1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/rwsem.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 58 #include <asm/tlbflush.h> 59 #include <asm/div64.h> 60 61 #include <linux/swapops.h> 62 #include <linux/balloon_compaction.h> 63 #include <linux/sched/sysctl.h> 64 65 #include "internal.h" 66 #include "swap.h" 67 68 #define CREATE_TRACE_POINTS 69 #include <trace/events/vmscan.h> 70 71 struct scan_control { 72 /* How many pages shrink_list() should reclaim */ 73 unsigned long nr_to_reclaim; 74 75 /* 76 * Nodemask of nodes allowed by the caller. If NULL, all nodes 77 * are scanned. 78 */ 79 nodemask_t *nodemask; 80 81 /* 82 * The memory cgroup that hit its limit and as a result is the 83 * primary target of this reclaim invocation. 84 */ 85 struct mem_cgroup *target_mem_cgroup; 86 87 /* 88 * Scan pressure balancing between anon and file LRUs 89 */ 90 unsigned long anon_cost; 91 unsigned long file_cost; 92 93 /* Can active folios be deactivated as part of reclaim? */ 94 #define DEACTIVATE_ANON 1 95 #define DEACTIVATE_FILE 2 96 unsigned int may_deactivate:2; 97 unsigned int force_deactivate:1; 98 unsigned int skipped_deactivate:1; 99 100 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 101 unsigned int may_writepage:1; 102 103 /* Can mapped folios be reclaimed? */ 104 unsigned int may_unmap:1; 105 106 /* Can folios be swapped as part of reclaim? */ 107 unsigned int may_swap:1; 108 109 /* Proactive reclaim invoked by userspace through memory.reclaim */ 110 unsigned int proactive:1; 111 112 /* 113 * Cgroup memory below memory.low is protected as long as we 114 * don't threaten to OOM. If any cgroup is reclaimed at 115 * reduced force or passed over entirely due to its memory.low 116 * setting (memcg_low_skipped), and nothing is reclaimed as a 117 * result, then go back for one more cycle that reclaims the protected 118 * memory (memcg_low_reclaim) to avert OOM. 119 */ 120 unsigned int memcg_low_reclaim:1; 121 unsigned int memcg_low_skipped:1; 122 123 unsigned int hibernation_mode:1; 124 125 /* One of the zones is ready for compaction */ 126 unsigned int compaction_ready:1; 127 128 /* There is easily reclaimable cold cache in the current node */ 129 unsigned int cache_trim_mode:1; 130 131 /* The file folios on the current node are dangerously low */ 132 unsigned int file_is_tiny:1; 133 134 /* Always discard instead of demoting to lower tier memory */ 135 unsigned int no_demotion:1; 136 137 #ifdef CONFIG_LRU_GEN 138 /* help kswapd make better choices among multiple memcgs */ 139 unsigned int memcgs_need_aging:1; 140 unsigned long last_reclaimed; 141 #endif 142 143 /* Allocation order */ 144 s8 order; 145 146 /* Scan (total_size >> priority) pages at once */ 147 s8 priority; 148 149 /* The highest zone to isolate folios for reclaim from */ 150 s8 reclaim_idx; 151 152 /* This context's GFP mask */ 153 gfp_t gfp_mask; 154 155 /* Incremented by the number of inactive pages that were scanned */ 156 unsigned long nr_scanned; 157 158 /* Number of pages freed so far during a call to shrink_zones() */ 159 unsigned long nr_reclaimed; 160 161 struct { 162 unsigned int dirty; 163 unsigned int unqueued_dirty; 164 unsigned int congested; 165 unsigned int writeback; 166 unsigned int immediate; 167 unsigned int file_taken; 168 unsigned int taken; 169 } nr; 170 171 /* for recording the reclaimed slab by now */ 172 struct reclaim_state reclaim_state; 173 }; 174 175 #ifdef ARCH_HAS_PREFETCHW 176 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 177 do { \ 178 if ((_folio)->lru.prev != _base) { \ 179 struct folio *prev; \ 180 \ 181 prev = lru_to_folio(&(_folio->lru)); \ 182 prefetchw(&prev->_field); \ 183 } \ 184 } while (0) 185 #else 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 187 #endif 188 189 /* 190 * From 0 .. 200. Higher means more swappy. 191 */ 192 int vm_swappiness = 60; 193 194 static void set_task_reclaim_state(struct task_struct *task, 195 struct reclaim_state *rs) 196 { 197 /* Check for an overwrite */ 198 WARN_ON_ONCE(rs && task->reclaim_state); 199 200 /* Check for the nulling of an already-nulled member */ 201 WARN_ON_ONCE(!rs && !task->reclaim_state); 202 203 task->reclaim_state = rs; 204 } 205 206 LIST_HEAD(shrinker_list); 207 DECLARE_RWSEM(shrinker_rwsem); 208 209 #ifdef CONFIG_MEMCG 210 static int shrinker_nr_max; 211 212 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 213 static inline int shrinker_map_size(int nr_items) 214 { 215 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 216 } 217 218 static inline int shrinker_defer_size(int nr_items) 219 { 220 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 221 } 222 223 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 224 int nid) 225 { 226 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 227 lockdep_is_held(&shrinker_rwsem)); 228 } 229 230 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 231 int map_size, int defer_size, 232 int old_map_size, int old_defer_size) 233 { 234 struct shrinker_info *new, *old; 235 struct mem_cgroup_per_node *pn; 236 int nid; 237 int size = map_size + defer_size; 238 239 for_each_node(nid) { 240 pn = memcg->nodeinfo[nid]; 241 old = shrinker_info_protected(memcg, nid); 242 /* Not yet online memcg */ 243 if (!old) 244 return 0; 245 246 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 247 if (!new) 248 return -ENOMEM; 249 250 new->nr_deferred = (atomic_long_t *)(new + 1); 251 new->map = (void *)new->nr_deferred + defer_size; 252 253 /* map: set all old bits, clear all new bits */ 254 memset(new->map, (int)0xff, old_map_size); 255 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 256 /* nr_deferred: copy old values, clear all new values */ 257 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 258 memset((void *)new->nr_deferred + old_defer_size, 0, 259 defer_size - old_defer_size); 260 261 rcu_assign_pointer(pn->shrinker_info, new); 262 kvfree_rcu(old, rcu); 263 } 264 265 return 0; 266 } 267 268 void free_shrinker_info(struct mem_cgroup *memcg) 269 { 270 struct mem_cgroup_per_node *pn; 271 struct shrinker_info *info; 272 int nid; 273 274 for_each_node(nid) { 275 pn = memcg->nodeinfo[nid]; 276 info = rcu_dereference_protected(pn->shrinker_info, true); 277 kvfree(info); 278 rcu_assign_pointer(pn->shrinker_info, NULL); 279 } 280 } 281 282 int alloc_shrinker_info(struct mem_cgroup *memcg) 283 { 284 struct shrinker_info *info; 285 int nid, size, ret = 0; 286 int map_size, defer_size = 0; 287 288 down_write(&shrinker_rwsem); 289 map_size = shrinker_map_size(shrinker_nr_max); 290 defer_size = shrinker_defer_size(shrinker_nr_max); 291 size = map_size + defer_size; 292 for_each_node(nid) { 293 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 294 if (!info) { 295 free_shrinker_info(memcg); 296 ret = -ENOMEM; 297 break; 298 } 299 info->nr_deferred = (atomic_long_t *)(info + 1); 300 info->map = (void *)info->nr_deferred + defer_size; 301 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 302 } 303 up_write(&shrinker_rwsem); 304 305 return ret; 306 } 307 308 static inline bool need_expand(int nr_max) 309 { 310 return round_up(nr_max, BITS_PER_LONG) > 311 round_up(shrinker_nr_max, BITS_PER_LONG); 312 } 313 314 static int expand_shrinker_info(int new_id) 315 { 316 int ret = 0; 317 int new_nr_max = new_id + 1; 318 int map_size, defer_size = 0; 319 int old_map_size, old_defer_size = 0; 320 struct mem_cgroup *memcg; 321 322 if (!need_expand(new_nr_max)) 323 goto out; 324 325 if (!root_mem_cgroup) 326 goto out; 327 328 lockdep_assert_held(&shrinker_rwsem); 329 330 map_size = shrinker_map_size(new_nr_max); 331 defer_size = shrinker_defer_size(new_nr_max); 332 old_map_size = shrinker_map_size(shrinker_nr_max); 333 old_defer_size = shrinker_defer_size(shrinker_nr_max); 334 335 memcg = mem_cgroup_iter(NULL, NULL, NULL); 336 do { 337 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 338 old_map_size, old_defer_size); 339 if (ret) { 340 mem_cgroup_iter_break(NULL, memcg); 341 goto out; 342 } 343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 344 out: 345 if (!ret) 346 shrinker_nr_max = new_nr_max; 347 348 return ret; 349 } 350 351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 352 { 353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 354 struct shrinker_info *info; 355 356 rcu_read_lock(); 357 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 358 /* Pairs with smp mb in shrink_slab() */ 359 smp_mb__before_atomic(); 360 set_bit(shrinker_id, info->map); 361 rcu_read_unlock(); 362 } 363 } 364 365 static DEFINE_IDR(shrinker_idr); 366 367 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 368 { 369 int id, ret = -ENOMEM; 370 371 if (mem_cgroup_disabled()) 372 return -ENOSYS; 373 374 down_write(&shrinker_rwsem); 375 /* This may call shrinker, so it must use down_read_trylock() */ 376 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 377 if (id < 0) 378 goto unlock; 379 380 if (id >= shrinker_nr_max) { 381 if (expand_shrinker_info(id)) { 382 idr_remove(&shrinker_idr, id); 383 goto unlock; 384 } 385 } 386 shrinker->id = id; 387 ret = 0; 388 unlock: 389 up_write(&shrinker_rwsem); 390 return ret; 391 } 392 393 static void unregister_memcg_shrinker(struct shrinker *shrinker) 394 { 395 int id = shrinker->id; 396 397 BUG_ON(id < 0); 398 399 lockdep_assert_held(&shrinker_rwsem); 400 401 idr_remove(&shrinker_idr, id); 402 } 403 404 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 405 struct mem_cgroup *memcg) 406 { 407 struct shrinker_info *info; 408 409 info = shrinker_info_protected(memcg, nid); 410 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 411 } 412 413 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 414 struct mem_cgroup *memcg) 415 { 416 struct shrinker_info *info; 417 418 info = shrinker_info_protected(memcg, nid); 419 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 420 } 421 422 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 423 { 424 int i, nid; 425 long nr; 426 struct mem_cgroup *parent; 427 struct shrinker_info *child_info, *parent_info; 428 429 parent = parent_mem_cgroup(memcg); 430 if (!parent) 431 parent = root_mem_cgroup; 432 433 /* Prevent from concurrent shrinker_info expand */ 434 down_read(&shrinker_rwsem); 435 for_each_node(nid) { 436 child_info = shrinker_info_protected(memcg, nid); 437 parent_info = shrinker_info_protected(parent, nid); 438 for (i = 0; i < shrinker_nr_max; i++) { 439 nr = atomic_long_read(&child_info->nr_deferred[i]); 440 atomic_long_add(nr, &parent_info->nr_deferred[i]); 441 } 442 } 443 up_read(&shrinker_rwsem); 444 } 445 446 static bool cgroup_reclaim(struct scan_control *sc) 447 { 448 return sc->target_mem_cgroup; 449 } 450 451 /** 452 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 453 * @sc: scan_control in question 454 * 455 * The normal page dirty throttling mechanism in balance_dirty_pages() is 456 * completely broken with the legacy memcg and direct stalling in 457 * shrink_folio_list() is used for throttling instead, which lacks all the 458 * niceties such as fairness, adaptive pausing, bandwidth proportional 459 * allocation and configurability. 460 * 461 * This function tests whether the vmscan currently in progress can assume 462 * that the normal dirty throttling mechanism is operational. 463 */ 464 static bool writeback_throttling_sane(struct scan_control *sc) 465 { 466 if (!cgroup_reclaim(sc)) 467 return true; 468 #ifdef CONFIG_CGROUP_WRITEBACK 469 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 470 return true; 471 #endif 472 return false; 473 } 474 #else 475 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 476 { 477 return -ENOSYS; 478 } 479 480 static void unregister_memcg_shrinker(struct shrinker *shrinker) 481 { 482 } 483 484 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 485 struct mem_cgroup *memcg) 486 { 487 return 0; 488 } 489 490 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 491 struct mem_cgroup *memcg) 492 { 493 return 0; 494 } 495 496 static bool cgroup_reclaim(struct scan_control *sc) 497 { 498 return false; 499 } 500 501 static bool writeback_throttling_sane(struct scan_control *sc) 502 { 503 return true; 504 } 505 #endif 506 507 static long xchg_nr_deferred(struct shrinker *shrinker, 508 struct shrink_control *sc) 509 { 510 int nid = sc->nid; 511 512 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 513 nid = 0; 514 515 if (sc->memcg && 516 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 517 return xchg_nr_deferred_memcg(nid, shrinker, 518 sc->memcg); 519 520 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 521 } 522 523 524 static long add_nr_deferred(long nr, struct shrinker *shrinker, 525 struct shrink_control *sc) 526 { 527 int nid = sc->nid; 528 529 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 530 nid = 0; 531 532 if (sc->memcg && 533 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 534 return add_nr_deferred_memcg(nr, nid, shrinker, 535 sc->memcg); 536 537 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 538 } 539 540 static bool can_demote(int nid, struct scan_control *sc) 541 { 542 if (!numa_demotion_enabled) 543 return false; 544 if (sc && sc->no_demotion) 545 return false; 546 if (next_demotion_node(nid) == NUMA_NO_NODE) 547 return false; 548 549 return true; 550 } 551 552 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 553 int nid, 554 struct scan_control *sc) 555 { 556 if (memcg == NULL) { 557 /* 558 * For non-memcg reclaim, is there 559 * space in any swap device? 560 */ 561 if (get_nr_swap_pages() > 0) 562 return true; 563 } else { 564 /* Is the memcg below its swap limit? */ 565 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 566 return true; 567 } 568 569 /* 570 * The page can not be swapped. 571 * 572 * Can it be reclaimed from this node via demotion? 573 */ 574 return can_demote(nid, sc); 575 } 576 577 /* 578 * This misses isolated folios which are not accounted for to save counters. 579 * As the data only determines if reclaim or compaction continues, it is 580 * not expected that isolated folios will be a dominating factor. 581 */ 582 unsigned long zone_reclaimable_pages(struct zone *zone) 583 { 584 unsigned long nr; 585 586 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 587 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 588 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 589 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 590 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 591 592 return nr; 593 } 594 595 /** 596 * lruvec_lru_size - Returns the number of pages on the given LRU list. 597 * @lruvec: lru vector 598 * @lru: lru to use 599 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 600 */ 601 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 602 int zone_idx) 603 { 604 unsigned long size = 0; 605 int zid; 606 607 for (zid = 0; zid <= zone_idx; zid++) { 608 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 609 610 if (!managed_zone(zone)) 611 continue; 612 613 if (!mem_cgroup_disabled()) 614 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 615 else 616 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 617 } 618 return size; 619 } 620 621 /* 622 * Add a shrinker callback to be called from the vm. 623 */ 624 static int __prealloc_shrinker(struct shrinker *shrinker) 625 { 626 unsigned int size; 627 int err; 628 629 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 630 err = prealloc_memcg_shrinker(shrinker); 631 if (err != -ENOSYS) 632 return err; 633 634 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 635 } 636 637 size = sizeof(*shrinker->nr_deferred); 638 if (shrinker->flags & SHRINKER_NUMA_AWARE) 639 size *= nr_node_ids; 640 641 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 642 if (!shrinker->nr_deferred) 643 return -ENOMEM; 644 645 return 0; 646 } 647 648 #ifdef CONFIG_SHRINKER_DEBUG 649 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 650 { 651 va_list ap; 652 int err; 653 654 va_start(ap, fmt); 655 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 656 va_end(ap); 657 if (!shrinker->name) 658 return -ENOMEM; 659 660 err = __prealloc_shrinker(shrinker); 661 if (err) { 662 kfree_const(shrinker->name); 663 shrinker->name = NULL; 664 } 665 666 return err; 667 } 668 #else 669 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 670 { 671 return __prealloc_shrinker(shrinker); 672 } 673 #endif 674 675 void free_prealloced_shrinker(struct shrinker *shrinker) 676 { 677 #ifdef CONFIG_SHRINKER_DEBUG 678 kfree_const(shrinker->name); 679 shrinker->name = NULL; 680 #endif 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 682 down_write(&shrinker_rwsem); 683 unregister_memcg_shrinker(shrinker); 684 up_write(&shrinker_rwsem); 685 return; 686 } 687 688 kfree(shrinker->nr_deferred); 689 shrinker->nr_deferred = NULL; 690 } 691 692 void register_shrinker_prepared(struct shrinker *shrinker) 693 { 694 down_write(&shrinker_rwsem); 695 list_add_tail(&shrinker->list, &shrinker_list); 696 shrinker->flags |= SHRINKER_REGISTERED; 697 shrinker_debugfs_add(shrinker); 698 up_write(&shrinker_rwsem); 699 } 700 701 static int __register_shrinker(struct shrinker *shrinker) 702 { 703 int err = __prealloc_shrinker(shrinker); 704 705 if (err) 706 return err; 707 register_shrinker_prepared(shrinker); 708 return 0; 709 } 710 711 #ifdef CONFIG_SHRINKER_DEBUG 712 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 713 { 714 va_list ap; 715 int err; 716 717 va_start(ap, fmt); 718 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 719 va_end(ap); 720 if (!shrinker->name) 721 return -ENOMEM; 722 723 err = __register_shrinker(shrinker); 724 if (err) { 725 kfree_const(shrinker->name); 726 shrinker->name = NULL; 727 } 728 return err; 729 } 730 #else 731 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 732 { 733 return __register_shrinker(shrinker); 734 } 735 #endif 736 EXPORT_SYMBOL(register_shrinker); 737 738 /* 739 * Remove one 740 */ 741 void unregister_shrinker(struct shrinker *shrinker) 742 { 743 if (!(shrinker->flags & SHRINKER_REGISTERED)) 744 return; 745 746 down_write(&shrinker_rwsem); 747 list_del(&shrinker->list); 748 shrinker->flags &= ~SHRINKER_REGISTERED; 749 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 750 unregister_memcg_shrinker(shrinker); 751 shrinker_debugfs_remove(shrinker); 752 up_write(&shrinker_rwsem); 753 754 kfree(shrinker->nr_deferred); 755 shrinker->nr_deferred = NULL; 756 } 757 EXPORT_SYMBOL(unregister_shrinker); 758 759 /** 760 * synchronize_shrinkers - Wait for all running shrinkers to complete. 761 * 762 * This is equivalent to calling unregister_shrink() and register_shrinker(), 763 * but atomically and with less overhead. This is useful to guarantee that all 764 * shrinker invocations have seen an update, before freeing memory, similar to 765 * rcu. 766 */ 767 void synchronize_shrinkers(void) 768 { 769 down_write(&shrinker_rwsem); 770 up_write(&shrinker_rwsem); 771 } 772 EXPORT_SYMBOL(synchronize_shrinkers); 773 774 #define SHRINK_BATCH 128 775 776 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 777 struct shrinker *shrinker, int priority) 778 { 779 unsigned long freed = 0; 780 unsigned long long delta; 781 long total_scan; 782 long freeable; 783 long nr; 784 long new_nr; 785 long batch_size = shrinker->batch ? shrinker->batch 786 : SHRINK_BATCH; 787 long scanned = 0, next_deferred; 788 789 freeable = shrinker->count_objects(shrinker, shrinkctl); 790 if (freeable == 0 || freeable == SHRINK_EMPTY) 791 return freeable; 792 793 /* 794 * copy the current shrinker scan count into a local variable 795 * and zero it so that other concurrent shrinker invocations 796 * don't also do this scanning work. 797 */ 798 nr = xchg_nr_deferred(shrinker, shrinkctl); 799 800 if (shrinker->seeks) { 801 delta = freeable >> priority; 802 delta *= 4; 803 do_div(delta, shrinker->seeks); 804 } else { 805 /* 806 * These objects don't require any IO to create. Trim 807 * them aggressively under memory pressure to keep 808 * them from causing refetches in the IO caches. 809 */ 810 delta = freeable / 2; 811 } 812 813 total_scan = nr >> priority; 814 total_scan += delta; 815 total_scan = min(total_scan, (2 * freeable)); 816 817 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 818 freeable, delta, total_scan, priority); 819 820 /* 821 * Normally, we should not scan less than batch_size objects in one 822 * pass to avoid too frequent shrinker calls, but if the slab has less 823 * than batch_size objects in total and we are really tight on memory, 824 * we will try to reclaim all available objects, otherwise we can end 825 * up failing allocations although there are plenty of reclaimable 826 * objects spread over several slabs with usage less than the 827 * batch_size. 828 * 829 * We detect the "tight on memory" situations by looking at the total 830 * number of objects we want to scan (total_scan). If it is greater 831 * than the total number of objects on slab (freeable), we must be 832 * scanning at high prio and therefore should try to reclaim as much as 833 * possible. 834 */ 835 while (total_scan >= batch_size || 836 total_scan >= freeable) { 837 unsigned long ret; 838 unsigned long nr_to_scan = min(batch_size, total_scan); 839 840 shrinkctl->nr_to_scan = nr_to_scan; 841 shrinkctl->nr_scanned = nr_to_scan; 842 ret = shrinker->scan_objects(shrinker, shrinkctl); 843 if (ret == SHRINK_STOP) 844 break; 845 freed += ret; 846 847 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 848 total_scan -= shrinkctl->nr_scanned; 849 scanned += shrinkctl->nr_scanned; 850 851 cond_resched(); 852 } 853 854 /* 855 * The deferred work is increased by any new work (delta) that wasn't 856 * done, decreased by old deferred work that was done now. 857 * 858 * And it is capped to two times of the freeable items. 859 */ 860 next_deferred = max_t(long, (nr + delta - scanned), 0); 861 next_deferred = min(next_deferred, (2 * freeable)); 862 863 /* 864 * move the unused scan count back into the shrinker in a 865 * manner that handles concurrent updates. 866 */ 867 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 868 869 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 870 return freed; 871 } 872 873 #ifdef CONFIG_MEMCG 874 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 875 struct mem_cgroup *memcg, int priority) 876 { 877 struct shrinker_info *info; 878 unsigned long ret, freed = 0; 879 int i; 880 881 if (!mem_cgroup_online(memcg)) 882 return 0; 883 884 if (!down_read_trylock(&shrinker_rwsem)) 885 return 0; 886 887 info = shrinker_info_protected(memcg, nid); 888 if (unlikely(!info)) 889 goto unlock; 890 891 for_each_set_bit(i, info->map, shrinker_nr_max) { 892 struct shrink_control sc = { 893 .gfp_mask = gfp_mask, 894 .nid = nid, 895 .memcg = memcg, 896 }; 897 struct shrinker *shrinker; 898 899 shrinker = idr_find(&shrinker_idr, i); 900 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 901 if (!shrinker) 902 clear_bit(i, info->map); 903 continue; 904 } 905 906 /* Call non-slab shrinkers even though kmem is disabled */ 907 if (!memcg_kmem_enabled() && 908 !(shrinker->flags & SHRINKER_NONSLAB)) 909 continue; 910 911 ret = do_shrink_slab(&sc, shrinker, priority); 912 if (ret == SHRINK_EMPTY) { 913 clear_bit(i, info->map); 914 /* 915 * After the shrinker reported that it had no objects to 916 * free, but before we cleared the corresponding bit in 917 * the memcg shrinker map, a new object might have been 918 * added. To make sure, we have the bit set in this 919 * case, we invoke the shrinker one more time and reset 920 * the bit if it reports that it is not empty anymore. 921 * The memory barrier here pairs with the barrier in 922 * set_shrinker_bit(): 923 * 924 * list_lru_add() shrink_slab_memcg() 925 * list_add_tail() clear_bit() 926 * <MB> <MB> 927 * set_bit() do_shrink_slab() 928 */ 929 smp_mb__after_atomic(); 930 ret = do_shrink_slab(&sc, shrinker, priority); 931 if (ret == SHRINK_EMPTY) 932 ret = 0; 933 else 934 set_shrinker_bit(memcg, nid, i); 935 } 936 freed += ret; 937 938 if (rwsem_is_contended(&shrinker_rwsem)) { 939 freed = freed ? : 1; 940 break; 941 } 942 } 943 unlock: 944 up_read(&shrinker_rwsem); 945 return freed; 946 } 947 #else /* CONFIG_MEMCG */ 948 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 949 struct mem_cgroup *memcg, int priority) 950 { 951 return 0; 952 } 953 #endif /* CONFIG_MEMCG */ 954 955 /** 956 * shrink_slab - shrink slab caches 957 * @gfp_mask: allocation context 958 * @nid: node whose slab caches to target 959 * @memcg: memory cgroup whose slab caches to target 960 * @priority: the reclaim priority 961 * 962 * Call the shrink functions to age shrinkable caches. 963 * 964 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 965 * unaware shrinkers will receive a node id of 0 instead. 966 * 967 * @memcg specifies the memory cgroup to target. Unaware shrinkers 968 * are called only if it is the root cgroup. 969 * 970 * @priority is sc->priority, we take the number of objects and >> by priority 971 * in order to get the scan target. 972 * 973 * Returns the number of reclaimed slab objects. 974 */ 975 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 976 struct mem_cgroup *memcg, 977 int priority) 978 { 979 unsigned long ret, freed = 0; 980 struct shrinker *shrinker; 981 982 /* 983 * The root memcg might be allocated even though memcg is disabled 984 * via "cgroup_disable=memory" boot parameter. This could make 985 * mem_cgroup_is_root() return false, then just run memcg slab 986 * shrink, but skip global shrink. This may result in premature 987 * oom. 988 */ 989 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 990 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 991 992 if (!down_read_trylock(&shrinker_rwsem)) 993 goto out; 994 995 list_for_each_entry(shrinker, &shrinker_list, list) { 996 struct shrink_control sc = { 997 .gfp_mask = gfp_mask, 998 .nid = nid, 999 .memcg = memcg, 1000 }; 1001 1002 ret = do_shrink_slab(&sc, shrinker, priority); 1003 if (ret == SHRINK_EMPTY) 1004 ret = 0; 1005 freed += ret; 1006 /* 1007 * Bail out if someone want to register a new shrinker to 1008 * prevent the registration from being stalled for long periods 1009 * by parallel ongoing shrinking. 1010 */ 1011 if (rwsem_is_contended(&shrinker_rwsem)) { 1012 freed = freed ? : 1; 1013 break; 1014 } 1015 } 1016 1017 up_read(&shrinker_rwsem); 1018 out: 1019 cond_resched(); 1020 return freed; 1021 } 1022 1023 static void drop_slab_node(int nid) 1024 { 1025 unsigned long freed; 1026 int shift = 0; 1027 1028 do { 1029 struct mem_cgroup *memcg = NULL; 1030 1031 if (fatal_signal_pending(current)) 1032 return; 1033 1034 freed = 0; 1035 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1036 do { 1037 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1038 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1039 } while ((freed >> shift++) > 1); 1040 } 1041 1042 void drop_slab(void) 1043 { 1044 int nid; 1045 1046 for_each_online_node(nid) 1047 drop_slab_node(nid); 1048 } 1049 1050 static inline int is_page_cache_freeable(struct folio *folio) 1051 { 1052 /* 1053 * A freeable page cache folio is referenced only by the caller 1054 * that isolated the folio, the page cache and optional filesystem 1055 * private data at folio->private. 1056 */ 1057 return folio_ref_count(folio) - folio_test_private(folio) == 1058 1 + folio_nr_pages(folio); 1059 } 1060 1061 /* 1062 * We detected a synchronous write error writing a folio out. Probably 1063 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1064 * fsync(), msync() or close(). 1065 * 1066 * The tricky part is that after writepage we cannot touch the mapping: nothing 1067 * prevents it from being freed up. But we have a ref on the folio and once 1068 * that folio is locked, the mapping is pinned. 1069 * 1070 * We're allowed to run sleeping folio_lock() here because we know the caller has 1071 * __GFP_FS. 1072 */ 1073 static void handle_write_error(struct address_space *mapping, 1074 struct folio *folio, int error) 1075 { 1076 folio_lock(folio); 1077 if (folio_mapping(folio) == mapping) 1078 mapping_set_error(mapping, error); 1079 folio_unlock(folio); 1080 } 1081 1082 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1083 { 1084 int reclaimable = 0, write_pending = 0; 1085 int i; 1086 1087 /* 1088 * If kswapd is disabled, reschedule if necessary but do not 1089 * throttle as the system is likely near OOM. 1090 */ 1091 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1092 return true; 1093 1094 /* 1095 * If there are a lot of dirty/writeback folios then do not 1096 * throttle as throttling will occur when the folios cycle 1097 * towards the end of the LRU if still under writeback. 1098 */ 1099 for (i = 0; i < MAX_NR_ZONES; i++) { 1100 struct zone *zone = pgdat->node_zones + i; 1101 1102 if (!managed_zone(zone)) 1103 continue; 1104 1105 reclaimable += zone_reclaimable_pages(zone); 1106 write_pending += zone_page_state_snapshot(zone, 1107 NR_ZONE_WRITE_PENDING); 1108 } 1109 if (2 * write_pending <= reclaimable) 1110 return true; 1111 1112 return false; 1113 } 1114 1115 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1116 { 1117 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1118 long timeout, ret; 1119 DEFINE_WAIT(wait); 1120 1121 /* 1122 * Do not throttle IO workers, kthreads other than kswapd or 1123 * workqueues. They may be required for reclaim to make 1124 * forward progress (e.g. journalling workqueues or kthreads). 