1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 53 #include <linux/swapops.h> 54 #include <linux/balloon_compaction.h> 55 56 #include "internal.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/vmscan.h> 60 61 struct scan_control { 62 /* How many pages shrink_list() should reclaim */ 63 unsigned long nr_to_reclaim; 64 65 /* This context's GFP mask */ 66 gfp_t gfp_mask; 67 68 /* Allocation order */ 69 int order; 70 71 /* 72 * Nodemask of nodes allowed by the caller. If NULL, all nodes 73 * are scanned. 74 */ 75 nodemask_t *nodemask; 76 77 /* 78 * The memory cgroup that hit its limit and as a result is the 79 * primary target of this reclaim invocation. 80 */ 81 struct mem_cgroup *target_mem_cgroup; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 unsigned int may_writepage:1; 87 88 /* Can mapped pages be reclaimed? */ 89 unsigned int may_unmap:1; 90 91 /* Can pages be swapped as part of reclaim? */ 92 unsigned int may_swap:1; 93 94 /* Can cgroups be reclaimed below their normal consumption range? */ 95 unsigned int may_thrash:1; 96 97 unsigned int hibernation_mode:1; 98 99 /* One of the zones is ready for compaction */ 100 unsigned int compaction_ready:1; 101 102 /* Incremented by the number of inactive pages that were scanned */ 103 unsigned long nr_scanned; 104 105 /* Number of pages freed so far during a call to shrink_zones() */ 106 unsigned long nr_reclaimed; 107 }; 108 109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 110 111 #ifdef ARCH_HAS_PREFETCH 112 #define prefetch_prev_lru_page(_page, _base, _field) \ 113 do { \ 114 if ((_page)->lru.prev != _base) { \ 115 struct page *prev; \ 116 \ 117 prev = lru_to_page(&(_page->lru)); \ 118 prefetch(&prev->_field); \ 119 } \ 120 } while (0) 121 #else 122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 123 #endif 124 125 #ifdef ARCH_HAS_PREFETCHW 126 #define prefetchw_prev_lru_page(_page, _base, _field) \ 127 do { \ 128 if ((_page)->lru.prev != _base) { \ 129 struct page *prev; \ 130 \ 131 prev = lru_to_page(&(_page->lru)); \ 132 prefetchw(&prev->_field); \ 133 } \ 134 } while (0) 135 #else 136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 137 #endif 138 139 /* 140 * From 0 .. 100. Higher means more swappy. 141 */ 142 int vm_swappiness = 60; 143 /* 144 * The total number of pages which are beyond the high watermark within all 145 * zones. 146 */ 147 unsigned long vm_total_pages; 148 149 static LIST_HEAD(shrinker_list); 150 static DECLARE_RWSEM(shrinker_rwsem); 151 152 #ifdef CONFIG_MEMCG 153 static bool global_reclaim(struct scan_control *sc) 154 { 155 return !sc->target_mem_cgroup; 156 } 157 158 /** 159 * sane_reclaim - is the usual dirty throttling mechanism operational? 160 * @sc: scan_control in question 161 * 162 * The normal page dirty throttling mechanism in balance_dirty_pages() is 163 * completely broken with the legacy memcg and direct stalling in 164 * shrink_page_list() is used for throttling instead, which lacks all the 165 * niceties such as fairness, adaptive pausing, bandwidth proportional 166 * allocation and configurability. 167 * 168 * This function tests whether the vmscan currently in progress can assume 169 * that the normal dirty throttling mechanism is operational. 170 */ 171 static bool sane_reclaim(struct scan_control *sc) 172 { 173 struct mem_cgroup *memcg = sc->target_mem_cgroup; 174 175 if (!memcg) 176 return true; 177 #ifdef CONFIG_CGROUP_WRITEBACK 178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 179 return true; 180 #endif 181 return false; 182 } 183 #else 184 static bool global_reclaim(struct scan_control *sc) 185 { 186 return true; 187 } 188 189 static bool sane_reclaim(struct scan_control *sc) 190 { 191 return true; 192 } 193 #endif 194 195 static unsigned long zone_reclaimable_pages(struct zone *zone) 196 { 197 unsigned long nr; 198 199 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 200 zone_page_state(zone, NR_INACTIVE_FILE); 201 202 if (get_nr_swap_pages() > 0) 203 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 204 zone_page_state(zone, NR_INACTIVE_ANON); 205 206 return nr; 207 } 208 209 bool zone_reclaimable(struct zone *zone) 210 { 211 return zone_page_state(zone, NR_PAGES_SCANNED) < 212 zone_reclaimable_pages(zone) * 6; 213 } 214 215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 216 { 217 if (!mem_cgroup_disabled()) 218 return mem_cgroup_get_lru_size(lruvec, lru); 219 220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 221 } 222 223 /* 224 * Add a shrinker callback to be called from the vm. 225 */ 226 int register_shrinker(struct shrinker *shrinker) 227 { 228 size_t size = sizeof(*shrinker->nr_deferred); 229 230 /* 231 * If we only have one possible node in the system anyway, save 232 * ourselves the trouble and disable NUMA aware behavior. This way we 233 * will save memory and some small loop time later. 234 */ 235 if (nr_node_ids == 1) 236 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 237 238 if (shrinker->flags & SHRINKER_NUMA_AWARE) 239 size *= nr_node_ids; 240 241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 242 if (!shrinker->nr_deferred) 243 return -ENOMEM; 244 245 down_write(&shrinker_rwsem); 246 list_add_tail(&shrinker->list, &shrinker_list); 247 up_write(&shrinker_rwsem); 248 return 0; 249 } 250 EXPORT_SYMBOL(register_shrinker); 251 252 /* 253 * Remove one 254 */ 255 void unregister_shrinker(struct shrinker *shrinker) 256 { 257 down_write(&shrinker_rwsem); 258 list_del(&shrinker->list); 259 up_write(&shrinker_rwsem); 260 kfree(shrinker->nr_deferred); 261 } 262 EXPORT_SYMBOL(unregister_shrinker); 263 264 #define SHRINK_BATCH 128 265 266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 267 struct shrinker *shrinker, 268 unsigned long nr_scanned, 269 unsigned long nr_eligible) 270 { 271 unsigned long freed = 0; 272 unsigned long long delta; 273 long total_scan; 274 long freeable; 275 long nr; 276 long new_nr; 277 int nid = shrinkctl->nid; 278 long batch_size = shrinker->batch ? shrinker->batch 279 : SHRINK_BATCH; 280 281 freeable = shrinker->count_objects(shrinker, shrinkctl); 282 if (freeable == 0) 283 return 0; 284 285 /* 286 * copy the current shrinker scan count into a local variable 287 * and zero it so that other concurrent shrinker invocations 288 * don't also do this scanning work. 289 */ 290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 291 292 total_scan = nr; 293 delta = (4 * nr_scanned) / shrinker->seeks; 294 delta *= freeable; 295 do_div(delta, nr_eligible + 1); 296 total_scan += delta; 297 if (total_scan < 0) { 298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 299 shrinker->scan_objects, total_scan); 300 total_scan = freeable; 301 } 302 303 /* 304 * We need to avoid excessive windup on filesystem shrinkers 305 * due to large numbers of GFP_NOFS allocations causing the 306 * shrinkers to return -1 all the time. This results in a large 307 * nr being built up so when a shrink that can do some work 308 * comes along it empties the entire cache due to nr >>> 309 * freeable. This is bad for sustaining a working set in 310 * memory. 311 * 312 * Hence only allow the shrinker to scan the entire cache when 313 * a large delta change is calculated directly. 314 */ 315 if (delta < freeable / 4) 316 total_scan = min(total_scan, freeable / 2); 317 318 /* 319 * Avoid risking looping forever due to too large nr value: 320 * never try to free more than twice the estimate number of 321 * freeable entries. 322 */ 323 if (total_scan > freeable * 2) 324 total_scan = freeable * 2; 325 326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 327 nr_scanned, nr_eligible, 328 freeable, delta, total_scan); 329 330 /* 331 * Normally, we should not scan less than batch_size objects in one 332 * pass to avoid too frequent shrinker calls, but if the slab has less 333 * than batch_size objects in total and we are really tight on memory, 334 * we will try to reclaim all available objects, otherwise we can end 335 * up failing allocations although there are plenty of reclaimable 336 * objects spread over several slabs with usage less than the 337 * batch_size. 338 * 339 * We detect the "tight on memory" situations by looking at the total 340 * number of objects we want to scan (total_scan). If it is greater 341 * than the total number of objects on slab (freeable), we must be 342 * scanning at high prio and therefore should try to reclaim as much as 343 * possible. 344 */ 345 while (total_scan >= batch_size || 346 total_scan >= freeable) { 347 unsigned long ret; 348 unsigned long nr_to_scan = min(batch_size, total_scan); 349 350 shrinkctl->nr_to_scan = nr_to_scan; 351 ret = shrinker->scan_objects(shrinker, shrinkctl); 352 if (ret == SHRINK_STOP) 353 break; 354 freed += ret; 355 356 count_vm_events(SLABS_SCANNED, nr_to_scan); 357 total_scan -= nr_to_scan; 358 359 cond_resched(); 360 } 361 362 /* 363 * move the unused scan count back into the shrinker in a 364 * manner that handles concurrent updates. If we exhausted the 365 * scan, there is no need to do an update. 366 */ 367 if (total_scan > 0) 368 new_nr = atomic_long_add_return(total_scan, 369 &shrinker->nr_deferred[nid]); 370 else 371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 372 373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 374 return freed; 375 } 376 377 /** 378 * shrink_slab - shrink slab caches 379 * @gfp_mask: allocation context 380 * @nid: node whose slab caches to target 381 * @memcg: memory cgroup whose slab caches to target 382 * @nr_scanned: pressure numerator 383 * @nr_eligible: pressure denominator 384 * 385 * Call the shrink functions to age shrinkable caches. 386 * 387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 388 * unaware shrinkers will receive a node id of 0 instead. 389 * 390 * @memcg specifies the memory cgroup to target. If it is not NULL, 391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 392 * objects from the memory cgroup specified. Otherwise all shrinkers 393 * are called, and memcg aware shrinkers are supposed to scan the 394 * global list then. 395 * 396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 397 * the available objects should be scanned. Page reclaim for example 398 * passes the number of pages scanned and the number of pages on the 399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 400 * when it encountered mapped pages. The ratio is further biased by 401 * the ->seeks setting of the shrink function, which indicates the 402 * cost to recreate an object relative to that of an LRU page. 403 * 404 * Returns the number of reclaimed slab objects. 405 */ 406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 407 struct mem_cgroup *memcg, 408 unsigned long nr_scanned, 409 unsigned long nr_eligible) 410 { 411 struct shrinker *shrinker; 412 unsigned long freed = 0; 413 414 if (memcg && !memcg_kmem_is_active(memcg)) 415 return 0; 416 417 if (nr_scanned == 0) 418 nr_scanned = SWAP_CLUSTER_MAX; 419 420 if (!down_read_trylock(&shrinker_rwsem)) { 421 /* 422 * If we would return 0, our callers would understand that we 423 * have nothing else to shrink and give up trying. By returning 424 * 1 we keep it going and assume we'll be able to shrink next 425 * time. 426 */ 427 freed = 1; 428 goto out; 429 } 430 431 list_for_each_entry(shrinker, &shrinker_list, list) { 432 struct shrink_control sc = { 433 .gfp_mask = gfp_mask, 434 .nid = nid, 435 .memcg = memcg, 436 }; 437 438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE)) 439 continue; 440 441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 442 sc.nid = 0; 443 444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 445 } 446 447 up_read(&shrinker_rwsem); 448 out: 449 cond_resched(); 450 return freed; 451 } 452 453 void drop_slab_node(int nid) 454 { 455 unsigned long freed; 456 457 do { 458 struct mem_cgroup *memcg = NULL; 459 460 freed = 0; 461 do { 462 freed += shrink_slab(GFP_KERNEL, nid, memcg, 463 1000, 1000); 464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 465 } while (freed > 10); 466 } 467 468 void drop_slab(void) 469 { 470 int nid; 471 472 for_each_online_node(nid) 473 drop_slab_node(nid); 474 } 475 476 static inline int is_page_cache_freeable(struct page *page) 477 { 478 /* 479 * A freeable page cache page is referenced only by the caller 480 * that isolated the page, the page cache radix tree and 481 * optional buffer heads at page->private. 482 */ 483 return page_count(page) - page_has_private(page) == 2; 484 } 485 486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 487 { 488 if (current->flags & PF_SWAPWRITE) 489 return 1; 490 if (!inode_write_congested(inode)) 491 return 1; 492 if (inode_to_bdi(inode) == current->backing_dev_info) 493 return 1; 494 return 0; 495 } 496 497 /* 498 * We detected a synchronous write error writing a page out. Probably 499 * -ENOSPC. We need to propagate that into the address_space for a subsequent 500 * fsync(), msync() or close(). 501 * 502 * The tricky part is that after writepage we cannot touch the mapping: nothing 503 * prevents it from being freed up. But we have a ref on the page and once 504 * that page is locked, the mapping is pinned. 505 * 506 * We're allowed to run sleeping lock_page() here because we know the caller has 507 * __GFP_FS. 508 */ 509 static void handle_write_error(struct address_space *mapping, 510 struct page *page, int error) 511 { 512 lock_page(page); 513 if (page_mapping(page) == mapping) 514 mapping_set_error(mapping, error); 515 unlock_page(page); 516 } 517 518 /* possible outcome of pageout() */ 519 typedef enum { 520 /* failed to write page out, page is locked */ 521 PAGE_KEEP, 522 /* move page to the active list, page is locked */ 523 PAGE_ACTIVATE, 524 /* page has been sent to the disk successfully, page is unlocked */ 525 PAGE_SUCCESS, 526 /* page is clean and locked */ 527 PAGE_CLEAN, 528 } pageout_t; 529 530 /* 531 * pageout is called by shrink_page_list() for each dirty page. 532 * Calls ->writepage(). 533 */ 534 static pageout_t pageout(struct page *page, struct address_space *mapping, 535 struct scan_control *sc) 536 { 537 /* 538 * If the page is dirty, only perform writeback if that write 539 * will be non-blocking. To prevent this allocation from being 540 * stalled by pagecache activity. But note that there may be 541 * stalls if we need to run get_block(). We could test 542 * PagePrivate for that. 543 * 544 * If this process is currently in __generic_file_write_iter() against 545 * this page's queue, we can perform writeback even if that 546 * will block. 547 * 548 * If the page is swapcache, write it back even if that would 549 * block, for some throttling. This happens by accident, because 550 * swap_backing_dev_info is bust: it doesn't reflect the 551 * congestion state of the swapdevs. Easy to fix, if needed. 552 */ 553 if (!is_page_cache_freeable(page)) 554 return PAGE_KEEP; 555 if (!mapping) { 556 /* 557 * Some data journaling orphaned pages can have 558 * page->mapping == NULL while being dirty with clean buffers. 