);
6099 	set_task_reclaim_state(current, NULL);
6100 
6101 	kvfree(buf);
6102 
6103 	return err ? : len;
6104 }
6105 
6106 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6107 {
6108 	return seq_open(file, &lru_gen_seq_ops);
6109 }
6110 
6111 static const struct file_operations lru_gen_rw_fops = {
6112 	.open = lru_gen_seq_open,
6113 	.read = seq_read,
6114 	.write = lru_gen_seq_write,
6115 	.llseek = seq_lseek,
6116 	.release = seq_release,
6117 };
6118 
6119 static const struct file_operations lru_gen_ro_fops = {
6120 	.open = lru_gen_seq_open,
6121 	.read = seq_read,
6122 	.llseek = seq_lseek,
6123 	.release = seq_release,
6124 };
6125 
6126 /******************************************************************************
6127  *                          initialization
6128  ******************************************************************************/
6129 
6130 void lru_gen_init_lruvec(struct lruvec *lruvec)
6131 {
6132 	int i;
6133 	int gen, type, zone;
6134 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6135 
6136 	lrugen->max_seq = MIN_NR_GENS + 1;
6137 	lrugen->enabled = lru_gen_enabled();
6138 
6139 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6140 		lrugen->timestamps[i] = jiffies;
6141 
6142 	for_each_gen_type_zone(gen, type, zone)
6143 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6144 
6145 	lruvec->mm_state.seq = MIN_NR_GENS;
6146 }
6147 
6148 #ifdef CONFIG_MEMCG
6149 
6150 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6151 {
6152 	int i, j;
6153 
6154 	spin_lock_init(&pgdat->memcg_lru.lock);
6155 
6156 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6157 		for (j = 0; j < MEMCG_NR_BINS; j++)
6158 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6159 	}
6160 }
6161 
6162 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6163 {
6164 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6165 	spin_lock_init(&memcg->mm_list.lock);
6166 }
6167 
6168 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6169 {
6170 	int i;
6171 	int nid;
6172 
6173 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6174 
6175 	for_each_node(nid) {
6176 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6177 
6178 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6179 					   sizeof(lruvec->lrugen.nr_pages)));
6180 
6181 		lruvec->lrugen.list.next = LIST_POISON1;
6182 
6183 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6184 			bitmap_free(lruvec->mm_state.filters[i]);
6185 			lruvec->mm_state.filters[i] = NULL;
6186 		}
6187 	}
6188 }
6189 
6190 #endif /* CONFIG_MEMCG */
6191 
6192 static int __init init_lru_gen(void)
6193 {
6194 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6195 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6196 
6197 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6198 		pr_err("lru_gen: failed to create sysfs group\n");
6199 
6200 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6201 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6202 
6203 	return 0;
6204 };
6205 late_initcall(init_lru_gen);
6206 
6207 #else /* !CONFIG_LRU_GEN */
6208 
6209 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6210 {
6211 }
6212 
6213 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6214 {
6215 }
6216 
6217 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6218 {
6219 }
6220 
6221 #endif /* CONFIG_LRU_GEN */
6222 
6223 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6224 {
6225 	unsigned long nr[NR_LRU_LISTS];
6226 	unsigned long targets[NR_LRU_LISTS];
6227 	unsigned long nr_to_scan;
6228 	enum lru_list lru;
6229 	unsigned long nr_reclaimed = 0;
6230 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6231 	bool proportional_reclaim;
6232 	struct blk_plug plug;
6233 
6234 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6235 		lru_gen_shrink_lruvec(lruvec, sc);
6236 		return;
6237 	}
6238 
6239 	get_scan_count(lruvec, sc, nr);
6240 
6241 	/* Record the original scan target for proportional adjustments later */
6242 	memcpy(targets, nr, sizeof(nr));
6243 
6244 	/*
6245 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6246 	 * event that can occur when there is little memory pressure e.g.
6247 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6248 	 * when the requested number of pages are reclaimed when scanning at
6249 	 * DEF_PRIORITY on the assumption that the fact we are direct
6250 	 * reclaiming implies that kswapd is not keeping up and it is best to
6251 	 * do a batch of work at once. For memcg reclaim one check is made to
6252 	 * abort proportional reclaim if either the file or anon lru has already
6253 	 * dropped to zero at the first pass.
6254 	 */
6255 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6256 				sc->priority == DEF_PRIORITY);
6257 
6258 	blk_start_plug(&plug);
6259 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6260 					nr[LRU_INACTIVE_FILE]) {
6261 		unsigned long nr_anon, nr_file, percentage;
6262 		unsigned long nr_scanned;
6263 
6264 		for_each_evictable_lru(lru) {
6265 			if (nr[lru]) {
6266 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6267 				nr[lru] -= nr_to_scan;
6268 
6269 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6270 							    lruvec, sc);
6271 			}
6272 		}
6273 
6274 		cond_resched();
6275 
6276 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6277 			continue;
6278 
6279 		/*
6280 		 * For kswapd and memcg, reclaim at least the number of pages
6281 		 * requested. Ensure that the anon and file LRUs are scanned
6282 		 * proportionally what was requested by get_scan_count(). We
6283 		 * stop reclaiming one LRU and reduce the amount scanning
6284 		 * proportional to the original scan target.
6285 		 */
6286 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6287 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6288 
6289 		/*
6290 		 * It's just vindictive to attack the larger once the smaller
6291 		 * has gone to zero.  And given the way we stop scanning the
6292 		 * smaller below, this makes sure that we only make one nudge
6293 		 * towards proportionality once we've got nr_to_reclaim.
6294 		 */
6295 		if (!nr_file || !nr_anon)
6296 			break;
6297 
6298 		if (nr_file > nr_anon) {
6299 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6300 						targets[LRU_ACTIVE_ANON] + 1;
6301 			lru = LRU_BASE;
6302 			percentage = nr_anon * 100 / scan_target;
6303 		} else {
6304 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6305 						targets[LRU_ACTIVE_FILE] + 1;
6306 			lru = LRU_FILE;
6307 			percentage = nr_file * 100 / scan_target;
6308 		}
6309 
6310 		/* Stop scanning the smaller of the LRU */
6311 		nr[lru] = 0;
6312 		nr[lru + LRU_ACTIVE] = 0;
6313 
6314 		/*
6315 		 * Recalculate the other LRU scan count based on its original
6316 		 * scan target and the percentage scanning already complete
6317 		 */
6318 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6319 		nr_scanned = targets[lru] - nr[lru];
6320 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6321 		nr[lru] -= min(nr[lru], nr_scanned);
6322 
6323 		lru += LRU_ACTIVE;
6324 		nr_scanned = targets[lru] - nr[lru];
6325 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6326 		nr[lru] -= min(nr[lru], nr_scanned);
6327 	}
6328 	blk_finish_plug(&plug);
6329 	sc->nr_reclaimed += nr_reclaimed;
6330 
6331 	/*
6332 	 * Even if we did not try to evict anon pages at all, we want to
6333 	 * rebalance the anon lru active/inactive ratio.
6334 	 */
6335 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6336 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6337 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6338 				   sc, LRU_ACTIVE_ANON);
6339 }
6340 
6341 /* Use reclaim/compaction for costly allocs or under memory pressure */
6342 static bool in_reclaim_compaction(struct scan_control *sc)
6343 {
6344 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6345 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6346 			 sc->priority < DEF_PRIORITY - 2))
6347 		return true;
6348 
6349 	return false;
6350 }
6351 
6352 /*
6353  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6354  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6355  * true if more pages should be reclaimed such that when the page allocator
6356  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6357  * It will give up earlier than that if there is difficulty reclaiming pages.