1125 */ 1126 if (!current_is_kswapd() && 1127 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1128 cond_resched(); 1129 return; 1130 } 1131 1132 /* 1133 * These figures are pulled out of thin air. 1134 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1135 * parallel reclaimers which is a short-lived event so the timeout is 1136 * short. Failing to make progress or waiting on writeback are 1137 * potentially long-lived events so use a longer timeout. This is shaky 1138 * logic as a failure to make progress could be due to anything from 1139 * writeback to a slow device to excessive referenced folios at the tail 1140 * of the inactive LRU. 1141 */ 1142 switch(reason) { 1143 case VMSCAN_THROTTLE_WRITEBACK: 1144 timeout = HZ/10; 1145 1146 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1147 WRITE_ONCE(pgdat->nr_reclaim_start, 1148 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1149 } 1150 1151 break; 1152 case VMSCAN_THROTTLE_CONGESTED: 1153 fallthrough; 1154 case VMSCAN_THROTTLE_NOPROGRESS: 1155 if (skip_throttle_noprogress(pgdat)) { 1156 cond_resched(); 1157 return; 1158 } 1159 1160 timeout = 1; 1161 1162 break; 1163 case VMSCAN_THROTTLE_ISOLATED: 1164 timeout = HZ/50; 1165 break; 1166 default: 1167 WARN_ON_ONCE(1); 1168 timeout = HZ; 1169 break; 1170 } 1171 1172 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1173 ret = schedule_timeout(timeout); 1174 finish_wait(wqh, &wait); 1175 1176 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1177 atomic_dec(&pgdat->nr_writeback_throttled); 1178 1179 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1180 jiffies_to_usecs(timeout - ret), 1181 reason); 1182 } 1183 1184 /* 1185 * Account for folios written if tasks are throttled waiting on dirty 1186 * folios to clean. If enough folios have been cleaned since throttling 1187 * started then wakeup the throttled tasks. 1188 */ 1189 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1190 int nr_throttled) 1191 { 1192 unsigned long nr_written; 1193 1194 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1195 1196 /* 1197 * This is an inaccurate read as the per-cpu deltas may not 1198 * be synchronised. However, given that the system is 1199 * writeback throttled, it is not worth taking the penalty 1200 * of getting an accurate count. At worst, the throttle 1201 * timeout guarantees forward progress. 1202 */ 1203 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1204 READ_ONCE(pgdat->nr_reclaim_start); 1205 1206 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1207 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1208 } 1209 1210 /* possible outcome of pageout() */ 1211 typedef enum { 1212 /* failed to write folio out, folio is locked */ 1213 PAGE_KEEP, 1214 /* move folio to the active list, folio is locked */ 1215 PAGE_ACTIVATE, 1216 /* folio has been sent to the disk successfully, folio is unlocked */ 1217 PAGE_SUCCESS, 1218 /* folio is clean and locked */ 1219 PAGE_CLEAN, 1220 } pageout_t; 1221 1222 /* 1223 * pageout is called by shrink_folio_list() for each dirty folio. 1224 * Calls ->writepage(). 1225 */ 1226 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1227 struct swap_iocb **plug) 1228 { 1229 /* 1230 * If the folio is dirty, only perform writeback if that write 1231 * will be non-blocking. To prevent this allocation from being 1232 * stalled by pagecache activity. But note that there may be 1233 * stalls if we need to run get_block(). We could test 1234 * PagePrivate for that. 1235 * 1236 * If this process is currently in __generic_file_write_iter() against 1237 * this folio's queue, we can perform writeback even if that 1238 * will block. 1239 * 1240 * If the folio is swapcache, write it back even if that would 1241 * block, for some throttling. This happens by accident, because 1242 * swap_backing_dev_info is bust: it doesn't reflect the 1243 * congestion state of the swapdevs. Easy to fix, if needed. 1244 */ 1245 if (!is_page_cache_freeable(folio)) 1246 return PAGE_KEEP; 1247 if (!mapping) { 1248 /* 1249 * Some data journaling orphaned folios can have 1250 * folio->mapping == NULL while being dirty with clean buffers. 1251 */ 1252 if (folio_test_private(folio)) { 1253 if (try_to_free_buffers(folio)) { 1254 folio_clear_dirty(folio); 1255 pr_info("%s: orphaned folio\n", __func__); 1256 return PAGE_CLEAN; 1257 } 1258 } 1259 return PAGE_KEEP; 1260 } 1261 if (mapping->a_ops->writepage == NULL) 1262 return PAGE_ACTIVATE; 1263 1264 if (folio_clear_dirty_for_io(folio)) { 1265 int res; 1266 struct writeback_control wbc = { 1267 .sync_mode = WB_SYNC_NONE, 1268 .nr_to_write = SWAP_CLUSTER_MAX, 1269 .range_start = 0, 1270 .range_end = LLONG_MAX, 1271 .for_reclaim = 1, 1272 .swap_plug = plug, 1273 }; 1274 1275 folio_set_reclaim(folio); 1276 res = mapping->a_ops->writepage(&folio->page, &wbc); 1277 if (res < 0) 1278 handle_write_error(mapping, folio, res); 1279 if (res == AOP_WRITEPAGE_ACTIVATE) { 1280 folio_clear_reclaim(folio); 1281 return PAGE_ACTIVATE; 1282 } 1283 1284 if (!folio_test_writeback(folio)) { 1285 /* synchronous write or broken a_ops? */ 1286 folio_clear_reclaim(folio); 1287 } 1288 trace_mm_vmscan_write_folio(folio); 1289 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1290 return PAGE_SUCCESS; 1291 } 1292 1293 return PAGE_CLEAN; 1294 } 1295 1296 /* 1297 * Same as remove_mapping, but if the folio is removed from the mapping, it 1298 * gets returned with a refcount of 0. 1299 */ 1300 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1301 bool reclaimed, struct mem_cgroup *target_memcg) 1302 { 1303 int refcount; 1304 void *shadow = NULL; 1305 1306 BUG_ON(!folio_test_locked(folio)); 1307 BUG_ON(mapping != folio_mapping(folio)); 1308 1309 if (!folio_test_swapcache(folio)) 1310 spin_lock(&mapping->host->i_lock); 1311 xa_lock_irq(&mapping->i_pages); 1312 /* 1313 * The non racy check for a busy folio. 1314 * 1315 * Must be careful with the order of the tests. When someone has 1316 * a ref to the folio, it may be possible that they dirty it then 1317 * drop the reference. So if the dirty flag is tested before the 1318 * refcount here, then the following race may occur: 1319 * 1320 * get_user_pages(&page); 1321 * [user mapping goes away] 1322 * write_to(page); 1323 * !folio_test_dirty(folio) [good] 1324 * folio_set_dirty(folio); 1325 * folio_put(folio); 1326 * !refcount(folio) [good, discard it] 1327 * 1328 * [oops, our write_to data is lost] 1329 * 1330 * Reversing the order of the tests ensures such a situation cannot 1331 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1332 * load is not satisfied before that of folio->_refcount. 1333 * 1334 * Note that if the dirty flag is always set via folio_mark_dirty, 1335 * and thus under the i_pages lock, then this ordering is not required. 1336 */ 1337 refcount = 1 + folio_nr_pages(folio); 1338 if (!folio_ref_freeze(folio, refcount)) 1339 goto cannot_free; 1340 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1341 if (unlikely(folio_test_dirty(folio))) { 1342 folio_ref_unfreeze(folio, refcount); 1343 goto cannot_free; 1344 } 1345 1346 if (folio_test_swapcache(folio)) { 1347 swp_entry_t swap = folio_swap_entry(folio); 1348 1349 /* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */ 1350 if (reclaimed && !mapping_exiting(mapping)) 1351 shadow = workingset_eviction(folio, target_memcg); 1352 mem_cgroup_swapout(folio, swap); 1353 __delete_from_swap_cache(folio, swap, shadow); 1354 xa_unlock_irq(&mapping->i_pages); 1355 put_swap_folio(folio, swap); 1356 } else { 1357 void (*free_folio)(struct folio *); 1358 1359 free_folio = mapping->a_ops->free_folio; 1360 /* 1361 * Remember a shadow entry for reclaimed file cache in 1362 * order to detect refaults, thus thrashing, later on. 1363 * 1364 * But don't store shadows in an address space that is 1365 * already exiting. This is not just an optimization, 1366 * inode reclaim needs to empty out the radix tree or 1367 * the nodes are lost. Don't plant shadows behind its 1368 * back. 1369 * 1370 * We also don't store shadows for DAX mappings because the 1371 * only page cache folios found in these are zero pages 1372 * covering holes, and because we don't want to mix DAX 1373 * exceptional entries and shadow exceptional entries in the 1374 * same address_space. 1375 */ 1376 if (reclaimed && folio_is_file_lru(folio) && 1377 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1378 shadow = workingset_eviction(folio, target_memcg); 1379 __filemap_remove_folio(folio, shadow); 1380 xa_unlock_irq(&mapping->i_pages); 1381 if (mapping_shrinkable(mapping)) 1382 inode_add_lru(mapping->host); 1383 spin_unlock(&mapping->host->i_lock); 1384 1385 if (free_folio) 1386 free_folio(folio); 1387 } 1388 1389 return 1; 1390 1391 cannot_free: 1392 xa_unlock_irq(&mapping->i_pages); 1393 if (!folio_test_swapcache(folio)) 1394 spin_unlock(&mapping->host->i_lock); 1395 return 0; 1396 } 1397 1398 /** 1399 * remove_mapping() - Attempt to remove a folio from its mapping. 1400 * @mapping: The address space. 1401 * @folio: The folio to remove. 1402 * 1403 * If the folio is dirty, under writeback or if someone else has a ref 1404 * on it, removal will fail. 1405 * Return: The number of pages removed from the mapping. 0 if the folio 1406 * could not be removed. 1407 * Context: The caller should have a single refcount on the folio and 1408 * hold its lock. 1409 */ 1410 long remove_mapping(struct address_space *mapping, struct folio *folio) 1411 { 1412 if (__remove_mapping(mapping, folio, false, NULL)) { 1413 /* 1414 * Unfreezing the refcount with 1 effectively 1415 * drops the pagecache ref for us without requiring another 1416 * atomic operation. 1417 */ 1418 folio_ref_unfreeze(folio, 1); 1419 return folio_nr_pages(folio); 1420 } 1421 return 0; 1422 } 1423 1424 /** 1425 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1426 * @folio: Folio to be returned to an LRU list. 1427 * 1428 * Add previously isolated @folio to appropriate LRU list. 1429 * The folio may still be unevictable for other reasons. 1430 * 1431 * Context: lru_lock must not be held, interrupts must be enabled. 1432 */ 1433 void folio_putback_lru(struct folio *folio) 1434 { 1435 folio_add_lru(folio); 1436 folio_put(folio); /* drop ref from isolate */ 1437 } 1438 1439 enum folio_references { 1440 FOLIOREF_RECLAIM, 1441 FOLIOREF_RECLAIM_CLEAN, 1442 FOLIOREF_KEEP, 1443 FOLIOREF_ACTIVATE, 1444 }; 1445 1446 static enum folio_references folio_check_references(struct folio *folio, 1447 struct scan_control *sc) 1448 { 1449 int referenced_ptes, referenced_folio; 1450 unsigned long vm_flags; 1451 1452 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1453 &vm_flags); 1454 referenced_folio = folio_test_clear_referenced(folio); 1455 1456 /* 1457 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1458 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1459 */ 1460 if (vm_flags & VM_LOCKED) 1461 return FOLIOREF_ACTIVATE; 1462 1463 /* rmap lock contention: rotate */ 1464 if (referenced_ptes == -1) 1465 return FOLIOREF_KEEP; 1466 1467 if (referenced_ptes) { 1468 /* 1469 * All mapped folios start out with page table 1470 * references from the instantiating fault, so we need 1471 * to look twice if a mapped file/anon folio is used more 1472 * than once. 1473 * 1474 * Mark it and spare it for another trip around the 1475 * inactive list. Another page table reference will 1476 * lead to its activation. 1477 * 1478 * Note: the mark is set for activated folios as well 1479 * so that recently deactivated but used folios are 1480 * quickly recovered. 1481 */ 1482 folio_set_referenced(folio); 1483 1484 if (referenced_folio || referenced_ptes > 1) 1485 return FOLIOREF_ACTIVATE; 1486 1487 /* 1488 * Activate file-backed executable folios after first usage. 1489 */ 1490 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1491 return FOLIOREF_ACTIVATE; 1492 1493 return FOLIOREF_KEEP; 1494 } 1495 1496 /* Reclaim if clean, defer dirty folios to writeback */ 1497 if (referenced_folio && folio_is_file_lru(folio)) 1498 return FOLIOREF_RECLAIM_CLEAN; 1499 1500 return FOLIOREF_RECLAIM; 1501 } 1502 1503 /* Check if a folio is dirty or under writeback */ 1504 static void folio_check_dirty_writeback(struct folio *folio, 1505 bool *dirty, bool *writeback) 1506 { 1507 struct address_space *mapping; 1508 1509 /* 1510 * Anonymous folios are not handled by flushers and must be written 1511 * from reclaim context. Do not stall reclaim based on them. 1512 * MADV_FREE anonymous folios are put into inactive file list too. 1513 * They could be mistakenly treated as file lru. So further anon 1514 * test is needed. 1515 */ 1516 if (!folio_is_file_lru(folio) || 1517 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1518 *dirty = false; 1519 *writeback = false; 1520 return; 1521 } 1522 1523 /* By default assume that the folio flags are accurate */ 1524 *dirty = folio_test_dirty(folio); 1525 *writeback = folio_test_writeback(folio); 1526 1527 /* Verify dirty/writeback state if the filesystem supports it */ 1528 if (!folio_test_private(folio)) 1529 return; 1530 1531 mapping = folio_mapping(folio); 1532 if (mapping && mapping->a_ops->is_dirty_writeback) 1533 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1534 } 1535 1536 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1537 { 1538 struct page *target_page; 1539 nodemask_t *allowed_mask; 1540 struct migration_target_control *mtc; 1541 1542 mtc = (struct migration_target_control *)private; 1543 1544 allowed_mask = mtc->nmask; 1545 /* 1546 * make sure we allocate from the target node first also trying to 1547 * demote or reclaim pages from the target node via kswapd if we are 1548 * low on free memory on target node. If we don't do this and if 1549 * we have free memory on the slower(lower) memtier, we would start 1550 * allocating pages from slower(lower) memory tiers without even forcing 1551 * a demotion of cold pages from the target memtier. This can result 1552 * in the kernel placing hot pages in slower(lower) memory tiers. 1553 */ 1554 mtc->nmask = NULL; 1555 mtc->gfp_mask |= __GFP_THISNODE; 1556 target_page = alloc_migration_target(page, (unsigned long)mtc); 1557 if (target_page) 1558 return target_page; 1559 1560 mtc->gfp_mask &= ~__GFP_THISNODE; 1561 mtc->nmask = allowed_mask; 1562 1563 return alloc_migration_target(page, (unsigned long)mtc); 1564 } 1565 1566 /* 1567 * Take folios on @demote_folios and attempt to demote them to another node. 1568 * Folios which are not demoted are left on @demote_folios. 1569 */ 1570 static unsigned int demote_folio_list(struct list_head *demote_folios, 1571 struct pglist_data *pgdat) 1572 { 1573 int target_nid = next_demotion_node(pgdat->node_id); 1574 unsigned int nr_succeeded; 1575 nodemask_t allowed_mask; 1576 1577 struct migration_target_control mtc = { 1578 /* 1579 * Allocate from 'node', or fail quickly and quietly. 1580 * When this happens, 'page' will likely just be discarded 1581 * instead of migrated. 1582 */ 1583 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1584 __GFP_NOMEMALLOC | GFP_NOWAIT, 1585 .nid = target_nid, 1586 .nmask = &allowed_mask 1587 }; 1588 1589 if (list_empty(demote_folios)) 1590 return 0; 1591 1592 if (target_nid == NUMA_NO_NODE) 1593 return 0; 1594 1595 node_get_allowed_targets(pgdat, &allowed_mask); 1596 1597 /* Demotion ignores all cpuset and mempolicy settings */ 1598 migrate_pages(demote_folios, alloc_demote_page, NULL, 1599 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1600 &nr_succeeded); 1601 1602 if (current_is_kswapd()) 1603 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1604 else 1605 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1606 1607 return nr_succeeded; 1608 } 1609 1610 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1611 { 1612 if (gfp_mask & __GFP_FS) 1613 return true; 1614 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1615 return false; 1616 /* 1617 * We can "enter_fs" for swap-cache with only __GFP_IO 1618 * providing this isn't SWP_FS_OPS. 1619 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1620 * but that will never affect SWP_FS_OPS, so the data_race 1621 * is safe. 1622 */ 1623 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1624 } 1625 1626 /* 1627 * shrink_folio_list() returns the number of reclaimed pages 1628 */ 1629 static unsigned int shrink_folio_list(struct list_head *folio_list, 1630 struct pglist_data *pgdat, struct scan_control *sc, 1631 struct reclaim_stat *stat, bool ignore_references) 1632 { 1633 LIST_HEAD(ret_folios); 1634 LIST_HEAD(free_folios); 1635 LIST_HEAD(demote_folios); 1636 unsigned int nr_reclaimed = 0; 1637 unsigned int pgactivate = 0; 1638 bool do_demote_pass; 1639 struct swap_iocb *plug = NULL; 1640 1641 memset(stat, 0, sizeof(*stat)); 1642 cond_resched(); 1643 do_demote_pass = can_demote(pgdat->node_id, sc); 1644 1645 retry: 1646 while (!list_empty(folio_list)) { 1647 struct address_space *mapping; 1648 struct folio *folio; 1649 enum folio_references references = FOLIOREF_RECLAIM; 1650 bool dirty, writeback; 1651 unsigned int nr_pages; 1652 1653 cond_resched(); 1654 1655 folio = lru_to_folio(folio_list); 1656 list_del(&folio->lru); 1657 1658 if (!folio_trylock(folio)) 1659 goto keep; 1660 1661 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1662 1663 nr_pages = folio_nr_pages(folio); 1664 1665 /* Account the number of base pages */ 1666 sc->nr_scanned += nr_pages; 1667 1668 if (unlikely(!folio_evictable(folio))) 1669 goto activate_locked; 1670 1671 if (!sc->may_unmap && folio_mapped(folio)) 1672 goto keep_locked; 1673 1674 /* folio_update_gen() tried to promote this page? */ 1675 if (lru_gen_enabled() && !ignore_references && 1676 folio_mapped(folio) && folio_test_referenced(folio)) 1677 goto keep_locked; 1678 1679 /* 1680 * The number of dirty pages determines if a node is marked 1681 * reclaim_congested. kswapd will stall and start writing 1682 * folios if the tail of the LRU is all dirty unqueued folios. 1683 */ 1684 folio_check_dirty_writeback(folio, &dirty, &writeback); 1685 if (dirty || writeback) 1686 stat->nr_dirty += nr_pages; 1687 1688 if (dirty && !writeback) 1689 stat->nr_unqueued_dirty += nr_pages; 1690 1691 /* 1692 * Treat this folio as congested if folios are cycling 1693 * through the LRU so quickly that the folios marked 1694 * for immediate reclaim are making it to the end of 1695 * the LRU a second time. 1696 */ 1697 if (writeback && folio_test_reclaim(folio)) 1698 stat->nr_congested += nr_pages; 1699 1700 /* 1701 * If a folio at the tail of the LRU is under writeback, there 1702 * are three cases to consider. 1703 * 1704 * 1) If reclaim is encountering an excessive number 1705 * of folios under writeback and this folio has both 1706 * the writeback and reclaim flags set, then it 1707 * indicates that folios are being queued for I/O but 1708 * are being recycled through the LRU before the I/O 1709 * can complete. Waiting on the folio itself risks an 1710 * indefinite stall if it is impossible to writeback 1711 * the folio due to I/O error or disconnected storage 1712 * so instead note that the LRU is being scanned too 1713 * quickly and the caller can stall after the folio 1714 * list has been processed. 1715 * 1716 * 2) Global or new memcg reclaim encounters a folio that is 1717 * not marked for immediate reclaim, or the caller does not 1718 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1719 * not to fs). In this case mark the folio for immediate 1720 * reclaim and continue scanning. 1721 * 1722 * Require may_enter_fs() because we would wait on fs, which 1723 * may not have submitted I/O yet. And the loop driver might 1724 * enter reclaim, and deadlock if it waits on a folio for 1725 * which it is needed to do the write (loop masks off 1726 * __GFP_IO|__GFP_FS for this reason); but more thought 1727 * would probably show more reasons. 1728 * 1729 * 3) Legacy memcg encounters a folio that already has the 1730 * reclaim flag set. memcg does not have any dirty folio 1731 * throttling so we could easily OOM just because too many 1732 * folios are in writeback and there is nothing else to 1733 * reclaim. Wait for the writeback to complete. 1734 * 1735 * In cases 1) and 2) we activate the folios to get them out of 1736 * the way while we continue scanning for clean folios on the 1737 * inactive list and refilling from the active list. The 1738 * observation here is that waiting for disk writes is more 1739 * expensive than potentially causing reloads down the line. 1740 * Since they're marked for immediate reclaim, they won't put 1741 * memory pressure on the cache working set any longer than it 1742 * takes to write them to disk. 1743 */ 1744 if (folio_test_writeback(folio)) { 1745 /* Case 1 above */ 1746 if (current_is_kswapd() && 1747 folio_test_reclaim(folio) && 1748 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1749 stat->nr_immediate += nr_pages; 1750 goto activate_locked; 1751 1752 /* Case 2 above */ 1753 } else if (writeback_throttling_sane(sc) || 1754 !folio_test_reclaim(folio) || 1755 !may_enter_fs(folio, sc->gfp_mask)) { 1756 /* 1757 * This is slightly racy - 1758 * folio_end_writeback() might have 1759 * just cleared the reclaim flag, then 1760 * setting the reclaim flag here ends up 1761 * interpreted as the readahead flag - but 1762 * that does not matter enough to care. 1763 * What we do want is for this folio to 1764 * have the reclaim flag set next time 1765 * memcg reclaim reaches the tests above, 1766 * so it will then wait for writeback to 1767 * avoid OOM; and it's also appropriate 1768 * in global reclaim. 1769 */ 1770 folio_set_reclaim(folio); 1771 stat->nr_writeback += nr_pages; 1772 goto activate_locked; 1773 1774 /* Case 3 above */ 1775 } else { 1776 folio_unlock(folio); 1777 folio_wait_writeback(folio); 1778 /* then go back and try same folio again */ 1779 list_add_tail(&folio->lru, folio_list); 1780 continue; 1781 } 1782 } 1783 1784 if (!ignore_references) 1785 references = folio_check_references(folio, sc); 1786 1787 switch (references) { 1788 case FOLIOREF_ACTIVATE: 1789 goto activate_locked; 1790 case FOLIOREF_KEEP: 1791 stat->nr_ref_keep += nr_pages; 1792 goto keep_locked; 1793 case FOLIOREF_RECLAIM: 1794 case FOLIOREF_RECLAIM_CLEAN: 1795 ; /* try to reclaim the folio below */ 1796 } 1797 1798 /* 1799 * Before reclaiming the folio, try to relocate 1800 * its contents to another node. 1801 */ 1802 if (do_demote_pass && 1803 (thp_migration_supported() || !folio_test_large(folio))) { 1804 list_add(&folio->lru, &demote_folios); 1805 folio_unlock(folio); 1806 continue; 1807 } 1808 1809 /* 1810 * Anonymous process memory has backing store? 1811 * Try to allocate it some swap space here. 1812 * Lazyfree folio could be freed directly 1813 */ 1814 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1815 if (!folio_test_swapcache(folio)) { 1816 if (!(sc->gfp_mask & __GFP_IO)) 1817 goto keep_locked; 1818 if (folio_maybe_dma_pinned(folio)) 1819 goto keep_locked; 1820 if (folio_test_large(folio)) { 1821 /* cannot split folio, skip it */ 1822 if (!can_split_folio(folio, NULL)) 1823 goto activate_locked; 1824 /* 1825 * Split folios without a PMD map right 1826 * away. Chances are some or all of the 1827 * tail pages can be freed without IO. 1828 */ 1829 if (!folio_entire_mapcount(folio) && 1830 split_folio_to_list(folio, 1831 folio_list)) 1832 goto activate_locked; 1833 } 1834 if (!add_to_swap(folio)) { 1835 if (!folio_test_large(folio)) 1836 goto activate_locked_split; 1837 /* Fallback to swap normal pages */ 1838 if (split_folio_to_list(folio, 1839 folio_list)) 1840 goto activate_locked; 1841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1842 count_vm_event(THP_SWPOUT_FALLBACK); 1843 #endif 1844 if (!add_to_swap(folio)) 1845 goto activate_locked_split; 1846 } 1847 } 1848 } else if (folio_test_swapbacked(folio) && 1849 folio_test_large(folio)) { 1850 /* Split shmem folio */ 1851 if (split_folio_to_list(folio, folio_list)) 1852 goto keep_locked; 1853 } 1854 1855 /* 1856 * If the folio was split above, the tail pages will make 1857 * their own pass through this function and be accounted 1858 * then. 1859 */ 1860 if ((nr_pages > 1) && !folio_test_large(folio)) { 1861 sc->nr_scanned -= (nr_pages - 1); 1862 nr_pages = 1; 1863 } 1864 1865 /* 1866 * The folio is mapped into the page tables of one or more 1867 * processes. Try to unmap it here. 1868 */ 1869 if (folio_mapped(folio)) { 1870 enum ttu_flags flags = TTU_BATCH_FLUSH; 1871 bool was_swapbacked = folio_test_swapbacked(folio); 1872 1873 if (folio_test_pmd_mappable(folio)) 1874 flags |= TTU_SPLIT_HUGE_PMD; 1875 1876 try_to_unmap(folio, flags); 1877 if (folio_mapped(folio)) { 1878 stat->nr_unmap_fail += nr_pages; 1879 if (!was_swapbacked && 1880 folio_test_swapbacked(folio)) 1881 stat->nr_lazyfree_fail += nr_pages; 1882 goto activate_locked; 1883 } 1884 } 1885 1886 mapping = folio_mapping(folio); 1887 if (folio_test_dirty(folio)) { 1888 /* 1889 * Only kswapd can writeback filesystem folios 1890 * to avoid risk of stack overflow. But avoid 1891 * injecting inefficient single-folio I/O into 1892 * flusher writeback as much as possible: only 1893 * write folios when we've encountered many 1894 * dirty folios, and when we've already scanned 1895 * the rest of the LRU for clean folios and see 1896 * the same dirty folios again (with the reclaim 1897 * flag set). 1898 */ 1899 if (folio_is_file_lru(folio) && 1900 (!current_is_kswapd() || 1901 !folio_test_reclaim(folio) || 1902 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1903 /* 1904 * Immediately reclaim when written back. 1905 * Similar in principle to deactivate_page() 1906 * except we already have the folio isolated 1907 * and know it's dirty 1908 */ 1909 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1910 nr_pages); 1911 folio_set_reclaim(folio); 1912 1913 goto activate_locked; 1914 } 1915 1916 if (references == FOLIOREF_RECLAIM_CLEAN) 1917 goto keep_locked; 1918 if (!may_enter_fs(folio, sc->gfp_mask)) 1919 goto keep_locked; 1920 if (!sc->may_writepage) 1921 goto keep_locked; 1922 1923 /* 1924 * Folio is dirty. Flush the TLB if a writable entry 1925 * potentially exists to avoid CPU writes after I/O 1926 * starts and then write it out here. 1927 */ 1928 try_to_unmap_flush_dirty(); 1929 switch (pageout(folio, mapping, &plug)) { 1930 case PAGE_KEEP: 1931 goto keep_locked; 1932 case PAGE_ACTIVATE: 1933 goto activate_locked; 1934 case PAGE_SUCCESS: 1935 stat->nr_pageout += nr_pages; 1936 1937 if (folio_test_writeback(folio)) 1938 goto keep; 1939 if (folio_test_dirty(folio)) 1940 goto keep; 1941 1942 /* 1943 * A synchronous write - probably a ramdisk. Go 1944 * ahead and try to reclaim the folio. 1945 */ 1946 if (!folio_trylock(folio)) 1947 goto keep; 1948 if (folio_test_dirty(folio) || 1949 folio_test_writeback(folio)) 1950 goto keep_locked; 1951 mapping = folio_mapping(folio); 1952 fallthrough; 1953 case PAGE_CLEAN: 1954 ; /* try to free the folio below */ 1955 } 1956 } 1957 1958 /* 1959 * If the folio has buffers, try to free the buffer 1960 * mappings associated with this folio. If we succeed 1961 * we try to free the folio as well. 1962 * 1963 * We do this even if the folio is dirty. 1964 * filemap_release_folio() does not perform I/O, but it 1965 * is possible for a folio to have the dirty flag set, 1966 * but it is actually clean (all its buffers are clean). 1967 * This happens if the buffers were written out directly, 1968 * with submit_bh(). ext3 will do this, as well as 1969 * the blockdev mapping. filemap_release_folio() will 1970 * discover that cleanness and will drop the buffers 1971 * and mark the folio clean - it can be freed. 1972 * 1973 * Rarely, folios can have buffers and no ->mapping. 1974 * These are the folios which were not successfully 1975 * invalidated in truncate_cleanup_folio(). We try to 1976 * drop those buffers here and if that worked, and the 1977 * folio is no longer mapped into process address space 1978 * (refcount == 1) it can be freed. Otherwise, leave 1979 * the folio on the LRU so it is swappable. 1980 */ 1981 if (folio_has_private(folio)) { 1982 if (!filemap_release_folio(folio, sc->gfp_mask)) 1983 goto activate_locked; 1984 if (!mapping && folio_ref_count(folio) == 1) { 1985 folio_unlock(folio); 1986 if (folio_put_testzero(folio)) 1987 goto free_it; 1988 else { 1989 /* 1990 * rare race with speculative reference. 1991 * the speculative reference will free 1992 * this folio shortly, so we may 1993 * increment nr_reclaimed here (and 1994 * leave it off the LRU). 