1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 unsigned int may_writepage:1; 88 89 /* Can mapped pages be reclaimed? */ 90 unsigned int may_unmap:1; 91 92 /* Can pages be swapped as part of reclaim? */ 93 unsigned int may_swap:1; 94 95 /* Can cgroups be reclaimed below their normal consumption range? */ 96 unsigned int may_thrash:1; 97 98 unsigned int hibernation_mode:1; 99 100 /* One of the zones is ready for compaction */ 101 unsigned int compaction_ready:1; 102 103 /* Incremented by the number of inactive pages that were scanned */ 104 unsigned long nr_scanned; 105 106 /* Number of pages freed so far during a call to shrink_zones() */ 107 unsigned long nr_reclaimed; 108 }; 109 110 #ifdef ARCH_HAS_PREFETCH 111 #define prefetch_prev_lru_page(_page, _base, _field) \ 112 do { \ 113 if ((_page)->lru.prev != _base) { \ 114 struct page *prev; \ 115 \ 116 prev = lru_to_page(&(_page->lru)); \ 117 prefetch(&prev->_field); \ 118 } \ 119 } while (0) 120 #else 121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 122 #endif 123 124 #ifdef ARCH_HAS_PREFETCHW 125 #define prefetchw_prev_lru_page(_page, _base, _field) \ 126 do { \ 127 if ((_page)->lru.prev != _base) { \ 128 struct page *prev; \ 129 \ 130 prev = lru_to_page(&(_page->lru)); \ 131 prefetchw(&prev->_field); \ 132 } \ 133 } while (0) 134 #else 135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 136 #endif 137 138 /* 139 * From 0 .. 100. Higher means more swappy. 140 */ 141 int vm_swappiness = 60; 142 /* 143 * The total number of pages which are beyond the high watermark within all 144 * zones. 145 */ 146 unsigned long vm_total_pages; 147 148 static LIST_HEAD(shrinker_list); 149 static DECLARE_RWSEM(shrinker_rwsem); 150 151 #ifdef CONFIG_MEMCG 152 static bool global_reclaim(struct scan_control *sc) 153 { 154 return !sc->target_mem_cgroup; 155 } 156 157 /** 158 * sane_reclaim - is the usual dirty throttling mechanism operational? 159 * @sc: scan_control in question 160 * 161 * The normal page dirty throttling mechanism in balance_dirty_pages() is 162 * completely broken with the legacy memcg and direct stalling in 163 * shrink_page_list() is used for throttling instead, which lacks all the 164 * niceties such as fairness, adaptive pausing, bandwidth proportional 165 * allocation and configurability. 166 * 167 * This function tests whether the vmscan currently in progress can assume 168 * that the normal dirty throttling mechanism is operational. 169 */ 170 static bool sane_reclaim(struct scan_control *sc) 171 { 172 struct mem_cgroup *memcg = sc->target_mem_cgroup; 173 174 if (!memcg) 175 return true; 176 #ifdef CONFIG_CGROUP_WRITEBACK 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 178 return true; 179 #endif 180 return false; 181 } 182 #else 183 static bool global_reclaim(struct scan_control *sc) 184 { 185 return true; 186 } 187 188 static bool sane_reclaim(struct scan_control *sc) 189 { 190 return true; 191 } 192 #endif 193 194 unsigned long zone_reclaimable_pages(struct zone *zone) 195 { 196 unsigned long nr; 197 198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) + 199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) + 200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE); 201 202 if (get_nr_swap_pages() > 0) 203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) + 204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) + 205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON); 206 207 return nr; 208 } 209 210 bool zone_reclaimable(struct zone *zone) 211 { 212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) < 213 zone_reclaimable_pages(zone) * 6; 214 } 215 216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 217 { 218 if (!mem_cgroup_disabled()) 219 return mem_cgroup_get_lru_size(lruvec, lru); 220 221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 222 } 223 224 /* 225 * Add a shrinker callback to be called from the vm. 226 */ 227 int register_shrinker(struct shrinker *shrinker) 228 { 229 size_t size = sizeof(*shrinker->nr_deferred); 230 231 if (shrinker->flags & SHRINKER_NUMA_AWARE) 232 size *= nr_node_ids; 233 234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 235 if (!shrinker->nr_deferred) 236 return -ENOMEM; 237 238 down_write(&shrinker_rwsem); 239 list_add_tail(&shrinker->list, &shrinker_list); 240 up_write(&shrinker_rwsem); 241 return 0; 242 } 243 EXPORT_SYMBOL(register_shrinker); 244 245 /* 246 * Remove one 247 */ 248 void unregister_shrinker(struct shrinker *shrinker) 249 { 250 down_write(&shrinker_rwsem); 251 list_del(&shrinker->list); 252 up_write(&shrinker_rwsem); 253 kfree(shrinker->nr_deferred); 254 } 255 EXPORT_SYMBOL(unregister_shrinker); 256 257 #define SHRINK_BATCH 128 258 259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 260 struct shrinker *shrinker, 261 unsigned long nr_scanned, 262 unsigned long nr_eligible) 263 { 264 unsigned long freed = 0; 265 unsigned long long delta; 266 long total_scan; 267 long freeable; 268 long nr; 269 long new_nr; 270 int nid = shrinkctl->nid; 271 long batch_size = shrinker->batch ? shrinker->batch 272 : SHRINK_BATCH; 273 274 freeable = shrinker->count_objects(shrinker, shrinkctl); 275 if (freeable == 0) 276 return 0; 277 278 /* 279 * copy the current shrinker scan count into a local variable 280 * and zero it so that other concurrent shrinker invocations 281 * don't also do this scanning work. 282 */ 283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 284 285 total_scan = nr; 286 delta = (4 * nr_scanned) / shrinker->seeks; 287 delta *= freeable; 288 do_div(delta, nr_eligible + 1); 289 total_scan += delta; 290 if (total_scan < 0) { 291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 292 shrinker->scan_objects, total_scan); 293 total_scan = freeable; 294 } 295 296 /* 297 * We need to avoid excessive windup on filesystem shrinkers 298 * due to large numbers of GFP_NOFS allocations causing the 299 * shrinkers to return -1 all the time. This results in a large 300 * nr being built up so when a shrink that can do some work 301 * comes along it empties the entire cache due to nr >>> 302 * freeable. This is bad for sustaining a working set in 303 * memory. 304 * 305 * Hence only allow the shrinker to scan the entire cache when 306 * a large delta change is calculated directly. 307 */ 308 if (delta < freeable / 4) 309 total_scan = min(total_scan, freeable / 2); 310 311 /* 312 * Avoid risking looping forever due to too large nr value: 313 * never try to free more than twice the estimate number of 314 * freeable entries. 315 */ 316 if (total_scan > freeable * 2) 317 total_scan = freeable * 2; 318 319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 320 nr_scanned, nr_eligible, 321 freeable, delta, total_scan); 322 323 /* 324 * Normally, we should not scan less than batch_size objects in one 325 * pass to avoid too frequent shrinker calls, but if the slab has less 326 * than batch_size objects in total and we are really tight on memory, 327 * we will try to reclaim all available objects, otherwise we can end 328 * up failing allocations although there are plenty of reclaimable 329 * objects spread over several slabs with usage less than the 330 * batch_size. 331 * 332 * We detect the "tight on memory" situations by looking at the total 333 * number of objects we want to scan (total_scan). If it is greater 334 * than the total number of objects on slab (freeable), we must be 335 * scanning at high prio and therefore should try to reclaim as much as 336 * possible. 337 */ 338 while (total_scan >= batch_size || 339 total_scan >= freeable) { 340 unsigned long ret; 341 unsigned long nr_to_scan = min(batch_size, total_scan); 342 343 shrinkctl->nr_to_scan = nr_to_scan; 344 ret = shrinker->scan_objects(shrinker, shrinkctl); 345 if (ret == SHRINK_STOP) 346 break; 347 freed += ret; 348 349 count_vm_events(SLABS_SCANNED, nr_to_scan); 350 total_scan -= nr_to_scan; 351 352 cond_resched(); 353 } 354 355 /* 356 * move the unused scan count back into the shrinker in a 357 * manner that handles concurrent updates. If we exhausted the 358 * scan, there is no need to do an update. 359 */ 360 if (total_scan > 0) 361 new_nr = atomic_long_add_return(total_scan, 362 &shrinker->nr_deferred[nid]); 363 else 364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 365 366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 367 return freed; 368 } 369 370 /** 371 * shrink_slab - shrink slab caches 372 * @gfp_mask: allocation context 373 * @nid: node whose slab caches to target 374 * @memcg: memory cgroup whose slab caches to target 375 * @nr_scanned: pressure numerator 376 * @nr_eligible: pressure denominator 377 * 378 * Call the shrink functions to age shrinkable caches. 379 * 380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 381 * unaware shrinkers will receive a node id of 0 instead. 382 * 383 * @memcg specifies the memory cgroup to target. If it is not NULL, 384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 385 * objects from the memory cgroup specified. Otherwise, only unaware 386 * shrinkers are called. 387 * 388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 389 * the available objects should be scanned. Page reclaim for example 390 * passes the number of pages scanned and the number of pages on the 391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 392 * when it encountered mapped pages. The ratio is further biased by 393 * the ->seeks setting of the shrink function, which indicates the 394 * cost to recreate an object relative to that of an LRU page. 395 * 396 * Returns the number of reclaimed slab objects. 397 */ 398 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 399 struct mem_cgroup *memcg, 400 unsigned long nr_scanned, 401 unsigned long nr_eligible) 402 { 403 struct shrinker *shrinker; 404 unsigned long freed = 0; 405 406 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 407 return 0; 408 409 if (nr_scanned == 0) 410 nr_scanned = SWAP_CLUSTER_MAX; 411 412 if (!down_read_trylock(&shrinker_rwsem)) { 413 /* 414 * If we would return 0, our callers would understand that we 415 * have nothing else to shrink and give up trying. By returning 416 * 1 we keep it going and assume we'll be able to shrink next 417 * time. 418 */ 419 freed = 1; 420 goto out; 421 } 422 423 list_for_each_entry(shrinker, &shrinker_list, list) { 424 struct shrink_control sc = { 425 .gfp_mask = gfp_mask, 426 .nid = nid, 427 .memcg = memcg, 428 }; 429 430 /* 431 * If kernel memory accounting is disabled, we ignore 432 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 433 * passing NULL for memcg. 434 */ 435 if (memcg_kmem_enabled() && 436 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 437 continue; 438 439 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 440 sc.nid = 0; 441 442 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 443 } 444 445 up_read(&shrinker_rwsem); 446 out: 447 cond_resched(); 448 return freed; 449 } 450 451 void drop_slab_node(int nid) 452 { 453 unsigned long freed; 454 455 do { 456 struct mem_cgroup *memcg = NULL; 457 458 freed = 0; 459 do { 460 freed += shrink_slab(GFP_KERNEL, nid, memcg, 461 1000, 1000); 462 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 463 } while (freed > 10); 464 } 465 466 void drop_slab(void) 467 { 468 int nid; 469 470 for_each_online_node(nid) 471 drop_slab_node(nid); 472 } 473 474 static inline int is_page_cache_freeable(struct page *page) 475 { 476 /* 477 * A freeable page cache page is referenced only by the caller 478 * that isolated the page, the page cache radix tree and 479 * optional buffer heads at page->private. 480 */ 481 return page_count(page) - page_has_private(page) == 2; 482 } 483 484 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 485 { 486 if (current->flags & PF_SWAPWRITE) 487 return 1; 488 if (!inode_write_congested(inode)) 489 return 1; 490 if (inode_to_bdi(inode) == current->backing_dev_info) 491 return 1; 492 return 0; 493 } 494 495 /* 496 * We detected a synchronous write error writing a page out. Probably 497 * -ENOSPC. We need to propagate that into the address_space for a subsequent 498 * fsync(), msync() or close(). 499 * 500 * The tricky part is that after writepage we cannot touch the mapping: nothing 501 * prevents it from being freed up. But we have a ref on the page and once 502 * that page is locked, the mapping is pinned. 503 * 504 * We're allowed to run sleeping lock_page() here because we know the caller has 505 * __GFP_FS. 506 */ 507 static void handle_write_error(struct address_space *mapping, 508 struct page *page, int error) 509 { 510 lock_page(page); 511 if (page_mapping(page) == mapping) 512 mapping_set_error(mapping, error); 513 unlock_page(page); 514 } 515 516 /* possible outcome of pageout() */ 517 typedef enum { 518 /* failed to write page out, page is locked */ 519 PAGE_KEEP, 520 /* move page to the active list, page is locked */ 521 PAGE_ACTIVATE, 522 /* page has been sent to the disk successfully, page is unlocked */ 523 PAGE_SUCCESS, 524 /* page is clean and locked */ 525 PAGE_CLEAN, 526 } pageout_t; 527 528 /* 529 * pageout is called by shrink_page_list() for each dirty page. 530 * Calls ->writepage(). 531 */ 532 static pageout_t pageout(struct page *page, struct address_space *mapping, 533 struct scan_control *sc) 534 { 535 /* 536 * If the page is dirty, only perform writeback if that write 537 * will be non-blocking. To prevent this allocation from being 538 * stalled by pagecache activity. But note that there may be 539 * stalls if we need to run get_block(). We could test 540 * PagePrivate for that. 541 * 542 * If this process is currently in __generic_file_write_iter() against 543 * this page's queue, we can perform writeback even if that 544 * will block. 545 * 546 * If the page is swapcache, write it back even if that would 547 * block, for some throttling. This happens by accident, because 548 * swap_backing_dev_info is bust: it doesn't reflect the 549 * congestion state of the swapdevs. Easy to fix, if needed. 550 */ 551 if (!is_page_cache_freeable(page)) 552 return PAGE_KEEP; 553 if (!mapping) { 554 /* 555 * Some data journaling orphaned pages can have 556 * page->mapping == NULL while being dirty with clean buffers. 