xref: /openbmc/linux/mm/vmscan.c (revision 2d6bed9c)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 struct scan_control {
57 	/* Incremented by the number of inactive pages that were scanned */
58 	unsigned long nr_scanned;
59 
60 	/* Number of pages freed so far during a call to shrink_zones() */
61 	unsigned long nr_reclaimed;
62 
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	unsigned long hibernation_mode;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	int may_writepage;
72 
73 	/* Can mapped pages be reclaimed? */
74 	int may_unmap;
75 
76 	/* Can pages be swapped as part of reclaim? */
77 	int may_swap;
78 
79 	int order;
80 
81 	/* Scan (total_size >> priority) pages at once */
82 	int priority;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 	 * are scanned.
93 	 */
94 	nodemask_t	*nodemask;
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 	return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 	return true;
145 }
146 #endif
147 
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 	if (!mem_cgroup_disabled())
151 		return mem_cgroup_get_lru_size(lruvec, lru);
152 
153 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155 
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 	atomic_long_set(&shrinker->nr_in_batch, 0);
162 	down_write(&shrinker_rwsem);
163 	list_add_tail(&shrinker->list, &shrinker_list);
164 	up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167 
168 /*
169  * Remove one
170  */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 	down_write(&shrinker_rwsem);
174 	list_del(&shrinker->list);
175 	up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178 
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 				     struct shrink_control *sc,
181 				     unsigned long nr_to_scan)
182 {
183 	sc->nr_to_scan = nr_to_scan;
184 	return (*shrinker->shrink)(shrinker, sc);
185 }
186 
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object.  With this in mind we age equal
193  * percentages of the lru and ageable caches.  This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt.  It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 			  unsigned long nr_pages_scanned,
209 			  unsigned long lru_pages)
210 {
211 	struct shrinker *shrinker;
212 	unsigned long ret = 0;
213 
214 	if (nr_pages_scanned == 0)
215 		nr_pages_scanned = SWAP_CLUSTER_MAX;
216 
217 	if (!down_read_trylock(&shrinker_rwsem)) {
218 		/* Assume we'll be able to shrink next time */
219 		ret = 1;
220 		goto out;
221 	}
222 
223 	list_for_each_entry(shrinker, &shrinker_list, list) {
224 		unsigned long long delta;
225 		long total_scan;
226 		long max_pass;
227 		int shrink_ret = 0;
228 		long nr;
229 		long new_nr;
230 		long batch_size = shrinker->batch ? shrinker->batch
231 						  : SHRINK_BATCH;
232 
233 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 		if (max_pass <= 0)
235 			continue;
236 
237 		/*
238 		 * copy the current shrinker scan count into a local variable
239 		 * and zero it so that other concurrent shrinker invocations
240 		 * don't also do this scanning work.
241 		 */
242 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 
244 		total_scan = nr;
245 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 		delta *= max_pass;
247 		do_div(delta, lru_pages + 1);
248 		total_scan += delta;
249 		if (total_scan < 0) {
250 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 			       "delete nr=%ld\n",
252 			       shrinker->shrink, total_scan);
253 			total_scan = max_pass;
254 		}
255 
256 		/*
257 		 * We need to avoid excessive windup on filesystem shrinkers
258 		 * due to large numbers of GFP_NOFS allocations causing the
259 		 * shrinkers to return -1 all the time. This results in a large
260 		 * nr being built up so when a shrink that can do some work
261 		 * comes along it empties the entire cache due to nr >>>
262 		 * max_pass.  This is bad for sustaining a working set in
263 		 * memory.
264 		 *
265 		 * Hence only allow the shrinker to scan the entire cache when
266 		 * a large delta change is calculated directly.
267 		 */
268 		if (delta < max_pass / 4)
269 			total_scan = min(total_scan, max_pass / 2);
270 
271 		/*
272 		 * Avoid risking looping forever due to too large nr value:
273 		 * never try to free more than twice the estimate number of
274 		 * freeable entries.
275 		 */
276 		if (total_scan > max_pass * 2)
277 			total_scan = max_pass * 2;
278 
279 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 					nr_pages_scanned, lru_pages,
281 					max_pass, delta, total_scan);
282 
283 		while (total_scan >= batch_size) {
284 			int nr_before;
285 
286 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 							batch_size);
289 			if (shrink_ret == -1)
290 				break;
291 			if (shrink_ret < nr_before)
292 				ret += nr_before - shrink_ret;
293 			count_vm_events(SLABS_SCANNED, batch_size);
294 			total_scan -= batch_size;
295 
296 			cond_resched();
297 		}
298 
299 		/*
300 		 * move the unused scan count back into the shrinker in a
301 		 * manner that handles concurrent updates. If we exhausted the
302 		 * scan, there is no need to do an update.
303 		 */
304 		if (total_scan > 0)
305 			new_nr = atomic_long_add_return(total_scan,
306 					&shrinker->nr_in_batch);
307 		else
308 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 
310 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 	}
312 	up_read(&shrinker_rwsem);
313 out:
314 	cond_resched();
315 	return ret;
316 }
317 
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 	/*
321 	 * A freeable page cache page is referenced only by the caller
322 	 * that isolated the page, the page cache radix tree and
323 	 * optional buffer heads at page->private.
324 	 */
325 	return page_count(page) - page_has_private(page) == 2;
326 }
327 
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 			      struct scan_control *sc)
330 {
331 	if (current->flags & PF_SWAPWRITE)
332 		return 1;
333 	if (!bdi_write_congested(bdi))
334 		return 1;
335 	if (bdi == current->backing_dev_info)
336 		return 1;
337 	return 0;
338 }
339 
340 /*
341  * We detected a synchronous write error writing a page out.  Probably
342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up.  But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353 				struct page *page, int error)
354 {
355 	lock_page(page);
356 	if (page_mapping(page) == mapping)
357 		mapping_set_error(mapping, error);
358 	unlock_page(page);
359 }
360 
361 /* possible outcome of pageout() */
362 typedef enum {
363 	/* failed to write page out, page is locked */
364 	PAGE_KEEP,
365 	/* move page to the active list, page is locked */
366 	PAGE_ACTIVATE,
367 	/* page has been sent to the disk successfully, page is unlocked */
368 	PAGE_SUCCESS,
369 	/* page is clean and locked */
370 	PAGE_CLEAN,
371 } pageout_t;
372 
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 			 struct scan_control *sc)
379 {
380 	/*
381 	 * If the page is dirty, only perform writeback if that write
382 	 * will be non-blocking.  To prevent this allocation from being
383 	 * stalled by pagecache activity.  But note that there may be
384 	 * stalls if we need to run get_block().  We could test
385 	 * PagePrivate for that.
386 	 *
387 	 * If this process is currently in __generic_file_aio_write() against
388 	 * this page's queue, we can perform writeback even if that
389 	 * will block.
390 	 *
391 	 * If the page is swapcache, write it back even if that would
392 	 * block, for some throttling. This happens by accident, because
393 	 * swap_backing_dev_info is bust: it doesn't reflect the
394 	 * congestion state of the swapdevs.  Easy to fix, if needed.
395 	 */
396 	if (!is_page_cache_freeable(page))
397 		return PAGE_KEEP;
398 	if (!mapping) {
399 		/*
400 		 * Some data journaling orphaned pages can have
401 		 * page->mapping == NULL while being dirty with clean buffers.
402 		 */
403 		if (page_has_private(page)) {
404 			if (try_to_free_buffers(page)) {
405 				ClearPageDirty(page);
406 				printk("%s: orphaned page\n", __func__);
407 				return PAGE_CLEAN;
408 			}
409 		}
410 		return PAGE_KEEP;
411 	}
412 	if (mapping->a_ops->writepage == NULL)
413 		return PAGE_ACTIVATE;
414 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 		return PAGE_KEEP;
416 
417 	if (clear_page_dirty_for_io(page)) {
418 		int res;
419 		struct writeback_control wbc = {
420 			.sync_mode = WB_SYNC_NONE,
421 			.nr_to_write = SWAP_CLUSTER_MAX,
422 			.range_start = 0,
423 			.range_end = LLONG_MAX,
424 			.for_reclaim = 1,
425 		};
426 
427 		SetPageReclaim(page);
428 		res = mapping->a_ops->writepage(page, &wbc);
429 		if (res < 0)
430 			handle_write_error(mapping, page, res);
431 		if (res == AOP_WRITEPAGE_ACTIVATE) {
432 			ClearPageReclaim(page);
433 			return PAGE_ACTIVATE;
434 		}
435 
436 		if (!PageWriteback(page)) {
437 			/* synchronous write or broken a_ops? */
438 			ClearPageReclaim(page);
439 		}
440 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 		return PAGE_SUCCESS;
443 	}
444 
445 	return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 	BUG_ON(!PageLocked(page));
455 	BUG_ON(mapping != page_mapping(page));
456 
457 	spin_lock_irq(&mapping->tree_lock);
458 	/*
459 	 * The non racy check for a busy page.
460 	 *
461 	 * Must be careful with the order of the tests. When someone has
462 	 * a ref to the page, it may be possible that they dirty it then
463 	 * drop the reference. So if PageDirty is tested before page_count
464 	 * here, then the following race may occur:
465 	 *
466 	 * get_user_pages(&page);
467 	 * [user mapping goes away]
468 	 * write_to(page);
469 	 *				!PageDirty(page)    [good]
470 	 * SetPageDirty(page);
471 	 * put_page(page);
472 	 *				!page_count(page)   [good, discard it]
473 	 *
474 	 * [oops, our write_to data is lost]
475 	 *
476 	 * Reversing the order of the tests ensures such a situation cannot
477 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 	 * load is not satisfied before that of page->_count.
479 	 *
480 	 * Note that if SetPageDirty is always performed via set_page_dirty,
481 	 * and thus under tree_lock, then this ordering is not required.
482 	 */
483 	if (!page_freeze_refs(page, 2))
484 		goto cannot_free;
485 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 	if (unlikely(PageDirty(page))) {
487 		page_unfreeze_refs(page, 2);
488 		goto cannot_free;
489 	}
490 
491 	if (PageSwapCache(page)) {
492 		swp_entry_t swap = { .val = page_private(page) };
493 		__delete_from_swap_cache(page);
494 		spin_unlock_irq(&mapping->tree_lock);
495 		swapcache_free(swap, page);
496 	} else {
497 		void (*freepage)(struct page *);
498 
499 		freepage = mapping->a_ops->freepage;
500 
501 		__delete_from_page_cache(page);
502 		spin_unlock_irq(&mapping->tree_lock);
503 		mem_cgroup_uncharge_cache_page(page);
504 
505 		if (freepage != NULL)
506 			freepage(page);
507 	}
508 
509 	return 1;
510 
511 cannot_free:
512 	spin_unlock_irq(&mapping->tree_lock);
513 	return 0;
514 }
515 
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 	if (__remove_mapping(mapping, page)) {
525 		/*
526 		 * Unfreezing the refcount with 1 rather than 2 effectively
527 		 * drops the pagecache ref for us without requiring another
528 		 * atomic operation.
529 		 */
530 		page_unfreeze_refs(page, 1);
531 		return 1;
532 	}
533 	return 0;
534 }
535 
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547 	int lru;
548 	int active = !!TestClearPageActive(page);
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = active + page_lru_base_type(page);
564 		lru_cache_add_lru(page, lru);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock or AS_UNEVICTABLE clearing
574 		 * (page is unlocked) make sure that if the other thread
575 		 * does not observe our setting of PG_lru and fails
576 		 * isolation/check_move_unevictable_pages,
577 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 		 * the page back to the evictable list.
579 		 *
580 		 * The other side is TestClearPageMlocked() or shmem_lock().
581 		 */
582 		smp_mb();
583 	}
584 
585 	/*
586 	 * page's status can change while we move it among lru. If an evictable
587 	 * page is on unevictable list, it never be freed. To avoid that,
588 	 * check after we added it to the list, again.
589 	 */
590 	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 		if (!isolate_lru_page(page)) {
592 			put_page(page);
593 			goto redo;
594 		}
595 		/* This means someone else dropped this page from LRU
596 		 * So, it will be freed or putback to LRU again. There is
597 		 * nothing to do here.
598 		 */
599 	}
600 
601 	if (was_unevictable && lru != LRU_UNEVICTABLE)
602 		count_vm_event(UNEVICTABLE_PGRESCUED);
603 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 		count_vm_event(UNEVICTABLE_PGCULLED);
605 
606 	put_page(page);		/* drop ref from isolate */
607 }
608 
609 enum page_references {
610 	PAGEREF_RECLAIM,
611 	PAGEREF_RECLAIM_CLEAN,
612 	PAGEREF_KEEP,
613 	PAGEREF_ACTIVATE,
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617 						  struct scan_control *sc)
618 {
619 	int referenced_ptes, referenced_page;
620 	unsigned long vm_flags;
621 
622 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 					  &vm_flags);
624 	referenced_page = TestClearPageReferenced(page);
625 
626 	/*
627 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
628 	 * move the page to the unevictable list.
629 	 */
630 	if (vm_flags & VM_LOCKED)
631 		return PAGEREF_RECLAIM;
632 
633 	if (referenced_ptes) {
634 		if (PageSwapBacked(page))
635 			return PAGEREF_ACTIVATE;
636 		/*
637 		 * All mapped pages start out with page table
638 		 * references from the instantiating fault, so we need
639 		 * to look twice if a mapped file page is used more
640 		 * than once.