1995 */ 1996 nr_reclaimed += nr_pages; 1997 continue; 1998 } 1999 } 2000 } 2001 2002 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2003 /* follow __remove_mapping for reference */ 2004 if (!folio_ref_freeze(folio, 1)) 2005 goto keep_locked; 2006 /* 2007 * The folio has only one reference left, which is 2008 * from the isolation. After the caller puts the 2009 * folio back on the lru and drops the reference, the 2010 * folio will be freed anyway. It doesn't matter 2011 * which lru it goes on. So we don't bother checking 2012 * the dirty flag here. 2013 */ 2014 count_vm_events(PGLAZYFREED, nr_pages); 2015 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2016 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2017 sc->target_mem_cgroup)) 2018 goto keep_locked; 2019 2020 folio_unlock(folio); 2021 free_it: 2022 /* 2023 * Folio may get swapped out as a whole, need to account 2024 * all pages in it. 2025 */ 2026 nr_reclaimed += nr_pages; 2027 2028 /* 2029 * Is there need to periodically free_folio_list? It would 2030 * appear not as the counts should be low 2031 */ 2032 if (unlikely(folio_test_large(folio))) 2033 destroy_large_folio(folio); 2034 else 2035 list_add(&folio->lru, &free_folios); 2036 continue; 2037 2038 activate_locked_split: 2039 /* 2040 * The tail pages that are failed to add into swap cache 2041 * reach here. Fixup nr_scanned and nr_pages. 2042 */ 2043 if (nr_pages > 1) { 2044 sc->nr_scanned -= (nr_pages - 1); 2045 nr_pages = 1; 2046 } 2047 activate_locked: 2048 /* Not a candidate for swapping, so reclaim swap space. */ 2049 if (folio_test_swapcache(folio) && 2050 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2051 folio_free_swap(folio); 2052 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2053 if (!folio_test_mlocked(folio)) { 2054 int type = folio_is_file_lru(folio); 2055 folio_set_active(folio); 2056 stat->nr_activate[type] += nr_pages; 2057 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2058 } 2059 keep_locked: 2060 folio_unlock(folio); 2061 keep: 2062 list_add(&folio->lru, &ret_folios); 2063 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2064 folio_test_unevictable(folio), folio); 2065 } 2066 /* 'folio_list' is always empty here */ 2067 2068 /* Migrate folios selected for demotion */ 2069 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2070 /* Folios that could not be demoted are still in @demote_folios */ 2071 if (!list_empty(&demote_folios)) { 2072 /* Folios which weren't demoted go back on @folio_list for retry: */ 2073 list_splice_init(&demote_folios, folio_list); 2074 do_demote_pass = false; 2075 goto retry; 2076 } 2077 2078 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2079 2080 mem_cgroup_uncharge_list(&free_folios); 2081 try_to_unmap_flush(); 2082 free_unref_page_list(&free_folios); 2083 2084 list_splice(&ret_folios, folio_list); 2085 count_vm_events(PGACTIVATE, pgactivate); 2086 2087 if (plug) 2088 swap_write_unplug(plug); 2089 return nr_reclaimed; 2090 } 2091 2092 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2093 struct list_head *folio_list) 2094 { 2095 struct scan_control sc = { 2096 .gfp_mask = GFP_KERNEL, 2097 .may_unmap = 1, 2098 }; 2099 struct reclaim_stat stat; 2100 unsigned int nr_reclaimed; 2101 struct folio *folio, *next; 2102 LIST_HEAD(clean_folios); 2103 unsigned int noreclaim_flag; 2104 2105 list_for_each_entry_safe(folio, next, folio_list, lru) { 2106 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2107 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2108 !folio_test_unevictable(folio)) { 2109 folio_clear_active(folio); 2110 list_move(&folio->lru, &clean_folios); 2111 } 2112 } 2113 2114 /* 2115 * We should be safe here since we are only dealing with file pages and 2116 * we are not kswapd and therefore cannot write dirty file pages. But 2117 * call memalloc_noreclaim_save() anyway, just in case these conditions 2118 * change in the future. 2119 */ 2120 noreclaim_flag = memalloc_noreclaim_save(); 2121 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2122 &stat, true); 2123 memalloc_noreclaim_restore(noreclaim_flag); 2124 2125 list_splice(&clean_folios, folio_list); 2126 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2127 -(long)nr_reclaimed); 2128 /* 2129 * Since lazyfree pages are isolated from file LRU from the beginning, 2130 * they will rotate back to anonymous LRU in the end if it failed to 2131 * discard so isolated count will be mismatched. 2132 * Compensate the isolated count for both LRU lists. 2133 */ 2134 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2135 stat.nr_lazyfree_fail); 2136 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2137 -(long)stat.nr_lazyfree_fail); 2138 return nr_reclaimed; 2139 } 2140 2141 /* 2142 * Update LRU sizes after isolating pages. The LRU size updates must 2143 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2144 */ 2145 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2146 enum lru_list lru, unsigned long *nr_zone_taken) 2147 { 2148 int zid; 2149 2150 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2151 if (!nr_zone_taken[zid]) 2152 continue; 2153 2154 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2155 } 2156 2157 } 2158 2159 /* 2160 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2161 * 2162 * lruvec->lru_lock is heavily contended. Some of the functions that 2163 * shrink the lists perform better by taking out a batch of pages 2164 * and working on them outside the LRU lock. 2165 * 2166 * For pagecache intensive workloads, this function is the hottest 2167 * spot in the kernel (apart from copy_*_user functions). 2168 * 2169 * Lru_lock must be held before calling this function. 2170 * 2171 * @nr_to_scan: The number of eligible pages to look through on the list. 2172 * @lruvec: The LRU vector to pull pages from. 2173 * @dst: The temp list to put pages on to. 2174 * @nr_scanned: The number of pages that were scanned. 2175 * @sc: The scan_control struct for this reclaim session 2176 * @lru: LRU list id for isolating 2177 * 2178 * returns how many pages were moved onto *@dst. 2179 */ 2180 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2181 struct lruvec *lruvec, struct list_head *dst, 2182 unsigned long *nr_scanned, struct scan_control *sc, 2183 enum lru_list lru) 2184 { 2185 struct list_head *src = &lruvec->lists[lru]; 2186 unsigned long nr_taken = 0; 2187 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2188 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2189 unsigned long skipped = 0; 2190 unsigned long scan, total_scan, nr_pages; 2191 LIST_HEAD(folios_skipped); 2192 2193 total_scan = 0; 2194 scan = 0; 2195 while (scan < nr_to_scan && !list_empty(src)) { 2196 struct list_head *move_to = src; 2197 struct folio *folio; 2198 2199 folio = lru_to_folio(src); 2200 prefetchw_prev_lru_folio(folio, src, flags); 2201 2202 nr_pages = folio_nr_pages(folio); 2203 total_scan += nr_pages; 2204 2205 if (folio_zonenum(folio) > sc->reclaim_idx) { 2206 nr_skipped[folio_zonenum(folio)] += nr_pages; 2207 move_to = &folios_skipped; 2208 goto move; 2209 } 2210 2211 /* 2212 * Do not count skipped folios because that makes the function 2213 * return with no isolated folios if the LRU mostly contains 2214 * ineligible folios. This causes the VM to not reclaim any 2215 * folios, triggering a premature OOM. 2216 * Account all pages in a folio. 2217 */ 2218 scan += nr_pages; 2219 2220 if (!folio_test_lru(folio)) 2221 goto move; 2222 if (!sc->may_unmap && folio_mapped(folio)) 2223 goto move; 2224 2225 /* 2226 * Be careful not to clear the lru flag until after we're 2227 * sure the folio is not being freed elsewhere -- the 2228 * folio release code relies on it. 2229 */ 2230 if (unlikely(!folio_try_get(folio))) 2231 goto move; 2232 2233 if (!folio_test_clear_lru(folio)) { 2234 /* Another thread is already isolating this folio */ 2235 folio_put(folio); 2236 goto move; 2237 } 2238 2239 nr_taken += nr_pages; 2240 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2241 move_to = dst; 2242 move: 2243 list_move(&folio->lru, move_to); 2244 } 2245 2246 /* 2247 * Splice any skipped folios to the start of the LRU list. Note that 2248 * this disrupts the LRU order when reclaiming for lower zones but 2249 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2250 * scanning would soon rescan the same folios to skip and waste lots 2251 * of cpu cycles. 2252 */ 2253 if (!list_empty(&folios_skipped)) { 2254 int zid; 2255 2256 list_splice(&folios_skipped, src); 2257 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2258 if (!nr_skipped[zid]) 2259 continue; 2260 2261 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2262 skipped += nr_skipped[zid]; 2263 } 2264 } 2265 *nr_scanned = total_scan; 2266 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2267 total_scan, skipped, nr_taken, 2268 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2269 update_lru_sizes(lruvec, lru, nr_zone_taken); 2270 return nr_taken; 2271 } 2272 2273 /** 2274 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2275 * @folio: Folio to isolate from its LRU list. 2276 * 2277 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2278 * corresponding to whatever LRU list the folio was on. 2279 * 2280 * The folio will have its LRU flag cleared. If it was found on the 2281 * active list, it will have the Active flag set. If it was found on the 2282 * unevictable list, it will have the Unevictable flag set. These flags 2283 * may need to be cleared by the caller before letting the page go. 2284 * 2285 * Context: 2286 * 2287 * (1) Must be called with an elevated refcount on the folio. This is a 2288 * fundamental difference from isolate_lru_folios() (which is called 2289 * without a stable reference). 2290 * (2) The lru_lock must not be held. 2291 * (3) Interrupts must be enabled. 2292 * 2293 * Return: 0 if the folio was removed from an LRU list. 2294 * -EBUSY if the folio was not on an LRU list. 2295 */ 2296 int folio_isolate_lru(struct folio *folio) 2297 { 2298 int ret = -EBUSY; 2299 2300 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2301 2302 if (folio_test_clear_lru(folio)) { 2303 struct lruvec *lruvec; 2304 2305 folio_get(folio); 2306 lruvec = folio_lruvec_lock_irq(folio); 2307 lruvec_del_folio(lruvec, folio); 2308 unlock_page_lruvec_irq(lruvec); 2309 ret = 0; 2310 } 2311 2312 return ret; 2313 } 2314 2315 /* 2316 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2317 * then get rescheduled. When there are massive number of tasks doing page 2318 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2319 * the LRU list will go small and be scanned faster than necessary, leading to 2320 * unnecessary swapping, thrashing and OOM. 2321 */ 2322 static int too_many_isolated(struct pglist_data *pgdat, int file, 2323 struct scan_control *sc) 2324 { 2325 unsigned long inactive, isolated; 2326 bool too_many; 2327 2328 if (current_is_kswapd()) 2329 return 0; 2330 2331 if (!writeback_throttling_sane(sc)) 2332 return 0; 2333 2334 if (file) { 2335 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2336 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2337 } else { 2338 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2339 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2340 } 2341 2342 /* 2343 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2344 * won't get blocked by normal direct-reclaimers, forming a circular 2345 * deadlock. 2346 */ 2347 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2348 inactive >>= 3; 2349 2350 too_many = isolated > inactive; 2351 2352 /* Wake up tasks throttled due to too_many_isolated. */ 2353 if (!too_many) 2354 wake_throttle_isolated(pgdat); 2355 2356 return too_many; 2357 } 2358 2359 /* 2360 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2361 * On return, @list is reused as a list of folios to be freed by the caller. 2362 * 2363 * Returns the number of pages moved to the given lruvec. 2364 */ 2365 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2366 struct list_head *list) 2367 { 2368 int nr_pages, nr_moved = 0; 2369 LIST_HEAD(folios_to_free); 2370 2371 while (!list_empty(list)) { 2372 struct folio *folio = lru_to_folio(list); 2373 2374 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2375 list_del(&folio->lru); 2376 if (unlikely(!folio_evictable(folio))) { 2377 spin_unlock_irq(&lruvec->lru_lock); 2378 folio_putback_lru(folio); 2379 spin_lock_irq(&lruvec->lru_lock); 2380 continue; 2381 } 2382 2383 /* 2384 * The folio_set_lru needs to be kept here for list integrity. 2385 * Otherwise: 2386 * #0 move_folios_to_lru #1 release_pages 2387 * if (!folio_put_testzero()) 2388 * if (folio_put_testzero()) 2389 * !lru //skip lru_lock 2390 * folio_set_lru() 2391 * list_add(&folio->lru,) 2392 * list_add(&folio->lru,) 2393 */ 2394 folio_set_lru(folio); 2395 2396 if (unlikely(folio_put_testzero(folio))) { 2397 __folio_clear_lru_flags(folio); 2398 2399 if (unlikely(folio_test_large(folio))) { 2400 spin_unlock_irq(&lruvec->lru_lock); 2401 destroy_large_folio(folio); 2402 spin_lock_irq(&lruvec->lru_lock); 2403 } else 2404 list_add(&folio->lru, &folios_to_free); 2405 2406 continue; 2407 } 2408 2409 /* 2410 * All pages were isolated from the same lruvec (and isolation 2411 * inhibits memcg migration). 2412 */ 2413 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2414 lruvec_add_folio(lruvec, folio); 2415 nr_pages = folio_nr_pages(folio); 2416 nr_moved += nr_pages; 2417 if (folio_test_active(folio)) 2418 workingset_age_nonresident(lruvec, nr_pages); 2419 } 2420 2421 /* 2422 * To save our caller's stack, now use input list for pages to free. 2423 */ 2424 list_splice(&folios_to_free, list); 2425 2426 return nr_moved; 2427 } 2428 2429 /* 2430 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2431 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2432 * we should not throttle. Otherwise it is safe to do so. 2433 */ 2434 static int current_may_throttle(void) 2435 { 2436 return !(current->flags & PF_LOCAL_THROTTLE); 2437 } 2438 2439 /* 2440 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2441 * of reclaimed pages 2442 */ 2443 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2444 struct lruvec *lruvec, struct scan_control *sc, 2445 enum lru_list lru) 2446 { 2447 LIST_HEAD(folio_list); 2448 unsigned long nr_scanned; 2449 unsigned int nr_reclaimed = 0; 2450 unsigned long nr_taken; 2451 struct reclaim_stat stat; 2452 bool file = is_file_lru(lru); 2453 enum vm_event_item item; 2454 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2455 bool stalled = false; 2456 2457 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2458 if (stalled) 2459 return 0; 2460 2461 /* wait a bit for the reclaimer. */ 2462 stalled = true; 2463 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2464 2465 /* We are about to die and free our memory. Return now. */ 2466 if (fatal_signal_pending(current)) 2467 return SWAP_CLUSTER_MAX; 2468 } 2469 2470 lru_add_drain(); 2471 2472 spin_lock_irq(&lruvec->lru_lock); 2473 2474 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2475 &nr_scanned, sc, lru); 2476 2477 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2478 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2479 if (!cgroup_reclaim(sc)) 2480 __count_vm_events(item, nr_scanned); 2481 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2482 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2483 2484 spin_unlock_irq(&lruvec->lru_lock); 2485 2486 if (nr_taken == 0) 2487 return 0; 2488 2489 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2490 2491 spin_lock_irq(&lruvec->lru_lock); 2492 move_folios_to_lru(lruvec, &folio_list); 2493 2494 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2495 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2496 if (!cgroup_reclaim(sc)) 2497 __count_vm_events(item, nr_reclaimed); 2498 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2499 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2500 spin_unlock_irq(&lruvec->lru_lock); 2501 2502 lru_note_cost(lruvec, file, stat.nr_pageout); 2503 mem_cgroup_uncharge_list(&folio_list); 2504 free_unref_page_list(&folio_list); 2505 2506 /* 2507 * If dirty folios are scanned that are not queued for IO, it 2508 * implies that flushers are not doing their job. This can 2509 * happen when memory pressure pushes dirty folios to the end of 2510 * the LRU before the dirty limits are breached and the dirty 2511 * data has expired. It can also happen when the proportion of 2512 * dirty folios grows not through writes but through memory 2513 * pressure reclaiming all the clean cache. And in some cases, 2514 * the flushers simply cannot keep up with the allocation 2515 * rate. Nudge the flusher threads in case they are asleep. 2516 */ 2517 if (stat.nr_unqueued_dirty == nr_taken) 2518 wakeup_flusher_threads(WB_REASON_VMSCAN); 2519 2520 sc->nr.dirty += stat.nr_dirty; 2521 sc->nr.congested += stat.nr_congested; 2522 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2523 sc->nr.writeback += stat.nr_writeback; 2524 sc->nr.immediate += stat.nr_immediate; 2525 sc->nr.taken += nr_taken; 2526 if (file) 2527 sc->nr.file_taken += nr_taken; 2528 2529 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2530 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2531 return nr_reclaimed; 2532 } 2533 2534 /* 2535 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2536 * 2537 * We move them the other way if the folio is referenced by one or more 2538 * processes. 2539 * 2540 * If the folios are mostly unmapped, the processing is fast and it is 2541 * appropriate to hold lru_lock across the whole operation. But if 2542 * the folios are mapped, the processing is slow (folio_referenced()), so 2543 * we should drop lru_lock around each folio. It's impossible to balance 2544 * this, so instead we remove the folios from the LRU while processing them. 2545 * It is safe to rely on the active flag against the non-LRU folios in here 2546 * because nobody will play with that bit on a non-LRU folio. 2547 * 2548 * The downside is that we have to touch folio->_refcount against each folio. 2549 * But we had to alter folio->flags anyway. 2550 */ 2551 static void shrink_active_list(unsigned long nr_to_scan, 2552 struct lruvec *lruvec, 2553 struct scan_control *sc, 2554 enum lru_list lru) 2555 { 2556 unsigned long nr_taken; 2557 unsigned long nr_scanned; 2558 unsigned long vm_flags; 2559 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2560 LIST_HEAD(l_active); 2561 LIST_HEAD(l_inactive); 2562 unsigned nr_deactivate, nr_activate; 2563 unsigned nr_rotated = 0; 2564 int file = is_file_lru(lru); 2565 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2566 2567 lru_add_drain(); 2568 2569 spin_lock_irq(&lruvec->lru_lock); 2570 2571 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2572 &nr_scanned, sc, lru); 2573 2574 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2575 2576 if (!cgroup_reclaim(sc)) 2577 __count_vm_events(PGREFILL, nr_scanned); 2578 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2579 2580 spin_unlock_irq(&lruvec->lru_lock); 2581 2582 while (!list_empty(&l_hold)) { 2583 struct folio *folio; 2584 2585 cond_resched(); 2586 folio = lru_to_folio(&l_hold); 2587 list_del(&folio->lru); 2588 2589 if (unlikely(!folio_evictable(folio))) { 2590 folio_putback_lru(folio); 2591 continue; 2592 } 2593 2594 if (unlikely(buffer_heads_over_limit)) { 2595 if (folio_test_private(folio) && folio_trylock(folio)) { 2596 if (folio_test_private(folio)) 2597 filemap_release_folio(folio, 0); 2598 folio_unlock(folio); 2599 } 2600 } 2601 2602 /* Referenced or rmap lock contention: rotate */ 2603 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2604 &vm_flags) != 0) { 2605 /* 2606 * Identify referenced, file-backed active folios and 2607 * give them one more trip around the active list. So 2608 * that executable code get better chances to stay in 2609 * memory under moderate memory pressure. Anon folios 2610 * are not likely to be evicted by use-once streaming 2611 * IO, plus JVM can create lots of anon VM_EXEC folios, 2612 * so we ignore them here. 2613 */ 2614 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2615 nr_rotated += folio_nr_pages(folio); 2616 list_add(&folio->lru, &l_active); 2617 continue; 2618 } 2619 } 2620 2621 folio_clear_active(folio); /* we are de-activating */ 2622 folio_set_workingset(folio); 2623 list_add(&folio->lru, &l_inactive); 2624 } 2625 2626 /* 2627 * Move folios back to the lru list. 2628 */ 2629 spin_lock_irq(&lruvec->lru_lock); 2630 2631 nr_activate = move_folios_to_lru(lruvec, &l_active); 2632 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2633 /* Keep all free folios in l_active list */ 2634 list_splice(&l_inactive, &l_active); 2635 2636 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2637 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2638 2639 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2640 spin_unlock_irq(&lruvec->lru_lock); 2641 2642 mem_cgroup_uncharge_list(&l_active); 2643 free_unref_page_list(&l_active); 2644 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2645 nr_deactivate, nr_rotated, sc->priority, file); 2646 } 2647 2648 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2649 struct pglist_data *pgdat) 2650 { 2651 struct reclaim_stat dummy_stat; 2652 unsigned int nr_reclaimed; 2653 struct folio *folio; 2654 struct scan_control sc = { 2655 .gfp_mask = GFP_KERNEL, 2656 .may_writepage = 1, 2657 .may_unmap = 1, 2658 .may_swap = 1, 2659 .no_demotion = 1, 2660 }; 2661 2662 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2663 while (!list_empty(folio_list)) { 2664 folio = lru_to_folio(folio_list); 2665 list_del(&folio->lru); 2666 folio_putback_lru(folio); 2667 } 2668 2669 return nr_reclaimed; 2670 } 2671 2672 unsigned long reclaim_pages(struct list_head *folio_list) 2673 { 2674 int nid; 2675 unsigned int nr_reclaimed = 0; 2676 LIST_HEAD(node_folio_list); 2677 unsigned int noreclaim_flag; 2678 2679 if (list_empty(folio_list)) 2680 return nr_reclaimed; 2681 2682 noreclaim_flag = memalloc_noreclaim_save(); 2683 2684 nid = folio_nid(lru_to_folio(folio_list)); 2685 do { 2686 struct folio *folio = lru_to_folio(folio_list); 2687 2688 if (nid == folio_nid(folio)) { 2689 folio_clear_active(folio); 2690 list_move(&folio->lru, &node_folio_list); 2691 continue; 2692 } 2693 2694 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2695 nid = folio_nid(lru_to_folio(folio_list)); 2696 } while (!list_empty(folio_list)); 2697 2698 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2699 2700 memalloc_noreclaim_restore(noreclaim_flag); 2701 2702 return nr_reclaimed; 2703 } 2704 2705 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2706 struct lruvec *lruvec, struct scan_control *sc) 2707 { 2708 if (is_active_lru(lru)) { 2709 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2710 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2711 else 2712 sc->skipped_deactivate = 1; 2713 return 0; 2714 } 2715 2716 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2717 } 2718 2719 /* 2720 * The inactive anon list should be small enough that the VM never has 2721 * to do too much work. 2722 * 2723 * The inactive file list should be small enough to leave most memory 2724 * to the established workingset on the scan-resistant active list, 2725 * but large enough to avoid thrashing the aggregate readahead window. 2726 * 2727 * Both inactive lists should also be large enough that each inactive 2728 * folio has a chance to be referenced again before it is reclaimed. 2729 * 2730 * If that fails and refaulting is observed, the inactive list grows. 2731 * 2732 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2733 * on this LRU, maintained by the pageout code. An inactive_ratio 2734 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2735 * 2736 * total target max 2737 * memory ratio inactive 2738 * ------------------------------------- 2739 * 10MB 1 5MB 2740 * 100MB 1 50MB 2741 * 1GB 3 250MB 2742 * 10GB 10 0.9GB 2743 * 100GB 31 3GB 2744 * 1TB 101 10GB 2745 * 10TB 320 32GB 2746 */ 2747 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2748 { 2749 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2750 unsigned long inactive, active; 2751 unsigned long inactive_ratio; 2752 unsigned long gb; 2753 2754 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2755 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2756 2757 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2758 if (gb) 2759 inactive_ratio = int_sqrt(10 * gb); 2760 else 2761 inactive_ratio = 1; 2762 2763 return inactive * inactive_ratio < active; 2764 } 2765 2766 enum scan_balance { 2767 SCAN_EQUAL, 2768 SCAN_FRACT, 2769 SCAN_ANON, 2770 SCAN_FILE, 2771 }; 2772 2773 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2774 { 2775 unsigned long file; 2776 struct lruvec *target_lruvec; 2777 2778 if (lru_gen_enabled()) 2779 return; 2780 2781 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2782 2783 /* 2784 * Flush the memory cgroup stats, so that we read accurate per-memcg 2785 * lruvec stats for heuristics. 2786 */ 2787 mem_cgroup_flush_stats(); 2788 2789 /* 2790 * Determine the scan balance between anon and file LRUs. 2791 */ 2792 spin_lock_irq(&target_lruvec->lru_lock); 2793 sc->anon_cost = target_lruvec->anon_cost; 2794 sc->file_cost = target_lruvec->file_cost; 2795 spin_unlock_irq(&target_lruvec->lru_lock); 2796 2797 /* 2798 * Target desirable inactive:active list ratios for the anon 2799 * and file LRU lists. 2800 */ 2801 if (!sc->force_deactivate) { 2802 unsigned long refaults; 2803 2804 /* 2805 * When refaults are being observed, it means a new 2806 * workingset is being established. Deactivate to get 2807 * rid of any stale active pages quickly. 2808 */ 2809 refaults = lruvec_page_state(target_lruvec, 2810 WORKINGSET_ACTIVATE_ANON); 2811 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2812 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2813 sc->may_deactivate |= DEACTIVATE_ANON; 2814 else 2815 sc->may_deactivate &= ~DEACTIVATE_ANON; 2816 2817 refaults = lruvec_page_state(target_lruvec, 2818 WORKINGSET_ACTIVATE_FILE); 2819 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2820 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2821 sc->may_deactivate |= DEACTIVATE_FILE; 2822 else 2823 sc->may_deactivate &= ~DEACTIVATE_FILE; 2824 } else 2825 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2826 2827 /* 2828 * If we have plenty of inactive file pages that aren't 2829 * thrashing, try to reclaim those first before touching 2830 * anonymous pages. 2831 */ 2832 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2833 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2834 sc->cache_trim_mode = 1; 2835 else 2836 sc->cache_trim_mode = 0; 2837 2838 /* 2839 * Prevent the reclaimer from falling into the cache trap: as 2840 * cache pages start out inactive, every cache fault will tip 2841 * the scan balance towards the file LRU. And as the file LRU 2842 * shrinks, so does the window for rotation from references. 2843 * This means we have a runaway feedback loop where a tiny 2844 * thrashing file LRU becomes infinitely more attractive than 2845 * anon pages. Try to detect this based on file LRU size. 2846 */ 2847 if (!cgroup_reclaim(sc)) { 2848 unsigned long total_high_wmark = 0; 2849 unsigned long free, anon; 2850 int z; 2851 2852 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2853 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2854 node_page_state(pgdat, NR_INACTIVE_FILE); 2855 2856 for (z = 0; z < MAX_NR_ZONES; z++) { 2857 struct zone *zone = &pgdat->node_zones[z]; 2858 2859 if (!managed_zone(zone)) 2860 continue; 2861 2862 total_high_wmark += high_wmark_pages(zone); 2863 } 2864 2865 /* 2866 * Consider anon: if that's low too, this isn't a 2867 * runaway file reclaim problem, but rather just 2868 * extreme pressure. Reclaim as per usual then. 2869 */ 2870 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2871 2872 sc->file_is_tiny = 2873 file + free <= total_high_wmark && 2874 !(sc->may_deactivate & DEACTIVATE_ANON) && 2875 anon >> sc->priority; 2876 } 2877 } 2878 2879 /* 2880 * Determine how aggressively the anon and file LRU lists should be 2881 * scanned. 2882 * 2883 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2884 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2885 */ 2886 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2887 unsigned long *nr) 2888 { 2889 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2890 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2891 unsigned long anon_cost, file_cost, total_cost; 2892 int swappiness = mem_cgroup_swappiness(memcg); 2893 u64 fraction[ANON_AND_FILE]; 2894 u64 denominator = 0; /* gcc */ 2895 enum scan_balance scan_balance; 2896 unsigned long ap, fp; 2897 enum lru_list lru; 2898 2899 /* If we have no swap space, do not bother scanning anon folios. */ 2900 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2901 scan_balance = SCAN_FILE; 2902 goto out; 2903 } 2904 2905 /* 2906 * Global reclaim will swap to prevent OOM even with no 2907 * swappiness, but memcg users want to use this knob to 2908 * disable swapping for individual groups completely when 2909 * using the memory controller's swap limit feature would be 2910 * too expensive. 2911 */ 2912 if (cgroup_reclaim(sc) && !swappiness) { 2913 scan_balance = SCAN_FILE; 2914 goto out; 2915 } 2916 2917 /* 2918 * Do not apply any pressure balancing cleverness when the 2919 * system is close to OOM, scan both anon and file equally 2920 * (unless the swappiness setting disagrees with swapping). 