1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/rwsem.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 #include <linux/rculist_nulls.h> 59 #include <linux/random.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 64 #include <linux/swapops.h> 65 #include <linux/balloon_compaction.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 /* Can active folios be deactivated as part of reclaim? */ 97 #define DEACTIVATE_ANON 1 98 #define DEACTIVATE_FILE 2 99 unsigned int may_deactivate:2; 100 unsigned int force_deactivate:1; 101 unsigned int skipped_deactivate:1; 102 103 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 104 unsigned int may_writepage:1; 105 106 /* Can mapped folios be reclaimed? */ 107 unsigned int may_unmap:1; 108 109 /* Can folios be swapped as part of reclaim? */ 110 unsigned int may_swap:1; 111 112 /* Proactive reclaim invoked by userspace through memory.reclaim */ 113 unsigned int proactive:1; 114 115 /* 116 * Cgroup memory below memory.low is protected as long as we 117 * don't threaten to OOM. If any cgroup is reclaimed at 118 * reduced force or passed over entirely due to its memory.low 119 * setting (memcg_low_skipped), and nothing is reclaimed as a 120 * result, then go back for one more cycle that reclaims the protected 121 * memory (memcg_low_reclaim) to avert OOM. 122 */ 123 unsigned int memcg_low_reclaim:1; 124 unsigned int memcg_low_skipped:1; 125 126 unsigned int hibernation_mode:1; 127 128 /* One of the zones is ready for compaction */ 129 unsigned int compaction_ready:1; 130 131 /* There is easily reclaimable cold cache in the current node */ 132 unsigned int cache_trim_mode:1; 133 134 /* The file folios on the current node are dangerously low */ 135 unsigned int file_is_tiny:1; 136 137 /* Always discard instead of demoting to lower tier memory */ 138 unsigned int no_demotion:1; 139 140 /* Allocation order */ 141 s8 order; 142 143 /* Scan (total_size >> priority) pages at once */ 144 s8 priority; 145 146 /* The highest zone to isolate folios for reclaim from */ 147 s8 reclaim_idx; 148 149 /* This context's GFP mask */ 150 gfp_t gfp_mask; 151 152 /* Incremented by the number of inactive pages that were scanned */ 153 unsigned long nr_scanned; 154 155 /* Number of pages freed so far during a call to shrink_zones() */ 156 unsigned long nr_reclaimed; 157 158 struct { 159 unsigned int dirty; 160 unsigned int unqueued_dirty; 161 unsigned int congested; 162 unsigned int writeback; 163 unsigned int immediate; 164 unsigned int file_taken; 165 unsigned int taken; 166 } nr; 167 168 /* for recording the reclaimed slab by now */ 169 struct reclaim_state reclaim_state; 170 }; 171 172 #ifdef ARCH_HAS_PREFETCHW 173 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 174 do { \ 175 if ((_folio)->lru.prev != _base) { \ 176 struct folio *prev; \ 177 \ 178 prev = lru_to_folio(&(_folio->lru)); \ 179 prefetchw(&prev->_field); \ 180 } \ 181 } while (0) 182 #else 183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 184 #endif 185 186 /* 187 * From 0 .. 200. Higher means more swappy. 188 */ 189 int vm_swappiness = 60; 190 191 static void set_task_reclaim_state(struct task_struct *task, 192 struct reclaim_state *rs) 193 { 194 /* Check for an overwrite */ 195 WARN_ON_ONCE(rs && task->reclaim_state); 196 197 /* Check for the nulling of an already-nulled member */ 198 WARN_ON_ONCE(!rs && !task->reclaim_state); 199 200 task->reclaim_state = rs; 201 } 202 203 LIST_HEAD(shrinker_list); 204 DECLARE_RWSEM(shrinker_rwsem); 205 206 #ifdef CONFIG_MEMCG 207 static int shrinker_nr_max; 208 209 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 210 static inline int shrinker_map_size(int nr_items) 211 { 212 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 213 } 214 215 static inline int shrinker_defer_size(int nr_items) 216 { 217 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 218 } 219 220 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 221 int nid) 222 { 223 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 224 lockdep_is_held(&shrinker_rwsem)); 225 } 226 227 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 228 int map_size, int defer_size, 229 int old_map_size, int old_defer_size) 230 { 231 struct shrinker_info *new, *old; 232 struct mem_cgroup_per_node *pn; 233 int nid; 234 int size = map_size + defer_size; 235 236 for_each_node(nid) { 237 pn = memcg->nodeinfo[nid]; 238 old = shrinker_info_protected(memcg, nid); 239 /* Not yet online memcg */ 240 if (!old) 241 return 0; 242 243 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 244 if (!new) 245 return -ENOMEM; 246 247 new->nr_deferred = (atomic_long_t *)(new + 1); 248 new->map = (void *)new->nr_deferred + defer_size; 249 250 /* map: set all old bits, clear all new bits */ 251 memset(new->map, (int)0xff, old_map_size); 252 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 253 /* nr_deferred: copy old values, clear all new values */ 254 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 255 memset((void *)new->nr_deferred + old_defer_size, 0, 256 defer_size - old_defer_size); 257 258 rcu_assign_pointer(pn->shrinker_info, new); 259 kvfree_rcu(old, rcu); 260 } 261 262 return 0; 263 } 264 265 void free_shrinker_info(struct mem_cgroup *memcg) 266 { 267 struct mem_cgroup_per_node *pn; 268 struct shrinker_info *info; 269 int nid; 270 271 for_each_node(nid) { 272 pn = memcg->nodeinfo[nid]; 273 info = rcu_dereference_protected(pn->shrinker_info, true); 274 kvfree(info); 275 rcu_assign_pointer(pn->shrinker_info, NULL); 276 } 277 } 278 279 int alloc_shrinker_info(struct mem_cgroup *memcg) 280 { 281 struct shrinker_info *info; 282 int nid, size, ret = 0; 283 int map_size, defer_size = 0; 284 285 down_write(&shrinker_rwsem); 286 map_size = shrinker_map_size(shrinker_nr_max); 287 defer_size = shrinker_defer_size(shrinker_nr_max); 288 size = map_size + defer_size; 289 for_each_node(nid) { 290 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 291 if (!info) { 292 free_shrinker_info(memcg); 293 ret = -ENOMEM; 294 break; 295 } 296 info->nr_deferred = (atomic_long_t *)(info + 1); 297 info->map = (void *)info->nr_deferred + defer_size; 298 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 299 } 300 up_write(&shrinker_rwsem); 301 302 return ret; 303 } 304 305 static inline bool need_expand(int nr_max) 306 { 307 return round_up(nr_max, BITS_PER_LONG) > 308 round_up(shrinker_nr_max, BITS_PER_LONG); 309 } 310 311 static int expand_shrinker_info(int new_id) 312 { 313 int ret = 0; 314 int new_nr_max = new_id + 1; 315 int map_size, defer_size = 0; 316 int old_map_size, old_defer_size = 0; 317 struct mem_cgroup *memcg; 318 319 if (!need_expand(new_nr_max)) 320 goto out; 321 322 if (!root_mem_cgroup) 323 goto out; 324 325 lockdep_assert_held(&shrinker_rwsem); 326 327 map_size = shrinker_map_size(new_nr_max); 328 defer_size = shrinker_defer_size(new_nr_max); 329 old_map_size = shrinker_map_size(shrinker_nr_max); 330 old_defer_size = shrinker_defer_size(shrinker_nr_max); 331 332 memcg = mem_cgroup_iter(NULL, NULL, NULL); 333 do { 334 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 335 old_map_size, old_defer_size); 336 if (ret) { 337 mem_cgroup_iter_break(NULL, memcg); 338 goto out; 339 } 340 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 341 out: 342 if (!ret) 343 shrinker_nr_max = new_nr_max; 344 345 return ret; 346 } 347 348 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 349 { 350 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 351 struct shrinker_info *info; 352 353 rcu_read_lock(); 354 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 355 /* Pairs with smp mb in shrink_slab() */ 356 smp_mb__before_atomic(); 357 set_bit(shrinker_id, info->map); 358 rcu_read_unlock(); 359 } 360 } 361 362 static DEFINE_IDR(shrinker_idr); 363 364 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 365 { 366 int id, ret = -ENOMEM; 367 368 if (mem_cgroup_disabled()) 369 return -ENOSYS; 370 371 down_write(&shrinker_rwsem); 372 /* This may call shrinker, so it must use down_read_trylock() */ 373 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 374 if (id < 0) 375 goto unlock; 376 377 if (id >= shrinker_nr_max) { 378 if (expand_shrinker_info(id)) { 379 idr_remove(&shrinker_idr, id); 380 goto unlock; 381 } 382 } 383 shrinker->id = id; 384 ret = 0; 385 unlock: 386 up_write(&shrinker_rwsem); 387 return ret; 388 } 389 390 static void unregister_memcg_shrinker(struct shrinker *shrinker) 391 { 392 int id = shrinker->id; 393 394 BUG_ON(id < 0); 395 396 lockdep_assert_held(&shrinker_rwsem); 397 398 idr_remove(&shrinker_idr, id); 399 } 400 401 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 402 struct mem_cgroup *memcg) 403 { 404 struct shrinker_info *info; 405 406 info = shrinker_info_protected(memcg, nid); 407 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 408 } 409 410 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 411 struct mem_cgroup *memcg) 412 { 413 struct shrinker_info *info; 414 415 info = shrinker_info_protected(memcg, nid); 416 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 417 } 418 419 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 420 { 421 int i, nid; 422 long nr; 423 struct mem_cgroup *parent; 424 struct shrinker_info *child_info, *parent_info; 425 426 parent = parent_mem_cgroup(memcg); 427 if (!parent) 428 parent = root_mem_cgroup; 429 430 /* Prevent from concurrent shrinker_info expand */ 431 down_read(&shrinker_rwsem); 432 for_each_node(nid) { 433 child_info = shrinker_info_protected(memcg, nid); 434 parent_info = shrinker_info_protected(parent, nid); 435 for (i = 0; i < shrinker_nr_max; i++) { 436 nr = atomic_long_read(&child_info->nr_deferred[i]); 437 atomic_long_add(nr, &parent_info->nr_deferred[i]); 438 } 439 } 440 up_read(&shrinker_rwsem); 441 } 442 443 static bool cgroup_reclaim(struct scan_control *sc) 444 { 445 return sc->target_mem_cgroup; 446 } 447 448 static bool global_reclaim(struct scan_control *sc) 449 { 450 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 451 } 452 453 /** 454 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 455 * @sc: scan_control in question 456 * 457 * The normal page dirty throttling mechanism in balance_dirty_pages() is 458 * completely broken with the legacy memcg and direct stalling in 459 * shrink_folio_list() is used for throttling instead, which lacks all the 460 * niceties such as fairness, adaptive pausing, bandwidth proportional 461 * allocation and configurability. 462 * 463 * This function tests whether the vmscan currently in progress can assume 464 * that the normal dirty throttling mechanism is operational. 465 */ 466 static bool writeback_throttling_sane(struct scan_control *sc) 467 { 468 if (!cgroup_reclaim(sc)) 469 return true; 470 #ifdef CONFIG_CGROUP_WRITEBACK 471 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 472 return true; 473 #endif 474 return false; 475 } 476 #else 477 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 478 { 479 return -ENOSYS; 480 } 481 482 static void unregister_memcg_shrinker(struct shrinker *shrinker) 483 { 484 } 485 486 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 487 struct mem_cgroup *memcg) 488 { 489 return 0; 490 } 491 492 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 493 struct mem_cgroup *memcg) 494 { 495 return 0; 496 } 497 498 static bool cgroup_reclaim(struct scan_control *sc) 499 { 500 return false; 501 } 502 503 static bool global_reclaim(struct scan_control *sc) 504 { 505 return true; 506 } 507 508 static bool writeback_throttling_sane(struct scan_control *sc) 509 { 510 return true; 511 } 512 #endif 513 514 static long xchg_nr_deferred(struct shrinker *shrinker, 515 struct shrink_control *sc) 516 { 517 int nid = sc->nid; 518 519 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 520 nid = 0; 521 522 if (sc->memcg && 523 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 524 return xchg_nr_deferred_memcg(nid, shrinker, 525 sc->memcg); 526 527 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 528 } 529 530 531 static long add_nr_deferred(long nr, struct shrinker *shrinker, 532 struct shrink_control *sc) 533 { 534 int nid = sc->nid; 535 536 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 537 nid = 0; 538 539 if (sc->memcg && 540 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 541 return add_nr_deferred_memcg(nr, nid, shrinker, 542 sc->memcg); 543 544 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 545 } 546 547 static bool can_demote(int nid, struct scan_control *sc) 548 { 549 if (!numa_demotion_enabled) 550 return false; 551 if (sc && sc->no_demotion) 552 return false; 553 if (next_demotion_node(nid) == NUMA_NO_NODE) 554 return false; 555 556 return true; 557 } 558 559 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 560 int nid, 561 struct scan_control *sc) 562 { 563 if (memcg == NULL) { 564 /* 565 * For non-memcg reclaim, is there 566 * space in any swap device? 567 */ 568 if (get_nr_swap_pages() > 0) 569 return true; 570 } else { 571 /* Is the memcg below its swap limit? */ 572 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 573 return true; 574 } 575 576 /* 577 * The page can not be swapped. 578 * 579 * Can it be reclaimed from this node via demotion? 580 */ 581 return can_demote(nid, sc); 582 } 583 584 /* 585 * This misses isolated folios which are not accounted for to save counters. 586 * As the data only determines if reclaim or compaction continues, it is 587 * not expected that isolated folios will be a dominating factor. 588 */ 589 unsigned long zone_reclaimable_pages(struct zone *zone) 590 { 591 unsigned long nr; 592 593 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 594 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 595 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 596 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 597 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 598 599 return nr; 600 } 601 602 /** 603 * lruvec_lru_size - Returns the number of pages on the given LRU list. 604 * @lruvec: lru vector 605 * @lru: lru to use 606 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 607 */ 608 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 609 int zone_idx) 610 { 611 unsigned long size = 0; 612 int zid; 613 614 for (zid = 0; zid <= zone_idx; zid++) { 615 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 616 617 if (!managed_zone(zone)) 618 continue; 619 620 if (!mem_cgroup_disabled()) 621 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 622 else 623 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 624 } 625 return size; 626 } 627 628 /* 629 * Add a shrinker callback to be called from the vm. 630 */ 631 static int __prealloc_shrinker(struct shrinker *shrinker) 632 { 633 unsigned int size; 634 int err; 635 636 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 637 err = prealloc_memcg_shrinker(shrinker); 638 if (err != -ENOSYS) 639 return err; 640 641 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 642 } 643 644 size = sizeof(*shrinker->nr_deferred); 645 if (shrinker->flags & SHRINKER_NUMA_AWARE) 646 size *= nr_node_ids; 647 648 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 649 if (!shrinker->nr_deferred) 650 return -ENOMEM; 651 652 return 0; 653 } 654 655 #ifdef CONFIG_SHRINKER_DEBUG 656 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 657 { 658 va_list ap; 659 int err; 660 661 va_start(ap, fmt); 662 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 663 va_end(ap); 664 if (!shrinker->name) 665 return -ENOMEM; 666 667 err = __prealloc_shrinker(shrinker); 668 if (err) { 669 kfree_const(shrinker->name); 670 shrinker->name = NULL; 671 } 672 673 return err; 674 } 675 #else 676 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 677 { 678 return __prealloc_shrinker(shrinker); 679 } 680 #endif 681 682 void free_prealloced_shrinker(struct shrinker *shrinker) 683 { 684 #ifdef CONFIG_SHRINKER_DEBUG 685 kfree_const(shrinker->name); 686 shrinker->name = NULL; 687 #endif 688 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 689 down_write(&shrinker_rwsem); 690 unregister_memcg_shrinker(shrinker); 691 up_write(&shrinker_rwsem); 692 return; 693 } 694 695 kfree(shrinker->nr_deferred); 696 shrinker->nr_deferred = NULL; 697 } 698 699 void register_shrinker_prepared(struct shrinker *shrinker) 700 { 701 down_write(&shrinker_rwsem); 702 list_add_tail(&shrinker->list, &shrinker_list); 703 shrinker->flags |= SHRINKER_REGISTERED; 704 shrinker_debugfs_add(shrinker); 705 up_write(&shrinker_rwsem); 706 } 707 708 static int __register_shrinker(struct shrinker *shrinker) 709 { 710 int err = __prealloc_shrinker(shrinker); 711 712 if (err) 713 return err; 714 register_shrinker_prepared(shrinker); 715 return 0; 716 } 717 718 #ifdef CONFIG_SHRINKER_DEBUG 719 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 720 { 721 va_list ap; 722 int err; 723 724 va_start(ap, fmt); 725 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 726 va_end(ap); 727 if (!shrinker->name) 728 return -ENOMEM; 729 730 err = __register_shrinker(shrinker); 731 if (err) { 732 kfree_const(shrinker->name); 733 shrinker->name = NULL; 734 } 735 return err; 736 } 737 #else 738 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 739 { 740 return __register_shrinker(shrinker); 741 } 742 #endif 743 EXPORT_SYMBOL(register_shrinker); 744 745 /* 746 * Remove one 747 */ 748 void unregister_shrinker(struct shrinker *shrinker) 749 { 750 struct dentry *debugfs_entry; 751 752 if (!(shrinker->flags & SHRINKER_REGISTERED)) 753 return; 754 755 down_write(&shrinker_rwsem); 756 list_del(&shrinker->list); 757 shrinker->flags &= ~SHRINKER_REGISTERED; 758 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 759 unregister_memcg_shrinker(shrinker); 760 debugfs_entry = shrinker_debugfs_remove(shrinker); 761 up_write(&shrinker_rwsem); 762 763 debugfs_remove_recursive(debugfs_entry); 764 765 kfree(shrinker->nr_deferred); 766 shrinker->nr_deferred = NULL; 767 } 768 EXPORT_SYMBOL(unregister_shrinker); 769 770 /** 771 * synchronize_shrinkers - Wait for all running shrinkers to complete. 772 * 773 * This is equivalent to calling unregister_shrink() and register_shrinker(), 774 * but atomically and with less overhead. This is useful to guarantee that all 775 * shrinker invocations have seen an update, before freeing memory, similar to 776 * rcu. 777 */ 778 void synchronize_shrinkers(void) 779 { 780 down_write(&shrinker_rwsem); 781 up_write(&shrinker_rwsem); 782 } 783 EXPORT_SYMBOL(synchronize_shrinkers); 784 785 #define SHRINK_BATCH 128 786 787 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 788 struct shrinker *shrinker, int priority) 789 { 790 unsigned long freed = 0; 791 unsigned long long delta; 792 long total_scan; 793 long freeable; 794 long nr; 795 long new_nr; 796 long batch_size = shrinker->batch ? shrinker->batch 797 : SHRINK_BATCH; 798 long scanned = 0, next_deferred; 799 800 freeable = shrinker->count_objects(shrinker, shrinkctl); 801 if (freeable == 0 || freeable == SHRINK_EMPTY) 802 return freeable; 803 804 /* 805 * copy the current shrinker scan count into a local variable 806 * and zero it so that other concurrent shrinker invocations 807 * don't also do this scanning work. 808 */ 809 nr = xchg_nr_deferred(shrinker, shrinkctl); 810 811 if (shrinker->seeks) { 812 delta = freeable >> priority; 813 delta *= 4; 814 do_div(delta, shrinker->seeks); 815 } else { 816 /* 817 * These objects don't require any IO to create. Trim 818 * them aggressively under memory pressure to keep 819 * them from causing refetches in the IO caches. 820 */ 821 delta = freeable / 2; 822 } 823 824 total_scan = nr >> priority; 825 total_scan += delta; 826 total_scan = min(total_scan, (2 * freeable)); 827 828 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 829 freeable, delta, total_scan, priority); 830 831 /* 832 * Normally, we should not scan less than batch_size objects in one 833 * pass to avoid too frequent shrinker calls, but if the slab has less 834 * than batch_size objects in total and we are really tight on memory, 835 * we will try to reclaim all available objects, otherwise we can end 836 * up failing allocations although there are plenty of reclaimable 837 * objects spread over several slabs with usage less than the 838 * batch_size. 839 * 840 * We detect the "tight on memory" situations by looking at the total 841 * number of objects we want to scan (total_scan). If it is greater 842 * than the total number of objects on slab (freeable), we must be 843 * scanning at high prio and therefore should try to reclaim as much as 844 * possible. 845 */ 846 while (total_scan >= batch_size || 847 total_scan >= freeable) { 848 unsigned long ret; 849 unsigned long nr_to_scan = min(batch_size, total_scan); 850 851 shrinkctl->nr_to_scan = nr_to_scan; 852 shrinkctl->nr_scanned = nr_to_scan; 853 ret = shrinker->scan_objects(shrinker, shrinkctl); 854 if (ret == SHRINK_STOP) 855 break; 856 freed += ret; 857 858 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 859 total_scan -= shrinkctl->nr_scanned; 860 scanned += shrinkctl->nr_scanned; 861 862 cond_resched(); 863 } 864 865 /* 866 * The deferred work is increased by any new work (delta) that wasn't 867 * done, decreased by old deferred work that was done now. 868 * 869 * And it is capped to two times of the freeable items. 870 */ 871 next_deferred = max_t(long, (nr + delta - scanned), 0); 872 next_deferred = min(next_deferred, (2 * freeable)); 873 874 /* 875 * move the unused scan count back into the shrinker in a 876 * manner that handles concurrent updates. 877 */ 878 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 879 880 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 881 return freed; 882 } 883 884 #ifdef CONFIG_MEMCG 885 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 886 struct mem_cgroup *memcg, int priority) 887 { 888 struct shrinker_info *info; 889 unsigned long ret, freed = 0; 890 int i; 891 892 if (!mem_cgroup_online(memcg)) 893 return 0; 894 895 if (!down_read_trylock(&shrinker_rwsem)) 896 return 0; 897 898 info = shrinker_info_protected(memcg, nid); 899 if (unlikely(!info)) 900 goto unlock; 901 902 for_each_set_bit(i, info->map, shrinker_nr_max) { 903 struct shrink_control sc = { 904 .gfp_mask = gfp_mask, 905 .nid = nid, 906 .memcg = memcg, 907 }; 908 struct shrinker *shrinker; 909 910 shrinker = idr_find(&shrinker_idr, i); 911 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 912 if (!shrinker) 913 clear_bit(i, info->map); 914 continue; 915 } 916 917 /* Call non-slab shrinkers even though kmem is disabled */ 918 if (!memcg_kmem_online() && 919 !(shrinker->flags & SHRINKER_NONSLAB)) 920 continue; 921 922 ret = do_shrink_slab(&sc, shrinker, priority); 923 if (ret == SHRINK_EMPTY) { 924 clear_bit(i, info->map); 925 /* 926 * After the shrinker reported that it had no objects to 927 * free, but before we cleared the corresponding bit in 928 * the memcg shrinker map, a new object might have been 929 * added. To make sure, we have the bit set in this 930 * case, we invoke the shrinker one more time and reset 931 * the bit if it reports that it is not empty anymore. 932 * The memory barrier here pairs with the barrier in 933 * set_shrinker_bit(): 934 * 935 * list_lru_add() shrink_slab_memcg() 936 * list_add_tail() clear_bit() 937 * <MB> <MB> 938 * set_bit() do_shrink_slab() 939 */ 940 smp_mb__after_atomic(); 941 ret = do_shrink_slab(&sc, shrinker, priority); 942 if (ret == SHRINK_EMPTY) 943 ret = 0; 944 else 945 set_shrinker_bit(memcg, nid, i); 946 } 947 freed += ret; 948 949 if (rwsem_is_contended(&shrinker_rwsem)) { 950 freed = freed ? : 1; 951 break; 952 } 953 } 954 unlock: 955 up_read(&shrinker_rwsem); 956 return freed; 957 } 958 #else /* CONFIG_MEMCG */ 959 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 960 struct mem_cgroup *memcg, int priority) 961 { 962 return 0; 963 } 964 #endif /* CONFIG_MEMCG */ 965 966 /** 967 * shrink_slab - shrink slab caches 968 * @gfp_mask: allocation context 969 * @nid: node whose slab caches to target 970 * @memcg: memory cgroup whose slab caches to target 971 * @priority: the reclaim priority 972 * 973 * Call the shrink functions to age shrinkable caches. 974 * 975 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 976 * unaware shrinkers will receive a node id of 0 instead. 977 * 978 * @memcg specifies the memory cgroup to target. Unaware shrinkers 979 * are called only if it is the root cgroup. 980 * 981 * @priority is sc->priority, we take the number of objects and >> by priority 982 * in order to get the scan target. 983 * 984 * Returns the number of reclaimed slab objects. 985 */ 986 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 987 struct mem_cgroup *memcg, 988 int priority) 989 { 990 unsigned long ret, freed = 0; 991 struct shrinker *shrinker; 992 993 /* 994 * The root memcg might be allocated even though memcg is disabled 995 * via "cgroup_disable=memory" boot parameter. This could make 996 * mem_cgroup_is_root() return false, then just run memcg slab 997 * shrink, but skip global shrink. This may result in premature 998 * oom. 999 */ 1000 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 1001 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 1002 1003 if (!down_read_trylock(&shrinker_rwsem)) 1004 goto out; 1005 1006 list_for_each_entry(shrinker, &shrinker_list, list) { 1007 struct shrink_control sc = { 1008 .gfp_mask = gfp_mask, 1009 .nid = nid, 1010 .memcg = memcg, 1011 }; 1012 1013 ret = do_shrink_slab(&sc, shrinker, priority); 1014 if (ret == SHRINK_EMPTY) 1015 ret = 0; 1016 freed += ret; 1017 /* 1018 * Bail out if someone want to register a new shrinker to 1019 * prevent the registration from being stalled for long periods 1020 * by parallel ongoing shrinking. 1021 */ 1022 if (rwsem_is_contended(&shrinker_rwsem)) { 1023 freed = freed ? : 1; 1024 break; 1025 } 1026 } 1027 1028 up_read(&shrinker_rwsem); 1029 out: 1030 cond_resched(); 1031 return freed; 1032 } 1033 1034 static unsigned long drop_slab_node(int nid) 1035 { 1036 unsigned long freed = 0; 1037 struct mem_cgroup *memcg = NULL; 1038 1039 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1040 do { 1041 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1042 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1043 1044 return freed; 1045 } 1046 1047 void drop_slab(void) 1048 { 1049 int nid; 1050 int shift = 0; 1051 unsigned long freed; 1052 1053 do { 1054 freed = 0; 1055 for_each_online_node(nid) { 1056 if (fatal_signal_pending(current)) 1057 return; 1058 1059 freed += drop_slab_node(nid); 1060 } 1061 } while ((freed >> shift++) > 1); 1062 } 1063 1064 static int reclaimer_offset(void) 1065 { 1066 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1067 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1068 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1069 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1070 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1071 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1072 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1073 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1074 1075 if (current_is_kswapd()) 1076 return 0; 1077 if (current_is_khugepaged()) 1078 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1079 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1080 } 1081 1082 static inline int is_page_cache_freeable(struct folio *folio) 1083 { 1084 /* 1085 * A freeable page cache folio is referenced only by the caller 1086 * that isolated the folio, the page cache and optional filesystem 1087 * private data at folio->private. 1088 */ 1089 return folio_ref_count(folio) - folio_test_private(folio) == 1090 1 + folio_nr_pages(folio); 1091 } 1092 1093 /* 1094 * We detected a synchronous write error writing a folio out. Probably 1095 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1096 * fsync(), msync() or close(). 1097 * 1098 * The tricky part is that after writepage we cannot touch the mapping: nothing 1099 * prevents it from being freed up. But we have a ref on the folio and once 1100 * that folio is locked, the mapping is pinned. 1101 * 1102 * We're allowed to run sleeping folio_lock() here because we know the caller has 1103 * __GFP_FS. 1104 */ 1105 static void handle_write_error(struct address_space *mapping, 1106 struct folio *folio, int error) 1107 { 1108 folio_lock(folio); 1109 if (folio_mapping(folio) == mapping) 1110 mapping_set_error(mapping, error); 1111 folio_unlock(folio); 1112 } 1113 1114 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1115 { 1116 int reclaimable = 0, write_pending = 0; 1117 int i; 1118 1119 /* 1120 * If kswapd is disabled, reschedule if necessary but do not 1121 * throttle as the system is likely near OOM. 1122 */ 1123 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1124 return true; 1125 1126 /* 1127 * If there are a lot of dirty/writeback folios then do not 1128 * throttle as throttling will occur when the folios cycle 1129 * towards the end of the LRU if still under writeback. 1130 */ 1131 for (i = 0; i < MAX_NR_ZONES; i++) { 1132 struct zone *zone = pgdat->node_zones + i; 1133 1134 if (!managed_zone(zone)) 1135 continue; 1136 1137 reclaimable += zone_reclaimable_pages(zone); 1138 write_pending += zone_page_state_snapshot(zone, 1139 NR_ZONE_WRITE_PENDING); 1140 } 1141 if (2 * write_pending <= reclaimable) 1142 return true; 1143 1144 return false; 1145 } 1146 1147 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1148 { 1149 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1150 long timeout, ret; 1151 DEFINE_WAIT(wait); 1152 1153 /* 1154 * Do not throttle IO workers, kthreads other than kswapd or 1155 * workqueues. They may be required for reclaim to make 1156 * forward progress (e.g. journalling workqueues or kthreads). 