6358  */
6359 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6360 					unsigned long nr_reclaimed,
6361 					struct scan_control *sc)
6362 {
6363 	unsigned long pages_for_compaction;
6364 	unsigned long inactive_lru_pages;
6365 	int z;
6366 
6367 	/* If not in reclaim/compaction mode, stop */
6368 	if (!in_reclaim_compaction(sc))
6369 		return false;
6370 
6371 	/*
6372 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6373 	 * number of pages that were scanned. This will return to the caller
6374 	 * with the risk reclaim/compaction and the resulting allocation attempt
6375 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6376 	 * allocations through requiring that the full LRU list has been scanned
6377 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6378 	 * scan, but that approximation was wrong, and there were corner cases
6379 	 * where always a non-zero amount of pages were scanned.
6380 	 */
6381 	if (!nr_reclaimed)
6382 		return false;
6383 
6384 	/* If compaction would go ahead or the allocation would succeed, stop */
6385 	for (z = 0; z <= sc->reclaim_idx; z++) {
6386 		struct zone *zone = &pgdat->node_zones[z];
6387 		if (!managed_zone(zone))
6388 			continue;
6389 
6390 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6391 		case COMPACT_SUCCESS:
6392 		case COMPACT_CONTINUE:
6393 			return false;
6394 		default:
6395 			/* check next zone */
6396 			;
6397 		}
6398 	}
6399 
6400 	/*
6401 	 * If we have not reclaimed enough pages for compaction and the
6402 	 * inactive lists are large enough, continue reclaiming
6403 	 */
6404 	pages_for_compaction = compact_gap(sc->order);
6405 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6406 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6407 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6408 
6409 	return inactive_lru_pages > pages_for_compaction;
6410 }
6411 
6412 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6413 {
6414 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6415 	struct mem_cgroup *memcg;
6416 
6417 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6418 	do {
6419 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6420 		unsigned long reclaimed;
6421 		unsigned long scanned;
6422 
6423 		/*
6424 		 * This loop can become CPU-bound when target memcgs
6425 		 * aren't eligible for reclaim - either because they
6426 		 * don't have any reclaimable pages, or because their
6427 		 * memory is explicitly protected. Avoid soft lockups.
6428 		 */
6429 		cond_resched();
6430 
6431 		mem_cgroup_calculate_protection(target_memcg, memcg);
6432 
6433 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6434 			/*
6435 			 * Hard protection.
6436 			 * If there is no reclaimable memory, OOM.
6437 			 */
6438 			continue;
6439 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6440 			/*
6441 			 * Soft protection.
6442 			 * Respect the protection only as long as
6443 			 * there is an unprotected supply
6444 			 * of reclaimable memory from other cgroups.
6445 			 */
6446 			if (!sc->memcg_low_reclaim) {
6447 				sc->memcg_low_skipped = 1;
6448 				continue;
6449 			}
6450 			memcg_memory_event(memcg, MEMCG_LOW);
6451 		}
6452 
6453 		reclaimed = sc->nr_reclaimed;
6454 		scanned = sc->nr_scanned;
6455 
6456 		shrink_lruvec(lruvec, sc);
6457 
6458 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6459 			    sc->priority);
6460 
6461 		/* Record the group's reclaim efficiency */
6462 		if (!sc->proactive)
6463 			vmpressure(sc->gfp_mask, memcg, false,
6464 				   sc->nr_scanned - scanned,
6465 				   sc->nr_reclaimed - reclaimed);
6466 
6467 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6468 }
6469 
6470 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6471 {
6472 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6473 	struct lruvec *target_lruvec;
6474 	bool reclaimable = false;
6475 
6476 	if (lru_gen_enabled() && global_reclaim(sc)) {
6477 		lru_gen_shrink_node(pgdat, sc);
6478 		return;
6479 	}
6480 
6481 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6482 
6483 again:
6484 	memset(&sc->nr, 0, sizeof(sc->nr));
6485 
6486 	nr_reclaimed = sc->nr_reclaimed;
6487 	nr_scanned = sc->nr_scanned;
6488 
6489 	prepare_scan_count(pgdat, sc);
6490 
6491 	shrink_node_memcgs(pgdat, sc);
6492 
6493 	flush_reclaim_state(sc);
6494 
6495 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6496 
6497 	/* Record the subtree's reclaim efficiency */
6498 	if (!sc->proactive)
6499 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6500 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6501 
6502 	if (nr_node_reclaimed)
6503 		reclaimable = true;
6504 
6505 	if (current_is_kswapd()) {
6506 		/*
6507 		 * If reclaim is isolating dirty pages under writeback,
6508 		 * it implies that the long-lived page allocation rate
6509 		 * is exceeding the page laundering rate. Either the
6510 		 * global limits are not being effective at throttling
6511 		 * processes due to the page distribution throughout
6512 		 * zones or there is heavy usage of a slow backing
6513 		 * device. The only option is to throttle from reclaim
6514 		 * context which is not ideal as there is no guarantee
6515 		 * the dirtying process is throttled in the same way
6516 		 * balance_dirty_pages() manages.
6517 		 *
6518 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6519 		 * count the number of pages under pages flagged for
6520 		 * immediate reclaim and stall if any are encountered
6521 		 * in the nr_immediate check below.
6522 		 */
6523 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6524 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6525 
6526 		/* Allow kswapd to start writing pages during reclaim.*/
6527 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6528 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6529 
6530 		/*
6531 		 * If kswapd scans pages marked for immediate
6532 		 * reclaim and under writeback (nr_immediate), it
6533 		 * implies that pages are cycling through the LRU
6534 		 * faster than they are written so forcibly stall
6535 		 * until some pages complete writeback.
6536 		 */
6537 		if (sc->nr.immediate)
6538 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6539 	}
6540 
6541 	/*
6542 	 * Tag a node/memcg as congested if all the dirty pages were marked
6543 	 * for writeback and immediate reclaim (counted in nr.congested).
6544 	 *
6545 	 * Legacy memcg will stall in page writeback so avoid forcibly
6546 	 * stalling in reclaim_throttle().
6547 	 */
6548 	if ((current_is_kswapd() ||
6549 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6550 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6551 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6552 
6553 	/*
6554 	 * Stall direct reclaim for IO completions if the lruvec is
6555 	 * node is congested. Allow kswapd to continue until it
6556 	 * starts encountering unqueued dirty pages or cycling through
6557 	 * the LRU too quickly.
6558 	 */
6559 	if (!current_is_kswapd() && current_may_throttle() &&
6560 	    !sc->hibernation_mode &&
6561 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6562 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6563 
6564 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6565 		goto again;
6566 
6567 	/*
6568 	 * Kswapd gives up on balancing particular nodes after too
6569 	 * many failures to reclaim anything from them and goes to
6570 	 * sleep. On reclaim progress, reset the failure counter. A
6571 	 * successful direct reclaim run will revive a dormant kswapd.
6572 	 */
6573 	if (reclaimable)
6574 		pgdat->kswapd_failures = 0;
6575 }
6576 
6577 /*
6578  * Returns true if compaction should go ahead for a costly-order request, or
6579  * the allocation would already succeed without compaction. Return false if we
6580  * should reclaim first.
6581  */
6582 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6583 {
6584 	unsigned long watermark;
6585 	enum compact_result suitable;
6586 
6587 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6588 	if (suitable == COMPACT_SUCCESS)
6589 		/* Allocation should succeed already. Don't reclaim. */
6590 		return true;
6591 	if (suitable == COMPACT_SKIPPED)
6592 		/* Compaction cannot yet proceed. Do reclaim. */
6593 		return false;
6594 
6595 	/*
6596 	 * Compaction is already possible, but it takes time to run and there
6597 	 * are potentially other callers using the pages just freed. So proceed
6598 	 * with reclaim to make a buffer of free pages available to give
6599 	 * compaction a reasonable chance of completing and allocating the page.
6600 	 * Note that we won't actually reclaim the whole buffer in one attempt
6601 	 * as the target watermark in should_continue_reclaim() is lower. But if
6602 	 * we are already above the high+gap watermark, don't reclaim at all.
6603 	 */
6604 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6605 
6606 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6607 }
6608 
6609 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6610 {
6611 	/*
6612 	 * If reclaim is making progress greater than 12% efficiency then
6613 	 * wake all the NOPROGRESS throttled tasks.