2921 */ 2922 if (!sc->priority && swappiness) { 2923 scan_balance = SCAN_EQUAL; 2924 goto out; 2925 } 2926 2927 /* 2928 * If the system is almost out of file pages, force-scan anon. 2929 */ 2930 if (sc->file_is_tiny) { 2931 scan_balance = SCAN_ANON; 2932 goto out; 2933 } 2934 2935 /* 2936 * If there is enough inactive page cache, we do not reclaim 2937 * anything from the anonymous working right now. 2938 */ 2939 if (sc->cache_trim_mode) { 2940 scan_balance = SCAN_FILE; 2941 goto out; 2942 } 2943 2944 scan_balance = SCAN_FRACT; 2945 /* 2946 * Calculate the pressure balance between anon and file pages. 2947 * 2948 * The amount of pressure we put on each LRU is inversely 2949 * proportional to the cost of reclaiming each list, as 2950 * determined by the share of pages that are refaulting, times 2951 * the relative IO cost of bringing back a swapped out 2952 * anonymous page vs reloading a filesystem page (swappiness). 2953 * 2954 * Although we limit that influence to ensure no list gets 2955 * left behind completely: at least a third of the pressure is 2956 * applied, before swappiness. 2957 * 2958 * With swappiness at 100, anon and file have equal IO cost. 2959 */ 2960 total_cost = sc->anon_cost + sc->file_cost; 2961 anon_cost = total_cost + sc->anon_cost; 2962 file_cost = total_cost + sc->file_cost; 2963 total_cost = anon_cost + file_cost; 2964 2965 ap = swappiness * (total_cost + 1); 2966 ap /= anon_cost + 1; 2967 2968 fp = (200 - swappiness) * (total_cost + 1); 2969 fp /= file_cost + 1; 2970 2971 fraction[0] = ap; 2972 fraction[1] = fp; 2973 denominator = ap + fp; 2974 out: 2975 for_each_evictable_lru(lru) { 2976 int file = is_file_lru(lru); 2977 unsigned long lruvec_size; 2978 unsigned long low, min; 2979 unsigned long scan; 2980 2981 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2982 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2983 &min, &low); 2984 2985 if (min || low) { 2986 /* 2987 * Scale a cgroup's reclaim pressure by proportioning 2988 * its current usage to its memory.low or memory.min 2989 * setting. 2990 * 2991 * This is important, as otherwise scanning aggression 2992 * becomes extremely binary -- from nothing as we 2993 * approach the memory protection threshold, to totally 2994 * nominal as we exceed it. This results in requiring 2995 * setting extremely liberal protection thresholds. It 2996 * also means we simply get no protection at all if we 2997 * set it too low, which is not ideal. 2998 * 2999 * If there is any protection in place, we reduce scan 3000 * pressure by how much of the total memory used is 3001 * within protection thresholds. 3002 * 3003 * There is one special case: in the first reclaim pass, 3004 * we skip over all groups that are within their low 3005 * protection. If that fails to reclaim enough pages to 3006 * satisfy the reclaim goal, we come back and override 3007 * the best-effort low protection. However, we still 3008 * ideally want to honor how well-behaved groups are in 3009 * that case instead of simply punishing them all 3010 * equally. As such, we reclaim them based on how much 3011 * memory they are using, reducing the scan pressure 3012 * again by how much of the total memory used is under 3013 * hard protection. 3014 */ 3015 unsigned long cgroup_size = mem_cgroup_size(memcg); 3016 unsigned long protection; 3017 3018 /* memory.low scaling, make sure we retry before OOM */ 3019 if (!sc->memcg_low_reclaim && low > min) { 3020 protection = low; 3021 sc->memcg_low_skipped = 1; 3022 } else { 3023 protection = min; 3024 } 3025 3026 /* Avoid TOCTOU with earlier protection check */ 3027 cgroup_size = max(cgroup_size, protection); 3028 3029 scan = lruvec_size - lruvec_size * protection / 3030 (cgroup_size + 1); 3031 3032 /* 3033 * Minimally target SWAP_CLUSTER_MAX pages to keep 3034 * reclaim moving forwards, avoiding decrementing 3035 * sc->priority further than desirable. 3036 */ 3037 scan = max(scan, SWAP_CLUSTER_MAX); 3038 } else { 3039 scan = lruvec_size; 3040 } 3041 3042 scan >>= sc->priority; 3043 3044 /* 3045 * If the cgroup's already been deleted, make sure to 3046 * scrape out the remaining cache. 3047 */ 3048 if (!scan && !mem_cgroup_online(memcg)) 3049 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3050 3051 switch (scan_balance) { 3052 case SCAN_EQUAL: 3053 /* Scan lists relative to size */ 3054 break; 3055 case SCAN_FRACT: 3056 /* 3057 * Scan types proportional to swappiness and 3058 * their relative recent reclaim efficiency. 3059 * Make sure we don't miss the last page on 3060 * the offlined memory cgroups because of a 3061 * round-off error. 3062 */ 3063 scan = mem_cgroup_online(memcg) ? 3064 div64_u64(scan * fraction[file], denominator) : 3065 DIV64_U64_ROUND_UP(scan * fraction[file], 3066 denominator); 3067 break; 3068 case SCAN_FILE: 3069 case SCAN_ANON: 3070 /* Scan one type exclusively */ 3071 if ((scan_balance == SCAN_FILE) != file) 3072 scan = 0; 3073 break; 3074 default: 3075 /* Look ma, no brain */ 3076 BUG(); 3077 } 3078 3079 nr[lru] = scan; 3080 } 3081 } 3082 3083 /* 3084 * Anonymous LRU management is a waste if there is 3085 * ultimately no way to reclaim the memory. 3086 */ 3087 static bool can_age_anon_pages(struct pglist_data *pgdat, 3088 struct scan_control *sc) 3089 { 3090 /* Aging the anon LRU is valuable if swap is present: */ 3091 if (total_swap_pages > 0) 3092 return true; 3093 3094 /* Also valuable if anon pages can be demoted: */ 3095 return can_demote(pgdat->node_id, sc); 3096 } 3097 3098 #ifdef CONFIG_LRU_GEN 3099 3100 #ifdef CONFIG_LRU_GEN_ENABLED 3101 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3102 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3103 #else 3104 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3105 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3106 #endif 3107 3108 /****************************************************************************** 3109 * shorthand helpers 3110 ******************************************************************************/ 3111 3112 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3113 3114 #define DEFINE_MAX_SEQ(lruvec) \ 3115 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3116 3117 #define DEFINE_MIN_SEQ(lruvec) \ 3118 unsigned long min_seq[ANON_AND_FILE] = { \ 3119 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3120 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3121 } 3122 3123 #define for_each_gen_type_zone(gen, type, zone) \ 3124 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3125 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3126 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3127 3128 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3129 { 3130 struct pglist_data *pgdat = NODE_DATA(nid); 3131 3132 #ifdef CONFIG_MEMCG 3133 if (memcg) { 3134 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3135 3136 /* for hotadd_new_pgdat() */ 3137 if (!lruvec->pgdat) 3138 lruvec->pgdat = pgdat; 3139 3140 return lruvec; 3141 } 3142 #endif 3143 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3144 3145 return pgdat ? &pgdat->__lruvec : NULL; 3146 } 3147 3148 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3149 { 3150 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3151 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3152 3153 if (!can_demote(pgdat->node_id, sc) && 3154 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3155 return 0; 3156 3157 return mem_cgroup_swappiness(memcg); 3158 } 3159 3160 static int get_nr_gens(struct lruvec *lruvec, int type) 3161 { 3162 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3163 } 3164 3165 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3166 { 3167 /* see the comment on lru_gen_struct */ 3168 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3169 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3170 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3171 } 3172 3173 /****************************************************************************** 3174 * mm_struct list 3175 ******************************************************************************/ 3176 3177 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3178 { 3179 static struct lru_gen_mm_list mm_list = { 3180 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3181 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3182 }; 3183 3184 #ifdef CONFIG_MEMCG 3185 if (memcg) 3186 return &memcg->mm_list; 3187 #endif 3188 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3189 3190 return &mm_list; 3191 } 3192 3193 void lru_gen_add_mm(struct mm_struct *mm) 3194 { 3195 int nid; 3196 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3197 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3198 3199 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3200 #ifdef CONFIG_MEMCG 3201 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3202 mm->lru_gen.memcg = memcg; 3203 #endif 3204 spin_lock(&mm_list->lock); 3205 3206 for_each_node_state(nid, N_MEMORY) { 3207 struct lruvec *lruvec = get_lruvec(memcg, nid); 3208 3209 if (!lruvec) 3210 continue; 3211 3212 /* the first addition since the last iteration */ 3213 if (lruvec->mm_state.tail == &mm_list->fifo) 3214 lruvec->mm_state.tail = &mm->lru_gen.list; 3215 } 3216 3217 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3218 3219 spin_unlock(&mm_list->lock); 3220 } 3221 3222 void lru_gen_del_mm(struct mm_struct *mm) 3223 { 3224 int nid; 3225 struct lru_gen_mm_list *mm_list; 3226 struct mem_cgroup *memcg = NULL; 3227 3228 if (list_empty(&mm->lru_gen.list)) 3229 return; 3230 3231 #ifdef CONFIG_MEMCG 3232 memcg = mm->lru_gen.memcg; 3233 #endif 3234 mm_list = get_mm_list(memcg); 3235 3236 spin_lock(&mm_list->lock); 3237 3238 for_each_node(nid) { 3239 struct lruvec *lruvec = get_lruvec(memcg, nid); 3240 3241 if (!lruvec) 3242 continue; 3243 3244 /* where the last iteration ended (exclusive) */ 3245 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3246 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3247 3248 /* where the current iteration continues (inclusive) */ 3249 if (lruvec->mm_state.head != &mm->lru_gen.list) 3250 continue; 3251 3252 lruvec->mm_state.head = lruvec->mm_state.head->next; 3253 /* the deletion ends the current iteration */ 3254 if (lruvec->mm_state.head == &mm_list->fifo) 3255 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1); 3256 } 3257 3258 list_del_init(&mm->lru_gen.list); 3259 3260 spin_unlock(&mm_list->lock); 3261 3262 #ifdef CONFIG_MEMCG 3263 mem_cgroup_put(mm->lru_gen.memcg); 3264 mm->lru_gen.memcg = NULL; 3265 #endif 3266 } 3267 3268 #ifdef CONFIG_MEMCG 3269 void lru_gen_migrate_mm(struct mm_struct *mm) 3270 { 3271 struct mem_cgroup *memcg; 3272 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3273 3274 VM_WARN_ON_ONCE(task->mm != mm); 3275 lockdep_assert_held(&task->alloc_lock); 3276 3277 /* for mm_update_next_owner() */ 3278 if (mem_cgroup_disabled()) 3279 return; 3280 3281 rcu_read_lock(); 3282 memcg = mem_cgroup_from_task(task); 3283 rcu_read_unlock(); 3284 if (memcg == mm->lru_gen.memcg) 3285 return; 3286 3287 VM_WARN_ON_ONCE(!mm->lru_gen.memcg); 3288 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3289 3290 lru_gen_del_mm(mm); 3291 lru_gen_add_mm(mm); 3292 } 3293 #endif 3294 3295 /* 3296 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3297 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3298 * bits in a bitmap, k is the number of hash functions and n is the number of 3299 * inserted items. 3300 * 3301 * Page table walkers use one of the two filters to reduce their search space. 3302 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3303 * aging uses the double-buffering technique to flip to the other filter each 3304 * time it produces a new generation. For non-leaf entries that have enough 3305 * leaf entries, the aging carries them over to the next generation in 3306 * walk_pmd_range(); the eviction also report them when walking the rmap 3307 * in lru_gen_look_around(). 3308 * 3309 * For future optimizations: 3310 * 1. It's not necessary to keep both filters all the time. The spare one can be 3311 * freed after the RCU grace period and reallocated if needed again. 3312 * 2. And when reallocating, it's worth scaling its size according to the number 3313 * of inserted entries in the other filter, to reduce the memory overhead on 3314 * small systems and false positives on large systems. 3315 * 3. Jenkins' hash function is an alternative to Knuth's. 3316 */ 3317 #define BLOOM_FILTER_SHIFT 15 3318 3319 static inline int filter_gen_from_seq(unsigned long seq) 3320 { 3321 return seq % NR_BLOOM_FILTERS; 3322 } 3323 3324 static void get_item_key(void *item, int *key) 3325 { 3326 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3327 3328 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3329 3330 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3331 key[1] = hash >> BLOOM_FILTER_SHIFT; 3332 } 3333 3334 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3335 { 3336 unsigned long *filter; 3337 int gen = filter_gen_from_seq(seq); 3338 3339 filter = lruvec->mm_state.filters[gen]; 3340 if (filter) { 3341 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3342 return; 3343 } 3344 3345 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3346 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3347 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3348 } 3349 3350 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3351 { 3352 int key[2]; 3353 unsigned long *filter; 3354 int gen = filter_gen_from_seq(seq); 3355 3356 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3357 if (!filter) 3358 return; 3359 3360 get_item_key(item, key); 3361 3362 if (!test_bit(key[0], filter)) 3363 set_bit(key[0], filter); 3364 if (!test_bit(key[1], filter)) 3365 set_bit(key[1], filter); 3366 } 3367 3368 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3369 { 3370 int key[2]; 3371 unsigned long *filter; 3372 int gen = filter_gen_from_seq(seq); 3373 3374 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3375 if (!filter) 3376 return true; 3377 3378 get_item_key(item, key); 3379 3380 return test_bit(key[0], filter) && test_bit(key[1], filter); 3381 } 3382 3383 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3384 { 3385 int i; 3386 int hist; 3387 3388 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3389 3390 if (walk) { 3391 hist = lru_hist_from_seq(walk->max_seq); 3392 3393 for (i = 0; i < NR_MM_STATS; i++) { 3394 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3395 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3396 walk->mm_stats[i] = 0; 3397 } 3398 } 3399 3400 if (NR_HIST_GENS > 1 && last) { 3401 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3402 3403 for (i = 0; i < NR_MM_STATS; i++) 3404 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3405 } 3406 } 3407 3408 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3409 { 3410 int type; 3411 unsigned long size = 0; 3412 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3413 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3414 3415 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3416 return true; 3417 3418 clear_bit(key, &mm->lru_gen.bitmap); 3419 3420 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3421 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3422 get_mm_counter(mm, MM_ANONPAGES) + 3423 get_mm_counter(mm, MM_SHMEMPAGES); 3424 } 3425 3426 if (size < MIN_LRU_BATCH) 3427 return true; 3428 3429 return !mmget_not_zero(mm); 3430 } 3431 3432 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3433 struct mm_struct **iter) 3434 { 3435 bool first = false; 3436 bool last = true; 3437 struct mm_struct *mm = NULL; 3438 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3439 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3440 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3441 3442 /* 3443 * There are four interesting cases for this page table walker: 3444 * 1. It tries to start a new iteration of mm_list with a stale max_seq; 3445 * there is nothing left to do. 3446 * 2. It's the first of the current generation, and it needs to reset 3447 * the Bloom filter for the next generation. 3448 * 3. It reaches the end of mm_list, and it needs to increment 3449 * mm_state->seq; the iteration is done. 3450 * 4. It's the last of the current generation, and it needs to reset the 3451 * mm stats counters for the next generation. 3452 */ 3453 spin_lock(&mm_list->lock); 3454 3455 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3456 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq); 3457 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers); 3458 3459 if (walk->max_seq <= mm_state->seq) { 3460 if (!*iter) 3461 last = false; 3462 goto done; 3463 } 3464 3465 if (!mm_state->nr_walkers) { 3466 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3467 3468 mm_state->head = mm_list->fifo.next; 3469 first = true; 3470 } 3471 3472 while (!mm && mm_state->head != &mm_list->fifo) { 3473 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3474 3475 mm_state->head = mm_state->head->next; 3476 3477 /* force scan for those added after the last iteration */ 3478 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) { 3479 mm_state->tail = mm_state->head; 3480 walk->force_scan = true; 3481 } 3482 3483 if (should_skip_mm(mm, walk)) 3484 mm = NULL; 3485 } 3486 3487 if (mm_state->head == &mm_list->fifo) 3488 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3489 done: 3490 if (*iter && !mm) 3491 mm_state->nr_walkers--; 3492 if (!*iter && mm) 3493 mm_state->nr_walkers++; 3494 3495 if (mm_state->nr_walkers) 3496 last = false; 3497 3498 if (*iter || last) 3499 reset_mm_stats(lruvec, walk, last); 3500 3501 spin_unlock(&mm_list->lock); 3502 3503 if (mm && first) 3504 reset_bloom_filter(lruvec, walk->max_seq + 1); 3505 3506 if (*iter) 3507 mmput_async(*iter); 3508 3509 *iter = mm; 3510 3511 return last; 3512 } 3513 3514 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3515 { 3516 bool success = false; 3517 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3518 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3519 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3520 3521 spin_lock(&mm_list->lock); 3522 3523 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3524 3525 if (max_seq > mm_state->seq && !mm_state->nr_walkers) { 3526 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3527 3528 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3529 reset_mm_stats(lruvec, NULL, true); 3530 success = true; 3531 } 3532 3533 spin_unlock(&mm_list->lock); 3534 3535 return success; 3536 } 3537 3538 /****************************************************************************** 3539 * refault feedback loop 3540 ******************************************************************************/ 3541 3542 /* 3543 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3544 * 3545 * The P term is refaulted/(evicted+protected) from a tier in the generation 3546 * currently being evicted; the I term is the exponential moving average of the 3547 * P term over the generations previously evicted, using the smoothing factor 3548 * 1/2; the D term isn't supported. 3549 * 3550 * The setpoint (SP) is always the first tier of one type; the process variable 3551 * (PV) is either any tier of the other type or any other tier of the same 3552 * type. 3553 * 3554 * The error is the difference between the SP and the PV; the correction is to 3555 * turn off protection when SP>PV or turn on protection when SP<PV. 3556 * 3557 * For future optimizations: 3558 * 1. The D term may discount the other two terms over time so that long-lived 3559 * generations can resist stale information. 3560 */ 3561 struct ctrl_pos { 3562 unsigned long refaulted; 3563 unsigned long total; 3564 int gain; 3565 }; 3566 3567 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3568 struct ctrl_pos *pos) 3569 { 3570 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3571 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3572 3573 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3574 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3575 pos->total = lrugen->avg_total[type][tier] + 3576 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3577 if (tier) 3578 pos->total += lrugen->protected[hist][type][tier - 1]; 3579 pos->gain = gain; 3580 } 3581 3582 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3583 { 3584 int hist, tier; 3585 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3586 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3587 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3588 3589 lockdep_assert_held(&lruvec->lru_lock); 3590 3591 if (!carryover && !clear) 3592 return; 3593 3594 hist = lru_hist_from_seq(seq); 3595 3596 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3597 if (carryover) { 3598 unsigned long sum; 3599 3600 sum = lrugen->avg_refaulted[type][tier] + 3601 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3602 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3603 3604 sum = lrugen->avg_total[type][tier] + 3605 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3606 if (tier) 3607 sum += lrugen->protected[hist][type][tier - 1]; 3608 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3609 } 3610 3611 if (clear) { 3612 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3613 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3614 if (tier) 3615 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3616 } 3617 } 3618 } 3619 3620 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3621 { 3622 /* 3623 * Return true if the PV has a limited number of refaults or a lower 3624 * refaulted/total than the SP. 3625 */ 3626 return pv->refaulted < MIN_LRU_BATCH || 3627 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3628 (sp->refaulted + 1) * pv->total * pv->gain; 3629 } 3630 3631 /****************************************************************************** 3632 * the aging 3633 ******************************************************************************/ 3634 3635 /* promote pages accessed through page tables */ 3636 static int folio_update_gen(struct folio *folio, int gen) 3637 { 3638 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3639 3640 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3641 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3642 3643 do { 3644 /* lru_gen_del_folio() has isolated this page? */ 3645 if (!(old_flags & LRU_GEN_MASK)) { 3646 /* for shrink_folio_list() */ 3647 new_flags = old_flags | BIT(PG_referenced); 3648 continue; 3649 } 3650 3651 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3652 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3653 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3654 3655 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3656 } 3657 3658 /* protect pages accessed multiple times through file descriptors */ 3659 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3660 { 3661 int type = folio_is_file_lru(folio); 3662 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3663 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3664 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3665 3666 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3667 3668 do { 3669 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3670 /* folio_update_gen() has promoted this page? */ 3671 if (new_gen >= 0 && new_gen != old_gen) 3672 return new_gen; 3673 3674 new_gen = (old_gen + 1) % MAX_NR_GENS; 3675 3676 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3677 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3678 /* for folio_end_writeback() */ 3679 if (reclaiming) 3680 new_flags |= BIT(PG_reclaim); 3681 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3682 3683 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3684 3685 return new_gen; 3686 } 3687 3688 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3689 int old_gen, int new_gen) 3690 { 3691 int type = folio_is_file_lru(folio); 3692 int zone = folio_zonenum(folio); 3693 int delta = folio_nr_pages(folio); 3694 3695 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3696 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3697 3698 walk->batched++; 3699 3700 walk->nr_pages[old_gen][type][zone] -= delta; 3701 walk->nr_pages[new_gen][type][zone] += delta; 3702 } 3703 3704 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3705 { 3706 int gen, type, zone; 3707 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3708 3709 walk->batched = 0; 3710 3711 for_each_gen_type_zone(gen, type, zone) { 3712 enum lru_list lru = type * LRU_INACTIVE_FILE; 3713 int delta = walk->nr_pages[gen][type][zone]; 3714 3715 if (!delta) 3716 continue; 3717 3718 walk->nr_pages[gen][type][zone] = 0; 3719 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3720 lrugen->nr_pages[gen][type][zone] + delta); 3721 3722 if (lru_gen_is_active(lruvec, gen)) 3723 lru += LRU_ACTIVE; 3724 __update_lru_size(lruvec, lru, zone, delta); 3725 } 3726 } 3727 3728 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3729 { 3730 struct address_space *mapping; 3731 struct vm_area_struct *vma = args->vma; 3732 struct lru_gen_mm_walk *walk = args->private; 3733 3734 if (!vma_is_accessible(vma)) 3735 return true; 3736 3737 if (is_vm_hugetlb_page(vma)) 3738 return true; 3739 3740 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ)) 3741 return true; 3742 3743 if (vma == get_gate_vma(vma->vm_mm)) 3744 return true; 3745 3746 if (vma_is_anonymous(vma)) 3747 return !walk->can_swap; 3748 3749 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3750 return true; 3751 3752 mapping = vma->vm_file->f_mapping; 3753 if (mapping_unevictable(mapping)) 3754 return true; 3755 3756 if (shmem_mapping(mapping)) 3757 return !walk->can_swap; 3758 3759 /* to exclude special mappings like dax, etc. */ 3760 return !mapping->a_ops->read_folio; 3761 } 3762 3763 /* 3764 * Some userspace memory allocators map many single-page VMAs. Instead of 3765 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3766 * table to reduce zigzags and improve cache performance. 