559 */ 560 if (page_has_private(page)) { 561 if (try_to_free_buffers(page)) { 562 ClearPageDirty(page); 563 pr_info("%s: orphaned page\n", __func__); 564 return PAGE_CLEAN; 565 } 566 } 567 return PAGE_KEEP; 568 } 569 if (mapping->a_ops->writepage == NULL) 570 return PAGE_ACTIVATE; 571 if (!may_write_to_inode(mapping->host, sc)) 572 return PAGE_KEEP; 573 574 if (clear_page_dirty_for_io(page)) { 575 int res; 576 struct writeback_control wbc = { 577 .sync_mode = WB_SYNC_NONE, 578 .nr_to_write = SWAP_CLUSTER_MAX, 579 .range_start = 0, 580 .range_end = LLONG_MAX, 581 .for_reclaim = 1, 582 }; 583 584 SetPageReclaim(page); 585 res = mapping->a_ops->writepage(page, &wbc); 586 if (res < 0) 587 handle_write_error(mapping, page, res); 588 if (res == AOP_WRITEPAGE_ACTIVATE) { 589 ClearPageReclaim(page); 590 return PAGE_ACTIVATE; 591 } 592 593 if (!PageWriteback(page)) { 594 /* synchronous write or broken a_ops? */ 595 ClearPageReclaim(page); 596 } 597 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 598 inc_zone_page_state(page, NR_VMSCAN_WRITE); 599 return PAGE_SUCCESS; 600 } 601 602 return PAGE_CLEAN; 603 } 604 605 /* 606 * Same as remove_mapping, but if the page is removed from the mapping, it 607 * gets returned with a refcount of 0. 608 */ 609 static int __remove_mapping(struct address_space *mapping, struct page *page, 610 bool reclaimed) 611 { 612 unsigned long flags; 613 struct mem_cgroup *memcg; 614 615 BUG_ON(!PageLocked(page)); 616 BUG_ON(mapping != page_mapping(page)); 617 618 memcg = mem_cgroup_begin_page_stat(page); 619 spin_lock_irqsave(&mapping->tree_lock, flags); 620 /* 621 * The non racy check for a busy page. 622 * 623 * Must be careful with the order of the tests. When someone has 624 * a ref to the page, it may be possible that they dirty it then 625 * drop the reference. So if PageDirty is tested before page_count 626 * here, then the following race may occur: 627 * 628 * get_user_pages(&page); 629 * [user mapping goes away] 630 * write_to(page); 631 * !PageDirty(page) [good] 632 * SetPageDirty(page); 633 * put_page(page); 634 * !page_count(page) [good, discard it] 635 * 636 * [oops, our write_to data is lost] 637 * 638 * Reversing the order of the tests ensures such a situation cannot 639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 640 * load is not satisfied before that of page->_count. 641 * 642 * Note that if SetPageDirty is always performed via set_page_dirty, 643 * and thus under tree_lock, then this ordering is not required. 644 */ 645 if (!page_freeze_refs(page, 2)) 646 goto cannot_free; 647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 648 if (unlikely(PageDirty(page))) { 649 page_unfreeze_refs(page, 2); 650 goto cannot_free; 651 } 652 653 if (PageSwapCache(page)) { 654 swp_entry_t swap = { .val = page_private(page) }; 655 mem_cgroup_swapout(page, swap); 656 __delete_from_swap_cache(page); 657 spin_unlock_irqrestore(&mapping->tree_lock, flags); 658 mem_cgroup_end_page_stat(memcg); 659 swapcache_free(swap); 660 } else { 661 void (*freepage)(struct page *); 662 void *shadow = NULL; 663 664 freepage = mapping->a_ops->freepage; 665 /* 666 * Remember a shadow entry for reclaimed file cache in 667 * order to detect refaults, thus thrashing, later on. 668 * 669 * But don't store shadows in an address space that is 670 * already exiting. This is not just an optizimation, 671 * inode reclaim needs to empty out the radix tree or 672 * the nodes are lost. Don't plant shadows behind its 673 * back. 674 */ 675 if (reclaimed && page_is_file_cache(page) && 676 !mapping_exiting(mapping)) 677 shadow = workingset_eviction(mapping, page); 678 __delete_from_page_cache(page, shadow, memcg); 679 spin_unlock_irqrestore(&mapping->tree_lock, flags); 680 mem_cgroup_end_page_stat(memcg); 681 682 if (freepage != NULL) 683 freepage(page); 684 } 685 686 return 1; 687 688 cannot_free: 689 spin_unlock_irqrestore(&mapping->tree_lock, flags); 690 mem_cgroup_end_page_stat(memcg); 691 return 0; 692 } 693 694 /* 695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 696 * someone else has a ref on the page, abort and return 0. If it was 697 * successfully detached, return 1. Assumes the caller has a single ref on 698 * this page. 699 */ 700 int remove_mapping(struct address_space *mapping, struct page *page) 701 { 702 if (__remove_mapping(mapping, page, false)) { 703 /* 704 * Unfreezing the refcount with 1 rather than 2 effectively 705 * drops the pagecache ref for us without requiring another 706 * atomic operation. 707 */ 708 page_unfreeze_refs(page, 1); 709 return 1; 710 } 711 return 0; 712 } 713 714 /** 715 * putback_lru_page - put previously isolated page onto appropriate LRU list 716 * @page: page to be put back to appropriate lru list 717 * 718 * Add previously isolated @page to appropriate LRU list. 719 * Page may still be unevictable for other reasons. 720 * 721 * lru_lock must not be held, interrupts must be enabled. 722 */ 723 void putback_lru_page(struct page *page) 724 { 725 bool is_unevictable; 726 int was_unevictable = PageUnevictable(page); 727 728 VM_BUG_ON_PAGE(PageLRU(page), page); 729 730 redo: 731 ClearPageUnevictable(page); 732 733 if (page_evictable(page)) { 734 /* 735 * For evictable pages, we can use the cache. 736 * In event of a race, worst case is we end up with an 737 * unevictable page on [in]active list. 738 * We know how to handle that. 739 */ 740 is_unevictable = false; 741 lru_cache_add(page); 742 } else { 743 /* 744 * Put unevictable pages directly on zone's unevictable 745 * list. 746 */ 747 is_unevictable = true; 748 add_page_to_unevictable_list(page); 749 /* 750 * When racing with an mlock or AS_UNEVICTABLE clearing 751 * (page is unlocked) make sure that if the other thread 752 * does not observe our setting of PG_lru and fails 753 * isolation/check_move_unevictable_pages, 754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 755 * the page back to the evictable list. 756 * 757 * The other side is TestClearPageMlocked() or shmem_lock(). 758 */ 759 smp_mb(); 760 } 761 762 /* 763 * page's status can change while we move it among lru. If an evictable 764 * page is on unevictable list, it never be freed. To avoid that, 765 * check after we added it to the list, again. 766 */ 767 if (is_unevictable && page_evictable(page)) { 768 if (!isolate_lru_page(page)) { 769 put_page(page); 770 goto redo; 771 } 772 /* This means someone else dropped this page from LRU 773 * So, it will be freed or putback to LRU again. There is 774 * nothing to do here. 775 */ 776 } 777 778 if (was_unevictable && !is_unevictable) 779 count_vm_event(UNEVICTABLE_PGRESCUED); 780 else if (!was_unevictable && is_unevictable) 781 count_vm_event(UNEVICTABLE_PGCULLED); 782 783 put_page(page); /* drop ref from isolate */ 784 } 785 786 enum page_references { 787 PAGEREF_RECLAIM, 788 PAGEREF_RECLAIM_CLEAN, 789 PAGEREF_KEEP, 790 PAGEREF_ACTIVATE, 791 }; 792 793 static enum page_references page_check_references(struct page *page, 794 struct scan_control *sc) 795 { 796 int referenced_ptes, referenced_page; 797 unsigned long vm_flags; 798 799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 800 &vm_flags); 801 referenced_page = TestClearPageReferenced(page); 802 803 /* 804 * Mlock lost the isolation race with us. Let try_to_unmap() 805 * move the page to the unevictable list. 806 */ 807 if (vm_flags & VM_LOCKED) 808 return PAGEREF_RECLAIM; 809 810 if (referenced_ptes) { 811 if (PageSwapBacked(page)) 812 return PAGEREF_ACTIVATE; 813 /* 814 * All mapped pages start out with page table 815 * references from the instantiating fault, so we need 816 * to look twice if a mapped file page is used more 817 * than once. 818 * 819 * Mark it and spare it for another trip around the 820 * inactive list. Another page table reference will 821 * lead to its activation. 822 * 823 * Note: the mark is set for activated pages as well 824 * so that recently deactivated but used pages are 825 * quickly recovered. 826 */ 827 SetPageReferenced(page); 828 829 if (referenced_page || referenced_ptes > 1) 830 return PAGEREF_ACTIVATE; 831 832 /* 833 * Activate file-backed executable pages after first usage. 834 */ 835 if (vm_flags & VM_EXEC) 836 return PAGEREF_ACTIVATE; 837 838 return PAGEREF_KEEP; 839 } 840 841 /* Reclaim if clean, defer dirty pages to writeback */ 842 if (referenced_page && !PageSwapBacked(page)) 843 return PAGEREF_RECLAIM_CLEAN; 844 845 return PAGEREF_RECLAIM; 846 } 847 848 /* Check if a page is dirty or under writeback */ 849 static void page_check_dirty_writeback(struct page *page, 850 bool *dirty, bool *writeback) 851 { 852 struct address_space *mapping; 853 854 /* 855 * Anonymous pages are not handled by flushers and must be written 856 * from reclaim context. Do not stall reclaim based on them 857 */ 858 if (!page_is_file_cache(page)) { 859 *dirty = false; 860 *writeback = false; 861 return; 862 } 863 864 /* By default assume that the page flags are accurate */ 865 *dirty = PageDirty(page); 866 *writeback = PageWriteback(page); 867 868 /* Verify dirty/writeback state if the filesystem supports it */ 869 if (!page_has_private(page)) 870 return; 871 872 mapping = page_mapping(page); 873 if (mapping && mapping->a_ops->is_dirty_writeback) 874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 875 } 876 877 /* 878 * shrink_page_list() returns the number of reclaimed pages 879 */ 880 static unsigned long shrink_page_list(struct list_head *page_list, 881 struct zone *zone, 882 struct scan_control *sc, 883 enum ttu_flags ttu_flags, 884 unsigned long *ret_nr_dirty, 885 unsigned long *ret_nr_unqueued_dirty, 886 unsigned long *ret_nr_congested, 887 unsigned long *ret_nr_writeback, 888 unsigned long *ret_nr_immediate, 889 bool force_reclaim) 890 { 891 LIST_HEAD(ret_pages); 892 LIST_HEAD(free_pages); 893 int pgactivate = 0; 894 unsigned long nr_unqueued_dirty = 0; 895 unsigned long nr_dirty = 0; 896 unsigned long nr_congested = 0; 897 unsigned long nr_reclaimed = 0; 898 unsigned long nr_writeback = 0; 899 unsigned long nr_immediate = 0; 900 901 cond_resched(); 902 903 while (!list_empty(page_list)) { 904 struct address_space *mapping; 905 struct page *page; 906 int may_enter_fs; 907 enum page_references references = PAGEREF_RECLAIM_CLEAN; 908 bool dirty, writeback; 909 910 cond_resched(); 911 912 page = lru_to_page(page_list); 913 list_del(&page->lru); 914 915 if (!trylock_page(page)) 916 goto keep; 917 918 VM_BUG_ON_PAGE(PageActive(page), page); 919 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 920 921 sc->nr_scanned++; 922 923 if (unlikely(!page_evictable(page))) 924 goto cull_mlocked; 925 926 if (!sc->may_unmap && page_mapped(page)) 927 goto keep_locked; 928 929 /* Double the slab pressure for mapped and swapcache pages */ 930 if (page_mapped(page) || PageSwapCache(page)) 931 sc->nr_scanned++; 932 933 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 935 936 /* 937 * The number of dirty pages determines if a zone is marked 938 * reclaim_congested which affects wait_iff_congested. kswapd 939 * will stall and start writing pages if the tail of the LRU 940 * is all dirty unqueued pages. 941 */ 942 page_check_dirty_writeback(page, &dirty, &writeback); 943 if (dirty || writeback) 944 nr_dirty++; 945 946 if (dirty && !writeback) 947 nr_unqueued_dirty++; 948 949 /* 950 * Treat this page as congested if the underlying BDI is or if 951 * pages are cycling through the LRU so quickly that the 952 * pages marked for immediate reclaim are making it to the 953 * end of the LRU a second time. 954 */ 955 mapping = page_mapping(page); 956 if (((dirty || writeback) && mapping && 957 inode_write_congested(mapping->host)) || 958 (writeback && PageReclaim(page))) 959 nr_congested++; 960 961 /* 962 * If a page at the tail of the LRU is under writeback, there 963 * are three cases to consider. 964 * 965 * 1) If reclaim is encountering an excessive number of pages 966 * under writeback and this page is both under writeback and 967 * PageReclaim then it indicates that pages are being queued 968 * for IO but are being recycled through the LRU before the 969 * IO can complete. Waiting on the page itself risks an 970 * indefinite stall if it is impossible to writeback the 971 * page due to IO error or disconnected storage so instead 972 * note that the LRU is being scanned too quickly and the 973 * caller can stall after page list has been processed. 974 * 975 * 2) Global or new memcg reclaim encounters a page that is 976 * not marked for immediate reclaim, or the caller does not 977 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 978 * not to fs). In this case mark the page for immediate 979 * reclaim and continue scanning. 980 * 981 * Require may_enter_fs because we would wait on fs, which 982 * may not have submitted IO yet. And the loop driver might 983 * enter reclaim, and deadlock if it waits on a page for 984 * which it is needed to do the write (loop masks off 985 * __GFP_IO|__GFP_FS for this reason); but more thought 986 * would probably show more reasons. 987 * 988 * 3) Legacy memcg encounters a page that is already marked 989 * PageReclaim. memcg does not have any dirty pages 990 * throttling so we could easily OOM just because too many 991 * pages are in writeback and there is nothing else to 992 * reclaim. Wait for the writeback to complete. 993 */ 994 if (PageWriteback(page)) { 995 /* Case 1 above */ 996 if (current_is_kswapd() && 997 PageReclaim(page) && 998 test_bit(ZONE_WRITEBACK, &zone->flags)) { 999 nr_immediate++; 1000 goto keep_locked; 1001 1002 /* Case 2 above */ 1003 } else if (sane_reclaim(sc) || 1004 !PageReclaim(page) || !may_enter_fs) { 1005 /* 1006 * This is slightly racy - end_page_writeback() 1007 * might have just cleared PageReclaim, then 1008 * setting PageReclaim here end up interpreted 1009 * as PageReadahead - but that does not matter 1010 * enough to care. What we do want is for this 1011 * page to have PageReclaim set next time memcg 1012 * reclaim reaches the tests above, so it will 1013 * then wait_on_page_writeback() to avoid OOM; 1014 * and it's also appropriate in global reclaim. 1015 */ 1016 SetPageReclaim(page); 1017 nr_writeback++; 1018 goto keep_locked; 1019 1020 /* Case 3 above */ 1021 } else { 1022 unlock_page(page); 1023 wait_on_page_writeback(page); 1024 /* then go back and try same page again */ 1025 list_add_tail(&page->lru, page_list); 1026 continue; 1027 } 1028 } 1029 1030 if (!force_reclaim) 1031 references = page_check_references(page, sc); 1032 1033 switch (references) { 1034 case PAGEREF_ACTIVATE: 1035 goto activate_locked; 1036 case PAGEREF_KEEP: 1037 goto keep_locked; 1038 case PAGEREF_RECLAIM: 1039 case PAGEREF_RECLAIM_CLEAN: 1040 ; /* try to reclaim the page below */ 1041 } 1042 1043 /* 1044 * Anonymous process memory has backing store? 1045 * Try to allocate it some swap space here. 1046 */ 1047 if (PageAnon(page) && !PageSwapCache(page)) { 1048 if (!