557 */ 558 if (page_has_private(page)) { 559 if (try_to_free_buffers(page)) { 560 ClearPageDirty(page); 561 pr_info("%s: orphaned page\n", __func__); 562 return PAGE_CLEAN; 563 } 564 } 565 return PAGE_KEEP; 566 } 567 if (mapping->a_ops->writepage == NULL) 568 return PAGE_ACTIVATE; 569 if (!may_write_to_inode(mapping->host, sc)) 570 return PAGE_KEEP; 571 572 if (clear_page_dirty_for_io(page)) { 573 int res; 574 struct writeback_control wbc = { 575 .sync_mode = WB_SYNC_NONE, 576 .nr_to_write = SWAP_CLUSTER_MAX, 577 .range_start = 0, 578 .range_end = LLONG_MAX, 579 .for_reclaim = 1, 580 }; 581 582 SetPageReclaim(page); 583 res = mapping->a_ops->writepage(page, &wbc); 584 if (res < 0) 585 handle_write_error(mapping, page, res); 586 if (res == AOP_WRITEPAGE_ACTIVATE) { 587 ClearPageReclaim(page); 588 return PAGE_ACTIVATE; 589 } 590 591 if (!PageWriteback(page)) { 592 /* synchronous write or broken a_ops? */ 593 ClearPageReclaim(page); 594 } 595 trace_mm_vmscan_writepage(page); 596 inc_zone_page_state(page, NR_VMSCAN_WRITE); 597 return PAGE_SUCCESS; 598 } 599 600 return PAGE_CLEAN; 601 } 602 603 /* 604 * Same as remove_mapping, but if the page is removed from the mapping, it 605 * gets returned with a refcount of 0. 606 */ 607 static int __remove_mapping(struct address_space *mapping, struct page *page, 608 bool reclaimed) 609 { 610 unsigned long flags; 611 612 BUG_ON(!PageLocked(page)); 613 BUG_ON(mapping != page_mapping(page)); 614 615 spin_lock_irqsave(&mapping->tree_lock, flags); 616 /* 617 * The non racy check for a busy page. 618 * 619 * Must be careful with the order of the tests. When someone has 620 * a ref to the page, it may be possible that they dirty it then 621 * drop the reference. So if PageDirty is tested before page_count 622 * here, then the following race may occur: 623 * 624 * get_user_pages(&page); 625 * [user mapping goes away] 626 * write_to(page); 627 * !PageDirty(page) [good] 628 * SetPageDirty(page); 629 * put_page(page); 630 * !page_count(page) [good, discard it] 631 * 632 * [oops, our write_to data is lost] 633 * 634 * Reversing the order of the tests ensures such a situation cannot 635 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 636 * load is not satisfied before that of page->_refcount. 637 * 638 * Note that if SetPageDirty is always performed via set_page_dirty, 639 * and thus under tree_lock, then this ordering is not required. 640 */ 641 if (!page_ref_freeze(page, 2)) 642 goto cannot_free; 643 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 644 if (unlikely(PageDirty(page))) { 645 page_ref_unfreeze(page, 2); 646 goto cannot_free; 647 } 648 649 if (PageSwapCache(page)) { 650 swp_entry_t swap = { .val = page_private(page) }; 651 mem_cgroup_swapout(page, swap); 652 __delete_from_swap_cache(page); 653 spin_unlock_irqrestore(&mapping->tree_lock, flags); 654 swapcache_free(swap); 655 } else { 656 void (*freepage)(struct page *); 657 void *shadow = NULL; 658 659 freepage = mapping->a_ops->freepage; 660 /* 661 * Remember a shadow entry for reclaimed file cache in 662 * order to detect refaults, thus thrashing, later on. 663 * 664 * But don't store shadows in an address space that is 665 * already exiting. This is not just an optizimation, 666 * inode reclaim needs to empty out the radix tree or 667 * the nodes are lost. Don't plant shadows behind its 668 * back. 669 * 670 * We also don't store shadows for DAX mappings because the 671 * only page cache pages found in these are zero pages 672 * covering holes, and because we don't want to mix DAX 673 * exceptional entries and shadow exceptional entries in the 674 * same page_tree. 675 */ 676 if (reclaimed && page_is_file_cache(page) && 677 !mapping_exiting(mapping) && !dax_mapping(mapping)) 678 shadow = workingset_eviction(mapping, page); 679 __delete_from_page_cache(page, shadow); 680 spin_unlock_irqrestore(&mapping->tree_lock, flags); 681 682 if (freepage != NULL) 683 freepage(page); 684 } 685 686 return 1; 687 688 cannot_free: 689 spin_unlock_irqrestore(&mapping->tree_lock, flags); 690 return 0; 691 } 692 693 /* 694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 695 * someone else has a ref on the page, abort and return 0. If it was 696 * successfully detached, return 1. Assumes the caller has a single ref on 697 * this page. 698 */ 699 int remove_mapping(struct address_space *mapping, struct page *page) 700 { 701 if (__remove_mapping(mapping, page, false)) { 702 /* 703 * Unfreezing the refcount with 1 rather than 2 effectively 704 * drops the pagecache ref for us without requiring another 705 * atomic operation. 706 */ 707 page_ref_unfreeze(page, 1); 708 return 1; 709 } 710 return 0; 711 } 712 713 /** 714 * putback_lru_page - put previously isolated page onto appropriate LRU list 715 * @page: page to be put back to appropriate lru list 716 * 717 * Add previously isolated @page to appropriate LRU list. 718 * Page may still be unevictable for other reasons. 719 * 720 * lru_lock must not be held, interrupts must be enabled. 721 */ 722 void putback_lru_page(struct page *page) 723 { 724 bool is_unevictable; 725 int was_unevictable = PageUnevictable(page); 726 727 VM_BUG_ON_PAGE(PageLRU(page), page); 728 729 redo: 730 ClearPageUnevictable(page); 731 732 if (page_evictable(page)) { 733 /* 734 * For evictable pages, we can use the cache. 735 * In event of a race, worst case is we end up with an 736 * unevictable page on [in]active list. 737 * We know how to handle that. 738 */ 739 is_unevictable = false; 740 lru_cache_add(page); 741 } else { 742 /* 743 * Put unevictable pages directly on zone's unevictable 744 * list. 745 */ 746 is_unevictable = true; 747 add_page_to_unevictable_list(page); 748 /* 749 * When racing with an mlock or AS_UNEVICTABLE clearing 750 * (page is unlocked) make sure that if the other thread 751 * does not observe our setting of PG_lru and fails 752 * isolation/check_move_unevictable_pages, 753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 754 * the page back to the evictable list. 755 * 756 * The other side is TestClearPageMlocked() or shmem_lock(). 757 */ 758 smp_mb(); 759 } 760 761 /* 762 * page's status can change while we move it among lru. If an evictable 763 * page is on unevictable list, it never be freed. To avoid that, 764 * check after we added it to the list, again. 765 */ 766 if (is_unevictable && page_evictable(page)) { 767 if (!isolate_lru_page(page)) { 768 put_page(page); 769 goto redo; 770 } 771 /* This means someone else dropped this page from LRU 772 * So, it will be freed or putback to LRU again. There is 773 * nothing to do here. 774 */ 775 } 776 777 if (was_unevictable && !is_unevictable) 778 count_vm_event(UNEVICTABLE_PGRESCUED); 779 else if (!was_unevictable && is_unevictable) 780 count_vm_event(UNEVICTABLE_PGCULLED); 781 782 put_page(page); /* drop ref from isolate */ 783 } 784 785 enum page_references { 786 PAGEREF_RECLAIM, 787 PAGEREF_RECLAIM_CLEAN, 788 PAGEREF_KEEP, 789 PAGEREF_ACTIVATE, 790 }; 791 792 static enum page_references page_check_references(struct page *page, 793 struct scan_control *sc) 794 { 795 int referenced_ptes, referenced_page; 796 unsigned long vm_flags; 797 798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 799 &vm_flags); 800 referenced_page = TestClearPageReferenced(page); 801 802 /* 803 * Mlock lost the isolation race with us. Let try_to_unmap() 804 * move the page to the unevictable list. 805 */ 806 if (vm_flags & VM_LOCKED) 807 return PAGEREF_RECLAIM; 808 809 if (referenced_ptes) { 810 if (PageSwapBacked(page)) 811 return PAGEREF_ACTIVATE; 812 /* 813 * All mapped pages start out with page table 814 * references from the instantiating fault, so we need 815 * to look twice if a mapped file page is used more 816 * than once. 817 * 818 * Mark it and spare it for another trip around the 819 * inactive list. Another page table reference will 820 * lead to its activation. 821 * 822 * Note: the mark is set for activated pages as well 823 * so that recently deactivated but used pages are 824 * quickly recovered. 825 */ 826 SetPageReferenced(page); 827 828 if (referenced_page || referenced_ptes > 1) 829 return PAGEREF_ACTIVATE; 830 831 /* 832 * Activate file-backed executable pages after first usage. 833 */ 834 if (vm_flags & VM_EXEC) 835 return PAGEREF_ACTIVATE; 836 837 return PAGEREF_KEEP; 838 } 839 840 /* Reclaim if clean, defer dirty pages to writeback */ 841 if (referenced_page && !PageSwapBacked(page)) 842 return PAGEREF_RECLAIM_CLEAN; 843 844 return PAGEREF_RECLAIM; 845 } 846 847 /* Check if a page is dirty or under writeback */ 848 static void page_check_dirty_writeback(struct page *page, 849 bool *dirty, bool *writeback) 850 { 851 struct address_space *mapping; 852 853 /* 854 * Anonymous pages are not handled by flushers and must be written 855 * from reclaim context. Do not stall reclaim based on them 856 */ 857 if (!page_is_file_cache(page)) { 858 *dirty = false; 859 *writeback = false; 860 return; 861 } 862 863 /* By default assume that the page flags are accurate */ 864 *dirty = PageDirty(page); 865 *writeback = PageWriteback(page); 866 867 /* Verify dirty/writeback state if the filesystem supports it */ 868 if (!page_has_private(page)) 869 return; 870 871 mapping = page_mapping(page); 872 if (mapping && mapping->a_ops->is_dirty_writeback) 873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 874 } 875 876 /* 877 * shrink_page_list() returns the number of reclaimed pages 878 */ 879 static unsigned long shrink_page_list(struct list_head *page_list, 880 struct zone *zone, 881 struct scan_control *sc, 882 enum ttu_flags ttu_flags, 883 unsigned long *ret_nr_dirty, 884 unsigned long *ret_nr_unqueued_dirty, 885 unsigned long *ret_nr_congested, 886 unsigned long *ret_nr_writeback, 887 unsigned long *ret_nr_immediate, 888 bool force_reclaim) 889 { 890 LIST_HEAD(ret_pages); 891 LIST_HEAD(free_pages); 892 int pgactivate = 0; 893 unsigned long nr_unqueued_dirty = 0; 894 unsigned long nr_dirty = 0; 895 unsigned long nr_congested = 0; 896 unsigned long nr_reclaimed = 0; 897 unsigned long nr_writeback = 0; 898 unsigned long nr_immediate = 0; 899 900 cond_resched(); 901 902 while (!list_empty(page_list)) { 903 struct address_space *mapping; 904 struct page *page; 905 int may_enter_fs; 906 enum page_references references = PAGEREF_RECLAIM_CLEAN; 907 bool dirty, writeback; 908 bool lazyfree = false; 909 int ret = SWAP_SUCCESS; 910 911 cond_resched(); 912 913 page = lru_to_page(page_list); 914 list_del(&page->lru); 915 916 if (!trylock_page(page)) 917 goto keep; 918 919 VM_BUG_ON_PAGE(PageActive(page), page); 920 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 921 922 sc->nr_scanned++; 923 924 if (unlikely(!page_evictable(page))) 925 goto cull_mlocked; 926 927 if (!sc->may_unmap && page_mapped(page)) 928 goto keep_locked; 929 930 /* Double the slab pressure for mapped and swapcache pages */ 931 if (page_mapped(page) || PageSwapCache(page)) 932 sc->nr_scanned++; 933 934 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 936 937 /* 938 * The number of dirty pages determines if a zone is marked 939 * reclaim_congested which affects wait_iff_congested. kswapd 940 * will stall and start writing pages if the tail of the LRU 941 * is all dirty unqueued pages. 942 */ 943 page_check_dirty_writeback(page, &dirty, &writeback); 944 if (dirty || writeback) 945 nr_dirty++; 946 947 if (dirty && !writeback) 948 nr_unqueued_dirty++; 949 950 /* 951 * Treat this page as congested if the underlying BDI is or if 952 * pages are cycling through the LRU so quickly that the 953 * pages marked for immediate reclaim are making it to the 954 * end of the LRU a second time. 955 */ 956 mapping = page_mapping(page); 957 if (((dirty || writeback) && mapping && 958 inode_write_congested(mapping->host)) || 959 (writeback && PageReclaim(page))) 960 nr_congested++; 961 962 /* 963 * If a page at the tail of the LRU is under writeback, there 964 * are three cases to consider. 965 * 966 * 1) If reclaim is encountering an excessive number of pages 967 * under writeback and this page is both under writeback and 968 * PageReclaim then it indicates that pages are being queued 969 * for IO but are being recycled through the LRU before the 970 * IO can complete. Waiting on the page itself risks an 971 * indefinite stall if it is impossible to writeback the 972 * page due to IO error or disconnected storage so instead 973 * note that the LRU is being scanned too quickly and the 974 * caller can stall after page list has been processed. 975 * 976 * 2) Global or new memcg reclaim encounters a page that is 977 * not marked for immediate reclaim, or the caller does not 978 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 979 * not to fs). In this case mark the page for immediate 980 * reclaim and continue scanning. 981 * 982 * Require may_enter_fs because we would wait on fs, which 983 * may not have submitted IO yet. And the loop driver might 984 * enter reclaim, and deadlock if it waits on a page for 985 * which it is needed to do the write (loop masks off 986 * __GFP_IO|__GFP_FS for this reason); but more thought 987 * would probably show more reasons. 988 * 989 * 3) Legacy memcg encounters a page that is already marked 990 * PageReclaim. memcg does not have any dirty pages 991 * throttling so we could easily OOM just because too many 992 * pages are in writeback and there is nothing else to 993 * reclaim. Wait for the writeback to complete. 994 */ 995 if (PageWriteback(page)) { 996 /* Case 1 above */ 997 if (current_is_kswapd() && 998 PageReclaim(page) && 999 test_bit(ZONE_WRITEBACK, &zone->flags)) { 1000 nr_immediate++; 1001 goto keep_locked; 1002 1003 /* Case 2 above */ 1004 } else if (sane_reclaim(sc) || 1005 !PageReclaim(page) || !may_enter_fs) { 1006 /* 1007 * This is slightly racy - end_page_writeback() 1008 * might have just cleared PageReclaim, then 1009 * setting PageReclaim here end up interpreted 1010 * as PageReadahead - but that does not matter 1011 * enough to care. What we do want is for this 1012 * page to have PageReclaim set next time memcg 1013 * reclaim reaches the tests above, so it will 1014 * then wait_on_page_writeback() to avoid OOM; 1015 * and it's also appropriate in global reclaim. 1016 */ 1017 SetPageReclaim(page); 1018 nr_writeback++; 1019 goto keep_locked; 1020 1021 /* Case 3 above */ 1022 } else { 1023 unlock_page(page); 1024 wait_on_page_writeback(page); 1025 /* then go back and try same page again */ 1026 list_add_tail(&page->lru, page_list); 1027 continue; 1028 } 1029 } 1030 1031 if (!force_reclaim) 1032 references = page_check_references(page, sc); 1033 1034 switch (references) { 1035 case PAGEREF_ACTIVATE: 1036 goto activate_locked; 1037 case PAGEREF_KEEP: 1038 goto keep_locked; 1039 case PAGEREF_RECLAIM: 1040 case PAGEREF_RECLAIM_CLEAN: 1041 ; /* try to reclaim the page below */ 1042 } 1043 1044 /* 1045 * Anonymous process memory has backing store? 1046 * Try to allocate it some swap space here. 1047 */ 1048 if (PageAnon(page) && !PageSwapCache(page)) { 1049 if (!(sc->gfp_mask & __GFP_IO)) 1050 goto keep_locked; 1051 if (!add_to_swap(page, page_list)) 1052 goto activate_locked; 1053 lazyfree = true; 1054 may_enter_fs = 1; 1055 1056 /* Adding to swap updated mapping */ 1057 mapping = page_mapping(page); 1058 } 1059 1060 /* 1061 * The page is mapped into the page tables of one or more 1062 * processes. Try to unmap it here. 1063 */ 1064 if (page_mapped(page) && mapping) { 1065 switch (ret = try_to_unmap(page, lazyfree ? 