xref: /openbmc/linux/mm/vmscan.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
60 
61 #include "internal.h"
62 #include "swap.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/vmscan.h>
66 
67 struct scan_control {
68 	/* How many pages shrink_list() should reclaim */
69 	unsigned long nr_to_reclaim;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/*
84 	 * Scan pressure balancing between anon and file LRUs
85 	 */
86 	unsigned long	anon_cost;
87 	unsigned long	file_cost;
88 
89 	/* Can active pages be deactivated as part of reclaim? */
90 #define DEACTIVATE_ANON 1
91 #define DEACTIVATE_FILE 2
92 	unsigned int may_deactivate:2;
93 	unsigned int force_deactivate:1;
94 	unsigned int skipped_deactivate:1;
95 
96 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
97 	unsigned int may_writepage:1;
98 
99 	/* Can mapped pages be reclaimed? */
100 	unsigned int may_unmap:1;
101 
102 	/* Can pages be swapped as part of reclaim? */
103 	unsigned int may_swap:1;
104 
105 	/*
106 	 * Cgroup memory below memory.low is protected as long as we
107 	 * don't threaten to OOM. If any cgroup is reclaimed at
108 	 * reduced force or passed over entirely due to its memory.low
109 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 	 * result, then go back for one more cycle that reclaims the protected
111 	 * memory (memcg_low_reclaim) to avert OOM.
112 	 */
113 	unsigned int memcg_low_reclaim:1;
114 	unsigned int memcg_low_skipped:1;
115 
116 	unsigned int hibernation_mode:1;
117 
118 	/* One of the zones is ready for compaction */
119 	unsigned int compaction_ready:1;
120 
121 	/* There is easily reclaimable cold cache in the current node */
122 	unsigned int cache_trim_mode:1;
123 
124 	/* The file pages on the current node are dangerously low */
125 	unsigned int file_is_tiny:1;
126 
127 	/* Always discard instead of demoting to lower tier memory */
128 	unsigned int no_demotion:1;
129 
130 	/* Allocation order */
131 	s8 order;
132 
133 	/* Scan (total_size >> priority) pages at once */
134 	s8 priority;
135 
136 	/* The highest zone to isolate pages for reclaim from */
137 	s8 reclaim_idx;
138 
139 	/* This context's GFP mask */
140 	gfp_t gfp_mask;
141 
142 	/* Incremented by the number of inactive pages that were scanned */
143 	unsigned long nr_scanned;
144 
145 	/* Number of pages freed so far during a call to shrink_zones() */
146 	unsigned long nr_reclaimed;
147 
148 	struct {
149 		unsigned int dirty;
150 		unsigned int unqueued_dirty;
151 		unsigned int congested;
152 		unsigned int writeback;
153 		unsigned int immediate;
154 		unsigned int file_taken;
155 		unsigned int taken;
156 	} nr;
157 
158 	/* for recording the reclaimed slab by now */
159 	struct reclaim_state reclaim_state;
160 };
161 
162 #ifdef ARCH_HAS_PREFETCHW
163 #define prefetchw_prev_lru_page(_page, _base, _field)			\
164 	do {								\
165 		if ((_page)->lru.prev != _base) {			\
166 			struct page *prev;				\
167 									\
168 			prev = lru_to_page(&(_page->lru));		\
169 			prefetchw(&prev->_field);			\
170 		}							\
171 	} while (0)
172 #else
173 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
174 #endif
175 
176 /*
177  * From 0 .. 200.  Higher means more swappy.
178  */
179 int vm_swappiness = 60;
180 
181 static void set_task_reclaim_state(struct task_struct *task,
182 				   struct reclaim_state *rs)
183 {
184 	/* Check for an overwrite */
185 	WARN_ON_ONCE(rs && task->reclaim_state);
186 
187 	/* Check for the nulling of an already-nulled member */
188 	WARN_ON_ONCE(!rs && !task->reclaim_state);
189 
190 	task->reclaim_state = rs;
191 }
192 
193 static LIST_HEAD(shrinker_list);
194 static DECLARE_RWSEM(shrinker_rwsem);
195 
196 #ifdef CONFIG_MEMCG
197 static int shrinker_nr_max;
198 
199 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
200 static inline int shrinker_map_size(int nr_items)
201 {
202 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203 }
204 
205 static inline int shrinker_defer_size(int nr_items)
206 {
207 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208 }
209 
210 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 						     int nid)
212 {
213 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 					 lockdep_is_held(&shrinker_rwsem));
215 }
216 
217 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
218 				    int map_size, int defer_size,
219 				    int old_map_size, int old_defer_size)
220 {
221 	struct shrinker_info *new, *old;
222 	struct mem_cgroup_per_node *pn;
223 	int nid;
224 	int size = map_size + defer_size;
225 
226 	for_each_node(nid) {
227 		pn = memcg->nodeinfo[nid];
228 		old = shrinker_info_protected(memcg, nid);
229 		/* Not yet online memcg */
230 		if (!old)
231 			return 0;
232 
233 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
234 		if (!new)
235 			return -ENOMEM;
236 
237 		new->nr_deferred = (atomic_long_t *)(new + 1);
238 		new->map = (void *)new->nr_deferred + defer_size;
239 
240 		/* map: set all old bits, clear all new bits */
241 		memset(new->map, (int)0xff, old_map_size);
242 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 		/* nr_deferred: copy old values, clear all new values */
244 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 		memset((void *)new->nr_deferred + old_defer_size, 0,
246 		       defer_size - old_defer_size);
247 
248 		rcu_assign_pointer(pn->shrinker_info, new);
249 		kvfree_rcu(old, rcu);
250 	}
251 
252 	return 0;
253 }
254 
255 void free_shrinker_info(struct mem_cgroup *memcg)
256 {
257 	struct mem_cgroup_per_node *pn;
258 	struct shrinker_info *info;
259 	int nid;
260 
261 	for_each_node(nid) {
262 		pn = memcg->nodeinfo[nid];
263 		info = rcu_dereference_protected(pn->shrinker_info, true);
264 		kvfree(info);
265 		rcu_assign_pointer(pn->shrinker_info, NULL);
266 	}
267 }
268 
269 int alloc_shrinker_info(struct mem_cgroup *memcg)
270 {
271 	struct shrinker_info *info;
272 	int nid, size, ret = 0;
273 	int map_size, defer_size = 0;
274 
275 	down_write(&shrinker_rwsem);
276 	map_size = shrinker_map_size(shrinker_nr_max);
277 	defer_size = shrinker_defer_size(shrinker_nr_max);
278 	size = map_size + defer_size;
279 	for_each_node(nid) {
280 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 		if (!info) {
282 			free_shrinker_info(memcg);
283 			ret = -ENOMEM;
284 			break;
285 		}
286 		info->nr_deferred = (atomic_long_t *)(info + 1);
287 		info->map = (void *)info->nr_deferred + defer_size;
288 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
289 	}
290 	up_write(&shrinker_rwsem);
291 
292 	return ret;
293 }
294 
295 static inline bool need_expand(int nr_max)
296 {
297 	return round_up(nr_max, BITS_PER_LONG) >
298 	       round_up(shrinker_nr_max, BITS_PER_LONG);
299 }
300 
301 static int expand_shrinker_info(int new_id)
302 {
303 	int ret = 0;
304 	int new_nr_max = new_id + 1;
305 	int map_size, defer_size = 0;
306 	int old_map_size, old_defer_size = 0;
307 	struct mem_cgroup *memcg;
308 
309 	if (!need_expand(new_nr_max))
310 		goto out;
311 
312 	if (!root_mem_cgroup)
313 		goto out;
314 
315 	lockdep_assert_held(&shrinker_rwsem);
316 
317 	map_size = shrinker_map_size(new_nr_max);
318 	defer_size = shrinker_defer_size(new_nr_max);
319 	old_map_size = shrinker_map_size(shrinker_nr_max);
320 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
321 
322 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 	do {
324 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 					       old_map_size, old_defer_size);
326 		if (ret) {
327 			mem_cgroup_iter_break(NULL, memcg);
328 			goto out;
329 		}
330 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
331 out:
332 	if (!ret)
333 		shrinker_nr_max = new_nr_max;
334 
335 	return ret;
336 }
337 
338 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339 {
340 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
341 		struct shrinker_info *info;
342 
343 		rcu_read_lock();
344 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
345 		/* Pairs with smp mb in shrink_slab() */
346 		smp_mb__before_atomic();
347 		set_bit(shrinker_id, info->map);
348 		rcu_read_unlock();
349 	}
350 }
351 
352 static DEFINE_IDR(shrinker_idr);
353 
354 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355 {
356 	int id, ret = -ENOMEM;
357 
358 	if (mem_cgroup_disabled())
359 		return -ENOSYS;
360 
361 	down_write(&shrinker_rwsem);
362 	/* This may call shrinker, so it must use down_read_trylock() */
363 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
364 	if (id < 0)
365 		goto unlock;
366 
367 	if (id >= shrinker_nr_max) {
368 		if (expand_shrinker_info(id)) {
369 			idr_remove(&shrinker_idr, id);
370 			goto unlock;
371 		}
372 	}
373 	shrinker->id = id;
374 	ret = 0;
375 unlock:
376 	up_write(&shrinker_rwsem);
377 	return ret;
378 }
379 
380 static void unregister_memcg_shrinker(struct shrinker *shrinker)
381 {
382 	int id = shrinker->id;
383 
384 	BUG_ON(id < 0);
385 
386 	lockdep_assert_held(&shrinker_rwsem);
387 
388 	idr_remove(&shrinker_idr, id);
389 }
390 
391 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 				   struct mem_cgroup *memcg)
393 {
394 	struct shrinker_info *info;
395 
396 	info = shrinker_info_protected(memcg, nid);
397 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398 }
399 
400 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 				  struct mem_cgroup *memcg)
402 {
403 	struct shrinker_info *info;
404 
405 	info = shrinker_info_protected(memcg, nid);
406 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407 }
408 
409 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
410 {
411 	int i, nid;
412 	long nr;
413 	struct mem_cgroup *parent;
414 	struct shrinker_info *child_info, *parent_info;
415 
416 	parent = parent_mem_cgroup(memcg);
417 	if (!parent)
418 		parent = root_mem_cgroup;
419 
420 	/* Prevent from concurrent shrinker_info expand */
421 	down_read(&shrinker_rwsem);
422 	for_each_node(nid) {
423 		child_info = shrinker_info_protected(memcg, nid);
424 		parent_info = shrinker_info_protected(parent, nid);
425 		for (i = 0; i < shrinker_nr_max; i++) {
426 			nr = atomic_long_read(&child_info->nr_deferred[i]);
427 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 		}
429 	}
430 	up_read(&shrinker_rwsem);
431 }
432 
433 static bool cgroup_reclaim(struct scan_control *sc)
434 {
435 	return sc->target_mem_cgroup;
436 }
437 
438 /**
439  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
440  * @sc: scan_control in question
441  *
442  * The normal page dirty throttling mechanism in balance_dirty_pages() is
443  * completely broken with the legacy memcg and direct stalling in
444  * shrink_page_list() is used for throttling instead, which lacks all the
445  * niceties such as fairness, adaptive pausing, bandwidth proportional
446  * allocation and configurability.
447  *
448  * This function tests whether the vmscan currently in progress can assume
449  * that the normal dirty throttling mechanism is operational.
450  */
451 static bool writeback_throttling_sane(struct scan_control *sc)
452 {
453 	if (!cgroup_reclaim(sc))
454 		return true;
455 #ifdef CONFIG_CGROUP_WRITEBACK
456 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
457 		return true;
458 #endif
459 	return false;
460 }
461 #else
462 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
463 {
464 	return -ENOSYS;
465 }
466 
467 static void unregister_memcg_shrinker(struct shrinker *shrinker)
468 {
469 }
470 
471 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 				   struct mem_cgroup *memcg)
473 {
474 	return 0;
475 }
476 
477 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 				  struct mem_cgroup *memcg)
479 {
480 	return 0;
481 }
482 
483 static bool cgroup_reclaim(struct scan_control *sc)
484 {
485 	return false;
486 }
487 
488 static bool writeback_throttling_sane(struct scan_control *sc)
489 {
490 	return true;
491 }
492 #endif
493 
494 static long xchg_nr_deferred(struct shrinker *shrinker,
495 			     struct shrink_control *sc)
496 {
497 	int nid = sc->nid;
498 
499 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 		nid = 0;
501 
502 	if (sc->memcg &&
503 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 		return xchg_nr_deferred_memcg(nid, shrinker,
505 					      sc->memcg);
506 
507 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
508 }
509 
510 
511 static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 			    struct shrink_control *sc)
513 {
514 	int nid = sc->nid;
515 
516 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 		nid = 0;
518 
519 	if (sc->memcg &&
520 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 		return add_nr_deferred_memcg(nr, nid, shrinker,
522 					     sc->memcg);
523 
524 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525 }
526 
527 static bool can_demote(int nid, struct scan_control *sc)
528 {
529 	if (!numa_demotion_enabled)
530 		return false;
531 	if (sc) {
532 		if (sc->no_demotion)
533 			return false;
534 		/* It is pointless to do demotion in memcg reclaim */
535 		if (cgroup_reclaim(sc))
536 			return false;
537 	}
538 	if (next_demotion_node(nid) == NUMA_NO_NODE)
539 		return false;
540 
541 	return true;
542 }
543 
544 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
545 					  int nid,
546 					  struct scan_control *sc)
547 {
548 	if (memcg == NULL) {
549 		/*
550 		 * For non-memcg reclaim, is there
551 		 * space in any swap device?
552 		 */
553 		if (get_nr_swap_pages() > 0)
554 			return true;
555 	} else {
556 		/* Is the memcg below its swap limit? */
557 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
558 			return true;
559 	}
560 
561 	/*
562 	 * The page can not be swapped.
563 	 *
564 	 * Can it be reclaimed from this node via demotion?
565 	 */
566 	return can_demote(nid, sc);
567 }
568 
569 /*
570  * This misses isolated pages which are not accounted for to save counters.
571  * As the data only determines if reclaim or compaction continues, it is
572  * not expected that isolated pages will be a dominating factor.
573  */
574 unsigned long zone_reclaimable_pages(struct zone *zone)
575 {
576 	unsigned long nr;
577 
578 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
579 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
580 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
581 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
582 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
583 
584 	return nr;
585 }
586 
587 /**
588  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
589  * @lruvec: lru vector
590  * @lru: lru to use
591  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
592  */
593 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
594 				     int zone_idx)
595 {
596 	unsigned long size = 0;
597 	int zid;
598 
599 	for (zid = 0; zid <= zone_idx; zid++) {
600 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
601 
602 		if (!managed_zone(zone))
603 			continue;
604 
605 		if (!mem_cgroup_disabled())
606 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
607 		else
608 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
609 	}
610 	return size;
611 }
612 
613 /*
614  * Add a shrinker callback to be called from the vm.
615  */
616 int prealloc_shrinker(struct shrinker *shrinker)
617 {
618 	unsigned int size;
619 	int err;
620 
621 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
622 		err = prealloc_memcg_shrinker(shrinker);
623 		if (err != -ENOSYS)
624 			return err;
625 
626 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
627 	}
628 
629 	size = sizeof(*shrinker->nr_deferred);
630 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
631 		size *= nr_node_ids;
632 
633 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
634 	if (!shrinker->nr_deferred)
635 		return -ENOMEM;
636 
637 	return 0;
638 }
639 
640 void free_prealloced_shrinker(struct shrinker *shrinker)
641 {
642 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
643 		down_write(&shrinker_rwsem);
644 		unregister_memcg_shrinker(shrinker);
645 		up_write(&shrinker_rwsem);
646 		return;
647 	}
648 
649 	kfree(shrinker->nr_deferred);
650 	shrinker->nr_deferred = NULL;
651 }
652 
653 void register_shrinker_prepared(struct shrinker *shrinker)
654 {
655 	down_write(&shrinker_rwsem);
656 	list_add_tail(&shrinker->list, &shrinker_list);
657 	shrinker->flags |= SHRINKER_REGISTERED;
658 	up_write(&shrinker_rwsem);
659 }
660 
661 int register_shrinker(struct shrinker *shrinker)
662 {
663 	int err = prealloc_shrinker(shrinker);
664 
665 	if (err)
666 		return err;
667 	register_shrinker_prepared(shrinker);
668 	return 0;
669 }
670 EXPORT_SYMBOL(register_shrinker);
671 
672 /*
673  * Remove one
674  */
675 void unregister_shrinker(struct shrinker *shrinker)
676 {
677 	if (!(shrinker->flags & SHRINKER_REGISTERED))
678 		return;
679 
680 	down_write(&shrinker_rwsem);
681 	list_del(&shrinker->list);
682 	shrinker->flags &= ~SHRINKER_REGISTERED;
683 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
684 		unregister_memcg_shrinker(shrinker);
685 	up_write(&shrinker_rwsem);
686 
687 	kfree(shrinker->nr_deferred);
688 	shrinker->nr_deferred = NULL;
689 }
690 EXPORT_SYMBOL(unregister_shrinker);
691 
692 /**
693  * synchronize_shrinkers - Wait for all running shrinkers to complete.
694  *
695  * This is equivalent to calling unregister_shrink() and register_shrinker(),
696  * but atomically and with less overhead. This is useful to guarantee that all
697  * shrinker invocations have seen an update, before freeing memory, similar to
698  * rcu.
699  */
700 void synchronize_shrinkers(void)
701 {
702 	down_write(&shrinker_rwsem);
703 	up_write(&shrinker_rwsem);
704 }
705 EXPORT_SYMBOL(synchronize_shrinkers);
706 
707 #define SHRINK_BATCH 128
708 
709 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
710 				    struct shrinker *shrinker, int priority)
711 {
712 	unsigned long freed = 0;
713 	unsigned long long delta;
714 	long total_scan;
715 	long freeable;
716 	long nr;
717 	long new_nr;
718 	long batch_size = shrinker->batch ? shrinker->batch
719 					  : SHRINK_BATCH;
720 	long scanned = 0, next_deferred;
721 
722 	freeable = shrinker->count_objects(shrinker, shrinkctl);
723 	if (freeable == 0 || freeable == SHRINK_EMPTY)
724 		return freeable;
725 
726 	/*
727 	 * copy the current shrinker scan count into a local variable
728 	 * and zero it so that other concurrent shrinker invocations
729 	 * don't also do this scanning work.
730 	 */
731 	nr = xchg_nr_deferred(shrinker, shrinkctl);
732 
733 	if (shrinker->seeks) {
734 		delta = freeable >> priority;
735 		delta *= 4;
736 		do_div(delta, shrinker->seeks);
737 	} else {
738 		/*
739 		 * These objects don't require any IO to create. Trim
740 		 * them aggressively under memory pressure to keep
741 		 * them from causing refetches in the IO caches.
742 		 */
743 		delta = freeable / 2;
744 	}
745 
746 	total_scan = nr >> priority;
747 	total_scan += delta;
748 	total_scan = min(total_scan, (2 * freeable));
749 
750 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
751 				   freeable, delta, total_scan, priority);
752 
753 	/*
754 	 * Normally, we should not scan less than batch_size objects in one
755 	 * pass to avoid too frequent shrinker calls, but if the slab has less
756 	 * than batch_size objects in total and we are really tight on memory,
757 	 * we will try to reclaim all available objects, otherwise we can end
758 	 * up failing allocations although there are plenty of reclaimable
759 	 * objects spread over several slabs with usage less than the
760 	 * batch_size.