(sc->gfp_mask & __GFP_IO)) 1049 goto keep_locked; 1050 if (!add_to_swap(page, page_list)) 1051 goto activate_locked; 1052 may_enter_fs = 1; 1053 1054 /* Adding to swap updated mapping */ 1055 mapping = page_mapping(page); 1056 } 1057 1058 /* 1059 * The page is mapped into the page tables of one or more 1060 * processes. Try to unmap it here. 1061 */ 1062 if (page_mapped(page) && mapping) { 1063 switch (try_to_unmap(page, 1064 ttu_flags|TTU_BATCH_FLUSH)) { 1065 case SWAP_FAIL: 1066 goto activate_locked; 1067 case SWAP_AGAIN: 1068 goto keep_locked; 1069 case SWAP_MLOCK: 1070 goto cull_mlocked; 1071 case SWAP_SUCCESS: 1072 ; /* try to free the page below */ 1073 } 1074 } 1075 1076 if (PageDirty(page)) { 1077 /* 1078 * Only kswapd can writeback filesystem pages to 1079 * avoid risk of stack overflow but only writeback 1080 * if many dirty pages have been encountered. 1081 */ 1082 if (page_is_file_cache(page) && 1083 (!current_is_kswapd() || 1084 !test_bit(ZONE_DIRTY, &zone->flags))) { 1085 /* 1086 * Immediately reclaim when written back. 1087 * Similar in principal to deactivate_page() 1088 * except we already have the page isolated 1089 * and know it's dirty 1090 */ 1091 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1092 SetPageReclaim(page); 1093 1094 goto keep_locked; 1095 } 1096 1097 if (references == PAGEREF_RECLAIM_CLEAN) 1098 goto keep_locked; 1099 if (!may_enter_fs) 1100 goto keep_locked; 1101 if (!sc->may_writepage) 1102 goto keep_locked; 1103 1104 /* 1105 * Page is dirty. Flush the TLB if a writable entry 1106 * potentially exists to avoid CPU writes after IO 1107 * starts and then write it out here. 1108 */ 1109 try_to_unmap_flush_dirty(); 1110 switch (pageout(page, mapping, sc)) { 1111 case PAGE_KEEP: 1112 goto keep_locked; 1113 case PAGE_ACTIVATE: 1114 goto activate_locked; 1115 case PAGE_SUCCESS: 1116 if (PageWriteback(page)) 1117 goto keep; 1118 if (PageDirty(page)) 1119 goto keep; 1120 1121 /* 1122 * A synchronous write - probably a ramdisk. Go 1123 * ahead and try to reclaim the page. 1124 */ 1125 if (!trylock_page(page)) 1126 goto keep; 1127 if (PageDirty(page) || PageWriteback(page)) 1128 goto keep_locked; 1129 mapping = page_mapping(page); 1130 case PAGE_CLEAN: 1131 ; /* try to free the page below */ 1132 } 1133 } 1134 1135 /* 1136 * If the page has buffers, try to free the buffer mappings 1137 * associated with this page. If we succeed we try to free 1138 * the page as well. 1139 * 1140 * We do this even if the page is PageDirty(). 1141 * try_to_release_page() does not perform I/O, but it is 1142 * possible for a page to have PageDirty set, but it is actually 1143 * clean (all its buffers are clean). This happens if the 1144 * buffers were written out directly, with submit_bh(). ext3 1145 * will do this, as well as the blockdev mapping. 1146 * try_to_release_page() will discover that cleanness and will 1147 * drop the buffers and mark the page clean - it can be freed. 1148 * 1149 * Rarely, pages can have buffers and no ->mapping. These are 1150 * the pages which were not successfully invalidated in 1151 * truncate_complete_page(). We try to drop those buffers here 1152 * and if that worked, and the page is no longer mapped into 1153 * process address space (page_count == 1) it can be freed. 1154 * Otherwise, leave the page on the LRU so it is swappable. 1155 */ 1156 if (page_has_private(page)) { 1157 if (!try_to_release_page(page, sc->gfp_mask)) 1158 goto activate_locked; 1159 if (!mapping && page_count(page) == 1) { 1160 unlock_page(page); 1161 if (put_page_testzero(page)) 1162 goto free_it; 1163 else { 1164 /* 1165 * rare race with speculative reference. 1166 * the speculative reference will free 1167 * this page shortly, so we may 1168 * increment nr_reclaimed here (and 1169 * leave it off the LRU). 1170 */ 1171 nr_reclaimed++; 1172 continue; 1173 } 1174 } 1175 } 1176 1177 if (!mapping || !__remove_mapping(mapping, page, true)) 1178 goto keep_locked; 1179 1180 /* 1181 * At this point, we have no other references and there is 1182 * no way to pick any more up (removed from LRU, removed 1183 * from pagecache). Can use non-atomic bitops now (and 1184 * we obviously don't have to worry about waking up a process 1185 * waiting on the page lock, because there are no references. 1186 */ 1187 __clear_page_locked(page); 1188 free_it: 1189 nr_reclaimed++; 1190 1191 /* 1192 * Is there need to periodically free_page_list? It would 1193 * appear not as the counts should be low 1194 */ 1195 list_add(&page->lru, &free_pages); 1196 continue; 1197 1198 cull_mlocked: 1199 if (PageSwapCache(page)) 1200 try_to_free_swap(page); 1201 unlock_page(page); 1202 list_add(&page->lru, &ret_pages); 1203 continue; 1204 1205 activate_locked: 1206 /* Not a candidate for swapping, so reclaim swap space. */ 1207 if (PageSwapCache(page) && vm_swap_full()) 1208 try_to_free_swap(page); 1209 VM_BUG_ON_PAGE(PageActive(page), page); 1210 SetPageActive(page); 1211 pgactivate++; 1212 keep_locked: 1213 unlock_page(page); 1214 keep: 1215 list_add(&page->lru, &ret_pages); 1216 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1217 } 1218 1219 mem_cgroup_uncharge_list(&free_pages); 1220 try_to_unmap_flush(); 1221 free_hot_cold_page_list(&free_pages, true); 1222 1223 list_splice(&ret_pages, page_list); 1224 count_vm_events(PGACTIVATE, pgactivate); 1225 1226 *ret_nr_dirty += nr_dirty; 1227 *ret_nr_congested += nr_congested; 1228 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1229 *ret_nr_writeback += nr_writeback; 1230 *ret_nr_immediate += nr_immediate; 1231 return nr_reclaimed; 1232 } 1233 1234 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1235 struct list_head *page_list) 1236 { 1237 struct scan_control sc = { 1238 .gfp_mask = GFP_KERNEL, 1239 .priority = DEF_PRIORITY, 1240 .may_unmap = 1, 1241 }; 1242 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1243 struct page *page, *next; 1244 LIST_HEAD(clean_pages); 1245 1246 list_for_each_entry_safe(page, next, page_list, lru) { 1247 if (page_is_file_cache(page) && !PageDirty(page) && 1248 !isolated_balloon_page(page)) { 1249 ClearPageActive(page); 1250 list_move(&page->lru, &clean_pages); 1251 } 1252 } 1253 1254 ret = shrink_page_list(&clean_pages, zone, &sc, 1255 TTU_UNMAP|TTU_IGNORE_ACCESS, 1256 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1257 list_splice(&clean_pages, page_list); 1258 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1259 return ret; 1260 } 1261 1262 /* 1263 * Attempt to remove the specified page from its LRU. Only take this page 1264 * if it is of the appropriate PageActive status. Pages which are being 1265 * freed elsewhere are also ignored. 1266 * 1267 * page: page to consider 1268 * mode: one of the LRU isolation modes defined above 1269 * 1270 * returns 0 on success, -ve errno on failure. 1271 */ 1272 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1273 { 1274 int ret = -EINVAL; 1275 1276 /* Only take pages on the LRU. */ 1277 if (!PageLRU(page)) 1278 return ret; 1279 1280 /* Compaction should not handle unevictable pages but CMA can do so */ 1281 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1282 return ret; 1283 1284 ret = -EBUSY; 1285 1286 /* 1287 * To minimise LRU disruption, the caller can indicate that it only 1288 * wants to isolate pages it will be able to operate on without 1289 * blocking - clean pages for the most part. 1290 * 1291 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1292 * is used by reclaim when it is cannot write to backing storage 1293 * 1294 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1295 * that it is possible to migrate without blocking 1296 */ 1297 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1298 /* All the caller can do on PageWriteback is block */ 1299 if (PageWriteback(page)) 1300 return ret; 1301 1302 if (PageDirty(page)) { 1303 struct address_space *mapping; 1304 1305 /* ISOLATE_CLEAN means only clean pages */ 1306 if (mode & ISOLATE_CLEAN) 1307 return ret; 1308 1309 /* 1310 * Only pages without mappings or that have a 1311 * ->migratepage callback are possible to migrate 1312 * without blocking 1313 */ 1314 mapping = page_mapping(page); 1315 if (mapping && !mapping->a_ops->migratepage) 1316 return ret; 1317 } 1318 } 1319 1320 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1321 return ret; 1322 1323 if (likely(get_page_unless_zero(page))) { 1324 /* 1325 * Be careful not to clear PageLRU until after we're 1326 * sure the page is not being freed elsewhere -- the 1327 * page release code relies on it. 1328 */ 1329 ClearPageLRU(page); 1330 ret = 0; 1331 } 1332 1333 return ret; 1334 } 1335 1336 /* 1337 * zone->lru_lock is heavily contended. Some of the functions that 1338 * shrink the lists perform better by taking out a batch of pages 1339 * and working on them outside the LRU lock. 1340 * 1341 * For pagecache intensive workloads, this function is the hottest 1342 * spot in the kernel (apart from copy_*_user functions). 1343 * 1344 * Appropriate locks must be held before calling this function. 1345 * 1346 * @nr_to_scan: The number of pages to look through on the list. 1347 * @lruvec: The LRU vector to pull pages from. 1348 * @dst: The temp list to put pages on to. 1349 * @nr_scanned: The number of pages that were scanned. 1350 * @sc: The scan_control struct for this reclaim session 1351 * @mode: One of the LRU isolation modes 1352 * @lru: LRU list id for isolating 1353 * 1354 * returns how many pages were moved onto *@dst. 1355 */ 1356 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1357 struct lruvec *lruvec, struct list_head *dst, 1358 unsigned long *nr_scanned, struct scan_control *sc, 1359 isolate_mode_t mode, enum lru_list lru) 1360 { 1361 struct list_head *src = &lruvec->lists[lru]; 1362 unsigned long nr_taken = 0; 1363 unsigned long scan; 1364 1365 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1366 !list_empty(src); scan++) { 1367 struct page *page; 1368 int nr_pages; 1369 1370 page = lru_to_page(src); 1371 prefetchw_prev_lru_page(page, src, flags); 1372 1373 VM_BUG_ON_PAGE(!PageLRU(page), page); 1374 1375 switch (__isolate_lru_page(page, mode)) { 1376 case 0: 1377 nr_pages = hpage_nr_pages(page); 1378 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1379 list_move(&page->lru, dst); 1380 nr_taken += nr_pages; 1381 break; 1382 1383 case -EBUSY: 1384 /* else it is being freed elsewhere */ 1385 list_move(&page->lru, src); 1386 continue; 1387 1388 default: 1389 BUG(); 1390 } 1391 } 1392 1393 *nr_scanned = scan; 1394 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1395 nr_taken, mode, is_file_lru(lru)); 1396 return nr_taken; 1397 } 1398 1399 /** 1400 * isolate_lru_page - tries to isolate a page from its LRU list 1401 * @page: page to isolate from its LRU list 1402 * 1403 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1404 * vmstat statistic corresponding to whatever LRU list the page was on. 1405 * 1406 * Returns 0 if the page was removed from an LRU list. 1407 * Returns -EBUSY if the page was not on an LRU list. 1408 * 1409 * The returned page will have PageLRU() cleared. If it was found on 1410 * the active list, it will have PageActive set. If it was found on 1411 * the unevictable list, it will have the PageUnevictable bit set. That flag 1412 * may need to be cleared by the caller before letting the page go. 1413 * 1414 * The vmstat statistic corresponding to the list on which the page was 1415 * found will be decremented. 1416 * 1417 * Restrictions: 1418 * (1) Must be called with an elevated refcount on the page. This is a 1419 * fundamentnal difference from isolate_lru_pages (which is called 1420 * without a stable reference). 1421 * (2) the lru_lock must not be held. 1422 * (3) interrupts must be enabled. 1423 */ 1424 int isolate_lru_page(struct page *page) 1425 { 1426 int ret = -EBUSY; 1427 1428 VM_BUG_ON_PAGE(!page_count(page), page); 1429 1430 if (PageLRU(page)) { 1431 struct zone *zone = page_zone(page); 1432 struct lruvec *lruvec; 1433 1434 spin_lock_irq(&zone->lru_lock); 1435 lruvec = mem_cgroup_page_lruvec(page, zone); 1436 if (PageLRU(page)) { 1437 int lru = page_lru(page); 1438 get_page(page); 1439 ClearPageLRU(page); 1440 del_page_from_lru_list(page, lruvec, lru); 1441 ret = 0; 1442 } 1443 spin_unlock_irq(&zone->lru_lock); 1444 } 1445 return ret; 1446 } 1447 1448 /* 1449 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1450 * then get resheduled. When there are massive number of tasks doing page 1451 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1452 * the LRU list will go small and be scanned faster than necessary, leading to 1453 * unnecessary swapping, thrashing and OOM. 1454 */ 1455 static int too_many_isolated(struct zone *zone, int file, 1456 struct scan_control *sc) 1457 { 1458 unsigned long inactive, isolated; 1459 1460 if (current_is_kswapd()) 1461 return 0; 1462 1463 if (!sane_reclaim(sc)) 1464 return 0; 1465 1466 if (file) { 1467 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1468 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1469 } else { 1470 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1471 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1472 } 1473 1474 /* 1475 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1476 * won't get blocked by normal direct-reclaimers, forming a circular 1477 * deadlock. 1478 */ 1479 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1480 inactive >>= 3; 1481 1482 return isolated > inactive; 1483 } 1484 1485 static noinline_for_stack void 1486 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1487 { 1488 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1489 struct zone *zone = lruvec_zone(lruvec); 1490 LIST_HEAD(pages_to_free); 1491 1492 /* 1493 * Put back any unfreeable pages. 1494 */ 1495 while (!list_empty(page_list)) { 1496 struct page *page = lru_to_page(page_list); 1497 int lru; 1498 1499 VM_BUG_ON_PAGE(PageLRU(page), page); 1500 list_del(&page->lru); 1501 if (unlikely(!page_evictable(page))) { 1502 spin_unlock_irq(&zone->lru_lock); 1503 putback_lru_page(page); 1504 spin_lock_irq(&zone->lru_lock); 1505 continue; 1506 } 1507 1508 lruvec = mem_cgroup_page_lruvec(page, zone); 1509 1510 SetPageLRU(page); 1511 lru = page_lru(page); 1512 add_page_to_lru_list(page, lruvec, lru); 1513 1514 if (is_active_lru(lru)) { 1515 int file = is_file_lru(lru); 1516 int numpages = hpage_nr_pages(page); 1517 reclaim_stat->recent_rotated[file] += numpages; 1518 } 1519 if (put_page_testzero(page)) { 1520 __ClearPageLRU(page); 1521 __ClearPageActive(page); 1522 del_page_from_lru_list(page, lruvec, lru); 1523 1524 if (unlikely(PageCompound(page))) { 1525 spin_unlock_irq(&zone->lru_lock); 1526 mem_cgroup_uncharge(page); 1527 (*get_compound_page_dtor(page))(page); 1528 spin_lock_irq(&zone->lru_lock); 1529 } else 1530 list_add(&page->lru, &pages_to_free); 1531 } 1532 } 1533 1534 /* 1535 * To save our caller's stack, now use input list for pages to free. 1536 */ 1537 list_splice(&pages_to_free, page_list); 1538 } 1539 1540 /* 1541 * If a kernel thread (such as nfsd for loop-back mounts) services 1542 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1543 * In that case we should only throttle if the backing device it is 1544 * writing to is congested. In other cases it is safe to throttle. 1545 */ 1546 static int current_may_throttle(void) 1547 { 1548 return !