xref: /openbmc/linux/mm/vmscan.c (revision 2209fda3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/*
70 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 	 * are scanned.
72 	 */
73 	nodemask_t	*nodemask;
74 
75 	/*
76 	 * The memory cgroup that hit its limit and as a result is the
77 	 * primary target of this reclaim invocation.
78 	 */
79 	struct mem_cgroup *target_mem_cgroup;
80 
81 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
82 	unsigned int may_writepage:1;
83 
84 	/* Can mapped pages be reclaimed? */
85 	unsigned int may_unmap:1;
86 
87 	/* Can pages be swapped as part of reclaim? */
88 	unsigned int may_swap:1;
89 
90 	/*
91 	 * Cgroups are not reclaimed below their configured memory.low,
92 	 * unless we threaten to OOM. If any cgroups are skipped due to
93 	 * memory.low and nothing was reclaimed, go back for memory.low.
94 	 */
95 	unsigned int memcg_low_reclaim:1;
96 	unsigned int memcg_low_skipped:1;
97 
98 	unsigned int hibernation_mode:1;
99 
100 	/* One of the zones is ready for compaction */
101 	unsigned int compaction_ready:1;
102 
103 	/* Allocation order */
104 	s8 order;
105 
106 	/* Scan (total_size >> priority) pages at once */
107 	s8 priority;
108 
109 	/* The highest zone to isolate pages for reclaim from */
110 	s8 reclaim_idx;
111 
112 	/* This context's GFP mask */
113 	gfp_t gfp_mask;
114 
115 	/* Incremented by the number of inactive pages that were scanned */
116 	unsigned long nr_scanned;
117 
118 	/* Number of pages freed so far during a call to shrink_zones() */
119 	unsigned long nr_reclaimed;
120 
121 	struct {
122 		unsigned int dirty;
123 		unsigned int unqueued_dirty;
124 		unsigned int congested;
125 		unsigned int writeback;
126 		unsigned int immediate;
127 		unsigned int file_taken;
128 		unsigned int taken;
129 	} nr;
130 };
131 
132 #ifdef ARCH_HAS_PREFETCH
133 #define prefetch_prev_lru_page(_page, _base, _field)			\
134 	do {								\
135 		if ((_page)->lru.prev != _base) {			\
136 			struct page *prev;				\
137 									\
138 			prev = lru_to_page(&(_page->lru));		\
139 			prefetch(&prev->_field);			\
140 		}							\
141 	} while (0)
142 #else
143 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145 
146 #ifdef ARCH_HAS_PREFETCHW
147 #define prefetchw_prev_lru_page(_page, _base, _field)			\
148 	do {								\
149 		if ((_page)->lru.prev != _base) {			\
150 			struct page *prev;				\
151 									\
152 			prev = lru_to_page(&(_page->lru));		\
153 			prefetchw(&prev->_field);			\
154 		}							\
155 	} while (0)
156 #else
157 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
158 #endif
159 
160 /*
161  * From 0 .. 100.  Higher means more swappy.
162  */
163 int vm_swappiness = 60;
164 /*
165  * The total number of pages which are beyond the high watermark within all
166  * zones.
167  */
168 unsigned long vm_total_pages;
169 
170 static LIST_HEAD(shrinker_list);
171 static DECLARE_RWSEM(shrinker_rwsem);
172 
173 #ifdef CONFIG_MEMCG_KMEM
174 
175 /*
176  * We allow subsystems to populate their shrinker-related
177  * LRU lists before register_shrinker_prepared() is called
178  * for the shrinker, since we don't want to impose
179  * restrictions on their internal registration order.
180  * In this case shrink_slab_memcg() may find corresponding
181  * bit is set in the shrinkers map.
182  *
183  * This value is used by the function to detect registering
184  * shrinkers and to skip do_shrink_slab() calls for them.
185  */
186 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
187 
188 static DEFINE_IDR(shrinker_idr);
189 static int shrinker_nr_max;
190 
191 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
192 {
193 	int id, ret = -ENOMEM;
194 
195 	down_write(&shrinker_rwsem);
196 	/* This may call shrinker, so it must use down_read_trylock() */
197 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
198 	if (id < 0)
199 		goto unlock;
200 
201 	if (id >= shrinker_nr_max) {
202 		if (memcg_expand_shrinker_maps(id)) {
203 			idr_remove(&shrinker_idr, id);
204 			goto unlock;
205 		}
206 
207 		shrinker_nr_max = id + 1;
208 	}
209 	shrinker->id = id;
210 	ret = 0;
211 unlock:
212 	up_write(&shrinker_rwsem);
213 	return ret;
214 }
215 
216 static void unregister_memcg_shrinker(struct shrinker *shrinker)
217 {
218 	int id = shrinker->id;
219 
220 	BUG_ON(id < 0);
221 
222 	down_write(&shrinker_rwsem);
223 	idr_remove(&shrinker_idr, id);
224 	up_write(&shrinker_rwsem);
225 }
226 #else /* CONFIG_MEMCG_KMEM */
227 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
228 {
229 	return 0;
230 }
231 
232 static void unregister_memcg_shrinker(struct shrinker *shrinker)
233 {
234 }
235 #endif /* CONFIG_MEMCG_KMEM */
236 
237 #ifdef CONFIG_MEMCG
238 static bool global_reclaim(struct scan_control *sc)
239 {
240 	return !sc->target_mem_cgroup;
241 }
242 
243 /**
244  * sane_reclaim - is the usual dirty throttling mechanism operational?
245  * @sc: scan_control in question
246  *
247  * The normal page dirty throttling mechanism in balance_dirty_pages() is
248  * completely broken with the legacy memcg and direct stalling in
249  * shrink_page_list() is used for throttling instead, which lacks all the
250  * niceties such as fairness, adaptive pausing, bandwidth proportional
251  * allocation and configurability.
252  *
253  * This function tests whether the vmscan currently in progress can assume
254  * that the normal dirty throttling mechanism is operational.
255  */
256 static bool sane_reclaim(struct scan_control *sc)
257 {
258 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
259 
260 	if (!memcg)
261 		return true;
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 		return true;
265 #endif
266 	return false;
267 }
268 
269 static void set_memcg_congestion(pg_data_t *pgdat,
270 				struct mem_cgroup *memcg,
271 				bool congested)
272 {
273 	struct mem_cgroup_per_node *mn;
274 
275 	if (!memcg)
276 		return;
277 
278 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
279 	WRITE_ONCE(mn->congested, congested);
280 }
281 
282 static bool memcg_congested(pg_data_t *pgdat,
283 			struct mem_cgroup *memcg)
284 {
285 	struct mem_cgroup_per_node *mn;
286 
287 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
288 	return READ_ONCE(mn->congested);
289 
290 }
291 #else
292 static bool global_reclaim(struct scan_control *sc)
293 {
294 	return true;
295 }
296 
297 static bool sane_reclaim(struct scan_control *sc)
298 {
299 	return true;
300 }
301 
302 static inline void set_memcg_congestion(struct pglist_data *pgdat,
303 				struct mem_cgroup *memcg, bool congested)
304 {
305 }
306 
307 static inline bool memcg_congested(struct pglist_data *pgdat,
308 			struct mem_cgroup *memcg)
309 {
310 	return false;
311 
312 }
313 #endif
314 
315 /*
316  * This misses isolated pages which are not accounted for to save counters.
317  * As the data only determines if reclaim or compaction continues, it is
318  * not expected that isolated pages will be a dominating factor.
319  */
320 unsigned long zone_reclaimable_pages(struct zone *zone)
321 {
322 	unsigned long nr;
323 
324 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
325 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
326 	if (get_nr_swap_pages() > 0)
327 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
328 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
329 
330 	return nr;
331 }
332 
333 /**
334  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
335  * @lruvec: lru vector
336  * @lru: lru to use
337  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
338  */
339 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
340 {
341 	unsigned long lru_size;
342 	int zid;
343 
344 	if (!mem_cgroup_disabled())
345 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
346 	else
347 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
348 
349 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
350 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
351 		unsigned long size;
352 
353 		if (!managed_zone(zone))
354 			continue;
355 
356 		if (!mem_cgroup_disabled())
357 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
358 		else
359 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
360 				       NR_ZONE_LRU_BASE + lru);
361 		lru_size -= min(size, lru_size);
362 	}
363 
364 	return lru_size;
365 
366 }
367 
368 /*
369  * Add a shrinker callback to be called from the vm.
370  */
371 int prealloc_shrinker(struct shrinker *shrinker)
372 {
373 	size_t size = sizeof(*shrinker->nr_deferred);
374 
375 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
376 		size *= nr_node_ids;
377 
378 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
379 	if (!shrinker->nr_deferred)
380 		return -ENOMEM;
381 
382 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
383 		if (prealloc_memcg_shrinker(shrinker))
384 			goto free_deferred;
385 	}
386 
387 	return 0;
388 
389 free_deferred:
390 	kfree(shrinker->nr_deferred);
391 	shrinker->nr_deferred = NULL;
392 	return -ENOMEM;
393 }
394 
395 void free_prealloced_shrinker(struct shrinker *shrinker)
396 {
397 	if (!shrinker->nr_deferred)
398 		return;
399 
400 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 		unregister_memcg_shrinker(shrinker);
402 
403 	kfree(shrinker->nr_deferred);
404 	shrinker->nr_deferred = NULL;
405 }
406 
407 void register_shrinker_prepared(struct shrinker *shrinker)
408 {
409 	down_write(&shrinker_rwsem);
410 	list_add_tail(&shrinker->list, &shrinker_list);
411 #ifdef CONFIG_MEMCG_KMEM
412 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
413 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
414 #endif
415 	up_write(&shrinker_rwsem);
416 }
417 
418 int register_shrinker(struct shrinker *shrinker)
419 {
420 	int err = prealloc_shrinker(shrinker);
421 
422 	if (err)
423 		return err;
424 	register_shrinker_prepared(shrinker);
425 	return 0;
426 }
427 EXPORT_SYMBOL(register_shrinker);
428 
429 /*
430  * Remove one
431  */
432 void unregister_shrinker(struct shrinker *shrinker)
433 {
434 	if (!shrinker->nr_deferred)
435 		return;
436 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
437 		unregister_memcg_shrinker(shrinker);
438 	down_write(&shrinker_rwsem);
439 	list_del(&shrinker->list);
440 	up_write(&shrinker_rwsem);
441 	kfree(shrinker->nr_deferred);
442 	shrinker->nr_deferred = NULL;
443 }
444 EXPORT_SYMBOL(unregister_shrinker);
445 
446 #define SHRINK_BATCH 128
447 
448 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
449 				    struct shrinker *shrinker, int priority)
450 {
451 	unsigned long freed = 0;
452 	unsigned long long delta;
453 	long total_scan;
454 	long freeable;
455 	long nr;
456 	long new_nr;
457 	int nid = shrinkctl->nid;
458 	long batch_size = shrinker->batch ? shrinker->batch
459 					  : SHRINK_BATCH;
460 	long scanned = 0, next_deferred;
461 
462 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
463 		nid = 0;
464 
465 	freeable = shrinker->count_objects(shrinker, shrinkctl);
466 	if (freeable == 0 || freeable == SHRINK_EMPTY)
467 		return freeable;
468 
469 	/*
470 	 * copy the current shrinker scan count into a local variable
471 	 * and zero it so that other concurrent shrinker invocations
472 	 * don't also do this scanning work.
473 	 */
474 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
475 
476 	total_scan = nr;
477 	if (shrinker->seeks) {
478 		delta = freeable >> priority;
479 		delta *= 4;
480 		do_div(delta, shrinker->seeks);
481 	} else {
482 		/*
483 		 * These objects don't require any IO to create. Trim
484 		 * them aggressively under memory pressure to keep
485 		 * them from causing refetches in the IO caches.
486 		 */
487 		delta = freeable / 2;
488 	}
489 
490 	/*
491 	 * Make sure we apply some minimal pressure on default priority
492 	 * even on small cgroups. Stale objects are not only consuming memory
493 	 * by themselves, but can also hold a reference to a dying cgroup,
494 	 * preventing it from being reclaimed. A dying cgroup with all
495 	 * corresponding structures like per-cpu stats and kmem caches
496 	 * can be really big, so it may lead to a significant waste of memory.
497 	 */
498 	delta = max_t(unsigned long long, delta, min(freeable, batch_size));
499 
500 	total_scan += delta;
501 	if (total_scan < 0) {
502 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
503 		       shrinker->scan_objects, total_scan);
504 		total_scan = freeable;
505 		next_deferred = nr;
506 	} else
507 		next_deferred = total_scan;
508 
509 	/*
510 	 * We need to avoid excessive windup on filesystem shrinkers
511 	 * due to large numbers of GFP_NOFS allocations causing the
512 	 * shrinkers to return -1 all the time. This results in a large
513 	 * nr being built up so when a shrink that can do some work
514 	 * comes along it empties the entire cache due to nr >>>
515 	 * freeable. This is bad for sustaining a working set in
516 	 * memory.
517 	 *
518 	 * Hence only allow the shrinker to scan the entire cache when
519 	 * a large delta change is calculated directly.
520 	 */
521 	if (delta < freeable / 4)
522 		total_scan = min(total_scan, freeable / 2);
523 
524 	/*
525 	 * Avoid risking looping forever due to too large nr value:
526 	 * never try to free more than twice the estimate number of
527 	 * freeable entries.
528 	 */
529 	if (total_scan > freeable * 2)
530 		total_scan = freeable * 2;
531 
532 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
533 				   freeable, delta, total_scan, priority);
534 
535 	/*
536 	 * Normally, we should not scan less than batch_size objects in one
537 	 * pass to avoid too frequent shrinker calls, but if the slab has less
538 	 * than batch_size objects in total and we are really tight on memory,
539 	 * we will try to reclaim all available objects, otherwise we can end
540 	 * up failing allocations although there are plenty of reclaimable
541 	 * objects spread over several slabs with usage less than the
542 	 * batch_size.
543 	 *
544 	 * We detect the "tight on memory" situations by looking at the total
545 	 * number of objects we want to scan (total_scan). If it is greater
546 	 * than the total number of objects on slab (freeable), we must be
547 	 * scanning at high prio and therefore should try to reclaim as much as
548 	 * possible.
549 	 */
550 	while (total_scan >= batch_size ||
551 	       total_scan >= freeable) {
552 		unsigned long ret;
553 		unsigned long nr_to_scan = min(batch_size, total_scan);
554 
555 		shrinkctl->nr_to_scan = nr_to_scan;
556 		shrinkctl->nr_scanned = nr_to_scan;
557 		ret = shrinker->scan_objects(shrinker, shrinkctl);
558 		if (ret == SHRINK_STOP)
559 			break;
560 		freed += ret;
561 
562 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
563 		total_scan -= shrinkctl->nr_scanned;
564 		scanned += shrinkctl->nr_scanned;
565 
566 		cond_resched();
567 	}
568 
569 	if (next_deferred >= scanned)
570 		next_deferred -= scanned;
571 	else
572 		next_deferred = 0;
573 	/*
574 	 * move the unused scan count back into the shrinker in a
575 	 * manner that handles concurrent updates. If we exhausted the
576 	 * scan, there is no need to do an update.
577 	 */
578 	if (next_deferred > 0)
579 		new_nr = atomic_long_add_return(next_deferred,
580 						&shrinker->nr_deferred[nid]);
581 	else
582 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
583 
584 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
585 	return freed;
586 }
587 
588 #ifdef CONFIG_MEMCG_KMEM
589 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
590 			struct mem_cgroup *memcg, int priority)
591 {
592 	struct memcg_shrinker_map *map;
593 	unsigned long ret, freed = 0;
594 	int i;
595 
596 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
597 		return 0;
598 
599 	if (!down_read_trylock(&shrinker_rwsem))
600 		return 0;
601 
602 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
603 					true);
604 	if (unlikely(!map))
605 		goto unlock;
606 
607 	for_each_set_bit(i, map->map, shrinker_nr_max) {
608 		struct shrink_control sc = {
609 			.gfp_mask = gfp_mask,
610 			.nid = nid,
611 			.memcg = memcg,
612 		};
613 		struct shrinker *shrinker;
614 
615 		shrinker = idr_find(&shrinker_idr, i);
616 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
617 			if (!shrinker)
618 				clear_bit(i, map->map);
619 			continue;
620 		}
621 
622 		ret = do_shrink_slab(&sc, shrinker, priority);
623 		if (ret == SHRINK_EMPTY) {
624 			clear_bit(i, map->map);
625 			/*
626 			 * After the shrinker reported that it had no objects to
627 			 * free, but before we cleared the corresponding bit in
628 			 * the memcg shrinker map, a new object might have been
629 			 * added. To make sure, we have the bit set in this
630 			 * case, we invoke the shrinker one more time and reset
631 			 * the bit if it reports that it is not empty anymore.