641 		 *
642 		 * Mark it and spare it for another trip around the
643 		 * inactive list.  Another page table reference will
644 		 * lead to its activation.
645 		 *
646 		 * Note: the mark is set for activated pages as well
647 		 * so that recently deactivated but used pages are
648 		 * quickly recovered.
649 		 */
650 		SetPageReferenced(page);
651 
652 		if (referenced_page || referenced_ptes > 1)
653 			return PAGEREF_ACTIVATE;
654 
655 		/*
656 		 * Activate file-backed executable pages after first usage.
657 		 */
658 		if (vm_flags & VM_EXEC)
659 			return PAGEREF_ACTIVATE;
660 
661 		return PAGEREF_KEEP;
662 	}
663 
664 	/* Reclaim if clean, defer dirty pages to writeback */
665 	if (referenced_page && !PageSwapBacked(page))
666 		return PAGEREF_RECLAIM_CLEAN;
667 
668 	return PAGEREF_RECLAIM;
669 }
670 
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 				      struct zone *zone,
676 				      struct scan_control *sc,
677 				      enum ttu_flags ttu_flags,
678 				      unsigned long *ret_nr_dirty,
679 				      unsigned long *ret_nr_writeback,
680 				      bool force_reclaim)
681 {
682 	LIST_HEAD(ret_pages);
683 	LIST_HEAD(free_pages);
684 	int pgactivate = 0;
685 	unsigned long nr_dirty = 0;
686 	unsigned long nr_congested = 0;
687 	unsigned long nr_reclaimed = 0;
688 	unsigned long nr_writeback = 0;
689 
690 	cond_resched();
691 
692 	mem_cgroup_uncharge_start();
693 	while (!list_empty(page_list)) {
694 		struct address_space *mapping;
695 		struct page *page;
696 		int may_enter_fs;
697 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
698 
699 		cond_resched();
700 
701 		page = lru_to_page(page_list);
702 		list_del(&page->lru);
703 
704 		if (!trylock_page(page))
705 			goto keep;
706 
707 		VM_BUG_ON(PageActive(page));
708 		VM_BUG_ON(page_zone(page) != zone);
709 
710 		sc->nr_scanned++;
711 
712 		if (unlikely(!page_evictable(page)))
713 			goto cull_mlocked;
714 
715 		if (!sc->may_unmap && page_mapped(page))
716 			goto keep_locked;
717 
718 		/* Double the slab pressure for mapped and swapcache pages */
719 		if (page_mapped(page) || PageSwapCache(page))
720 			sc->nr_scanned++;
721 
722 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724 
725 		if (PageWriteback(page)) {
726 			/*
727 			 * memcg doesn't have any dirty pages throttling so we
728 			 * could easily OOM just because too many pages are in
729 			 * writeback and there is nothing else to reclaim.
730 			 *
731 			 * Check __GFP_IO, certainly because a loop driver
732 			 * thread might enter reclaim, and deadlock if it waits
733 			 * on a page for which it is needed to do the write
734 			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 			 * but more thought would probably show more reasons.
736 			 *
737 			 * Don't require __GFP_FS, since we're not going into
738 			 * the FS, just waiting on its writeback completion.
739 			 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 			 * testing may_enter_fs here is liable to OOM on them.
742 			 */
743 			if (global_reclaim(sc) ||
744 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745 				/*
746 				 * This is slightly racy - end_page_writeback()
747 				 * might have just cleared PageReclaim, then
748 				 * setting PageReclaim here end up interpreted
749 				 * as PageReadahead - but that does not matter
750 				 * enough to care.  What we do want is for this
751 				 * page to have PageReclaim set next time memcg
752 				 * reclaim reaches the tests above, so it will
753 				 * then wait_on_page_writeback() to avoid OOM;
754 				 * and it's also appropriate in global reclaim.
755 				 */
756 				SetPageReclaim(page);
757 				nr_writeback++;
758 				goto keep_locked;
759 			}
760 			wait_on_page_writeback(page);
761 		}
762 
763 		if (!force_reclaim)
764 			references = page_check_references(page, sc);
765 
766 		switch (references) {
767 		case PAGEREF_ACTIVATE:
768 			goto activate_locked;
769 		case PAGEREF_KEEP:
770 			goto keep_locked;
771 		case PAGEREF_RECLAIM:
772 		case PAGEREF_RECLAIM_CLEAN:
773 			; /* try to reclaim the page below */
774 		}
775 
776 		/*
777 		 * Anonymous process memory has backing store?
778 		 * Try to allocate it some swap space here.
779 		 */
780 		if (PageAnon(page) && !PageSwapCache(page)) {
781 			if (!(sc->gfp_mask & __GFP_IO))
782 				goto keep_locked;
783 			if (!add_to_swap(page))
784 				goto activate_locked;
785 			may_enter_fs = 1;
786 		}
787 
788 		mapping = page_mapping(page);
789 
790 		/*
791 		 * The page is mapped into the page tables of one or more
792 		 * processes. Try to unmap it here.
793 		 */
794 		if (page_mapped(page) && mapping) {
795 			switch (try_to_unmap(page, ttu_flags)) {
796 			case SWAP_FAIL:
797 				goto activate_locked;
798 			case SWAP_AGAIN:
799 				goto keep_locked;
800 			case SWAP_MLOCK:
801 				goto cull_mlocked;
802 			case SWAP_SUCCESS:
803 				; /* try to free the page below */
804 			}
805 		}
806 
807 		if (PageDirty(page)) {
808 			nr_dirty++;
809 
810 			/*
811 			 * Only kswapd can writeback filesystem pages to
812 			 * avoid risk of stack overflow but do not writeback
813 			 * unless under significant pressure.
814 			 */
815 			if (page_is_file_cache(page) &&
816 					(!current_is_kswapd() ||
817 					 sc->priority >= DEF_PRIORITY - 2)) {
818 				/*
819 				 * Immediately reclaim when written back.
820 				 * Similar in principal to deactivate_page()
821 				 * except we already have the page isolated
822 				 * and know it's dirty
823 				 */
824 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 				SetPageReclaim(page);
826 
827 				goto keep_locked;
828 			}
829 
830 			if (references == PAGEREF_RECLAIM_CLEAN)
831 				goto keep_locked;
832 			if (!may_enter_fs)
833 				goto keep_locked;
834 			if (!sc->may_writepage)
835 				goto keep_locked;
836 
837 			/* Page is dirty, try to write it out here */
838 			switch (pageout(page, mapping, sc)) {
839 			case PAGE_KEEP:
840 				nr_congested++;
841 				goto keep_locked;
842 			case PAGE_ACTIVATE:
843 				goto activate_locked;
844 			case PAGE_SUCCESS:
845 				if (PageWriteback(page))
846 					goto keep;
847 				if (PageDirty(page))
848 					goto keep;
849 
850 				/*
851 				 * A synchronous write - probably a ramdisk.  Go
852 				 * ahead and try to reclaim the page.
853 				 */
854 				if (!trylock_page(page))
855 					goto keep;
856 				if (PageDirty(page) || PageWriteback(page))
857 					goto keep_locked;
858 				mapping = page_mapping(page);
859 			case PAGE_CLEAN:
860 				; /* try to free the page below */
861 			}
862 		}
863 
864 		/*
865 		 * If the page has buffers, try to free the buffer mappings
866 		 * associated with this page. If we succeed we try to free
867 		 * the page as well.
868 		 *
869 		 * We do this even if the page is PageDirty().
870 		 * try_to_release_page() does not perform I/O, but it is
871 		 * possible for a page to have PageDirty set, but it is actually
872 		 * clean (all its buffers are clean).  This happens if the
873 		 * buffers were written out directly, with submit_bh(). ext3
874 		 * will do this, as well as the blockdev mapping.
875 		 * try_to_release_page() will discover that cleanness and will
876 		 * drop the buffers and mark the page clean - it can be freed.
877 		 *
878 		 * Rarely, pages can have buffers and no ->mapping.  These are
879 		 * the pages which were not successfully invalidated in
880 		 * truncate_complete_page().  We try to drop those buffers here
881 		 * and if that worked, and the page is no longer mapped into
882 		 * process address space (page_count == 1) it can be freed.
883 		 * Otherwise, leave the page on the LRU so it is swappable.
884 		 */
885 		if (page_has_private(page)) {
886 			if (!try_to_release_page(page, sc->gfp_mask))
887 				goto activate_locked;
888 			if (!mapping && page_count(page) == 1) {
889 				unlock_page(page);
890 				if (put_page_testzero(page))
891 					goto free_it;
892 				else {
893 					/*
894 					 * rare race with speculative reference.
895 					 * the speculative reference will free
896 					 * this page shortly, so we may
897 					 * increment nr_reclaimed here (and
898 					 * leave it off the LRU).
899 					 */
900 					nr_reclaimed++;
901 					continue;
902 				}
903 			}
904 		}
905 
906 		if (!mapping || !__remove_mapping(mapping, page))
907 			goto keep_locked;
908 
909 		/*
910 		 * At this point, we have no other references and there is
911 		 * no way to pick any more up (removed from LRU, removed
912 		 * from pagecache). Can use non-atomic bitops now (and
913 		 * we obviously don't have to worry about waking up a process
914 		 * waiting on the page lock, because there are no references.
915 		 */
916 		__clear_page_locked(page);
917 free_it:
918 		nr_reclaimed++;
919 
920 		/*
921 		 * Is there need to periodically free_page_list? It would
922 		 * appear not as the counts should be low
923 		 */
924 		list_add(&page->lru, &free_pages);
925 		continue;
926 
927 cull_mlocked:
928 		if (PageSwapCache(page))
929 			try_to_free_swap(page);
930 		unlock_page(page);
931 		putback_lru_page(page);
932 		continue;
933 
934 activate_locked:
935 		/* Not a candidate for swapping, so reclaim swap space. */
936 		if (PageSwapCache(page) && vm_swap_full())
937 			try_to_free_swap(page);
938 		VM_BUG_ON(PageActive(page));
939 		SetPageActive(page);
940 		pgactivate++;
941 keep_locked:
942 		unlock_page(page);
943 keep:
944 		list_add(&page->lru, &ret_pages);
945 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
946 	}
947 
948 	/*
949 	 * Tag a zone as congested if all the dirty pages encountered were
950 	 * backed by a congested BDI. In this case, reclaimers should just
951 	 * back off and wait for congestion to clear because further reclaim
952 	 * will encounter the same problem
953 	 */
954 	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955 		zone_set_flag(zone, ZONE_CONGESTED);
956 
957 	free_hot_cold_page_list(&free_pages, 1);
958 
959 	list_splice(&ret_pages, page_list);
960 	count_vm_events(PGACTIVATE, pgactivate);
961 	mem_cgroup_uncharge_end();
962 	*ret_nr_dirty += nr_dirty;
963 	*ret_nr_writeback += nr_writeback;
964 	return nr_reclaimed;
965 }
966 
967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 					    struct list_head *page_list)
969 {
970 	struct scan_control sc = {
971 		.gfp_mask = GFP_KERNEL,
972 		.priority = DEF_PRIORITY,
973 		.may_unmap = 1,
974 	};
975 	unsigned long ret, dummy1, dummy2;
976 	struct page *page, *next;
977 	LIST_HEAD(clean_pages);
978 
979 	list_for_each_entry_safe(page, next, page_list, lru) {
980 		if (page_is_file_cache(page) && !PageDirty(page)) {
981 			ClearPageActive(page);
982 			list_move(&page->lru, &clean_pages);
983 		}
984 	}
985 
986 	ret = shrink_page_list(&clean_pages, zone, &sc,
987 				TTU_UNMAP|TTU_IGNORE_ACCESS,
988 				&dummy1, &dummy2, true);
989 	list_splice(&clean_pages, page_list);
990 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 	return ret;
992 }
993 
994 /*
995  * Attempt to remove the specified page from its LRU.  Only take this page
996  * if it is of the appropriate PageActive status.  Pages which are being
997  * freed elsewhere are also ignored.
998  *
999  * page:	page to consider
1000  * mode:	one of the LRU isolation modes defined above
1001  *
1002  * returns 0 on success, -ve errno on failure.
1003  */
1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1005 {
1006 	int ret = -EINVAL;
1007 
1008 	/* Only take pages on the LRU. */
1009 	if (!PageLRU(page))
1010 		return ret;
1011 
1012 	/* Compaction should not handle unevictable pages but CMA can do so */
1013 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1014 		return ret;
1015 
1016 	ret = -EBUSY;
1017 
1018 	/*
1019 	 * To minimise LRU disruption, the caller can indicate that it only
1020 	 * wants to isolate pages it will be able to operate on without
1021 	 * blocking - clean pages for the most part.
1022 	 *
1023 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 	 * is used by reclaim when it is cannot write to backing storage
1025 	 *
1026 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 	 * that it is possible to migrate without blocking
1028 	 */
1029 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 		/* All the caller can do on PageWriteback is block */
1031 		if (PageWriteback(page))
1032 			return ret;
1033 
1034 		if (PageDirty(page)) {
1035 			struct address_space *mapping;
1036 
1037 			/* ISOLATE_CLEAN means only clean pages */
1038 			if (mode & ISOLATE_CLEAN)
1039 				return ret;
1040 
1041 			/*
1042 			 * Only pages without mappings or that have a
1043 			 * ->migratepage callback are possible to migrate
1044 			 * without blocking
1045 			 */
1046 			mapping = page_mapping(page);
1047 			if (mapping && !mapping->a_ops->migratepage)
1048 				return ret;
1049 		}
1050 	}
1051 
1052 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 		return ret;
1054 
1055 	if (likely(get_page_unless_zero(page))) {
1056 		/*
1057 		 * Be careful not to clear PageLRU until after we're
1058 		 * sure the page is not being freed elsewhere -- the
1059 		 * page release code relies on it.