761 	 *
762 	 * We detect the "tight on memory" situations by looking at the total
763 	 * number of objects we want to scan (total_scan). If it is greater
764 	 * than the total number of objects on slab (freeable), we must be
765 	 * scanning at high prio and therefore should try to reclaim as much as
766 	 * possible.
767 	 */
768 	while (total_scan >= batch_size ||
769 	       total_scan >= freeable) {
770 		unsigned long ret;
771 		unsigned long nr_to_scan = min(batch_size, total_scan);
772 
773 		shrinkctl->nr_to_scan = nr_to_scan;
774 		shrinkctl->nr_scanned = nr_to_scan;
775 		ret = shrinker->scan_objects(shrinker, shrinkctl);
776 		if (ret == SHRINK_STOP)
777 			break;
778 		freed += ret;
779 
780 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
781 		total_scan -= shrinkctl->nr_scanned;
782 		scanned += shrinkctl->nr_scanned;
783 
784 		cond_resched();
785 	}
786 
787 	/*
788 	 * The deferred work is increased by any new work (delta) that wasn't
789 	 * done, decreased by old deferred work that was done now.
790 	 *
791 	 * And it is capped to two times of the freeable items.
792 	 */
793 	next_deferred = max_t(long, (nr + delta - scanned), 0);
794 	next_deferred = min(next_deferred, (2 * freeable));
795 
796 	/*
797 	 * move the unused scan count back into the shrinker in a
798 	 * manner that handles concurrent updates.
799 	 */
800 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
801 
802 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
803 	return freed;
804 }
805 
806 #ifdef CONFIG_MEMCG
807 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
808 			struct mem_cgroup *memcg, int priority)
809 {
810 	struct shrinker_info *info;
811 	unsigned long ret, freed = 0;
812 	int i;
813 
814 	if (!mem_cgroup_online(memcg))
815 		return 0;
816 
817 	if (!down_read_trylock(&shrinker_rwsem))
818 		return 0;
819 
820 	info = shrinker_info_protected(memcg, nid);
821 	if (unlikely(!info))
822 		goto unlock;
823 
824 	for_each_set_bit(i, info->map, shrinker_nr_max) {
825 		struct shrink_control sc = {
826 			.gfp_mask = gfp_mask,
827 			.nid = nid,
828 			.memcg = memcg,
829 		};
830 		struct shrinker *shrinker;
831 
832 		shrinker = idr_find(&shrinker_idr, i);
833 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
834 			if (!shrinker)
835 				clear_bit(i, info->map);
836 			continue;
837 		}
838 
839 		/* Call non-slab shrinkers even though kmem is disabled */
840 		if (!memcg_kmem_enabled() &&
841 		    !(shrinker->flags & SHRINKER_NONSLAB))
842 			continue;
843 
844 		ret = do_shrink_slab(&sc, shrinker, priority);
845 		if (ret == SHRINK_EMPTY) {
846 			clear_bit(i, info->map);
847 			/*
848 			 * After the shrinker reported that it had no objects to
849 			 * free, but before we cleared the corresponding bit in
850 			 * the memcg shrinker map, a new object might have been
851 			 * added. To make sure, we have the bit set in this
852 			 * case, we invoke the shrinker one more time and reset
853 			 * the bit if it reports that it is not empty anymore.
854 			 * The memory barrier here pairs with the barrier in
855 			 * set_shrinker_bit():
856 			 *
857 			 * list_lru_add()     shrink_slab_memcg()
858 			 *   list_add_tail()    clear_bit()
859 			 *   <MB>               <MB>
860 			 *   set_bit()          do_shrink_slab()
861 			 */
862 			smp_mb__after_atomic();
863 			ret = do_shrink_slab(&sc, shrinker, priority);
864 			if (ret == SHRINK_EMPTY)
865 				ret = 0;
866 			else
867 				set_shrinker_bit(memcg, nid, i);
868 		}
869 		freed += ret;
870 
871 		if (rwsem_is_contended(&shrinker_rwsem)) {
872 			freed = freed ? : 1;
873 			break;
874 		}
875 	}
876 unlock:
877 	up_read(&shrinker_rwsem);
878 	return freed;
879 }
880 #else /* CONFIG_MEMCG */
881 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 			struct mem_cgroup *memcg, int priority)
883 {
884 	return 0;
885 }
886 #endif /* CONFIG_MEMCG */
887 
888 /**
889  * shrink_slab - shrink slab caches
890  * @gfp_mask: allocation context
891  * @nid: node whose slab caches to target
892  * @memcg: memory cgroup whose slab caches to target
893  * @priority: the reclaim priority
894  *
895  * Call the shrink functions to age shrinkable caches.
896  *
897  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
898  * unaware shrinkers will receive a node id of 0 instead.
899  *
900  * @memcg specifies the memory cgroup to target. Unaware shrinkers
901  * are called only if it is the root cgroup.
902  *
903  * @priority is sc->priority, we take the number of objects and >> by priority
904  * in order to get the scan target.
905  *
906  * Returns the number of reclaimed slab objects.
907  */
908 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
909 				 struct mem_cgroup *memcg,
910 				 int priority)
911 {
912 	unsigned long ret, freed = 0;
913 	struct shrinker *shrinker;
914 
915 	/*
916 	 * The root memcg might be allocated even though memcg is disabled
917 	 * via "cgroup_disable=memory" boot parameter.  This could make
918 	 * mem_cgroup_is_root() return false, then just run memcg slab
919 	 * shrink, but skip global shrink.  This may result in premature
920 	 * oom.
921 	 */
922 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
923 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
924 
925 	if (!down_read_trylock(&shrinker_rwsem))
926 		goto out;
927 
928 	list_for_each_entry(shrinker, &shrinker_list, list) {
929 		struct shrink_control sc = {
930 			.gfp_mask = gfp_mask,
931 			.nid = nid,
932 			.memcg = memcg,
933 		};
934 
935 		ret = do_shrink_slab(&sc, shrinker, priority);
936 		if (ret == SHRINK_EMPTY)
937 			ret = 0;
938 		freed += ret;
939 		/*
940 		 * Bail out if someone want to register a new shrinker to
941 		 * prevent the registration from being stalled for long periods
942 		 * by parallel ongoing shrinking.
943 		 */
944 		if (rwsem_is_contended(&shrinker_rwsem)) {
945 			freed = freed ? : 1;
946 			break;
947 		}
948 	}
949 
950 	up_read(&shrinker_rwsem);
951 out:
952 	cond_resched();
953 	return freed;
954 }
955 
956 static void drop_slab_node(int nid)
957 {
958 	unsigned long freed;
959 	int shift = 0;
960 
961 	do {
962 		struct mem_cgroup *memcg = NULL;
963 
964 		if (fatal_signal_pending(current))
965 			return;
966 
967 		freed = 0;
968 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
969 		do {
970 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
971 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
972 	} while ((freed >> shift++) > 1);
973 }
974 
975 void drop_slab(void)
976 {
977 	int nid;
978 
979 	for_each_online_node(nid)
980 		drop_slab_node(nid);
981 }
982 
983 static inline int is_page_cache_freeable(struct folio *folio)
984 {
985 	/*
986 	 * A freeable page cache page is referenced only by the caller
987 	 * that isolated the page, the page cache and optional buffer
988 	 * heads at page->private.
989 	 */
990 	return folio_ref_count(folio) - folio_test_private(folio) ==
991 		1 + folio_nr_pages(folio);
992 }
993 
994 /*
995  * We detected a synchronous write error writing a folio out.  Probably
996  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
997  * fsync(), msync() or close().
998  *
999  * The tricky part is that after writepage we cannot touch the mapping: nothing
1000  * prevents it from being freed up.  But we have a ref on the folio and once
1001  * that folio is locked, the mapping is pinned.
1002  *
1003  * We're allowed to run sleeping folio_lock() here because we know the caller has
1004  * __GFP_FS.
1005  */
1006 static void handle_write_error(struct address_space *mapping,
1007 				struct folio *folio, int error)
1008 {
1009 	folio_lock(folio);
1010 	if (folio_mapping(folio) == mapping)
1011 		mapping_set_error(mapping, error);
1012 	folio_unlock(folio);
1013 }
1014 
1015 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1016 {
1017 	int reclaimable = 0, write_pending = 0;
1018 	int i;
1019 
1020 	/*
1021 	 * If kswapd is disabled, reschedule if necessary but do not
1022 	 * throttle as the system is likely near OOM.
1023 	 */
1024 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1025 		return true;
1026 
1027 	/*
1028 	 * If there are a lot of dirty/writeback pages then do not
1029 	 * throttle as throttling will occur when the pages cycle
1030 	 * towards the end of the LRU if still under writeback.
1031 	 */
1032 	for (i = 0; i < MAX_NR_ZONES; i++) {
1033 		struct zone *zone = pgdat->node_zones + i;
1034 
1035 		if (!managed_zone(zone))
1036 			continue;
1037 
1038 		reclaimable += zone_reclaimable_pages(zone);
1039 		write_pending += zone_page_state_snapshot(zone,
1040 						  NR_ZONE_WRITE_PENDING);
1041 	}
1042 	if (2 * write_pending <= reclaimable)
1043 		return true;
1044 
1045 	return false;
1046 }
1047 
1048 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1049 {
1050 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1051 	long timeout, ret;
1052 	DEFINE_WAIT(wait);
1053 
1054 	/*
1055 	 * Do not throttle IO workers, kthreads other than kswapd or
1056 	 * workqueues. They may be required for reclaim to make
1057 	 * forward progress (e.g. journalling workqueues or kthreads).
1058 	 */
1059 	if (!current_is_kswapd() &&
1060 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1061 		cond_resched();
1062 		return;
1063 	}
1064 
1065 	/*
1066 	 * These figures are pulled out of thin air.
1067 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1068 	 * parallel reclaimers which is a short-lived event so the timeout is
1069 	 * short. Failing to make progress or waiting on writeback are
1070 	 * potentially long-lived events so use a longer timeout. This is shaky
1071 	 * logic as a failure to make progress could be due to anything from
1072 	 * writeback to a slow device to excessive references pages at the tail
1073 	 * of the inactive LRU.
1074 	 */
1075 	switch(reason) {
1076 	case VMSCAN_THROTTLE_WRITEBACK:
1077 		timeout = HZ/10;
1078 
1079 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1080 			WRITE_ONCE(pgdat->nr_reclaim_start,
1081 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1082 		}
1083 
1084 		break;
1085 	case VMSCAN_THROTTLE_CONGESTED:
1086 		fallthrough;
1087 	case VMSCAN_THROTTLE_NOPROGRESS:
1088 		if (skip_throttle_noprogress(pgdat)) {
1089 			cond_resched();
1090 			return;
1091 		}
1092 
1093 		timeout = 1;
1094 
1095 		break;
1096 	case VMSCAN_THROTTLE_ISOLATED:
1097 		timeout = HZ/50;
1098 		break;
1099 	default:
1100 		WARN_ON_ONCE(1);
1101 		timeout = HZ;
1102 		break;
1103 	}
1104 
1105 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1106 	ret = schedule_timeout(timeout);
1107 	finish_wait(wqh, &wait);
1108 
1109 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1110 		atomic_dec(&pgdat->nr_writeback_throttled);
1111 
1112 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1113 				jiffies_to_usecs(timeout - ret),
1114 				reason);
1115 }
1116 
1117 /*
1118  * Account for pages written if tasks are throttled waiting on dirty
1119  * pages to clean. If enough pages have been cleaned since throttling
1120  * started then wakeup the throttled tasks.
1121  */
1122 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1123 							int nr_throttled)
1124 {
1125 	unsigned long nr_written;
1126 
1127 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1128 
1129 	/*
1130 	 * This is an inaccurate read as the per-cpu deltas may not
1131 	 * be synchronised. However, given that the system is
1132 	 * writeback throttled, it is not worth taking the penalty
1133 	 * of getting an accurate count. At worst, the throttle
1134 	 * timeout guarantees forward progress.
1135 	 */
1136 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1137 		READ_ONCE(pgdat->nr_reclaim_start);
1138 
1139 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1140 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1141 }
1142 
1143 /* possible outcome of pageout() */
1144 typedef enum {
1145 	/* failed to write page out, page is locked */
1146 	PAGE_KEEP,
1147 	/* move page to the active list, page is locked */
1148 	PAGE_ACTIVATE,
1149 	/* page has been sent to the disk successfully, page is unlocked */
1150 	PAGE_SUCCESS,
1151 	/* page is clean and locked */
1152 	PAGE_CLEAN,
1153 } pageout_t;
1154 
1155 /*
1156  * pageout is called by shrink_page_list() for each dirty page.
1157  * Calls ->writepage().
1158  */
1159 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1160 			 struct swap_iocb **plug)
1161 {
1162 	/*
1163 	 * If the folio is dirty, only perform writeback if that write
1164 	 * will be non-blocking.  To prevent this allocation from being
1165 	 * stalled by pagecache activity.  But note that there may be
1166 	 * stalls if we need to run get_block().  We could test
1167 	 * PagePrivate for that.
1168 	 *
1169 	 * If this process is currently in __generic_file_write_iter() against
1170 	 * this folio's queue, we can perform writeback even if that
1171 	 * will block.
1172 	 *
1173 	 * If the folio is swapcache, write it back even if that would
1174 	 * block, for some throttling. This happens by accident, because
1175 	 * swap_backing_dev_info is bust: it doesn't reflect the
1176 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1177 	 */
1178 	if (!is_page_cache_freeable(folio))
1179 		return PAGE_KEEP;
1180 	if (!mapping) {
1181 		/*
1182 		 * Some data journaling orphaned folios can have
1183 		 * folio->mapping == NULL while being dirty with clean buffers.
1184 		 */
1185 		if (folio_test_private(folio)) {
1186 			if (try_to_free_buffers(&folio->page)) {
1187 				folio_clear_dirty(folio);
1188 				pr_info("%s: orphaned folio\n", __func__);
1189 				return PAGE_CLEAN;
1190 			}
1191 		}
1192 		return PAGE_KEEP;
1193 	}
1194 	if (mapping->a_ops->writepage == NULL)
1195 		return PAGE_ACTIVATE;
1196 
1197 	if (folio_clear_dirty_for_io(folio)) {
1198 		int res;
1199 		struct writeback_control wbc = {
1200 			.sync_mode = WB_SYNC_NONE,
1201 			.nr_to_write = SWAP_CLUSTER_MAX,
1202 			.range_start = 0,
1203 			.range_end = LLONG_MAX,
1204 			.for_reclaim = 1,
1205 			.swap_plug = plug,
1206 		};
1207 
1208 		folio_set_reclaim(folio);
1209 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1210 		if (res < 0)
1211 			handle_write_error(mapping, folio, res);
1212 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1213 			folio_clear_reclaim(folio);
1214 			return PAGE_ACTIVATE;
1215 		}
1216 
1217 		if (!folio_test_writeback(folio)) {
1218 			/* synchronous write or broken a_ops? */
1219 			folio_clear_reclaim(folio);
1220 		}
1221 		trace_mm_vmscan_write_folio(folio);
1222 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1223 		return PAGE_SUCCESS;
1224 	}
1225 
1226 	return PAGE_CLEAN;
1227 }
1228 
1229 /*
1230  * Same as remove_mapping, but if the page is removed from the mapping, it
1231  * gets returned with a refcount of 0.
1232  */
1233 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1234 			    bool reclaimed, struct mem_cgroup *target_memcg)
1235 {
1236 	int refcount;
1237 	void *shadow = NULL;
1238 
1239 	BUG_ON(!folio_test_locked(folio));
1240 	BUG_ON(mapping != folio_mapping(folio));
1241 
1242 	if (!folio_test_swapcache(folio))
1243 		spin_lock(&mapping->host->i_lock);
1244 	xa_lock_irq(&mapping->i_pages);
1245 	/*
1246 	 * The non racy check for a busy page.
1247 	 *
1248 	 * Must be careful with the order of the tests. When someone has
1249 	 * a ref to the page, it may be possible that they dirty it then
1250 	 * drop the reference. So if PageDirty is tested before page_count
1251 	 * here, then the following race may occur:
1252 	 *
1253 	 * get_user_pages(&page);
1254 	 * [user mapping goes away]
1255 	 * write_to(page);
1256 	 *				!PageDirty(page)    [good]
1257 	 * SetPageDirty(page);
1258 	 * put_page(page);
1259 	 *				!page_count(page)   [good, discard it]
1260 	 *
1261 	 * [oops, our write_to data is lost]
1262 	 *
1263 	 * Reversing the order of the tests ensures such a situation cannot
1264 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1265 	 * load is not satisfied before that of page->_refcount.
1266 	 *
1267 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1268 	 * and thus under the i_pages lock, then this ordering is not required.
1269 	 */
1270 	refcount = 1 + folio_nr_pages(folio);
1271 	if (!folio_ref_freeze(folio, refcount))
1272 		goto cannot_free;
1273 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1274 	if (unlikely(folio_test_dirty(folio))) {
1275 		folio_ref_unfreeze(folio, refcount);
1276 		goto cannot_free;
1277 	}
1278 
1279 	if (folio_test_swapcache(folio)) {
1280 		swp_entry_t swap = folio_swap_entry(folio);
1281 		mem_cgroup_swapout(folio, swap);
1282 		if (reclaimed && !mapping_exiting(mapping))
1283 			shadow = workingset_eviction(folio, target_memcg);
1284 		__delete_from_swap_cache(&folio->page, swap, shadow);
1285 		xa_unlock_irq(&mapping->i_pages);
1286 		put_swap_page(&folio->page, swap);
1287 	} else {
1288 		void (*freepage)(struct page *);
1289 
1290 		freepage = mapping->a_ops->freepage;
1291 		/*
1292 		 * Remember a shadow entry for reclaimed file cache in
1293 		 * order to detect refaults, thus thrashing, later on.
1294 		 *
1295 		 * But don't store shadows in an address space that is
1296 		 * already exiting.  This is not just an optimization,
1297 		 * inode reclaim needs to empty out the radix tree or
1298 		 * the nodes are lost.  Don't plant shadows behind its
1299 		 * back.
1300 		 *
1301 		 * We also don't store shadows for DAX mappings because the
1302 		 * only page cache pages found in these are zero pages
1303 		 * covering holes, and because we don't want to mix DAX
1304 		 * exceptional entries and shadow exceptional entries in the
1305 		 * same address_space.
1306 		 */
1307 		if (reclaimed && folio_is_file_lru(folio) &&
1308 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1309 			shadow = workingset_eviction(folio, target_memcg);
1310 		__filemap_remove_folio(folio, shadow);
1311 		xa_unlock_irq(&mapping->i_pages);
1312 		if (mapping_shrinkable(mapping))
1313 			inode_add_lru(mapping->host);
1314 		spin_unlock(&mapping->host->i_lock);
1315 
1316 		if (freepage != NULL)
1317 			freepage(&folio->page);
1318 	}
1319 
1320 	return 1;
1321 
1322 cannot_free:
1323 	xa_unlock_irq(&mapping->i_pages);
1324 	if (!folio_test_swapcache(folio))
1325 		spin_unlock(&mapping->host->i_lock);
1326 	return 0;
1327 }
1328 
1329 /**
1330  * remove_mapping() - Attempt to remove a folio from its mapping.