(current->flags & PF_LESS_THROTTLE) || 1549 current->backing_dev_info == NULL || 1550 bdi_write_congested(current->backing_dev_info); 1551 } 1552 1553 /* 1554 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1555 * of reclaimed pages 1556 */ 1557 static noinline_for_stack unsigned long 1558 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1559 struct scan_control *sc, enum lru_list lru) 1560 { 1561 LIST_HEAD(page_list); 1562 unsigned long nr_scanned; 1563 unsigned long nr_reclaimed = 0; 1564 unsigned long nr_taken; 1565 unsigned long nr_dirty = 0; 1566 unsigned long nr_congested = 0; 1567 unsigned long nr_unqueued_dirty = 0; 1568 unsigned long nr_writeback = 0; 1569 unsigned long nr_immediate = 0; 1570 isolate_mode_t isolate_mode = 0; 1571 int file = is_file_lru(lru); 1572 struct zone *zone = lruvec_zone(lruvec); 1573 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1574 1575 while (unlikely(too_many_isolated(zone, file, sc))) { 1576 congestion_wait(BLK_RW_ASYNC, HZ/10); 1577 1578 /* We are about to die and free our memory. Return now. */ 1579 if (fatal_signal_pending(current)) 1580 return SWAP_CLUSTER_MAX; 1581 } 1582 1583 lru_add_drain(); 1584 1585 if (!sc->may_unmap) 1586 isolate_mode |= ISOLATE_UNMAPPED; 1587 if (!sc->may_writepage) 1588 isolate_mode |= ISOLATE_CLEAN; 1589 1590 spin_lock_irq(&zone->lru_lock); 1591 1592 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1593 &nr_scanned, sc, isolate_mode, lru); 1594 1595 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1596 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1597 1598 if (global_reclaim(sc)) { 1599 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1600 if (current_is_kswapd()) 1601 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1602 else 1603 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1604 } 1605 spin_unlock_irq(&zone->lru_lock); 1606 1607 if (nr_taken == 0) 1608 return 0; 1609 1610 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1611 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1612 &nr_writeback, &nr_immediate, 1613 false); 1614 1615 spin_lock_irq(&zone->lru_lock); 1616 1617 reclaim_stat->recent_scanned[file] += nr_taken; 1618 1619 if (global_reclaim(sc)) { 1620 if (current_is_kswapd()) 1621 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1622 nr_reclaimed); 1623 else 1624 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1625 nr_reclaimed); 1626 } 1627 1628 putback_inactive_pages(lruvec, &page_list); 1629 1630 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1631 1632 spin_unlock_irq(&zone->lru_lock); 1633 1634 mem_cgroup_uncharge_list(&page_list); 1635 free_hot_cold_page_list(&page_list, true); 1636 1637 /* 1638 * If reclaim is isolating dirty pages under writeback, it implies 1639 * that the long-lived page allocation rate is exceeding the page 1640 * laundering rate. Either the global limits are not being effective 1641 * at throttling processes due to the page distribution throughout 1642 * zones or there is heavy usage of a slow backing device. The 1643 * only option is to throttle from reclaim context which is not ideal 1644 * as there is no guarantee the dirtying process is throttled in the 1645 * same way balance_dirty_pages() manages. 1646 * 1647 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1648 * of pages under pages flagged for immediate reclaim and stall if any 1649 * are encountered in the nr_immediate check below. 1650 */ 1651 if (nr_writeback && nr_writeback == nr_taken) 1652 set_bit(ZONE_WRITEBACK, &zone->flags); 1653 1654 /* 1655 * Legacy memcg will stall in page writeback so avoid forcibly 1656 * stalling here. 1657 */ 1658 if (sane_reclaim(sc)) { 1659 /* 1660 * Tag a zone as congested if all the dirty pages scanned were 1661 * backed by a congested BDI and wait_iff_congested will stall. 1662 */ 1663 if (nr_dirty && nr_dirty == nr_congested) 1664 set_bit(ZONE_CONGESTED, &zone->flags); 1665 1666 /* 1667 * If dirty pages are scanned that are not queued for IO, it 1668 * implies that flushers are not keeping up. In this case, flag 1669 * the zone ZONE_DIRTY and kswapd will start writing pages from 1670 * reclaim context. 1671 */ 1672 if (nr_unqueued_dirty == nr_taken) 1673 set_bit(ZONE_DIRTY, &zone->flags); 1674 1675 /* 1676 * If kswapd scans pages marked marked for immediate 1677 * reclaim and under writeback (nr_immediate), it implies 1678 * that pages are cycling through the LRU faster than 1679 * they are written so also forcibly stall. 1680 */ 1681 if (nr_immediate && current_may_throttle()) 1682 congestion_wait(BLK_RW_ASYNC, HZ/10); 1683 } 1684 1685 /* 1686 * Stall direct reclaim for IO completions if underlying BDIs or zone 1687 * is congested. Allow kswapd to continue until it starts encountering 1688 * unqueued dirty pages or cycling through the LRU too quickly. 1689 */ 1690 if (!sc->hibernation_mode && !current_is_kswapd() && 1691 current_may_throttle()) 1692 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1693 1694 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1695 zone_idx(zone), 1696 nr_scanned, nr_reclaimed, 1697 sc->priority, 1698 trace_shrink_flags(file)); 1699 return nr_reclaimed; 1700 } 1701 1702 /* 1703 * This moves pages from the active list to the inactive list. 1704 * 1705 * We move them the other way if the page is referenced by one or more 1706 * processes, from rmap. 1707 * 1708 * If the pages are mostly unmapped, the processing is fast and it is 1709 * appropriate to hold zone->lru_lock across the whole operation. But if 1710 * the pages are mapped, the processing is slow (page_referenced()) so we 1711 * should drop zone->lru_lock around each page. It's impossible to balance 1712 * this, so instead we remove the pages from the LRU while processing them. 1713 * It is safe to rely on PG_active against the non-LRU pages in here because 1714 * nobody will play with that bit on a non-LRU page. 1715 * 1716 * The downside is that we have to touch page->_count against each page. 1717 * But we had to alter page->flags anyway. 1718 */ 1719 1720 static void move_active_pages_to_lru(struct lruvec *lruvec, 1721 struct list_head *list, 1722 struct list_head *pages_to_free, 1723 enum lru_list lru) 1724 { 1725 struct zone *zone = lruvec_zone(lruvec); 1726 unsigned long pgmoved = 0; 1727 struct page *page; 1728 int nr_pages; 1729 1730 while (!list_empty(list)) { 1731 page = lru_to_page(list); 1732 lruvec = mem_cgroup_page_lruvec(page, zone); 1733 1734 VM_BUG_ON_PAGE(PageLRU(page), page); 1735 SetPageLRU(page); 1736 1737 nr_pages = hpage_nr_pages(page); 1738 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1739 list_move(&page->lru, &lruvec->lists[lru]); 1740 pgmoved += nr_pages; 1741 1742 if (put_page_testzero(page)) { 1743 __ClearPageLRU(page); 1744 __ClearPageActive(page); 1745 del_page_from_lru_list(page, lruvec, lru); 1746 1747 if (unlikely(PageCompound(page))) { 1748 spin_unlock_irq(&zone->lru_lock); 1749 mem_cgroup_uncharge(page); 1750 (*get_compound_page_dtor(page))(page); 1751 spin_lock_irq(&zone->lru_lock); 1752 } else 1753 list_add(&page->lru, pages_to_free); 1754 } 1755 } 1756 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1757 if (!is_active_lru(lru)) 1758 __count_vm_events(PGDEACTIVATE, pgmoved); 1759 } 1760 1761 static void shrink_active_list(unsigned long nr_to_scan, 1762 struct lruvec *lruvec, 1763 struct scan_control *sc, 1764 enum lru_list lru) 1765 { 1766 unsigned long nr_taken; 1767 unsigned long nr_scanned; 1768 unsigned long vm_flags; 1769 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1770 LIST_HEAD(l_active); 1771 LIST_HEAD(l_inactive); 1772 struct page *page; 1773 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1774 unsigned long nr_rotated = 0; 1775 isolate_mode_t isolate_mode = 0; 1776 int file = is_file_lru(lru); 1777 struct zone *zone = lruvec_zone(lruvec); 1778 1779 lru_add_drain(); 1780 1781 if (!sc->may_unmap) 1782 isolate_mode |= ISOLATE_UNMAPPED; 1783 if (!sc->may_writepage) 1784 isolate_mode |= ISOLATE_CLEAN; 1785 1786 spin_lock_irq(&zone->lru_lock); 1787 1788 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1789 &nr_scanned, sc, isolate_mode, lru); 1790 if (global_reclaim(sc)) 1791 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1792 1793 reclaim_stat->recent_scanned[file] += nr_taken; 1794 1795 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1796 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1797 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1798 spin_unlock_irq(&zone->lru_lock); 1799 1800 while (!list_empty(&l_hold)) { 1801 cond_resched(); 1802 page = lru_to_page(&l_hold); 1803 list_del(&page->lru); 1804 1805 if (unlikely(!page_evictable(page))) { 1806 putback_lru_page(page); 1807 continue; 1808 } 1809 1810 if (unlikely(buffer_heads_over_limit)) { 1811 if (page_has_private(page) && trylock_page(page)) { 1812 if (page_has_private(page)) 1813 try_to_release_page(page, 0); 1814 unlock_page(page); 1815 } 1816 } 1817 1818 if (page_referenced(page, 0, sc->target_mem_cgroup, 1819 &vm_flags)) { 1820 nr_rotated += hpage_nr_pages(page); 1821 /* 1822 * Identify referenced, file-backed active pages and 1823 * give them one more trip around the active list. So 1824 * that executable code get better chances to stay in 1825 * memory under moderate memory pressure. Anon pages 1826 * are not likely to be evicted by use-once streaming 1827 * IO, plus JVM can create lots of anon VM_EXEC pages, 1828 * so we ignore them here. 1829 */ 1830 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1831 list_add(&page->lru, &l_active); 1832 continue; 1833 } 1834 } 1835 1836 ClearPageActive(page); /* we are de-activating */ 1837 list_add(&page->lru, &l_inactive); 1838 } 1839 1840 /* 1841 * Move pages back to the lru list. 1842 */ 1843 spin_lock_irq(&zone->lru_lock); 1844 /* 1845 * Count referenced pages from currently used mappings as rotated, 1846 * even though only some of them are actually re-activated. This 1847 * helps balance scan pressure between file and anonymous pages in 1848 * get_scan_count. 1849 */ 1850 reclaim_stat->recent_rotated[file] += nr_rotated; 1851 1852 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1853 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1854 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1855 spin_unlock_irq(&zone->lru_lock); 1856 1857 mem_cgroup_uncharge_list(&l_hold); 1858 free_hot_cold_page_list(&l_hold, true); 1859 } 1860 1861 #ifdef CONFIG_SWAP 1862 static bool inactive_anon_is_low_global(struct zone *zone) 1863 { 1864 unsigned long active, inactive; 1865 1866 active = zone_page_state(zone, NR_ACTIVE_ANON); 1867 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1868 1869 return inactive * zone->inactive_ratio < active; 1870 } 1871 1872 /** 1873 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1874 * @lruvec: LRU vector to check 1875 * 1876 * Returns true if the zone does not have enough inactive anon pages, 1877 * meaning some active anon pages need to be deactivated. 1878 */ 1879 static bool inactive_anon_is_low(struct lruvec *lruvec) 1880 { 1881 /* 1882 * If we don't have swap space, anonymous page deactivation 1883 * is pointless. 1884 */ 1885 if (!total_swap_pages) 1886 return false; 1887 1888 if (!mem_cgroup_disabled()) 1889 return mem_cgroup_inactive_anon_is_low(lruvec); 1890 1891 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1892 } 1893 #else 1894 static inline bool inactive_anon_is_low(struct lruvec *lruvec) 1895 { 1896 return false; 1897 } 1898 #endif 1899 1900 /** 1901 * inactive_file_is_low - check if file pages need to be deactivated 1902 * @lruvec: LRU vector to check 1903 * 1904 * When the system is doing streaming IO, memory pressure here 1905 * ensures that active file pages get deactivated, until more 1906 * than half of the file pages are on the inactive list. 1907 * 1908 * Once we get to that situation, protect the system's working 1909 * set from being evicted by disabling active file page aging. 1910 * 1911 * This uses a different ratio than the anonymous pages, because 1912 * the page cache uses a use-once replacement algorithm. 1913 */ 1914 static bool inactive_file_is_low(struct lruvec *lruvec) 1915 { 1916 unsigned long inactive; 1917 unsigned long active; 1918 1919 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1920 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1921 1922 return active > inactive; 1923 } 1924 1925 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1926 { 1927 if (is_file_lru(lru)) 1928 return inactive_file_is_low(lruvec); 1929 else 1930 return inactive_anon_is_low(lruvec); 1931 } 1932 1933 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1934 struct lruvec *lruvec, struct scan_control *sc) 1935 { 1936 if (is_active_lru(lru)) { 1937 if (inactive_list_is_low(lruvec, lru)) 1938 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1939 return 0; 1940 } 1941 1942 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1943 } 1944 1945 enum scan_balance { 1946 SCAN_EQUAL, 1947 SCAN_FRACT, 1948 SCAN_ANON, 1949 SCAN_FILE, 1950 }; 1951 1952 /* 1953 * Determine how aggressively the anon and file LRU lists should be 1954 * scanned. The relative value of each set of LRU lists is determined 1955 * by looking at the fraction of the pages scanned we did rotate back 1956 * onto the active list instead of evict. 1957 * 1958 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1959 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1960 */ 1961 static void get_scan_count(struct lruvec *lruvec, int swappiness, 1962 struct scan_control *sc, unsigned long *nr, 1963 unsigned long *lru_pages) 1964 { 1965 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1966 u64 fraction[2]; 1967 u64 denominator = 0; /* gcc */ 1968 struct zone *zone = lruvec_zone(lruvec); 1969 unsigned long anon_prio, file_prio; 1970 enum scan_balance scan_balance; 1971 unsigned long anon, file; 1972 bool force_scan = false; 1973 unsigned long ap, fp; 1974 enum lru_list lru; 1975 bool some_scanned; 1976 int pass; 1977 1978 /* 1979 * If the zone or memcg is small, nr[l] can be 0. This 1980 * results in no scanning on this priority and a potential 1981 * priority drop. Global direct reclaim can go to the next 1982 * zone and tends to have no problems. Global kswapd is for 1983 * zone balancing and it needs to scan a minimum amount. When 1984 * reclaiming for a memcg, a priority drop can cause high 1985 * latencies, so it's better to scan a minimum amount there as 1986 * well. 1987 */ 1988 if (current_is_kswapd()) { 1989 if (!zone_reclaimable(zone)) 1990 force_scan = true; 1991 if (!mem_cgroup_lruvec_online(lruvec)) 1992 force_scan = true; 1993 } 1994 if (!global_reclaim(sc)) 1995 force_scan = true; 1996 1997 /* If we have no swap space, do not bother scanning anon pages. */ 1998 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1999 scan_balance = SCAN_FILE; 2000 goto out; 2001 } 2002 2003 /* 2004 * Global reclaim will swap to prevent OOM even with no 2005 * swappiness, but memcg users want to use this knob to 2006 * disable swapping for individual groups completely when 2007 * using the memory controller's swap limit feature would be 2008 * too expensive. 