1066 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1067 (ttu_flags | TTU_BATCH_FLUSH))) { 1068 case SWAP_FAIL: 1069 goto activate_locked; 1070 case SWAP_AGAIN: 1071 goto keep_locked; 1072 case SWAP_MLOCK: 1073 goto cull_mlocked; 1074 case SWAP_LZFREE: 1075 goto lazyfree; 1076 case SWAP_SUCCESS: 1077 ; /* try to free the page below */ 1078 } 1079 } 1080 1081 if (PageDirty(page)) { 1082 /* 1083 * Only kswapd can writeback filesystem pages to 1084 * avoid risk of stack overflow but only writeback 1085 * if many dirty pages have been encountered. 1086 */ 1087 if (page_is_file_cache(page) && 1088 (!current_is_kswapd() || 1089 !test_bit(ZONE_DIRTY, &zone->flags))) { 1090 /* 1091 * Immediately reclaim when written back. 1092 * Similar in principal to deactivate_page() 1093 * except we already have the page isolated 1094 * and know it's dirty 1095 */ 1096 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1097 SetPageReclaim(page); 1098 1099 goto keep_locked; 1100 } 1101 1102 if (references == PAGEREF_RECLAIM_CLEAN) 1103 goto keep_locked; 1104 if (!may_enter_fs) 1105 goto keep_locked; 1106 if (!sc->may_writepage) 1107 goto keep_locked; 1108 1109 /* 1110 * Page is dirty. Flush the TLB if a writable entry 1111 * potentially exists to avoid CPU writes after IO 1112 * starts and then write it out here. 1113 */ 1114 try_to_unmap_flush_dirty(); 1115 switch (pageout(page, mapping, sc)) { 1116 case PAGE_KEEP: 1117 goto keep_locked; 1118 case PAGE_ACTIVATE: 1119 goto activate_locked; 1120 case PAGE_SUCCESS: 1121 if (PageWriteback(page)) 1122 goto keep; 1123 if (PageDirty(page)) 1124 goto keep; 1125 1126 /* 1127 * A synchronous write - probably a ramdisk. Go 1128 * ahead and try to reclaim the page. 1129 */ 1130 if (!trylock_page(page)) 1131 goto keep; 1132 if (PageDirty(page) || PageWriteback(page)) 1133 goto keep_locked; 1134 mapping = page_mapping(page); 1135 case PAGE_CLEAN: 1136 ; /* try to free the page below */ 1137 } 1138 } 1139 1140 /* 1141 * If the page has buffers, try to free the buffer mappings 1142 * associated with this page. If we succeed we try to free 1143 * the page as well. 1144 * 1145 * We do this even if the page is PageDirty(). 1146 * try_to_release_page() does not perform I/O, but it is 1147 * possible for a page to have PageDirty set, but it is actually 1148 * clean (all its buffers are clean). This happens if the 1149 * buffers were written out directly, with submit_bh(). ext3 1150 * will do this, as well as the blockdev mapping. 1151 * try_to_release_page() will discover that cleanness and will 1152 * drop the buffers and mark the page clean - it can be freed. 1153 * 1154 * Rarely, pages can have buffers and no ->mapping. These are 1155 * the pages which were not successfully invalidated in 1156 * truncate_complete_page(). We try to drop those buffers here 1157 * and if that worked, and the page is no longer mapped into 1158 * process address space (page_count == 1) it can be freed. 1159 * Otherwise, leave the page on the LRU so it is swappable. 1160 */ 1161 if (page_has_private(page)) { 1162 if (!try_to_release_page(page, sc->gfp_mask)) 1163 goto activate_locked; 1164 if (!mapping && page_count(page) == 1) { 1165 unlock_page(page); 1166 if (put_page_testzero(page)) 1167 goto free_it; 1168 else { 1169 /* 1170 * rare race with speculative reference. 1171 * the speculative reference will free 1172 * this page shortly, so we may 1173 * increment nr_reclaimed here (and 1174 * leave it off the LRU). 1175 */ 1176 nr_reclaimed++; 1177 continue; 1178 } 1179 } 1180 } 1181 1182 lazyfree: 1183 if (!mapping || !__remove_mapping(mapping, page, true)) 1184 goto keep_locked; 1185 1186 /* 1187 * At this point, we have no other references and there is 1188 * no way to pick any more up (removed from LRU, removed 1189 * from pagecache). Can use non-atomic bitops now (and 1190 * we obviously don't have to worry about waking up a process 1191 * waiting on the page lock, because there are no references. 1192 */ 1193 __ClearPageLocked(page); 1194 free_it: 1195 if (ret == SWAP_LZFREE) 1196 count_vm_event(PGLAZYFREED); 1197 1198 nr_reclaimed++; 1199 1200 /* 1201 * Is there need to periodically free_page_list? It would 1202 * appear not as the counts should be low 1203 */ 1204 list_add(&page->lru, &free_pages); 1205 continue; 1206 1207 cull_mlocked: 1208 if (PageSwapCache(page)) 1209 try_to_free_swap(page); 1210 unlock_page(page); 1211 list_add(&page->lru, &ret_pages); 1212 continue; 1213 1214 activate_locked: 1215 /* Not a candidate for swapping, so reclaim swap space. */ 1216 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1217 try_to_free_swap(page); 1218 VM_BUG_ON_PAGE(PageActive(page), page); 1219 SetPageActive(page); 1220 pgactivate++; 1221 keep_locked: 1222 unlock_page(page); 1223 keep: 1224 list_add(&page->lru, &ret_pages); 1225 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1226 } 1227 1228 mem_cgroup_uncharge_list(&free_pages); 1229 try_to_unmap_flush(); 1230 free_hot_cold_page_list(&free_pages, true); 1231 1232 list_splice(&ret_pages, page_list); 1233 count_vm_events(PGACTIVATE, pgactivate); 1234 1235 *ret_nr_dirty += nr_dirty; 1236 *ret_nr_congested += nr_congested; 1237 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1238 *ret_nr_writeback += nr_writeback; 1239 *ret_nr_immediate += nr_immediate; 1240 return nr_reclaimed; 1241 } 1242 1243 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1244 struct list_head *page_list) 1245 { 1246 struct scan_control sc = { 1247 .gfp_mask = GFP_KERNEL, 1248 .priority = DEF_PRIORITY, 1249 .may_unmap = 1, 1250 }; 1251 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1252 struct page *page, *next; 1253 LIST_HEAD(clean_pages); 1254 1255 list_for_each_entry_safe(page, next, page_list, lru) { 1256 if (page_is_file_cache(page) && !PageDirty(page) && 1257 !isolated_balloon_page(page)) { 1258 ClearPageActive(page); 1259 list_move(&page->lru, &clean_pages); 1260 } 1261 } 1262 1263 ret = shrink_page_list(&clean_pages, zone, &sc, 1264 TTU_UNMAP|TTU_IGNORE_ACCESS, 1265 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1266 list_splice(&clean_pages, page_list); 1267 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1268 return ret; 1269 } 1270 1271 /* 1272 * Attempt to remove the specified page from its LRU. Only take this page 1273 * if it is of the appropriate PageActive status. Pages which are being 1274 * freed elsewhere are also ignored. 1275 * 1276 * page: page to consider 1277 * mode: one of the LRU isolation modes defined above 1278 * 1279 * returns 0 on success, -ve errno on failure. 1280 */ 1281 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1282 { 1283 int ret = -EINVAL; 1284 1285 /* Only take pages on the LRU. */ 1286 if (!PageLRU(page)) 1287 return ret; 1288 1289 /* Compaction should not handle unevictable pages but CMA can do so */ 1290 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1291 return ret; 1292 1293 ret = -EBUSY; 1294 1295 /* 1296 * To minimise LRU disruption, the caller can indicate that it only 1297 * wants to isolate pages it will be able to operate on without 1298 * blocking - clean pages for the most part. 1299 * 1300 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1301 * is used by reclaim when it is cannot write to backing storage 1302 * 1303 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1304 * that it is possible to migrate without blocking 1305 */ 1306 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1307 /* All the caller can do on PageWriteback is block */ 1308 if (PageWriteback(page)) 1309 return ret; 1310 1311 if (PageDirty(page)) { 1312 struct address_space *mapping; 1313 1314 /* ISOLATE_CLEAN means only clean pages */ 1315 if (mode & ISOLATE_CLEAN) 1316 return ret; 1317 1318 /* 1319 * Only pages without mappings or that have a 1320 * ->migratepage callback are possible to migrate 1321 * without blocking 1322 */ 1323 mapping = page_mapping(page); 1324 if (mapping && !mapping->a_ops->migratepage) 1325 return ret; 1326 } 1327 } 1328 1329 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1330 return ret; 1331 1332 if (likely(get_page_unless_zero(page))) { 1333 /* 1334 * Be careful not to clear PageLRU until after we're 1335 * sure the page is not being freed elsewhere -- the 1336 * page release code relies on it. 1337 */ 1338 ClearPageLRU(page); 1339 ret = 0; 1340 } 1341 1342 return ret; 1343 } 1344 1345 /* 1346 * zone->lru_lock is heavily contended. Some of the functions that 1347 * shrink the lists perform better by taking out a batch of pages 1348 * and working on them outside the LRU lock. 1349 * 1350 * For pagecache intensive workloads, this function is the hottest 1351 * spot in the kernel (apart from copy_*_user functions). 1352 * 1353 * Appropriate locks must be held before calling this function. 1354 * 1355 * @nr_to_scan: The number of pages to look through on the list. 1356 * @lruvec: The LRU vector to pull pages from. 1357 * @dst: The temp list to put pages on to. 1358 * @nr_scanned: The number of pages that were scanned. 1359 * @sc: The scan_control struct for this reclaim session 1360 * @mode: One of the LRU isolation modes 1361 * @lru: LRU list id for isolating 1362 * 1363 * returns how many pages were moved onto *@dst. 1364 */ 1365 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1366 struct lruvec *lruvec, struct list_head *dst, 1367 unsigned long *nr_scanned, struct scan_control *sc, 1368 isolate_mode_t mode, enum lru_list lru) 1369 { 1370 struct list_head *src = &lruvec->lists[lru]; 1371 unsigned long nr_taken = 0; 1372 unsigned long scan; 1373 1374 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1375 !list_empty(src); scan++) { 1376 struct page *page; 1377 1378 page = lru_to_page(src); 1379 prefetchw_prev_lru_page(page, src, flags); 1380 1381 VM_BUG_ON_PAGE(!PageLRU(page), page); 1382 1383 switch (__isolate_lru_page(page, mode)) { 1384 case 0: 1385 nr_taken += hpage_nr_pages(page); 1386 list_move(&page->lru, dst); 1387 break; 1388 1389 case -EBUSY: 1390 /* else it is being freed elsewhere */ 1391 list_move(&page->lru, src); 1392 continue; 1393 1394 default: 1395 BUG(); 1396 } 1397 } 1398 1399 *nr_scanned = scan; 1400 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1401 nr_taken, mode, is_file_lru(lru)); 1402 return nr_taken; 1403 } 1404 1405 /** 1406 * isolate_lru_page - tries to isolate a page from its LRU list 1407 * @page: page to isolate from its LRU list 1408 * 1409 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1410 * vmstat statistic corresponding to whatever LRU list the page was on. 1411 * 1412 * Returns 0 if the page was removed from an LRU list. 1413 * Returns -EBUSY if the page was not on an LRU list. 1414 * 1415 * The returned page will have PageLRU() cleared. If it was found on 1416 * the active list, it will have PageActive set. If it was found on 1417 * the unevictable list, it will have the PageUnevictable bit set. That flag 1418 * may need to be cleared by the caller before letting the page go. 1419 * 1420 * The vmstat statistic corresponding to the list on which the page was 1421 * found will be decremented. 1422 * 1423 * Restrictions: 1424 * (1) Must be called with an elevated refcount on the page. This is a 1425 * fundamentnal difference from isolate_lru_pages (which is called 1426 * without a stable reference). 1427 * (2) the lru_lock must not be held. 1428 * (3) interrupts must be enabled. 1429 */ 1430 int isolate_lru_page(struct page *page) 1431 { 1432 int ret = -EBUSY; 1433 1434 VM_BUG_ON_PAGE(!page_count(page), page); 1435 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1436 1437 if (PageLRU(page)) { 1438 struct zone *zone = page_zone(page); 1439 struct lruvec *lruvec; 1440 1441 spin_lock_irq(&zone->lru_lock); 1442 lruvec = mem_cgroup_page_lruvec(page, zone); 1443 if (PageLRU(page)) { 1444 int lru = page_lru(page); 1445 get_page(page); 1446 ClearPageLRU(page); 1447 del_page_from_lru_list(page, lruvec, lru); 1448 ret = 0; 1449 } 1450 spin_unlock_irq(&zone->lru_lock); 1451 } 1452 return ret; 1453 } 1454 1455 /* 1456 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1457 * then get resheduled. When there are massive number of tasks doing page 1458 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1459 * the LRU list will go small and be scanned faster than necessary, leading to 1460 * unnecessary swapping, thrashing and OOM. 1461 */ 1462 static int too_many_isolated(struct zone *zone, int file, 1463 struct scan_control *sc) 1464 { 1465 unsigned long inactive, isolated; 1466 1467 if (current_is_kswapd()) 1468 return 0; 1469 1470 if (!sane_reclaim(sc)) 1471 return 0; 1472 1473 if (file) { 1474 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1475 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1476 } else { 1477 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1478 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1479 } 1480 1481 /* 1482 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1483 * won't get blocked by normal direct-reclaimers, forming a circular 1484 * deadlock. 1485 */ 1486 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1487 inactive >>= 3; 1488 1489 return isolated > inactive; 1490 } 1491 1492 static noinline_for_stack void 1493 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1494 { 1495 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1496 struct zone *zone = lruvec_zone(lruvec); 1497 LIST_HEAD(pages_to_free); 1498 1499 /* 1500 * Put back any unfreeable pages. 1501 */ 1502 while (!list_empty(page_list)) { 1503 struct page *page = lru_to_page(page_list); 1504 int lru; 1505 1506 VM_BUG_ON_PAGE(PageLRU(page), page); 1507 list_del(&page->lru); 1508 if (unlikely(!page_evictable(page))) { 1509 spin_unlock_irq(&zone->lru_lock); 1510 putback_lru_page(page); 1511 spin_lock_irq(&zone->lru_lock); 1512 continue; 1513 } 1514 1515 lruvec = mem_cgroup_page_lruvec(page, zone); 1516 1517 SetPageLRU(page); 1518 lru = page_lru(page); 1519 add_page_to_lru_list(page, lruvec, lru); 1520 1521 if (is_active_lru(lru)) { 1522 int file = is_file_lru(lru); 1523 int numpages = hpage_nr_pages(page); 1524 reclaim_stat->recent_rotated[file] += numpages; 1525 } 1526 if (put_page_testzero(page)) { 1527 __ClearPageLRU(page); 1528 __ClearPageActive(page); 1529 del_page_from_lru_list(page, lruvec, lru); 1530 1531 if (unlikely(PageCompound(page))) { 1532 spin_unlock_irq(&zone->lru_lock); 1533 mem_cgroup_uncharge(page); 1534 (*get_compound_page_dtor(page))(page); 1535 spin_lock_irq(&zone->lru_lock); 1536 } else 1537 list_add(&page->lru, &pages_to_free); 1538 } 1539 } 1540 1541 /* 1542 * To save our caller's stack, now use input list for pages to free. 1543 */ 1544 list_splice(&pages_to_free, page_list); 1545 } 1546 1547 /* 1548 * If a kernel thread (such as nfsd for loop-back mounts) services 1549 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1550 * In that case we should only throttle if the backing device it is 1551 * writing to is congested. In other cases it is safe to throttle. 