1331  * @mapping: The address space.
1332  * @folio: The folio to remove.
1333  *
1334  * If the folio is dirty, under writeback or if someone else has a ref
1335  * on it, removal will fail.
1336  * Return: The number of pages removed from the mapping.  0 if the folio
1337  * could not be removed.
1338  * Context: The caller should have a single refcount on the folio and
1339  * hold its lock.
1340  */
1341 long remove_mapping(struct address_space *mapping, struct folio *folio)
1342 {
1343 	if (__remove_mapping(mapping, folio, false, NULL)) {
1344 		/*
1345 		 * Unfreezing the refcount with 1 effectively
1346 		 * drops the pagecache ref for us without requiring another
1347 		 * atomic operation.
1348 		 */
1349 		folio_ref_unfreeze(folio, 1);
1350 		return folio_nr_pages(folio);
1351 	}
1352 	return 0;
1353 }
1354 
1355 /**
1356  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1357  * @folio: Folio to be returned to an LRU list.
1358  *
1359  * Add previously isolated @folio to appropriate LRU list.
1360  * The folio may still be unevictable for other reasons.
1361  *
1362  * Context: lru_lock must not be held, interrupts must be enabled.
1363  */
1364 void folio_putback_lru(struct folio *folio)
1365 {
1366 	folio_add_lru(folio);
1367 	folio_put(folio);		/* drop ref from isolate */
1368 }
1369 
1370 enum page_references {
1371 	PAGEREF_RECLAIM,
1372 	PAGEREF_RECLAIM_CLEAN,
1373 	PAGEREF_KEEP,
1374 	PAGEREF_ACTIVATE,
1375 };
1376 
1377 static enum page_references folio_check_references(struct folio *folio,
1378 						  struct scan_control *sc)
1379 {
1380 	int referenced_ptes, referenced_folio;
1381 	unsigned long vm_flags;
1382 
1383 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1384 					   &vm_flags);
1385 	referenced_folio = folio_test_clear_referenced(folio);
1386 
1387 	/*
1388 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1389 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1390 	 */
1391 	if (vm_flags & VM_LOCKED)
1392 		return PAGEREF_ACTIVATE;
1393 
1394 	if (referenced_ptes) {
1395 		/*
1396 		 * All mapped folios start out with page table
1397 		 * references from the instantiating fault, so we need
1398 		 * to look twice if a mapped file/anon folio is used more
1399 		 * than once.
1400 		 *
1401 		 * Mark it and spare it for another trip around the
1402 		 * inactive list.  Another page table reference will
1403 		 * lead to its activation.
1404 		 *
1405 		 * Note: the mark is set for activated folios as well
1406 		 * so that recently deactivated but used folios are
1407 		 * quickly recovered.
1408 		 */
1409 		folio_set_referenced(folio);
1410 
1411 		if (referenced_folio || referenced_ptes > 1)
1412 			return PAGEREF_ACTIVATE;
1413 
1414 		/*
1415 		 * Activate file-backed executable folios after first usage.
1416 		 */
1417 		if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
1418 			return PAGEREF_ACTIVATE;
1419 
1420 		return PAGEREF_KEEP;
1421 	}
1422 
1423 	/* Reclaim if clean, defer dirty folios to writeback */
1424 	if (referenced_folio && !folio_test_swapbacked(folio))
1425 		return PAGEREF_RECLAIM_CLEAN;
1426 
1427 	return PAGEREF_RECLAIM;
1428 }
1429 
1430 /* Check if a page is dirty or under writeback */
1431 static void folio_check_dirty_writeback(struct folio *folio,
1432 				       bool *dirty, bool *writeback)
1433 {
1434 	struct address_space *mapping;
1435 
1436 	/*
1437 	 * Anonymous pages are not handled by flushers and must be written
1438 	 * from reclaim context. Do not stall reclaim based on them
1439 	 */
1440 	if (!folio_is_file_lru(folio) ||
1441 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1442 		*dirty = false;
1443 		*writeback = false;
1444 		return;
1445 	}
1446 
1447 	/* By default assume that the folio flags are accurate */
1448 	*dirty = folio_test_dirty(folio);
1449 	*writeback = folio_test_writeback(folio);
1450 
1451 	/* Verify dirty/writeback state if the filesystem supports it */
1452 	if (!folio_test_private(folio))
1453 		return;
1454 
1455 	mapping = folio_mapping(folio);
1456 	if (mapping && mapping->a_ops->is_dirty_writeback)
1457 		mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
1458 }
1459 
1460 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1461 {
1462 	struct migration_target_control mtc = {
1463 		/*
1464 		 * Allocate from 'node', or fail quickly and quietly.
1465 		 * When this happens, 'page' will likely just be discarded
1466 		 * instead of migrated.
1467 		 */
1468 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1469 			    __GFP_THISNODE  | __GFP_NOWARN |
1470 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1471 		.nid = node
1472 	};
1473 
1474 	return alloc_migration_target(page, (unsigned long)&mtc);
1475 }
1476 
1477 /*
1478  * Take pages on @demote_list and attempt to demote them to
1479  * another node.  Pages which are not demoted are left on
1480  * @demote_pages.
1481  */
1482 static unsigned int demote_page_list(struct list_head *demote_pages,
1483 				     struct pglist_data *pgdat)
1484 {
1485 	int target_nid = next_demotion_node(pgdat->node_id);
1486 	unsigned int nr_succeeded;
1487 
1488 	if (list_empty(demote_pages))
1489 		return 0;
1490 
1491 	if (target_nid == NUMA_NO_NODE)
1492 		return 0;
1493 
1494 	/* Demotion ignores all cpuset and mempolicy settings */
1495 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1496 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1497 			    &nr_succeeded);
1498 
1499 	if (current_is_kswapd())
1500 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1501 	else
1502 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1503 
1504 	return nr_succeeded;
1505 }
1506 
1507 static bool may_enter_fs(struct page *page, gfp_t gfp_mask)
1508 {
1509 	if (gfp_mask & __GFP_FS)
1510 		return true;
1511 	if (!PageSwapCache(page) || !(gfp_mask & __GFP_IO))
1512 		return false;
1513 	/*
1514 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1515 	 * providing this isn't SWP_FS_OPS.
1516 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1517 	 * but that will never affect SWP_FS_OPS, so the data_race
1518 	 * is safe.
1519 	 */
1520 	return !data_race(page_swap_flags(page) & SWP_FS_OPS);
1521 }
1522 
1523 /*
1524  * shrink_page_list() returns the number of reclaimed pages
1525  */
1526 static unsigned int shrink_page_list(struct list_head *page_list,
1527 				     struct pglist_data *pgdat,
1528 				     struct scan_control *sc,
1529 				     struct reclaim_stat *stat,
1530 				     bool ignore_references)
1531 {
1532 	LIST_HEAD(ret_pages);
1533 	LIST_HEAD(free_pages);
1534 	LIST_HEAD(demote_pages);
1535 	unsigned int nr_reclaimed = 0;
1536 	unsigned int pgactivate = 0;
1537 	bool do_demote_pass;
1538 	struct swap_iocb *plug = NULL;
1539 
1540 	memset(stat, 0, sizeof(*stat));
1541 	cond_resched();
1542 	do_demote_pass = can_demote(pgdat->node_id, sc);
1543 
1544 retry:
1545 	while (!list_empty(page_list)) {
1546 		struct address_space *mapping;
1547 		struct page *page;
1548 		struct folio *folio;
1549 		enum page_references references = PAGEREF_RECLAIM;
1550 		bool dirty, writeback;
1551 		unsigned int nr_pages;
1552 
1553 		cond_resched();
1554 
1555 		folio = lru_to_folio(page_list);
1556 		list_del(&folio->lru);
1557 		page = &folio->page;
1558 
1559 		if (!trylock_page(page))
1560 			goto keep;
1561 
1562 		VM_BUG_ON_PAGE(PageActive(page), page);
1563 
1564 		nr_pages = compound_nr(page);
1565 
1566 		/* Account the number of base pages even though THP */
1567 		sc->nr_scanned += nr_pages;
1568 
1569 		if (unlikely(!page_evictable(page)))
1570 			goto activate_locked;
1571 
1572 		if (!sc->may_unmap && page_mapped(page))
1573 			goto keep_locked;
1574 
1575 		/*
1576 		 * The number of dirty pages determines if a node is marked
1577 		 * reclaim_congested. kswapd will stall and start writing
1578 		 * pages if the tail of the LRU is all dirty unqueued pages.
1579 		 */
1580 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1581 		if (dirty || writeback)
1582 			stat->nr_dirty += nr_pages;
1583 
1584 		if (dirty && !writeback)
1585 			stat->nr_unqueued_dirty += nr_pages;
1586 
1587 		/*
1588 		 * Treat this page as congested if the underlying BDI is or if
1589 		 * pages are cycling through the LRU so quickly that the
1590 		 * pages marked for immediate reclaim are making it to the
1591 		 * end of the LRU a second time.
1592 		 */
1593 		mapping = page_mapping(page);
1594 		if (writeback && PageReclaim(page))
1595 			stat->nr_congested += nr_pages;
1596 
1597 		/*
1598 		 * If a page at the tail of the LRU is under writeback, there
1599 		 * are three cases to consider.
1600 		 *
1601 		 * 1) If reclaim is encountering an excessive number of pages
1602 		 *    under writeback and this page is both under writeback and
1603 		 *    PageReclaim then it indicates that pages are being queued
1604 		 *    for IO but are being recycled through the LRU before the
1605 		 *    IO can complete. Waiting on the page itself risks an
1606 		 *    indefinite stall if it is impossible to writeback the
1607 		 *    page due to IO error or disconnected storage so instead
1608 		 *    note that the LRU is being scanned too quickly and the
1609 		 *    caller can stall after page list has been processed.
1610 		 *
1611 		 * 2) Global or new memcg reclaim encounters a page that is
1612 		 *    not marked for immediate reclaim, or the caller does not
1613 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1614 		 *    not to fs). In this case mark the page for immediate
1615 		 *    reclaim and continue scanning.
1616 		 *
1617 		 *    Require may_enter_fs() because we would wait on fs, which
1618 		 *    may not have submitted IO yet. And the loop driver might
1619 		 *    enter reclaim, and deadlock if it waits on a page for
1620 		 *    which it is needed to do the write (loop masks off
1621 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1622 		 *    would probably show more reasons.
1623 		 *
1624 		 * 3) Legacy memcg encounters a page that is already marked
1625 		 *    PageReclaim. memcg does not have any dirty pages
1626 		 *    throttling so we could easily OOM just because too many
1627 		 *    pages are in writeback and there is nothing else to
1628 		 *    reclaim. Wait for the writeback to complete.
1629 		 *
1630 		 * In cases 1) and 2) we activate the pages to get them out of
1631 		 * the way while we continue scanning for clean pages on the
1632 		 * inactive list and refilling from the active list. The
1633 		 * observation here is that waiting for disk writes is more
1634 		 * expensive than potentially causing reloads down the line.
1635 		 * Since they're marked for immediate reclaim, they won't put
1636 		 * memory pressure on the cache working set any longer than it
1637 		 * takes to write them to disk.
1638 		 */
1639 		if (PageWriteback(page)) {
1640 			/* Case 1 above */
1641 			if (current_is_kswapd() &&
1642 			    PageReclaim(page) &&
1643 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1644 				stat->nr_immediate += nr_pages;
1645 				goto activate_locked;
1646 
1647 			/* Case 2 above */
1648 			} else if (writeback_throttling_sane(sc) ||
1649 			    !PageReclaim(page) || !may_enter_fs(page, sc->gfp_mask)) {
1650 				/*
1651 				 * This is slightly racy - end_page_writeback()
1652 				 * might have just cleared PageReclaim, then
1653 				 * setting PageReclaim here end up interpreted
1654 				 * as PageReadahead - but that does not matter
1655 				 * enough to care.  What we do want is for this
1656 				 * page to have PageReclaim set next time memcg
1657 				 * reclaim reaches the tests above, so it will
1658 				 * then wait_on_page_writeback() to avoid OOM;
1659 				 * and it's also appropriate in global reclaim.
1660 				 */
1661 				SetPageReclaim(page);
1662 				stat->nr_writeback += nr_pages;
1663 				goto activate_locked;
1664 
1665 			/* Case 3 above */
1666 			} else {
1667 				unlock_page(page);
1668 				wait_on_page_writeback(page);
1669 				/* then go back and try same page again */
1670 				list_add_tail(&page->lru, page_list);
1671 				continue;
1672 			}
1673 		}
1674 
1675 		if (!ignore_references)
1676 			references = folio_check_references(folio, sc);
1677 
1678 		switch (references) {
1679 		case PAGEREF_ACTIVATE:
1680 			goto activate_locked;
1681 		case PAGEREF_KEEP:
1682 			stat->nr_ref_keep += nr_pages;
1683 			goto keep_locked;
1684 		case PAGEREF_RECLAIM:
1685 		case PAGEREF_RECLAIM_CLEAN:
1686 			; /* try to reclaim the page below */
1687 		}
1688 
1689 		/*
1690 		 * Before reclaiming the page, try to relocate
1691 		 * its contents to another node.
1692 		 */
1693 		if (do_demote_pass &&
1694 		    (thp_migration_supported() || !PageTransHuge(page))) {
1695 			list_add(&page->lru, &demote_pages);
1696 			unlock_page(page);
1697 			continue;
1698 		}
1699 
1700 		/*
1701 		 * Anonymous process memory has backing store?
1702 		 * Try to allocate it some swap space here.
1703 		 * Lazyfree page could be freed directly
1704 		 */
1705 		if (PageAnon(page) && PageSwapBacked(page)) {
1706 			if (!PageSwapCache(page)) {
1707 				if (!(sc->gfp_mask & __GFP_IO))
1708 					goto keep_locked;
1709 				if (folio_maybe_dma_pinned(folio))
1710 					goto keep_locked;
1711 				if (PageTransHuge(page)) {
1712 					/* cannot split THP, skip it */
1713 					if (!can_split_folio(folio, NULL))
1714 						goto activate_locked;
1715 					/*
1716 					 * Split pages without a PMD map right
1717 					 * away. Chances are some or all of the
1718 					 * tail pages can be freed without IO.
1719 					 */
1720 					if (!folio_entire_mapcount(folio) &&
1721 					    split_folio_to_list(folio,
1722 								page_list))
1723 						goto activate_locked;
1724 				}
1725 				if (!add_to_swap(page)) {
1726 					if (!PageTransHuge(page))
1727 						goto activate_locked_split;
1728 					/* Fallback to swap normal pages */
1729 					if (split_folio_to_list(folio,
1730 								page_list))
1731 						goto activate_locked;
1732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1733 					count_vm_event(THP_SWPOUT_FALLBACK);
1734 #endif
1735 					if (!add_to_swap(page))
1736 						goto activate_locked_split;
1737 				}
1738 
1739 				/* Adding to swap updated mapping */
1740 				mapping = page_mapping(page);
1741 			}
1742 		} else if (PageSwapBacked(page) && PageTransHuge(page)) {
1743 			/* Split shmem THP */
1744 			if (split_folio_to_list(folio, page_list))
1745 				goto keep_locked;
1746 		}
1747 
1748 		/*
1749 		 * THP may get split above, need minus tail pages and update
1750 		 * nr_pages to avoid accounting tail pages twice.
1751 		 *
1752 		 * The tail pages that are added into swap cache successfully
1753 		 * reach here.
1754 		 */
1755 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1756 			sc->nr_scanned -= (nr_pages - 1);
1757 			nr_pages = 1;
1758 		}
1759 
1760 		/*
1761 		 * The page is mapped into the page tables of one or more
1762 		 * processes. Try to unmap it here.
1763 		 */
1764 		if (page_mapped(page)) {
1765 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1766 			bool was_swapbacked = PageSwapBacked(page);
1767 
1768 			if (PageTransHuge(page) &&
1769 					thp_order(page) >= HPAGE_PMD_ORDER)
1770 				flags |= TTU_SPLIT_HUGE_PMD;
1771 
1772 			try_to_unmap(folio, flags);
1773 			if (page_mapped(page)) {
1774 				stat->nr_unmap_fail += nr_pages;
1775 				if (!was_swapbacked && PageSwapBacked(page))
1776 					stat->nr_lazyfree_fail += nr_pages;
1777 				goto activate_locked;
1778 			}
1779 		}
1780 
1781 		if (PageDirty(page)) {
1782 			/*
1783 			 * Only kswapd can writeback filesystem pages
1784 			 * to avoid risk of stack overflow. But avoid
1785 			 * injecting inefficient single-page IO into
1786 			 * flusher writeback as much as possible: only
1787 			 * write pages when we've encountered many
1788 			 * dirty pages, and when we've already scanned
1789 			 * the rest of the LRU for clean pages and see
1790 			 * the same dirty pages again (PageReclaim).
1791 			 */
1792 			if (page_is_file_lru(page) &&
1793 			    (!current_is_kswapd() || !PageReclaim(page) ||
1794 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1795 				/*
1796 				 * Immediately reclaim when written back.
1797 				 * Similar in principal to deactivate_page()
1798 				 * except we already have the page isolated
1799 				 * and know it's dirty
1800 				 */
1801 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1802 				SetPageReclaim(page);
1803 
1804 				goto activate_locked;
1805 			}
1806 
1807 			if (references == PAGEREF_RECLAIM_CLEAN)
1808 				goto keep_locked;
1809 			if (!may_enter_fs(page, sc->gfp_mask))
1810 				goto keep_locked;
1811 			if (!sc->may_writepage)
1812 				goto keep_locked;
1813 
1814 			/*
1815 			 * Page is dirty. Flush the TLB if a writable entry
1816 			 * potentially exists to avoid CPU writes after IO
1817 			 * starts and then write it out here.
1818 			 */
1819 			try_to_unmap_flush_dirty();
1820 			switch (pageout(folio, mapping, &plug)) {
1821 			case PAGE_KEEP:
1822 				goto keep_locked;
1823 			case PAGE_ACTIVATE:
1824 				goto activate_locked;
1825 			case PAGE_SUCCESS:
1826 				stat->nr_pageout += nr_pages;
1827 
1828 				if (PageWriteback(page))
1829 					goto keep;
1830 				if (PageDirty(page))
1831 					goto keep;
1832 
1833 				/*
1834 				 * A synchronous write - probably a ramdisk.  Go
1835 				 * ahead and try to reclaim the page.
1836 				 */
1837 				if (!trylock_page(page))
1838 					goto keep;
1839 				if (PageDirty(page) || PageWriteback(page))
1840 					goto keep_locked;
1841 				mapping = page_mapping(page);
1842 				fallthrough;
1843 			case PAGE_CLEAN:
1844 				; /* try to free the page below */
1845 			}
1846 		}
1847 
1848 		/*
1849 		 * If the page has buffers, try to free the buffer mappings
1850 		 * associated with this page. If we succeed we try to free
1851 		 * the page as well.
1852 		 *
1853 		 * We do this even if the page is PageDirty().
1854 		 * try_to_release_page() does not perform I/O, but it is
1855 		 * possible for a page to have PageDirty set, but it is actually
1856 		 * clean (all its buffers are clean).  This happens if the
1857 		 * buffers were written out directly, with submit_bh(). ext3
1858 		 * will do this, as well as the blockdev mapping.
