1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* e.g. boosted watermark reclaim leaves slabs alone */ 92 unsigned int may_shrinkslab:1; 93 94 /* 95 * Cgroups are not reclaimed below their configured memory.low, 96 * unless we threaten to OOM. If any cgroups are skipped due to 97 * memory.low and nothing was reclaimed, go back for memory.low. 98 */ 99 unsigned int memcg_low_reclaim:1; 100 unsigned int memcg_low_skipped:1; 101 102 unsigned int hibernation_mode:1; 103 104 /* One of the zones is ready for compaction */ 105 unsigned int compaction_ready:1; 106 107 /* Allocation order */ 108 s8 order; 109 110 /* Scan (total_size >> priority) pages at once */ 111 s8 priority; 112 113 /* The highest zone to isolate pages for reclaim from */ 114 s8 reclaim_idx; 115 116 /* This context's GFP mask */ 117 gfp_t gfp_mask; 118 119 /* Incremented by the number of inactive pages that were scanned */ 120 unsigned long nr_scanned; 121 122 /* Number of pages freed so far during a call to shrink_zones() */ 123 unsigned long nr_reclaimed; 124 125 struct { 126 unsigned int dirty; 127 unsigned int unqueued_dirty; 128 unsigned int congested; 129 unsigned int writeback; 130 unsigned int immediate; 131 unsigned int file_taken; 132 unsigned int taken; 133 } nr; 134 135 /* for recording the reclaimed slab by now */ 136 struct reclaim_state reclaim_state; 137 }; 138 139 #ifdef ARCH_HAS_PREFETCH 140 #define prefetch_prev_lru_page(_page, _base, _field) \ 141 do { \ 142 if ((_page)->lru.prev != _base) { \ 143 struct page *prev; \ 144 \ 145 prev = lru_to_page(&(_page->lru)); \ 146 prefetch(&prev->_field); \ 147 } \ 148 } while (0) 149 #else 150 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 151 #endif 152 153 #ifdef ARCH_HAS_PREFETCHW 154 #define prefetchw_prev_lru_page(_page, _base, _field) \ 155 do { \ 156 if ((_page)->lru.prev != _base) { \ 157 struct page *prev; \ 158 \ 159 prev = lru_to_page(&(_page->lru)); \ 160 prefetchw(&prev->_field); \ 161 } \ 162 } while (0) 163 #else 164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 165 #endif 166 167 /* 168 * From 0 .. 100. Higher means more swappy. 169 */ 170 int vm_swappiness = 60; 171 /* 172 * The total number of pages which are beyond the high watermark within all 173 * zones. 174 */ 175 unsigned long vm_total_pages; 176 177 static LIST_HEAD(shrinker_list); 178 static DECLARE_RWSEM(shrinker_rwsem); 179 180 #ifdef CONFIG_MEMCG_KMEM 181 182 /* 183 * We allow subsystems to populate their shrinker-related 184 * LRU lists before register_shrinker_prepared() is called 185 * for the shrinker, since we don't want to impose 186 * restrictions on their internal registration order. 187 * In this case shrink_slab_memcg() may find corresponding 188 * bit is set in the shrinkers map. 189 * 190 * This value is used by the function to detect registering 191 * shrinkers and to skip do_shrink_slab() calls for them. 192 */ 193 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 194 195 static DEFINE_IDR(shrinker_idr); 196 static int shrinker_nr_max; 197 198 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 199 { 200 int id, ret = -ENOMEM; 201 202 down_write(&shrinker_rwsem); 203 /* This may call shrinker, so it must use down_read_trylock() */ 204 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 205 if (id < 0) 206 goto unlock; 207 208 if (id >= shrinker_nr_max) { 209 if (memcg_expand_shrinker_maps(id)) { 210 idr_remove(&shrinker_idr, id); 211 goto unlock; 212 } 213 214 shrinker_nr_max = id + 1; 215 } 216 shrinker->id = id; 217 ret = 0; 218 unlock: 219 up_write(&shrinker_rwsem); 220 return ret; 221 } 222 223 static void unregister_memcg_shrinker(struct shrinker *shrinker) 224 { 225 int id = shrinker->id; 226 227 BUG_ON(id < 0); 228 229 down_write(&shrinker_rwsem); 230 idr_remove(&shrinker_idr, id); 231 up_write(&shrinker_rwsem); 232 } 233 #else /* CONFIG_MEMCG_KMEM */ 234 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 235 { 236 return 0; 237 } 238 239 static void unregister_memcg_shrinker(struct shrinker *shrinker) 240 { 241 } 242 #endif /* CONFIG_MEMCG_KMEM */ 243 244 static void set_task_reclaim_state(struct task_struct *task, 245 struct reclaim_state *rs) 246 { 247 /* Check for an overwrite */ 248 WARN_ON_ONCE(rs && task->reclaim_state); 249 250 /* Check for the nulling of an already-nulled member */ 251 WARN_ON_ONCE(!rs && !task->reclaim_state); 252 253 task->reclaim_state = rs; 254 } 255 256 #ifdef CONFIG_MEMCG 257 static bool global_reclaim(struct scan_control *sc) 258 { 259 return !sc->target_mem_cgroup; 260 } 261 262 /** 263 * sane_reclaim - is the usual dirty throttling mechanism operational? 264 * @sc: scan_control in question 265 * 266 * The normal page dirty throttling mechanism in balance_dirty_pages() is 267 * completely broken with the legacy memcg and direct stalling in 268 * shrink_page_list() is used for throttling instead, which lacks all the 269 * niceties such as fairness, adaptive pausing, bandwidth proportional 270 * allocation and configurability. 271 * 272 * This function tests whether the vmscan currently in progress can assume 273 * that the normal dirty throttling mechanism is operational. 274 */ 275 static bool sane_reclaim(struct scan_control *sc) 276 { 277 struct mem_cgroup *memcg = sc->target_mem_cgroup; 278 279 if (!memcg) 280 return true; 281 #ifdef CONFIG_CGROUP_WRITEBACK 282 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 283 return true; 284 #endif 285 return false; 286 } 287 288 static void set_memcg_congestion(pg_data_t *pgdat, 289 struct mem_cgroup *memcg, 290 bool congested) 291 { 292 struct mem_cgroup_per_node *mn; 293 294 if (!memcg) 295 return; 296 297 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 298 WRITE_ONCE(mn->congested, congested); 299 } 300 301 static bool memcg_congested(pg_data_t *pgdat, 302 struct mem_cgroup *memcg) 303 { 304 struct mem_cgroup_per_node *mn; 305 306 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 307 return READ_ONCE(mn->congested); 308 309 } 310 #else 311 static bool global_reclaim(struct scan_control *sc) 312 { 313 return true; 314 } 315 316 static bool sane_reclaim(struct scan_control *sc) 317 { 318 return true; 319 } 320 321 static inline void set_memcg_congestion(struct pglist_data *pgdat, 322 struct mem_cgroup *memcg, bool congested) 323 { 324 } 325 326 static inline bool memcg_congested(struct pglist_data *pgdat, 327 struct mem_cgroup *memcg) 328 { 329 return false; 330 331 } 332 #endif 333 334 /* 335 * This misses isolated pages which are not accounted for to save counters. 336 * As the data only determines if reclaim or compaction continues, it is 337 * not expected that isolated pages will be a dominating factor. 338 */ 339 unsigned long zone_reclaimable_pages(struct zone *zone) 340 { 341 unsigned long nr; 342 343 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 345 if (get_nr_swap_pages() > 0) 346 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 347 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 348 349 return nr; 350 } 351 352 /** 353 * lruvec_lru_size - Returns the number of pages on the given LRU list. 354 * @lruvec: lru vector 355 * @lru: lru to use 356 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 357 */ 358 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 359 { 360 unsigned long lru_size; 361 int zid; 362 363 if (!mem_cgroup_disabled()) 364 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 365 else 366 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 367 368 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 369 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 370 unsigned long size; 371 372 if (!managed_zone(zone)) 373 continue; 374 375 if (!mem_cgroup_disabled()) 376 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 377 else 378 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 379 NR_ZONE_LRU_BASE + lru); 380 lru_size -= min(size, lru_size); 381 } 382 383 return lru_size; 384 385 } 386 387 /* 388 * Add a shrinker callback to be called from the vm. 389 */ 390 int prealloc_shrinker(struct shrinker *shrinker) 391 { 392 unsigned int size = sizeof(*shrinker->nr_deferred); 393 394 if (shrinker->flags & SHRINKER_NUMA_AWARE) 395 size *= nr_node_ids; 396 397 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 398 if (!shrinker->nr_deferred) 399 return -ENOMEM; 400 401 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 402 if (prealloc_memcg_shrinker(shrinker)) 403 goto free_deferred; 404 } 405 406 return 0; 407 408 free_deferred: 409 kfree(shrinker->nr_deferred); 410 shrinker->nr_deferred = NULL; 411 return -ENOMEM; 412 } 413 414 void free_prealloced_shrinker(struct shrinker *shrinker) 415 { 416 if (!shrinker->nr_deferred) 417 return; 418 419 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 420 unregister_memcg_shrinker(shrinker); 421 422 kfree(shrinker->nr_deferred); 423 shrinker->nr_deferred = NULL; 424 } 425 426 void register_shrinker_prepared(struct shrinker *shrinker) 427 { 428 down_write(&shrinker_rwsem); 429 list_add_tail(&shrinker->list, &shrinker_list); 430 #ifdef CONFIG_MEMCG_KMEM 431 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 432 idr_replace(&shrinker_idr, shrinker, shrinker->id); 433 #endif 434 up_write(&shrinker_rwsem); 435 } 436 437 int register_shrinker(struct shrinker *shrinker) 438 { 439 int err = prealloc_shrinker(shrinker); 440 441 if (err) 442 return err; 443 register_shrinker_prepared(shrinker); 444 return 0; 445 } 446 EXPORT_SYMBOL(register_shrinker); 447 448 /* 449 * Remove one 450 */ 451 void unregister_shrinker(struct shrinker *shrinker) 452 { 453 if (!shrinker->nr_deferred) 454 return; 455 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 456 unregister_memcg_shrinker(shrinker); 457 down_write(&shrinker_rwsem); 458 list_del(&shrinker->list); 459 up_write(&shrinker_rwsem); 460 kfree(shrinker->nr_deferred); 461 shrinker->nr_deferred = NULL; 462 } 463 EXPORT_SYMBOL(unregister_shrinker); 464 465 #define SHRINK_BATCH 128 466 467 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 468 struct shrinker *shrinker, int priority) 469 { 470 unsigned long freed = 0; 471 unsigned long long delta; 472 long total_scan; 473 long freeable; 474 long nr; 475 long new_nr; 476 int nid = shrinkctl->nid; 477 long batch_size = shrinker->batch ? shrinker->batch 478 : SHRINK_BATCH; 479 long scanned = 0, next_deferred; 480 481 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 482 nid = 0; 483 484 freeable = shrinker->count_objects(shrinker, shrinkctl); 485 if (freeable == 0 || freeable == SHRINK_EMPTY) 486 return freeable; 487 488 /* 489 * copy the current shrinker scan count into a local variable 490 * and zero it so that other concurrent shrinker invocations 491 * don't also do this scanning work. 492 */ 493 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 494 495 total_scan = nr; 496 if (shrinker->seeks) { 497 delta = freeable >> priority; 498 delta *= 4; 499 do_div(delta, shrinker->seeks); 500 } else { 501 /* 502 * These objects don't require any IO to create. Trim 503 * them aggressively under memory pressure to keep 504 * them from causing refetches in the IO caches. 505 */ 506 delta = freeable / 2; 507 } 508 509 total_scan += delta; 510 if (total_scan < 0) { 511 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 512 shrinker->scan_objects, total_scan); 513 total_scan = freeable; 514 next_deferred = nr; 515 } else 516 next_deferred = total_scan; 517 518 /* 519 * We need to avoid excessive windup on filesystem shrinkers 520 * due to large numbers of GFP_NOFS allocations causing the 521 * shrinkers to return -1 all the time. This results in a large 522 * nr being built up so when a shrink that can do some work 523 * comes along it empties the entire cache due to nr >>> 524 * freeable. This is bad for sustaining a working set in 525 * memory. 526 * 527 * Hence only allow the shrinker to scan the entire cache when 528 * a large delta change is calculated directly. 529 */ 530 if (delta < freeable / 4) 531 total_scan = min(total_scan, freeable / 2); 532 533 /* 534 * Avoid risking looping forever due to too large nr value: 535 * never try to free more than twice the estimate number of 536 * freeable entries. 537 */ 538 if (total_scan > freeable * 2) 539 total_scan = freeable * 2; 540 541 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 542 freeable, delta, total_scan, priority); 543 544 /* 545 * Normally, we should not scan less than batch_size objects in one 546 * pass to avoid too frequent shrinker calls, but if the slab has less 547 * than batch_size objects in total and we are really tight on memory, 548 * we will try to reclaim all available objects, otherwise we can end 549 * up failing allocations although there are plenty of reclaimable 550 * objects spread over several slabs with usage less than the 551 * batch_size. 552 * 553 * We detect the "tight on memory" situations by looking at the total 554 * number of objects we want to scan (total_scan). If it is greater 555 * than the total number of objects on slab (freeable), we must be 556 * scanning at high prio and therefore should try to reclaim as much as 557 * possible. 558 */ 559 while (total_scan >= batch_size || 560 total_scan >= freeable) { 561 unsigned long ret; 562 unsigned long nr_to_scan = min(batch_size, total_scan); 563 564 shrinkctl->nr_to_scan = nr_to_scan; 565 shrinkctl->nr_scanned = nr_to_scan; 566 ret = shrinker->scan_objects(shrinker, shrinkctl); 567 if (ret == SHRINK_STOP) 568 break; 569 freed += ret; 570 571 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 572 total_scan -= shrinkctl->nr_scanned; 573 scanned += shrinkctl->nr_scanned; 574 575 cond_resched(); 576 } 577 578 if (next_deferred >= scanned) 579 next_deferred -= scanned; 580 else 581 next_deferred = 0; 582 /* 583 * move the unused scan count back into the shrinker in a 584 * manner that handles concurrent updates. If we exhausted the 585 * scan, there is no need to do an update. 586 */ 587 if (next_deferred > 0) 588 new_nr = atomic_long_add_return(next_deferred, 589 &shrinker->nr_deferred[nid]); 590 else 591 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 592 593 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 594 return freed; 595 } 596 597 #ifdef CONFIG_MEMCG_KMEM 598 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 599 struct mem_cgroup *memcg, int priority) 600 { 601 struct memcg_shrinker_map *map; 602 unsigned long ret, freed = 0; 603 int i; 604 605 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 606 return 0; 607 608 if (!down_read_trylock(&shrinker_rwsem)) 609 return 0; 610 611 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 612 true); 613 if (unlikely(!map)) 614 goto unlock; 615 616 for_each_set_bit(i, map->map, shrinker_nr_max) { 617 struct shrink_control sc = { 618 .gfp_mask = gfp_mask, 619 .nid = nid, 620 .memcg = memcg, 621 }; 622 struct shrinker *shrinker; 623 624 shrinker = idr_find(&shrinker_idr, i); 625 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 626 if (!shrinker) 627 clear_bit(i, map->map); 628 continue; 629 } 630 631 ret = do_shrink_slab(&sc, shrinker, priority); 632 if (ret == SHRINK_EMPTY) { 633 clear_bit(i, map->map); 634 /* 635 * After the shrinker reported that it had no objects to 636 * free, but before we cleared the corresponding bit in 637 * the memcg shrinker map, a new object might have been 638 * added. To make sure, we have the bit set in this 639 * case, we invoke the shrinker one more time and reset 640 * the bit if it reports that it is not empty anymore. 641 * The memory barrier here pairs with the barrier in 642 * memcg_set_shrinker_bit(): 643 * 644 * list_lru_add() shrink_slab_memcg() 645 * list_add_tail() clear_bit() 646 * <MB> <MB> 647 * set_bit() do_shrink_slab() 648 */ 649 smp_mb__after_atomic(); 650 ret = do_shrink_slab(&sc, shrinker, priority); 651 if (ret == SHRINK_EMPTY) 652 ret = 0; 653 else 654 memcg_set_shrinker_bit(memcg, nid, i); 655 } 656 freed += ret; 657 658 if (rwsem_is_contended(&shrinker_rwsem)) { 659 freed = freed ? : 1; 660 break; 661 } 662 } 663 unlock: 664 up_read(&shrinker_rwsem); 665 return freed; 666 } 667 #else /* CONFIG_MEMCG_KMEM */ 668 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 669 struct mem_cgroup *memcg, int priority) 670 { 671 return 0; 672 } 673 #endif /* CONFIG_MEMCG_KMEM */ 674 675 /** 676 * shrink_slab - shrink slab caches 677 * @gfp_mask: allocation context 678 * @nid: node whose slab caches to target 679 * @memcg: memory cgroup whose slab caches to target 680 * @priority: the reclaim priority 681 * 682 * Call the shrink functions to age shrinkable caches. 