2009 */ 2010 if (!global_reclaim(sc) && !swappiness) { 2011 scan_balance = SCAN_FILE; 2012 goto out; 2013 } 2014 2015 /* 2016 * Do not apply any pressure balancing cleverness when the 2017 * system is close to OOM, scan both anon and file equally 2018 * (unless the swappiness setting disagrees with swapping). 2019 */ 2020 if (!sc->priority && swappiness) { 2021 scan_balance = SCAN_EQUAL; 2022 goto out; 2023 } 2024 2025 /* 2026 * Prevent the reclaimer from falling into the cache trap: as 2027 * cache pages start out inactive, every cache fault will tip 2028 * the scan balance towards the file LRU. And as the file LRU 2029 * shrinks, so does the window for rotation from references. 2030 * This means we have a runaway feedback loop where a tiny 2031 * thrashing file LRU becomes infinitely more attractive than 2032 * anon pages. Try to detect this based on file LRU size. 2033 */ 2034 if (global_reclaim(sc)) { 2035 unsigned long zonefile; 2036 unsigned long zonefree; 2037 2038 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2039 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2040 zone_page_state(zone, NR_INACTIVE_FILE); 2041 2042 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2043 scan_balance = SCAN_ANON; 2044 goto out; 2045 } 2046 } 2047 2048 /* 2049 * There is enough inactive page cache, do not reclaim 2050 * anything from the anonymous working set right now. 2051 */ 2052 if (!inactive_file_is_low(lruvec)) { 2053 scan_balance = SCAN_FILE; 2054 goto out; 2055 } 2056 2057 scan_balance = SCAN_FRACT; 2058 2059 /* 2060 * With swappiness at 100, anonymous and file have the same priority. 2061 * This scanning priority is essentially the inverse of IO cost. 2062 */ 2063 anon_prio = swappiness; 2064 file_prio = 200 - anon_prio; 2065 2066 /* 2067 * OK, so we have swap space and a fair amount of page cache 2068 * pages. We use the recently rotated / recently scanned 2069 * ratios to determine how valuable each cache is. 2070 * 2071 * Because workloads change over time (and to avoid overflow) 2072 * we keep these statistics as a floating average, which ends 2073 * up weighing recent references more than old ones. 2074 * 2075 * anon in [0], file in [1] 2076 */ 2077 2078 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 2079 get_lru_size(lruvec, LRU_INACTIVE_ANON); 2080 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 2081 get_lru_size(lruvec, LRU_INACTIVE_FILE); 2082 2083 spin_lock_irq(&zone->lru_lock); 2084 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2085 reclaim_stat->recent_scanned[0] /= 2; 2086 reclaim_stat->recent_rotated[0] /= 2; 2087 } 2088 2089 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2090 reclaim_stat->recent_scanned[1] /= 2; 2091 reclaim_stat->recent_rotated[1] /= 2; 2092 } 2093 2094 /* 2095 * The amount of pressure on anon vs file pages is inversely 2096 * proportional to the fraction of recently scanned pages on 2097 * each list that were recently referenced and in active use. 2098 */ 2099 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2100 ap /= reclaim_stat->recent_rotated[0] + 1; 2101 2102 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2103 fp /= reclaim_stat->recent_rotated[1] + 1; 2104 spin_unlock_irq(&zone->lru_lock); 2105 2106 fraction[0] = ap; 2107 fraction[1] = fp; 2108 denominator = ap + fp + 1; 2109 out: 2110 some_scanned = false; 2111 /* Only use force_scan on second pass. */ 2112 for (pass = 0; !some_scanned && pass < 2; pass++) { 2113 *lru_pages = 0; 2114 for_each_evictable_lru(lru) { 2115 int file = is_file_lru(lru); 2116 unsigned long size; 2117 unsigned long scan; 2118 2119 size = get_lru_size(lruvec, lru); 2120 scan = size >> sc->priority; 2121 2122 if (!scan && pass && force_scan) 2123 scan = min(size, SWAP_CLUSTER_MAX); 2124 2125 switch (scan_balance) { 2126 case SCAN_EQUAL: 2127 /* Scan lists relative to size */ 2128 break; 2129 case SCAN_FRACT: 2130 /* 2131 * Scan types proportional to swappiness and 2132 * their relative recent reclaim efficiency. 2133 */ 2134 scan = div64_u64(scan * fraction[file], 2135 denominator); 2136 break; 2137 case SCAN_FILE: 2138 case SCAN_ANON: 2139 /* Scan one type exclusively */ 2140 if ((scan_balance == SCAN_FILE) != file) { 2141 size = 0; 2142 scan = 0; 2143 } 2144 break; 2145 default: 2146 /* Look ma, no brain */ 2147 BUG(); 2148 } 2149 2150 *lru_pages += size; 2151 nr[lru] = scan; 2152 2153 /* 2154 * Skip the second pass and don't force_scan, 2155 * if we found something to scan. 2156 */ 2157 some_scanned |= !!scan; 2158 } 2159 } 2160 } 2161 2162 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2163 static void init_tlb_ubc(void) 2164 { 2165 /* 2166 * This deliberately does not clear the cpumask as it's expensive 2167 * and unnecessary. If there happens to be data in there then the 2168 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2169 * then will be cleared. 2170 */ 2171 current->tlb_ubc.flush_required = false; 2172 } 2173 #else 2174 static inline void init_tlb_ubc(void) 2175 { 2176 } 2177 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2178 2179 /* 2180 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2181 */ 2182 static void shrink_lruvec(struct lruvec *lruvec, int swappiness, 2183 struct scan_control *sc, unsigned long *lru_pages) 2184 { 2185 unsigned long nr[NR_LRU_LISTS]; 2186 unsigned long targets[NR_LRU_LISTS]; 2187 unsigned long nr_to_scan; 2188 enum lru_list lru; 2189 unsigned long nr_reclaimed = 0; 2190 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2191 struct blk_plug plug; 2192 bool scan_adjusted; 2193 2194 get_scan_count(lruvec, swappiness, sc, nr, lru_pages); 2195 2196 /* Record the original scan target for proportional adjustments later */ 2197 memcpy(targets, nr, sizeof(nr)); 2198 2199 /* 2200 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2201 * event that can occur when there is little memory pressure e.g. 2202 * multiple streaming readers/writers. Hence, we do not abort scanning 2203 * when the requested number of pages are reclaimed when scanning at 2204 * DEF_PRIORITY on the assumption that the fact we are direct 2205 * reclaiming implies that kswapd is not keeping up and it is best to 2206 * do a batch of work at once. For memcg reclaim one check is made to 2207 * abort proportional reclaim if either the file or anon lru has already 2208 * dropped to zero at the first pass. 2209 */ 2210 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2211 sc->priority == DEF_PRIORITY); 2212 2213 init_tlb_ubc(); 2214 2215 blk_start_plug(&plug); 2216 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2217 nr[LRU_INACTIVE_FILE]) { 2218 unsigned long nr_anon, nr_file, percentage; 2219 unsigned long nr_scanned; 2220 2221 for_each_evictable_lru(lru) { 2222 if (nr[lru]) { 2223 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2224 nr[lru] -= nr_to_scan; 2225 2226 nr_reclaimed += shrink_list(lru, nr_to_scan, 2227 lruvec, sc); 2228 } 2229 } 2230 2231 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2232 continue; 2233 2234 /* 2235 * For kswapd and memcg, reclaim at least the number of pages 2236 * requested. Ensure that the anon and file LRUs are scanned 2237 * proportionally what was requested by get_scan_count(). We 2238 * stop reclaiming one LRU and reduce the amount scanning 2239 * proportional to the original scan target. 2240 */ 2241 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2242 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2243 2244 /* 2245 * It's just vindictive to attack the larger once the smaller 2246 * has gone to zero. And given the way we stop scanning the 2247 * smaller below, this makes sure that we only make one nudge 2248 * towards proportionality once we've got nr_to_reclaim. 2249 */ 2250 if (!nr_file || !nr_anon) 2251 break; 2252 2253 if (nr_file > nr_anon) { 2254 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2255 targets[LRU_ACTIVE_ANON] + 1; 2256 lru = LRU_BASE; 2257 percentage = nr_anon * 100 / scan_target; 2258 } else { 2259 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2260 targets[LRU_ACTIVE_FILE] + 1; 2261 lru = LRU_FILE; 2262 percentage = nr_file * 100 / scan_target; 2263 } 2264 2265 /* Stop scanning the smaller of the LRU */ 2266 nr[lru] = 0; 2267 nr[lru + LRU_ACTIVE] = 0; 2268 2269 /* 2270 * Recalculate the other LRU scan count based on its original 2271 * scan target and the percentage scanning already complete 2272 */ 2273 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2274 nr_scanned = targets[lru] - nr[lru]; 2275 nr[lru] = targets[lru] * (100 - percentage) / 100; 2276 nr[lru] -= min(nr[lru], nr_scanned); 2277 2278 lru += LRU_ACTIVE; 2279 nr_scanned = targets[lru] - nr[lru]; 2280 nr[lru] = targets[lru] * (100 - percentage) / 100; 2281 nr[lru] -= min(nr[lru], nr_scanned); 2282 2283 scan_adjusted = true; 2284 } 2285 blk_finish_plug(&plug); 2286 sc->nr_reclaimed += nr_reclaimed; 2287 2288 /* 2289 * Even if we did not try to evict anon pages at all, we want to 2290 * rebalance the anon lru active/inactive ratio. 2291 */ 2292 if (inactive_anon_is_low(lruvec)) 2293 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2294 sc, LRU_ACTIVE_ANON); 2295 2296 throttle_vm_writeout(sc->gfp_mask); 2297 } 2298 2299 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2300 static bool in_reclaim_compaction(struct scan_control *sc) 2301 { 2302 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2303 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2304 sc->priority < DEF_PRIORITY - 2)) 2305 return true; 2306 2307 return false; 2308 } 2309 2310 /* 2311 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2312 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2313 * true if more pages should be reclaimed such that when the page allocator 2314 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2315 * It will give up earlier than that if there is difficulty reclaiming pages. 2316 */ 2317 static inline bool should_continue_reclaim(struct zone *zone, 2318 unsigned long nr_reclaimed, 2319 unsigned long nr_scanned, 2320 struct scan_control *sc) 2321 { 2322 unsigned long pages_for_compaction; 2323 unsigned long inactive_lru_pages; 2324 2325 /* If not in reclaim/compaction mode, stop */ 2326 if (!in_reclaim_compaction(sc)) 2327 return false; 2328 2329 /* Consider stopping depending on scan and reclaim activity */ 2330 if (sc->gfp_mask & __GFP_REPEAT) { 2331 /* 2332 * For __GFP_REPEAT allocations, stop reclaiming if the 2333 * full LRU list has been scanned and we are still failing 2334 * to reclaim pages. This full LRU scan is potentially 2335 * expensive but a __GFP_REPEAT caller really wants to succeed 2336 */ 2337 if (!nr_reclaimed && !nr_scanned) 2338 return false; 2339 } else { 2340 /* 2341 * For non-__GFP_REPEAT allocations which can presumably 2342 * fail without consequence, stop if we failed to reclaim 2343 * any pages from the last SWAP_CLUSTER_MAX number of 2344 * pages that were scanned. This will return to the 2345 * caller faster at the risk reclaim/compaction and 2346 * the resulting allocation attempt fails 2347 */ 2348 if (!nr_reclaimed) 2349 return false; 2350 } 2351 2352 /* 2353 * If we have not reclaimed enough pages for compaction and the 2354 * inactive lists are large enough, continue reclaiming 2355 */ 2356 pages_for_compaction = (2UL << sc->order); 2357 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2358 if (get_nr_swap_pages() > 0) 2359 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2360 if (sc->nr_reclaimed < pages_for_compaction && 2361 inactive_lru_pages > pages_for_compaction) 2362 return true; 2363 2364 /* If compaction would go ahead or the allocation would succeed, stop */ 2365 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2366 case COMPACT_PARTIAL: 2367 case COMPACT_CONTINUE: 2368 return false; 2369 default: 2370 return true; 2371 } 2372 } 2373 2374 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2375 bool is_classzone) 2376 { 2377 struct reclaim_state *reclaim_state = current->reclaim_state; 2378 unsigned long nr_reclaimed, nr_scanned; 2379 bool reclaimable = false; 2380 2381 do { 2382 struct mem_cgroup *root = sc->target_mem_cgroup; 2383 struct mem_cgroup_reclaim_cookie reclaim = { 2384 .zone = zone, 2385 .priority = sc->priority, 2386 }; 2387 unsigned long zone_lru_pages = 0; 2388 struct mem_cgroup *memcg; 2389 2390 nr_reclaimed = sc->nr_reclaimed; 2391 nr_scanned = sc->nr_scanned; 2392 2393 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2394 do { 2395 unsigned long lru_pages; 2396 unsigned long scanned; 2397 struct lruvec *lruvec; 2398 int swappiness; 2399 2400 if (mem_cgroup_low(root, memcg)) { 2401 if (!sc->may_thrash) 2402 continue; 2403 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2404 } 2405 2406 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2407 swappiness = mem_cgroup_swappiness(memcg); 2408 scanned = sc->nr_scanned; 2409 2410 shrink_lruvec(lruvec, swappiness, sc, &lru_pages); 2411 zone_lru_pages += lru_pages; 2412 2413 if (memcg && is_classzone) 2414 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2415 memcg, sc->nr_scanned - scanned, 2416 lru_pages); 2417 2418 /* 2419 * Direct reclaim and kswapd have to scan all memory 2420 * cgroups to fulfill the overall scan target for the 2421 * zone. 2422 * 2423 * Limit reclaim, on the other hand, only cares about 2424 * nr_to_reclaim pages to be reclaimed and it will 2425 * retry with decreasing priority if one round over the 2426 * whole hierarchy is not sufficient. 2427 */ 2428 if (!global_reclaim(sc) && 2429 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2430 mem_cgroup_iter_break(root, memcg); 2431 break; 2432 } 2433 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2434 2435 /* 2436 * Shrink the slab caches in the same proportion that 2437 * the eligible LRU pages were scanned. 2438 */ 2439 if (global_reclaim(sc) && is_classzone) 2440 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2441 sc->nr_scanned - nr_scanned, 2442 zone_lru_pages); 2443 2444 if (reclaim_state) { 2445 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2446 reclaim_state->reclaimed_slab = 0; 2447 } 2448 2449 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2450 sc->nr_scanned - nr_scanned, 2451 sc->nr_reclaimed - nr_reclaimed); 2452 2453 if (sc->nr_reclaimed - nr_reclaimed) 2454 reclaimable = true; 2455 2456 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2457 sc->nr_scanned - nr_scanned, sc)); 2458 2459 return reclaimable; 2460 } 2461 2462 /* 2463 * Returns true if compaction should go ahead for a high-order request, or 2464 * the high-order allocation would succeed without compaction. 2465 */ 2466 static inline bool compaction_ready(struct zone *zone, int order) 2467 { 2468 unsigned long balance_gap, watermark; 2469 bool watermark_ok; 2470 2471 /* 2472 * Compaction takes time to run and there are potentially other 2473 * callers using the pages just freed. Continue reclaiming until 2474 * there is a buffer of free pages available to give compaction 2475 * a reasonable chance of completing and allocating the page 2476 */ 2477 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2478 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2479 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2480 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0); 2481 2482 /* 2483 * If compaction is deferred, reclaim up to a point where 2484 * compaction will have a chance of success when re-enabled 2485 */ 2486 if (compaction_deferred(zone, order)) 2487 return watermark_ok; 2488 2489 /* 2490 * If compaction is not ready to start and allocation is not likely 2491 * to succeed without it, then keep reclaiming. 