xref: /openbmc/linux/mm/vmscan.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/*
81 	 * Scan pressure balancing between anon and file LRUs
82 	 */
83 	unsigned long	anon_cost;
84 	unsigned long	file_cost;
85 
86 	/* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 	unsigned int may_deactivate:2;
90 	unsigned int force_deactivate:1;
91 	unsigned int skipped_deactivate:1;
92 
93 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
94 	unsigned int may_writepage:1;
95 
96 	/* Can mapped pages be reclaimed? */
97 	unsigned int may_unmap:1;
98 
99 	/* Can pages be swapped as part of reclaim? */
100 	unsigned int may_swap:1;
101 
102 	/*
103 	 * Cgroups are not reclaimed below their configured memory.low,
104 	 * unless we threaten to OOM. If any cgroups are skipped due to
105 	 * memory.low and nothing was reclaimed, go back for memory.low.
106 	 */
107 	unsigned int memcg_low_reclaim:1;
108 	unsigned int memcg_low_skipped:1;
109 
110 	unsigned int hibernation_mode:1;
111 
112 	/* One of the zones is ready for compaction */
113 	unsigned int compaction_ready:1;
114 
115 	/* There is easily reclaimable cold cache in the current node */
116 	unsigned int cache_trim_mode:1;
117 
118 	/* The file pages on the current node are dangerously low */
119 	unsigned int file_is_tiny:1;
120 
121 	/* Allocation order */
122 	s8 order;
123 
124 	/* Scan (total_size >> priority) pages at once */
125 	s8 priority;
126 
127 	/* The highest zone to isolate pages for reclaim from */
128 	s8 reclaim_idx;
129 
130 	/* This context's GFP mask */
131 	gfp_t gfp_mask;
132 
133 	/* Incremented by the number of inactive pages that were scanned */
134 	unsigned long nr_scanned;
135 
136 	/* Number of pages freed so far during a call to shrink_zones() */
137 	unsigned long nr_reclaimed;
138 
139 	struct {
140 		unsigned int dirty;
141 		unsigned int unqueued_dirty;
142 		unsigned int congested;
143 		unsigned int writeback;
144 		unsigned int immediate;
145 		unsigned int file_taken;
146 		unsigned int taken;
147 	} nr;
148 
149 	/* for recording the reclaimed slab by now */
150 	struct reclaim_state reclaim_state;
151 };
152 
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field)			\
155 	do {								\
156 		if ((_page)->lru.prev != _base) {			\
157 			struct page *prev;				\
158 									\
159 			prev = lru_to_page(&(_page->lru));		\
160 			prefetchw(&prev->_field);			\
161 		}							\
162 	} while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166 
167 /*
168  * From 0 .. 200.  Higher means more swappy.
169  */
170 int vm_swappiness = 60;
171 
172 static void set_task_reclaim_state(struct task_struct *task,
173 				   struct reclaim_state *rs)
174 {
175 	/* Check for an overwrite */
176 	WARN_ON_ONCE(rs && task->reclaim_state);
177 
178 	/* Check for the nulling of an already-nulled member */
179 	WARN_ON_ONCE(!rs && !task->reclaim_state);
180 
181 	task->reclaim_state = rs;
182 }
183 
184 static LIST_HEAD(shrinker_list);
185 static DECLARE_RWSEM(shrinker_rwsem);
186 
187 #ifdef CONFIG_MEMCG
188 /*
189  * We allow subsystems to populate their shrinker-related
190  * LRU lists before register_shrinker_prepared() is called
191  * for the shrinker, since we don't want to impose
192  * restrictions on their internal registration order.
193  * In this case shrink_slab_memcg() may find corresponding
194  * bit is set in the shrinkers map.
195  *
196  * This value is used by the function to detect registering
197  * shrinkers and to skip do_shrink_slab() calls for them.
198  */
199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
200 
201 static DEFINE_IDR(shrinker_idr);
202 static int shrinker_nr_max;
203 
204 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
205 {
206 	int id, ret = -ENOMEM;
207 
208 	down_write(&shrinker_rwsem);
209 	/* This may call shrinker, so it must use down_read_trylock() */
210 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
211 	if (id < 0)
212 		goto unlock;
213 
214 	if (id >= shrinker_nr_max) {
215 		if (memcg_expand_shrinker_maps(id)) {
216 			idr_remove(&shrinker_idr, id);
217 			goto unlock;
218 		}
219 
220 		shrinker_nr_max = id + 1;
221 	}
222 	shrinker->id = id;
223 	ret = 0;
224 unlock:
225 	up_write(&shrinker_rwsem);
226 	return ret;
227 }
228 
229 static void unregister_memcg_shrinker(struct shrinker *shrinker)
230 {
231 	int id = shrinker->id;
232 
233 	BUG_ON(id < 0);
234 
235 	down_write(&shrinker_rwsem);
236 	idr_remove(&shrinker_idr, id);
237 	up_write(&shrinker_rwsem);
238 }
239 
240 static bool cgroup_reclaim(struct scan_control *sc)
241 {
242 	return sc->target_mem_cgroup;
243 }
244 
245 /**
246  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
247  * @sc: scan_control in question
248  *
249  * The normal page dirty throttling mechanism in balance_dirty_pages() is
250  * completely broken with the legacy memcg and direct stalling in
251  * shrink_page_list() is used for throttling instead, which lacks all the
252  * niceties such as fairness, adaptive pausing, bandwidth proportional
253  * allocation and configurability.
254  *
255  * This function tests whether the vmscan currently in progress can assume
256  * that the normal dirty throttling mechanism is operational.
257  */
258 static bool writeback_throttling_sane(struct scan_control *sc)
259 {
260 	if (!cgroup_reclaim(sc))
261 		return true;
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 		return true;
265 #endif
266 	return false;
267 }
268 #else
269 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
270 {
271 	return 0;
272 }
273 
274 static void unregister_memcg_shrinker(struct shrinker *shrinker)
275 {
276 }
277 
278 static bool cgroup_reclaim(struct scan_control *sc)
279 {
280 	return false;
281 }
282 
283 static bool writeback_throttling_sane(struct scan_control *sc)
284 {
285 	return true;
286 }
287 #endif
288 
289 /*
290  * This misses isolated pages which are not accounted for to save counters.
291  * As the data only determines if reclaim or compaction continues, it is
292  * not expected that isolated pages will be a dominating factor.
293  */
294 unsigned long zone_reclaimable_pages(struct zone *zone)
295 {
296 	unsigned long nr;
297 
298 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
299 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
300 	if (get_nr_swap_pages() > 0)
301 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
302 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
303 
304 	return nr;
305 }
306 
307 /**
308  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
309  * @lruvec: lru vector
310  * @lru: lru to use
311  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
312  */
313 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
314 				     int zone_idx)
315 {
316 	unsigned long size = 0;
317 	int zid;
318 
319 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
320 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
321 
322 		if (!managed_zone(zone))
323 			continue;
324 
325 		if (!mem_cgroup_disabled())
326 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
327 		else
328 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
329 	}
330 	return size;
331 }
332 
333 /*
334  * Add a shrinker callback to be called from the vm.
335  */
336 int prealloc_shrinker(struct shrinker *shrinker)
337 {
338 	unsigned int size = sizeof(*shrinker->nr_deferred);
339 
340 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
341 		size *= nr_node_ids;
342 
343 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
344 	if (!shrinker->nr_deferred)
345 		return -ENOMEM;
346 
347 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
348 		if (prealloc_memcg_shrinker(shrinker))
349 			goto free_deferred;
350 	}
351 
352 	return 0;
353 
354 free_deferred:
355 	kfree(shrinker->nr_deferred);
356 	shrinker->nr_deferred = NULL;
357 	return -ENOMEM;
358 }
359 
360 void free_prealloced_shrinker(struct shrinker *shrinker)
361 {
362 	if (!shrinker->nr_deferred)
363 		return;
364 
365 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
366 		unregister_memcg_shrinker(shrinker);
367 
368 	kfree(shrinker->nr_deferred);
369 	shrinker->nr_deferred = NULL;
370 }
371 
372 void register_shrinker_prepared(struct shrinker *shrinker)
373 {
374 	down_write(&shrinker_rwsem);
375 	list_add_tail(&shrinker->list, &shrinker_list);
376 #ifdef CONFIG_MEMCG
377 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
378 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
379 #endif
380 	up_write(&shrinker_rwsem);
381 }
382 
383 int register_shrinker(struct shrinker *shrinker)
384 {
385 	int err = prealloc_shrinker(shrinker);
386 
387 	if (err)
388 		return err;
389 	register_shrinker_prepared(shrinker);
390 	return 0;
391 }
392 EXPORT_SYMBOL(register_shrinker);
393 
394 /*
395  * Remove one
396  */
397 void unregister_shrinker(struct shrinker *shrinker)
398 {
399 	if (!shrinker->nr_deferred)
400 		return;
401 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
402 		unregister_memcg_shrinker(shrinker);
403 	down_write(&shrinker_rwsem);
404 	list_del(&shrinker->list);
405 	up_write(&shrinker_rwsem);
406 	kfree(shrinker->nr_deferred);
407 	shrinker->nr_deferred = NULL;
408 }
409 EXPORT_SYMBOL(unregister_shrinker);
410 
411 #define SHRINK_BATCH 128
412 
413 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
414 				    struct shrinker *shrinker, int priority)
415 {
416 	unsigned long freed = 0;
417 	unsigned long long delta;
418 	long total_scan;
419 	long freeable;
420 	long nr;
421 	long new_nr;
422 	int nid = shrinkctl->nid;
423 	long batch_size = shrinker->batch ? shrinker->batch
424 					  : SHRINK_BATCH;
425 	long scanned = 0, next_deferred;
426 
427 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
428 		nid = 0;
429 
430 	freeable = shrinker->count_objects(shrinker, shrinkctl);
431 	if (freeable == 0 || freeable == SHRINK_EMPTY)
432 		return freeable;
433 
434 	/*
435 	 * copy the current shrinker scan count into a local variable
436 	 * and zero it so that other concurrent shrinker invocations
437 	 * don't also do this scanning work.
438 	 */
439 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
440 
441 	total_scan = nr;
442 	if (shrinker->seeks) {
443 		delta = freeable >> priority;
444 		delta *= 4;
445 		do_div(delta, shrinker->seeks);
446 	} else {
447 		/*
448 		 * These objects don't require any IO to create. Trim
449 		 * them aggressively under memory pressure to keep
450 		 * them from causing refetches in the IO caches.
451 		 */
452 		delta = freeable / 2;
453 	}
454 
455 	total_scan += delta;
456 	if (total_scan < 0) {
457 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
458 		       shrinker->scan_objects, total_scan);
459 		total_scan = freeable;
460 		next_deferred = nr;
461 	} else
462 		next_deferred = total_scan;
463 
464 	/*
465 	 * We need to avoid excessive windup on filesystem shrinkers
466 	 * due to large numbers of GFP_NOFS allocations causing the
467 	 * shrinkers to return -1 all the time. This results in a large
468 	 * nr being built up so when a shrink that can do some work
469 	 * comes along it empties the entire cache due to nr >>>
470 	 * freeable. This is bad for sustaining a working set in
471 	 * memory.
472 	 *
473 	 * Hence only allow the shrinker to scan the entire cache when
474 	 * a large delta change is calculated directly.
475 	 */
476 	if (delta < freeable / 4)
477 		total_scan = min(total_scan, freeable / 2);
478 
479 	/*
480 	 * Avoid risking looping forever due to too large nr value:
481 	 * never try to free more than twice the estimate number of
482 	 * freeable entries.
483 	 */
484 	if (total_scan > freeable * 2)
485 		total_scan = freeable * 2;
486 
487 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
488 				   freeable, delta, total_scan, priority);
489 
490 	/*
491 	 * Normally, we should not scan less than batch_size objects in one
492 	 * pass to avoid too frequent shrinker calls, but if the slab has less
493 	 * than batch_size objects in total and we are really tight on memory,
494 	 * we will try to reclaim all available objects, otherwise we can end
495 	 * up failing allocations although there are plenty of reclaimable
496 	 * objects spread over several slabs with usage less than the
497 	 * batch_size.
498 	 *
499 	 * We detect the "tight on memory" situations by looking at the total
500 	 * number of objects we want to scan (total_scan). If it is greater
501 	 * than the total number of objects on slab (freeable), we must be
502 	 * scanning at high prio and therefore should try to reclaim as much as
503 	 * possible.
504 	 */
505 	while (total_scan >= batch_size ||
506 	       total_scan >= freeable) {
507 		unsigned long ret;
508 		unsigned long nr_to_scan = min(batch_size, total_scan);
509 
510 		shrinkctl->nr_to_scan = nr_to_scan;
511 		shrinkctl->nr_scanned = nr_to_scan;
512 		ret = shrinker->scan_objects(shrinker, shrinkctl);
513 		if (ret == SHRINK_STOP)
514 			break;
515 		freed += ret;
516 
517 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
518 		total_scan -= shrinkctl->nr_scanned;
519 		scanned += shrinkctl->nr_scanned;
520 
521 		cond_resched();
522 	}
523 
524 	if (next_deferred >= scanned)
525 		next_deferred -= scanned;
526 	else
527 		next_deferred = 0;
528 	/*
529 	 * move the unused scan count back into the shrinker in a
530 	 * manner that handles concurrent updates. If we exhausted the
531 	 * scan, there is no need to do an update.
532 	 */
533 	if (next_deferred > 0)
534 		new_nr = atomic_long_add_return(next_deferred,
535 						&shrinker->nr_deferred[nid]);
536 	else
537 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
538 
539 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
540 	return freed;
541 }
542 
543 #ifdef CONFIG_MEMCG
544 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
545 			struct mem_cgroup *memcg, int priority)
546 {
547 	struct memcg_shrinker_map *map;
548 	unsigned long ret, freed = 0;
549 	int i;
550 
551 	if (!mem_cgroup_online(memcg))
552 		return 0;
553 
554 	if (!down_read_trylock(&shrinker_rwsem))
555 		return 0;
556 
557 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
558 					true);
559 	if (unlikely(!map))
560 		goto unlock;
561 
562 	for_each_set_bit(i, map->map, shrinker_nr_max) {
563 		struct shrink_control sc = {
564 			.gfp_mask = gfp_mask,
565 			.nid = nid,
566 			.memcg = memcg,
567 		};
568 		struct shrinker *shrinker;
569 
570 		shrinker = idr_find(&shrinker_idr, i);
571 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
572 			if (!shrinker)
573 				clear_bit(i, map->map);
574 			continue;
575 		}
576 
577 		/* Call non-slab shrinkers even though kmem is disabled */
578 		if (!memcg_kmem_enabled() &&
579 		    !(shrinker->flags & SHRINKER_NONSLAB))
580 			continue;
581 
582 		ret = do_shrink_slab(&sc, shrinker, priority);
583 		if (ret == SHRINK_EMPTY) {
584 			clear_bit(i, map->map);
585 			/*
586 			 * After the shrinker reported that it had no objects to
587 			 * free, but before we cleared the corresponding bit in
588 			 * the memcg shrinker map, a new object might have been
589 			 * added. To make sure, we have the bit set in this
590 			 * case, we invoke the shrinker one more time and reset
591 			 * the bit if it reports that it is not empty anymore.
592 			 * The memory barrier here pairs with the barrier in
593 			 * memcg_set_shrinker_bit():
594 			 *
595 			 * list_lru_add()     shrink_slab_memcg()
596 			 *   list_add_tail()    clear_bit()
597 			 *   <MB>               <MB>
598 			 *   set_bit()          do_shrink_slab()
599 			 */
600 			smp_mb__after_atomic();
601 			ret = do_shrink_slab(&sc, shrinker, priority);
602 			if (ret == SHRINK_EMPTY)
603 				ret = 0;
604 			else
605 				memcg_set_shrinker_bit(memcg, nid, i);
606 		}
607 		freed += ret;
608 
609 		if (rwsem_is_contended(&shrinker_rwsem)) {
610 			freed = freed ? : 1;
611 			break;
612 		}
613 	}
614 unlock:
615 	up_read(&shrinker_rwsem);
616 	return freed;
617 }
618 #else /* CONFIG_MEMCG */
619 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
620 			struct mem_cgroup *memcg, int priority)
621 {
622 	return 0;
623 }
624 #endif /* CONFIG_MEMCG */
625 
626 /**
627  * shrink_slab - shrink slab caches
628  * @gfp_mask: allocation context
629  * @nid: node whose slab caches to target
630  * @memcg: memory cgroup whose slab caches to target
631  * @priority: the reclaim priority
632  *
633  * Call the shrink functions to age shrinkable caches.
634  *
635  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
636  * unaware shrinkers will receive a node id of 0 instead.
637  *
638  * @memcg specifies the memory cgroup to target. Unaware shrinkers
639  * are called only if it is the root cgroup.
640  *
641  * @priority is sc->priority, we take the number of objects and >> by priority
642  * in order to get the scan target.
643  *
644  * Returns the number of reclaimed slab objects.
645  */
646 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
647 				 struct mem_cgroup *memcg,
648 				 int priority)
649 {
650 	unsigned long ret, freed = 0;
651 	struct shrinker *shrinker;
652 
653 	/*
654 	 * The root memcg might be allocated even though memcg is disabled
655 	 * via "cgroup_disable=memory" boot parameter.  This could make
656 	 * mem_cgroup_is_root() return false, then just run memcg slab
657 	 * shrink, but skip global shrink.  This may result in premature
658 	 * oom.