683 * 684 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 685 * unaware shrinkers will receive a node id of 0 instead. 686 * 687 * @memcg specifies the memory cgroup to target. Unaware shrinkers 688 * are called only if it is the root cgroup. 689 * 690 * @priority is sc->priority, we take the number of objects and >> by priority 691 * in order to get the scan target. 692 * 693 * Returns the number of reclaimed slab objects. 694 */ 695 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 696 struct mem_cgroup *memcg, 697 int priority) 698 { 699 unsigned long ret, freed = 0; 700 struct shrinker *shrinker; 701 702 if (!mem_cgroup_is_root(memcg)) 703 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 704 705 if (!down_read_trylock(&shrinker_rwsem)) 706 goto out; 707 708 list_for_each_entry(shrinker, &shrinker_list, list) { 709 struct shrink_control sc = { 710 .gfp_mask = gfp_mask, 711 .nid = nid, 712 .memcg = memcg, 713 }; 714 715 ret = do_shrink_slab(&sc, shrinker, priority); 716 if (ret == SHRINK_EMPTY) 717 ret = 0; 718 freed += ret; 719 /* 720 * Bail out if someone want to register a new shrinker to 721 * prevent the regsitration from being stalled for long periods 722 * by parallel ongoing shrinking. 723 */ 724 if (rwsem_is_contended(&shrinker_rwsem)) { 725 freed = freed ? : 1; 726 break; 727 } 728 } 729 730 up_read(&shrinker_rwsem); 731 out: 732 cond_resched(); 733 return freed; 734 } 735 736 void drop_slab_node(int nid) 737 { 738 unsigned long freed; 739 740 do { 741 struct mem_cgroup *memcg = NULL; 742 743 freed = 0; 744 memcg = mem_cgroup_iter(NULL, NULL, NULL); 745 do { 746 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 747 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 748 } while (freed > 10); 749 } 750 751 void drop_slab(void) 752 { 753 int nid; 754 755 for_each_online_node(nid) 756 drop_slab_node(nid); 757 } 758 759 static inline int is_page_cache_freeable(struct page *page) 760 { 761 /* 762 * A freeable page cache page is referenced only by the caller 763 * that isolated the page, the page cache and optional buffer 764 * heads at page->private. 765 */ 766 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 767 HPAGE_PMD_NR : 1; 768 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 769 } 770 771 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 772 { 773 if (current->flags & PF_SWAPWRITE) 774 return 1; 775 if (!inode_write_congested(inode)) 776 return 1; 777 if (inode_to_bdi(inode) == current->backing_dev_info) 778 return 1; 779 return 0; 780 } 781 782 /* 783 * We detected a synchronous write error writing a page out. Probably 784 * -ENOSPC. We need to propagate that into the address_space for a subsequent 785 * fsync(), msync() or close(). 786 * 787 * The tricky part is that after writepage we cannot touch the mapping: nothing 788 * prevents it from being freed up. But we have a ref on the page and once 789 * that page is locked, the mapping is pinned. 790 * 791 * We're allowed to run sleeping lock_page() here because we know the caller has 792 * __GFP_FS. 793 */ 794 static void handle_write_error(struct address_space *mapping, 795 struct page *page, int error) 796 { 797 lock_page(page); 798 if (page_mapping(page) == mapping) 799 mapping_set_error(mapping, error); 800 unlock_page(page); 801 } 802 803 /* possible outcome of pageout() */ 804 typedef enum { 805 /* failed to write page out, page is locked */ 806 PAGE_KEEP, 807 /* move page to the active list, page is locked */ 808 PAGE_ACTIVATE, 809 /* page has been sent to the disk successfully, page is unlocked */ 810 PAGE_SUCCESS, 811 /* page is clean and locked */ 812 PAGE_CLEAN, 813 } pageout_t; 814 815 /* 816 * pageout is called by shrink_page_list() for each dirty page. 817 * Calls ->writepage(). 818 */ 819 static pageout_t pageout(struct page *page, struct address_space *mapping, 820 struct scan_control *sc) 821 { 822 /* 823 * If the page is dirty, only perform writeback if that write 824 * will be non-blocking. To prevent this allocation from being 825 * stalled by pagecache activity. But note that there may be 826 * stalls if we need to run get_block(). We could test 827 * PagePrivate for that. 828 * 829 * If this process is currently in __generic_file_write_iter() against 830 * this page's queue, we can perform writeback even if that 831 * will block. 832 * 833 * If the page is swapcache, write it back even if that would 834 * block, for some throttling. This happens by accident, because 835 * swap_backing_dev_info is bust: it doesn't reflect the 836 * congestion state of the swapdevs. Easy to fix, if needed. 837 */ 838 if (!is_page_cache_freeable(page)) 839 return PAGE_KEEP; 840 if (!mapping) { 841 /* 842 * Some data journaling orphaned pages can have 843 * page->mapping == NULL while being dirty with clean buffers. 844 */ 845 if (page_has_private(page)) { 846 if (try_to_free_buffers(page)) { 847 ClearPageDirty(page); 848 pr_info("%s: orphaned page\n", __func__); 849 return PAGE_CLEAN; 850 } 851 } 852 return PAGE_KEEP; 853 } 854 if (mapping->a_ops->writepage == NULL) 855 return PAGE_ACTIVATE; 856 if (!may_write_to_inode(mapping->host, sc)) 857 return PAGE_KEEP; 858 859 if (clear_page_dirty_for_io(page)) { 860 int res; 861 struct writeback_control wbc = { 862 .sync_mode = WB_SYNC_NONE, 863 .nr_to_write = SWAP_CLUSTER_MAX, 864 .range_start = 0, 865 .range_end = LLONG_MAX, 866 .for_reclaim = 1, 867 }; 868 869 SetPageReclaim(page); 870 res = mapping->a_ops->writepage(page, &wbc); 871 if (res < 0) 872 handle_write_error(mapping, page, res); 873 if (res == AOP_WRITEPAGE_ACTIVATE) { 874 ClearPageReclaim(page); 875 return PAGE_ACTIVATE; 876 } 877 878 if (!PageWriteback(page)) { 879 /* synchronous write or broken a_ops? */ 880 ClearPageReclaim(page); 881 } 882 trace_mm_vmscan_writepage(page); 883 inc_node_page_state(page, NR_VMSCAN_WRITE); 884 return PAGE_SUCCESS; 885 } 886 887 return PAGE_CLEAN; 888 } 889 890 /* 891 * Same as remove_mapping, but if the page is removed from the mapping, it 892 * gets returned with a refcount of 0. 893 */ 894 static int __remove_mapping(struct address_space *mapping, struct page *page, 895 bool reclaimed) 896 { 897 unsigned long flags; 898 int refcount; 899 900 BUG_ON(!PageLocked(page)); 901 BUG_ON(mapping != page_mapping(page)); 902 903 xa_lock_irqsave(&mapping->i_pages, flags); 904 /* 905 * The non racy check for a busy page. 906 * 907 * Must be careful with the order of the tests. When someone has 908 * a ref to the page, it may be possible that they dirty it then 909 * drop the reference. So if PageDirty is tested before page_count 910 * here, then the following race may occur: 911 * 912 * get_user_pages(&page); 913 * [user mapping goes away] 914 * write_to(page); 915 * !PageDirty(page) [good] 916 * SetPageDirty(page); 917 * put_page(page); 918 * !page_count(page) [good, discard it] 919 * 920 * [oops, our write_to data is lost] 921 * 922 * Reversing the order of the tests ensures such a situation cannot 923 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 924 * load is not satisfied before that of page->_refcount. 925 * 926 * Note that if SetPageDirty is always performed via set_page_dirty, 927 * and thus under the i_pages lock, then this ordering is not required. 928 */ 929 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 930 refcount = 1 + HPAGE_PMD_NR; 931 else 932 refcount = 2; 933 if (!page_ref_freeze(page, refcount)) 934 goto cannot_free; 935 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 936 if (unlikely(PageDirty(page))) { 937 page_ref_unfreeze(page, refcount); 938 goto cannot_free; 939 } 940 941 if (PageSwapCache(page)) { 942 swp_entry_t swap = { .val = page_private(page) }; 943 mem_cgroup_swapout(page, swap); 944 __delete_from_swap_cache(page, swap); 945 xa_unlock_irqrestore(&mapping->i_pages, flags); 946 put_swap_page(page, swap); 947 } else { 948 void (*freepage)(struct page *); 949 void *shadow = NULL; 950 951 freepage = mapping->a_ops->freepage; 952 /* 953 * Remember a shadow entry for reclaimed file cache in 954 * order to detect refaults, thus thrashing, later on. 955 * 956 * But don't store shadows in an address space that is 957 * already exiting. This is not just an optizimation, 958 * inode reclaim needs to empty out the radix tree or 959 * the nodes are lost. Don't plant shadows behind its 960 * back. 961 * 962 * We also don't store shadows for DAX mappings because the 963 * only page cache pages found in these are zero pages 964 * covering holes, and because we don't want to mix DAX 965 * exceptional entries and shadow exceptional entries in the 966 * same address_space. 967 */ 968 if (reclaimed && page_is_file_cache(page) && 969 !mapping_exiting(mapping) && !dax_mapping(mapping)) 970 shadow = workingset_eviction(page); 971 __delete_from_page_cache(page, shadow); 972 xa_unlock_irqrestore(&mapping->i_pages, flags); 973 974 if (freepage != NULL) 975 freepage(page); 976 } 977 978 return 1; 979 980 cannot_free: 981 xa_unlock_irqrestore(&mapping->i_pages, flags); 982 return 0; 983 } 984 985 /* 986 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 987 * someone else has a ref on the page, abort and return 0. If it was 988 * successfully detached, return 1. Assumes the caller has a single ref on 989 * this page. 990 */ 991 int remove_mapping(struct address_space *mapping, struct page *page) 992 { 993 if (__remove_mapping(mapping, page, false)) { 994 /* 995 * Unfreezing the refcount with 1 rather than 2 effectively 996 * drops the pagecache ref for us without requiring another 997 * atomic operation. 998 */ 999 page_ref_unfreeze(page, 1); 1000 return 1; 1001 } 1002 return 0; 1003 } 1004 1005 /** 1006 * putback_lru_page - put previously isolated page onto appropriate LRU list 1007 * @page: page to be put back to appropriate lru list 1008 * 1009 * Add previously isolated @page to appropriate LRU list. 1010 * Page may still be unevictable for other reasons. 1011 * 1012 * lru_lock must not be held, interrupts must be enabled. 1013 */ 1014 void putback_lru_page(struct page *page) 1015 { 1016 lru_cache_add(page); 1017 put_page(page); /* drop ref from isolate */ 1018 } 1019 1020 enum page_references { 1021 PAGEREF_RECLAIM, 1022 PAGEREF_RECLAIM_CLEAN, 1023 PAGEREF_KEEP, 1024 PAGEREF_ACTIVATE, 1025 }; 1026 1027 static enum page_references page_check_references(struct page *page, 1028 struct scan_control *sc) 1029 { 1030 int referenced_ptes, referenced_page; 1031 unsigned long vm_flags; 1032 1033 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1034 &vm_flags); 1035 referenced_page = TestClearPageReferenced(page); 1036 1037 /* 1038 * Mlock lost the isolation race with us. Let try_to_unmap() 1039 * move the page to the unevictable list. 1040 */ 1041 if (vm_flags & VM_LOCKED) 1042 return PAGEREF_RECLAIM; 1043 1044 if (referenced_ptes) { 1045 if (PageSwapBacked(page)) 1046 return PAGEREF_ACTIVATE; 1047 /* 1048 * All mapped pages start out with page table 1049 * references from the instantiating fault, so we need 1050 * to look twice if a mapped file page is used more 1051 * than once. 1052 * 1053 * Mark it and spare it for another trip around the 1054 * inactive list. Another page table reference will 1055 * lead to its activation. 1056 * 1057 * Note: the mark is set for activated pages as well 1058 * so that recently deactivated but used pages are 1059 * quickly recovered. 1060 */ 1061 SetPageReferenced(page); 1062 1063 if (referenced_page || referenced_ptes > 1) 1064 return PAGEREF_ACTIVATE; 1065 1066 /* 1067 * Activate file-backed executable pages after first usage. 1068 */ 1069 if (vm_flags & VM_EXEC) 1070 return PAGEREF_ACTIVATE; 1071 1072 return PAGEREF_KEEP; 1073 } 1074 1075 /* Reclaim if clean, defer dirty pages to writeback */ 1076 if (referenced_page && !PageSwapBacked(page)) 1077 return PAGEREF_RECLAIM_CLEAN; 1078 1079 return PAGEREF_RECLAIM; 1080 } 1081 1082 /* Check if a page is dirty or under writeback */ 1083 static void page_check_dirty_writeback(struct page *page, 1084 bool *dirty, bool *writeback) 1085 { 1086 struct address_space *mapping; 1087 1088 /* 1089 * Anonymous pages are not handled by flushers and must be written 1090 * from reclaim context. Do not stall reclaim based on them 1091 */ 1092 if (!page_is_file_cache(page) || 1093 (PageAnon(page) && !PageSwapBacked(page))) { 1094 *dirty = false; 1095 *writeback = false; 1096 return; 1097 } 1098 1099 /* By default assume that the page flags are accurate */ 1100 *dirty = PageDirty(page); 1101 *writeback = PageWriteback(page); 1102 1103 /* Verify dirty/writeback state if the filesystem supports it */ 1104 if (!page_has_private(page)) 1105 return; 1106 1107 mapping = page_mapping(page); 1108 if (mapping && mapping->a_ops->is_dirty_writeback) 1109 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1110 } 1111 1112 /* 1113 * shrink_page_list() returns the number of reclaimed pages 1114 */ 1115 static unsigned long shrink_page_list(struct list_head *page_list, 1116 struct pglist_data *pgdat, 1117 struct scan_control *sc, 1118 enum ttu_flags ttu_flags, 1119 struct reclaim_stat *stat, 1120 bool force_reclaim) 1121 { 1122 LIST_HEAD(ret_pages); 1123 LIST_HEAD(free_pages); 1124 unsigned nr_reclaimed = 0; 1125 unsigned pgactivate = 0; 1126 1127 memset(stat, 0, sizeof(*stat)); 1128 cond_resched(); 1129 1130 while (!list_empty(page_list)) { 1131 struct address_space *mapping; 1132 struct page *page; 1133 int may_enter_fs; 1134 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1135 bool dirty, writeback; 1136 unsigned int nr_pages; 1137 1138 cond_resched(); 1139 1140 page = lru_to_page(page_list); 1141 list_del(&page->lru); 1142 1143 if (!trylock_page(page)) 1144 goto keep; 1145 1146 VM_BUG_ON_PAGE(PageActive(page), page); 1147 1148 nr_pages = 1 << compound_order(page); 1149 1150 /* Account the number of base pages even though THP */ 1151 sc->nr_scanned += nr_pages; 1152 1153 if (unlikely(!page_evictable(page))) 1154 goto activate_locked; 1155 1156 if (!sc->may_unmap && page_mapped(page)) 1157 goto keep_locked; 1158 1159 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1160 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1161 1162 /* 1163 * The number of dirty pages determines if a node is marked 1164 * reclaim_congested which affects wait_iff_congested. kswapd 1165 * will stall and start writing pages if the tail of the LRU 1166 * is all dirty unqueued pages. 1167 */ 1168 page_check_dirty_writeback(page, &dirty, &writeback); 1169 if (dirty || writeback) 1170 stat->nr_dirty++; 1171 1172 if (dirty && !writeback) 1173 stat->nr_unqueued_dirty++; 1174 1175 /* 1176 * Treat this page as congested if the underlying BDI is or if 1177 * pages are cycling through the LRU so quickly that the 1178 * pages marked for immediate reclaim are making it to the 1179 * end of the LRU a second time. 1180 */ 1181 mapping = page_mapping(page); 1182 if (((dirty || writeback) && mapping && 1183 inode_write_congested(mapping->host)) || 1184 (writeback && PageReclaim(page))) 1185 stat->nr_congested++; 1186 1187 /* 1188 * If a page at the tail of the LRU is under writeback, there 1189 * are three cases to consider. 1190 * 1191 * 1) If reclaim is encountering an excessive number of pages 1192 * under writeback and this page is both under writeback and 1193 * PageReclaim then it indicates that pages are being queued 1194 * for IO but are being recycled through the LRU before the 1195 * IO can complete. Waiting on the page itself risks an 1196 * indefinite stall if it is impossible to writeback the 1197 * page due to IO error or disconnected storage so instead 1198 * note that the LRU is being scanned too quickly and the 1199 * caller can stall after page list has been processed. 1200 * 1201 * 2) Global or new memcg reclaim encounters a page that is 1202 * not marked for immediate reclaim, or the caller does not 1203 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1204 * not to fs). In this case mark the page for immediate 1205 * reclaim and continue scanning. 1206 * 1207 * Require may_enter_fs because we would wait on fs, which 1208 * may not have submitted IO yet. And the loop driver might 1209 * enter reclaim, and deadlock if it waits on a page for 1210 * which it is needed to do the write (loop masks off 1211 * __GFP_IO|__GFP_FS for this reason); but more thought 1212 * would probably show more reasons. 1213 * 1214 * 3) Legacy memcg encounters a page that is already marked 1215 * PageReclaim. memcg does not have any dirty pages 1216 * throttling so we could easily OOM just because too many 1217 * pages are in writeback and there is nothing else to 1218 * reclaim. Wait for the writeback to complete. 