3767 */ 3768 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3769 unsigned long *vm_start, unsigned long *vm_end) 3770 { 3771 unsigned long start = round_up(*vm_end, size); 3772 unsigned long end = (start | ~mask) + 1; 3773 VMA_ITERATOR(vmi, args->mm, start); 3774 3775 VM_WARN_ON_ONCE(mask & size); 3776 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3777 3778 for_each_vma(vmi, args->vma) { 3779 if (end && end <= args->vma->vm_start) 3780 return false; 3781 3782 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3783 continue; 3784 3785 *vm_start = max(start, args->vma->vm_start); 3786 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3787 3788 return true; 3789 } 3790 3791 return false; 3792 } 3793 3794 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3795 { 3796 unsigned long pfn = pte_pfn(pte); 3797 3798 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3799 3800 if (!pte_present(pte) || is_zero_pfn(pfn)) 3801 return -1; 3802 3803 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3804 return -1; 3805 3806 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3807 return -1; 3808 3809 return pfn; 3810 } 3811 3812 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3813 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3814 { 3815 unsigned long pfn = pmd_pfn(pmd); 3816 3817 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3818 3819 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3820 return -1; 3821 3822 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3823 return -1; 3824 3825 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3826 return -1; 3827 3828 return pfn; 3829 } 3830 #endif 3831 3832 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3833 struct pglist_data *pgdat, bool can_swap) 3834 { 3835 struct folio *folio; 3836 3837 /* try to avoid unnecessary memory loads */ 3838 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3839 return NULL; 3840 3841 folio = pfn_folio(pfn); 3842 if (folio_nid(folio) != pgdat->node_id) 3843 return NULL; 3844 3845 if (folio_memcg_rcu(folio) != memcg) 3846 return NULL; 3847 3848 /* file VMAs can contain anon pages from COW */ 3849 if (!folio_is_file_lru(folio) && !can_swap) 3850 return NULL; 3851 3852 return folio; 3853 } 3854 3855 static bool suitable_to_scan(int total, int young) 3856 { 3857 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3858 3859 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3860 return young * n >= total; 3861 } 3862 3863 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3864 struct mm_walk *args) 3865 { 3866 int i; 3867 pte_t *pte; 3868 spinlock_t *ptl; 3869 unsigned long addr; 3870 int total = 0; 3871 int young = 0; 3872 struct lru_gen_mm_walk *walk = args->private; 3873 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3874 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3875 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3876 3877 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3878 3879 ptl = pte_lockptr(args->mm, pmd); 3880 if (!spin_trylock(ptl)) 3881 return false; 3882 3883 arch_enter_lazy_mmu_mode(); 3884 3885 pte = pte_offset_map(pmd, start & PMD_MASK); 3886 restart: 3887 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3888 unsigned long pfn; 3889 struct folio *folio; 3890 3891 total++; 3892 walk->mm_stats[MM_LEAF_TOTAL]++; 3893 3894 pfn = get_pte_pfn(pte[i], args->vma, addr); 3895 if (pfn == -1) 3896 continue; 3897 3898 if (!pte_young(pte[i])) { 3899 walk->mm_stats[MM_LEAF_OLD]++; 3900 continue; 3901 } 3902 3903 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3904 if (!folio) 3905 continue; 3906 3907 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3908 VM_WARN_ON_ONCE(true); 3909 3910 young++; 3911 walk->mm_stats[MM_LEAF_YOUNG]++; 3912 3913 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 3914 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3915 !folio_test_swapcache(folio))) 3916 folio_mark_dirty(folio); 3917 3918 old_gen = folio_update_gen(folio, new_gen); 3919 if (old_gen >= 0 && old_gen != new_gen) 3920 update_batch_size(walk, folio, old_gen, new_gen); 3921 } 3922 3923 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3924 goto restart; 3925 3926 pte_unmap(pte); 3927 3928 arch_leave_lazy_mmu_mode(); 3929 spin_unlock(ptl); 3930 3931 return suitable_to_scan(total, young); 3932 } 3933 3934 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3935 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 3936 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 3937 { 3938 int i; 3939 pmd_t *pmd; 3940 spinlock_t *ptl; 3941 struct lru_gen_mm_walk *walk = args->private; 3942 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3943 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3944 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3945 3946 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3947 3948 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3949 if (*start == -1) { 3950 *start = next; 3951 return; 3952 } 3953 3954 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start); 3955 if (i && i <= MIN_LRU_BATCH) { 3956 __set_bit(i - 1, bitmap); 3957 return; 3958 } 3959 3960 pmd = pmd_offset(pud, *start); 3961 3962 ptl = pmd_lockptr(args->mm, pmd); 3963 if (!spin_trylock(ptl)) 3964 goto done; 3965 3966 arch_enter_lazy_mmu_mode(); 3967 3968 do { 3969 unsigned long pfn; 3970 struct folio *folio; 3971 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start; 3972 3973 pfn = get_pmd_pfn(pmd[i], vma, addr); 3974 if (pfn == -1) 3975 goto next; 3976 3977 if (!pmd_trans_huge(pmd[i])) { 3978 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && 3979 get_cap(LRU_GEN_NONLEAF_YOUNG)) 3980 pmdp_test_and_clear_young(vma, addr, pmd + i); 3981 goto next; 3982 } 3983 3984 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3985 if (!folio) 3986 goto next; 3987 3988 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3989 goto next; 3990 3991 walk->mm_stats[MM_LEAF_YOUNG]++; 3992 3993 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3994 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3995 !folio_test_swapcache(folio))) 3996 folio_mark_dirty(folio); 3997 3998 old_gen = folio_update_gen(folio, new_gen); 3999 if (old_gen >= 0 && old_gen != new_gen) 4000 update_batch_size(walk, folio, old_gen, new_gen); 4001 next: 4002 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4003 } while (i <= MIN_LRU_BATCH); 4004 4005 arch_leave_lazy_mmu_mode(); 4006 spin_unlock(ptl); 4007 done: 4008 *start = -1; 4009 bitmap_zero(bitmap, MIN_LRU_BATCH); 4010 } 4011 #else 4012 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 4013 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 4014 { 4015 } 4016 #endif 4017 4018 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4019 struct mm_walk *args) 4020 { 4021 int i; 4022 pmd_t *pmd; 4023 unsigned long next; 4024 unsigned long addr; 4025 struct vm_area_struct *vma; 4026 unsigned long pos = -1; 4027 struct lru_gen_mm_walk *walk = args->private; 4028 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4029 4030 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4031 4032 /* 4033 * Finish an entire PMD in two passes: the first only reaches to PTE 4034 * tables to avoid taking the PMD lock; the second, if necessary, takes 4035 * the PMD lock to clear the accessed bit in PMD entries. 4036 */ 4037 pmd = pmd_offset(pud, start & PUD_MASK); 4038 restart: 4039 /* walk_pte_range() may call get_next_vma() */ 4040 vma = args->vma; 4041 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4042 pmd_t val = pmd_read_atomic(pmd + i); 4043 4044 /* for pmd_read_atomic() */ 4045 barrier(); 4046 4047 next = pmd_addr_end(addr, end); 4048 4049 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4050 walk->mm_stats[MM_LEAF_TOTAL]++; 4051 continue; 4052 } 4053 4054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4055 if (pmd_trans_huge(val)) { 4056 unsigned long pfn = pmd_pfn(val); 4057 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4058 4059 walk->mm_stats[MM_LEAF_TOTAL]++; 4060 4061 if (!pmd_young(val)) { 4062 walk->mm_stats[MM_LEAF_OLD]++; 4063 continue; 4064 } 4065 4066 /* try to avoid unnecessary memory loads */ 4067 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4068 continue; 4069 4070 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4071 continue; 4072 } 4073 #endif 4074 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4075 4076 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG 4077 if (get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4078 if (!pmd_young(val)) 4079 continue; 4080 4081 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4082 } 4083 #endif 4084 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4085 continue; 4086 4087 walk->mm_stats[MM_NONLEAF_FOUND]++; 4088 4089 if (!walk_pte_range(&val, addr, next, args)) 4090 continue; 4091 4092 walk->mm_stats[MM_NONLEAF_ADDED]++; 4093 4094 /* carry over to the next generation */ 4095 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4096 } 4097 4098 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos); 4099 4100 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4101 goto restart; 4102 } 4103 4104 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4105 struct mm_walk *args) 4106 { 4107 int i; 4108 pud_t *pud; 4109 unsigned long addr; 4110 unsigned long next; 4111 struct lru_gen_mm_walk *walk = args->private; 4112 4113 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4114 4115 pud = pud_offset(p4d, start & P4D_MASK); 4116 restart: 4117 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4118 pud_t val = READ_ONCE(pud[i]); 4119 4120 next = pud_addr_end(addr, end); 4121 4122 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4123 continue; 4124 4125 walk_pmd_range(&val, addr, next, args); 4126 4127 /* a racy check to curtail the waiting time */ 4128 if (wq_has_sleeper(&walk->lruvec->mm_state.wait)) 4129 return 1; 4130 4131 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4132 end = (addr | ~PUD_MASK) + 1; 4133 goto done; 4134 } 4135 } 4136 4137 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4138 goto restart; 4139 4140 end = round_up(end, P4D_SIZE); 4141 done: 4142 if (!end || !args->vma) 4143 return 1; 4144 4145 walk->next_addr = max(end, args->vma->vm_start); 4146 4147 return -EAGAIN; 4148 } 4149 4150 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4151 { 4152 static const struct mm_walk_ops mm_walk_ops = { 4153 .test_walk = should_skip_vma, 4154 .p4d_entry = walk_pud_range, 4155 }; 4156 4157 int err; 4158 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4159 4160 walk->next_addr = FIRST_USER_ADDRESS; 4161 4162 do { 4163 err = -EBUSY; 4164 4165 /* folio_update_gen() requires stable folio_memcg() */ 4166 if (!mem_cgroup_trylock_pages(memcg)) 4167 break; 4168 4169 /* the caller might be holding the lock for write */ 4170 if (mmap_read_trylock(mm)) { 4171 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4172 4173 mmap_read_unlock(mm); 4174 } 4175 4176 mem_cgroup_unlock_pages(); 4177 4178 if (walk->batched) { 4179 spin_lock_irq(&lruvec->lru_lock); 4180 reset_batch_size(lruvec, walk); 4181 spin_unlock_irq(&lruvec->lru_lock); 4182 } 4183 4184 cond_resched(); 4185 } while (err == -EAGAIN); 4186 } 4187 4188 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat) 4189 { 4190 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4191 4192 if (pgdat && current_is_kswapd()) { 4193 VM_WARN_ON_ONCE(walk); 4194 4195 walk = &pgdat->mm_walk; 4196 } else if (!pgdat && !walk) { 4197 VM_WARN_ON_ONCE(current_is_kswapd()); 4198 4199 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4200 } 4201 4202 current->reclaim_state->mm_walk = walk; 4203 4204 return walk; 4205 } 4206 4207 static void clear_mm_walk(void) 4208 { 4209 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4210 4211 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4212 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4213 4214 current->reclaim_state->mm_walk = NULL; 4215 4216 if (!current_is_kswapd()) 4217 kfree(walk); 4218 } 4219 4220 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4221 { 4222 int zone; 4223 int remaining = MAX_LRU_BATCH; 4224 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4225 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4226 4227 if (type == LRU_GEN_ANON && !can_swap) 4228 goto done; 4229 4230 /* prevent cold/hot inversion if force_scan is true */ 4231 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4232 struct list_head *head = &lrugen->lists[old_gen][type][zone]; 4233 4234 while (!list_empty(head)) { 4235 struct folio *folio = lru_to_folio(head); 4236 4237 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4238 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4239 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4240 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4241 4242 new_gen = folio_inc_gen(lruvec, folio, false); 4243 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]); 4244 4245 if (!--remaining) 4246 return false; 4247 } 4248 } 4249 done: 4250 reset_ctrl_pos(lruvec, type, true); 4251 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4252 4253 return true; 4254 } 4255 4256 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4257 { 4258 int gen, type, zone; 4259 bool success = false; 4260 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4261 DEFINE_MIN_SEQ(lruvec); 4262 4263 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4264 4265 /* find the oldest populated generation */ 4266 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4267 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4268 gen = lru_gen_from_seq(min_seq[type]); 4269 4270 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4271 if (!list_empty(&lrugen->lists[gen][type][zone])) 4272 goto next; 4273 } 4274 4275 min_seq[type]++; 4276 } 4277 next: 4278 ; 4279 } 4280 4281 /* see the comment on lru_gen_struct */ 4282 if (can_swap) { 4283 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4284 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4285 } 4286 4287 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4288 if (min_seq[type] == lrugen->min_seq[type]) 4289 continue; 4290 4291 reset_ctrl_pos(lruvec, type, true); 4292 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4293 success = true; 4294 } 4295 4296 return success; 4297 } 4298 4299 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4300 { 4301 int prev, next; 4302 int type, zone; 4303 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4304 4305 spin_lock_irq(&lruvec->lru_lock); 4306 4307 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4308 4309 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4310 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4311 continue; 4312 4313 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4314 4315 while (!inc_min_seq(lruvec, type, can_swap)) { 4316 spin_unlock_irq(&lruvec->lru_lock); 4317 cond_resched(); 4318 spin_lock_irq(&lruvec->lru_lock); 4319 } 4320 } 4321 4322 /* 4323 * Update the active/inactive LRU sizes for compatibility. Both sides of 4324 * the current max_seq need to be covered, since max_seq+1 can overlap 4325 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4326 * overlap, cold/hot inversion happens. 4327 */ 4328 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4329 next = lru_gen_from_seq(lrugen->max_seq + 1); 4330 4331 for (type = 0; type < ANON_AND_FILE; type++) { 4332 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4333 enum lru_list lru = type * LRU_INACTIVE_FILE; 4334 long delta = lrugen->nr_pages[prev][type][zone] - 4335 lrugen->nr_pages[next][type][zone]; 4336 4337 if (!delta) 4338 continue; 4339 4340 __update_lru_size(lruvec, lru, zone, delta); 4341 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4342 } 4343 } 4344 4345 for (type = 0; type < ANON_AND_FILE; type++) 4346 reset_ctrl_pos(lruvec, type, false); 4347 4348 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4349 /* make sure preceding modifications appear */ 4350 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4351 4352 spin_unlock_irq(&lruvec->lru_lock); 4353 } 4354 4355 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4356 struct scan_control *sc, bool can_swap, bool force_scan) 4357 { 4358 bool success; 4359 struct lru_gen_mm_walk *walk; 4360 struct mm_struct *mm = NULL; 4361 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4362 4363 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4364 4365 /* see the comment in iterate_mm_list() */ 4366 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4367 success = false; 4368 goto done; 4369 } 4370 4371 /* 4372 * If the hardware doesn't automatically set the accessed bit, fallback 4373 * to lru_gen_look_around(), which only clears the accessed bit in a 4374 * handful of PTEs. Spreading the work out over a period of time usually 4375 * is less efficient, but it avoids bursty page faults. 4376 */ 4377 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) { 4378 success = iterate_mm_list_nowalk(lruvec, max_seq); 4379 goto done; 4380 } 4381 4382 walk = set_mm_walk(NULL); 4383 if (!walk) { 4384 success = iterate_mm_list_nowalk(lruvec, max_seq); 4385 goto done; 4386 } 4387 4388 walk->lruvec = lruvec; 4389 walk->max_seq = max_seq; 4390 walk->can_swap = can_swap; 4391 walk->force_scan = force_scan; 4392 4393 do { 4394 success = iterate_mm_list(lruvec, walk, &mm); 4395 if (mm) 4396 walk_mm(lruvec, mm, walk); 4397 4398 cond_resched(); 4399 } while (mm); 4400 done: 4401 if (!success) { 4402 if (sc->priority <= DEF_PRIORITY - 2) 4403 wait_event_killable(lruvec->mm_state.wait, 4404 max_seq < READ_ONCE(lrugen->max_seq)); 4405 4406 return max_seq < READ_ONCE(lrugen->max_seq); 4407 } 4408 4409 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq)); 4410 4411 inc_max_seq(lruvec, can_swap, force_scan); 4412 /* either this sees any waiters or they will see updated max_seq */ 4413 if (wq_has_sleeper(&lruvec->mm_state.wait)) 4414 wake_up_all(&lruvec->mm_state.wait); 4415 4416 return true; 4417 } 4418 4419 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq, 4420 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 4421 { 4422 int gen, type, zone; 4423 unsigned long old = 0; 4424 unsigned long young = 0; 4425 unsigned long total = 0; 4426 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4427 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4428 4429 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4430 unsigned long seq; 4431 4432 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4433 unsigned long size = 0; 4434 4435 gen = lru_gen_from_seq(seq); 4436 4437 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4438 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4439 4440 total += size; 4441 if (seq == max_seq) 4442 young += size; 4443 else if (seq + MIN_NR_GENS == max_seq) 4444 old += size; 4445 } 4446 } 4447 4448 /* try to scrape all its memory if this memcg was deleted */ 4449 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4450 4451 /* 4452 * The aging tries to be lazy to reduce the overhead, while the eviction 4453 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4454 * ideal number of generations is MIN_NR_GENS+1. 4455 */ 4456 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) 4457 return true; 4458 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4459 return false; 4460 4461 /* 4462 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4463 * of the total number of pages for each generation. A reasonable range 4464 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4465 * aging cares about the upper bound of hot pages, while the eviction 4466 * cares about the lower bound of cold pages. 4467 */ 4468 if (young * MIN_NR_GENS > total) 4469 return true; 4470 if (old * (MIN_NR_GENS + 2) < total) 4471 return true; 4472 4473 return false; 4474 } 4475 4476 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl) 4477 { 4478 bool need_aging; 4479 unsigned long nr_to_scan; 4480 int swappiness = get_swappiness(lruvec, sc); 4481 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4482 DEFINE_MAX_SEQ(lruvec); 4483 DEFINE_MIN_SEQ(lruvec); 4484 4485 VM_WARN_ON_ONCE(sc->memcg_low_reclaim); 4486 4487 mem_cgroup_calculate_protection(NULL, memcg); 4488 4489 if (mem_cgroup_below_min(memcg)) 4490 return false; 4491 4492 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan); 4493 4494 if (min_ttl) { 4495 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4496 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4497 4498 if (time_is_after_jiffies(birth + min_ttl)) 4499 return false; 4500 4501 /* the size is likely too small to be helpful */ 4502 if (!nr_to_scan && sc->priority != DEF_PRIORITY) 4503 return false; 4504 } 4505 4506 if (need_aging) 4507 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false); 4508 4509 return true; 4510 } 4511 4512 /* to protect the working set of the last N jiffies */ 4513 static unsigned long lru_gen_min_ttl __read_mostly; 4514 4515 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4516 { 4517 struct mem_cgroup *memcg; 4518 bool success = false; 4519 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4520 4521 VM_WARN_ON_ONCE(!current_is_kswapd()); 4522 4523 sc->last_reclaimed = sc->nr_reclaimed; 4524 4525 /* 4526 * To reduce the chance of going into the aging path, which can be 4527 * costly, optimistically skip it if the flag below was cleared in the 4528 * eviction path. This improves the overall performance when multiple 4529 * memcgs are available. 4530 */ 4531 if (!sc->memcgs_need_aging) { 4532 sc->memcgs_need_aging = true; 4533 return; 4534 } 4535 4536 set_mm_walk(pgdat); 4537 4538 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4539 do { 4540 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4541 4542 if (age_lruvec(lruvec, sc, min_ttl)) 4543 success = true; 4544 4545 cond_resched(); 4546 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4547 4548 clear_mm_walk(); 4549 4550 /* check the order to exclude compaction-induced reclaim */ 4551 if (success || !min_ttl || sc->order) 4552 return; 4553 4554 /* 4555 * The main goal is to OOM kill if every generation from all memcgs is 4556 * younger than min_ttl. However, another possibility is all memcgs are 4557 * either below min or empty. 4558 */ 4559 if (mutex_trylock(&oom_lock)) { 4560 struct oom_control oc = { 4561 .gfp_mask = sc->gfp_mask, 4562 }; 4563 4564 out_of_memory(&oc); 4565 4566 mutex_unlock(&oom_lock); 4567 } 4568 } 4569 4570 /* 4571 * This function exploits spatial locality when shrink_folio_list() walks the 4572 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4573 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4574 * the PTE table to the Bloom filter. This forms a feedback loop between the 4575 * eviction and the aging. 4576 */ 4577 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4578 { 4579 int i; 4580 pte_t *pte; 4581 unsigned long start; 4582 unsigned long end; 4583 unsigned long addr; 4584 struct lru_gen_mm_walk *walk; 4585 int young = 0; 4586 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4587 struct folio *folio = pfn_folio(pvmw->pfn); 4588 struct mem_cgroup *memcg = folio_memcg(folio); 4589 struct pglist_data *pgdat = folio_pgdat(folio); 4590 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4591 DEFINE_MAX_SEQ(lruvec); 4592 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4593 4594 lockdep_assert_held(pvmw->ptl); 4595 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4596 4597 if (spin_is_contended(pvmw->ptl)) 4598 return; 4599 4600 /* avoid taking the LRU lock under the PTL when possible */ 4601 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4602 4603 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start); 4604 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4605 4606 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4607 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4608 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4609 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2) 4610 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4611 else { 4612 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2; 4613 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2; 4614 } 4615 } 4616 4617 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE; 4618 4619 rcu_read_lock(); 4620 arch_enter_lazy_mmu_mode(); 4621 4622 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4623 unsigned long pfn; 4624 4625 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4626 if (pfn == -1) 4627 continue; 4628 4629 if (!pte_young(pte[i])) 4630 continue; 4631 4632 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4633 if (!folio) 4634 continue; 4635 4636 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4637 VM_WARN_ON_ONCE(true); 4638 4639 young++; 4640 4641 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4642 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4643 !folio_test_swapcache(folio))) 4644 folio_mark_dirty(folio); 4645 4646 old_gen = folio_lru_gen(folio); 4647 if (old_gen < 0) 4648 folio_set_referenced(folio); 4649 else if (old_gen != new_gen) 4650 __set_bit(i, bitmap); 4651 } 4652 4653 arch_leave_lazy_mmu_mode(); 4654 rcu_read_unlock(); 4655 4656 /* feedback from rmap walkers to page table walkers */ 4657 if (suitable_to_scan(i, young)) 4658 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4659 4660 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) { 4661 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4662 folio = pfn_folio(pte_pfn(pte[i])); 4663 folio_activate(folio); 4664 } 4665 return; 4666 } 4667 4668 /* folio_update_gen() requires stable folio_memcg() */ 4669 if (!mem_cgroup_trylock_pages(memcg)) 4670 return; 4671 4672 if (!walk) { 4673 spin_lock_irq(&lruvec->lru_lock); 4674 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq); 4675 } 4676 4677 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4678 folio = pfn_folio(pte_pfn(pte[i])); 4679 if (folio_memcg_rcu(folio) != memcg) 4680 continue; 4681 4682 old_gen = folio_update_gen(folio, new_gen); 4683 if (old_gen < 0 || old_gen == new_gen) 4684 continue; 4685 4686 if (walk) 4687 update_batch_size(walk, folio, old_gen, new_gen); 4688 else 4689 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 4690 } 4691 4692 if (!walk) 4693 spin_unlock_irq(&lruvec->lru_lock); 4694 4695 mem_cgroup_unlock_pages(); 4696 } 4697 4698 /****************************************************************************** 4699 * the eviction 4700 ******************************************************************************/ 4701 4702 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4703 { 4704 bool success; 4705 int gen = folio_lru_gen(folio); 4706 int type = folio_is_file_lru(folio); 4707 int zone = folio_zonenum(folio); 4708 int delta = folio_nr_pages(folio); 4709 int refs = folio_lru_refs(folio); 4710 int tier = lru_tier_from_refs(refs); 4711 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4712 4713 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4714 4715 /* unevictable */ 4716 if (!folio_evictable(folio)) { 4717 success = lru_gen_del_folio(lruvec, folio, true); 4718 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4719 folio_set_unevictable(folio); 4720 lruvec_add_folio(lruvec, folio); 4721 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4722 return true; 4723 } 4724 4725 /* dirty lazyfree */ 4726 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4727 success = lru_gen_del_folio(lruvec, folio, true); 4728 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4729 folio_set_swapbacked(folio); 4730 lruvec_add_folio_tail(lruvec, folio); 4731 return true; 4732 } 4733 4734 /* promoted */ 4735 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4736 list_move(&folio->lru, &lrugen->lists[gen][type][zone]); 4737 return true; 4738 } 4739 4740 /* protected */ 4741 if (tier > tier_idx) { 4742 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4743 4744 gen = folio_inc_gen(lruvec, folio, false); 4745 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]); 4746 4747 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4748 lrugen->protected[hist][type][tier - 1] + delta); 4749 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4750 return true; 4751 } 4752 4753 /* waiting for writeback */ 4754 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4755 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4756 gen = folio_inc_gen(lruvec, folio, true); 4757 list_move(&folio->lru, &lrugen->lists[gen][type][zone]); 4758 return true; 4759 } 4760 4761 return false; 4762 } 4763 4764 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4765 { 4766 bool success; 4767 4768 /* unmapping inhibited */ 4769 if (!sc->may_unmap && folio_mapped(folio)) 4770 return false; 4771 4772 /* swapping inhibited */ 4773 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) && 4774 (folio_test_dirty(folio) || 4775 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4776 return false; 4777 4778 /* raced with release_pages() */ 4779 if (!folio_try_get(folio)) 4780 return false; 4781 4782 /* raced with another isolation */ 4783 if (!folio_test_clear_lru(folio)) { 4784 folio_put(folio); 4785 return false; 4786 } 4787 4788 /* see the comment on MAX_NR_TIERS */ 4789 if (!folio_test_referenced(folio)) 4790 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4791 4792 /* for shrink_folio_list() */ 4793 folio_clear_reclaim(folio); 4794 folio_clear_referenced(folio); 4795 4796 success = lru_gen_del_folio(lruvec, folio, true); 4797 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4798 4799 return true; 4800 } 4801 4802 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4803 int type, int tier, struct list_head *list) 4804 { 4805 int gen, zone; 4806 enum vm_event_item item; 4807 int sorted = 0; 4808 int scanned = 0; 4809 int isolated = 0; 4810 int remaining = MAX_LRU_BATCH; 4811 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4812 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4813 4814 VM_WARN_ON_ONCE(!list_empty(list)); 4815 4816 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4817 return 0; 4818 4819 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4820 4821 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4822 LIST_HEAD(moved); 4823 int skipped = 0; 4824 struct list_head *head = &lrugen->lists[gen][type][zone]; 4825 4826 while (!list_empty(head)) { 4827 struct folio *folio = lru_to_folio(head); 4828 int delta = folio_nr_pages(folio); 4829 4830 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4831 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4832 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4833 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4834 4835 scanned += delta; 4836 4837 if (sort_folio(lruvec, folio, tier)) 4838 sorted += delta; 4839 else if (isolate_folio(lruvec, folio, sc)) { 4840 list_add(&folio->lru, list); 4841 isolated += delta; 4842 } else { 4843 list_move(&folio->lru, &moved); 4844 skipped += delta; 4845 } 4846 4847 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 4848 break; 4849 } 4850 4851 if (skipped) { 4852 list_splice(&moved, head); 4853 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 4854 } 4855 4856 if (!remaining || isolated >= MIN_LRU_BATCH) 4857 break; 4858 } 4859 4860 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 4861 if (!cgroup_reclaim(sc)) { 4862 __count_vm_events(item, isolated); 4863 __count_vm_events(PGREFILL, sorted); 4864 } 4865 __count_memcg_events(memcg, item, isolated); 4866 __count_memcg_events(memcg, PGREFILL, sorted); 4867 __count_vm_events(PGSCAN_ANON + type, isolated); 4868 4869 /* 4870 * There might not be eligible pages due to reclaim_idx, may_unmap and 4871 * may_writepage. Check the remaining to prevent livelock if it's not 4872 * making progress. 