632 			 * The memory barrier here pairs with the barrier in
633 			 * memcg_set_shrinker_bit():
634 			 *
635 			 * list_lru_add()     shrink_slab_memcg()
636 			 *   list_add_tail()    clear_bit()
637 			 *   <MB>               <MB>
638 			 *   set_bit()          do_shrink_slab()
639 			 */
640 			smp_mb__after_atomic();
641 			ret = do_shrink_slab(&sc, shrinker, priority);
642 			if (ret == SHRINK_EMPTY)
643 				ret = 0;
644 			else
645 				memcg_set_shrinker_bit(memcg, nid, i);
646 		}
647 		freed += ret;
648 
649 		if (rwsem_is_contended(&shrinker_rwsem)) {
650 			freed = freed ? : 1;
651 			break;
652 		}
653 	}
654 unlock:
655 	up_read(&shrinker_rwsem);
656 	return freed;
657 }
658 #else /* CONFIG_MEMCG_KMEM */
659 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
660 			struct mem_cgroup *memcg, int priority)
661 {
662 	return 0;
663 }
664 #endif /* CONFIG_MEMCG_KMEM */
665 
666 /**
667  * shrink_slab - shrink slab caches
668  * @gfp_mask: allocation context
669  * @nid: node whose slab caches to target
670  * @memcg: memory cgroup whose slab caches to target
671  * @priority: the reclaim priority
672  *
673  * Call the shrink functions to age shrinkable caches.
674  *
675  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
676  * unaware shrinkers will receive a node id of 0 instead.
677  *
678  * @memcg specifies the memory cgroup to target. Unaware shrinkers
679  * are called only if it is the root cgroup.
680  *
681  * @priority is sc->priority, we take the number of objects and >> by priority
682  * in order to get the scan target.
683  *
684  * Returns the number of reclaimed slab objects.
685  */
686 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
687 				 struct mem_cgroup *memcg,
688 				 int priority)
689 {
690 	unsigned long ret, freed = 0;
691 	struct shrinker *shrinker;
692 
693 	if (!mem_cgroup_is_root(memcg))
694 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
695 
696 	if (!down_read_trylock(&shrinker_rwsem))
697 		goto out;
698 
699 	list_for_each_entry(shrinker, &shrinker_list, list) {
700 		struct shrink_control sc = {
701 			.gfp_mask = gfp_mask,
702 			.nid = nid,
703 			.memcg = memcg,
704 		};
705 
706 		ret = do_shrink_slab(&sc, shrinker, priority);
707 		if (ret == SHRINK_EMPTY)
708 			ret = 0;
709 		freed += ret;
710 		/*
711 		 * Bail out if someone want to register a new shrinker to
712 		 * prevent the regsitration from being stalled for long periods
713 		 * by parallel ongoing shrinking.
714 		 */
715 		if (rwsem_is_contended(&shrinker_rwsem)) {
716 			freed = freed ? : 1;
717 			break;
718 		}
719 	}
720 
721 	up_read(&shrinker_rwsem);
722 out:
723 	cond_resched();
724 	return freed;
725 }
726 
727 void drop_slab_node(int nid)
728 {
729 	unsigned long freed;
730 
731 	do {
732 		struct mem_cgroup *memcg = NULL;
733 
734 		freed = 0;
735 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
736 		do {
737 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
738 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
739 	} while (freed > 10);
740 }
741 
742 void drop_slab(void)
743 {
744 	int nid;
745 
746 	for_each_online_node(nid)
747 		drop_slab_node(nid);
748 }
749 
750 static inline int is_page_cache_freeable(struct page *page)
751 {
752 	/*
753 	 * A freeable page cache page is referenced only by the caller
754 	 * that isolated the page, the page cache and optional buffer
755 	 * heads at page->private.
756 	 */
757 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
758 		HPAGE_PMD_NR : 1;
759 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
760 }
761 
762 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
763 {
764 	if (current->flags & PF_SWAPWRITE)
765 		return 1;
766 	if (!inode_write_congested(inode))
767 		return 1;
768 	if (inode_to_bdi(inode) == current->backing_dev_info)
769 		return 1;
770 	return 0;
771 }
772 
773 /*
774  * We detected a synchronous write error writing a page out.  Probably
775  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
776  * fsync(), msync() or close().
777  *
778  * The tricky part is that after writepage we cannot touch the mapping: nothing
779  * prevents it from being freed up.  But we have a ref on the page and once
780  * that page is locked, the mapping is pinned.
781  *
782  * We're allowed to run sleeping lock_page() here because we know the caller has
783  * __GFP_FS.
784  */
785 static void handle_write_error(struct address_space *mapping,
786 				struct page *page, int error)
787 {
788 	lock_page(page);
789 	if (page_mapping(page) == mapping)
790 		mapping_set_error(mapping, error);
791 	unlock_page(page);
792 }
793 
794 /* possible outcome of pageout() */
795 typedef enum {
796 	/* failed to write page out, page is locked */
797 	PAGE_KEEP,
798 	/* move page to the active list, page is locked */
799 	PAGE_ACTIVATE,
800 	/* page has been sent to the disk successfully, page is unlocked */
801 	PAGE_SUCCESS,
802 	/* page is clean and locked */
803 	PAGE_CLEAN,
804 } pageout_t;
805 
806 /*
807  * pageout is called by shrink_page_list() for each dirty page.
808  * Calls ->writepage().
809  */
810 static pageout_t pageout(struct page *page, struct address_space *mapping,
811 			 struct scan_control *sc)
812 {
813 	/*
814 	 * If the page is dirty, only perform writeback if that write
815 	 * will be non-blocking.  To prevent this allocation from being
816 	 * stalled by pagecache activity.  But note that there may be
817 	 * stalls if we need to run get_block().  We could test
818 	 * PagePrivate for that.
819 	 *
820 	 * If this process is currently in __generic_file_write_iter() against
821 	 * this page's queue, we can perform writeback even if that
822 	 * will block.
823 	 *
824 	 * If the page is swapcache, write it back even if that would
825 	 * block, for some throttling. This happens by accident, because
826 	 * swap_backing_dev_info is bust: it doesn't reflect the
827 	 * congestion state of the swapdevs.  Easy to fix, if needed.
828 	 */
829 	if (!is_page_cache_freeable(page))
830 		return PAGE_KEEP;
831 	if (!mapping) {
832 		/*
833 		 * Some data journaling orphaned pages can have
834 		 * page->mapping == NULL while being dirty with clean buffers.
835 		 */
836 		if (page_has_private(page)) {
837 			if (try_to_free_buffers(page)) {
838 				ClearPageDirty(page);
839 				pr_info("%s: orphaned page\n", __func__);
840 				return PAGE_CLEAN;
841 			}
842 		}
843 		return PAGE_KEEP;
844 	}
845 	if (mapping->a_ops->writepage == NULL)
846 		return PAGE_ACTIVATE;
847 	if (!may_write_to_inode(mapping->host, sc))
848 		return PAGE_KEEP;
849 
850 	if (clear_page_dirty_for_io(page)) {
851 		int res;
852 		struct writeback_control wbc = {
853 			.sync_mode = WB_SYNC_NONE,
854 			.nr_to_write = SWAP_CLUSTER_MAX,
855 			.range_start = 0,
856 			.range_end = LLONG_MAX,
857 			.for_reclaim = 1,
858 		};
859 
860 		SetPageReclaim(page);
861 		res = mapping->a_ops->writepage(page, &wbc);
862 		if (res < 0)
863 			handle_write_error(mapping, page, res);
864 		if (res == AOP_WRITEPAGE_ACTIVATE) {
865 			ClearPageReclaim(page);
866 			return PAGE_ACTIVATE;
867 		}
868 
869 		if (!PageWriteback(page)) {
870 			/* synchronous write or broken a_ops? */
871 			ClearPageReclaim(page);
872 		}
873 		trace_mm_vmscan_writepage(page);
874 		inc_node_page_state(page, NR_VMSCAN_WRITE);
875 		return PAGE_SUCCESS;
876 	}
877 
878 	return PAGE_CLEAN;
879 }
880 
881 /*
882  * Same as remove_mapping, but if the page is removed from the mapping, it
883  * gets returned with a refcount of 0.
884  */
885 static int __remove_mapping(struct address_space *mapping, struct page *page,
886 			    bool reclaimed)
887 {
888 	unsigned long flags;
889 	int refcount;
890 
891 	BUG_ON(!PageLocked(page));
892 	BUG_ON(mapping != page_mapping(page));
893 
894 	xa_lock_irqsave(&mapping->i_pages, flags);
895 	/*
896 	 * The non racy check for a busy page.
897 	 *
898 	 * Must be careful with the order of the tests. When someone has
899 	 * a ref to the page, it may be possible that they dirty it then
900 	 * drop the reference. So if PageDirty is tested before page_count
901 	 * here, then the following race may occur:
902 	 *
903 	 * get_user_pages(&page);
904 	 * [user mapping goes away]
905 	 * write_to(page);
906 	 *				!PageDirty(page)    [good]
907 	 * SetPageDirty(page);
908 	 * put_page(page);
909 	 *				!page_count(page)   [good, discard it]
910 	 *
911 	 * [oops, our write_to data is lost]
912 	 *
913 	 * Reversing the order of the tests ensures such a situation cannot
914 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
915 	 * load is not satisfied before that of page->_refcount.
916 	 *
917 	 * Note that if SetPageDirty is always performed via set_page_dirty,
918 	 * and thus under the i_pages lock, then this ordering is not required.
919 	 */
920 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
921 		refcount = 1 + HPAGE_PMD_NR;
922 	else
923 		refcount = 2;
924 	if (!page_ref_freeze(page, refcount))
925 		goto cannot_free;
926 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
927 	if (unlikely(PageDirty(page))) {
928 		page_ref_unfreeze(page, refcount);
929 		goto cannot_free;
930 	}
931 
932 	if (PageSwapCache(page)) {
933 		swp_entry_t swap = { .val = page_private(page) };
934 		mem_cgroup_swapout(page, swap);
935 		__delete_from_swap_cache(page, swap);
936 		xa_unlock_irqrestore(&mapping->i_pages, flags);
937 		put_swap_page(page, swap);
938 	} else {
939 		void (*freepage)(struct page *);
940 		void *shadow = NULL;
941 
942 		freepage = mapping->a_ops->freepage;
943 		/*
944 		 * Remember a shadow entry for reclaimed file cache in
945 		 * order to detect refaults, thus thrashing, later on.
946 		 *
947 		 * But don't store shadows in an address space that is
948 		 * already exiting.  This is not just an optizimation,
949 		 * inode reclaim needs to empty out the radix tree or
950 		 * the nodes are lost.  Don't plant shadows behind its
951 		 * back.
952 		 *
953 		 * We also don't store shadows for DAX mappings because the
954 		 * only page cache pages found in these are zero pages
955 		 * covering holes, and because we don't want to mix DAX
956 		 * exceptional entries and shadow exceptional entries in the
957 		 * same address_space.
958 		 */
959 		if (reclaimed && page_is_file_cache(page) &&
960 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
961 			shadow = workingset_eviction(mapping, page);
962 		__delete_from_page_cache(page, shadow);
963 		xa_unlock_irqrestore(&mapping->i_pages, flags);
964 
965 		if (freepage != NULL)
966 			freepage(page);
967 	}
968 
969 	return 1;
970 
971 cannot_free:
972 	xa_unlock_irqrestore(&mapping->i_pages, flags);
973 	return 0;
974 }
975 
976 /*
977  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
978  * someone else has a ref on the page, abort and return 0.  If it was
979  * successfully detached, return 1.  Assumes the caller has a single ref on
980  * this page.
981  */
982 int remove_mapping(struct address_space *mapping, struct page *page)
983 {
984 	if (__remove_mapping(mapping, page, false)) {
985 		/*
986 		 * Unfreezing the refcount with 1 rather than 2 effectively
987 		 * drops the pagecache ref for us without requiring another
988 		 * atomic operation.
989 		 */
990 		page_ref_unfreeze(page, 1);
991 		return 1;
992 	}
993 	return 0;
994 }
995 
996 /**
997  * putback_lru_page - put previously isolated page onto appropriate LRU list
998  * @page: page to be put back to appropriate lru list
999  *
1000  * Add previously isolated @page to appropriate LRU list.
1001  * Page may still be unevictable for other reasons.
1002  *
1003  * lru_lock must not be held, interrupts must be enabled.
1004  */
1005 void putback_lru_page(struct page *page)
1006 {
1007 	lru_cache_add(page);
1008 	put_page(page);		/* drop ref from isolate */
1009 }
1010 
1011 enum page_references {
1012 	PAGEREF_RECLAIM,
1013 	PAGEREF_RECLAIM_CLEAN,
1014 	PAGEREF_KEEP,
1015 	PAGEREF_ACTIVATE,
1016 };
1017 
1018 static enum page_references page_check_references(struct page *page,
1019 						  struct scan_control *sc)
1020 {
1021 	int referenced_ptes, referenced_page;
1022 	unsigned long vm_flags;
1023 
1024 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1025 					  &vm_flags);
1026 	referenced_page = TestClearPageReferenced(page);
1027 
1028 	/*
1029 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1030 	 * move the page to the unevictable list.
1031 	 */
1032 	if (vm_flags & VM_LOCKED)
1033 		return PAGEREF_RECLAIM;
1034 
1035 	if (referenced_ptes) {
1036 		if (PageSwapBacked(page))
1037 			return PAGEREF_ACTIVATE;
1038 		/*
1039 		 * All mapped pages start out with page table
1040 		 * references from the instantiating fault, so we need
1041 		 * to look twice if a mapped file page is used more
1042 		 * than once.
1043 		 *
1044 		 * Mark it and spare it for another trip around the
1045 		 * inactive list.  Another page table reference will
1046 		 * lead to its activation.
1047 		 *
1048 		 * Note: the mark is set for activated pages as well
1049 		 * so that recently deactivated but used pages are
1050 		 * quickly recovered.
1051 		 */
1052 		SetPageReferenced(page);
1053 
1054 		if (referenced_page || referenced_ptes > 1)
1055 			return PAGEREF_ACTIVATE;
1056 
1057 		/*
1058 		 * Activate file-backed executable pages after first usage.
1059 		 */
1060 		if (vm_flags & VM_EXEC)
1061 			return PAGEREF_ACTIVATE;
1062 
1063 		return PAGEREF_KEEP;
1064 	}
1065 
1066 	/* Reclaim if clean, defer dirty pages to writeback */
1067 	if (referenced_page && !PageSwapBacked(page))
1068 		return PAGEREF_RECLAIM_CLEAN;
1069 
1070 	return PAGEREF_RECLAIM;
1071 }
1072 
1073 /* Check if a page is dirty or under writeback */
1074 static void page_check_dirty_writeback(struct page *page,
1075 				       bool *dirty, bool *writeback)
1076 {
1077 	struct address_space *mapping;
1078 
1079 	/*
1080 	 * Anonymous pages are not handled by flushers and must be written
1081 	 * from reclaim context. Do not stall reclaim based on them
1082 	 */
1083 	if (!page_is_file_cache(page) ||
1084 	    (PageAnon(page) && !PageSwapBacked(page))) {
1085 		*dirty = false;
1086 		*writeback = false;
1087 		return;
1088 	}
1089 
1090 	/* By default assume that the page flags are accurate */
1091 	*dirty = PageDirty(page);
1092 	*writeback = PageWriteback(page);
1093 
1094 	/* Verify dirty/writeback state if the filesystem supports it */
1095 	if (!page_has_private(page))
1096 		return;
1097 
1098 	mapping = page_mapping(page);
1099 	if (mapping && mapping->a_ops->is_dirty_writeback)
1100 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1101 }
1102 
1103 /*
1104  * shrink_page_list() returns the number of reclaimed pages
1105  */
1106 static unsigned long shrink_page_list(struct list_head *page_list,
1107 				      struct pglist_data *pgdat,
1108 				      struct scan_control *sc,
1109 				      enum ttu_flags ttu_flags,
1110 				      struct reclaim_stat *stat,
1111 				      bool force_reclaim)
1112 {
1113 	LIST_HEAD(ret_pages);
1114 	LIST_HEAD(free_pages);
1115 	int pgactivate = 0;
1116 	unsigned nr_unqueued_dirty = 0;
1117 	unsigned nr_dirty = 0;
1118 	unsigned nr_congested = 0;
1119 	unsigned nr_reclaimed = 0;
1120 	unsigned nr_writeback = 0;
1121 	unsigned nr_immediate = 0;
1122 	unsigned nr_ref_keep = 0;
1123 	unsigned nr_unmap_fail = 0;
1124 
1125 	cond_resched();
1126 
1127 	while (!list_empty(page_list)) {
1128 		struct address_space *mapping;
1129 		struct page *page;
1130 		int may_enter_fs;
1131 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1132 		bool dirty, writeback;
1133 
1134 		cond_resched();
1135 
1136 		page = lru_to_page(page_list);
1137 		list_del(&page->lru);
1138 
1139 		if (!trylock_page(page))
1140 			goto keep;
1141 
1142 		VM_BUG_ON_PAGE(PageActive(page), page);
1143 
1144 		sc->nr_scanned++;
1145 
1146 		if (unlikely(!page_evictable(page)))
1147 			goto activate_locked;
1148 
1149 		if (!sc->may_unmap && page_mapped(page))
1150 			goto keep_locked;
1151 
1152 		/* Double the slab pressure for mapped and swapcache pages */
1153 		if ((page_mapped(page) || PageSwapCache(page)) &&
1154 		    !(PageAnon(page) && !PageSwapBacked(page)))
1155 			sc->nr_scanned++;
1156 
1157 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1158 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1159 
1160 		/*
1161 		 * The number of dirty pages determines if a node is marked
1162 		 * reclaim_congested which affects wait_iff_congested. kswapd
1163 		 * will stall and start writing pages if the tail of the LRU
1164 		 * is all dirty unqueued pages.