6614 	 */
6615 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6616 		wait_queue_head_t *wqh;
6617 
6618 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6619 		if (waitqueue_active(wqh))
6620 			wake_up(wqh);
6621 
6622 		return;
6623 	}
6624 
6625 	/*
6626 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6627 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6628 	 * under writeback and marked for immediate reclaim at the tail of the
6629 	 * LRU.
6630 	 */
6631 	if (current_is_kswapd() || cgroup_reclaim(sc))
6632 		return;
6633 
6634 	/* Throttle if making no progress at high prioities. */
6635 	if (sc->priority == 1 && !sc->nr_reclaimed)
6636 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6637 }
6638 
6639 /*
6640  * This is the direct reclaim path, for page-allocating processes.  We only
6641  * try to reclaim pages from zones which will satisfy the caller's allocation
6642  * request.
6643  *
6644  * If a zone is deemed to be full of pinned pages then just give it a light
6645  * scan then give up on it.
6646  */
6647 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6648 {
6649 	struct zoneref *z;
6650 	struct zone *zone;
6651 	unsigned long nr_soft_reclaimed;
6652 	unsigned long nr_soft_scanned;
6653 	gfp_t orig_mask;
6654 	pg_data_t *last_pgdat = NULL;
6655 	pg_data_t *first_pgdat = NULL;
6656 
6657 	/*
6658 	 * If the number of buffer_heads in the machine exceeds the maximum
6659 	 * allowed level, force direct reclaim to scan the highmem zone as
6660 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6661 	 */
6662 	orig_mask = sc->gfp_mask;
6663 	if (buffer_heads_over_limit) {
6664 		sc->gfp_mask |= __GFP_HIGHMEM;
6665 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6666 	}
6667 
6668 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6669 					sc->reclaim_idx, sc->nodemask) {
6670 		/*
6671 		 * Take care memory controller reclaiming has small influence
6672 		 * to global LRU.
6673 		 */
6674 		if (!cgroup_reclaim(sc)) {
6675 			if (!cpuset_zone_allowed(zone,
6676 						 GFP_KERNEL | __GFP_HARDWALL))
6677 				continue;
6678 
6679 			/*
6680 			 * If we already have plenty of memory free for
6681 			 * compaction in this zone, don't free any more.
6682 			 * Even though compaction is invoked for any
6683 			 * non-zero order, only frequent costly order
6684 			 * reclamation is disruptive enough to become a
6685 			 * noticeable problem, like transparent huge
6686 			 * page allocations.
6687 			 */
6688 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6689 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6690 			    compaction_ready(zone, sc)) {
6691 				sc->compaction_ready = true;
6692 				continue;
6693 			}
6694 
6695 			/*
6696 			 * Shrink each node in the zonelist once. If the
6697 			 * zonelist is ordered by zone (not the default) then a
6698 			 * node may be shrunk multiple times but in that case
6699 			 * the user prefers lower zones being preserved.
6700 			 */
6701 			if (zone->zone_pgdat == last_pgdat)
6702 				continue;
6703 
6704 			/*
6705 			 * This steals pages from memory cgroups over softlimit
6706 			 * and returns the number of reclaimed pages and
6707 			 * scanned pages. This works for global memory pressure
6708 			 * and balancing, not for a memcg's limit.
6709 			 */
6710 			nr_soft_scanned = 0;
6711 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6712 						sc->order, sc->gfp_mask,
6713 						&nr_soft_scanned);
6714 			sc->nr_reclaimed += nr_soft_reclaimed;
6715 			sc->nr_scanned += nr_soft_scanned;
6716 			/* need some check for avoid more shrink_zone() */
6717 		}
6718 
6719 		if (!first_pgdat)
6720 			first_pgdat = zone->zone_pgdat;
6721 
6722 		/* See comment about same check for global reclaim above */
6723 		if (zone->zone_pgdat == last_pgdat)
6724 			continue;
6725 		last_pgdat = zone->zone_pgdat;
6726 		shrink_node(zone->zone_pgdat, sc);
6727 	}
6728 
6729 	if (first_pgdat)
6730 		consider_reclaim_throttle(first_pgdat, sc);
6731 
6732 	/*
6733 	 * Restore to original mask to avoid the impact on the caller if we
6734 	 * promoted it to __GFP_HIGHMEM.
6735 	 */
6736 	sc->gfp_mask = orig_mask;
6737 }
6738 
6739 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6740 {
6741 	struct lruvec *target_lruvec;
6742 	unsigned long refaults;
6743 
6744 	if (lru_gen_enabled())
6745 		return;
6746 
6747 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6748 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6749 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6750 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6751 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6752 }
6753 
6754 /*
6755  * This is the main entry point to direct page reclaim.
6756  *
6757  * If a full scan of the inactive list fails to free enough memory then we
6758  * are "out of memory" and something needs to be killed.
6759  *
6760  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6761  * high - the zone may be full of dirty or under-writeback pages, which this
6762  * caller can't do much about.  We kick the writeback threads and take explicit
6763  * naps in the hope that some of these pages can be written.  But if the
6764  * allocating task holds filesystem locks which prevent writeout this might not
6765  * work, and the allocation attempt will fail.
6766  *
6767  * returns:	0, if no pages reclaimed
6768  * 		else, the number of pages reclaimed
6769  */
6770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6771 					  struct scan_control *sc)
6772 {
6773 	int initial_priority = sc->priority;
6774 	pg_data_t *last_pgdat;
6775 	struct zoneref *z;
6776 	struct zone *zone;
6777 retry:
6778 	delayacct_freepages_start();
6779 
6780 	if (!cgroup_reclaim(sc))
6781 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6782 
6783 	do {
6784 		if (!sc->proactive)
6785 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6786 					sc->priority);
6787 		sc->nr_scanned = 0;
6788 		shrink_zones(zonelist, sc);
6789 
6790 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6791 			break;
6792 
6793 		if (sc->compaction_ready)
6794 			break;
6795 
6796 		/*
6797 		 * If we're getting trouble reclaiming, start doing
6798 		 * writepage even in laptop mode.
6799 		 */
6800 		if (sc->priority < DEF_PRIORITY - 2)
6801 			sc->may_writepage = 1;
6802 	} while (--sc->priority >= 0);
6803 
6804 	last_pgdat = NULL;
6805 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6806 					sc->nodemask) {
6807 		if (zone->zone_pgdat == last_pgdat)
6808 			continue;
6809 		last_pgdat = zone->zone_pgdat;
6810 
6811 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6812 
6813 		if (cgroup_reclaim(sc)) {
6814 			struct lruvec *lruvec;
6815 
6816 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6817 						   zone->zone_pgdat);
6818 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6819 		}
6820 	}
6821 
6822 	delayacct_freepages_end();
6823 
6824 	if (sc->nr_reclaimed)
6825 		return sc->nr_reclaimed;
6826 
6827 	/* Aborted reclaim to try compaction? don't OOM, then */
6828 	if (sc->compaction_ready)
6829 		return 1;
6830 
6831 	/*
6832 	 * We make inactive:active ratio decisions based on the node's
6833 	 * composition of memory, but a restrictive reclaim_idx or a
6834 	 * memory.low cgroup setting can exempt large amounts of
6835 	 * memory from reclaim. Neither of which are very common, so
6836 	 * instead of doing costly eligibility calculations of the
6837 	 * entire cgroup subtree up front, we assume the estimates are
6838 	 * good, and retry with forcible deactivation if that fails.