1859 		 * try_to_release_page() will discover that cleanness and will
1860 		 * drop the buffers and mark the page clean - it can be freed.
1861 		 *
1862 		 * Rarely, pages can have buffers and no ->mapping.  These are
1863 		 * the pages which were not successfully invalidated in
1864 		 * truncate_cleanup_page().  We try to drop those buffers here
1865 		 * and if that worked, and the page is no longer mapped into
1866 		 * process address space (page_count == 1) it can be freed.
1867 		 * Otherwise, leave the page on the LRU so it is swappable.
1868 		 */
1869 		if (page_has_private(page)) {
1870 			if (!try_to_release_page(page, sc->gfp_mask))
1871 				goto activate_locked;
1872 			if (!mapping && page_count(page) == 1) {
1873 				unlock_page(page);
1874 				if (put_page_testzero(page))
1875 					goto free_it;
1876 				else {
1877 					/*
1878 					 * rare race with speculative reference.
1879 					 * the speculative reference will free
1880 					 * this page shortly, so we may
1881 					 * increment nr_reclaimed here (and
1882 					 * leave it off the LRU).
1883 					 */
1884 					nr_reclaimed++;
1885 					continue;
1886 				}
1887 			}
1888 		}
1889 
1890 		if (PageAnon(page) && !PageSwapBacked(page)) {
1891 			/* follow __remove_mapping for reference */
1892 			if (!page_ref_freeze(page, 1))
1893 				goto keep_locked;
1894 			/*
1895 			 * The page has only one reference left, which is
1896 			 * from the isolation. After the caller puts the
1897 			 * page back on lru and drops the reference, the
1898 			 * page will be freed anyway. It doesn't matter
1899 			 * which lru it goes. So we don't bother checking
1900 			 * PageDirty here.
1901 			 */
1902 			count_vm_event(PGLAZYFREED);
1903 			count_memcg_page_event(page, PGLAZYFREED);
1904 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1905 							 sc->target_mem_cgroup))
1906 			goto keep_locked;
1907 
1908 		unlock_page(page);
1909 free_it:
1910 		/*
1911 		 * THP may get swapped out in a whole, need account
1912 		 * all base pages.
1913 		 */
1914 		nr_reclaimed += nr_pages;
1915 
1916 		/*
1917 		 * Is there need to periodically free_page_list? It would
1918 		 * appear not as the counts should be low
1919 		 */
1920 		if (unlikely(PageTransHuge(page)))
1921 			destroy_compound_page(page);
1922 		else
1923 			list_add(&page->lru, &free_pages);
1924 		continue;
1925 
1926 activate_locked_split:
1927 		/*
1928 		 * The tail pages that are failed to add into swap cache
1929 		 * reach here.  Fixup nr_scanned and nr_pages.
1930 		 */
1931 		if (nr_pages > 1) {
1932 			sc->nr_scanned -= (nr_pages - 1);
1933 			nr_pages = 1;
1934 		}
1935 activate_locked:
1936 		/* Not a candidate for swapping, so reclaim swap space. */
1937 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1938 						PageMlocked(page)))
1939 			try_to_free_swap(page);
1940 		VM_BUG_ON_PAGE(PageActive(page), page);
1941 		if (!PageMlocked(page)) {
1942 			int type = page_is_file_lru(page);
1943 			SetPageActive(page);
1944 			stat->nr_activate[type] += nr_pages;
1945 			count_memcg_page_event(page, PGACTIVATE);
1946 		}
1947 keep_locked:
1948 		unlock_page(page);
1949 keep:
1950 		list_add(&page->lru, &ret_pages);
1951 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1952 	}
1953 	/* 'page_list' is always empty here */
1954 
1955 	/* Migrate pages selected for demotion */
1956 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1957 	/* Pages that could not be demoted are still in @demote_pages */
1958 	if (!list_empty(&demote_pages)) {
1959 		/* Pages which failed to demoted go back on @page_list for retry: */
1960 		list_splice_init(&demote_pages, page_list);
1961 		do_demote_pass = false;
1962 		goto retry;
1963 	}
1964 
1965 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1966 
1967 	mem_cgroup_uncharge_list(&free_pages);
1968 	try_to_unmap_flush();
1969 	free_unref_page_list(&free_pages);
1970 
1971 	list_splice(&ret_pages, page_list);
1972 	count_vm_events(PGACTIVATE, pgactivate);
1973 
1974 	if (plug)
1975 		swap_write_unplug(plug);
1976 	return nr_reclaimed;
1977 }
1978 
1979 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1980 					    struct list_head *page_list)
1981 {
1982 	struct scan_control sc = {
1983 		.gfp_mask = GFP_KERNEL,
1984 		.may_unmap = 1,
1985 	};
1986 	struct reclaim_stat stat;
1987 	unsigned int nr_reclaimed;
1988 	struct page *page, *next;
1989 	LIST_HEAD(clean_pages);
1990 	unsigned int noreclaim_flag;
1991 
1992 	list_for_each_entry_safe(page, next, page_list, lru) {
1993 		if (!PageHuge(page) && page_is_file_lru(page) &&
1994 		    !PageDirty(page) && !__PageMovable(page) &&
1995 		    !PageUnevictable(page)) {
1996 			ClearPageActive(page);
1997 			list_move(&page->lru, &clean_pages);
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * We should be safe here since we are only dealing with file pages and
2003 	 * we are not kswapd and therefore cannot write dirty file pages. But
2004 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2005 	 * change in the future.
2006 	 */
2007 	noreclaim_flag = memalloc_noreclaim_save();
2008 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
2009 					&stat, true);
2010 	memalloc_noreclaim_restore(noreclaim_flag);
2011 
2012 	list_splice(&clean_pages, page_list);
2013 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2014 			    -(long)nr_reclaimed);
2015 	/*
2016 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2017 	 * they will rotate back to anonymous LRU in the end if it failed to
2018 	 * discard so isolated count will be mismatched.
2019 	 * Compensate the isolated count for both LRU lists.
2020 	 */
2021 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2022 			    stat.nr_lazyfree_fail);
2023 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2024 			    -(long)stat.nr_lazyfree_fail);
2025 	return nr_reclaimed;
2026 }
2027 
2028 /*
2029  * Update LRU sizes after isolating pages. The LRU size updates must
2030  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2031  */
2032 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2033 			enum lru_list lru, unsigned long *nr_zone_taken)
2034 {
2035 	int zid;
2036 
2037 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2038 		if (!nr_zone_taken[zid])
2039 			continue;
2040 
2041 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2042 	}
2043 
2044 }
2045 
2046 /*
2047  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2048  *
2049  * lruvec->lru_lock is heavily contended.  Some of the functions that
2050  * shrink the lists perform better by taking out a batch of pages
2051  * and working on them outside the LRU lock.
2052  *
2053  * For pagecache intensive workloads, this function is the hottest
2054  * spot in the kernel (apart from copy_*_user functions).
2055  *
2056  * Lru_lock must be held before calling this function.
2057  *
2058  * @nr_to_scan:	The number of eligible pages to look through on the list.
2059  * @lruvec:	The LRU vector to pull pages from.
2060  * @dst:	The temp list to put pages on to.
2061  * @nr_scanned:	The number of pages that were scanned.
2062  * @sc:		The scan_control struct for this reclaim session
2063  * @lru:	LRU list id for isolating
2064  *
2065  * returns how many pages were moved onto *@dst.
2066  */
2067 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2068 		struct lruvec *lruvec, struct list_head *dst,
2069 		unsigned long *nr_scanned, struct scan_control *sc,
2070 		enum lru_list lru)
2071 {
2072 	struct list_head *src = &lruvec->lists[lru];
2073 	unsigned long nr_taken = 0;
2074 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2075 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2076 	unsigned long skipped = 0;
2077 	unsigned long scan, total_scan, nr_pages;
2078 	LIST_HEAD(pages_skipped);
2079 
2080 	total_scan = 0;
2081 	scan = 0;
2082 	while (scan < nr_to_scan && !list_empty(src)) {
2083 		struct list_head *move_to = src;
2084 		struct page *page;
2085 
2086 		page = lru_to_page(src);
2087 		prefetchw_prev_lru_page(page, src, flags);
2088 
2089 		nr_pages = compound_nr(page);
2090 		total_scan += nr_pages;
2091 
2092 		if (page_zonenum(page) > sc->reclaim_idx) {
2093 			nr_skipped[page_zonenum(page)] += nr_pages;
2094 			move_to = &pages_skipped;
2095 			goto move;
2096 		}
2097 
2098 		/*
2099 		 * Do not count skipped pages because that makes the function
2100 		 * return with no isolated pages if the LRU mostly contains
2101 		 * ineligible pages.  This causes the VM to not reclaim any
2102 		 * pages, triggering a premature OOM.
2103 		 * Account all tail pages of THP.
2104 		 */
2105 		scan += nr_pages;
2106 
2107 		if (!PageLRU(page))
2108 			goto move;
2109 		if (!sc->may_unmap && page_mapped(page))
2110 			goto move;
2111 
2112 		/*
2113 		 * Be careful not to clear PageLRU until after we're
2114 		 * sure the page is not being freed elsewhere -- the
2115 		 * page release code relies on it.
2116 		 */
2117 		if (unlikely(!get_page_unless_zero(page)))
2118 			goto move;
2119 
2120 		if (!TestClearPageLRU(page)) {
2121 			/* Another thread is already isolating this page */
2122 			put_page(page);
2123 			goto move;
2124 		}
2125 
2126 		nr_taken += nr_pages;
2127 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2128 		move_to = dst;
2129 move:
2130 		list_move(&page->lru, move_to);
2131 	}
2132 
2133 	/*
2134 	 * Splice any skipped pages to the start of the LRU list. Note that
2135 	 * this disrupts the LRU order when reclaiming for lower zones but
2136 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2137 	 * scanning would soon rescan the same pages to skip and waste lots
2138 	 * of cpu cycles.
2139 	 */
2140 	if (!list_empty(&pages_skipped)) {
2141 		int zid;
2142 
2143 		list_splice(&pages_skipped, src);
2144 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2145 			if (!nr_skipped[zid])
2146 				continue;
2147 
2148 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2149 			skipped += nr_skipped[zid];
2150 		}
2151 	}
2152 	*nr_scanned = total_scan;
2153 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2154 				    total_scan, skipped, nr_taken,
2155 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2156 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2157 	return nr_taken;
2158 }
2159 
2160 /**
2161  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2162  * @folio: Folio to isolate from its LRU list.
2163  *
2164  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2165  * corresponding to whatever LRU list the folio was on.
2166  *
2167  * The folio will have its LRU flag cleared.  If it was found on the
2168  * active list, it will have the Active flag set.  If it was found on the
2169  * unevictable list, it will have the Unevictable flag set.  These flags
2170  * may need to be cleared by the caller before letting the page go.
2171  *
2172  * Context:
2173  *
2174  * (1) Must be called with an elevated refcount on the page. This is a
2175  *     fundamental difference from isolate_lru_pages() (which is called
2176  *     without a stable reference).
2177  * (2) The lru_lock must not be held.
2178  * (3) Interrupts must be enabled.
2179  *
2180  * Return: 0 if the folio was removed from an LRU list.
2181  * -EBUSY if the folio was not on an LRU list.
2182  */
2183 int folio_isolate_lru(struct folio *folio)
2184 {
2185 	int ret = -EBUSY;
2186 
2187 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2188 
2189 	if (folio_test_clear_lru(folio)) {
2190 		struct lruvec *lruvec;
2191 
2192 		folio_get(folio);
2193 		lruvec = folio_lruvec_lock_irq(folio);
2194 		lruvec_del_folio(lruvec, folio);
2195 		unlock_page_lruvec_irq(lruvec);
2196 		ret = 0;
2197 	}
2198 
2199 	return ret;
2200 }
2201 
2202 /*
2203  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2204  * then get rescheduled. When there are massive number of tasks doing page
2205  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2206  * the LRU list will go small and be scanned faster than necessary, leading to
2207  * unnecessary swapping, thrashing and OOM.
2208  */
2209 static int too_many_isolated(struct pglist_data *pgdat, int file,
2210 		struct scan_control *sc)
2211 {
2212 	unsigned long inactive, isolated;
2213 	bool too_many;
2214 
2215 	if (current_is_kswapd())
2216 		return 0;
2217 
2218 	if (!writeback_throttling_sane(sc))
2219 		return 0;
2220 
2221 	if (file) {
2222 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2223 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2224 	} else {
2225 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2226 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2227 	}
2228 
2229 	/*
2230 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2231 	 * won't get blocked by normal direct-reclaimers, forming a circular
2232 	 * deadlock.
2233 	 */
2234 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2235 		inactive >>= 3;
2236 
2237 	too_many = isolated > inactive;
2238 
2239 	/* Wake up tasks throttled due to too_many_isolated. */
2240 	if (!too_many)
2241 		wake_throttle_isolated(pgdat);
2242 
2243 	return too_many;
2244 }
2245 
2246 /*
2247  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2248  * On return, @list is reused as a list of pages to be freed by the caller.
2249  *
2250  * Returns the number of pages moved to the given lruvec.
2251  */
2252 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2253 				      struct list_head *list)
2254 {
2255 	int nr_pages, nr_moved = 0;
2256 	LIST_HEAD(pages_to_free);
2257 	struct page *page;
2258 
2259 	while (!list_empty(list)) {
2260 		page = lru_to_page(list);
2261 		VM_BUG_ON_PAGE(PageLRU(page), page);
2262 		list_del(&page->lru);
2263 		if (unlikely(!page_evictable(page))) {
2264 			spin_unlock_irq(&lruvec->lru_lock);
2265 			putback_lru_page(page);
2266 			spin_lock_irq(&lruvec->lru_lock);
2267 			continue;
2268 		}
2269 
2270 		/*
2271 		 * The SetPageLRU needs to be kept here for list integrity.
2272 		 * Otherwise:
2273 		 *   #0 move_pages_to_lru             #1 release_pages
2274 		 *   if !put_page_testzero
2275 		 *				      if (put_page_testzero())
2276 		 *				        !PageLRU //skip lru_lock
2277 		 *     SetPageLRU()
2278 		 *     list_add(&page->lru,)
2279 		 *                                        list_add(&page->lru,)
2280 		 */
2281 		SetPageLRU(page);
2282 
2283 		if (unlikely(put_page_testzero(page))) {
2284 			__clear_page_lru_flags(page);
2285 
2286 			if (unlikely(PageCompound(page))) {
2287 				spin_unlock_irq(&lruvec->lru_lock);
2288 				destroy_compound_page(page);
2289 				spin_lock_irq(&lruvec->lru_lock);
2290 			} else
2291 				list_add(&page->lru, &pages_to_free);
2292 
2293 			continue;
2294 		}
2295 
2296 		/*
2297 		 * All pages were isolated from the same lruvec (and isolation
2298 		 * inhibits memcg migration).
2299 		 */
2300 		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2301 		add_page_to_lru_list(page, lruvec);
2302 		nr_pages = thp_nr_pages(page);
2303 		nr_moved += nr_pages;
2304 		if (PageActive(page))
2305 			workingset_age_nonresident(lruvec, nr_pages);
2306 	}
2307 
2308 	/*
2309 	 * To save our caller's stack, now use input list for pages to free.
2310 	 */
2311 	list_splice(&pages_to_free, list);
2312 
2313 	return nr_moved;
2314 }
2315 
2316 /*
2317  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2318  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2319  * we should not throttle.  Otherwise it is safe to do so.
2320  */
2321 static int current_may_throttle(void)
2322 {
2323 	return !(current->flags & PF_LOCAL_THROTTLE);
2324 }
2325 
2326 /*
2327  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2328  * of reclaimed pages
2329  */
2330 static unsigned long
2331 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2332 		     struct scan_control *sc, enum lru_list lru)
2333 {
2334 	LIST_HEAD(page_list);
2335 	unsigned long nr_scanned;
2336 	unsigned int nr_reclaimed = 0;
2337 	unsigned long nr_taken;
2338 	struct reclaim_stat stat;
2339 	bool file = is_file_lru(lru);
2340 	enum vm_event_item item;
2341 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2342 	bool stalled = false;
2343 
2344 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2345 		if (stalled)
2346 			return 0;
2347 
2348 		/* wait a bit for the reclaimer. */
2349 		stalled = true;
2350 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2351 
2352 		/* We are about to die and free our memory. Return now. */
2353 		if (fatal_signal_pending(current))
2354 			return SWAP_CLUSTER_MAX;
2355 	}
2356 
2357 	lru_add_drain();
2358 
2359 	spin_lock_irq(&lruvec->lru_lock);
2360 
2361 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2362 				     &nr_scanned, sc, lru);
2363 
2364 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2365 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2366 	if (!cgroup_reclaim(sc))
2367 		__count_vm_events(item, nr_scanned);
2368 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2369 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2370 
2371 	spin_unlock_irq(&lruvec->lru_lock);
2372 
2373 	if (nr_taken == 0)
2374 		return 0;
2375 
2376 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2377 
2378 	spin_lock_irq(&lruvec->lru_lock);
2379 	move_pages_to_lru(lruvec, &page_list);
2380 
2381 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2382 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2383 	if (!cgroup_reclaim(sc))
2384 		__count_vm_events(item, nr_reclaimed);
2385 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2386 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2387 	spin_unlock_irq(&lruvec->lru_lock);
2388 
2389 	lru_note_cost(lruvec, file, stat.nr_pageout);
2390 	mem_cgroup_uncharge_list(&page_list);
2391 	free_unref_page_list(&page_list);
2392 
2393 	/*
2394 	 * If dirty pages are scanned that are not queued for IO, it
2395 	 * implies that flushers are not doing their job. This can
2396 	 * happen when memory pressure pushes dirty pages to the end of
2397 	 * the LRU before the dirty limits are breached and the dirty
2398 	 * data has expired. It can also happen when the proportion of
2399 	 * dirty pages grows not through writes but through memory
2400 	 * pressure reclaiming all the clean cache. And in some cases,
2401 	 * the flushers simply cannot keep up with the allocation
2402 	 * rate. Nudge the flusher threads in case they are asleep.
2403 	 */
2404 	if (stat.nr_unqueued_dirty == nr_taken)
2405 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2406 
2407 	sc->nr.dirty += stat.nr_dirty;
2408 	sc->nr.congested += stat.nr_congested;
2409 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2410 	sc->nr.writeback += stat.nr_writeback;
2411 	sc->nr.immediate += stat.nr_immediate;
2412 	sc->nr.taken += nr_taken;
2413 	if (file)
2414 		sc->nr.file_taken += nr_taken;
2415 
2416 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2417 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2418 	return nr_reclaimed;
2419 }
2420 
2421 /*
2422  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2423  *
2424  * We move them the other way if the page is referenced by one or more
2425  * processes.
2426  *
2427  * If the pages are mostly unmapped, the processing is fast and it is
2428  * appropriate to hold lru_lock across the whole operation.  But if
2429  * the pages are mapped, the processing is slow (folio_referenced()), so
2430  * we should drop lru_lock around each page.  It's impossible to balance
2431  * this, so instead we remove the pages from the LRU while processing them.
2432  * It is safe to rely on PG_active against the non-LRU pages in here because
2433  * nobody will play with that bit on a non-LRU page.