1060 		 */
1061 		ClearPageLRU(page);
1062 		ret = 0;
1063 	}
1064 
1065 	return ret;
1066 }
1067 
1068 /*
1069  * zone->lru_lock is heavily contended.  Some of the functions that
1070  * shrink the lists perform better by taking out a batch of pages
1071  * and working on them outside the LRU lock.
1072  *
1073  * For pagecache intensive workloads, this function is the hottest
1074  * spot in the kernel (apart from copy_*_user functions).
1075  *
1076  * Appropriate locks must be held before calling this function.
1077  *
1078  * @nr_to_scan:	The number of pages to look through on the list.
1079  * @lruvec:	The LRU vector to pull pages from.
1080  * @dst:	The temp list to put pages on to.
1081  * @nr_scanned:	The number of pages that were scanned.
1082  * @sc:		The scan_control struct for this reclaim session
1083  * @mode:	One of the LRU isolation modes
1084  * @lru:	LRU list id for isolating
1085  *
1086  * returns how many pages were moved onto *@dst.
1087  */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 		struct lruvec *lruvec, struct list_head *dst,
1090 		unsigned long *nr_scanned, struct scan_control *sc,
1091 		isolate_mode_t mode, enum lru_list lru)
1092 {
1093 	struct list_head *src = &lruvec->lists[lru];
1094 	unsigned long nr_taken = 0;
1095 	unsigned long scan;
1096 
1097 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1098 		struct page *page;
1099 		int nr_pages;
1100 
1101 		page = lru_to_page(src);
1102 		prefetchw_prev_lru_page(page, src, flags);
1103 
1104 		VM_BUG_ON(!PageLRU(page));
1105 
1106 		switch (__isolate_lru_page(page, mode)) {
1107 		case 0:
1108 			nr_pages = hpage_nr_pages(page);
1109 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1110 			list_move(&page->lru, dst);
1111 			nr_taken += nr_pages;
1112 			break;
1113 
1114 		case -EBUSY:
1115 			/* else it is being freed elsewhere */
1116 			list_move(&page->lru, src);
1117 			continue;
1118 
1119 		default:
1120 			BUG();
1121 		}
1122 	}
1123 
1124 	*nr_scanned = scan;
1125 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 				    nr_taken, mode, is_file_lru(lru));
1127 	return nr_taken;
1128 }
1129 
1130 /**
1131  * isolate_lru_page - tries to isolate a page from its LRU list
1132  * @page: page to isolate from its LRU list
1133  *
1134  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135  * vmstat statistic corresponding to whatever LRU list the page was on.
1136  *
1137  * Returns 0 if the page was removed from an LRU list.
1138  * Returns -EBUSY if the page was not on an LRU list.
1139  *
1140  * The returned page will have PageLRU() cleared.  If it was found on
1141  * the active list, it will have PageActive set.  If it was found on
1142  * the unevictable list, it will have the PageUnevictable bit set. That flag
1143  * may need to be cleared by the caller before letting the page go.
1144  *
1145  * The vmstat statistic corresponding to the list on which the page was
1146  * found will be decremented.
1147  *
1148  * Restrictions:
1149  * (1) Must be called with an elevated refcount on the page. This is a
1150  *     fundamentnal difference from isolate_lru_pages (which is called
1151  *     without a stable reference).
1152  * (2) the lru_lock must not be held.
1153  * (3) interrupts must be enabled.
1154  */
1155 int isolate_lru_page(struct page *page)
1156 {
1157 	int ret = -EBUSY;
1158 
1159 	VM_BUG_ON(!page_count(page));
1160 
1161 	if (PageLRU(page)) {
1162 		struct zone *zone = page_zone(page);
1163 		struct lruvec *lruvec;
1164 
1165 		spin_lock_irq(&zone->lru_lock);
1166 		lruvec = mem_cgroup_page_lruvec(page, zone);
1167 		if (PageLRU(page)) {
1168 			int lru = page_lru(page);
1169 			get_page(page);
1170 			ClearPageLRU(page);
1171 			del_page_from_lru_list(page, lruvec, lru);
1172 			ret = 0;
1173 		}
1174 		spin_unlock_irq(&zone->lru_lock);
1175 	}
1176 	return ret;
1177 }
1178 
1179 /*
1180  * Are there way too many processes in the direct reclaim path already?
1181  */
1182 static int too_many_isolated(struct zone *zone, int file,
1183 		struct scan_control *sc)
1184 {
1185 	unsigned long inactive, isolated;
1186 
1187 	if (current_is_kswapd())
1188 		return 0;
1189 
1190 	if (!global_reclaim(sc))
1191 		return 0;
1192 
1193 	if (file) {
1194 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1195 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1196 	} else {
1197 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1198 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1199 	}
1200 
1201 	return isolated > inactive;
1202 }
1203 
1204 static noinline_for_stack void
1205 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1206 {
1207 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1208 	struct zone *zone = lruvec_zone(lruvec);
1209 	LIST_HEAD(pages_to_free);
1210 
1211 	/*
1212 	 * Put back any unfreeable pages.
1213 	 */
1214 	while (!list_empty(page_list)) {
1215 		struct page *page = lru_to_page(page_list);
1216 		int lru;
1217 
1218 		VM_BUG_ON(PageLRU(page));
1219 		list_del(&page->lru);
1220 		if (unlikely(!page_evictable(page))) {
1221 			spin_unlock_irq(&zone->lru_lock);
1222 			putback_lru_page(page);
1223 			spin_lock_irq(&zone->lru_lock);
1224 			continue;
1225 		}
1226 
1227 		lruvec = mem_cgroup_page_lruvec(page, zone);
1228 
1229 		SetPageLRU(page);
1230 		lru = page_lru(page);
1231 		add_page_to_lru_list(page, lruvec, lru);
1232 
1233 		if (is_active_lru(lru)) {
1234 			int file = is_file_lru(lru);
1235 			int numpages = hpage_nr_pages(page);
1236 			reclaim_stat->recent_rotated[file] += numpages;
1237 		}
1238 		if (put_page_testzero(page)) {
1239 			__ClearPageLRU(page);
1240 			__ClearPageActive(page);
1241 			del_page_from_lru_list(page, lruvec, lru);
1242 
1243 			if (unlikely(PageCompound(page))) {
1244 				spin_unlock_irq(&zone->lru_lock);
1245 				(*get_compound_page_dtor(page))(page);
1246 				spin_lock_irq(&zone->lru_lock);
1247 			} else
1248 				list_add(&page->lru, &pages_to_free);
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * To save our caller's stack, now use input list for pages to free.
1254 	 */
1255 	list_splice(&pages_to_free, page_list);
1256 }
1257 
1258 /*
1259  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1260  * of reclaimed pages
1261  */
1262 static noinline_for_stack unsigned long
1263 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1264 		     struct scan_control *sc, enum lru_list lru)
1265 {
1266 	LIST_HEAD(page_list);
1267 	unsigned long nr_scanned;
1268 	unsigned long nr_reclaimed = 0;
1269 	unsigned long nr_taken;
1270 	unsigned long nr_dirty = 0;
1271 	unsigned long nr_writeback = 0;
1272 	isolate_mode_t isolate_mode = 0;
1273 	int file = is_file_lru(lru);
1274 	struct zone *zone = lruvec_zone(lruvec);
1275 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1276 
1277 	while (unlikely(too_many_isolated(zone, file, sc))) {
1278 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1279 
1280 		/* We are about to die and free our memory. Return now. */
1281 		if (fatal_signal_pending(current))
1282 			return SWAP_CLUSTER_MAX;
1283 	}
1284 
1285 	lru_add_drain();
1286 
1287 	if (!sc->may_unmap)
1288 		isolate_mode |= ISOLATE_UNMAPPED;
1289 	if (!sc->may_writepage)
1290 		isolate_mode |= ISOLATE_CLEAN;
1291 
1292 	spin_lock_irq(&zone->lru_lock);
1293 
1294 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1295 				     &nr_scanned, sc, isolate_mode, lru);
1296 
1297 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1298 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1299 
1300 	if (global_reclaim(sc)) {
1301 		zone->pages_scanned += nr_scanned;
1302 		if (current_is_kswapd())
1303 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1304 		else
1305 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1306 	}
1307 	spin_unlock_irq(&zone->lru_lock);
1308 
1309 	if (nr_taken == 0)
1310 		return 0;
1311 
1312 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1313 					&nr_dirty, &nr_writeback, false);
1314 
1315 	spin_lock_irq(&zone->lru_lock);
1316 
1317 	reclaim_stat->recent_scanned[file] += nr_taken;
1318 
1319 	if (global_reclaim(sc)) {
1320 		if (current_is_kswapd())
1321 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1322 					       nr_reclaimed);
1323 		else
1324 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1325 					       nr_reclaimed);
1326 	}
1327 
1328 	putback_inactive_pages(lruvec, &page_list);
1329 
1330 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1331 
1332 	spin_unlock_irq(&zone->lru_lock);
1333 
1334 	free_hot_cold_page_list(&page_list, 1);
1335 
1336 	/*
1337 	 * If reclaim is isolating dirty pages under writeback, it implies
1338 	 * that the long-lived page allocation rate is exceeding the page
1339 	 * laundering rate. Either the global limits are not being effective
1340 	 * at throttling processes due to the page distribution throughout
1341 	 * zones or there is heavy usage of a slow backing device. The
1342 	 * only option is to throttle from reclaim context which is not ideal
1343 	 * as there is no guarantee the dirtying process is throttled in the
1344 	 * same way balance_dirty_pages() manages.
1345 	 *
1346 	 * This scales the number of dirty pages that must be under writeback
1347 	 * before throttling depending on priority. It is a simple backoff
1348 	 * function that has the most effect in the range DEF_PRIORITY to
1349 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1350 	 * in trouble and reclaim is considered to be in trouble.
1351 	 *
1352 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1353 	 * DEF_PRIORITY-1  50% must be PageWriteback
1354 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1355 	 * ...
1356 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1357 	 *                     isolated page is PageWriteback
1358 	 */
1359 	if (nr_writeback && nr_writeback >=
1360 			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1361 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1362 
1363 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1364 		zone_idx(zone),
1365 		nr_scanned, nr_reclaimed,
1366 		sc->priority,
1367 		trace_shrink_flags(file));
1368 	return nr_reclaimed;
1369 }
1370 
1371 /*
1372  * This moves pages from the active list to the inactive list.
1373  *
1374  * We move them the other way if the page is referenced by one or more
1375  * processes, from rmap.
1376  *
1377  * If the pages are mostly unmapped, the processing is fast and it is
1378  * appropriate to hold zone->lru_lock across the whole operation.  But if
1379  * the pages are mapped, the processing is slow (page_referenced()) so we
1380  * should drop zone->lru_lock around each page.  It's impossible to balance
1381  * this, so instead we remove the pages from the LRU while processing them.
1382  * It is safe to rely on PG_active against the non-LRU pages in here because
1383  * nobody will play with that bit on a non-LRU page.
1384  *
1385  * The downside is that we have to touch page->_count against each page.
1386  * But we had to alter page->flags anyway.
1387  */
1388 
1389 static void move_active_pages_to_lru(struct lruvec *lruvec,
1390 				     struct list_head *list,
1391 				     struct list_head *pages_to_free,
1392 				     enum lru_list lru)
1393 {
1394 	struct zone *zone = lruvec_zone(lruvec);
1395 	unsigned long pgmoved = 0;
1396 	struct page *page;
1397 	int nr_pages;
1398 
1399 	while (!list_empty(list)) {
1400 		page = lru_to_page(list);
1401 		lruvec = mem_cgroup_page_lruvec(page, zone);
1402 
1403 		VM_BUG_ON(PageLRU(page));
1404 		SetPageLRU(page);
1405 
1406 		nr_pages = hpage_nr_pages(page);
1407 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1408 		list_move(&page->lru, &lruvec->lists[lru]);
1409 		pgmoved += nr_pages;
1410 
1411 		if (put_page_testzero(page)) {
1412 			__ClearPageLRU(page);
1413 			__ClearPageActive(page);
1414 			del_page_from_lru_list(page, lruvec, lru);
1415 
1416 			if (unlikely(PageCompound(page))) {
1417 				spin_unlock_irq(&zone->lru_lock);
1418 				(*get_compound_page_dtor(page))(page);
1419 				spin_lock_irq(&zone->lru_lock);
1420 			} else
1421 				list_add(&page->lru, pages_to_free);
1422 		}
1423 	}
1424 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1425 	if (!is_active_lru(lru))
1426 		__count_vm_events(PGDEACTIVATE, pgmoved);
1427 }
1428 
1429 static void shrink_active_list(unsigned long nr_to_scan,
1430 			       struct lruvec *lruvec,
1431 			       struct scan_control *sc,
1432 			       enum lru_list lru)
1433 {
1434 	unsigned long nr_taken;
1435 	unsigned long nr_scanned;
1436 	unsigned long vm_flags;
1437 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1438 	LIST_HEAD(l_active);
1439 	LIST_HEAD(l_inactive);
1440 	struct page *page;
1441 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1442 	unsigned long nr_rotated = 0;
1443 	isolate_mode_t isolate_mode = 0;
1444 	int file = is_file_lru(lru);
1445 	struct zone *zone = lruvec_zone(lruvec);
1446 
1447 	lru_add_drain();
1448 
1449 	if (!sc->may_unmap)
1450 		isolate_mode |= ISOLATE_UNMAPPED;
1451 	if (!sc->may_writepage)
1452 		isolate_mode |= ISOLATE_CLEAN;
1453 
1454 	spin_lock_irq(&zone->lru_lock);
1455 
1456 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1457 				     &nr_scanned, sc, isolate_mode, lru);
1458 	if (global_reclaim(sc))
1459 		zone->pages_scanned += nr_scanned;
1460 
1461 	reclaim_stat->recent_scanned[file] += nr_taken;
1462 
1463 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1464 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1465 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1466 	spin_unlock_irq(&zone->lru_lock);
1467 
1468 	while (!list_empty(&l_hold)) {
1469 		cond_resched();
1470 		page = lru_to_page(&l_hold);
1471 		list_del(&page->lru);
1472 
1473 		if (unlikely(!page_evictable(page))) {
1474 			putback_lru_page(page);
1475 			continue;
1476 		}
1477 
1478 		if (unlikely(buffer_heads_over_limit)) {
1479 			if (page_has_private(page) && trylock_page(page)) {
1480 				if (page_has_private(page))
1481 					try_to_release_page(page, 0);
1482 				unlock_page(page);
1483 			}
1484 		}
1485 
1486 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1487 				    &vm_flags)) {
1488 			nr_rotated += hpage_nr_pages(page);
1489 			/*
1490 			 * Identify referenced, file-backed active pages and
1491 			 * give them one more trip around the active list. So
1492 			 * that executable code get better chances to stay in
1493 			 * memory under moderate memory pressure.  Anon pages
1494 			 * are not likely to be evicted by use-once streaming
1495 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1496 			 * so we ignore them here.