659 	 */
660 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
661 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
662 
663 	if (!down_read_trylock(&shrinker_rwsem))
664 		goto out;
665 
666 	list_for_each_entry(shrinker, &shrinker_list, list) {
667 		struct shrink_control sc = {
668 			.gfp_mask = gfp_mask,
669 			.nid = nid,
670 			.memcg = memcg,
671 		};
672 
673 		ret = do_shrink_slab(&sc, shrinker, priority);
674 		if (ret == SHRINK_EMPTY)
675 			ret = 0;
676 		freed += ret;
677 		/*
678 		 * Bail out if someone want to register a new shrinker to
679 		 * prevent the registration from being stalled for long periods
680 		 * by parallel ongoing shrinking.
681 		 */
682 		if (rwsem_is_contended(&shrinker_rwsem)) {
683 			freed = freed ? : 1;
684 			break;
685 		}
686 	}
687 
688 	up_read(&shrinker_rwsem);
689 out:
690 	cond_resched();
691 	return freed;
692 }
693 
694 void drop_slab_node(int nid)
695 {
696 	unsigned long freed;
697 
698 	do {
699 		struct mem_cgroup *memcg = NULL;
700 
701 		if (fatal_signal_pending(current))
702 			return;
703 
704 		freed = 0;
705 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
706 		do {
707 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
708 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
709 	} while (freed > 10);
710 }
711 
712 void drop_slab(void)
713 {
714 	int nid;
715 
716 	for_each_online_node(nid)
717 		drop_slab_node(nid);
718 }
719 
720 static inline int is_page_cache_freeable(struct page *page)
721 {
722 	/*
723 	 * A freeable page cache page is referenced only by the caller
724 	 * that isolated the page, the page cache and optional buffer
725 	 * heads at page->private.
726 	 */
727 	int page_cache_pins = thp_nr_pages(page);
728 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
729 }
730 
731 static int may_write_to_inode(struct inode *inode)
732 {
733 	if (current->flags & PF_SWAPWRITE)
734 		return 1;
735 	if (!inode_write_congested(inode))
736 		return 1;
737 	if (inode_to_bdi(inode) == current->backing_dev_info)
738 		return 1;
739 	return 0;
740 }
741 
742 /*
743  * We detected a synchronous write error writing a page out.  Probably
744  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
745  * fsync(), msync() or close().
746  *
747  * The tricky part is that after writepage we cannot touch the mapping: nothing
748  * prevents it from being freed up.  But we have a ref on the page and once
749  * that page is locked, the mapping is pinned.
750  *
751  * We're allowed to run sleeping lock_page() here because we know the caller has
752  * __GFP_FS.
753  */
754 static void handle_write_error(struct address_space *mapping,
755 				struct page *page, int error)
756 {
757 	lock_page(page);
758 	if (page_mapping(page) == mapping)
759 		mapping_set_error(mapping, error);
760 	unlock_page(page);
761 }
762 
763 /* possible outcome of pageout() */
764 typedef enum {
765 	/* failed to write page out, page is locked */
766 	PAGE_KEEP,
767 	/* move page to the active list, page is locked */
768 	PAGE_ACTIVATE,
769 	/* page has been sent to the disk successfully, page is unlocked */
770 	PAGE_SUCCESS,
771 	/* page is clean and locked */
772 	PAGE_CLEAN,
773 } pageout_t;
774 
775 /*
776  * pageout is called by shrink_page_list() for each dirty page.
777  * Calls ->writepage().
778  */
779 static pageout_t pageout(struct page *page, struct address_space *mapping)
780 {
781 	/*
782 	 * If the page is dirty, only perform writeback if that write
783 	 * will be non-blocking.  To prevent this allocation from being
784 	 * stalled by pagecache activity.  But note that there may be
785 	 * stalls if we need to run get_block().  We could test
786 	 * PagePrivate for that.
787 	 *
788 	 * If this process is currently in __generic_file_write_iter() against
789 	 * this page's queue, we can perform writeback even if that
790 	 * will block.
791 	 *
792 	 * If the page is swapcache, write it back even if that would
793 	 * block, for some throttling. This happens by accident, because
794 	 * swap_backing_dev_info is bust: it doesn't reflect the
795 	 * congestion state of the swapdevs.  Easy to fix, if needed.
796 	 */
797 	if (!is_page_cache_freeable(page))
798 		return PAGE_KEEP;
799 	if (!mapping) {
800 		/*
801 		 * Some data journaling orphaned pages can have
802 		 * page->mapping == NULL while being dirty with clean buffers.
803 		 */
804 		if (page_has_private(page)) {
805 			if (try_to_free_buffers(page)) {
806 				ClearPageDirty(page);
807 				pr_info("%s: orphaned page\n", __func__);
808 				return PAGE_CLEAN;
809 			}
810 		}
811 		return PAGE_KEEP;
812 	}
813 	if (mapping->a_ops->writepage == NULL)
814 		return PAGE_ACTIVATE;
815 	if (!may_write_to_inode(mapping->host))
816 		return PAGE_KEEP;
817 
818 	if (clear_page_dirty_for_io(page)) {
819 		int res;
820 		struct writeback_control wbc = {
821 			.sync_mode = WB_SYNC_NONE,
822 			.nr_to_write = SWAP_CLUSTER_MAX,
823 			.range_start = 0,
824 			.range_end = LLONG_MAX,
825 			.for_reclaim = 1,
826 		};
827 
828 		SetPageReclaim(page);
829 		res = mapping->a_ops->writepage(page, &wbc);
830 		if (res < 0)
831 			handle_write_error(mapping, page, res);
832 		if (res == AOP_WRITEPAGE_ACTIVATE) {
833 			ClearPageReclaim(page);
834 			return PAGE_ACTIVATE;
835 		}
836 
837 		if (!PageWriteback(page)) {
838 			/* synchronous write or broken a_ops? */
839 			ClearPageReclaim(page);
840 		}
841 		trace_mm_vmscan_writepage(page);
842 		inc_node_page_state(page, NR_VMSCAN_WRITE);
843 		return PAGE_SUCCESS;
844 	}
845 
846 	return PAGE_CLEAN;
847 }
848 
849 /*
850  * Same as remove_mapping, but if the page is removed from the mapping, it
851  * gets returned with a refcount of 0.
852  */
853 static int __remove_mapping(struct address_space *mapping, struct page *page,
854 			    bool reclaimed, struct mem_cgroup *target_memcg)
855 {
856 	unsigned long flags;
857 	int refcount;
858 	void *shadow = NULL;
859 
860 	BUG_ON(!PageLocked(page));
861 	BUG_ON(mapping != page_mapping(page));
862 
863 	xa_lock_irqsave(&mapping->i_pages, flags);
864 	/*
865 	 * The non racy check for a busy page.
866 	 *
867 	 * Must be careful with the order of the tests. When someone has
868 	 * a ref to the page, it may be possible that they dirty it then
869 	 * drop the reference. So if PageDirty is tested before page_count
870 	 * here, then the following race may occur:
871 	 *
872 	 * get_user_pages(&page);
873 	 * [user mapping goes away]
874 	 * write_to(page);
875 	 *				!PageDirty(page)    [good]
876 	 * SetPageDirty(page);
877 	 * put_page(page);
878 	 *				!page_count(page)   [good, discard it]
879 	 *
880 	 * [oops, our write_to data is lost]
881 	 *
882 	 * Reversing the order of the tests ensures such a situation cannot
883 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
884 	 * load is not satisfied before that of page->_refcount.
885 	 *
886 	 * Note that if SetPageDirty is always performed via set_page_dirty,
887 	 * and thus under the i_pages lock, then this ordering is not required.
888 	 */
889 	refcount = 1 + compound_nr(page);
890 	if (!page_ref_freeze(page, refcount))
891 		goto cannot_free;
892 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
893 	if (unlikely(PageDirty(page))) {
894 		page_ref_unfreeze(page, refcount);
895 		goto cannot_free;
896 	}
897 
898 	if (PageSwapCache(page)) {
899 		swp_entry_t swap = { .val = page_private(page) };
900 		mem_cgroup_swapout(page, swap);
901 		if (reclaimed && !mapping_exiting(mapping))
902 			shadow = workingset_eviction(page, target_memcg);
903 		__delete_from_swap_cache(page, swap, shadow);
904 		xa_unlock_irqrestore(&mapping->i_pages, flags);
905 		put_swap_page(page, swap);
906 	} else {
907 		void (*freepage)(struct page *);
908 
909 		freepage = mapping->a_ops->freepage;
910 		/*
911 		 * Remember a shadow entry for reclaimed file cache in
912 		 * order to detect refaults, thus thrashing, later on.
913 		 *
914 		 * But don't store shadows in an address space that is
915 		 * already exiting.  This is not just an optimization,
916 		 * inode reclaim needs to empty out the radix tree or
917 		 * the nodes are lost.  Don't plant shadows behind its
918 		 * back.
919 		 *
920 		 * We also don't store shadows for DAX mappings because the
921 		 * only page cache pages found in these are zero pages
922 		 * covering holes, and because we don't want to mix DAX
923 		 * exceptional entries and shadow exceptional entries in the
924 		 * same address_space.
925 		 */
926 		if (reclaimed && page_is_file_lru(page) &&
927 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
928 			shadow = workingset_eviction(page, target_memcg);
929 		__delete_from_page_cache(page, shadow);
930 		xa_unlock_irqrestore(&mapping->i_pages, flags);
931 
932 		if (freepage != NULL)
933 			freepage(page);
934 	}
935 
936 	return 1;
937 
938 cannot_free:
939 	xa_unlock_irqrestore(&mapping->i_pages, flags);
940 	return 0;
941 }
942 
943 /*
944  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
945  * someone else has a ref on the page, abort and return 0.  If it was
946  * successfully detached, return 1.  Assumes the caller has a single ref on
947  * this page.
948  */
949 int remove_mapping(struct address_space *mapping, struct page *page)
950 {
951 	if (__remove_mapping(mapping, page, false, NULL)) {
952 		/*
953 		 * Unfreezing the refcount with 1 rather than 2 effectively
954 		 * drops the pagecache ref for us without requiring another
955 		 * atomic operation.
956 		 */
957 		page_ref_unfreeze(page, 1);
958 		return 1;
959 	}
960 	return 0;
961 }
962 
963 /**
964  * putback_lru_page - put previously isolated page onto appropriate LRU list
965  * @page: page to be put back to appropriate lru list
966  *
967  * Add previously isolated @page to appropriate LRU list.
968  * Page may still be unevictable for other reasons.
969  *
970  * lru_lock must not be held, interrupts must be enabled.
971  */
972 void putback_lru_page(struct page *page)
973 {
974 	lru_cache_add(page);
975 	put_page(page);		/* drop ref from isolate */
976 }
977 
978 enum page_references {
979 	PAGEREF_RECLAIM,
980 	PAGEREF_RECLAIM_CLEAN,
981 	PAGEREF_KEEP,
982 	PAGEREF_ACTIVATE,
983 };
984 
985 static enum page_references page_check_references(struct page *page,
986 						  struct scan_control *sc)
987 {
988 	int referenced_ptes, referenced_page;
989 	unsigned long vm_flags;
990 
991 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
992 					  &vm_flags);
993 	referenced_page = TestClearPageReferenced(page);
994 
995 	/*
996 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
997 	 * move the page to the unevictable list.
998 	 */
999 	if (vm_flags & VM_LOCKED)
1000 		return PAGEREF_RECLAIM;
1001 
1002 	if (referenced_ptes) {
1003 		/*
1004 		 * All mapped pages start out with page table
1005 		 * references from the instantiating fault, so we need
1006 		 * to look twice if a mapped file page is used more
1007 		 * than once.
1008 		 *
1009 		 * Mark it and spare it for another trip around the
1010 		 * inactive list.  Another page table reference will
1011 		 * lead to its activation.
1012 		 *
1013 		 * Note: the mark is set for activated pages as well
1014 		 * so that recently deactivated but used pages are
1015 		 * quickly recovered.
1016 		 */
1017 		SetPageReferenced(page);
1018 
1019 		if (referenced_page || referenced_ptes > 1)
1020 			return PAGEREF_ACTIVATE;
1021 
1022 		/*
1023 		 * Activate file-backed executable pages after first usage.
1024 		 */
1025 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1026 			return PAGEREF_ACTIVATE;
1027 
1028 		return PAGEREF_KEEP;
1029 	}
1030 
1031 	/* Reclaim if clean, defer dirty pages to writeback */
1032 	if (referenced_page && !PageSwapBacked(page))
1033 		return PAGEREF_RECLAIM_CLEAN;
1034 
1035 	return PAGEREF_RECLAIM;
1036 }
1037 
1038 /* Check if a page is dirty or under writeback */
1039 static void page_check_dirty_writeback(struct page *page,
1040 				       bool *dirty, bool *writeback)
1041 {
1042 	struct address_space *mapping;
1043 
1044 	/*
1045 	 * Anonymous pages are not handled by flushers and must be written
1046 	 * from reclaim context. Do not stall reclaim based on them
1047 	 */
1048 	if (!page_is_file_lru(page) ||
1049 	    (PageAnon(page) && !PageSwapBacked(page))) {
1050 		*dirty = false;
1051 		*writeback = false;
1052 		return;
1053 	}
1054 
1055 	/* By default assume that the page flags are accurate */
1056 	*dirty = PageDirty(page);
1057 	*writeback = PageWriteback(page);
1058 
1059 	/* Verify dirty/writeback state if the filesystem supports it */
1060 	if (!page_has_private(page))
1061 		return;
1062 
1063 	mapping = page_mapping(page);
1064 	if (mapping && mapping->a_ops->is_dirty_writeback)
1065 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1066 }
1067 
1068 /*
1069  * shrink_page_list() returns the number of reclaimed pages
1070  */
1071 static unsigned int shrink_page_list(struct list_head *page_list,
1072 				     struct pglist_data *pgdat,
1073 				     struct scan_control *sc,
1074 				     struct reclaim_stat *stat,
1075 				     bool ignore_references)
1076 {
1077 	LIST_HEAD(ret_pages);
1078 	LIST_HEAD(free_pages);
1079 	unsigned int nr_reclaimed = 0;
1080 	unsigned int pgactivate = 0;
1081 
1082 	memset(stat, 0, sizeof(*stat));
1083 	cond_resched();
1084 
1085 	while (!list_empty(page_list)) {
1086 		struct address_space *mapping;
1087 		struct page *page;
1088 		enum page_references references = PAGEREF_RECLAIM;
1089 		bool dirty, writeback, may_enter_fs;
1090 		unsigned int nr_pages;
1091 
1092 		cond_resched();
1093 
1094 		page = lru_to_page(page_list);
1095 		list_del(&page->lru);
1096 
1097 		if (!trylock_page(page))
1098 			goto keep;
1099 
1100 		VM_BUG_ON_PAGE(PageActive(page), page);
1101 
1102 		nr_pages = compound_nr(page);
1103 
1104 		/* Account the number of base pages even though THP */
1105 		sc->nr_scanned += nr_pages;
1106 
1107 		if (unlikely(!page_evictable(page)))
1108 			goto activate_locked;
1109 
1110 		if (!sc->may_unmap && page_mapped(page))
1111 			goto keep_locked;
1112 
1113 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1114 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1115 
1116 		/*
1117 		 * The number of dirty pages determines if a node is marked
1118 		 * reclaim_congested which affects wait_iff_congested. kswapd
1119 		 * will stall and start writing pages if the tail of the LRU
1120 		 * is all dirty unqueued pages.
1121 		 */
1122 		page_check_dirty_writeback(page, &dirty, &writeback);
1123 		if (dirty || writeback)
1124 			stat->nr_dirty++;
1125 
1126 		if (dirty && !writeback)
1127 			stat->nr_unqueued_dirty++;
1128 
1129 		/*
1130 		 * Treat this page as congested if the underlying BDI is or if
1131 		 * pages are cycling through the LRU so quickly that the
1132 		 * pages marked for immediate reclaim are making it to the
1133 		 * end of the LRU a second time.
1134 		 */
1135 		mapping = page_mapping(page);
1136 		if (((dirty || writeback) && mapping &&
1137 		     inode_write_congested(mapping->host)) ||
1138 		    (writeback && PageReclaim(page)))
1139 			stat->nr_congested++;
1140 
1141 		/*
1142 		 * If a page at the tail of the LRU is under writeback, there
1143 		 * are three cases to consider.
1144 		 *
1145 		 * 1) If reclaim is encountering an excessive number of pages
1146 		 *    under writeback and this page is both under writeback and
1147 		 *    PageReclaim then it indicates that pages are being queued
1148 		 *    for IO but are being recycled through the LRU before the
1149 		 *    IO can complete. Waiting on the page itself risks an
1150 		 *    indefinite stall if it is impossible to writeback the
1151 		 *    page due to IO error or disconnected storage so instead
1152 		 *    note that the LRU is being scanned too quickly and the
1153 		 *    caller can stall after page list has been processed.
1154 		 *
1155 		 * 2) Global or new memcg reclaim encounters a page that is
1156 		 *    not marked for immediate reclaim, or the caller does not
1157 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1158 		 *    not to fs). In this case mark the page for immediate
1159 		 *    reclaim and continue scanning.