1157 */ 1158 if (!current_is_kswapd() && 1159 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1160 cond_resched(); 1161 return; 1162 } 1163 1164 /* 1165 * These figures are pulled out of thin air. 1166 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1167 * parallel reclaimers which is a short-lived event so the timeout is 1168 * short. Failing to make progress or waiting on writeback are 1169 * potentially long-lived events so use a longer timeout. This is shaky 1170 * logic as a failure to make progress could be due to anything from 1171 * writeback to a slow device to excessive referenced folios at the tail 1172 * of the inactive LRU. 1173 */ 1174 switch(reason) { 1175 case VMSCAN_THROTTLE_WRITEBACK: 1176 timeout = HZ/10; 1177 1178 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1179 WRITE_ONCE(pgdat->nr_reclaim_start, 1180 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1181 } 1182 1183 break; 1184 case VMSCAN_THROTTLE_CONGESTED: 1185 fallthrough; 1186 case VMSCAN_THROTTLE_NOPROGRESS: 1187 if (skip_throttle_noprogress(pgdat)) { 1188 cond_resched(); 1189 return; 1190 } 1191 1192 timeout = 1; 1193 1194 break; 1195 case VMSCAN_THROTTLE_ISOLATED: 1196 timeout = HZ/50; 1197 break; 1198 default: 1199 WARN_ON_ONCE(1); 1200 timeout = HZ; 1201 break; 1202 } 1203 1204 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1205 ret = schedule_timeout(timeout); 1206 finish_wait(wqh, &wait); 1207 1208 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1209 atomic_dec(&pgdat->nr_writeback_throttled); 1210 1211 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1212 jiffies_to_usecs(timeout - ret), 1213 reason); 1214 } 1215 1216 /* 1217 * Account for folios written if tasks are throttled waiting on dirty 1218 * folios to clean. If enough folios have been cleaned since throttling 1219 * started then wakeup the throttled tasks. 1220 */ 1221 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1222 int nr_throttled) 1223 { 1224 unsigned long nr_written; 1225 1226 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1227 1228 /* 1229 * This is an inaccurate read as the per-cpu deltas may not 1230 * be synchronised. However, given that the system is 1231 * writeback throttled, it is not worth taking the penalty 1232 * of getting an accurate count. At worst, the throttle 1233 * timeout guarantees forward progress. 1234 */ 1235 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1236 READ_ONCE(pgdat->nr_reclaim_start); 1237 1238 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1239 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1240 } 1241 1242 /* possible outcome of pageout() */ 1243 typedef enum { 1244 /* failed to write folio out, folio is locked */ 1245 PAGE_KEEP, 1246 /* move folio to the active list, folio is locked */ 1247 PAGE_ACTIVATE, 1248 /* folio has been sent to the disk successfully, folio is unlocked */ 1249 PAGE_SUCCESS, 1250 /* folio is clean and locked */ 1251 PAGE_CLEAN, 1252 } pageout_t; 1253 1254 /* 1255 * pageout is called by shrink_folio_list() for each dirty folio. 1256 * Calls ->writepage(). 1257 */ 1258 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1259 struct swap_iocb **plug) 1260 { 1261 /* 1262 * If the folio is dirty, only perform writeback if that write 1263 * will be non-blocking. To prevent this allocation from being 1264 * stalled by pagecache activity. But note that there may be 1265 * stalls if we need to run get_block(). We could test 1266 * PagePrivate for that. 1267 * 1268 * If this process is currently in __generic_file_write_iter() against 1269 * this folio's queue, we can perform writeback even if that 1270 * will block. 1271 * 1272 * If the folio is swapcache, write it back even if that would 1273 * block, for some throttling. This happens by accident, because 1274 * swap_backing_dev_info is bust: it doesn't reflect the 1275 * congestion state of the swapdevs. Easy to fix, if needed. 1276 */ 1277 if (!is_page_cache_freeable(folio)) 1278 return PAGE_KEEP; 1279 if (!mapping) { 1280 /* 1281 * Some data journaling orphaned folios can have 1282 * folio->mapping == NULL while being dirty with clean buffers. 1283 */ 1284 if (folio_test_private(folio)) { 1285 if (try_to_free_buffers(folio)) { 1286 folio_clear_dirty(folio); 1287 pr_info("%s: orphaned folio\n", __func__); 1288 return PAGE_CLEAN; 1289 } 1290 } 1291 return PAGE_KEEP; 1292 } 1293 if (mapping->a_ops->writepage == NULL) 1294 return PAGE_ACTIVATE; 1295 1296 if (folio_clear_dirty_for_io(folio)) { 1297 int res; 1298 struct writeback_control wbc = { 1299 .sync_mode = WB_SYNC_NONE, 1300 .nr_to_write = SWAP_CLUSTER_MAX, 1301 .range_start = 0, 1302 .range_end = LLONG_MAX, 1303 .for_reclaim = 1, 1304 .swap_plug = plug, 1305 }; 1306 1307 folio_set_reclaim(folio); 1308 res = mapping->a_ops->writepage(&folio->page, &wbc); 1309 if (res < 0) 1310 handle_write_error(mapping, folio, res); 1311 if (res == AOP_WRITEPAGE_ACTIVATE) { 1312 folio_clear_reclaim(folio); 1313 return PAGE_ACTIVATE; 1314 } 1315 1316 if (!folio_test_writeback(folio)) { 1317 /* synchronous write or broken a_ops? */ 1318 folio_clear_reclaim(folio); 1319 } 1320 trace_mm_vmscan_write_folio(folio); 1321 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1322 return PAGE_SUCCESS; 1323 } 1324 1325 return PAGE_CLEAN; 1326 } 1327 1328 /* 1329 * Same as remove_mapping, but if the folio is removed from the mapping, it 1330 * gets returned with a refcount of 0. 1331 */ 1332 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1333 bool reclaimed, struct mem_cgroup *target_memcg) 1334 { 1335 int refcount; 1336 void *shadow = NULL; 1337 1338 BUG_ON(!folio_test_locked(folio)); 1339 BUG_ON(mapping != folio_mapping(folio)); 1340 1341 if (!folio_test_swapcache(folio)) 1342 spin_lock(&mapping->host->i_lock); 1343 xa_lock_irq(&mapping->i_pages); 1344 /* 1345 * The non racy check for a busy folio. 1346 * 1347 * Must be careful with the order of the tests. When someone has 1348 * a ref to the folio, it may be possible that they dirty it then 1349 * drop the reference. So if the dirty flag is tested before the 1350 * refcount here, then the following race may occur: 1351 * 1352 * get_user_pages(&page); 1353 * [user mapping goes away] 1354 * write_to(page); 1355 * !folio_test_dirty(folio) [good] 1356 * folio_set_dirty(folio); 1357 * folio_put(folio); 1358 * !refcount(folio) [good, discard it] 1359 * 1360 * [oops, our write_to data is lost] 1361 * 1362 * Reversing the order of the tests ensures such a situation cannot 1363 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1364 * load is not satisfied before that of folio->_refcount. 1365 * 1366 * Note that if the dirty flag is always set via folio_mark_dirty, 1367 * and thus under the i_pages lock, then this ordering is not required. 1368 */ 1369 refcount = 1 + folio_nr_pages(folio); 1370 if (!folio_ref_freeze(folio, refcount)) 1371 goto cannot_free; 1372 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1373 if (unlikely(folio_test_dirty(folio))) { 1374 folio_ref_unfreeze(folio, refcount); 1375 goto cannot_free; 1376 } 1377 1378 if (folio_test_swapcache(folio)) { 1379 swp_entry_t swap = folio_swap_entry(folio); 1380 1381 if (reclaimed && !mapping_exiting(mapping)) 1382 shadow = workingset_eviction(folio, target_memcg); 1383 __delete_from_swap_cache(folio, swap, shadow); 1384 mem_cgroup_swapout(folio, swap); 1385 xa_unlock_irq(&mapping->i_pages); 1386 put_swap_folio(folio, swap); 1387 } else { 1388 void (*free_folio)(struct folio *); 1389 1390 free_folio = mapping->a_ops->free_folio; 1391 /* 1392 * Remember a shadow entry for reclaimed file cache in 1393 * order to detect refaults, thus thrashing, later on. 1394 * 1395 * But don't store shadows in an address space that is 1396 * already exiting. This is not just an optimization, 1397 * inode reclaim needs to empty out the radix tree or 1398 * the nodes are lost. Don't plant shadows behind its 1399 * back. 1400 * 1401 * We also don't store shadows for DAX mappings because the 1402 * only page cache folios found in these are zero pages 1403 * covering holes, and because we don't want to mix DAX 1404 * exceptional entries and shadow exceptional entries in the 1405 * same address_space. 1406 */ 1407 if (reclaimed && folio_is_file_lru(folio) && 1408 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1409 shadow = workingset_eviction(folio, target_memcg); 1410 __filemap_remove_folio(folio, shadow); 1411 xa_unlock_irq(&mapping->i_pages); 1412 if (mapping_shrinkable(mapping)) 1413 inode_add_lru(mapping->host); 1414 spin_unlock(&mapping->host->i_lock); 1415 1416 if (free_folio) 1417 free_folio(folio); 1418 } 1419 1420 return 1; 1421 1422 cannot_free: 1423 xa_unlock_irq(&mapping->i_pages); 1424 if (!folio_test_swapcache(folio)) 1425 spin_unlock(&mapping->host->i_lock); 1426 return 0; 1427 } 1428 1429 /** 1430 * remove_mapping() - Attempt to remove a folio from its mapping. 1431 * @mapping: The address space. 1432 * @folio: The folio to remove. 1433 * 1434 * If the folio is dirty, under writeback or if someone else has a ref 1435 * on it, removal will fail. 1436 * Return: The number of pages removed from the mapping. 0 if the folio 1437 * could not be removed. 1438 * Context: The caller should have a single refcount on the folio and 1439 * hold its lock. 1440 */ 1441 long remove_mapping(struct address_space *mapping, struct folio *folio) 1442 { 1443 if (__remove_mapping(mapping, folio, false, NULL)) { 1444 /* 1445 * Unfreezing the refcount with 1 effectively 1446 * drops the pagecache ref for us without requiring another 1447 * atomic operation. 1448 */ 1449 folio_ref_unfreeze(folio, 1); 1450 return folio_nr_pages(folio); 1451 } 1452 return 0; 1453 } 1454 1455 /** 1456 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1457 * @folio: Folio to be returned to an LRU list. 1458 * 1459 * Add previously isolated @folio to appropriate LRU list. 1460 * The folio may still be unevictable for other reasons. 1461 * 1462 * Context: lru_lock must not be held, interrupts must be enabled. 1463 */ 1464 void folio_putback_lru(struct folio *folio) 1465 { 1466 folio_add_lru(folio); 1467 folio_put(folio); /* drop ref from isolate */ 1468 } 1469 1470 enum folio_references { 1471 FOLIOREF_RECLAIM, 1472 FOLIOREF_RECLAIM_CLEAN, 1473 FOLIOREF_KEEP, 1474 FOLIOREF_ACTIVATE, 1475 }; 1476 1477 static enum folio_references folio_check_references(struct folio *folio, 1478 struct scan_control *sc) 1479 { 1480 int referenced_ptes, referenced_folio; 1481 unsigned long vm_flags; 1482 1483 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1484 &vm_flags); 1485 referenced_folio = folio_test_clear_referenced(folio); 1486 1487 /* 1488 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1489 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1490 */ 1491 if (vm_flags & VM_LOCKED) 1492 return FOLIOREF_ACTIVATE; 1493 1494 /* rmap lock contention: rotate */ 1495 if (referenced_ptes == -1) 1496 return FOLIOREF_KEEP; 1497 1498 if (referenced_ptes) { 1499 /* 1500 * All mapped folios start out with page table 1501 * references from the instantiating fault, so we need 1502 * to look twice if a mapped file/anon folio is used more 1503 * than once. 1504 * 1505 * Mark it and spare it for another trip around the 1506 * inactive list. Another page table reference will 1507 * lead to its activation. 1508 * 1509 * Note: the mark is set for activated folios as well 1510 * so that recently deactivated but used folios are 1511 * quickly recovered. 1512 */ 1513 folio_set_referenced(folio); 1514 1515 if (referenced_folio || referenced_ptes > 1) 1516 return FOLIOREF_ACTIVATE; 1517 1518 /* 1519 * Activate file-backed executable folios after first usage. 1520 */ 1521 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1522 return FOLIOREF_ACTIVATE; 1523 1524 return FOLIOREF_KEEP; 1525 } 1526 1527 /* Reclaim if clean, defer dirty folios to writeback */ 1528 if (referenced_folio && folio_is_file_lru(folio)) 1529 return FOLIOREF_RECLAIM_CLEAN; 1530 1531 return FOLIOREF_RECLAIM; 1532 } 1533 1534 /* Check if a folio is dirty or under writeback */ 1535 static void folio_check_dirty_writeback(struct folio *folio, 1536 bool *dirty, bool *writeback) 1537 { 1538 struct address_space *mapping; 1539 1540 /* 1541 * Anonymous folios are not handled by flushers and must be written 1542 * from reclaim context. Do not stall reclaim based on them. 1543 * MADV_FREE anonymous folios are put into inactive file list too. 1544 * They could be mistakenly treated as file lru. So further anon 1545 * test is needed. 1546 */ 1547 if (!folio_is_file_lru(folio) || 1548 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1549 *dirty = false; 1550 *writeback = false; 1551 return; 1552 } 1553 1554 /* By default assume that the folio flags are accurate */ 1555 *dirty = folio_test_dirty(folio); 1556 *writeback = folio_test_writeback(folio); 1557 1558 /* Verify dirty/writeback state if the filesystem supports it */ 1559 if (!folio_test_private(folio)) 1560 return; 1561 1562 mapping = folio_mapping(folio); 1563 if (mapping && mapping->a_ops->is_dirty_writeback) 1564 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1565 } 1566 1567 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1568 { 1569 struct page *target_page; 1570 nodemask_t *allowed_mask; 1571 struct migration_target_control *mtc; 1572 1573 mtc = (struct migration_target_control *)private; 1574 1575 allowed_mask = mtc->nmask; 1576 /* 1577 * make sure we allocate from the target node first also trying to 1578 * demote or reclaim pages from the target node via kswapd if we are 1579 * low on free memory on target node. If we don't do this and if 1580 * we have free memory on the slower(lower) memtier, we would start 1581 * allocating pages from slower(lower) memory tiers without even forcing 1582 * a demotion of cold pages from the target memtier. This can result 1583 * in the kernel placing hot pages in slower(lower) memory tiers. 1584 */ 1585 mtc->nmask = NULL; 1586 mtc->gfp_mask |= __GFP_THISNODE; 1587 target_page = alloc_migration_target(page, (unsigned long)mtc); 1588 if (target_page) 1589 return target_page; 1590 1591 mtc->gfp_mask &= ~__GFP_THISNODE; 1592 mtc->nmask = allowed_mask; 1593 1594 return alloc_migration_target(page, (unsigned long)mtc); 1595 } 1596 1597 /* 1598 * Take folios on @demote_folios and attempt to demote them to another node. 1599 * Folios which are not demoted are left on @demote_folios. 1600 */ 1601 static unsigned int demote_folio_list(struct list_head *demote_folios, 1602 struct pglist_data *pgdat) 1603 { 1604 int target_nid = next_demotion_node(pgdat->node_id); 1605 unsigned int nr_succeeded; 1606 nodemask_t allowed_mask; 1607 1608 struct migration_target_control mtc = { 1609 /* 1610 * Allocate from 'node', or fail quickly and quietly. 1611 * When this happens, 'page' will likely just be discarded 1612 * instead of migrated. 1613 */ 1614 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1615 __GFP_NOMEMALLOC | GFP_NOWAIT, 1616 .nid = target_nid, 1617 .nmask = &allowed_mask 1618 }; 1619 1620 if (list_empty(demote_folios)) 1621 return 0; 1622 1623 if (target_nid == NUMA_NO_NODE) 1624 return 0; 1625 1626 node_get_allowed_targets(pgdat, &allowed_mask); 1627 1628 /* Demotion ignores all cpuset and mempolicy settings */ 1629 migrate_pages(demote_folios, alloc_demote_page, NULL, 1630 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1631 &nr_succeeded); 1632 1633 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1634 1635 return nr_succeeded; 1636 } 1637 1638 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1639 { 1640 if (gfp_mask & __GFP_FS) 1641 return true; 1642 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1643 return false; 1644 /* 1645 * We can "enter_fs" for swap-cache with only __GFP_IO 1646 * providing this isn't SWP_FS_OPS. 1647 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1648 * but that will never affect SWP_FS_OPS, so the data_race 1649 * is safe. 1650 */ 1651 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1652 } 1653 1654 /* 1655 * shrink_folio_list() returns the number of reclaimed pages 1656 */ 1657 static unsigned int shrink_folio_list(struct list_head *folio_list, 1658 struct pglist_data *pgdat, struct scan_control *sc, 1659 struct reclaim_stat *stat, bool ignore_references) 1660 { 1661 LIST_HEAD(ret_folios); 1662 LIST_HEAD(free_folios); 1663 LIST_HEAD(demote_folios); 1664 unsigned int nr_reclaimed = 0; 1665 unsigned int pgactivate = 0; 1666 bool do_demote_pass; 1667 struct swap_iocb *plug = NULL; 1668 1669 memset(stat, 0, sizeof(*stat)); 1670 cond_resched(); 1671 do_demote_pass = can_demote(pgdat->node_id, sc); 1672 1673 retry: 1674 while (!list_empty(folio_list)) { 1675 struct address_space *mapping; 1676 struct folio *folio; 1677 enum folio_references references = FOLIOREF_RECLAIM; 1678 bool dirty, writeback; 1679 unsigned int nr_pages; 1680 1681 cond_resched(); 1682 1683 folio = lru_to_folio(folio_list); 1684 list_del(&folio->lru); 1685 1686 if (!folio_trylock(folio)) 1687 goto keep; 1688 1689 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1690 1691 nr_pages = folio_nr_pages(folio); 1692 1693 /* Account the number of base pages */ 1694 sc->nr_scanned += nr_pages; 1695 1696 if (unlikely(!folio_evictable(folio))) 1697 goto activate_locked; 1698 1699 if (!sc->may_unmap && folio_mapped(folio)) 1700 goto keep_locked; 1701 1702 /* folio_update_gen() tried to promote this page? */ 1703 if (lru_gen_enabled() && !ignore_references && 1704 folio_mapped(folio) && folio_test_referenced(folio)) 1705 goto keep_locked; 1706 1707 /* 1708 * The number of dirty pages determines if a node is marked 1709 * reclaim_congested. kswapd will stall and start writing 1710 * folios if the tail of the LRU is all dirty unqueued folios. 1711 */ 1712 folio_check_dirty_writeback(folio, &dirty, &writeback); 1713 if (dirty || writeback) 1714 stat->nr_dirty += nr_pages; 1715 1716 if (dirty && !writeback) 1717 stat->nr_unqueued_dirty += nr_pages; 1718 1719 /* 1720 * Treat this folio as congested if folios are cycling 1721 * through the LRU so quickly that the folios marked 1722 * for immediate reclaim are making it to the end of 1723 * the LRU a second time. 1724 */ 1725 if (writeback && folio_test_reclaim(folio)) 1726 stat->nr_congested += nr_pages; 1727 1728 /* 1729 * If a folio at the tail of the LRU is under writeback, there 1730 * are three cases to consider. 1731 * 1732 * 1) If reclaim is encountering an excessive number 1733 * of folios under writeback and this folio has both 1734 * the writeback and reclaim flags set, then it 1735 * indicates that folios are being queued for I/O but 1736 * are being recycled through the LRU before the I/O 1737 * can complete. Waiting on the folio itself risks an 1738 * indefinite stall if it is impossible to writeback 1739 * the folio due to I/O error or disconnected storage 1740 * so instead note that the LRU is being scanned too 1741 * quickly and the caller can stall after the folio 1742 * list has been processed. 1743 * 1744 * 2) Global or new memcg reclaim encounters a folio that is 1745 * not marked for immediate reclaim, or the caller does not 1746 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1747 * not to fs). In this case mark the folio for immediate 1748 * reclaim and continue scanning. 1749 * 1750 * Require may_enter_fs() because we would wait on fs, which 1751 * may not have submitted I/O yet. And the loop driver might 1752 * enter reclaim, and deadlock if it waits on a folio for 1753 * which it is needed to do the write (loop masks off 1754 * __GFP_IO|__GFP_FS for this reason); but more thought 1755 * would probably show more reasons. 1756 * 1757 * 3) Legacy memcg encounters a folio that already has the 1758 * reclaim flag set. memcg does not have any dirty folio 1759 * throttling so we could easily OOM just because too many 1760 * folios are in writeback and there is nothing else to 1761 * reclaim. Wait for the writeback to complete. 1762 * 1763 * In cases 1) and 2) we activate the folios to get them out of 1764 * the way while we continue scanning for clean folios on the 1765 * inactive list and refilling from the active list. The 1766 * observation here is that waiting for disk writes is more 1767 * expensive than potentially causing reloads down the line. 1768 * Since they're marked for immediate reclaim, they won't put 1769 * memory pressure on the cache working set any longer than it 1770 * takes to write them to disk. 1771 */ 1772 if (folio_test_writeback(folio)) { 1773 /* Case 1 above */ 1774 if (current_is_kswapd() && 1775 folio_test_reclaim(folio) && 1776 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1777 stat->nr_immediate += nr_pages; 1778 goto activate_locked; 1779 1780 /* Case 2 above */ 1781 } else if (writeback_throttling_sane(sc) || 1782 !folio_test_reclaim(folio) || 1783 !may_enter_fs(folio, sc->gfp_mask)) { 1784 /* 1785 * This is slightly racy - 1786 * folio_end_writeback() might have 1787 * just cleared the reclaim flag, then 1788 * setting the reclaim flag here ends up 1789 * interpreted as the readahead flag - but 1790 * that does not matter enough to care. 1791 * What we do want is for this folio to 1792 * have the reclaim flag set next time 1793 * memcg reclaim reaches the tests above, 1794 * so it will then wait for writeback to 1795 * avoid OOM; and it's also appropriate 1796 * in global reclaim. 1797 */ 1798 folio_set_reclaim(folio); 1799 stat->nr_writeback += nr_pages; 1800 goto activate_locked; 1801 1802 /* Case 3 above */ 1803 } else { 1804 folio_unlock(folio); 1805 folio_wait_writeback(folio); 1806 /* then go back and try same folio again */ 1807 list_add_tail(&folio->lru, folio_list); 1808 continue; 1809 } 1810 } 1811 1812 if (!ignore_references) 1813 references = folio_check_references(folio, sc); 1814 1815 switch (references) { 1816 case FOLIOREF_ACTIVATE: 1817 goto activate_locked; 1818 case FOLIOREF_KEEP: 1819 stat->nr_ref_keep += nr_pages; 1820 goto keep_locked; 1821 case FOLIOREF_RECLAIM: 1822 case FOLIOREF_RECLAIM_CLEAN: 1823 ; /* try to reclaim the folio below */ 1824 } 1825 1826 /* 1827 * Before reclaiming the folio, try to relocate 1828 * its contents to another node. 1829 */ 1830 if (do_demote_pass && 1831 (thp_migration_supported() || !folio_test_large(folio))) { 1832 list_add(&folio->lru, &demote_folios); 1833 folio_unlock(folio); 1834 continue; 1835 } 1836 1837 /* 1838 * Anonymous process memory has backing store? 1839 * Try to allocate it some swap space here. 1840 * Lazyfree folio could be freed directly 1841 */ 1842 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1843 if (!folio_test_swapcache(folio)) { 1844 if (!(sc->gfp_mask & __GFP_IO)) 1845 goto keep_locked; 1846 if (folio_maybe_dma_pinned(folio)) 1847 goto keep_locked; 1848 if (folio_test_large(folio)) { 1849 /* cannot split folio, skip it */ 1850 if (!can_split_folio(folio, NULL)) 1851 goto activate_locked; 1852 /* 1853 * Split folios without a PMD map right 1854 * away. Chances are some or all of the 1855 * tail pages can be freed without IO. 1856 */ 1857 if (!folio_entire_mapcount(folio) && 1858 split_folio_to_list(folio, 1859 folio_list)) 1860 goto activate_locked; 1861 } 1862 if (!add_to_swap(folio)) { 1863 if (!folio_test_large(folio)) 1864 goto activate_locked_split; 1865 /* Fallback to swap normal pages */ 1866 if (split_folio_to_list(folio, 1867 folio_list)) 1868 goto activate_locked; 1869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1870 count_vm_event(THP_SWPOUT_FALLBACK); 1871 #endif 1872 if (!add_to_swap(folio)) 1873 goto activate_locked_split; 1874 } 1875 } 1876 } else if (folio_test_swapbacked(folio) && 1877 folio_test_large(folio)) { 1878 /* Split shmem folio */ 1879 if (split_folio_to_list(folio, folio_list)) 1880 goto keep_locked; 1881 } 1882 1883 /* 1884 * If the folio was split above, the tail pages will make 1885 * their own pass through this function and be accounted 1886 * then. 1887 */ 1888 if ((nr_pages > 1) && !folio_test_large(folio)) { 1889 sc->nr_scanned -= (nr_pages - 1); 1890 nr_pages = 1; 1891 } 1892 1893 /* 1894 * The folio is mapped into the page tables of one or more 1895 * processes. Try to unmap it here. 1896 */ 1897 if (folio_mapped(folio)) { 1898 enum ttu_flags flags = TTU_BATCH_FLUSH; 1899 bool was_swapbacked = folio_test_swapbacked(folio); 1900 1901 if (folio_test_pmd_mappable(folio)) 1902 flags |= TTU_SPLIT_HUGE_PMD; 1903 1904 try_to_unmap(folio, flags); 1905 if (folio_mapped(folio)) { 1906 stat->nr_unmap_fail += nr_pages; 1907 if (!was_swapbacked && 1908 folio_test_swapbacked(folio)) 1909 stat->nr_lazyfree_fail += nr_pages; 1910 goto activate_locked; 1911 } 1912 } 1913 1914 mapping = folio_mapping(folio); 1915 if (folio_test_dirty(folio)) { 1916 /* 1917 * Only kswapd can writeback filesystem folios 1918 * to avoid risk of stack overflow. But avoid 1919 * injecting inefficient single-folio I/O into 1920 * flusher writeback as much as possible: only 1921 * write folios when we've encountered many 1922 * dirty folios, and when we've already scanned 1923 * the rest of the LRU for clean folios and see 1924 * the same dirty folios again (with the reclaim 1925 * flag set). 1926 */ 1927 if (folio_is_file_lru(folio) && 1928 (!current_is_kswapd() || 1929 !folio_test_reclaim(folio) || 1930 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1931 /* 1932 * Immediately reclaim when written back. 1933 * Similar in principle to folio_deactivate() 1934 * except we already have the folio isolated 1935 * and know it's dirty 1936 */ 1937 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1938 nr_pages); 1939 folio_set_reclaim(folio); 1940 1941 goto activate_locked; 1942 } 1943 1944 if (references == FOLIOREF_RECLAIM_CLEAN) 1945 goto keep_locked; 1946 if (!may_enter_fs(folio, sc->gfp_mask)) 1947 goto keep_locked; 1948 if (!sc->may_writepage) 1949 goto keep_locked; 1950 1951 /* 1952 * Folio is dirty. Flush the TLB if a writable entry 1953 * potentially exists to avoid CPU writes after I/O 1954 * starts and then write it out here. 1955 */ 1956 try_to_unmap_flush_dirty(); 1957 switch (pageout(folio, mapping, &plug)) { 1958 case PAGE_KEEP: 1959 goto keep_locked; 1960 case PAGE_ACTIVATE: 1961 goto activate_locked; 1962 case PAGE_SUCCESS: 1963 stat->nr_pageout += nr_pages; 1964 1965 if (folio_test_writeback(folio)) 1966 goto keep; 1967 if (folio_test_dirty(folio)) 1968 goto keep; 1969 1970 /* 1971 * A synchronous write - probably a ramdisk. Go 1972 * ahead and try to reclaim the folio. 1973 */ 1974 if (!folio_trylock(folio)) 1975 goto keep; 1976 if (folio_test_dirty(folio) || 1977 folio_test_writeback(folio)) 1978 goto keep_locked; 1979 mapping = folio_mapping(folio); 1980 fallthrough; 1981 case PAGE_CLEAN: 1982 ; /* try to free the folio below */ 1983 } 1984 } 1985 1986 /* 1987 * If the folio has buffers, try to free the buffer 1988 * mappings associated with this folio. If we succeed 1989 * we try to free the folio as well. 1990 * 1991 * We do this even if the folio is dirty. 1992 * filemap_release_folio() does not perform I/O, but it 1993 * is possible for a folio to have the dirty flag set, 1994 * but it is actually clean (all its buffers are clean). 1995 * This happens if the buffers were written out directly, 1996 * with submit_bh(). ext3 will do this, as well as 1997 * the blockdev mapping. filemap_release_folio() will 1998 * discover that cleanness and will drop the buffers 1999 * and mark the folio clean - it can be freed. 2000 * 2001 * Rarely, folios can have buffers and no ->mapping. 2002 * These are the folios which were not successfully 2003 * invalidated in truncate_cleanup_folio(). We try to 2004 * drop those buffers here and if that worked, and the 2005 * folio is no longer mapped into process address space 2006 * (refcount == 1) it can be freed. Otherwise, leave 2007 * the folio on the LRU so it is swappable. 2008 */ 2009 if (folio_has_private(folio)) { 2010 if (!filemap_release_folio(folio, sc->gfp_mask)) 2011 goto activate_locked; 2012 if (!mapping && folio_ref_count(folio) == 1) { 2013 folio_unlock(folio); 2014 if (folio_put_testzero(folio)) 2015 goto free_it; 2016 else { 2017 /* 2018 * rare race with speculative reference. 2019 * the speculative reference will free 2020 * this folio shortly, so we may 2021 * increment nr_reclaimed here (and 2022 * leave it off the LRU). 2023 */ 2024 nr_reclaimed += nr_pages; 2025 continue; 2026 } 2027 } 2028 } 2029 2030 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2031 /* follow __remove_mapping for reference */ 2032 if (!folio_ref_freeze(folio, 1)) 2033 goto keep_locked; 2034 /* 2035 * The folio has only one reference left, which is 2036 * from the isolation. After the caller puts the 2037 * folio back on the lru and drops the reference, the 2038 * folio will be freed anyway. It doesn't matter 2039 * which lru it goes on. So we don't bother checking 2040 * the dirty flag here. 2041 */ 2042 count_vm_events(PGLAZYFREED, nr_pages); 2043 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2044 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2045 sc->target_mem_cgroup)) 2046 goto keep_locked; 2047 2048 folio_unlock(folio); 2049 free_it: 2050 /* 2051 * Folio may get swapped out as a whole, need to account 2052 * all pages in it. 2053 */ 2054 nr_reclaimed += nr_pages; 2055 2056 /* 2057 * Is there need to periodically free_folio_list? It would 2058 * appear not as the counts should be low 2059 */ 2060 if (unlikely(folio_test_large(folio))) 2061 destroy_large_folio(folio); 2062 else 2063 list_add(&folio->lru, &free_folios); 2064 continue; 2065 2066 activate_locked_split: 2067 /* 2068 * The tail pages that are failed to add into swap cache 2069 * reach here. Fixup nr_scanned and nr_pages. 2070 */ 2071 if (nr_pages > 1) { 2072 sc->nr_scanned -= (nr_pages - 1); 2073 nr_pages = 1; 2074 } 2075 activate_locked: 2076 /* Not a candidate for swapping, so reclaim swap space. */ 2077 if (folio_test_swapcache(folio) && 2078 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2079 folio_free_swap(folio); 2080 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2081 if (!folio_test_mlocked(folio)) { 2082 int type = folio_is_file_lru(folio); 2083 folio_set_active(folio); 2084 stat->nr_activate[type] += nr_pages; 2085 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2086 } 2087 keep_locked: 2088 folio_unlock(folio); 2089 keep: 2090 list_add(&folio->lru, &ret_folios); 2091 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2092 folio_test_unevictable(folio), folio); 2093 } 2094 /* 'folio_list' is always empty here */ 2095 2096 /* Migrate folios selected for demotion */ 2097 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2098 /* Folios that could not be demoted are still in @demote_folios */ 2099 if (!list_empty(&demote_folios)) { 2100 /* Folios which weren't demoted go back on @folio_list */ 2101 list_splice_init(&demote_folios, folio_list); 2102 2103 /* 2104 * goto retry to reclaim the undemoted folios in folio_list if 2105 * desired. 