1497 			 */
1498 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1499 				list_add(&page->lru, &l_active);
1500 				continue;
1501 			}
1502 		}
1503 
1504 		ClearPageActive(page);	/* we are de-activating */
1505 		list_add(&page->lru, &l_inactive);
1506 	}
1507 
1508 	/*
1509 	 * Move pages back to the lru list.
1510 	 */
1511 	spin_lock_irq(&zone->lru_lock);
1512 	/*
1513 	 * Count referenced pages from currently used mappings as rotated,
1514 	 * even though only some of them are actually re-activated.  This
1515 	 * helps balance scan pressure between file and anonymous pages in
1516 	 * get_scan_ratio.
1517 	 */
1518 	reclaim_stat->recent_rotated[file] += nr_rotated;
1519 
1520 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1521 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1522 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1523 	spin_unlock_irq(&zone->lru_lock);
1524 
1525 	free_hot_cold_page_list(&l_hold, 1);
1526 }
1527 
1528 #ifdef CONFIG_SWAP
1529 static int inactive_anon_is_low_global(struct zone *zone)
1530 {
1531 	unsigned long active, inactive;
1532 
1533 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1534 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1535 
1536 	if (inactive * zone->inactive_ratio < active)
1537 		return 1;
1538 
1539 	return 0;
1540 }
1541 
1542 /**
1543  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1544  * @lruvec: LRU vector to check
1545  *
1546  * Returns true if the zone does not have enough inactive anon pages,
1547  * meaning some active anon pages need to be deactivated.
1548  */
1549 static int inactive_anon_is_low(struct lruvec *lruvec)
1550 {
1551 	/*
1552 	 * If we don't have swap space, anonymous page deactivation
1553 	 * is pointless.
1554 	 */
1555 	if (!total_swap_pages)
1556 		return 0;
1557 
1558 	if (!mem_cgroup_disabled())
1559 		return mem_cgroup_inactive_anon_is_low(lruvec);
1560 
1561 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1562 }
1563 #else
1564 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1565 {
1566 	return 0;
1567 }
1568 #endif
1569 
1570 static int inactive_file_is_low_global(struct zone *zone)
1571 {
1572 	unsigned long active, inactive;
1573 
1574 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1575 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1576 
1577 	return (active > inactive);
1578 }
1579 
1580 /**
1581  * inactive_file_is_low - check if file pages need to be deactivated
1582  * @lruvec: LRU vector to check
1583  *
1584  * When the system is doing streaming IO, memory pressure here
1585  * ensures that active file pages get deactivated, until more
1586  * than half of the file pages are on the inactive list.
1587  *
1588  * Once we get to that situation, protect the system's working
1589  * set from being evicted by disabling active file page aging.
1590  *
1591  * This uses a different ratio than the anonymous pages, because
1592  * the page cache uses a use-once replacement algorithm.
1593  */
1594 static int inactive_file_is_low(struct lruvec *lruvec)
1595 {
1596 	if (!mem_cgroup_disabled())
1597 		return mem_cgroup_inactive_file_is_low(lruvec);
1598 
1599 	return inactive_file_is_low_global(lruvec_zone(lruvec));
1600 }
1601 
1602 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1603 {
1604 	if (is_file_lru(lru))
1605 		return inactive_file_is_low(lruvec);
1606 	else
1607 		return inactive_anon_is_low(lruvec);
1608 }
1609 
1610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1611 				 struct lruvec *lruvec, struct scan_control *sc)
1612 {
1613 	if (is_active_lru(lru)) {
1614 		if (inactive_list_is_low(lruvec, lru))
1615 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1616 		return 0;
1617 	}
1618 
1619 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1620 }
1621 
1622 static int vmscan_swappiness(struct scan_control *sc)
1623 {
1624 	if (global_reclaim(sc))
1625 		return vm_swappiness;
1626 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1627 }
1628 
1629 /*
1630  * Determine how aggressively the anon and file LRU lists should be
1631  * scanned.  The relative value of each set of LRU lists is determined
1632  * by looking at the fraction of the pages scanned we did rotate back
1633  * onto the active list instead of evict.
1634  *
1635  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1636  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1637  */
1638 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1639 			   unsigned long *nr)
1640 {
1641 	unsigned long anon, file, free;
1642 	unsigned long anon_prio, file_prio;
1643 	unsigned long ap, fp;
1644 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1645 	u64 fraction[2], denominator;
1646 	enum lru_list lru;
1647 	int noswap = 0;
1648 	bool force_scan = false;
1649 	struct zone *zone = lruvec_zone(lruvec);
1650 
1651 	/*
1652 	 * If the zone or memcg is small, nr[l] can be 0.  This
1653 	 * results in no scanning on this priority and a potential
1654 	 * priority drop.  Global direct reclaim can go to the next
1655 	 * zone and tends to have no problems. Global kswapd is for
1656 	 * zone balancing and it needs to scan a minimum amount. When
1657 	 * reclaiming for a memcg, a priority drop can cause high
1658 	 * latencies, so it's better to scan a minimum amount there as
1659 	 * well.
1660 	 */
1661 	if (current_is_kswapd() && zone->all_unreclaimable)
1662 		force_scan = true;
1663 	if (!global_reclaim(sc))
1664 		force_scan = true;
1665 
1666 	/* If we have no swap space, do not bother scanning anon pages. */
1667 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1668 		noswap = 1;
1669 		fraction[0] = 0;
1670 		fraction[1] = 1;
1671 		denominator = 1;
1672 		goto out;
1673 	}
1674 
1675 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1676 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1677 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1678 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1679 
1680 	if (global_reclaim(sc)) {
1681 		free  = zone_page_state(zone, NR_FREE_PAGES);
1682 		/* If we have very few page cache pages,
1683 		   force-scan anon pages. */
1684 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1685 			fraction[0] = 1;
1686 			fraction[1] = 0;
1687 			denominator = 1;
1688 			goto out;
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * With swappiness at 100, anonymous and file have the same priority.
1694 	 * This scanning priority is essentially the inverse of IO cost.
1695 	 */
1696 	anon_prio = vmscan_swappiness(sc);
1697 	file_prio = 200 - anon_prio;
1698 
1699 	/*
1700 	 * OK, so we have swap space and a fair amount of page cache
1701 	 * pages.  We use the recently rotated / recently scanned
1702 	 * ratios to determine how valuable each cache is.
1703 	 *
1704 	 * Because workloads change over time (and to avoid overflow)
1705 	 * we keep these statistics as a floating average, which ends
1706 	 * up weighing recent references more than old ones.
1707 	 *
1708 	 * anon in [0], file in [1]
1709 	 */
1710 	spin_lock_irq(&zone->lru_lock);
1711 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1712 		reclaim_stat->recent_scanned[0] /= 2;
1713 		reclaim_stat->recent_rotated[0] /= 2;
1714 	}
1715 
1716 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1717 		reclaim_stat->recent_scanned[1] /= 2;
1718 		reclaim_stat->recent_rotated[1] /= 2;
1719 	}
1720 
1721 	/*
1722 	 * The amount of pressure on anon vs file pages is inversely
1723 	 * proportional to the fraction of recently scanned pages on
1724 	 * each list that were recently referenced and in active use.
1725 	 */
1726 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1727 	ap /= reclaim_stat->recent_rotated[0] + 1;
1728 
1729 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1730 	fp /= reclaim_stat->recent_rotated[1] + 1;
1731 	spin_unlock_irq(&zone->lru_lock);
1732 
1733 	fraction[0] = ap;
1734 	fraction[1] = fp;
1735 	denominator = ap + fp + 1;
1736 out:
1737 	for_each_evictable_lru(lru) {
1738 		int file = is_file_lru(lru);
1739 		unsigned long scan;
1740 
1741 		scan = get_lru_size(lruvec, lru);
1742 		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1743 			scan >>= sc->priority;
1744 			if (!scan && force_scan)
1745 				scan = SWAP_CLUSTER_MAX;
1746 			scan = div64_u64(scan * fraction[file], denominator);
1747 		}
1748 		nr[lru] = scan;
1749 	}
1750 }
1751 
1752 /* Use reclaim/compaction for costly allocs or under memory pressure */
1753 static bool in_reclaim_compaction(struct scan_control *sc)
1754 {
1755 	if (COMPACTION_BUILD && sc->order &&
1756 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1757 			 sc->priority < DEF_PRIORITY - 2))
1758 		return true;
1759 
1760 	return false;
1761 }
1762 
1763 /*
1764  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1765  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1766  * true if more pages should be reclaimed such that when the page allocator
1767  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1768  * It will give up earlier than that if there is difficulty reclaiming pages.
1769  */
1770 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1771 					unsigned long nr_reclaimed,
1772 					unsigned long nr_scanned,
1773 					struct scan_control *sc)
1774 {
1775 	unsigned long pages_for_compaction;
1776 	unsigned long inactive_lru_pages;
1777 
1778 	/* If not in reclaim/compaction mode, stop */
1779 	if (!in_reclaim_compaction(sc))
1780 		return false;
1781 
1782 	/* Consider stopping depending on scan and reclaim activity */
1783 	if (sc->gfp_mask & __GFP_REPEAT) {
1784 		/*
1785 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1786 		 * full LRU list has been scanned and we are still failing
1787 		 * to reclaim pages. This full LRU scan is potentially
1788 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1789 		 */
1790 		if (!nr_reclaimed && !nr_scanned)
1791 			return false;
1792 	} else {
1793 		/*
1794 		 * For non-__GFP_REPEAT allocations which can presumably
1795 		 * fail without consequence, stop if we failed to reclaim
1796 		 * any pages from the last SWAP_CLUSTER_MAX number of
1797 		 * pages that were scanned. This will return to the
1798 		 * caller faster at the risk reclaim/compaction and
1799 		 * the resulting allocation attempt fails
1800 		 */
1801 		if (!nr_reclaimed)
1802 			return false;
1803 	}
1804 
1805 	/*
1806 	 * If we have not reclaimed enough pages for compaction and the
1807 	 * inactive lists are large enough, continue reclaiming
1808 	 */
1809 	pages_for_compaction = (2UL << sc->order);
1810 	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1811 	if (nr_swap_pages > 0)
1812 		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1813 	if (sc->nr_reclaimed < pages_for_compaction &&
1814 			inactive_lru_pages > pages_for_compaction)
1815 		return true;
1816 
1817 	/* If compaction would go ahead or the allocation would succeed, stop */
1818 	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1819 	case COMPACT_PARTIAL:
1820 	case COMPACT_CONTINUE:
1821 		return false;
1822 	default:
1823 		return true;
1824 	}
1825 }
1826 
1827 /*
1828  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1829  */
1830 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1831 {
1832 	unsigned long nr[NR_LRU_LISTS];
1833 	unsigned long nr_to_scan;
1834 	enum lru_list lru;
1835 	unsigned long nr_reclaimed, nr_scanned;
1836 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1837 	struct blk_plug plug;
1838 
1839 restart:
1840 	nr_reclaimed = 0;
1841 	nr_scanned = sc->nr_scanned;
1842 	get_scan_count(lruvec, sc, nr);
1843 
1844 	blk_start_plug(&plug);
1845 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1846 					nr[LRU_INACTIVE_FILE]) {
1847 		for_each_evictable_lru(lru) {
1848 			if (nr[lru]) {
1849 				nr_to_scan = min_t(unsigned long,
1850 						   nr[lru], SWAP_CLUSTER_MAX);
1851 				nr[lru] -= nr_to_scan;
1852 
1853 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1854 							    lruvec, sc);
1855 			}
1856 		}
1857 		/*
1858 		 * On large memory systems, scan >> priority can become
1859 		 * really large. This is fine for the starting priority;
1860 		 * we want to put equal scanning pressure on each zone.