1552 */ 1553 static int current_may_throttle(void) 1554 { 1555 return !(current->flags & PF_LESS_THROTTLE) || 1556 current->backing_dev_info == NULL || 1557 bdi_write_congested(current->backing_dev_info); 1558 } 1559 1560 /* 1561 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1562 * of reclaimed pages 1563 */ 1564 static noinline_for_stack unsigned long 1565 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1566 struct scan_control *sc, enum lru_list lru) 1567 { 1568 LIST_HEAD(page_list); 1569 unsigned long nr_scanned; 1570 unsigned long nr_reclaimed = 0; 1571 unsigned long nr_taken; 1572 unsigned long nr_dirty = 0; 1573 unsigned long nr_congested = 0; 1574 unsigned long nr_unqueued_dirty = 0; 1575 unsigned long nr_writeback = 0; 1576 unsigned long nr_immediate = 0; 1577 isolate_mode_t isolate_mode = 0; 1578 int file = is_file_lru(lru); 1579 struct zone *zone = lruvec_zone(lruvec); 1580 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1581 1582 while (unlikely(too_many_isolated(zone, file, sc))) { 1583 congestion_wait(BLK_RW_ASYNC, HZ/10); 1584 1585 /* We are about to die and free our memory. Return now. */ 1586 if (fatal_signal_pending(current)) 1587 return SWAP_CLUSTER_MAX; 1588 } 1589 1590 lru_add_drain(); 1591 1592 if (!sc->may_unmap) 1593 isolate_mode |= ISOLATE_UNMAPPED; 1594 if (!sc->may_writepage) 1595 isolate_mode |= ISOLATE_CLEAN; 1596 1597 spin_lock_irq(&zone->lru_lock); 1598 1599 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1600 &nr_scanned, sc, isolate_mode, lru); 1601 1602 update_lru_size(lruvec, lru, -nr_taken); 1603 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1604 reclaim_stat->recent_scanned[file] += nr_taken; 1605 1606 if (global_reclaim(sc)) { 1607 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1608 if (current_is_kswapd()) 1609 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1610 else 1611 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1612 } 1613 spin_unlock_irq(&zone->lru_lock); 1614 1615 if (nr_taken == 0) 1616 return 0; 1617 1618 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1619 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1620 &nr_writeback, &nr_immediate, 1621 false); 1622 1623 spin_lock_irq(&zone->lru_lock); 1624 1625 if (global_reclaim(sc)) { 1626 if (current_is_kswapd()) 1627 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1628 nr_reclaimed); 1629 else 1630 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1631 nr_reclaimed); 1632 } 1633 1634 putback_inactive_pages(lruvec, &page_list); 1635 1636 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1637 1638 spin_unlock_irq(&zone->lru_lock); 1639 1640 mem_cgroup_uncharge_list(&page_list); 1641 free_hot_cold_page_list(&page_list, true); 1642 1643 /* 1644 * If reclaim is isolating dirty pages under writeback, it implies 1645 * that the long-lived page allocation rate is exceeding the page 1646 * laundering rate. Either the global limits are not being effective 1647 * at throttling processes due to the page distribution throughout 1648 * zones or there is heavy usage of a slow backing device. The 1649 * only option is to throttle from reclaim context which is not ideal 1650 * as there is no guarantee the dirtying process is throttled in the 1651 * same way balance_dirty_pages() manages. 1652 * 1653 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1654 * of pages under pages flagged for immediate reclaim and stall if any 1655 * are encountered in the nr_immediate check below. 1656 */ 1657 if (nr_writeback && nr_writeback == nr_taken) 1658 set_bit(ZONE_WRITEBACK, &zone->flags); 1659 1660 /* 1661 * Legacy memcg will stall in page writeback so avoid forcibly 1662 * stalling here. 1663 */ 1664 if (sane_reclaim(sc)) { 1665 /* 1666 * Tag a zone as congested if all the dirty pages scanned were 1667 * backed by a congested BDI and wait_iff_congested will stall. 1668 */ 1669 if (nr_dirty && nr_dirty == nr_congested) 1670 set_bit(ZONE_CONGESTED, &zone->flags); 1671 1672 /* 1673 * If dirty pages are scanned that are not queued for IO, it 1674 * implies that flushers are not keeping up. In this case, flag 1675 * the zone ZONE_DIRTY and kswapd will start writing pages from 1676 * reclaim context. 1677 */ 1678 if (nr_unqueued_dirty == nr_taken) 1679 set_bit(ZONE_DIRTY, &zone->flags); 1680 1681 /* 1682 * If kswapd scans pages marked marked for immediate 1683 * reclaim and under writeback (nr_immediate), it implies 1684 * that pages are cycling through the LRU faster than 1685 * they are written so also forcibly stall. 1686 */ 1687 if (nr_immediate && current_may_throttle()) 1688 congestion_wait(BLK_RW_ASYNC, HZ/10); 1689 } 1690 1691 /* 1692 * Stall direct reclaim for IO completions if underlying BDIs or zone 1693 * is congested. Allow kswapd to continue until it starts encountering 1694 * unqueued dirty pages or cycling through the LRU too quickly. 1695 */ 1696 if (!sc->hibernation_mode && !current_is_kswapd() && 1697 current_may_throttle()) 1698 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1699 1700 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed, 1701 sc->priority, file); 1702 return nr_reclaimed; 1703 } 1704 1705 /* 1706 * This moves pages from the active list to the inactive list. 1707 * 1708 * We move them the other way if the page is referenced by one or more 1709 * processes, from rmap. 1710 * 1711 * If the pages are mostly unmapped, the processing is fast and it is 1712 * appropriate to hold zone->lru_lock across the whole operation. But if 1713 * the pages are mapped, the processing is slow (page_referenced()) so we 1714 * should drop zone->lru_lock around each page. It's impossible to balance 1715 * this, so instead we remove the pages from the LRU while processing them. 1716 * It is safe to rely on PG_active against the non-LRU pages in here because 1717 * nobody will play with that bit on a non-LRU page. 1718 * 1719 * The downside is that we have to touch page->_refcount against each page. 1720 * But we had to alter page->flags anyway. 1721 */ 1722 1723 static void move_active_pages_to_lru(struct lruvec *lruvec, 1724 struct list_head *list, 1725 struct list_head *pages_to_free, 1726 enum lru_list lru) 1727 { 1728 struct zone *zone = lruvec_zone(lruvec); 1729 unsigned long pgmoved = 0; 1730 struct page *page; 1731 int nr_pages; 1732 1733 while (!list_empty(list)) { 1734 page = lru_to_page(list); 1735 lruvec = mem_cgroup_page_lruvec(page, zone); 1736 1737 VM_BUG_ON_PAGE(PageLRU(page), page); 1738 SetPageLRU(page); 1739 1740 nr_pages = hpage_nr_pages(page); 1741 update_lru_size(lruvec, lru, nr_pages); 1742 list_move(&page->lru, &lruvec->lists[lru]); 1743 pgmoved += nr_pages; 1744 1745 if (put_page_testzero(page)) { 1746 __ClearPageLRU(page); 1747 __ClearPageActive(page); 1748 del_page_from_lru_list(page, lruvec, lru); 1749 1750 if (unlikely(PageCompound(page))) { 1751 spin_unlock_irq(&zone->lru_lock); 1752 mem_cgroup_uncharge(page); 1753 (*get_compound_page_dtor(page))(page); 1754 spin_lock_irq(&zone->lru_lock); 1755 } else 1756 list_add(&page->lru, pages_to_free); 1757 } 1758 } 1759 1760 if (!is_active_lru(lru)) 1761 __count_vm_events(PGDEACTIVATE, pgmoved); 1762 } 1763 1764 static void shrink_active_list(unsigned long nr_to_scan, 1765 struct lruvec *lruvec, 1766 struct scan_control *sc, 1767 enum lru_list lru) 1768 { 1769 unsigned long nr_taken; 1770 unsigned long nr_scanned; 1771 unsigned long vm_flags; 1772 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1773 LIST_HEAD(l_active); 1774 LIST_HEAD(l_inactive); 1775 struct page *page; 1776 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1777 unsigned long nr_rotated = 0; 1778 isolate_mode_t isolate_mode = 0; 1779 int file = is_file_lru(lru); 1780 struct zone *zone = lruvec_zone(lruvec); 1781 1782 lru_add_drain(); 1783 1784 if (!sc->may_unmap) 1785 isolate_mode |= ISOLATE_UNMAPPED; 1786 if (!sc->may_writepage) 1787 isolate_mode |= ISOLATE_CLEAN; 1788 1789 spin_lock_irq(&zone->lru_lock); 1790 1791 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1792 &nr_scanned, sc, isolate_mode, lru); 1793 1794 update_lru_size(lruvec, lru, -nr_taken); 1795 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1796 reclaim_stat->recent_scanned[file] += nr_taken; 1797 1798 if (global_reclaim(sc)) 1799 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1800 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1801 1802 spin_unlock_irq(&zone->lru_lock); 1803 1804 while (!list_empty(&l_hold)) { 1805 cond_resched(); 1806 page = lru_to_page(&l_hold); 1807 list_del(&page->lru); 1808 1809 if (unlikely(!page_evictable(page))) { 1810 putback_lru_page(page); 1811 continue; 1812 } 1813 1814 if (unlikely(buffer_heads_over_limit)) { 1815 if (page_has_private(page) && trylock_page(page)) { 1816 if (page_has_private(page)) 1817 try_to_release_page(page, 0); 1818 unlock_page(page); 1819 } 1820 } 1821 1822 if (page_referenced(page, 0, sc->target_mem_cgroup, 1823 &vm_flags)) { 1824 nr_rotated += hpage_nr_pages(page); 1825 /* 1826 * Identify referenced, file-backed active pages and 1827 * give them one more trip around the active list. So 1828 * that executable code get better chances to stay in 1829 * memory under moderate memory pressure. Anon pages 1830 * are not likely to be evicted by use-once streaming 1831 * IO, plus JVM can create lots of anon VM_EXEC pages, 1832 * so we ignore them here. 1833 */ 1834 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1835 list_add(&page->lru, &l_active); 1836 continue; 1837 } 1838 } 1839 1840 ClearPageActive(page); /* we are de-activating */ 1841 list_add(&page->lru, &l_inactive); 1842 } 1843 1844 /* 1845 * Move pages back to the lru list. 1846 */ 1847 spin_lock_irq(&zone->lru_lock); 1848 /* 1849 * Count referenced pages from currently used mappings as rotated, 1850 * even though only some of them are actually re-activated. This 1851 * helps balance scan pressure between file and anonymous pages in 1852 * get_scan_count. 1853 */ 1854 reclaim_stat->recent_rotated[file] += nr_rotated; 1855 1856 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1857 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1858 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1859 spin_unlock_irq(&zone->lru_lock); 1860 1861 mem_cgroup_uncharge_list(&l_hold); 1862 free_hot_cold_page_list(&l_hold, true); 1863 } 1864 1865 /* 1866 * The inactive anon list should be small enough that the VM never has 1867 * to do too much work. 1868 * 1869 * The inactive file list should be small enough to leave most memory 1870 * to the established workingset on the scan-resistant active list, 1871 * but large enough to avoid thrashing the aggregate readahead window. 1872 * 1873 * Both inactive lists should also be large enough that each inactive 1874 * page has a chance to be referenced again before it is reclaimed. 1875 * 1876 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 1877 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 1878 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 1879 * 1880 * total target max 1881 * memory ratio inactive 1882 * ------------------------------------- 1883 * 10MB 1 5MB 1884 * 100MB 1 50MB 1885 * 1GB 3 250MB 1886 * 10GB 10 0.9GB 1887 * 100GB 31 3GB 1888 * 1TB 101 10GB 1889 * 10TB 320 32GB 1890 */ 1891 static bool inactive_list_is_low(struct lruvec *lruvec, bool file) 1892 { 1893 unsigned long inactive_ratio; 1894 unsigned long inactive; 1895 unsigned long active; 1896 unsigned long gb; 1897 1898 /* 1899 * If we don't have swap space, anonymous page deactivation 1900 * is pointless. 1901 */ 1902 if (!file && !total_swap_pages) 1903 return false; 1904 1905 inactive = lruvec_lru_size(lruvec, file * LRU_FILE); 1906 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE); 1907 1908 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1909 if (gb) 1910 inactive_ratio = int_sqrt(10 * gb); 1911 else 1912 inactive_ratio = 1; 1913 1914 return inactive * inactive_ratio < active; 1915 } 1916 1917 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1918 struct lruvec *lruvec, struct scan_control *sc) 1919 { 1920 if (is_active_lru(lru)) { 1921 if (inactive_list_is_low(lruvec, is_file_lru(lru))) 1922 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1923 return 0; 1924 } 1925 1926 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1927 } 1928 1929 enum scan_balance { 1930 SCAN_EQUAL, 1931 SCAN_FRACT, 1932 SCAN_ANON, 1933 SCAN_FILE, 1934 }; 1935 1936 /* 1937 * Determine how aggressively the anon and file LRU lists should be 1938 * scanned. The relative value of each set of LRU lists is determined 1939 * by looking at the fraction of the pages scanned we did rotate back 1940 * onto the active list instead of evict. 1941 * 1942 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1943 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1944 */ 1945 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 1946 struct scan_control *sc, unsigned long *nr, 1947 unsigned long *lru_pages) 1948 { 1949 int swappiness = mem_cgroup_swappiness(memcg); 1950 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1951 u64 fraction[2]; 1952 u64 denominator = 0; /* gcc */ 1953 struct zone *zone = lruvec_zone(lruvec); 1954 unsigned long anon_prio, file_prio; 1955 enum scan_balance scan_balance; 1956 unsigned long anon, file; 1957 bool force_scan = false; 1958 unsigned long ap, fp; 1959 enum lru_list lru; 1960 bool some_scanned; 1961 int pass; 1962 1963 /* 1964 * If the zone or memcg is small, nr[l] can be 0. This 1965 * results in no scanning on this priority and a potential 1966 * priority drop. Global direct reclaim can go to the next 1967 * zone and tends to have no problems. Global kswapd is for 1968 * zone balancing and it needs to scan a minimum amount. When 1969 * reclaiming for a memcg, a priority drop can cause high 1970 * latencies, so it's better to scan a minimum amount there as 1971 * well. 1972 */ 1973 if (current_is_kswapd()) { 1974 if (!zone_reclaimable(zone)) 1975 force_scan = true; 1976 if (!mem_cgroup_online(memcg)) 1977 force_scan = true; 1978 } 1979 if (!global_reclaim(sc)) 1980 force_scan = true; 1981 1982 /* If we have no swap space, do not bother scanning anon pages. */ 1983 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 1984 scan_balance = SCAN_FILE; 1985 goto out; 1986 } 1987 1988 /* 1989 * Global reclaim will swap to prevent OOM even with no 1990 * swappiness, but memcg users want to use this knob to 1991 * disable swapping for individual groups completely when 1992 * using the memory controller's swap limit feature would be 1993 * too expensive. 