2106 * 2107 * Reclaiming directly from top tier nodes is not often desired 2108 * due to it breaking the LRU ordering: in general memory 2109 * should be reclaimed from lower tier nodes and demoted from 2110 * top tier nodes. 2111 * 2112 * However, disabling reclaim from top tier nodes entirely 2113 * would cause ooms in edge scenarios where lower tier memory 2114 * is unreclaimable for whatever reason, eg memory being 2115 * mlocked or too hot to reclaim. We can disable reclaim 2116 * from top tier nodes in proactive reclaim though as that is 2117 * not real memory pressure. 2118 */ 2119 if (!sc->proactive) { 2120 do_demote_pass = false; 2121 goto retry; 2122 } 2123 } 2124 2125 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2126 2127 mem_cgroup_uncharge_list(&free_folios); 2128 try_to_unmap_flush(); 2129 free_unref_page_list(&free_folios); 2130 2131 list_splice(&ret_folios, folio_list); 2132 count_vm_events(PGACTIVATE, pgactivate); 2133 2134 if (plug) 2135 swap_write_unplug(plug); 2136 return nr_reclaimed; 2137 } 2138 2139 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2140 struct list_head *folio_list) 2141 { 2142 struct scan_control sc = { 2143 .gfp_mask = GFP_KERNEL, 2144 .may_unmap = 1, 2145 }; 2146 struct reclaim_stat stat; 2147 unsigned int nr_reclaimed; 2148 struct folio *folio, *next; 2149 LIST_HEAD(clean_folios); 2150 unsigned int noreclaim_flag; 2151 2152 list_for_each_entry_safe(folio, next, folio_list, lru) { 2153 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2154 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2155 !folio_test_unevictable(folio)) { 2156 folio_clear_active(folio); 2157 list_move(&folio->lru, &clean_folios); 2158 } 2159 } 2160 2161 /* 2162 * We should be safe here since we are only dealing with file pages and 2163 * we are not kswapd and therefore cannot write dirty file pages. But 2164 * call memalloc_noreclaim_save() anyway, just in case these conditions 2165 * change in the future. 2166 */ 2167 noreclaim_flag = memalloc_noreclaim_save(); 2168 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2169 &stat, true); 2170 memalloc_noreclaim_restore(noreclaim_flag); 2171 2172 list_splice(&clean_folios, folio_list); 2173 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2174 -(long)nr_reclaimed); 2175 /* 2176 * Since lazyfree pages are isolated from file LRU from the beginning, 2177 * they will rotate back to anonymous LRU in the end if it failed to 2178 * discard so isolated count will be mismatched. 2179 * Compensate the isolated count for both LRU lists. 2180 */ 2181 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2182 stat.nr_lazyfree_fail); 2183 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2184 -(long)stat.nr_lazyfree_fail); 2185 return nr_reclaimed; 2186 } 2187 2188 /* 2189 * Update LRU sizes after isolating pages. The LRU size updates must 2190 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2191 */ 2192 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2193 enum lru_list lru, unsigned long *nr_zone_taken) 2194 { 2195 int zid; 2196 2197 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2198 if (!nr_zone_taken[zid]) 2199 continue; 2200 2201 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2202 } 2203 2204 } 2205 2206 /* 2207 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2208 * 2209 * lruvec->lru_lock is heavily contended. Some of the functions that 2210 * shrink the lists perform better by taking out a batch of pages 2211 * and working on them outside the LRU lock. 2212 * 2213 * For pagecache intensive workloads, this function is the hottest 2214 * spot in the kernel (apart from copy_*_user functions). 2215 * 2216 * Lru_lock must be held before calling this function. 2217 * 2218 * @nr_to_scan: The number of eligible pages to look through on the list. 2219 * @lruvec: The LRU vector to pull pages from. 2220 * @dst: The temp list to put pages on to. 2221 * @nr_scanned: The number of pages that were scanned. 2222 * @sc: The scan_control struct for this reclaim session 2223 * @lru: LRU list id for isolating 2224 * 2225 * returns how many pages were moved onto *@dst. 2226 */ 2227 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2228 struct lruvec *lruvec, struct list_head *dst, 2229 unsigned long *nr_scanned, struct scan_control *sc, 2230 enum lru_list lru) 2231 { 2232 struct list_head *src = &lruvec->lists[lru]; 2233 unsigned long nr_taken = 0; 2234 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2235 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2236 unsigned long skipped = 0; 2237 unsigned long scan, total_scan, nr_pages; 2238 LIST_HEAD(folios_skipped); 2239 2240 total_scan = 0; 2241 scan = 0; 2242 while (scan < nr_to_scan && !list_empty(src)) { 2243 struct list_head *move_to = src; 2244 struct folio *folio; 2245 2246 folio = lru_to_folio(src); 2247 prefetchw_prev_lru_folio(folio, src, flags); 2248 2249 nr_pages = folio_nr_pages(folio); 2250 total_scan += nr_pages; 2251 2252 if (folio_zonenum(folio) > sc->reclaim_idx) { 2253 nr_skipped[folio_zonenum(folio)] += nr_pages; 2254 move_to = &folios_skipped; 2255 goto move; 2256 } 2257 2258 /* 2259 * Do not count skipped folios because that makes the function 2260 * return with no isolated folios if the LRU mostly contains 2261 * ineligible folios. This causes the VM to not reclaim any 2262 * folios, triggering a premature OOM. 2263 * Account all pages in a folio. 2264 */ 2265 scan += nr_pages; 2266 2267 if (!folio_test_lru(folio)) 2268 goto move; 2269 if (!sc->may_unmap && folio_mapped(folio)) 2270 goto move; 2271 2272 /* 2273 * Be careful not to clear the lru flag until after we're 2274 * sure the folio is not being freed elsewhere -- the 2275 * folio release code relies on it. 2276 */ 2277 if (unlikely(!folio_try_get(folio))) 2278 goto move; 2279 2280 if (!folio_test_clear_lru(folio)) { 2281 /* Another thread is already isolating this folio */ 2282 folio_put(folio); 2283 goto move; 2284 } 2285 2286 nr_taken += nr_pages; 2287 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2288 move_to = dst; 2289 move: 2290 list_move(&folio->lru, move_to); 2291 } 2292 2293 /* 2294 * Splice any skipped folios to the start of the LRU list. Note that 2295 * this disrupts the LRU order when reclaiming for lower zones but 2296 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2297 * scanning would soon rescan the same folios to skip and waste lots 2298 * of cpu cycles. 2299 */ 2300 if (!list_empty(&folios_skipped)) { 2301 int zid; 2302 2303 list_splice(&folios_skipped, src); 2304 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2305 if (!nr_skipped[zid]) 2306 continue; 2307 2308 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2309 skipped += nr_skipped[zid]; 2310 } 2311 } 2312 *nr_scanned = total_scan; 2313 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2314 total_scan, skipped, nr_taken, 2315 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2316 update_lru_sizes(lruvec, lru, nr_zone_taken); 2317 return nr_taken; 2318 } 2319 2320 /** 2321 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2322 * @folio: Folio to isolate from its LRU list. 2323 * 2324 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2325 * corresponding to whatever LRU list the folio was on. 2326 * 2327 * The folio will have its LRU flag cleared. If it was found on the 2328 * active list, it will have the Active flag set. If it was found on the 2329 * unevictable list, it will have the Unevictable flag set. These flags 2330 * may need to be cleared by the caller before letting the page go. 2331 * 2332 * Context: 2333 * 2334 * (1) Must be called with an elevated refcount on the folio. This is a 2335 * fundamental difference from isolate_lru_folios() (which is called 2336 * without a stable reference). 2337 * (2) The lru_lock must not be held. 2338 * (3) Interrupts must be enabled. 2339 * 2340 * Return: true if the folio was removed from an LRU list. 2341 * false if the folio was not on an LRU list. 2342 */ 2343 bool folio_isolate_lru(struct folio *folio) 2344 { 2345 bool ret = false; 2346 2347 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2348 2349 if (folio_test_clear_lru(folio)) { 2350 struct lruvec *lruvec; 2351 2352 folio_get(folio); 2353 lruvec = folio_lruvec_lock_irq(folio); 2354 lruvec_del_folio(lruvec, folio); 2355 unlock_page_lruvec_irq(lruvec); 2356 ret = true; 2357 } 2358 2359 return ret; 2360 } 2361 2362 /* 2363 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2364 * then get rescheduled. When there are massive number of tasks doing page 2365 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2366 * the LRU list will go small and be scanned faster than necessary, leading to 2367 * unnecessary swapping, thrashing and OOM. 2368 */ 2369 static int too_many_isolated(struct pglist_data *pgdat, int file, 2370 struct scan_control *sc) 2371 { 2372 unsigned long inactive, isolated; 2373 bool too_many; 2374 2375 if (current_is_kswapd()) 2376 return 0; 2377 2378 if (!writeback_throttling_sane(sc)) 2379 return 0; 2380 2381 if (file) { 2382 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2383 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2384 } else { 2385 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2386 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2387 } 2388 2389 /* 2390 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2391 * won't get blocked by normal direct-reclaimers, forming a circular 2392 * deadlock. 2393 */ 2394 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2395 inactive >>= 3; 2396 2397 too_many = isolated > inactive; 2398 2399 /* Wake up tasks throttled due to too_many_isolated. */ 2400 if (!too_many) 2401 wake_throttle_isolated(pgdat); 2402 2403 return too_many; 2404 } 2405 2406 /* 2407 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2408 * On return, @list is reused as a list of folios to be freed by the caller. 2409 * 2410 * Returns the number of pages moved to the given lruvec. 2411 */ 2412 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2413 struct list_head *list) 2414 { 2415 int nr_pages, nr_moved = 0; 2416 LIST_HEAD(folios_to_free); 2417 2418 while (!list_empty(list)) { 2419 struct folio *folio = lru_to_folio(list); 2420 2421 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2422 list_del(&folio->lru); 2423 if (unlikely(!folio_evictable(folio))) { 2424 spin_unlock_irq(&lruvec->lru_lock); 2425 folio_putback_lru(folio); 2426 spin_lock_irq(&lruvec->lru_lock); 2427 continue; 2428 } 2429 2430 /* 2431 * The folio_set_lru needs to be kept here for list integrity. 2432 * Otherwise: 2433 * #0 move_folios_to_lru #1 release_pages 2434 * if (!folio_put_testzero()) 2435 * if (folio_put_testzero()) 2436 * !lru //skip lru_lock 2437 * folio_set_lru() 2438 * list_add(&folio->lru,) 2439 * list_add(&folio->lru,) 2440 */ 2441 folio_set_lru(folio); 2442 2443 if (unlikely(folio_put_testzero(folio))) { 2444 __folio_clear_lru_flags(folio); 2445 2446 if (unlikely(folio_test_large(folio))) { 2447 spin_unlock_irq(&lruvec->lru_lock); 2448 destroy_large_folio(folio); 2449 spin_lock_irq(&lruvec->lru_lock); 2450 } else 2451 list_add(&folio->lru, &folios_to_free); 2452 2453 continue; 2454 } 2455 2456 /* 2457 * All pages were isolated from the same lruvec (and isolation 2458 * inhibits memcg migration). 2459 */ 2460 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2461 lruvec_add_folio(lruvec, folio); 2462 nr_pages = folio_nr_pages(folio); 2463 nr_moved += nr_pages; 2464 if (folio_test_active(folio)) 2465 workingset_age_nonresident(lruvec, nr_pages); 2466 } 2467 2468 /* 2469 * To save our caller's stack, now use input list for pages to free. 2470 */ 2471 list_splice(&folios_to_free, list); 2472 2473 return nr_moved; 2474 } 2475 2476 /* 2477 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2478 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2479 * we should not throttle. Otherwise it is safe to do so. 2480 */ 2481 static int current_may_throttle(void) 2482 { 2483 return !(current->flags & PF_LOCAL_THROTTLE); 2484 } 2485 2486 /* 2487 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2488 * of reclaimed pages 2489 */ 2490 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2491 struct lruvec *lruvec, struct scan_control *sc, 2492 enum lru_list lru) 2493 { 2494 LIST_HEAD(folio_list); 2495 unsigned long nr_scanned; 2496 unsigned int nr_reclaimed = 0; 2497 unsigned long nr_taken; 2498 struct reclaim_stat stat; 2499 bool file = is_file_lru(lru); 2500 enum vm_event_item item; 2501 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2502 bool stalled = false; 2503 2504 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2505 if (stalled) 2506 return 0; 2507 2508 /* wait a bit for the reclaimer. */ 2509 stalled = true; 2510 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2511 2512 /* We are about to die and free our memory. Return now. */ 2513 if (fatal_signal_pending(current)) 2514 return SWAP_CLUSTER_MAX; 2515 } 2516 2517 lru_add_drain(); 2518 2519 spin_lock_irq(&lruvec->lru_lock); 2520 2521 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2522 &nr_scanned, sc, lru); 2523 2524 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2525 item = PGSCAN_KSWAPD + reclaimer_offset(); 2526 if (!cgroup_reclaim(sc)) 2527 __count_vm_events(item, nr_scanned); 2528 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2529 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2530 2531 spin_unlock_irq(&lruvec->lru_lock); 2532 2533 if (nr_taken == 0) 2534 return 0; 2535 2536 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2537 2538 spin_lock_irq(&lruvec->lru_lock); 2539 move_folios_to_lru(lruvec, &folio_list); 2540 2541 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2542 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2543 if (!cgroup_reclaim(sc)) 2544 __count_vm_events(item, nr_reclaimed); 2545 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2546 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2547 spin_unlock_irq(&lruvec->lru_lock); 2548 2549 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2550 mem_cgroup_uncharge_list(&folio_list); 2551 free_unref_page_list(&folio_list); 2552 2553 /* 2554 * If dirty folios are scanned that are not queued for IO, it 2555 * implies that flushers are not doing their job. This can 2556 * happen when memory pressure pushes dirty folios to the end of 2557 * the LRU before the dirty limits are breached and the dirty 2558 * data has expired. It can also happen when the proportion of 2559 * dirty folios grows not through writes but through memory 2560 * pressure reclaiming all the clean cache. And in some cases, 2561 * the flushers simply cannot keep up with the allocation 2562 * rate. Nudge the flusher threads in case they are asleep. 2563 */ 2564 if (stat.nr_unqueued_dirty == nr_taken) { 2565 wakeup_flusher_threads(WB_REASON_VMSCAN); 2566 /* 2567 * For cgroupv1 dirty throttling is achieved by waking up 2568 * the kernel flusher here and later waiting on folios 2569 * which are in writeback to finish (see shrink_folio_list()). 2570 * 2571 * Flusher may not be able to issue writeback quickly 2572 * enough for cgroupv1 writeback throttling to work 2573 * on a large system. 2574 */ 2575 if (!writeback_throttling_sane(sc)) 2576 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2577 } 2578 2579 sc->nr.dirty += stat.nr_dirty; 2580 sc->nr.congested += stat.nr_congested; 2581 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2582 sc->nr.writeback += stat.nr_writeback; 2583 sc->nr.immediate += stat.nr_immediate; 2584 sc->nr.taken += nr_taken; 2585 if (file) 2586 sc->nr.file_taken += nr_taken; 2587 2588 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2589 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2590 return nr_reclaimed; 2591 } 2592 2593 /* 2594 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2595 * 2596 * We move them the other way if the folio is referenced by one or more 2597 * processes. 2598 * 2599 * If the folios are mostly unmapped, the processing is fast and it is 2600 * appropriate to hold lru_lock across the whole operation. But if 2601 * the folios are mapped, the processing is slow (folio_referenced()), so 2602 * we should drop lru_lock around each folio. It's impossible to balance 2603 * this, so instead we remove the folios from the LRU while processing them. 2604 * It is safe to rely on the active flag against the non-LRU folios in here 2605 * because nobody will play with that bit on a non-LRU folio. 2606 * 2607 * The downside is that we have to touch folio->_refcount against each folio. 2608 * But we had to alter folio->flags anyway. 2609 */ 2610 static void shrink_active_list(unsigned long nr_to_scan, 2611 struct lruvec *lruvec, 2612 struct scan_control *sc, 2613 enum lru_list lru) 2614 { 2615 unsigned long nr_taken; 2616 unsigned long nr_scanned; 2617 unsigned long vm_flags; 2618 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2619 LIST_HEAD(l_active); 2620 LIST_HEAD(l_inactive); 2621 unsigned nr_deactivate, nr_activate; 2622 unsigned nr_rotated = 0; 2623 int file = is_file_lru(lru); 2624 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2625 2626 lru_add_drain(); 2627 2628 spin_lock_irq(&lruvec->lru_lock); 2629 2630 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2631 &nr_scanned, sc, lru); 2632 2633 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2634 2635 if (!cgroup_reclaim(sc)) 2636 __count_vm_events(PGREFILL, nr_scanned); 2637 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2638 2639 spin_unlock_irq(&lruvec->lru_lock); 2640 2641 while (!list_empty(&l_hold)) { 2642 struct folio *folio; 2643 2644 cond_resched(); 2645 folio = lru_to_folio(&l_hold); 2646 list_del(&folio->lru); 2647 2648 if (unlikely(!folio_evictable(folio))) { 2649 folio_putback_lru(folio); 2650 continue; 2651 } 2652 2653 if (unlikely(buffer_heads_over_limit)) { 2654 if (folio_test_private(folio) && folio_trylock(folio)) { 2655 if (folio_test_private(folio)) 2656 filemap_release_folio(folio, 0); 2657 folio_unlock(folio); 2658 } 2659 } 2660 2661 /* Referenced or rmap lock contention: rotate */ 2662 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2663 &vm_flags) != 0) { 2664 /* 2665 * Identify referenced, file-backed active folios and 2666 * give them one more trip around the active list. So 2667 * that executable code get better chances to stay in 2668 * memory under moderate memory pressure. Anon folios 2669 * are not likely to be evicted by use-once streaming 2670 * IO, plus JVM can create lots of anon VM_EXEC folios, 2671 * so we ignore them here. 2672 */ 2673 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2674 nr_rotated += folio_nr_pages(folio); 2675 list_add(&folio->lru, &l_active); 2676 continue; 2677 } 2678 } 2679 2680 folio_clear_active(folio); /* we are de-activating */ 2681 folio_set_workingset(folio); 2682 list_add(&folio->lru, &l_inactive); 2683 } 2684 2685 /* 2686 * Move folios back to the lru list. 2687 */ 2688 spin_lock_irq(&lruvec->lru_lock); 2689 2690 nr_activate = move_folios_to_lru(lruvec, &l_active); 2691 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2692 /* Keep all free folios in l_active list */ 2693 list_splice(&l_inactive, &l_active); 2694 2695 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2696 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2697 2698 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2699 spin_unlock_irq(&lruvec->lru_lock); 2700 2701 if (nr_rotated) 2702 lru_note_cost(lruvec, file, 0, nr_rotated); 2703 mem_cgroup_uncharge_list(&l_active); 2704 free_unref_page_list(&l_active); 2705 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2706 nr_deactivate, nr_rotated, sc->priority, file); 2707 } 2708 2709 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2710 struct pglist_data *pgdat) 2711 { 2712 struct reclaim_stat dummy_stat; 2713 unsigned int nr_reclaimed; 2714 struct folio *folio; 2715 struct scan_control sc = { 2716 .gfp_mask = GFP_KERNEL, 2717 .may_writepage = 1, 2718 .may_unmap = 1, 2719 .may_swap = 1, 2720 .no_demotion = 1, 2721 }; 2722 2723 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2724 while (!list_empty(folio_list)) { 2725 folio = lru_to_folio(folio_list); 2726 list_del(&folio->lru); 2727 folio_putback_lru(folio); 2728 } 2729 2730 return nr_reclaimed; 2731 } 2732 2733 unsigned long reclaim_pages(struct list_head *folio_list) 2734 { 2735 int nid; 2736 unsigned int nr_reclaimed = 0; 2737 LIST_HEAD(node_folio_list); 2738 unsigned int noreclaim_flag; 2739 2740 if (list_empty(folio_list)) 2741 return nr_reclaimed; 2742 2743 noreclaim_flag = memalloc_noreclaim_save(); 2744 2745 nid = folio_nid(lru_to_folio(folio_list)); 2746 do { 2747 struct folio *folio = lru_to_folio(folio_list); 2748 2749 if (nid == folio_nid(folio)) { 2750 folio_clear_active(folio); 2751 list_move(&folio->lru, &node_folio_list); 2752 continue; 2753 } 2754 2755 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2756 nid = folio_nid(lru_to_folio(folio_list)); 2757 } while (!list_empty(folio_list)); 2758 2759 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2760 2761 memalloc_noreclaim_restore(noreclaim_flag); 2762 2763 return nr_reclaimed; 2764 } 2765 2766 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2767 struct lruvec *lruvec, struct scan_control *sc) 2768 { 2769 if (is_active_lru(lru)) { 2770 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2771 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2772 else 2773 sc->skipped_deactivate = 1; 2774 return 0; 2775 } 2776 2777 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2778 } 2779 2780 /* 2781 * The inactive anon list should be small enough that the VM never has 2782 * to do too much work. 2783 * 2784 * The inactive file list should be small enough to leave most memory 2785 * to the established workingset on the scan-resistant active list, 2786 * but large enough to avoid thrashing the aggregate readahead window. 2787 * 2788 * Both inactive lists should also be large enough that each inactive 2789 * folio has a chance to be referenced again before it is reclaimed. 2790 * 2791 * If that fails and refaulting is observed, the inactive list grows. 2792 * 2793 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2794 * on this LRU, maintained by the pageout code. An inactive_ratio 2795 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2796 * 2797 * total target max 2798 * memory ratio inactive 2799 * ------------------------------------- 2800 * 10MB 1 5MB 2801 * 100MB 1 50MB 2802 * 1GB 3 250MB 2803 * 10GB 10 0.9GB 2804 * 100GB 31 3GB 2805 * 1TB 101 10GB 2806 * 10TB 320 32GB 2807 */ 2808 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2809 { 2810 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2811 unsigned long inactive, active; 2812 unsigned long inactive_ratio; 2813 unsigned long gb; 2814 2815 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2816 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2817 2818 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2819 if (gb) 2820 inactive_ratio = int_sqrt(10 * gb); 2821 else 2822 inactive_ratio = 1; 2823 2824 return inactive * inactive_ratio < active; 2825 } 2826 2827 enum scan_balance { 2828 SCAN_EQUAL, 2829 SCAN_FRACT, 2830 SCAN_ANON, 2831 SCAN_FILE, 2832 }; 2833 2834 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2835 { 2836 unsigned long file; 2837 struct lruvec *target_lruvec; 2838 2839 if (lru_gen_enabled()) 2840 return; 2841 2842 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2843 2844 /* 2845 * Flush the memory cgroup stats, so that we read accurate per-memcg 2846 * lruvec stats for heuristics. 2847 */ 2848 mem_cgroup_flush_stats(); 2849 2850 /* 2851 * Determine the scan balance between anon and file LRUs. 2852 */ 2853 spin_lock_irq(&target_lruvec->lru_lock); 2854 sc->anon_cost = target_lruvec->anon_cost; 2855 sc->file_cost = target_lruvec->file_cost; 2856 spin_unlock_irq(&target_lruvec->lru_lock); 2857 2858 /* 2859 * Target desirable inactive:active list ratios for the anon 2860 * and file LRU lists. 2861 */ 2862 if (!sc->force_deactivate) { 2863 unsigned long refaults; 2864 2865 /* 2866 * When refaults are being observed, it means a new 2867 * workingset is being established. Deactivate to get 2868 * rid of any stale active pages quickly. 2869 */ 2870 refaults = lruvec_page_state(target_lruvec, 2871 WORKINGSET_ACTIVATE_ANON); 2872 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2873 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2874 sc->may_deactivate |= DEACTIVATE_ANON; 2875 else 2876 sc->may_deactivate &= ~DEACTIVATE_ANON; 2877 2878 refaults = lruvec_page_state(target_lruvec, 2879 WORKINGSET_ACTIVATE_FILE); 2880 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2881 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2882 sc->may_deactivate |= DEACTIVATE_FILE; 2883 else 2884 sc->may_deactivate &= ~DEACTIVATE_FILE; 2885 } else 2886 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2887 2888 /* 2889 * If we have plenty of inactive file pages that aren't 2890 * thrashing, try to reclaim those first before touching 2891 * anonymous pages. 2892 */ 2893 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2894 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2895 sc->cache_trim_mode = 1; 2896 else 2897 sc->cache_trim_mode = 0; 2898 2899 /* 2900 * Prevent the reclaimer from falling into the cache trap: as 2901 * cache pages start out inactive, every cache fault will tip 2902 * the scan balance towards the file LRU. And as the file LRU 2903 * shrinks, so does the window for rotation from references. 2904 * This means we have a runaway feedback loop where a tiny 2905 * thrashing file LRU becomes infinitely more attractive than 2906 * anon pages. Try to detect this based on file LRU size. 2907 */ 2908 if (!cgroup_reclaim(sc)) { 2909 unsigned long total_high_wmark = 0; 2910 unsigned long free, anon; 2911 int z; 2912 2913 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2914 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2915 node_page_state(pgdat, NR_INACTIVE_FILE); 2916 2917 for (z = 0; z < MAX_NR_ZONES; z++) { 2918 struct zone *zone = &pgdat->node_zones[z]; 2919 2920 if (!managed_zone(zone)) 2921 continue; 2922 2923 total_high_wmark += high_wmark_pages(zone); 2924 } 2925 2926 /* 2927 * Consider anon: if that's low too, this isn't a 2928 * runaway file reclaim problem, but rather just 2929 * extreme pressure. Reclaim as per usual then. 2930 */ 2931 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2932 2933 sc->file_is_tiny = 2934 file + free <= total_high_wmark && 2935 !(sc->may_deactivate & DEACTIVATE_ANON) && 2936 anon >> sc->priority; 2937 } 2938 } 2939 2940 /* 2941 * Determine how aggressively the anon and file LRU lists should be 2942 * scanned. 2943 * 2944 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2945 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2946 */ 2947 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2948 unsigned long *nr) 2949 { 2950 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2951 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2952 unsigned long anon_cost, file_cost, total_cost; 2953 int swappiness = mem_cgroup_swappiness(memcg); 2954 u64 fraction[ANON_AND_FILE]; 2955 u64 denominator = 0; /* gcc */ 2956 enum scan_balance scan_balance; 2957 unsigned long ap, fp; 2958 enum lru_list lru; 2959 2960 /* If we have no swap space, do not bother scanning anon folios. */ 2961 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2962 scan_balance = SCAN_FILE; 2963 goto out; 2964 } 2965 2966 /* 2967 * Global reclaim will swap to prevent OOM even with no 2968 * swappiness, but memcg users want to use this knob to 2969 * disable swapping for individual groups completely when 2970 * using the memory controller's swap limit feature would be 2971 * too expensive. 2972 */ 2973 if (cgroup_reclaim(sc) && !swappiness) { 2974 scan_balance = SCAN_FILE; 2975 goto out; 2976 } 2977 2978 /* 2979 * Do not apply any pressure balancing cleverness when the 2980 * system is close to OOM, scan both anon and file equally 2981 * (unless the swappiness setting disagrees with swapping). 2982 */ 2983 if (!sc->priority && swappiness) { 2984 scan_balance = SCAN_EQUAL; 2985 goto out; 2986 } 2987 2988 /* 2989 * If the system is almost out of file pages, force-scan anon. 2990 */ 2991 if (sc->file_is_tiny) { 2992 scan_balance = SCAN_ANON; 2993 goto out; 2994 } 2995 2996 /* 2997 * If there is enough inactive page cache, we do not reclaim 2998 * anything from the anonymous working right now. 2999 */ 3000 if (sc->cache_trim_mode) { 3001 scan_balance = SCAN_FILE; 3002 goto out; 3003 } 3004 3005 scan_balance = SCAN_FRACT; 3006 /* 3007 * Calculate the pressure balance between anon and file pages. 3008 * 3009 * The amount of pressure we put on each LRU is inversely 3010 * proportional to the cost of reclaiming each list, as 3011 * determined by the share of pages that are refaulting, times 3012 * the relative IO cost of bringing back a swapped out 3013 * anonymous page vs reloading a filesystem page (swappiness). 3014 * 3015 * Although we limit that influence to ensure no list gets 3016 * left behind completely: at least a third of the pressure is 3017 * applied, before swappiness. 3018 * 3019 * With swappiness at 100, anon and file have equal IO cost. 3020 */ 3021 total_cost = sc->anon_cost + sc->file_cost; 3022 anon_cost = total_cost + sc->anon_cost; 3023 file_cost = total_cost + sc->file_cost; 3024 total_cost = anon_cost + file_cost; 3025 3026 ap = swappiness * (total_cost + 1); 3027 ap /= anon_cost + 1; 3028 3029 fp = (200 - swappiness) * (total_cost + 1); 3030 fp /= file_cost + 1; 3031 3032 fraction[0] = ap; 3033 fraction[1] = fp; 3034 denominator = ap + fp; 3035 out: 3036 for_each_evictable_lru(lru) { 3037 int file = is_file_lru(lru); 3038 unsigned long lruvec_size; 3039 unsigned long low, min; 3040 unsigned long scan; 3041 3042 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3043 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3044 &min, &low); 3045 3046 if (min || low) { 3047 /* 3048 * Scale a cgroup's reclaim pressure by proportioning 3049 * its current usage to its memory.low or memory.min 3050 * setting. 