1861 		 * However, if the VM has a harder time of freeing pages,
1862 		 * with multiple processes reclaiming pages, the total
1863 		 * freeing target can get unreasonably large.
1864 		 */
1865 		if (nr_reclaimed >= nr_to_reclaim &&
1866 		    sc->priority < DEF_PRIORITY)
1867 			break;
1868 	}
1869 	blk_finish_plug(&plug);
1870 	sc->nr_reclaimed += nr_reclaimed;
1871 
1872 	/*
1873 	 * Even if we did not try to evict anon pages at all, we want to
1874 	 * rebalance the anon lru active/inactive ratio.
1875 	 */
1876 	if (inactive_anon_is_low(lruvec))
1877 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1878 				   sc, LRU_ACTIVE_ANON);
1879 
1880 	/* reclaim/compaction might need reclaim to continue */
1881 	if (should_continue_reclaim(lruvec, nr_reclaimed,
1882 				    sc->nr_scanned - nr_scanned, sc))
1883 		goto restart;
1884 
1885 	throttle_vm_writeout(sc->gfp_mask);
1886 }
1887 
1888 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1889 {
1890 	struct mem_cgroup *root = sc->target_mem_cgroup;
1891 	struct mem_cgroup_reclaim_cookie reclaim = {
1892 		.zone = zone,
1893 		.priority = sc->priority,
1894 	};
1895 	struct mem_cgroup *memcg;
1896 
1897 	memcg = mem_cgroup_iter(root, NULL, &reclaim);
1898 	do {
1899 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1900 
1901 		shrink_lruvec(lruvec, sc);
1902 
1903 		/*
1904 		 * Limit reclaim has historically picked one memcg and
1905 		 * scanned it with decreasing priority levels until
1906 		 * nr_to_reclaim had been reclaimed.  This priority
1907 		 * cycle is thus over after a single memcg.
1908 		 *
1909 		 * Direct reclaim and kswapd, on the other hand, have
1910 		 * to scan all memory cgroups to fulfill the overall
1911 		 * scan target for the zone.
1912 		 */
1913 		if (!global_reclaim(sc)) {
1914 			mem_cgroup_iter_break(root, memcg);
1915 			break;
1916 		}
1917 		memcg = mem_cgroup_iter(root, memcg, &reclaim);
1918 	} while (memcg);
1919 }
1920 
1921 /* Returns true if compaction should go ahead for a high-order request */
1922 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1923 {
1924 	unsigned long balance_gap, watermark;
1925 	bool watermark_ok;
1926 
1927 	/* Do not consider compaction for orders reclaim is meant to satisfy */
1928 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1929 		return false;
1930 
1931 	/*
1932 	 * Compaction takes time to run and there are potentially other
1933 	 * callers using the pages just freed. Continue reclaiming until
1934 	 * there is a buffer of free pages available to give compaction
1935 	 * a reasonable chance of completing and allocating the page
1936 	 */
1937 	balance_gap = min(low_wmark_pages(zone),
1938 		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1939 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
1940 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1941 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1942 
1943 	/*
1944 	 * If compaction is deferred, reclaim up to a point where
1945 	 * compaction will have a chance of success when re-enabled
1946 	 */
1947 	if (compaction_deferred(zone, sc->order))
1948 		return watermark_ok;
1949 
1950 	/* If compaction is not ready to start, keep reclaiming */
1951 	if (!compaction_suitable(zone, sc->order))
1952 		return false;
1953 
1954 	return watermark_ok;
1955 }
1956 
1957 /*
1958  * This is the direct reclaim path, for page-allocating processes.  We only
1959  * try to reclaim pages from zones which will satisfy the caller's allocation
1960  * request.
1961  *
1962  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1963  * Because:
1964  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1965  *    allocation or
1966  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1967  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1968  *    zone defense algorithm.
1969  *
1970  * If a zone is deemed to be full of pinned pages then just give it a light
1971  * scan then give up on it.
1972  *
1973  * This function returns true if a zone is being reclaimed for a costly
1974  * high-order allocation and compaction is ready to begin. This indicates to
1975  * the caller that it should consider retrying the allocation instead of
1976  * further reclaim.
1977  */
1978 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1979 {
1980 	struct zoneref *z;
1981 	struct zone *zone;
1982 	unsigned long nr_soft_reclaimed;
1983 	unsigned long nr_soft_scanned;
1984 	bool aborted_reclaim = false;
1985 
1986 	/*
1987 	 * If the number of buffer_heads in the machine exceeds the maximum
1988 	 * allowed level, force direct reclaim to scan the highmem zone as
1989 	 * highmem pages could be pinning lowmem pages storing buffer_heads
1990 	 */
1991 	if (buffer_heads_over_limit)
1992 		sc->gfp_mask |= __GFP_HIGHMEM;
1993 
1994 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1995 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1996 		if (!populated_zone(zone))
1997 			continue;
1998 		/*
1999 		 * Take care memory controller reclaiming has small influence
2000 		 * to global LRU.
2001 		 */
2002 		if (global_reclaim(sc)) {
2003 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2004 				continue;
2005 			if (zone->all_unreclaimable &&
2006 					sc->priority != DEF_PRIORITY)
2007 				continue;	/* Let kswapd poll it */
2008 			if (COMPACTION_BUILD) {
2009 				/*
2010 				 * If we already have plenty of memory free for
2011 				 * compaction in this zone, don't free any more.
2012 				 * Even though compaction is invoked for any
2013 				 * non-zero order, only frequent costly order
2014 				 * reclamation is disruptive enough to become a
2015 				 * noticeable problem, like transparent huge
2016 				 * page allocations.
2017 				 */
2018 				if (compaction_ready(zone, sc)) {
2019 					aborted_reclaim = true;
2020 					continue;
2021 				}
2022 			}
2023 			/*
2024 			 * This steals pages from memory cgroups over softlimit
2025 			 * and returns the number of reclaimed pages and
2026 			 * scanned pages. This works for global memory pressure
2027 			 * and balancing, not for a memcg's limit.
2028 			 */
2029 			nr_soft_scanned = 0;
2030 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2031 						sc->order, sc->gfp_mask,
2032 						&nr_soft_scanned);
2033 			sc->nr_reclaimed += nr_soft_reclaimed;
2034 			sc->nr_scanned += nr_soft_scanned;
2035 			/* need some check for avoid more shrink_zone() */
2036 		}
2037 
2038 		shrink_zone(zone, sc);
2039 	}
2040 
2041 	return aborted_reclaim;
2042 }
2043 
2044 static bool zone_reclaimable(struct zone *zone)
2045 {
2046 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2047 }
2048 
2049 /* All zones in zonelist are unreclaimable? */
2050 static bool all_unreclaimable(struct zonelist *zonelist,
2051 		struct scan_control *sc)
2052 {
2053 	struct zoneref *z;
2054 	struct zone *zone;
2055 
2056 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2058 		if (!populated_zone(zone))
2059 			continue;
2060 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2061 			continue;
2062 		if (!zone->all_unreclaimable)
2063 			return false;
2064 	}
2065 
2066 	return true;
2067 }
2068 
2069 /*
2070  * This is the main entry point to direct page reclaim.
2071  *
2072  * If a full scan of the inactive list fails to free enough memory then we
2073  * are "out of memory" and something needs to be killed.
2074  *
2075  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2076  * high - the zone may be full of dirty or under-writeback pages, which this
2077  * caller can't do much about.  We kick the writeback threads and take explicit
2078  * naps in the hope that some of these pages can be written.  But if the
2079  * allocating task holds filesystem locks which prevent writeout this might not
2080  * work, and the allocation attempt will fail.
2081  *
2082  * returns:	0, if no pages reclaimed
2083  * 		else, the number of pages reclaimed
2084  */
2085 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2086 					struct scan_control *sc,
2087 					struct shrink_control *shrink)
2088 {
2089 	unsigned long total_scanned = 0;
2090 	struct reclaim_state *reclaim_state = current->reclaim_state;
2091 	struct zoneref *z;
2092 	struct zone *zone;
2093 	unsigned long writeback_threshold;
2094 	bool aborted_reclaim;
2095 
2096 	delayacct_freepages_start();
2097 
2098 	if (global_reclaim(sc))
2099 		count_vm_event(ALLOCSTALL);
2100 
2101 	do {
2102 		sc->nr_scanned = 0;
2103 		aborted_reclaim = shrink_zones(zonelist, sc);
2104 
2105 		/*
2106 		 * Don't shrink slabs when reclaiming memory from
2107 		 * over limit cgroups
2108 		 */
2109 		if (global_reclaim(sc)) {
2110 			unsigned long lru_pages = 0;
2111 			for_each_zone_zonelist(zone, z, zonelist,
2112 					gfp_zone(sc->gfp_mask)) {
2113 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2114 					continue;
2115 
2116 				lru_pages += zone_reclaimable_pages(zone);
2117 			}
2118 
2119 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2120 			if (reclaim_state) {
2121 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2122 				reclaim_state->reclaimed_slab = 0;
2123 			}
2124 		}
2125 		total_scanned += sc->nr_scanned;
2126 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2127 			goto out;
2128 
2129 		/*
2130 		 * Try to write back as many pages as we just scanned.  This
2131 		 * tends to cause slow streaming writers to write data to the
2132 		 * disk smoothly, at the dirtying rate, which is nice.   But
2133 		 * that's undesirable in laptop mode, where we *want* lumpy
2134 		 * writeout.  So in laptop mode, write out the whole world.
2135 		 */
2136 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2137 		if (total_scanned > writeback_threshold) {
2138 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2139 						WB_REASON_TRY_TO_FREE_PAGES);
2140 			sc->may_writepage = 1;
2141 		}
2142 
2143 		/* Take a nap, wait for some writeback to complete */
2144 		if (!sc->hibernation_mode && sc->nr_scanned &&
2145 		    sc->priority < DEF_PRIORITY - 2) {
2146 			struct zone *preferred_zone;
2147 
2148 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2149 						&cpuset_current_mems_allowed,
2150 						&preferred_zone);
2151 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2152 		}
2153 	} while (--sc->priority >= 0);
2154 
2155 out:
2156 	delayacct_freepages_end();
2157 
2158 	if (sc->nr_reclaimed)
2159 		return sc->nr_reclaimed;
2160 
2161 	/*
2162 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2163 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2164 	 * check.
2165 	 */
2166 	if (oom_killer_disabled)
2167 		return 0;
2168 
2169 	/* Aborted reclaim to try compaction? don't OOM, then */
2170 	if (aborted_reclaim)
2171 		return 1;
2172 
2173 	/* top priority shrink_zones still had more to do? don't OOM, then */
2174 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2175 		return 1;
2176 
2177 	return 0;
2178 }
2179 
2180 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2181 {
2182 	struct zone *zone;
2183 	unsigned long pfmemalloc_reserve = 0;
2184 	unsigned long free_pages = 0;
2185 	int i;
2186 	bool wmark_ok;
2187 
2188 	for (i = 0; i <= ZONE_NORMAL; i++) {
2189 		zone = &pgdat->node_zones[i];
2190 		pfmemalloc_reserve += min_wmark_pages(zone);
2191 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2192 	}
2193 
2194 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2195 
2196 	/* kswapd must be awake if processes are being throttled */
2197 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2198 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2199 						(enum zone_type)ZONE_NORMAL);
2200 		wake_up_interruptible(&pgdat->kswapd_wait);
2201 	}
2202 
2203 	return wmark_ok;
2204 }
2205 
2206 /*
2207  * Throttle direct reclaimers if backing storage is backed by the network
2208  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2209  * depleted. kswapd will continue to make progress and wake the processes
2210  * when the low watermark is reached
2211  */
2212 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2213 					nodemask_t *nodemask)
2214 {
2215 	struct zone *zone;
2216 	int high_zoneidx = gfp_zone(gfp_mask);
2217 	pg_data_t *pgdat;
2218 
2219 	/*
2220 	 * Kernel threads should not be throttled as they may be indirectly
2221 	 * responsible for cleaning pages necessary for reclaim to make forward
2222 	 * progress. kjournald for example may enter direct reclaim while
2223 	 * committing a transaction where throttling it could forcing other
2224 	 * processes to block on log_wait_commit().
2225 	 */
2226 	if (current->flags & PF_KTHREAD)
2227 		return;
2228 
2229 	/* Check if the pfmemalloc reserves are ok */
2230 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2231 	pgdat = zone->zone_pgdat;
2232 	if (pfmemalloc_watermark_ok(pgdat))
2233 		return;
2234 
2235 	/* Account for the throttling */
2236 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2237 
2238 	/*
2239 	 * If the caller cannot enter the filesystem, it's possible that it
2240 	 * is due to the caller holding an FS lock or performing a journal
2241 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2242 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2243 	 * blocked waiting on the same lock. Instead, throttle for up to a
2244 	 * second before continuing.