2434  *
2435  * The downside is that we have to touch page->_refcount against each page.
2436  * But we had to alter page->flags anyway.
2437  */
2438 static void shrink_active_list(unsigned long nr_to_scan,
2439 			       struct lruvec *lruvec,
2440 			       struct scan_control *sc,
2441 			       enum lru_list lru)
2442 {
2443 	unsigned long nr_taken;
2444 	unsigned long nr_scanned;
2445 	unsigned long vm_flags;
2446 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2447 	LIST_HEAD(l_active);
2448 	LIST_HEAD(l_inactive);
2449 	unsigned nr_deactivate, nr_activate;
2450 	unsigned nr_rotated = 0;
2451 	int file = is_file_lru(lru);
2452 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2453 
2454 	lru_add_drain();
2455 
2456 	spin_lock_irq(&lruvec->lru_lock);
2457 
2458 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2459 				     &nr_scanned, sc, lru);
2460 
2461 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2462 
2463 	if (!cgroup_reclaim(sc))
2464 		__count_vm_events(PGREFILL, nr_scanned);
2465 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2466 
2467 	spin_unlock_irq(&lruvec->lru_lock);
2468 
2469 	while (!list_empty(&l_hold)) {
2470 		struct folio *folio;
2471 		struct page *page;
2472 
2473 		cond_resched();
2474 		folio = lru_to_folio(&l_hold);
2475 		list_del(&folio->lru);
2476 		page = &folio->page;
2477 
2478 		if (unlikely(!page_evictable(page))) {
2479 			putback_lru_page(page);
2480 			continue;
2481 		}
2482 
2483 		if (unlikely(buffer_heads_over_limit)) {
2484 			if (page_has_private(page) && trylock_page(page)) {
2485 				if (page_has_private(page))
2486 					try_to_release_page(page, 0);
2487 				unlock_page(page);
2488 			}
2489 		}
2490 
2491 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2492 				     &vm_flags)) {
2493 			/*
2494 			 * Identify referenced, file-backed active pages and
2495 			 * give them one more trip around the active list. So
2496 			 * that executable code get better chances to stay in
2497 			 * memory under moderate memory pressure.  Anon pages
2498 			 * are not likely to be evicted by use-once streaming
2499 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2500 			 * so we ignore them here.
2501 			 */
2502 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2503 				nr_rotated += thp_nr_pages(page);
2504 				list_add(&page->lru, &l_active);
2505 				continue;
2506 			}
2507 		}
2508 
2509 		ClearPageActive(page);	/* we are de-activating */
2510 		SetPageWorkingset(page);
2511 		list_add(&page->lru, &l_inactive);
2512 	}
2513 
2514 	/*
2515 	 * Move pages back to the lru list.
2516 	 */
2517 	spin_lock_irq(&lruvec->lru_lock);
2518 
2519 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2520 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2521 	/* Keep all free pages in l_active list */
2522 	list_splice(&l_inactive, &l_active);
2523 
2524 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2525 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2526 
2527 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2528 	spin_unlock_irq(&lruvec->lru_lock);
2529 
2530 	mem_cgroup_uncharge_list(&l_active);
2531 	free_unref_page_list(&l_active);
2532 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2533 			nr_deactivate, nr_rotated, sc->priority, file);
2534 }
2535 
2536 unsigned long reclaim_pages(struct list_head *page_list)
2537 {
2538 	int nid = NUMA_NO_NODE;
2539 	unsigned int nr_reclaimed = 0;
2540 	LIST_HEAD(node_page_list);
2541 	struct reclaim_stat dummy_stat;
2542 	struct page *page;
2543 	unsigned int noreclaim_flag;
2544 	struct scan_control sc = {
2545 		.gfp_mask = GFP_KERNEL,
2546 		.may_writepage = 1,
2547 		.may_unmap = 1,
2548 		.may_swap = 1,
2549 		.no_demotion = 1,
2550 	};
2551 
2552 	noreclaim_flag = memalloc_noreclaim_save();
2553 
2554 	while (!list_empty(page_list)) {
2555 		page = lru_to_page(page_list);
2556 		if (nid == NUMA_NO_NODE) {
2557 			nid = page_to_nid(page);
2558 			INIT_LIST_HEAD(&node_page_list);
2559 		}
2560 
2561 		if (nid == page_to_nid(page)) {
2562 			ClearPageActive(page);
2563 			list_move(&page->lru, &node_page_list);
2564 			continue;
2565 		}
2566 
2567 		nr_reclaimed += shrink_page_list(&node_page_list,
2568 						NODE_DATA(nid),
2569 						&sc, &dummy_stat, false);
2570 		while (!list_empty(&node_page_list)) {
2571 			page = lru_to_page(&node_page_list);
2572 			list_del(&page->lru);
2573 			putback_lru_page(page);
2574 		}
2575 
2576 		nid = NUMA_NO_NODE;
2577 	}
2578 
2579 	if (!list_empty(&node_page_list)) {
2580 		nr_reclaimed += shrink_page_list(&node_page_list,
2581 						NODE_DATA(nid),
2582 						&sc, &dummy_stat, false);
2583 		while (!list_empty(&node_page_list)) {
2584 			page = lru_to_page(&node_page_list);
2585 			list_del(&page->lru);
2586 			putback_lru_page(page);
2587 		}
2588 	}
2589 
2590 	memalloc_noreclaim_restore(noreclaim_flag);
2591 
2592 	return nr_reclaimed;
2593 }
2594 
2595 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2596 				 struct lruvec *lruvec, struct scan_control *sc)
2597 {
2598 	if (is_active_lru(lru)) {
2599 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2600 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2601 		else
2602 			sc->skipped_deactivate = 1;
2603 		return 0;
2604 	}
2605 
2606 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2607 }
2608 
2609 /*
2610  * The inactive anon list should be small enough that the VM never has
2611  * to do too much work.
2612  *
2613  * The inactive file list should be small enough to leave most memory
2614  * to the established workingset on the scan-resistant active list,
2615  * but large enough to avoid thrashing the aggregate readahead window.
2616  *
2617  * Both inactive lists should also be large enough that each inactive
2618  * page has a chance to be referenced again before it is reclaimed.
2619  *
2620  * If that fails and refaulting is observed, the inactive list grows.
2621  *
2622  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2623  * on this LRU, maintained by the pageout code. An inactive_ratio
2624  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2625  *
2626  * total     target    max
2627  * memory    ratio     inactive
2628  * -------------------------------------
2629  *   10MB       1         5MB
2630  *  100MB       1        50MB
2631  *    1GB       3       250MB
2632  *   10GB      10       0.9GB
2633  *  100GB      31         3GB
2634  *    1TB     101        10GB
2635  *   10TB     320        32GB
2636  */
2637 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2638 {
2639 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2640 	unsigned long inactive, active;
2641 	unsigned long inactive_ratio;
2642 	unsigned long gb;
2643 
2644 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2645 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2646 
2647 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2648 	if (gb)
2649 		inactive_ratio = int_sqrt(10 * gb);
2650 	else
2651 		inactive_ratio = 1;
2652 
2653 	return inactive * inactive_ratio < active;
2654 }
2655 
2656 enum scan_balance {
2657 	SCAN_EQUAL,
2658 	SCAN_FRACT,
2659 	SCAN_ANON,
2660 	SCAN_FILE,
2661 };
2662 
2663 /*
2664  * Determine how aggressively the anon and file LRU lists should be
2665  * scanned.
2666  *
2667  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2668  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2669  */
2670 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2671 			   unsigned long *nr)
2672 {
2673 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2674 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2675 	unsigned long anon_cost, file_cost, total_cost;
2676 	int swappiness = mem_cgroup_swappiness(memcg);
2677 	u64 fraction[ANON_AND_FILE];
2678 	u64 denominator = 0;	/* gcc */
2679 	enum scan_balance scan_balance;
2680 	unsigned long ap, fp;
2681 	enum lru_list lru;
2682 
2683 	/* If we have no swap space, do not bother scanning anon pages. */
2684 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2685 		scan_balance = SCAN_FILE;
2686 		goto out;
2687 	}
2688 
2689 	/*
2690 	 * Global reclaim will swap to prevent OOM even with no
2691 	 * swappiness, but memcg users want to use this knob to
2692 	 * disable swapping for individual groups completely when
2693 	 * using the memory controller's swap limit feature would be
2694 	 * too expensive.
2695 	 */
2696 	if (cgroup_reclaim(sc) && !swappiness) {
2697 		scan_balance = SCAN_FILE;
2698 		goto out;
2699 	}
2700 
2701 	/*
2702 	 * Do not apply any pressure balancing cleverness when the
2703 	 * system is close to OOM, scan both anon and file equally
2704 	 * (unless the swappiness setting disagrees with swapping).
2705 	 */
2706 	if (!sc->priority && swappiness) {
2707 		scan_balance = SCAN_EQUAL;
2708 		goto out;
2709 	}
2710 
2711 	/*
2712 	 * If the system is almost out of file pages, force-scan anon.
2713 	 */
2714 	if (sc->file_is_tiny) {
2715 		scan_balance = SCAN_ANON;
2716 		goto out;
2717 	}
2718 
2719 	/*
2720 	 * If there is enough inactive page cache, we do not reclaim
2721 	 * anything from the anonymous working right now.
2722 	 */
2723 	if (sc->cache_trim_mode) {
2724 		scan_balance = SCAN_FILE;
2725 		goto out;
2726 	}
2727 
2728 	scan_balance = SCAN_FRACT;
2729 	/*
2730 	 * Calculate the pressure balance between anon and file pages.
2731 	 *
2732 	 * The amount of pressure we put on each LRU is inversely
2733 	 * proportional to the cost of reclaiming each list, as
2734 	 * determined by the share of pages that are refaulting, times
2735 	 * the relative IO cost of bringing back a swapped out
2736 	 * anonymous page vs reloading a filesystem page (swappiness).
2737 	 *
2738 	 * Although we limit that influence to ensure no list gets
2739 	 * left behind completely: at least a third of the pressure is
2740 	 * applied, before swappiness.
2741 	 *
2742 	 * With swappiness at 100, anon and file have equal IO cost.
2743 	 */
2744 	total_cost = sc->anon_cost + sc->file_cost;
2745 	anon_cost = total_cost + sc->anon_cost;
2746 	file_cost = total_cost + sc->file_cost;
2747 	total_cost = anon_cost + file_cost;
2748 
2749 	ap = swappiness * (total_cost + 1);
2750 	ap /= anon_cost + 1;
2751 
2752 	fp = (200 - swappiness) * (total_cost + 1);
2753 	fp /= file_cost + 1;
2754 
2755 	fraction[0] = ap;
2756 	fraction[1] = fp;
2757 	denominator = ap + fp;
2758 out:
2759 	for_each_evictable_lru(lru) {
2760 		int file = is_file_lru(lru);
2761 		unsigned long lruvec_size;
2762 		unsigned long low, min;
2763 		unsigned long scan;
2764 
2765 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2766 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2767 				      &min, &low);
2768 
2769 		if (min || low) {
2770 			/*
2771 			 * Scale a cgroup's reclaim pressure by proportioning
2772 			 * its current usage to its memory.low or memory.min
2773 			 * setting.
2774 			 *
2775 			 * This is important, as otherwise scanning aggression
2776 			 * becomes extremely binary -- from nothing as we
2777 			 * approach the memory protection threshold, to totally
2778 			 * nominal as we exceed it.  This results in requiring
2779 			 * setting extremely liberal protection thresholds. It
2780 			 * also means we simply get no protection at all if we
2781 			 * set it too low, which is not ideal.
2782 			 *
2783 			 * If there is any protection in place, we reduce scan
2784 			 * pressure by how much of the total memory used is
2785 			 * within protection thresholds.
2786 			 *
2787 			 * There is one special case: in the first reclaim pass,
2788 			 * we skip over all groups that are within their low
2789 			 * protection. If that fails to reclaim enough pages to
2790 			 * satisfy the reclaim goal, we come back and override
2791 			 * the best-effort low protection. However, we still
2792 			 * ideally want to honor how well-behaved groups are in
2793 			 * that case instead of simply punishing them all
2794 			 * equally. As such, we reclaim them based on how much
2795 			 * memory they are using, reducing the scan pressure
2796 			 * again by how much of the total memory used is under
2797 			 * hard protection.
2798 			 */
2799 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2800 			unsigned long protection;
2801 
2802 			/* memory.low scaling, make sure we retry before OOM */
2803 			if (!sc->memcg_low_reclaim && low > min) {
2804 				protection = low;
2805 				sc->memcg_low_skipped = 1;
2806 			} else {
2807 				protection = min;
2808 			}
2809 
2810 			/* Avoid TOCTOU with earlier protection check */
2811 			cgroup_size = max(cgroup_size, protection);
2812 
2813 			scan = lruvec_size - lruvec_size * protection /
2814 				(cgroup_size + 1);
2815 
2816 			/*
2817 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2818 			 * reclaim moving forwards, avoiding decrementing
2819 			 * sc->priority further than desirable.
2820 			 */
2821 			scan = max(scan, SWAP_CLUSTER_MAX);
2822 		} else {
2823 			scan = lruvec_size;
2824 		}
2825 
2826 		scan >>= sc->priority;
2827 
2828 		/*
2829 		 * If the cgroup's already been deleted, make sure to
2830 		 * scrape out the remaining cache.
2831 		 */
2832 		if (!scan && !mem_cgroup_online(memcg))
2833 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2834 
2835 		switch (scan_balance) {
2836 		case SCAN_EQUAL:
2837 			/* Scan lists relative to size */
2838 			break;
2839 		case SCAN_FRACT:
2840 			/*
2841 			 * Scan types proportional to swappiness and
2842 			 * their relative recent reclaim efficiency.
2843 			 * Make sure we don't miss the last page on
2844 			 * the offlined memory cgroups because of a
2845 			 * round-off error.
2846 			 */
2847 			scan = mem_cgroup_online(memcg) ?
2848 			       div64_u64(scan * fraction[file], denominator) :
2849 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2850 						  denominator);
2851 			break;
2852 		case SCAN_FILE:
2853 		case SCAN_ANON:
2854 			/* Scan one type exclusively */
2855 			if ((scan_balance == SCAN_FILE) != file)
2856 				scan = 0;
2857 			break;
2858 		default:
2859 			/* Look ma, no brain */
2860 			BUG();
2861 		}
2862 
2863 		nr[lru] = scan;
2864 	}
2865 }
2866 
2867 /*
2868  * Anonymous LRU management is a waste if there is
2869  * ultimately no way to reclaim the memory.
2870  */
2871 static bool can_age_anon_pages(struct pglist_data *pgdat,
2872 			       struct scan_control *sc)
2873 {
2874 	/* Aging the anon LRU is valuable if swap is present: */
2875 	if (total_swap_pages > 0)
2876 		return true;
2877 
2878 	/* Also valuable if anon pages can be demoted: */
2879 	return can_demote(pgdat->node_id, sc);
2880 }
2881 
2882 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2883 {
2884 	unsigned long nr[NR_LRU_LISTS];
2885 	unsigned long targets[NR_LRU_LISTS];
2886 	unsigned long nr_to_scan;
2887 	enum lru_list lru;
2888 	unsigned long nr_reclaimed = 0;
2889 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2890 	struct blk_plug plug;
2891 	bool scan_adjusted;
2892 
2893 	get_scan_count(lruvec, sc, nr);
2894 
2895 	/* Record the original scan target for proportional adjustments later */
2896 	memcpy(targets, nr, sizeof(nr));
2897 
2898 	/*
2899 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2900 	 * event that can occur when there is little memory pressure e.g.
2901 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2902 	 * when the requested number of pages are reclaimed when scanning at
2903 	 * DEF_PRIORITY on the assumption that the fact we are direct
2904 	 * reclaiming implies that kswapd is not keeping up and it is best to
2905 	 * do a batch of work at once. For memcg reclaim one check is made to
2906 	 * abort proportional reclaim if either the file or anon lru has already
2907 	 * dropped to zero at the first pass.
2908 	 */
2909 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2910 			 sc->priority == DEF_PRIORITY);
2911 
2912 	blk_start_plug(&plug);
2913 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2914 					nr[LRU_INACTIVE_FILE]) {
2915 		unsigned long nr_anon, nr_file, percentage;
2916 		unsigned long nr_scanned;
2917 
2918 		for_each_evictable_lru(lru) {
2919 			if (nr[lru]) {
2920 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2921 				nr[lru] -= nr_to_scan;
2922 
2923 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2924 							    lruvec, sc);
2925 			}
2926 		}
2927 
2928 		cond_resched();
2929 
2930 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2931 			continue;
2932 
2933 		/*
2934 		 * For kswapd and memcg, reclaim at least the number of pages
2935 		 * requested. Ensure that the anon and file LRUs are scanned
2936 		 * proportionally what was requested by get_scan_count(). We
2937 		 * stop reclaiming one LRU and reduce the amount scanning
2938 		 * proportional to the original scan target.
2939 		 */
2940 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2941 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2942 
2943 		/*
2944 		 * It's just vindictive to attack the larger once the smaller
2945 		 * has gone to zero.  And given the way we stop scanning the
2946 		 * smaller below, this makes sure that we only make one nudge
2947 		 * towards proportionality once we've got nr_to_reclaim.
2948 		 */
2949 		if (!nr_file || !nr_anon)
2950 			break;
2951 
2952 		if (nr_file > nr_anon) {
2953 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2954 						targets[LRU_ACTIVE_ANON] + 1;
2955 			lru = LRU_BASE;
2956 			percentage = nr_anon * 100 / scan_target;
2957 		} else {
2958 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2959 						targets[LRU_ACTIVE_FILE] + 1;
2960 			lru = LRU_FILE;
2961 			percentage = nr_file * 100 / scan_target;
2962 		}
2963 
2964 		/* Stop scanning the smaller of the LRU */
2965 		nr[lru] = 0;
2966 		nr[lru + LRU_ACTIVE] = 0;
2967 
2968 		/*
2969 		 * Recalculate the other LRU scan count based on its original
2970 		 * scan target and the percentage scanning already complete
2971 		 */
2972 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2973 		nr_scanned = targets[lru] - nr[lru];
2974 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2975 		nr[lru] -= min(nr[lru], nr_scanned);
2976 
2977 		lru += LRU_ACTIVE;
2978 		nr_scanned = targets[lru] - nr[lru];
2979 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2980 		nr[lru] -= min(nr[lru], nr_scanned);
2981 
2982 		scan_adjusted = true;
2983 	}
2984 	blk_finish_plug(&plug);
2985 	sc->nr_reclaimed += nr_reclaimed;
2986 
2987 	/*
2988 	 * Even if we did not try to evict anon pages at all, we want to
2989 	 * rebalance the anon lru active/inactive ratio.
2990 	 */
2991 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2992 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2993 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2994 				   sc, LRU_ACTIVE_ANON);
2995 }
2996 
2997 /* Use reclaim/compaction for costly allocs or under memory pressure */
2998 static bool in_reclaim_compaction(struct scan_control *sc)
2999 {
3000 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3001 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3002 			 sc->priority < DEF_PRIORITY - 2))
3003 		return true;
3004 
3005 	return false;
3006 }
3007 
3008 /*
3009  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3010  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3011  * true if more pages should be reclaimed such that when the page allocator
3012  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3013  * It will give up earlier than that if there is difficulty reclaiming pages.