3051 * 3052 * This is important, as otherwise scanning aggression 3053 * becomes extremely binary -- from nothing as we 3054 * approach the memory protection threshold, to totally 3055 * nominal as we exceed it. This results in requiring 3056 * setting extremely liberal protection thresholds. It 3057 * also means we simply get no protection at all if we 3058 * set it too low, which is not ideal. 3059 * 3060 * If there is any protection in place, we reduce scan 3061 * pressure by how much of the total memory used is 3062 * within protection thresholds. 3063 * 3064 * There is one special case: in the first reclaim pass, 3065 * we skip over all groups that are within their low 3066 * protection. If that fails to reclaim enough pages to 3067 * satisfy the reclaim goal, we come back and override 3068 * the best-effort low protection. However, we still 3069 * ideally want to honor how well-behaved groups are in 3070 * that case instead of simply punishing them all 3071 * equally. As such, we reclaim them based on how much 3072 * memory they are using, reducing the scan pressure 3073 * again by how much of the total memory used is under 3074 * hard protection. 3075 */ 3076 unsigned long cgroup_size = mem_cgroup_size(memcg); 3077 unsigned long protection; 3078 3079 /* memory.low scaling, make sure we retry before OOM */ 3080 if (!sc->memcg_low_reclaim && low > min) { 3081 protection = low; 3082 sc->memcg_low_skipped = 1; 3083 } else { 3084 protection = min; 3085 } 3086 3087 /* Avoid TOCTOU with earlier protection check */ 3088 cgroup_size = max(cgroup_size, protection); 3089 3090 scan = lruvec_size - lruvec_size * protection / 3091 (cgroup_size + 1); 3092 3093 /* 3094 * Minimally target SWAP_CLUSTER_MAX pages to keep 3095 * reclaim moving forwards, avoiding decrementing 3096 * sc->priority further than desirable. 3097 */ 3098 scan = max(scan, SWAP_CLUSTER_MAX); 3099 } else { 3100 scan = lruvec_size; 3101 } 3102 3103 scan >>= sc->priority; 3104 3105 /* 3106 * If the cgroup's already been deleted, make sure to 3107 * scrape out the remaining cache. 3108 */ 3109 if (!scan && !mem_cgroup_online(memcg)) 3110 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3111 3112 switch (scan_balance) { 3113 case SCAN_EQUAL: 3114 /* Scan lists relative to size */ 3115 break; 3116 case SCAN_FRACT: 3117 /* 3118 * Scan types proportional to swappiness and 3119 * their relative recent reclaim efficiency. 3120 * Make sure we don't miss the last page on 3121 * the offlined memory cgroups because of a 3122 * round-off error. 3123 */ 3124 scan = mem_cgroup_online(memcg) ? 3125 div64_u64(scan * fraction[file], denominator) : 3126 DIV64_U64_ROUND_UP(scan * fraction[file], 3127 denominator); 3128 break; 3129 case SCAN_FILE: 3130 case SCAN_ANON: 3131 /* Scan one type exclusively */ 3132 if ((scan_balance == SCAN_FILE) != file) 3133 scan = 0; 3134 break; 3135 default: 3136 /* Look ma, no brain */ 3137 BUG(); 3138 } 3139 3140 nr[lru] = scan; 3141 } 3142 } 3143 3144 /* 3145 * Anonymous LRU management is a waste if there is 3146 * ultimately no way to reclaim the memory. 3147 */ 3148 static bool can_age_anon_pages(struct pglist_data *pgdat, 3149 struct scan_control *sc) 3150 { 3151 /* Aging the anon LRU is valuable if swap is present: */ 3152 if (total_swap_pages > 0) 3153 return true; 3154 3155 /* Also valuable if anon pages can be demoted: */ 3156 return can_demote(pgdat->node_id, sc); 3157 } 3158 3159 #ifdef CONFIG_LRU_GEN 3160 3161 #ifdef CONFIG_LRU_GEN_ENABLED 3162 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3163 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3164 #else 3165 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3166 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3167 #endif 3168 3169 /****************************************************************************** 3170 * shorthand helpers 3171 ******************************************************************************/ 3172 3173 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3174 3175 #define DEFINE_MAX_SEQ(lruvec) \ 3176 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3177 3178 #define DEFINE_MIN_SEQ(lruvec) \ 3179 unsigned long min_seq[ANON_AND_FILE] = { \ 3180 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3181 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3182 } 3183 3184 #define for_each_gen_type_zone(gen, type, zone) \ 3185 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3186 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3187 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3188 3189 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 3190 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 3191 3192 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3193 { 3194 struct pglist_data *pgdat = NODE_DATA(nid); 3195 3196 #ifdef CONFIG_MEMCG 3197 if (memcg) { 3198 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3199 3200 /* see the comment in mem_cgroup_lruvec() */ 3201 if (!lruvec->pgdat) 3202 lruvec->pgdat = pgdat; 3203 3204 return lruvec; 3205 } 3206 #endif 3207 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3208 3209 return &pgdat->__lruvec; 3210 } 3211 3212 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3213 { 3214 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3215 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3216 3217 if (!sc->may_swap) 3218 return 0; 3219 3220 if (!can_demote(pgdat->node_id, sc) && 3221 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3222 return 0; 3223 3224 return mem_cgroup_swappiness(memcg); 3225 } 3226 3227 static int get_nr_gens(struct lruvec *lruvec, int type) 3228 { 3229 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3230 } 3231 3232 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3233 { 3234 /* see the comment on lru_gen_folio */ 3235 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3236 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3237 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3238 } 3239 3240 /****************************************************************************** 3241 * Bloom filters 3242 ******************************************************************************/ 3243 3244 /* 3245 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3246 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3247 * bits in a bitmap, k is the number of hash functions and n is the number of 3248 * inserted items. 3249 * 3250 * Page table walkers use one of the two filters to reduce their search space. 3251 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3252 * aging uses the double-buffering technique to flip to the other filter each 3253 * time it produces a new generation. For non-leaf entries that have enough 3254 * leaf entries, the aging carries them over to the next generation in 3255 * walk_pmd_range(); the eviction also report them when walking the rmap 3256 * in lru_gen_look_around(). 3257 * 3258 * For future optimizations: 3259 * 1. It's not necessary to keep both filters all the time. The spare one can be 3260 * freed after the RCU grace period and reallocated if needed again. 3261 * 2. And when reallocating, it's worth scaling its size according to the number 3262 * of inserted entries in the other filter, to reduce the memory overhead on 3263 * small systems and false positives on large systems. 3264 * 3. Jenkins' hash function is an alternative to Knuth's. 3265 */ 3266 #define BLOOM_FILTER_SHIFT 15 3267 3268 static inline int filter_gen_from_seq(unsigned long seq) 3269 { 3270 return seq % NR_BLOOM_FILTERS; 3271 } 3272 3273 static void get_item_key(void *item, int *key) 3274 { 3275 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3276 3277 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3278 3279 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3280 key[1] = hash >> BLOOM_FILTER_SHIFT; 3281 } 3282 3283 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3284 { 3285 int key[2]; 3286 unsigned long *filter; 3287 int gen = filter_gen_from_seq(seq); 3288 3289 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3290 if (!filter) 3291 return true; 3292 3293 get_item_key(item, key); 3294 3295 return test_bit(key[0], filter) && test_bit(key[1], filter); 3296 } 3297 3298 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3299 { 3300 int key[2]; 3301 unsigned long *filter; 3302 int gen = filter_gen_from_seq(seq); 3303 3304 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3305 if (!filter) 3306 return; 3307 3308 get_item_key(item, key); 3309 3310 if (!test_bit(key[0], filter)) 3311 set_bit(key[0], filter); 3312 if (!test_bit(key[1], filter)) 3313 set_bit(key[1], filter); 3314 } 3315 3316 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3317 { 3318 unsigned long *filter; 3319 int gen = filter_gen_from_seq(seq); 3320 3321 filter = lruvec->mm_state.filters[gen]; 3322 if (filter) { 3323 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3324 return; 3325 } 3326 3327 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3328 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3329 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3330 } 3331 3332 /****************************************************************************** 3333 * mm_struct list 3334 ******************************************************************************/ 3335 3336 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3337 { 3338 static struct lru_gen_mm_list mm_list = { 3339 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3340 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3341 }; 3342 3343 #ifdef CONFIG_MEMCG 3344 if (memcg) 3345 return &memcg->mm_list; 3346 #endif 3347 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3348 3349 return &mm_list; 3350 } 3351 3352 void lru_gen_add_mm(struct mm_struct *mm) 3353 { 3354 int nid; 3355 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3356 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3357 3358 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3359 #ifdef CONFIG_MEMCG 3360 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3361 mm->lru_gen.memcg = memcg; 3362 #endif 3363 spin_lock(&mm_list->lock); 3364 3365 for_each_node_state(nid, N_MEMORY) { 3366 struct lruvec *lruvec = get_lruvec(memcg, nid); 3367 3368 /* the first addition since the last iteration */ 3369 if (lruvec->mm_state.tail == &mm_list->fifo) 3370 lruvec->mm_state.tail = &mm->lru_gen.list; 3371 } 3372 3373 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3374 3375 spin_unlock(&mm_list->lock); 3376 } 3377 3378 void lru_gen_del_mm(struct mm_struct *mm) 3379 { 3380 int nid; 3381 struct lru_gen_mm_list *mm_list; 3382 struct mem_cgroup *memcg = NULL; 3383 3384 if (list_empty(&mm->lru_gen.list)) 3385 return; 3386 3387 #ifdef CONFIG_MEMCG 3388 memcg = mm->lru_gen.memcg; 3389 #endif 3390 mm_list = get_mm_list(memcg); 3391 3392 spin_lock(&mm_list->lock); 3393 3394 for_each_node(nid) { 3395 struct lruvec *lruvec = get_lruvec(memcg, nid); 3396 3397 /* where the last iteration ended (exclusive) */ 3398 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3399 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3400 3401 /* where the current iteration continues (inclusive) */ 3402 if (lruvec->mm_state.head != &mm->lru_gen.list) 3403 continue; 3404 3405 lruvec->mm_state.head = lruvec->mm_state.head->next; 3406 /* the deletion ends the current iteration */ 3407 if (lruvec->mm_state.head == &mm_list->fifo) 3408 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1); 3409 } 3410 3411 list_del_init(&mm->lru_gen.list); 3412 3413 spin_unlock(&mm_list->lock); 3414 3415 #ifdef CONFIG_MEMCG 3416 mem_cgroup_put(mm->lru_gen.memcg); 3417 mm->lru_gen.memcg = NULL; 3418 #endif 3419 } 3420 3421 #ifdef CONFIG_MEMCG 3422 void lru_gen_migrate_mm(struct mm_struct *mm) 3423 { 3424 struct mem_cgroup *memcg; 3425 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3426 3427 VM_WARN_ON_ONCE(task->mm != mm); 3428 lockdep_assert_held(&task->alloc_lock); 3429 3430 /* for mm_update_next_owner() */ 3431 if (mem_cgroup_disabled()) 3432 return; 3433 3434 /* migration can happen before addition */ 3435 if (!mm->lru_gen.memcg) 3436 return; 3437 3438 rcu_read_lock(); 3439 memcg = mem_cgroup_from_task(task); 3440 rcu_read_unlock(); 3441 if (memcg == mm->lru_gen.memcg) 3442 return; 3443 3444 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3445 3446 lru_gen_del_mm(mm); 3447 lru_gen_add_mm(mm); 3448 } 3449 #endif 3450 3451 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3452 { 3453 int i; 3454 int hist; 3455 3456 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3457 3458 if (walk) { 3459 hist = lru_hist_from_seq(walk->max_seq); 3460 3461 for (i = 0; i < NR_MM_STATS; i++) { 3462 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3463 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3464 walk->mm_stats[i] = 0; 3465 } 3466 } 3467 3468 if (NR_HIST_GENS > 1 && last) { 3469 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3470 3471 for (i = 0; i < NR_MM_STATS; i++) 3472 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3473 } 3474 } 3475 3476 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3477 { 3478 int type; 3479 unsigned long size = 0; 3480 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3481 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3482 3483 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3484 return true; 3485 3486 clear_bit(key, &mm->lru_gen.bitmap); 3487 3488 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3489 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3490 get_mm_counter(mm, MM_ANONPAGES) + 3491 get_mm_counter(mm, MM_SHMEMPAGES); 3492 } 3493 3494 if (size < MIN_LRU_BATCH) 3495 return true; 3496 3497 return !mmget_not_zero(mm); 3498 } 3499 3500 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3501 struct mm_struct **iter) 3502 { 3503 bool first = false; 3504 bool last = true; 3505 struct mm_struct *mm = NULL; 3506 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3507 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3508 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3509 3510 /* 3511 * There are four interesting cases for this page table walker: 3512 * 1. It tries to start a new iteration of mm_list with a stale max_seq; 3513 * there is nothing left to do. 3514 * 2. It's the first of the current generation, and it needs to reset 3515 * the Bloom filter for the next generation. 3516 * 3. It reaches the end of mm_list, and it needs to increment 3517 * mm_state->seq; the iteration is done. 3518 * 4. It's the last of the current generation, and it needs to reset the 3519 * mm stats counters for the next generation. 3520 */ 3521 spin_lock(&mm_list->lock); 3522 3523 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3524 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq); 3525 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers); 3526 3527 if (walk->max_seq <= mm_state->seq) { 3528 if (!*iter) 3529 last = false; 3530 goto done; 3531 } 3532 3533 if (!mm_state->nr_walkers) { 3534 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3535 3536 mm_state->head = mm_list->fifo.next; 3537 first = true; 3538 } 3539 3540 while (!mm && mm_state->head != &mm_list->fifo) { 3541 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3542 3543 mm_state->head = mm_state->head->next; 3544 3545 /* force scan for those added after the last iteration */ 3546 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) { 3547 mm_state->tail = mm_state->head; 3548 walk->force_scan = true; 3549 } 3550 3551 if (should_skip_mm(mm, walk)) 3552 mm = NULL; 3553 } 3554 3555 if (mm_state->head == &mm_list->fifo) 3556 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3557 done: 3558 if (*iter && !mm) 3559 mm_state->nr_walkers--; 3560 if (!*iter && mm) 3561 mm_state->nr_walkers++; 3562 3563 if (mm_state->nr_walkers) 3564 last = false; 3565 3566 if (*iter || last) 3567 reset_mm_stats(lruvec, walk, last); 3568 3569 spin_unlock(&mm_list->lock); 3570 3571 if (mm && first) 3572 reset_bloom_filter(lruvec, walk->max_seq + 1); 3573 3574 if (*iter) 3575 mmput_async(*iter); 3576 3577 *iter = mm; 3578 3579 return last; 3580 } 3581 3582 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3583 { 3584 bool success = false; 3585 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3586 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3587 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3588 3589 spin_lock(&mm_list->lock); 3590 3591 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3592 3593 if (max_seq > mm_state->seq && !mm_state->nr_walkers) { 3594 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3595 3596 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3597 reset_mm_stats(lruvec, NULL, true); 3598 success = true; 3599 } 3600 3601 spin_unlock(&mm_list->lock); 3602 3603 return success; 3604 } 3605 3606 /****************************************************************************** 3607 * refault feedback loop 3608 ******************************************************************************/ 3609 3610 /* 3611 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3612 * 3613 * The P term is refaulted/(evicted+protected) from a tier in the generation 3614 * currently being evicted; the I term is the exponential moving average of the 3615 * P term over the generations previously evicted, using the smoothing factor 3616 * 1/2; the D term isn't supported. 3617 * 3618 * The setpoint (SP) is always the first tier of one type; the process variable 3619 * (PV) is either any tier of the other type or any other tier of the same 3620 * type. 3621 * 3622 * The error is the difference between the SP and the PV; the correction is to 3623 * turn off protection when SP>PV or turn on protection when SP<PV. 3624 * 3625 * For future optimizations: 3626 * 1. The D term may discount the other two terms over time so that long-lived 3627 * generations can resist stale information. 3628 */ 3629 struct ctrl_pos { 3630 unsigned long refaulted; 3631 unsigned long total; 3632 int gain; 3633 }; 3634 3635 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3636 struct ctrl_pos *pos) 3637 { 3638 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3639 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3640 3641 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3642 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3643 pos->total = lrugen->avg_total[type][tier] + 3644 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3645 if (tier) 3646 pos->total += lrugen->protected[hist][type][tier - 1]; 3647 pos->gain = gain; 3648 } 3649 3650 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3651 { 3652 int hist, tier; 3653 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3654 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3655 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3656 3657 lockdep_assert_held(&lruvec->lru_lock); 3658 3659 if (!carryover && !clear) 3660 return; 3661 3662 hist = lru_hist_from_seq(seq); 3663 3664 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3665 if (carryover) { 3666 unsigned long sum; 3667 3668 sum = lrugen->avg_refaulted[type][tier] + 3669 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3670 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3671 3672 sum = lrugen->avg_total[type][tier] + 3673 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3674 if (tier) 3675 sum += lrugen->protected[hist][type][tier - 1]; 3676 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3677 } 3678 3679 if (clear) { 3680 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3681 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3682 if (tier) 3683 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3684 } 3685 } 3686 } 3687 3688 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3689 { 3690 /* 3691 * Return true if the PV has a limited number of refaults or a lower 3692 * refaulted/total than the SP. 3693 */ 3694 return pv->refaulted < MIN_LRU_BATCH || 3695 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3696 (sp->refaulted + 1) * pv->total * pv->gain; 3697 } 3698 3699 /****************************************************************************** 3700 * the aging 3701 ******************************************************************************/ 3702 3703 /* promote pages accessed through page tables */ 3704 static int folio_update_gen(struct folio *folio, int gen) 3705 { 3706 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3707 3708 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3709 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3710 3711 do { 3712 /* lru_gen_del_folio() has isolated this page? */ 3713 if (!(old_flags & LRU_GEN_MASK)) { 3714 /* for shrink_folio_list() */ 3715 new_flags = old_flags | BIT(PG_referenced); 3716 continue; 3717 } 3718 3719 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3720 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3721 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3722 3723 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3724 } 3725 3726 /* protect pages accessed multiple times through file descriptors */ 3727 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3728 { 3729 int type = folio_is_file_lru(folio); 3730 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3731 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3732 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3733 3734 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3735 3736 do { 3737 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3738 /* folio_update_gen() has promoted this page? */ 3739 if (new_gen >= 0 && new_gen != old_gen) 3740 return new_gen; 3741 3742 new_gen = (old_gen + 1) % MAX_NR_GENS; 3743 3744 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3745 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3746 /* for folio_end_writeback() */ 3747 if (reclaiming) 3748 new_flags |= BIT(PG_reclaim); 3749 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3750 3751 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3752 3753 return new_gen; 3754 } 3755 3756 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3757 int old_gen, int new_gen) 3758 { 3759 int type = folio_is_file_lru(folio); 3760 int zone = folio_zonenum(folio); 3761 int delta = folio_nr_pages(folio); 3762 3763 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3764 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3765 3766 walk->batched++; 3767 3768 walk->nr_pages[old_gen][type][zone] -= delta; 3769 walk->nr_pages[new_gen][type][zone] += delta; 3770 } 3771 3772 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3773 { 3774 int gen, type, zone; 3775 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3776 3777 walk->batched = 0; 3778 3779 for_each_gen_type_zone(gen, type, zone) { 3780 enum lru_list lru = type * LRU_INACTIVE_FILE; 3781 int delta = walk->nr_pages[gen][type][zone]; 3782 3783 if (!delta) 3784 continue; 3785 3786 walk->nr_pages[gen][type][zone] = 0; 3787 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3788 lrugen->nr_pages[gen][type][zone] + delta); 3789 3790 if (lru_gen_is_active(lruvec, gen)) 3791 lru += LRU_ACTIVE; 3792 __update_lru_size(lruvec, lru, zone, delta); 3793 } 3794 } 3795 3796 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3797 { 3798 struct address_space *mapping; 3799 struct vm_area_struct *vma = args->vma; 3800 struct lru_gen_mm_walk *walk = args->private; 3801 3802 if (!vma_is_accessible(vma)) 3803 return true; 3804 3805 if (is_vm_hugetlb_page(vma)) 3806 return true; 3807 3808 if (!vma_has_recency(vma)) 3809 return true; 3810 3811 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3812 return true; 3813 3814 if (vma == get_gate_vma(vma->vm_mm)) 3815 return true; 3816 3817 if (vma_is_anonymous(vma)) 3818 return !walk->can_swap; 3819 3820 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3821 return true; 3822 3823 mapping = vma->vm_file->f_mapping; 3824 if (mapping_unevictable(mapping)) 3825 return true; 3826 3827 if (shmem_mapping(mapping)) 3828 return !walk->can_swap; 3829 3830 /* to exclude special mappings like dax, etc. */ 3831 return !mapping->a_ops->read_folio; 3832 } 3833 3834 /* 3835 * Some userspace memory allocators map many single-page VMAs. Instead of 3836 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3837 * table to reduce zigzags and improve cache performance. 3838 */ 3839 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3840 unsigned long *vm_start, unsigned long *vm_end) 3841 { 3842 unsigned long start = round_up(*vm_end, size); 3843 unsigned long end = (start | ~mask) + 1; 3844 VMA_ITERATOR(vmi, args->mm, start); 3845 3846 VM_WARN_ON_ONCE(mask & size); 3847 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3848 3849 for_each_vma(vmi, args->vma) { 3850 if (end && end <= args->vma->vm_start) 3851 return false; 3852 3853 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3854 continue; 3855 3856 *vm_start = max(start, args->vma->vm_start); 3857 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3858 3859 return true; 3860 } 3861 3862 return false; 3863 } 3864 3865 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3866 { 3867 unsigned long pfn = pte_pfn(pte); 3868 3869 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3870 3871 if (!pte_present(pte) || is_zero_pfn(pfn)) 3872 return -1; 3873 3874 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3875 return -1; 3876 3877 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3878 return -1; 3879 3880 return pfn; 3881 } 3882 3883 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3884 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3885 { 3886 unsigned long pfn = pmd_pfn(pmd); 3887 3888 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3889 3890 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3891 return -1; 3892 3893 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3894 return -1; 3895 3896 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3897 return -1; 3898 3899 return pfn; 3900 } 3901 #endif 3902 3903 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3904 struct pglist_data *pgdat, bool can_swap) 3905 { 3906 struct folio *folio; 3907 3908 /* try to avoid unnecessary memory loads */ 3909 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3910 return NULL; 3911 3912 folio = pfn_folio(pfn); 3913 if (folio_nid(folio) != pgdat->node_id) 3914 return NULL; 3915 3916 if (folio_memcg_rcu(folio) != memcg) 3917 return NULL; 3918 3919 /* file VMAs can contain anon pages from COW */ 3920 if (!folio_is_file_lru(folio) && !can_swap) 3921 return NULL; 3922 3923 return folio; 3924 } 3925 3926 static bool suitable_to_scan(int total, int young) 3927 { 3928 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3929 3930 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3931 return young * n >= total; 3932 } 3933 3934 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3935 struct mm_walk *args) 3936 { 3937 int i; 3938 pte_t *pte; 3939 spinlock_t *ptl; 3940 unsigned long addr; 3941 int total = 0; 3942 int young = 0; 3943 struct lru_gen_mm_walk *walk = args->private; 3944 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3945 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3946 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3947 3948 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3949 3950 ptl = pte_lockptr(args->mm, pmd); 3951 if (!spin_trylock(ptl)) 3952 return false; 3953 3954 arch_enter_lazy_mmu_mode(); 3955 3956 pte = pte_offset_map(pmd, start & PMD_MASK); 3957 restart: 3958 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3959 unsigned long pfn; 3960 struct folio *folio; 3961 3962 total++; 3963 walk->mm_stats[MM_LEAF_TOTAL]++; 3964 3965 pfn = get_pte_pfn(pte[i], args->vma, addr); 3966 if (pfn == -1) 3967 continue; 3968 3969 if (!pte_young(pte[i])) { 3970 walk->mm_stats[MM_LEAF_OLD]++; 3971 continue; 3972 } 3973 3974 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3975 if (!folio) 3976 continue; 3977 3978 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3979 VM_WARN_ON_ONCE(true); 3980 3981 young++; 3982 walk->mm_stats[MM_LEAF_YOUNG]++; 3983 3984 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 3985 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3986 !folio_test_swapcache(folio))) 3987 folio_mark_dirty(folio); 3988 3989 old_gen = folio_update_gen(folio, new_gen); 3990 if (old_gen >= 0 && old_gen != new_gen) 3991 update_batch_size(walk, folio, old_gen, new_gen); 3992 } 3993 3994 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3995 goto restart; 3996 3997 pte_unmap(pte); 3998 3999 arch_leave_lazy_mmu_mode(); 4000 spin_unlock(ptl); 4001 4002 return suitable_to_scan(total, young); 4003 } 4004 4005 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 4006 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4007 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4008 { 4009 int i; 4010 pmd_t *pmd; 4011 spinlock_t *ptl; 4012 struct lru_gen_mm_walk *walk = args->private; 4013 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 4014 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4015 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 4016 4017 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4018 4019 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4020 if (*first == -1) { 4021 *first = addr; 4022 bitmap_zero(bitmap, MIN_LRU_BATCH); 4023 return; 4024 } 4025 4026 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 4027 if (i && i <= MIN_LRU_BATCH) { 4028 __set_bit(i - 1, bitmap); 4029 return; 4030 } 4031 4032 pmd = pmd_offset(pud, *first); 4033 4034 ptl = pmd_lockptr(args->mm, pmd); 4035 if (!spin_trylock(ptl)) 4036 goto done; 4037 4038 arch_enter_lazy_mmu_mode(); 4039 4040 do { 4041 unsigned long pfn; 4042 struct folio *folio; 4043 4044 /* don't round down the first address */ 4045 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 4046 4047 pfn = get_pmd_pfn(pmd[i], vma, addr); 4048 if (pfn == -1) 4049 goto next; 4050 4051 if (!pmd_trans_huge(pmd[i])) { 4052 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 4053 pmdp_test_and_clear_young(vma, addr, pmd + i); 4054 goto next; 4055 } 4056 4057 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4058 if (!folio) 4059 goto next; 4060 4061 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4062 goto next; 4063 4064 walk->mm_stats[MM_LEAF_YOUNG]++; 4065 4066 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4067 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4068 !folio_test_swapcache(folio))) 4069 folio_mark_dirty(folio); 4070 4071 old_gen = folio_update_gen(folio, new_gen); 4072 if (old_gen >= 0 && old_gen != new_gen) 4073 update_batch_size(walk, folio, old_gen, new_gen); 4074 next: 4075 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4076 } while (i <= MIN_LRU_BATCH); 4077 4078 arch_leave_lazy_mmu_mode(); 4079 spin_unlock(ptl); 4080 done: 4081 *first = -1; 4082 } 4083 #else 4084 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 4085 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 4086 { 4087 } 4088 #endif 4089 4090 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4091 struct mm_walk *args) 4092 { 4093 int i; 4094 pmd_t *pmd; 4095 unsigned long next; 4096 unsigned long addr; 4097 struct vm_area_struct *vma; 4098 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)]; 4099 unsigned long first = -1; 4100 struct lru_gen_mm_walk *walk = args->private; 4101 4102 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4103 4104 /* 4105 * Finish an entire PMD in two passes: the first only reaches to PTE 4106 * tables to avoid taking the PMD lock; the second, if necessary, takes 4107 * the PMD lock to clear the accessed bit in PMD entries. 