1219 * 1220 * In cases 1) and 2) we activate the pages to get them out of 1221 * the way while we continue scanning for clean pages on the 1222 * inactive list and refilling from the active list. The 1223 * observation here is that waiting for disk writes is more 1224 * expensive than potentially causing reloads down the line. 1225 * Since they're marked for immediate reclaim, they won't put 1226 * memory pressure on the cache working set any longer than it 1227 * takes to write them to disk. 1228 */ 1229 if (PageWriteback(page)) { 1230 /* Case 1 above */ 1231 if (current_is_kswapd() && 1232 PageReclaim(page) && 1233 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1234 stat->nr_immediate++; 1235 goto activate_locked; 1236 1237 /* Case 2 above */ 1238 } else if (sane_reclaim(sc) || 1239 !PageReclaim(page) || !may_enter_fs) { 1240 /* 1241 * This is slightly racy - end_page_writeback() 1242 * might have just cleared PageReclaim, then 1243 * setting PageReclaim here end up interpreted 1244 * as PageReadahead - but that does not matter 1245 * enough to care. What we do want is for this 1246 * page to have PageReclaim set next time memcg 1247 * reclaim reaches the tests above, so it will 1248 * then wait_on_page_writeback() to avoid OOM; 1249 * and it's also appropriate in global reclaim. 1250 */ 1251 SetPageReclaim(page); 1252 stat->nr_writeback++; 1253 goto activate_locked; 1254 1255 /* Case 3 above */ 1256 } else { 1257 unlock_page(page); 1258 wait_on_page_writeback(page); 1259 /* then go back and try same page again */ 1260 list_add_tail(&page->lru, page_list); 1261 continue; 1262 } 1263 } 1264 1265 if (!force_reclaim) 1266 references = page_check_references(page, sc); 1267 1268 switch (references) { 1269 case PAGEREF_ACTIVATE: 1270 goto activate_locked; 1271 case PAGEREF_KEEP: 1272 stat->nr_ref_keep += nr_pages; 1273 goto keep_locked; 1274 case PAGEREF_RECLAIM: 1275 case PAGEREF_RECLAIM_CLEAN: 1276 ; /* try to reclaim the page below */ 1277 } 1278 1279 /* 1280 * Anonymous process memory has backing store? 1281 * Try to allocate it some swap space here. 1282 * Lazyfree page could be freed directly 1283 */ 1284 if (PageAnon(page) && PageSwapBacked(page)) { 1285 if (!PageSwapCache(page)) { 1286 if (!(sc->gfp_mask & __GFP_IO)) 1287 goto keep_locked; 1288 if (PageTransHuge(page)) { 1289 /* cannot split THP, skip it */ 1290 if (!can_split_huge_page(page, NULL)) 1291 goto activate_locked; 1292 /* 1293 * Split pages without a PMD map right 1294 * away. Chances are some or all of the 1295 * tail pages can be freed without IO. 1296 */ 1297 if (!compound_mapcount(page) && 1298 split_huge_page_to_list(page, 1299 page_list)) 1300 goto activate_locked; 1301 } 1302 if (!add_to_swap(page)) { 1303 if (!PageTransHuge(page)) 1304 goto activate_locked_split; 1305 /* Fallback to swap normal pages */ 1306 if (split_huge_page_to_list(page, 1307 page_list)) 1308 goto activate_locked; 1309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1310 count_vm_event(THP_SWPOUT_FALLBACK); 1311 #endif 1312 if (!add_to_swap(page)) 1313 goto activate_locked_split; 1314 } 1315 1316 may_enter_fs = 1; 1317 1318 /* Adding to swap updated mapping */ 1319 mapping = page_mapping(page); 1320 } 1321 } else if (unlikely(PageTransHuge(page))) { 1322 /* Split file THP */ 1323 if (split_huge_page_to_list(page, page_list)) 1324 goto keep_locked; 1325 } 1326 1327 /* 1328 * THP may get split above, need minus tail pages and update 1329 * nr_pages to avoid accounting tail pages twice. 1330 * 1331 * The tail pages that are added into swap cache successfully 1332 * reach here. 1333 */ 1334 if ((nr_pages > 1) && !PageTransHuge(page)) { 1335 sc->nr_scanned -= (nr_pages - 1); 1336 nr_pages = 1; 1337 } 1338 1339 /* 1340 * The page is mapped into the page tables of one or more 1341 * processes. Try to unmap it here. 1342 */ 1343 if (page_mapped(page)) { 1344 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1345 1346 if (unlikely(PageTransHuge(page))) 1347 flags |= TTU_SPLIT_HUGE_PMD; 1348 if (!try_to_unmap(page, flags)) { 1349 stat->nr_unmap_fail += nr_pages; 1350 goto activate_locked; 1351 } 1352 } 1353 1354 if (PageDirty(page)) { 1355 /* 1356 * Only kswapd can writeback filesystem pages 1357 * to avoid risk of stack overflow. But avoid 1358 * injecting inefficient single-page IO into 1359 * flusher writeback as much as possible: only 1360 * write pages when we've encountered many 1361 * dirty pages, and when we've already scanned 1362 * the rest of the LRU for clean pages and see 1363 * the same dirty pages again (PageReclaim). 1364 */ 1365 if (page_is_file_cache(page) && 1366 (!current_is_kswapd() || !PageReclaim(page) || 1367 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1368 /* 1369 * Immediately reclaim when written back. 1370 * Similar in principal to deactivate_page() 1371 * except we already have the page isolated 1372 * and know it's dirty 1373 */ 1374 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1375 SetPageReclaim(page); 1376 1377 goto activate_locked; 1378 } 1379 1380 if (references == PAGEREF_RECLAIM_CLEAN) 1381 goto keep_locked; 1382 if (!may_enter_fs) 1383 goto keep_locked; 1384 if (!sc->may_writepage) 1385 goto keep_locked; 1386 1387 /* 1388 * Page is dirty. Flush the TLB if a writable entry 1389 * potentially exists to avoid CPU writes after IO 1390 * starts and then write it out here. 1391 */ 1392 try_to_unmap_flush_dirty(); 1393 switch (pageout(page, mapping, sc)) { 1394 case PAGE_KEEP: 1395 goto keep_locked; 1396 case PAGE_ACTIVATE: 1397 goto activate_locked; 1398 case PAGE_SUCCESS: 1399 if (PageWriteback(page)) 1400 goto keep; 1401 if (PageDirty(page)) 1402 goto keep; 1403 1404 /* 1405 * A synchronous write - probably a ramdisk. Go 1406 * ahead and try to reclaim the page. 1407 */ 1408 if (!trylock_page(page)) 1409 goto keep; 1410 if (PageDirty(page) || PageWriteback(page)) 1411 goto keep_locked; 1412 mapping = page_mapping(page); 1413 case PAGE_CLEAN: 1414 ; /* try to free the page below */ 1415 } 1416 } 1417 1418 /* 1419 * If the page has buffers, try to free the buffer mappings 1420 * associated with this page. If we succeed we try to free 1421 * the page as well. 1422 * 1423 * We do this even if the page is PageDirty(). 1424 * try_to_release_page() does not perform I/O, but it is 1425 * possible for a page to have PageDirty set, but it is actually 1426 * clean (all its buffers are clean). This happens if the 1427 * buffers were written out directly, with submit_bh(). ext3 1428 * will do this, as well as the blockdev mapping. 1429 * try_to_release_page() will discover that cleanness and will 1430 * drop the buffers and mark the page clean - it can be freed. 1431 * 1432 * Rarely, pages can have buffers and no ->mapping. These are 1433 * the pages which were not successfully invalidated in 1434 * truncate_complete_page(). We try to drop those buffers here 1435 * and if that worked, and the page is no longer mapped into 1436 * process address space (page_count == 1) it can be freed. 1437 * Otherwise, leave the page on the LRU so it is swappable. 1438 */ 1439 if (page_has_private(page)) { 1440 if (!try_to_release_page(page, sc->gfp_mask)) 1441 goto activate_locked; 1442 if (!mapping && page_count(page) == 1) { 1443 unlock_page(page); 1444 if (put_page_testzero(page)) 1445 goto free_it; 1446 else { 1447 /* 1448 * rare race with speculative reference. 1449 * the speculative reference will free 1450 * this page shortly, so we may 1451 * increment nr_reclaimed here (and 1452 * leave it off the LRU). 1453 */ 1454 nr_reclaimed++; 1455 continue; 1456 } 1457 } 1458 } 1459 1460 if (PageAnon(page) && !PageSwapBacked(page)) { 1461 /* follow __remove_mapping for reference */ 1462 if (!page_ref_freeze(page, 1)) 1463 goto keep_locked; 1464 if (PageDirty(page)) { 1465 page_ref_unfreeze(page, 1); 1466 goto keep_locked; 1467 } 1468 1469 count_vm_event(PGLAZYFREED); 1470 count_memcg_page_event(page, PGLAZYFREED); 1471 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1472 goto keep_locked; 1473 1474 unlock_page(page); 1475 free_it: 1476 /* 1477 * THP may get swapped out in a whole, need account 1478 * all base pages. 1479 */ 1480 nr_reclaimed += nr_pages; 1481 1482 /* 1483 * Is there need to periodically free_page_list? It would 1484 * appear not as the counts should be low 1485 */ 1486 if (unlikely(PageTransHuge(page))) { 1487 mem_cgroup_uncharge(page); 1488 (*get_compound_page_dtor(page))(page); 1489 } else 1490 list_add(&page->lru, &free_pages); 1491 continue; 1492 1493 activate_locked_split: 1494 /* 1495 * The tail pages that are failed to add into swap cache 1496 * reach here. Fixup nr_scanned and nr_pages. 1497 */ 1498 if (nr_pages > 1) { 1499 sc->nr_scanned -= (nr_pages - 1); 1500 nr_pages = 1; 1501 } 1502 activate_locked: 1503 /* Not a candidate for swapping, so reclaim swap space. */ 1504 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1505 PageMlocked(page))) 1506 try_to_free_swap(page); 1507 VM_BUG_ON_PAGE(PageActive(page), page); 1508 if (!PageMlocked(page)) { 1509 int type = page_is_file_cache(page); 1510 SetPageActive(page); 1511 stat->nr_activate[type] += nr_pages; 1512 count_memcg_page_event(page, PGACTIVATE); 1513 } 1514 keep_locked: 1515 unlock_page(page); 1516 keep: 1517 list_add(&page->lru, &ret_pages); 1518 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1519 } 1520 1521 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1522 1523 mem_cgroup_uncharge_list(&free_pages); 1524 try_to_unmap_flush(); 1525 free_unref_page_list(&free_pages); 1526 1527 list_splice(&ret_pages, page_list); 1528 count_vm_events(PGACTIVATE, pgactivate); 1529 1530 return nr_reclaimed; 1531 } 1532 1533 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1534 struct list_head *page_list) 1535 { 1536 struct scan_control sc = { 1537 .gfp_mask = GFP_KERNEL, 1538 .priority = DEF_PRIORITY, 1539 .may_unmap = 1, 1540 }; 1541 struct reclaim_stat dummy_stat; 1542 unsigned long ret; 1543 struct page *page, *next; 1544 LIST_HEAD(clean_pages); 1545 1546 list_for_each_entry_safe(page, next, page_list, lru) { 1547 if (page_is_file_cache(page) && !PageDirty(page) && 1548 !__PageMovable(page) && !PageUnevictable(page)) { 1549 ClearPageActive(page); 1550 list_move(&page->lru, &clean_pages); 1551 } 1552 } 1553 1554 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1555 TTU_IGNORE_ACCESS, &dummy_stat, true); 1556 list_splice(&clean_pages, page_list); 1557 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1558 return ret; 1559 } 1560 1561 /* 1562 * Attempt to remove the specified page from its LRU. Only take this page 1563 * if it is of the appropriate PageActive status. Pages which are being 1564 * freed elsewhere are also ignored. 1565 * 1566 * page: page to consider 1567 * mode: one of the LRU isolation modes defined above 1568 * 1569 * returns 0 on success, -ve errno on failure. 1570 */ 1571 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1572 { 1573 int ret = -EINVAL; 1574 1575 /* Only take pages on the LRU. */ 1576 if (!PageLRU(page)) 1577 return ret; 1578 1579 /* Compaction should not handle unevictable pages but CMA can do so */ 1580 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1581 return ret; 1582 1583 ret = -EBUSY; 1584 1585 /* 1586 * To minimise LRU disruption, the caller can indicate that it only 1587 * wants to isolate pages it will be able to operate on without 1588 * blocking - clean pages for the most part. 1589 * 1590 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1591 * that it is possible to migrate without blocking 1592 */ 1593 if (mode & ISOLATE_ASYNC_MIGRATE) { 1594 /* All the caller can do on PageWriteback is block */ 1595 if (PageWriteback(page)) 1596 return ret; 1597 1598 if (PageDirty(page)) { 1599 struct address_space *mapping; 1600 bool migrate_dirty; 1601 1602 /* 1603 * Only pages without mappings or that have a 1604 * ->migratepage callback are possible to migrate 1605 * without blocking. However, we can be racing with 1606 * truncation so it's necessary to lock the page 1607 * to stabilise the mapping as truncation holds 1608 * the page lock until after the page is removed 1609 * from the page cache. 1610 */ 1611 if (!trylock_page(page)) 1612 return ret; 1613 1614 mapping = page_mapping(page); 1615 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1616 unlock_page(page); 1617 if (!migrate_dirty) 1618 return ret; 1619 } 1620 } 1621 1622 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1623 return ret; 1624 1625 if (likely(get_page_unless_zero(page))) { 1626 /* 1627 * Be careful not to clear PageLRU until after we're 1628 * sure the page is not being freed elsewhere -- the 1629 * page release code relies on it. 1630 */ 1631 ClearPageLRU(page); 1632 ret = 0; 1633 } 1634 1635 return ret; 1636 } 1637 1638 1639 /* 1640 * Update LRU sizes after isolating pages. The LRU size updates must 1641 * be complete before mem_cgroup_update_lru_size due to a santity check. 1642 */ 1643 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1644 enum lru_list lru, unsigned long *nr_zone_taken) 1645 { 1646 int zid; 1647 1648 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1649 if (!nr_zone_taken[zid]) 1650 continue; 1651 1652 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1653 #ifdef CONFIG_MEMCG 1654 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1655 #endif 1656 } 1657 1658 } 1659 1660 /** 1661 * pgdat->lru_lock is heavily contended. Some of the functions that 1662 * shrink the lists perform better by taking out a batch of pages 1663 * and working on them outside the LRU lock. 1664 * 1665 * For pagecache intensive workloads, this function is the hottest 1666 * spot in the kernel (apart from copy_*_user functions). 1667 * 1668 * Appropriate locks must be held before calling this function. 1669 * 1670 * @nr_to_scan: The number of eligible pages to look through on the list. 1671 * @lruvec: The LRU vector to pull pages from. 1672 * @dst: The temp list to put pages on to. 1673 * @nr_scanned: The number of pages that were scanned. 1674 * @sc: The scan_control struct for this reclaim session 1675 * @mode: One of the LRU isolation modes 1676 * @lru: LRU list id for isolating 1677 * 1678 * returns how many pages were moved onto *@dst. 1679 */ 1680 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1681 struct lruvec *lruvec, struct list_head *dst, 1682 unsigned long *nr_scanned, struct scan_control *sc, 1683 enum lru_list lru) 1684 { 1685 struct list_head *src = &lruvec->lists[lru]; 1686 unsigned long nr_taken = 0; 1687 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1688 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1689 unsigned long skipped = 0; 1690 unsigned long scan, total_scan, nr_pages; 1691 LIST_HEAD(pages_skipped); 1692 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1693 1694 total_scan = 0; 1695 scan = 0; 1696 while (scan < nr_to_scan && !list_empty(src)) { 1697 struct page *page; 1698 1699 page = lru_to_page(src); 1700 prefetchw_prev_lru_page(page, src, flags); 1701 1702 VM_BUG_ON_PAGE(!PageLRU(page), page); 1703 1704 nr_pages = 1 << compound_order(page); 1705 total_scan += nr_pages; 1706 1707 if (page_zonenum(page) > sc->reclaim_idx) { 1708 list_move(&page->lru, &pages_skipped); 1709 nr_skipped[page_zonenum(page)] += nr_pages; 1710 continue; 1711 } 1712 1713 /* 1714 * Do not count skipped pages because that makes the function 1715 * return with no isolated pages if the LRU mostly contains 1716 * ineligible pages. This causes the VM to not reclaim any 1717 * pages, triggering a premature OOM. 1718 * 1719 * Account all tail pages of THP. This would not cause 1720 * premature OOM since __isolate_lru_page() returns -EBUSY 1721 * only when the page is being freed somewhere else. 1722 */ 1723 scan += nr_pages; 1724 switch (__isolate_lru_page(page, mode)) { 1725 case 0: 1726 nr_taken += nr_pages; 1727 nr_zone_taken[page_zonenum(page)] += nr_pages; 1728 list_move(&page->lru, dst); 1729 break; 1730 1731 case -EBUSY: 1732 /* else it is being freed elsewhere */ 1733 list_move(&page->lru, src); 1734 continue; 1735 1736 default: 1737 BUG(); 1738 } 1739 } 1740 1741 /* 1742 * Splice any skipped pages to the start of the LRU list. Note that 1743 * this disrupts the LRU order when reclaiming for lower zones but 1744 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1745 * scanning would soon rescan the same pages to skip and put the 1746 * system at risk of premature OOM. 1747 */ 1748 if (!list_empty(&pages_skipped)) { 1749 int zid; 1750 1751 list_splice(&pages_skipped, src); 1752 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1753 if (!nr_skipped[zid]) 1754 continue; 1755 1756 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1757 skipped += nr_skipped[zid]; 1758 } 1759 } 1760 *nr_scanned = total_scan; 1761 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1762 total_scan, skipped, nr_taken, mode, lru); 1763 update_lru_sizes(lruvec, lru, nr_zone_taken); 1764 return nr_taken; 1765 } 1766 1767 /** 1768 * isolate_lru_page - tries to isolate a page from its LRU list 1769 * @page: page to isolate from its LRU list 1770 * 1771 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1772 * vmstat statistic corresponding to whatever LRU list the page was on. 1773 * 1774 * Returns 0 if the page was removed from an LRU list. 1775 * Returns -EBUSY if the page was not on an LRU list. 1776 * 1777 * The returned page will have PageLRU() cleared. If it was found on 1778 * the active list, it will have PageActive set. If it was found on 1779 * the unevictable list, it will have the PageUnevictable bit set. That flag 1780 * may need to be cleared by the caller before letting the page go. 1781 * 1782 * The vmstat statistic corresponding to the list on which the page was 1783 * found will be decremented. 