1160 		 *
1161 		 *    Require may_enter_fs because we would wait on fs, which
1162 		 *    may not have submitted IO yet. And the loop driver might
1163 		 *    enter reclaim, and deadlock if it waits on a page for
1164 		 *    which it is needed to do the write (loop masks off
1165 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1166 		 *    would probably show more reasons.
1167 		 *
1168 		 * 3) Legacy memcg encounters a page that is already marked
1169 		 *    PageReclaim. memcg does not have any dirty pages
1170 		 *    throttling so we could easily OOM just because too many
1171 		 *    pages are in writeback and there is nothing else to
1172 		 *    reclaim. Wait for the writeback to complete.
1173 		 *
1174 		 * In cases 1) and 2) we activate the pages to get them out of
1175 		 * the way while we continue scanning for clean pages on the
1176 		 * inactive list and refilling from the active list. The
1177 		 * observation here is that waiting for disk writes is more
1178 		 * expensive than potentially causing reloads down the line.
1179 		 * Since they're marked for immediate reclaim, they won't put
1180 		 * memory pressure on the cache working set any longer than it
1181 		 * takes to write them to disk.
1182 		 */
1183 		if (PageWriteback(page)) {
1184 			/* Case 1 above */
1185 			if (current_is_kswapd() &&
1186 			    PageReclaim(page) &&
1187 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188 				stat->nr_immediate++;
1189 				goto activate_locked;
1190 
1191 			/* Case 2 above */
1192 			} else if (writeback_throttling_sane(sc) ||
1193 			    !PageReclaim(page) || !may_enter_fs) {
1194 				/*
1195 				 * This is slightly racy - end_page_writeback()
1196 				 * might have just cleared PageReclaim, then
1197 				 * setting PageReclaim here end up interpreted
1198 				 * as PageReadahead - but that does not matter
1199 				 * enough to care.  What we do want is for this
1200 				 * page to have PageReclaim set next time memcg
1201 				 * reclaim reaches the tests above, so it will
1202 				 * then wait_on_page_writeback() to avoid OOM;
1203 				 * and it's also appropriate in global reclaim.
1204 				 */
1205 				SetPageReclaim(page);
1206 				stat->nr_writeback++;
1207 				goto activate_locked;
1208 
1209 			/* Case 3 above */
1210 			} else {
1211 				unlock_page(page);
1212 				wait_on_page_writeback(page);
1213 				/* then go back and try same page again */
1214 				list_add_tail(&page->lru, page_list);
1215 				continue;
1216 			}
1217 		}
1218 
1219 		if (!ignore_references)
1220 			references = page_check_references(page, sc);
1221 
1222 		switch (references) {
1223 		case PAGEREF_ACTIVATE:
1224 			goto activate_locked;
1225 		case PAGEREF_KEEP:
1226 			stat->nr_ref_keep += nr_pages;
1227 			goto keep_locked;
1228 		case PAGEREF_RECLAIM:
1229 		case PAGEREF_RECLAIM_CLEAN:
1230 			; /* try to reclaim the page below */
1231 		}
1232 
1233 		/*
1234 		 * Anonymous process memory has backing store?
1235 		 * Try to allocate it some swap space here.
1236 		 * Lazyfree page could be freed directly
1237 		 */
1238 		if (PageAnon(page) && PageSwapBacked(page)) {
1239 			if (!PageSwapCache(page)) {
1240 				if (!(sc->gfp_mask & __GFP_IO))
1241 					goto keep_locked;
1242 				if (page_maybe_dma_pinned(page))
1243 					goto keep_locked;
1244 				if (PageTransHuge(page)) {
1245 					/* cannot split THP, skip it */
1246 					if (!can_split_huge_page(page, NULL))
1247 						goto activate_locked;
1248 					/*
1249 					 * Split pages without a PMD map right
1250 					 * away. Chances are some or all of the
1251 					 * tail pages can be freed without IO.
1252 					 */
1253 					if (!compound_mapcount(page) &&
1254 					    split_huge_page_to_list(page,
1255 								    page_list))
1256 						goto activate_locked;
1257 				}
1258 				if (!add_to_swap(page)) {
1259 					if (!PageTransHuge(page))
1260 						goto activate_locked_split;
1261 					/* Fallback to swap normal pages */
1262 					if (split_huge_page_to_list(page,
1263 								    page_list))
1264 						goto activate_locked;
1265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1266 					count_vm_event(THP_SWPOUT_FALLBACK);
1267 #endif
1268 					if (!add_to_swap(page))
1269 						goto activate_locked_split;
1270 				}
1271 
1272 				may_enter_fs = true;
1273 
1274 				/* Adding to swap updated mapping */
1275 				mapping = page_mapping(page);
1276 			}
1277 		} else if (unlikely(PageTransHuge(page))) {
1278 			/* Split file THP */
1279 			if (split_huge_page_to_list(page, page_list))
1280 				goto keep_locked;
1281 		}
1282 
1283 		/*
1284 		 * THP may get split above, need minus tail pages and update
1285 		 * nr_pages to avoid accounting tail pages twice.
1286 		 *
1287 		 * The tail pages that are added into swap cache successfully
1288 		 * reach here.
1289 		 */
1290 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1291 			sc->nr_scanned -= (nr_pages - 1);
1292 			nr_pages = 1;
1293 		}
1294 
1295 		/*
1296 		 * The page is mapped into the page tables of one or more
1297 		 * processes. Try to unmap it here.
1298 		 */
1299 		if (page_mapped(page)) {
1300 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1301 			bool was_swapbacked = PageSwapBacked(page);
1302 
1303 			if (unlikely(PageTransHuge(page)))
1304 				flags |= TTU_SPLIT_HUGE_PMD;
1305 
1306 			if (!try_to_unmap(page, flags)) {
1307 				stat->nr_unmap_fail += nr_pages;
1308 				if (!was_swapbacked && PageSwapBacked(page))
1309 					stat->nr_lazyfree_fail += nr_pages;
1310 				goto activate_locked;
1311 			}
1312 		}
1313 
1314 		if (PageDirty(page)) {
1315 			/*
1316 			 * Only kswapd can writeback filesystem pages
1317 			 * to avoid risk of stack overflow. But avoid
1318 			 * injecting inefficient single-page IO into
1319 			 * flusher writeback as much as possible: only
1320 			 * write pages when we've encountered many
1321 			 * dirty pages, and when we've already scanned
1322 			 * the rest of the LRU for clean pages and see
1323 			 * the same dirty pages again (PageReclaim).
1324 			 */
1325 			if (page_is_file_lru(page) &&
1326 			    (!current_is_kswapd() || !PageReclaim(page) ||
1327 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1328 				/*
1329 				 * Immediately reclaim when written back.
1330 				 * Similar in principal to deactivate_page()
1331 				 * except we already have the page isolated
1332 				 * and know it's dirty
1333 				 */
1334 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1335 				SetPageReclaim(page);
1336 
1337 				goto activate_locked;
1338 			}
1339 
1340 			if (references == PAGEREF_RECLAIM_CLEAN)
1341 				goto keep_locked;
1342 			if (!may_enter_fs)
1343 				goto keep_locked;
1344 			if (!sc->may_writepage)
1345 				goto keep_locked;
1346 
1347 			/*
1348 			 * Page is dirty. Flush the TLB if a writable entry
1349 			 * potentially exists to avoid CPU writes after IO
1350 			 * starts and then write it out here.
1351 			 */
1352 			try_to_unmap_flush_dirty();
1353 			switch (pageout(page, mapping)) {
1354 			case PAGE_KEEP:
1355 				goto keep_locked;
1356 			case PAGE_ACTIVATE:
1357 				goto activate_locked;
1358 			case PAGE_SUCCESS:
1359 				stat->nr_pageout += thp_nr_pages(page);
1360 
1361 				if (PageWriteback(page))
1362 					goto keep;
1363 				if (PageDirty(page))
1364 					goto keep;
1365 
1366 				/*
1367 				 * A synchronous write - probably a ramdisk.  Go
1368 				 * ahead and try to reclaim the page.
1369 				 */
1370 				if (!trylock_page(page))
1371 					goto keep;
1372 				if (PageDirty(page) || PageWriteback(page))
1373 					goto keep_locked;
1374 				mapping = page_mapping(page);
1375 				fallthrough;
1376 			case PAGE_CLEAN:
1377 				; /* try to free the page below */
1378 			}
1379 		}
1380 
1381 		/*
1382 		 * If the page has buffers, try to free the buffer mappings
1383 		 * associated with this page. If we succeed we try to free
1384 		 * the page as well.
1385 		 *
1386 		 * We do this even if the page is PageDirty().
1387 		 * try_to_release_page() does not perform I/O, but it is
1388 		 * possible for a page to have PageDirty set, but it is actually
1389 		 * clean (all its buffers are clean).  This happens if the
1390 		 * buffers were written out directly, with submit_bh(). ext3
1391 		 * will do this, as well as the blockdev mapping.
1392 		 * try_to_release_page() will discover that cleanness and will
1393 		 * drop the buffers and mark the page clean - it can be freed.
1394 		 *
1395 		 * Rarely, pages can have buffers and no ->mapping.  These are
1396 		 * the pages which were not successfully invalidated in
1397 		 * truncate_cleanup_page().  We try to drop those buffers here
1398 		 * and if that worked, and the page is no longer mapped into
1399 		 * process address space (page_count == 1) it can be freed.
1400 		 * Otherwise, leave the page on the LRU so it is swappable.
1401 		 */
1402 		if (page_has_private(page)) {
1403 			if (!try_to_release_page(page, sc->gfp_mask))
1404 				goto activate_locked;
1405 			if (!mapping && page_count(page) == 1) {
1406 				unlock_page(page);
1407 				if (put_page_testzero(page))
1408 					goto free_it;
1409 				else {
1410 					/*
1411 					 * rare race with speculative reference.
1412 					 * the speculative reference will free
1413 					 * this page shortly, so we may
1414 					 * increment nr_reclaimed here (and
1415 					 * leave it off the LRU).
1416 					 */
1417 					nr_reclaimed++;
1418 					continue;
1419 				}
1420 			}
1421 		}
1422 
1423 		if (PageAnon(page) && !PageSwapBacked(page)) {
1424 			/* follow __remove_mapping for reference */
1425 			if (!page_ref_freeze(page, 1))
1426 				goto keep_locked;
1427 			if (PageDirty(page)) {
1428 				page_ref_unfreeze(page, 1);
1429 				goto keep_locked;
1430 			}
1431 
1432 			count_vm_event(PGLAZYFREED);
1433 			count_memcg_page_event(page, PGLAZYFREED);
1434 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1435 							 sc->target_mem_cgroup))
1436 			goto keep_locked;
1437 
1438 		unlock_page(page);
1439 free_it:
1440 		/*
1441 		 * THP may get swapped out in a whole, need account
1442 		 * all base pages.
1443 		 */
1444 		nr_reclaimed += nr_pages;
1445 
1446 		/*
1447 		 * Is there need to periodically free_page_list? It would
1448 		 * appear not as the counts should be low
1449 		 */
1450 		if (unlikely(PageTransHuge(page)))
1451 			destroy_compound_page(page);
1452 		else
1453 			list_add(&page->lru, &free_pages);
1454 		continue;
1455 
1456 activate_locked_split:
1457 		/*
1458 		 * The tail pages that are failed to add into swap cache
1459 		 * reach here.  Fixup nr_scanned and nr_pages.
1460 		 */
1461 		if (nr_pages > 1) {
1462 			sc->nr_scanned -= (nr_pages - 1);
1463 			nr_pages = 1;
1464 		}
1465 activate_locked:
1466 		/* Not a candidate for swapping, so reclaim swap space. */
1467 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1468 						PageMlocked(page)))
1469 			try_to_free_swap(page);
1470 		VM_BUG_ON_PAGE(PageActive(page), page);
1471 		if (!PageMlocked(page)) {
1472 			int type = page_is_file_lru(page);
1473 			SetPageActive(page);
1474 			stat->nr_activate[type] += nr_pages;
1475 			count_memcg_page_event(page, PGACTIVATE);
1476 		}
1477 keep_locked:
1478 		unlock_page(page);
1479 keep:
1480 		list_add(&page->lru, &ret_pages);
1481 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1482 	}
1483 
1484 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1485 
1486 	mem_cgroup_uncharge_list(&free_pages);
1487 	try_to_unmap_flush();
1488 	free_unref_page_list(&free_pages);
1489 
1490 	list_splice(&ret_pages, page_list);
1491 	count_vm_events(PGACTIVATE, pgactivate);
1492 
1493 	return nr_reclaimed;
1494 }
1495 
1496 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1497 					    struct list_head *page_list)
1498 {
1499 	struct scan_control sc = {
1500 		.gfp_mask = GFP_KERNEL,
1501 		.priority = DEF_PRIORITY,
1502 		.may_unmap = 1,
1503 	};
1504 	struct reclaim_stat stat;
1505 	unsigned int nr_reclaimed;
1506 	struct page *page, *next;
1507 	LIST_HEAD(clean_pages);
1508 
1509 	list_for_each_entry_safe(page, next, page_list, lru) {
1510 		if (page_is_file_lru(page) && !PageDirty(page) &&
1511 		    !__PageMovable(page) && !PageUnevictable(page)) {
1512 			ClearPageActive(page);
1513 			list_move(&page->lru, &clean_pages);
1514 		}
1515 	}
1516 
1517 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1518 					&stat, true);
1519 	list_splice(&clean_pages, page_list);
1520 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1521 			    -(long)nr_reclaimed);
1522 	/*
1523 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1524 	 * they will rotate back to anonymous LRU in the end if it failed to
1525 	 * discard so isolated count will be mismatched.
1526 	 * Compensate the isolated count for both LRU lists.
1527 	 */
1528 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1529 			    stat.nr_lazyfree_fail);
1530 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1531 			    -(long)stat.nr_lazyfree_fail);
1532 	return nr_reclaimed;
1533 }
1534 
1535 /*
1536  * Attempt to remove the specified page from its LRU.  Only take this page
1537  * if it is of the appropriate PageActive status.  Pages which are being
1538  * freed elsewhere are also ignored.
1539  *
1540  * page:	page to consider
1541  * mode:	one of the LRU isolation modes defined above
1542  *
1543  * returns true on success, false on failure.
1544  */
1545 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1546 {
1547 	/* Only take pages on the LRU. */
1548 	if (!PageLRU(page))
1549 		return false;
1550 
1551 	/* Compaction should not handle unevictable pages but CMA can do so */
1552 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1553 		return false;
1554 
1555 	/*
1556 	 * To minimise LRU disruption, the caller can indicate that it only
1557 	 * wants to isolate pages it will be able to operate on without
1558 	 * blocking - clean pages for the most part.
1559 	 *
1560 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1561 	 * that it is possible to migrate without blocking
1562 	 */
1563 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1564 		/* All the caller can do on PageWriteback is block */
1565 		if (PageWriteback(page))
1566 			return false;
1567 
1568 		if (PageDirty(page)) {
1569 			struct address_space *mapping;
1570 			bool migrate_dirty;
1571 
1572 			/*
1573 			 * Only pages without mappings or that have a
1574 			 * ->migratepage callback are possible to migrate
1575 			 * without blocking. However, we can be racing with
1576 			 * truncation so it's necessary to lock the page
1577 			 * to stabilise the mapping as truncation holds
1578 			 * the page lock until after the page is removed
1579 			 * from the page cache.
1580 			 */
1581 			if (!trylock_page(page))
1582 				return false;
1583 
1584 			mapping = page_mapping(page);
1585 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1586 			unlock_page(page);
1587 			if (!migrate_dirty)
1588 				return false;
1589 		}
1590 	}
1591 
1592 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1593 		return false;
1594 
1595 	return true;
1596 }
1597 
1598 /*
1599  * Update LRU sizes after isolating pages. The LRU size updates must
1600  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1601  */
1602 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1603 			enum lru_list lru, unsigned long *nr_zone_taken)
1604 {
1605 	int zid;
1606 
1607 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1608 		if (!nr_zone_taken[zid])
1609 			continue;
1610 
1611 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1612 	}
1613 
1614 }
1615 
1616 /**
1617  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1618  *
1619  * lruvec->lru_lock is heavily contended.  Some of the functions that
1620  * shrink the lists perform better by taking out a batch of pages
1621  * and working on them outside the LRU lock.
1622  *
1623  * For pagecache intensive workloads, this function is the hottest
1624  * spot in the kernel (apart from copy_*_user functions).
1625  *
1626  * Lru_lock must be held before calling this function.
1627  *
1628  * @nr_to_scan:	The number of eligible pages to look through on the list.
1629  * @lruvec:	The LRU vector to pull pages from.
1630  * @dst:	The temp list to put pages on to.
1631  * @nr_scanned:	The number of pages that were scanned.
1632  * @sc:		The scan_control struct for this reclaim session
1633  * @lru:	LRU list id for isolating
1634  *
1635  * returns how many pages were moved onto *@dst.