4108 */ 4109 pmd = pmd_offset(pud, start & PUD_MASK); 4110 restart: 4111 /* walk_pte_range() may call get_next_vma() */ 4112 vma = args->vma; 4113 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4114 pmd_t val = pmdp_get_lockless(pmd + i); 4115 4116 next = pmd_addr_end(addr, end); 4117 4118 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4119 walk->mm_stats[MM_LEAF_TOTAL]++; 4120 continue; 4121 } 4122 4123 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4124 if (pmd_trans_huge(val)) { 4125 unsigned long pfn = pmd_pfn(val); 4126 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4127 4128 walk->mm_stats[MM_LEAF_TOTAL]++; 4129 4130 if (!pmd_young(val)) { 4131 walk->mm_stats[MM_LEAF_OLD]++; 4132 continue; 4133 } 4134 4135 /* try to avoid unnecessary memory loads */ 4136 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4137 continue; 4138 4139 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4140 continue; 4141 } 4142 #endif 4143 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4144 4145 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4146 if (!pmd_young(val)) 4147 continue; 4148 4149 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 4150 } 4151 4152 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4153 continue; 4154 4155 walk->mm_stats[MM_NONLEAF_FOUND]++; 4156 4157 if (!walk_pte_range(&val, addr, next, args)) 4158 continue; 4159 4160 walk->mm_stats[MM_NONLEAF_ADDED]++; 4161 4162 /* carry over to the next generation */ 4163 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4164 } 4165 4166 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 4167 4168 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4169 goto restart; 4170 } 4171 4172 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4173 struct mm_walk *args) 4174 { 4175 int i; 4176 pud_t *pud; 4177 unsigned long addr; 4178 unsigned long next; 4179 struct lru_gen_mm_walk *walk = args->private; 4180 4181 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4182 4183 pud = pud_offset(p4d, start & P4D_MASK); 4184 restart: 4185 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4186 pud_t val = READ_ONCE(pud[i]); 4187 4188 next = pud_addr_end(addr, end); 4189 4190 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4191 continue; 4192 4193 walk_pmd_range(&val, addr, next, args); 4194 4195 /* a racy check to curtail the waiting time */ 4196 if (wq_has_sleeper(&walk->lruvec->mm_state.wait)) 4197 return 1; 4198 4199 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4200 end = (addr | ~PUD_MASK) + 1; 4201 goto done; 4202 } 4203 } 4204 4205 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4206 goto restart; 4207 4208 end = round_up(end, P4D_SIZE); 4209 done: 4210 if (!end || !args->vma) 4211 return 1; 4212 4213 walk->next_addr = max(end, args->vma->vm_start); 4214 4215 return -EAGAIN; 4216 } 4217 4218 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4219 { 4220 static const struct mm_walk_ops mm_walk_ops = { 4221 .test_walk = should_skip_vma, 4222 .p4d_entry = walk_pud_range, 4223 }; 4224 4225 int err; 4226 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4227 4228 walk->next_addr = FIRST_USER_ADDRESS; 4229 4230 do { 4231 err = -EBUSY; 4232 4233 /* folio_update_gen() requires stable folio_memcg() */ 4234 if (!mem_cgroup_trylock_pages(memcg)) 4235 break; 4236 4237 /* the caller might be holding the lock for write */ 4238 if (mmap_read_trylock(mm)) { 4239 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4240 4241 mmap_read_unlock(mm); 4242 } 4243 4244 mem_cgroup_unlock_pages(); 4245 4246 if (walk->batched) { 4247 spin_lock_irq(&lruvec->lru_lock); 4248 reset_batch_size(lruvec, walk); 4249 spin_unlock_irq(&lruvec->lru_lock); 4250 } 4251 4252 cond_resched(); 4253 } while (err == -EAGAIN); 4254 } 4255 4256 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 4257 { 4258 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4259 4260 if (pgdat && current_is_kswapd()) { 4261 VM_WARN_ON_ONCE(walk); 4262 4263 walk = &pgdat->mm_walk; 4264 } else if (!walk && force_alloc) { 4265 VM_WARN_ON_ONCE(current_is_kswapd()); 4266 4267 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4268 } 4269 4270 current->reclaim_state->mm_walk = walk; 4271 4272 return walk; 4273 } 4274 4275 static void clear_mm_walk(void) 4276 { 4277 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4278 4279 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4280 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4281 4282 current->reclaim_state->mm_walk = NULL; 4283 4284 if (!current_is_kswapd()) 4285 kfree(walk); 4286 } 4287 4288 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4289 { 4290 int zone; 4291 int remaining = MAX_LRU_BATCH; 4292 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4293 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4294 4295 if (type == LRU_GEN_ANON && !can_swap) 4296 goto done; 4297 4298 /* prevent cold/hot inversion if force_scan is true */ 4299 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4300 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4301 4302 while (!list_empty(head)) { 4303 struct folio *folio = lru_to_folio(head); 4304 4305 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4306 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4307 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4308 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4309 4310 new_gen = folio_inc_gen(lruvec, folio, false); 4311 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4312 4313 if (!--remaining) 4314 return false; 4315 } 4316 } 4317 done: 4318 reset_ctrl_pos(lruvec, type, true); 4319 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4320 4321 return true; 4322 } 4323 4324 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4325 { 4326 int gen, type, zone; 4327 bool success = false; 4328 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4329 DEFINE_MIN_SEQ(lruvec); 4330 4331 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4332 4333 /* find the oldest populated generation */ 4334 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4335 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4336 gen = lru_gen_from_seq(min_seq[type]); 4337 4338 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4339 if (!list_empty(&lrugen->folios[gen][type][zone])) 4340 goto next; 4341 } 4342 4343 min_seq[type]++; 4344 } 4345 next: 4346 ; 4347 } 4348 4349 /* see the comment on lru_gen_folio */ 4350 if (can_swap) { 4351 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4352 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4353 } 4354 4355 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4356 if (min_seq[type] == lrugen->min_seq[type]) 4357 continue; 4358 4359 reset_ctrl_pos(lruvec, type, true); 4360 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4361 success = true; 4362 } 4363 4364 return success; 4365 } 4366 4367 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4368 { 4369 int prev, next; 4370 int type, zone; 4371 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4372 4373 spin_lock_irq(&lruvec->lru_lock); 4374 4375 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4376 4377 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4378 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4379 continue; 4380 4381 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4382 4383 while (!inc_min_seq(lruvec, type, can_swap)) { 4384 spin_unlock_irq(&lruvec->lru_lock); 4385 cond_resched(); 4386 spin_lock_irq(&lruvec->lru_lock); 4387 } 4388 } 4389 4390 /* 4391 * Update the active/inactive LRU sizes for compatibility. Both sides of 4392 * the current max_seq need to be covered, since max_seq+1 can overlap 4393 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4394 * overlap, cold/hot inversion happens. 4395 */ 4396 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4397 next = lru_gen_from_seq(lrugen->max_seq + 1); 4398 4399 for (type = 0; type < ANON_AND_FILE; type++) { 4400 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4401 enum lru_list lru = type * LRU_INACTIVE_FILE; 4402 long delta = lrugen->nr_pages[prev][type][zone] - 4403 lrugen->nr_pages[next][type][zone]; 4404 4405 if (!delta) 4406 continue; 4407 4408 __update_lru_size(lruvec, lru, zone, delta); 4409 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4410 } 4411 } 4412 4413 for (type = 0; type < ANON_AND_FILE; type++) 4414 reset_ctrl_pos(lruvec, type, false); 4415 4416 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4417 /* make sure preceding modifications appear */ 4418 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4419 4420 spin_unlock_irq(&lruvec->lru_lock); 4421 } 4422 4423 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4424 struct scan_control *sc, bool can_swap, bool force_scan) 4425 { 4426 bool success; 4427 struct lru_gen_mm_walk *walk; 4428 struct mm_struct *mm = NULL; 4429 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4430 4431 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4432 4433 /* see the comment in iterate_mm_list() */ 4434 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4435 success = false; 4436 goto done; 4437 } 4438 4439 /* 4440 * If the hardware doesn't automatically set the accessed bit, fallback 4441 * to lru_gen_look_around(), which only clears the accessed bit in a 4442 * handful of PTEs. Spreading the work out over a period of time usually 4443 * is less efficient, but it avoids bursty page faults. 4444 */ 4445 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) { 4446 success = iterate_mm_list_nowalk(lruvec, max_seq); 4447 goto done; 4448 } 4449 4450 walk = set_mm_walk(NULL, true); 4451 if (!walk) { 4452 success = iterate_mm_list_nowalk(lruvec, max_seq); 4453 goto done; 4454 } 4455 4456 walk->lruvec = lruvec; 4457 walk->max_seq = max_seq; 4458 walk->can_swap = can_swap; 4459 walk->force_scan = force_scan; 4460 4461 do { 4462 success = iterate_mm_list(lruvec, walk, &mm); 4463 if (mm) 4464 walk_mm(lruvec, mm, walk); 4465 4466 cond_resched(); 4467 } while (mm); 4468 done: 4469 if (!success) { 4470 if (sc->priority <= DEF_PRIORITY - 2) 4471 wait_event_killable(lruvec->mm_state.wait, 4472 max_seq < READ_ONCE(lrugen->max_seq)); 4473 return false; 4474 } 4475 4476 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq)); 4477 4478 inc_max_seq(lruvec, can_swap, force_scan); 4479 /* either this sees any waiters or they will see updated max_seq */ 4480 if (wq_has_sleeper(&lruvec->mm_state.wait)) 4481 wake_up_all(&lruvec->mm_state.wait); 4482 4483 return true; 4484 } 4485 4486 /****************************************************************************** 4487 * working set protection 4488 ******************************************************************************/ 4489 4490 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4491 { 4492 int gen, type, zone; 4493 unsigned long total = 0; 4494 bool can_swap = get_swappiness(lruvec, sc); 4495 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4496 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4497 DEFINE_MAX_SEQ(lruvec); 4498 DEFINE_MIN_SEQ(lruvec); 4499 4500 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4501 unsigned long seq; 4502 4503 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4504 gen = lru_gen_from_seq(seq); 4505 4506 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4507 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4508 } 4509 } 4510 4511 /* whether the size is big enough to be helpful */ 4512 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4513 } 4514 4515 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4516 unsigned long min_ttl) 4517 { 4518 int gen; 4519 unsigned long birth; 4520 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4521 DEFINE_MIN_SEQ(lruvec); 4522 4523 /* see the comment on lru_gen_folio */ 4524 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4525 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4526 4527 if (time_is_after_jiffies(birth + min_ttl)) 4528 return false; 4529 4530 if (!lruvec_is_sizable(lruvec, sc)) 4531 return false; 4532 4533 mem_cgroup_calculate_protection(NULL, memcg); 4534 4535 return !mem_cgroup_below_min(NULL, memcg); 4536 } 4537 4538 /* to protect the working set of the last N jiffies */ 4539 static unsigned long lru_gen_min_ttl __read_mostly; 4540 4541 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4542 { 4543 struct mem_cgroup *memcg; 4544 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4545 4546 VM_WARN_ON_ONCE(!current_is_kswapd()); 4547 4548 /* check the order to exclude compaction-induced reclaim */ 4549 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 4550 return; 4551 4552 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4553 do { 4554 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4555 4556 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 4557 mem_cgroup_iter_break(NULL, memcg); 4558 return; 4559 } 4560 4561 cond_resched(); 4562 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4563 4564 /* 4565 * The main goal is to OOM kill if every generation from all memcgs is 4566 * younger than min_ttl. However, another possibility is all memcgs are 4567 * either too small or below min. 4568 */ 4569 if (mutex_trylock(&oom_lock)) { 4570 struct oom_control oc = { 4571 .gfp_mask = sc->gfp_mask, 4572 }; 4573 4574 out_of_memory(&oc); 4575 4576 mutex_unlock(&oom_lock); 4577 } 4578 } 4579 4580 /****************************************************************************** 4581 * rmap/PT walk feedback 4582 ******************************************************************************/ 4583 4584 /* 4585 * This function exploits spatial locality when shrink_folio_list() walks the 4586 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4587 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4588 * the PTE table to the Bloom filter. This forms a feedback loop between the 4589 * eviction and the aging. 4590 */ 4591 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4592 { 4593 int i; 4594 unsigned long start; 4595 unsigned long end; 4596 struct lru_gen_mm_walk *walk; 4597 int young = 0; 4598 pte_t *pte = pvmw->pte; 4599 unsigned long addr = pvmw->address; 4600 struct folio *folio = pfn_folio(pvmw->pfn); 4601 struct mem_cgroup *memcg = folio_memcg(folio); 4602 struct pglist_data *pgdat = folio_pgdat(folio); 4603 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4604 DEFINE_MAX_SEQ(lruvec); 4605 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4606 4607 lockdep_assert_held(pvmw->ptl); 4608 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4609 4610 if (spin_is_contended(pvmw->ptl)) 4611 return; 4612 4613 /* avoid taking the LRU lock under the PTL when possible */ 4614 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4615 4616 start = max(addr & PMD_MASK, pvmw->vma->vm_start); 4617 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4618 4619 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4620 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4621 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4622 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4623 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4624 else { 4625 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4626 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4627 } 4628 } 4629 4630 /* folio_update_gen() requires stable folio_memcg() */ 4631 if (!mem_cgroup_trylock_pages(memcg)) 4632 return; 4633 4634 arch_enter_lazy_mmu_mode(); 4635 4636 pte -= (addr - start) / PAGE_SIZE; 4637 4638 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4639 unsigned long pfn; 4640 4641 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4642 if (pfn == -1) 4643 continue; 4644 4645 if (!pte_young(pte[i])) 4646 continue; 4647 4648 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4649 if (!folio) 4650 continue; 4651 4652 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4653 VM_WARN_ON_ONCE(true); 4654 4655 young++; 4656 4657 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4658 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4659 !folio_test_swapcache(folio))) 4660 folio_mark_dirty(folio); 4661 4662 if (walk) { 4663 old_gen = folio_update_gen(folio, new_gen); 4664 if (old_gen >= 0 && old_gen != new_gen) 4665 update_batch_size(walk, folio, old_gen, new_gen); 4666 4667 continue; 4668 } 4669 4670 old_gen = folio_lru_gen(folio); 4671 if (old_gen < 0) 4672 folio_set_referenced(folio); 4673 else if (old_gen != new_gen) 4674 folio_activate(folio); 4675 } 4676 4677 arch_leave_lazy_mmu_mode(); 4678 mem_cgroup_unlock_pages(); 4679 4680 /* feedback from rmap walkers to page table walkers */ 4681 if (suitable_to_scan(i, young)) 4682 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4683 } 4684 4685 /****************************************************************************** 4686 * memcg LRU 4687 ******************************************************************************/ 4688 4689 /* see the comment on MEMCG_NR_GENS */ 4690 enum { 4691 MEMCG_LRU_NOP, 4692 MEMCG_LRU_HEAD, 4693 MEMCG_LRU_TAIL, 4694 MEMCG_LRU_OLD, 4695 MEMCG_LRU_YOUNG, 4696 }; 4697 4698 #ifdef CONFIG_MEMCG 4699 4700 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4701 { 4702 return READ_ONCE(lruvec->lrugen.seg); 4703 } 4704 4705 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4706 { 4707 int seg; 4708 int old, new; 4709 int bin = get_random_u32_below(MEMCG_NR_BINS); 4710 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4711 4712 spin_lock(&pgdat->memcg_lru.lock); 4713 4714 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4715 4716 seg = 0; 4717 new = old = lruvec->lrugen.gen; 4718 4719 /* see the comment on MEMCG_NR_GENS */ 4720 if (op == MEMCG_LRU_HEAD) 4721 seg = MEMCG_LRU_HEAD; 4722 else if (op == MEMCG_LRU_TAIL) 4723 seg = MEMCG_LRU_TAIL; 4724 else if (op == MEMCG_LRU_OLD) 4725 new = get_memcg_gen(pgdat->memcg_lru.seq); 4726 else if (op == MEMCG_LRU_YOUNG) 4727 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4728 else 4729 VM_WARN_ON_ONCE(true); 4730 4731 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4732 4733 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4734 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4735 else 4736 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4737 4738 pgdat->memcg_lru.nr_memcgs[old]--; 4739 pgdat->memcg_lru.nr_memcgs[new]++; 4740 4741 lruvec->lrugen.gen = new; 4742 WRITE_ONCE(lruvec->lrugen.seg, seg); 4743 4744 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4745 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4746 4747 spin_unlock(&pgdat->memcg_lru.lock); 4748 } 4749 4750 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4751 { 4752 int gen; 4753 int nid; 4754 int bin = get_random_u32_below(MEMCG_NR_BINS); 4755 4756 for_each_node(nid) { 4757 struct pglist_data *pgdat = NODE_DATA(nid); 4758 struct lruvec *lruvec = get_lruvec(memcg, nid); 4759 4760 spin_lock(&pgdat->memcg_lru.lock); 4761 4762 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4763 4764 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4765 4766 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4767 pgdat->memcg_lru.nr_memcgs[gen]++; 4768 4769 lruvec->lrugen.gen = gen; 4770 4771 spin_unlock(&pgdat->memcg_lru.lock); 4772 } 4773 } 4774 4775 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4776 { 4777 int nid; 4778 4779 for_each_node(nid) { 4780 struct lruvec *lruvec = get_lruvec(memcg, nid); 4781 4782 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4783 } 4784 } 4785 4786 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4787 { 4788 int gen; 4789 int nid; 4790 4791 for_each_node(nid) { 4792 struct pglist_data *pgdat = NODE_DATA(nid); 4793 struct lruvec *lruvec = get_lruvec(memcg, nid); 4794 4795 spin_lock(&pgdat->memcg_lru.lock); 4796 4797 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4798 4799 gen = lruvec->lrugen.gen; 4800 4801 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4802 pgdat->memcg_lru.nr_memcgs[gen]--; 4803 4804 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4805 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4806 4807 spin_unlock(&pgdat->memcg_lru.lock); 4808 } 4809 } 4810 4811 void lru_gen_soft_reclaim(struct lruvec *lruvec) 4812 { 4813 /* see the comment on MEMCG_NR_GENS */ 4814 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 4815 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4816 } 4817 4818 #else /* !CONFIG_MEMCG */ 4819 4820 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4821 { 4822 return 0; 4823 } 4824 4825 #endif 4826 4827 /****************************************************************************** 4828 * the eviction 4829 ******************************************************************************/ 4830 4831 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4832 { 4833 bool success; 4834 int gen = folio_lru_gen(folio); 4835 int type = folio_is_file_lru(folio); 4836 int zone = folio_zonenum(folio); 4837 int delta = folio_nr_pages(folio); 4838 int refs = folio_lru_refs(folio); 4839 int tier = lru_tier_from_refs(refs); 4840 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4841 4842 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4843 4844 /* unevictable */ 4845 if (!folio_evictable(folio)) { 4846 success = lru_gen_del_folio(lruvec, folio, true); 4847 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4848 folio_set_unevictable(folio); 4849 lruvec_add_folio(lruvec, folio); 4850 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4851 return true; 4852 } 4853 4854 /* dirty lazyfree */ 4855 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4856 success = lru_gen_del_folio(lruvec, folio, true); 4857 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4858 folio_set_swapbacked(folio); 4859 lruvec_add_folio_tail(lruvec, folio); 4860 return true; 4861 } 4862 4863 /* promoted */ 4864 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4865 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4866 return true; 4867 } 4868 4869 /* protected */ 4870 if (tier > tier_idx) { 4871 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4872 4873 gen = folio_inc_gen(lruvec, folio, false); 4874 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4875 4876 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4877 lrugen->protected[hist][type][tier - 1] + delta); 4878 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4879 return true; 4880 } 4881 4882 /* waiting for writeback */ 4883 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4884 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4885 gen = folio_inc_gen(lruvec, folio, true); 4886 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4887 return true; 4888 } 4889 4890 return false; 4891 } 4892 4893 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4894 { 4895 bool success; 4896 4897 /* swapping inhibited */ 4898 if (!(sc->gfp_mask & __GFP_IO) && 4899 (folio_test_dirty(folio) || 4900 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4901 return false; 4902 4903 /* raced with release_pages() */ 4904 if (!folio_try_get(folio)) 4905 return false; 4906 4907 /* raced with another isolation */ 4908 if (!folio_test_clear_lru(folio)) { 4909 folio_put(folio); 4910 return false; 4911 } 4912 4913 /* see the comment on MAX_NR_TIERS */ 4914 if (!folio_test_referenced(folio)) 4915 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4916 4917 /* for shrink_folio_list() */ 4918 folio_clear_reclaim(folio); 4919 folio_clear_referenced(folio); 4920 4921 success = lru_gen_del_folio(lruvec, folio, true); 4922 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4923 4924 return true; 4925 } 4926 4927 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4928 int type, int tier, struct list_head *list) 4929 { 4930 int gen, zone; 4931 enum vm_event_item item; 4932 int sorted = 0; 4933 int scanned = 0; 4934 int isolated = 0; 4935 int remaining = MAX_LRU_BATCH; 4936 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4937 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4938 4939 VM_WARN_ON_ONCE(!list_empty(list)); 4940 4941 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4942 return 0; 4943 4944 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4945 4946 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4947 LIST_HEAD(moved); 4948 int skipped = 0; 4949 struct list_head *head = &lrugen->folios[gen][type][zone]; 4950 4951 while (!list_empty(head)) { 4952 struct folio *folio = lru_to_folio(head); 4953 int delta = folio_nr_pages(folio); 4954 4955 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4956 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4957 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4958 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4959 4960 scanned += delta; 4961 4962 if (sort_folio(lruvec, folio, tier)) 4963 sorted += delta; 4964 else if (isolate_folio(lruvec, folio, sc)) { 4965 list_add(&folio->lru, list); 4966 isolated += delta; 4967 } else { 4968 list_move(&folio->lru, &moved); 4969 skipped += delta; 4970 } 4971 4972 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 4973 break; 4974 } 4975 4976 if (skipped) { 4977 list_splice(&moved, head); 4978 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 4979 } 4980 4981 if (!remaining || isolated >= MIN_LRU_BATCH) 4982 break; 4983 } 4984 4985 item = PGSCAN_KSWAPD + reclaimer_offset(); 4986 if (!cgroup_reclaim(sc)) { 4987 __count_vm_events(item, isolated); 4988 __count_vm_events(PGREFILL, sorted); 4989 } 4990 __count_memcg_events(memcg, item, isolated); 4991 __count_memcg_events(memcg, PGREFILL, sorted); 4992 __count_vm_events(PGSCAN_ANON + type, isolated); 4993 4994 /* 4995 * There might not be eligible folios due to reclaim_idx. Check the 4996 * remaining to prevent livelock if it's not making progress. 4997 */ 4998 return isolated || !remaining ? scanned : 0; 4999 } 5000 5001 static int get_tier_idx(struct lruvec *lruvec, int type) 5002 { 5003 int tier; 5004 struct ctrl_pos sp, pv; 5005 5006 /* 5007 * To leave a margin for fluctuations, use a larger gain factor (1:2). 5008 * This value is chosen because any other tier would have at least twice 5009 * as many refaults as the first tier. 5010 */ 5011 read_ctrl_pos(lruvec, type, 0, 1, &sp); 5012 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5013 read_ctrl_pos(lruvec, type, tier, 2, &pv); 5014 if (!positive_ctrl_err(&sp, &pv)) 5015 break; 5016 } 5017 5018 return tier - 1; 5019 } 5020 5021 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 5022 { 5023 int type, tier; 5024 struct ctrl_pos sp, pv; 5025 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 5026 5027 /* 5028 * Compare the first tier of anon with that of file to determine which 5029 * type to scan. Also need to compare other tiers of the selected type 5030 * with the first tier of the other type to determine the last tier (of 5031 * the selected type) to evict. 5032 */ 5033 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 5034 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 5035 type = positive_ctrl_err(&sp, &pv); 5036 5037 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 5038 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 5039 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 5040 if (!positive_ctrl_err(&sp, &pv)) 5041 break; 5042 } 5043 5044 *tier_idx = tier - 1; 5045 5046 return type; 5047 } 5048 5049 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 5050 int *type_scanned, struct list_head *list) 5051 { 5052 int i; 5053 int type; 5054 int scanned; 5055 int tier = -1; 5056 DEFINE_MIN_SEQ(lruvec); 5057 5058 /* 5059 * Try to make the obvious choice first. When anon and file are both 5060 * available from the same generation, interpret swappiness 1 as file 5061 * first and 200 as anon first. 