1784 * 1785 * Restrictions: 1786 * 1787 * (1) Must be called with an elevated refcount on the page. This is a 1788 * fundamentnal difference from isolate_lru_pages (which is called 1789 * without a stable reference). 1790 * (2) the lru_lock must not be held. 1791 * (3) interrupts must be enabled. 1792 */ 1793 int isolate_lru_page(struct page *page) 1794 { 1795 int ret = -EBUSY; 1796 1797 VM_BUG_ON_PAGE(!page_count(page), page); 1798 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1799 1800 if (PageLRU(page)) { 1801 pg_data_t *pgdat = page_pgdat(page); 1802 struct lruvec *lruvec; 1803 1804 spin_lock_irq(&pgdat->lru_lock); 1805 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1806 if (PageLRU(page)) { 1807 int lru = page_lru(page); 1808 get_page(page); 1809 ClearPageLRU(page); 1810 del_page_from_lru_list(page, lruvec, lru); 1811 ret = 0; 1812 } 1813 spin_unlock_irq(&pgdat->lru_lock); 1814 } 1815 return ret; 1816 } 1817 1818 /* 1819 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1820 * then get resheduled. When there are massive number of tasks doing page 1821 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1822 * the LRU list will go small and be scanned faster than necessary, leading to 1823 * unnecessary swapping, thrashing and OOM. 1824 */ 1825 static int too_many_isolated(struct pglist_data *pgdat, int file, 1826 struct scan_control *sc) 1827 { 1828 unsigned long inactive, isolated; 1829 1830 if (current_is_kswapd()) 1831 return 0; 1832 1833 if (!sane_reclaim(sc)) 1834 return 0; 1835 1836 if (file) { 1837 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1838 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1839 } else { 1840 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1841 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1842 } 1843 1844 /* 1845 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1846 * won't get blocked by normal direct-reclaimers, forming a circular 1847 * deadlock. 1848 */ 1849 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1850 inactive >>= 3; 1851 1852 return isolated > inactive; 1853 } 1854 1855 /* 1856 * This moves pages from @list to corresponding LRU list. 1857 * 1858 * We move them the other way if the page is referenced by one or more 1859 * processes, from rmap. 1860 * 1861 * If the pages are mostly unmapped, the processing is fast and it is 1862 * appropriate to hold zone_lru_lock across the whole operation. But if 1863 * the pages are mapped, the processing is slow (page_referenced()) so we 1864 * should drop zone_lru_lock around each page. It's impossible to balance 1865 * this, so instead we remove the pages from the LRU while processing them. 1866 * It is safe to rely on PG_active against the non-LRU pages in here because 1867 * nobody will play with that bit on a non-LRU page. 1868 * 1869 * The downside is that we have to touch page->_refcount against each page. 1870 * But we had to alter page->flags anyway. 1871 * 1872 * Returns the number of pages moved to the given lruvec. 1873 */ 1874 1875 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1876 struct list_head *list) 1877 { 1878 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1879 int nr_pages, nr_moved = 0; 1880 LIST_HEAD(pages_to_free); 1881 struct page *page; 1882 enum lru_list lru; 1883 1884 while (!list_empty(list)) { 1885 page = lru_to_page(list); 1886 VM_BUG_ON_PAGE(PageLRU(page), page); 1887 if (unlikely(!page_evictable(page))) { 1888 list_del(&page->lru); 1889 spin_unlock_irq(&pgdat->lru_lock); 1890 putback_lru_page(page); 1891 spin_lock_irq(&pgdat->lru_lock); 1892 continue; 1893 } 1894 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1895 1896 SetPageLRU(page); 1897 lru = page_lru(page); 1898 1899 nr_pages = hpage_nr_pages(page); 1900 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1901 list_move(&page->lru, &lruvec->lists[lru]); 1902 1903 if (put_page_testzero(page)) { 1904 __ClearPageLRU(page); 1905 __ClearPageActive(page); 1906 del_page_from_lru_list(page, lruvec, lru); 1907 1908 if (unlikely(PageCompound(page))) { 1909 spin_unlock_irq(&pgdat->lru_lock); 1910 mem_cgroup_uncharge(page); 1911 (*get_compound_page_dtor(page))(page); 1912 spin_lock_irq(&pgdat->lru_lock); 1913 } else 1914 list_add(&page->lru, &pages_to_free); 1915 } else { 1916 nr_moved += nr_pages; 1917 } 1918 } 1919 1920 /* 1921 * To save our caller's stack, now use input list for pages to free. 1922 */ 1923 list_splice(&pages_to_free, list); 1924 1925 return nr_moved; 1926 } 1927 1928 /* 1929 * If a kernel thread (such as nfsd for loop-back mounts) services 1930 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1931 * In that case we should only throttle if the backing device it is 1932 * writing to is congested. In other cases it is safe to throttle. 1933 */ 1934 static int current_may_throttle(void) 1935 { 1936 return !(current->flags & PF_LESS_THROTTLE) || 1937 current->backing_dev_info == NULL || 1938 bdi_write_congested(current->backing_dev_info); 1939 } 1940 1941 /* 1942 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1943 * of reclaimed pages 1944 */ 1945 static noinline_for_stack unsigned long 1946 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1947 struct scan_control *sc, enum lru_list lru) 1948 { 1949 LIST_HEAD(page_list); 1950 unsigned long nr_scanned; 1951 unsigned long nr_reclaimed = 0; 1952 unsigned long nr_taken; 1953 struct reclaim_stat stat; 1954 int file = is_file_lru(lru); 1955 enum vm_event_item item; 1956 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1957 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1958 bool stalled = false; 1959 1960 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1961 if (stalled) 1962 return 0; 1963 1964 /* wait a bit for the reclaimer. */ 1965 msleep(100); 1966 stalled = true; 1967 1968 /* We are about to die and free our memory. Return now. */ 1969 if (fatal_signal_pending(current)) 1970 return SWAP_CLUSTER_MAX; 1971 } 1972 1973 lru_add_drain(); 1974 1975 spin_lock_irq(&pgdat->lru_lock); 1976 1977 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1978 &nr_scanned, sc, lru); 1979 1980 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1981 reclaim_stat->recent_scanned[file] += nr_taken; 1982 1983 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1984 if (global_reclaim(sc)) 1985 __count_vm_events(item, nr_scanned); 1986 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1987 spin_unlock_irq(&pgdat->lru_lock); 1988 1989 if (nr_taken == 0) 1990 return 0; 1991 1992 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1993 &stat, false); 1994 1995 spin_lock_irq(&pgdat->lru_lock); 1996 1997 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1998 if (global_reclaim(sc)) 1999 __count_vm_events(item, nr_reclaimed); 2000 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2001 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 2002 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 2003 2004 move_pages_to_lru(lruvec, &page_list); 2005 2006 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2007 2008 spin_unlock_irq(&pgdat->lru_lock); 2009 2010 mem_cgroup_uncharge_list(&page_list); 2011 free_unref_page_list(&page_list); 2012 2013 /* 2014 * If dirty pages are scanned that are not queued for IO, it 2015 * implies that flushers are not doing their job. This can 2016 * happen when memory pressure pushes dirty pages to the end of 2017 * the LRU before the dirty limits are breached and the dirty 2018 * data has expired. It can also happen when the proportion of 2019 * dirty pages grows not through writes but through memory 2020 * pressure reclaiming all the clean cache. And in some cases, 2021 * the flushers simply cannot keep up with the allocation 2022 * rate. Nudge the flusher threads in case they are asleep. 2023 */ 2024 if (stat.nr_unqueued_dirty == nr_taken) 2025 wakeup_flusher_threads(WB_REASON_VMSCAN); 2026 2027 sc->nr.dirty += stat.nr_dirty; 2028 sc->nr.congested += stat.nr_congested; 2029 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2030 sc->nr.writeback += stat.nr_writeback; 2031 sc->nr.immediate += stat.nr_immediate; 2032 sc->nr.taken += nr_taken; 2033 if (file) 2034 sc->nr.file_taken += nr_taken; 2035 2036 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2037 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2038 return nr_reclaimed; 2039 } 2040 2041 static void shrink_active_list(unsigned long nr_to_scan, 2042 struct lruvec *lruvec, 2043 struct scan_control *sc, 2044 enum lru_list lru) 2045 { 2046 unsigned long nr_taken; 2047 unsigned long nr_scanned; 2048 unsigned long vm_flags; 2049 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2050 LIST_HEAD(l_active); 2051 LIST_HEAD(l_inactive); 2052 struct page *page; 2053 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2054 unsigned nr_deactivate, nr_activate; 2055 unsigned nr_rotated = 0; 2056 int file = is_file_lru(lru); 2057 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2058 2059 lru_add_drain(); 2060 2061 spin_lock_irq(&pgdat->lru_lock); 2062 2063 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2064 &nr_scanned, sc, lru); 2065 2066 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2067 reclaim_stat->recent_scanned[file] += nr_taken; 2068 2069 __count_vm_events(PGREFILL, nr_scanned); 2070 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2071 2072 spin_unlock_irq(&pgdat->lru_lock); 2073 2074 while (!list_empty(&l_hold)) { 2075 cond_resched(); 2076 page = lru_to_page(&l_hold); 2077 list_del(&page->lru); 2078 2079 if (unlikely(!page_evictable(page))) { 2080 putback_lru_page(page); 2081 continue; 2082 } 2083 2084 if (unlikely(buffer_heads_over_limit)) { 2085 if (page_has_private(page) && trylock_page(page)) { 2086 if (page_has_private(page)) 2087 try_to_release_page(page, 0); 2088 unlock_page(page); 2089 } 2090 } 2091 2092 if (page_referenced(page, 0, sc->target_mem_cgroup, 2093 &vm_flags)) { 2094 nr_rotated += hpage_nr_pages(page); 2095 /* 2096 * Identify referenced, file-backed active pages and 2097 * give them one more trip around the active list. So 2098 * that executable code get better chances to stay in 2099 * memory under moderate memory pressure. Anon pages 2100 * are not likely to be evicted by use-once streaming 2101 * IO, plus JVM can create lots of anon VM_EXEC pages, 2102 * so we ignore them here. 2103 */ 2104 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2105 list_add(&page->lru, &l_active); 2106 continue; 2107 } 2108 } 2109 2110 ClearPageActive(page); /* we are de-activating */ 2111 SetPageWorkingset(page); 2112 list_add(&page->lru, &l_inactive); 2113 } 2114 2115 /* 2116 * Move pages back to the lru list. 2117 */ 2118 spin_lock_irq(&pgdat->lru_lock); 2119 /* 2120 * Count referenced pages from currently used mappings as rotated, 2121 * even though only some of them are actually re-activated. This 2122 * helps balance scan pressure between file and anonymous pages in 2123 * get_scan_count. 2124 */ 2125 reclaim_stat->recent_rotated[file] += nr_rotated; 2126 2127 nr_activate = move_pages_to_lru(lruvec, &l_active); 2128 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2129 /* Keep all free pages in l_active list */ 2130 list_splice(&l_inactive, &l_active); 2131 2132 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2133 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2134 2135 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2136 spin_unlock_irq(&pgdat->lru_lock); 2137 2138 mem_cgroup_uncharge_list(&l_active); 2139 free_unref_page_list(&l_active); 2140 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2141 nr_deactivate, nr_rotated, sc->priority, file); 2142 } 2143 2144 /* 2145 * The inactive anon list should be small enough that the VM never has 2146 * to do too much work. 2147 * 2148 * The inactive file list should be small enough to leave most memory 2149 * to the established workingset on the scan-resistant active list, 2150 * but large enough to avoid thrashing the aggregate readahead window. 2151 * 2152 * Both inactive lists should also be large enough that each inactive 2153 * page has a chance to be referenced again before it is reclaimed. 2154 * 2155 * If that fails and refaulting is observed, the inactive list grows. 2156 * 2157 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2158 * on this LRU, maintained by the pageout code. An inactive_ratio 2159 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2160 * 2161 * total target max 2162 * memory ratio inactive 2163 * ------------------------------------- 2164 * 10MB 1 5MB 2165 * 100MB 1 50MB 2166 * 1GB 3 250MB 2167 * 10GB 10 0.9GB 2168 * 100GB 31 3GB 2169 * 1TB 101 10GB 2170 * 10TB 320 32GB 2171 */ 2172 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2173 struct scan_control *sc, bool trace) 2174 { 2175 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2176 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2177 enum lru_list inactive_lru = file * LRU_FILE; 2178 unsigned long inactive, active; 2179 unsigned long inactive_ratio; 2180 unsigned long refaults; 2181 unsigned long gb; 2182 2183 /* 2184 * If we don't have swap space, anonymous page deactivation 2185 * is pointless. 2186 */ 2187 if (!file && !total_swap_pages) 2188 return false; 2189 2190 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2191 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2192 2193 /* 2194 * When refaults are being observed, it means a new workingset 2195 * is being established. Disable active list protection to get 2196 * rid of the stale workingset quickly. 2197 */ 2198 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2199 if (file && lruvec->refaults != refaults) { 2200 inactive_ratio = 0; 2201 } else { 2202 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2203 if (gb) 2204 inactive_ratio = int_sqrt(10 * gb); 2205 else 2206 inactive_ratio = 1; 2207 } 2208 2209 if (trace) 2210 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2211 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2212 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2213 inactive_ratio, file); 2214 2215 return inactive * inactive_ratio < active; 2216 } 2217 2218 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2219 struct lruvec *lruvec, struct scan_control *sc) 2220 { 2221 if (is_active_lru(lru)) { 2222 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2223 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2224 return 0; 2225 } 2226 2227 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2228 } 2229 2230 enum scan_balance { 2231 SCAN_EQUAL, 2232 SCAN_FRACT, 2233 SCAN_ANON, 2234 SCAN_FILE, 2235 }; 2236 2237 /* 2238 * Determine how aggressively the anon and file LRU lists should be 2239 * scanned. The relative value of each set of LRU lists is determined 2240 * by looking at the fraction of the pages scanned we did rotate back 2241 * onto the active list instead of evict. 