2245 	 */
2246 	if (!(gfp_mask & __GFP_FS)) {
2247 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2248 			pfmemalloc_watermark_ok(pgdat), HZ);
2249 		return;
2250 	}
2251 
2252 	/* Throttle until kswapd wakes the process */
2253 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2254 		pfmemalloc_watermark_ok(pgdat));
2255 }
2256 
2257 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2258 				gfp_t gfp_mask, nodemask_t *nodemask)
2259 {
2260 	unsigned long nr_reclaimed;
2261 	struct scan_control sc = {
2262 		.gfp_mask = gfp_mask,
2263 		.may_writepage = !laptop_mode,
2264 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2265 		.may_unmap = 1,
2266 		.may_swap = 1,
2267 		.order = order,
2268 		.priority = DEF_PRIORITY,
2269 		.target_mem_cgroup = NULL,
2270 		.nodemask = nodemask,
2271 	};
2272 	struct shrink_control shrink = {
2273 		.gfp_mask = sc.gfp_mask,
2274 	};
2275 
2276 	throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2277 
2278 	/*
2279 	 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2280 	 * that the page allocator does not consider triggering OOM
2281 	 */
2282 	if (fatal_signal_pending(current))
2283 		return 1;
2284 
2285 	trace_mm_vmscan_direct_reclaim_begin(order,
2286 				sc.may_writepage,
2287 				gfp_mask);
2288 
2289 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2290 
2291 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2292 
2293 	return nr_reclaimed;
2294 }
2295 
2296 #ifdef CONFIG_MEMCG
2297 
2298 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2299 						gfp_t gfp_mask, bool noswap,
2300 						struct zone *zone,
2301 						unsigned long *nr_scanned)
2302 {
2303 	struct scan_control sc = {
2304 		.nr_scanned = 0,
2305 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2306 		.may_writepage = !laptop_mode,
2307 		.may_unmap = 1,
2308 		.may_swap = !noswap,
2309 		.order = 0,
2310 		.priority = 0,
2311 		.target_mem_cgroup = memcg,
2312 	};
2313 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2314 
2315 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2316 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2317 
2318 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2319 						      sc.may_writepage,
2320 						      sc.gfp_mask);
2321 
2322 	/*
2323 	 * NOTE: Although we can get the priority field, using it
2324 	 * here is not a good idea, since it limits the pages we can scan.
2325 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2326 	 * will pick up pages from other mem cgroup's as well. We hack
2327 	 * the priority and make it zero.
2328 	 */
2329 	shrink_lruvec(lruvec, &sc);
2330 
2331 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2332 
2333 	*nr_scanned = sc.nr_scanned;
2334 	return sc.nr_reclaimed;
2335 }
2336 
2337 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2338 					   gfp_t gfp_mask,
2339 					   bool noswap)
2340 {
2341 	struct zonelist *zonelist;
2342 	unsigned long nr_reclaimed;
2343 	int nid;
2344 	struct scan_control sc = {
2345 		.may_writepage = !laptop_mode,
2346 		.may_unmap = 1,
2347 		.may_swap = !noswap,
2348 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2349 		.order = 0,
2350 		.priority = DEF_PRIORITY,
2351 		.target_mem_cgroup = memcg,
2352 		.nodemask = NULL, /* we don't care the placement */
2353 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2354 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2355 	};
2356 	struct shrink_control shrink = {
2357 		.gfp_mask = sc.gfp_mask,
2358 	};
2359 
2360 	/*
2361 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2362 	 * take care of from where we get pages. So the node where we start the
2363 	 * scan does not need to be the current node.
2364 	 */
2365 	nid = mem_cgroup_select_victim_node(memcg);
2366 
2367 	zonelist = NODE_DATA(nid)->node_zonelists;
2368 
2369 	trace_mm_vmscan_memcg_reclaim_begin(0,
2370 					    sc.may_writepage,
2371 					    sc.gfp_mask);
2372 
2373 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2374 
2375 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2376 
2377 	return nr_reclaimed;
2378 }
2379 #endif
2380 
2381 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2382 {
2383 	struct mem_cgroup *memcg;
2384 
2385 	if (!total_swap_pages)
2386 		return;
2387 
2388 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2389 	do {
2390 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2391 
2392 		if (inactive_anon_is_low(lruvec))
2393 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2394 					   sc, LRU_ACTIVE_ANON);
2395 
2396 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2397 	} while (memcg);
2398 }
2399 
2400 /*
2401  * pgdat_balanced is used when checking if a node is balanced for high-order
2402  * allocations. Only zones that meet watermarks and are in a zone allowed
2403  * by the callers classzone_idx are added to balanced_pages. The total of
2404  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2405  * for the node to be considered balanced. Forcing all zones to be balanced
2406  * for high orders can cause excessive reclaim when there are imbalanced zones.
2407  * The choice of 25% is due to
2408  *   o a 16M DMA zone that is balanced will not balance a zone on any
2409  *     reasonable sized machine
2410  *   o On all other machines, the top zone must be at least a reasonable
2411  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2412  *     would need to be at least 256M for it to be balance a whole node.
2413  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2414  *     to balance a node on its own. These seemed like reasonable ratios.
2415  */
2416 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2417 						int classzone_idx)
2418 {
2419 	unsigned long present_pages = 0;
2420 	int i;
2421 
2422 	for (i = 0; i <= classzone_idx; i++)
2423 		present_pages += pgdat->node_zones[i].present_pages;
2424 
2425 	/* A special case here: if zone has no page, we think it's balanced */
2426 	return balanced_pages >= (present_pages >> 2);
2427 }
2428 
2429 /*
2430  * Prepare kswapd for sleeping. This verifies that there are no processes
2431  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2432  *
2433  * Returns true if kswapd is ready to sleep
2434  */
2435 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2436 					int classzone_idx)
2437 {
2438 	int i;
2439 	unsigned long balanced = 0;
2440 	bool all_zones_ok = true;
2441 
2442 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2443 	if (remaining)
2444 		return false;
2445 
2446 	/*
2447 	 * There is a potential race between when kswapd checks its watermarks
2448 	 * and a process gets throttled. There is also a potential race if
2449 	 * processes get throttled, kswapd wakes, a large process exits therby
2450 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2451 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2452 	 * so wake them now if necessary. If necessary, processes will wake
2453 	 * kswapd and get throttled again
2454 	 */
2455 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2456 		wake_up(&pgdat->pfmemalloc_wait);
2457 		return false;
2458 	}
2459 
2460 	/* Check the watermark levels */
2461 	for (i = 0; i <= classzone_idx; i++) {
2462 		struct zone *zone = pgdat->node_zones + i;
2463 
2464 		if (!populated_zone(zone))
2465 			continue;
2466 
2467 		/*
2468 		 * balance_pgdat() skips over all_unreclaimable after
2469 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2470 		 * they must be considered balanced here as well if kswapd
2471 		 * is to sleep
2472 		 */
2473 		if (zone->all_unreclaimable) {
2474 			balanced += zone->present_pages;
2475 			continue;
2476 		}
2477 
2478 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2479 							i, 0))
2480 			all_zones_ok = false;
2481 		else
2482 			balanced += zone->present_pages;
2483 	}
2484 
2485 	/*
2486 	 * For high-order requests, the balanced zones must contain at least
2487 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2488 	 * must be balanced
2489 	 */
2490 	if (order)
2491 		return pgdat_balanced(pgdat, balanced, classzone_idx);
2492 	else
2493 		return all_zones_ok;
2494 }
2495 
2496 /*
2497  * For kswapd, balance_pgdat() will work across all this node's zones until
2498  * they are all at high_wmark_pages(zone).
2499  *
2500  * Returns the final order kswapd was reclaiming at
2501  *
2502  * There is special handling here for zones which are full of pinned pages.
2503  * This can happen if the pages are all mlocked, or if they are all used by
2504  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2505  * What we do is to detect the case where all pages in the zone have been
2506  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2507  * dead and from now on, only perform a short scan.  Basically we're polling
2508  * the zone for when the problem goes away.
2509  *
2510  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2511  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2512  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2513  * lower zones regardless of the number of free pages in the lower zones. This
2514  * interoperates with the page allocator fallback scheme to ensure that aging
2515  * of pages is balanced across the zones.
2516  */
2517 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2518 							int *classzone_idx)
2519 {
2520 	int all_zones_ok;
2521 	unsigned long balanced;
2522 	int i;
2523 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2524 	unsigned long total_scanned;
2525 	struct reclaim_state *reclaim_state = current->reclaim_state;
2526 	unsigned long nr_soft_reclaimed;
2527 	unsigned long nr_soft_scanned;
2528 	struct scan_control sc = {
2529 		.gfp_mask = GFP_KERNEL,
2530 		.may_unmap = 1,
2531 		.may_swap = 1,
2532 		/*
2533 		 * kswapd doesn't want to be bailed out while reclaim. because
2534 		 * we want to put equal scanning pressure on each zone.
2535 		 */
2536 		.nr_to_reclaim = ULONG_MAX,
2537 		.order = order,
2538 		.target_mem_cgroup = NULL,
2539 	};
2540 	struct shrink_control shrink = {
2541 		.gfp_mask = sc.gfp_mask,
2542 	};
2543 loop_again:
2544 	total_scanned = 0;
2545 	sc.priority = DEF_PRIORITY;
2546 	sc.nr_reclaimed = 0;
2547 	sc.may_writepage = !laptop_mode;
2548 	count_vm_event(PAGEOUTRUN);
2549 
2550 	do {
2551 		unsigned long lru_pages = 0;
2552 		int has_under_min_watermark_zone = 0;
2553 
2554 		all_zones_ok = 1;
2555 		balanced = 0;
2556 
2557 		/*
2558 		 * Scan in the highmem->dma direction for the highest
2559 		 * zone which needs scanning
2560 		 */
2561 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2562 			struct zone *zone = pgdat->node_zones + i;
2563 
2564 			if (!populated_zone(zone))
2565 				continue;
2566 
2567 			if (zone->all_unreclaimable &&
2568 			    sc.priority != DEF_PRIORITY)
2569 				continue;
2570 
2571 			/*
2572 			 * Do some background aging of the anon list, to give
2573 			 * pages a chance to be referenced before reclaiming.
2574 			 */
2575 			age_active_anon(zone, &sc);
2576 
2577 			/*
2578 			 * If the number of buffer_heads in the machine
2579 			 * exceeds the maximum allowed level and this node
2580 			 * has a highmem zone, force kswapd to reclaim from
2581 			 * it to relieve lowmem pressure.
2582 			 */
2583 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2584 				end_zone = i;
2585 				break;
2586 			}
2587 
2588 			if (!zone_watermark_ok_safe(zone, order,
2589 					high_wmark_pages(zone), 0, 0)) {
2590 				end_zone = i;
2591 				break;
2592 			} else {
2593 				/* If balanced, clear the congested flag */
2594 				zone_clear_flag(zone, ZONE_CONGESTED);
2595 			}
2596 		}
2597 		if (i < 0)
2598 			goto out;
2599 
2600 		for (i = 0; i <= end_zone; i++) {
2601 			struct zone *zone = pgdat->node_zones + i;
2602 
2603 			lru_pages += zone_reclaimable_pages(zone);
2604 		}
2605 
2606 		/*
2607 		 * Now scan the zone in the dma->highmem direction, stopping
2608 		 * at the last zone which needs scanning.
2609 		 *
2610 		 * We do this because the page allocator works in the opposite
2611 		 * direction.  This prevents the page allocator from allocating
2612 		 * pages behind kswapd's direction of progress, which would
2613 		 * cause too much scanning of the lower zones.
2614 		 */
2615 		for (i = 0; i <= end_zone; i++) {
2616 			struct zone *zone = pgdat->node_zones + i;
2617 			int nr_slab, testorder;
2618 			unsigned long balance_gap;
2619 
2620 			if (!populated_zone(zone))
2621 				continue;
2622 
2623 			if (zone->all_unreclaimable &&
2624 			    sc.priority != DEF_PRIORITY)
2625 				continue;
2626 
2627 			sc.nr_scanned = 0;
2628 
2629 			nr_soft_scanned = 0;
2630 			/*
2631 			 * Call soft limit reclaim before calling shrink_zone.
2632 			 */
2633 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2634 							order, sc.gfp_mask,
2635 							&nr_soft_scanned);
2636 			sc.nr_reclaimed += nr_soft_reclaimed;
2637 			total_scanned += nr_soft_scanned;
2638 
2639 			/*
2640 			 * We put equal pressure on every zone, unless
2641 			 * one zone has way too many pages free
2642 			 * already. The "too many pages" is defined
2643 			 * as the high wmark plus a "gap" where the
2644 			 * gap is either the low watermark or 1%
2645 			 * of the zone, whichever is smaller.
2646 			 */
2647 			balance_gap = min(low_wmark_pages(zone),
2648 				(zone->present_pages +
2649 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2650 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2651 			/*
2652 			 * Kswapd reclaims only single pages with compaction
2653 			 * enabled. Trying too hard to reclaim until contiguous
2654 			 * free pages have become available can hurt performance
2655 			 * by evicting too much useful data from memory.
2656 			 * Do not reclaim more than needed for compaction.