5062 */ 5063 if (!swappiness) 5064 type = LRU_GEN_FILE; 5065 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 5066 type = LRU_GEN_ANON; 5067 else if (swappiness == 1) 5068 type = LRU_GEN_FILE; 5069 else if (swappiness == 200) 5070 type = LRU_GEN_ANON; 5071 else 5072 type = get_type_to_scan(lruvec, swappiness, &tier); 5073 5074 for (i = !swappiness; i < ANON_AND_FILE; i++) { 5075 if (tier < 0) 5076 tier = get_tier_idx(lruvec, type); 5077 5078 scanned = scan_folios(lruvec, sc, type, tier, list); 5079 if (scanned) 5080 break; 5081 5082 type = !type; 5083 tier = -1; 5084 } 5085 5086 *type_scanned = type; 5087 5088 return scanned; 5089 } 5090 5091 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 5092 { 5093 int type; 5094 int scanned; 5095 int reclaimed; 5096 LIST_HEAD(list); 5097 LIST_HEAD(clean); 5098 struct folio *folio; 5099 struct folio *next; 5100 enum vm_event_item item; 5101 struct reclaim_stat stat; 5102 struct lru_gen_mm_walk *walk; 5103 bool skip_retry = false; 5104 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5105 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5106 5107 spin_lock_irq(&lruvec->lru_lock); 5108 5109 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5110 5111 scanned += try_to_inc_min_seq(lruvec, swappiness); 5112 5113 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5114 scanned = 0; 5115 5116 spin_unlock_irq(&lruvec->lru_lock); 5117 5118 if (list_empty(&list)) 5119 return scanned; 5120 retry: 5121 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5122 sc->nr_reclaimed += reclaimed; 5123 5124 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5125 if (!folio_evictable(folio)) { 5126 list_del(&folio->lru); 5127 folio_putback_lru(folio); 5128 continue; 5129 } 5130 5131 if (folio_test_reclaim(folio) && 5132 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5133 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5134 if (folio_test_workingset(folio)) 5135 folio_set_referenced(folio); 5136 continue; 5137 } 5138 5139 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5140 folio_mapped(folio) || folio_test_locked(folio) || 5141 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5142 /* don't add rejected folios to the oldest generation */ 5143 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5144 BIT(PG_active)); 5145 continue; 5146 } 5147 5148 /* retry folios that may have missed folio_rotate_reclaimable() */ 5149 list_move(&folio->lru, &clean); 5150 sc->nr_scanned -= folio_nr_pages(folio); 5151 } 5152 5153 spin_lock_irq(&lruvec->lru_lock); 5154 5155 move_folios_to_lru(lruvec, &list); 5156 5157 walk = current->reclaim_state->mm_walk; 5158 if (walk && walk->batched) 5159 reset_batch_size(lruvec, walk); 5160 5161 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5162 if (!cgroup_reclaim(sc)) 5163 __count_vm_events(item, reclaimed); 5164 __count_memcg_events(memcg, item, reclaimed); 5165 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5166 5167 spin_unlock_irq(&lruvec->lru_lock); 5168 5169 mem_cgroup_uncharge_list(&list); 5170 free_unref_page_list(&list); 5171 5172 INIT_LIST_HEAD(&list); 5173 list_splice_init(&clean, &list); 5174 5175 if (!list_empty(&list)) { 5176 skip_retry = true; 5177 goto retry; 5178 } 5179 5180 return scanned; 5181 } 5182 5183 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 5184 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 5185 { 5186 int gen, type, zone; 5187 unsigned long old = 0; 5188 unsigned long young = 0; 5189 unsigned long total = 0; 5190 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5191 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5192 DEFINE_MIN_SEQ(lruvec); 5193 5194 /* whether this lruvec is completely out of cold folios */ 5195 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 5196 *nr_to_scan = 0; 5197 return true; 5198 } 5199 5200 for (type = !can_swap; type < ANON_AND_FILE; type++) { 5201 unsigned long seq; 5202 5203 for (seq = min_seq[type]; seq <= max_seq; seq++) { 5204 unsigned long size = 0; 5205 5206 gen = lru_gen_from_seq(seq); 5207 5208 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5209 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5210 5211 total += size; 5212 if (seq == max_seq) 5213 young += size; 5214 else if (seq + MIN_NR_GENS == max_seq) 5215 old += size; 5216 } 5217 } 5218 5219 /* try to scrape all its memory if this memcg was deleted */ 5220 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 5221 5222 /* 5223 * The aging tries to be lazy to reduce the overhead, while the eviction 5224 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 5225 * ideal number of generations is MIN_NR_GENS+1. 5226 */ 5227 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 5228 return false; 5229 5230 /* 5231 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 5232 * of the total number of pages for each generation. A reasonable range 5233 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 5234 * aging cares about the upper bound of hot pages, while the eviction 5235 * cares about the lower bound of cold pages. 5236 */ 5237 if (young * MIN_NR_GENS > total) 5238 return true; 5239 if (old * (MIN_NR_GENS + 2) < total) 5240 return true; 5241 5242 return false; 5243 } 5244 5245 /* 5246 * For future optimizations: 5247 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5248 * reclaim. 5249 */ 5250 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 5251 { 5252 unsigned long nr_to_scan; 5253 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5254 DEFINE_MAX_SEQ(lruvec); 5255 5256 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 5257 return 0; 5258 5259 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5260 return nr_to_scan; 5261 5262 /* skip the aging path at the default priority */ 5263 if (sc->priority == DEF_PRIORITY) 5264 return nr_to_scan; 5265 5266 /* skip this lruvec as it's low on cold folios */ 5267 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 5268 } 5269 5270 static unsigned long get_nr_to_reclaim(struct scan_control *sc) 5271 { 5272 /* don't abort memcg reclaim to ensure fairness */ 5273 if (!global_reclaim(sc)) 5274 return -1; 5275 5276 return max(sc->nr_to_reclaim, compact_gap(sc->order)); 5277 } 5278 5279 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5280 { 5281 long nr_to_scan; 5282 unsigned long scanned = 0; 5283 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5284 int swappiness = get_swappiness(lruvec, sc); 5285 5286 /* clean file folios are more likely to exist */ 5287 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 5288 swappiness = 1; 5289 5290 while (true) { 5291 int delta; 5292 5293 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5294 if (nr_to_scan <= 0) 5295 break; 5296 5297 delta = evict_folios(lruvec, sc, swappiness); 5298 if (!delta) 5299 break; 5300 5301 scanned += delta; 5302 if (scanned >= nr_to_scan) 5303 break; 5304 5305 if (sc->nr_reclaimed >= nr_to_reclaim) 5306 break; 5307 5308 cond_resched(); 5309 } 5310 5311 /* whether try_to_inc_max_seq() was successful */ 5312 return nr_to_scan < 0; 5313 } 5314 5315 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 5316 { 5317 bool success; 5318 unsigned long scanned = sc->nr_scanned; 5319 unsigned long reclaimed = sc->nr_reclaimed; 5320 int seg = lru_gen_memcg_seg(lruvec); 5321 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5322 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5323 5324 /* see the comment on MEMCG_NR_GENS */ 5325 if (!lruvec_is_sizable(lruvec, sc)) 5326 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 5327 5328 mem_cgroup_calculate_protection(NULL, memcg); 5329 5330 if (mem_cgroup_below_min(NULL, memcg)) 5331 return MEMCG_LRU_YOUNG; 5332 5333 if (mem_cgroup_below_low(NULL, memcg)) { 5334 /* see the comment on MEMCG_NR_GENS */ 5335 if (seg != MEMCG_LRU_TAIL) 5336 return MEMCG_LRU_TAIL; 5337 5338 memcg_memory_event(memcg, MEMCG_LOW); 5339 } 5340 5341 success = try_to_shrink_lruvec(lruvec, sc); 5342 5343 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 5344 5345 if (!sc->proactive) 5346 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 5347 sc->nr_reclaimed - reclaimed); 5348 5349 sc->nr_reclaimed += current->reclaim_state->reclaimed_slab; 5350 current->reclaim_state->reclaimed_slab = 0; 5351 5352 return success ? MEMCG_LRU_YOUNG : 0; 5353 } 5354 5355 #ifdef CONFIG_MEMCG 5356 5357 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5358 { 5359 int op; 5360 int gen; 5361 int bin; 5362 int first_bin; 5363 struct lruvec *lruvec; 5364 struct lru_gen_folio *lrugen; 5365 struct mem_cgroup *memcg; 5366 const struct hlist_nulls_node *pos; 5367 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5368 5369 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 5370 restart: 5371 op = 0; 5372 memcg = NULL; 5373 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 5374 5375 rcu_read_lock(); 5376 5377 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 5378 if (op) 5379 lru_gen_rotate_memcg(lruvec, op); 5380 5381 mem_cgroup_put(memcg); 5382 5383 lruvec = container_of(lrugen, struct lruvec, lrugen); 5384 memcg = lruvec_memcg(lruvec); 5385 5386 if (!mem_cgroup_tryget(memcg)) { 5387 op = 0; 5388 memcg = NULL; 5389 continue; 5390 } 5391 5392 rcu_read_unlock(); 5393 5394 op = shrink_one(lruvec, sc); 5395 5396 rcu_read_lock(); 5397 5398 if (sc->nr_reclaimed >= nr_to_reclaim) 5399 break; 5400 } 5401 5402 rcu_read_unlock(); 5403 5404 if (op) 5405 lru_gen_rotate_memcg(lruvec, op); 5406 5407 mem_cgroup_put(memcg); 5408 5409 if (sc->nr_reclaimed >= nr_to_reclaim) 5410 return; 5411 5412 /* restart if raced with lru_gen_rotate_memcg() */ 5413 if (gen != get_nulls_value(pos)) 5414 goto restart; 5415 5416 /* try the rest of the bins of the current generation */ 5417 bin = get_memcg_bin(bin + 1); 5418 if (bin != first_bin) 5419 goto restart; 5420 } 5421 5422 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5423 { 5424 struct blk_plug plug; 5425 5426 VM_WARN_ON_ONCE(global_reclaim(sc)); 5427 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5428 5429 lru_add_drain(); 5430 5431 blk_start_plug(&plug); 5432 5433 set_mm_walk(NULL, sc->proactive); 5434 5435 if (try_to_shrink_lruvec(lruvec, sc)) 5436 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5437 5438 clear_mm_walk(); 5439 5440 blk_finish_plug(&plug); 5441 } 5442 5443 #else /* !CONFIG_MEMCG */ 5444 5445 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 5446 { 5447 BUILD_BUG(); 5448 } 5449 5450 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5451 { 5452 BUILD_BUG(); 5453 } 5454 5455 #endif 5456 5457 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 5458 { 5459 int priority; 5460 unsigned long reclaimable; 5461 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 5462 5463 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 5464 return; 5465 /* 5466 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >> 5467 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the 5468 * estimated reclaimed_to_scanned_ratio = inactive / total. 5469 */ 5470 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 5471 if (get_swappiness(lruvec, sc)) 5472 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 5473 5474 reclaimable /= MEMCG_NR_GENS; 5475 5476 /* round down reclaimable and round up sc->nr_to_reclaim */ 5477 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 5478 5479 sc->priority = clamp(priority, 0, DEF_PRIORITY); 5480 } 5481 5482 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5483 { 5484 struct blk_plug plug; 5485 unsigned long reclaimed = sc->nr_reclaimed; 5486 5487 VM_WARN_ON_ONCE(!global_reclaim(sc)); 5488 5489 /* 5490 * Unmapped clean folios are already prioritized. Scanning for more of 5491 * them is likely futile and can cause high reclaim latency when there 5492 * is a large number of memcgs. 5493 */ 5494 if (!sc->may_writepage || !sc->may_unmap) 5495 goto done; 5496 5497 lru_add_drain(); 5498 5499 blk_start_plug(&plug); 5500 5501 set_mm_walk(pgdat, sc->proactive); 5502 5503 set_initial_priority(pgdat, sc); 5504 5505 if (current_is_kswapd()) 5506 sc->nr_reclaimed = 0; 5507 5508 if (mem_cgroup_disabled()) 5509 shrink_one(&pgdat->__lruvec, sc); 5510 else 5511 shrink_many(pgdat, sc); 5512 5513 if (current_is_kswapd()) 5514 sc->nr_reclaimed += reclaimed; 5515 5516 clear_mm_walk(); 5517 5518 blk_finish_plug(&plug); 5519 done: 5520 /* kswapd should never fail */ 5521 pgdat->kswapd_failures = 0; 5522 } 5523 5524 /****************************************************************************** 5525 * state change 5526 ******************************************************************************/ 5527 5528 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5529 { 5530 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5531 5532 if (lrugen->enabled) { 5533 enum lru_list lru; 5534 5535 for_each_evictable_lru(lru) { 5536 if (!list_empty(&lruvec->lists[lru])) 5537 return false; 5538 } 5539 } else { 5540 int gen, type, zone; 5541 5542 for_each_gen_type_zone(gen, type, zone) { 5543 if (!list_empty(&lrugen->folios[gen][type][zone])) 5544 return false; 5545 } 5546 } 5547 5548 return true; 5549 } 5550 5551 static bool fill_evictable(struct lruvec *lruvec) 5552 { 5553 enum lru_list lru; 5554 int remaining = MAX_LRU_BATCH; 5555 5556 for_each_evictable_lru(lru) { 5557 int type = is_file_lru(lru); 5558 bool active = is_active_lru(lru); 5559 struct list_head *head = &lruvec->lists[lru]; 5560 5561 while (!list_empty(head)) { 5562 bool success; 5563 struct folio *folio = lru_to_folio(head); 5564 5565 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5566 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5567 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5568 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5569 5570 lruvec_del_folio(lruvec, folio); 5571 success = lru_gen_add_folio(lruvec, folio, false); 5572 VM_WARN_ON_ONCE(!success); 5573 5574 if (!--remaining) 5575 return false; 5576 } 5577 } 5578 5579 return true; 5580 } 5581 5582 static bool drain_evictable(struct lruvec *lruvec) 5583 { 5584 int gen, type, zone; 5585 int remaining = MAX_LRU_BATCH; 5586 5587 for_each_gen_type_zone(gen, type, zone) { 5588 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5589 5590 while (!list_empty(head)) { 5591 bool success; 5592 struct folio *folio = lru_to_folio(head); 5593 5594 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5595 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5596 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5597 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5598 5599 success = lru_gen_del_folio(lruvec, folio, false); 5600 VM_WARN_ON_ONCE(!success); 5601 lruvec_add_folio(lruvec, folio); 5602 5603 if (!--remaining) 5604 return false; 5605 } 5606 } 5607 5608 return true; 5609 } 5610 5611 static void lru_gen_change_state(bool enabled) 5612 { 5613 static DEFINE_MUTEX(state_mutex); 5614 5615 struct mem_cgroup *memcg; 5616 5617 cgroup_lock(); 5618 cpus_read_lock(); 5619 get_online_mems(); 5620 mutex_lock(&state_mutex); 5621 5622 if (enabled == lru_gen_enabled()) 5623 goto unlock; 5624 5625 if (enabled) 5626 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5627 else 5628 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5629 5630 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5631 do { 5632 int nid; 5633 5634 for_each_node(nid) { 5635 struct lruvec *lruvec = get_lruvec(memcg, nid); 5636 5637 spin_lock_irq(&lruvec->lru_lock); 5638 5639 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5640 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5641 5642 lruvec->lrugen.enabled = enabled; 5643 5644 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5645 spin_unlock_irq(&lruvec->lru_lock); 5646 cond_resched(); 5647 spin_lock_irq(&lruvec->lru_lock); 5648 } 5649 5650 spin_unlock_irq(&lruvec->lru_lock); 5651 } 5652 5653 cond_resched(); 5654 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5655 unlock: 5656 mutex_unlock(&state_mutex); 5657 put_online_mems(); 5658 cpus_read_unlock(); 5659 cgroup_unlock(); 5660 } 5661 5662 /****************************************************************************** 5663 * sysfs interface 5664 ******************************************************************************/ 5665 5666 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5667 { 5668 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5669 } 5670 5671 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5672 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, 5673 const char *buf, size_t len) 5674 { 5675 unsigned int msecs; 5676 5677 if (kstrtouint(buf, 0, &msecs)) 5678 return -EINVAL; 5679 5680 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5681 5682 return len; 5683 } 5684 5685 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR( 5686 min_ttl_ms, 0644, show_min_ttl, store_min_ttl 5687 ); 5688 5689 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5690 { 5691 unsigned int caps = 0; 5692 5693 if (get_cap(LRU_GEN_CORE)) 5694 caps |= BIT(LRU_GEN_CORE); 5695 5696 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5697 caps |= BIT(LRU_GEN_MM_WALK); 5698 5699 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5700 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5701 5702 return sysfs_emit(buf, "0x%04x\n", caps); 5703 } 5704 5705 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5706 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr, 5707 const char *buf, size_t len) 5708 { 5709 int i; 5710 unsigned int caps; 5711 5712 if (tolower(*buf) == 'n') 5713 caps = 0; 5714 else if (tolower(*buf) == 'y') 5715 caps = -1; 5716 else if (kstrtouint(buf, 0, &caps)) 5717 return -EINVAL; 5718 5719 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5720 bool enabled = caps & BIT(i); 5721 5722 if (i == LRU_GEN_CORE) 5723 lru_gen_change_state(enabled); 5724 else if (enabled) 5725 static_branch_enable(&lru_gen_caps[i]); 5726 else 5727 static_branch_disable(&lru_gen_caps[i]); 5728 } 5729 5730 return len; 5731 } 5732 5733 static struct kobj_attribute lru_gen_enabled_attr = __ATTR( 5734 enabled, 0644, show_enabled, store_enabled 5735 ); 5736 5737 static struct attribute *lru_gen_attrs[] = { 5738 &lru_gen_min_ttl_attr.attr, 5739 &lru_gen_enabled_attr.attr, 5740 NULL 5741 }; 5742 5743 static struct attribute_group lru_gen_attr_group = { 5744 .name = "lru_gen", 5745 .attrs = lru_gen_attrs, 5746 }; 5747 5748 /****************************************************************************** 5749 * debugfs interface 5750 ******************************************************************************/ 5751 5752 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5753 { 5754 struct mem_cgroup *memcg; 5755 loff_t nr_to_skip = *pos; 5756 5757 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5758 if (!m->private) 5759 return ERR_PTR(-ENOMEM); 5760 5761 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5762 do { 5763 int nid; 5764 5765 for_each_node_state(nid, N_MEMORY) { 5766 if (!nr_to_skip--) 5767 return get_lruvec(memcg, nid); 5768 } 5769 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5770 5771 return NULL; 5772 } 5773 5774 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5775 { 5776 if (!IS_ERR_OR_NULL(v)) 5777 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5778 5779 kvfree(m->private); 5780 m->private = NULL; 5781 } 5782 5783 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5784 { 5785 int nid = lruvec_pgdat(v)->node_id; 5786 struct mem_cgroup *memcg = lruvec_memcg(v); 5787 5788 ++*pos; 5789 5790 nid = next_memory_node(nid); 5791 if (nid == MAX_NUMNODES) { 5792 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5793 if (!memcg) 5794 return NULL; 5795 5796 nid = first_memory_node; 5797 } 5798 5799 return get_lruvec(memcg, nid); 5800 } 5801 5802 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5803 unsigned long max_seq, unsigned long *min_seq, 5804 unsigned long seq) 5805 { 5806 int i; 5807 int type, tier; 5808 int hist = lru_hist_from_seq(seq); 5809 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5810 5811 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5812 seq_printf(m, " %10d", tier); 5813 for (type = 0; type < ANON_AND_FILE; type++) { 5814 const char *s = " "; 5815 unsigned long n[3] = {}; 5816 5817 if (seq == max_seq) { 5818 s = "RT "; 5819 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5820 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5821 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5822 s = "rep"; 5823 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5824 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5825 if (tier) 5826 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5827 } 5828 5829 for (i = 0; i < 3; i++) 5830 seq_printf(m, " %10lu%c", n[i], s[i]); 5831 } 5832 seq_putc(m, '\n'); 5833 } 5834 5835 seq_puts(m, " "); 5836 for (i = 0; i < NR_MM_STATS; i++) { 5837 const char *s = " "; 5838 unsigned long n = 0; 5839 5840 if (seq == max_seq && NR_HIST_GENS == 1) { 5841 s = "LOYNFA"; 5842 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5843 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5844 s = "loynfa"; 5845 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5846 } 5847 5848 seq_printf(m, " %10lu%c", n, s[i]); 5849 } 5850 seq_putc(m, '\n'); 5851 } 5852 5853 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5854 static int lru_gen_seq_show(struct seq_file *m, void *v) 5855 { 5856 unsigned long seq; 5857 bool full = !debugfs_real_fops(m->file)->write; 5858 struct lruvec *lruvec = v; 5859 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5860 int nid = lruvec_pgdat(lruvec)->node_id; 5861 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5862 DEFINE_MAX_SEQ(lruvec); 5863 DEFINE_MIN_SEQ(lruvec); 5864 5865 if (nid == first_memory_node) { 5866 const char *path = memcg ? m->private : ""; 5867 5868 #ifdef CONFIG_MEMCG 5869 if (memcg) 5870 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5871 #endif 5872 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5873 } 5874 5875 seq_printf(m, " node %5d\n", nid); 5876 5877 if (!full) 5878 seq = min_seq[LRU_GEN_ANON]; 5879 else if (max_seq >= MAX_NR_GENS) 5880 seq = max_seq - MAX_NR_GENS + 1; 5881 else 5882 seq = 0; 5883 5884 for (; seq <= max_seq; seq++) { 5885 int type, zone; 5886 int gen = lru_gen_from_seq(seq); 5887 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5888 5889 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5890 5891 for (type = 0; type < ANON_AND_FILE; type++) { 5892 unsigned long size = 0; 5893 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5894 5895 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5896 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5897 5898 seq_printf(m, " %10lu%c", size, mark); 5899 } 5900 5901 seq_putc(m, '\n'); 5902 5903 if (full) 5904 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5905 } 5906 5907 return 0; 5908 } 5909 5910 static const struct seq_operations lru_gen_seq_ops = { 5911 .start = lru_gen_seq_start, 5912 .stop = lru_gen_seq_stop, 5913 .next = lru_gen_seq_next, 5914 .show = lru_gen_seq_show, 5915 }; 5916 5917 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5918 bool can_swap, bool force_scan) 5919 { 5920 DEFINE_MAX_SEQ(lruvec); 5921 DEFINE_MIN_SEQ(lruvec); 5922 5923 if (seq < max_seq) 5924 return 0; 5925 5926 if (seq > max_seq) 5927 return -EINVAL; 5928 5929 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5930 return -ERANGE; 5931 5932 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5933 5934 return 0; 5935 } 5936 5937 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5938 int swappiness, unsigned long nr_to_reclaim) 5939 { 5940 DEFINE_MAX_SEQ(lruvec); 5941 5942 if (seq + MIN_NR_GENS > max_seq) 5943 return -EINVAL; 5944 5945 sc->nr_reclaimed = 0; 5946 5947 while (!signal_pending(current)) { 5948 DEFINE_MIN_SEQ(lruvec); 5949 5950 if (seq < min_seq[!swappiness]) 5951 return 0; 5952 5953 if (sc->nr_reclaimed >= nr_to_reclaim) 5954 return 0; 5955 5956 if (!evict_folios(lruvec, sc, swappiness)) 5957 return 0; 5958 5959 cond_resched(); 5960 } 5961 5962 return -EINTR; 5963 } 5964 5965 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5966 struct scan_control *sc, int swappiness, unsigned long opt) 5967 { 5968 struct lruvec *lruvec; 5969 int err = -EINVAL; 5970 struct mem_cgroup *memcg = NULL; 5971 5972 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5973 return -EINVAL; 5974 5975 if (!mem_cgroup_disabled()) { 5976 rcu_read_lock(); 5977 5978 memcg = mem_cgroup_from_id(memcg_id); 5979 if (!mem_cgroup_tryget(memcg)) 5980 memcg = NULL; 5981 5982 rcu_read_unlock(); 5983 5984 if (!memcg) 5985 return -EINVAL; 5986 } 5987 5988 if (memcg_id != mem_cgroup_id(memcg)) 5989 goto done; 5990 5991 lruvec = get_lruvec(memcg, nid); 5992 5993 if (swappiness < 0) 5994 swappiness = get_swappiness(lruvec, sc); 5995 else if (swappiness > 200) 5996 goto done; 5997 5998 switch (cmd) { 5999 case '+': 6000 err = run_aging(lruvec, seq, sc, swappiness, opt); 6001 break; 6002 case '-': 6003 err = run_eviction(lruvec, seq, sc, swappiness, opt); 6004 break; 6005 } 6006 done: 6007 mem_cgroup_put(memcg); 6008 6009 return err; 6010 } 6011 6012 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 6013 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 6014 size_t len, loff_t *pos) 6015 { 6016 void *buf; 6017 char *cur, *next; 6018 unsigned int flags; 6019 struct blk_plug plug; 6020 int err = -EINVAL; 6021 struct scan_control sc = { 6022 .may_writepage = true, 6023 .may_unmap = true, 6024 .may_swap = true, 6025 .reclaim_idx = MAX_NR_ZONES - 1, 6026 .gfp_mask = GFP_KERNEL, 6027 }; 6028 6029 buf = kvmalloc(len + 1, GFP_KERNEL); 6030 if (!buf) 6031 return -ENOMEM; 6032 6033 if (copy_from_user(buf, src, len)) { 6034 kvfree(buf); 6035 return -EFAULT; 6036 } 6037 6038 set_task_reclaim_state(current, &sc.reclaim_state); 6039 flags = memalloc_noreclaim_save(); 6040 blk_start_plug(&plug); 6041 if (!set_mm_walk(NULL, true)) { 6042 err = -ENOMEM; 6043 goto done; 6044 } 6045 6046 next = buf; 6047 next[len] = '\0'; 6048 6049 while ((cur = strsep(&next, ",;\n"))) { 6050 int n; 6051 int end; 6052 char cmd; 6053 unsigned int memcg_id; 6054 unsigned int nid; 6055 unsigned long seq; 6056 unsigned int swappiness = -1; 6057 unsigned long opt = -1; 6058 6059 cur = skip_spaces(cur); 6060 if (!*cur) 6061 continue; 6062 6063 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 6064 &seq, &end, &swappiness, &end, &opt, &end); 6065 if (n < 4 || cur[end]) { 6066 err = -EINVAL; 6067 break; 6068 } 6069 6070 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 6071 if (err) 6072 break; 6073 } 6074 done: 6075 clear_mm_walk(); 6076 blk_finish_plug(&plug); 6077 memalloc_noreclaim_restore(flags); 6078 set_task_reclaim_state(current, NULL); 6079 6080 kvfree(buf); 6081 6082 return err ? : len; 6083 } 6084 6085 static int lru_gen_seq_open(struct inode *inode, struct file *file) 6086 { 6087 return seq_open(file, &lru_gen_seq_ops); 6088 } 6089 6090 static const struct file_operations lru_gen_rw_fops = { 6091 .open = lru_gen_seq_open, 6092 .read = seq_read, 6093 .write = lru_gen_seq_write, 6094 .llseek = seq_lseek, 6095 .release = seq_release, 6096 }; 6097 6098 static const struct file_operations lru_gen_ro_fops = { 6099 .open = lru_gen_seq_open, 6100 .read = seq_read, 6101 .llseek = seq_lseek, 6102 .release = seq_release, 6103 }; 6104 6105 /****************************************************************************** 6106 * initialization 6107 ******************************************************************************/ 6108 6109 void lru_gen_init_lruvec(struct lruvec *lruvec) 6110 { 6111 int i; 6112 int gen, type, zone; 6113 struct lru_gen_folio *lrugen = &lruvec->lrugen; 6114 6115 lrugen->max_seq = MIN_NR_GENS + 1; 6116 lrugen->enabled = lru_gen_enabled(); 6117 6118 for (i = 0; i <= MIN_NR_GENS + 1; i++) 6119 lrugen->timestamps[i] = jiffies; 6120 6121 for_each_gen_type_zone(gen, type, zone) 6122 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 6123 6124 lruvec->mm_state.seq = MIN_NR_GENS; 6125 init_waitqueue_head(&lruvec->mm_state.wait); 6126 } 6127 6128 #ifdef CONFIG_MEMCG 6129 6130 void lru_gen_init_pgdat(struct pglist_data *pgdat) 6131 { 6132 int i, j; 6133 6134 spin_lock_init(&pgdat->memcg_lru.lock); 6135 6136 for (i = 0; i < MEMCG_NR_GENS; i++) { 6137 for (j = 0; j < MEMCG_NR_BINS; j++) 6138 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 6139 } 6140 } 6141 6142 void lru_gen_init_memcg(struct mem_cgroup *memcg) 6143 { 6144 INIT_LIST_HEAD(&memcg->mm_list.fifo); 6145 spin_lock_init(&memcg->mm_list.lock); 6146 } 6147 6148 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 6149 { 6150 int i; 6151 int nid; 6152 6153 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); 6154 6155 for_each_node(nid) { 6156 struct lruvec *lruvec = get_lruvec(memcg, nid); 6157 6158 VM_WARN_ON_ONCE(lruvec->mm_state.nr_walkers); 6159 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 6160 sizeof(lruvec->lrugen.nr_pages))); 6161 6162 lruvec->lrugen.list.next = LIST_POISON1; 6163 6164 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 6165 bitmap_free(lruvec->mm_state.filters[i]); 6166 lruvec->mm_state.filters[i] = NULL; 6167 } 6168 } 6169 } 6170 6171 #endif /* CONFIG_MEMCG */ 6172 6173 static int __init init_lru_gen(void) 6174 { 6175 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 6176 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 6177 6178 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 6179 pr_err("lru_gen: failed to create sysfs group\n"); 6180 6181 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 6182 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 6183 6184 return 0; 6185 }; 6186 late_initcall(init_lru_gen); 6187 6188 #else /* !CONFIG_LRU_GEN */ 6189 6190 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6191 { 6192 } 6193 6194 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6195 { 6196 } 6197 6198 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 6199 { 6200 } 6201 6202 #endif /* CONFIG_LRU_GEN */ 6203 6204 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 6205 { 6206 unsigned long nr[NR_LRU_LISTS]; 6207 unsigned long targets[NR_LRU_LISTS]; 6208 unsigned long nr_to_scan; 6209 enum lru_list lru; 6210 unsigned long nr_reclaimed = 0; 6211 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 6212 bool proportional_reclaim; 6213 struct blk_plug plug; 6214 6215 if (lru_gen_enabled() && !global_reclaim(sc)) { 6216 lru_gen_shrink_lruvec(lruvec, sc); 6217 return; 6218 } 6219 6220 get_scan_count(lruvec, sc, nr); 6221 6222 /* Record the original scan target for proportional adjustments later */ 6223 memcpy(targets, nr, sizeof(nr)); 6224 6225 /* 6226 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 6227 * event that can occur when there is little memory pressure e.g. 6228 * multiple streaming readers/writers. Hence, we do not abort scanning 6229 * when the requested number of pages are reclaimed when scanning at 6230 * DEF_PRIORITY on the assumption that the fact we are direct 6231 * reclaiming implies that kswapd is not keeping up and it is best to 6232 * do a batch of work at once. For memcg reclaim one check is made to 6233 * abort proportional reclaim if either the file or anon lru has already 6234 * dropped to zero at the first pass. 6235 */ 6236 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 6237 sc->priority == DEF_PRIORITY); 6238 6239 blk_start_plug(&plug); 6240 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 6241 nr[LRU_INACTIVE_FILE]) { 6242 unsigned long nr_anon, nr_file, percentage; 6243 unsigned long nr_scanned; 6244 6245 for_each_evictable_lru(lru) { 6246 if (nr[lru]) { 6247 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 6248 nr[lru] -= nr_to_scan; 6249 6250 nr_reclaimed += shrink_list(lru, nr_to_scan, 6251 lruvec, sc); 6252 } 6253 } 6254 6255 cond_resched(); 6256 6257 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 6258 continue; 6259 6260 /* 6261 * For kswapd and memcg, reclaim at least the number of pages 6262 * requested. Ensure that the anon and file LRUs are scanned 6263 * proportionally what was requested by get_scan_count(). We 6264 * stop reclaiming one LRU and reduce the amount scanning 6265 * proportional to the original scan target. 