6839 	 */
6840 	if (sc->skipped_deactivate) {
6841 		sc->priority = initial_priority;
6842 		sc->force_deactivate = 1;
6843 		sc->skipped_deactivate = 0;
6844 		goto retry;
6845 	}
6846 
6847 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6848 	if (sc->memcg_low_skipped) {
6849 		sc->priority = initial_priority;
6850 		sc->force_deactivate = 0;
6851 		sc->memcg_low_reclaim = 1;
6852 		sc->memcg_low_skipped = 0;
6853 		goto retry;
6854 	}
6855 
6856 	return 0;
6857 }
6858 
6859 static bool allow_direct_reclaim(pg_data_t *pgdat)
6860 {
6861 	struct zone *zone;
6862 	unsigned long pfmemalloc_reserve = 0;
6863 	unsigned long free_pages = 0;
6864 	int i;
6865 	bool wmark_ok;
6866 
6867 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6868 		return true;
6869 
6870 	for (i = 0; i <= ZONE_NORMAL; i++) {
6871 		zone = &pgdat->node_zones[i];
6872 		if (!managed_zone(zone))
6873 			continue;
6874 
6875 		if (!zone_reclaimable_pages(zone))
6876 			continue;
6877 
6878 		pfmemalloc_reserve += min_wmark_pages(zone);
6879 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6880 	}
6881 
6882 	/* If there are no reserves (unexpected config) then do not throttle */
6883 	if (!pfmemalloc_reserve)
6884 		return true;
6885 
6886 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6887 
6888 	/* kswapd must be awake if processes are being throttled */
6889 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6890 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6891 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6892 
6893 		wake_up_interruptible(&pgdat->kswapd_wait);
6894 	}
6895 
6896 	return wmark_ok;
6897 }
6898 
6899 /*
6900  * Throttle direct reclaimers if backing storage is backed by the network
6901  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6902  * depleted. kswapd will continue to make progress and wake the processes
6903  * when the low watermark is reached.
6904  *
6905  * Returns true if a fatal signal was delivered during throttling. If this
6906  * happens, the page allocator should not consider triggering the OOM killer.
6907  */
6908 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6909 					nodemask_t *nodemask)
6910 {
6911 	struct zoneref *z;
6912 	struct zone *zone;
6913 	pg_data_t *pgdat = NULL;
6914 
6915 	/*
6916 	 * Kernel threads should not be throttled as they may be indirectly
6917 	 * responsible for cleaning pages necessary for reclaim to make forward
6918 	 * progress. kjournald for example may enter direct reclaim while
6919 	 * committing a transaction where throttling it could forcing other
6920 	 * processes to block on log_wait_commit().
6921 	 */
6922 	if (current->flags & PF_KTHREAD)
6923 		goto out;
6924 
6925 	/*
6926 	 * If a fatal signal is pending, this process should not throttle.
6927 	 * It should return quickly so it can exit and free its memory
6928 	 */
6929 	if (fatal_signal_pending(current))
6930 		goto out;
6931 
6932 	/*
6933 	 * Check if the pfmemalloc reserves are ok by finding the first node
6934 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6935 	 * GFP_KERNEL will be required for allocating network buffers when
6936 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6937 	 *
6938 	 * Throttling is based on the first usable node and throttled processes
6939 	 * wait on a queue until kswapd makes progress and wakes them. There
6940 	 * is an affinity then between processes waking up and where reclaim
6941 	 * progress has been made assuming the process wakes on the same node.
6942 	 * More importantly, processes running on remote nodes will not compete
6943 	 * for remote pfmemalloc reserves and processes on different nodes
6944 	 * should make reasonable progress.
6945 	 */
6946 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6947 					gfp_zone(gfp_mask), nodemask) {
6948 		if (zone_idx(zone) > ZONE_NORMAL)
6949 			continue;
6950 
6951 		/* Throttle based on the first usable node */
6952 		pgdat = zone->zone_pgdat;
6953 		if (allow_direct_reclaim(pgdat))
6954 			goto out;
6955 		break;
6956 	}
6957 
6958 	/* If no zone was usable by the allocation flags then do not throttle */
6959 	if (!pgdat)
6960 		goto out;
6961 
6962 	/* Account for the throttling */
6963 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6964 
6965 	/*
6966 	 * If the caller cannot enter the filesystem, it's possible that it
6967 	 * is due to the caller holding an FS lock or performing a journal
6968 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6969 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6970 	 * blocked waiting on the same lock. Instead, throttle for up to a
6971 	 * second before continuing.
6972 	 */
6973 	if (!(gfp_mask & __GFP_FS))
6974 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6975 			allow_direct_reclaim(pgdat), HZ);
6976 	else
6977 		/* Throttle until kswapd wakes the process */
6978 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6979 			allow_direct_reclaim(pgdat));
6980 
6981 	if (fatal_signal_pending(current))
6982 		return true;
6983 
6984 out:
6985 	return false;
6986 }
6987 
6988 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6989 				gfp_t gfp_mask, nodemask_t *nodemask)
6990 {
6991 	unsigned long nr_reclaimed;
6992 	struct scan_control sc = {
6993 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6994 		.gfp_mask = current_gfp_context(gfp_mask),
6995 		.reclaim_idx = gfp_zone(gfp_mask),
6996 		.order = order,
6997 		.nodemask = nodemask,
6998 		.priority = DEF_PRIORITY,
6999 		.may_writepage = !laptop_mode,
7000 		.may_unmap = 1,
7001 		.may_swap = 1,
7002 	};
7003 
7004 	/*
7005 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7006 	 * Confirm they are large enough for max values.
7007 	 */
7008 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7009 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7010 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7011 
7012 	/*
7013 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7014 	 * 1 is returned so that the page allocator does not OOM kill at this
7015 	 * point.
7016 	 */
7017 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7018 		return 1;
7019 
7020 	set_task_reclaim_state(current, &sc.reclaim_state);
7021 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7022 
7023 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7024 
7025 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7026 	set_task_reclaim_state(current, NULL);
7027 
7028 	return nr_reclaimed;
7029 }
7030 
7031 #ifdef CONFIG_MEMCG
7032 
7033 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7034 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7035 						gfp_t gfp_mask, bool noswap,
7036 						pg_data_t *pgdat,
7037 						unsigned long *nr_scanned)
7038 {
7039 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7040 	struct scan_control sc = {
7041 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7042 		.target_mem_cgroup = memcg,
7043 		.may_writepage = !laptop_mode,
7044 		.may_unmap = 1,
7045 		.reclaim_idx = MAX_NR_ZONES - 1,
7046 		.may_swap = !noswap,
7047 	};
7048 
7049 	WARN_ON_ONCE(!current->reclaim_state);
7050 
7051 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7052 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7053 
7054 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7055 						      sc.gfp_mask);
7056 
7057 	/*
7058 	 * NOTE: Although we can get the priority field, using it
7059 	 * here is not a good idea, since it limits the pages we can scan.
7060 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7061 	 * will pick up pages from other mem cgroup's as well. We hack
7062 	 * the priority and make it zero.
7063 	 */
7064 	shrink_lruvec(lruvec, &sc);
7065 
7066 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7067 
7068 	*nr_scanned = sc.nr_scanned;
7069 
7070 	return sc.nr_reclaimed;
7071 }
7072 
7073 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7074 					   unsigned long nr_pages,
7075 					   gfp_t gfp_mask,
7076 					   unsigned int reclaim_options)
7077 {
7078 	unsigned long nr_reclaimed;
7079 	unsigned int noreclaim_flag;
7080 	struct scan_control sc = {
7081 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7082 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7083 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7084 		.reclaim_idx = MAX_NR_ZONES - 1,
7085 		.target_mem_cgroup = memcg,
7086 		.priority = DEF_PRIORITY,
7087 		.may_writepage = !laptop_mode,
7088 		.may_unmap = 1,
7089 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7090 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7091 	};
7092 	/*
7093 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7094 	 * equal pressure on all the nodes. This is based on the assumption that
7095 	 * the reclaim does not bail out early.