4873 */ 4874 return isolated || !remaining ? scanned : 0; 4875 } 4876 4877 static int get_tier_idx(struct lruvec *lruvec, int type) 4878 { 4879 int tier; 4880 struct ctrl_pos sp, pv; 4881 4882 /* 4883 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4884 * This value is chosen because any other tier would have at least twice 4885 * as many refaults as the first tier. 4886 */ 4887 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4888 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4889 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4890 if (!positive_ctrl_err(&sp, &pv)) 4891 break; 4892 } 4893 4894 return tier - 1; 4895 } 4896 4897 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4898 { 4899 int type, tier; 4900 struct ctrl_pos sp, pv; 4901 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4902 4903 /* 4904 * Compare the first tier of anon with that of file to determine which 4905 * type to scan. Also need to compare other tiers of the selected type 4906 * with the first tier of the other type to determine the last tier (of 4907 * the selected type) to evict. 4908 */ 4909 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4910 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4911 type = positive_ctrl_err(&sp, &pv); 4912 4913 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4914 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4915 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4916 if (!positive_ctrl_err(&sp, &pv)) 4917 break; 4918 } 4919 4920 *tier_idx = tier - 1; 4921 4922 return type; 4923 } 4924 4925 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4926 int *type_scanned, struct list_head *list) 4927 { 4928 int i; 4929 int type; 4930 int scanned; 4931 int tier = -1; 4932 DEFINE_MIN_SEQ(lruvec); 4933 4934 /* 4935 * Try to make the obvious choice first. When anon and file are both 4936 * available from the same generation, interpret swappiness 1 as file 4937 * first and 200 as anon first. 4938 */ 4939 if (!swappiness) 4940 type = LRU_GEN_FILE; 4941 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4942 type = LRU_GEN_ANON; 4943 else if (swappiness == 1) 4944 type = LRU_GEN_FILE; 4945 else if (swappiness == 200) 4946 type = LRU_GEN_ANON; 4947 else 4948 type = get_type_to_scan(lruvec, swappiness, &tier); 4949 4950 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4951 if (tier < 0) 4952 tier = get_tier_idx(lruvec, type); 4953 4954 scanned = scan_folios(lruvec, sc, type, tier, list); 4955 if (scanned) 4956 break; 4957 4958 type = !type; 4959 tier = -1; 4960 } 4961 4962 *type_scanned = type; 4963 4964 return scanned; 4965 } 4966 4967 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4968 bool *need_swapping) 4969 { 4970 int type; 4971 int scanned; 4972 int reclaimed; 4973 LIST_HEAD(list); 4974 struct folio *folio; 4975 enum vm_event_item item; 4976 struct reclaim_stat stat; 4977 struct lru_gen_mm_walk *walk; 4978 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4979 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4980 4981 spin_lock_irq(&lruvec->lru_lock); 4982 4983 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4984 4985 scanned += try_to_inc_min_seq(lruvec, swappiness); 4986 4987 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4988 scanned = 0; 4989 4990 spin_unlock_irq(&lruvec->lru_lock); 4991 4992 if (list_empty(&list)) 4993 return scanned; 4994 4995 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4996 4997 list_for_each_entry(folio, &list, lru) { 4998 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4999 if (folio_test_workingset(folio)) 5000 folio_set_referenced(folio); 5001 5002 /* don't add rejected pages to the oldest generation */ 5003 if (folio_test_reclaim(folio) && 5004 (folio_test_dirty(folio) || folio_test_writeback(folio))) 5005 folio_clear_active(folio); 5006 else 5007 folio_set_active(folio); 5008 } 5009 5010 spin_lock_irq(&lruvec->lru_lock); 5011 5012 move_folios_to_lru(lruvec, &list); 5013 5014 walk = current->reclaim_state->mm_walk; 5015 if (walk && walk->batched) 5016 reset_batch_size(lruvec, walk); 5017 5018 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 5019 if (!cgroup_reclaim(sc)) 5020 __count_vm_events(item, reclaimed); 5021 __count_memcg_events(memcg, item, reclaimed); 5022 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5023 5024 spin_unlock_irq(&lruvec->lru_lock); 5025 5026 mem_cgroup_uncharge_list(&list); 5027 free_unref_page_list(&list); 5028 5029 sc->nr_reclaimed += reclaimed; 5030 5031 if (need_swapping && type == LRU_GEN_ANON) 5032 *need_swapping = true; 5033 5034 return scanned; 5035 } 5036 5037 /* 5038 * For future optimizations: 5039 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5040 * reclaim. 5041 */ 5042 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, 5043 bool can_swap, bool *need_aging) 5044 { 5045 unsigned long nr_to_scan; 5046 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5047 DEFINE_MAX_SEQ(lruvec); 5048 DEFINE_MIN_SEQ(lruvec); 5049 5050 if (mem_cgroup_below_min(memcg) || 5051 (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim)) 5052 return 0; 5053 5054 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan); 5055 if (!*need_aging) 5056 return nr_to_scan; 5057 5058 /* skip the aging path at the default priority */ 5059 if (sc->priority == DEF_PRIORITY) 5060 goto done; 5061 5062 /* leave the work to lru_gen_age_node() */ 5063 if (current_is_kswapd()) 5064 return 0; 5065 5066 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false)) 5067 return nr_to_scan; 5068 done: 5069 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0; 5070 } 5071 5072 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq, 5073 struct scan_control *sc, bool need_swapping) 5074 { 5075 int i; 5076 DEFINE_MAX_SEQ(lruvec); 5077 5078 if (!current_is_kswapd()) { 5079 /* age each memcg at most once to ensure fairness */ 5080 if (max_seq - seq > 1) 5081 return true; 5082 5083 /* over-swapping can increase allocation latency */ 5084 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping) 5085 return true; 5086 5087 /* give this thread a chance to exit and free its memory */ 5088 if (fatal_signal_pending(current)) { 5089 sc->nr_reclaimed += MIN_LRU_BATCH; 5090 return true; 5091 } 5092 5093 if (cgroup_reclaim(sc)) 5094 return false; 5095 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim) 5096 return false; 5097 5098 /* keep scanning at low priorities to ensure fairness */ 5099 if (sc->priority > DEF_PRIORITY - 2) 5100 return false; 5101 5102 /* 5103 * A minimum amount of work was done under global memory pressure. For 5104 * kswapd, it may be overshooting. For direct reclaim, the allocation 5105 * may succeed if all suitable zones are somewhat safe. In either case, 5106 * it's better to stop now, and restart later if necessary. 5107 */ 5108 for (i = 0; i <= sc->reclaim_idx; i++) { 5109 unsigned long wmark; 5110 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 5111 5112 if (!managed_zone(zone)) 5113 continue; 5114 5115 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone); 5116 if (wmark > zone_page_state(zone, NR_FREE_PAGES)) 5117 return false; 5118 } 5119 5120 sc->nr_reclaimed += MIN_LRU_BATCH; 5121 5122 return true; 5123 } 5124 5125 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5126 { 5127 struct blk_plug plug; 5128 bool need_aging = false; 5129 bool need_swapping = false; 5130 unsigned long scanned = 0; 5131 unsigned long reclaimed = sc->nr_reclaimed; 5132 DEFINE_MAX_SEQ(lruvec); 5133 5134 lru_add_drain(); 5135 5136 blk_start_plug(&plug); 5137 5138 set_mm_walk(lruvec_pgdat(lruvec)); 5139 5140 while (true) { 5141 int delta; 5142 int swappiness; 5143 unsigned long nr_to_scan; 5144 5145 if (sc->may_swap) 5146 swappiness = get_swappiness(lruvec, sc); 5147 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc)) 5148 swappiness = 1; 5149 else 5150 swappiness = 0; 5151 5152 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging); 5153 if (!nr_to_scan) 5154 goto done; 5155 5156 delta = evict_folios(lruvec, sc, swappiness, &need_swapping); 5157 if (!delta) 5158 goto done; 5159 5160 scanned += delta; 5161 if (scanned >= nr_to_scan) 5162 break; 5163 5164 if (should_abort_scan(lruvec, max_seq, sc, need_swapping)) 5165 break; 5166 5167 cond_resched(); 5168 } 5169 5170 /* see the comment in lru_gen_age_node() */ 5171 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging) 5172 sc->memcgs_need_aging = false; 5173 done: 5174 clear_mm_walk(); 5175 5176 blk_finish_plug(&plug); 5177 } 5178 5179 /****************************************************************************** 5180 * state change 5181 ******************************************************************************/ 5182 5183 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5184 { 5185 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5186 5187 if (lrugen->enabled) { 5188 enum lru_list lru; 5189 5190 for_each_evictable_lru(lru) { 5191 if (!list_empty(&lruvec->lists[lru])) 5192 return false; 5193 } 5194 } else { 5195 int gen, type, zone; 5196 5197 for_each_gen_type_zone(gen, type, zone) { 5198 if (!list_empty(&lrugen->lists[gen][type][zone])) 5199 return false; 5200 } 5201 } 5202 5203 return true; 5204 } 5205 5206 static bool fill_evictable(struct lruvec *lruvec) 5207 { 5208 enum lru_list lru; 5209 int remaining = MAX_LRU_BATCH; 5210 5211 for_each_evictable_lru(lru) { 5212 int type = is_file_lru(lru); 5213 bool active = is_active_lru(lru); 5214 struct list_head *head = &lruvec->lists[lru]; 5215 5216 while (!list_empty(head)) { 5217 bool success; 5218 struct folio *folio = lru_to_folio(head); 5219 5220 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5221 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5222 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5223 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5224 5225 lruvec_del_folio(lruvec, folio); 5226 success = lru_gen_add_folio(lruvec, folio, false); 5227 VM_WARN_ON_ONCE(!success); 5228 5229 if (!--remaining) 5230 return false; 5231 } 5232 } 5233 5234 return true; 5235 } 5236 5237 static bool drain_evictable(struct lruvec *lruvec) 5238 { 5239 int gen, type, zone; 5240 int remaining = MAX_LRU_BATCH; 5241 5242 for_each_gen_type_zone(gen, type, zone) { 5243 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone]; 5244 5245 while (!list_empty(head)) { 5246 bool success; 5247 struct folio *folio = lru_to_folio(head); 5248 5249 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5250 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5251 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5252 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5253 5254 success = lru_gen_del_folio(lruvec, folio, false); 5255 VM_WARN_ON_ONCE(!success); 5256 lruvec_add_folio(lruvec, folio); 5257 5258 if (!--remaining) 5259 return false; 5260 } 5261 } 5262 5263 return true; 5264 } 5265 5266 static void lru_gen_change_state(bool enabled) 5267 { 5268 static DEFINE_MUTEX(state_mutex); 5269 5270 struct mem_cgroup *memcg; 5271 5272 cgroup_lock(); 5273 cpus_read_lock(); 5274 get_online_mems(); 5275 mutex_lock(&state_mutex); 5276 5277 if (enabled == lru_gen_enabled()) 5278 goto unlock; 5279 5280 if (enabled) 5281 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5282 else 5283 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5284 5285 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5286 do { 5287 int nid; 5288 5289 for_each_node(nid) { 5290 struct lruvec *lruvec = get_lruvec(memcg, nid); 5291 5292 if (!lruvec) 5293 continue; 5294 5295 spin_lock_irq(&lruvec->lru_lock); 5296 5297 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5298 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5299 5300 lruvec->lrugen.enabled = enabled; 5301 5302 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5303 spin_unlock_irq(&lruvec->lru_lock); 5304 cond_resched(); 5305 spin_lock_irq(&lruvec->lru_lock); 5306 } 5307 5308 spin_unlock_irq(&lruvec->lru_lock); 5309 } 5310 5311 cond_resched(); 5312 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5313 unlock: 5314 mutex_unlock(&state_mutex); 5315 put_online_mems(); 5316 cpus_read_unlock(); 5317 cgroup_unlock(); 5318 } 5319 5320 /****************************************************************************** 5321 * sysfs interface 5322 ******************************************************************************/ 5323 5324 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5325 { 5326 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5327 } 5328 5329 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5330 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, 5331 const char *buf, size_t len) 5332 { 5333 unsigned int msecs; 5334 5335 if (kstrtouint(buf, 0, &msecs)) 5336 return -EINVAL; 5337 5338 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5339 5340 return len; 5341 } 5342 5343 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR( 5344 min_ttl_ms, 0644, show_min_ttl, store_min_ttl 5345 ); 5346 5347 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5348 { 5349 unsigned int caps = 0; 5350 5351 if (get_cap(LRU_GEN_CORE)) 5352 caps |= BIT(LRU_GEN_CORE); 5353 5354 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5355 caps |= BIT(LRU_GEN_MM_WALK); 5356 5357 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5358 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5359 5360 return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps); 5361 } 5362 5363 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5364 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr, 5365 const char *buf, size_t len) 5366 { 5367 int i; 5368 unsigned int caps; 5369 5370 if (tolower(*buf) == 'n') 5371 caps = 0; 5372 else if (tolower(*buf) == 'y') 5373 caps = -1; 5374 else if (kstrtouint(buf, 0, &caps)) 5375 return -EINVAL; 5376 5377 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5378 bool enabled = caps & BIT(i); 5379 5380 if (i == LRU_GEN_CORE) 5381 lru_gen_change_state(enabled); 5382 else if (enabled) 5383 static_branch_enable(&lru_gen_caps[i]); 5384 else 5385 static_branch_disable(&lru_gen_caps[i]); 5386 } 5387 5388 return len; 5389 } 5390 5391 static struct kobj_attribute lru_gen_enabled_attr = __ATTR( 5392 enabled, 0644, show_enabled, store_enabled 5393 ); 5394 5395 static struct attribute *lru_gen_attrs[] = { 5396 &lru_gen_min_ttl_attr.attr, 5397 &lru_gen_enabled_attr.attr, 5398 NULL 5399 }; 5400 5401 static struct attribute_group lru_gen_attr_group = { 5402 .name = "lru_gen", 5403 .attrs = lru_gen_attrs, 5404 }; 5405 5406 /****************************************************************************** 5407 * debugfs interface 5408 ******************************************************************************/ 5409 5410 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5411 { 5412 struct mem_cgroup *memcg; 5413 loff_t nr_to_skip = *pos; 5414 5415 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5416 if (!m->private) 5417 return ERR_PTR(-ENOMEM); 5418 5419 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5420 do { 5421 int nid; 5422 5423 for_each_node_state(nid, N_MEMORY) { 5424 if (!nr_to_skip--) 5425 return get_lruvec(memcg, nid); 5426 } 5427 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5428 5429 return NULL; 5430 } 5431 5432 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5433 { 5434 if (!IS_ERR_OR_NULL(v)) 5435 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5436 5437 kvfree(m->private); 5438 m->private = NULL; 5439 } 5440 5441 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5442 { 5443 int nid = lruvec_pgdat(v)->node_id; 5444 struct mem_cgroup *memcg = lruvec_memcg(v); 5445 5446 ++*pos; 5447 5448 nid = next_memory_node(nid); 5449 if (nid == MAX_NUMNODES) { 5450 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5451 if (!memcg) 5452 return NULL; 5453 5454 nid = first_memory_node; 5455 } 5456 5457 return get_lruvec(memcg, nid); 5458 } 5459 5460 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5461 unsigned long max_seq, unsigned long *min_seq, 5462 unsigned long seq) 5463 { 5464 int i; 5465 int type, tier; 5466 int hist = lru_hist_from_seq(seq); 5467 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5468 5469 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5470 seq_printf(m, " %10d", tier); 5471 for (type = 0; type < ANON_AND_FILE; type++) { 5472 const char *s = " "; 5473 unsigned long n[3] = {}; 5474 5475 if (seq == max_seq) { 5476 s = "RT "; 5477 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5478 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5479 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5480 s = "rep"; 5481 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5482 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5483 if (tier) 5484 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5485 } 5486 5487 for (i = 0; i < 3; i++) 5488 seq_printf(m, " %10lu%c", n[i], s[i]); 5489 } 5490 seq_putc(m, '\n'); 5491 } 5492 5493 seq_puts(m, " "); 5494 for (i = 0; i < NR_MM_STATS; i++) { 5495 const char *s = " "; 5496 unsigned long n = 0; 5497 5498 if (seq == max_seq && NR_HIST_GENS == 1) { 5499 s = "LOYNFA"; 5500 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5501 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5502 s = "loynfa"; 5503 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5504 } 5505 5506 seq_printf(m, " %10lu%c", n, s[i]); 5507 } 5508 seq_putc(m, '\n'); 5509 } 5510 5511 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5512 static int lru_gen_seq_show(struct seq_file *m, void *v) 5513 { 5514 unsigned long seq; 5515 bool full = !debugfs_real_fops(m->file)->write; 5516 struct lruvec *lruvec = v; 5517 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5518 int nid = lruvec_pgdat(lruvec)->node_id; 5519 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5520 DEFINE_MAX_SEQ(lruvec); 5521 DEFINE_MIN_SEQ(lruvec); 5522 5523 if (nid == first_memory_node) { 5524 const char *path = memcg ? m->private : ""; 5525 5526 #ifdef CONFIG_MEMCG 5527 if (memcg) 5528 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5529 #endif 5530 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5531 } 5532 5533 seq_printf(m, " node %5d\n", nid); 5534 5535 if (!full) 5536 seq = min_seq[LRU_GEN_ANON]; 5537 else if (max_seq >= MAX_NR_GENS) 5538 seq = max_seq - MAX_NR_GENS + 1; 5539 else 5540 seq = 0; 5541 5542 for (; seq <= max_seq; seq++) { 5543 int type, zone; 5544 int gen = lru_gen_from_seq(seq); 5545 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5546 5547 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5548 5549 for (type = 0; type < ANON_AND_FILE; type++) { 5550 unsigned long size = 0; 5551 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5552 5553 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5554 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5555 5556 seq_printf(m, " %10lu%c", size, mark); 5557 } 5558 5559 seq_putc(m, '\n'); 5560 5561 if (full) 5562 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5563 } 5564 5565 return 0; 5566 } 5567 5568 static const struct seq_operations lru_gen_seq_ops = { 5569 .start = lru_gen_seq_start, 5570 .stop = lru_gen_seq_stop, 5571 .next = lru_gen_seq_next, 5572 .show = lru_gen_seq_show, 5573 }; 5574 5575 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5576 bool can_swap, bool force_scan) 5577 { 5578 DEFINE_MAX_SEQ(lruvec); 5579 DEFINE_MIN_SEQ(lruvec); 5580 5581 if (seq < max_seq) 5582 return 0; 5583 5584 if (seq > max_seq) 5585 return -EINVAL; 5586 5587 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5588 return -ERANGE; 5589 5590 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5591 5592 return 0; 5593 } 5594 5595 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5596 int swappiness, unsigned long nr_to_reclaim) 5597 { 5598 DEFINE_MAX_SEQ(lruvec); 5599 5600 if (seq + MIN_NR_GENS > max_seq) 5601 return -EINVAL; 5602 5603 sc->nr_reclaimed = 0; 5604 5605 while (!signal_pending(current)) { 5606 DEFINE_MIN_SEQ(lruvec); 5607 5608 if (seq < min_seq[!swappiness]) 5609 return 0; 5610 5611 if (sc->nr_reclaimed >= nr_to_reclaim) 5612 return 0; 5613 5614 if (!evict_folios(lruvec, sc, swappiness, NULL)) 5615 return 0; 5616 5617 cond_resched(); 5618 } 5619 5620 return -EINTR; 5621 } 5622 5623 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5624 struct scan_control *sc, int swappiness, unsigned long opt) 5625 { 5626 struct lruvec *lruvec; 5627 int err = -EINVAL; 5628 struct mem_cgroup *memcg = NULL; 5629 5630 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5631 return -EINVAL; 5632 5633 if (!mem_cgroup_disabled()) { 5634 rcu_read_lock(); 5635 memcg = mem_cgroup_from_id(memcg_id); 5636 #ifdef CONFIG_MEMCG 5637 if (memcg && !css_tryget(&memcg->css)) 5638 memcg = NULL; 5639 #endif 5640 rcu_read_unlock(); 5641 5642 if (!memcg) 5643 return -EINVAL; 5644 } 5645 5646 if (memcg_id != mem_cgroup_id(memcg)) 5647 goto done; 5648 5649 lruvec = get_lruvec(memcg, nid); 5650 5651 if (swappiness < 0) 5652 swappiness = get_swappiness(lruvec, sc); 5653 else if (swappiness > 200) 5654 goto done; 5655 5656 switch (cmd) { 5657 case '+': 5658 err = run_aging(lruvec, seq, sc, swappiness, opt); 5659 break; 5660 case '-': 5661 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5662 break; 5663 } 5664 done: 5665 mem_cgroup_put(memcg); 5666 5667 return err; 5668 } 5669 5670 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5671 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5672 size_t len, loff_t *pos) 5673 { 5674 void *buf; 5675 char *cur, *next; 5676 unsigned int flags; 5677 struct blk_plug plug; 5678 int err = -EINVAL; 5679 struct scan_control sc = { 5680 .may_writepage = true, 5681 .may_unmap = true, 5682 .may_swap = true, 5683 .reclaim_idx = MAX_NR_ZONES - 1, 5684 .gfp_mask = GFP_KERNEL, 5685 }; 5686 5687 buf = kvmalloc(len + 1, GFP_KERNEL); 5688 if (!buf) 5689 return -ENOMEM; 5690 5691 if (copy_from_user(buf, src, len)) { 5692 kvfree(buf); 5693 return -EFAULT; 5694 } 5695 5696 set_task_reclaim_state(current, &sc.reclaim_state); 5697 flags = memalloc_noreclaim_save(); 5698 blk_start_plug(&plug); 5699 if (!set_mm_walk(NULL)) { 5700 err = -ENOMEM; 5701 goto done; 5702 } 5703 5704 next = buf; 5705 next[len] = '\0'; 5706 5707 while ((cur = strsep(&next, ",;\n"))) { 5708 int n; 5709 int end; 5710 char cmd; 5711 unsigned int memcg_id; 5712 unsigned int nid; 5713 unsigned long seq; 5714 unsigned int swappiness = -1; 5715 unsigned long opt = -1; 5716 5717 cur = skip_spaces(cur); 5718 if (!*cur) 5719 continue; 5720 5721 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5722 &seq, &end, &swappiness, &end, &opt, &end); 5723 if (n < 4 || cur[end]) { 5724 err = -EINVAL; 5725 break; 5726 } 5727 5728 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5729 if (err) 5730 break; 5731 } 5732 done: 5733 clear_mm_walk(); 5734 blk_finish_plug(&plug); 5735 memalloc_noreclaim_restore(flags); 5736 set_task_reclaim_state(current, NULL); 5737 5738 kvfree(buf); 5739 5740 return err ? : len; 5741 } 5742 5743 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5744 { 5745 return seq_open(file, &lru_gen_seq_ops); 5746 } 5747 5748 static const struct file_operations lru_gen_rw_fops = { 5749 .open = lru_gen_seq_open, 5750 .read = seq_read, 5751 .write = lru_gen_seq_write, 5752 .llseek = seq_lseek, 5753 .release = seq_release, 5754 }; 5755 5756 static const struct file_operations lru_gen_ro_fops = { 5757 .open = lru_gen_seq_open, 5758 .read = seq_read, 5759 .llseek = seq_lseek, 5760 .release = seq_release, 5761 }; 5762 5763 /****************************************************************************** 5764 * initialization 5765 ******************************************************************************/ 5766 5767 void lru_gen_init_lruvec(struct lruvec *lruvec) 5768 { 5769 int i; 5770 int gen, type, zone; 5771 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5772 5773 lrugen->max_seq = MIN_NR_GENS + 1; 5774 lrugen->enabled = lru_gen_enabled(); 5775 5776 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5777 lrugen->timestamps[i] = jiffies; 5778 5779 for_each_gen_type_zone(gen, type, zone) 5780 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]); 5781 5782 lruvec->mm_state.seq = MIN_NR_GENS; 5783 init_waitqueue_head(&lruvec->mm_state.wait); 5784 } 5785 5786 #ifdef CONFIG_MEMCG 5787 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5788 { 5789 INIT_LIST_HEAD(&memcg->mm_list.fifo); 5790 spin_lock_init(&memcg->mm_list.lock); 5791 } 5792 5793 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5794 { 5795 int i; 5796 int nid; 5797 5798 for_each_node(nid) { 5799 struct lruvec *lruvec = get_lruvec(memcg, nid); 5800 5801 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5802 sizeof(lruvec->lrugen.nr_pages))); 5803 5804 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5805 bitmap_free(lruvec->mm_state.filters[i]); 5806 lruvec->mm_state.filters[i] = NULL; 5807 } 5808 } 5809 } 5810 #endif 5811 5812 static int __init init_lru_gen(void) 5813 { 5814 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5815 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5816 5817 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5818 pr_err("lru_gen: failed to create sysfs group\n"); 5819 5820 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5821 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5822 5823 return 0; 5824 }; 5825 late_initcall(init_lru_gen); 5826 5827 #else /* !CONFIG_LRU_GEN */ 5828 5829 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5830 { 5831 } 5832 5833 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5834 { 5835 } 5836 5837 #endif /* CONFIG_LRU_GEN */ 5838 5839 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5840 { 5841 unsigned long nr[NR_LRU_LISTS]; 5842 unsigned long targets[NR_LRU_LISTS]; 5843 unsigned long nr_to_scan; 5844 enum lru_list lru; 5845 unsigned long nr_reclaimed = 0; 5846 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5847 struct blk_plug plug; 5848 bool scan_adjusted; 5849 5850 if (lru_gen_enabled()) { 5851 lru_gen_shrink_lruvec(lruvec, sc); 5852 return; 5853 } 5854 5855 get_scan_count(lruvec, sc, nr); 5856 5857 /* Record the original scan target for proportional adjustments later */ 5858 memcpy(targets, nr, sizeof(nr)); 5859 5860 /* 5861 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5862 * event that can occur when there is little memory pressure e.g. 5863 * multiple streaming readers/writers. Hence, we do not abort scanning 5864 * when the requested number of pages are reclaimed when scanning at 5865 * DEF_PRIORITY on the assumption that the fact we are direct 5866 * reclaiming implies that kswapd is not keeping up and it is best to 5867 * do a batch of work at once. For memcg reclaim one check is made to 5868 * abort proportional reclaim if either the file or anon lru has already 5869 * dropped to zero at the first pass. 5870 */ 5871 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5872 sc->priority == DEF_PRIORITY); 5873 5874 blk_start_plug(&plug); 5875 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5876 nr[LRU_INACTIVE_FILE]) { 5877 unsigned long nr_anon, nr_file, percentage; 5878 unsigned long nr_scanned; 5879 5880 for_each_evictable_lru(lru) { 5881 if (nr[lru]) { 5882 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5883 nr[lru] -= nr_to_scan; 5884 5885 nr_reclaimed += shrink_list(lru, nr_to_scan, 5886 lruvec, sc); 5887 } 5888 } 5889 5890 cond_resched(); 5891 5892 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 5893 continue; 5894 5895 /* 5896 * For kswapd and memcg, reclaim at least the number of pages 5897 * requested. Ensure that the anon and file LRUs are scanned 5898 * proportionally what was requested by get_scan_count(). We 5899 * stop reclaiming one LRU and reduce the amount scanning 5900 * proportional to the original scan target. 5901 */ 5902 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5903 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5904 5905 /* 5906 * It's just vindictive to attack the larger once the smaller 5907 * has gone to zero. And given the way we stop scanning the 5908 * smaller below, this makes sure that we only make one nudge 5909 * towards proportionality once we've got nr_to_reclaim. 5910 */ 5911 if (!nr_file || !nr_anon) 5912 break; 5913 5914 if (nr_file > nr_anon) { 5915 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5916 targets[LRU_ACTIVE_ANON] + 1; 5917 lru = LRU_BASE; 5918 percentage = nr_anon * 100 / scan_target; 5919 } else { 5920 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5921 targets[LRU_ACTIVE_FILE] + 1; 5922 lru = LRU_FILE; 5923 percentage = nr_file * 100 / scan_target; 5924 } 5925 5926 /* Stop scanning the smaller of the LRU */ 5927 nr[lru] = 0; 5928 nr[lru + LRU_ACTIVE] = 0; 5929 5930 /* 5931 * Recalculate the other LRU scan count based on its original 5932 * scan target and the percentage scanning already complete 5933 */ 5934 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5935 nr_scanned = targets[lru] - nr[lru]; 5936 nr[lru] = targets[lru] * (100 - percentage) / 100; 5937 nr[lru] -= min(nr[lru], nr_scanned); 5938 5939 lru += LRU_ACTIVE; 5940 nr_scanned = targets[lru] - nr[lru]; 5941 nr[lru] = targets[lru] * (100 - percentage) / 100; 5942 nr[lru] -= min(nr[lru], nr_scanned); 5943 5944 scan_adjusted = true; 5945 } 5946 blk_finish_plug(&plug); 5947 sc->nr_reclaimed += nr_reclaimed; 5948 5949 /* 5950 * Even if we did not try to evict anon pages at all, we want to 5951 * rebalance the anon lru active/inactive ratio. 