1636  */
1637 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1638 		struct lruvec *lruvec, struct list_head *dst,
1639 		unsigned long *nr_scanned, struct scan_control *sc,
1640 		enum lru_list lru)
1641 {
1642 	struct list_head *src = &lruvec->lists[lru];
1643 	unsigned long nr_taken = 0;
1644 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1645 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1646 	unsigned long skipped = 0;
1647 	unsigned long scan, total_scan, nr_pages;
1648 	LIST_HEAD(pages_skipped);
1649 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1650 
1651 	total_scan = 0;
1652 	scan = 0;
1653 	while (scan < nr_to_scan && !list_empty(src)) {
1654 		struct page *page;
1655 
1656 		page = lru_to_page(src);
1657 		prefetchw_prev_lru_page(page, src, flags);
1658 
1659 		nr_pages = compound_nr(page);
1660 		total_scan += nr_pages;
1661 
1662 		if (page_zonenum(page) > sc->reclaim_idx) {
1663 			list_move(&page->lru, &pages_skipped);
1664 			nr_skipped[page_zonenum(page)] += nr_pages;
1665 			continue;
1666 		}
1667 
1668 		/*
1669 		 * Do not count skipped pages because that makes the function
1670 		 * return with no isolated pages if the LRU mostly contains
1671 		 * ineligible pages.  This causes the VM to not reclaim any
1672 		 * pages, triggering a premature OOM.
1673 		 *
1674 		 * Account all tail pages of THP.  This would not cause
1675 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1676 		 * only when the page is being freed somewhere else.
1677 		 */
1678 		scan += nr_pages;
1679 		if (!__isolate_lru_page_prepare(page, mode)) {
1680 			/* It is being freed elsewhere */
1681 			list_move(&page->lru, src);
1682 			continue;
1683 		}
1684 		/*
1685 		 * Be careful not to clear PageLRU until after we're
1686 		 * sure the page is not being freed elsewhere -- the
1687 		 * page release code relies on it.
1688 		 */
1689 		if (unlikely(!get_page_unless_zero(page))) {
1690 			list_move(&page->lru, src);
1691 			continue;
1692 		}
1693 
1694 		if (!TestClearPageLRU(page)) {
1695 			/* Another thread is already isolating this page */
1696 			put_page(page);
1697 			list_move(&page->lru, src);
1698 			continue;
1699 		}
1700 
1701 		nr_taken += nr_pages;
1702 		nr_zone_taken[page_zonenum(page)] += nr_pages;
1703 		list_move(&page->lru, dst);
1704 	}
1705 
1706 	/*
1707 	 * Splice any skipped pages to the start of the LRU list. Note that
1708 	 * this disrupts the LRU order when reclaiming for lower zones but
1709 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1710 	 * scanning would soon rescan the same pages to skip and put the
1711 	 * system at risk of premature OOM.
1712 	 */
1713 	if (!list_empty(&pages_skipped)) {
1714 		int zid;
1715 
1716 		list_splice(&pages_skipped, src);
1717 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1718 			if (!nr_skipped[zid])
1719 				continue;
1720 
1721 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1722 			skipped += nr_skipped[zid];
1723 		}
1724 	}
1725 	*nr_scanned = total_scan;
1726 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1727 				    total_scan, skipped, nr_taken, mode, lru);
1728 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1729 	return nr_taken;
1730 }
1731 
1732 /**
1733  * isolate_lru_page - tries to isolate a page from its LRU list
1734  * @page: page to isolate from its LRU list
1735  *
1736  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1737  * vmstat statistic corresponding to whatever LRU list the page was on.
1738  *
1739  * Returns 0 if the page was removed from an LRU list.
1740  * Returns -EBUSY if the page was not on an LRU list.
1741  *
1742  * The returned page will have PageLRU() cleared.  If it was found on
1743  * the active list, it will have PageActive set.  If it was found on
1744  * the unevictable list, it will have the PageUnevictable bit set. That flag
1745  * may need to be cleared by the caller before letting the page go.
1746  *
1747  * The vmstat statistic corresponding to the list on which the page was
1748  * found will be decremented.
1749  *
1750  * Restrictions:
1751  *
1752  * (1) Must be called with an elevated refcount on the page. This is a
1753  *     fundamental difference from isolate_lru_pages (which is called
1754  *     without a stable reference).
1755  * (2) the lru_lock must not be held.
1756  * (3) interrupts must be enabled.
1757  */
1758 int isolate_lru_page(struct page *page)
1759 {
1760 	int ret = -EBUSY;
1761 
1762 	VM_BUG_ON_PAGE(!page_count(page), page);
1763 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1764 
1765 	if (TestClearPageLRU(page)) {
1766 		struct lruvec *lruvec;
1767 
1768 		get_page(page);
1769 		lruvec = lock_page_lruvec_irq(page);
1770 		del_page_from_lru_list(page, lruvec);
1771 		unlock_page_lruvec_irq(lruvec);
1772 		ret = 0;
1773 	}
1774 
1775 	return ret;
1776 }
1777 
1778 /*
1779  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1780  * then get rescheduled. When there are massive number of tasks doing page
1781  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1782  * the LRU list will go small and be scanned faster than necessary, leading to
1783  * unnecessary swapping, thrashing and OOM.
1784  */
1785 static int too_many_isolated(struct pglist_data *pgdat, int file,
1786 		struct scan_control *sc)
1787 {
1788 	unsigned long inactive, isolated;
1789 
1790 	if (current_is_kswapd())
1791 		return 0;
1792 
1793 	if (!writeback_throttling_sane(sc))
1794 		return 0;
1795 
1796 	if (file) {
1797 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1798 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1799 	} else {
1800 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1801 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1802 	}
1803 
1804 	/*
1805 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1806 	 * won't get blocked by normal direct-reclaimers, forming a circular
1807 	 * deadlock.
1808 	 */
1809 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1810 		inactive >>= 3;
1811 
1812 	return isolated > inactive;
1813 }
1814 
1815 /*
1816  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
1817  * On return, @list is reused as a list of pages to be freed by the caller.
1818  *
1819  * Returns the number of pages moved to the given lruvec.
1820  */
1821 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1822 						     struct list_head *list)
1823 {
1824 	int nr_pages, nr_moved = 0;
1825 	LIST_HEAD(pages_to_free);
1826 	struct page *page;
1827 
1828 	while (!list_empty(list)) {
1829 		page = lru_to_page(list);
1830 		VM_BUG_ON_PAGE(PageLRU(page), page);
1831 		list_del(&page->lru);
1832 		if (unlikely(!page_evictable(page))) {
1833 			spin_unlock_irq(&lruvec->lru_lock);
1834 			putback_lru_page(page);
1835 			spin_lock_irq(&lruvec->lru_lock);
1836 			continue;
1837 		}
1838 
1839 		/*
1840 		 * The SetPageLRU needs to be kept here for list integrity.
1841 		 * Otherwise:
1842 		 *   #0 move_pages_to_lru             #1 release_pages
1843 		 *   if !put_page_testzero
1844 		 *				      if (put_page_testzero())
1845 		 *				        !PageLRU //skip lru_lock
1846 		 *     SetPageLRU()
1847 		 *     list_add(&page->lru,)
1848 		 *                                        list_add(&page->lru,)
1849 		 */
1850 		SetPageLRU(page);
1851 
1852 		if (unlikely(put_page_testzero(page))) {
1853 			__clear_page_lru_flags(page);
1854 
1855 			if (unlikely(PageCompound(page))) {
1856 				spin_unlock_irq(&lruvec->lru_lock);
1857 				destroy_compound_page(page);
1858 				spin_lock_irq(&lruvec->lru_lock);
1859 			} else
1860 				list_add(&page->lru, &pages_to_free);
1861 
1862 			continue;
1863 		}
1864 
1865 		/*
1866 		 * All pages were isolated from the same lruvec (and isolation
1867 		 * inhibits memcg migration).
1868 		 */
1869 		VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
1870 		add_page_to_lru_list(page, lruvec);
1871 		nr_pages = thp_nr_pages(page);
1872 		nr_moved += nr_pages;
1873 		if (PageActive(page))
1874 			workingset_age_nonresident(lruvec, nr_pages);
1875 	}
1876 
1877 	/*
1878 	 * To save our caller's stack, now use input list for pages to free.
1879 	 */
1880 	list_splice(&pages_to_free, list);
1881 
1882 	return nr_moved;
1883 }
1884 
1885 /*
1886  * If a kernel thread (such as nfsd for loop-back mounts) services
1887  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1888  * In that case we should only throttle if the backing device it is
1889  * writing to is congested.  In other cases it is safe to throttle.
1890  */
1891 static int current_may_throttle(void)
1892 {
1893 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1894 		current->backing_dev_info == NULL ||
1895 		bdi_write_congested(current->backing_dev_info);
1896 }
1897 
1898 /*
1899  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1900  * of reclaimed pages
1901  */
1902 static noinline_for_stack unsigned long
1903 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1904 		     struct scan_control *sc, enum lru_list lru)
1905 {
1906 	LIST_HEAD(page_list);
1907 	unsigned long nr_scanned;
1908 	unsigned int nr_reclaimed = 0;
1909 	unsigned long nr_taken;
1910 	struct reclaim_stat stat;
1911 	bool file = is_file_lru(lru);
1912 	enum vm_event_item item;
1913 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1914 	bool stalled = false;
1915 
1916 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1917 		if (stalled)
1918 			return 0;
1919 
1920 		/* wait a bit for the reclaimer. */
1921 		msleep(100);
1922 		stalled = true;
1923 
1924 		/* We are about to die and free our memory. Return now. */
1925 		if (fatal_signal_pending(current))
1926 			return SWAP_CLUSTER_MAX;
1927 	}
1928 
1929 	lru_add_drain();
1930 
1931 	spin_lock_irq(&lruvec->lru_lock);
1932 
1933 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1934 				     &nr_scanned, sc, lru);
1935 
1936 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1937 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1938 	if (!cgroup_reclaim(sc))
1939 		__count_vm_events(item, nr_scanned);
1940 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1941 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1942 
1943 	spin_unlock_irq(&lruvec->lru_lock);
1944 
1945 	if (nr_taken == 0)
1946 		return 0;
1947 
1948 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1949 
1950 	spin_lock_irq(&lruvec->lru_lock);
1951 	move_pages_to_lru(lruvec, &page_list);
1952 
1953 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1954 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1955 	if (!cgroup_reclaim(sc))
1956 		__count_vm_events(item, nr_reclaimed);
1957 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1958 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1959 	spin_unlock_irq(&lruvec->lru_lock);
1960 
1961 	lru_note_cost(lruvec, file, stat.nr_pageout);
1962 	mem_cgroup_uncharge_list(&page_list);
1963 	free_unref_page_list(&page_list);
1964 
1965 	/*
1966 	 * If dirty pages are scanned that are not queued for IO, it
1967 	 * implies that flushers are not doing their job. This can
1968 	 * happen when memory pressure pushes dirty pages to the end of
1969 	 * the LRU before the dirty limits are breached and the dirty
1970 	 * data has expired. It can also happen when the proportion of
1971 	 * dirty pages grows not through writes but through memory
1972 	 * pressure reclaiming all the clean cache. And in some cases,
1973 	 * the flushers simply cannot keep up with the allocation
1974 	 * rate. Nudge the flusher threads in case they are asleep.
1975 	 */
1976 	if (stat.nr_unqueued_dirty == nr_taken)
1977 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1978 
1979 	sc->nr.dirty += stat.nr_dirty;
1980 	sc->nr.congested += stat.nr_congested;
1981 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1982 	sc->nr.writeback += stat.nr_writeback;
1983 	sc->nr.immediate += stat.nr_immediate;
1984 	sc->nr.taken += nr_taken;
1985 	if (file)
1986 		sc->nr.file_taken += nr_taken;
1987 
1988 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1989 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1990 	return nr_reclaimed;
1991 }
1992 
1993 /*
1994  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
1995  *
1996  * We move them the other way if the page is referenced by one or more
1997  * processes.
1998  *
1999  * If the pages are mostly unmapped, the processing is fast and it is
2000  * appropriate to hold lru_lock across the whole operation.  But if
2001  * the pages are mapped, the processing is slow (page_referenced()), so
2002  * we should drop lru_lock around each page.  It's impossible to balance
2003  * this, so instead we remove the pages from the LRU while processing them.
2004  * It is safe to rely on PG_active against the non-LRU pages in here because
2005  * nobody will play with that bit on a non-LRU page.
2006  *
2007  * The downside is that we have to touch page->_refcount against each page.
2008  * But we had to alter page->flags anyway.
2009  */
2010 static void shrink_active_list(unsigned long nr_to_scan,
2011 			       struct lruvec *lruvec,
2012 			       struct scan_control *sc,
2013 			       enum lru_list lru)
2014 {
2015 	unsigned long nr_taken;
2016 	unsigned long nr_scanned;
2017 	unsigned long vm_flags;
2018 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2019 	LIST_HEAD(l_active);
2020 	LIST_HEAD(l_inactive);
2021 	struct page *page;
2022 	unsigned nr_deactivate, nr_activate;
2023 	unsigned nr_rotated = 0;
2024 	int file = is_file_lru(lru);
2025 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2026 
2027 	lru_add_drain();
2028 
2029 	spin_lock_irq(&lruvec->lru_lock);
2030 
2031 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2032 				     &nr_scanned, sc, lru);
2033 
2034 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2035 
2036 	if (!cgroup_reclaim(sc))
2037 		__count_vm_events(PGREFILL, nr_scanned);
2038 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2039 
2040 	spin_unlock_irq(&lruvec->lru_lock);
2041 
2042 	while (!list_empty(&l_hold)) {
2043 		cond_resched();
2044 		page = lru_to_page(&l_hold);
2045 		list_del(&page->lru);
2046 
2047 		if (unlikely(!page_evictable(page))) {
2048 			putback_lru_page(page);
2049 			continue;
2050 		}
2051 
2052 		if (unlikely(buffer_heads_over_limit)) {
2053 			if (page_has_private(page) && trylock_page(page)) {
2054 				if (page_has_private(page))
2055 					try_to_release_page(page, 0);
2056 				unlock_page(page);
2057 			}
2058 		}
2059 
2060 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2061 				    &vm_flags)) {
2062 			/*
2063 			 * Identify referenced, file-backed active pages and
2064 			 * give them one more trip around the active list. So
2065 			 * that executable code get better chances to stay in
2066 			 * memory under moderate memory pressure.  Anon pages
2067 			 * are not likely to be evicted by use-once streaming
2068 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2069 			 * so we ignore them here.
2070 			 */
2071 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2072 				nr_rotated += thp_nr_pages(page);
2073 				list_add(&page->lru, &l_active);
2074 				continue;
2075 			}
2076 		}
2077 
2078 		ClearPageActive(page);	/* we are de-activating */
2079 		SetPageWorkingset(page);
2080 		list_add(&page->lru, &l_inactive);
2081 	}
2082 
2083 	/*
2084 	 * Move pages back to the lru list.
2085 	 */
2086 	spin_lock_irq(&lruvec->lru_lock);
2087 
2088 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2089 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2090 	/* Keep all free pages in l_active list */
2091 	list_splice(&l_inactive, &l_active);
2092 
2093 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2094 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2095 
2096 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2097 	spin_unlock_irq(&lruvec->lru_lock);
2098 
2099 	mem_cgroup_uncharge_list(&l_active);
2100 	free_unref_page_list(&l_active);
2101 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2102 			nr_deactivate, nr_rotated, sc->priority, file);
2103 }
2104 
2105 unsigned long reclaim_pages(struct list_head *page_list)
2106 {
2107 	int nid = NUMA_NO_NODE;
2108 	unsigned int nr_reclaimed = 0;
2109 	LIST_HEAD(node_page_list);
2110 	struct reclaim_stat dummy_stat;
2111 	struct page *page;
2112 	struct scan_control sc = {
2113 		.gfp_mask = GFP_KERNEL,
2114 		.priority = DEF_PRIORITY,
2115 		.may_writepage = 1,
2116 		.may_unmap = 1,
2117 		.may_swap = 1,
2118 	};
2119 
2120 	while (!list_empty(page_list)) {
2121 		page = lru_to_page(page_list);
2122 		if (nid == NUMA_NO_NODE) {
2123 			nid = page_to_nid(page);
2124 			INIT_LIST_HEAD(&node_page_list);
2125 		}
2126 
2127 		if (nid == page_to_nid(page)) {
2128 			ClearPageActive(page);
2129 			list_move(&page->lru, &node_page_list);
2130 			continue;
2131 		}
2132 
2133 		nr_reclaimed += shrink_page_list(&node_page_list,
2134 						NODE_DATA(nid),
2135 						&sc, &dummy_stat, false);
2136 		while (!list_empty(&node_page_list)) {
2137 			page = lru_to_page(&node_page_list);
2138 			list_del(&page->lru);
2139 			putback_lru_page(page);
2140 		}
2141 
2142 		nid = NUMA_NO_NODE;
2143 	}
2144 
2145 	if (!list_empty(&node_page_list)) {
2146 		nr_reclaimed += shrink_page_list(&node_page_list,
2147 						NODE_DATA(nid),
2148 						&sc, &dummy_stat, false);
2149 		while (!list_empty(&node_page_list)) {
2150 			page = lru_to_page(&node_page_list);
2151 			list_del(&page->lru);
2152 			putback_lru_page(page);
2153 		}
2154 	}
2155 
2156 	return nr_reclaimed;
2157 }
2158 
2159 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2160 				 struct lruvec *lruvec, struct scan_control *sc)
2161 {
2162 	if (is_active_lru(lru)) {
2163 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2164 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2165 		else
2166 			sc->skipped_deactivate = 1;
2167 		return 0;
2168 	}
2169 
2170 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2171 }
2172 
2173 /*
2174  * The inactive anon list should be small enough that the VM never has
2175  * to do too much work.