1165 		 */
1166 		page_check_dirty_writeback(page, &dirty, &writeback);
1167 		if (dirty || writeback)
1168 			nr_dirty++;
1169 
1170 		if (dirty && !writeback)
1171 			nr_unqueued_dirty++;
1172 
1173 		/*
1174 		 * Treat this page as congested if the underlying BDI is or if
1175 		 * pages are cycling through the LRU so quickly that the
1176 		 * pages marked for immediate reclaim are making it to the
1177 		 * end of the LRU a second time.
1178 		 */
1179 		mapping = page_mapping(page);
1180 		if (((dirty || writeback) && mapping &&
1181 		     inode_write_congested(mapping->host)) ||
1182 		    (writeback && PageReclaim(page)))
1183 			nr_congested++;
1184 
1185 		/*
1186 		 * If a page at the tail of the LRU is under writeback, there
1187 		 * are three cases to consider.
1188 		 *
1189 		 * 1) If reclaim is encountering an excessive number of pages
1190 		 *    under writeback and this page is both under writeback and
1191 		 *    PageReclaim then it indicates that pages are being queued
1192 		 *    for IO but are being recycled through the LRU before the
1193 		 *    IO can complete. Waiting on the page itself risks an
1194 		 *    indefinite stall if it is impossible to writeback the
1195 		 *    page due to IO error or disconnected storage so instead
1196 		 *    note that the LRU is being scanned too quickly and the
1197 		 *    caller can stall after page list has been processed.
1198 		 *
1199 		 * 2) Global or new memcg reclaim encounters a page that is
1200 		 *    not marked for immediate reclaim, or the caller does not
1201 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1202 		 *    not to fs). In this case mark the page for immediate
1203 		 *    reclaim and continue scanning.
1204 		 *
1205 		 *    Require may_enter_fs because we would wait on fs, which
1206 		 *    may not have submitted IO yet. And the loop driver might
1207 		 *    enter reclaim, and deadlock if it waits on a page for
1208 		 *    which it is needed to do the write (loop masks off
1209 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1210 		 *    would probably show more reasons.
1211 		 *
1212 		 * 3) Legacy memcg encounters a page that is already marked
1213 		 *    PageReclaim. memcg does not have any dirty pages
1214 		 *    throttling so we could easily OOM just because too many
1215 		 *    pages are in writeback and there is nothing else to
1216 		 *    reclaim. Wait for the writeback to complete.
1217 		 *
1218 		 * In cases 1) and 2) we activate the pages to get them out of
1219 		 * the way while we continue scanning for clean pages on the
1220 		 * inactive list and refilling from the active list. The
1221 		 * observation here is that waiting for disk writes is more
1222 		 * expensive than potentially causing reloads down the line.
1223 		 * Since they're marked for immediate reclaim, they won't put
1224 		 * memory pressure on the cache working set any longer than it
1225 		 * takes to write them to disk.
1226 		 */
1227 		if (PageWriteback(page)) {
1228 			/* Case 1 above */
1229 			if (current_is_kswapd() &&
1230 			    PageReclaim(page) &&
1231 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1232 				nr_immediate++;
1233 				goto activate_locked;
1234 
1235 			/* Case 2 above */
1236 			} else if (sane_reclaim(sc) ||
1237 			    !PageReclaim(page) || !may_enter_fs) {
1238 				/*
1239 				 * This is slightly racy - end_page_writeback()
1240 				 * might have just cleared PageReclaim, then
1241 				 * setting PageReclaim here end up interpreted
1242 				 * as PageReadahead - but that does not matter
1243 				 * enough to care.  What we do want is for this
1244 				 * page to have PageReclaim set next time memcg
1245 				 * reclaim reaches the tests above, so it will
1246 				 * then wait_on_page_writeback() to avoid OOM;
1247 				 * and it's also appropriate in global reclaim.
1248 				 */
1249 				SetPageReclaim(page);
1250 				nr_writeback++;
1251 				goto activate_locked;
1252 
1253 			/* Case 3 above */
1254 			} else {
1255 				unlock_page(page);
1256 				wait_on_page_writeback(page);
1257 				/* then go back and try same page again */
1258 				list_add_tail(&page->lru, page_list);
1259 				continue;
1260 			}
1261 		}
1262 
1263 		if (!force_reclaim)
1264 			references = page_check_references(page, sc);
1265 
1266 		switch (references) {
1267 		case PAGEREF_ACTIVATE:
1268 			goto activate_locked;
1269 		case PAGEREF_KEEP:
1270 			nr_ref_keep++;
1271 			goto keep_locked;
1272 		case PAGEREF_RECLAIM:
1273 		case PAGEREF_RECLAIM_CLEAN:
1274 			; /* try to reclaim the page below */
1275 		}
1276 
1277 		/*
1278 		 * Anonymous process memory has backing store?
1279 		 * Try to allocate it some swap space here.
1280 		 * Lazyfree page could be freed directly
1281 		 */
1282 		if (PageAnon(page) && PageSwapBacked(page)) {
1283 			if (!PageSwapCache(page)) {
1284 				if (!(sc->gfp_mask & __GFP_IO))
1285 					goto keep_locked;
1286 				if (PageTransHuge(page)) {
1287 					/* cannot split THP, skip it */
1288 					if (!can_split_huge_page(page, NULL))
1289 						goto activate_locked;
1290 					/*
1291 					 * Split pages without a PMD map right
1292 					 * away. Chances are some or all of the
1293 					 * tail pages can be freed without IO.
1294 					 */
1295 					if (!compound_mapcount(page) &&
1296 					    split_huge_page_to_list(page,
1297 								    page_list))
1298 						goto activate_locked;
1299 				}
1300 				if (!add_to_swap(page)) {
1301 					if (!PageTransHuge(page))
1302 						goto activate_locked;
1303 					/* Fallback to swap normal pages */
1304 					if (split_huge_page_to_list(page,
1305 								    page_list))
1306 						goto activate_locked;
1307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308 					count_vm_event(THP_SWPOUT_FALLBACK);
1309 #endif
1310 					if (!add_to_swap(page))
1311 						goto activate_locked;
1312 				}
1313 
1314 				may_enter_fs = 1;
1315 
1316 				/* Adding to swap updated mapping */
1317 				mapping = page_mapping(page);
1318 			}
1319 		} else if (unlikely(PageTransHuge(page))) {
1320 			/* Split file THP */
1321 			if (split_huge_page_to_list(page, page_list))
1322 				goto keep_locked;
1323 		}
1324 
1325 		/*
1326 		 * The page is mapped into the page tables of one or more
1327 		 * processes. Try to unmap it here.
1328 		 */
1329 		if (page_mapped(page)) {
1330 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1331 
1332 			if (unlikely(PageTransHuge(page)))
1333 				flags |= TTU_SPLIT_HUGE_PMD;
1334 			if (!try_to_unmap(page, flags)) {
1335 				nr_unmap_fail++;
1336 				goto activate_locked;
1337 			}
1338 		}
1339 
1340 		if (PageDirty(page)) {
1341 			/*
1342 			 * Only kswapd can writeback filesystem pages
1343 			 * to avoid risk of stack overflow. But avoid
1344 			 * injecting inefficient single-page IO into
1345 			 * flusher writeback as much as possible: only
1346 			 * write pages when we've encountered many
1347 			 * dirty pages, and when we've already scanned
1348 			 * the rest of the LRU for clean pages and see
1349 			 * the same dirty pages again (PageReclaim).
1350 			 */
1351 			if (page_is_file_cache(page) &&
1352 			    (!current_is_kswapd() || !PageReclaim(page) ||
1353 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1354 				/*
1355 				 * Immediately reclaim when written back.
1356 				 * Similar in principal to deactivate_page()
1357 				 * except we already have the page isolated
1358 				 * and know it's dirty
1359 				 */
1360 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1361 				SetPageReclaim(page);
1362 
1363 				goto activate_locked;
1364 			}
1365 
1366 			if (references == PAGEREF_RECLAIM_CLEAN)
1367 				goto keep_locked;
1368 			if (!may_enter_fs)
1369 				goto keep_locked;
1370 			if (!sc->may_writepage)
1371 				goto keep_locked;
1372 
1373 			/*
1374 			 * Page is dirty. Flush the TLB if a writable entry
1375 			 * potentially exists to avoid CPU writes after IO
1376 			 * starts and then write it out here.
1377 			 */
1378 			try_to_unmap_flush_dirty();
1379 			switch (pageout(page, mapping, sc)) {
1380 			case PAGE_KEEP:
1381 				goto keep_locked;
1382 			case PAGE_ACTIVATE:
1383 				goto activate_locked;
1384 			case PAGE_SUCCESS:
1385 				if (PageWriteback(page))
1386 					goto keep;
1387 				if (PageDirty(page))
1388 					goto keep;
1389 
1390 				/*
1391 				 * A synchronous write - probably a ramdisk.  Go
1392 				 * ahead and try to reclaim the page.
1393 				 */
1394 				if (!trylock_page(page))
1395 					goto keep;
1396 				if (PageDirty(page) || PageWriteback(page))
1397 					goto keep_locked;
1398 				mapping = page_mapping(page);
1399 			case PAGE_CLEAN:
1400 				; /* try to free the page below */
1401 			}
1402 		}
1403 
1404 		/*
1405 		 * If the page has buffers, try to free the buffer mappings
1406 		 * associated with this page. If we succeed we try to free
1407 		 * the page as well.
1408 		 *
1409 		 * We do this even if the page is PageDirty().
1410 		 * try_to_release_page() does not perform I/O, but it is
1411 		 * possible for a page to have PageDirty set, but it is actually
1412 		 * clean (all its buffers are clean).  This happens if the
1413 		 * buffers were written out directly, with submit_bh(). ext3
1414 		 * will do this, as well as the blockdev mapping.
1415 		 * try_to_release_page() will discover that cleanness and will
1416 		 * drop the buffers and mark the page clean - it can be freed.
1417 		 *
1418 		 * Rarely, pages can have buffers and no ->mapping.  These are
1419 		 * the pages which were not successfully invalidated in
1420 		 * truncate_complete_page().  We try to drop those buffers here
1421 		 * and if that worked, and the page is no longer mapped into
1422 		 * process address space (page_count == 1) it can be freed.
1423 		 * Otherwise, leave the page on the LRU so it is swappable.
1424 		 */
1425 		if (page_has_private(page)) {
1426 			if (!try_to_release_page(page, sc->gfp_mask))
1427 				goto activate_locked;
1428 			if (!mapping && page_count(page) == 1) {
1429 				unlock_page(page);
1430 				if (put_page_testzero(page))
1431 					goto free_it;
1432 				else {
1433 					/*
1434 					 * rare race with speculative reference.
1435 					 * the speculative reference will free
1436 					 * this page shortly, so we may
1437 					 * increment nr_reclaimed here (and
1438 					 * leave it off the LRU).
1439 					 */
1440 					nr_reclaimed++;
1441 					continue;
1442 				}
1443 			}
1444 		}
1445 
1446 		if (PageAnon(page) && !PageSwapBacked(page)) {
1447 			/* follow __remove_mapping for reference */
1448 			if (!page_ref_freeze(page, 1))
1449 				goto keep_locked;
1450 			if (PageDirty(page)) {
1451 				page_ref_unfreeze(page, 1);
1452 				goto keep_locked;
1453 			}
1454 
1455 			count_vm_event(PGLAZYFREED);
1456 			count_memcg_page_event(page, PGLAZYFREED);
1457 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1458 			goto keep_locked;
1459 		/*
1460 		 * At this point, we have no other references and there is
1461 		 * no way to pick any more up (removed from LRU, removed
1462 		 * from pagecache). Can use non-atomic bitops now (and
1463 		 * we obviously don't have to worry about waking up a process
1464 		 * waiting on the page lock, because there are no references.
1465 		 */
1466 		__ClearPageLocked(page);
1467 free_it:
1468 		nr_reclaimed++;
1469 
1470 		/*
1471 		 * Is there need to periodically free_page_list? It would
1472 		 * appear not as the counts should be low
1473 		 */
1474 		if (unlikely(PageTransHuge(page))) {
1475 			mem_cgroup_uncharge(page);
1476 			(*get_compound_page_dtor(page))(page);
1477 		} else
1478 			list_add(&page->lru, &free_pages);
1479 		continue;
1480 
1481 activate_locked:
1482 		/* Not a candidate for swapping, so reclaim swap space. */
1483 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1484 						PageMlocked(page)))
1485 			try_to_free_swap(page);
1486 		VM_BUG_ON_PAGE(PageActive(page), page);
1487 		if (!PageMlocked(page)) {
1488 			SetPageActive(page);
1489 			pgactivate++;
1490 			count_memcg_page_event(page, PGACTIVATE);
1491 		}
1492 keep_locked:
1493 		unlock_page(page);
1494 keep:
1495 		list_add(&page->lru, &ret_pages);
1496 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1497 	}
1498 
1499 	mem_cgroup_uncharge_list(&free_pages);
1500 	try_to_unmap_flush();
1501 	free_unref_page_list(&free_pages);
1502 
1503 	list_splice(&ret_pages, page_list);
1504 	count_vm_events(PGACTIVATE, pgactivate);
1505 
1506 	if (stat) {
1507 		stat->nr_dirty = nr_dirty;
1508 		stat->nr_congested = nr_congested;
1509 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1510 		stat->nr_writeback = nr_writeback;
1511 		stat->nr_immediate = nr_immediate;
1512 		stat->nr_activate = pgactivate;
1513 		stat->nr_ref_keep = nr_ref_keep;
1514 		stat->nr_unmap_fail = nr_unmap_fail;
1515 	}
1516 	return nr_reclaimed;
1517 }
1518 
1519 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1520 					    struct list_head *page_list)
1521 {
1522 	struct scan_control sc = {
1523 		.gfp_mask = GFP_KERNEL,
1524 		.priority = DEF_PRIORITY,
1525 		.may_unmap = 1,
1526 	};
1527 	unsigned long ret;
1528 	struct page *page, *next;
1529 	LIST_HEAD(clean_pages);
1530 
1531 	list_for_each_entry_safe(page, next, page_list, lru) {
1532 		if (page_is_file_cache(page) && !PageDirty(page) &&
1533 		    !__PageMovable(page)) {
1534 			ClearPageActive(page);
1535 			list_move(&page->lru, &clean_pages);
1536 		}
1537 	}
1538 
1539 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1540 			TTU_IGNORE_ACCESS, NULL, true);
1541 	list_splice(&clean_pages, page_list);
1542 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1543 	return ret;
1544 }
1545 
1546 /*
1547  * Attempt to remove the specified page from its LRU.  Only take this page
1548  * if it is of the appropriate PageActive status.  Pages which are being
1549  * freed elsewhere are also ignored.
1550  *
1551  * page:	page to consider
1552  * mode:	one of the LRU isolation modes defined above
1553  *
1554  * returns 0 on success, -ve errno on failure.
1555  */
1556 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1557 {
1558 	int ret = -EINVAL;
1559 
1560 	/* Only take pages on the LRU. */
1561 	if (!PageLRU(page))
1562 		return ret;
1563 
1564 	/* Compaction should not handle unevictable pages but CMA can do so */
1565 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1566 		return ret;
1567 
1568 	ret = -EBUSY;
1569 
1570 	/*
1571 	 * To minimise LRU disruption, the caller can indicate that it only
1572 	 * wants to isolate pages it will be able to operate on without
1573 	 * blocking - clean pages for the most part.
1574 	 *
1575 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1576 	 * that it is possible to migrate without blocking
1577 	 */
1578 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1579 		/* All the caller can do on PageWriteback is block */
1580 		if (PageWriteback(page))
1581 			return ret;
1582 
1583 		if (PageDirty(page)) {
1584 			struct address_space *mapping;
1585 			bool migrate_dirty;
1586 
1587 			/*
1588 			 * Only pages without mappings or that have a
1589 			 * ->migratepage callback are possible to migrate
1590 			 * without blocking. However, we can be racing with
1591 			 * truncation so it's necessary to lock the page
1592 			 * to stabilise the mapping as truncation holds
1593 			 * the page lock until after the page is removed
1594 			 * from the page cache.