5952 */ 5953 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5954 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5955 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5956 sc, LRU_ACTIVE_ANON); 5957 } 5958 5959 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5960 static bool in_reclaim_compaction(struct scan_control *sc) 5961 { 5962 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 5963 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5964 sc->priority < DEF_PRIORITY - 2)) 5965 return true; 5966 5967 return false; 5968 } 5969 5970 /* 5971 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5972 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5973 * true if more pages should be reclaimed such that when the page allocator 5974 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5975 * It will give up earlier than that if there is difficulty reclaiming pages. 5976 */ 5977 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5978 unsigned long nr_reclaimed, 5979 struct scan_control *sc) 5980 { 5981 unsigned long pages_for_compaction; 5982 unsigned long inactive_lru_pages; 5983 int z; 5984 5985 /* If not in reclaim/compaction mode, stop */ 5986 if (!in_reclaim_compaction(sc)) 5987 return false; 5988 5989 /* 5990 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5991 * number of pages that were scanned. This will return to the caller 5992 * with the risk reclaim/compaction and the resulting allocation attempt 5993 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5994 * allocations through requiring that the full LRU list has been scanned 5995 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5996 * scan, but that approximation was wrong, and there were corner cases 5997 * where always a non-zero amount of pages were scanned. 5998 */ 5999 if (!nr_reclaimed) 6000 return false; 6001 6002 /* If compaction would go ahead or the allocation would succeed, stop */ 6003 for (z = 0; z <= sc->reclaim_idx; z++) { 6004 struct zone *zone = &pgdat->node_zones[z]; 6005 if (!managed_zone(zone)) 6006 continue; 6007 6008 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6009 case COMPACT_SUCCESS: 6010 case COMPACT_CONTINUE: 6011 return false; 6012 default: 6013 /* check next zone */ 6014 ; 6015 } 6016 } 6017 6018 /* 6019 * If we have not reclaimed enough pages for compaction and the 6020 * inactive lists are large enough, continue reclaiming 6021 */ 6022 pages_for_compaction = compact_gap(sc->order); 6023 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6024 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6025 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6026 6027 return inactive_lru_pages > pages_for_compaction; 6028 } 6029 6030 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6031 { 6032 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6033 struct mem_cgroup *memcg; 6034 6035 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6036 do { 6037 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6038 unsigned long reclaimed; 6039 unsigned long scanned; 6040 6041 /* 6042 * This loop can become CPU-bound when target memcgs 6043 * aren't eligible for reclaim - either because they 6044 * don't have any reclaimable pages, or because their 6045 * memory is explicitly protected. Avoid soft lockups. 6046 */ 6047 cond_resched(); 6048 6049 mem_cgroup_calculate_protection(target_memcg, memcg); 6050 6051 if (mem_cgroup_below_min(memcg)) { 6052 /* 6053 * Hard protection. 6054 * If there is no reclaimable memory, OOM. 6055 */ 6056 continue; 6057 } else if (mem_cgroup_below_low(memcg)) { 6058 /* 6059 * Soft protection. 6060 * Respect the protection only as long as 6061 * there is an unprotected supply 6062 * of reclaimable memory from other cgroups. 6063 */ 6064 if (!sc->memcg_low_reclaim) { 6065 sc->memcg_low_skipped = 1; 6066 continue; 6067 } 6068 memcg_memory_event(memcg, MEMCG_LOW); 6069 } 6070 6071 reclaimed = sc->nr_reclaimed; 6072 scanned = sc->nr_scanned; 6073 6074 shrink_lruvec(lruvec, sc); 6075 6076 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6077 sc->priority); 6078 6079 /* Record the group's reclaim efficiency */ 6080 if (!sc->proactive) 6081 vmpressure(sc->gfp_mask, memcg, false, 6082 sc->nr_scanned - scanned, 6083 sc->nr_reclaimed - reclaimed); 6084 6085 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6086 } 6087 6088 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6089 { 6090 struct reclaim_state *reclaim_state = current->reclaim_state; 6091 unsigned long nr_reclaimed, nr_scanned; 6092 struct lruvec *target_lruvec; 6093 bool reclaimable = false; 6094 6095 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6096 6097 again: 6098 memset(&sc->nr, 0, sizeof(sc->nr)); 6099 6100 nr_reclaimed = sc->nr_reclaimed; 6101 nr_scanned = sc->nr_scanned; 6102 6103 prepare_scan_count(pgdat, sc); 6104 6105 shrink_node_memcgs(pgdat, sc); 6106 6107 if (reclaim_state) { 6108 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 6109 reclaim_state->reclaimed_slab = 0; 6110 } 6111 6112 /* Record the subtree's reclaim efficiency */ 6113 if (!sc->proactive) 6114 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6115 sc->nr_scanned - nr_scanned, 6116 sc->nr_reclaimed - nr_reclaimed); 6117 6118 if (sc->nr_reclaimed - nr_reclaimed) 6119 reclaimable = true; 6120 6121 if (current_is_kswapd()) { 6122 /* 6123 * If reclaim is isolating dirty pages under writeback, 6124 * it implies that the long-lived page allocation rate 6125 * is exceeding the page laundering rate. Either the 6126 * global limits are not being effective at throttling 6127 * processes due to the page distribution throughout 6128 * zones or there is heavy usage of a slow backing 6129 * device. The only option is to throttle from reclaim 6130 * context which is not ideal as there is no guarantee 6131 * the dirtying process is throttled in the same way 6132 * balance_dirty_pages() manages. 6133 * 6134 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6135 * count the number of pages under pages flagged for 6136 * immediate reclaim and stall if any are encountered 6137 * in the nr_immediate check below. 6138 */ 6139 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6140 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6141 6142 /* Allow kswapd to start writing pages during reclaim.*/ 6143 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6144 set_bit(PGDAT_DIRTY, &pgdat->flags); 6145 6146 /* 6147 * If kswapd scans pages marked for immediate 6148 * reclaim and under writeback (nr_immediate), it 6149 * implies that pages are cycling through the LRU 6150 * faster than they are written so forcibly stall 6151 * until some pages complete writeback. 6152 */ 6153 if (sc->nr.immediate) 6154 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6155 } 6156 6157 /* 6158 * Tag a node/memcg as congested if all the dirty pages were marked 6159 * for writeback and immediate reclaim (counted in nr.congested). 6160 * 6161 * Legacy memcg will stall in page writeback so avoid forcibly 6162 * stalling in reclaim_throttle(). 6163 */ 6164 if ((current_is_kswapd() || 6165 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6166 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6167 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6168 6169 /* 6170 * Stall direct reclaim for IO completions if the lruvec is 6171 * node is congested. Allow kswapd to continue until it 6172 * starts encountering unqueued dirty pages or cycling through 6173 * the LRU too quickly. 6174 */ 6175 if (!current_is_kswapd() && current_may_throttle() && 6176 !sc->hibernation_mode && 6177 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6178 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6179 6180 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 6181 sc)) 6182 goto again; 6183 6184 /* 6185 * Kswapd gives up on balancing particular nodes after too 6186 * many failures to reclaim anything from them and goes to 6187 * sleep. On reclaim progress, reset the failure counter. A 6188 * successful direct reclaim run will revive a dormant kswapd. 6189 */ 6190 if (reclaimable) 6191 pgdat->kswapd_failures = 0; 6192 } 6193 6194 /* 6195 * Returns true if compaction should go ahead for a costly-order request, or 6196 * the allocation would already succeed without compaction. Return false if we 6197 * should reclaim first. 6198 */ 6199 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6200 { 6201 unsigned long watermark; 6202 enum compact_result suitable; 6203 6204 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6205 if (suitable == COMPACT_SUCCESS) 6206 /* Allocation should succeed already. Don't reclaim. */ 6207 return true; 6208 if (suitable == COMPACT_SKIPPED) 6209 /* Compaction cannot yet proceed. Do reclaim. */ 6210 return false; 6211 6212 /* 6213 * Compaction is already possible, but it takes time to run and there 6214 * are potentially other callers using the pages just freed. So proceed 6215 * with reclaim to make a buffer of free pages available to give 6216 * compaction a reasonable chance of completing and allocating the page. 6217 * Note that we won't actually reclaim the whole buffer in one attempt 6218 * as the target watermark in should_continue_reclaim() is lower. But if 6219 * we are already above the high+gap watermark, don't reclaim at all. 6220 */ 6221 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6222 6223 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6224 } 6225 6226 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6227 { 6228 /* 6229 * If reclaim is making progress greater than 12% efficiency then 6230 * wake all the NOPROGRESS throttled tasks. 6231 */ 6232 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6233 wait_queue_head_t *wqh; 6234 6235 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6236 if (waitqueue_active(wqh)) 6237 wake_up(wqh); 6238 6239 return; 6240 } 6241 6242 /* 6243 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6244 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6245 * under writeback and marked for immediate reclaim at the tail of the 6246 * LRU. 6247 */ 6248 if (current_is_kswapd() || cgroup_reclaim(sc)) 6249 return; 6250 6251 /* Throttle if making no progress at high prioities. */ 6252 if (sc->priority == 1 && !sc->nr_reclaimed) 6253 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6254 } 6255 6256 /* 6257 * This is the direct reclaim path, for page-allocating processes. We only 6258 * try to reclaim pages from zones which will satisfy the caller's allocation 6259 * request. 6260 * 6261 * If a zone is deemed to be full of pinned pages then just give it a light 6262 * scan then give up on it. 6263 */ 6264 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6265 { 6266 struct zoneref *z; 6267 struct zone *zone; 6268 unsigned long nr_soft_reclaimed; 6269 unsigned long nr_soft_scanned; 6270 gfp_t orig_mask; 6271 pg_data_t *last_pgdat = NULL; 6272 pg_data_t *first_pgdat = NULL; 6273 6274 /* 6275 * If the number of buffer_heads in the machine exceeds the maximum 6276 * allowed level, force direct reclaim to scan the highmem zone as 6277 * highmem pages could be pinning lowmem pages storing buffer_heads 6278 */ 6279 orig_mask = sc->gfp_mask; 6280 if (buffer_heads_over_limit) { 6281 sc->gfp_mask |= __GFP_HIGHMEM; 6282 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6283 } 6284 6285 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6286 sc->reclaim_idx, sc->nodemask) { 6287 /* 6288 * Take care memory controller reclaiming has small influence 6289 * to global LRU. 6290 */ 6291 if (!cgroup_reclaim(sc)) { 6292 if (!cpuset_zone_allowed(zone, 6293 GFP_KERNEL | __GFP_HARDWALL)) 6294 continue; 6295 6296 /* 6297 * If we already have plenty of memory free for 6298 * compaction in this zone, don't free any more. 6299 * Even though compaction is invoked for any 6300 * non-zero order, only frequent costly order 6301 * reclamation is disruptive enough to become a 6302 * noticeable problem, like transparent huge 6303 * page allocations. 6304 */ 6305 if (IS_ENABLED(CONFIG_COMPACTION) && 6306 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6307 compaction_ready(zone, sc)) { 6308 sc->compaction_ready = true; 6309 continue; 6310 } 6311 6312 /* 6313 * Shrink each node in the zonelist once. If the 6314 * zonelist is ordered by zone (not the default) then a 6315 * node may be shrunk multiple times but in that case 6316 * the user prefers lower zones being preserved. 6317 */ 6318 if (zone->zone_pgdat == last_pgdat) 6319 continue; 6320 6321 /* 6322 * This steals pages from memory cgroups over softlimit 6323 * and returns the number of reclaimed pages and 6324 * scanned pages. This works for global memory pressure 6325 * and balancing, not for a memcg's limit. 6326 */ 6327 nr_soft_scanned = 0; 6328 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6329 sc->order, sc->gfp_mask, 6330 &nr_soft_scanned); 6331 sc->nr_reclaimed += nr_soft_reclaimed; 6332 sc->nr_scanned += nr_soft_scanned; 6333 /* need some check for avoid more shrink_zone() */ 6334 } 6335 6336 if (!first_pgdat) 6337 first_pgdat = zone->zone_pgdat; 6338 6339 /* See comment about same check for global reclaim above */ 6340 if (zone->zone_pgdat == last_pgdat) 6341 continue; 6342 last_pgdat = zone->zone_pgdat; 6343 shrink_node(zone->zone_pgdat, sc); 6344 } 6345 6346 if (first_pgdat) 6347 consider_reclaim_throttle(first_pgdat, sc); 6348 6349 /* 6350 * Restore to original mask to avoid the impact on the caller if we 6351 * promoted it to __GFP_HIGHMEM. 6352 */ 6353 sc->gfp_mask = orig_mask; 6354 } 6355 6356 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6357 { 6358 struct lruvec *target_lruvec; 6359 unsigned long refaults; 6360 6361 if (lru_gen_enabled()) 6362 return; 6363 6364 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6365 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6366 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6367 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6368 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6369 } 6370 6371 /* 6372 * This is the main entry point to direct page reclaim. 6373 * 6374 * If a full scan of the inactive list fails to free enough memory then we 6375 * are "out of memory" and something needs to be killed. 6376 * 6377 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6378 * high - the zone may be full of dirty or under-writeback pages, which this 6379 * caller can't do much about. We kick the writeback threads and take explicit 6380 * naps in the hope that some of these pages can be written. But if the 6381 * allocating task holds filesystem locks which prevent writeout this might not 6382 * work, and the allocation attempt will fail. 6383 * 6384 * returns: 0, if no pages reclaimed 6385 * else, the number of pages reclaimed 6386 */ 6387 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6388 struct scan_control *sc) 6389 { 6390 int initial_priority = sc->priority; 6391 pg_data_t *last_pgdat; 6392 struct zoneref *z; 6393 struct zone *zone; 6394 retry: 6395 delayacct_freepages_start(); 6396 6397 if (!cgroup_reclaim(sc)) 6398 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6399 6400 do { 6401 if (!sc->proactive) 6402 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6403 sc->priority); 6404 sc->nr_scanned = 0; 6405 shrink_zones(zonelist, sc); 6406 6407 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6408 break; 6409 6410 if (sc->compaction_ready) 6411 break; 6412 6413 /* 6414 * If we're getting trouble reclaiming, start doing 6415 * writepage even in laptop mode. 6416 */ 6417 if (sc->priority < DEF_PRIORITY - 2) 6418 sc->may_writepage = 1; 6419 } while (--sc->priority >= 0); 6420 6421 last_pgdat = NULL; 6422 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6423 sc->nodemask) { 6424 if (zone->zone_pgdat == last_pgdat) 6425 continue; 6426 last_pgdat = zone->zone_pgdat; 6427 6428 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6429 6430 if (cgroup_reclaim(sc)) { 6431 struct lruvec *lruvec; 6432 6433 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6434 zone->zone_pgdat); 6435 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6436 } 6437 } 6438 6439 delayacct_freepages_end(); 6440 6441 if (sc->nr_reclaimed) 6442 return sc->nr_reclaimed; 6443 6444 /* Aborted reclaim to try compaction? don't OOM, then */ 6445 if (sc->compaction_ready) 6446 return 1; 6447 6448 /* 6449 * We make inactive:active ratio decisions based on the node's 6450 * composition of memory, but a restrictive reclaim_idx or a 6451 * memory.low cgroup setting can exempt large amounts of 6452 * memory from reclaim. Neither of which are very common, so 6453 * instead of doing costly eligibility calculations of the 6454 * entire cgroup subtree up front, we assume the estimates are 6455 * good, and retry with forcible deactivation if that fails. 6456 */ 6457 if (sc->skipped_deactivate) { 6458 sc->priority = initial_priority; 6459 sc->force_deactivate = 1; 6460 sc->skipped_deactivate = 0; 6461 goto retry; 6462 } 6463 6464 /* Untapped cgroup reserves? Don't OOM, retry. */ 6465 if (sc->memcg_low_skipped) { 6466 sc->priority = initial_priority; 6467 sc->force_deactivate = 0; 6468 sc->memcg_low_reclaim = 1; 6469 sc->memcg_low_skipped = 0; 6470 goto retry; 6471 } 6472 6473 return 0; 6474 } 6475 6476 static bool allow_direct_reclaim(pg_data_t *pgdat) 6477 { 6478 struct zone *zone; 6479 unsigned long pfmemalloc_reserve = 0; 6480 unsigned long free_pages = 0; 6481 int i; 6482 bool wmark_ok; 6483 6484 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6485 return true; 6486 6487 for (i = 0; i <= ZONE_NORMAL; i++) { 6488 zone = &pgdat->node_zones[i]; 6489 if (!managed_zone(zone)) 6490 continue; 6491 6492 if (!zone_reclaimable_pages(zone)) 6493 continue; 6494 6495 pfmemalloc_reserve += min_wmark_pages(zone); 6496 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6497 } 6498 6499 /* If there are no reserves (unexpected config) then do not throttle */ 6500 if (!pfmemalloc_reserve) 6501 return true; 6502 6503 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6504 6505 /* kswapd must be awake if processes are being throttled */ 6506 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6507 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6508 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6509 6510 wake_up_interruptible(&pgdat->kswapd_wait); 6511 } 6512 6513 return wmark_ok; 6514 } 6515 6516 /* 6517 * Throttle direct reclaimers if backing storage is backed by the network 6518 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6519 * depleted. kswapd will continue to make progress and wake the processes 6520 * when the low watermark is reached. 6521 * 6522 * Returns true if a fatal signal was delivered during throttling. If this 6523 * happens, the page allocator should not consider triggering the OOM killer. 6524 */ 6525 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6526 nodemask_t *nodemask) 6527 { 6528 struct zoneref *z; 6529 struct zone *zone; 6530 pg_data_t *pgdat = NULL; 6531 6532 /* 6533 * Kernel threads should not be throttled as they may be indirectly 6534 * responsible for cleaning pages necessary for reclaim to make forward 6535 * progress. kjournald for example may enter direct reclaim while 6536 * committing a transaction where throttling it could forcing other 6537 * processes to block on log_wait_commit(). 6538 */ 6539 if (current->flags & PF_KTHREAD) 6540 goto out; 6541 6542 /* 6543 * If a fatal signal is pending, this process should not throttle. 6544 * It should return quickly so it can exit and free its memory 6545 */ 6546 if (fatal_signal_pending(current)) 6547 goto out; 6548 6549 /* 6550 * Check if the pfmemalloc reserves are ok by finding the first node 6551 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6552 * GFP_KERNEL will be required for allocating network buffers when 6553 * swapping over the network so ZONE_HIGHMEM is unusable. 6554 * 6555 * Throttling is based on the first usable node and throttled processes 6556 * wait on a queue until kswapd makes progress and wakes them. There 6557 * is an affinity then between processes waking up and where reclaim 6558 * progress has been made assuming the process wakes on the same node. 6559 * More importantly, processes running on remote nodes will not compete 6560 * for remote pfmemalloc reserves and processes on different nodes 6561 * should make reasonable progress. 6562 */ 6563 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6564 gfp_zone(gfp_mask), nodemask) { 6565 if (zone_idx(zone) > ZONE_NORMAL) 6566 continue; 6567 6568 /* Throttle based on the first usable node */ 6569 pgdat = zone->zone_pgdat; 6570 if (allow_direct_reclaim(pgdat)) 6571 goto out; 6572 break; 6573 } 6574 6575 /* If no zone was usable by the allocation flags then do not throttle */ 6576 if (!pgdat) 6577 goto out; 6578 6579 /* Account for the throttling */ 6580 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6581 6582 /* 6583 * If the caller cannot enter the filesystem, it's possible that it 6584 * is due to the caller holding an FS lock or performing a journal 6585 * transaction in the case of a filesystem like ext[3|4]. In this case, 6586 * it is not safe to block on pfmemalloc_wait as kswapd could be 6587 * blocked waiting on the same lock. Instead, throttle for up to a 6588 * second before continuing. 6589 */ 6590 if (!(gfp_mask & __GFP_FS)) 6591 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6592 allow_direct_reclaim(pgdat), HZ); 6593 else 6594 /* Throttle until kswapd wakes the process */ 6595 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6596 allow_direct_reclaim(pgdat)); 6597 6598 if (fatal_signal_pending(current)) 6599 return true; 6600 6601 out: 6602 return false; 6603 } 6604 6605 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6606 gfp_t gfp_mask, nodemask_t *nodemask) 6607 { 6608 unsigned long nr_reclaimed; 6609 struct scan_control sc = { 6610 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6611 .gfp_mask = current_gfp_context(gfp_mask), 6612 .reclaim_idx = gfp_zone(gfp_mask), 6613 .order = order, 6614 .nodemask = nodemask, 6615 .priority = DEF_PRIORITY, 6616 .may_writepage = !laptop_mode, 6617 .may_unmap = 1, 6618 .may_swap = 1, 6619 }; 6620 6621 /* 6622 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6623 * Confirm they are large enough for max values. 6624 */ 6625 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 6626 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6627 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6628 6629 /* 6630 * Do not enter reclaim if fatal signal was delivered while throttled. 6631 * 1 is returned so that the page allocator does not OOM kill at this 6632 * point. 6633 */ 6634 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6635 return 1; 6636 6637 set_task_reclaim_state(current, &sc.reclaim_state); 6638 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6639 6640 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6641 6642 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6643 set_task_reclaim_state(current, NULL); 6644 6645 return nr_reclaimed; 6646 } 6647 6648 #ifdef CONFIG_MEMCG 6649 6650 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6651 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6652 gfp_t gfp_mask, bool noswap, 6653 pg_data_t *pgdat, 6654 unsigned long *nr_scanned) 6655 { 6656 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6657 struct scan_control sc = { 6658 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6659 .target_mem_cgroup = memcg, 6660 .may_writepage = !laptop_mode, 6661 .may_unmap = 1, 6662 .reclaim_idx = MAX_NR_ZONES - 1, 6663 .may_swap = !noswap, 6664 }; 6665 6666 WARN_ON_ONCE(!current->reclaim_state); 6667 6668 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6669 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6670 6671 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6672 sc.gfp_mask); 6673 6674 /* 6675 * NOTE: Although we can get the priority field, using it 6676 * here is not a good idea, since it limits the pages we can scan. 6677 * if we don't reclaim here, the shrink_node from balance_pgdat 6678 * will pick up pages from other mem cgroup's as well. We hack 6679 * the priority and make it zero. 6680 */ 6681 shrink_lruvec(lruvec, &sc); 6682 6683 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6684 6685 *nr_scanned = sc.nr_scanned; 6686 6687 return sc.nr_reclaimed; 6688 } 6689 6690 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6691 unsigned long nr_pages, 6692 gfp_t gfp_mask, 6693 unsigned int reclaim_options) 6694 { 6695 unsigned long nr_reclaimed; 6696 unsigned int noreclaim_flag; 6697 struct scan_control sc = { 6698 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6699 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6700 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6701 .reclaim_idx = MAX_NR_ZONES - 1, 6702 .target_mem_cgroup = memcg, 6703 .priority = DEF_PRIORITY, 6704 .may_writepage = !laptop_mode, 6705 .may_unmap = 1, 6706 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6707 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6708 }; 6709 /* 6710 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6711 * equal pressure on all the nodes. This is based on the assumption that 6712 * the reclaim does not bail out early. 6713 */ 6714 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6715 6716 set_task_reclaim_state(current, &sc.reclaim_state); 6717 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6718 noreclaim_flag = memalloc_noreclaim_save(); 6719 6720 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6721 6722 memalloc_noreclaim_restore(noreclaim_flag); 6723 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6724 set_task_reclaim_state(current, NULL); 6725 6726 return nr_reclaimed; 6727 } 6728 #endif 6729 6730 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6731 { 6732 struct mem_cgroup *memcg; 6733 struct lruvec *lruvec; 6734 6735 if (lru_gen_enabled()) { 6736 lru_gen_age_node(pgdat, sc); 6737 return; 6738 } 6739 6740 if (!can_age_anon_pages(pgdat, sc)) 6741 return; 6742 6743 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6744 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6745 return; 6746 6747 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6748 do { 6749 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6750 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6751 sc, LRU_ACTIVE_ANON); 6752 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6753 } while (memcg); 6754 } 6755 6756 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6757 { 6758 int i; 6759 struct zone *zone; 6760 6761 /* 6762 * Check for watermark boosts top-down as the higher zones 6763 * are more likely to be boosted. Both watermarks and boosts 6764 * should not be checked at the same time as reclaim would 6765 * start prematurely when there is no boosting and a lower 6766 * zone is balanced. 6767 */ 6768 for (i = highest_zoneidx; i >= 0; i--) { 6769 zone = pgdat->node_zones + i; 6770 if (!managed_zone(zone)) 6771 continue; 6772 6773 if (zone->watermark_boost) 6774 return true; 6775 } 6776 6777 return false; 6778 } 6779 6780 /* 6781 * Returns true if there is an eligible zone balanced for the request order 6782 * and highest_zoneidx 6783 */ 6784 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6785 { 6786 int i; 6787 unsigned long mark = -1; 6788 struct zone *zone; 6789 6790 /* 6791 * Check watermarks bottom-up as lower zones are more likely to 6792 * meet watermarks. 6793 */ 6794 for (i = 0; i <= highest_zoneidx; i++) { 6795 zone = pgdat->node_zones + i; 6796 6797 if (!managed_zone(zone)) 6798 continue; 6799 6800 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6801 mark = wmark_pages(zone, WMARK_PROMO); 6802 else 6803 mark = high_wmark_pages(zone); 6804 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6805 return true; 6806 } 6807 6808 /* 6809 * If a node has no managed zone within highest_zoneidx, it does not 6810 * need balancing by definition. This can happen if a zone-restricted 6811 * allocation tries to wake a remote kswapd. 