2176  *
2177  * The inactive file list should be small enough to leave most memory
2178  * to the established workingset on the scan-resistant active list,
2179  * but large enough to avoid thrashing the aggregate readahead window.
2180  *
2181  * Both inactive lists should also be large enough that each inactive
2182  * page has a chance to be referenced again before it is reclaimed.
2183  *
2184  * If that fails and refaulting is observed, the inactive list grows.
2185  *
2186  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2187  * on this LRU, maintained by the pageout code. An inactive_ratio
2188  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2189  *
2190  * total     target    max
2191  * memory    ratio     inactive
2192  * -------------------------------------
2193  *   10MB       1         5MB
2194  *  100MB       1        50MB
2195  *    1GB       3       250MB
2196  *   10GB      10       0.9GB
2197  *  100GB      31         3GB
2198  *    1TB     101        10GB
2199  *   10TB     320        32GB
2200  */
2201 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2202 {
2203 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2204 	unsigned long inactive, active;
2205 	unsigned long inactive_ratio;
2206 	unsigned long gb;
2207 
2208 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2209 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2210 
2211 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2212 	if (gb)
2213 		inactive_ratio = int_sqrt(10 * gb);
2214 	else
2215 		inactive_ratio = 1;
2216 
2217 	return inactive * inactive_ratio < active;
2218 }
2219 
2220 enum scan_balance {
2221 	SCAN_EQUAL,
2222 	SCAN_FRACT,
2223 	SCAN_ANON,
2224 	SCAN_FILE,
2225 };
2226 
2227 /*
2228  * Determine how aggressively the anon and file LRU lists should be
2229  * scanned.  The relative value of each set of LRU lists is determined
2230  * by looking at the fraction of the pages scanned we did rotate back
2231  * onto the active list instead of evict.
2232  *
2233  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2234  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2235  */
2236 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2237 			   unsigned long *nr)
2238 {
2239 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2240 	unsigned long anon_cost, file_cost, total_cost;
2241 	int swappiness = mem_cgroup_swappiness(memcg);
2242 	u64 fraction[ANON_AND_FILE];
2243 	u64 denominator = 0;	/* gcc */
2244 	enum scan_balance scan_balance;
2245 	unsigned long ap, fp;
2246 	enum lru_list lru;
2247 
2248 	/* If we have no swap space, do not bother scanning anon pages. */
2249 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2250 		scan_balance = SCAN_FILE;
2251 		goto out;
2252 	}
2253 
2254 	/*
2255 	 * Global reclaim will swap to prevent OOM even with no
2256 	 * swappiness, but memcg users want to use this knob to
2257 	 * disable swapping for individual groups completely when
2258 	 * using the memory controller's swap limit feature would be
2259 	 * too expensive.
2260 	 */
2261 	if (cgroup_reclaim(sc) && !swappiness) {
2262 		scan_balance = SCAN_FILE;
2263 		goto out;
2264 	}
2265 
2266 	/*
2267 	 * Do not apply any pressure balancing cleverness when the
2268 	 * system is close to OOM, scan both anon and file equally
2269 	 * (unless the swappiness setting disagrees with swapping).
2270 	 */
2271 	if (!sc->priority && swappiness) {
2272 		scan_balance = SCAN_EQUAL;
2273 		goto out;
2274 	}
2275 
2276 	/*
2277 	 * If the system is almost out of file pages, force-scan anon.
2278 	 */
2279 	if (sc->file_is_tiny) {
2280 		scan_balance = SCAN_ANON;
2281 		goto out;
2282 	}
2283 
2284 	/*
2285 	 * If there is enough inactive page cache, we do not reclaim
2286 	 * anything from the anonymous working right now.
2287 	 */
2288 	if (sc->cache_trim_mode) {
2289 		scan_balance = SCAN_FILE;
2290 		goto out;
2291 	}
2292 
2293 	scan_balance = SCAN_FRACT;
2294 	/*
2295 	 * Calculate the pressure balance between anon and file pages.
2296 	 *
2297 	 * The amount of pressure we put on each LRU is inversely
2298 	 * proportional to the cost of reclaiming each list, as
2299 	 * determined by the share of pages that are refaulting, times
2300 	 * the relative IO cost of bringing back a swapped out
2301 	 * anonymous page vs reloading a filesystem page (swappiness).
2302 	 *
2303 	 * Although we limit that influence to ensure no list gets
2304 	 * left behind completely: at least a third of the pressure is
2305 	 * applied, before swappiness.
2306 	 *
2307 	 * With swappiness at 100, anon and file have equal IO cost.
2308 	 */
2309 	total_cost = sc->anon_cost + sc->file_cost;
2310 	anon_cost = total_cost + sc->anon_cost;
2311 	file_cost = total_cost + sc->file_cost;
2312 	total_cost = anon_cost + file_cost;
2313 
2314 	ap = swappiness * (total_cost + 1);
2315 	ap /= anon_cost + 1;
2316 
2317 	fp = (200 - swappiness) * (total_cost + 1);
2318 	fp /= file_cost + 1;
2319 
2320 	fraction[0] = ap;
2321 	fraction[1] = fp;
2322 	denominator = ap + fp;
2323 out:
2324 	for_each_evictable_lru(lru) {
2325 		int file = is_file_lru(lru);
2326 		unsigned long lruvec_size;
2327 		unsigned long scan;
2328 		unsigned long protection;
2329 
2330 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2331 		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2332 						   memcg,
2333 						   sc->memcg_low_reclaim);
2334 
2335 		if (protection) {
2336 			/*
2337 			 * Scale a cgroup's reclaim pressure by proportioning
2338 			 * its current usage to its memory.low or memory.min
2339 			 * setting.
2340 			 *
2341 			 * This is important, as otherwise scanning aggression
2342 			 * becomes extremely binary -- from nothing as we
2343 			 * approach the memory protection threshold, to totally
2344 			 * nominal as we exceed it.  This results in requiring
2345 			 * setting extremely liberal protection thresholds. It
2346 			 * also means we simply get no protection at all if we
2347 			 * set it too low, which is not ideal.
2348 			 *
2349 			 * If there is any protection in place, we reduce scan
2350 			 * pressure by how much of the total memory used is
2351 			 * within protection thresholds.
2352 			 *
2353 			 * There is one special case: in the first reclaim pass,
2354 			 * we skip over all groups that are within their low
2355 			 * protection. If that fails to reclaim enough pages to
2356 			 * satisfy the reclaim goal, we come back and override
2357 			 * the best-effort low protection. However, we still
2358 			 * ideally want to honor how well-behaved groups are in
2359 			 * that case instead of simply punishing them all
2360 			 * equally. As such, we reclaim them based on how much
2361 			 * memory they are using, reducing the scan pressure
2362 			 * again by how much of the total memory used is under
2363 			 * hard protection.
2364 			 */
2365 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2366 
2367 			/* Avoid TOCTOU with earlier protection check */
2368 			cgroup_size = max(cgroup_size, protection);
2369 
2370 			scan = lruvec_size - lruvec_size * protection /
2371 				cgroup_size;
2372 
2373 			/*
2374 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2375 			 * reclaim moving forwards, avoiding decrementing
2376 			 * sc->priority further than desirable.
2377 			 */
2378 			scan = max(scan, SWAP_CLUSTER_MAX);
2379 		} else {
2380 			scan = lruvec_size;
2381 		}
2382 
2383 		scan >>= sc->priority;
2384 
2385 		/*
2386 		 * If the cgroup's already been deleted, make sure to
2387 		 * scrape out the remaining cache.
2388 		 */
2389 		if (!scan && !mem_cgroup_online(memcg))
2390 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2391 
2392 		switch (scan_balance) {
2393 		case SCAN_EQUAL:
2394 			/* Scan lists relative to size */
2395 			break;
2396 		case SCAN_FRACT:
2397 			/*
2398 			 * Scan types proportional to swappiness and
2399 			 * their relative recent reclaim efficiency.
2400 			 * Make sure we don't miss the last page on
2401 			 * the offlined memory cgroups because of a
2402 			 * round-off error.
2403 			 */
2404 			scan = mem_cgroup_online(memcg) ?
2405 			       div64_u64(scan * fraction[file], denominator) :
2406 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2407 						  denominator);
2408 			break;
2409 		case SCAN_FILE:
2410 		case SCAN_ANON:
2411 			/* Scan one type exclusively */
2412 			if ((scan_balance == SCAN_FILE) != file)
2413 				scan = 0;
2414 			break;
2415 		default:
2416 			/* Look ma, no brain */
2417 			BUG();
2418 		}
2419 
2420 		nr[lru] = scan;
2421 	}
2422 }
2423 
2424 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2425 {
2426 	unsigned long nr[NR_LRU_LISTS];
2427 	unsigned long targets[NR_LRU_LISTS];
2428 	unsigned long nr_to_scan;
2429 	enum lru_list lru;
2430 	unsigned long nr_reclaimed = 0;
2431 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2432 	struct blk_plug plug;
2433 	bool scan_adjusted;
2434 
2435 	get_scan_count(lruvec, sc, nr);
2436 
2437 	/* Record the original scan target for proportional adjustments later */
2438 	memcpy(targets, nr, sizeof(nr));
2439 
2440 	/*
2441 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2442 	 * event that can occur when there is little memory pressure e.g.
2443 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2444 	 * when the requested number of pages are reclaimed when scanning at
2445 	 * DEF_PRIORITY on the assumption that the fact we are direct
2446 	 * reclaiming implies that kswapd is not keeping up and it is best to
2447 	 * do a batch of work at once. For memcg reclaim one check is made to
2448 	 * abort proportional reclaim if either the file or anon lru has already
2449 	 * dropped to zero at the first pass.
2450 	 */
2451 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2452 			 sc->priority == DEF_PRIORITY);
2453 
2454 	blk_start_plug(&plug);
2455 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2456 					nr[LRU_INACTIVE_FILE]) {
2457 		unsigned long nr_anon, nr_file, percentage;
2458 		unsigned long nr_scanned;
2459 
2460 		for_each_evictable_lru(lru) {
2461 			if (nr[lru]) {
2462 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2463 				nr[lru] -= nr_to_scan;
2464 
2465 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2466 							    lruvec, sc);
2467 			}
2468 		}
2469 
2470 		cond_resched();
2471 
2472 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2473 			continue;
2474 
2475 		/*
2476 		 * For kswapd and memcg, reclaim at least the number of pages
2477 		 * requested. Ensure that the anon and file LRUs are scanned
2478 		 * proportionally what was requested by get_scan_count(). We
2479 		 * stop reclaiming one LRU and reduce the amount scanning
2480 		 * proportional to the original scan target.
2481 		 */
2482 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2483 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2484 
2485 		/*
2486 		 * It's just vindictive to attack the larger once the smaller
2487 		 * has gone to zero.  And given the way we stop scanning the
2488 		 * smaller below, this makes sure that we only make one nudge
2489 		 * towards proportionality once we've got nr_to_reclaim.
2490 		 */
2491 		if (!nr_file || !nr_anon)
2492 			break;
2493 
2494 		if (nr_file > nr_anon) {
2495 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2496 						targets[LRU_ACTIVE_ANON] + 1;
2497 			lru = LRU_BASE;
2498 			percentage = nr_anon * 100 / scan_target;
2499 		} else {
2500 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2501 						targets[LRU_ACTIVE_FILE] + 1;
2502 			lru = LRU_FILE;
2503 			percentage = nr_file * 100 / scan_target;
2504 		}
2505 
2506 		/* Stop scanning the smaller of the LRU */
2507 		nr[lru] = 0;
2508 		nr[lru + LRU_ACTIVE] = 0;
2509 
2510 		/*
2511 		 * Recalculate the other LRU scan count based on its original
2512 		 * scan target and the percentage scanning already complete
2513 		 */
2514 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2515 		nr_scanned = targets[lru] - nr[lru];
2516 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2517 		nr[lru] -= min(nr[lru], nr_scanned);
2518 
2519 		lru += LRU_ACTIVE;
2520 		nr_scanned = targets[lru] - nr[lru];
2521 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2522 		nr[lru] -= min(nr[lru], nr_scanned);
2523 
2524 		scan_adjusted = true;
2525 	}
2526 	blk_finish_plug(&plug);
2527 	sc->nr_reclaimed += nr_reclaimed;
2528 
2529 	/*
2530 	 * Even if we did not try to evict anon pages at all, we want to
2531 	 * rebalance the anon lru active/inactive ratio.
2532 	 */
2533 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2534 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2535 				   sc, LRU_ACTIVE_ANON);
2536 }
2537 
2538 /* Use reclaim/compaction for costly allocs or under memory pressure */
2539 static bool in_reclaim_compaction(struct scan_control *sc)
2540 {
2541 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2542 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2543 			 sc->priority < DEF_PRIORITY - 2))
2544 		return true;
2545 
2546 	return false;
2547 }
2548 
2549 /*
2550  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2551  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2552  * true if more pages should be reclaimed such that when the page allocator
2553  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2554  * It will give up earlier than that if there is difficulty reclaiming pages.
2555  */
2556 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2557 					unsigned long nr_reclaimed,
2558 					struct scan_control *sc)
2559 {
2560 	unsigned long pages_for_compaction;
2561 	unsigned long inactive_lru_pages;
2562 	int z;
2563 
2564 	/* If not in reclaim/compaction mode, stop */
2565 	if (!in_reclaim_compaction(sc))
2566 		return false;
2567 
2568 	/*
2569 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2570 	 * number of pages that were scanned. This will return to the caller
2571 	 * with the risk reclaim/compaction and the resulting allocation attempt
2572 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2573 	 * allocations through requiring that the full LRU list has been scanned
2574 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2575 	 * scan, but that approximation was wrong, and there were corner cases
2576 	 * where always a non-zero amount of pages were scanned.
2577 	 */
2578 	if (!nr_reclaimed)
2579 		return false;
2580 
2581 	/* If compaction would go ahead or the allocation would succeed, stop */
2582 	for (z = 0; z <= sc->reclaim_idx; z++) {
2583 		struct zone *zone = &pgdat->node_zones[z];
2584 		if (!managed_zone(zone))
2585 			continue;
2586 
2587 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2588 		case COMPACT_SUCCESS:
2589 		case COMPACT_CONTINUE:
2590 			return false;
2591 		default:
2592 			/* check next zone */
2593 			;
2594 		}
2595 	}
2596 
2597 	/*
2598 	 * If we have not reclaimed enough pages for compaction and the
2599 	 * inactive lists are large enough, continue reclaiming
2600 	 */
2601 	pages_for_compaction = compact_gap(sc->order);
2602 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2603 	if (get_nr_swap_pages() > 0)
2604 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2605 
2606 	return inactive_lru_pages > pages_for_compaction;
2607 }
2608 
2609 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2610 {
2611 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2612 	struct mem_cgroup *memcg;
2613 
2614 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2615 	do {
2616 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2617 		unsigned long reclaimed;
2618 		unsigned long scanned;
2619 
2620 		/*
2621 		 * This loop can become CPU-bound when target memcgs
2622 		 * aren't eligible for reclaim - either because they
2623 		 * don't have any reclaimable pages, or because their
2624 		 * memory is explicitly protected. Avoid soft lockups.
2625 		 */
2626 		cond_resched();
2627 
2628 		mem_cgroup_calculate_protection(target_memcg, memcg);
2629 
2630 		if (mem_cgroup_below_min(memcg)) {
2631 			/*
2632 			 * Hard protection.
2633 			 * If there is no reclaimable memory, OOM.
2634 			 */
2635 			continue;
2636 		} else if (mem_cgroup_below_low(memcg)) {
2637 			/*
2638 			 * Soft protection.
2639 			 * Respect the protection only as long as
2640 			 * there is an unprotected supply
2641 			 * of reclaimable memory from other cgroups.
2642 			 */
2643 			if (!sc->memcg_low_reclaim) {
2644 				sc->memcg_low_skipped = 1;
2645 				continue;
2646 			}
2647 			memcg_memory_event(memcg, MEMCG_LOW);
2648 		}
2649 
2650 		reclaimed = sc->nr_reclaimed;
2651 		scanned = sc->nr_scanned;
2652 
2653 		shrink_lruvec(lruvec, sc);
2654 
2655 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2656 			    sc->priority);
2657 
2658 		/* Record the group's reclaim efficiency */
2659 		vmpressure(sc->gfp_mask, memcg, false,
2660 			   sc->nr_scanned - scanned,
2661 			   sc->nr_reclaimed - reclaimed);
2662 
2663 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2664 }
2665 
2666 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2667 {
2668 	struct reclaim_state *reclaim_state = current->reclaim_state;
2669 	unsigned long nr_reclaimed, nr_scanned;
2670 	struct lruvec *target_lruvec;
2671 	bool reclaimable = false;
2672 	unsigned long file;
2673 
2674 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2675 
2676 again:
2677 	memset(&sc->nr, 0, sizeof(sc->nr));
2678 
2679 	nr_reclaimed = sc->nr_reclaimed;
2680 	nr_scanned = sc->nr_scanned;
2681 
2682 	/*
2683 	 * Determine the scan balance between anon and file LRUs.
2684 	 */
2685 	spin_lock_irq(&target_lruvec->lru_lock);
2686 	sc->anon_cost = target_lruvec->anon_cost;
2687 	sc->file_cost = target_lruvec->file_cost;
2688 	spin_unlock_irq(&target_lruvec->lru_lock);
2689 
2690 	/*
2691 	 * Target desirable inactive:active list ratios for the anon
2692 	 * and file LRU lists.