2492 */ 2493 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2494 return false; 2495 2496 return watermark_ok; 2497 } 2498 2499 /* 2500 * This is the direct reclaim path, for page-allocating processes. We only 2501 * try to reclaim pages from zones which will satisfy the caller's allocation 2502 * request. 2503 * 2504 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2505 * Because: 2506 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2507 * allocation or 2508 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2509 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2510 * zone defense algorithm. 2511 * 2512 * If a zone is deemed to be full of pinned pages then just give it a light 2513 * scan then give up on it. 2514 * 2515 * Returns true if a zone was reclaimable. 2516 */ 2517 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2518 { 2519 struct zoneref *z; 2520 struct zone *zone; 2521 unsigned long nr_soft_reclaimed; 2522 unsigned long nr_soft_scanned; 2523 gfp_t orig_mask; 2524 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2525 bool reclaimable = false; 2526 2527 /* 2528 * If the number of buffer_heads in the machine exceeds the maximum 2529 * allowed level, force direct reclaim to scan the highmem zone as 2530 * highmem pages could be pinning lowmem pages storing buffer_heads 2531 */ 2532 orig_mask = sc->gfp_mask; 2533 if (buffer_heads_over_limit) 2534 sc->gfp_mask |= __GFP_HIGHMEM; 2535 2536 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2537 requested_highidx, sc->nodemask) { 2538 enum zone_type classzone_idx; 2539 2540 if (!populated_zone(zone)) 2541 continue; 2542 2543 classzone_idx = requested_highidx; 2544 while (!populated_zone(zone->zone_pgdat->node_zones + 2545 classzone_idx)) 2546 classzone_idx--; 2547 2548 /* 2549 * Take care memory controller reclaiming has small influence 2550 * to global LRU. 2551 */ 2552 if (global_reclaim(sc)) { 2553 if (!cpuset_zone_allowed(zone, 2554 GFP_KERNEL | __GFP_HARDWALL)) 2555 continue; 2556 2557 if (sc->priority != DEF_PRIORITY && 2558 !zone_reclaimable(zone)) 2559 continue; /* Let kswapd poll it */ 2560 2561 /* 2562 * If we already have plenty of memory free for 2563 * compaction in this zone, don't free any more. 2564 * Even though compaction is invoked for any 2565 * non-zero order, only frequent costly order 2566 * reclamation is disruptive enough to become a 2567 * noticeable problem, like transparent huge 2568 * page allocations. 2569 */ 2570 if (IS_ENABLED(CONFIG_COMPACTION) && 2571 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2572 zonelist_zone_idx(z) <= requested_highidx && 2573 compaction_ready(zone, sc->order)) { 2574 sc->compaction_ready = true; 2575 continue; 2576 } 2577 2578 /* 2579 * This steals pages from memory cgroups over softlimit 2580 * and returns the number of reclaimed pages and 2581 * scanned pages. This works for global memory pressure 2582 * and balancing, not for a memcg's limit. 2583 */ 2584 nr_soft_scanned = 0; 2585 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2586 sc->order, sc->gfp_mask, 2587 &nr_soft_scanned); 2588 sc->nr_reclaimed += nr_soft_reclaimed; 2589 sc->nr_scanned += nr_soft_scanned; 2590 if (nr_soft_reclaimed) 2591 reclaimable = true; 2592 /* need some check for avoid more shrink_zone() */ 2593 } 2594 2595 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2596 reclaimable = true; 2597 2598 if (global_reclaim(sc) && 2599 !reclaimable && zone_reclaimable(zone)) 2600 reclaimable = true; 2601 } 2602 2603 /* 2604 * Restore to original mask to avoid the impact on the caller if we 2605 * promoted it to __GFP_HIGHMEM. 2606 */ 2607 sc->gfp_mask = orig_mask; 2608 2609 return reclaimable; 2610 } 2611 2612 /* 2613 * This is the main entry point to direct page reclaim. 2614 * 2615 * If a full scan of the inactive list fails to free enough memory then we 2616 * are "out of memory" and something needs to be killed. 2617 * 2618 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2619 * high - the zone may be full of dirty or under-writeback pages, which this 2620 * caller can't do much about. We kick the writeback threads and take explicit 2621 * naps in the hope that some of these pages can be written. But if the 2622 * allocating task holds filesystem locks which prevent writeout this might not 2623 * work, and the allocation attempt will fail. 2624 * 2625 * returns: 0, if no pages reclaimed 2626 * else, the number of pages reclaimed 2627 */ 2628 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2629 struct scan_control *sc) 2630 { 2631 int initial_priority = sc->priority; 2632 unsigned long total_scanned = 0; 2633 unsigned long writeback_threshold; 2634 bool zones_reclaimable; 2635 retry: 2636 delayacct_freepages_start(); 2637 2638 if (global_reclaim(sc)) 2639 count_vm_event(ALLOCSTALL); 2640 2641 do { 2642 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2643 sc->priority); 2644 sc->nr_scanned = 0; 2645 zones_reclaimable = shrink_zones(zonelist, sc); 2646 2647 total_scanned += sc->nr_scanned; 2648 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2649 break; 2650 2651 if (sc->compaction_ready) 2652 break; 2653 2654 /* 2655 * If we're getting trouble reclaiming, start doing 2656 * writepage even in laptop mode. 2657 */ 2658 if (sc->priority < DEF_PRIORITY - 2) 2659 sc->may_writepage = 1; 2660 2661 /* 2662 * Try to write back as many pages as we just scanned. This 2663 * tends to cause slow streaming writers to write data to the 2664 * disk smoothly, at the dirtying rate, which is nice. But 2665 * that's undesirable in laptop mode, where we *want* lumpy 2666 * writeout. So in laptop mode, write out the whole world. 2667 */ 2668 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2669 if (total_scanned > writeback_threshold) { 2670 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2671 WB_REASON_TRY_TO_FREE_PAGES); 2672 sc->may_writepage = 1; 2673 } 2674 } while (--sc->priority >= 0); 2675 2676 delayacct_freepages_end(); 2677 2678 if (sc->nr_reclaimed) 2679 return sc->nr_reclaimed; 2680 2681 /* Aborted reclaim to try compaction? don't OOM, then */ 2682 if (sc->compaction_ready) 2683 return 1; 2684 2685 /* Untapped cgroup reserves? Don't OOM, retry. */ 2686 if (!sc->may_thrash) { 2687 sc->priority = initial_priority; 2688 sc->may_thrash = 1; 2689 goto retry; 2690 } 2691 2692 /* Any of the zones still reclaimable? Don't OOM. */ 2693 if (zones_reclaimable) 2694 return 1; 2695 2696 return 0; 2697 } 2698 2699 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2700 { 2701 struct zone *zone; 2702 unsigned long pfmemalloc_reserve = 0; 2703 unsigned long free_pages = 0; 2704 int i; 2705 bool wmark_ok; 2706 2707 for (i = 0; i <= ZONE_NORMAL; i++) { 2708 zone = &pgdat->node_zones[i]; 2709 if (!populated_zone(zone) || 2710 zone_reclaimable_pages(zone) == 0) 2711 continue; 2712 2713 pfmemalloc_reserve += min_wmark_pages(zone); 2714 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2715 } 2716 2717 /* If there are no reserves (unexpected config) then do not throttle */ 2718 if (!pfmemalloc_reserve) 2719 return true; 2720 2721 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2722 2723 /* kswapd must be awake if processes are being throttled */ 2724 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2725 pgdat->classzone_idx = min(pgdat->classzone_idx, 2726 (enum zone_type)ZONE_NORMAL); 2727 wake_up_interruptible(&pgdat->kswapd_wait); 2728 } 2729 2730 return wmark_ok; 2731 } 2732 2733 /* 2734 * Throttle direct reclaimers if backing storage is backed by the network 2735 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2736 * depleted. kswapd will continue to make progress and wake the processes 2737 * when the low watermark is reached. 2738 * 2739 * Returns true if a fatal signal was delivered during throttling. If this 2740 * happens, the page allocator should not consider triggering the OOM killer. 2741 */ 2742 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2743 nodemask_t *nodemask) 2744 { 2745 struct zoneref *z; 2746 struct zone *zone; 2747 pg_data_t *pgdat = NULL; 2748 2749 /* 2750 * Kernel threads should not be throttled as they may be indirectly 2751 * responsible for cleaning pages necessary for reclaim to make forward 2752 * progress. kjournald for example may enter direct reclaim while 2753 * committing a transaction where throttling it could forcing other 2754 * processes to block on log_wait_commit(). 2755 */ 2756 if (current->flags & PF_KTHREAD) 2757 goto out; 2758 2759 /* 2760 * If a fatal signal is pending, this process should not throttle. 2761 * It should return quickly so it can exit and free its memory 2762 */ 2763 if (fatal_signal_pending(current)) 2764 goto out; 2765 2766 /* 2767 * Check if the pfmemalloc reserves are ok by finding the first node 2768 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2769 * GFP_KERNEL will be required for allocating network buffers when 2770 * swapping over the network so ZONE_HIGHMEM is unusable. 2771 * 2772 * Throttling is based on the first usable node and throttled processes 2773 * wait on a queue until kswapd makes progress and wakes them. There 2774 * is an affinity then between processes waking up and where reclaim 2775 * progress has been made assuming the process wakes on the same node. 2776 * More importantly, processes running on remote nodes will not compete 2777 * for remote pfmemalloc reserves and processes on different nodes 2778 * should make reasonable progress. 2779 */ 2780 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2781 gfp_zone(gfp_mask), nodemask) { 2782 if (zone_idx(zone) > ZONE_NORMAL) 2783 continue; 2784 2785 /* Throttle based on the first usable node */ 2786 pgdat = zone->zone_pgdat; 2787 if (pfmemalloc_watermark_ok(pgdat)) 2788 goto out; 2789 break; 2790 } 2791 2792 /* If no zone was usable by the allocation flags then do not throttle */ 2793 if (!pgdat) 2794 goto out; 2795 2796 /* Account for the throttling */ 2797 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2798 2799 /* 2800 * If the caller cannot enter the filesystem, it's possible that it 2801 * is due to the caller holding an FS lock or performing a journal 2802 * transaction in the case of a filesystem like ext[3|4]. In this case, 2803 * it is not safe to block on pfmemalloc_wait as kswapd could be 2804 * blocked waiting on the same lock. Instead, throttle for up to a 2805 * second before continuing. 2806 */ 2807 if (!(gfp_mask & __GFP_FS)) { 2808 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2809 pfmemalloc_watermark_ok(pgdat), HZ); 2810 2811 goto check_pending; 2812 } 2813 2814 /* Throttle until kswapd wakes the process */ 2815 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2816 pfmemalloc_watermark_ok(pgdat)); 2817 2818 check_pending: 2819 if (fatal_signal_pending(current)) 2820 return true; 2821 2822 out: 2823 return false; 2824 } 2825 2826 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2827 gfp_t gfp_mask, nodemask_t *nodemask) 2828 { 2829 unsigned long nr_reclaimed; 2830 struct scan_control sc = { 2831 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2832 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2833 .order = order, 2834 .nodemask = nodemask, 2835 .priority = DEF_PRIORITY, 2836 .may_writepage = !laptop_mode, 2837 .may_unmap = 1, 2838 .may_swap = 1, 2839 }; 2840 2841 /* 2842 * Do not enter reclaim if fatal signal was delivered while throttled. 2843 * 1 is returned so that the page allocator does not OOM kill at this 2844 * point. 2845 */ 2846 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2847 return 1; 2848 2849 trace_mm_vmscan_direct_reclaim_begin(order, 2850 sc.may_writepage, 2851 gfp_mask); 2852 2853 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2854 2855 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2856 2857 return nr_reclaimed; 2858 } 2859 2860 #ifdef CONFIG_MEMCG 2861 2862 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2863 gfp_t gfp_mask, bool noswap, 2864 struct zone *zone, 2865 unsigned long *nr_scanned) 2866 { 2867 struct scan_control sc = { 2868 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2869 .target_mem_cgroup = memcg, 2870 .may_writepage = !laptop_mode, 2871 .may_unmap = 1, 2872 .may_swap = !noswap, 2873 }; 2874 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2875 int swappiness = mem_cgroup_swappiness(memcg); 2876 unsigned long lru_pages; 2877 2878 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2879 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2880 2881 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2882 sc.may_writepage, 2883 sc.gfp_mask); 2884 2885 /* 2886 * NOTE: Although we can get the priority field, using it 2887 * here is not a good idea, since it limits the pages we can scan. 2888 * if we don't reclaim here, the shrink_zone from balance_pgdat 2889 * will pick up pages from other mem cgroup's as well. We hack 2890 * the priority and make it zero. 2891 */ 2892 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages); 2893 2894 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2895 2896 *nr_scanned = sc.nr_scanned; 2897 return sc.nr_reclaimed; 2898 } 2899 2900 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2901 unsigned long nr_pages, 2902 gfp_t gfp_mask, 2903 bool may_swap) 2904 { 2905 struct zonelist *zonelist; 2906 unsigned long nr_reclaimed; 2907 int nid; 2908 struct scan_control sc = { 2909 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2910 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2911 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2912 .target_mem_cgroup = memcg, 2913 .priority = DEF_PRIORITY, 2914 .may_writepage = !laptop_mode, 2915 .may_unmap = 1, 2916 .may_swap = may_swap, 2917 }; 2918 2919 /* 2920 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2921 * take care of from where we get pages. So the node where we start the 2922 * scan does not need to be the current node. 2923 */ 2924 nid = mem_cgroup_select_victim_node(memcg); 2925 2926 zonelist = NODE_DATA(nid)->node_zonelists; 2927 2928 trace_mm_vmscan_memcg_reclaim_begin(0, 2929 sc.may_writepage, 2930 sc.gfp_mask); 2931 2932 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2933 2934 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2935 2936 return nr_reclaimed; 2937 } 2938 #endif 2939 2940 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2941 { 2942 struct mem_cgroup *memcg; 2943 2944 if (!total_swap_pages) 2945 return; 2946 2947 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2948 do { 2949 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2950 2951 if (inactive_anon_is_low(lruvec)) 2952 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2953 sc, LRU_ACTIVE_ANON); 2954 2955 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2956 } while (memcg); 2957 } 2958 2959 static bool zone_balanced(struct zone *zone, int order, 2960 unsigned long balance_gap, int classzone_idx) 2961 { 2962 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2963 balance_gap, classzone_idx)) 2964 return false; 2965 2966 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone, 2967 order, 0, classzone_idx) == COMPACT_SKIPPED) 2968 return false; 2969 2970 return true; 2971 } 2972 2973 /* 2974 * pgdat_balanced() is used when checking if a node is balanced. 