2657 			 */
2658 			testorder = order;
2659 			if (COMPACTION_BUILD && order &&
2660 					compaction_suitable(zone, order) !=
2661 						COMPACT_SKIPPED)
2662 				testorder = 0;
2663 
2664 			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2665 				    !zone_watermark_ok_safe(zone, testorder,
2666 					high_wmark_pages(zone) + balance_gap,
2667 					end_zone, 0)) {
2668 				shrink_zone(zone, &sc);
2669 
2670 				reclaim_state->reclaimed_slab = 0;
2671 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2672 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2673 				total_scanned += sc.nr_scanned;
2674 
2675 				if (nr_slab == 0 && !zone_reclaimable(zone))
2676 					zone->all_unreclaimable = 1;
2677 			}
2678 
2679 			/*
2680 			 * If we've done a decent amount of scanning and
2681 			 * the reclaim ratio is low, start doing writepage
2682 			 * even in laptop mode
2683 			 */
2684 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2685 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2686 				sc.may_writepage = 1;
2687 
2688 			if (zone->all_unreclaimable) {
2689 				if (end_zone && end_zone == i)
2690 					end_zone--;
2691 				continue;
2692 			}
2693 
2694 			if (!zone_watermark_ok_safe(zone, testorder,
2695 					high_wmark_pages(zone), end_zone, 0)) {
2696 				all_zones_ok = 0;
2697 				/*
2698 				 * We are still under min water mark.  This
2699 				 * means that we have a GFP_ATOMIC allocation
2700 				 * failure risk. Hurry up!
2701 				 */
2702 				if (!zone_watermark_ok_safe(zone, order,
2703 					    min_wmark_pages(zone), end_zone, 0))
2704 					has_under_min_watermark_zone = 1;
2705 			} else {
2706 				/*
2707 				 * If a zone reaches its high watermark,
2708 				 * consider it to be no longer congested. It's
2709 				 * possible there are dirty pages backed by
2710 				 * congested BDIs but as pressure is relieved,
2711 				 * speculatively avoid congestion waits
2712 				 */
2713 				zone_clear_flag(zone, ZONE_CONGESTED);
2714 				if (i <= *classzone_idx)
2715 					balanced += zone->present_pages;
2716 			}
2717 
2718 		}
2719 
2720 		/*
2721 		 * If the low watermark is met there is no need for processes
2722 		 * to be throttled on pfmemalloc_wait as they should not be
2723 		 * able to safely make forward progress. Wake them
2724 		 */
2725 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2726 				pfmemalloc_watermark_ok(pgdat))
2727 			wake_up(&pgdat->pfmemalloc_wait);
2728 
2729 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2730 			break;		/* kswapd: all done */
2731 		/*
2732 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2733 		 * another pass across the zones.
2734 		 */
2735 		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2736 			if (has_under_min_watermark_zone)
2737 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2738 			else
2739 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2740 		}
2741 
2742 		/*
2743 		 * We do this so kswapd doesn't build up large priorities for
2744 		 * example when it is freeing in parallel with allocators. It
2745 		 * matches the direct reclaim path behaviour in terms of impact
2746 		 * on zone->*_priority.
2747 		 */
2748 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2749 			break;
2750 	} while (--sc.priority >= 0);
2751 out:
2752 
2753 	/*
2754 	 * order-0: All zones must meet high watermark for a balanced node
2755 	 * high-order: Balanced zones must make up at least 25% of the node
2756 	 *             for the node to be balanced
2757 	 */
2758 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2759 		cond_resched();
2760 
2761 		try_to_freeze();
2762 
2763 		/*
2764 		 * Fragmentation may mean that the system cannot be
2765 		 * rebalanced for high-order allocations in all zones.
2766 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2767 		 * it means the zones have been fully scanned and are still
2768 		 * not balanced. For high-order allocations, there is
2769 		 * little point trying all over again as kswapd may
2770 		 * infinite loop.
2771 		 *
2772 		 * Instead, recheck all watermarks at order-0 as they
2773 		 * are the most important. If watermarks are ok, kswapd will go
2774 		 * back to sleep. High-order users can still perform direct
2775 		 * reclaim if they wish.
2776 		 */
2777 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2778 			order = sc.order = 0;
2779 
2780 		goto loop_again;
2781 	}
2782 
2783 	/*
2784 	 * If kswapd was reclaiming at a higher order, it has the option of
2785 	 * sleeping without all zones being balanced. Before it does, it must
2786 	 * ensure that the watermarks for order-0 on *all* zones are met and
2787 	 * that the congestion flags are cleared. The congestion flag must
2788 	 * be cleared as kswapd is the only mechanism that clears the flag
2789 	 * and it is potentially going to sleep here.
2790 	 */
2791 	if (order) {
2792 		int zones_need_compaction = 1;
2793 
2794 		for (i = 0; i <= end_zone; i++) {
2795 			struct zone *zone = pgdat->node_zones + i;
2796 
2797 			if (!populated_zone(zone))
2798 				continue;
2799 
2800 			if (zone->all_unreclaimable &&
2801 			    sc.priority != DEF_PRIORITY)
2802 				continue;
2803 
2804 			/* Would compaction fail due to lack of free memory? */
2805 			if (COMPACTION_BUILD &&
2806 			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2807 				goto loop_again;
2808 
2809 			/* Confirm the zone is balanced for order-0 */
2810 			if (!zone_watermark_ok(zone, 0,
2811 					high_wmark_pages(zone), 0, 0)) {
2812 				order = sc.order = 0;
2813 				goto loop_again;
2814 			}
2815 
2816 			/* Check if the memory needs to be defragmented. */
2817 			if (zone_watermark_ok(zone, order,
2818 				    low_wmark_pages(zone), *classzone_idx, 0))
2819 				zones_need_compaction = 0;
2820 
2821 			/* If balanced, clear the congested flag */
2822 			zone_clear_flag(zone, ZONE_CONGESTED);
2823 		}
2824 
2825 		if (zones_need_compaction)
2826 			compact_pgdat(pgdat, order);
2827 	}
2828 
2829 	/*
2830 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2831 	 * makes a decision on the order we were last reclaiming at. However,
2832 	 * if another caller entered the allocator slow path while kswapd
2833 	 * was awake, order will remain at the higher level
2834 	 */
2835 	*classzone_idx = end_zone;
2836 	return order;
2837 }
2838 
2839 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2840 {
2841 	long remaining = 0;
2842 	DEFINE_WAIT(wait);
2843 
2844 	if (freezing(current) || kthread_should_stop())
2845 		return;
2846 
2847 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2848 
2849 	/* Try to sleep for a short interval */
2850 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2851 		remaining = schedule_timeout(HZ/10);
2852 		finish_wait(&pgdat->kswapd_wait, &wait);
2853 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2854 	}
2855 
2856 	/*
2857 	 * After a short sleep, check if it was a premature sleep. If not, then
2858 	 * go fully to sleep until explicitly woken up.
2859 	 */
2860 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2861 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2862 
2863 		/*
2864 		 * vmstat counters are not perfectly accurate and the estimated
2865 		 * value for counters such as NR_FREE_PAGES can deviate from the
2866 		 * true value by nr_online_cpus * threshold. To avoid the zone
2867 		 * watermarks being breached while under pressure, we reduce the
2868 		 * per-cpu vmstat threshold while kswapd is awake and restore
2869 		 * them before going back to sleep.
2870 		 */
2871 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2872 
2873 		/*
2874 		 * Compaction records what page blocks it recently failed to
2875 		 * isolate pages from and skips them in the future scanning.
2876 		 * When kswapd is going to sleep, it is reasonable to assume
2877 		 * that pages and compaction may succeed so reset the cache.
2878 		 */
2879 		reset_isolation_suitable(pgdat);
2880 
2881 		if (!kthread_should_stop())
2882 			schedule();
2883 
2884 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2885 	} else {
2886 		if (remaining)
2887 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2888 		else
2889 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2890 	}
2891 	finish_wait(&pgdat->kswapd_wait, &wait);
2892 }
2893 
2894 /*
2895  * The background pageout daemon, started as a kernel thread
2896  * from the init process.
2897  *
2898  * This basically trickles out pages so that we have _some_
2899  * free memory available even if there is no other activity
2900  * that frees anything up. This is needed for things like routing
2901  * etc, where we otherwise might have all activity going on in
2902  * asynchronous contexts that cannot page things out.
2903  *
2904  * If there are applications that are active memory-allocators
2905  * (most normal use), this basically shouldn't matter.
2906  */
2907 static int kswapd(void *p)
2908 {
2909 	unsigned long order, new_order;
2910 	unsigned balanced_order;
2911 	int classzone_idx, new_classzone_idx;
2912 	int balanced_classzone_idx;
2913 	pg_data_t *pgdat = (pg_data_t*)p;
2914 	struct task_struct *tsk = current;
2915 
2916 	struct reclaim_state reclaim_state = {
2917 		.reclaimed_slab = 0,
2918 	};
2919 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2920 
2921 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2922 
2923 	if (!cpumask_empty(cpumask))
2924 		set_cpus_allowed_ptr(tsk, cpumask);
2925 	current->reclaim_state = &reclaim_state;
2926 
2927 	/*
2928 	 * Tell the memory management that we're a "memory allocator",
2929 	 * and that if we need more memory we should get access to it
2930 	 * regardless (see "__alloc_pages()"). "kswapd" should
2931 	 * never get caught in the normal page freeing logic.
2932 	 *
2933 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2934 	 * you need a small amount of memory in order to be able to
2935 	 * page out something else, and this flag essentially protects
2936 	 * us from recursively trying to free more memory as we're
2937 	 * trying to free the first piece of memory in the first place).
2938 	 */
2939 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2940 	set_freezable();
2941 
2942 	order = new_order = 0;
2943 	balanced_order = 0;
2944 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2945 	balanced_classzone_idx = classzone_idx;
2946 	for ( ; ; ) {
2947 		int ret;
2948 
2949 		/*
2950 		 * If the last balance_pgdat was unsuccessful it's unlikely a
2951 		 * new request of a similar or harder type will succeed soon
2952 		 * so consider going to sleep on the basis we reclaimed at
2953 		 */
2954 		if (balanced_classzone_idx >= new_classzone_idx &&
2955 					balanced_order == new_order) {
2956 			new_order = pgdat->kswapd_max_order;
2957 			new_classzone_idx = pgdat->classzone_idx;
2958 			pgdat->kswapd_max_order =  0;
2959 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2960 		}
2961 
2962 		if (order < new_order || classzone_idx > new_classzone_idx) {
2963 			/*
2964 			 * Don't sleep if someone wants a larger 'order'
2965 			 * allocation or has tigher zone constraints
2966 			 */
2967 			order = new_order;
2968 			classzone_idx = new_classzone_idx;
2969 		} else {
2970 			kswapd_try_to_sleep(pgdat, balanced_order,
2971 						balanced_classzone_idx);
2972 			order = pgdat->kswapd_max_order;
2973 			classzone_idx = pgdat->classzone_idx;
2974 			new_order = order;
2975 			new_classzone_idx = classzone_idx;
2976 			pgdat->kswapd_max_order = 0;
2977 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2978 		}
2979 
2980 		ret = try_to_freeze();
2981 		if (kthread_should_stop())
2982 			break;
2983 
2984 		/*
2985 		 * We can speed up thawing tasks if we don't call balance_pgdat
2986 		 * after returning from the refrigerator
2987 		 */
2988 		if (!ret) {
2989 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2990 			balanced_classzone_idx = classzone_idx;
2991 			balanced_order = balance_pgdat(pgdat, order,
2992 						&balanced_classzone_idx);
2993 		}
2994 	}
2995 
2996 	current->reclaim_state = NULL;
2997 	return 0;
2998 }
2999 
3000 /*
3001  * A zone is low on free memory, so wake its kswapd task to service it.
3002  */
3003 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3004 {
3005 	pg_data_t *pgdat;
3006 
3007 	if (!populated_zone(zone))
3008 		return;
3009 
3010 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3011 		return;
3012 	pgdat = zone->zone_pgdat;
3013 	if (pgdat->kswapd_max_order < order) {
3014 		pgdat->kswapd_max_order = order;
3015 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3016 	}
3017 	if (!waitqueue_active(&pgdat->kswapd_wait))
3018 		return;
3019 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3020 		return;
3021 
3022 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3023 	wake_up_interruptible(&pgdat->kswapd_wait);
3024 }
3025 
3026 /*
3027  * The reclaimable count would be mostly accurate.
3028  * The less reclaimable pages may be
3029  * - mlocked pages, which will be moved to unevictable list when encountered
3030  * - mapped pages, which may require several travels to be reclaimed
3031  * - dirty pages, which is not "instantly" reclaimable
3032  */
3033 unsigned long global_reclaimable_pages(void)
3034 {
3035 	int nr;
3036 
3037 	nr = global_page_state(NR_ACTIVE_FILE) +
3038 	     global_page_state(NR_INACTIVE_FILE);
3039 
3040 	if (nr_swap_pages > 0)
3041 		nr += global_page_state(NR_ACTIVE_ANON) +
3042 		      global_page_state(NR_INACTIVE_ANON);
3043 
3044 	return nr;
3045 }
3046 
3047 unsigned long zone_reclaimable_pages(struct zone *zone)
3048 {
3049 	int nr;
3050 
3051 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3052 	     zone_page_state(zone, NR_INACTIVE_FILE);
3053 
3054 	if (nr_swap_pages > 0)
3055 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3056 		      zone_page_state(zone, NR_INACTIVE_ANON);
3057 
3058 	return nr;
3059 }
3060 
3061 #ifdef CONFIG_HIBERNATION
3062 /*
3063  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3064  * freed pages.