2693 	 */
2694 	if (!sc->force_deactivate) {
2695 		unsigned long refaults;
2696 
2697 		refaults = lruvec_page_state(target_lruvec,
2698 				WORKINGSET_ACTIVATE_ANON);
2699 		if (refaults != target_lruvec->refaults[0] ||
2700 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2701 			sc->may_deactivate |= DEACTIVATE_ANON;
2702 		else
2703 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2704 
2705 		/*
2706 		 * When refaults are being observed, it means a new
2707 		 * workingset is being established. Deactivate to get
2708 		 * rid of any stale active pages quickly.
2709 		 */
2710 		refaults = lruvec_page_state(target_lruvec,
2711 				WORKINGSET_ACTIVATE_FILE);
2712 		if (refaults != target_lruvec->refaults[1] ||
2713 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2714 			sc->may_deactivate |= DEACTIVATE_FILE;
2715 		else
2716 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2717 	} else
2718 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2719 
2720 	/*
2721 	 * If we have plenty of inactive file pages that aren't
2722 	 * thrashing, try to reclaim those first before touching
2723 	 * anonymous pages.
2724 	 */
2725 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2726 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2727 		sc->cache_trim_mode = 1;
2728 	else
2729 		sc->cache_trim_mode = 0;
2730 
2731 	/*
2732 	 * Prevent the reclaimer from falling into the cache trap: as
2733 	 * cache pages start out inactive, every cache fault will tip
2734 	 * the scan balance towards the file LRU.  And as the file LRU
2735 	 * shrinks, so does the window for rotation from references.
2736 	 * This means we have a runaway feedback loop where a tiny
2737 	 * thrashing file LRU becomes infinitely more attractive than
2738 	 * anon pages.  Try to detect this based on file LRU size.
2739 	 */
2740 	if (!cgroup_reclaim(sc)) {
2741 		unsigned long total_high_wmark = 0;
2742 		unsigned long free, anon;
2743 		int z;
2744 
2745 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2746 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2747 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2748 
2749 		for (z = 0; z < MAX_NR_ZONES; z++) {
2750 			struct zone *zone = &pgdat->node_zones[z];
2751 			if (!managed_zone(zone))
2752 				continue;
2753 
2754 			total_high_wmark += high_wmark_pages(zone);
2755 		}
2756 
2757 		/*
2758 		 * Consider anon: if that's low too, this isn't a
2759 		 * runaway file reclaim problem, but rather just
2760 		 * extreme pressure. Reclaim as per usual then.
2761 		 */
2762 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2763 
2764 		sc->file_is_tiny =
2765 			file + free <= total_high_wmark &&
2766 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2767 			anon >> sc->priority;
2768 	}
2769 
2770 	shrink_node_memcgs(pgdat, sc);
2771 
2772 	if (reclaim_state) {
2773 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2774 		reclaim_state->reclaimed_slab = 0;
2775 	}
2776 
2777 	/* Record the subtree's reclaim efficiency */
2778 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2779 		   sc->nr_scanned - nr_scanned,
2780 		   sc->nr_reclaimed - nr_reclaimed);
2781 
2782 	if (sc->nr_reclaimed - nr_reclaimed)
2783 		reclaimable = true;
2784 
2785 	if (current_is_kswapd()) {
2786 		/*
2787 		 * If reclaim is isolating dirty pages under writeback,
2788 		 * it implies that the long-lived page allocation rate
2789 		 * is exceeding the page laundering rate. Either the
2790 		 * global limits are not being effective at throttling
2791 		 * processes due to the page distribution throughout
2792 		 * zones or there is heavy usage of a slow backing
2793 		 * device. The only option is to throttle from reclaim
2794 		 * context which is not ideal as there is no guarantee
2795 		 * the dirtying process is throttled in the same way
2796 		 * balance_dirty_pages() manages.
2797 		 *
2798 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2799 		 * count the number of pages under pages flagged for
2800 		 * immediate reclaim and stall if any are encountered
2801 		 * in the nr_immediate check below.
2802 		 */
2803 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2804 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2805 
2806 		/* Allow kswapd to start writing pages during reclaim.*/
2807 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2808 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2809 
2810 		/*
2811 		 * If kswapd scans pages marked for immediate
2812 		 * reclaim and under writeback (nr_immediate), it
2813 		 * implies that pages are cycling through the LRU
2814 		 * faster than they are written so also forcibly stall.
2815 		 */
2816 		if (sc->nr.immediate)
2817 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2818 	}
2819 
2820 	/*
2821 	 * Tag a node/memcg as congested if all the dirty pages
2822 	 * scanned were backed by a congested BDI and
2823 	 * wait_iff_congested will stall.
2824 	 *
2825 	 * Legacy memcg will stall in page writeback so avoid forcibly
2826 	 * stalling in wait_iff_congested().
2827 	 */
2828 	if ((current_is_kswapd() ||
2829 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2830 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2831 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2832 
2833 	/*
2834 	 * Stall direct reclaim for IO completions if underlying BDIs
2835 	 * and node is congested. Allow kswapd to continue until it
2836 	 * starts encountering unqueued dirty pages or cycling through
2837 	 * the LRU too quickly.
2838 	 */
2839 	if (!current_is_kswapd() && current_may_throttle() &&
2840 	    !sc->hibernation_mode &&
2841 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2842 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2843 
2844 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2845 				    sc))
2846 		goto again;
2847 
2848 	/*
2849 	 * Kswapd gives up on balancing particular nodes after too
2850 	 * many failures to reclaim anything from them and goes to
2851 	 * sleep. On reclaim progress, reset the failure counter. A
2852 	 * successful direct reclaim run will revive a dormant kswapd.
2853 	 */
2854 	if (reclaimable)
2855 		pgdat->kswapd_failures = 0;
2856 }
2857 
2858 /*
2859  * Returns true if compaction should go ahead for a costly-order request, or
2860  * the allocation would already succeed without compaction. Return false if we
2861  * should reclaim first.
2862  */
2863 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2864 {
2865 	unsigned long watermark;
2866 	enum compact_result suitable;
2867 
2868 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2869 	if (suitable == COMPACT_SUCCESS)
2870 		/* Allocation should succeed already. Don't reclaim. */
2871 		return true;
2872 	if (suitable == COMPACT_SKIPPED)
2873 		/* Compaction cannot yet proceed. Do reclaim. */
2874 		return false;
2875 
2876 	/*
2877 	 * Compaction is already possible, but it takes time to run and there
2878 	 * are potentially other callers using the pages just freed. So proceed
2879 	 * with reclaim to make a buffer of free pages available to give
2880 	 * compaction a reasonable chance of completing and allocating the page.
2881 	 * Note that we won't actually reclaim the whole buffer in one attempt
2882 	 * as the target watermark in should_continue_reclaim() is lower. But if
2883 	 * we are already above the high+gap watermark, don't reclaim at all.
2884 	 */
2885 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2886 
2887 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2888 }
2889 
2890 /*
2891  * This is the direct reclaim path, for page-allocating processes.  We only
2892  * try to reclaim pages from zones which will satisfy the caller's allocation
2893  * request.
2894  *
2895  * If a zone is deemed to be full of pinned pages then just give it a light
2896  * scan then give up on it.
2897  */
2898 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2899 {
2900 	struct zoneref *z;
2901 	struct zone *zone;
2902 	unsigned long nr_soft_reclaimed;
2903 	unsigned long nr_soft_scanned;
2904 	gfp_t orig_mask;
2905 	pg_data_t *last_pgdat = NULL;
2906 
2907 	/*
2908 	 * If the number of buffer_heads in the machine exceeds the maximum
2909 	 * allowed level, force direct reclaim to scan the highmem zone as
2910 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2911 	 */
2912 	orig_mask = sc->gfp_mask;
2913 	if (buffer_heads_over_limit) {
2914 		sc->gfp_mask |= __GFP_HIGHMEM;
2915 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2916 	}
2917 
2918 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2919 					sc->reclaim_idx, sc->nodemask) {
2920 		/*
2921 		 * Take care memory controller reclaiming has small influence
2922 		 * to global LRU.
2923 		 */
2924 		if (!cgroup_reclaim(sc)) {
2925 			if (!cpuset_zone_allowed(zone,
2926 						 GFP_KERNEL | __GFP_HARDWALL))
2927 				continue;
2928 
2929 			/*
2930 			 * If we already have plenty of memory free for
2931 			 * compaction in this zone, don't free any more.
2932 			 * Even though compaction is invoked for any
2933 			 * non-zero order, only frequent costly order
2934 			 * reclamation is disruptive enough to become a
2935 			 * noticeable problem, like transparent huge
2936 			 * page allocations.
2937 			 */
2938 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2939 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2940 			    compaction_ready(zone, sc)) {
2941 				sc->compaction_ready = true;
2942 				continue;
2943 			}
2944 
2945 			/*
2946 			 * Shrink each node in the zonelist once. If the
2947 			 * zonelist is ordered by zone (not the default) then a
2948 			 * node may be shrunk multiple times but in that case
2949 			 * the user prefers lower zones being preserved.
2950 			 */
2951 			if (zone->zone_pgdat == last_pgdat)
2952 				continue;
2953 
2954 			/*
2955 			 * This steals pages from memory cgroups over softlimit
2956 			 * and returns the number of reclaimed pages and
2957 			 * scanned pages. This works for global memory pressure
2958 			 * and balancing, not for a memcg's limit.
2959 			 */
2960 			nr_soft_scanned = 0;
2961 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2962 						sc->order, sc->gfp_mask,
2963 						&nr_soft_scanned);
2964 			sc->nr_reclaimed += nr_soft_reclaimed;
2965 			sc->nr_scanned += nr_soft_scanned;
2966 			/* need some check for avoid more shrink_zone() */
2967 		}
2968 
2969 		/* See comment about same check for global reclaim above */
2970 		if (zone->zone_pgdat == last_pgdat)
2971 			continue;
2972 		last_pgdat = zone->zone_pgdat;
2973 		shrink_node(zone->zone_pgdat, sc);
2974 	}
2975 
2976 	/*
2977 	 * Restore to original mask to avoid the impact on the caller if we
2978 	 * promoted it to __GFP_HIGHMEM.
2979 	 */
2980 	sc->gfp_mask = orig_mask;
2981 }
2982 
2983 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2984 {
2985 	struct lruvec *target_lruvec;
2986 	unsigned long refaults;
2987 
2988 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2989 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2990 	target_lruvec->refaults[0] = refaults;
2991 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2992 	target_lruvec->refaults[1] = refaults;
2993 }
2994 
2995 /*
2996  * This is the main entry point to direct page reclaim.
2997  *
2998  * If a full scan of the inactive list fails to free enough memory then we
2999  * are "out of memory" and something needs to be killed.
3000  *
3001  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3002  * high - the zone may be full of dirty or under-writeback pages, which this
3003  * caller can't do much about.  We kick the writeback threads and take explicit
3004  * naps in the hope that some of these pages can be written.  But if the
3005  * allocating task holds filesystem locks which prevent writeout this might not
3006  * work, and the allocation attempt will fail.
3007  *
3008  * returns:	0, if no pages reclaimed
3009  * 		else, the number of pages reclaimed
3010  */
3011 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3012 					  struct scan_control *sc)
3013 {
3014 	int initial_priority = sc->priority;
3015 	pg_data_t *last_pgdat;
3016 	struct zoneref *z;
3017 	struct zone *zone;
3018 retry:
3019 	delayacct_freepages_start();
3020 
3021 	if (!cgroup_reclaim(sc))
3022 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3023 
3024 	do {
3025 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3026 				sc->priority);
3027 		sc->nr_scanned = 0;
3028 		shrink_zones(zonelist, sc);
3029 
3030 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3031 			break;
3032 
3033 		if (sc->compaction_ready)
3034 			break;
3035 
3036 		/*
3037 		 * If we're getting trouble reclaiming, start doing
3038 		 * writepage even in laptop mode.
3039 		 */
3040 		if (sc->priority < DEF_PRIORITY - 2)
3041 			sc->may_writepage = 1;
3042 	} while (--sc->priority >= 0);
3043 
3044 	last_pgdat = NULL;
3045 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3046 					sc->nodemask) {
3047 		if (zone->zone_pgdat == last_pgdat)
3048 			continue;
3049 		last_pgdat = zone->zone_pgdat;
3050 
3051 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3052 
3053 		if (cgroup_reclaim(sc)) {
3054 			struct lruvec *lruvec;
3055 
3056 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3057 						   zone->zone_pgdat);
3058 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3059 		}
3060 	}
3061 
3062 	delayacct_freepages_end();
3063 
3064 	if (sc->nr_reclaimed)
3065 		return sc->nr_reclaimed;
3066 
3067 	/* Aborted reclaim to try compaction? don't OOM, then */
3068 	if (sc->compaction_ready)
3069 		return 1;
3070 
3071 	/*
3072 	 * We make inactive:active ratio decisions based on the node's
3073 	 * composition of memory, but a restrictive reclaim_idx or a
3074 	 * memory.low cgroup setting can exempt large amounts of
3075 	 * memory from reclaim. Neither of which are very common, so
3076 	 * instead of doing costly eligibility calculations of the
3077 	 * entire cgroup subtree up front, we assume the estimates are
3078 	 * good, and retry with forcible deactivation if that fails.
3079 	 */
3080 	if (sc->skipped_deactivate) {
3081 		sc->priority = initial_priority;
3082 		sc->force_deactivate = 1;
3083 		sc->skipped_deactivate = 0;
3084 		goto retry;
3085 	}
3086 
3087 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3088 	if (sc->memcg_low_skipped) {
3089 		sc->priority = initial_priority;
3090 		sc->force_deactivate = 0;
3091 		sc->memcg_low_reclaim = 1;
3092 		sc->memcg_low_skipped = 0;
3093 		goto retry;
3094 	}
3095 
3096 	return 0;
3097 }
3098 
3099 static bool allow_direct_reclaim(pg_data_t *pgdat)
3100 {
3101 	struct zone *zone;
3102 	unsigned long pfmemalloc_reserve = 0;
3103 	unsigned long free_pages = 0;
3104 	int i;
3105 	bool wmark_ok;
3106 
3107 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3108 		return true;
3109 
3110 	for (i = 0; i <= ZONE_NORMAL; i++) {
3111 		zone = &pgdat->node_zones[i];
3112 		if (!managed_zone(zone))
3113 			continue;
3114 
3115 		if (!zone_reclaimable_pages(zone))
3116 			continue;
3117 
3118 		pfmemalloc_reserve += min_wmark_pages(zone);
3119 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3120 	}
3121 
3122 	/* If there are no reserves (unexpected config) then do not throttle */
3123 	if (!pfmemalloc_reserve)
3124 		return true;
3125 
3126 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3127 
3128 	/* kswapd must be awake if processes are being throttled */
3129 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3130 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3131 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3132 
3133 		wake_up_interruptible(&pgdat->kswapd_wait);
3134 	}
3135 
3136 	return wmark_ok;
3137 }
3138 
3139 /*
3140  * Throttle direct reclaimers if backing storage is backed by the network
3141  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3142  * depleted. kswapd will continue to make progress and wake the processes
3143  * when the low watermark is reached.
3144  *
3145  * Returns true if a fatal signal was delivered during throttling. If this
3146  * happens, the page allocator should not consider triggering the OOM killer.
3147  */
3148 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3149 					nodemask_t *nodemask)
3150 {
3151 	struct zoneref *z;
3152 	struct zone *zone;
3153 	pg_data_t *pgdat = NULL;
3154 
3155 	/*
3156 	 * Kernel threads should not be throttled as they may be indirectly
3157 	 * responsible for cleaning pages necessary for reclaim to make forward
3158 	 * progress. kjournald for example may enter direct reclaim while
3159 	 * committing a transaction where throttling it could forcing other
3160 	 * processes to block on log_wait_commit().
3161 	 */
3162 	if (current->flags & PF_KTHREAD)
3163 		goto out;
3164 
3165 	/*
3166 	 * If a fatal signal is pending, this process should not throttle.
3167 	 * It should return quickly so it can exit and free its memory
3168 	 */
3169 	if (fatal_signal_pending(current))
3170 		goto out;
3171 
3172 	/*
3173 	 * Check if the pfmemalloc reserves are ok by finding the first node
3174 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3175 	 * GFP_KERNEL will be required for allocating network buffers when
3176 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3177 	 *
3178 	 * Throttling is based on the first usable node and throttled processes
3179 	 * wait on a queue until kswapd makes progress and wakes them. There
3180 	 * is an affinity then between processes waking up and where reclaim
3181 	 * progress has been made assuming the process wakes on the same node.
3182 	 * More importantly, processes running on remote nodes will not compete
3183 	 * for remote pfmemalloc reserves and processes on different nodes
3184 	 * should make reasonable progress.
3185 	 */
3186 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3187 					gfp_zone(gfp_mask), nodemask) {
3188 		if (zone_idx(zone) > ZONE_NORMAL)
3189 			continue;
3190 
3191 		/* Throttle based on the first usable node */
3192 		pgdat = zone->zone_pgdat;
3193 		if (allow_direct_reclaim(pgdat))
3194 			goto out;
3195 		break;
3196 	}
3197 
3198 	/* If no zone was usable by the allocation flags then do not throttle */
3199 	if (!pgdat)
3200 		goto out;
3201 
3202 	/* Account for the throttling */
3203 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3204 
3205 	/*
3206 	 * If the caller cannot enter the filesystem, it's possible that it
3207 	 * is due to the caller holding an FS lock or performing a journal
3208 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3209 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3210 	 * blocked waiting on the same lock. Instead, throttle for up to a
3211 	 * second before continuing.