7096 	 */
7097 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7098 
7099 	set_task_reclaim_state(current, &sc.reclaim_state);
7100 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7101 	noreclaim_flag = memalloc_noreclaim_save();
7102 
7103 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7104 
7105 	memalloc_noreclaim_restore(noreclaim_flag);
7106 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7107 	set_task_reclaim_state(current, NULL);
7108 
7109 	return nr_reclaimed;
7110 }
7111 #endif
7112 
7113 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7114 {
7115 	struct mem_cgroup *memcg;
7116 	struct lruvec *lruvec;
7117 
7118 	if (lru_gen_enabled()) {
7119 		lru_gen_age_node(pgdat, sc);
7120 		return;
7121 	}
7122 
7123 	if (!can_age_anon_pages(pgdat, sc))
7124 		return;
7125 
7126 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7127 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7128 		return;
7129 
7130 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7131 	do {
7132 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7133 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7134 				   sc, LRU_ACTIVE_ANON);
7135 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7136 	} while (memcg);
7137 }
7138 
7139 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7140 {
7141 	int i;
7142 	struct zone *zone;
7143 
7144 	/*
7145 	 * Check for watermark boosts top-down as the higher zones
7146 	 * are more likely to be boosted. Both watermarks and boosts
7147 	 * should not be checked at the same time as reclaim would
7148 	 * start prematurely when there is no boosting and a lower
7149 	 * zone is balanced.
7150 	 */
7151 	for (i = highest_zoneidx; i >= 0; i--) {
7152 		zone = pgdat->node_zones + i;
7153 		if (!managed_zone(zone))
7154 			continue;
7155 
7156 		if (zone->watermark_boost)
7157 			return true;
7158 	}
7159 
7160 	return false;
7161 }
7162 
7163 /*
7164  * Returns true if there is an eligible zone balanced for the request order
7165  * and highest_zoneidx
7166  */
7167 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7168 {
7169 	int i;
7170 	unsigned long mark = -1;
7171 	struct zone *zone;
7172 
7173 	/*
7174 	 * Check watermarks bottom-up as lower zones are more likely to
7175 	 * meet watermarks.
7176 	 */
7177 	for (i = 0; i <= highest_zoneidx; i++) {
7178 		zone = pgdat->node_zones + i;
7179 
7180 		if (!managed_zone(zone))
7181 			continue;
7182 
7183 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7184 			mark = wmark_pages(zone, WMARK_PROMO);
7185 		else
7186 			mark = high_wmark_pages(zone);
7187 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7188 			return true;
7189 	}
7190 
7191 	/*
7192 	 * If a node has no managed zone within highest_zoneidx, it does not
7193 	 * need balancing by definition. This can happen if a zone-restricted
7194 	 * allocation tries to wake a remote kswapd.
7195 	 */
7196 	if (mark == -1)
7197 		return true;
7198 
7199 	return false;
7200 }
7201 
7202 /* Clear pgdat state for congested, dirty or under writeback. */
7203 static void clear_pgdat_congested(pg_data_t *pgdat)
7204 {
7205 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7206 
7207 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7208 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7209 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7210 }
7211 
7212 /*
7213  * Prepare kswapd for sleeping. This verifies that there are no processes
7214  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7215  *
7216  * Returns true if kswapd is ready to sleep
7217  */
7218 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7219 				int highest_zoneidx)
7220 {
7221 	/*
7222 	 * The throttled processes are normally woken up in balance_pgdat() as
7223 	 * soon as allow_direct_reclaim() is true. But there is a potential
7224 	 * race between when kswapd checks the watermarks and a process gets
7225 	 * throttled. There is also a potential race if processes get
7226 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7227 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7228 	 * the wake up checks. If kswapd is going to sleep, no process should
7229 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7230 	 * the wake up is premature, processes will wake kswapd and get
7231 	 * throttled again. The difference from wake ups in balance_pgdat() is
7232 	 * that here we are under prepare_to_wait().
7233 	 */
7234 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7235 		wake_up_all(&pgdat->pfmemalloc_wait);
7236 
7237 	/* Hopeless node, leave it to direct reclaim */
7238 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7239 		return true;
7240 
7241 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7242 		clear_pgdat_congested(pgdat);
7243 		return true;
7244 	}
7245 
7246 	return false;
7247 }
7248 
7249 /*
7250  * kswapd shrinks a node of pages that are at or below the highest usable
7251  * zone that is currently unbalanced.
7252  *
7253  * Returns true if kswapd scanned at least the requested number of pages to
7254  * reclaim or if the lack of progress was due to pages under writeback.
7255  * This is used to determine if the scanning priority needs to be raised.
7256  */
7257 static bool kswapd_shrink_node(pg_data_t *pgdat,
7258 			       struct scan_control *sc)
7259 {
7260 	struct zone *zone;
7261 	int z;
7262 
7263 	/* Reclaim a number of pages proportional to the number of zones */
7264 	sc->nr_to_reclaim = 0;
7265 	for (z = 0; z <= sc->reclaim_idx; z++) {
7266 		zone = pgdat->node_zones + z;
7267 		if (!managed_zone(zone))
7268 			continue;
7269 
7270 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7271 	}
7272 
7273 	/*
7274 	 * Historically care was taken to put equal pressure on all zones but
7275 	 * now pressure is applied based on node LRU order.
7276 	 */
7277 	shrink_node(pgdat, sc);
7278 
7279 	/*
7280 	 * Fragmentation may mean that the system cannot be rebalanced for
7281 	 * high-order allocations. If twice the allocation size has been
7282 	 * reclaimed then recheck watermarks only at order-0 to prevent
7283 	 * excessive reclaim. Assume that a process requested a high-order
7284 	 * can direct reclaim/compact.
7285 	 */
7286 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7287 		sc->order = 0;
7288 
7289 	return sc->nr_scanned >= sc->nr_to_reclaim;
7290 }
7291 
7292 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7293 static inline void
7294 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7295 {
7296 	int i;
7297 	struct zone *zone;
7298 
7299 	for (i = 0; i <= highest_zoneidx; i++) {
7300 		zone = pgdat->node_zones + i;
7301 
7302 		if (!managed_zone(zone))
7303 			continue;
7304 
7305 		if (active)
7306 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7307 		else
7308 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7309 	}
7310 }
7311 
7312 static inline void
7313 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7314 {
7315 	update_reclaim_active(pgdat, highest_zoneidx, true);
7316 }
7317 
7318 static inline void
7319 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7320 {
7321 	update_reclaim_active(pgdat, highest_zoneidx, false);
7322 }
7323 
7324 /*
7325  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7326  * that are eligible for use by the caller until at least one zone is
7327  * balanced.
7328  *
7329  * Returns the order kswapd finished reclaiming at.
7330  *
7331  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7332  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7333  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7334  * or lower is eligible for reclaim until at least one usable zone is
7335  * balanced.
7336  */
7337 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7338 {
7339 	int i;
7340 	unsigned long nr_soft_reclaimed;
7341 	unsigned long nr_soft_scanned;
7342 	unsigned long pflags;
7343 	unsigned long nr_boost_reclaim;
7344 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7345 	bool boosted;
7346 	struct zone *zone;
7347 	struct scan_control sc = {
7348 		.gfp_mask = GFP_KERNEL,
7349 		.order = order,
7350 		.may_unmap = 1,
7351 	};
7352 
7353 	set_task_reclaim_state(current, &sc.reclaim_state);
7354 	psi_memstall_enter(&pflags);
7355 	__fs_reclaim_acquire(_THIS_IP_);
7356 
7357 	count_vm_event(PAGEOUTRUN);
7358 
7359 	/*
7360 	 * Account for the reclaim boost. Note that the zone boost is left in
7361 	 * place so that parallel allocations that are near the watermark will
7362 	 * stall or direct reclaim until kswapd is finished.