3014  */
3015 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3016 					unsigned long nr_reclaimed,
3017 					struct scan_control *sc)
3018 {
3019 	unsigned long pages_for_compaction;
3020 	unsigned long inactive_lru_pages;
3021 	int z;
3022 
3023 	/* If not in reclaim/compaction mode, stop */
3024 	if (!in_reclaim_compaction(sc))
3025 		return false;
3026 
3027 	/*
3028 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3029 	 * number of pages that were scanned. This will return to the caller
3030 	 * with the risk reclaim/compaction and the resulting allocation attempt
3031 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3032 	 * allocations through requiring that the full LRU list has been scanned
3033 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3034 	 * scan, but that approximation was wrong, and there were corner cases
3035 	 * where always a non-zero amount of pages were scanned.
3036 	 */
3037 	if (!nr_reclaimed)
3038 		return false;
3039 
3040 	/* If compaction would go ahead or the allocation would succeed, stop */
3041 	for (z = 0; z <= sc->reclaim_idx; z++) {
3042 		struct zone *zone = &pgdat->node_zones[z];
3043 		if (!managed_zone(zone))
3044 			continue;
3045 
3046 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3047 		case COMPACT_SUCCESS:
3048 		case COMPACT_CONTINUE:
3049 			return false;
3050 		default:
3051 			/* check next zone */
3052 			;
3053 		}
3054 	}
3055 
3056 	/*
3057 	 * If we have not reclaimed enough pages for compaction and the
3058 	 * inactive lists are large enough, continue reclaiming
3059 	 */
3060 	pages_for_compaction = compact_gap(sc->order);
3061 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3062 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3063 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3064 
3065 	return inactive_lru_pages > pages_for_compaction;
3066 }
3067 
3068 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3069 {
3070 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3071 	struct mem_cgroup *memcg;
3072 
3073 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3074 	do {
3075 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3076 		unsigned long reclaimed;
3077 		unsigned long scanned;
3078 
3079 		/*
3080 		 * This loop can become CPU-bound when target memcgs
3081 		 * aren't eligible for reclaim - either because they
3082 		 * don't have any reclaimable pages, or because their
3083 		 * memory is explicitly protected. Avoid soft lockups.
3084 		 */
3085 		cond_resched();
3086 
3087 		mem_cgroup_calculate_protection(target_memcg, memcg);
3088 
3089 		if (mem_cgroup_below_min(memcg)) {
3090 			/*
3091 			 * Hard protection.
3092 			 * If there is no reclaimable memory, OOM.
3093 			 */
3094 			continue;
3095 		} else if (mem_cgroup_below_low(memcg)) {
3096 			/*
3097 			 * Soft protection.
3098 			 * Respect the protection only as long as
3099 			 * there is an unprotected supply
3100 			 * of reclaimable memory from other cgroups.
3101 			 */
3102 			if (!sc->memcg_low_reclaim) {
3103 				sc->memcg_low_skipped = 1;
3104 				continue;
3105 			}
3106 			memcg_memory_event(memcg, MEMCG_LOW);
3107 		}
3108 
3109 		reclaimed = sc->nr_reclaimed;
3110 		scanned = sc->nr_scanned;
3111 
3112 		shrink_lruvec(lruvec, sc);
3113 
3114 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3115 			    sc->priority);
3116 
3117 		/* Record the group's reclaim efficiency */
3118 		vmpressure(sc->gfp_mask, memcg, false,
3119 			   sc->nr_scanned - scanned,
3120 			   sc->nr_reclaimed - reclaimed);
3121 
3122 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3123 }
3124 
3125 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3126 {
3127 	struct reclaim_state *reclaim_state = current->reclaim_state;
3128 	unsigned long nr_reclaimed, nr_scanned;
3129 	struct lruvec *target_lruvec;
3130 	bool reclaimable = false;
3131 	unsigned long file;
3132 
3133 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3134 
3135 again:
3136 	/*
3137 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3138 	 * lruvec stats for heuristics.
3139 	 */
3140 	mem_cgroup_flush_stats();
3141 
3142 	memset(&sc->nr, 0, sizeof(sc->nr));
3143 
3144 	nr_reclaimed = sc->nr_reclaimed;
3145 	nr_scanned = sc->nr_scanned;
3146 
3147 	/*
3148 	 * Determine the scan balance between anon and file LRUs.
3149 	 */
3150 	spin_lock_irq(&target_lruvec->lru_lock);
3151 	sc->anon_cost = target_lruvec->anon_cost;
3152 	sc->file_cost = target_lruvec->file_cost;
3153 	spin_unlock_irq(&target_lruvec->lru_lock);
3154 
3155 	/*
3156 	 * Target desirable inactive:active list ratios for the anon
3157 	 * and file LRU lists.
3158 	 */
3159 	if (!sc->force_deactivate) {
3160 		unsigned long refaults;
3161 
3162 		refaults = lruvec_page_state(target_lruvec,
3163 				WORKINGSET_ACTIVATE_ANON);
3164 		if (refaults != target_lruvec->refaults[0] ||
3165 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3166 			sc->may_deactivate |= DEACTIVATE_ANON;
3167 		else
3168 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3169 
3170 		/*
3171 		 * When refaults are being observed, it means a new
3172 		 * workingset is being established. Deactivate to get
3173 		 * rid of any stale active pages quickly.
3174 		 */
3175 		refaults = lruvec_page_state(target_lruvec,
3176 				WORKINGSET_ACTIVATE_FILE);
3177 		if (refaults != target_lruvec->refaults[1] ||
3178 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3179 			sc->may_deactivate |= DEACTIVATE_FILE;
3180 		else
3181 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3182 	} else
3183 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3184 
3185 	/*
3186 	 * If we have plenty of inactive file pages that aren't
3187 	 * thrashing, try to reclaim those first before touching
3188 	 * anonymous pages.
3189 	 */
3190 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3191 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3192 		sc->cache_trim_mode = 1;
3193 	else
3194 		sc->cache_trim_mode = 0;
3195 
3196 	/*
3197 	 * Prevent the reclaimer from falling into the cache trap: as
3198 	 * cache pages start out inactive, every cache fault will tip
3199 	 * the scan balance towards the file LRU.  And as the file LRU
3200 	 * shrinks, so does the window for rotation from references.
3201 	 * This means we have a runaway feedback loop where a tiny
3202 	 * thrashing file LRU becomes infinitely more attractive than
3203 	 * anon pages.  Try to detect this based on file LRU size.
3204 	 */
3205 	if (!cgroup_reclaim(sc)) {
3206 		unsigned long total_high_wmark = 0;
3207 		unsigned long free, anon;
3208 		int z;
3209 
3210 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3211 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3212 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3213 
3214 		for (z = 0; z < MAX_NR_ZONES; z++) {
3215 			struct zone *zone = &pgdat->node_zones[z];
3216 			if (!managed_zone(zone))
3217 				continue;
3218 
3219 			total_high_wmark += high_wmark_pages(zone);
3220 		}
3221 
3222 		/*
3223 		 * Consider anon: if that's low too, this isn't a
3224 		 * runaway file reclaim problem, but rather just
3225 		 * extreme pressure. Reclaim as per usual then.
3226 		 */
3227 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3228 
3229 		sc->file_is_tiny =
3230 			file + free <= total_high_wmark &&
3231 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3232 			anon >> sc->priority;
3233 	}
3234 
3235 	shrink_node_memcgs(pgdat, sc);
3236 
3237 	if (reclaim_state) {
3238 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3239 		reclaim_state->reclaimed_slab = 0;
3240 	}
3241 
3242 	/* Record the subtree's reclaim efficiency */
3243 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3244 		   sc->nr_scanned - nr_scanned,
3245 		   sc->nr_reclaimed - nr_reclaimed);
3246 
3247 	if (sc->nr_reclaimed - nr_reclaimed)
3248 		reclaimable = true;
3249 
3250 	if (current_is_kswapd()) {
3251 		/*
3252 		 * If reclaim is isolating dirty pages under writeback,
3253 		 * it implies that the long-lived page allocation rate
3254 		 * is exceeding the page laundering rate. Either the
3255 		 * global limits are not being effective at throttling
3256 		 * processes due to the page distribution throughout
3257 		 * zones or there is heavy usage of a slow backing
3258 		 * device. The only option is to throttle from reclaim
3259 		 * context which is not ideal as there is no guarantee
3260 		 * the dirtying process is throttled in the same way
3261 		 * balance_dirty_pages() manages.
3262 		 *
3263 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3264 		 * count the number of pages under pages flagged for
3265 		 * immediate reclaim and stall if any are encountered
3266 		 * in the nr_immediate check below.
3267 		 */
3268 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3269 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3270 
3271 		/* Allow kswapd to start writing pages during reclaim.*/
3272 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3273 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3274 
3275 		/*
3276 		 * If kswapd scans pages marked for immediate
3277 		 * reclaim and under writeback (nr_immediate), it
3278 		 * implies that pages are cycling through the LRU
3279 		 * faster than they are written so forcibly stall
3280 		 * until some pages complete writeback.
3281 		 */
3282 		if (sc->nr.immediate)
3283 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3284 	}
3285 
3286 	/*
3287 	 * Tag a node/memcg as congested if all the dirty pages were marked
3288 	 * for writeback and immediate reclaim (counted in nr.congested).
3289 	 *
3290 	 * Legacy memcg will stall in page writeback so avoid forcibly
3291 	 * stalling in reclaim_throttle().
3292 	 */
3293 	if ((current_is_kswapd() ||
3294 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3295 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3296 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3297 
3298 	/*
3299 	 * Stall direct reclaim for IO completions if the lruvec is
3300 	 * node is congested. Allow kswapd to continue until it
3301 	 * starts encountering unqueued dirty pages or cycling through
3302 	 * the LRU too quickly.
3303 	 */
3304 	if (!current_is_kswapd() && current_may_throttle() &&
3305 	    !sc->hibernation_mode &&
3306 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3307 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3308 
3309 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3310 				    sc))
3311 		goto again;
3312 
3313 	/*
3314 	 * Kswapd gives up on balancing particular nodes after too
3315 	 * many failures to reclaim anything from them and goes to
3316 	 * sleep. On reclaim progress, reset the failure counter. A
3317 	 * successful direct reclaim run will revive a dormant kswapd.
3318 	 */
3319 	if (reclaimable)
3320 		pgdat->kswapd_failures = 0;
3321 }
3322 
3323 /*
3324  * Returns true if compaction should go ahead for a costly-order request, or
3325  * the allocation would already succeed without compaction. Return false if we
3326  * should reclaim first.
3327  */
3328 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3329 {
3330 	unsigned long watermark;
3331 	enum compact_result suitable;
3332 
3333 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3334 	if (suitable == COMPACT_SUCCESS)
3335 		/* Allocation should succeed already. Don't reclaim. */
3336 		return true;
3337 	if (suitable == COMPACT_SKIPPED)
3338 		/* Compaction cannot yet proceed. Do reclaim. */
3339 		return false;
3340 
3341 	/*
3342 	 * Compaction is already possible, but it takes time to run and there
3343 	 * are potentially other callers using the pages just freed. So proceed
3344 	 * with reclaim to make a buffer of free pages available to give
3345 	 * compaction a reasonable chance of completing and allocating the page.
3346 	 * Note that we won't actually reclaim the whole buffer in one attempt
3347 	 * as the target watermark in should_continue_reclaim() is lower. But if
3348 	 * we are already above the high+gap watermark, don't reclaim at all.
3349 	 */
3350 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3351 
3352 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3353 }
3354 
3355 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3356 {
3357 	/*
3358 	 * If reclaim is making progress greater than 12% efficiency then
3359 	 * wake all the NOPROGRESS throttled tasks.
3360 	 */
3361 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3362 		wait_queue_head_t *wqh;
3363 
3364 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3365 		if (waitqueue_active(wqh))
3366 			wake_up(wqh);
3367 
3368 		return;
3369 	}
3370 
3371 	/*
3372 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3373 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3374 	 * under writeback and marked for immediate reclaim at the tail of the
3375 	 * LRU.
3376 	 */
3377 	if (current_is_kswapd() || cgroup_reclaim(sc))
3378 		return;
3379 
3380 	/* Throttle if making no progress at high prioities. */
3381 	if (sc->priority == 1 && !sc->nr_reclaimed)
3382 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3383 }
3384 
3385 /*
3386  * This is the direct reclaim path, for page-allocating processes.  We only
3387  * try to reclaim pages from zones which will satisfy the caller's allocation
3388  * request.
3389  *
3390  * If a zone is deemed to be full of pinned pages then just give it a light
3391  * scan then give up on it.
3392  */
3393 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3394 {
3395 	struct zoneref *z;
3396 	struct zone *zone;
3397 	unsigned long nr_soft_reclaimed;
3398 	unsigned long nr_soft_scanned;
3399 	gfp_t orig_mask;
3400 	pg_data_t *last_pgdat = NULL;
3401 	pg_data_t *first_pgdat = NULL;
3402 
3403 	/*
3404 	 * If the number of buffer_heads in the machine exceeds the maximum
3405 	 * allowed level, force direct reclaim to scan the highmem zone as
3406 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3407 	 */
3408 	orig_mask = sc->gfp_mask;
3409 	if (buffer_heads_over_limit) {
3410 		sc->gfp_mask |= __GFP_HIGHMEM;
3411 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3412 	}
3413 
3414 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3415 					sc->reclaim_idx, sc->nodemask) {
3416 		/*
3417 		 * Take care memory controller reclaiming has small influence
3418 		 * to global LRU.
3419 		 */
3420 		if (!cgroup_reclaim(sc)) {
3421 			if (!cpuset_zone_allowed(zone,
3422 						 GFP_KERNEL | __GFP_HARDWALL))
3423 				continue;
3424 
3425 			/*
3426 			 * If we already have plenty of memory free for
3427 			 * compaction in this zone, don't free any more.
3428 			 * Even though compaction is invoked for any
3429 			 * non-zero order, only frequent costly order
3430 			 * reclamation is disruptive enough to become a
3431 			 * noticeable problem, like transparent huge
3432 			 * page allocations.
3433 			 */
3434 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3435 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3436 			    compaction_ready(zone, sc)) {
3437 				sc->compaction_ready = true;
3438 				continue;
3439 			}
3440 
3441 			/*
3442 			 * Shrink each node in the zonelist once. If the
3443 			 * zonelist is ordered by zone (not the default) then a
3444 			 * node may be shrunk multiple times but in that case
3445 			 * the user prefers lower zones being preserved.
3446 			 */
3447 			if (zone->zone_pgdat == last_pgdat)
3448 				continue;
3449 
3450 			/*
3451 			 * This steals pages from memory cgroups over softlimit
3452 			 * and returns the number of reclaimed pages and
3453 			 * scanned pages. This works for global memory pressure
3454 			 * and balancing, not for a memcg's limit.
3455 			 */
3456 			nr_soft_scanned = 0;
3457 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3458 						sc->order, sc->gfp_mask,
3459 						&nr_soft_scanned);
3460 			sc->nr_reclaimed += nr_soft_reclaimed;
3461 			sc->nr_scanned += nr_soft_scanned;
3462 			/* need some check for avoid more shrink_zone() */
3463 		}
3464 
3465 		if (!first_pgdat)
3466 			first_pgdat = zone->zone_pgdat;
3467 
3468 		/* See comment about same check for global reclaim above */
3469 		if (zone->zone_pgdat == last_pgdat)
3470 			continue;
3471 		last_pgdat = zone->zone_pgdat;
3472 		shrink_node(zone->zone_pgdat, sc);
3473 	}
3474 
3475 	if (first_pgdat)
3476 		consider_reclaim_throttle(first_pgdat, sc);
3477 
3478 	/*
3479 	 * Restore to original mask to avoid the impact on the caller if we
3480 	 * promoted it to __GFP_HIGHMEM.
3481 	 */
3482 	sc->gfp_mask = orig_mask;
3483 }
3484 
3485 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3486 {
3487 	struct lruvec *target_lruvec;
3488 	unsigned long refaults;
3489 
3490 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3491 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3492 	target_lruvec->refaults[0] = refaults;
3493 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3494 	target_lruvec->refaults[1] = refaults;
3495 }
3496 
3497 /*
3498  * This is the main entry point to direct page reclaim.
3499  *
3500  * If a full scan of the inactive list fails to free enough memory then we
3501  * are "out of memory" and something needs to be killed.
3502  *
3503  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3504  * high - the zone may be full of dirty or under-writeback pages, which this
3505  * caller can't do much about.  We kick the writeback threads and take explicit
3506  * naps in the hope that some of these pages can be written.  But if the
3507  * allocating task holds filesystem locks which prevent writeout this might not
3508  * work, and the allocation attempt will fail.
3509  *
3510  * returns:	0, if no pages reclaimed
3511  * 		else, the number of pages reclaimed
3512  */
3513 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3514 					  struct scan_control *sc)
3515 {
3516 	int initial_priority = sc->priority;
3517 	pg_data_t *last_pgdat;
3518 	struct zoneref *z;
3519 	struct zone *zone;
3520 retry:
3521 	delayacct_freepages_start();
3522 
3523 	if (!cgroup_reclaim(sc))
3524 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3525 
3526 	do {
3527 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3528 				sc->priority);
3529 		sc->nr_scanned = 0;
3530 		shrink_zones(zonelist, sc);
3531 
3532 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3533 			break;
3534 
3535 		if (sc->compaction_ready)
3536 			break;
3537 
3538 		/*
3539 		 * If we're getting trouble reclaiming, start doing
3540 		 * writepage even in laptop mode.
3541 		 */
3542 		if (sc->priority < DEF_PRIORITY - 2)
3543 			sc->may_writepage = 1;
3544 	} while (--sc->priority >= 0);
3545 
3546 	last_pgdat = NULL;
3547 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3548 					sc->nodemask) {
3549 		if (zone->zone_pgdat == last_pgdat)
3550 			continue;
3551 		last_pgdat = zone->zone_pgdat;
3552 
3553 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3554 
3555 		if (cgroup_reclaim(sc)) {
3556 			struct lruvec *lruvec;
3557 
3558 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3559 						   zone->zone_pgdat);
3560 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3561 		}
3562 	}
3563 
3564 	delayacct_freepages_end();
3565 
3566 	if (sc->nr_reclaimed)
3567 		return sc->nr_reclaimed;
3568 
3569 	/* Aborted reclaim to try compaction? don't OOM, then */
3570 	if (sc->compaction_ready)
3571 		return 1;
3572 
3573 	/*
3574 	 * We make inactive:active ratio decisions based on the node's
3575 	 * composition of memory, but a restrictive reclaim_idx or a
3576 	 * memory.low cgroup setting can exempt large amounts of
3577 	 * memory from reclaim. Neither of which are very common, so
3578 	 * instead of doing costly eligibility calculations of the
3579 	 * entire cgroup subtree up front, we assume the estimates are
3580 	 * good, and retry with forcible deactivation if that fails.