1595 			 */
1596 			if (!trylock_page(page))
1597 				return ret;
1598 
1599 			mapping = page_mapping(page);
1600 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1601 			unlock_page(page);
1602 			if (!migrate_dirty)
1603 				return ret;
1604 		}
1605 	}
1606 
1607 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1608 		return ret;
1609 
1610 	if (likely(get_page_unless_zero(page))) {
1611 		/*
1612 		 * Be careful not to clear PageLRU until after we're
1613 		 * sure the page is not being freed elsewhere -- the
1614 		 * page release code relies on it.
1615 		 */
1616 		ClearPageLRU(page);
1617 		ret = 0;
1618 	}
1619 
1620 	return ret;
1621 }
1622 
1623 
1624 /*
1625  * Update LRU sizes after isolating pages. The LRU size updates must
1626  * be complete before mem_cgroup_update_lru_size due to a santity check.
1627  */
1628 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1629 			enum lru_list lru, unsigned long *nr_zone_taken)
1630 {
1631 	int zid;
1632 
1633 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1634 		if (!nr_zone_taken[zid])
1635 			continue;
1636 
1637 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1638 #ifdef CONFIG_MEMCG
1639 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1640 #endif
1641 	}
1642 
1643 }
1644 
1645 /*
1646  * zone_lru_lock is heavily contended.  Some of the functions that
1647  * shrink the lists perform better by taking out a batch of pages
1648  * and working on them outside the LRU lock.
1649  *
1650  * For pagecache intensive workloads, this function is the hottest
1651  * spot in the kernel (apart from copy_*_user functions).
1652  *
1653  * Appropriate locks must be held before calling this function.
1654  *
1655  * @nr_to_scan:	The number of eligible pages to look through on the list.
1656  * @lruvec:	The LRU vector to pull pages from.
1657  * @dst:	The temp list to put pages on to.
1658  * @nr_scanned:	The number of pages that were scanned.
1659  * @sc:		The scan_control struct for this reclaim session
1660  * @mode:	One of the LRU isolation modes
1661  * @lru:	LRU list id for isolating
1662  *
1663  * returns how many pages were moved onto *@dst.
1664  */
1665 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1666 		struct lruvec *lruvec, struct list_head *dst,
1667 		unsigned long *nr_scanned, struct scan_control *sc,
1668 		isolate_mode_t mode, enum lru_list lru)
1669 {
1670 	struct list_head *src = &lruvec->lists[lru];
1671 	unsigned long nr_taken = 0;
1672 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1673 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1674 	unsigned long skipped = 0;
1675 	unsigned long scan, total_scan, nr_pages;
1676 	LIST_HEAD(pages_skipped);
1677 
1678 	scan = 0;
1679 	for (total_scan = 0;
1680 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1681 	     total_scan++) {
1682 		struct page *page;
1683 
1684 		page = lru_to_page(src);
1685 		prefetchw_prev_lru_page(page, src, flags);
1686 
1687 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1688 
1689 		if (page_zonenum(page) > sc->reclaim_idx) {
1690 			list_move(&page->lru, &pages_skipped);
1691 			nr_skipped[page_zonenum(page)]++;
1692 			continue;
1693 		}
1694 
1695 		/*
1696 		 * Do not count skipped pages because that makes the function
1697 		 * return with no isolated pages if the LRU mostly contains
1698 		 * ineligible pages.  This causes the VM to not reclaim any
1699 		 * pages, triggering a premature OOM.
1700 		 */
1701 		scan++;
1702 		switch (__isolate_lru_page(page, mode)) {
1703 		case 0:
1704 			nr_pages = hpage_nr_pages(page);
1705 			nr_taken += nr_pages;
1706 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1707 			list_move(&page->lru, dst);
1708 			break;
1709 
1710 		case -EBUSY:
1711 			/* else it is being freed elsewhere */
1712 			list_move(&page->lru, src);
1713 			continue;
1714 
1715 		default:
1716 			BUG();
1717 		}
1718 	}
1719 
1720 	/*
1721 	 * Splice any skipped pages to the start of the LRU list. Note that
1722 	 * this disrupts the LRU order when reclaiming for lower zones but
1723 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1724 	 * scanning would soon rescan the same pages to skip and put the
1725 	 * system at risk of premature OOM.
1726 	 */
1727 	if (!list_empty(&pages_skipped)) {
1728 		int zid;
1729 
1730 		list_splice(&pages_skipped, src);
1731 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1732 			if (!nr_skipped[zid])
1733 				continue;
1734 
1735 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1736 			skipped += nr_skipped[zid];
1737 		}
1738 	}
1739 	*nr_scanned = total_scan;
1740 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1741 				    total_scan, skipped, nr_taken, mode, lru);
1742 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1743 	return nr_taken;
1744 }
1745 
1746 /**
1747  * isolate_lru_page - tries to isolate a page from its LRU list
1748  * @page: page to isolate from its LRU list
1749  *
1750  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1751  * vmstat statistic corresponding to whatever LRU list the page was on.
1752  *
1753  * Returns 0 if the page was removed from an LRU list.
1754  * Returns -EBUSY if the page was not on an LRU list.
1755  *
1756  * The returned page will have PageLRU() cleared.  If it was found on
1757  * the active list, it will have PageActive set.  If it was found on
1758  * the unevictable list, it will have the PageUnevictable bit set. That flag
1759  * may need to be cleared by the caller before letting the page go.
1760  *
1761  * The vmstat statistic corresponding to the list on which the page was
1762  * found will be decremented.
1763  *
1764  * Restrictions:
1765  *
1766  * (1) Must be called with an elevated refcount on the page. This is a
1767  *     fundamentnal difference from isolate_lru_pages (which is called
1768  *     without a stable reference).
1769  * (2) the lru_lock must not be held.
1770  * (3) interrupts must be enabled.
1771  */
1772 int isolate_lru_page(struct page *page)
1773 {
1774 	int ret = -EBUSY;
1775 
1776 	VM_BUG_ON_PAGE(!page_count(page), page);
1777 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1778 
1779 	if (PageLRU(page)) {
1780 		struct zone *zone = page_zone(page);
1781 		struct lruvec *lruvec;
1782 
1783 		spin_lock_irq(zone_lru_lock(zone));
1784 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1785 		if (PageLRU(page)) {
1786 			int lru = page_lru(page);
1787 			get_page(page);
1788 			ClearPageLRU(page);
1789 			del_page_from_lru_list(page, lruvec, lru);
1790 			ret = 0;
1791 		}
1792 		spin_unlock_irq(zone_lru_lock(zone));
1793 	}
1794 	return ret;
1795 }
1796 
1797 /*
1798  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1799  * then get resheduled. When there are massive number of tasks doing page
1800  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1801  * the LRU list will go small and be scanned faster than necessary, leading to
1802  * unnecessary swapping, thrashing and OOM.
1803  */
1804 static int too_many_isolated(struct pglist_data *pgdat, int file,
1805 		struct scan_control *sc)
1806 {
1807 	unsigned long inactive, isolated;
1808 
1809 	if (current_is_kswapd())
1810 		return 0;
1811 
1812 	if (!sane_reclaim(sc))
1813 		return 0;
1814 
1815 	if (file) {
1816 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1817 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1818 	} else {
1819 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1820 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1821 	}
1822 
1823 	/*
1824 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1825 	 * won't get blocked by normal direct-reclaimers, forming a circular
1826 	 * deadlock.
1827 	 */
1828 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1829 		inactive >>= 3;
1830 
1831 	return isolated > inactive;
1832 }
1833 
1834 static noinline_for_stack void
1835 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1836 {
1837 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1838 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1839 	LIST_HEAD(pages_to_free);
1840 
1841 	/*
1842 	 * Put back any unfreeable pages.
1843 	 */
1844 	while (!list_empty(page_list)) {
1845 		struct page *page = lru_to_page(page_list);
1846 		int lru;
1847 
1848 		VM_BUG_ON_PAGE(PageLRU(page), page);
1849 		list_del(&page->lru);
1850 		if (unlikely(!page_evictable(page))) {
1851 			spin_unlock_irq(&pgdat->lru_lock);
1852 			putback_lru_page(page);
1853 			spin_lock_irq(&pgdat->lru_lock);
1854 			continue;
1855 		}
1856 
1857 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1858 
1859 		SetPageLRU(page);
1860 		lru = page_lru(page);
1861 		add_page_to_lru_list(page, lruvec, lru);
1862 
1863 		if (is_active_lru(lru)) {
1864 			int file = is_file_lru(lru);
1865 			int numpages = hpage_nr_pages(page);
1866 			reclaim_stat->recent_rotated[file] += numpages;
1867 		}
1868 		if (put_page_testzero(page)) {
1869 			__ClearPageLRU(page);
1870 			__ClearPageActive(page);
1871 			del_page_from_lru_list(page, lruvec, lru);
1872 
1873 			if (unlikely(PageCompound(page))) {
1874 				spin_unlock_irq(&pgdat->lru_lock);
1875 				mem_cgroup_uncharge(page);
1876 				(*get_compound_page_dtor(page))(page);
1877 				spin_lock_irq(&pgdat->lru_lock);
1878 			} else
1879 				list_add(&page->lru, &pages_to_free);
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * To save our caller's stack, now use input list for pages to free.
1885 	 */
1886 	list_splice(&pages_to_free, page_list);
1887 }
1888 
1889 /*
1890  * If a kernel thread (such as nfsd for loop-back mounts) services
1891  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1892  * In that case we should only throttle if the backing device it is
1893  * writing to is congested.  In other cases it is safe to throttle.
1894  */
1895 static int current_may_throttle(void)
1896 {
1897 	return !(current->flags & PF_LESS_THROTTLE) ||
1898 		current->backing_dev_info == NULL ||
1899 		bdi_write_congested(current->backing_dev_info);
1900 }
1901 
1902 /*
1903  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1904  * of reclaimed pages
1905  */
1906 static noinline_for_stack unsigned long
1907 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1908 		     struct scan_control *sc, enum lru_list lru)
1909 {
1910 	LIST_HEAD(page_list);
1911 	unsigned long nr_scanned;
1912 	unsigned long nr_reclaimed = 0;
1913 	unsigned long nr_taken;
1914 	struct reclaim_stat stat = {};
1915 	isolate_mode_t isolate_mode = 0;
1916 	int file = is_file_lru(lru);
1917 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1918 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1919 	bool stalled = false;
1920 
1921 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1922 		if (stalled)
1923 			return 0;
1924 
1925 		/* wait a bit for the reclaimer. */
1926 		msleep(100);
1927 		stalled = true;
1928 
1929 		/* We are about to die and free our memory. Return now. */
1930 		if (fatal_signal_pending(current))
1931 			return SWAP_CLUSTER_MAX;
1932 	}
1933 
1934 	lru_add_drain();
1935 
1936 	if (!sc->may_unmap)
1937 		isolate_mode |= ISOLATE_UNMAPPED;
1938 
1939 	spin_lock_irq(&pgdat->lru_lock);
1940 
1941 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1942 				     &nr_scanned, sc, isolate_mode, lru);
1943 
1944 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1945 	reclaim_stat->recent_scanned[file] += nr_taken;
1946 
1947 	if (current_is_kswapd()) {
1948 		if (global_reclaim(sc))
1949 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1950 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1951 				   nr_scanned);
1952 	} else {
1953 		if (global_reclaim(sc))
1954 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1955 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1956 				   nr_scanned);
1957 	}
1958 	spin_unlock_irq(&pgdat->lru_lock);
1959 
1960 	if (nr_taken == 0)
1961 		return 0;
1962 
1963 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1964 				&stat, false);
1965 
1966 	spin_lock_irq(&pgdat->lru_lock);
1967 
1968 	if (current_is_kswapd()) {
1969 		if (global_reclaim(sc))
1970 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1971 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1972 				   nr_reclaimed);
1973 	} else {
1974 		if (global_reclaim(sc))
1975 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1976 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1977 				   nr_reclaimed);
1978 	}
1979 
1980 	putback_inactive_pages(lruvec, &page_list);
1981 
1982 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1983 
1984 	spin_unlock_irq(&pgdat->lru_lock);
1985 
1986 	mem_cgroup_uncharge_list(&page_list);
1987 	free_unref_page_list(&page_list);
1988 
1989 	/*
1990 	 * If dirty pages are scanned that are not queued for IO, it
1991 	 * implies that flushers are not doing their job. This can
1992 	 * happen when memory pressure pushes dirty pages to the end of
1993 	 * the LRU before the dirty limits are breached and the dirty
1994 	 * data has expired. It can also happen when the proportion of
1995 	 * dirty pages grows not through writes but through memory
1996 	 * pressure reclaiming all the clean cache. And in some cases,
1997 	 * the flushers simply cannot keep up with the allocation
1998 	 * rate. Nudge the flusher threads in case they are asleep.
1999 	 */
2000 	if (stat.nr_unqueued_dirty == nr_taken)
2001 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2002 
2003 	sc->nr.dirty += stat.nr_dirty;
2004 	sc->nr.congested += stat.nr_congested;
2005 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2006 	sc->nr.writeback += stat.nr_writeback;
2007 	sc->nr.immediate += stat.nr_immediate;
2008 	sc->nr.taken += nr_taken;
2009 	if (file)
2010 		sc->nr.file_taken += nr_taken;
2011 
2012 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2013 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2014 	return nr_reclaimed;
2015 }
2016 
2017 /*
2018  * This moves pages from the active list to the inactive list.
2019  *
2020  * We move them the other way if the page is referenced by one or more
2021  * processes, from rmap.
2022  *
2023  * If the pages are mostly unmapped, the processing is fast and it is
2024  * appropriate to hold zone_lru_lock across the whole operation.  But if
2025  * the pages are mapped, the processing is slow (page_referenced()) so we
2026  * should drop zone_lru_lock around each page.  It's impossible to balance
2027  * this, so instead we remove the pages from the LRU while processing them.
2028  * It is safe to rely on PG_active against the non-LRU pages in here because
2029  * nobody will play with that bit on a non-LRU page.
2030  *
2031  * The downside is that we have to touch page->_refcount against each page.
2032  * But we had to alter page->flags anyway.
2033  *
2034  * Returns the number of pages moved to the given lru.
2035  */
2036 
2037 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2038 				     struct list_head *list,
2039 				     struct list_head *pages_to_free,
2040 				     enum lru_list lru)
2041 {
2042 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2043 	struct page *page;
2044 	int nr_pages;
2045 	int nr_moved = 0;
2046 
2047 	while (!list_empty(list)) {
2048 		page = lru_to_page(list);
2049 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2050 
2051 		VM_BUG_ON_PAGE(PageLRU(page), page);
2052 		SetPageLRU(page);
2053 
2054 		nr_pages = hpage_nr_pages(page);
2055 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2056 		list_move(&page->lru, &lruvec->lists[lru]);
2057 
2058 		if (put_page_testzero(page)) {
2059 			__ClearPageLRU(page);
2060 			__ClearPageActive(page);
2061 			del_page_from_lru_list(page, lruvec, lru);
2062 
2063 			if (unlikely(PageCompound(page))) {
2064 				spin_unlock_irq(&pgdat->lru_lock);
2065 				mem_cgroup_uncharge(page);
2066 				(*get_compound_page_dtor(page))(page);
2067 				spin_lock_irq(&pgdat->lru_lock);
2068 			} else
2069 				list_add(&page->lru, pages_to_free);
2070 		} else {
2071 			nr_moved += nr_pages;
2072 		}
2073 	}
2074 
2075 	if (!is_active_lru(lru)) {
2076 		__count_vm_events(PGDEACTIVATE, nr_moved);
2077 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2078 				   nr_moved);
2079 	}
2080 
2081 	return nr_moved;
2082 }
2083 
2084 static void shrink_active_list(unsigned long nr_to_scan,
2085 			       struct lruvec *lruvec,
2086 			       struct scan_control *sc,
2087 			       enum lru_list lru)
2088 {
2089 	unsigned long nr_taken;
2090 	unsigned long nr_scanned;
2091 	unsigned long vm_flags;
2092 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2093 	LIST_HEAD(l_active);
2094 	LIST_HEAD(l_inactive);
2095 	struct page *page;
2096 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2097 	unsigned nr_deactivate, nr_activate;
2098 	unsigned nr_rotated = 0;
2099 	isolate_mode_t isolate_mode = 0;
2100 	int file = is_file_lru(lru);
2101 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2102 
2103 	lru_add_drain();
2104 
2105 	if (!sc->may_unmap)
2106 		isolate_mode |= ISOLATE_UNMAPPED;
2107 
2108 	spin_lock_irq(&pgdat->lru_lock);
2109 
2110 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2111 				     &nr_scanned, sc, isolate_mode, lru);
2112 
2113 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2114 	reclaim_stat->recent_scanned[file] += nr_taken;
2115 
2116 	__count_vm_events(PGREFILL, nr_scanned);
2117 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2118 
2119 	spin_unlock_irq(&pgdat->lru_lock);
2120 
2121 	while (!list_empty(&l_hold)) {
2122 		cond_resched();
2123 		page = lru_to_page(&l_hold);
2124 		list_del(&page->lru);
2125 
2126 		if (unlikely(!page_evictable(page))) {
2127 			putback_lru_page(page);
2128 			continue;
2129 		}
2130 
2131 		if (unlikely(buffer_heads_over_limit)) {
2132 			if (page_has_private(page) && trylock_page(page)) {
2133 				if (page_has_private(page))
2134 					try_to_release_page(page, 0);
2135 				unlock_page(page);
2136 			}
2137 		}
2138 
2139 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2140 				    &vm_flags)) {
2141 			nr_rotated += hpage_nr_pages(page);
2142 			/*
2143 			 * Identify referenced, file-backed active pages and
2144 			 * give them one more trip around the active list. So
2145 			 * that executable code get better chances to stay in
2146 			 * memory under moderate memory pressure.  Anon pages
2147 			 * are not likely to be evicted by use-once streaming
2148 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2149 			 * so we ignore them here.