2242 * 2243 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2244 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2245 */ 2246 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2247 struct scan_control *sc, unsigned long *nr, 2248 unsigned long *lru_pages) 2249 { 2250 int swappiness = mem_cgroup_swappiness(memcg); 2251 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2252 u64 fraction[2]; 2253 u64 denominator = 0; /* gcc */ 2254 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2255 unsigned long anon_prio, file_prio; 2256 enum scan_balance scan_balance; 2257 unsigned long anon, file; 2258 unsigned long ap, fp; 2259 enum lru_list lru; 2260 2261 /* If we have no swap space, do not bother scanning anon pages. */ 2262 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2263 scan_balance = SCAN_FILE; 2264 goto out; 2265 } 2266 2267 /* 2268 * Global reclaim will swap to prevent OOM even with no 2269 * swappiness, but memcg users want to use this knob to 2270 * disable swapping for individual groups completely when 2271 * using the memory controller's swap limit feature would be 2272 * too expensive. 2273 */ 2274 if (!global_reclaim(sc) && !swappiness) { 2275 scan_balance = SCAN_FILE; 2276 goto out; 2277 } 2278 2279 /* 2280 * Do not apply any pressure balancing cleverness when the 2281 * system is close to OOM, scan both anon and file equally 2282 * (unless the swappiness setting disagrees with swapping). 2283 */ 2284 if (!sc->priority && swappiness) { 2285 scan_balance = SCAN_EQUAL; 2286 goto out; 2287 } 2288 2289 /* 2290 * Prevent the reclaimer from falling into the cache trap: as 2291 * cache pages start out inactive, every cache fault will tip 2292 * the scan balance towards the file LRU. And as the file LRU 2293 * shrinks, so does the window for rotation from references. 2294 * This means we have a runaway feedback loop where a tiny 2295 * thrashing file LRU becomes infinitely more attractive than 2296 * anon pages. Try to detect this based on file LRU size. 2297 */ 2298 if (global_reclaim(sc)) { 2299 unsigned long pgdatfile; 2300 unsigned long pgdatfree; 2301 int z; 2302 unsigned long total_high_wmark = 0; 2303 2304 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2305 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2306 node_page_state(pgdat, NR_INACTIVE_FILE); 2307 2308 for (z = 0; z < MAX_NR_ZONES; z++) { 2309 struct zone *zone = &pgdat->node_zones[z]; 2310 if (!managed_zone(zone)) 2311 continue; 2312 2313 total_high_wmark += high_wmark_pages(zone); 2314 } 2315 2316 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2317 /* 2318 * Force SCAN_ANON if there are enough inactive 2319 * anonymous pages on the LRU in eligible zones. 2320 * Otherwise, the small LRU gets thrashed. 2321 */ 2322 if (!inactive_list_is_low(lruvec, false, sc, false) && 2323 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2324 >> sc->priority) { 2325 scan_balance = SCAN_ANON; 2326 goto out; 2327 } 2328 } 2329 } 2330 2331 /* 2332 * If there is enough inactive page cache, i.e. if the size of the 2333 * inactive list is greater than that of the active list *and* the 2334 * inactive list actually has some pages to scan on this priority, we 2335 * do not reclaim anything from the anonymous working set right now. 2336 * Without the second condition we could end up never scanning an 2337 * lruvec even if it has plenty of old anonymous pages unless the 2338 * system is under heavy pressure. 2339 */ 2340 if (!inactive_list_is_low(lruvec, true, sc, false) && 2341 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2342 scan_balance = SCAN_FILE; 2343 goto out; 2344 } 2345 2346 scan_balance = SCAN_FRACT; 2347 2348 /* 2349 * With swappiness at 100, anonymous and file have the same priority. 2350 * This scanning priority is essentially the inverse of IO cost. 2351 */ 2352 anon_prio = swappiness; 2353 file_prio = 200 - anon_prio; 2354 2355 /* 2356 * OK, so we have swap space and a fair amount of page cache 2357 * pages. We use the recently rotated / recently scanned 2358 * ratios to determine how valuable each cache is. 2359 * 2360 * Because workloads change over time (and to avoid overflow) 2361 * we keep these statistics as a floating average, which ends 2362 * up weighing recent references more than old ones. 2363 * 2364 * anon in [0], file in [1] 2365 */ 2366 2367 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2368 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2369 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2370 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2371 2372 spin_lock_irq(&pgdat->lru_lock); 2373 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2374 reclaim_stat->recent_scanned[0] /= 2; 2375 reclaim_stat->recent_rotated[0] /= 2; 2376 } 2377 2378 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2379 reclaim_stat->recent_scanned[1] /= 2; 2380 reclaim_stat->recent_rotated[1] /= 2; 2381 } 2382 2383 /* 2384 * The amount of pressure on anon vs file pages is inversely 2385 * proportional to the fraction of recently scanned pages on 2386 * each list that were recently referenced and in active use. 2387 */ 2388 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2389 ap /= reclaim_stat->recent_rotated[0] + 1; 2390 2391 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2392 fp /= reclaim_stat->recent_rotated[1] + 1; 2393 spin_unlock_irq(&pgdat->lru_lock); 2394 2395 fraction[0] = ap; 2396 fraction[1] = fp; 2397 denominator = ap + fp + 1; 2398 out: 2399 *lru_pages = 0; 2400 for_each_evictable_lru(lru) { 2401 int file = is_file_lru(lru); 2402 unsigned long size; 2403 unsigned long scan; 2404 2405 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2406 scan = size >> sc->priority; 2407 /* 2408 * If the cgroup's already been deleted, make sure to 2409 * scrape out the remaining cache. 2410 */ 2411 if (!scan && !mem_cgroup_online(memcg)) 2412 scan = min(size, SWAP_CLUSTER_MAX); 2413 2414 switch (scan_balance) { 2415 case SCAN_EQUAL: 2416 /* Scan lists relative to size */ 2417 break; 2418 case SCAN_FRACT: 2419 /* 2420 * Scan types proportional to swappiness and 2421 * their relative recent reclaim efficiency. 2422 * Make sure we don't miss the last page 2423 * because of a round-off error. 2424 */ 2425 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2426 denominator); 2427 break; 2428 case SCAN_FILE: 2429 case SCAN_ANON: 2430 /* Scan one type exclusively */ 2431 if ((scan_balance == SCAN_FILE) != file) { 2432 size = 0; 2433 scan = 0; 2434 } 2435 break; 2436 default: 2437 /* Look ma, no brain */ 2438 BUG(); 2439 } 2440 2441 *lru_pages += size; 2442 nr[lru] = scan; 2443 } 2444 } 2445 2446 /* 2447 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2448 */ 2449 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2450 struct scan_control *sc, unsigned long *lru_pages) 2451 { 2452 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2453 unsigned long nr[NR_LRU_LISTS]; 2454 unsigned long targets[NR_LRU_LISTS]; 2455 unsigned long nr_to_scan; 2456 enum lru_list lru; 2457 unsigned long nr_reclaimed = 0; 2458 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2459 struct blk_plug plug; 2460 bool scan_adjusted; 2461 2462 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2463 2464 /* Record the original scan target for proportional adjustments later */ 2465 memcpy(targets, nr, sizeof(nr)); 2466 2467 /* 2468 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2469 * event that can occur when there is little memory pressure e.g. 2470 * multiple streaming readers/writers. Hence, we do not abort scanning 2471 * when the requested number of pages are reclaimed when scanning at 2472 * DEF_PRIORITY on the assumption that the fact we are direct 2473 * reclaiming implies that kswapd is not keeping up and it is best to 2474 * do a batch of work at once. For memcg reclaim one check is made to 2475 * abort proportional reclaim if either the file or anon lru has already 2476 * dropped to zero at the first pass. 2477 */ 2478 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2479 sc->priority == DEF_PRIORITY); 2480 2481 blk_start_plug(&plug); 2482 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2483 nr[LRU_INACTIVE_FILE]) { 2484 unsigned long nr_anon, nr_file, percentage; 2485 unsigned long nr_scanned; 2486 2487 for_each_evictable_lru(lru) { 2488 if (nr[lru]) { 2489 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2490 nr[lru] -= nr_to_scan; 2491 2492 nr_reclaimed += shrink_list(lru, nr_to_scan, 2493 lruvec, sc); 2494 } 2495 } 2496 2497 cond_resched(); 2498 2499 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2500 continue; 2501 2502 /* 2503 * For kswapd and memcg, reclaim at least the number of pages 2504 * requested. Ensure that the anon and file LRUs are scanned 2505 * proportionally what was requested by get_scan_count(). We 2506 * stop reclaiming one LRU and reduce the amount scanning 2507 * proportional to the original scan target. 2508 */ 2509 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2510 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2511 2512 /* 2513 * It's just vindictive to attack the larger once the smaller 2514 * has gone to zero. And given the way we stop scanning the 2515 * smaller below, this makes sure that we only make one nudge 2516 * towards proportionality once we've got nr_to_reclaim. 2517 */ 2518 if (!nr_file || !nr_anon) 2519 break; 2520 2521 if (nr_file > nr_anon) { 2522 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2523 targets[LRU_ACTIVE_ANON] + 1; 2524 lru = LRU_BASE; 2525 percentage = nr_anon * 100 / scan_target; 2526 } else { 2527 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2528 targets[LRU_ACTIVE_FILE] + 1; 2529 lru = LRU_FILE; 2530 percentage = nr_file * 100 / scan_target; 2531 } 2532 2533 /* Stop scanning the smaller of the LRU */ 2534 nr[lru] = 0; 2535 nr[lru + LRU_ACTIVE] = 0; 2536 2537 /* 2538 * Recalculate the other LRU scan count based on its original 2539 * scan target and the percentage scanning already complete 2540 */ 2541 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2542 nr_scanned = targets[lru] - nr[lru]; 2543 nr[lru] = targets[lru] * (100 - percentage) / 100; 2544 nr[lru] -= min(nr[lru], nr_scanned); 2545 2546 lru += LRU_ACTIVE; 2547 nr_scanned = targets[lru] - nr[lru]; 2548 nr[lru] = targets[lru] * (100 - percentage) / 100; 2549 nr[lru] -= min(nr[lru], nr_scanned); 2550 2551 scan_adjusted = true; 2552 } 2553 blk_finish_plug(&plug); 2554 sc->nr_reclaimed += nr_reclaimed; 2555 2556 /* 2557 * Even if we did not try to evict anon pages at all, we want to 2558 * rebalance the anon lru active/inactive ratio. 2559 */ 2560 if (inactive_list_is_low(lruvec, false, sc, true)) 2561 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2562 sc, LRU_ACTIVE_ANON); 2563 } 2564 2565 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2566 static bool in_reclaim_compaction(struct scan_control *sc) 2567 { 2568 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2569 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2570 sc->priority < DEF_PRIORITY - 2)) 2571 return true; 2572 2573 return false; 2574 } 2575 2576 /* 2577 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2578 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2579 * true if more pages should be reclaimed such that when the page allocator 2580 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2581 * It will give up earlier than that if there is difficulty reclaiming pages. 2582 */ 2583 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2584 unsigned long nr_reclaimed, 2585 unsigned long nr_scanned, 2586 struct scan_control *sc) 2587 { 2588 unsigned long pages_for_compaction; 2589 unsigned long inactive_lru_pages; 2590 int z; 2591 2592 /* If not in reclaim/compaction mode, stop */ 2593 if (!in_reclaim_compaction(sc)) 2594 return false; 2595 2596 /* Consider stopping depending on scan and reclaim activity */ 2597 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2598 /* 2599 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2600 * full LRU list has been scanned and we are still failing 2601 * to reclaim pages. This full LRU scan is potentially 2602 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2603 */ 2604 if (!nr_reclaimed && !nr_scanned) 2605 return false; 2606 } else { 2607 /* 2608 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2609 * fail without consequence, stop if we failed to reclaim 2610 * any pages from the last SWAP_CLUSTER_MAX number of 2611 * pages that were scanned. This will return to the 2612 * caller faster at the risk reclaim/compaction and 2613 * the resulting allocation attempt fails 2614 */ 2615 if (!nr_reclaimed) 2616 return false; 2617 } 2618 2619 /* 2620 * If we have not reclaimed enough pages for compaction and the 2621 * inactive lists are large enough, continue reclaiming 2622 */ 2623 pages_for_compaction = compact_gap(sc->order); 2624 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2625 if (get_nr_swap_pages() > 0) 2626 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2627 if (sc->nr_reclaimed < pages_for_compaction && 2628 inactive_lru_pages > pages_for_compaction) 2629 return true; 2630 2631 /* If compaction would go ahead or the allocation would succeed, stop */ 2632 for (z = 0; z <= sc->reclaim_idx; z++) { 2633 struct zone *zone = &pgdat->node_zones[z]; 2634 if (!managed_zone(zone)) 2635 continue; 2636 2637 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2638 case COMPACT_SUCCESS: 2639 case COMPACT_CONTINUE: 2640 return false; 2641 default: 2642 /* check next zone */ 2643 ; 2644 } 2645 } 2646 return true; 2647 } 2648 2649 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2650 { 2651 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2652 (memcg && memcg_congested(pgdat, memcg)); 2653 } 2654 2655 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2656 { 2657 struct reclaim_state *reclaim_state = current->reclaim_state; 2658 unsigned long nr_reclaimed, nr_scanned; 2659 bool reclaimable = false; 2660 2661 do { 2662 struct mem_cgroup *root = sc->target_mem_cgroup; 2663 struct mem_cgroup_reclaim_cookie reclaim = { 2664 .pgdat = pgdat, 2665 .priority = sc->priority, 2666 }; 2667 unsigned long node_lru_pages = 0; 2668 struct mem_cgroup *memcg; 2669 2670 memset(&sc->nr, 0, sizeof(sc->nr)); 2671 2672 nr_reclaimed = sc->nr_reclaimed; 2673 nr_scanned = sc->nr_scanned; 2674 2675 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2676 do { 2677 unsigned long lru_pages; 2678 unsigned long reclaimed; 2679 unsigned long scanned; 2680 2681 switch (mem_cgroup_protected(root, memcg)) { 2682 case MEMCG_PROT_MIN: 2683 /* 2684 * Hard protection. 2685 * If there is no reclaimable memory, OOM. 2686 */ 2687 continue; 2688 case MEMCG_PROT_LOW: 2689 /* 2690 * Soft protection. 2691 * Respect the protection only as long as 2692 * there is an unprotected supply 2693 * of reclaimable memory from other cgroups. 2694 */ 2695 if (!sc->memcg_low_reclaim) { 2696 sc->memcg_low_skipped = 1; 2697 continue; 2698 } 2699 memcg_memory_event(memcg, MEMCG_LOW); 2700 break; 2701 case MEMCG_PROT_NONE: 2702 break; 2703 } 2704 2705 reclaimed = sc->nr_reclaimed; 2706 scanned = sc->nr_scanned; 2707 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2708 node_lru_pages += lru_pages; 2709 2710 if (sc->may_shrinkslab) { 2711 shrink_slab(sc->gfp_mask, pgdat->node_id, 2712 memcg, sc->priority); 2713 } 2714 2715 /* Record the group's reclaim efficiency */ 2716 vmpressure(sc->gfp_mask, memcg, false, 2717 sc->nr_scanned - scanned, 2718 sc->nr_reclaimed - reclaimed); 2719 2720 /* 2721 * Kswapd have to scan all memory cgroups to fulfill 2722 * the overall scan target for the node. 2723 * 2724 * Limit reclaim, on the other hand, only cares about 2725 * nr_to_reclaim pages to be reclaimed and it will 2726 * retry with decreasing priority if one round over the 2727 * whole hierarchy is not sufficient. 2728 */ 2729 if (!current_is_kswapd() && 2730 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2731 mem_cgroup_iter_break(root, memcg); 2732 break; 2733 } 2734 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2735 2736 if (reclaim_state) { 2737 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2738 reclaim_state->reclaimed_slab = 0; 2739 } 2740 2741 /* Record the subtree's reclaim efficiency */ 2742 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2743 sc->nr_scanned - nr_scanned, 2744 sc->nr_reclaimed - nr_reclaimed); 2745 2746 if (sc->nr_reclaimed - nr_reclaimed) 2747 reclaimable = true; 2748 2749 if (current_is_kswapd()) { 2750 /* 2751 * If reclaim is isolating dirty pages under writeback, 2752 * it implies that the long-lived page allocation rate 2753 * is exceeding the page laundering rate. Either the 2754 * global limits are not being effective at throttling 2755 * processes due to the page distribution throughout 2756 * zones or there is heavy usage of a slow backing 2757 * device. The only option is to throttle from reclaim 2758 * context which is not ideal as there is no guarantee 2759 * the dirtying process is throttled in the same way 2760 * balance_dirty_pages() manages. 