1994 */ 1995 if (!global_reclaim(sc) && !swappiness) { 1996 scan_balance = SCAN_FILE; 1997 goto out; 1998 } 1999 2000 /* 2001 * Do not apply any pressure balancing cleverness when the 2002 * system is close to OOM, scan both anon and file equally 2003 * (unless the swappiness setting disagrees with swapping). 2004 */ 2005 if (!sc->priority && swappiness) { 2006 scan_balance = SCAN_EQUAL; 2007 goto out; 2008 } 2009 2010 /* 2011 * Prevent the reclaimer from falling into the cache trap: as 2012 * cache pages start out inactive, every cache fault will tip 2013 * the scan balance towards the file LRU. And as the file LRU 2014 * shrinks, so does the window for rotation from references. 2015 * This means we have a runaway feedback loop where a tiny 2016 * thrashing file LRU becomes infinitely more attractive than 2017 * anon pages. Try to detect this based on file LRU size. 2018 */ 2019 if (global_reclaim(sc)) { 2020 unsigned long zonefile; 2021 unsigned long zonefree; 2022 2023 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2024 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2025 zone_page_state(zone, NR_INACTIVE_FILE); 2026 2027 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2028 scan_balance = SCAN_ANON; 2029 goto out; 2030 } 2031 } 2032 2033 /* 2034 * If there is enough inactive page cache, i.e. if the size of the 2035 * inactive list is greater than that of the active list *and* the 2036 * inactive list actually has some pages to scan on this priority, we 2037 * do not reclaim anything from the anonymous working set right now. 2038 * Without the second condition we could end up never scanning an 2039 * lruvec even if it has plenty of old anonymous pages unless the 2040 * system is under heavy pressure. 2041 */ 2042 if (!inactive_list_is_low(lruvec, true) && 2043 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2044 scan_balance = SCAN_FILE; 2045 goto out; 2046 } 2047 2048 scan_balance = SCAN_FRACT; 2049 2050 /* 2051 * With swappiness at 100, anonymous and file have the same priority. 2052 * This scanning priority is essentially the inverse of IO cost. 2053 */ 2054 anon_prio = swappiness; 2055 file_prio = 200 - anon_prio; 2056 2057 /* 2058 * OK, so we have swap space and a fair amount of page cache 2059 * pages. We use the recently rotated / recently scanned 2060 * ratios to determine how valuable each cache is. 2061 * 2062 * Because workloads change over time (and to avoid overflow) 2063 * we keep these statistics as a floating average, which ends 2064 * up weighing recent references more than old ones. 2065 * 2066 * anon in [0], file in [1] 2067 */ 2068 2069 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2070 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2071 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2072 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2073 2074 spin_lock_irq(&zone->lru_lock); 2075 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2076 reclaim_stat->recent_scanned[0] /= 2; 2077 reclaim_stat->recent_rotated[0] /= 2; 2078 } 2079 2080 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2081 reclaim_stat->recent_scanned[1] /= 2; 2082 reclaim_stat->recent_rotated[1] /= 2; 2083 } 2084 2085 /* 2086 * The amount of pressure on anon vs file pages is inversely 2087 * proportional to the fraction of recently scanned pages on 2088 * each list that were recently referenced and in active use. 2089 */ 2090 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2091 ap /= reclaim_stat->recent_rotated[0] + 1; 2092 2093 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2094 fp /= reclaim_stat->recent_rotated[1] + 1; 2095 spin_unlock_irq(&zone->lru_lock); 2096 2097 fraction[0] = ap; 2098 fraction[1] = fp; 2099 denominator = ap + fp + 1; 2100 out: 2101 some_scanned = false; 2102 /* Only use force_scan on second pass. */ 2103 for (pass = 0; !some_scanned && pass < 2; pass++) { 2104 *lru_pages = 0; 2105 for_each_evictable_lru(lru) { 2106 int file = is_file_lru(lru); 2107 unsigned long size; 2108 unsigned long scan; 2109 2110 size = lruvec_lru_size(lruvec, lru); 2111 scan = size >> sc->priority; 2112 2113 if (!scan && pass && force_scan) 2114 scan = min(size, SWAP_CLUSTER_MAX); 2115 2116 switch (scan_balance) { 2117 case SCAN_EQUAL: 2118 /* Scan lists relative to size */ 2119 break; 2120 case SCAN_FRACT: 2121 /* 2122 * Scan types proportional to swappiness and 2123 * their relative recent reclaim efficiency. 2124 */ 2125 scan = div64_u64(scan * fraction[file], 2126 denominator); 2127 break; 2128 case SCAN_FILE: 2129 case SCAN_ANON: 2130 /* Scan one type exclusively */ 2131 if ((scan_balance == SCAN_FILE) != file) { 2132 size = 0; 2133 scan = 0; 2134 } 2135 break; 2136 default: 2137 /* Look ma, no brain */ 2138 BUG(); 2139 } 2140 2141 *lru_pages += size; 2142 nr[lru] = scan; 2143 2144 /* 2145 * Skip the second pass and don't force_scan, 2146 * if we found something to scan. 2147 */ 2148 some_scanned |= !!scan; 2149 } 2150 } 2151 } 2152 2153 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2154 static void init_tlb_ubc(void) 2155 { 2156 /* 2157 * This deliberately does not clear the cpumask as it's expensive 2158 * and unnecessary. If there happens to be data in there then the 2159 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2160 * then will be cleared. 2161 */ 2162 current->tlb_ubc.flush_required = false; 2163 } 2164 #else 2165 static inline void init_tlb_ubc(void) 2166 { 2167 } 2168 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2169 2170 /* 2171 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2172 */ 2173 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg, 2174 struct scan_control *sc, unsigned long *lru_pages) 2175 { 2176 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2177 unsigned long nr[NR_LRU_LISTS]; 2178 unsigned long targets[NR_LRU_LISTS]; 2179 unsigned long nr_to_scan; 2180 enum lru_list lru; 2181 unsigned long nr_reclaimed = 0; 2182 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2183 struct blk_plug plug; 2184 bool scan_adjusted; 2185 2186 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2187 2188 /* Record the original scan target for proportional adjustments later */ 2189 memcpy(targets, nr, sizeof(nr)); 2190 2191 /* 2192 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2193 * event that can occur when there is little memory pressure e.g. 2194 * multiple streaming readers/writers. Hence, we do not abort scanning 2195 * when the requested number of pages are reclaimed when scanning at 2196 * DEF_PRIORITY on the assumption that the fact we are direct 2197 * reclaiming implies that kswapd is not keeping up and it is best to 2198 * do a batch of work at once. For memcg reclaim one check is made to 2199 * abort proportional reclaim if either the file or anon lru has already 2200 * dropped to zero at the first pass. 2201 */ 2202 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2203 sc->priority == DEF_PRIORITY); 2204 2205 init_tlb_ubc(); 2206 2207 blk_start_plug(&plug); 2208 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2209 nr[LRU_INACTIVE_FILE]) { 2210 unsigned long nr_anon, nr_file, percentage; 2211 unsigned long nr_scanned; 2212 2213 for_each_evictable_lru(lru) { 2214 if (nr[lru]) { 2215 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2216 nr[lru] -= nr_to_scan; 2217 2218 nr_reclaimed += shrink_list(lru, nr_to_scan, 2219 lruvec, sc); 2220 } 2221 } 2222 2223 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2224 continue; 2225 2226 /* 2227 * For kswapd and memcg, reclaim at least the number of pages 2228 * requested. Ensure that the anon and file LRUs are scanned 2229 * proportionally what was requested by get_scan_count(). We 2230 * stop reclaiming one LRU and reduce the amount scanning 2231 * proportional to the original scan target. 2232 */ 2233 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2234 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2235 2236 /* 2237 * It's just vindictive to attack the larger once the smaller 2238 * has gone to zero. And given the way we stop scanning the 2239 * smaller below, this makes sure that we only make one nudge 2240 * towards proportionality once we've got nr_to_reclaim. 2241 */ 2242 if (!nr_file || !nr_anon) 2243 break; 2244 2245 if (nr_file > nr_anon) { 2246 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2247 targets[LRU_ACTIVE_ANON] + 1; 2248 lru = LRU_BASE; 2249 percentage = nr_anon * 100 / scan_target; 2250 } else { 2251 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2252 targets[LRU_ACTIVE_FILE] + 1; 2253 lru = LRU_FILE; 2254 percentage = nr_file * 100 / scan_target; 2255 } 2256 2257 /* Stop scanning the smaller of the LRU */ 2258 nr[lru] = 0; 2259 nr[lru + LRU_ACTIVE] = 0; 2260 2261 /* 2262 * Recalculate the other LRU scan count based on its original 2263 * scan target and the percentage scanning already complete 2264 */ 2265 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2266 nr_scanned = targets[lru] - nr[lru]; 2267 nr[lru] = targets[lru] * (100 - percentage) / 100; 2268 nr[lru] -= min(nr[lru], nr_scanned); 2269 2270 lru += LRU_ACTIVE; 2271 nr_scanned = targets[lru] - nr[lru]; 2272 nr[lru] = targets[lru] * (100 - percentage) / 100; 2273 nr[lru] -= min(nr[lru], nr_scanned); 2274 2275 scan_adjusted = true; 2276 } 2277 blk_finish_plug(&plug); 2278 sc->nr_reclaimed += nr_reclaimed; 2279 2280 /* 2281 * Even if we did not try to evict anon pages at all, we want to 2282 * rebalance the anon lru active/inactive ratio. 2283 */ 2284 if (inactive_list_is_low(lruvec, false)) 2285 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2286 sc, LRU_ACTIVE_ANON); 2287 2288 throttle_vm_writeout(sc->gfp_mask); 2289 } 2290 2291 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2292 static bool in_reclaim_compaction(struct scan_control *sc) 2293 { 2294 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2295 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2296 sc->priority < DEF_PRIORITY - 2)) 2297 return true; 2298 2299 return false; 2300 } 2301 2302 /* 2303 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2304 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2305 * true if more pages should be reclaimed such that when the page allocator 2306 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2307 * It will give up earlier than that if there is difficulty reclaiming pages. 2308 */ 2309 static inline bool should_continue_reclaim(struct zone *zone, 2310 unsigned long nr_reclaimed, 2311 unsigned long nr_scanned, 2312 struct scan_control *sc) 2313 { 2314 unsigned long pages_for_compaction; 2315 unsigned long inactive_lru_pages; 2316 2317 /* If not in reclaim/compaction mode, stop */ 2318 if (!in_reclaim_compaction(sc)) 2319 return false; 2320 2321 /* Consider stopping depending on scan and reclaim activity */ 2322 if (sc->gfp_mask & __GFP_REPEAT) { 2323 /* 2324 * For __GFP_REPEAT allocations, stop reclaiming if the 2325 * full LRU list has been scanned and we are still failing 2326 * to reclaim pages. This full LRU scan is potentially 2327 * expensive but a __GFP_REPEAT caller really wants to succeed 2328 */ 2329 if (!nr_reclaimed && !nr_scanned) 2330 return false; 2331 } else { 2332 /* 2333 * For non-__GFP_REPEAT allocations which can presumably 2334 * fail without consequence, stop if we failed to reclaim 2335 * any pages from the last SWAP_CLUSTER_MAX number of 2336 * pages that were scanned. This will return to the 2337 * caller faster at the risk reclaim/compaction and 2338 * the resulting allocation attempt fails 2339 */ 2340 if (!nr_reclaimed) 2341 return false; 2342 } 2343 2344 /* 2345 * If we have not reclaimed enough pages for compaction and the 2346 * inactive lists are large enough, continue reclaiming 2347 */ 2348 pages_for_compaction = (2UL << sc->order); 2349 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2350 if (get_nr_swap_pages() > 0) 2351 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2352 if (sc->nr_reclaimed < pages_for_compaction && 2353 inactive_lru_pages > pages_for_compaction) 2354 return true; 2355 2356 /* If compaction would go ahead or the allocation would succeed, stop */ 2357 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2358 case COMPACT_PARTIAL: 2359 case COMPACT_CONTINUE: 2360 return false; 2361 default: 2362 return true; 2363 } 2364 } 2365 2366 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2367 bool is_classzone) 2368 { 2369 struct reclaim_state *reclaim_state = current->reclaim_state; 2370 unsigned long nr_reclaimed, nr_scanned; 2371 bool reclaimable = false; 2372 2373 do { 2374 struct mem_cgroup *root = sc->target_mem_cgroup; 2375 struct mem_cgroup_reclaim_cookie reclaim = { 2376 .zone = zone, 2377 .priority = sc->priority, 2378 }; 2379 unsigned long zone_lru_pages = 0; 2380 struct mem_cgroup *memcg; 2381 2382 nr_reclaimed = sc->nr_reclaimed; 2383 nr_scanned = sc->nr_scanned; 2384 2385 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2386 do { 2387 unsigned long lru_pages; 2388 unsigned long reclaimed; 2389 unsigned long scanned; 2390 2391 if (mem_cgroup_low(root, memcg)) { 2392 if (!sc->may_thrash) 2393 continue; 2394 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2395 } 2396 2397 reclaimed = sc->nr_reclaimed; 2398 scanned = sc->nr_scanned; 2399 2400 shrink_zone_memcg(zone, memcg, sc, &lru_pages); 2401 zone_lru_pages += lru_pages; 2402 2403 if (memcg && is_classzone) 2404 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2405 memcg, sc->nr_scanned - scanned, 2406 lru_pages); 2407 2408 /* Record the group's reclaim efficiency */ 2409 vmpressure(sc->gfp_mask, memcg, false, 2410 sc->nr_scanned - scanned, 2411 sc->nr_reclaimed - reclaimed); 2412 2413 /* 2414 * Direct reclaim and kswapd have to scan all memory 2415 * cgroups to fulfill the overall scan target for the 2416 * zone. 2417 * 2418 * Limit reclaim, on the other hand, only cares about 2419 * nr_to_reclaim pages to be reclaimed and it will 2420 * retry with decreasing priority if one round over the 2421 * whole hierarchy is not sufficient. 2422 */ 2423 if (!global_reclaim(sc) && 2424 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2425 mem_cgroup_iter_break(root, memcg); 2426 break; 2427 } 2428 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2429 2430 /* 2431 * Shrink the slab caches in the same proportion that 2432 * the eligible LRU pages were scanned. 