6266 */ 6267 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 6268 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 6269 6270 /* 6271 * It's just vindictive to attack the larger once the smaller 6272 * has gone to zero. And given the way we stop scanning the 6273 * smaller below, this makes sure that we only make one nudge 6274 * towards proportionality once we've got nr_to_reclaim. 6275 */ 6276 if (!nr_file || !nr_anon) 6277 break; 6278 6279 if (nr_file > nr_anon) { 6280 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 6281 targets[LRU_ACTIVE_ANON] + 1; 6282 lru = LRU_BASE; 6283 percentage = nr_anon * 100 / scan_target; 6284 } else { 6285 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 6286 targets[LRU_ACTIVE_FILE] + 1; 6287 lru = LRU_FILE; 6288 percentage = nr_file * 100 / scan_target; 6289 } 6290 6291 /* Stop scanning the smaller of the LRU */ 6292 nr[lru] = 0; 6293 nr[lru + LRU_ACTIVE] = 0; 6294 6295 /* 6296 * Recalculate the other LRU scan count based on its original 6297 * scan target and the percentage scanning already complete 6298 */ 6299 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6300 nr_scanned = targets[lru] - nr[lru]; 6301 nr[lru] = targets[lru] * (100 - percentage) / 100; 6302 nr[lru] -= min(nr[lru], nr_scanned); 6303 6304 lru += LRU_ACTIVE; 6305 nr_scanned = targets[lru] - nr[lru]; 6306 nr[lru] = targets[lru] * (100 - percentage) / 100; 6307 nr[lru] -= min(nr[lru], nr_scanned); 6308 } 6309 blk_finish_plug(&plug); 6310 sc->nr_reclaimed += nr_reclaimed; 6311 6312 /* 6313 * Even if we did not try to evict anon pages at all, we want to 6314 * rebalance the anon lru active/inactive ratio. 6315 */ 6316 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6317 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6318 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6319 sc, LRU_ACTIVE_ANON); 6320 } 6321 6322 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6323 static bool in_reclaim_compaction(struct scan_control *sc) 6324 { 6325 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 6326 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6327 sc->priority < DEF_PRIORITY - 2)) 6328 return true; 6329 6330 return false; 6331 } 6332 6333 /* 6334 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6335 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6336 * true if more pages should be reclaimed such that when the page allocator 6337 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6338 * It will give up earlier than that if there is difficulty reclaiming pages. 6339 */ 6340 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6341 unsigned long nr_reclaimed, 6342 struct scan_control *sc) 6343 { 6344 unsigned long pages_for_compaction; 6345 unsigned long inactive_lru_pages; 6346 int z; 6347 6348 /* If not in reclaim/compaction mode, stop */ 6349 if (!in_reclaim_compaction(sc)) 6350 return false; 6351 6352 /* 6353 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6354 * number of pages that were scanned. This will return to the caller 6355 * with the risk reclaim/compaction and the resulting allocation attempt 6356 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6357 * allocations through requiring that the full LRU list has been scanned 6358 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6359 * scan, but that approximation was wrong, and there were corner cases 6360 * where always a non-zero amount of pages were scanned. 6361 */ 6362 if (!nr_reclaimed) 6363 return false; 6364 6365 /* If compaction would go ahead or the allocation would succeed, stop */ 6366 for (z = 0; z <= sc->reclaim_idx; z++) { 6367 struct zone *zone = &pgdat->node_zones[z]; 6368 if (!managed_zone(zone)) 6369 continue; 6370 6371 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6372 case COMPACT_SUCCESS: 6373 case COMPACT_CONTINUE: 6374 return false; 6375 default: 6376 /* check next zone */ 6377 ; 6378 } 6379 } 6380 6381 /* 6382 * If we have not reclaimed enough pages for compaction and the 6383 * inactive lists are large enough, continue reclaiming 6384 */ 6385 pages_for_compaction = compact_gap(sc->order); 6386 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6387 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6388 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6389 6390 return inactive_lru_pages > pages_for_compaction; 6391 } 6392 6393 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6394 { 6395 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6396 struct mem_cgroup *memcg; 6397 6398 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6399 do { 6400 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6401 unsigned long reclaimed; 6402 unsigned long scanned; 6403 6404 /* 6405 * This loop can become CPU-bound when target memcgs 6406 * aren't eligible for reclaim - either because they 6407 * don't have any reclaimable pages, or because their 6408 * memory is explicitly protected. Avoid soft lockups. 6409 */ 6410 cond_resched(); 6411 6412 mem_cgroup_calculate_protection(target_memcg, memcg); 6413 6414 if (mem_cgroup_below_min(target_memcg, memcg)) { 6415 /* 6416 * Hard protection. 6417 * If there is no reclaimable memory, OOM. 6418 */ 6419 continue; 6420 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6421 /* 6422 * Soft protection. 6423 * Respect the protection only as long as 6424 * there is an unprotected supply 6425 * of reclaimable memory from other cgroups. 6426 */ 6427 if (!sc->memcg_low_reclaim) { 6428 sc->memcg_low_skipped = 1; 6429 continue; 6430 } 6431 memcg_memory_event(memcg, MEMCG_LOW); 6432 } 6433 6434 reclaimed = sc->nr_reclaimed; 6435 scanned = sc->nr_scanned; 6436 6437 shrink_lruvec(lruvec, sc); 6438 6439 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6440 sc->priority); 6441 6442 /* Record the group's reclaim efficiency */ 6443 if (!sc->proactive) 6444 vmpressure(sc->gfp_mask, memcg, false, 6445 sc->nr_scanned - scanned, 6446 sc->nr_reclaimed - reclaimed); 6447 6448 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6449 } 6450 6451 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6452 { 6453 struct reclaim_state *reclaim_state = current->reclaim_state; 6454 unsigned long nr_reclaimed, nr_scanned; 6455 struct lruvec *target_lruvec; 6456 bool reclaimable = false; 6457 6458 if (lru_gen_enabled() && global_reclaim(sc)) { 6459 lru_gen_shrink_node(pgdat, sc); 6460 return; 6461 } 6462 6463 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6464 6465 again: 6466 memset(&sc->nr, 0, sizeof(sc->nr)); 6467 6468 nr_reclaimed = sc->nr_reclaimed; 6469 nr_scanned = sc->nr_scanned; 6470 6471 prepare_scan_count(pgdat, sc); 6472 6473 shrink_node_memcgs(pgdat, sc); 6474 6475 if (reclaim_state) { 6476 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 6477 reclaim_state->reclaimed_slab = 0; 6478 } 6479 6480 /* Record the subtree's reclaim efficiency */ 6481 if (!sc->proactive) 6482 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6483 sc->nr_scanned - nr_scanned, 6484 sc->nr_reclaimed - nr_reclaimed); 6485 6486 if (sc->nr_reclaimed - nr_reclaimed) 6487 reclaimable = true; 6488 6489 if (current_is_kswapd()) { 6490 /* 6491 * If reclaim is isolating dirty pages under writeback, 6492 * it implies that the long-lived page allocation rate 6493 * is exceeding the page laundering rate. Either the 6494 * global limits are not being effective at throttling 6495 * processes due to the page distribution throughout 6496 * zones or there is heavy usage of a slow backing 6497 * device. The only option is to throttle from reclaim 6498 * context which is not ideal as there is no guarantee 6499 * the dirtying process is throttled in the same way 6500 * balance_dirty_pages() manages. 6501 * 6502 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6503 * count the number of pages under pages flagged for 6504 * immediate reclaim and stall if any are encountered 6505 * in the nr_immediate check below. 6506 */ 6507 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6508 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6509 6510 /* Allow kswapd to start writing pages during reclaim.*/ 6511 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6512 set_bit(PGDAT_DIRTY, &pgdat->flags); 6513 6514 /* 6515 * If kswapd scans pages marked for immediate 6516 * reclaim and under writeback (nr_immediate), it 6517 * implies that pages are cycling through the LRU 6518 * faster than they are written so forcibly stall 6519 * until some pages complete writeback. 6520 */ 6521 if (sc->nr.immediate) 6522 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6523 } 6524 6525 /* 6526 * Tag a node/memcg as congested if all the dirty pages were marked 6527 * for writeback and immediate reclaim (counted in nr.congested). 6528 * 6529 * Legacy memcg will stall in page writeback so avoid forcibly 6530 * stalling in reclaim_throttle(). 6531 */ 6532 if ((current_is_kswapd() || 6533 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6534 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6535 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6536 6537 /* 6538 * Stall direct reclaim for IO completions if the lruvec is 6539 * node is congested. Allow kswapd to continue until it 6540 * starts encountering unqueued dirty pages or cycling through 6541 * the LRU too quickly. 6542 */ 6543 if (!current_is_kswapd() && current_may_throttle() && 6544 !sc->hibernation_mode && 6545 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6546 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6547 6548 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 6549 sc)) 6550 goto again; 6551 6552 /* 6553 * Kswapd gives up on balancing particular nodes after too 6554 * many failures to reclaim anything from them and goes to 6555 * sleep. On reclaim progress, reset the failure counter. A 6556 * successful direct reclaim run will revive a dormant kswapd. 6557 */ 6558 if (reclaimable) 6559 pgdat->kswapd_failures = 0; 6560 } 6561 6562 /* 6563 * Returns true if compaction should go ahead for a costly-order request, or 6564 * the allocation would already succeed without compaction. Return false if we 6565 * should reclaim first. 6566 */ 6567 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6568 { 6569 unsigned long watermark; 6570 enum compact_result suitable; 6571 6572 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6573 if (suitable == COMPACT_SUCCESS) 6574 /* Allocation should succeed already. Don't reclaim. */ 6575 return true; 6576 if (suitable == COMPACT_SKIPPED) 6577 /* Compaction cannot yet proceed. Do reclaim. */ 6578 return false; 6579 6580 /* 6581 * Compaction is already possible, but it takes time to run and there 6582 * are potentially other callers using the pages just freed. So proceed 6583 * with reclaim to make a buffer of free pages available to give 6584 * compaction a reasonable chance of completing and allocating the page. 6585 * Note that we won't actually reclaim the whole buffer in one attempt 6586 * as the target watermark in should_continue_reclaim() is lower. But if 6587 * we are already above the high+gap watermark, don't reclaim at all. 6588 */ 6589 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6590 6591 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6592 } 6593 6594 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6595 { 6596 /* 6597 * If reclaim is making progress greater than 12% efficiency then 6598 * wake all the NOPROGRESS throttled tasks. 6599 */ 6600 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6601 wait_queue_head_t *wqh; 6602 6603 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6604 if (waitqueue_active(wqh)) 6605 wake_up(wqh); 6606 6607 return; 6608 } 6609 6610 /* 6611 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6612 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6613 * under writeback and marked for immediate reclaim at the tail of the 6614 * LRU. 6615 */ 6616 if (current_is_kswapd() || cgroup_reclaim(sc)) 6617 return; 6618 6619 /* Throttle if making no progress at high prioities. */ 6620 if (sc->priority == 1 && !sc->nr_reclaimed) 6621 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6622 } 6623 6624 /* 6625 * This is the direct reclaim path, for page-allocating processes. We only 6626 * try to reclaim pages from zones which will satisfy the caller's allocation 6627 * request. 6628 * 6629 * If a zone is deemed to be full of pinned pages then just give it a light 6630 * scan then give up on it. 6631 */ 6632 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6633 { 6634 struct zoneref *z; 6635 struct zone *zone; 6636 unsigned long nr_soft_reclaimed; 6637 unsigned long nr_soft_scanned; 6638 gfp_t orig_mask; 6639 pg_data_t *last_pgdat = NULL; 6640 pg_data_t *first_pgdat = NULL; 6641 6642 /* 6643 * If the number of buffer_heads in the machine exceeds the maximum 6644 * allowed level, force direct reclaim to scan the highmem zone as 6645 * highmem pages could be pinning lowmem pages storing buffer_heads 6646 */ 6647 orig_mask = sc->gfp_mask; 6648 if (buffer_heads_over_limit) { 6649 sc->gfp_mask |= __GFP_HIGHMEM; 6650 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6651 } 6652 6653 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6654 sc->reclaim_idx, sc->nodemask) { 6655 /* 6656 * Take care memory controller reclaiming has small influence 6657 * to global LRU. 6658 */ 6659 if (!cgroup_reclaim(sc)) { 6660 if (!cpuset_zone_allowed(zone, 6661 GFP_KERNEL | __GFP_HARDWALL)) 6662 continue; 6663 6664 /* 6665 * If we already have plenty of memory free for 6666 * compaction in this zone, don't free any more. 6667 * Even though compaction is invoked for any 6668 * non-zero order, only frequent costly order 6669 * reclamation is disruptive enough to become a 6670 * noticeable problem, like transparent huge 6671 * page allocations. 6672 */ 6673 if (IS_ENABLED(CONFIG_COMPACTION) && 6674 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6675 compaction_ready(zone, sc)) { 6676 sc->compaction_ready = true; 6677 continue; 6678 } 6679 6680 /* 6681 * Shrink each node in the zonelist once. If the 6682 * zonelist is ordered by zone (not the default) then a 6683 * node may be shrunk multiple times but in that case 6684 * the user prefers lower zones being preserved. 6685 */ 6686 if (zone->zone_pgdat == last_pgdat) 6687 continue; 6688 6689 /* 6690 * This steals pages from memory cgroups over softlimit 6691 * and returns the number of reclaimed pages and 6692 * scanned pages. This works for global memory pressure 6693 * and balancing, not for a memcg's limit. 6694 */ 6695 nr_soft_scanned = 0; 6696 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6697 sc->order, sc->gfp_mask, 6698 &nr_soft_scanned); 6699 sc->nr_reclaimed += nr_soft_reclaimed; 6700 sc->nr_scanned += nr_soft_scanned; 6701 /* need some check for avoid more shrink_zone() */ 6702 } 6703 6704 if (!first_pgdat) 6705 first_pgdat = zone->zone_pgdat; 6706 6707 /* See comment about same check for global reclaim above */ 6708 if (zone->zone_pgdat == last_pgdat) 6709 continue; 6710 last_pgdat = zone->zone_pgdat; 6711 shrink_node(zone->zone_pgdat, sc); 6712 } 6713 6714 if (first_pgdat) 6715 consider_reclaim_throttle(first_pgdat, sc); 6716 6717 /* 6718 * Restore to original mask to avoid the impact on the caller if we 6719 * promoted it to __GFP_HIGHMEM. 6720 */ 6721 sc->gfp_mask = orig_mask; 6722 } 6723 6724 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6725 { 6726 struct lruvec *target_lruvec; 6727 unsigned long refaults; 6728 6729 if (lru_gen_enabled()) 6730 return; 6731 6732 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6733 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6734 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6735 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6736 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6737 } 6738 6739 /* 6740 * This is the main entry point to direct page reclaim. 6741 * 6742 * If a full scan of the inactive list fails to free enough memory then we 6743 * are "out of memory" and something needs to be killed. 6744 * 6745 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6746 * high - the zone may be full of dirty or under-writeback pages, which this 6747 * caller can't do much about. We kick the writeback threads and take explicit 6748 * naps in the hope that some of these pages can be written. But if the 6749 * allocating task holds filesystem locks which prevent writeout this might not 6750 * work, and the allocation attempt will fail. 6751 * 6752 * returns: 0, if no pages reclaimed 6753 * else, the number of pages reclaimed 6754 */ 6755 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6756 struct scan_control *sc) 6757 { 6758 int initial_priority = sc->priority; 6759 pg_data_t *last_pgdat; 6760 struct zoneref *z; 6761 struct zone *zone; 6762 retry: 6763 delayacct_freepages_start(); 6764 6765 if (!cgroup_reclaim(sc)) 6766 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6767 6768 do { 6769 if (!sc->proactive) 6770 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6771 sc->priority); 6772 sc->nr_scanned = 0; 6773 shrink_zones(zonelist, sc); 6774 6775 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6776 break; 6777 6778 if (sc->compaction_ready) 6779 break; 6780 6781 /* 6782 * If we're getting trouble reclaiming, start doing 6783 * writepage even in laptop mode. 6784 */ 6785 if (sc->priority < DEF_PRIORITY - 2) 6786 sc->may_writepage = 1; 6787 } while (--sc->priority >= 0); 6788 6789 last_pgdat = NULL; 6790 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6791 sc->nodemask) { 6792 if (zone->zone_pgdat == last_pgdat) 6793 continue; 6794 last_pgdat = zone->zone_pgdat; 6795 6796 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6797 6798 if (cgroup_reclaim(sc)) { 6799 struct lruvec *lruvec; 6800 6801 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6802 zone->zone_pgdat); 6803 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6804 } 6805 } 6806 6807 delayacct_freepages_end(); 6808 6809 if (sc->nr_reclaimed) 6810 return sc->nr_reclaimed; 6811 6812 /* Aborted reclaim to try compaction? don't OOM, then */ 6813 if (sc->compaction_ready) 6814 return 1; 6815 6816 /* 6817 * We make inactive:active ratio decisions based on the node's 6818 * composition of memory, but a restrictive reclaim_idx or a 6819 * memory.low cgroup setting can exempt large amounts of 6820 * memory from reclaim. Neither of which are very common, so 6821 * instead of doing costly eligibility calculations of the 6822 * entire cgroup subtree up front, we assume the estimates are 6823 * good, and retry with forcible deactivation if that fails. 6824 */ 6825 if (sc->skipped_deactivate) { 6826 sc->priority = initial_priority; 6827 sc->force_deactivate = 1; 6828 sc->skipped_deactivate = 0; 6829 goto retry; 6830 } 6831 6832 /* Untapped cgroup reserves? Don't OOM, retry. */ 6833 if (sc->memcg_low_skipped) { 6834 sc->priority = initial_priority; 6835 sc->force_deactivate = 0; 6836 sc->memcg_low_reclaim = 1; 6837 sc->memcg_low_skipped = 0; 6838 goto retry; 6839 } 6840 6841 return 0; 6842 } 6843 6844 static bool allow_direct_reclaim(pg_data_t *pgdat) 6845 { 6846 struct zone *zone; 6847 unsigned long pfmemalloc_reserve = 0; 6848 unsigned long free_pages = 0; 6849 int i; 6850 bool wmark_ok; 6851 6852 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6853 return true; 6854 6855 for (i = 0; i <= ZONE_NORMAL; i++) { 6856 zone = &pgdat->node_zones[i]; 6857 if (!managed_zone(zone)) 6858 continue; 6859 6860 if (!zone_reclaimable_pages(zone)) 6861 continue; 6862 6863 pfmemalloc_reserve += min_wmark_pages(zone); 6864 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6865 } 6866 6867 /* If there are no reserves (unexpected config) then do not throttle */ 6868 if (!pfmemalloc_reserve) 6869 return true; 6870 6871 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6872 6873 /* kswapd must be awake if processes are being throttled */ 6874 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6875 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6876 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6877 6878 wake_up_interruptible(&pgdat->kswapd_wait); 6879 } 6880 6881 return wmark_ok; 6882 } 6883 6884 /* 6885 * Throttle direct reclaimers if backing storage is backed by the network 6886 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6887 * depleted. kswapd will continue to make progress and wake the processes 6888 * when the low watermark is reached. 6889 * 6890 * Returns true if a fatal signal was delivered during throttling. If this 6891 * happens, the page allocator should not consider triggering the OOM killer. 6892 */ 6893 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6894 nodemask_t *nodemask) 6895 { 6896 struct zoneref *z; 6897 struct zone *zone; 6898 pg_data_t *pgdat = NULL; 6899 6900 /* 6901 * Kernel threads should not be throttled as they may be indirectly 6902 * responsible for cleaning pages necessary for reclaim to make forward 6903 * progress. kjournald for example may enter direct reclaim while 6904 * committing a transaction where throttling it could forcing other 6905 * processes to block on log_wait_commit(). 6906 */ 6907 if (current->flags & PF_KTHREAD) 6908 goto out; 6909 6910 /* 6911 * If a fatal signal is pending, this process should not throttle. 6912 * It should return quickly so it can exit and free its memory 6913 */ 6914 if (fatal_signal_pending(current)) 6915 goto out; 6916 6917 /* 6918 * Check if the pfmemalloc reserves are ok by finding the first node 6919 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6920 * GFP_KERNEL will be required for allocating network buffers when 6921 * swapping over the network so ZONE_HIGHMEM is unusable. 6922 * 6923 * Throttling is based on the first usable node and throttled processes 6924 * wait on a queue until kswapd makes progress and wakes them. There 6925 * is an affinity then between processes waking up and where reclaim 6926 * progress has been made assuming the process wakes on the same node. 6927 * More importantly, processes running on remote nodes will not compete 6928 * for remote pfmemalloc reserves and processes on different nodes 6929 * should make reasonable progress. 6930 */ 6931 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6932 gfp_zone(gfp_mask), nodemask) { 6933 if (zone_idx(zone) > ZONE_NORMAL) 6934 continue; 6935 6936 /* Throttle based on the first usable node */ 6937 pgdat = zone->zone_pgdat; 6938 if (allow_direct_reclaim(pgdat)) 6939 goto out; 6940 break; 6941 } 6942 6943 /* If no zone was usable by the allocation flags then do not throttle */ 6944 if (!pgdat) 6945 goto out; 6946 6947 /* Account for the throttling */ 6948 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6949 6950 /* 6951 * If the caller cannot enter the filesystem, it's possible that it 6952 * is due to the caller holding an FS lock or performing a journal 6953 * transaction in the case of a filesystem like ext[3|4]. In this case, 6954 * it is not safe to block on pfmemalloc_wait as kswapd could be 6955 * blocked waiting on the same lock. Instead, throttle for up to a 6956 * second before continuing. 6957 */ 6958 if (!(gfp_mask & __GFP_FS)) 6959 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6960 allow_direct_reclaim(pgdat), HZ); 6961 else 6962 /* Throttle until kswapd wakes the process */ 6963 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6964 allow_direct_reclaim(pgdat)); 6965 6966 if (fatal_signal_pending(current)) 6967 return true; 6968 6969 out: 6970 return false; 6971 } 6972 6973 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6974 gfp_t gfp_mask, nodemask_t *nodemask) 6975 { 6976 unsigned long nr_reclaimed; 6977 struct scan_control sc = { 6978 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6979 .gfp_mask = current_gfp_context(gfp_mask), 6980 .reclaim_idx = gfp_zone(gfp_mask), 6981 .order = order, 6982 .nodemask = nodemask, 6983 .priority = DEF_PRIORITY, 6984 .may_writepage = !laptop_mode, 6985 .may_unmap = 1, 6986 .may_swap = 1, 6987 }; 6988 6989 /* 6990 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6991 * Confirm they are large enough for max values. 6992 */ 6993 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 6994 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6995 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6996 6997 /* 6998 * Do not enter reclaim if fatal signal was delivered while throttled. 6999 * 1 is returned so that the page allocator does not OOM kill at this 7000 * point. 7001 */ 7002 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 7003 return 1; 7004 7005 set_task_reclaim_state(current, &sc.reclaim_state); 7006 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 7007 7008 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7009 7010 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 7011 set_task_reclaim_state(current, NULL); 7012 7013 return nr_reclaimed; 7014 } 7015 7016 #ifdef CONFIG_MEMCG 7017 7018 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 7019 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 7020 gfp_t gfp_mask, bool noswap, 7021 pg_data_t *pgdat, 7022 unsigned long *nr_scanned) 7023 { 7024 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 7025 struct scan_control sc = { 7026 .nr_to_reclaim = SWAP_CLUSTER_MAX, 7027 .target_mem_cgroup = memcg, 7028 .may_writepage = !laptop_mode, 7029 .may_unmap = 1, 7030 .reclaim_idx = MAX_NR_ZONES - 1, 7031 .may_swap = !noswap, 7032 }; 7033 7034 WARN_ON_ONCE(!current->reclaim_state); 7035 7036 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 7037 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 7038 7039 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 7040 sc.gfp_mask); 7041 7042 /* 7043 * NOTE: Although we can get the priority field, using it 7044 * here is not a good idea, since it limits the pages we can scan. 7045 * if we don't reclaim here, the shrink_node from balance_pgdat 7046 * will pick up pages from other mem cgroup's as well. We hack 7047 * the priority and make it zero. 7048 */ 7049 shrink_lruvec(lruvec, &sc); 7050 7051 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 7052 7053 *nr_scanned = sc.nr_scanned; 7054 7055 return sc.nr_reclaimed; 7056 } 7057 7058 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 7059 unsigned long nr_pages, 7060 gfp_t gfp_mask, 7061 unsigned int reclaim_options) 7062 { 7063 unsigned long nr_reclaimed; 7064 unsigned int noreclaim_flag; 7065 struct scan_control sc = { 7066 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7067 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 7068 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 7069 .reclaim_idx = MAX_NR_ZONES - 1, 7070 .target_mem_cgroup = memcg, 7071 .priority = DEF_PRIORITY, 7072 .may_writepage = !laptop_mode, 7073 .may_unmap = 1, 7074 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 7075 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 7076 }; 7077 /* 7078 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 7079 * equal pressure on all the nodes. This is based on the assumption that 7080 * the reclaim does not bail out early. 7081 */ 7082 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7083 7084 set_task_reclaim_state(current, &sc.reclaim_state); 7085 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 7086 noreclaim_flag = memalloc_noreclaim_save(); 7087 7088 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7089 7090 memalloc_noreclaim_restore(noreclaim_flag); 7091 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 7092 set_task_reclaim_state(current, NULL); 7093 7094 return nr_reclaimed; 7095 } 7096 #endif 7097 7098 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 7099 { 7100 struct mem_cgroup *memcg; 7101 struct lruvec *lruvec; 7102 7103 if (lru_gen_enabled()) { 7104 lru_gen_age_node(pgdat, sc); 7105 return; 7106 } 7107 7108 if (!can_age_anon_pages(pgdat, sc)) 7109 return; 7110 7111 lruvec = mem_cgroup_lruvec(NULL, pgdat); 7112 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 7113 return; 7114 7115 memcg = mem_cgroup_iter(NULL, NULL, NULL); 7116 do { 7117 lruvec = mem_cgroup_lruvec(memcg, pgdat); 7118 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 7119 sc, LRU_ACTIVE_ANON); 7120 memcg = mem_cgroup_iter(NULL, memcg, NULL); 7121 } while (memcg); 7122 } 7123 7124 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 7125 { 7126 int i; 7127 struct zone *zone; 7128 7129 /* 7130 * Check for watermark boosts top-down as the higher zones 7131 * are more likely to be boosted. Both watermarks and boosts 7132 * should not be checked at the same time as reclaim would 7133 * start prematurely when there is no boosting and a lower 7134 * zone is balanced. 7135 */ 7136 for (i = highest_zoneidx; i >= 0; i--) { 7137 zone = pgdat->node_zones + i; 7138 if (!managed_zone(zone)) 7139 continue; 7140 7141 if (zone->watermark_boost) 7142 return true; 7143 } 7144 7145 return false; 7146 } 7147 7148 /* 7149 * Returns true if there is an eligible zone balanced for the request order 7150 * and highest_zoneidx 7151 */ 7152 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 7153 { 7154 int i; 7155 unsigned long mark = -1; 7156 struct zone *zone; 7157 7158 /* 7159 * Check watermarks bottom-up as lower zones are more likely to 7160 * meet watermarks. 