2761 * 2762 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2763 * count the number of pages under pages flagged for 2764 * immediate reclaim and stall if any are encountered 2765 * in the nr_immediate check below. 2766 */ 2767 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2768 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2769 2770 /* 2771 * Tag a node as congested if all the dirty pages 2772 * scanned were backed by a congested BDI and 2773 * wait_iff_congested will stall. 2774 */ 2775 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2776 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2777 2778 /* Allow kswapd to start writing pages during reclaim.*/ 2779 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2780 set_bit(PGDAT_DIRTY, &pgdat->flags); 2781 2782 /* 2783 * If kswapd scans pages marked marked for immediate 2784 * reclaim and under writeback (nr_immediate), it 2785 * implies that pages are cycling through the LRU 2786 * faster than they are written so also forcibly stall. 2787 */ 2788 if (sc->nr.immediate) 2789 congestion_wait(BLK_RW_ASYNC, HZ/10); 2790 } 2791 2792 /* 2793 * Legacy memcg will stall in page writeback so avoid forcibly 2794 * stalling in wait_iff_congested(). 2795 */ 2796 if (!global_reclaim(sc) && sane_reclaim(sc) && 2797 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2798 set_memcg_congestion(pgdat, root, true); 2799 2800 /* 2801 * Stall direct reclaim for IO completions if underlying BDIs 2802 * and node is congested. Allow kswapd to continue until it 2803 * starts encountering unqueued dirty pages or cycling through 2804 * the LRU too quickly. 2805 */ 2806 if (!sc->hibernation_mode && !current_is_kswapd() && 2807 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2808 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2809 2810 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2811 sc->nr_scanned - nr_scanned, sc)); 2812 2813 /* 2814 * Kswapd gives up on balancing particular nodes after too 2815 * many failures to reclaim anything from them and goes to 2816 * sleep. On reclaim progress, reset the failure counter. A 2817 * successful direct reclaim run will revive a dormant kswapd. 2818 */ 2819 if (reclaimable) 2820 pgdat->kswapd_failures = 0; 2821 2822 return reclaimable; 2823 } 2824 2825 /* 2826 * Returns true if compaction should go ahead for a costly-order request, or 2827 * the allocation would already succeed without compaction. Return false if we 2828 * should reclaim first. 2829 */ 2830 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2831 { 2832 unsigned long watermark; 2833 enum compact_result suitable; 2834 2835 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2836 if (suitable == COMPACT_SUCCESS) 2837 /* Allocation should succeed already. Don't reclaim. */ 2838 return true; 2839 if (suitable == COMPACT_SKIPPED) 2840 /* Compaction cannot yet proceed. Do reclaim. */ 2841 return false; 2842 2843 /* 2844 * Compaction is already possible, but it takes time to run and there 2845 * are potentially other callers using the pages just freed. So proceed 2846 * with reclaim to make a buffer of free pages available to give 2847 * compaction a reasonable chance of completing and allocating the page. 2848 * Note that we won't actually reclaim the whole buffer in one attempt 2849 * as the target watermark in should_continue_reclaim() is lower. But if 2850 * we are already above the high+gap watermark, don't reclaim at all. 2851 */ 2852 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2853 2854 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2855 } 2856 2857 /* 2858 * This is the direct reclaim path, for page-allocating processes. We only 2859 * try to reclaim pages from zones which will satisfy the caller's allocation 2860 * request. 2861 * 2862 * If a zone is deemed to be full of pinned pages then just give it a light 2863 * scan then give up on it. 2864 */ 2865 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2866 { 2867 struct zoneref *z; 2868 struct zone *zone; 2869 unsigned long nr_soft_reclaimed; 2870 unsigned long nr_soft_scanned; 2871 gfp_t orig_mask; 2872 pg_data_t *last_pgdat = NULL; 2873 2874 /* 2875 * If the number of buffer_heads in the machine exceeds the maximum 2876 * allowed level, force direct reclaim to scan the highmem zone as 2877 * highmem pages could be pinning lowmem pages storing buffer_heads 2878 */ 2879 orig_mask = sc->gfp_mask; 2880 if (buffer_heads_over_limit) { 2881 sc->gfp_mask |= __GFP_HIGHMEM; 2882 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2883 } 2884 2885 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2886 sc->reclaim_idx, sc->nodemask) { 2887 /* 2888 * Take care memory controller reclaiming has small influence 2889 * to global LRU. 2890 */ 2891 if (global_reclaim(sc)) { 2892 if (!cpuset_zone_allowed(zone, 2893 GFP_KERNEL | __GFP_HARDWALL)) 2894 continue; 2895 2896 /* 2897 * If we already have plenty of memory free for 2898 * compaction in this zone, don't free any more. 2899 * Even though compaction is invoked for any 2900 * non-zero order, only frequent costly order 2901 * reclamation is disruptive enough to become a 2902 * noticeable problem, like transparent huge 2903 * page allocations. 2904 */ 2905 if (IS_ENABLED(CONFIG_COMPACTION) && 2906 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2907 compaction_ready(zone, sc)) { 2908 sc->compaction_ready = true; 2909 continue; 2910 } 2911 2912 /* 2913 * Shrink each node in the zonelist once. If the 2914 * zonelist is ordered by zone (not the default) then a 2915 * node may be shrunk multiple times but in that case 2916 * the user prefers lower zones being preserved. 2917 */ 2918 if (zone->zone_pgdat == last_pgdat) 2919 continue; 2920 2921 /* 2922 * This steals pages from memory cgroups over softlimit 2923 * and returns the number of reclaimed pages and 2924 * scanned pages. This works for global memory pressure 2925 * and balancing, not for a memcg's limit. 2926 */ 2927 nr_soft_scanned = 0; 2928 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2929 sc->order, sc->gfp_mask, 2930 &nr_soft_scanned); 2931 sc->nr_reclaimed += nr_soft_reclaimed; 2932 sc->nr_scanned += nr_soft_scanned; 2933 /* need some check for avoid more shrink_zone() */ 2934 } 2935 2936 /* See comment about same check for global reclaim above */ 2937 if (zone->zone_pgdat == last_pgdat) 2938 continue; 2939 last_pgdat = zone->zone_pgdat; 2940 shrink_node(zone->zone_pgdat, sc); 2941 } 2942 2943 /* 2944 * Restore to original mask to avoid the impact on the caller if we 2945 * promoted it to __GFP_HIGHMEM. 2946 */ 2947 sc->gfp_mask = orig_mask; 2948 } 2949 2950 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2951 { 2952 struct mem_cgroup *memcg; 2953 2954 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2955 do { 2956 unsigned long refaults; 2957 struct lruvec *lruvec; 2958 2959 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2960 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2961 lruvec->refaults = refaults; 2962 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2963 } 2964 2965 /* 2966 * This is the main entry point to direct page reclaim. 2967 * 2968 * If a full scan of the inactive list fails to free enough memory then we 2969 * are "out of memory" and something needs to be killed. 2970 * 2971 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2972 * high - the zone may be full of dirty or under-writeback pages, which this 2973 * caller can't do much about. We kick the writeback threads and take explicit 2974 * naps in the hope that some of these pages can be written. But if the 2975 * allocating task holds filesystem locks which prevent writeout this might not 2976 * work, and the allocation attempt will fail. 2977 * 2978 * returns: 0, if no pages reclaimed 2979 * else, the number of pages reclaimed 2980 */ 2981 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2982 struct scan_control *sc) 2983 { 2984 int initial_priority = sc->priority; 2985 pg_data_t *last_pgdat; 2986 struct zoneref *z; 2987 struct zone *zone; 2988 retry: 2989 delayacct_freepages_start(); 2990 2991 if (global_reclaim(sc)) 2992 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2993 2994 do { 2995 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2996 sc->priority); 2997 sc->nr_scanned = 0; 2998 shrink_zones(zonelist, sc); 2999 3000 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3001 break; 3002 3003 if (sc->compaction_ready) 3004 break; 3005 3006 /* 3007 * If we're getting trouble reclaiming, start doing 3008 * writepage even in laptop mode. 3009 */ 3010 if (sc->priority < DEF_PRIORITY - 2) 3011 sc->may_writepage = 1; 3012 } while (--sc->priority >= 0); 3013 3014 last_pgdat = NULL; 3015 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3016 sc->nodemask) { 3017 if (zone->zone_pgdat == last_pgdat) 3018 continue; 3019 last_pgdat = zone->zone_pgdat; 3020 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3021 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3022 } 3023 3024 delayacct_freepages_end(); 3025 3026 if (sc->nr_reclaimed) 3027 return sc->nr_reclaimed; 3028 3029 /* Aborted reclaim to try compaction? don't OOM, then */ 3030 if (sc->compaction_ready) 3031 return 1; 3032 3033 /* Untapped cgroup reserves? Don't OOM, retry. */ 3034 if (sc->memcg_low_skipped) { 3035 sc->priority = initial_priority; 3036 sc->memcg_low_reclaim = 1; 3037 sc->memcg_low_skipped = 0; 3038 goto retry; 3039 } 3040 3041 return 0; 3042 } 3043 3044 static bool allow_direct_reclaim(pg_data_t *pgdat) 3045 { 3046 struct zone *zone; 3047 unsigned long pfmemalloc_reserve = 0; 3048 unsigned long free_pages = 0; 3049 int i; 3050 bool wmark_ok; 3051 3052 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3053 return true; 3054 3055 for (i = 0; i <= ZONE_NORMAL; i++) { 3056 zone = &pgdat->node_zones[i]; 3057 if (!managed_zone(zone)) 3058 continue; 3059 3060 if (!zone_reclaimable_pages(zone)) 3061 continue; 3062 3063 pfmemalloc_reserve += min_wmark_pages(zone); 3064 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3065 } 3066 3067 /* If there are no reserves (unexpected config) then do not throttle */ 3068 if (!pfmemalloc_reserve) 3069 return true; 3070 3071 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3072 3073 /* kswapd must be awake if processes are being throttled */ 3074 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3075 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3076 (enum zone_type)ZONE_NORMAL); 3077 wake_up_interruptible(&pgdat->kswapd_wait); 3078 } 3079 3080 return wmark_ok; 3081 } 3082 3083 /* 3084 * Throttle direct reclaimers if backing storage is backed by the network 3085 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3086 * depleted. kswapd will continue to make progress and wake the processes 3087 * when the low watermark is reached. 3088 * 3089 * Returns true if a fatal signal was delivered during throttling. If this 3090 * happens, the page allocator should not consider triggering the OOM killer. 3091 */ 3092 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3093 nodemask_t *nodemask) 3094 { 3095 struct zoneref *z; 3096 struct zone *zone; 3097 pg_data_t *pgdat = NULL; 3098 3099 /* 3100 * Kernel threads should not be throttled as they may be indirectly 3101 * responsible for cleaning pages necessary for reclaim to make forward 3102 * progress. kjournald for example may enter direct reclaim while 3103 * committing a transaction where throttling it could forcing other 3104 * processes to block on log_wait_commit(). 3105 */ 3106 if (current->flags & PF_KTHREAD) 3107 goto out; 3108 3109 /* 3110 * If a fatal signal is pending, this process should not throttle. 3111 * It should return quickly so it can exit and free its memory 3112 */ 3113 if (fatal_signal_pending(current)) 3114 goto out; 3115 3116 /* 3117 * Check if the pfmemalloc reserves are ok by finding the first node 3118 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3119 * GFP_KERNEL will be required for allocating network buffers when 3120 * swapping over the network so ZONE_HIGHMEM is unusable. 3121 * 3122 * Throttling is based on the first usable node and throttled processes 3123 * wait on a queue until kswapd makes progress and wakes them. There 3124 * is an affinity then between processes waking up and where reclaim 3125 * progress has been made assuming the process wakes on the same node. 3126 * More importantly, processes running on remote nodes will not compete 3127 * for remote pfmemalloc reserves and processes on different nodes 3128 * should make reasonable progress. 3129 */ 3130 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3131 gfp_zone(gfp_mask), nodemask) { 3132 if (zone_idx(zone) > ZONE_NORMAL) 3133 continue; 3134 3135 /* Throttle based on the first usable node */ 3136 pgdat = zone->zone_pgdat; 3137 if (allow_direct_reclaim(pgdat)) 3138 goto out; 3139 break; 3140 } 3141 3142 /* If no zone was usable by the allocation flags then do not throttle */ 3143 if (!pgdat) 3144 goto out; 3145 3146 /* Account for the throttling */ 3147 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3148 3149 /* 3150 * If the caller cannot enter the filesystem, it's possible that it 3151 * is due to the caller holding an FS lock or performing a journal 3152 * transaction in the case of a filesystem like ext[3|4]. In this case, 3153 * it is not safe to block on pfmemalloc_wait as kswapd could be 3154 * blocked waiting on the same lock. Instead, throttle for up to a 3155 * second before continuing. 3156 */ 3157 if (!(gfp_mask & __GFP_FS)) { 3158 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3159 allow_direct_reclaim(pgdat), HZ); 3160 3161 goto check_pending; 3162 } 3163 3164 /* Throttle until kswapd wakes the process */ 3165 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3166 allow_direct_reclaim(pgdat)); 3167 3168 check_pending: 3169 if (fatal_signal_pending(current)) 3170 return true; 3171 3172 out: 3173 return false; 3174 } 3175 3176 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3177 gfp_t gfp_mask, nodemask_t *nodemask) 3178 { 3179 unsigned long nr_reclaimed; 3180 struct scan_control sc = { 3181 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3182 .gfp_mask = current_gfp_context(gfp_mask), 3183 .reclaim_idx = gfp_zone(gfp_mask), 3184 .order = order, 3185 .nodemask = nodemask, 3186 .priority = DEF_PRIORITY, 3187 .may_writepage = !laptop_mode, 3188 .may_unmap = 1, 3189 .may_swap = 1, 3190 .may_shrinkslab = 1, 3191 }; 3192 3193 /* 3194 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3195 * Confirm they are large enough for max values. 3196 */ 3197 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3198 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3199 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3200 3201 /* 3202 * Do not enter reclaim if fatal signal was delivered while throttled. 3203 * 1 is returned so that the page allocator does not OOM kill at this 3204 * point. 