2433 */ 2434 if (global_reclaim(sc) && is_classzone) 2435 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2436 sc->nr_scanned - nr_scanned, 2437 zone_lru_pages); 2438 2439 if (reclaim_state) { 2440 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2441 reclaim_state->reclaimed_slab = 0; 2442 } 2443 2444 /* Record the subtree's reclaim efficiency */ 2445 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2446 sc->nr_scanned - nr_scanned, 2447 sc->nr_reclaimed - nr_reclaimed); 2448 2449 if (sc->nr_reclaimed - nr_reclaimed) 2450 reclaimable = true; 2451 2452 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2453 sc->nr_scanned - nr_scanned, sc)); 2454 2455 return reclaimable; 2456 } 2457 2458 /* 2459 * Returns true if compaction should go ahead for a high-order request, or 2460 * the high-order allocation would succeed without compaction. 2461 */ 2462 static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx) 2463 { 2464 unsigned long balance_gap, watermark; 2465 bool watermark_ok; 2466 2467 /* 2468 * Compaction takes time to run and there are potentially other 2469 * callers using the pages just freed. Continue reclaiming until 2470 * there is a buffer of free pages available to give compaction 2471 * a reasonable chance of completing and allocating the page 2472 */ 2473 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2474 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2475 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2476 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx); 2477 2478 /* 2479 * If compaction is deferred, reclaim up to a point where 2480 * compaction will have a chance of success when re-enabled 2481 */ 2482 if (compaction_deferred(zone, order)) 2483 return watermark_ok; 2484 2485 /* 2486 * If compaction is not ready to start and allocation is not likely 2487 * to succeed without it, then keep reclaiming. 2488 */ 2489 if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED) 2490 return false; 2491 2492 return watermark_ok; 2493 } 2494 2495 /* 2496 * This is the direct reclaim path, for page-allocating processes. We only 2497 * try to reclaim pages from zones which will satisfy the caller's allocation 2498 * request. 2499 * 2500 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2501 * Because: 2502 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2503 * allocation or 2504 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2505 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2506 * zone defense algorithm. 2507 * 2508 * If a zone is deemed to be full of pinned pages then just give it a light 2509 * scan then give up on it. 2510 */ 2511 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2512 { 2513 struct zoneref *z; 2514 struct zone *zone; 2515 unsigned long nr_soft_reclaimed; 2516 unsigned long nr_soft_scanned; 2517 gfp_t orig_mask; 2518 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2519 2520 /* 2521 * If the number of buffer_heads in the machine exceeds the maximum 2522 * allowed level, force direct reclaim to scan the highmem zone as 2523 * highmem pages could be pinning lowmem pages storing buffer_heads 2524 */ 2525 orig_mask = sc->gfp_mask; 2526 if (buffer_heads_over_limit) 2527 sc->gfp_mask |= __GFP_HIGHMEM; 2528 2529 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2530 gfp_zone(sc->gfp_mask), sc->nodemask) { 2531 enum zone_type classzone_idx; 2532 2533 if (!populated_zone(zone)) 2534 continue; 2535 2536 classzone_idx = requested_highidx; 2537 while (!populated_zone(zone->zone_pgdat->node_zones + 2538 classzone_idx)) 2539 classzone_idx--; 2540 2541 /* 2542 * Take care memory controller reclaiming has small influence 2543 * to global LRU. 2544 */ 2545 if (global_reclaim(sc)) { 2546 if (!cpuset_zone_allowed(zone, 2547 GFP_KERNEL | __GFP_HARDWALL)) 2548 continue; 2549 2550 if (sc->priority != DEF_PRIORITY && 2551 !zone_reclaimable(zone)) 2552 continue; /* Let kswapd poll it */ 2553 2554 /* 2555 * If we already have plenty of memory free for 2556 * compaction in this zone, don't free any more. 2557 * Even though compaction is invoked for any 2558 * non-zero order, only frequent costly order 2559 * reclamation is disruptive enough to become a 2560 * noticeable problem, like transparent huge 2561 * page allocations. 2562 */ 2563 if (IS_ENABLED(CONFIG_COMPACTION) && 2564 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2565 zonelist_zone_idx(z) <= requested_highidx && 2566 compaction_ready(zone, sc->order, requested_highidx)) { 2567 sc->compaction_ready = true; 2568 continue; 2569 } 2570 2571 /* 2572 * This steals pages from memory cgroups over softlimit 2573 * and returns the number of reclaimed pages and 2574 * scanned pages. This works for global memory pressure 2575 * and balancing, not for a memcg's limit. 2576 */ 2577 nr_soft_scanned = 0; 2578 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2579 sc->order, sc->gfp_mask, 2580 &nr_soft_scanned); 2581 sc->nr_reclaimed += nr_soft_reclaimed; 2582 sc->nr_scanned += nr_soft_scanned; 2583 /* need some check for avoid more shrink_zone() */ 2584 } 2585 2586 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 2587 } 2588 2589 /* 2590 * Restore to original mask to avoid the impact on the caller if we 2591 * promoted it to __GFP_HIGHMEM. 2592 */ 2593 sc->gfp_mask = orig_mask; 2594 } 2595 2596 /* 2597 * This is the main entry point to direct page reclaim. 2598 * 2599 * If a full scan of the inactive list fails to free enough memory then we 2600 * are "out of memory" and something needs to be killed. 2601 * 2602 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2603 * high - the zone may be full of dirty or under-writeback pages, which this 2604 * caller can't do much about. We kick the writeback threads and take explicit 2605 * naps in the hope that some of these pages can be written. But if the 2606 * allocating task holds filesystem locks which prevent writeout this might not 2607 * work, and the allocation attempt will fail. 2608 * 2609 * returns: 0, if no pages reclaimed 2610 * else, the number of pages reclaimed 2611 */ 2612 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2613 struct scan_control *sc) 2614 { 2615 int initial_priority = sc->priority; 2616 unsigned long total_scanned = 0; 2617 unsigned long writeback_threshold; 2618 retry: 2619 delayacct_freepages_start(); 2620 2621 if (global_reclaim(sc)) 2622 count_vm_event(ALLOCSTALL); 2623 2624 do { 2625 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2626 sc->priority); 2627 sc->nr_scanned = 0; 2628 shrink_zones(zonelist, sc); 2629 2630 total_scanned += sc->nr_scanned; 2631 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2632 break; 2633 2634 if (sc->compaction_ready) 2635 break; 2636 2637 /* 2638 * If we're getting trouble reclaiming, start doing 2639 * writepage even in laptop mode. 2640 */ 2641 if (sc->priority < DEF_PRIORITY - 2) 2642 sc->may_writepage = 1; 2643 2644 /* 2645 * Try to write back as many pages as we just scanned. This 2646 * tends to cause slow streaming writers to write data to the 2647 * disk smoothly, at the dirtying rate, which is nice. But 2648 * that's undesirable in laptop mode, where we *want* lumpy 2649 * writeout. So in laptop mode, write out the whole world. 2650 */ 2651 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2652 if (total_scanned > writeback_threshold) { 2653 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2654 WB_REASON_TRY_TO_FREE_PAGES); 2655 sc->may_writepage = 1; 2656 } 2657 } while (--sc->priority >= 0); 2658 2659 delayacct_freepages_end(); 2660 2661 if (sc->nr_reclaimed) 2662 return sc->nr_reclaimed; 2663 2664 /* Aborted reclaim to try compaction? don't OOM, then */ 2665 if (sc->compaction_ready) 2666 return 1; 2667 2668 /* Untapped cgroup reserves? Don't OOM, retry. */ 2669 if (!sc->may_thrash) { 2670 sc->priority = initial_priority; 2671 sc->may_thrash = 1; 2672 goto retry; 2673 } 2674 2675 return 0; 2676 } 2677 2678 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2679 { 2680 struct zone *zone; 2681 unsigned long pfmemalloc_reserve = 0; 2682 unsigned long free_pages = 0; 2683 int i; 2684 bool wmark_ok; 2685 2686 for (i = 0; i <= ZONE_NORMAL; i++) { 2687 zone = &pgdat->node_zones[i]; 2688 if (!populated_zone(zone) || 2689 zone_reclaimable_pages(zone) == 0) 2690 continue; 2691 2692 pfmemalloc_reserve += min_wmark_pages(zone); 2693 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2694 } 2695 2696 /* If there are no reserves (unexpected config) then do not throttle */ 2697 if (!pfmemalloc_reserve) 2698 return true; 2699 2700 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2701 2702 /* kswapd must be awake if processes are being throttled */ 2703 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2704 pgdat->classzone_idx = min(pgdat->classzone_idx, 2705 (enum zone_type)ZONE_NORMAL); 2706 wake_up_interruptible(&pgdat->kswapd_wait); 2707 } 2708 2709 return wmark_ok; 2710 } 2711 2712 /* 2713 * Throttle direct reclaimers if backing storage is backed by the network 2714 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2715 * depleted. kswapd will continue to make progress and wake the processes 2716 * when the low watermark is reached. 2717 * 2718 * Returns true if a fatal signal was delivered during throttling. If this 2719 * happens, the page allocator should not consider triggering the OOM killer. 2720 */ 2721 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2722 nodemask_t *nodemask) 2723 { 2724 struct zoneref *z; 2725 struct zone *zone; 2726 pg_data_t *pgdat = NULL; 2727 2728 /* 2729 * Kernel threads should not be throttled as they may be indirectly 2730 * responsible for cleaning pages necessary for reclaim to make forward 2731 * progress. kjournald for example may enter direct reclaim while 2732 * committing a transaction where throttling it could forcing other 2733 * processes to block on log_wait_commit(). 2734 */ 2735 if (current->flags & PF_KTHREAD) 2736 goto out; 2737 2738 /* 2739 * If a fatal signal is pending, this process should not throttle. 2740 * It should return quickly so it can exit and free its memory 2741 */ 2742 if (fatal_signal_pending(current)) 2743 goto out; 2744 2745 /* 2746 * Check if the pfmemalloc reserves are ok by finding the first node 2747 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2748 * GFP_KERNEL will be required for allocating network buffers when 2749 * swapping over the network so ZONE_HIGHMEM is unusable. 2750 * 2751 * Throttling is based on the first usable node and throttled processes 2752 * wait on a queue until kswapd makes progress and wakes them. There 2753 * is an affinity then between processes waking up and where reclaim 2754 * progress has been made assuming the process wakes on the same node. 2755 * More importantly, processes running on remote nodes will not compete 2756 * for remote pfmemalloc reserves and processes on different nodes 2757 * should make reasonable progress. 2758 */ 2759 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2760 gfp_zone(gfp_mask), nodemask) { 2761 if (zone_idx(zone) > ZONE_NORMAL) 2762 continue; 2763 2764 /* Throttle based on the first usable node */ 2765 pgdat = zone->zone_pgdat; 2766 if (pfmemalloc_watermark_ok(pgdat)) 2767 goto out; 2768 break; 2769 } 2770 2771 /* If no zone was usable by the allocation flags then do not throttle */ 2772 if (!pgdat) 2773 goto out; 2774 2775 /* Account for the throttling */ 2776 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2777 2778 /* 2779 * If the caller cannot enter the filesystem, it's possible that it 2780 * is due to the caller holding an FS lock or performing a journal 2781 * transaction in the case of a filesystem like ext[3|4]. In this case, 2782 * it is not safe to block on pfmemalloc_wait as kswapd could be 2783 * blocked waiting on the same lock. Instead, throttle for up to a 2784 * second before continuing. 2785 */ 2786 if (!(gfp_mask & __GFP_FS)) { 2787 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2788 pfmemalloc_watermark_ok(pgdat), HZ); 2789 2790 goto check_pending; 2791 } 2792 2793 /* Throttle until kswapd wakes the process */ 2794 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2795 pfmemalloc_watermark_ok(pgdat)); 2796 2797 check_pending: 2798 if (fatal_signal_pending(current)) 2799 return true; 2800 2801 out: 2802 return false; 2803 } 2804 2805 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2806 gfp_t gfp_mask, nodemask_t *nodemask) 2807 { 2808 unsigned long nr_reclaimed; 2809 struct scan_control sc = { 2810 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2811 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2812 .order = order, 2813 .nodemask = nodemask, 2814 .priority = DEF_PRIORITY, 2815 .may_writepage = !laptop_mode, 2816 .may_unmap = 1, 2817 .may_swap = 1, 2818 }; 2819 2820 /* 2821 * Do not enter reclaim if fatal signal was delivered while throttled. 2822 * 1 is returned so that the page allocator does not OOM kill at this 2823 * point. 2824 */ 2825 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2826 return 1; 2827 2828 trace_mm_vmscan_direct_reclaim_begin(order, 2829 sc.may_writepage, 2830 gfp_mask); 2831 2832 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2833 2834 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2835 2836 return nr_reclaimed; 2837 } 2838 2839 #ifdef CONFIG_MEMCG 2840 2841 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2842 gfp_t gfp_mask, bool noswap, 2843 struct zone *zone, 2844 unsigned long *nr_scanned) 2845 { 2846 struct scan_control sc = { 2847 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2848 .target_mem_cgroup = memcg, 2849 .may_writepage = !laptop_mode, 2850 .may_unmap = 1, 2851 .may_swap = !noswap, 2852 }; 2853 unsigned long lru_pages; 2854 2855 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2856 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2857 2858 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2859 sc.may_writepage, 2860 sc.gfp_mask); 2861 2862 /* 2863 * NOTE: Although we can get the priority field, using it 2864 * here is not a good idea, since it limits the pages we can scan. 2865 * if we don't reclaim here, the shrink_zone from balance_pgdat 2866 * will pick up pages from other mem cgroup's as well. We hack 2867 * the priority and make it zero. 2868 */ 2869 shrink_zone_memcg(zone, memcg, &sc, &lru_pages); 2870 2871 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2872 2873 *nr_scanned = sc.nr_scanned; 2874 return sc.nr_reclaimed; 2875 } 2876 2877 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2878 unsigned long nr_pages, 2879 gfp_t gfp_mask, 2880 bool may_swap) 2881 { 2882 struct zonelist *zonelist; 2883 unsigned long nr_reclaimed; 2884 int nid; 2885 struct scan_control sc = { 2886 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2887 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2888 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2889 .target_mem_cgroup = memcg, 2890 .priority = DEF_PRIORITY, 2891 .may_writepage = !laptop_mode, 2892 .may_unmap = 1, 2893 .may_swap = may_swap, 2894 }; 2895 2896 /* 2897 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2898 * take care of from where we get pages. So the node where we start the 2899 * scan does not need to be the current node. 2900 */ 2901 nid = mem_cgroup_select_victim_node(memcg); 2902 2903 zonelist = NODE_DATA(nid)->node_zonelists; 2904 2905 trace_mm_vmscan_memcg_reclaim_begin(0, 2906 sc.may_writepage, 2907 sc.gfp_mask); 2908 2909 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2910 2911 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2912 2913 return nr_reclaimed; 2914 } 2915 #endif 2916 2917 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2918 { 2919 struct mem_cgroup *memcg; 2920 2921 if (!total_swap_pages) 2922 return; 2923 2924 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2925 do { 2926 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2927 2928 if (inactive_list_is_low(lruvec, false)) 2929 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2930 sc, LRU_ACTIVE_ANON); 2931 2932 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2933 } while (memcg); 2934 } 2935 2936 static bool zone_balanced(struct zone *zone, int order, bool highorder, 2937 unsigned long balance_gap, int classzone_idx) 2938 { 2939 unsigned long mark = high_wmark_pages(zone) + balance_gap; 2940 2941 /* 2942 * When checking from pgdat_balanced(), kswapd should stop and sleep 2943 * when it reaches the high order-0 watermark and let kcompactd take 2944 * over. Other callers such as wakeup_kswapd() want to determine the 2945 * true high-order watermark. 