2150 			 */
2151 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2152 				list_add(&page->lru, &l_active);
2153 				continue;
2154 			}
2155 		}
2156 
2157 		ClearPageActive(page);	/* we are de-activating */
2158 		SetPageWorkingset(page);
2159 		list_add(&page->lru, &l_inactive);
2160 	}
2161 
2162 	/*
2163 	 * Move pages back to the lru list.
2164 	 */
2165 	spin_lock_irq(&pgdat->lru_lock);
2166 	/*
2167 	 * Count referenced pages from currently used mappings as rotated,
2168 	 * even though only some of them are actually re-activated.  This
2169 	 * helps balance scan pressure between file and anonymous pages in
2170 	 * get_scan_count.
2171 	 */
2172 	reclaim_stat->recent_rotated[file] += nr_rotated;
2173 
2174 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2175 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2176 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2177 	spin_unlock_irq(&pgdat->lru_lock);
2178 
2179 	mem_cgroup_uncharge_list(&l_hold);
2180 	free_unref_page_list(&l_hold);
2181 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2182 			nr_deactivate, nr_rotated, sc->priority, file);
2183 }
2184 
2185 /*
2186  * The inactive anon list should be small enough that the VM never has
2187  * to do too much work.
2188  *
2189  * The inactive file list should be small enough to leave most memory
2190  * to the established workingset on the scan-resistant active list,
2191  * but large enough to avoid thrashing the aggregate readahead window.
2192  *
2193  * Both inactive lists should also be large enough that each inactive
2194  * page has a chance to be referenced again before it is reclaimed.
2195  *
2196  * If that fails and refaulting is observed, the inactive list grows.
2197  *
2198  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2199  * on this LRU, maintained by the pageout code. An inactive_ratio
2200  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2201  *
2202  * total     target    max
2203  * memory    ratio     inactive
2204  * -------------------------------------
2205  *   10MB       1         5MB
2206  *  100MB       1        50MB
2207  *    1GB       3       250MB
2208  *   10GB      10       0.9GB
2209  *  100GB      31         3GB
2210  *    1TB     101        10GB
2211  *   10TB     320        32GB
2212  */
2213 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2214 				 struct mem_cgroup *memcg,
2215 				 struct scan_control *sc, bool actual_reclaim)
2216 {
2217 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2218 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2219 	enum lru_list inactive_lru = file * LRU_FILE;
2220 	unsigned long inactive, active;
2221 	unsigned long inactive_ratio;
2222 	unsigned long refaults;
2223 	unsigned long gb;
2224 
2225 	/*
2226 	 * If we don't have swap space, anonymous page deactivation
2227 	 * is pointless.
2228 	 */
2229 	if (!file && !total_swap_pages)
2230 		return false;
2231 
2232 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2233 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2234 
2235 	if (memcg)
2236 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2237 	else
2238 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2239 
2240 	/*
2241 	 * When refaults are being observed, it means a new workingset
2242 	 * is being established. Disable active list protection to get
2243 	 * rid of the stale workingset quickly.
2244 	 */
2245 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2246 		inactive_ratio = 0;
2247 	} else {
2248 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2249 		if (gb)
2250 			inactive_ratio = int_sqrt(10 * gb);
2251 		else
2252 			inactive_ratio = 1;
2253 	}
2254 
2255 	if (actual_reclaim)
2256 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2257 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2258 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2259 			inactive_ratio, file);
2260 
2261 	return inactive * inactive_ratio < active;
2262 }
2263 
2264 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2265 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2266 				 struct scan_control *sc)
2267 {
2268 	if (is_active_lru(lru)) {
2269 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2270 					 memcg, sc, true))
2271 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2272 		return 0;
2273 	}
2274 
2275 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2276 }
2277 
2278 enum scan_balance {
2279 	SCAN_EQUAL,
2280 	SCAN_FRACT,
2281 	SCAN_ANON,
2282 	SCAN_FILE,
2283 };
2284 
2285 /*
2286  * Determine how aggressively the anon and file LRU lists should be
2287  * scanned.  The relative value of each set of LRU lists is determined
2288  * by looking at the fraction of the pages scanned we did rotate back
2289  * onto the active list instead of evict.
2290  *
2291  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2292  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2293  */
2294 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2295 			   struct scan_control *sc, unsigned long *nr,
2296 			   unsigned long *lru_pages)
2297 {
2298 	int swappiness = mem_cgroup_swappiness(memcg);
2299 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2300 	u64 fraction[2];
2301 	u64 denominator = 0;	/* gcc */
2302 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2303 	unsigned long anon_prio, file_prio;
2304 	enum scan_balance scan_balance;
2305 	unsigned long anon, file;
2306 	unsigned long ap, fp;
2307 	enum lru_list lru;
2308 
2309 	/* If we have no swap space, do not bother scanning anon pages. */
2310 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2311 		scan_balance = SCAN_FILE;
2312 		goto out;
2313 	}
2314 
2315 	/*
2316 	 * Global reclaim will swap to prevent OOM even with no
2317 	 * swappiness, but memcg users want to use this knob to
2318 	 * disable swapping for individual groups completely when
2319 	 * using the memory controller's swap limit feature would be
2320 	 * too expensive.
2321 	 */
2322 	if (!global_reclaim(sc) && !swappiness) {
2323 		scan_balance = SCAN_FILE;
2324 		goto out;
2325 	}
2326 
2327 	/*
2328 	 * Do not apply any pressure balancing cleverness when the
2329 	 * system is close to OOM, scan both anon and file equally
2330 	 * (unless the swappiness setting disagrees with swapping).
2331 	 */
2332 	if (!sc->priority && swappiness) {
2333 		scan_balance = SCAN_EQUAL;
2334 		goto out;
2335 	}
2336 
2337 	/*
2338 	 * Prevent the reclaimer from falling into the cache trap: as
2339 	 * cache pages start out inactive, every cache fault will tip
2340 	 * the scan balance towards the file LRU.  And as the file LRU
2341 	 * shrinks, so does the window for rotation from references.
2342 	 * This means we have a runaway feedback loop where a tiny
2343 	 * thrashing file LRU becomes infinitely more attractive than
2344 	 * anon pages.  Try to detect this based on file LRU size.
2345 	 */
2346 	if (global_reclaim(sc)) {
2347 		unsigned long pgdatfile;
2348 		unsigned long pgdatfree;
2349 		int z;
2350 		unsigned long total_high_wmark = 0;
2351 
2352 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2353 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2354 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2355 
2356 		for (z = 0; z < MAX_NR_ZONES; z++) {
2357 			struct zone *zone = &pgdat->node_zones[z];
2358 			if (!managed_zone(zone))
2359 				continue;
2360 
2361 			total_high_wmark += high_wmark_pages(zone);
2362 		}
2363 
2364 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2365 			/*
2366 			 * Force SCAN_ANON if there are enough inactive
2367 			 * anonymous pages on the LRU in eligible zones.
2368 			 * Otherwise, the small LRU gets thrashed.
2369 			 */
2370 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2371 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2372 					>> sc->priority) {
2373 				scan_balance = SCAN_ANON;
2374 				goto out;
2375 			}
2376 		}
2377 	}
2378 
2379 	/*
2380 	 * If there is enough inactive page cache, i.e. if the size of the
2381 	 * inactive list is greater than that of the active list *and* the
2382 	 * inactive list actually has some pages to scan on this priority, we
2383 	 * do not reclaim anything from the anonymous working set right now.
2384 	 * Without the second condition we could end up never scanning an
2385 	 * lruvec even if it has plenty of old anonymous pages unless the
2386 	 * system is under heavy pressure.
2387 	 */
2388 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2389 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2390 		scan_balance = SCAN_FILE;
2391 		goto out;
2392 	}
2393 
2394 	scan_balance = SCAN_FRACT;
2395 
2396 	/*
2397 	 * With swappiness at 100, anonymous and file have the same priority.
2398 	 * This scanning priority is essentially the inverse of IO cost.
2399 	 */
2400 	anon_prio = swappiness;
2401 	file_prio = 200 - anon_prio;
2402 
2403 	/*
2404 	 * OK, so we have swap space and a fair amount of page cache
2405 	 * pages.  We use the recently rotated / recently scanned
2406 	 * ratios to determine how valuable each cache is.
2407 	 *
2408 	 * Because workloads change over time (and to avoid overflow)
2409 	 * we keep these statistics as a floating average, which ends
2410 	 * up weighing recent references more than old ones.
2411 	 *
2412 	 * anon in [0], file in [1]
2413 	 */
2414 
2415 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2416 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2417 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2418 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2419 
2420 	spin_lock_irq(&pgdat->lru_lock);
2421 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2422 		reclaim_stat->recent_scanned[0] /= 2;
2423 		reclaim_stat->recent_rotated[0] /= 2;
2424 	}
2425 
2426 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2427 		reclaim_stat->recent_scanned[1] /= 2;
2428 		reclaim_stat->recent_rotated[1] /= 2;
2429 	}
2430 
2431 	/*
2432 	 * The amount of pressure on anon vs file pages is inversely
2433 	 * proportional to the fraction of recently scanned pages on
2434 	 * each list that were recently referenced and in active use.
2435 	 */
2436 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2437 	ap /= reclaim_stat->recent_rotated[0] + 1;
2438 
2439 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2440 	fp /= reclaim_stat->recent_rotated[1] + 1;
2441 	spin_unlock_irq(&pgdat->lru_lock);
2442 
2443 	fraction[0] = ap;
2444 	fraction[1] = fp;
2445 	denominator = ap + fp + 1;
2446 out:
2447 	*lru_pages = 0;
2448 	for_each_evictable_lru(lru) {
2449 		int file = is_file_lru(lru);
2450 		unsigned long size;
2451 		unsigned long scan;
2452 
2453 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2454 		scan = size >> sc->priority;
2455 		/*
2456 		 * If the cgroup's already been deleted, make sure to
2457 		 * scrape out the remaining cache.
2458 		 */
2459 		if (!scan && !mem_cgroup_online(memcg))
2460 			scan = min(size, SWAP_CLUSTER_MAX);
2461 
2462 		switch (scan_balance) {
2463 		case SCAN_EQUAL:
2464 			/* Scan lists relative to size */
2465 			break;
2466 		case SCAN_FRACT:
2467 			/*
2468 			 * Scan types proportional to swappiness and
2469 			 * their relative recent reclaim efficiency.
2470 			 * Make sure we don't miss the last page
2471 			 * because of a round-off error.
2472 			 */
2473 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2474 						  denominator);
2475 			break;
2476 		case SCAN_FILE:
2477 		case SCAN_ANON:
2478 			/* Scan one type exclusively */
2479 			if ((scan_balance == SCAN_FILE) != file) {
2480 				size = 0;
2481 				scan = 0;
2482 			}
2483 			break;
2484 		default:
2485 			/* Look ma, no brain */
2486 			BUG();
2487 		}
2488 
2489 		*lru_pages += size;
2490 		nr[lru] = scan;
2491 	}
2492 }
2493 
2494 /*
2495  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2496  */
2497 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2498 			      struct scan_control *sc, unsigned long *lru_pages)
2499 {
2500 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2501 	unsigned long nr[NR_LRU_LISTS];
2502 	unsigned long targets[NR_LRU_LISTS];
2503 	unsigned long nr_to_scan;
2504 	enum lru_list lru;
2505 	unsigned long nr_reclaimed = 0;
2506 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2507 	struct blk_plug plug;
2508 	bool scan_adjusted;
2509 
2510 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2511 
2512 	/* Record the original scan target for proportional adjustments later */
2513 	memcpy(targets, nr, sizeof(nr));
2514 
2515 	/*
2516 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2517 	 * event that can occur when there is little memory pressure e.g.
2518 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2519 	 * when the requested number of pages are reclaimed when scanning at
2520 	 * DEF_PRIORITY on the assumption that the fact we are direct
2521 	 * reclaiming implies that kswapd is not keeping up and it is best to
2522 	 * do a batch of work at once. For memcg reclaim one check is made to
2523 	 * abort proportional reclaim if either the file or anon lru has already
2524 	 * dropped to zero at the first pass.
2525 	 */
2526 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2527 			 sc->priority == DEF_PRIORITY);
2528 
2529 	blk_start_plug(&plug);
2530 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2531 					nr[LRU_INACTIVE_FILE]) {
2532 		unsigned long nr_anon, nr_file, percentage;
2533 		unsigned long nr_scanned;
2534 
2535 		for_each_evictable_lru(lru) {
2536 			if (nr[lru]) {
2537 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2538 				nr[lru] -= nr_to_scan;
2539 
2540 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2541 							    lruvec, memcg, sc);
2542 			}
2543 		}
2544 
2545 		cond_resched();
2546 
2547 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2548 			continue;
2549 
2550 		/*
2551 		 * For kswapd and memcg, reclaim at least the number of pages
2552 		 * requested. Ensure that the anon and file LRUs are scanned
2553 		 * proportionally what was requested by get_scan_count(). We
2554 		 * stop reclaiming one LRU and reduce the amount scanning
2555 		 * proportional to the original scan target.
2556 		 */
2557 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2558 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2559 
2560 		/*
2561 		 * It's just vindictive to attack the larger once the smaller
2562 		 * has gone to zero.  And given the way we stop scanning the
2563 		 * smaller below, this makes sure that we only make one nudge
2564 		 * towards proportionality once we've got nr_to_reclaim.
2565 		 */
2566 		if (!nr_file || !nr_anon)
2567 			break;
2568 
2569 		if (nr_file > nr_anon) {
2570 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2571 						targets[LRU_ACTIVE_ANON] + 1;
2572 			lru = LRU_BASE;
2573 			percentage = nr_anon * 100 / scan_target;
2574 		} else {
2575 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2576 						targets[LRU_ACTIVE_FILE] + 1;
2577 			lru = LRU_FILE;
2578 			percentage = nr_file * 100 / scan_target;
2579 		}
2580 
2581 		/* Stop scanning the smaller of the LRU */
2582 		nr[lru] = 0;
2583 		nr[lru + LRU_ACTIVE] = 0;
2584 
2585 		/*
2586 		 * Recalculate the other LRU scan count based on its original
2587 		 * scan target and the percentage scanning already complete
2588 		 */
2589 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2590 		nr_scanned = targets[lru] - nr[lru];
2591 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2592 		nr[lru] -= min(nr[lru], nr_scanned);
2593 
2594 		lru += LRU_ACTIVE;
2595 		nr_scanned = targets[lru] - nr[lru];
2596 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2597 		nr[lru] -= min(nr[lru], nr_scanned);
2598 
2599 		scan_adjusted = true;
2600 	}
2601 	blk_finish_plug(&plug);
2602 	sc->nr_reclaimed += nr_reclaimed;
2603 
2604 	/*
2605 	 * Even if we did not try to evict anon pages at all, we want to
2606 	 * rebalance the anon lru active/inactive ratio.
2607 	 */
2608 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2609 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2610 				   sc, LRU_ACTIVE_ANON);
2611 }
2612 
2613 /* Use reclaim/compaction for costly allocs or under memory pressure */
2614 static bool in_reclaim_compaction(struct scan_control *sc)
2615 {
2616 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2617 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2618 			 sc->priority < DEF_PRIORITY - 2))
2619 		return true;
2620 
2621 	return false;
2622 }
2623 
2624 /*
2625  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2626  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2627  * true if more pages should be reclaimed such that when the page allocator
2628  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2629  * It will give up earlier than that if there is difficulty reclaiming pages.