3205 */ 3206 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3207 return 1; 3208 3209 set_task_reclaim_state(current, &sc.reclaim_state); 3210 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3211 3212 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3213 3214 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3215 set_task_reclaim_state(current, NULL); 3216 3217 return nr_reclaimed; 3218 } 3219 3220 #ifdef CONFIG_MEMCG 3221 3222 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3223 gfp_t gfp_mask, bool noswap, 3224 pg_data_t *pgdat, 3225 unsigned long *nr_scanned) 3226 { 3227 struct scan_control sc = { 3228 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3229 .target_mem_cgroup = memcg, 3230 .may_writepage = !laptop_mode, 3231 .may_unmap = 1, 3232 .reclaim_idx = MAX_NR_ZONES - 1, 3233 .may_swap = !noswap, 3234 .may_shrinkslab = 1, 3235 }; 3236 unsigned long lru_pages; 3237 3238 set_task_reclaim_state(current, &sc.reclaim_state); 3239 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3240 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3241 3242 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3243 sc.gfp_mask); 3244 3245 /* 3246 * NOTE: Although we can get the priority field, using it 3247 * here is not a good idea, since it limits the pages we can scan. 3248 * if we don't reclaim here, the shrink_node from balance_pgdat 3249 * will pick up pages from other mem cgroup's as well. We hack 3250 * the priority and make it zero. 3251 */ 3252 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3253 3254 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3255 3256 set_task_reclaim_state(current, NULL); 3257 *nr_scanned = sc.nr_scanned; 3258 3259 return sc.nr_reclaimed; 3260 } 3261 3262 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3263 unsigned long nr_pages, 3264 gfp_t gfp_mask, 3265 bool may_swap) 3266 { 3267 struct zonelist *zonelist; 3268 unsigned long nr_reclaimed; 3269 unsigned long pflags; 3270 int nid; 3271 unsigned int noreclaim_flag; 3272 struct scan_control sc = { 3273 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3274 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3275 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3276 .reclaim_idx = MAX_NR_ZONES - 1, 3277 .target_mem_cgroup = memcg, 3278 .priority = DEF_PRIORITY, 3279 .may_writepage = !laptop_mode, 3280 .may_unmap = 1, 3281 .may_swap = may_swap, 3282 .may_shrinkslab = 1, 3283 }; 3284 3285 set_task_reclaim_state(current, &sc.reclaim_state); 3286 /* 3287 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3288 * take care of from where we get pages. So the node where we start the 3289 * scan does not need to be the current node. 3290 */ 3291 nid = mem_cgroup_select_victim_node(memcg); 3292 3293 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3294 3295 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3296 3297 psi_memstall_enter(&pflags); 3298 noreclaim_flag = memalloc_noreclaim_save(); 3299 3300 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3301 3302 memalloc_noreclaim_restore(noreclaim_flag); 3303 psi_memstall_leave(&pflags); 3304 3305 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3306 set_task_reclaim_state(current, NULL); 3307 3308 return nr_reclaimed; 3309 } 3310 #endif 3311 3312 static void age_active_anon(struct pglist_data *pgdat, 3313 struct scan_control *sc) 3314 { 3315 struct mem_cgroup *memcg; 3316 3317 if (!total_swap_pages) 3318 return; 3319 3320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3321 do { 3322 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3323 3324 if (inactive_list_is_low(lruvec, false, sc, true)) 3325 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3326 sc, LRU_ACTIVE_ANON); 3327 3328 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3329 } while (memcg); 3330 } 3331 3332 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3333 { 3334 int i; 3335 struct zone *zone; 3336 3337 /* 3338 * Check for watermark boosts top-down as the higher zones 3339 * are more likely to be boosted. Both watermarks and boosts 3340 * should not be checked at the time time as reclaim would 3341 * start prematurely when there is no boosting and a lower 3342 * zone is balanced. 3343 */ 3344 for (i = classzone_idx; i >= 0; i--) { 3345 zone = pgdat->node_zones + i; 3346 if (!managed_zone(zone)) 3347 continue; 3348 3349 if (zone->watermark_boost) 3350 return true; 3351 } 3352 3353 return false; 3354 } 3355 3356 /* 3357 * Returns true if there is an eligible zone balanced for the request order 3358 * and classzone_idx 3359 */ 3360 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3361 { 3362 int i; 3363 unsigned long mark = -1; 3364 struct zone *zone; 3365 3366 /* 3367 * Check watermarks bottom-up as lower zones are more likely to 3368 * meet watermarks. 3369 */ 3370 for (i = 0; i <= classzone_idx; i++) { 3371 zone = pgdat->node_zones + i; 3372 3373 if (!managed_zone(zone)) 3374 continue; 3375 3376 mark = high_wmark_pages(zone); 3377 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3378 return true; 3379 } 3380 3381 /* 3382 * If a node has no populated zone within classzone_idx, it does not 3383 * need balancing by definition. This can happen if a zone-restricted 3384 * allocation tries to wake a remote kswapd. 3385 */ 3386 if (mark == -1) 3387 return true; 3388 3389 return false; 3390 } 3391 3392 /* Clear pgdat state for congested, dirty or under writeback. */ 3393 static void clear_pgdat_congested(pg_data_t *pgdat) 3394 { 3395 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3396 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3397 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3398 } 3399 3400 /* 3401 * Prepare kswapd for sleeping. This verifies that there are no processes 3402 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3403 * 3404 * Returns true if kswapd is ready to sleep 3405 */ 3406 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3407 { 3408 /* 3409 * The throttled processes are normally woken up in balance_pgdat() as 3410 * soon as allow_direct_reclaim() is true. But there is a potential 3411 * race between when kswapd checks the watermarks and a process gets 3412 * throttled. There is also a potential race if processes get 3413 * throttled, kswapd wakes, a large process exits thereby balancing the 3414 * zones, which causes kswapd to exit balance_pgdat() before reaching 3415 * the wake up checks. If kswapd is going to sleep, no process should 3416 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3417 * the wake up is premature, processes will wake kswapd and get 3418 * throttled again. The difference from wake ups in balance_pgdat() is 3419 * that here we are under prepare_to_wait(). 3420 */ 3421 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3422 wake_up_all(&pgdat->pfmemalloc_wait); 3423 3424 /* Hopeless node, leave it to direct reclaim */ 3425 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3426 return true; 3427 3428 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3429 clear_pgdat_congested(pgdat); 3430 return true; 3431 } 3432 3433 return false; 3434 } 3435 3436 /* 3437 * kswapd shrinks a node of pages that are at or below the highest usable 3438 * zone that is currently unbalanced. 3439 * 3440 * Returns true if kswapd scanned at least the requested number of pages to 3441 * reclaim or if the lack of progress was due to pages under writeback. 3442 * This is used to determine if the scanning priority needs to be raised. 3443 */ 3444 static bool kswapd_shrink_node(pg_data_t *pgdat, 3445 struct scan_control *sc) 3446 { 3447 struct zone *zone; 3448 int z; 3449 3450 /* Reclaim a number of pages proportional to the number of zones */ 3451 sc->nr_to_reclaim = 0; 3452 for (z = 0; z <= sc->reclaim_idx; z++) { 3453 zone = pgdat->node_zones + z; 3454 if (!managed_zone(zone)) 3455 continue; 3456 3457 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3458 } 3459 3460 /* 3461 * Historically care was taken to put equal pressure on all zones but 3462 * now pressure is applied based on node LRU order. 3463 */ 3464 shrink_node(pgdat, sc); 3465 3466 /* 3467 * Fragmentation may mean that the system cannot be rebalanced for 3468 * high-order allocations. If twice the allocation size has been 3469 * reclaimed then recheck watermarks only at order-0 to prevent 3470 * excessive reclaim. Assume that a process requested a high-order 3471 * can direct reclaim/compact. 3472 */ 3473 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3474 sc->order = 0; 3475 3476 return sc->nr_scanned >= sc->nr_to_reclaim; 3477 } 3478 3479 /* 3480 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3481 * that are eligible for use by the caller until at least one zone is 3482 * balanced. 3483 * 3484 * Returns the order kswapd finished reclaiming at. 3485 * 3486 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3487 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3488 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3489 * or lower is eligible for reclaim until at least one usable zone is 3490 * balanced. 3491 */ 3492 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3493 { 3494 int i; 3495 unsigned long nr_soft_reclaimed; 3496 unsigned long nr_soft_scanned; 3497 unsigned long pflags; 3498 unsigned long nr_boost_reclaim; 3499 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3500 bool boosted; 3501 struct zone *zone; 3502 struct scan_control sc = { 3503 .gfp_mask = GFP_KERNEL, 3504 .order = order, 3505 .may_unmap = 1, 3506 }; 3507 3508 set_task_reclaim_state(current, &sc.reclaim_state); 3509 psi_memstall_enter(&pflags); 3510 __fs_reclaim_acquire(); 3511 3512 count_vm_event(PAGEOUTRUN); 3513 3514 /* 3515 * Account for the reclaim boost. Note that the zone boost is left in 3516 * place so that parallel allocations that are near the watermark will 3517 * stall or direct reclaim until kswapd is finished. 3518 */ 3519 nr_boost_reclaim = 0; 3520 for (i = 0; i <= classzone_idx; i++) { 3521 zone = pgdat->node_zones + i; 3522 if (!managed_zone(zone)) 3523 continue; 3524 3525 nr_boost_reclaim += zone->watermark_boost; 3526 zone_boosts[i] = zone->watermark_boost; 3527 } 3528 boosted = nr_boost_reclaim; 3529 3530 restart: 3531 sc.priority = DEF_PRIORITY; 3532 do { 3533 unsigned long nr_reclaimed = sc.nr_reclaimed; 3534 bool raise_priority = true; 3535 bool balanced; 3536 bool ret; 3537 3538 sc.reclaim_idx = classzone_idx; 3539 3540 /* 3541 * If the number of buffer_heads exceeds the maximum allowed 3542 * then consider reclaiming from all zones. This has a dual 3543 * purpose -- on 64-bit systems it is expected that 3544 * buffer_heads are stripped during active rotation. On 32-bit 3545 * systems, highmem pages can pin lowmem memory and shrinking 3546 * buffers can relieve lowmem pressure. Reclaim may still not 3547 * go ahead if all eligible zones for the original allocation 3548 * request are balanced to avoid excessive reclaim from kswapd. 3549 */ 3550 if (buffer_heads_over_limit) { 3551 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3552 zone = pgdat->node_zones + i; 3553 if (!managed_zone(zone)) 3554 continue; 3555 3556 sc.reclaim_idx = i; 3557 break; 3558 } 3559 } 3560 3561 /* 3562 * If the pgdat is imbalanced then ignore boosting and preserve 3563 * the watermarks for a later time and restart. Note that the 3564 * zone watermarks will be still reset at the end of balancing 3565 * on the grounds that the normal reclaim should be enough to 3566 * re-evaluate if boosting is required when kswapd next wakes. 3567 */ 3568 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3569 if (!balanced && nr_boost_reclaim) { 3570 nr_boost_reclaim = 0; 3571 goto restart; 3572 } 3573 3574 /* 3575 * If boosting is not active then only reclaim if there are no 3576 * eligible zones. Note that sc.reclaim_idx is not used as 3577 * buffer_heads_over_limit may have adjusted it. 3578 */ 3579 if (!nr_boost_reclaim && balanced) 3580 goto out; 3581 3582 /* Limit the priority of boosting to avoid reclaim writeback */ 3583 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3584 raise_priority = false; 3585 3586 /* 3587 * Do not writeback or swap pages for boosted reclaim. The 3588 * intent is to relieve pressure not issue sub-optimal IO 3589 * from reclaim context. If no pages are reclaimed, the 3590 * reclaim will be aborted. 3591 */ 3592 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3593 sc.may_swap = !nr_boost_reclaim; 3594 sc.may_shrinkslab = !nr_boost_reclaim; 3595 3596 /* 3597 * Do some background aging of the anon list, to give 3598 * pages a chance to be referenced before reclaiming. All 3599 * pages are rotated regardless of classzone as this is 3600 * about consistent aging. 3601 */ 3602 age_active_anon(pgdat, &sc); 3603 3604 /* 3605 * If we're getting trouble reclaiming, start doing writepage 3606 * even in laptop mode. 3607 */ 3608 if (sc.priority < DEF_PRIORITY - 2) 3609 sc.may_writepage = 1; 3610 3611 /* Call soft limit reclaim before calling shrink_node. */ 3612 sc.nr_scanned = 0; 3613 nr_soft_scanned = 0; 3614 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3615 sc.gfp_mask, &nr_soft_scanned); 3616 sc.nr_reclaimed += nr_soft_reclaimed; 3617 3618 /* 3619 * There should be no need to raise the scanning priority if 3620 * enough pages are already being scanned that that high 3621 * watermark would be met at 100% efficiency. 3622 */ 3623 if (kswapd_shrink_node(pgdat, &sc)) 3624 raise_priority = false; 3625 3626 /* 3627 * If the low watermark is met there is no need for processes 3628 * to be throttled on pfmemalloc_wait as they should not be 3629 * able to safely make forward progress. Wake them 3630 */ 3631 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3632 allow_direct_reclaim(pgdat)) 3633 wake_up_all(&pgdat->pfmemalloc_wait); 3634 3635 /* Check if kswapd should be suspending */ 3636 __fs_reclaim_release(); 3637 ret = try_to_freeze(); 3638 __fs_reclaim_acquire(); 3639 if (ret || kthread_should_stop()) 3640 break; 3641 3642 /* 3643 * Raise priority if scanning rate is too low or there was no 3644 * progress in reclaiming pages 3645 */ 3646 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3647 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3648 3649 /* 3650 * If reclaim made no progress for a boost, stop reclaim as 3651 * IO cannot be queued and it could be an infinite loop in 3652 * extreme circumstances. 3653 */ 3654 if (nr_boost_reclaim && !nr_reclaimed) 3655 break; 3656 3657 if (raise_priority || !nr_reclaimed) 3658 sc.priority--; 3659 } while (sc.priority >= 1); 3660 3661 if (!sc.nr_reclaimed) 3662 pgdat->kswapd_failures++; 3663 3664 out: 3665 /* If reclaim was boosted, account for the reclaim done in this pass */ 3666 if (boosted) { 3667 unsigned long flags; 3668 3669 for (i = 0; i <= classzone_idx; i++) { 3670 if (!zone_boosts[i]) 3671 continue; 3672 3673 /* Increments are under the zone lock */ 3674 zone = pgdat->node_zones + i; 3675 spin_lock_irqsave(&zone->lock, flags); 3676 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3677 spin_unlock_irqrestore(&zone->lock, flags); 3678 } 3679 3680 /* 3681 * As there is now likely space, wakeup kcompact to defragment 3682 * pageblocks. 3683 */ 3684 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3685 } 3686 3687 snapshot_refaults(NULL, pgdat); 3688 __fs_reclaim_release(); 3689 psi_memstall_leave(&pflags); 3690 set_task_reclaim_state(current, NULL); 3691 3692 /* 3693 * Return the order kswapd stopped reclaiming at as 3694 * prepare_kswapd_sleep() takes it into account. If another caller 3695 * entered the allocator slow path while kswapd was awake, order will 3696 * remain at the higher level. 3697 */ 3698 return sc.order; 3699 } 3700 3701 /* 3702 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3703 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3704 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3705 * after previous reclaim attempt (node is still unbalanced). In that case 3706 * return the zone index of the previous kswapd reclaim cycle. 3707 */ 3708 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3709 enum zone_type prev_classzone_idx) 3710 { 3711 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3712 return prev_classzone_idx; 3713 return pgdat->kswapd_classzone_idx; 3714 } 3715 3716 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3717 unsigned int classzone_idx) 3718 { 3719 long remaining = 0; 3720 DEFINE_WAIT(wait); 3721 3722 if (freezing(current) || kthread_should_stop()) 3723 return; 3724 3725 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3726 3727 /* 3728 * Try to sleep for a short interval. Note that kcompactd will only be 3729 * woken if it is possible to sleep for a short interval. This is 3730 * deliberate on the assumption that if reclaim cannot keep an 3731 * eligible zone balanced that it's also unlikely that compaction will 3732 * succeed. 3733 */ 3734 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3735 /* 3736 * Compaction records what page blocks it recently failed to 3737 * isolate pages from and skips them in the future scanning. 3738 * When kswapd is going to sleep, it is reasonable to assume 3739 * that pages and compaction may succeed so reset the cache. 3740 */ 3741 reset_isolation_suitable(pgdat); 3742 3743 /* 3744 * We have freed the memory, now we should compact it to make 3745 * allocation of the requested order possible. 3746 */ 3747 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3748 3749 remaining = schedule_timeout(HZ/10); 3750 3751 /* 3752 * If woken prematurely then reset kswapd_classzone_idx and 3753 * order. The values will either be from a wakeup request or 3754 * the previous request that slept prematurely. 3755 */ 3756 if (remaining) { 3757 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3758 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3759 } 3760 3761 finish_wait(&pgdat->kswapd_wait, &wait); 3762 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3763 } 3764 3765 /* 3766 * After a short sleep, check if it was a premature sleep. If not, then 3767 * go fully to sleep until explicitly woken up. 3768 */ 3769 if (!remaining && 3770 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3771 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3772 3773 /* 3774 * vmstat counters are not perfectly accurate and the estimated 3775 * value for counters such as NR_FREE_PAGES can deviate from the 3776 * true value by nr_online_cpus * threshold. To avoid the zone 3777 * watermarks being breached while under pressure, we reduce the 3778 * per-cpu vmstat threshold while kswapd is awake and restore 3779 * them before going back to sleep. 