3212 	 */
3213 	if (!(gfp_mask & __GFP_FS)) {
3214 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3215 			allow_direct_reclaim(pgdat), HZ);
3216 
3217 		goto check_pending;
3218 	}
3219 
3220 	/* Throttle until kswapd wakes the process */
3221 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3222 		allow_direct_reclaim(pgdat));
3223 
3224 check_pending:
3225 	if (fatal_signal_pending(current))
3226 		return true;
3227 
3228 out:
3229 	return false;
3230 }
3231 
3232 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3233 				gfp_t gfp_mask, nodemask_t *nodemask)
3234 {
3235 	unsigned long nr_reclaimed;
3236 	struct scan_control sc = {
3237 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3238 		.gfp_mask = current_gfp_context(gfp_mask),
3239 		.reclaim_idx = gfp_zone(gfp_mask),
3240 		.order = order,
3241 		.nodemask = nodemask,
3242 		.priority = DEF_PRIORITY,
3243 		.may_writepage = !laptop_mode,
3244 		.may_unmap = 1,
3245 		.may_swap = 1,
3246 	};
3247 
3248 	/*
3249 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3250 	 * Confirm they are large enough for max values.
3251 	 */
3252 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3253 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3254 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3255 
3256 	/*
3257 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3258 	 * 1 is returned so that the page allocator does not OOM kill at this
3259 	 * point.
3260 	 */
3261 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3262 		return 1;
3263 
3264 	set_task_reclaim_state(current, &sc.reclaim_state);
3265 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3266 
3267 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3268 
3269 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3270 	set_task_reclaim_state(current, NULL);
3271 
3272 	return nr_reclaimed;
3273 }
3274 
3275 #ifdef CONFIG_MEMCG
3276 
3277 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3278 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3279 						gfp_t gfp_mask, bool noswap,
3280 						pg_data_t *pgdat,
3281 						unsigned long *nr_scanned)
3282 {
3283 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3284 	struct scan_control sc = {
3285 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3286 		.target_mem_cgroup = memcg,
3287 		.may_writepage = !laptop_mode,
3288 		.may_unmap = 1,
3289 		.reclaim_idx = MAX_NR_ZONES - 1,
3290 		.may_swap = !noswap,
3291 	};
3292 
3293 	WARN_ON_ONCE(!current->reclaim_state);
3294 
3295 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3296 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3297 
3298 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3299 						      sc.gfp_mask);
3300 
3301 	/*
3302 	 * NOTE: Although we can get the priority field, using it
3303 	 * here is not a good idea, since it limits the pages we can scan.
3304 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3305 	 * will pick up pages from other mem cgroup's as well. We hack
3306 	 * the priority and make it zero.
3307 	 */
3308 	shrink_lruvec(lruvec, &sc);
3309 
3310 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3311 
3312 	*nr_scanned = sc.nr_scanned;
3313 
3314 	return sc.nr_reclaimed;
3315 }
3316 
3317 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3318 					   unsigned long nr_pages,
3319 					   gfp_t gfp_mask,
3320 					   bool may_swap)
3321 {
3322 	unsigned long nr_reclaimed;
3323 	unsigned int noreclaim_flag;
3324 	struct scan_control sc = {
3325 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3326 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3327 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3328 		.reclaim_idx = MAX_NR_ZONES - 1,
3329 		.target_mem_cgroup = memcg,
3330 		.priority = DEF_PRIORITY,
3331 		.may_writepage = !laptop_mode,
3332 		.may_unmap = 1,
3333 		.may_swap = may_swap,
3334 	};
3335 	/*
3336 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3337 	 * equal pressure on all the nodes. This is based on the assumption that
3338 	 * the reclaim does not bail out early.
3339 	 */
3340 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3341 
3342 	set_task_reclaim_state(current, &sc.reclaim_state);
3343 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3344 	noreclaim_flag = memalloc_noreclaim_save();
3345 
3346 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3347 
3348 	memalloc_noreclaim_restore(noreclaim_flag);
3349 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3350 	set_task_reclaim_state(current, NULL);
3351 
3352 	return nr_reclaimed;
3353 }
3354 #endif
3355 
3356 static void age_active_anon(struct pglist_data *pgdat,
3357 				struct scan_control *sc)
3358 {
3359 	struct mem_cgroup *memcg;
3360 	struct lruvec *lruvec;
3361 
3362 	if (!total_swap_pages)
3363 		return;
3364 
3365 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3366 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3367 		return;
3368 
3369 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3370 	do {
3371 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3372 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3373 				   sc, LRU_ACTIVE_ANON);
3374 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3375 	} while (memcg);
3376 }
3377 
3378 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3379 {
3380 	int i;
3381 	struct zone *zone;
3382 
3383 	/*
3384 	 * Check for watermark boosts top-down as the higher zones
3385 	 * are more likely to be boosted. Both watermarks and boosts
3386 	 * should not be checked at the same time as reclaim would
3387 	 * start prematurely when there is no boosting and a lower
3388 	 * zone is balanced.
3389 	 */
3390 	for (i = highest_zoneidx; i >= 0; i--) {
3391 		zone = pgdat->node_zones + i;
3392 		if (!managed_zone(zone))
3393 			continue;
3394 
3395 		if (zone->watermark_boost)
3396 			return true;
3397 	}
3398 
3399 	return false;
3400 }
3401 
3402 /*
3403  * Returns true if there is an eligible zone balanced for the request order
3404  * and highest_zoneidx
3405  */
3406 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3407 {
3408 	int i;
3409 	unsigned long mark = -1;
3410 	struct zone *zone;
3411 
3412 	/*
3413 	 * Check watermarks bottom-up as lower zones are more likely to
3414 	 * meet watermarks.
3415 	 */
3416 	for (i = 0; i <= highest_zoneidx; i++) {
3417 		zone = pgdat->node_zones + i;
3418 
3419 		if (!managed_zone(zone))
3420 			continue;
3421 
3422 		mark = high_wmark_pages(zone);
3423 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3424 			return true;
3425 	}
3426 
3427 	/*
3428 	 * If a node has no populated zone within highest_zoneidx, it does not
3429 	 * need balancing by definition. This can happen if a zone-restricted
3430 	 * allocation tries to wake a remote kswapd.
3431 	 */
3432 	if (mark == -1)
3433 		return true;
3434 
3435 	return false;
3436 }
3437 
3438 /* Clear pgdat state for congested, dirty or under writeback. */
3439 static void clear_pgdat_congested(pg_data_t *pgdat)
3440 {
3441 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3442 
3443 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3444 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3445 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3446 }
3447 
3448 /*
3449  * Prepare kswapd for sleeping. This verifies that there are no processes
3450  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3451  *
3452  * Returns true if kswapd is ready to sleep
3453  */
3454 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3455 				int highest_zoneidx)
3456 {
3457 	/*
3458 	 * The throttled processes are normally woken up in balance_pgdat() as
3459 	 * soon as allow_direct_reclaim() is true. But there is a potential
3460 	 * race between when kswapd checks the watermarks and a process gets
3461 	 * throttled. There is also a potential race if processes get
3462 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3463 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3464 	 * the wake up checks. If kswapd is going to sleep, no process should
3465 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3466 	 * the wake up is premature, processes will wake kswapd and get
3467 	 * throttled again. The difference from wake ups in balance_pgdat() is
3468 	 * that here we are under prepare_to_wait().
3469 	 */
3470 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3471 		wake_up_all(&pgdat->pfmemalloc_wait);
3472 
3473 	/* Hopeless node, leave it to direct reclaim */
3474 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3475 		return true;
3476 
3477 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3478 		clear_pgdat_congested(pgdat);
3479 		return true;
3480 	}
3481 
3482 	return false;
3483 }
3484 
3485 /*
3486  * kswapd shrinks a node of pages that are at or below the highest usable
3487  * zone that is currently unbalanced.
3488  *
3489  * Returns true if kswapd scanned at least the requested number of pages to
3490  * reclaim or if the lack of progress was due to pages under writeback.
3491  * This is used to determine if the scanning priority needs to be raised.
3492  */
3493 static bool kswapd_shrink_node(pg_data_t *pgdat,
3494 			       struct scan_control *sc)
3495 {
3496 	struct zone *zone;
3497 	int z;
3498 
3499 	/* Reclaim a number of pages proportional to the number of zones */
3500 	sc->nr_to_reclaim = 0;
3501 	for (z = 0; z <= sc->reclaim_idx; z++) {
3502 		zone = pgdat->node_zones + z;
3503 		if (!managed_zone(zone))
3504 			continue;
3505 
3506 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3507 	}
3508 
3509 	/*
3510 	 * Historically care was taken to put equal pressure on all zones but
3511 	 * now pressure is applied based on node LRU order.
3512 	 */
3513 	shrink_node(pgdat, sc);
3514 
3515 	/*
3516 	 * Fragmentation may mean that the system cannot be rebalanced for
3517 	 * high-order allocations. If twice the allocation size has been
3518 	 * reclaimed then recheck watermarks only at order-0 to prevent
3519 	 * excessive reclaim. Assume that a process requested a high-order
3520 	 * can direct reclaim/compact.
3521 	 */
3522 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3523 		sc->order = 0;
3524 
3525 	return sc->nr_scanned >= sc->nr_to_reclaim;
3526 }
3527 
3528 /*
3529  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3530  * that are eligible for use by the caller until at least one zone is
3531  * balanced.
3532  *
3533  * Returns the order kswapd finished reclaiming at.
3534  *
3535  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3536  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3537  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3538  * or lower is eligible for reclaim until at least one usable zone is
3539  * balanced.
3540  */
3541 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3542 {
3543 	int i;
3544 	unsigned long nr_soft_reclaimed;
3545 	unsigned long nr_soft_scanned;
3546 	unsigned long pflags;
3547 	unsigned long nr_boost_reclaim;
3548 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3549 	bool boosted;
3550 	struct zone *zone;
3551 	struct scan_control sc = {
3552 		.gfp_mask = GFP_KERNEL,
3553 		.order = order,
3554 		.may_unmap = 1,
3555 	};
3556 
3557 	set_task_reclaim_state(current, &sc.reclaim_state);
3558 	psi_memstall_enter(&pflags);
3559 	__fs_reclaim_acquire();
3560 
3561 	count_vm_event(PAGEOUTRUN);
3562 
3563 	/*
3564 	 * Account for the reclaim boost. Note that the zone boost is left in
3565 	 * place so that parallel allocations that are near the watermark will
3566 	 * stall or direct reclaim until kswapd is finished.
3567 	 */
3568 	nr_boost_reclaim = 0;
3569 	for (i = 0; i <= highest_zoneidx; i++) {
3570 		zone = pgdat->node_zones + i;
3571 		if (!managed_zone(zone))
3572 			continue;
3573 
3574 		nr_boost_reclaim += zone->watermark_boost;
3575 		zone_boosts[i] = zone->watermark_boost;
3576 	}
3577 	boosted = nr_boost_reclaim;
3578 
3579 restart:
3580 	sc.priority = DEF_PRIORITY;
3581 	do {
3582 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3583 		bool raise_priority = true;
3584 		bool balanced;
3585 		bool ret;
3586 
3587 		sc.reclaim_idx = highest_zoneidx;
3588 
3589 		/*
3590 		 * If the number of buffer_heads exceeds the maximum allowed
3591 		 * then consider reclaiming from all zones. This has a dual
3592 		 * purpose -- on 64-bit systems it is expected that
3593 		 * buffer_heads are stripped during active rotation. On 32-bit
3594 		 * systems, highmem pages can pin lowmem memory and shrinking
3595 		 * buffers can relieve lowmem pressure. Reclaim may still not
3596 		 * go ahead if all eligible zones for the original allocation
3597 		 * request are balanced to avoid excessive reclaim from kswapd.
3598 		 */
3599 		if (buffer_heads_over_limit) {
3600 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3601 				zone = pgdat->node_zones + i;
3602 				if (!managed_zone(zone))
3603 					continue;
3604 
3605 				sc.reclaim_idx = i;
3606 				break;
3607 			}
3608 		}
3609 
3610 		/*
3611 		 * If the pgdat is imbalanced then ignore boosting and preserve
3612 		 * the watermarks for a later time and restart. Note that the
3613 		 * zone watermarks will be still reset at the end of balancing
3614 		 * on the grounds that the normal reclaim should be enough to
3615 		 * re-evaluate if boosting is required when kswapd next wakes.
3616 		 */
3617 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3618 		if (!balanced && nr_boost_reclaim) {
3619 			nr_boost_reclaim = 0;
3620 			goto restart;
3621 		}
3622 
3623 		/*
3624 		 * If boosting is not active then only reclaim if there are no
3625 		 * eligible zones. Note that sc.reclaim_idx is not used as
3626 		 * buffer_heads_over_limit may have adjusted it.
3627 		 */
3628 		if (!nr_boost_reclaim && balanced)
3629 			goto out;
3630 
3631 		/* Limit the priority of boosting to avoid reclaim writeback */
3632 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3633 			raise_priority = false;
3634 
3635 		/*
3636 		 * Do not writeback or swap pages for boosted reclaim. The
3637 		 * intent is to relieve pressure not issue sub-optimal IO
3638 		 * from reclaim context. If no pages are reclaimed, the
3639 		 * reclaim will be aborted.
3640 		 */
3641 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3642 		sc.may_swap = !nr_boost_reclaim;
3643 
3644 		/*
3645 		 * Do some background aging of the anon list, to give
3646 		 * pages a chance to be referenced before reclaiming. All
3647 		 * pages are rotated regardless of classzone as this is
3648 		 * about consistent aging.
3649 		 */
3650 		age_active_anon(pgdat, &sc);
3651 
3652 		/*
3653 		 * If we're getting trouble reclaiming, start doing writepage
3654 		 * even in laptop mode.
3655 		 */
3656 		if (sc.priority < DEF_PRIORITY - 2)
3657 			sc.may_writepage = 1;
3658 
3659 		/* Call soft limit reclaim before calling shrink_node. */
3660 		sc.nr_scanned = 0;
3661 		nr_soft_scanned = 0;
3662 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3663 						sc.gfp_mask, &nr_soft_scanned);
3664 		sc.nr_reclaimed += nr_soft_reclaimed;
3665 
3666 		/*
3667 		 * There should be no need to raise the scanning priority if
3668 		 * enough pages are already being scanned that that high
3669 		 * watermark would be met at 100% efficiency.
3670 		 */
3671 		if (kswapd_shrink_node(pgdat, &sc))
3672 			raise_priority = false;
3673 
3674 		/*
3675 		 * If the low watermark is met there is no need for processes
3676 		 * to be throttled on pfmemalloc_wait as they should not be
3677 		 * able to safely make forward progress. Wake them
3678 		 */
3679 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3680 				allow_direct_reclaim(pgdat))
3681 			wake_up_all(&pgdat->pfmemalloc_wait);
3682 
3683 		/* Check if kswapd should be suspending */
3684 		__fs_reclaim_release();
3685 		ret = try_to_freeze();
3686 		__fs_reclaim_acquire();
3687 		if (ret || kthread_should_stop())
3688 			break;
3689 
3690 		/*
3691 		 * Raise priority if scanning rate is too low or there was no
3692 		 * progress in reclaiming pages
3693 		 */
3694 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3695 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3696 
3697 		/*
3698 		 * If reclaim made no progress for a boost, stop reclaim as
3699 		 * IO cannot be queued and it could be an infinite loop in
3700 		 * extreme circumstances.
3701 		 */
3702 		if (nr_boost_reclaim && !nr_reclaimed)
3703 			break;
3704 
3705 		if (raise_priority || !nr_reclaimed)
3706 			sc.priority--;
3707 	} while (sc.priority >= 1);
3708 
3709 	if (!sc.nr_reclaimed)
3710 		pgdat->kswapd_failures++;
3711 
3712 out:
3713 	/* If reclaim was boosted, account for the reclaim done in this pass */
3714 	if (boosted) {
3715 		unsigned long flags;
3716 
3717 		for (i = 0; i <= highest_zoneidx; i++) {
3718 			if (!zone_boosts[i])
3719 				continue;
3720 
3721 			/* Increments are under the zone lock */
3722 			zone = pgdat->node_zones + i;
3723 			spin_lock_irqsave(&zone->lock, flags);
3724 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3725 			spin_unlock_irqrestore(&zone->lock, flags);
3726 		}
3727 
3728 		/*
3729 		 * As there is now likely space, wakeup kcompact to defragment
3730 		 * pageblocks.
3731 		 */
3732 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3733 	}
3734 
3735 	snapshot_refaults(NULL, pgdat);
3736 	__fs_reclaim_release();
3737 	psi_memstall_leave(&pflags);
3738 	set_task_reclaim_state(current, NULL);
3739 
3740 	/*
3741 	 * Return the order kswapd stopped reclaiming at as
3742 	 * prepare_kswapd_sleep() takes it into account. If another caller
3743 	 * entered the allocator slow path while kswapd was awake, order will
3744 	 * remain at the higher level.