2630  */
2631 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2632 					unsigned long nr_reclaimed,
2633 					unsigned long nr_scanned,
2634 					struct scan_control *sc)
2635 {
2636 	unsigned long pages_for_compaction;
2637 	unsigned long inactive_lru_pages;
2638 	int z;
2639 
2640 	/* If not in reclaim/compaction mode, stop */
2641 	if (!in_reclaim_compaction(sc))
2642 		return false;
2643 
2644 	/* Consider stopping depending on scan and reclaim activity */
2645 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2646 		/*
2647 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2648 		 * full LRU list has been scanned and we are still failing
2649 		 * to reclaim pages. This full LRU scan is potentially
2650 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2651 		 */
2652 		if (!nr_reclaimed && !nr_scanned)
2653 			return false;
2654 	} else {
2655 		/*
2656 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2657 		 * fail without consequence, stop if we failed to reclaim
2658 		 * any pages from the last SWAP_CLUSTER_MAX number of
2659 		 * pages that were scanned. This will return to the
2660 		 * caller faster at the risk reclaim/compaction and
2661 		 * the resulting allocation attempt fails
2662 		 */
2663 		if (!nr_reclaimed)
2664 			return false;
2665 	}
2666 
2667 	/*
2668 	 * If we have not reclaimed enough pages for compaction and the
2669 	 * inactive lists are large enough, continue reclaiming
2670 	 */
2671 	pages_for_compaction = compact_gap(sc->order);
2672 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2673 	if (get_nr_swap_pages() > 0)
2674 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2675 	if (sc->nr_reclaimed < pages_for_compaction &&
2676 			inactive_lru_pages > pages_for_compaction)
2677 		return true;
2678 
2679 	/* If compaction would go ahead or the allocation would succeed, stop */
2680 	for (z = 0; z <= sc->reclaim_idx; z++) {
2681 		struct zone *zone = &pgdat->node_zones[z];
2682 		if (!managed_zone(zone))
2683 			continue;
2684 
2685 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2686 		case COMPACT_SUCCESS:
2687 		case COMPACT_CONTINUE:
2688 			return false;
2689 		default:
2690 			/* check next zone */
2691 			;
2692 		}
2693 	}
2694 	return true;
2695 }
2696 
2697 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2698 {
2699 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2700 		(memcg && memcg_congested(pgdat, memcg));
2701 }
2702 
2703 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2704 {
2705 	struct reclaim_state *reclaim_state = current->reclaim_state;
2706 	unsigned long nr_reclaimed, nr_scanned;
2707 	bool reclaimable = false;
2708 
2709 	do {
2710 		struct mem_cgroup *root = sc->target_mem_cgroup;
2711 		struct mem_cgroup_reclaim_cookie reclaim = {
2712 			.pgdat = pgdat,
2713 			.priority = sc->priority,
2714 		};
2715 		unsigned long node_lru_pages = 0;
2716 		struct mem_cgroup *memcg;
2717 
2718 		memset(&sc->nr, 0, sizeof(sc->nr));
2719 
2720 		nr_reclaimed = sc->nr_reclaimed;
2721 		nr_scanned = sc->nr_scanned;
2722 
2723 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2724 		do {
2725 			unsigned long lru_pages;
2726 			unsigned long reclaimed;
2727 			unsigned long scanned;
2728 
2729 			switch (mem_cgroup_protected(root, memcg)) {
2730 			case MEMCG_PROT_MIN:
2731 				/*
2732 				 * Hard protection.
2733 				 * If there is no reclaimable memory, OOM.
2734 				 */
2735 				continue;
2736 			case MEMCG_PROT_LOW:
2737 				/*
2738 				 * Soft protection.
2739 				 * Respect the protection only as long as
2740 				 * there is an unprotected supply
2741 				 * of reclaimable memory from other cgroups.
2742 				 */
2743 				if (!sc->memcg_low_reclaim) {
2744 					sc->memcg_low_skipped = 1;
2745 					continue;
2746 				}
2747 				memcg_memory_event(memcg, MEMCG_LOW);
2748 				break;
2749 			case MEMCG_PROT_NONE:
2750 				break;
2751 			}
2752 
2753 			reclaimed = sc->nr_reclaimed;
2754 			scanned = sc->nr_scanned;
2755 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2756 			node_lru_pages += lru_pages;
2757 
2758 			shrink_slab(sc->gfp_mask, pgdat->node_id,
2759 				    memcg, sc->priority);
2760 
2761 			/* Record the group's reclaim efficiency */
2762 			vmpressure(sc->gfp_mask, memcg, false,
2763 				   sc->nr_scanned - scanned,
2764 				   sc->nr_reclaimed - reclaimed);
2765 
2766 			/*
2767 			 * Direct reclaim and kswapd have to scan all memory
2768 			 * cgroups to fulfill the overall scan target for the
2769 			 * node.
2770 			 *
2771 			 * Limit reclaim, on the other hand, only cares about
2772 			 * nr_to_reclaim pages to be reclaimed and it will
2773 			 * retry with decreasing priority if one round over the
2774 			 * whole hierarchy is not sufficient.
2775 			 */
2776 			if (!global_reclaim(sc) &&
2777 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2778 				mem_cgroup_iter_break(root, memcg);
2779 				break;
2780 			}
2781 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2782 
2783 		if (reclaim_state) {
2784 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2785 			reclaim_state->reclaimed_slab = 0;
2786 		}
2787 
2788 		/* Record the subtree's reclaim efficiency */
2789 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2790 			   sc->nr_scanned - nr_scanned,
2791 			   sc->nr_reclaimed - nr_reclaimed);
2792 
2793 		if (sc->nr_reclaimed - nr_reclaimed)
2794 			reclaimable = true;
2795 
2796 		if (current_is_kswapd()) {
2797 			/*
2798 			 * If reclaim is isolating dirty pages under writeback,
2799 			 * it implies that the long-lived page allocation rate
2800 			 * is exceeding the page laundering rate. Either the
2801 			 * global limits are not being effective at throttling
2802 			 * processes due to the page distribution throughout
2803 			 * zones or there is heavy usage of a slow backing
2804 			 * device. The only option is to throttle from reclaim
2805 			 * context which is not ideal as there is no guarantee
2806 			 * the dirtying process is throttled in the same way
2807 			 * balance_dirty_pages() manages.
2808 			 *
2809 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2810 			 * count the number of pages under pages flagged for
2811 			 * immediate reclaim and stall if any are encountered
2812 			 * in the nr_immediate check below.
2813 			 */
2814 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2815 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2816 
2817 			/*
2818 			 * Tag a node as congested if all the dirty pages
2819 			 * scanned were backed by a congested BDI and
2820 			 * wait_iff_congested will stall.
2821 			 */
2822 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2823 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2824 
2825 			/* Allow kswapd to start writing pages during reclaim.*/
2826 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2827 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2828 
2829 			/*
2830 			 * If kswapd scans pages marked marked for immediate
2831 			 * reclaim and under writeback (nr_immediate), it
2832 			 * implies that pages are cycling through the LRU
2833 			 * faster than they are written so also forcibly stall.
2834 			 */
2835 			if (sc->nr.immediate)
2836 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2837 		}
2838 
2839 		/*
2840 		 * Legacy memcg will stall in page writeback so avoid forcibly
2841 		 * stalling in wait_iff_congested().
2842 		 */
2843 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2844 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2845 			set_memcg_congestion(pgdat, root, true);
2846 
2847 		/*
2848 		 * Stall direct reclaim for IO completions if underlying BDIs
2849 		 * and node is congested. Allow kswapd to continue until it
2850 		 * starts encountering unqueued dirty pages or cycling through
2851 		 * the LRU too quickly.
2852 		 */
2853 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2854 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2855 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2856 
2857 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2858 					 sc->nr_scanned - nr_scanned, sc));
2859 
2860 	/*
2861 	 * Kswapd gives up on balancing particular nodes after too
2862 	 * many failures to reclaim anything from them and goes to
2863 	 * sleep. On reclaim progress, reset the failure counter. A
2864 	 * successful direct reclaim run will revive a dormant kswapd.
2865 	 */
2866 	if (reclaimable)
2867 		pgdat->kswapd_failures = 0;
2868 
2869 	return reclaimable;
2870 }
2871 
2872 /*
2873  * Returns true if compaction should go ahead for a costly-order request, or
2874  * the allocation would already succeed without compaction. Return false if we
2875  * should reclaim first.
2876  */
2877 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2878 {
2879 	unsigned long watermark;
2880 	enum compact_result suitable;
2881 
2882 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2883 	if (suitable == COMPACT_SUCCESS)
2884 		/* Allocation should succeed already. Don't reclaim. */
2885 		return true;
2886 	if (suitable == COMPACT_SKIPPED)
2887 		/* Compaction cannot yet proceed. Do reclaim. */
2888 		return false;
2889 
2890 	/*
2891 	 * Compaction is already possible, but it takes time to run and there
2892 	 * are potentially other callers using the pages just freed. So proceed
2893 	 * with reclaim to make a buffer of free pages available to give
2894 	 * compaction a reasonable chance of completing and allocating the page.
2895 	 * Note that we won't actually reclaim the whole buffer in one attempt
2896 	 * as the target watermark in should_continue_reclaim() is lower. But if
2897 	 * we are already above the high+gap watermark, don't reclaim at all.
2898 	 */
2899 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2900 
2901 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2902 }
2903 
2904 /*
2905  * This is the direct reclaim path, for page-allocating processes.  We only
2906  * try to reclaim pages from zones which will satisfy the caller's allocation
2907  * request.
2908  *
2909  * If a zone is deemed to be full of pinned pages then just give it a light
2910  * scan then give up on it.
2911  */
2912 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2913 {
2914 	struct zoneref *z;
2915 	struct zone *zone;
2916 	unsigned long nr_soft_reclaimed;
2917 	unsigned long nr_soft_scanned;
2918 	gfp_t orig_mask;
2919 	pg_data_t *last_pgdat = NULL;
2920 
2921 	/*
2922 	 * If the number of buffer_heads in the machine exceeds the maximum
2923 	 * allowed level, force direct reclaim to scan the highmem zone as
2924 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2925 	 */
2926 	orig_mask = sc->gfp_mask;
2927 	if (buffer_heads_over_limit) {
2928 		sc->gfp_mask |= __GFP_HIGHMEM;
2929 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2930 	}
2931 
2932 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2933 					sc->reclaim_idx, sc->nodemask) {
2934 		/*
2935 		 * Take care memory controller reclaiming has small influence
2936 		 * to global LRU.
2937 		 */
2938 		if (global_reclaim(sc)) {
2939 			if (!cpuset_zone_allowed(zone,
2940 						 GFP_KERNEL | __GFP_HARDWALL))
2941 				continue;
2942 
2943 			/*
2944 			 * If we already have plenty of memory free for
2945 			 * compaction in this zone, don't free any more.
2946 			 * Even though compaction is invoked for any
2947 			 * non-zero order, only frequent costly order
2948 			 * reclamation is disruptive enough to become a
2949 			 * noticeable problem, like transparent huge
2950 			 * page allocations.
2951 			 */
2952 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2953 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2954 			    compaction_ready(zone, sc)) {
2955 				sc->compaction_ready = true;
2956 				continue;
2957 			}
2958 
2959 			/*
2960 			 * Shrink each node in the zonelist once. If the
2961 			 * zonelist is ordered by zone (not the default) then a
2962 			 * node may be shrunk multiple times but in that case
2963 			 * the user prefers lower zones being preserved.
2964 			 */
2965 			if (zone->zone_pgdat == last_pgdat)
2966 				continue;
2967 
2968 			/*
2969 			 * This steals pages from memory cgroups over softlimit
2970 			 * and returns the number of reclaimed pages and
2971 			 * scanned pages. This works for global memory pressure
2972 			 * and balancing, not for a memcg's limit.
2973 			 */
2974 			nr_soft_scanned = 0;
2975 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2976 						sc->order, sc->gfp_mask,
2977 						&nr_soft_scanned);
2978 			sc->nr_reclaimed += nr_soft_reclaimed;
2979 			sc->nr_scanned += nr_soft_scanned;
2980 			/* need some check for avoid more shrink_zone() */
2981 		}
2982 
2983 		/* See comment about same check for global reclaim above */
2984 		if (zone->zone_pgdat == last_pgdat)
2985 			continue;
2986 		last_pgdat = zone->zone_pgdat;
2987 		shrink_node(zone->zone_pgdat, sc);
2988 	}
2989 
2990 	/*
2991 	 * Restore to original mask to avoid the impact on the caller if we
2992 	 * promoted it to __GFP_HIGHMEM.
2993 	 */
2994 	sc->gfp_mask = orig_mask;
2995 }
2996 
2997 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2998 {
2999 	struct mem_cgroup *memcg;
3000 
3001 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3002 	do {
3003 		unsigned long refaults;
3004 		struct lruvec *lruvec;
3005 
3006 		if (memcg)
3007 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
3008 		else
3009 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
3010 
3011 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3012 		lruvec->refaults = refaults;
3013 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3014 }
3015 
3016 /*
3017  * This is the main entry point to direct page reclaim.
3018  *
3019  * If a full scan of the inactive list fails to free enough memory then we
3020  * are "out of memory" and something needs to be killed.
3021  *
3022  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3023  * high - the zone may be full of dirty or under-writeback pages, which this
3024  * caller can't do much about.  We kick the writeback threads and take explicit
3025  * naps in the hope that some of these pages can be written.  But if the
3026  * allocating task holds filesystem locks which prevent writeout this might not
3027  * work, and the allocation attempt will fail.
3028  *
3029  * returns:	0, if no pages reclaimed
3030  * 		else, the number of pages reclaimed
3031  */
3032 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3033 					  struct scan_control *sc)
3034 {
3035 	int initial_priority = sc->priority;
3036 	pg_data_t *last_pgdat;
3037 	struct zoneref *z;
3038 	struct zone *zone;
3039 retry:
3040 	delayacct_freepages_start();
3041 
3042 	if (global_reclaim(sc))
3043 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3044 
3045 	do {
3046 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3047 				sc->priority);
3048 		sc->nr_scanned = 0;
3049 		shrink_zones(zonelist, sc);
3050 
3051 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3052 			break;
3053 
3054 		if (sc->compaction_ready)
3055 			break;
3056 
3057 		/*
3058 		 * If we're getting trouble reclaiming, start doing
3059 		 * writepage even in laptop mode.
3060 		 */
3061 		if (sc->priority < DEF_PRIORITY - 2)
3062 			sc->may_writepage = 1;
3063 	} while (--sc->priority >= 0);
3064 
3065 	last_pgdat = NULL;
3066 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3067 					sc->nodemask) {
3068 		if (zone->zone_pgdat == last_pgdat)
3069 			continue;
3070 		last_pgdat = zone->zone_pgdat;
3071 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3072 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3073 	}
3074 
3075 	delayacct_freepages_end();
3076 
3077 	if (sc->nr_reclaimed)
3078 		return sc->nr_reclaimed;
3079 
3080 	/* Aborted reclaim to try compaction? don't OOM, then */
3081 	if (sc->compaction_ready)
3082 		return 1;
3083 
3084 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3085 	if (sc->memcg_low_skipped) {
3086 		sc->priority = initial_priority;
3087 		sc->memcg_low_reclaim = 1;
3088 		sc->memcg_low_skipped = 0;
3089 		goto retry;
3090 	}
3091 
3092 	return 0;
3093 }
3094 
3095 static bool allow_direct_reclaim(pg_data_t *pgdat)
3096 {
3097 	struct zone *zone;
3098 	unsigned long pfmemalloc_reserve = 0;
3099 	unsigned long free_pages = 0;
3100 	int i;
3101 	bool wmark_ok;
3102 
3103 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3104 		return true;
3105 
3106 	for (i = 0; i <= ZONE_NORMAL; i++) {
3107 		zone = &pgdat->node_zones[i];
3108 		if (!managed_zone(zone))
3109 			continue;
3110 
3111 		if (!zone_reclaimable_pages(zone))
3112 			continue;
3113 
3114 		pfmemalloc_reserve += min_wmark_pages(zone);
3115 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3116 	}
3117 
3118 	/* If there are no reserves (unexpected config) then do not throttle */
3119 	if (!pfmemalloc_reserve)
3120 		return true;
3121 
3122 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3123 
3124 	/* kswapd must be awake if processes are being throttled */
3125 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3126 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3127 						(enum zone_type)ZONE_NORMAL);
3128 		wake_up_interruptible(&pgdat->kswapd_wait);
3129 	}
3130 
3131 	return wmark_ok;
3132 }
3133 
3134 /*
3135  * Throttle direct reclaimers if backing storage is backed by the network
3136  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3137  * depleted. kswapd will continue to make progress and wake the processes
3138  * when the low watermark is reached.
3139  *
3140  * Returns true if a fatal signal was delivered during throttling. If this
3141  * happens, the page allocator should not consider triggering the OOM killer.
3142  */
3143 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3144 					nodemask_t *nodemask)
3145 {
3146 	struct zoneref *z;
3147 	struct zone *zone;
3148 	pg_data_t *pgdat = NULL;
3149 
3150 	/*
3151 	 * Kernel threads should not be throttled as they may be indirectly
3152 	 * responsible for cleaning pages necessary for reclaim to make forward
3153 	 * progress. kjournald for example may enter direct reclaim while
3154 	 * committing a transaction where throttling it could forcing other
3155 	 * processes to block on log_wait_commit().