3581 	 */
3582 	if (sc->skipped_deactivate) {
3583 		sc->priority = initial_priority;
3584 		sc->force_deactivate = 1;
3585 		sc->skipped_deactivate = 0;
3586 		goto retry;
3587 	}
3588 
3589 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3590 	if (sc->memcg_low_skipped) {
3591 		sc->priority = initial_priority;
3592 		sc->force_deactivate = 0;
3593 		sc->memcg_low_reclaim = 1;
3594 		sc->memcg_low_skipped = 0;
3595 		goto retry;
3596 	}
3597 
3598 	return 0;
3599 }
3600 
3601 static bool allow_direct_reclaim(pg_data_t *pgdat)
3602 {
3603 	struct zone *zone;
3604 	unsigned long pfmemalloc_reserve = 0;
3605 	unsigned long free_pages = 0;
3606 	int i;
3607 	bool wmark_ok;
3608 
3609 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3610 		return true;
3611 
3612 	for (i = 0; i <= ZONE_NORMAL; i++) {
3613 		zone = &pgdat->node_zones[i];
3614 		if (!managed_zone(zone))
3615 			continue;
3616 
3617 		if (!zone_reclaimable_pages(zone))
3618 			continue;
3619 
3620 		pfmemalloc_reserve += min_wmark_pages(zone);
3621 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3622 	}
3623 
3624 	/* If there are no reserves (unexpected config) then do not throttle */
3625 	if (!pfmemalloc_reserve)
3626 		return true;
3627 
3628 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3629 
3630 	/* kswapd must be awake if processes are being throttled */
3631 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3632 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3633 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3634 
3635 		wake_up_interruptible(&pgdat->kswapd_wait);
3636 	}
3637 
3638 	return wmark_ok;
3639 }
3640 
3641 /*
3642  * Throttle direct reclaimers if backing storage is backed by the network
3643  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3644  * depleted. kswapd will continue to make progress and wake the processes
3645  * when the low watermark is reached.
3646  *
3647  * Returns true if a fatal signal was delivered during throttling. If this
3648  * happens, the page allocator should not consider triggering the OOM killer.
3649  */
3650 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3651 					nodemask_t *nodemask)
3652 {
3653 	struct zoneref *z;
3654 	struct zone *zone;
3655 	pg_data_t *pgdat = NULL;
3656 
3657 	/*
3658 	 * Kernel threads should not be throttled as they may be indirectly
3659 	 * responsible for cleaning pages necessary for reclaim to make forward
3660 	 * progress. kjournald for example may enter direct reclaim while
3661 	 * committing a transaction where throttling it could forcing other
3662 	 * processes to block on log_wait_commit().
3663 	 */
3664 	if (current->flags & PF_KTHREAD)
3665 		goto out;
3666 
3667 	/*
3668 	 * If a fatal signal is pending, this process should not throttle.
3669 	 * It should return quickly so it can exit and free its memory
3670 	 */
3671 	if (fatal_signal_pending(current))
3672 		goto out;
3673 
3674 	/*
3675 	 * Check if the pfmemalloc reserves are ok by finding the first node
3676 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3677 	 * GFP_KERNEL will be required for allocating network buffers when
3678 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3679 	 *
3680 	 * Throttling is based on the first usable node and throttled processes
3681 	 * wait on a queue until kswapd makes progress and wakes them. There
3682 	 * is an affinity then between processes waking up and where reclaim
3683 	 * progress has been made assuming the process wakes on the same node.
3684 	 * More importantly, processes running on remote nodes will not compete
3685 	 * for remote pfmemalloc reserves and processes on different nodes
3686 	 * should make reasonable progress.
3687 	 */
3688 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3689 					gfp_zone(gfp_mask), nodemask) {
3690 		if (zone_idx(zone) > ZONE_NORMAL)
3691 			continue;
3692 
3693 		/* Throttle based on the first usable node */
3694 		pgdat = zone->zone_pgdat;
3695 		if (allow_direct_reclaim(pgdat))
3696 			goto out;
3697 		break;
3698 	}
3699 
3700 	/* If no zone was usable by the allocation flags then do not throttle */
3701 	if (!pgdat)
3702 		goto out;
3703 
3704 	/* Account for the throttling */
3705 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3706 
3707 	/*
3708 	 * If the caller cannot enter the filesystem, it's possible that it
3709 	 * is due to the caller holding an FS lock or performing a journal
3710 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3711 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3712 	 * blocked waiting on the same lock. Instead, throttle for up to a
3713 	 * second before continuing.
3714 	 */
3715 	if (!(gfp_mask & __GFP_FS))
3716 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3717 			allow_direct_reclaim(pgdat), HZ);
3718 	else
3719 		/* Throttle until kswapd wakes the process */
3720 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3721 			allow_direct_reclaim(pgdat));
3722 
3723 	if (fatal_signal_pending(current))
3724 		return true;
3725 
3726 out:
3727 	return false;
3728 }
3729 
3730 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3731 				gfp_t gfp_mask, nodemask_t *nodemask)
3732 {
3733 	unsigned long nr_reclaimed;
3734 	struct scan_control sc = {
3735 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3736 		.gfp_mask = current_gfp_context(gfp_mask),
3737 		.reclaim_idx = gfp_zone(gfp_mask),
3738 		.order = order,
3739 		.nodemask = nodemask,
3740 		.priority = DEF_PRIORITY,
3741 		.may_writepage = !laptop_mode,
3742 		.may_unmap = 1,
3743 		.may_swap = 1,
3744 	};
3745 
3746 	/*
3747 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3748 	 * Confirm they are large enough for max values.
3749 	 */
3750 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3751 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3752 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3753 
3754 	/*
3755 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3756 	 * 1 is returned so that the page allocator does not OOM kill at this
3757 	 * point.
3758 	 */
3759 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3760 		return 1;
3761 
3762 	set_task_reclaim_state(current, &sc.reclaim_state);
3763 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3764 
3765 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3766 
3767 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3768 	set_task_reclaim_state(current, NULL);
3769 
3770 	return nr_reclaimed;
3771 }
3772 
3773 #ifdef CONFIG_MEMCG
3774 
3775 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3776 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3777 						gfp_t gfp_mask, bool noswap,
3778 						pg_data_t *pgdat,
3779 						unsigned long *nr_scanned)
3780 {
3781 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3782 	struct scan_control sc = {
3783 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3784 		.target_mem_cgroup = memcg,
3785 		.may_writepage = !laptop_mode,
3786 		.may_unmap = 1,
3787 		.reclaim_idx = MAX_NR_ZONES - 1,
3788 		.may_swap = !noswap,
3789 	};
3790 
3791 	WARN_ON_ONCE(!current->reclaim_state);
3792 
3793 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3794 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3795 
3796 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3797 						      sc.gfp_mask);
3798 
3799 	/*
3800 	 * NOTE: Although we can get the priority field, using it
3801 	 * here is not a good idea, since it limits the pages we can scan.
3802 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3803 	 * will pick up pages from other mem cgroup's as well. We hack
3804 	 * the priority and make it zero.
3805 	 */
3806 	shrink_lruvec(lruvec, &sc);
3807 
3808 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3809 
3810 	*nr_scanned = sc.nr_scanned;
3811 
3812 	return sc.nr_reclaimed;
3813 }
3814 
3815 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3816 					   unsigned long nr_pages,
3817 					   gfp_t gfp_mask,
3818 					   bool may_swap)
3819 {
3820 	unsigned long nr_reclaimed;
3821 	unsigned int noreclaim_flag;
3822 	struct scan_control sc = {
3823 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3824 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3825 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3826 		.reclaim_idx = MAX_NR_ZONES - 1,
3827 		.target_mem_cgroup = memcg,
3828 		.priority = DEF_PRIORITY,
3829 		.may_writepage = !laptop_mode,
3830 		.may_unmap = 1,
3831 		.may_swap = may_swap,
3832 	};
3833 	/*
3834 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3835 	 * equal pressure on all the nodes. This is based on the assumption that
3836 	 * the reclaim does not bail out early.
3837 	 */
3838 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3839 
3840 	set_task_reclaim_state(current, &sc.reclaim_state);
3841 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3842 	noreclaim_flag = memalloc_noreclaim_save();
3843 
3844 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3845 
3846 	memalloc_noreclaim_restore(noreclaim_flag);
3847 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3848 	set_task_reclaim_state(current, NULL);
3849 
3850 	return nr_reclaimed;
3851 }
3852 #endif
3853 
3854 static void age_active_anon(struct pglist_data *pgdat,
3855 				struct scan_control *sc)
3856 {
3857 	struct mem_cgroup *memcg;
3858 	struct lruvec *lruvec;
3859 
3860 	if (!can_age_anon_pages(pgdat, sc))
3861 		return;
3862 
3863 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3864 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3865 		return;
3866 
3867 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3868 	do {
3869 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3870 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3871 				   sc, LRU_ACTIVE_ANON);
3872 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3873 	} while (memcg);
3874 }
3875 
3876 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3877 {
3878 	int i;
3879 	struct zone *zone;
3880 
3881 	/*
3882 	 * Check for watermark boosts top-down as the higher zones
3883 	 * are more likely to be boosted. Both watermarks and boosts
3884 	 * should not be checked at the same time as reclaim would
3885 	 * start prematurely when there is no boosting and a lower
3886 	 * zone is balanced.
3887 	 */
3888 	for (i = highest_zoneidx; i >= 0; i--) {
3889 		zone = pgdat->node_zones + i;
3890 		if (!managed_zone(zone))
3891 			continue;
3892 
3893 		if (zone->watermark_boost)
3894 			return true;
3895 	}
3896 
3897 	return false;
3898 }
3899 
3900 /*
3901  * Returns true if there is an eligible zone balanced for the request order
3902  * and highest_zoneidx
3903  */
3904 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3905 {
3906 	int i;
3907 	unsigned long mark = -1;
3908 	struct zone *zone;
3909 
3910 	/*
3911 	 * Check watermarks bottom-up as lower zones are more likely to
3912 	 * meet watermarks.
3913 	 */
3914 	for (i = 0; i <= highest_zoneidx; i++) {
3915 		zone = pgdat->node_zones + i;
3916 
3917 		if (!managed_zone(zone))
3918 			continue;
3919 
3920 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3921 			mark = wmark_pages(zone, WMARK_PROMO);
3922 		else
3923 			mark = high_wmark_pages(zone);
3924 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3925 			return true;
3926 	}
3927 
3928 	/*
3929 	 * If a node has no managed zone within highest_zoneidx, it does not
3930 	 * need balancing by definition. This can happen if a zone-restricted
3931 	 * allocation tries to wake a remote kswapd.
3932 	 */
3933 	if (mark == -1)
3934 		return true;
3935 
3936 	return false;
3937 }
3938 
3939 /* Clear pgdat state for congested, dirty or under writeback. */
3940 static void clear_pgdat_congested(pg_data_t *pgdat)
3941 {
3942 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3943 
3944 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3945 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3946 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3947 }
3948 
3949 /*
3950  * Prepare kswapd for sleeping. This verifies that there are no processes
3951  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3952  *
3953  * Returns true if kswapd is ready to sleep
3954  */
3955 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3956 				int highest_zoneidx)
3957 {
3958 	/*
3959 	 * The throttled processes are normally woken up in balance_pgdat() as
3960 	 * soon as allow_direct_reclaim() is true. But there is a potential
3961 	 * race between when kswapd checks the watermarks and a process gets
3962 	 * throttled. There is also a potential race if processes get
3963 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3964 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3965 	 * the wake up checks. If kswapd is going to sleep, no process should
3966 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3967 	 * the wake up is premature, processes will wake kswapd and get
3968 	 * throttled again. The difference from wake ups in balance_pgdat() is
3969 	 * that here we are under prepare_to_wait().
3970 	 */
3971 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3972 		wake_up_all(&pgdat->pfmemalloc_wait);
3973 
3974 	/* Hopeless node, leave it to direct reclaim */
3975 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3976 		return true;
3977 
3978 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3979 		clear_pgdat_congested(pgdat);
3980 		return true;
3981 	}
3982 
3983 	return false;
3984 }
3985 
3986 /*
3987  * kswapd shrinks a node of pages that are at or below the highest usable
3988  * zone that is currently unbalanced.
3989  *
3990  * Returns true if kswapd scanned at least the requested number of pages to
3991  * reclaim or if the lack of progress was due to pages under writeback.
3992  * This is used to determine if the scanning priority needs to be raised.
3993  */
3994 static bool kswapd_shrink_node(pg_data_t *pgdat,
3995 			       struct scan_control *sc)
3996 {
3997 	struct zone *zone;
3998 	int z;
3999 
4000 	/* Reclaim a number of pages proportional to the number of zones */
4001 	sc->nr_to_reclaim = 0;
4002 	for (z = 0; z <= sc->reclaim_idx; z++) {
4003 		zone = pgdat->node_zones + z;
4004 		if (!managed_zone(zone))
4005 			continue;
4006 
4007 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4008 	}
4009 
4010 	/*
4011 	 * Historically care was taken to put equal pressure on all zones but
4012 	 * now pressure is applied based on node LRU order.
4013 	 */
4014 	shrink_node(pgdat, sc);
4015 
4016 	/*
4017 	 * Fragmentation may mean that the system cannot be rebalanced for
4018 	 * high-order allocations. If twice the allocation size has been
4019 	 * reclaimed then recheck watermarks only at order-0 to prevent
4020 	 * excessive reclaim. Assume that a process requested a high-order
4021 	 * can direct reclaim/compact.
4022 	 */
4023 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4024 		sc->order = 0;
4025 
4026 	return sc->nr_scanned >= sc->nr_to_reclaim;
4027 }
4028 
4029 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4030 static inline void
4031 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4032 {
4033 	int i;
4034 	struct zone *zone;
4035 
4036 	for (i = 0; i <= highest_zoneidx; i++) {
4037 		zone = pgdat->node_zones + i;
4038 
4039 		if (!managed_zone(zone))
4040 			continue;
4041 
4042 		if (active)
4043 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4044 		else
4045 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4046 	}
4047 }
4048 
4049 static inline void
4050 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4051 {
4052 	update_reclaim_active(pgdat, highest_zoneidx, true);
4053 }
4054 
4055 static inline void
4056 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4057 {
4058 	update_reclaim_active(pgdat, highest_zoneidx, false);
4059 }
4060 
4061 /*
4062  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4063  * that are eligible for use by the caller until at least one zone is
4064  * balanced.
4065  *
4066  * Returns the order kswapd finished reclaiming at.
4067  *
4068  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4069  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4070  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4071  * or lower is eligible for reclaim until at least one usable zone is
4072  * balanced.
4073  */
4074 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4075 {
4076 	int i;
4077 	unsigned long nr_soft_reclaimed;
4078 	unsigned long nr_soft_scanned;
4079 	unsigned long pflags;
4080 	unsigned long nr_boost_reclaim;
4081 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4082 	bool boosted;
4083 	struct zone *zone;
4084 	struct scan_control sc = {
4085 		.gfp_mask = GFP_KERNEL,
4086 		.order = order,
4087 		.may_unmap = 1,
4088 	};
4089 
4090 	set_task_reclaim_state(current, &sc.reclaim_state);
4091 	psi_memstall_enter(&pflags);
4092 	__fs_reclaim_acquire(_THIS_IP_);
4093 
4094 	count_vm_event(PAGEOUTRUN);
4095 
4096 	/*
4097 	 * Account for the reclaim boost. Note that the zone boost is left in
4098 	 * place so that parallel allocations that are near the watermark will
4099 	 * stall or direct reclaim until kswapd is finished.
4100 	 */
4101 	nr_boost_reclaim = 0;
4102 	for (i = 0; i <= highest_zoneidx; i++) {
4103 		zone = pgdat->node_zones + i;
4104 		if (!managed_zone(zone))
4105 			continue;
4106 
4107 		nr_boost_reclaim += zone->watermark_boost;
4108 		zone_boosts[i] = zone->watermark_boost;
4109 	}
4110 	boosted = nr_boost_reclaim;
4111 
4112 restart:
4113 	set_reclaim_active(pgdat, highest_zoneidx);
4114 	sc.priority = DEF_PRIORITY;
4115 	do {
4116 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4117 		bool raise_priority = true;
4118 		bool balanced;
4119 		bool ret;
4120 
4121 		sc.reclaim_idx = highest_zoneidx;
4122 
4123 		/*
4124 		 * If the number of buffer_heads exceeds the maximum allowed
4125 		 * then consider reclaiming from all zones. This has a dual
4126 		 * purpose -- on 64-bit systems it is expected that
4127 		 * buffer_heads are stripped during active rotation. On 32-bit
4128 		 * systems, highmem pages can pin lowmem memory and shrinking
4129 		 * buffers can relieve lowmem pressure. Reclaim may still not
4130 		 * go ahead if all eligible zones for the original allocation
4131 		 * request are balanced to avoid excessive reclaim from kswapd.
4132 		 */
4133 		if (buffer_heads_over_limit) {
4134 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4135 				zone = pgdat->node_zones + i;
4136 				if (!managed_zone(zone))
4137 					continue;
4138 
4139 				sc.reclaim_idx = i;
4140 				break;
4141 			}
4142 		}
4143 
4144 		/*
4145 		 * If the pgdat is imbalanced then ignore boosting and preserve
4146 		 * the watermarks for a later time and restart. Note that the
4147 		 * zone watermarks will be still reset at the end of balancing
4148 		 * on the grounds that the normal reclaim should be enough to
4149 		 * re-evaluate if boosting is required when kswapd next wakes.
4150 		 */
4151 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4152 		if (!balanced && nr_boost_reclaim) {
4153 			nr_boost_reclaim = 0;
4154 			goto restart;
4155 		}
4156 
4157 		/*
4158 		 * If boosting is not active then only reclaim if there are no
4159 		 * eligible zones. Note that sc.reclaim_idx is not used as
4160 		 * buffer_heads_over_limit may have adjusted it.
4161 		 */
4162 		if (!nr_boost_reclaim && balanced)
4163 			goto out;
4164 
4165 		/* Limit the priority of boosting to avoid reclaim writeback */
4166 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4167 			raise_priority = false;
4168 
4169 		/*
4170 		 * Do not writeback or swap pages for boosted reclaim. The
4171 		 * intent is to relieve pressure not issue sub-optimal IO
4172 		 * from reclaim context. If no pages are reclaimed, the
4173 		 * reclaim will be aborted.
4174 		 */
4175 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4176 		sc.may_swap = !nr_boost_reclaim;
4177 
4178 		/*
4179 		 * Do some background aging of the anon list, to give
4180 		 * pages a chance to be referenced before reclaiming. All
4181 		 * pages are rotated regardless of classzone as this is
4182 		 * about consistent aging.
4183 		 */
4184 		age_active_anon(pgdat, &sc);
4185 
4186 		/*
4187 		 * If we're getting trouble reclaiming, start doing writepage
4188 		 * even in laptop mode.
4189 		 */
4190 		if (sc.priority < DEF_PRIORITY - 2)
4191 			sc.may_writepage = 1;
4192 
4193 		/* Call soft limit reclaim before calling shrink_node. */
4194 		sc.nr_scanned = 0;
4195 		nr_soft_scanned = 0;
4196 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4197 						sc.gfp_mask, &nr_soft_scanned);
4198 		sc.nr_reclaimed += nr_soft_reclaimed;
4199 
4200 		/*
4201 		 * There should be no need to raise the scanning priority if
4202 		 * enough pages are already being scanned that that high
4203 		 * watermark would be met at 100% efficiency.