3745 	 */
3746 	return sc.order;
3747 }
3748 
3749 /*
3750  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3751  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3752  * not a valid index then either kswapd runs for first time or kswapd couldn't
3753  * sleep after previous reclaim attempt (node is still unbalanced). In that
3754  * case return the zone index of the previous kswapd reclaim cycle.
3755  */
3756 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3757 					   enum zone_type prev_highest_zoneidx)
3758 {
3759 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3760 
3761 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3762 }
3763 
3764 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3765 				unsigned int highest_zoneidx)
3766 {
3767 	long remaining = 0;
3768 	DEFINE_WAIT(wait);
3769 
3770 	if (freezing(current) || kthread_should_stop())
3771 		return;
3772 
3773 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3774 
3775 	/*
3776 	 * Try to sleep for a short interval. Note that kcompactd will only be
3777 	 * woken if it is possible to sleep for a short interval. This is
3778 	 * deliberate on the assumption that if reclaim cannot keep an
3779 	 * eligible zone balanced that it's also unlikely that compaction will
3780 	 * succeed.
3781 	 */
3782 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3783 		/*
3784 		 * Compaction records what page blocks it recently failed to
3785 		 * isolate pages from and skips them in the future scanning.
3786 		 * When kswapd is going to sleep, it is reasonable to assume
3787 		 * that pages and compaction may succeed so reset the cache.
3788 		 */
3789 		reset_isolation_suitable(pgdat);
3790 
3791 		/*
3792 		 * We have freed the memory, now we should compact it to make
3793 		 * allocation of the requested order possible.
3794 		 */
3795 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3796 
3797 		remaining = schedule_timeout(HZ/10);
3798 
3799 		/*
3800 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3801 		 * order. The values will either be from a wakeup request or
3802 		 * the previous request that slept prematurely.
3803 		 */
3804 		if (remaining) {
3805 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3806 					kswapd_highest_zoneidx(pgdat,
3807 							highest_zoneidx));
3808 
3809 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3810 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3811 		}
3812 
3813 		finish_wait(&pgdat->kswapd_wait, &wait);
3814 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3815 	}
3816 
3817 	/*
3818 	 * After a short sleep, check if it was a premature sleep. If not, then
3819 	 * go fully to sleep until explicitly woken up.
3820 	 */
3821 	if (!remaining &&
3822 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3823 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3824 
3825 		/*
3826 		 * vmstat counters are not perfectly accurate and the estimated
3827 		 * value for counters such as NR_FREE_PAGES can deviate from the
3828 		 * true value by nr_online_cpus * threshold. To avoid the zone
3829 		 * watermarks being breached while under pressure, we reduce the
3830 		 * per-cpu vmstat threshold while kswapd is awake and restore
3831 		 * them before going back to sleep.
3832 		 */
3833 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3834 
3835 		if (!kthread_should_stop())
3836 			schedule();
3837 
3838 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3839 	} else {
3840 		if (remaining)
3841 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3842 		else
3843 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3844 	}
3845 	finish_wait(&pgdat->kswapd_wait, &wait);
3846 }
3847 
3848 /*
3849  * The background pageout daemon, started as a kernel thread
3850  * from the init process.
3851  *
3852  * This basically trickles out pages so that we have _some_
3853  * free memory available even if there is no other activity
3854  * that frees anything up. This is needed for things like routing
3855  * etc, where we otherwise might have all activity going on in
3856  * asynchronous contexts that cannot page things out.
3857  *
3858  * If there are applications that are active memory-allocators
3859  * (most normal use), this basically shouldn't matter.
3860  */
3861 static int kswapd(void *p)
3862 {
3863 	unsigned int alloc_order, reclaim_order;
3864 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3865 	pg_data_t *pgdat = (pg_data_t*)p;
3866 	struct task_struct *tsk = current;
3867 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3868 
3869 	if (!cpumask_empty(cpumask))
3870 		set_cpus_allowed_ptr(tsk, cpumask);
3871 
3872 	/*
3873 	 * Tell the memory management that we're a "memory allocator",
3874 	 * and that if we need more memory we should get access to it
3875 	 * regardless (see "__alloc_pages()"). "kswapd" should
3876 	 * never get caught in the normal page freeing logic.
3877 	 *
3878 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3879 	 * you need a small amount of memory in order to be able to
3880 	 * page out something else, and this flag essentially protects
3881 	 * us from recursively trying to free more memory as we're
3882 	 * trying to free the first piece of memory in the first place).
3883 	 */
3884 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3885 	set_freezable();
3886 
3887 	WRITE_ONCE(pgdat->kswapd_order, 0);
3888 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3889 	for ( ; ; ) {
3890 		bool ret;
3891 
3892 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3893 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3894 							highest_zoneidx);
3895 
3896 kswapd_try_sleep:
3897 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3898 					highest_zoneidx);
3899 
3900 		/* Read the new order and highest_zoneidx */
3901 		alloc_order = READ_ONCE(pgdat->kswapd_order);
3902 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3903 							highest_zoneidx);
3904 		WRITE_ONCE(pgdat->kswapd_order, 0);
3905 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3906 
3907 		ret = try_to_freeze();
3908 		if (kthread_should_stop())
3909 			break;
3910 
3911 		/*
3912 		 * We can speed up thawing tasks if we don't call balance_pgdat
3913 		 * after returning from the refrigerator
3914 		 */
3915 		if (ret)
3916 			continue;
3917 
3918 		/*
3919 		 * Reclaim begins at the requested order but if a high-order
3920 		 * reclaim fails then kswapd falls back to reclaiming for
3921 		 * order-0. If that happens, kswapd will consider sleeping
3922 		 * for the order it finished reclaiming at (reclaim_order)
3923 		 * but kcompactd is woken to compact for the original
3924 		 * request (alloc_order).
3925 		 */
3926 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3927 						alloc_order);
3928 		reclaim_order = balance_pgdat(pgdat, alloc_order,
3929 						highest_zoneidx);
3930 		if (reclaim_order < alloc_order)
3931 			goto kswapd_try_sleep;
3932 	}
3933 
3934 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3935 
3936 	return 0;
3937 }
3938 
3939 /*
3940  * A zone is low on free memory or too fragmented for high-order memory.  If
3941  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3942  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3943  * has failed or is not needed, still wake up kcompactd if only compaction is
3944  * needed.
3945  */
3946 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3947 		   enum zone_type highest_zoneidx)
3948 {
3949 	pg_data_t *pgdat;
3950 	enum zone_type curr_idx;
3951 
3952 	if (!managed_zone(zone))
3953 		return;
3954 
3955 	if (!cpuset_zone_allowed(zone, gfp_flags))
3956 		return;
3957 
3958 	pgdat = zone->zone_pgdat;
3959 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3960 
3961 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3962 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3963 
3964 	if (READ_ONCE(pgdat->kswapd_order) < order)
3965 		WRITE_ONCE(pgdat->kswapd_order, order);
3966 
3967 	if (!waitqueue_active(&pgdat->kswapd_wait))
3968 		return;
3969 
3970 	/* Hopeless node, leave it to direct reclaim if possible */
3971 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3972 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3973 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3974 		/*
3975 		 * There may be plenty of free memory available, but it's too
3976 		 * fragmented for high-order allocations.  Wake up kcompactd
3977 		 * and rely on compaction_suitable() to determine if it's
3978 		 * needed.  If it fails, it will defer subsequent attempts to
3979 		 * ratelimit its work.
3980 		 */
3981 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3982 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3983 		return;
3984 	}
3985 
3986 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3987 				      gfp_flags);
3988 	wake_up_interruptible(&pgdat->kswapd_wait);
3989 }
3990 
3991 #ifdef CONFIG_HIBERNATION
3992 /*
3993  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3994  * freed pages.
3995  *
3996  * Rather than trying to age LRUs the aim is to preserve the overall
3997  * LRU order by reclaiming preferentially
3998  * inactive > active > active referenced > active mapped
3999  */
4000 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4001 {
4002 	struct scan_control sc = {
4003 		.nr_to_reclaim = nr_to_reclaim,
4004 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4005 		.reclaim_idx = MAX_NR_ZONES - 1,
4006 		.priority = DEF_PRIORITY,
4007 		.may_writepage = 1,
4008 		.may_unmap = 1,
4009 		.may_swap = 1,
4010 		.hibernation_mode = 1,
4011 	};
4012 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4013 	unsigned long nr_reclaimed;
4014 	unsigned int noreclaim_flag;
4015 
4016 	fs_reclaim_acquire(sc.gfp_mask);
4017 	noreclaim_flag = memalloc_noreclaim_save();
4018 	set_task_reclaim_state(current, &sc.reclaim_state);
4019 
4020 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4021 
4022 	set_task_reclaim_state(current, NULL);
4023 	memalloc_noreclaim_restore(noreclaim_flag);
4024 	fs_reclaim_release(sc.gfp_mask);
4025 
4026 	return nr_reclaimed;
4027 }
4028 #endif /* CONFIG_HIBERNATION */
4029 
4030 /*
4031  * This kswapd start function will be called by init and node-hot-add.
4032  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4033  */
4034 int kswapd_run(int nid)
4035 {
4036 	pg_data_t *pgdat = NODE_DATA(nid);
4037 	int ret = 0;
4038 
4039 	if (pgdat->kswapd)
4040 		return 0;
4041 
4042 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4043 	if (IS_ERR(pgdat->kswapd)) {
4044 		/* failure at boot is fatal */
4045 		BUG_ON(system_state < SYSTEM_RUNNING);
4046 		pr_err("Failed to start kswapd on node %d\n", nid);
4047 		ret = PTR_ERR(pgdat->kswapd);
4048 		pgdat->kswapd = NULL;
4049 	}
4050 	return ret;
4051 }
4052 
4053 /*
4054  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4055  * hold mem_hotplug_begin/end().
4056  */
4057 void kswapd_stop(int nid)
4058 {
4059 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4060 
4061 	if (kswapd) {
4062 		kthread_stop(kswapd);
4063 		NODE_DATA(nid)->kswapd = NULL;
4064 	}
4065 }
4066 
4067 static int __init kswapd_init(void)
4068 {
4069 	int nid;
4070 
4071 	swap_setup();
4072 	for_each_node_state(nid, N_MEMORY)
4073  		kswapd_run(nid);
4074 	return 0;
4075 }
4076 
4077 module_init(kswapd_init)
4078 
4079 #ifdef CONFIG_NUMA
4080 /*
4081  * Node reclaim mode
4082  *
4083  * If non-zero call node_reclaim when the number of free pages falls below
4084  * the watermarks.
4085  */
4086 int node_reclaim_mode __read_mostly;
4087 
4088 /*
4089  * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4090  * ABI.  New bits are OK, but existing bits can never change.
4091  */
4092 #define RECLAIM_ZONE  (1<<0)   /* Run shrink_inactive_list on the zone */
4093 #define RECLAIM_WRITE (1<<1)   /* Writeout pages during reclaim */
4094 #define RECLAIM_UNMAP (1<<2)   /* Unmap pages during reclaim */
4095 
4096 /*
4097  * Priority for NODE_RECLAIM. This determines the fraction of pages
4098  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4099  * a zone.
4100  */
4101 #define NODE_RECLAIM_PRIORITY 4
4102 
4103 /*
4104  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4105  * occur.
4106  */
4107 int sysctl_min_unmapped_ratio = 1;
4108 
4109 /*
4110  * If the number of slab pages in a zone grows beyond this percentage then
4111  * slab reclaim needs to occur.
4112  */
4113 int sysctl_min_slab_ratio = 5;
4114 
4115 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4116 {
4117 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4118 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4119 		node_page_state(pgdat, NR_ACTIVE_FILE);
4120 
4121 	/*
4122 	 * It's possible for there to be more file mapped pages than
4123 	 * accounted for by the pages on the file LRU lists because
4124 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4125 	 */
4126 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4127 }
4128 
4129 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4130 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4131 {
4132 	unsigned long nr_pagecache_reclaimable;
4133 	unsigned long delta = 0;
4134 
4135 	/*
4136 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4137 	 * potentially reclaimable. Otherwise, we have to worry about
4138 	 * pages like swapcache and node_unmapped_file_pages() provides
4139 	 * a better estimate
4140 	 */
4141 	if (node_reclaim_mode & RECLAIM_UNMAP)
4142 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4143 	else
4144 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4145 
4146 	/* If we can't clean pages, remove dirty pages from consideration */
4147 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4148 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4149 
4150 	/* Watch for any possible underflows due to delta */
4151 	if (unlikely(delta > nr_pagecache_reclaimable))
4152 		delta = nr_pagecache_reclaimable;
4153 
4154 	return nr_pagecache_reclaimable - delta;
4155 }
4156 
4157 /*
4158  * Try to free up some pages from this node through reclaim.
4159  */
4160 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4161 {
4162 	/* Minimum pages needed in order to stay on node */
4163 	const unsigned long nr_pages = 1 << order;
4164 	struct task_struct *p = current;
4165 	unsigned int noreclaim_flag;
4166 	struct scan_control sc = {
4167 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4168 		.gfp_mask = current_gfp_context(gfp_mask),
4169 		.order = order,
4170 		.priority = NODE_RECLAIM_PRIORITY,
4171 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4172 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4173 		.may_swap = 1,
4174 		.reclaim_idx = gfp_zone(gfp_mask),
4175 	};
4176 
4177 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4178 					   sc.gfp_mask);
4179 
4180 	cond_resched();
4181 	fs_reclaim_acquire(sc.gfp_mask);
4182 	/*
4183 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4184 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4185 	 * and RECLAIM_UNMAP.
4186 	 */
4187 	noreclaim_flag = memalloc_noreclaim_save();
4188 	p->flags |= PF_SWAPWRITE;
4189 	set_task_reclaim_state(p, &sc.reclaim_state);
4190 
4191 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4192 		/*
4193 		 * Free memory by calling shrink node with increasing
4194 		 * priorities until we have enough memory freed.
4195 		 */
4196 		do {
4197 			shrink_node(pgdat, &sc);
4198 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4199 	}
4200 
4201 	set_task_reclaim_state(p, NULL);
4202 	current->flags &= ~PF_SWAPWRITE;
4203 	memalloc_noreclaim_restore(noreclaim_flag);
4204 	fs_reclaim_release(sc.gfp_mask);
4205 
4206 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4207 
4208 	return sc.nr_reclaimed >= nr_pages;
4209 }
4210 
4211 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4212 {
4213 	int ret;
4214 
4215 	/*
4216 	 * Node reclaim reclaims unmapped file backed pages and
4217 	 * slab pages if we are over the defined limits.
4218 	 *
4219 	 * A small portion of unmapped file backed pages is needed for
4220 	 * file I/O otherwise pages read by file I/O will be immediately
4221 	 * thrown out if the node is overallocated. So we do not reclaim
4222 	 * if less than a specified percentage of the node is used by
4223 	 * unmapped file backed pages.
4224 	 */
4225 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4226 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4227 	    pgdat->min_slab_pages)
4228 		return NODE_RECLAIM_FULL;
4229 
4230 	/*
4231 	 * Do not scan if the allocation should not be delayed.
4232 	 */
4233 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4234 		return NODE_RECLAIM_NOSCAN;
4235 
4236 	/*
4237 	 * Only run node reclaim on the local node or on nodes that do not
4238 	 * have associated processors. This will favor the local processor
4239 	 * over remote processors and spread off node memory allocations
4240 	 * as wide as possible.
4241 	 */
4242 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4243 		return NODE_RECLAIM_NOSCAN;
4244 
4245 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4246 		return NODE_RECLAIM_NOSCAN;
4247 
4248 	ret = __node_reclaim(pgdat, gfp_mask, order);
4249 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4250 
4251 	if (!ret)
4252 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4253 
4254 	return ret;
4255 }
4256 #endif
4257 
4258 /**
4259  * check_move_unevictable_pages - check pages for evictability and move to
4260  * appropriate zone lru list
4261  * @pvec: pagevec with lru pages to check
4262  *
4263  * Checks pages for evictability, if an evictable page is in the unevictable
4264  * lru list, moves it to the appropriate evictable lru list. This function
4265  * should be only used for lru pages.
4266  */
4267 void check_move_unevictable_pages(struct pagevec *pvec)
4268 {
4269 	struct lruvec *lruvec = NULL;
4270 	int pgscanned = 0;
4271 	int pgrescued = 0;
4272 	int i;
4273 
4274 	for (i = 0; i < pvec->nr; i++) {
4275 		struct page *page = pvec->pages[i];
4276 		int nr_pages;
4277 
4278 		if (PageTransTail(page))
4279 			continue;
4280 
4281 		nr_pages = thp_nr_pages(page);
4282 		pgscanned += nr_pages;
4283 
4284 		/* block memcg migration during page moving between lru */
4285 		if (!TestClearPageLRU(page))
4286 			continue;
4287 
4288 		lruvec = relock_page_lruvec_irq(page, lruvec);
4289 		if (page_evictable(page) && PageUnevictable(page)) {
4290 			del_page_from_lru_list(page, lruvec);
4291 			ClearPageUnevictable(page);
4292 			add_page_to_lru_list(page, lruvec);
4293 			pgrescued += nr_pages;
4294 		}
4295 		SetPageLRU(page);
4296 	}
4297 
4298 	if (lruvec) {
4299 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4300 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4301 		unlock_page_lruvec_irq(lruvec);
4302 	} else if (pgscanned) {
4303 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4304 	}
4305 }
4306 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4307