2946 */ 2947 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) { 2948 mark += (1UL << order); 2949 order = 0; 2950 } 2951 2952 return zone_watermark_ok_safe(zone, order, mark, classzone_idx); 2953 } 2954 2955 /* 2956 * pgdat_balanced() is used when checking if a node is balanced. 2957 * 2958 * For order-0, all zones must be balanced! 2959 * 2960 * For high-order allocations only zones that meet watermarks and are in a 2961 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2962 * total of balanced pages must be at least 25% of the zones allowed by 2963 * classzone_idx for the node to be considered balanced. Forcing all zones to 2964 * be balanced for high orders can cause excessive reclaim when there are 2965 * imbalanced zones. 2966 * The choice of 25% is due to 2967 * o a 16M DMA zone that is balanced will not balance a zone on any 2968 * reasonable sized machine 2969 * o On all other machines, the top zone must be at least a reasonable 2970 * percentage of the middle zones. For example, on 32-bit x86, highmem 2971 * would need to be at least 256M for it to be balance a whole node. 2972 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2973 * to balance a node on its own. These seemed like reasonable ratios. 2974 */ 2975 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2976 { 2977 unsigned long managed_pages = 0; 2978 unsigned long balanced_pages = 0; 2979 int i; 2980 2981 /* Check the watermark levels */ 2982 for (i = 0; i <= classzone_idx; i++) { 2983 struct zone *zone = pgdat->node_zones + i; 2984 2985 if (!populated_zone(zone)) 2986 continue; 2987 2988 managed_pages += zone->managed_pages; 2989 2990 /* 2991 * A special case here: 2992 * 2993 * balance_pgdat() skips over all_unreclaimable after 2994 * DEF_PRIORITY. Effectively, it considers them balanced so 2995 * they must be considered balanced here as well! 2996 */ 2997 if (!zone_reclaimable(zone)) { 2998 balanced_pages += zone->managed_pages; 2999 continue; 3000 } 3001 3002 if (zone_balanced(zone, order, false, 0, i)) 3003 balanced_pages += zone->managed_pages; 3004 else if (!order) 3005 return false; 3006 } 3007 3008 if (order) 3009 return balanced_pages >= (managed_pages >> 2); 3010 else 3011 return true; 3012 } 3013 3014 /* 3015 * Prepare kswapd for sleeping. This verifies that there are no processes 3016 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3017 * 3018 * Returns true if kswapd is ready to sleep 3019 */ 3020 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 3021 int classzone_idx) 3022 { 3023 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 3024 if (remaining) 3025 return false; 3026 3027 /* 3028 * The throttled processes are normally woken up in balance_pgdat() as 3029 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3030 * race between when kswapd checks the watermarks and a process gets 3031 * throttled. There is also a potential race if processes get 3032 * throttled, kswapd wakes, a large process exits thereby balancing the 3033 * zones, which causes kswapd to exit balance_pgdat() before reaching 3034 * the wake up checks. If kswapd is going to sleep, no process should 3035 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3036 * the wake up is premature, processes will wake kswapd and get 3037 * throttled again. The difference from wake ups in balance_pgdat() is 3038 * that here we are under prepare_to_wait(). 3039 */ 3040 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3041 wake_up_all(&pgdat->pfmemalloc_wait); 3042 3043 return pgdat_balanced(pgdat, order, classzone_idx); 3044 } 3045 3046 /* 3047 * kswapd shrinks the zone by the number of pages required to reach 3048 * the high watermark. 3049 * 3050 * Returns true if kswapd scanned at least the requested number of pages to 3051 * reclaim or if the lack of progress was due to pages under writeback. 3052 * This is used to determine if the scanning priority needs to be raised. 3053 */ 3054 static bool kswapd_shrink_zone(struct zone *zone, 3055 int classzone_idx, 3056 struct scan_control *sc) 3057 { 3058 unsigned long balance_gap; 3059 bool lowmem_pressure; 3060 3061 /* Reclaim above the high watermark. */ 3062 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3063 3064 /* 3065 * We put equal pressure on every zone, unless one zone has way too 3066 * many pages free already. The "too many pages" is defined as the 3067 * high wmark plus a "gap" where the gap is either the low 3068 * watermark or 1% of the zone, whichever is smaller. 3069 */ 3070 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3071 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3072 3073 /* 3074 * If there is no low memory pressure or the zone is balanced then no 3075 * reclaim is necessary 3076 */ 3077 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3078 if (!lowmem_pressure && zone_balanced(zone, sc->order, false, 3079 balance_gap, classzone_idx)) 3080 return true; 3081 3082 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3083 3084 clear_bit(ZONE_WRITEBACK, &zone->flags); 3085 3086 /* 3087 * If a zone reaches its high watermark, consider it to be no longer 3088 * congested. It's possible there are dirty pages backed by congested 3089 * BDIs but as pressure is relieved, speculatively avoid congestion 3090 * waits. 3091 */ 3092 if (zone_reclaimable(zone) && 3093 zone_balanced(zone, sc->order, false, 0, classzone_idx)) { 3094 clear_bit(ZONE_CONGESTED, &zone->flags); 3095 clear_bit(ZONE_DIRTY, &zone->flags); 3096 } 3097 3098 return sc->nr_scanned >= sc->nr_to_reclaim; 3099 } 3100 3101 /* 3102 * For kswapd, balance_pgdat() will work across all this node's zones until 3103 * they are all at high_wmark_pages(zone). 3104 * 3105 * Returns the highest zone idx kswapd was reclaiming at 3106 * 3107 * There is special handling here for zones which are full of pinned pages. 3108 * This can happen if the pages are all mlocked, or if they are all used by 3109 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3110 * What we do is to detect the case where all pages in the zone have been 3111 * scanned twice and there has been zero successful reclaim. Mark the zone as 3112 * dead and from now on, only perform a short scan. Basically we're polling 3113 * the zone for when the problem goes away. 3114 * 3115 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3116 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3117 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3118 * lower zones regardless of the number of free pages in the lower zones. This 3119 * interoperates with the page allocator fallback scheme to ensure that aging 3120 * of pages is balanced across the zones. 3121 */ 3122 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3123 { 3124 int i; 3125 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3126 unsigned long nr_soft_reclaimed; 3127 unsigned long nr_soft_scanned; 3128 struct scan_control sc = { 3129 .gfp_mask = GFP_KERNEL, 3130 .order = order, 3131 .priority = DEF_PRIORITY, 3132 .may_writepage = !laptop_mode, 3133 .may_unmap = 1, 3134 .may_swap = 1, 3135 }; 3136 count_vm_event(PAGEOUTRUN); 3137 3138 do { 3139 bool raise_priority = true; 3140 3141 sc.nr_reclaimed = 0; 3142 3143 /* 3144 * Scan in the highmem->dma direction for the highest 3145 * zone which needs scanning 3146 */ 3147 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3148 struct zone *zone = pgdat->node_zones + i; 3149 3150 if (!populated_zone(zone)) 3151 continue; 3152 3153 if (sc.priority != DEF_PRIORITY && 3154 !zone_reclaimable(zone)) 3155 continue; 3156 3157 /* 3158 * Do some background aging of the anon list, to give 3159 * pages a chance to be referenced before reclaiming. 3160 */ 3161 age_active_anon(zone, &sc); 3162 3163 /* 3164 * If the number of buffer_heads in the machine 3165 * exceeds the maximum allowed level and this node 3166 * has a highmem zone, force kswapd to reclaim from 3167 * it to relieve lowmem pressure. 3168 */ 3169 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3170 end_zone = i; 3171 break; 3172 } 3173 3174 if (!zone_balanced(zone, order, false, 0, 0)) { 3175 end_zone = i; 3176 break; 3177 } else { 3178 /* 3179 * If balanced, clear the dirty and congested 3180 * flags 3181 */ 3182 clear_bit(ZONE_CONGESTED, &zone->flags); 3183 clear_bit(ZONE_DIRTY, &zone->flags); 3184 } 3185 } 3186 3187 if (i < 0) 3188 goto out; 3189 3190 /* 3191 * If we're getting trouble reclaiming, start doing writepage 3192 * even in laptop mode. 3193 */ 3194 if (sc.priority < DEF_PRIORITY - 2) 3195 sc.may_writepage = 1; 3196 3197 /* 3198 * Now scan the zone in the dma->highmem direction, stopping 3199 * at the last zone which needs scanning. 3200 * 3201 * We do this because the page allocator works in the opposite 3202 * direction. This prevents the page allocator from allocating 3203 * pages behind kswapd's direction of progress, which would 3204 * cause too much scanning of the lower zones. 3205 */ 3206 for (i = 0; i <= end_zone; i++) { 3207 struct zone *zone = pgdat->node_zones + i; 3208 3209 if (!populated_zone(zone)) 3210 continue; 3211 3212 if (sc.priority != DEF_PRIORITY && 3213 !zone_reclaimable(zone)) 3214 continue; 3215 3216 sc.nr_scanned = 0; 3217 3218 nr_soft_scanned = 0; 3219 /* 3220 * Call soft limit reclaim before calling shrink_zone. 3221 */ 3222 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3223 order, sc.gfp_mask, 3224 &nr_soft_scanned); 3225 sc.nr_reclaimed += nr_soft_reclaimed; 3226 3227 /* 3228 * There should be no need to raise the scanning 3229 * priority if enough pages are already being scanned 3230 * that that high watermark would be met at 100% 3231 * efficiency. 3232 */ 3233 if (kswapd_shrink_zone(zone, end_zone, &sc)) 3234 raise_priority = false; 3235 } 3236 3237 /* 3238 * If the low watermark is met there is no need for processes 3239 * to be throttled on pfmemalloc_wait as they should not be 3240 * able to safely make forward progress. Wake them 3241 */ 3242 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3243 pfmemalloc_watermark_ok(pgdat)) 3244 wake_up_all(&pgdat->pfmemalloc_wait); 3245 3246 /* Check if kswapd should be suspending */ 3247 if (try_to_freeze() || kthread_should_stop()) 3248 break; 3249 3250 /* 3251 * Raise priority if scanning rate is too low or there was no 3252 * progress in reclaiming pages 3253 */ 3254 if (raise_priority || !sc.nr_reclaimed) 3255 sc.priority--; 3256 } while (sc.priority >= 1 && 3257 !pgdat_balanced(pgdat, order, classzone_idx)); 3258 3259 out: 3260 /* 3261 * Return the highest zone idx we were reclaiming at so 3262 * prepare_kswapd_sleep() makes the same decisions as here. 3263 */ 3264 return end_zone; 3265 } 3266 3267 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, 3268 int classzone_idx, int balanced_classzone_idx) 3269 { 3270 long remaining = 0; 3271 DEFINE_WAIT(wait); 3272 3273 if (freezing(current) || kthread_should_stop()) 3274 return; 3275 3276 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3277 3278 /* Try to sleep for a short interval */ 3279 if (prepare_kswapd_sleep(pgdat, order, remaining, 3280 balanced_classzone_idx)) { 3281 /* 3282 * Compaction records what page blocks it recently failed to 3283 * isolate pages from and skips them in the future scanning. 3284 * When kswapd is going to sleep, it is reasonable to assume 3285 * that pages and compaction may succeed so reset the cache. 3286 */ 3287 reset_isolation_suitable(pgdat); 3288 3289 /* 3290 * We have freed the memory, now we should compact it to make 3291 * allocation of the requested order possible. 3292 */ 3293 wakeup_kcompactd(pgdat, order, classzone_idx); 3294 3295 remaining = schedule_timeout(HZ/10); 3296 finish_wait(&pgdat->kswapd_wait, &wait); 3297 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3298 } 3299 3300 /* 3301 * After a short sleep, check if it was a premature sleep. If not, then 3302 * go fully to sleep until explicitly woken up. 3303 */ 3304 if (prepare_kswapd_sleep(pgdat, order, remaining, 3305 balanced_classzone_idx)) { 3306 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3307 3308 /* 3309 * vmstat counters are not perfectly accurate and the estimated 3310 * value for counters such as NR_FREE_PAGES can deviate from the 3311 * true value by nr_online_cpus * threshold. To avoid the zone 3312 * watermarks being breached while under pressure, we reduce the 3313 * per-cpu vmstat threshold while kswapd is awake and restore 3314 * them before going back to sleep. 3315 */ 3316 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3317 3318 if (!kthread_should_stop()) 3319 schedule(); 3320 3321 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3322 } else { 3323 if (remaining) 3324 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3325 else 3326 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3327 } 3328 finish_wait(&pgdat->kswapd_wait, &wait); 3329 } 3330 3331 /* 3332 * The background pageout daemon, started as a kernel thread 3333 * from the init process. 