3156 	 */
3157 	if (current->flags & PF_KTHREAD)
3158 		goto out;
3159 
3160 	/*
3161 	 * If a fatal signal is pending, this process should not throttle.
3162 	 * It should return quickly so it can exit and free its memory
3163 	 */
3164 	if (fatal_signal_pending(current))
3165 		goto out;
3166 
3167 	/*
3168 	 * Check if the pfmemalloc reserves are ok by finding the first node
3169 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3170 	 * GFP_KERNEL will be required for allocating network buffers when
3171 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3172 	 *
3173 	 * Throttling is based on the first usable node and throttled processes
3174 	 * wait on a queue until kswapd makes progress and wakes them. There
3175 	 * is an affinity then between processes waking up and where reclaim
3176 	 * progress has been made assuming the process wakes on the same node.
3177 	 * More importantly, processes running on remote nodes will not compete
3178 	 * for remote pfmemalloc reserves and processes on different nodes
3179 	 * should make reasonable progress.
3180 	 */
3181 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3182 					gfp_zone(gfp_mask), nodemask) {
3183 		if (zone_idx(zone) > ZONE_NORMAL)
3184 			continue;
3185 
3186 		/* Throttle based on the first usable node */
3187 		pgdat = zone->zone_pgdat;
3188 		if (allow_direct_reclaim(pgdat))
3189 			goto out;
3190 		break;
3191 	}
3192 
3193 	/* If no zone was usable by the allocation flags then do not throttle */
3194 	if (!pgdat)
3195 		goto out;
3196 
3197 	/* Account for the throttling */
3198 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3199 
3200 	/*
3201 	 * If the caller cannot enter the filesystem, it's possible that it
3202 	 * is due to the caller holding an FS lock or performing a journal
3203 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3204 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3205 	 * blocked waiting on the same lock. Instead, throttle for up to a
3206 	 * second before continuing.
3207 	 */
3208 	if (!(gfp_mask & __GFP_FS)) {
3209 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3210 			allow_direct_reclaim(pgdat), HZ);
3211 
3212 		goto check_pending;
3213 	}
3214 
3215 	/* Throttle until kswapd wakes the process */
3216 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3217 		allow_direct_reclaim(pgdat));
3218 
3219 check_pending:
3220 	if (fatal_signal_pending(current))
3221 		return true;
3222 
3223 out:
3224 	return false;
3225 }
3226 
3227 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3228 				gfp_t gfp_mask, nodemask_t *nodemask)
3229 {
3230 	unsigned long nr_reclaimed;
3231 	struct scan_control sc = {
3232 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3233 		.gfp_mask = current_gfp_context(gfp_mask),
3234 		.reclaim_idx = gfp_zone(gfp_mask),
3235 		.order = order,
3236 		.nodemask = nodemask,
3237 		.priority = DEF_PRIORITY,
3238 		.may_writepage = !laptop_mode,
3239 		.may_unmap = 1,
3240 		.may_swap = 1,
3241 	};
3242 
3243 	/*
3244 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3245 	 * Confirm they are large enough for max values.
3246 	 */
3247 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3248 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3249 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3250 
3251 	/*
3252 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3253 	 * 1 is returned so that the page allocator does not OOM kill at this
3254 	 * point.
3255 	 */
3256 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3257 		return 1;
3258 
3259 	trace_mm_vmscan_direct_reclaim_begin(order,
3260 				sc.may_writepage,
3261 				sc.gfp_mask,
3262 				sc.reclaim_idx);
3263 
3264 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3265 
3266 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3267 
3268 	return nr_reclaimed;
3269 }
3270 
3271 #ifdef CONFIG_MEMCG
3272 
3273 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3274 						gfp_t gfp_mask, bool noswap,
3275 						pg_data_t *pgdat,
3276 						unsigned long *nr_scanned)
3277 {
3278 	struct scan_control sc = {
3279 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3280 		.target_mem_cgroup = memcg,
3281 		.may_writepage = !laptop_mode,
3282 		.may_unmap = 1,
3283 		.reclaim_idx = MAX_NR_ZONES - 1,
3284 		.may_swap = !noswap,
3285 	};
3286 	unsigned long lru_pages;
3287 
3288 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3289 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3290 
3291 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3292 						      sc.may_writepage,
3293 						      sc.gfp_mask,
3294 						      sc.reclaim_idx);
3295 
3296 	/*
3297 	 * NOTE: Although we can get the priority field, using it
3298 	 * here is not a good idea, since it limits the pages we can scan.
3299 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3300 	 * will pick up pages from other mem cgroup's as well. We hack
3301 	 * the priority and make it zero.
3302 	 */
3303 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3304 
3305 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3306 
3307 	*nr_scanned = sc.nr_scanned;
3308 	return sc.nr_reclaimed;
3309 }
3310 
3311 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3312 					   unsigned long nr_pages,
3313 					   gfp_t gfp_mask,
3314 					   bool may_swap)
3315 {
3316 	struct zonelist *zonelist;
3317 	unsigned long nr_reclaimed;
3318 	unsigned long pflags;
3319 	int nid;
3320 	unsigned int noreclaim_flag;
3321 	struct scan_control sc = {
3322 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3323 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3324 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3325 		.reclaim_idx = MAX_NR_ZONES - 1,
3326 		.target_mem_cgroup = memcg,
3327 		.priority = DEF_PRIORITY,
3328 		.may_writepage = !laptop_mode,
3329 		.may_unmap = 1,
3330 		.may_swap = may_swap,
3331 	};
3332 
3333 	/*
3334 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3335 	 * take care of from where we get pages. So the node where we start the
3336 	 * scan does not need to be the current node.
3337 	 */
3338 	nid = mem_cgroup_select_victim_node(memcg);
3339 
3340 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3341 
3342 	trace_mm_vmscan_memcg_reclaim_begin(0,
3343 					    sc.may_writepage,
3344 					    sc.gfp_mask,
3345 					    sc.reclaim_idx);
3346 
3347 	psi_memstall_enter(&pflags);
3348 	noreclaim_flag = memalloc_noreclaim_save();
3349 
3350 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3351 
3352 	memalloc_noreclaim_restore(noreclaim_flag);
3353 	psi_memstall_leave(&pflags);
3354 
3355 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3356 
3357 	return nr_reclaimed;
3358 }
3359 #endif
3360 
3361 static void age_active_anon(struct pglist_data *pgdat,
3362 				struct scan_control *sc)
3363 {
3364 	struct mem_cgroup *memcg;
3365 
3366 	if (!total_swap_pages)
3367 		return;
3368 
3369 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3370 	do {
3371 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3372 
3373 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3374 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3375 					   sc, LRU_ACTIVE_ANON);
3376 
3377 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3378 	} while (memcg);
3379 }
3380 
3381 /*
3382  * Returns true if there is an eligible zone balanced for the request order
3383  * and classzone_idx
3384  */
3385 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3386 {
3387 	int i;
3388 	unsigned long mark = -1;
3389 	struct zone *zone;
3390 
3391 	for (i = 0; i <= classzone_idx; i++) {
3392 		zone = pgdat->node_zones + i;
3393 
3394 		if (!managed_zone(zone))
3395 			continue;
3396 
3397 		mark = high_wmark_pages(zone);
3398 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3399 			return true;
3400 	}
3401 
3402 	/*
3403 	 * If a node has no populated zone within classzone_idx, it does not
3404 	 * need balancing by definition. This can happen if a zone-restricted
3405 	 * allocation tries to wake a remote kswapd.
3406 	 */
3407 	if (mark == -1)
3408 		return true;
3409 
3410 	return false;
3411 }
3412 
3413 /* Clear pgdat state for congested, dirty or under writeback. */
3414 static void clear_pgdat_congested(pg_data_t *pgdat)
3415 {
3416 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3417 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3418 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3419 }
3420 
3421 /*
3422  * Prepare kswapd for sleeping. This verifies that there are no processes
3423  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3424  *
3425  * Returns true if kswapd is ready to sleep
3426  */
3427 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3428 {
3429 	/*
3430 	 * The throttled processes are normally woken up in balance_pgdat() as
3431 	 * soon as allow_direct_reclaim() is true. But there is a potential
3432 	 * race between when kswapd checks the watermarks and a process gets
3433 	 * throttled. There is also a potential race if processes get
3434 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3435 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3436 	 * the wake up checks. If kswapd is going to sleep, no process should
3437 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3438 	 * the wake up is premature, processes will wake kswapd and get
3439 	 * throttled again. The difference from wake ups in balance_pgdat() is
3440 	 * that here we are under prepare_to_wait().
3441 	 */
3442 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3443 		wake_up_all(&pgdat->pfmemalloc_wait);
3444 
3445 	/* Hopeless node, leave it to direct reclaim */
3446 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3447 		return true;
3448 
3449 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3450 		clear_pgdat_congested(pgdat);
3451 		return true;
3452 	}
3453 
3454 	return false;
3455 }
3456 
3457 /*
3458  * kswapd shrinks a node of pages that are at or below the highest usable
3459  * zone that is currently unbalanced.
3460  *
3461  * Returns true if kswapd scanned at least the requested number of pages to
3462  * reclaim or if the lack of progress was due to pages under writeback.
3463  * This is used to determine if the scanning priority needs to be raised.
3464  */
3465 static bool kswapd_shrink_node(pg_data_t *pgdat,
3466 			       struct scan_control *sc)
3467 {
3468 	struct zone *zone;
3469 	int z;
3470 
3471 	/* Reclaim a number of pages proportional to the number of zones */
3472 	sc->nr_to_reclaim = 0;
3473 	for (z = 0; z <= sc->reclaim_idx; z++) {
3474 		zone = pgdat->node_zones + z;
3475 		if (!managed_zone(zone))
3476 			continue;
3477 
3478 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3479 	}
3480 
3481 	/*
3482 	 * Historically care was taken to put equal pressure on all zones but
3483 	 * now pressure is applied based on node LRU order.
3484 	 */
3485 	shrink_node(pgdat, sc);
3486 
3487 	/*
3488 	 * Fragmentation may mean that the system cannot be rebalanced for
3489 	 * high-order allocations. If twice the allocation size has been
3490 	 * reclaimed then recheck watermarks only at order-0 to prevent
3491 	 * excessive reclaim. Assume that a process requested a high-order
3492 	 * can direct reclaim/compact.
3493 	 */
3494 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3495 		sc->order = 0;
3496 
3497 	return sc->nr_scanned >= sc->nr_to_reclaim;
3498 }
3499 
3500 /*
3501  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3502  * that are eligible for use by the caller until at least one zone is
3503  * balanced.
3504  *
3505  * Returns the order kswapd finished reclaiming at.
3506  *
3507  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3508  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3509  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3510  * or lower is eligible for reclaim until at least one usable zone is
3511  * balanced.
3512  */
3513 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3514 {
3515 	int i;
3516 	unsigned long nr_soft_reclaimed;
3517 	unsigned long nr_soft_scanned;
3518 	unsigned long pflags;
3519 	struct zone *zone;
3520 	struct scan_control sc = {
3521 		.gfp_mask = GFP_KERNEL,
3522 		.order = order,
3523 		.priority = DEF_PRIORITY,
3524 		.may_writepage = !laptop_mode,
3525 		.may_unmap = 1,
3526 		.may_swap = 1,
3527 	};
3528 
3529 	psi_memstall_enter(&pflags);
3530 	__fs_reclaim_acquire();
3531 
3532 	count_vm_event(PAGEOUTRUN);
3533 
3534 	do {
3535 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3536 		bool raise_priority = true;
3537 		bool ret;
3538 
3539 		sc.reclaim_idx = classzone_idx;
3540 
3541 		/*
3542 		 * If the number of buffer_heads exceeds the maximum allowed
3543 		 * then consider reclaiming from all zones. This has a dual
3544 		 * purpose -- on 64-bit systems it is expected that
3545 		 * buffer_heads are stripped during active rotation. On 32-bit
3546 		 * systems, highmem pages can pin lowmem memory and shrinking
3547 		 * buffers can relieve lowmem pressure. Reclaim may still not
3548 		 * go ahead if all eligible zones for the original allocation
3549 		 * request are balanced to avoid excessive reclaim from kswapd.
3550 		 */
3551 		if (buffer_heads_over_limit) {
3552 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3553 				zone = pgdat->node_zones + i;
3554 				if (!managed_zone(zone))
3555 					continue;
3556 
3557 				sc.reclaim_idx = i;
3558 				break;
3559 			}
3560 		}
3561 
3562 		/*
3563 		 * Only reclaim if there are no eligible zones. Note that
3564 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3565 		 * have adjusted it.
3566 		 */
3567 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3568 			goto out;
3569 
3570 		/*
3571 		 * Do some background aging of the anon list, to give
3572 		 * pages a chance to be referenced before reclaiming. All
3573 		 * pages are rotated regardless of classzone as this is
3574 		 * about consistent aging.
3575 		 */
3576 		age_active_anon(pgdat, &sc);
3577 
3578 		/*
3579 		 * If we're getting trouble reclaiming, start doing writepage
3580 		 * even in laptop mode.
3581 		 */
3582 		if (sc.priority < DEF_PRIORITY - 2)
3583 			sc.may_writepage = 1;
3584 
3585 		/* Call soft limit reclaim before calling shrink_node. */
3586 		sc.nr_scanned = 0;
3587 		nr_soft_scanned = 0;
3588 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3589 						sc.gfp_mask, &nr_soft_scanned);
3590 		sc.nr_reclaimed += nr_soft_reclaimed;
3591 
3592 		/*
3593 		 * There should be no need to raise the scanning priority if
3594 		 * enough pages are already being scanned that that high
3595 		 * watermark would be met at 100% efficiency.
3596 		 */
3597 		if (kswapd_shrink_node(pgdat, &sc))
3598 			raise_priority = false;
3599 
3600 		/*
3601 		 * If the low watermark is met there is no need for processes
3602 		 * to be throttled on pfmemalloc_wait as they should not be
3603 		 * able to safely make forward progress. Wake them
3604 		 */
3605 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3606 				allow_direct_reclaim(pgdat))
3607 			wake_up_all(&pgdat->pfmemalloc_wait);
3608 
3609 		/* Check if kswapd should be suspending */
3610 		__fs_reclaim_release();
3611 		ret = try_to_freeze();
3612 		__fs_reclaim_acquire();
3613 		if (ret || kthread_should_stop())
3614 			break;
3615 
3616 		/*
3617 		 * Raise priority if scanning rate is too low or there was no
3618 		 * progress in reclaiming pages
3619 		 */
3620 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3621 		if (raise_priority || !nr_reclaimed)
3622 			sc.priority--;
3623 	} while (sc.priority >= 1);
3624 
3625 	if (!sc.nr_reclaimed)
3626 		pgdat->kswapd_failures++;
3627 
3628 out:
3629 	snapshot_refaults(NULL, pgdat);
3630 	__fs_reclaim_release();
3631 	psi_memstall_leave(&pflags);
3632 	/*
3633 	 * Return the order kswapd stopped reclaiming at as
3634 	 * prepare_kswapd_sleep() takes it into account. If another caller
3635 	 * entered the allocator slow path while kswapd was awake, order will
3636 	 * remain at the higher level.
3637 	 */
3638 	return sc.order;
3639 }
3640 
3641 /*
3642  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3643  * allocation request woke kswapd for. When kswapd has not woken recently,
3644  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3645  * given classzone and returns it or the highest classzone index kswapd
3646  * was recently woke for.
3647  */
3648 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3649 					   enum zone_type classzone_idx)
3650 {
3651 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3652 		return classzone_idx;
3653 
3654 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3655 }
3656 
3657 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3658 				unsigned int classzone_idx)
3659 {
3660 	long remaining = 0;
3661 	DEFINE_WAIT(wait);
3662 
3663 	if (freezing(current) || kthread_should_stop())
3664 		return;
3665 
3666 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3667 
3668 	/*
3669 	 * Try to sleep for a short interval. Note that kcompactd will only be
3670 	 * woken if it is possible to sleep for a short interval. This is
3671 	 * deliberate on the assumption that if reclaim cannot keep an
3672 	 * eligible zone balanced that it's also unlikely that compaction will
3673 	 * succeed.
3674 	 */
3675 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3676 		/*
3677 		 * Compaction records what page blocks it recently failed to
3678 		 * isolate pages from and skips them in the future scanning.
3679 		 * When kswapd is going to sleep, it is reasonable to assume
3680 		 * that pages and compaction may succeed so reset the cache.
3681 		 */
3682 		reset_isolation_suitable(pgdat);
3683 
3684 		/*
3685 		 * We have freed the memory, now we should compact it to make
3686 		 * allocation of the requested order possible.
3687 		 */
3688 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3689 
3690 		remaining = schedule_timeout(HZ/10);
3691 
3692 		/*
3693 		 * If woken prematurely then reset kswapd_classzone_idx and
3694 		 * order. The values will either be from a wakeup request or
3695 		 * the previous request that slept prematurely.