2975 * 2976 * For order-0, all zones must be balanced! 2977 * 2978 * For high-order allocations only zones that meet watermarks and are in a 2979 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2980 * total of balanced pages must be at least 25% of the zones allowed by 2981 * classzone_idx for the node to be considered balanced. Forcing all zones to 2982 * be balanced for high orders can cause excessive reclaim when there are 2983 * imbalanced zones. 2984 * The choice of 25% is due to 2985 * o a 16M DMA zone that is balanced will not balance a zone on any 2986 * reasonable sized machine 2987 * o On all other machines, the top zone must be at least a reasonable 2988 * percentage of the middle zones. For example, on 32-bit x86, highmem 2989 * would need to be at least 256M for it to be balance a whole node. 2990 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2991 * to balance a node on its own. These seemed like reasonable ratios. 2992 */ 2993 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2994 { 2995 unsigned long managed_pages = 0; 2996 unsigned long balanced_pages = 0; 2997 int i; 2998 2999 /* Check the watermark levels */ 3000 for (i = 0; i <= classzone_idx; i++) { 3001 struct zone *zone = pgdat->node_zones + i; 3002 3003 if (!populated_zone(zone)) 3004 continue; 3005 3006 managed_pages += zone->managed_pages; 3007 3008 /* 3009 * A special case here: 3010 * 3011 * balance_pgdat() skips over all_unreclaimable after 3012 * DEF_PRIORITY. Effectively, it considers them balanced so 3013 * they must be considered balanced here as well! 3014 */ 3015 if (!zone_reclaimable(zone)) { 3016 balanced_pages += zone->managed_pages; 3017 continue; 3018 } 3019 3020 if (zone_balanced(zone, order, 0, i)) 3021 balanced_pages += zone->managed_pages; 3022 else if (!order) 3023 return false; 3024 } 3025 3026 if (order) 3027 return balanced_pages >= (managed_pages >> 2); 3028 else 3029 return true; 3030 } 3031 3032 /* 3033 * Prepare kswapd for sleeping. This verifies that there are no processes 3034 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3035 * 3036 * Returns true if kswapd is ready to sleep 3037 */ 3038 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 3039 int classzone_idx) 3040 { 3041 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 3042 if (remaining) 3043 return false; 3044 3045 /* 3046 * The throttled processes are normally woken up in balance_pgdat() as 3047 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3048 * race between when kswapd checks the watermarks and a process gets 3049 * throttled. There is also a potential race if processes get 3050 * throttled, kswapd wakes, a large process exits thereby balancing the 3051 * zones, which causes kswapd to exit balance_pgdat() before reaching 3052 * the wake up checks. If kswapd is going to sleep, no process should 3053 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3054 * the wake up is premature, processes will wake kswapd and get 3055 * throttled again. The difference from wake ups in balance_pgdat() is 3056 * that here we are under prepare_to_wait(). 3057 */ 3058 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3059 wake_up_all(&pgdat->pfmemalloc_wait); 3060 3061 return pgdat_balanced(pgdat, order, classzone_idx); 3062 } 3063 3064 /* 3065 * kswapd shrinks the zone by the number of pages required to reach 3066 * the high watermark. 3067 * 3068 * Returns true if kswapd scanned at least the requested number of pages to 3069 * reclaim or if the lack of progress was due to pages under writeback. 3070 * This is used to determine if the scanning priority needs to be raised. 3071 */ 3072 static bool kswapd_shrink_zone(struct zone *zone, 3073 int classzone_idx, 3074 struct scan_control *sc, 3075 unsigned long *nr_attempted) 3076 { 3077 int testorder = sc->order; 3078 unsigned long balance_gap; 3079 bool lowmem_pressure; 3080 3081 /* Reclaim above the high watermark. */ 3082 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3083 3084 /* 3085 * Kswapd reclaims only single pages with compaction enabled. Trying 3086 * too hard to reclaim until contiguous free pages have become 3087 * available can hurt performance by evicting too much useful data 3088 * from memory. Do not reclaim more than needed for compaction. 3089 */ 3090 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3091 compaction_suitable(zone, sc->order, 0, classzone_idx) 3092 != COMPACT_SKIPPED) 3093 testorder = 0; 3094 3095 /* 3096 * We put equal pressure on every zone, unless one zone has way too 3097 * many pages free already. The "too many pages" is defined as the 3098 * high wmark plus a "gap" where the gap is either the low 3099 * watermark or 1% of the zone, whichever is smaller. 3100 */ 3101 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3102 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3103 3104 /* 3105 * If there is no low memory pressure or the zone is balanced then no 3106 * reclaim is necessary 3107 */ 3108 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3109 if (!lowmem_pressure && zone_balanced(zone, testorder, 3110 balance_gap, classzone_idx)) 3111 return true; 3112 3113 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3114 3115 /* Account for the number of pages attempted to reclaim */ 3116 *nr_attempted += sc->nr_to_reclaim; 3117 3118 clear_bit(ZONE_WRITEBACK, &zone->flags); 3119 3120 /* 3121 * If a zone reaches its high watermark, consider it to be no longer 3122 * congested. It's possible there are dirty pages backed by congested 3123 * BDIs but as pressure is relieved, speculatively avoid congestion 3124 * waits. 3125 */ 3126 if (zone_reclaimable(zone) && 3127 zone_balanced(zone, testorder, 0, classzone_idx)) { 3128 clear_bit(ZONE_CONGESTED, &zone->flags); 3129 clear_bit(ZONE_DIRTY, &zone->flags); 3130 } 3131 3132 return sc->nr_scanned >= sc->nr_to_reclaim; 3133 } 3134 3135 /* 3136 * For kswapd, balance_pgdat() will work across all this node's zones until 3137 * they are all at high_wmark_pages(zone). 3138 * 3139 * Returns the final order kswapd was reclaiming at 3140 * 3141 * There is special handling here for zones which are full of pinned pages. 3142 * This can happen if the pages are all mlocked, or if they are all used by 3143 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3144 * What we do is to detect the case where all pages in the zone have been 3145 * scanned twice and there has been zero successful reclaim. Mark the zone as 3146 * dead and from now on, only perform a short scan. Basically we're polling 3147 * the zone for when the problem goes away. 3148 * 3149 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3150 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3151 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3152 * lower zones regardless of the number of free pages in the lower zones. This 3153 * interoperates with the page allocator fallback scheme to ensure that aging 3154 * of pages is balanced across the zones. 3155 */ 3156 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3157 int *classzone_idx) 3158 { 3159 int i; 3160 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3161 unsigned long nr_soft_reclaimed; 3162 unsigned long nr_soft_scanned; 3163 struct scan_control sc = { 3164 .gfp_mask = GFP_KERNEL, 3165 .order = order, 3166 .priority = DEF_PRIORITY, 3167 .may_writepage = !laptop_mode, 3168 .may_unmap = 1, 3169 .may_swap = 1, 3170 }; 3171 count_vm_event(PAGEOUTRUN); 3172 3173 do { 3174 unsigned long nr_attempted = 0; 3175 bool raise_priority = true; 3176 bool pgdat_needs_compaction = (order > 0); 3177 3178 sc.nr_reclaimed = 0; 3179 3180 /* 3181 * Scan in the highmem->dma direction for the highest 3182 * zone which needs scanning 3183 */ 3184 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3185 struct zone *zone = pgdat->node_zones + i; 3186 3187 if (!populated_zone(zone)) 3188 continue; 3189 3190 if (sc.priority != DEF_PRIORITY && 3191 !zone_reclaimable(zone)) 3192 continue; 3193 3194 /* 3195 * Do some background aging of the anon list, to give 3196 * pages a chance to be referenced before reclaiming. 3197 */ 3198 age_active_anon(zone, &sc); 3199 3200 /* 3201 * If the number of buffer_heads in the machine 3202 * exceeds the maximum allowed level and this node 3203 * has a highmem zone, force kswapd to reclaim from 3204 * it to relieve lowmem pressure. 3205 */ 3206 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3207 end_zone = i; 3208 break; 3209 } 3210 3211 if (!zone_balanced(zone, order, 0, 0)) { 3212 end_zone = i; 3213 break; 3214 } else { 3215 /* 3216 * If balanced, clear the dirty and congested 3217 * flags 3218 */ 3219 clear_bit(ZONE_CONGESTED, &zone->flags); 3220 clear_bit(ZONE_DIRTY, &zone->flags); 3221 } 3222 } 3223 3224 if (i < 0) 3225 goto out; 3226 3227 for (i = 0; i <= end_zone; i++) { 3228 struct zone *zone = pgdat->node_zones + i; 3229 3230 if (!populated_zone(zone)) 3231 continue; 3232 3233 /* 3234 * If any zone is currently balanced then kswapd will 3235 * not call compaction as it is expected that the 3236 * necessary pages are already available. 3237 */ 3238 if (pgdat_needs_compaction && 3239 zone_watermark_ok(zone, order, 3240 low_wmark_pages(zone), 3241 *classzone_idx, 0)) 3242 pgdat_needs_compaction = false; 3243 } 3244 3245 /* 3246 * If we're getting trouble reclaiming, start doing writepage 3247 * even in laptop mode. 3248 */ 3249 if (sc.priority < DEF_PRIORITY - 2) 3250 sc.may_writepage = 1; 3251 3252 /* 3253 * Now scan the zone in the dma->highmem direction, stopping 3254 * at the last zone which needs scanning. 3255 * 3256 * We do this because the page allocator works in the opposite 3257 * direction. This prevents the page allocator from allocating 3258 * pages behind kswapd's direction of progress, which would 3259 * cause too much scanning of the lower zones. 3260 */ 3261 for (i = 0; i <= end_zone; i++) { 3262 struct zone *zone = pgdat->node_zones + i; 3263 3264 if (!populated_zone(zone)) 3265 continue; 3266 3267 if (sc.priority != DEF_PRIORITY && 3268 !zone_reclaimable(zone)) 3269 continue; 3270 3271 sc.nr_scanned = 0; 3272 3273 nr_soft_scanned = 0; 3274 /* 3275 * Call soft limit reclaim before calling shrink_zone. 3276 */ 3277 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3278 order, sc.gfp_mask, 3279 &nr_soft_scanned); 3280 sc.nr_reclaimed += nr_soft_reclaimed; 3281 3282 /* 3283 * There should be no need to raise the scanning 3284 * priority if enough pages are already being scanned 3285 * that that high watermark would be met at 100% 3286 * efficiency. 3287 */ 3288 if (kswapd_shrink_zone(zone, end_zone, 3289 &sc, &nr_attempted)) 3290 raise_priority = false; 3291 } 3292 3293 /* 3294 * If the low watermark is met there is no need for processes 3295 * to be throttled on pfmemalloc_wait as they should not be 3296 * able to safely make forward progress. Wake them 3297 */ 3298 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3299 pfmemalloc_watermark_ok(pgdat)) 3300 wake_up_all(&pgdat->pfmemalloc_wait); 3301 3302 /* 3303 * Fragmentation may mean that the system cannot be rebalanced 3304 * for high-order allocations in all zones. If twice the 3305 * allocation size has been reclaimed and the zones are still 3306 * not balanced then recheck the watermarks at order-0 to 3307 * prevent kswapd reclaiming excessively. Assume that a 3308 * process requested a high-order can direct reclaim/compact. 3309 */ 3310 if (order && sc.nr_reclaimed >= 2UL << order) 3311 order = sc.order = 0; 3312 3313 /* Check if kswapd should be suspending */ 3314 if (try_to_freeze() || kthread_should_stop()) 3315 break; 3316 3317 /* 3318 * Compact if necessary and kswapd is reclaiming at least the 3319 * high watermark number of pages as requsted 3320 */ 3321 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3322 compact_pgdat(pgdat, order); 3323 3324 /* 3325 * Raise priority if scanning rate is too low or there was no 3326 * progress in reclaiming pages 3327 */ 3328 if (raise_priority || !sc.nr_reclaimed) 3329 sc.priority--; 3330 } while (sc.priority >= 1 && 3331 !pgdat_balanced(pgdat, order, *classzone_idx)); 3332 3333 out: 3334 /* 3335 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3336 * makes a decision on the order we were last reclaiming at. However, 3337 * if another caller entered the allocator slow path while kswapd 3338 * was awake, order will remain at the higher level 3339 */ 3340 *classzone_idx = end_zone; 3341 return order; 3342 } 3343 3344 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3345 { 3346 long remaining = 0; 3347 DEFINE_WAIT(wait); 3348 3349 if (freezing(current) || kthread_should_stop()) 3350 return; 3351 3352 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3353 3354 /* Try to sleep for a short interval */ 3355 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3356 remaining = schedule_timeout(HZ/10); 3357 finish_wait(&pgdat->kswapd_wait, &wait); 3358 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3359 } 3360 3361 /* 3362 * After a short sleep, check if it was a premature sleep. If not, then 3363 * go fully to sleep until explicitly woken up. 3364 */ 3365 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3366 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3367 3368 /* 3369 * vmstat counters are not perfectly accurate and the estimated 3370 * value for counters such as NR_FREE_PAGES can deviate from the 3371 * true value by nr_online_cpus * threshold. To avoid the zone 3372 * watermarks being breached while under pressure, we reduce the 3373 * per-cpu vmstat threshold while kswapd is awake and restore 3374 * them before going back to sleep. 3375 */ 3376 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3377 3378 /* 3379 * Compaction records what page blocks it recently failed to 3380 * isolate pages from and skips them in the future scanning. 3381 * When kswapd is going to sleep, it is reasonable to assume 3382 * that pages and compaction may succeed so reset the cache. 3383 */ 3384 reset_isolation_suitable(pgdat); 3385 3386 if (!kthread_should_stop()) 3387 schedule(); 3388 3389 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3390 } else { 3391 if (remaining) 3392 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3393 else 3394 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3395 } 3396 finish_wait(&pgdat->kswapd_wait, &wait); 3397 } 3398 3399 /* 3400 * The background pageout daemon, started as a kernel thread 3401 * from the init process. 