7161 */ 7162 for (i = 0; i <= highest_zoneidx; i++) { 7163 zone = pgdat->node_zones + i; 7164 7165 if (!managed_zone(zone)) 7166 continue; 7167 7168 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 7169 mark = wmark_pages(zone, WMARK_PROMO); 7170 else 7171 mark = high_wmark_pages(zone); 7172 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 7173 return true; 7174 } 7175 7176 /* 7177 * If a node has no managed zone within highest_zoneidx, it does not 7178 * need balancing by definition. This can happen if a zone-restricted 7179 * allocation tries to wake a remote kswapd. 7180 */ 7181 if (mark == -1) 7182 return true; 7183 7184 return false; 7185 } 7186 7187 /* Clear pgdat state for congested, dirty or under writeback. */ 7188 static void clear_pgdat_congested(pg_data_t *pgdat) 7189 { 7190 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 7191 7192 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 7193 clear_bit(PGDAT_DIRTY, &pgdat->flags); 7194 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 7195 } 7196 7197 /* 7198 * Prepare kswapd for sleeping. This verifies that there are no processes 7199 * waiting in throttle_direct_reclaim() and that watermarks have been met. 7200 * 7201 * Returns true if kswapd is ready to sleep 7202 */ 7203 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 7204 int highest_zoneidx) 7205 { 7206 /* 7207 * The throttled processes are normally woken up in balance_pgdat() as 7208 * soon as allow_direct_reclaim() is true. But there is a potential 7209 * race between when kswapd checks the watermarks and a process gets 7210 * throttled. There is also a potential race if processes get 7211 * throttled, kswapd wakes, a large process exits thereby balancing the 7212 * zones, which causes kswapd to exit balance_pgdat() before reaching 7213 * the wake up checks. If kswapd is going to sleep, no process should 7214 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 7215 * the wake up is premature, processes will wake kswapd and get 7216 * throttled again. The difference from wake ups in balance_pgdat() is 7217 * that here we are under prepare_to_wait(). 7218 */ 7219 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 7220 wake_up_all(&pgdat->pfmemalloc_wait); 7221 7222 /* Hopeless node, leave it to direct reclaim */ 7223 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 7224 return true; 7225 7226 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 7227 clear_pgdat_congested(pgdat); 7228 return true; 7229 } 7230 7231 return false; 7232 } 7233 7234 /* 7235 * kswapd shrinks a node of pages that are at or below the highest usable 7236 * zone that is currently unbalanced. 7237 * 7238 * Returns true if kswapd scanned at least the requested number of pages to 7239 * reclaim or if the lack of progress was due to pages under writeback. 7240 * This is used to determine if the scanning priority needs to be raised. 7241 */ 7242 static bool kswapd_shrink_node(pg_data_t *pgdat, 7243 struct scan_control *sc) 7244 { 7245 struct zone *zone; 7246 int z; 7247 7248 /* Reclaim a number of pages proportional to the number of zones */ 7249 sc->nr_to_reclaim = 0; 7250 for (z = 0; z <= sc->reclaim_idx; z++) { 7251 zone = pgdat->node_zones + z; 7252 if (!managed_zone(zone)) 7253 continue; 7254 7255 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 7256 } 7257 7258 /* 7259 * Historically care was taken to put equal pressure on all zones but 7260 * now pressure is applied based on node LRU order. 7261 */ 7262 shrink_node(pgdat, sc); 7263 7264 /* 7265 * Fragmentation may mean that the system cannot be rebalanced for 7266 * high-order allocations. If twice the allocation size has been 7267 * reclaimed then recheck watermarks only at order-0 to prevent 7268 * excessive reclaim. Assume that a process requested a high-order 7269 * can direct reclaim/compact. 7270 */ 7271 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 7272 sc->order = 0; 7273 7274 return sc->nr_scanned >= sc->nr_to_reclaim; 7275 } 7276 7277 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 7278 static inline void 7279 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 7280 { 7281 int i; 7282 struct zone *zone; 7283 7284 for (i = 0; i <= highest_zoneidx; i++) { 7285 zone = pgdat->node_zones + i; 7286 7287 if (!managed_zone(zone)) 7288 continue; 7289 7290 if (active) 7291 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7292 else 7293 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 7294 } 7295 } 7296 7297 static inline void 7298 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7299 { 7300 update_reclaim_active(pgdat, highest_zoneidx, true); 7301 } 7302 7303 static inline void 7304 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7305 { 7306 update_reclaim_active(pgdat, highest_zoneidx, false); 7307 } 7308 7309 /* 7310 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7311 * that are eligible for use by the caller until at least one zone is 7312 * balanced. 7313 * 7314 * Returns the order kswapd finished reclaiming at. 7315 * 7316 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7317 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7318 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7319 * or lower is eligible for reclaim until at least one usable zone is 7320 * balanced. 7321 */ 7322 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7323 { 7324 int i; 7325 unsigned long nr_soft_reclaimed; 7326 unsigned long nr_soft_scanned; 7327 unsigned long pflags; 7328 unsigned long nr_boost_reclaim; 7329 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7330 bool boosted; 7331 struct zone *zone; 7332 struct scan_control sc = { 7333 .gfp_mask = GFP_KERNEL, 7334 .order = order, 7335 .may_unmap = 1, 7336 }; 7337 7338 set_task_reclaim_state(current, &sc.reclaim_state); 7339 psi_memstall_enter(&pflags); 7340 __fs_reclaim_acquire(_THIS_IP_); 7341 7342 count_vm_event(PAGEOUTRUN); 7343 7344 /* 7345 * Account for the reclaim boost. Note that the zone boost is left in 7346 * place so that parallel allocations that are near the watermark will 7347 * stall or direct reclaim until kswapd is finished. 7348 */ 7349 nr_boost_reclaim = 0; 7350 for (i = 0; i <= highest_zoneidx; i++) { 7351 zone = pgdat->node_zones + i; 7352 if (!managed_zone(zone)) 7353 continue; 7354 7355 nr_boost_reclaim += zone->watermark_boost; 7356 zone_boosts[i] = zone->watermark_boost; 7357 } 7358 boosted = nr_boost_reclaim; 7359 7360 restart: 7361 set_reclaim_active(pgdat, highest_zoneidx); 7362 sc.priority = DEF_PRIORITY; 7363 do { 7364 unsigned long nr_reclaimed = sc.nr_reclaimed; 7365 bool raise_priority = true; 7366 bool balanced; 7367 bool ret; 7368 7369 sc.reclaim_idx = highest_zoneidx; 7370 7371 /* 7372 * If the number of buffer_heads exceeds the maximum allowed 7373 * then consider reclaiming from all zones. This has a dual 7374 * purpose -- on 64-bit systems it is expected that 7375 * buffer_heads are stripped during active rotation. On 32-bit 7376 * systems, highmem pages can pin lowmem memory and shrinking 7377 * buffers can relieve lowmem pressure. Reclaim may still not 7378 * go ahead if all eligible zones for the original allocation 7379 * request are balanced to avoid excessive reclaim from kswapd. 7380 */ 7381 if (buffer_heads_over_limit) { 7382 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7383 zone = pgdat->node_zones + i; 7384 if (!managed_zone(zone)) 7385 continue; 7386 7387 sc.reclaim_idx = i; 7388 break; 7389 } 7390 } 7391 7392 /* 7393 * If the pgdat is imbalanced then ignore boosting and preserve 7394 * the watermarks for a later time and restart. Note that the 7395 * zone watermarks will be still reset at the end of balancing 7396 * on the grounds that the normal reclaim should be enough to 7397 * re-evaluate if boosting is required when kswapd next wakes. 7398 */ 7399 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7400 if (!balanced && nr_boost_reclaim) { 7401 nr_boost_reclaim = 0; 7402 goto restart; 7403 } 7404 7405 /* 7406 * If boosting is not active then only reclaim if there are no 7407 * eligible zones. Note that sc.reclaim_idx is not used as 7408 * buffer_heads_over_limit may have adjusted it. 7409 */ 7410 if (!nr_boost_reclaim && balanced) 7411 goto out; 7412 7413 /* Limit the priority of boosting to avoid reclaim writeback */ 7414 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7415 raise_priority = false; 7416 7417 /* 7418 * Do not writeback or swap pages for boosted reclaim. The 7419 * intent is to relieve pressure not issue sub-optimal IO 7420 * from reclaim context. If no pages are reclaimed, the 7421 * reclaim will be aborted. 7422 */ 7423 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7424 sc.may_swap = !nr_boost_reclaim; 7425 7426 /* 7427 * Do some background aging, to give pages a chance to be 7428 * referenced before reclaiming. All pages are rotated 7429 * regardless of classzone as this is about consistent aging. 7430 */ 7431 kswapd_age_node(pgdat, &sc); 7432 7433 /* 7434 * If we're getting trouble reclaiming, start doing writepage 7435 * even in laptop mode. 7436 */ 7437 if (sc.priority < DEF_PRIORITY - 2) 7438 sc.may_writepage = 1; 7439 7440 /* Call soft limit reclaim before calling shrink_node. */ 7441 sc.nr_scanned = 0; 7442 nr_soft_scanned = 0; 7443 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7444 sc.gfp_mask, &nr_soft_scanned); 7445 sc.nr_reclaimed += nr_soft_reclaimed; 7446 7447 /* 7448 * There should be no need to raise the scanning priority if 7449 * enough pages are already being scanned that that high 7450 * watermark would be met at 100% efficiency. 7451 */ 7452 if (kswapd_shrink_node(pgdat, &sc)) 7453 raise_priority = false; 7454 7455 /* 7456 * If the low watermark is met there is no need for processes 7457 * to be throttled on pfmemalloc_wait as they should not be 7458 * able to safely make forward progress. Wake them 7459 */ 7460 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7461 allow_direct_reclaim(pgdat)) 7462 wake_up_all(&pgdat->pfmemalloc_wait); 7463 7464 /* Check if kswapd should be suspending */ 7465 __fs_reclaim_release(_THIS_IP_); 7466 ret = try_to_freeze(); 7467 __fs_reclaim_acquire(_THIS_IP_); 7468 if (ret || kthread_should_stop()) 7469 break; 7470 7471 /* 7472 * Raise priority if scanning rate is too low or there was no 7473 * progress in reclaiming pages 7474 */ 7475 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7476 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7477 7478 /* 7479 * If reclaim made no progress for a boost, stop reclaim as 7480 * IO cannot be queued and it could be an infinite loop in 7481 * extreme circumstances. 7482 */ 7483 if (nr_boost_reclaim && !nr_reclaimed) 7484 break; 7485 7486 if (raise_priority || !nr_reclaimed) 7487 sc.priority--; 7488 } while (sc.priority >= 1); 7489 7490 if (!sc.nr_reclaimed) 7491 pgdat->kswapd_failures++; 7492 7493 out: 7494 clear_reclaim_active(pgdat, highest_zoneidx); 7495 7496 /* If reclaim was boosted, account for the reclaim done in this pass */ 7497 if (boosted) { 7498 unsigned long flags; 7499 7500 for (i = 0; i <= highest_zoneidx; i++) { 7501 if (!zone_boosts[i]) 7502 continue; 7503 7504 /* Increments are under the zone lock */ 7505 zone = pgdat->node_zones + i; 7506 spin_lock_irqsave(&zone->lock, flags); 7507 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7508 spin_unlock_irqrestore(&zone->lock, flags); 7509 } 7510 7511 /* 7512 * As there is now likely space, wakeup kcompact to defragment 7513 * pageblocks. 7514 */ 7515 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7516 } 7517 7518 snapshot_refaults(NULL, pgdat); 7519 __fs_reclaim_release(_THIS_IP_); 7520 psi_memstall_leave(&pflags); 7521 set_task_reclaim_state(current, NULL); 7522 7523 /* 7524 * Return the order kswapd stopped reclaiming at as 7525 * prepare_kswapd_sleep() takes it into account. If another caller 7526 * entered the allocator slow path while kswapd was awake, order will 7527 * remain at the higher level. 7528 */ 7529 return sc.order; 7530 } 7531 7532 /* 7533 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7534 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7535 * not a valid index then either kswapd runs for first time or kswapd couldn't 7536 * sleep after previous reclaim attempt (node is still unbalanced). In that 7537 * case return the zone index of the previous kswapd reclaim cycle. 7538 */ 7539 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7540 enum zone_type prev_highest_zoneidx) 7541 { 7542 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7543 7544 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7545 } 7546 7547 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7548 unsigned int highest_zoneidx) 7549 { 7550 long remaining = 0; 7551 DEFINE_WAIT(wait); 7552 7553 if (freezing(current) || kthread_should_stop()) 7554 return; 7555 7556 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7557 7558 /* 7559 * Try to sleep for a short interval. Note that kcompactd will only be 7560 * woken if it is possible to sleep for a short interval. This is 7561 * deliberate on the assumption that if reclaim cannot keep an 7562 * eligible zone balanced that it's also unlikely that compaction will 7563 * succeed. 7564 */ 7565 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7566 /* 7567 * Compaction records what page blocks it recently failed to 7568 * isolate pages from and skips them in the future scanning. 7569 * When kswapd is going to sleep, it is reasonable to assume 7570 * that pages and compaction may succeed so reset the cache. 7571 */ 7572 reset_isolation_suitable(pgdat); 7573 7574 /* 7575 * We have freed the memory, now we should compact it to make 7576 * allocation of the requested order possible. 7577 */ 7578 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7579 7580 remaining = schedule_timeout(HZ/10); 7581 7582 /* 7583 * If woken prematurely then reset kswapd_highest_zoneidx and 7584 * order. The values will either be from a wakeup request or 7585 * the previous request that slept prematurely. 7586 */ 7587 if (remaining) { 7588 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7589 kswapd_highest_zoneidx(pgdat, 7590 highest_zoneidx)); 7591 7592 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7593 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7594 } 7595 7596 finish_wait(&pgdat->kswapd_wait, &wait); 7597 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7598 } 7599 7600 /* 7601 * After a short sleep, check if it was a premature sleep. If not, then 7602 * go fully to sleep until explicitly woken up. 7603 */ 7604 if (!remaining && 7605 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7606 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7607 7608 /* 7609 * vmstat counters are not perfectly accurate and the estimated 7610 * value for counters such as NR_FREE_PAGES can deviate from the 7611 * true value by nr_online_cpus * threshold. To avoid the zone 7612 * watermarks being breached while under pressure, we reduce the 7613 * per-cpu vmstat threshold while kswapd is awake and restore 7614 * them before going back to sleep. 7615 */ 7616 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7617 7618 if (!kthread_should_stop()) 7619 schedule(); 7620 7621 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7622 } else { 7623 if (remaining) 7624 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7625 else 7626 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7627 } 7628 finish_wait(&pgdat->kswapd_wait, &wait); 7629 } 7630 7631 /* 7632 * The background pageout daemon, started as a kernel thread 7633 * from the init process. 7634 * 7635 * This basically trickles out pages so that we have _some_ 7636 * free memory available even if there is no other activity 7637 * that frees anything up. This is needed for things like routing 7638 * etc, where we otherwise might have all activity going on in 7639 * asynchronous contexts that cannot page things out. 7640 * 7641 * If there are applications that are active memory-allocators 7642 * (most normal use), this basically shouldn't matter. 7643 */ 7644 static int kswapd(void *p) 7645 { 7646 unsigned int alloc_order, reclaim_order; 7647 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7648 pg_data_t *pgdat = (pg_data_t *)p; 7649 struct task_struct *tsk = current; 7650 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7651 7652 if (!cpumask_empty(cpumask)) 7653 set_cpus_allowed_ptr(tsk, cpumask); 7654 7655 /* 7656 * Tell the memory management that we're a "memory allocator", 7657 * and that if we need more memory we should get access to it 7658 * regardless (see "__alloc_pages()"). "kswapd" should 7659 * never get caught in the normal page freeing logic. 7660 * 7661 * (Kswapd normally doesn't need memory anyway, but sometimes 7662 * you need a small amount of memory in order to be able to 7663 * page out something else, and this flag essentially protects 7664 * us from recursively trying to free more memory as we're 7665 * trying to free the first piece of memory in the first place). 7666 */ 7667 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7668 set_freezable(); 7669 7670 WRITE_ONCE(pgdat->kswapd_order, 0); 7671 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7672 atomic_set(&pgdat->nr_writeback_throttled, 0); 7673 for ( ; ; ) { 7674 bool ret; 7675 7676 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7677 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7678 highest_zoneidx); 7679 7680 kswapd_try_sleep: 7681 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7682 highest_zoneidx); 7683 7684 /* Read the new order and highest_zoneidx */ 7685 alloc_order = READ_ONCE(pgdat->kswapd_order); 7686 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7687 highest_zoneidx); 7688 WRITE_ONCE(pgdat->kswapd_order, 0); 7689 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7690 7691 ret = try_to_freeze(); 7692 if (kthread_should_stop()) 7693 break; 7694 7695 /* 7696 * We can speed up thawing tasks if we don't call balance_pgdat 7697 * after returning from the refrigerator 7698 */ 7699 if (ret) 7700 continue; 7701 7702 /* 7703 * Reclaim begins at the requested order but if a high-order 7704 * reclaim fails then kswapd falls back to reclaiming for 7705 * order-0. If that happens, kswapd will consider sleeping 7706 * for the order it finished reclaiming at (reclaim_order) 7707 * but kcompactd is woken to compact for the original 7708 * request (alloc_order). 7709 */ 7710 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7711 alloc_order); 7712 reclaim_order = balance_pgdat(pgdat, alloc_order, 7713 highest_zoneidx); 7714 if (reclaim_order < alloc_order) 7715 goto kswapd_try_sleep; 7716 } 7717 7718 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7719 7720 return 0; 7721 } 7722 7723 /* 7724 * A zone is low on free memory or too fragmented for high-order memory. If 7725 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7726 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7727 * has failed or is not needed, still wake up kcompactd if only compaction is 7728 * needed. 7729 */ 7730 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7731 enum zone_type highest_zoneidx) 7732 { 7733 pg_data_t *pgdat; 7734 enum zone_type curr_idx; 7735 7736 if (!managed_zone(zone)) 7737 return; 7738 7739 if (!cpuset_zone_allowed(zone, gfp_flags)) 7740 return; 7741 7742 pgdat = zone->zone_pgdat; 7743 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7744 7745 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7746 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7747 7748 if (READ_ONCE(pgdat->kswapd_order) < order) 7749 WRITE_ONCE(pgdat->kswapd_order, order); 7750 7751 if (!waitqueue_active(&pgdat->kswapd_wait)) 7752 return; 7753 7754 /* Hopeless node, leave it to direct reclaim if possible */ 7755 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7756 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7757 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7758 /* 7759 * There may be plenty of free memory available, but it's too 7760 * fragmented for high-order allocations. Wake up kcompactd 7761 * and rely on compaction_suitable() to determine if it's 7762 * needed. If it fails, it will defer subsequent attempts to 7763 * ratelimit its work. 7764 */ 7765 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7766 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7767 return; 7768 } 7769 7770 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7771 gfp_flags); 7772 wake_up_interruptible(&pgdat->kswapd_wait); 7773 } 7774 7775 #ifdef CONFIG_HIBERNATION 7776 /* 7777 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7778 * freed pages. 7779 * 7780 * Rather than trying to age LRUs the aim is to preserve the overall 7781 * LRU order by reclaiming preferentially 7782 * inactive > active > active referenced > active mapped 7783 */ 7784 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7785 { 7786 struct scan_control sc = { 7787 .nr_to_reclaim = nr_to_reclaim, 7788 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7789 .reclaim_idx = MAX_NR_ZONES - 1, 7790 .priority = DEF_PRIORITY, 7791 .may_writepage = 1, 7792 .may_unmap = 1, 7793 .may_swap = 1, 7794 .hibernation_mode = 1, 7795 }; 7796 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7797 unsigned long nr_reclaimed; 7798 unsigned int noreclaim_flag; 7799 7800 fs_reclaim_acquire(sc.gfp_mask); 7801 noreclaim_flag = memalloc_noreclaim_save(); 7802 set_task_reclaim_state(current, &sc.reclaim_state); 7803 7804 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7805 7806 set_task_reclaim_state(current, NULL); 7807 memalloc_noreclaim_restore(noreclaim_flag); 7808 fs_reclaim_release(sc.gfp_mask); 7809 7810 return nr_reclaimed; 7811 } 7812 #endif /* CONFIG_HIBERNATION */ 7813 7814 /* 7815 * This kswapd start function will be called by init and node-hot-add. 7816 */ 7817 void kswapd_run(int nid) 7818 { 7819 pg_data_t *pgdat = NODE_DATA(nid); 7820 7821 pgdat_kswapd_lock(pgdat); 7822 if (!pgdat->kswapd) { 7823 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7824 if (IS_ERR(pgdat->kswapd)) { 7825 /* failure at boot is fatal */ 7826 BUG_ON(system_state < SYSTEM_RUNNING); 7827 pr_err("Failed to start kswapd on node %d\n", nid); 7828 pgdat->kswapd = NULL; 7829 } 7830 } 7831 pgdat_kswapd_unlock(pgdat); 7832 } 7833 7834 /* 7835 * Called by memory hotplug when all memory in a node is offlined. Caller must 7836 * be holding mem_hotplug_begin/done(). 7837 */ 7838 void kswapd_stop(int nid) 7839 { 7840 pg_data_t *pgdat = NODE_DATA(nid); 7841 struct task_struct *kswapd; 7842 7843 pgdat_kswapd_lock(pgdat); 7844 kswapd = pgdat->kswapd; 7845 if (kswapd) { 7846 kthread_stop(kswapd); 7847 pgdat->kswapd = NULL; 7848 } 7849 pgdat_kswapd_unlock(pgdat); 7850 } 7851 7852 static int __init kswapd_init(void) 7853 { 7854 int nid; 7855 7856 swap_setup(); 7857 for_each_node_state(nid, N_MEMORY) 7858 kswapd_run(nid); 7859 return 0; 7860 } 7861 7862 module_init(kswapd_init) 7863 7864 #ifdef CONFIG_NUMA 7865 /* 7866 * Node reclaim mode 7867 * 7868 * If non-zero call node_reclaim when the number of free pages falls below 7869 * the watermarks. 7870 */ 7871 int node_reclaim_mode __read_mostly; 7872 7873 /* 7874 * Priority for NODE_RECLAIM. This determines the fraction of pages 7875 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7876 * a zone. 7877 */ 7878 #define NODE_RECLAIM_PRIORITY 4 7879 7880 /* 7881 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7882 * occur. 7883 */ 7884 int sysctl_min_unmapped_ratio = 1; 7885 7886 /* 7887 * If the number of slab pages in a zone grows beyond this percentage then 7888 * slab reclaim needs to occur. 7889 */ 7890 int sysctl_min_slab_ratio = 5; 7891 7892 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7893 { 7894 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7895 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7896 node_page_state(pgdat, NR_ACTIVE_FILE); 7897 7898 /* 7899 * It's possible for there to be more file mapped pages than 7900 * accounted for by the pages on the file LRU lists because 7901 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7902 */ 7903 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7904 } 7905 7906 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7907 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7908 { 7909 unsigned long nr_pagecache_reclaimable; 7910 unsigned long delta = 0; 7911 7912 /* 7913 * If RECLAIM_UNMAP is set, then all file pages are considered 7914 * potentially reclaimable. Otherwise, we have to worry about 7915 * pages like swapcache and node_unmapped_file_pages() provides 7916 * a better estimate 7917 */ 7918 if (node_reclaim_mode & RECLAIM_UNMAP) 7919 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7920 else 7921 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7922 7923 /* If we can't clean pages, remove dirty pages from consideration */ 7924 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7925 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7926 7927 /* Watch for any possible underflows due to delta */ 7928 if (unlikely(delta > nr_pagecache_reclaimable)) 7929 delta = nr_pagecache_reclaimable; 7930 7931 return nr_pagecache_reclaimable - delta; 7932 } 7933 7934 /* 7935 * Try to free up some pages from this node through reclaim. 7936 */ 7937 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7938 { 7939 /* Minimum pages needed in order to stay on node */ 7940 const unsigned long nr_pages = 1 << order; 7941 struct task_struct *p = current; 7942 unsigned int noreclaim_flag; 7943 struct scan_control sc = { 7944 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7945 .gfp_mask = current_gfp_context(gfp_mask), 7946 .order = order, 7947 .priority = NODE_RECLAIM_PRIORITY, 7948 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7949 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7950 .may_swap = 1, 7951 .reclaim_idx = gfp_zone(gfp_mask), 7952 }; 7953 unsigned long pflags; 7954 7955 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7956 sc.gfp_mask); 7957 7958 cond_resched(); 7959 psi_memstall_enter(&pflags); 7960 fs_reclaim_acquire(sc.gfp_mask); 7961 /* 7962 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7963 */ 7964 noreclaim_flag = memalloc_noreclaim_save(); 7965 set_task_reclaim_state(p, &sc.reclaim_state); 7966 7967 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7968 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7969 /* 7970 * Free memory by calling shrink node with increasing 7971 * priorities until we have enough memory freed. 7972 */ 7973 do { 7974 shrink_node(pgdat, &sc); 7975 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7976 } 7977 7978 set_task_reclaim_state(p, NULL); 7979 memalloc_noreclaim_restore(noreclaim_flag); 7980 fs_reclaim_release(sc.gfp_mask); 7981 psi_memstall_leave(&pflags); 7982 7983 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7984 7985 return sc.nr_reclaimed >= nr_pages; 7986 } 7987 7988 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7989 { 7990 int ret; 7991 7992 /* 7993 * Node reclaim reclaims unmapped file backed pages and 7994 * slab pages if we are over the defined limits. 7995 * 7996 * A small portion of unmapped file backed pages is needed for 7997 * file I/O otherwise pages read by file I/O will be immediately 7998 * thrown out if the node is overallocated. So we do not reclaim 7999 * if less than a specified percentage of the node is used by 8000 * unmapped file backed pages. 8001 */ 8002 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 8003 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 8004 pgdat->min_slab_pages) 8005 return NODE_RECLAIM_FULL; 8006 8007 /* 8008 * Do not scan if the allocation should not be delayed. 8009 */ 8010 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 8011 return NODE_RECLAIM_NOSCAN; 8012 8013 /* 8014 * Only run node reclaim on the local node or on nodes that do not 8015 * have associated processors. This will favor the local processor 8016 * over remote processors and spread off node memory allocations 8017 * as wide as possible. 8018 */ 8019 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 8020 return NODE_RECLAIM_NOSCAN; 8021 8022 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 8023 return NODE_RECLAIM_NOSCAN; 8024 8025 ret = __node_reclaim(pgdat, gfp_mask, order); 8026 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 8027 8028 if (!ret) 8029 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 8030 8031 return ret; 8032 } 8033 #endif 8034 8035 void check_move_unevictable_pages(struct pagevec *pvec) 8036 { 8037 struct folio_batch fbatch; 8038 unsigned i; 8039 8040 folio_batch_init(&fbatch); 8041 for (i = 0; i < pvec->nr; i++) { 8042 struct page *page = pvec->pages[i]; 8043 8044 if (PageTransTail(page)) 8045 continue; 8046 folio_batch_add(&fbatch, page_folio(page)); 8047 } 8048 check_move_unevictable_folios(&fbatch); 8049 } 8050 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 8051 8052 /** 8053 * check_move_unevictable_folios - Move evictable folios to appropriate zone 8054 * lru list 8055 * @fbatch: Batch of lru folios to check. 8056 * 8057 * Checks folios for evictability, if an evictable folio is in the unevictable 8058 * lru list, moves it to the appropriate evictable lru list. This function 8059 * should be only used for lru folios. 8060 */ 8061 void check_move_unevictable_folios(struct folio_batch *fbatch) 8062 { 8063 struct lruvec *lruvec = NULL; 8064 int pgscanned = 0; 8065 int pgrescued = 0; 8066 int i; 8067 8068 for (i = 0; i < fbatch->nr; i++) { 8069 struct folio *folio = fbatch->folios[i]; 8070 int nr_pages = folio_nr_pages(folio); 8071 8072 pgscanned += nr_pages; 8073 8074 /* block memcg migration while the folio moves between lrus */ 8075 if (!folio_test_clear_lru(folio)) 8076 continue; 8077 8078 lruvec = folio_lruvec_relock_irq(folio, lruvec); 8079 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 8080 lruvec_del_folio(lruvec, folio); 8081 folio_clear_unevictable(folio); 8082 lruvec_add_folio(lruvec, folio); 8083 pgrescued += nr_pages; 8084 } 8085 folio_set_lru(folio); 8086 } 8087 8088 if (lruvec) { 8089 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 8090 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8091 unlock_page_lruvec_irq(lruvec); 8092 } else if (pgscanned) { 8093 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 8094 } 8095 } 8096 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 8097