7363 	 */
7364 	nr_boost_reclaim = 0;
7365 	for (i = 0; i <= highest_zoneidx; i++) {
7366 		zone = pgdat->node_zones + i;
7367 		if (!managed_zone(zone))
7368 			continue;
7369 
7370 		nr_boost_reclaim += zone->watermark_boost;
7371 		zone_boosts[i] = zone->watermark_boost;
7372 	}
7373 	boosted = nr_boost_reclaim;
7374 
7375 restart:
7376 	set_reclaim_active(pgdat, highest_zoneidx);
7377 	sc.priority = DEF_PRIORITY;
7378 	do {
7379 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7380 		bool raise_priority = true;
7381 		bool balanced;
7382 		bool ret;
7383 
7384 		sc.reclaim_idx = highest_zoneidx;
7385 
7386 		/*
7387 		 * If the number of buffer_heads exceeds the maximum allowed
7388 		 * then consider reclaiming from all zones. This has a dual
7389 		 * purpose -- on 64-bit systems it is expected that
7390 		 * buffer_heads are stripped during active rotation. On 32-bit
7391 		 * systems, highmem pages can pin lowmem memory and shrinking
7392 		 * buffers can relieve lowmem pressure. Reclaim may still not
7393 		 * go ahead if all eligible zones for the original allocation
7394 		 * request are balanced to avoid excessive reclaim from kswapd.
7395 		 */
7396 		if (buffer_heads_over_limit) {
7397 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7398 				zone = pgdat->node_zones + i;
7399 				if (!managed_zone(zone))
7400 					continue;
7401 
7402 				sc.reclaim_idx = i;
7403 				break;
7404 			}
7405 		}
7406 
7407 		/*
7408 		 * If the pgdat is imbalanced then ignore boosting and preserve
7409 		 * the watermarks for a later time and restart. Note that the
7410 		 * zone watermarks will be still reset at the end of balancing
7411 		 * on the grounds that the normal reclaim should be enough to
7412 		 * re-evaluate if boosting is required when kswapd next wakes.
7413 		 */
7414 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7415 		if (!balanced && nr_boost_reclaim) {
7416 			nr_boost_reclaim = 0;
7417 			goto restart;
7418 		}
7419 
7420 		/*
7421 		 * If boosting is not active then only reclaim if there are no
7422 		 * eligible zones. Note that sc.reclaim_idx is not used as
7423 		 * buffer_heads_over_limit may have adjusted it.
7424 		 */
7425 		if (!nr_boost_reclaim && balanced)
7426 			goto out;
7427 
7428 		/* Limit the priority of boosting to avoid reclaim writeback */
7429 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7430 			raise_priority = false;
7431 
7432 		/*
7433 		 * Do not writeback or swap pages for boosted reclaim. The
7434 		 * intent is to relieve pressure not issue sub-optimal IO
7435 		 * from reclaim context. If no pages are reclaimed, the
7436 		 * reclaim will be aborted.
7437 		 */
7438 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7439 		sc.may_swap = !nr_boost_reclaim;
7440 
7441 		/*
7442 		 * Do some background aging, to give pages a chance to be
7443 		 * referenced before reclaiming. All pages are rotated
7444 		 * regardless of classzone as this is about consistent aging.
7445 		 */
7446 		kswapd_age_node(pgdat, &sc);
7447 
7448 		/*
7449 		 * If we're getting trouble reclaiming, start doing writepage
7450 		 * even in laptop mode.
7451 		 */
7452 		if (sc.priority < DEF_PRIORITY - 2)
7453 			sc.may_writepage = 1;
7454 
7455 		/* Call soft limit reclaim before calling shrink_node. */
7456 		sc.nr_scanned = 0;
7457 		nr_soft_scanned = 0;
7458 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7459 						sc.gfp_mask, &nr_soft_scanned);
7460 		sc.nr_reclaimed += nr_soft_reclaimed;
7461 
7462 		/*
7463 		 * There should be no need to raise the scanning priority if
7464 		 * enough pages are already being scanned that that high
7465 		 * watermark would be met at 100% efficiency.
7466 		 */
7467 		if (kswapd_shrink_node(pgdat, &sc))
7468 			raise_priority = false;
7469 
7470 		/*
7471 		 * If the low watermark is met there is no need for processes
7472 		 * to be throttled on pfmemalloc_wait as they should not be
7473 		 * able to safely make forward progress. Wake them
7474 		 */
7475 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7476 				allow_direct_reclaim(pgdat))
7477 			wake_up_all(&pgdat->pfmemalloc_wait);
7478 
7479 		/* Check if kswapd should be suspending */
7480 		__fs_reclaim_release(_THIS_IP_);
7481 		ret = try_to_freeze();
7482 		__fs_reclaim_acquire(_THIS_IP_);
7483 		if (ret || kthread_should_stop())
7484 			break;
7485 
7486 		/*
7487 		 * Raise priority if scanning rate is too low or there was no
7488 		 * progress in reclaiming pages
7489 		 */
7490 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7491 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7492 
7493 		/*
7494 		 * If reclaim made no progress for a boost, stop reclaim as
7495 		 * IO cannot be queued and it could be an infinite loop in
7496 		 * extreme circumstances.
7497 		 */
7498 		if (nr_boost_reclaim && !nr_reclaimed)
7499 			break;
7500 
7501 		if (raise_priority || !nr_reclaimed)
7502 			sc.priority--;
7503 	} while (sc.priority >= 1);
7504 
7505 	if (!sc.nr_reclaimed)
7506 		pgdat->kswapd_failures++;
7507 
7508 out:
7509 	clear_reclaim_active(pgdat, highest_zoneidx);
7510 
7511 	/* If reclaim was boosted, account for the reclaim done in this pass */
7512 	if (boosted) {
7513 		unsigned long flags;
7514 
7515 		for (i = 0; i <= highest_zoneidx; i++) {
7516 			if (!zone_boosts[i])
7517 				continue;
7518 
7519 			/* Increments are under the zone lock */
7520 			zone = pgdat->node_zones + i;
7521 			spin_lock_irqsave(&zone->lock, flags);
7522 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7523 			spin_unlock_irqrestore(&zone->lock, flags);
7524 		}
7525 
7526 		/*
7527 		 * As there is now likely space, wakeup kcompact to defragment
7528 		 * pageblocks.
7529 		 */
7530 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7531 	}
7532 
7533 	snapshot_refaults(NULL, pgdat);
7534 	__fs_reclaim_release(_THIS_IP_);
7535 	psi_memstall_leave(&pflags);
7536 	set_task_reclaim_state(current, NULL);
7537 
7538 	/*
7539 	 * Return the order kswapd stopped reclaiming at as
7540 	 * prepare_kswapd_sleep() takes it into account. If another caller
7541 	 * entered the allocator slow path while kswapd was awake, order will
7542 	 * remain at the higher level.
7543 	 */
7544 	return sc.order;
7545 }
7546 
7547 /*
7548  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7549  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7550  * not a valid index then either kswapd runs for first time or kswapd couldn't
7551  * sleep after previous reclaim attempt (node is still unbalanced). In that
7552  * case return the zone index of the previous kswapd reclaim cycle.
7553  */
7554 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7555 					   enum zone_type prev_highest_zoneidx)
7556 {
7557 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7558 
7559 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7560 }
7561 
7562 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7563 				unsigned int highest_zoneidx)
7564 {
7565 	long remaining = 0;
7566 	DEFINE_WAIT(wait);
7567 
7568 	if (freezing(current) || kthread_should_stop())
7569 		return;
7570 
7571 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7572 
7573 	/*
7574 	 * Try to sleep for a short interval. Note that kcompactd will only be
7575 	 * woken if it is possible to sleep for a short interval. This is
7576 	 * deliberate on the assumption that if reclaim cannot keep an
7577 	 * eligible zone balanced that it's also unlikely that compaction will
7578 	 * succeed.
7579 	 */
7580 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7581 		/*
7582 		 * Compaction records what page blocks it recently failed to
7583 		 * isolate pages from and skips them in the future scanning.
7584 		 * When kswapd is going to sleep, it is reasonable to assume
7585 		 * that pages and compaction may succeed so reset the cache.
7586 		 */
7587 		reset_isolation_suitable(pgdat);
7588 
7589 		/*
7590 		 * We have freed the memory, now we should compact it to make
7591 		 * allocation of the requested order possible.
7592 		 */
7593 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7594 
7595 		remaining = schedule_timeout(HZ/10);
7596 
7597 		/*
7598 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7599 		 * order. The values will either be from a wakeup request or
7600 		 * the previous request that slept prematurely.