3696 		 */
3697 		if (remaining) {
3698 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3699 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3700 		}
3701 
3702 		finish_wait(&pgdat->kswapd_wait, &wait);
3703 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3704 	}
3705 
3706 	/*
3707 	 * After a short sleep, check if it was a premature sleep. If not, then
3708 	 * go fully to sleep until explicitly woken up.
3709 	 */
3710 	if (!remaining &&
3711 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3712 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3713 
3714 		/*
3715 		 * vmstat counters are not perfectly accurate and the estimated
3716 		 * value for counters such as NR_FREE_PAGES can deviate from the
3717 		 * true value by nr_online_cpus * threshold. To avoid the zone
3718 		 * watermarks being breached while under pressure, we reduce the
3719 		 * per-cpu vmstat threshold while kswapd is awake and restore
3720 		 * them before going back to sleep.
3721 		 */
3722 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3723 
3724 		if (!kthread_should_stop())
3725 			schedule();
3726 
3727 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3728 	} else {
3729 		if (remaining)
3730 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3731 		else
3732 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3733 	}
3734 	finish_wait(&pgdat->kswapd_wait, &wait);
3735 }
3736 
3737 /*
3738  * The background pageout daemon, started as a kernel thread
3739  * from the init process.
3740  *
3741  * This basically trickles out pages so that we have _some_
3742  * free memory available even if there is no other activity
3743  * that frees anything up. This is needed for things like routing
3744  * etc, where we otherwise might have all activity going on in
3745  * asynchronous contexts that cannot page things out.
3746  *
3747  * If there are applications that are active memory-allocators
3748  * (most normal use), this basically shouldn't matter.
3749  */
3750 static int kswapd(void *p)
3751 {
3752 	unsigned int alloc_order, reclaim_order;
3753 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3754 	pg_data_t *pgdat = (pg_data_t*)p;
3755 	struct task_struct *tsk = current;
3756 
3757 	struct reclaim_state reclaim_state = {
3758 		.reclaimed_slab = 0,
3759 	};
3760 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3761 
3762 	if (!cpumask_empty(cpumask))
3763 		set_cpus_allowed_ptr(tsk, cpumask);
3764 	current->reclaim_state = &reclaim_state;
3765 
3766 	/*
3767 	 * Tell the memory management that we're a "memory allocator",
3768 	 * and that if we need more memory we should get access to it
3769 	 * regardless (see "__alloc_pages()"). "kswapd" should
3770 	 * never get caught in the normal page freeing logic.
3771 	 *
3772 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3773 	 * you need a small amount of memory in order to be able to
3774 	 * page out something else, and this flag essentially protects
3775 	 * us from recursively trying to free more memory as we're
3776 	 * trying to free the first piece of memory in the first place).
3777 	 */
3778 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3779 	set_freezable();
3780 
3781 	pgdat->kswapd_order = 0;
3782 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3783 	for ( ; ; ) {
3784 		bool ret;
3785 
3786 		alloc_order = reclaim_order = pgdat->kswapd_order;
3787 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3788 
3789 kswapd_try_sleep:
3790 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3791 					classzone_idx);
3792 
3793 		/* Read the new order and classzone_idx */
3794 		alloc_order = reclaim_order = pgdat->kswapd_order;
3795 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3796 		pgdat->kswapd_order = 0;
3797 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3798 
3799 		ret = try_to_freeze();
3800 		if (kthread_should_stop())
3801 			break;
3802 
3803 		/*
3804 		 * We can speed up thawing tasks if we don't call balance_pgdat
3805 		 * after returning from the refrigerator
3806 		 */
3807 		if (ret)
3808 			continue;
3809 
3810 		/*
3811 		 * Reclaim begins at the requested order but if a high-order
3812 		 * reclaim fails then kswapd falls back to reclaiming for
3813 		 * order-0. If that happens, kswapd will consider sleeping
3814 		 * for the order it finished reclaiming at (reclaim_order)
3815 		 * but kcompactd is woken to compact for the original
3816 		 * request (alloc_order).
3817 		 */
3818 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3819 						alloc_order);
3820 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3821 		if (reclaim_order < alloc_order)
3822 			goto kswapd_try_sleep;
3823 	}
3824 
3825 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3826 	current->reclaim_state = NULL;
3827 
3828 	return 0;
3829 }
3830 
3831 /*
3832  * A zone is low on free memory or too fragmented for high-order memory.  If
3833  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3834  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3835  * has failed or is not needed, still wake up kcompactd if only compaction is
3836  * needed.
3837  */
3838 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3839 		   enum zone_type classzone_idx)
3840 {
3841 	pg_data_t *pgdat;
3842 
3843 	if (!managed_zone(zone))
3844 		return;
3845 
3846 	if (!cpuset_zone_allowed(zone, gfp_flags))
3847 		return;
3848 	pgdat = zone->zone_pgdat;
3849 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3850 							   classzone_idx);
3851 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3852 	if (!waitqueue_active(&pgdat->kswapd_wait))
3853 		return;
3854 
3855 	/* Hopeless node, leave it to direct reclaim if possible */
3856 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3857 	    pgdat_balanced(pgdat, order, classzone_idx)) {
3858 		/*
3859 		 * There may be plenty of free memory available, but it's too
3860 		 * fragmented for high-order allocations.  Wake up kcompactd
3861 		 * and rely on compaction_suitable() to determine if it's
3862 		 * needed.  If it fails, it will defer subsequent attempts to
3863 		 * ratelimit its work.
3864 		 */
3865 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3866 			wakeup_kcompactd(pgdat, order, classzone_idx);
3867 		return;
3868 	}
3869 
3870 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3871 				      gfp_flags);
3872 	wake_up_interruptible(&pgdat->kswapd_wait);
3873 }
3874 
3875 #ifdef CONFIG_HIBERNATION
3876 /*
3877  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3878  * freed pages.
3879  *
3880  * Rather than trying to age LRUs the aim is to preserve the overall
3881  * LRU order by reclaiming preferentially
3882  * inactive > active > active referenced > active mapped
3883  */
3884 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3885 {
3886 	struct reclaim_state reclaim_state;
3887 	struct scan_control sc = {
3888 		.nr_to_reclaim = nr_to_reclaim,
3889 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3890 		.reclaim_idx = MAX_NR_ZONES - 1,
3891 		.priority = DEF_PRIORITY,
3892 		.may_writepage = 1,
3893 		.may_unmap = 1,
3894 		.may_swap = 1,
3895 		.hibernation_mode = 1,
3896 	};
3897 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3898 	struct task_struct *p = current;
3899 	unsigned long nr_reclaimed;
3900 	unsigned int noreclaim_flag;
3901 
3902 	fs_reclaim_acquire(sc.gfp_mask);
3903 	noreclaim_flag = memalloc_noreclaim_save();
3904 	reclaim_state.reclaimed_slab = 0;
3905 	p->reclaim_state = &reclaim_state;
3906 
3907 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3908 
3909 	p->reclaim_state = NULL;
3910 	memalloc_noreclaim_restore(noreclaim_flag);
3911 	fs_reclaim_release(sc.gfp_mask);
3912 
3913 	return nr_reclaimed;
3914 }
3915 #endif /* CONFIG_HIBERNATION */
3916 
3917 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3918    not required for correctness.  So if the last cpu in a node goes
3919    away, we get changed to run anywhere: as the first one comes back,
3920    restore their cpu bindings. */
3921 static int kswapd_cpu_online(unsigned int cpu)
3922 {
3923 	int nid;
3924 
3925 	for_each_node_state(nid, N_MEMORY) {
3926 		pg_data_t *pgdat = NODE_DATA(nid);
3927 		const struct cpumask *mask;
3928 
3929 		mask = cpumask_of_node(pgdat->node_id);
3930 
3931 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3932 			/* One of our CPUs online: restore mask */
3933 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3934 	}
3935 	return 0;
3936 }
3937 
3938 /*
3939  * This kswapd start function will be called by init and node-hot-add.
3940  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3941  */
3942 int kswapd_run(int nid)
3943 {
3944 	pg_data_t *pgdat = NODE_DATA(nid);
3945 	int ret = 0;
3946 
3947 	if (pgdat->kswapd)
3948 		return 0;
3949 
3950 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3951 	if (IS_ERR(pgdat->kswapd)) {
3952 		/* failure at boot is fatal */
3953 		BUG_ON(system_state < SYSTEM_RUNNING);
3954 		pr_err("Failed to start kswapd on node %d\n", nid);
3955 		ret = PTR_ERR(pgdat->kswapd);
3956 		pgdat->kswapd = NULL;
3957 	}
3958 	return ret;
3959 }
3960 
3961 /*
3962  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3963  * hold mem_hotplug_begin/end().
3964  */
3965 void kswapd_stop(int nid)
3966 {
3967 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3968 
3969 	if (kswapd) {
3970 		kthread_stop(kswapd);
3971 		NODE_DATA(nid)->kswapd = NULL;
3972 	}
3973 }
3974 
3975 static int __init kswapd_init(void)
3976 {
3977 	int nid, ret;
3978 
3979 	swap_setup();
3980 	for_each_node_state(nid, N_MEMORY)
3981  		kswapd_run(nid);
3982 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3983 					"mm/vmscan:online", kswapd_cpu_online,
3984 					NULL);
3985 	WARN_ON(ret < 0);
3986 	return 0;
3987 }
3988 
3989 module_init(kswapd_init)
3990 
3991 #ifdef CONFIG_NUMA
3992 /*
3993  * Node reclaim mode
3994  *
3995  * If non-zero call node_reclaim when the number of free pages falls below
3996  * the watermarks.
3997  */
3998 int node_reclaim_mode __read_mostly;
3999 
4000 #define RECLAIM_OFF 0
4001 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4002 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4003 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4004 
4005 /*
4006  * Priority for NODE_RECLAIM. This determines the fraction of pages
4007  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4008  * a zone.
4009  */
4010 #define NODE_RECLAIM_PRIORITY 4
4011 
4012 /*
4013  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4014  * occur.
4015  */
4016 int sysctl_min_unmapped_ratio = 1;
4017 
4018 /*
4019  * If the number of slab pages in a zone grows beyond this percentage then
4020  * slab reclaim needs to occur.
4021  */
4022 int sysctl_min_slab_ratio = 5;
4023 
4024 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4025 {
4026 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4027 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4028 		node_page_state(pgdat, NR_ACTIVE_FILE);
4029 
4030 	/*
4031 	 * It's possible for there to be more file mapped pages than
4032 	 * accounted for by the pages on the file LRU lists because
4033 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4034 	 */
4035 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4036 }
4037 
4038 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4039 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4040 {
4041 	unsigned long nr_pagecache_reclaimable;
4042 	unsigned long delta = 0;
4043 
4044 	/*
4045 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4046 	 * potentially reclaimable. Otherwise, we have to worry about
4047 	 * pages like swapcache and node_unmapped_file_pages() provides
4048 	 * a better estimate
4049 	 */
4050 	if (node_reclaim_mode & RECLAIM_UNMAP)
4051 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4052 	else
4053 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4054 
4055 	/* If we can't clean pages, remove dirty pages from consideration */
4056 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4057 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4058 
4059 	/* Watch for any possible underflows due to delta */
4060 	if (unlikely(delta > nr_pagecache_reclaimable))
4061 		delta = nr_pagecache_reclaimable;
4062 
4063 	return nr_pagecache_reclaimable - delta;
4064 }
4065 
4066 /*
4067  * Try to free up some pages from this node through reclaim.
4068  */
4069 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4070 {
4071 	/* Minimum pages needed in order to stay on node */
4072 	const unsigned long nr_pages = 1 << order;
4073 	struct task_struct *p = current;
4074 	struct reclaim_state reclaim_state;
4075 	unsigned int noreclaim_flag;
4076 	struct scan_control sc = {
4077 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4078 		.gfp_mask = current_gfp_context(gfp_mask),
4079 		.order = order,
4080 		.priority = NODE_RECLAIM_PRIORITY,
4081 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4082 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4083 		.may_swap = 1,
4084 		.reclaim_idx = gfp_zone(gfp_mask),
4085 	};
4086 
4087 	cond_resched();
4088 	fs_reclaim_acquire(sc.gfp_mask);
4089 	/*
4090 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4091 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4092 	 * and RECLAIM_UNMAP.
4093 	 */
4094 	noreclaim_flag = memalloc_noreclaim_save();
4095 	p->flags |= PF_SWAPWRITE;
4096 	reclaim_state.reclaimed_slab = 0;
4097 	p->reclaim_state = &reclaim_state;
4098 
4099 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4100 		/*
4101 		 * Free memory by calling shrink node with increasing
4102 		 * priorities until we have enough memory freed.
4103 		 */
4104 		do {
4105 			shrink_node(pgdat, &sc);
4106 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4107 	}
4108 
4109 	p->reclaim_state = NULL;
4110 	current->flags &= ~PF_SWAPWRITE;
4111 	memalloc_noreclaim_restore(noreclaim_flag);
4112 	fs_reclaim_release(sc.gfp_mask);
4113 	return sc.nr_reclaimed >= nr_pages;
4114 }
4115 
4116 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4117 {
4118 	int ret;
4119 
4120 	/*
4121 	 * Node reclaim reclaims unmapped file backed pages and
4122 	 * slab pages if we are over the defined limits.
4123 	 *
4124 	 * A small portion of unmapped file backed pages is needed for
4125 	 * file I/O otherwise pages read by file I/O will be immediately
4126 	 * thrown out if the node is overallocated. So we do not reclaim
4127 	 * if less than a specified percentage of the node is used by
4128 	 * unmapped file backed pages.
4129 	 */
4130 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4131 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4132 		return NODE_RECLAIM_FULL;
4133 
4134 	/*
4135 	 * Do not scan if the allocation should not be delayed.
4136 	 */
4137 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4138 		return NODE_RECLAIM_NOSCAN;
4139 
4140 	/*
4141 	 * Only run node reclaim on the local node or on nodes that do not
4142 	 * have associated processors. This will favor the local processor
4143 	 * over remote processors and spread off node memory allocations
4144 	 * as wide as possible.
4145 	 */
4146 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4147 		return NODE_RECLAIM_NOSCAN;
4148 
4149 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4150 		return NODE_RECLAIM_NOSCAN;
4151 
4152 	ret = __node_reclaim(pgdat, gfp_mask, order);
4153 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4154 
4155 	if (!ret)
4156 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4157 
4158 	return ret;
4159 }
4160 #endif
4161 
4162 /*
4163  * page_evictable - test whether a page is evictable
4164  * @page: the page to test
4165  *
4166  * Test whether page is evictable--i.e., should be placed on active/inactive
4167  * lists vs unevictable list.
4168  *
4169  * Reasons page might not be evictable:
4170  * (1) page's mapping marked unevictable
4171  * (2) page is part of an mlocked VMA
4172  *
4173  */
4174 int page_evictable(struct page *page)
4175 {
4176 	int ret;
4177 
4178 	/* Prevent address_space of inode and swap cache from being freed */
4179 	rcu_read_lock();
4180 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4181 	rcu_read_unlock();
4182 	return ret;
4183 }
4184 
4185 #ifdef CONFIG_SHMEM
4186 /**
4187  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4188  * @pages:	array of pages to check
4189  * @nr_pages:	number of pages to check
4190  *
4191  * Checks pages for evictability and moves them to the appropriate lru list.
4192  *
4193  * This function is only used for SysV IPC SHM_UNLOCK.
4194  */
4195 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4196 {
4197 	struct lruvec *lruvec;
4198 	struct pglist_data *pgdat = NULL;
4199 	int pgscanned = 0;
4200 	int pgrescued = 0;
4201 	int i;
4202 
4203 	for (i = 0; i < nr_pages; i++) {
4204 		struct page *page = pages[i];
4205 		struct pglist_data *pagepgdat = page_pgdat(page);
4206 
4207 		pgscanned++;
4208 		if (pagepgdat != pgdat) {
4209 			if (pgdat)
4210 				spin_unlock_irq(&pgdat->lru_lock);
4211 			pgdat = pagepgdat;
4212 			spin_lock_irq(&pgdat->lru_lock);
4213 		}
4214 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4215 
4216 		if (!PageLRU(page) || !PageUnevictable(page))
4217 			continue;
4218 
4219 		if (page_evictable(page)) {
4220 			enum lru_list lru = page_lru_base_type(page);
4221 
4222 			VM_BUG_ON_PAGE(PageActive(page), page);
4223 			ClearPageUnevictable(page);
4224 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4225 			add_page_to_lru_list(page, lruvec, lru);
4226 			pgrescued++;
4227 		}
4228 	}
4229 
4230 	if (pgdat) {
4231 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4232 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4233 		spin_unlock_irq(&pgdat->lru_lock);
4234 	}
4235 }
4236 #endif /* CONFIG_SHMEM */
4237