3402 * 3403 * This basically trickles out pages so that we have _some_ 3404 * free memory available even if there is no other activity 3405 * that frees anything up. This is needed for things like routing 3406 * etc, where we otherwise might have all activity going on in 3407 * asynchronous contexts that cannot page things out. 3408 * 3409 * If there are applications that are active memory-allocators 3410 * (most normal use), this basically shouldn't matter. 3411 */ 3412 static int kswapd(void *p) 3413 { 3414 unsigned long order, new_order; 3415 unsigned balanced_order; 3416 int classzone_idx, new_classzone_idx; 3417 int balanced_classzone_idx; 3418 pg_data_t *pgdat = (pg_data_t*)p; 3419 struct task_struct *tsk = current; 3420 3421 struct reclaim_state reclaim_state = { 3422 .reclaimed_slab = 0, 3423 }; 3424 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3425 3426 lockdep_set_current_reclaim_state(GFP_KERNEL); 3427 3428 if (!cpumask_empty(cpumask)) 3429 set_cpus_allowed_ptr(tsk, cpumask); 3430 current->reclaim_state = &reclaim_state; 3431 3432 /* 3433 * Tell the memory management that we're a "memory allocator", 3434 * and that if we need more memory we should get access to it 3435 * regardless (see "__alloc_pages()"). "kswapd" should 3436 * never get caught in the normal page freeing logic. 3437 * 3438 * (Kswapd normally doesn't need memory anyway, but sometimes 3439 * you need a small amount of memory in order to be able to 3440 * page out something else, and this flag essentially protects 3441 * us from recursively trying to free more memory as we're 3442 * trying to free the first piece of memory in the first place). 3443 */ 3444 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3445 set_freezable(); 3446 3447 order = new_order = 0; 3448 balanced_order = 0; 3449 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3450 balanced_classzone_idx = classzone_idx; 3451 for ( ; ; ) { 3452 bool ret; 3453 3454 /* 3455 * If the last balance_pgdat was unsuccessful it's unlikely a 3456 * new request of a similar or harder type will succeed soon 3457 * so consider going to sleep on the basis we reclaimed at 3458 */ 3459 if (balanced_classzone_idx >= new_classzone_idx && 3460 balanced_order == new_order) { 3461 new_order = pgdat->kswapd_max_order; 3462 new_classzone_idx = pgdat->classzone_idx; 3463 pgdat->kswapd_max_order = 0; 3464 pgdat->classzone_idx = pgdat->nr_zones - 1; 3465 } 3466 3467 if (order < new_order || classzone_idx > new_classzone_idx) { 3468 /* 3469 * Don't sleep if someone wants a larger 'order' 3470 * allocation or has tigher zone constraints 3471 */ 3472 order = new_order; 3473 classzone_idx = new_classzone_idx; 3474 } else { 3475 kswapd_try_to_sleep(pgdat, balanced_order, 3476 balanced_classzone_idx); 3477 order = pgdat->kswapd_max_order; 3478 classzone_idx = pgdat->classzone_idx; 3479 new_order = order; 3480 new_classzone_idx = classzone_idx; 3481 pgdat->kswapd_max_order = 0; 3482 pgdat->classzone_idx = pgdat->nr_zones - 1; 3483 } 3484 3485 ret = try_to_freeze(); 3486 if (kthread_should_stop()) 3487 break; 3488 3489 /* 3490 * We can speed up thawing tasks if we don't call balance_pgdat 3491 * after returning from the refrigerator 3492 */ 3493 if (!ret) { 3494 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3495 balanced_classzone_idx = classzone_idx; 3496 balanced_order = balance_pgdat(pgdat, order, 3497 &balanced_classzone_idx); 3498 } 3499 } 3500 3501 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3502 current->reclaim_state = NULL; 3503 lockdep_clear_current_reclaim_state(); 3504 3505 return 0; 3506 } 3507 3508 /* 3509 * A zone is low on free memory, so wake its kswapd task to service it. 3510 */ 3511 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3512 { 3513 pg_data_t *pgdat; 3514 3515 if (!populated_zone(zone)) 3516 return; 3517 3518 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3519 return; 3520 pgdat = zone->zone_pgdat; 3521 if (pgdat->kswapd_max_order < order) { 3522 pgdat->kswapd_max_order = order; 3523 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3524 } 3525 if (!waitqueue_active(&pgdat->kswapd_wait)) 3526 return; 3527 if (zone_balanced(zone, order, 0, 0)) 3528 return; 3529 3530 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3531 wake_up_interruptible(&pgdat->kswapd_wait); 3532 } 3533 3534 #ifdef CONFIG_HIBERNATION 3535 /* 3536 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3537 * freed pages. 3538 * 3539 * Rather than trying to age LRUs the aim is to preserve the overall 3540 * LRU order by reclaiming preferentially 3541 * inactive > active > active referenced > active mapped 3542 */ 3543 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3544 { 3545 struct reclaim_state reclaim_state; 3546 struct scan_control sc = { 3547 .nr_to_reclaim = nr_to_reclaim, 3548 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3549 .priority = DEF_PRIORITY, 3550 .may_writepage = 1, 3551 .may_unmap = 1, 3552 .may_swap = 1, 3553 .hibernation_mode = 1, 3554 }; 3555 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3556 struct task_struct *p = current; 3557 unsigned long nr_reclaimed; 3558 3559 p->flags |= PF_MEMALLOC; 3560 lockdep_set_current_reclaim_state(sc.gfp_mask); 3561 reclaim_state.reclaimed_slab = 0; 3562 p->reclaim_state = &reclaim_state; 3563 3564 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3565 3566 p->reclaim_state = NULL; 3567 lockdep_clear_current_reclaim_state(); 3568 p->flags &= ~PF_MEMALLOC; 3569 3570 return nr_reclaimed; 3571 } 3572 #endif /* CONFIG_HIBERNATION */ 3573 3574 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3575 not required for correctness. So if the last cpu in a node goes 3576 away, we get changed to run anywhere: as the first one comes back, 3577 restore their cpu bindings. */ 3578 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3579 void *hcpu) 3580 { 3581 int nid; 3582 3583 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3584 for_each_node_state(nid, N_MEMORY) { 3585 pg_data_t *pgdat = NODE_DATA(nid); 3586 const struct cpumask *mask; 3587 3588 mask = cpumask_of_node(pgdat->node_id); 3589 3590 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3591 /* One of our CPUs online: restore mask */ 3592 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3593 } 3594 } 3595 return NOTIFY_OK; 3596 } 3597 3598 /* 3599 * This kswapd start function will be called by init and node-hot-add. 3600 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3601 */ 3602 int kswapd_run(int nid) 3603 { 3604 pg_data_t *pgdat = NODE_DATA(nid); 3605 int ret = 0; 3606 3607 if (pgdat->kswapd) 3608 return 0; 3609 3610 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3611 if (IS_ERR(pgdat->kswapd)) { 3612 /* failure at boot is fatal */ 3613 BUG_ON(system_state == SYSTEM_BOOTING); 3614 pr_err("Failed to start kswapd on node %d\n", nid); 3615 ret = PTR_ERR(pgdat->kswapd); 3616 pgdat->kswapd = NULL; 3617 } 3618 return ret; 3619 } 3620 3621 /* 3622 * Called by memory hotplug when all memory in a node is offlined. Caller must 3623 * hold mem_hotplug_begin/end(). 3624 */ 3625 void kswapd_stop(int nid) 3626 { 3627 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3628 3629 if (kswapd) { 3630 kthread_stop(kswapd); 3631 NODE_DATA(nid)->kswapd = NULL; 3632 } 3633 } 3634 3635 static int __init kswapd_init(void) 3636 { 3637 int nid; 3638 3639 swap_setup(); 3640 for_each_node_state(nid, N_MEMORY) 3641 kswapd_run(nid); 3642 hotcpu_notifier(cpu_callback, 0); 3643 return 0; 3644 } 3645 3646 module_init(kswapd_init) 3647 3648 #ifdef CONFIG_NUMA 3649 /* 3650 * Zone reclaim mode 3651 * 3652 * If non-zero call zone_reclaim when the number of free pages falls below 3653 * the watermarks. 3654 */ 3655 int zone_reclaim_mode __read_mostly; 3656 3657 #define RECLAIM_OFF 0 3658 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3659 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3660 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3661 3662 /* 3663 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3664 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3665 * a zone. 3666 */ 3667 #define ZONE_RECLAIM_PRIORITY 4 3668 3669 /* 3670 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3671 * occur. 3672 */ 3673 int sysctl_min_unmapped_ratio = 1; 3674 3675 /* 3676 * If the number of slab pages in a zone grows beyond this percentage then 3677 * slab reclaim needs to occur. 3678 */ 3679 int sysctl_min_slab_ratio = 5; 3680 3681 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3682 { 3683 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3684 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3685 zone_page_state(zone, NR_ACTIVE_FILE); 3686 3687 /* 3688 * It's possible for there to be more file mapped pages than 3689 * accounted for by the pages on the file LRU lists because 3690 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3691 */ 3692 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3693 } 3694 3695 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3696 static unsigned long zone_pagecache_reclaimable(struct zone *zone) 3697 { 3698 unsigned long nr_pagecache_reclaimable; 3699 unsigned long delta = 0; 3700 3701 /* 3702 * If RECLAIM_UNMAP is set, then all file pages are considered 3703 * potentially reclaimable. Otherwise, we have to worry about 3704 * pages like swapcache and zone_unmapped_file_pages() provides 3705 * a better estimate 3706 */ 3707 if (zone_reclaim_mode & RECLAIM_UNMAP) 3708 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3709 else 3710 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3711 3712 /* If we can't clean pages, remove dirty pages from consideration */ 3713 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3714 delta += zone_page_state(zone, NR_FILE_DIRTY); 3715 3716 /* Watch for any possible underflows due to delta */ 3717 if (unlikely(delta > nr_pagecache_reclaimable)) 3718 delta = nr_pagecache_reclaimable; 3719 3720 return nr_pagecache_reclaimable - delta; 3721 } 3722 3723 /* 3724 * Try to free up some pages from this zone through reclaim. 3725 */ 3726 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3727 { 3728 /* Minimum pages needed in order to stay on node */ 3729 const unsigned long nr_pages = 1 << order; 3730 struct task_struct *p = current; 3731 struct reclaim_state reclaim_state; 3732 struct scan_control sc = { 3733 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3734 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3735 .order = order, 3736 .priority = ZONE_RECLAIM_PRIORITY, 3737 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3738 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), 3739 .may_swap = 1, 3740 }; 3741 3742 cond_resched(); 3743 /* 3744 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3745 * and we also need to be able to write out pages for RECLAIM_WRITE 3746 * and RECLAIM_UNMAP. 3747 */ 3748 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3749 lockdep_set_current_reclaim_state(gfp_mask); 3750 reclaim_state.reclaimed_slab = 0; 3751 p->reclaim_state = &reclaim_state; 3752 3753 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3754 /* 3755 * Free memory by calling shrink zone with increasing 3756 * priorities until we have enough memory freed. 3757 */ 3758 do { 3759 shrink_zone(zone, &sc, true); 3760 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3761 } 3762 3763 p->reclaim_state = NULL; 3764 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3765 lockdep_clear_current_reclaim_state(); 3766 return sc.nr_reclaimed >= nr_pages; 3767 } 3768 3769 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3770 { 3771 int node_id; 3772 int ret; 3773 3774 /* 3775 * Zone reclaim reclaims unmapped file backed pages and 3776 * slab pages if we are over the defined limits. 3777 * 3778 * A small portion of unmapped file backed pages is needed for 3779 * file I/O otherwise pages read by file I/O will be immediately 3780 * thrown out if the zone is overallocated. So we do not reclaim 3781 * if less than a specified percentage of the zone is used by 3782 * unmapped file backed pages. 3783 */ 3784 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3785 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3786 return ZONE_RECLAIM_FULL; 3787 3788 if (!zone_reclaimable(zone)) 3789 return ZONE_RECLAIM_FULL; 3790 3791 /* 3792 * Do not scan if the allocation should not be delayed. 3793 */ 3794 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3795 return ZONE_RECLAIM_NOSCAN; 3796 3797 /* 3798 * Only run zone reclaim on the local zone or on zones that do not 3799 * have associated processors. This will favor the local processor 3800 * over remote processors and spread off node memory allocations 3801 * as wide as possible. 3802 */ 3803 node_id = zone_to_nid(zone); 3804 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3805 return ZONE_RECLAIM_NOSCAN; 3806 3807 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3808 return ZONE_RECLAIM_NOSCAN; 3809 3810 ret = __zone_reclaim(zone, gfp_mask, order); 3811 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3812 3813 if (!ret) 3814 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3815 3816 return ret; 3817 } 3818 #endif 3819 3820 /* 3821 * page_evictable - test whether a page is evictable 3822 * @page: the page to test 3823 * 3824 * Test whether page is evictable--i.e., should be placed on active/inactive 3825 * lists vs unevictable list. 3826 * 3827 * Reasons page might not be evictable: 3828 * (1) page's mapping marked unevictable 3829 * (2) page is part of an mlocked VMA 3830 * 3831 */ 3832 int page_evictable(struct page *page) 3833 { 3834 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3835 } 3836 3837 #ifdef CONFIG_SHMEM 3838 /** 3839 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3840 * @pages: array of pages to check 3841 * @nr_pages: number of pages to check 3842 * 3843 * Checks pages for evictability and moves them to the appropriate lru list. 3844 * 3845 * This function is only used for SysV IPC SHM_UNLOCK. 3846 */ 3847 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3848 { 3849 struct lruvec *lruvec; 3850 struct zone *zone = NULL; 3851 int pgscanned = 0; 3852 int pgrescued = 0; 3853 int i; 3854 3855 for (i = 0; i < nr_pages; i++) { 3856 struct page *page = pages[i]; 3857 struct zone *pagezone; 3858 3859 pgscanned++; 3860 pagezone = page_zone(page); 3861 if (pagezone != zone) { 3862 if (zone) 3863 spin_unlock_irq(&zone->lru_lock); 3864 zone = pagezone; 3865 spin_lock_irq(&zone->lru_lock); 3866 } 3867 lruvec = mem_cgroup_page_lruvec(page, zone); 3868 3869 if (!PageLRU(page) || !PageUnevictable(page)) 3870 continue; 3871 3872 if (page_evictable(page)) { 3873 enum lru_list lru = page_lru_base_type(page); 3874 3875 VM_BUG_ON_PAGE(PageActive(page), page); 3876 ClearPageUnevictable(page); 3877 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3878 add_page_to_lru_list(page, lruvec, lru); 3879 pgrescued++; 3880 } 3881 } 3882 3883 if (zone) { 3884 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3885 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3886 spin_unlock_irq(&zone->lru_lock); 3887 } 3888 } 3889 #endif /* CONFIG_SHMEM */ 3890