6812 */ 6813 if (mark == -1) 6814 return true; 6815 6816 return false; 6817 } 6818 6819 /* Clear pgdat state for congested, dirty or under writeback. */ 6820 static void clear_pgdat_congested(pg_data_t *pgdat) 6821 { 6822 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6823 6824 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6825 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6826 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6827 } 6828 6829 /* 6830 * Prepare kswapd for sleeping. This verifies that there are no processes 6831 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6832 * 6833 * Returns true if kswapd is ready to sleep 6834 */ 6835 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6836 int highest_zoneidx) 6837 { 6838 /* 6839 * The throttled processes are normally woken up in balance_pgdat() as 6840 * soon as allow_direct_reclaim() is true. But there is a potential 6841 * race between when kswapd checks the watermarks and a process gets 6842 * throttled. There is also a potential race if processes get 6843 * throttled, kswapd wakes, a large process exits thereby balancing the 6844 * zones, which causes kswapd to exit balance_pgdat() before reaching 6845 * the wake up checks. If kswapd is going to sleep, no process should 6846 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6847 * the wake up is premature, processes will wake kswapd and get 6848 * throttled again. The difference from wake ups in balance_pgdat() is 6849 * that here we are under prepare_to_wait(). 6850 */ 6851 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6852 wake_up_all(&pgdat->pfmemalloc_wait); 6853 6854 /* Hopeless node, leave it to direct reclaim */ 6855 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6856 return true; 6857 6858 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6859 clear_pgdat_congested(pgdat); 6860 return true; 6861 } 6862 6863 return false; 6864 } 6865 6866 /* 6867 * kswapd shrinks a node of pages that are at or below the highest usable 6868 * zone that is currently unbalanced. 6869 * 6870 * Returns true if kswapd scanned at least the requested number of pages to 6871 * reclaim or if the lack of progress was due to pages under writeback. 6872 * This is used to determine if the scanning priority needs to be raised. 6873 */ 6874 static bool kswapd_shrink_node(pg_data_t *pgdat, 6875 struct scan_control *sc) 6876 { 6877 struct zone *zone; 6878 int z; 6879 6880 /* Reclaim a number of pages proportional to the number of zones */ 6881 sc->nr_to_reclaim = 0; 6882 for (z = 0; z <= sc->reclaim_idx; z++) { 6883 zone = pgdat->node_zones + z; 6884 if (!managed_zone(zone)) 6885 continue; 6886 6887 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6888 } 6889 6890 /* 6891 * Historically care was taken to put equal pressure on all zones but 6892 * now pressure is applied based on node LRU order. 6893 */ 6894 shrink_node(pgdat, sc); 6895 6896 /* 6897 * Fragmentation may mean that the system cannot be rebalanced for 6898 * high-order allocations. If twice the allocation size has been 6899 * reclaimed then recheck watermarks only at order-0 to prevent 6900 * excessive reclaim. Assume that a process requested a high-order 6901 * can direct reclaim/compact. 6902 */ 6903 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6904 sc->order = 0; 6905 6906 return sc->nr_scanned >= sc->nr_to_reclaim; 6907 } 6908 6909 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6910 static inline void 6911 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6912 { 6913 int i; 6914 struct zone *zone; 6915 6916 for (i = 0; i <= highest_zoneidx; i++) { 6917 zone = pgdat->node_zones + i; 6918 6919 if (!managed_zone(zone)) 6920 continue; 6921 6922 if (active) 6923 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6924 else 6925 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6926 } 6927 } 6928 6929 static inline void 6930 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6931 { 6932 update_reclaim_active(pgdat, highest_zoneidx, true); 6933 } 6934 6935 static inline void 6936 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6937 { 6938 update_reclaim_active(pgdat, highest_zoneidx, false); 6939 } 6940 6941 /* 6942 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6943 * that are eligible for use by the caller until at least one zone is 6944 * balanced. 6945 * 6946 * Returns the order kswapd finished reclaiming at. 6947 * 6948 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6949 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6950 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6951 * or lower is eligible for reclaim until at least one usable zone is 6952 * balanced. 6953 */ 6954 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6955 { 6956 int i; 6957 unsigned long nr_soft_reclaimed; 6958 unsigned long nr_soft_scanned; 6959 unsigned long pflags; 6960 unsigned long nr_boost_reclaim; 6961 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6962 bool boosted; 6963 struct zone *zone; 6964 struct scan_control sc = { 6965 .gfp_mask = GFP_KERNEL, 6966 .order = order, 6967 .may_unmap = 1, 6968 }; 6969 6970 set_task_reclaim_state(current, &sc.reclaim_state); 6971 psi_memstall_enter(&pflags); 6972 __fs_reclaim_acquire(_THIS_IP_); 6973 6974 count_vm_event(PAGEOUTRUN); 6975 6976 /* 6977 * Account for the reclaim boost. Note that the zone boost is left in 6978 * place so that parallel allocations that are near the watermark will 6979 * stall or direct reclaim until kswapd is finished. 6980 */ 6981 nr_boost_reclaim = 0; 6982 for (i = 0; i <= highest_zoneidx; i++) { 6983 zone = pgdat->node_zones + i; 6984 if (!managed_zone(zone)) 6985 continue; 6986 6987 nr_boost_reclaim += zone->watermark_boost; 6988 zone_boosts[i] = zone->watermark_boost; 6989 } 6990 boosted = nr_boost_reclaim; 6991 6992 restart: 6993 set_reclaim_active(pgdat, highest_zoneidx); 6994 sc.priority = DEF_PRIORITY; 6995 do { 6996 unsigned long nr_reclaimed = sc.nr_reclaimed; 6997 bool raise_priority = true; 6998 bool balanced; 6999 bool ret; 7000 7001 sc.reclaim_idx = highest_zoneidx; 7002 7003 /* 7004 * If the number of buffer_heads exceeds the maximum allowed 7005 * then consider reclaiming from all zones. This has a dual 7006 * purpose -- on 64-bit systems it is expected that 7007 * buffer_heads are stripped during active rotation. On 32-bit 7008 * systems, highmem pages can pin lowmem memory and shrinking 7009 * buffers can relieve lowmem pressure. Reclaim may still not 7010 * go ahead if all eligible zones for the original allocation 7011 * request are balanced to avoid excessive reclaim from kswapd. 7012 */ 7013 if (buffer_heads_over_limit) { 7014 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7015 zone = pgdat->node_zones + i; 7016 if (!managed_zone(zone)) 7017 continue; 7018 7019 sc.reclaim_idx = i; 7020 break; 7021 } 7022 } 7023 7024 /* 7025 * If the pgdat is imbalanced then ignore boosting and preserve 7026 * the watermarks for a later time and restart. Note that the 7027 * zone watermarks will be still reset at the end of balancing 7028 * on the grounds that the normal reclaim should be enough to 7029 * re-evaluate if boosting is required when kswapd next wakes. 7030 */ 7031 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7032 if (!balanced && nr_boost_reclaim) { 7033 nr_boost_reclaim = 0; 7034 goto restart; 7035 } 7036 7037 /* 7038 * If boosting is not active then only reclaim if there are no 7039 * eligible zones. Note that sc.reclaim_idx is not used as 7040 * buffer_heads_over_limit may have adjusted it. 7041 */ 7042 if (!nr_boost_reclaim && balanced) 7043 goto out; 7044 7045 /* Limit the priority of boosting to avoid reclaim writeback */ 7046 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7047 raise_priority = false; 7048 7049 /* 7050 * Do not writeback or swap pages for boosted reclaim. The 7051 * intent is to relieve pressure not issue sub-optimal IO 7052 * from reclaim context. If no pages are reclaimed, the 7053 * reclaim will be aborted. 7054 */ 7055 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7056 sc.may_swap = !nr_boost_reclaim; 7057 7058 /* 7059 * Do some background aging, to give pages a chance to be 7060 * referenced before reclaiming. All pages are rotated 7061 * regardless of classzone as this is about consistent aging. 7062 */ 7063 kswapd_age_node(pgdat, &sc); 7064 7065 /* 7066 * If we're getting trouble reclaiming, start doing writepage 7067 * even in laptop mode. 7068 */ 7069 if (sc.priority < DEF_PRIORITY - 2) 7070 sc.may_writepage = 1; 7071 7072 /* Call soft limit reclaim before calling shrink_node. */ 7073 sc.nr_scanned = 0; 7074 nr_soft_scanned = 0; 7075 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7076 sc.gfp_mask, &nr_soft_scanned); 7077 sc.nr_reclaimed += nr_soft_reclaimed; 7078 7079 /* 7080 * There should be no need to raise the scanning priority if 7081 * enough pages are already being scanned that that high 7082 * watermark would be met at 100% efficiency. 7083 */ 7084 if (kswapd_shrink_node(pgdat, &sc)) 7085 raise_priority = false; 7086 7087 /* 7088 * If the low watermark is met there is no need for processes 7089 * to be throttled on pfmemalloc_wait as they should not be 7090 * able to safely make forward progress. Wake them 7091 */ 7092 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7093 allow_direct_reclaim(pgdat)) 7094 wake_up_all(&pgdat->pfmemalloc_wait); 7095 7096 /* Check if kswapd should be suspending */ 7097 __fs_reclaim_release(_THIS_IP_); 7098 ret = try_to_freeze(); 7099 __fs_reclaim_acquire(_THIS_IP_); 7100 if (ret || kthread_should_stop()) 7101 break; 7102 7103 /* 7104 * Raise priority if scanning rate is too low or there was no 7105 * progress in reclaiming pages 7106 */ 7107 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7108 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7109 7110 /* 7111 * If reclaim made no progress for a boost, stop reclaim as 7112 * IO cannot be queued and it could be an infinite loop in 7113 * extreme circumstances. 7114 */ 7115 if (nr_boost_reclaim && !nr_reclaimed) 7116 break; 7117 7118 if (raise_priority || !nr_reclaimed) 7119 sc.priority--; 7120 } while (sc.priority >= 1); 7121 7122 if (!sc.nr_reclaimed) 7123 pgdat->kswapd_failures++; 7124 7125 out: 7126 clear_reclaim_active(pgdat, highest_zoneidx); 7127 7128 /* If reclaim was boosted, account for the reclaim done in this pass */ 7129 if (boosted) { 7130 unsigned long flags; 7131 7132 for (i = 0; i <= highest_zoneidx; i++) { 7133 if (!zone_boosts[i]) 7134 continue; 7135 7136 /* Increments are under the zone lock */ 7137 zone = pgdat->node_zones + i; 7138 spin_lock_irqsave(&zone->lock, flags); 7139 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7140 spin_unlock_irqrestore(&zone->lock, flags); 7141 } 7142 7143 /* 7144 * As there is now likely space, wakeup kcompact to defragment 7145 * pageblocks. 7146 */ 7147 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7148 } 7149 7150 snapshot_refaults(NULL, pgdat); 7151 __fs_reclaim_release(_THIS_IP_); 7152 psi_memstall_leave(&pflags); 7153 set_task_reclaim_state(current, NULL); 7154 7155 /* 7156 * Return the order kswapd stopped reclaiming at as 7157 * prepare_kswapd_sleep() takes it into account. If another caller 7158 * entered the allocator slow path while kswapd was awake, order will 7159 * remain at the higher level. 7160 */ 7161 return sc.order; 7162 } 7163 7164 /* 7165 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7166 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7167 * not a valid index then either kswapd runs for first time or kswapd couldn't 7168 * sleep after previous reclaim attempt (node is still unbalanced). In that 7169 * case return the zone index of the previous kswapd reclaim cycle. 7170 */ 7171 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7172 enum zone_type prev_highest_zoneidx) 7173 { 7174 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7175 7176 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7177 } 7178 7179 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7180 unsigned int highest_zoneidx) 7181 { 7182 long remaining = 0; 7183 DEFINE_WAIT(wait); 7184 7185 if (freezing(current) || kthread_should_stop()) 7186 return; 7187 7188 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7189 7190 /* 7191 * Try to sleep for a short interval. Note that kcompactd will only be 7192 * woken if it is possible to sleep for a short interval. This is 7193 * deliberate on the assumption that if reclaim cannot keep an 7194 * eligible zone balanced that it's also unlikely that compaction will 7195 * succeed. 7196 */ 7197 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7198 /* 7199 * Compaction records what page blocks it recently failed to 7200 * isolate pages from and skips them in the future scanning. 7201 * When kswapd is going to sleep, it is reasonable to assume 7202 * that pages and compaction may succeed so reset the cache. 7203 */ 7204 reset_isolation_suitable(pgdat); 7205 7206 /* 7207 * We have freed the memory, now we should compact it to make 7208 * allocation of the requested order possible. 7209 */ 7210 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7211 7212 remaining = schedule_timeout(HZ/10); 7213 7214 /* 7215 * If woken prematurely then reset kswapd_highest_zoneidx and 7216 * order. The values will either be from a wakeup request or 7217 * the previous request that slept prematurely. 7218 */ 7219 if (remaining) { 7220 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7221 kswapd_highest_zoneidx(pgdat, 7222 highest_zoneidx)); 7223 7224 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7225 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7226 } 7227 7228 finish_wait(&pgdat->kswapd_wait, &wait); 7229 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7230 } 7231 7232 /* 7233 * After a short sleep, check if it was a premature sleep. If not, then 7234 * go fully to sleep until explicitly woken up. 7235 */ 7236 if (!remaining && 7237 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7238 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7239 7240 /* 7241 * vmstat counters are not perfectly accurate and the estimated 7242 * value for counters such as NR_FREE_PAGES can deviate from the 7243 * true value by nr_online_cpus * threshold. To avoid the zone 7244 * watermarks being breached while under pressure, we reduce the 7245 * per-cpu vmstat threshold while kswapd is awake and restore 7246 * them before going back to sleep. 7247 */ 7248 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7249 7250 if (!kthread_should_stop()) 7251 schedule(); 7252 7253 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7254 } else { 7255 if (remaining) 7256 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7257 else 7258 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7259 } 7260 finish_wait(&pgdat->kswapd_wait, &wait); 7261 } 7262 7263 /* 7264 * The background pageout daemon, started as a kernel thread 7265 * from the init process. 7266 * 7267 * This basically trickles out pages so that we have _some_ 7268 * free memory available even if there is no other activity 7269 * that frees anything up. This is needed for things like routing 7270 * etc, where we otherwise might have all activity going on in 7271 * asynchronous contexts that cannot page things out. 7272 * 7273 * If there are applications that are active memory-allocators 7274 * (most normal use), this basically shouldn't matter. 7275 */ 7276 static int kswapd(void *p) 7277 { 7278 unsigned int alloc_order, reclaim_order; 7279 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7280 pg_data_t *pgdat = (pg_data_t *)p; 7281 struct task_struct *tsk = current; 7282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7283 7284 if (!cpumask_empty(cpumask)) 7285 set_cpus_allowed_ptr(tsk, cpumask); 7286 7287 /* 7288 * Tell the memory management that we're a "memory allocator", 7289 * and that if we need more memory we should get access to it 7290 * regardless (see "__alloc_pages()"). "kswapd" should 7291 * never get caught in the normal page freeing logic. 7292 * 7293 * (Kswapd normally doesn't need memory anyway, but sometimes 7294 * you need a small amount of memory in order to be able to 7295 * page out something else, and this flag essentially protects 7296 * us from recursively trying to free more memory as we're 7297 * trying to free the first piece of memory in the first place). 7298 */ 7299 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7300 set_freezable(); 7301 7302 WRITE_ONCE(pgdat->kswapd_order, 0); 7303 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7304 atomic_set(&pgdat->nr_writeback_throttled, 0); 7305 for ( ; ; ) { 7306 bool ret; 7307 7308 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7309 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7310 highest_zoneidx); 7311 7312 kswapd_try_sleep: 7313 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7314 highest_zoneidx); 7315 7316 /* Read the new order and highest_zoneidx */ 7317 alloc_order = READ_ONCE(pgdat->kswapd_order); 7318 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7319 highest_zoneidx); 7320 WRITE_ONCE(pgdat->kswapd_order, 0); 7321 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7322 7323 ret = try_to_freeze(); 7324 if (kthread_should_stop()) 7325 break; 7326 7327 /* 7328 * We can speed up thawing tasks if we don't call balance_pgdat 7329 * after returning from the refrigerator 7330 */ 7331 if (ret) 7332 continue; 7333 7334 /* 7335 * Reclaim begins at the requested order but if a high-order 7336 * reclaim fails then kswapd falls back to reclaiming for 7337 * order-0. If that happens, kswapd will consider sleeping 7338 * for the order it finished reclaiming at (reclaim_order) 7339 * but kcompactd is woken to compact for the original 7340 * request (alloc_order). 7341 */ 7342 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7343 alloc_order); 7344 reclaim_order = balance_pgdat(pgdat, alloc_order, 7345 highest_zoneidx); 7346 if (reclaim_order < alloc_order) 7347 goto kswapd_try_sleep; 7348 } 7349 7350 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7351 7352 return 0; 7353 } 7354 7355 /* 7356 * A zone is low on free memory or too fragmented for high-order memory. If 7357 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7358 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7359 * has failed or is not needed, still wake up kcompactd if only compaction is 7360 * needed. 7361 */ 7362 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7363 enum zone_type highest_zoneidx) 7364 { 7365 pg_data_t *pgdat; 7366 enum zone_type curr_idx; 7367 7368 if (!managed_zone(zone)) 7369 return; 7370 7371 if (!cpuset_zone_allowed(zone, gfp_flags)) 7372 return; 7373 7374 pgdat = zone->zone_pgdat; 7375 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7376 7377 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7378 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7379 7380 if (READ_ONCE(pgdat->kswapd_order) < order) 7381 WRITE_ONCE(pgdat->kswapd_order, order); 7382 7383 if (!waitqueue_active(&pgdat->kswapd_wait)) 7384 return; 7385 7386 /* Hopeless node, leave it to direct reclaim if possible */ 7387 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7388 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7389 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7390 /* 7391 * There may be plenty of free memory available, but it's too 7392 * fragmented for high-order allocations. Wake up kcompactd 7393 * and rely on compaction_suitable() to determine if it's 7394 * needed. If it fails, it will defer subsequent attempts to 7395 * ratelimit its work. 7396 */ 7397 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7398 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7399 return; 7400 } 7401 7402 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7403 gfp_flags); 7404 wake_up_interruptible(&pgdat->kswapd_wait); 7405 } 7406 7407 #ifdef CONFIG_HIBERNATION 7408 /* 7409 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7410 * freed pages. 7411 * 7412 * Rather than trying to age LRUs the aim is to preserve the overall 7413 * LRU order by reclaiming preferentially 7414 * inactive > active > active referenced > active mapped 7415 */ 7416 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7417 { 7418 struct scan_control sc = { 7419 .nr_to_reclaim = nr_to_reclaim, 7420 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7421 .reclaim_idx = MAX_NR_ZONES - 1, 7422 .priority = DEF_PRIORITY, 7423 .may_writepage = 1, 7424 .may_unmap = 1, 7425 .may_swap = 1, 7426 .hibernation_mode = 1, 7427 }; 7428 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7429 unsigned long nr_reclaimed; 7430 unsigned int noreclaim_flag; 7431 7432 fs_reclaim_acquire(sc.gfp_mask); 7433 noreclaim_flag = memalloc_noreclaim_save(); 7434 set_task_reclaim_state(current, &sc.reclaim_state); 7435 7436 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7437 7438 set_task_reclaim_state(current, NULL); 7439 memalloc_noreclaim_restore(noreclaim_flag); 7440 fs_reclaim_release(sc.gfp_mask); 7441 7442 return nr_reclaimed; 7443 } 7444 #endif /* CONFIG_HIBERNATION */ 7445 7446 /* 7447 * This kswapd start function will be called by init and node-hot-add. 7448 */ 7449 void kswapd_run(int nid) 7450 { 7451 pg_data_t *pgdat = NODE_DATA(nid); 7452 7453 pgdat_kswapd_lock(pgdat); 7454 if (!pgdat->kswapd) { 7455 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7456 if (IS_ERR(pgdat->kswapd)) { 7457 /* failure at boot is fatal */ 7458 BUG_ON(system_state < SYSTEM_RUNNING); 7459 pr_err("Failed to start kswapd on node %d\n", nid); 7460 pgdat->kswapd = NULL; 7461 } 7462 } 7463 pgdat_kswapd_unlock(pgdat); 7464 } 7465 7466 /* 7467 * Called by memory hotplug when all memory in a node is offlined. Caller must 7468 * be holding mem_hotplug_begin/done(). 7469 */ 7470 void kswapd_stop(int nid) 7471 { 7472 pg_data_t *pgdat = NODE_DATA(nid); 7473 struct task_struct *kswapd; 7474 7475 pgdat_kswapd_lock(pgdat); 7476 kswapd = pgdat->kswapd; 7477 if (kswapd) { 7478 kthread_stop(kswapd); 7479 pgdat->kswapd = NULL; 7480 } 7481 pgdat_kswapd_unlock(pgdat); 7482 } 7483 7484 static int __init kswapd_init(void) 7485 { 7486 int nid; 7487 7488 swap_setup(); 7489 for_each_node_state(nid, N_MEMORY) 7490 kswapd_run(nid); 7491 return 0; 7492 } 7493 7494 module_init(kswapd_init) 7495 7496 #ifdef CONFIG_NUMA 7497 /* 7498 * Node reclaim mode 7499 * 7500 * If non-zero call node_reclaim when the number of free pages falls below 7501 * the watermarks. 7502 */ 7503 int node_reclaim_mode __read_mostly; 7504 7505 /* 7506 * Priority for NODE_RECLAIM. This determines the fraction of pages 7507 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7508 * a zone. 7509 */ 7510 #define NODE_RECLAIM_PRIORITY 4 7511 7512 /* 7513 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7514 * occur. 7515 */ 7516 int sysctl_min_unmapped_ratio = 1; 7517 7518 /* 7519 * If the number of slab pages in a zone grows beyond this percentage then 7520 * slab reclaim needs to occur. 7521 */ 7522 int sysctl_min_slab_ratio = 5; 7523 7524 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7525 { 7526 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7527 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7528 node_page_state(pgdat, NR_ACTIVE_FILE); 7529 7530 /* 7531 * It's possible for there to be more file mapped pages than 7532 * accounted for by the pages on the file LRU lists because 7533 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7534 */ 7535 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7536 } 7537 7538 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7539 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7540 { 7541 unsigned long nr_pagecache_reclaimable; 7542 unsigned long delta = 0; 7543 7544 /* 7545 * If RECLAIM_UNMAP is set, then all file pages are considered 7546 * potentially reclaimable. Otherwise, we have to worry about 7547 * pages like swapcache and node_unmapped_file_pages() provides 7548 * a better estimate 7549 */ 7550 if (node_reclaim_mode & RECLAIM_UNMAP) 7551 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7552 else 7553 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7554 7555 /* If we can't clean pages, remove dirty pages from consideration */ 7556 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7557 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7558 7559 /* Watch for any possible underflows due to delta */ 7560 if (unlikely(delta > nr_pagecache_reclaimable)) 7561 delta = nr_pagecache_reclaimable; 7562 7563 return nr_pagecache_reclaimable - delta; 7564 } 7565 7566 /* 7567 * Try to free up some pages from this node through reclaim. 7568 */ 7569 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7570 { 7571 /* Minimum pages needed in order to stay on node */ 7572 const unsigned long nr_pages = 1 << order; 7573 struct task_struct *p = current; 7574 unsigned int noreclaim_flag; 7575 struct scan_control sc = { 7576 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7577 .gfp_mask = current_gfp_context(gfp_mask), 7578 .order = order, 7579 .priority = NODE_RECLAIM_PRIORITY, 7580 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7581 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7582 .may_swap = 1, 7583 .reclaim_idx = gfp_zone(gfp_mask), 7584 }; 7585 unsigned long pflags; 7586 7587 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7588 sc.gfp_mask); 7589 7590 cond_resched(); 7591 psi_memstall_enter(&pflags); 7592 fs_reclaim_acquire(sc.gfp_mask); 7593 /* 7594 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7595 */ 7596 noreclaim_flag = memalloc_noreclaim_save(); 7597 set_task_reclaim_state(p, &sc.reclaim_state); 7598 7599 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7600 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7601 /* 7602 * Free memory by calling shrink node with increasing 7603 * priorities until we have enough memory freed. 7604 */ 7605 do { 7606 shrink_node(pgdat, &sc); 7607 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7608 } 7609 7610 set_task_reclaim_state(p, NULL); 7611 memalloc_noreclaim_restore(noreclaim_flag); 7612 fs_reclaim_release(sc.gfp_mask); 7613 psi_memstall_leave(&pflags); 7614 7615 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7616 7617 return sc.nr_reclaimed >= nr_pages; 7618 } 7619 7620 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7621 { 7622 int ret; 7623 7624 /* 7625 * Node reclaim reclaims unmapped file backed pages and 7626 * slab pages if we are over the defined limits. 7627 * 7628 * A small portion of unmapped file backed pages is needed for 7629 * file I/O otherwise pages read by file I/O will be immediately 7630 * thrown out if the node is overallocated. So we do not reclaim 7631 * if less than a specified percentage of the node is used by 7632 * unmapped file backed pages. 7633 */ 7634 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7635 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7636 pgdat->min_slab_pages) 7637 return NODE_RECLAIM_FULL; 7638 7639 /* 7640 * Do not scan if the allocation should not be delayed. 7641 */ 7642 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7643 return NODE_RECLAIM_NOSCAN; 7644 7645 /* 7646 * Only run node reclaim on the local node or on nodes that do not 7647 * have associated processors. This will favor the local processor 7648 * over remote processors and spread off node memory allocations 7649 * as wide as possible. 7650 */ 7651 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7652 return NODE_RECLAIM_NOSCAN; 7653 7654 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7655 return NODE_RECLAIM_NOSCAN; 7656 7657 ret = __node_reclaim(pgdat, gfp_mask, order); 7658 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7659 7660 if (!ret) 7661 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7662 7663 return ret; 7664 } 7665 #endif 7666 7667 void check_move_unevictable_pages(struct pagevec *pvec) 7668 { 7669 struct folio_batch fbatch; 7670 unsigned i; 7671 7672 folio_batch_init(&fbatch); 7673 for (i = 0; i < pvec->nr; i++) { 7674 struct page *page = pvec->pages[i]; 7675 7676 if (PageTransTail(page)) 7677 continue; 7678 folio_batch_add(&fbatch, page_folio(page)); 7679 } 7680 check_move_unevictable_folios(&fbatch); 7681 } 7682 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 7683 7684 /** 7685 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7686 * lru list 7687 * @fbatch: Batch of lru folios to check. 7688 * 7689 * Checks folios for evictability, if an evictable folio is in the unevictable 7690 * lru list, moves it to the appropriate evictable lru list. This function 7691 * should be only used for lru folios. 7692 */ 7693 void check_move_unevictable_folios(struct folio_batch *fbatch) 7694 { 7695 struct lruvec *lruvec = NULL; 7696 int pgscanned = 0; 7697 int pgrescued = 0; 7698 int i; 7699 7700 for (i = 0; i < fbatch->nr; i++) { 7701 struct folio *folio = fbatch->folios[i]; 7702 int nr_pages = folio_nr_pages(folio); 7703 7704 pgscanned += nr_pages; 7705 7706 /* block memcg migration while the folio moves between lrus */ 7707 if (!folio_test_clear_lru(folio)) 7708 continue; 7709 7710 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7711 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7712 lruvec_del_folio(lruvec, folio); 7713 folio_clear_unevictable(folio); 7714 lruvec_add_folio(lruvec, folio); 7715 pgrescued += nr_pages; 7716 } 7717 folio_set_lru(folio); 7718 } 7719 7720 if (lruvec) { 7721 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7722 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7723 unlock_page_lruvec_irq(lruvec); 7724 } else if (pgscanned) { 7725 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7726 } 7727 } 7728 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7729