7601 		 */
7602 		if (remaining) {
7603 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7604 					kswapd_highest_zoneidx(pgdat,
7605 							highest_zoneidx));
7606 
7607 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7608 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7609 		}
7610 
7611 		finish_wait(&pgdat->kswapd_wait, &wait);
7612 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7613 	}
7614 
7615 	/*
7616 	 * After a short sleep, check if it was a premature sleep. If not, then
7617 	 * go fully to sleep until explicitly woken up.
7618 	 */
7619 	if (!remaining &&
7620 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7621 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7622 
7623 		/*
7624 		 * vmstat counters are not perfectly accurate and the estimated
7625 		 * value for counters such as NR_FREE_PAGES can deviate from the
7626 		 * true value by nr_online_cpus * threshold. To avoid the zone
7627 		 * watermarks being breached while under pressure, we reduce the
7628 		 * per-cpu vmstat threshold while kswapd is awake and restore
7629 		 * them before going back to sleep.
7630 		 */
7631 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7632 
7633 		if (!kthread_should_stop())
7634 			schedule();
7635 
7636 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7637 	} else {
7638 		if (remaining)
7639 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7640 		else
7641 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7642 	}
7643 	finish_wait(&pgdat->kswapd_wait, &wait);
7644 }
7645 
7646 /*
7647  * The background pageout daemon, started as a kernel thread
7648  * from the init process.
7649  *
7650  * This basically trickles out pages so that we have _some_
7651  * free memory available even if there is no other activity
7652  * that frees anything up. This is needed for things like routing
7653  * etc, where we otherwise might have all activity going on in
7654  * asynchronous contexts that cannot page things out.
7655  *
7656  * If there are applications that are active memory-allocators
7657  * (most normal use), this basically shouldn't matter.
7658  */
7659 static int kswapd(void *p)
7660 {
7661 	unsigned int alloc_order, reclaim_order;
7662 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7663 	pg_data_t *pgdat = (pg_data_t *)p;
7664 	struct task_struct *tsk = current;
7665 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7666 
7667 	if (!cpumask_empty(cpumask))
7668 		set_cpus_allowed_ptr(tsk, cpumask);
7669 
7670 	/*
7671 	 * Tell the memory management that we're a "memory allocator",
7672 	 * and that if we need more memory we should get access to it
7673 	 * regardless (see "__alloc_pages()"). "kswapd" should
7674 	 * never get caught in the normal page freeing logic.
7675 	 *
7676 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7677 	 * you need a small amount of memory in order to be able to
7678 	 * page out something else, and this flag essentially protects
7679 	 * us from recursively trying to free more memory as we're
7680 	 * trying to free the first piece of memory in the first place).
7681 	 */
7682 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7683 	set_freezable();
7684 
7685 	WRITE_ONCE(pgdat->kswapd_order, 0);
7686 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7687 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7688 	for ( ; ; ) {
7689 		bool ret;
7690 
7691 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7692 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7693 							highest_zoneidx);
7694 
7695 kswapd_try_sleep:
7696 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7697 					highest_zoneidx);
7698 
7699 		/* Read the new order and highest_zoneidx */
7700 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7701 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7702 							highest_zoneidx);
7703 		WRITE_ONCE(pgdat->kswapd_order, 0);
7704 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7705 
7706 		ret = try_to_freeze();
7707 		if (kthread_should_stop())
7708 			break;
7709 
7710 		/*
7711 		 * We can speed up thawing tasks if we don't call balance_pgdat
7712 		 * after returning from the refrigerator
7713 		 */
7714 		if (ret)
7715 			continue;
7716 
7717 		/*
7718 		 * Reclaim begins at the requested order but if a high-order
7719 		 * reclaim fails then kswapd falls back to reclaiming for
7720 		 * order-0. If that happens, kswapd will consider sleeping
7721 		 * for the order it finished reclaiming at (reclaim_order)
7722 		 * but kcompactd is woken to compact for the original
7723 		 * request (alloc_order).
7724 		 */
7725 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7726 						alloc_order);
7727 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7728 						highest_zoneidx);
7729 		if (reclaim_order < alloc_order)
7730 			goto kswapd_try_sleep;
7731 	}
7732 
7733 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7734 
7735 	return 0;
7736 }
7737 
7738 /*
7739  * A zone is low on free memory or too fragmented for high-order memory.  If
7740  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7741  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7742  * has failed or is not needed, still wake up kcompactd if only compaction is
7743  * needed.
7744  */
7745 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7746 		   enum zone_type highest_zoneidx)
7747 {
7748 	pg_data_t *pgdat;
7749 	enum zone_type curr_idx;
7750 
7751 	if (!managed_zone(zone))
7752 		return;
7753 
7754 	if (!cpuset_zone_allowed(zone, gfp_flags))
7755 		return;
7756 
7757 	pgdat = zone->zone_pgdat;
7758 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7759 
7760 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7761 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7762 
7763 	if (READ_ONCE(pgdat->kswapd_order) < order)
7764 		WRITE_ONCE(pgdat->kswapd_order, order);
7765 
7766 	if (!waitqueue_active(&pgdat->kswapd_wait))
7767 		return;
7768 
7769 	/* Hopeless node, leave it to direct reclaim if possible */
7770 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7771 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7772 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7773 		/*
7774 		 * There may be plenty of free memory available, but it's too
7775 		 * fragmented for high-order allocations.  Wake up kcompactd
7776 		 * and rely on compaction_suitable() to determine if it's
7777 		 * needed.  If it fails, it will defer subsequent attempts to
7778 		 * ratelimit its work.
7779 		 */
7780 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7781 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7782 		return;
7783 	}
7784 
7785 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7786 				      gfp_flags);
7787 	wake_up_interruptible(&pgdat->kswapd_wait);
7788 }
7789 
7790 #ifdef CONFIG_HIBERNATION
7791 /*
7792  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7793  * freed pages.
7794  *
7795  * Rather than trying to age LRUs the aim is to preserve the overall
7796  * LRU order by reclaiming preferentially
7797  * inactive > active > active referenced > active mapped
7798  */
7799 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7800 {
7801 	struct scan_control sc = {
7802 		.nr_to_reclaim = nr_to_reclaim,
7803 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7804 		.reclaim_idx = MAX_NR_ZONES - 1,
7805 		.priority = DEF_PRIORITY,
7806 		.may_writepage = 1,
7807 		.may_unmap = 1,
7808 		.may_swap = 1,
7809 		.hibernation_mode = 1,
7810 	};
7811 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7812 	unsigned long nr_reclaimed;
7813 	unsigned int noreclaim_flag;
7814 
7815 	fs_reclaim_acquire(sc.gfp_mask);
7816 	noreclaim_flag = memalloc_noreclaim_save();
7817 	set_task_reclaim_state(current, &sc.reclaim_state);
7818 
7819 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7820 
7821 	set_task_reclaim_state(current, NULL);
7822 	memalloc_noreclaim_restore(noreclaim_flag);
7823 	fs_reclaim_release(sc.gfp_mask);
7824 
7825 	return nr_reclaimed;
7826 }
7827 #endif /* CONFIG_HIBERNATION */
7828 
7829 /*
7830  * This kswapd start function will be called by init and node-hot-add.
7831  */
7832 void kswapd_run(int nid)
7833 {
7834 	pg_data_t *pgdat = NODE_DATA(nid);
7835 
7836 	pgdat_kswapd_lock(pgdat);
7837 	if (!pgdat->kswapd) {
7838 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7839 		if (IS_ERR(pgdat->kswapd)) {
7840 			/* failure at boot is fatal */
7841 			BUG_ON(system_state < SYSTEM_RUNNING);
7842 			pr_err("Failed to start kswapd on node %d\n", nid);
7843 			pgdat->kswapd = NULL;
7844 		}
7845 	}
7846 	pgdat_kswapd_unlock(pgdat);
7847 }
7848 
7849 /*
7850  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7851  * be holding mem_hotplug_begin/done().