4204 		 */
4205 		if (kswapd_shrink_node(pgdat, &sc))
4206 			raise_priority = false;
4207 
4208 		/*
4209 		 * If the low watermark is met there is no need for processes
4210 		 * to be throttled on pfmemalloc_wait as they should not be
4211 		 * able to safely make forward progress. Wake them
4212 		 */
4213 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4214 				allow_direct_reclaim(pgdat))
4215 			wake_up_all(&pgdat->pfmemalloc_wait);
4216 
4217 		/* Check if kswapd should be suspending */
4218 		__fs_reclaim_release(_THIS_IP_);
4219 		ret = try_to_freeze();
4220 		__fs_reclaim_acquire(_THIS_IP_);
4221 		if (ret || kthread_should_stop())
4222 			break;
4223 
4224 		/*
4225 		 * Raise priority if scanning rate is too low or there was no
4226 		 * progress in reclaiming pages
4227 		 */
4228 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4229 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4230 
4231 		/*
4232 		 * If reclaim made no progress for a boost, stop reclaim as
4233 		 * IO cannot be queued and it could be an infinite loop in
4234 		 * extreme circumstances.
4235 		 */
4236 		if (nr_boost_reclaim && !nr_reclaimed)
4237 			break;
4238 
4239 		if (raise_priority || !nr_reclaimed)
4240 			sc.priority--;
4241 	} while (sc.priority >= 1);
4242 
4243 	if (!sc.nr_reclaimed)
4244 		pgdat->kswapd_failures++;
4245 
4246 out:
4247 	clear_reclaim_active(pgdat, highest_zoneidx);
4248 
4249 	/* If reclaim was boosted, account for the reclaim done in this pass */
4250 	if (boosted) {
4251 		unsigned long flags;
4252 
4253 		for (i = 0; i <= highest_zoneidx; i++) {
4254 			if (!zone_boosts[i])
4255 				continue;
4256 
4257 			/* Increments are under the zone lock */
4258 			zone = pgdat->node_zones + i;
4259 			spin_lock_irqsave(&zone->lock, flags);
4260 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4261 			spin_unlock_irqrestore(&zone->lock, flags);
4262 		}
4263 
4264 		/*
4265 		 * As there is now likely space, wakeup kcompact to defragment
4266 		 * pageblocks.
4267 		 */
4268 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4269 	}
4270 
4271 	snapshot_refaults(NULL, pgdat);
4272 	__fs_reclaim_release(_THIS_IP_);
4273 	psi_memstall_leave(&pflags);
4274 	set_task_reclaim_state(current, NULL);
4275 
4276 	/*
4277 	 * Return the order kswapd stopped reclaiming at as
4278 	 * prepare_kswapd_sleep() takes it into account. If another caller
4279 	 * entered the allocator slow path while kswapd was awake, order will
4280 	 * remain at the higher level.
4281 	 */
4282 	return sc.order;
4283 }
4284 
4285 /*
4286  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4287  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4288  * not a valid index then either kswapd runs for first time or kswapd couldn't
4289  * sleep after previous reclaim attempt (node is still unbalanced). In that
4290  * case return the zone index of the previous kswapd reclaim cycle.
4291  */
4292 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4293 					   enum zone_type prev_highest_zoneidx)
4294 {
4295 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4296 
4297 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4298 }
4299 
4300 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4301 				unsigned int highest_zoneidx)
4302 {
4303 	long remaining = 0;
4304 	DEFINE_WAIT(wait);
4305 
4306 	if (freezing(current) || kthread_should_stop())
4307 		return;
4308 
4309 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4310 
4311 	/*
4312 	 * Try to sleep for a short interval. Note that kcompactd will only be
4313 	 * woken if it is possible to sleep for a short interval. This is
4314 	 * deliberate on the assumption that if reclaim cannot keep an
4315 	 * eligible zone balanced that it's also unlikely that compaction will
4316 	 * succeed.
4317 	 */
4318 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4319 		/*
4320 		 * Compaction records what page blocks it recently failed to
4321 		 * isolate pages from and skips them in the future scanning.
4322 		 * When kswapd is going to sleep, it is reasonable to assume
4323 		 * that pages and compaction may succeed so reset the cache.
4324 		 */
4325 		reset_isolation_suitable(pgdat);
4326 
4327 		/*
4328 		 * We have freed the memory, now we should compact it to make
4329 		 * allocation of the requested order possible.
4330 		 */
4331 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4332 
4333 		remaining = schedule_timeout(HZ/10);
4334 
4335 		/*
4336 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4337 		 * order. The values will either be from a wakeup request or
4338 		 * the previous request that slept prematurely.
4339 		 */
4340 		if (remaining) {
4341 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4342 					kswapd_highest_zoneidx(pgdat,
4343 							highest_zoneidx));
4344 
4345 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4346 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4347 		}
4348 
4349 		finish_wait(&pgdat->kswapd_wait, &wait);
4350 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4351 	}
4352 
4353 	/*
4354 	 * After a short sleep, check if it was a premature sleep. If not, then
4355 	 * go fully to sleep until explicitly woken up.
4356 	 */
4357 	if (!remaining &&
4358 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4359 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4360 
4361 		/*
4362 		 * vmstat counters are not perfectly accurate and the estimated
4363 		 * value for counters such as NR_FREE_PAGES can deviate from the
4364 		 * true value by nr_online_cpus * threshold. To avoid the zone
4365 		 * watermarks being breached while under pressure, we reduce the
4366 		 * per-cpu vmstat threshold while kswapd is awake and restore
4367 		 * them before going back to sleep.
4368 		 */
4369 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4370 
4371 		if (!kthread_should_stop())
4372 			schedule();
4373 
4374 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4375 	} else {
4376 		if (remaining)
4377 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4378 		else
4379 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4380 	}
4381 	finish_wait(&pgdat->kswapd_wait, &wait);
4382 }
4383 
4384 /*
4385  * The background pageout daemon, started as a kernel thread
4386  * from the init process.
4387  *
4388  * This basically trickles out pages so that we have _some_
4389  * free memory available even if there is no other activity
4390  * that frees anything up. This is needed for things like routing
4391  * etc, where we otherwise might have all activity going on in
4392  * asynchronous contexts that cannot page things out.
4393  *
4394  * If there are applications that are active memory-allocators
4395  * (most normal use), this basically shouldn't matter.
4396  */
4397 static int kswapd(void *p)
4398 {
4399 	unsigned int alloc_order, reclaim_order;
4400 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4401 	pg_data_t *pgdat = (pg_data_t *)p;
4402 	struct task_struct *tsk = current;
4403 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4404 
4405 	if (!cpumask_empty(cpumask))
4406 		set_cpus_allowed_ptr(tsk, cpumask);
4407 
4408 	/*
4409 	 * Tell the memory management that we're a "memory allocator",
4410 	 * and that if we need more memory we should get access to it
4411 	 * regardless (see "__alloc_pages()"). "kswapd" should
4412 	 * never get caught in the normal page freeing logic.
4413 	 *
4414 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4415 	 * you need a small amount of memory in order to be able to
4416 	 * page out something else, and this flag essentially protects
4417 	 * us from recursively trying to free more memory as we're
4418 	 * trying to free the first piece of memory in the first place).
4419 	 */
4420 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4421 	set_freezable();
4422 
4423 	WRITE_ONCE(pgdat->kswapd_order, 0);
4424 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4425 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4426 	for ( ; ; ) {
4427 		bool ret;
4428 
4429 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4430 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4431 							highest_zoneidx);
4432 
4433 kswapd_try_sleep:
4434 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4435 					highest_zoneidx);
4436 
4437 		/* Read the new order and highest_zoneidx */
4438 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4439 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4440 							highest_zoneidx);
4441 		WRITE_ONCE(pgdat->kswapd_order, 0);
4442 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4443 
4444 		ret = try_to_freeze();
4445 		if (kthread_should_stop())
4446 			break;
4447 
4448 		/*
4449 		 * We can speed up thawing tasks if we don't call balance_pgdat
4450 		 * after returning from the refrigerator
4451 		 */
4452 		if (ret)
4453 			continue;
4454 
4455 		/*
4456 		 * Reclaim begins at the requested order but if a high-order
4457 		 * reclaim fails then kswapd falls back to reclaiming for
4458 		 * order-0. If that happens, kswapd will consider sleeping
4459 		 * for the order it finished reclaiming at (reclaim_order)
4460 		 * but kcompactd is woken to compact for the original
4461 		 * request (alloc_order).
4462 		 */
4463 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4464 						alloc_order);
4465 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4466 						highest_zoneidx);
4467 		if (reclaim_order < alloc_order)
4468 			goto kswapd_try_sleep;
4469 	}
4470 
4471 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4472 
4473 	return 0;
4474 }
4475 
4476 /*
4477  * A zone is low on free memory or too fragmented for high-order memory.  If
4478  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4479  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4480  * has failed or is not needed, still wake up kcompactd if only compaction is
4481  * needed.
4482  */
4483 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4484 		   enum zone_type highest_zoneidx)
4485 {
4486 	pg_data_t *pgdat;
4487 	enum zone_type curr_idx;
4488 
4489 	if (!managed_zone(zone))
4490 		return;
4491 
4492 	if (!cpuset_zone_allowed(zone, gfp_flags))
4493 		return;
4494 
4495 	pgdat = zone->zone_pgdat;
4496 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4497 
4498 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4499 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4500 
4501 	if (READ_ONCE(pgdat->kswapd_order) < order)
4502 		WRITE_ONCE(pgdat->kswapd_order, order);
4503 
4504 	if (!waitqueue_active(&pgdat->kswapd_wait))
4505 		return;
4506 
4507 	/* Hopeless node, leave it to direct reclaim if possible */
4508 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4509 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4510 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4511 		/*
4512 		 * There may be plenty of free memory available, but it's too
4513 		 * fragmented for high-order allocations.  Wake up kcompactd
4514 		 * and rely on compaction_suitable() to determine if it's
4515 		 * needed.  If it fails, it will defer subsequent attempts to
4516 		 * ratelimit its work.
4517 		 */
4518 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4519 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4520 		return;
4521 	}
4522 
4523 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4524 				      gfp_flags);
4525 	wake_up_interruptible(&pgdat->kswapd_wait);
4526 }
4527 
4528 #ifdef CONFIG_HIBERNATION
4529 /*
4530  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4531  * freed pages.
4532  *
4533  * Rather than trying to age LRUs the aim is to preserve the overall
4534  * LRU order by reclaiming preferentially
4535  * inactive > active > active referenced > active mapped
4536  */
4537 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4538 {
4539 	struct scan_control sc = {
4540 		.nr_to_reclaim = nr_to_reclaim,
4541 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4542 		.reclaim_idx = MAX_NR_ZONES - 1,
4543 		.priority = DEF_PRIORITY,
4544 		.may_writepage = 1,
4545 		.may_unmap = 1,
4546 		.may_swap = 1,
4547 		.hibernation_mode = 1,
4548 	};
4549 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4550 	unsigned long nr_reclaimed;
4551 	unsigned int noreclaim_flag;
4552 
4553 	fs_reclaim_acquire(sc.gfp_mask);
4554 	noreclaim_flag = memalloc_noreclaim_save();
4555 	set_task_reclaim_state(current, &sc.reclaim_state);
4556 
4557 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4558 
4559 	set_task_reclaim_state(current, NULL);
4560 	memalloc_noreclaim_restore(noreclaim_flag);
4561 	fs_reclaim_release(sc.gfp_mask);
4562 
4563 	return nr_reclaimed;
4564 }
4565 #endif /* CONFIG_HIBERNATION */
4566 
4567 /*
4568  * This kswapd start function will be called by init and node-hot-add.
4569  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4570  */
4571 void kswapd_run(int nid)
4572 {
4573 	pg_data_t *pgdat = NODE_DATA(nid);
4574 
4575 	if (pgdat->kswapd)
4576 		return;
4577 
4578 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4579 	if (IS_ERR(pgdat->kswapd)) {
4580 		/* failure at boot is fatal */
4581 		BUG_ON(system_state < SYSTEM_RUNNING);
4582 		pr_err("Failed to start kswapd on node %d\n", nid);
4583 		pgdat->kswapd = NULL;
4584 	}
4585 }
4586 
4587 /*
4588  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4589  * hold mem_hotplug_begin/end().
4590  */
4591 void kswapd_stop(int nid)
4592 {
4593 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4594 
4595 	if (kswapd) {
4596 		kthread_stop(kswapd);
4597 		NODE_DATA(nid)->kswapd = NULL;
4598 	}
4599 }
4600 
4601 static int __init kswapd_init(void)
4602 {
4603 	int nid;
4604 
4605 	swap_setup();
4606 	for_each_node_state(nid, N_MEMORY)
4607  		kswapd_run(nid);
4608 	return 0;
4609 }
4610 
4611 module_init(kswapd_init)
4612 
4613 #ifdef CONFIG_NUMA
4614 /*
4615  * Node reclaim mode
4616  *
4617  * If non-zero call node_reclaim when the number of free pages falls below
4618  * the watermarks.
4619  */
4620 int node_reclaim_mode __read_mostly;
4621 
4622 /*
4623  * Priority for NODE_RECLAIM. This determines the fraction of pages
4624  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4625  * a zone.
4626  */
4627 #define NODE_RECLAIM_PRIORITY 4
4628 
4629 /*
4630  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4631  * occur.
4632  */
4633 int sysctl_min_unmapped_ratio = 1;
4634 
4635 /*
4636  * If the number of slab pages in a zone grows beyond this percentage then
4637  * slab reclaim needs to occur.
4638  */
4639 int sysctl_min_slab_ratio = 5;
4640 
4641 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4642 {
4643 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4644 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4645 		node_page_state(pgdat, NR_ACTIVE_FILE);
4646 
4647 	/*
4648 	 * It's possible for there to be more file mapped pages than
4649 	 * accounted for by the pages on the file LRU lists because
4650 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4651 	 */
4652 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4653 }
4654 
4655 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4656 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4657 {
4658 	unsigned long nr_pagecache_reclaimable;
4659 	unsigned long delta = 0;
4660 
4661 	/*
4662 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4663 	 * potentially reclaimable. Otherwise, we have to worry about
4664 	 * pages like swapcache and node_unmapped_file_pages() provides
4665 	 * a better estimate
4666 	 */
4667 	if (node_reclaim_mode & RECLAIM_UNMAP)
4668 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4669 	else
4670 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4671 
4672 	/* If we can't clean pages, remove dirty pages from consideration */
4673 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4674 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4675 
4676 	/* Watch for any possible underflows due to delta */
4677 	if (unlikely(delta > nr_pagecache_reclaimable))
4678 		delta = nr_pagecache_reclaimable;
4679 
4680 	return nr_pagecache_reclaimable - delta;
4681 }
4682 
4683 /*
4684  * Try to free up some pages from this node through reclaim.
4685  */
4686 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4687 {
4688 	/* Minimum pages needed in order to stay on node */
4689 	const unsigned long nr_pages = 1 << order;
4690 	struct task_struct *p = current;
4691 	unsigned int noreclaim_flag;
4692 	struct scan_control sc = {
4693 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4694 		.gfp_mask = current_gfp_context(gfp_mask),
4695 		.order = order,
4696 		.priority = NODE_RECLAIM_PRIORITY,
4697 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4698 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4699 		.may_swap = 1,
4700 		.reclaim_idx = gfp_zone(gfp_mask),
4701 	};
4702 	unsigned long pflags;
4703 
4704 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4705 					   sc.gfp_mask);
4706 
4707 	cond_resched();
4708 	psi_memstall_enter(&pflags);
4709 	fs_reclaim_acquire(sc.gfp_mask);
4710 	/*
4711 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4712 	 */
4713 	noreclaim_flag = memalloc_noreclaim_save();
4714 	set_task_reclaim_state(p, &sc.reclaim_state);
4715 
4716 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4717 		/*
4718 		 * Free memory by calling shrink node with increasing
4719 		 * priorities until we have enough memory freed.
4720 		 */
4721 		do {
4722 			shrink_node(pgdat, &sc);
4723 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4724 	}
4725 
4726 	set_task_reclaim_state(p, NULL);
4727 	memalloc_noreclaim_restore(noreclaim_flag);
4728 	fs_reclaim_release(sc.gfp_mask);
4729 	psi_memstall_leave(&pflags);
4730 
4731 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4732 
4733 	return sc.nr_reclaimed >= nr_pages;
4734 }
4735 
4736 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4737 {
4738 	int ret;
4739 
4740 	/*
4741 	 * Node reclaim reclaims unmapped file backed pages and
4742 	 * slab pages if we are over the defined limits.
4743 	 *
4744 	 * A small portion of unmapped file backed pages is needed for
4745 	 * file I/O otherwise pages read by file I/O will be immediately
4746 	 * thrown out if the node is overallocated. So we do not reclaim
4747 	 * if less than a specified percentage of the node is used by
4748 	 * unmapped file backed pages.
4749 	 */
4750 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4751 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4752 	    pgdat->min_slab_pages)
4753 		return NODE_RECLAIM_FULL;
4754 
4755 	/*
4756 	 * Do not scan if the allocation should not be delayed.
4757 	 */
4758 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4759 		return NODE_RECLAIM_NOSCAN;
4760 
4761 	/*
4762 	 * Only run node reclaim on the local node or on nodes that do not
4763 	 * have associated processors. This will favor the local processor
4764 	 * over remote processors and spread off node memory allocations
4765 	 * as wide as possible.
4766 	 */
4767 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4768 		return NODE_RECLAIM_NOSCAN;
4769 
4770 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4771 		return NODE_RECLAIM_NOSCAN;
4772 
4773 	ret = __node_reclaim(pgdat, gfp_mask, order);
4774 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4775 
4776 	if (!ret)
4777 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4778 
4779 	return ret;
4780 }
4781 #endif
4782 
4783 /**
4784  * check_move_unevictable_pages - check pages for evictability and move to
4785  * appropriate zone lru list
4786  * @pvec: pagevec with lru pages to check
4787  *
4788  * Checks pages for evictability, if an evictable page is in the unevictable
4789  * lru list, moves it to the appropriate evictable lru list. This function
4790  * should be only used for lru pages.
4791  */
4792 void check_move_unevictable_pages(struct pagevec *pvec)
4793 {
4794 	struct lruvec *lruvec = NULL;
4795 	int pgscanned = 0;
4796 	int pgrescued = 0;
4797 	int i;
4798 
4799 	for (i = 0; i < pvec->nr; i++) {
4800 		struct page *page = pvec->pages[i];
4801 		struct folio *folio = page_folio(page);
4802 		int nr_pages;
4803 
4804 		if (PageTransTail(page))
4805 			continue;
4806 
4807 		nr_pages = thp_nr_pages(page);
4808 		pgscanned += nr_pages;
4809 
4810 		/* block memcg migration during page moving between lru */
4811 		if (!TestClearPageLRU(page))
4812 			continue;
4813 
4814 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4815 		if (page_evictable(page) && PageUnevictable(page)) {
4816 			del_page_from_lru_list(page, lruvec);
4817 			ClearPageUnevictable(page);
4818 			add_page_to_lru_list(page, lruvec);
4819 			pgrescued += nr_pages;
4820 		}
4821 		SetPageLRU(page);
4822 	}
4823 
4824 	if (lruvec) {
4825 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4826 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4827 		unlock_page_lruvec_irq(lruvec);
4828 	} else if (pgscanned) {
4829 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4830 	}
4831 }
4832 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4833