3334 * 3335 * This basically trickles out pages so that we have _some_ 3336 * free memory available even if there is no other activity 3337 * that frees anything up. This is needed for things like routing 3338 * etc, where we otherwise might have all activity going on in 3339 * asynchronous contexts that cannot page things out. 3340 * 3341 * If there are applications that are active memory-allocators 3342 * (most normal use), this basically shouldn't matter. 3343 */ 3344 static int kswapd(void *p) 3345 { 3346 unsigned long order, new_order; 3347 int classzone_idx, new_classzone_idx; 3348 int balanced_classzone_idx; 3349 pg_data_t *pgdat = (pg_data_t*)p; 3350 struct task_struct *tsk = current; 3351 3352 struct reclaim_state reclaim_state = { 3353 .reclaimed_slab = 0, 3354 }; 3355 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3356 3357 lockdep_set_current_reclaim_state(GFP_KERNEL); 3358 3359 if (!cpumask_empty(cpumask)) 3360 set_cpus_allowed_ptr(tsk, cpumask); 3361 current->reclaim_state = &reclaim_state; 3362 3363 /* 3364 * Tell the memory management that we're a "memory allocator", 3365 * and that if we need more memory we should get access to it 3366 * regardless (see "__alloc_pages()"). "kswapd" should 3367 * never get caught in the normal page freeing logic. 3368 * 3369 * (Kswapd normally doesn't need memory anyway, but sometimes 3370 * you need a small amount of memory in order to be able to 3371 * page out something else, and this flag essentially protects 3372 * us from recursively trying to free more memory as we're 3373 * trying to free the first piece of memory in the first place). 3374 */ 3375 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3376 set_freezable(); 3377 3378 order = new_order = 0; 3379 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3380 balanced_classzone_idx = classzone_idx; 3381 for ( ; ; ) { 3382 bool ret; 3383 3384 /* 3385 * While we were reclaiming, there might have been another 3386 * wakeup, so check the values. 3387 */ 3388 new_order = pgdat->kswapd_max_order; 3389 new_classzone_idx = pgdat->classzone_idx; 3390 pgdat->kswapd_max_order = 0; 3391 pgdat->classzone_idx = pgdat->nr_zones - 1; 3392 3393 if (order < new_order || classzone_idx > new_classzone_idx) { 3394 /* 3395 * Don't sleep if someone wants a larger 'order' 3396 * allocation or has tigher zone constraints 3397 */ 3398 order = new_order; 3399 classzone_idx = new_classzone_idx; 3400 } else { 3401 kswapd_try_to_sleep(pgdat, order, classzone_idx, 3402 balanced_classzone_idx); 3403 order = pgdat->kswapd_max_order; 3404 classzone_idx = pgdat->classzone_idx; 3405 new_order = order; 3406 new_classzone_idx = classzone_idx; 3407 pgdat->kswapd_max_order = 0; 3408 pgdat->classzone_idx = pgdat->nr_zones - 1; 3409 } 3410 3411 ret = try_to_freeze(); 3412 if (kthread_should_stop()) 3413 break; 3414 3415 /* 3416 * We can speed up thawing tasks if we don't call balance_pgdat 3417 * after returning from the refrigerator 3418 */ 3419 if (!ret) { 3420 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3421 balanced_classzone_idx = balance_pgdat(pgdat, order, 3422 classzone_idx); 3423 } 3424 } 3425 3426 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3427 current->reclaim_state = NULL; 3428 lockdep_clear_current_reclaim_state(); 3429 3430 return 0; 3431 } 3432 3433 /* 3434 * A zone is low on free memory, so wake its kswapd task to service it. 3435 */ 3436 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3437 { 3438 pg_data_t *pgdat; 3439 3440 if (!populated_zone(zone)) 3441 return; 3442 3443 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3444 return; 3445 pgdat = zone->zone_pgdat; 3446 if (pgdat->kswapd_max_order < order) { 3447 pgdat->kswapd_max_order = order; 3448 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3449 } 3450 if (!waitqueue_active(&pgdat->kswapd_wait)) 3451 return; 3452 if (zone_balanced(zone, order, true, 0, 0)) 3453 return; 3454 3455 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3456 wake_up_interruptible(&pgdat->kswapd_wait); 3457 } 3458 3459 #ifdef CONFIG_HIBERNATION 3460 /* 3461 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3462 * freed pages. 3463 * 3464 * Rather than trying to age LRUs the aim is to preserve the overall 3465 * LRU order by reclaiming preferentially 3466 * inactive > active > active referenced > active mapped 3467 */ 3468 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3469 { 3470 struct reclaim_state reclaim_state; 3471 struct scan_control sc = { 3472 .nr_to_reclaim = nr_to_reclaim, 3473 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3474 .priority = DEF_PRIORITY, 3475 .may_writepage = 1, 3476 .may_unmap = 1, 3477 .may_swap = 1, 3478 .hibernation_mode = 1, 3479 }; 3480 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3481 struct task_struct *p = current; 3482 unsigned long nr_reclaimed; 3483 3484 p->flags |= PF_MEMALLOC; 3485 lockdep_set_current_reclaim_state(sc.gfp_mask); 3486 reclaim_state.reclaimed_slab = 0; 3487 p->reclaim_state = &reclaim_state; 3488 3489 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3490 3491 p->reclaim_state = NULL; 3492 lockdep_clear_current_reclaim_state(); 3493 p->flags &= ~PF_MEMALLOC; 3494 3495 return nr_reclaimed; 3496 } 3497 #endif /* CONFIG_HIBERNATION */ 3498 3499 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3500 not required for correctness. So if the last cpu in a node goes 3501 away, we get changed to run anywhere: as the first one comes back, 3502 restore their cpu bindings. */ 3503 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3504 void *hcpu) 3505 { 3506 int nid; 3507 3508 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3509 for_each_node_state(nid, N_MEMORY) { 3510 pg_data_t *pgdat = NODE_DATA(nid); 3511 const struct cpumask *mask; 3512 3513 mask = cpumask_of_node(pgdat->node_id); 3514 3515 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3516 /* One of our CPUs online: restore mask */ 3517 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3518 } 3519 } 3520 return NOTIFY_OK; 3521 } 3522 3523 /* 3524 * This kswapd start function will be called by init and node-hot-add. 3525 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3526 */ 3527 int kswapd_run(int nid) 3528 { 3529 pg_data_t *pgdat = NODE_DATA(nid); 3530 int ret = 0; 3531 3532 if (pgdat->kswapd) 3533 return 0; 3534 3535 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3536 if (IS_ERR(pgdat->kswapd)) { 3537 /* failure at boot is fatal */ 3538 BUG_ON(system_state == SYSTEM_BOOTING); 3539 pr_err("Failed to start kswapd on node %d\n", nid); 3540 ret = PTR_ERR(pgdat->kswapd); 3541 pgdat->kswapd = NULL; 3542 } 3543 return ret; 3544 } 3545 3546 /* 3547 * Called by memory hotplug when all memory in a node is offlined. Caller must 3548 * hold mem_hotplug_begin/end(). 3549 */ 3550 void kswapd_stop(int nid) 3551 { 3552 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3553 3554 if (kswapd) { 3555 kthread_stop(kswapd); 3556 NODE_DATA(nid)->kswapd = NULL; 3557 } 3558 } 3559 3560 static int __init kswapd_init(void) 3561 { 3562 int nid; 3563 3564 swap_setup(); 3565 for_each_node_state(nid, N_MEMORY) 3566 kswapd_run(nid); 3567 hotcpu_notifier(cpu_callback, 0); 3568 return 0; 3569 } 3570 3571 module_init(kswapd_init) 3572 3573 #ifdef CONFIG_NUMA 3574 /* 3575 * Zone reclaim mode 3576 * 3577 * If non-zero call zone_reclaim when the number of free pages falls below 3578 * the watermarks. 3579 */ 3580 int zone_reclaim_mode __read_mostly; 3581 3582 #define RECLAIM_OFF 0 3583 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3584 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3585 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3586 3587 /* 3588 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3589 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3590 * a zone. 3591 */ 3592 #define ZONE_RECLAIM_PRIORITY 4 3593 3594 /* 3595 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3596 * occur. 3597 */ 3598 int sysctl_min_unmapped_ratio = 1; 3599 3600 /* 3601 * If the number of slab pages in a zone grows beyond this percentage then 3602 * slab reclaim needs to occur. 3603 */ 3604 int sysctl_min_slab_ratio = 5; 3605 3606 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3607 { 3608 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3609 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3610 zone_page_state(zone, NR_ACTIVE_FILE); 3611 3612 /* 3613 * It's possible for there to be more file mapped pages than 3614 * accounted for by the pages on the file LRU lists because 3615 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3616 */ 3617 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3618 } 3619 3620 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3621 static unsigned long zone_pagecache_reclaimable(struct zone *zone) 3622 { 3623 unsigned long nr_pagecache_reclaimable; 3624 unsigned long delta = 0; 3625 3626 /* 3627 * If RECLAIM_UNMAP is set, then all file pages are considered 3628 * potentially reclaimable. Otherwise, we have to worry about 3629 * pages like swapcache and zone_unmapped_file_pages() provides 3630 * a better estimate 3631 */ 3632 if (zone_reclaim_mode & RECLAIM_UNMAP) 3633 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3634 else 3635 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3636 3637 /* If we can't clean pages, remove dirty pages from consideration */ 3638 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3639 delta += zone_page_state(zone, NR_FILE_DIRTY); 3640 3641 /* Watch for any possible underflows due to delta */ 3642 if (unlikely(delta > nr_pagecache_reclaimable)) 3643 delta = nr_pagecache_reclaimable; 3644 3645 return nr_pagecache_reclaimable - delta; 3646 } 3647 3648 /* 3649 * Try to free up some pages from this zone through reclaim. 3650 */ 3651 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3652 { 3653 /* Minimum pages needed in order to stay on node */ 3654 const unsigned long nr_pages = 1 << order; 3655 struct task_struct *p = current; 3656 struct reclaim_state reclaim_state; 3657 struct scan_control sc = { 3658 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3659 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3660 .order = order, 3661 .priority = ZONE_RECLAIM_PRIORITY, 3662 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3663 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), 3664 .may_swap = 1, 3665 }; 3666 3667 cond_resched(); 3668 /* 3669 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3670 * and we also need to be able to write out pages for RECLAIM_WRITE 3671 * and RECLAIM_UNMAP. 3672 */ 3673 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3674 lockdep_set_current_reclaim_state(gfp_mask); 3675 reclaim_state.reclaimed_slab = 0; 3676 p->reclaim_state = &reclaim_state; 3677 3678 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3679 /* 3680 * Free memory by calling shrink zone with increasing 3681 * priorities until we have enough memory freed. 3682 */ 3683 do { 3684 shrink_zone(zone, &sc, true); 3685 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3686 } 3687 3688 p->reclaim_state = NULL; 3689 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3690 lockdep_clear_current_reclaim_state(); 3691 return sc.nr_reclaimed >= nr_pages; 3692 } 3693 3694 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3695 { 3696 int node_id; 3697 int ret; 3698 3699 /* 3700 * Zone reclaim reclaims unmapped file backed pages and 3701 * slab pages if we are over the defined limits. 3702 * 3703 * A small portion of unmapped file backed pages is needed for 3704 * file I/O otherwise pages read by file I/O will be immediately 3705 * thrown out if the zone is overallocated. So we do not reclaim 3706 * if less than a specified percentage of the zone is used by 3707 * unmapped file backed pages. 3708 */ 3709 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3710 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3711 return ZONE_RECLAIM_FULL; 3712 3713 if (!zone_reclaimable(zone)) 3714 return ZONE_RECLAIM_FULL; 3715 3716 /* 3717 * Do not scan if the allocation should not be delayed. 3718 */ 3719 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3720 return ZONE_RECLAIM_NOSCAN; 3721 3722 /* 3723 * Only run zone reclaim on the local zone or on zones that do not 3724 * have associated processors. This will favor the local processor 3725 * over remote processors and spread off node memory allocations 3726 * as wide as possible. 3727 */ 3728 node_id = zone_to_nid(zone); 3729 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3730 return ZONE_RECLAIM_NOSCAN; 3731 3732 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3733 return ZONE_RECLAIM_NOSCAN; 3734 3735 ret = __zone_reclaim(zone, gfp_mask, order); 3736 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3737 3738 if (!ret) 3739 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3740 3741 return ret; 3742 } 3743 #endif 3744 3745 /* 3746 * page_evictable - test whether a page is evictable 3747 * @page: the page to test 3748 * 3749 * Test whether page is evictable--i.e., should be placed on active/inactive 3750 * lists vs unevictable list. 3751 * 3752 * Reasons page might not be evictable: 3753 * (1) page's mapping marked unevictable 3754 * (2) page is part of an mlocked VMA 3755 * 3756 */ 3757 int page_evictable(struct page *page) 3758 { 3759 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3760 } 3761 3762 #ifdef CONFIG_SHMEM 3763 /** 3764 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3765 * @pages: array of pages to check 3766 * @nr_pages: number of pages to check 3767 * 3768 * Checks pages for evictability and moves them to the appropriate lru list. 3769 * 3770 * This function is only used for SysV IPC SHM_UNLOCK. 3771 */ 3772 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3773 { 3774 struct lruvec *lruvec; 3775 struct zone *zone = NULL; 3776 int pgscanned = 0; 3777 int pgrescued = 0; 3778 int i; 3779 3780 for (i = 0; i < nr_pages; i++) { 3781 struct page *page = pages[i]; 3782 struct zone *pagezone; 3783 3784 pgscanned++; 3785 pagezone = page_zone(page); 3786 if (pagezone != zone) { 3787 if (zone) 3788 spin_unlock_irq(&zone->lru_lock); 3789 zone = pagezone; 3790 spin_lock_irq(&zone->lru_lock); 3791 } 3792 lruvec = mem_cgroup_page_lruvec(page, zone); 3793 3794 if (!PageLRU(page) || !PageUnevictable(page)) 3795 continue; 3796 3797 if (page_evictable(page)) { 3798 enum lru_list lru = page_lru_base_type(page); 3799 3800 VM_BUG_ON_PAGE(PageActive(page), page); 3801 ClearPageUnevictable(page); 3802 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3803 add_page_to_lru_list(page, lruvec, lru); 3804 pgrescued++; 3805 } 3806 } 3807 3808 if (zone) { 3809 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3810 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3811 spin_unlock_irq(&zone->lru_lock); 3812 } 3813 } 3814 #endif /* CONFIG_SHMEM */ 3815