7852  */
7853 void kswapd_stop(int nid)
7854 {
7855 	pg_data_t *pgdat = NODE_DATA(nid);
7856 	struct task_struct *kswapd;
7857 
7858 	pgdat_kswapd_lock(pgdat);
7859 	kswapd = pgdat->kswapd;
7860 	if (kswapd) {
7861 		kthread_stop(kswapd);
7862 		pgdat->kswapd = NULL;
7863 	}
7864 	pgdat_kswapd_unlock(pgdat);
7865 }
7866 
7867 static int __init kswapd_init(void)
7868 {
7869 	int nid;
7870 
7871 	swap_setup();
7872 	for_each_node_state(nid, N_MEMORY)
7873  		kswapd_run(nid);
7874 	return 0;
7875 }
7876 
7877 module_init(kswapd_init)
7878 
7879 #ifdef CONFIG_NUMA
7880 /*
7881  * Node reclaim mode
7882  *
7883  * If non-zero call node_reclaim when the number of free pages falls below
7884  * the watermarks.
7885  */
7886 int node_reclaim_mode __read_mostly;
7887 
7888 /*
7889  * Priority for NODE_RECLAIM. This determines the fraction of pages
7890  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7891  * a zone.
7892  */
7893 #define NODE_RECLAIM_PRIORITY 4
7894 
7895 /*
7896  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7897  * occur.
7898  */
7899 int sysctl_min_unmapped_ratio = 1;
7900 
7901 /*
7902  * If the number of slab pages in a zone grows beyond this percentage then
7903  * slab reclaim needs to occur.
7904  */
7905 int sysctl_min_slab_ratio = 5;
7906 
7907 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7908 {
7909 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7910 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7911 		node_page_state(pgdat, NR_ACTIVE_FILE);
7912 
7913 	/*
7914 	 * It's possible for there to be more file mapped pages than
7915 	 * accounted for by the pages on the file LRU lists because
7916 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7917 	 */
7918 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7919 }
7920 
7921 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7922 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7923 {
7924 	unsigned long nr_pagecache_reclaimable;
7925 	unsigned long delta = 0;
7926 
7927 	/*
7928 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7929 	 * potentially reclaimable. Otherwise, we have to worry about
7930 	 * pages like swapcache and node_unmapped_file_pages() provides
7931 	 * a better estimate
7932 	 */
7933 	if (node_reclaim_mode & RECLAIM_UNMAP)
7934 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7935 	else
7936 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7937 
7938 	/* If we can't clean pages, remove dirty pages from consideration */
7939 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7940 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7941 
7942 	/* Watch for any possible underflows due to delta */
7943 	if (unlikely(delta > nr_pagecache_reclaimable))
7944 		delta = nr_pagecache_reclaimable;
7945 
7946 	return nr_pagecache_reclaimable - delta;
7947 }
7948 
7949 /*
7950  * Try to free up some pages from this node through reclaim.
7951  */
7952 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7953 {
7954 	/* Minimum pages needed in order to stay on node */
7955 	const unsigned long nr_pages = 1 << order;
7956 	struct task_struct *p = current;
7957 	unsigned int noreclaim_flag;
7958 	struct scan_control sc = {
7959 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7960 		.gfp_mask = current_gfp_context(gfp_mask),
7961 		.order = order,
7962 		.priority = NODE_RECLAIM_PRIORITY,
7963 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7964 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7965 		.may_swap = 1,
7966 		.reclaim_idx = gfp_zone(gfp_mask),
7967 	};
7968 	unsigned long pflags;
7969 
7970 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7971 					   sc.gfp_mask);
7972 
7973 	cond_resched();
7974 	psi_memstall_enter(&pflags);
7975 	fs_reclaim_acquire(sc.gfp_mask);
7976 	/*
7977 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7978 	 */
7979 	noreclaim_flag = memalloc_noreclaim_save();
7980 	set_task_reclaim_state(p, &sc.reclaim_state);
7981 
7982 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7983 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7984 		/*
7985 		 * Free memory by calling shrink node with increasing
7986 		 * priorities until we have enough memory freed.
7987 		 */
7988 		do {
7989 			shrink_node(pgdat, &sc);
7990 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7991 	}
7992 
7993 	set_task_reclaim_state(p, NULL);
7994 	memalloc_noreclaim_restore(noreclaim_flag);
7995 	fs_reclaim_release(sc.gfp_mask);
7996 	psi_memstall_leave(&pflags);
7997 
7998 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7999 
8000 	return sc.nr_reclaimed >= nr_pages;
8001 }
8002 
8003 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8004 {
8005 	int ret;
8006 
8007 	/*
8008 	 * Node reclaim reclaims unmapped file backed pages and
8009 	 * slab pages if we are over the defined limits.
8010 	 *
8011 	 * A small portion of unmapped file backed pages is needed for
8012 	 * file I/O otherwise pages read by file I/O will be immediately
8013 	 * thrown out if the node is overallocated. So we do not reclaim
8014 	 * if less than a specified percentage of the node is used by
8015 	 * unmapped file backed pages.
8016 	 */
8017 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8018 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8019 	    pgdat->min_slab_pages)
8020 		return NODE_RECLAIM_FULL;
8021 
8022 	/*
8023 	 * Do not scan if the allocation should not be delayed.
8024 	 */
8025 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8026 		return NODE_RECLAIM_NOSCAN;
8027 
8028 	/*
8029 	 * Only run node reclaim on the local node or on nodes that do not
8030 	 * have associated processors. This will favor the local processor
8031 	 * over remote processors and spread off node memory allocations
8032 	 * as wide as possible.
8033 	 */
8034 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8035 		return NODE_RECLAIM_NOSCAN;
8036 
8037 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8038 		return NODE_RECLAIM_NOSCAN;
8039 
8040 	ret = __node_reclaim(pgdat, gfp_mask, order);
8041 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8042 
8043 	if (!ret)
8044 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8045 
8046 	return ret;
8047 }
8048 #endif
8049 
8050 void check_move_unevictable_pages(struct pagevec *pvec)
8051 {
8052 	struct folio_batch fbatch;
8053 	unsigned i;
8054 
8055 	folio_batch_init(&fbatch);
8056 	for (i = 0; i < pvec->nr; i++) {
8057 		struct page *page = pvec->pages[i];
8058 
8059 		if (PageTransTail(page))
8060 			continue;
8061 		folio_batch_add(&fbatch, page_folio(page));
8062 	}
8063 	check_move_unevictable_folios(&fbatch);
8064 }
8065 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8066 
8067 /**
8068  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8069  * lru list
8070  * @fbatch: Batch of lru folios to check.
8071  *
8072  * Checks folios for evictability, if an evictable folio is in the unevictable
8073  * lru list, moves it to the appropriate evictable lru list. This function
8074  * should be only used for lru folios.
8075  */
8076 void check_move_unevictable_folios(struct folio_batch *fbatch)
8077 {
8078 	struct lruvec *lruvec = NULL;
8079 	int pgscanned = 0;
8080 	int pgrescued = 0;
8081 	int i;
8082 
8083 	for (i = 0; i < fbatch->nr; i++) {
8084 		struct folio *folio = fbatch->folios[i];
8085 		int nr_pages = folio_nr_pages(folio);
8086 
8087 		pgscanned += nr_pages;
8088 
8089 		/* block memcg migration while the folio moves between lrus */
8090 		if (!folio_test_clear_lru(folio))
8091 			continue;
8092 
8093 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8094 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8095 			lruvec_del_folio(lruvec, folio);
8096 			folio_clear_unevictable(folio);
8097 			lruvec_add_folio(lruvec, folio);
8098 			pgrescued += nr_pages;
8099 		}
8100 		folio_set_lru(folio);
8101 	}
8102 
8103 	if (lruvec) {
8104 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8105 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8106 		unlock_page_lruvec_irq(lruvec);
8107 	} else if (pgscanned) {
8108 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8109 	}
8110 }
8111 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8112