3065  *
3066  * Rather than trying to age LRUs the aim is to preserve the overall
3067  * LRU order by reclaiming preferentially
3068  * inactive > active > active referenced > active mapped
3069  */
3070 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3071 {
3072 	struct reclaim_state reclaim_state;
3073 	struct scan_control sc = {
3074 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3075 		.may_swap = 1,
3076 		.may_unmap = 1,
3077 		.may_writepage = 1,
3078 		.nr_to_reclaim = nr_to_reclaim,
3079 		.hibernation_mode = 1,
3080 		.order = 0,
3081 		.priority = DEF_PRIORITY,
3082 	};
3083 	struct shrink_control shrink = {
3084 		.gfp_mask = sc.gfp_mask,
3085 	};
3086 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3087 	struct task_struct *p = current;
3088 	unsigned long nr_reclaimed;
3089 
3090 	p->flags |= PF_MEMALLOC;
3091 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3092 	reclaim_state.reclaimed_slab = 0;
3093 	p->reclaim_state = &reclaim_state;
3094 
3095 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3096 
3097 	p->reclaim_state = NULL;
3098 	lockdep_clear_current_reclaim_state();
3099 	p->flags &= ~PF_MEMALLOC;
3100 
3101 	return nr_reclaimed;
3102 }
3103 #endif /* CONFIG_HIBERNATION */
3104 
3105 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3106    not required for correctness.  So if the last cpu in a node goes
3107    away, we get changed to run anywhere: as the first one comes back,
3108    restore their cpu bindings. */
3109 static int __devinit cpu_callback(struct notifier_block *nfb,
3110 				  unsigned long action, void *hcpu)
3111 {
3112 	int nid;
3113 
3114 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3115 		for_each_node_state(nid, N_HIGH_MEMORY) {
3116 			pg_data_t *pgdat = NODE_DATA(nid);
3117 			const struct cpumask *mask;
3118 
3119 			mask = cpumask_of_node(pgdat->node_id);
3120 
3121 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3122 				/* One of our CPUs online: restore mask */
3123 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3124 		}
3125 	}
3126 	return NOTIFY_OK;
3127 }
3128 
3129 /*
3130  * This kswapd start function will be called by init and node-hot-add.
3131  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3132  */
3133 int kswapd_run(int nid)
3134 {
3135 	pg_data_t *pgdat = NODE_DATA(nid);
3136 	int ret = 0;
3137 
3138 	if (pgdat->kswapd)
3139 		return 0;
3140 
3141 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3142 	if (IS_ERR(pgdat->kswapd)) {
3143 		/* failure at boot is fatal */
3144 		BUG_ON(system_state == SYSTEM_BOOTING);
3145 		pgdat->kswapd = NULL;
3146 		pr_err("Failed to start kswapd on node %d\n", nid);
3147 		ret = PTR_ERR(pgdat->kswapd);
3148 	}
3149 	return ret;
3150 }
3151 
3152 /*
3153  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3154  * hold lock_memory_hotplug().
3155  */
3156 void kswapd_stop(int nid)
3157 {
3158 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3159 
3160 	if (kswapd) {
3161 		kthread_stop(kswapd);
3162 		NODE_DATA(nid)->kswapd = NULL;
3163 	}
3164 }
3165 
3166 static int __init kswapd_init(void)
3167 {
3168 	int nid;
3169 
3170 	swap_setup();
3171 	for_each_node_state(nid, N_HIGH_MEMORY)
3172  		kswapd_run(nid);
3173 	hotcpu_notifier(cpu_callback, 0);
3174 	return 0;
3175 }
3176 
3177 module_init(kswapd_init)
3178 
3179 #ifdef CONFIG_NUMA
3180 /*
3181  * Zone reclaim mode
3182  *
3183  * If non-zero call zone_reclaim when the number of free pages falls below
3184  * the watermarks.
3185  */
3186 int zone_reclaim_mode __read_mostly;
3187 
3188 #define RECLAIM_OFF 0
3189 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3190 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3191 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3192 
3193 /*
3194  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3195  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3196  * a zone.
3197  */
3198 #define ZONE_RECLAIM_PRIORITY 4
3199 
3200 /*
3201  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3202  * occur.
3203  */
3204 int sysctl_min_unmapped_ratio = 1;
3205 
3206 /*
3207  * If the number of slab pages in a zone grows beyond this percentage then
3208  * slab reclaim needs to occur.
3209  */
3210 int sysctl_min_slab_ratio = 5;
3211 
3212 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3213 {
3214 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3215 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3216 		zone_page_state(zone, NR_ACTIVE_FILE);
3217 
3218 	/*
3219 	 * It's possible for there to be more file mapped pages than
3220 	 * accounted for by the pages on the file LRU lists because
3221 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3222 	 */
3223 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3224 }
3225 
3226 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3227 static long zone_pagecache_reclaimable(struct zone *zone)
3228 {
3229 	long nr_pagecache_reclaimable;
3230 	long delta = 0;
3231 
3232 	/*
3233 	 * If RECLAIM_SWAP is set, then all file pages are considered
3234 	 * potentially reclaimable. Otherwise, we have to worry about
3235 	 * pages like swapcache and zone_unmapped_file_pages() provides
3236 	 * a better estimate
3237 	 */
3238 	if (zone_reclaim_mode & RECLAIM_SWAP)
3239 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3240 	else
3241 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3242 
3243 	/* If we can't clean pages, remove dirty pages from consideration */
3244 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3245 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3246 
3247 	/* Watch for any possible underflows due to delta */
3248 	if (unlikely(delta > nr_pagecache_reclaimable))
3249 		delta = nr_pagecache_reclaimable;
3250 
3251 	return nr_pagecache_reclaimable - delta;
3252 }
3253 
3254 /*
3255  * Try to free up some pages from this zone through reclaim.
3256  */
3257 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3258 {
3259 	/* Minimum pages needed in order to stay on node */
3260 	const unsigned long nr_pages = 1 << order;
3261 	struct task_struct *p = current;
3262 	struct reclaim_state reclaim_state;
3263 	struct scan_control sc = {
3264 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3265 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3266 		.may_swap = 1,
3267 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3268 				       SWAP_CLUSTER_MAX),
3269 		.gfp_mask = gfp_mask,
3270 		.order = order,
3271 		.priority = ZONE_RECLAIM_PRIORITY,
3272 	};
3273 	struct shrink_control shrink = {
3274 		.gfp_mask = sc.gfp_mask,
3275 	};
3276 	unsigned long nr_slab_pages0, nr_slab_pages1;
3277 
3278 	cond_resched();
3279 	/*
3280 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3281 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3282 	 * and RECLAIM_SWAP.
3283 	 */
3284 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3285 	lockdep_set_current_reclaim_state(gfp_mask);
3286 	reclaim_state.reclaimed_slab = 0;
3287 	p->reclaim_state = &reclaim_state;
3288 
3289 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3290 		/*
3291 		 * Free memory by calling shrink zone with increasing
3292 		 * priorities until we have enough memory freed.
3293 		 */
3294 		do {
3295 			shrink_zone(zone, &sc);
3296 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3297 	}
3298 
3299 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3300 	if (nr_slab_pages0 > zone->min_slab_pages) {
3301 		/*
3302 		 * shrink_slab() does not currently allow us to determine how
3303 		 * many pages were freed in this zone. So we take the current
3304 		 * number of slab pages and shake the slab until it is reduced
3305 		 * by the same nr_pages that we used for reclaiming unmapped
3306 		 * pages.
3307 		 *
3308 		 * Note that shrink_slab will free memory on all zones and may
3309 		 * take a long time.
3310 		 */
3311 		for (;;) {
3312 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3313 
3314 			/* No reclaimable slab or very low memory pressure */
3315 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3316 				break;
3317 
3318 			/* Freed enough memory */
3319 			nr_slab_pages1 = zone_page_state(zone,
3320 							NR_SLAB_RECLAIMABLE);
3321 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3322 				break;
3323 		}
3324 
3325 		/*
3326 		 * Update nr_reclaimed by the number of slab pages we
3327 		 * reclaimed from this zone.
3328 		 */
3329 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3330 		if (nr_slab_pages1 < nr_slab_pages0)
3331 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3332 	}
3333 
3334 	p->reclaim_state = NULL;
3335 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3336 	lockdep_clear_current_reclaim_state();
3337 	return sc.nr_reclaimed >= nr_pages;
3338 }
3339 
3340 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3341 {
3342 	int node_id;
3343 	int ret;
3344 
3345 	/*
3346 	 * Zone reclaim reclaims unmapped file backed pages and
3347 	 * slab pages if we are over the defined limits.
3348 	 *
3349 	 * A small portion of unmapped file backed pages is needed for
3350 	 * file I/O otherwise pages read by file I/O will be immediately
3351 	 * thrown out if the zone is overallocated. So we do not reclaim
3352 	 * if less than a specified percentage of the zone is used by
3353 	 * unmapped file backed pages.
3354 	 */
3355 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3356 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3357 		return ZONE_RECLAIM_FULL;
3358 
3359 	if (zone->all_unreclaimable)
3360 		return ZONE_RECLAIM_FULL;
3361 
3362 	/*
3363 	 * Do not scan if the allocation should not be delayed.
3364 	 */
3365 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3366 		return ZONE_RECLAIM_NOSCAN;
3367 
3368 	/*
3369 	 * Only run zone reclaim on the local zone or on zones that do not
3370 	 * have associated processors. This will favor the local processor
3371 	 * over remote processors and spread off node memory allocations
3372 	 * as wide as possible.
3373 	 */
3374 	node_id = zone_to_nid(zone);
3375 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3376 		return ZONE_RECLAIM_NOSCAN;
3377 
3378 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3379 		return ZONE_RECLAIM_NOSCAN;
3380 
3381 	ret = __zone_reclaim(zone, gfp_mask, order);
3382 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3383 
3384 	if (!ret)
3385 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3386 
3387 	return ret;
3388 }
3389 #endif
3390 
3391 /*
3392  * page_evictable - test whether a page is evictable
3393  * @page: the page to test
3394  *
3395  * Test whether page is evictable--i.e., should be placed on active/inactive
3396  * lists vs unevictable list.
3397  *
3398  * Reasons page might not be evictable:
3399  * (1) page's mapping marked unevictable
3400  * (2) page is part of an mlocked VMA
3401  *
3402  */
3403 int page_evictable(struct page *page)
3404 {
3405 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3406 }
3407 
3408 #ifdef CONFIG_SHMEM
3409 /**
3410  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3411  * @pages:	array of pages to check
3412  * @nr_pages:	number of pages to check
3413  *
3414  * Checks pages for evictability and moves them to the appropriate lru list.
3415  *
3416  * This function is only used for SysV IPC SHM_UNLOCK.
3417  */
3418 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3419 {
3420 	struct lruvec *lruvec;
3421 	struct zone *zone = NULL;
3422 	int pgscanned = 0;
3423 	int pgrescued = 0;
3424 	int i;
3425 
3426 	for (i = 0; i < nr_pages; i++) {
3427 		struct page *page = pages[i];
3428 		struct zone *pagezone;
3429 
3430 		pgscanned++;
3431 		pagezone = page_zone(page);
3432 		if (pagezone != zone) {
3433 			if (zone)
3434 				spin_unlock_irq(&zone->lru_lock);
3435 			zone = pagezone;
3436 			spin_lock_irq(&zone->lru_lock);
3437 		}
3438 		lruvec = mem_cgroup_page_lruvec(page, zone);
3439 
3440 		if (!PageLRU(page) || !PageUnevictable(page))
3441 			continue;
3442 
3443 		if (page_evictable(page)) {
3444 			enum lru_list lru = page_lru_base_type(page);
3445 
3446 			VM_BUG_ON(PageActive(page));
3447 			ClearPageUnevictable(page);
3448 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3449 			add_page_to_lru_list(page, lruvec, lru);
3450 			pgrescued++;
3451 		}
3452 	}
3453 
3454 	if (zone) {
3455 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3456 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3457 		spin_unlock_irq(&zone->lru_lock);
3458 	}
3459 }
3460 #endif /* CONFIG_SHMEM */
3461 
3462 static void warn_scan_unevictable_pages(void)
3463 {
3464 	printk_once(KERN_WARNING
3465 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3466 		    "disabled for lack of a legitimate use case.  If you have "
3467 		    "one, please send an email to linux-mm@kvack.org.\n",
3468 		    current->comm);
3469 }
3470 
3471 /*
3472  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3473  * all nodes' unevictable lists for evictable pages
3474  */
3475 unsigned long scan_unevictable_pages;
3476 
3477 int scan_unevictable_handler(struct ctl_table *table, int write,
3478 			   void __user *buffer,
3479 			   size_t *length, loff_t *ppos)
3480 {
3481 	warn_scan_unevictable_pages();
3482 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3483 	scan_unevictable_pages = 0;
3484 	return 0;
3485 }
3486 
3487 #ifdef CONFIG_NUMA
3488 /*
3489  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3490  * a specified node's per zone unevictable lists for evictable pages.
3491  */
3492 
3493 static ssize_t read_scan_unevictable_node(struct device *dev,
3494 					  struct device_attribute *attr,
3495 					  char *buf)
3496 {
3497 	warn_scan_unevictable_pages();
3498 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3499 }
3500 
3501 static ssize_t write_scan_unevictable_node(struct device *dev,
3502 					   struct device_attribute *attr,
3503 					const char *buf, size_t count)
3504 {
3505 	warn_scan_unevictable_pages();
3506 	return 1;
3507 }
3508 
3509 
3510 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3511 			read_scan_unevictable_node,
3512 			write_scan_unevictable_node);
3513 
3514 int scan_unevictable_register_node(struct node *node)
3515 {
3516 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3517 }
3518 
3519 void scan_unevictable_unregister_node(struct node *node)
3520 {
3521 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3522 }
3523 #endif
3524