3780 */ 3781 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3782 3783 if (!kthread_should_stop()) 3784 schedule(); 3785 3786 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3787 } else { 3788 if (remaining) 3789 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3790 else 3791 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3792 } 3793 finish_wait(&pgdat->kswapd_wait, &wait); 3794 } 3795 3796 /* 3797 * The background pageout daemon, started as a kernel thread 3798 * from the init process. 3799 * 3800 * This basically trickles out pages so that we have _some_ 3801 * free memory available even if there is no other activity 3802 * that frees anything up. This is needed for things like routing 3803 * etc, where we otherwise might have all activity going on in 3804 * asynchronous contexts that cannot page things out. 3805 * 3806 * If there are applications that are active memory-allocators 3807 * (most normal use), this basically shouldn't matter. 3808 */ 3809 static int kswapd(void *p) 3810 { 3811 unsigned int alloc_order, reclaim_order; 3812 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3813 pg_data_t *pgdat = (pg_data_t*)p; 3814 struct task_struct *tsk = current; 3815 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3816 3817 if (!cpumask_empty(cpumask)) 3818 set_cpus_allowed_ptr(tsk, cpumask); 3819 3820 /* 3821 * Tell the memory management that we're a "memory allocator", 3822 * and that if we need more memory we should get access to it 3823 * regardless (see "__alloc_pages()"). "kswapd" should 3824 * never get caught in the normal page freeing logic. 3825 * 3826 * (Kswapd normally doesn't need memory anyway, but sometimes 3827 * you need a small amount of memory in order to be able to 3828 * page out something else, and this flag essentially protects 3829 * us from recursively trying to free more memory as we're 3830 * trying to free the first piece of memory in the first place). 3831 */ 3832 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3833 set_freezable(); 3834 3835 pgdat->kswapd_order = 0; 3836 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3837 for ( ; ; ) { 3838 bool ret; 3839 3840 alloc_order = reclaim_order = pgdat->kswapd_order; 3841 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3842 3843 kswapd_try_sleep: 3844 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3845 classzone_idx); 3846 3847 /* Read the new order and classzone_idx */ 3848 alloc_order = reclaim_order = pgdat->kswapd_order; 3849 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3850 pgdat->kswapd_order = 0; 3851 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3852 3853 ret = try_to_freeze(); 3854 if (kthread_should_stop()) 3855 break; 3856 3857 /* 3858 * We can speed up thawing tasks if we don't call balance_pgdat 3859 * after returning from the refrigerator 3860 */ 3861 if (ret) 3862 continue; 3863 3864 /* 3865 * Reclaim begins at the requested order but if a high-order 3866 * reclaim fails then kswapd falls back to reclaiming for 3867 * order-0. If that happens, kswapd will consider sleeping 3868 * for the order it finished reclaiming at (reclaim_order) 3869 * but kcompactd is woken to compact for the original 3870 * request (alloc_order). 3871 */ 3872 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3873 alloc_order); 3874 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3875 if (reclaim_order < alloc_order) 3876 goto kswapd_try_sleep; 3877 } 3878 3879 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3880 3881 return 0; 3882 } 3883 3884 /* 3885 * A zone is low on free memory or too fragmented for high-order memory. If 3886 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3887 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3888 * has failed or is not needed, still wake up kcompactd if only compaction is 3889 * needed. 3890 */ 3891 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3892 enum zone_type classzone_idx) 3893 { 3894 pg_data_t *pgdat; 3895 3896 if (!managed_zone(zone)) 3897 return; 3898 3899 if (!cpuset_zone_allowed(zone, gfp_flags)) 3900 return; 3901 pgdat = zone->zone_pgdat; 3902 3903 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3904 pgdat->kswapd_classzone_idx = classzone_idx; 3905 else 3906 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3907 classzone_idx); 3908 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3909 if (!waitqueue_active(&pgdat->kswapd_wait)) 3910 return; 3911 3912 /* Hopeless node, leave it to direct reclaim if possible */ 3913 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3914 (pgdat_balanced(pgdat, order, classzone_idx) && 3915 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3916 /* 3917 * There may be plenty of free memory available, but it's too 3918 * fragmented for high-order allocations. Wake up kcompactd 3919 * and rely on compaction_suitable() to determine if it's 3920 * needed. If it fails, it will defer subsequent attempts to 3921 * ratelimit its work. 3922 */ 3923 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3924 wakeup_kcompactd(pgdat, order, classzone_idx); 3925 return; 3926 } 3927 3928 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3929 gfp_flags); 3930 wake_up_interruptible(&pgdat->kswapd_wait); 3931 } 3932 3933 #ifdef CONFIG_HIBERNATION 3934 /* 3935 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3936 * freed pages. 3937 * 3938 * Rather than trying to age LRUs the aim is to preserve the overall 3939 * LRU order by reclaiming preferentially 3940 * inactive > active > active referenced > active mapped 3941 */ 3942 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3943 { 3944 struct scan_control sc = { 3945 .nr_to_reclaim = nr_to_reclaim, 3946 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3947 .reclaim_idx = MAX_NR_ZONES - 1, 3948 .priority = DEF_PRIORITY, 3949 .may_writepage = 1, 3950 .may_unmap = 1, 3951 .may_swap = 1, 3952 .hibernation_mode = 1, 3953 }; 3954 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3955 unsigned long nr_reclaimed; 3956 unsigned int noreclaim_flag; 3957 3958 fs_reclaim_acquire(sc.gfp_mask); 3959 noreclaim_flag = memalloc_noreclaim_save(); 3960 set_task_reclaim_state(current, &sc.reclaim_state); 3961 3962 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3963 3964 set_task_reclaim_state(current, NULL); 3965 memalloc_noreclaim_restore(noreclaim_flag); 3966 fs_reclaim_release(sc.gfp_mask); 3967 3968 return nr_reclaimed; 3969 } 3970 #endif /* CONFIG_HIBERNATION */ 3971 3972 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3973 not required for correctness. So if the last cpu in a node goes 3974 away, we get changed to run anywhere: as the first one comes back, 3975 restore their cpu bindings. */ 3976 static int kswapd_cpu_online(unsigned int cpu) 3977 { 3978 int nid; 3979 3980 for_each_node_state(nid, N_MEMORY) { 3981 pg_data_t *pgdat = NODE_DATA(nid); 3982 const struct cpumask *mask; 3983 3984 mask = cpumask_of_node(pgdat->node_id); 3985 3986 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3987 /* One of our CPUs online: restore mask */ 3988 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3989 } 3990 return 0; 3991 } 3992 3993 /* 3994 * This kswapd start function will be called by init and node-hot-add. 3995 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3996 */ 3997 int kswapd_run(int nid) 3998 { 3999 pg_data_t *pgdat = NODE_DATA(nid); 4000 int ret = 0; 4001 4002 if (pgdat->kswapd) 4003 return 0; 4004 4005 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4006 if (IS_ERR(pgdat->kswapd)) { 4007 /* failure at boot is fatal */ 4008 BUG_ON(system_state < SYSTEM_RUNNING); 4009 pr_err("Failed to start kswapd on node %d\n", nid); 4010 ret = PTR_ERR(pgdat->kswapd); 4011 pgdat->kswapd = NULL; 4012 } 4013 return ret; 4014 } 4015 4016 /* 4017 * Called by memory hotplug when all memory in a node is offlined. Caller must 4018 * hold mem_hotplug_begin/end(). 4019 */ 4020 void kswapd_stop(int nid) 4021 { 4022 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4023 4024 if (kswapd) { 4025 kthread_stop(kswapd); 4026 NODE_DATA(nid)->kswapd = NULL; 4027 } 4028 } 4029 4030 static int __init kswapd_init(void) 4031 { 4032 int nid, ret; 4033 4034 swap_setup(); 4035 for_each_node_state(nid, N_MEMORY) 4036 kswapd_run(nid); 4037 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4038 "mm/vmscan:online", kswapd_cpu_online, 4039 NULL); 4040 WARN_ON(ret < 0); 4041 return 0; 4042 } 4043 4044 module_init(kswapd_init) 4045 4046 #ifdef CONFIG_NUMA 4047 /* 4048 * Node reclaim mode 4049 * 4050 * If non-zero call node_reclaim when the number of free pages falls below 4051 * the watermarks. 4052 */ 4053 int node_reclaim_mode __read_mostly; 4054 4055 #define RECLAIM_OFF 0 4056 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4057 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4058 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4059 4060 /* 4061 * Priority for NODE_RECLAIM. This determines the fraction of pages 4062 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4063 * a zone. 4064 */ 4065 #define NODE_RECLAIM_PRIORITY 4 4066 4067 /* 4068 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4069 * occur. 4070 */ 4071 int sysctl_min_unmapped_ratio = 1; 4072 4073 /* 4074 * If the number of slab pages in a zone grows beyond this percentage then 4075 * slab reclaim needs to occur. 4076 */ 4077 int sysctl_min_slab_ratio = 5; 4078 4079 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4080 { 4081 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4082 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4083 node_page_state(pgdat, NR_ACTIVE_FILE); 4084 4085 /* 4086 * It's possible for there to be more file mapped pages than 4087 * accounted for by the pages on the file LRU lists because 4088 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4089 */ 4090 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4091 } 4092 4093 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4094 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4095 { 4096 unsigned long nr_pagecache_reclaimable; 4097 unsigned long delta = 0; 4098 4099 /* 4100 * If RECLAIM_UNMAP is set, then all file pages are considered 4101 * potentially reclaimable. Otherwise, we have to worry about 4102 * pages like swapcache and node_unmapped_file_pages() provides 4103 * a better estimate 4104 */ 4105 if (node_reclaim_mode & RECLAIM_UNMAP) 4106 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4107 else 4108 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4109 4110 /* If we can't clean pages, remove dirty pages from consideration */ 4111 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4112 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4113 4114 /* Watch for any possible underflows due to delta */ 4115 if (unlikely(delta > nr_pagecache_reclaimable)) 4116 delta = nr_pagecache_reclaimable; 4117 4118 return nr_pagecache_reclaimable - delta; 4119 } 4120 4121 /* 4122 * Try to free up some pages from this node through reclaim. 4123 */ 4124 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4125 { 4126 /* Minimum pages needed in order to stay on node */ 4127 const unsigned long nr_pages = 1 << order; 4128 struct task_struct *p = current; 4129 unsigned int noreclaim_flag; 4130 struct scan_control sc = { 4131 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4132 .gfp_mask = current_gfp_context(gfp_mask), 4133 .order = order, 4134 .priority = NODE_RECLAIM_PRIORITY, 4135 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4136 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4137 .may_swap = 1, 4138 .reclaim_idx = gfp_zone(gfp_mask), 4139 }; 4140 4141 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4142 sc.gfp_mask); 4143 4144 cond_resched(); 4145 fs_reclaim_acquire(sc.gfp_mask); 4146 /* 4147 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4148 * and we also need to be able to write out pages for RECLAIM_WRITE 4149 * and RECLAIM_UNMAP. 4150 */ 4151 noreclaim_flag = memalloc_noreclaim_save(); 4152 p->flags |= PF_SWAPWRITE; 4153 set_task_reclaim_state(p, &sc.reclaim_state); 4154 4155 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4156 /* 4157 * Free memory by calling shrink node with increasing 4158 * priorities until we have enough memory freed. 4159 */ 4160 do { 4161 shrink_node(pgdat, &sc); 4162 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4163 } 4164 4165 set_task_reclaim_state(p, NULL); 4166 current->flags &= ~PF_SWAPWRITE; 4167 memalloc_noreclaim_restore(noreclaim_flag); 4168 fs_reclaim_release(sc.gfp_mask); 4169 4170 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4171 4172 return sc.nr_reclaimed >= nr_pages; 4173 } 4174 4175 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4176 { 4177 int ret; 4178 4179 /* 4180 * Node reclaim reclaims unmapped file backed pages and 4181 * slab pages if we are over the defined limits. 4182 * 4183 * A small portion of unmapped file backed pages is needed for 4184 * file I/O otherwise pages read by file I/O will be immediately 4185 * thrown out if the node is overallocated. So we do not reclaim 4186 * if less than a specified percentage of the node is used by 4187 * unmapped file backed pages. 4188 */ 4189 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4190 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4191 return NODE_RECLAIM_FULL; 4192 4193 /* 4194 * Do not scan if the allocation should not be delayed. 4195 */ 4196 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4197 return NODE_RECLAIM_NOSCAN; 4198 4199 /* 4200 * Only run node reclaim on the local node or on nodes that do not 4201 * have associated processors. This will favor the local processor 4202 * over remote processors and spread off node memory allocations 4203 * as wide as possible. 4204 */ 4205 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4206 return NODE_RECLAIM_NOSCAN; 4207 4208 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4209 return NODE_RECLAIM_NOSCAN; 4210 4211 ret = __node_reclaim(pgdat, gfp_mask, order); 4212 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4213 4214 if (!ret) 4215 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4216 4217 return ret; 4218 } 4219 #endif 4220 4221 /* 4222 * page_evictable - test whether a page is evictable 4223 * @page: the page to test 4224 * 4225 * Test whether page is evictable--i.e., should be placed on active/inactive 4226 * lists vs unevictable list. 4227 * 4228 * Reasons page might not be evictable: 4229 * (1) page's mapping marked unevictable 4230 * (2) page is part of an mlocked VMA 4231 * 4232 */ 4233 int page_evictable(struct page *page) 4234 { 4235 int ret; 4236 4237 /* Prevent address_space of inode and swap cache from being freed */ 4238 rcu_read_lock(); 4239 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4240 rcu_read_unlock(); 4241 return ret; 4242 } 4243 4244 /** 4245 * check_move_unevictable_pages - check pages for evictability and move to 4246 * appropriate zone lru list 4247 * @pvec: pagevec with lru pages to check 4248 * 4249 * Checks pages for evictability, if an evictable page is in the unevictable 4250 * lru list, moves it to the appropriate evictable lru list. This function 4251 * should be only used for lru pages. 4252 */ 4253 void check_move_unevictable_pages(struct pagevec *pvec) 4254 { 4255 struct lruvec *lruvec; 4256 struct pglist_data *pgdat = NULL; 4257 int pgscanned = 0; 4258 int pgrescued = 0; 4259 int i; 4260 4261 for (i = 0; i < pvec->nr; i++) { 4262 struct page *page = pvec->pages[i]; 4263 struct pglist_data *pagepgdat = page_pgdat(page); 4264 4265 pgscanned++; 4266 if (pagepgdat != pgdat) { 4267 if (pgdat) 4268 spin_unlock_irq(&pgdat->lru_lock); 4269 pgdat = pagepgdat; 4270 spin_lock_irq(&pgdat->lru_lock); 4271 } 4272 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4273 4274 if (!PageLRU(page) || !PageUnevictable(page)) 4275 continue; 4276 4277 if (page_evictable(page)) { 4278 enum lru_list lru = page_lru_base_type(page); 4279 4280 VM_BUG_ON_PAGE(PageActive(page), page); 4281 ClearPageUnevictable(page); 4282 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4283 add_page_to_lru_list(page, lruvec, lru); 4284 pgrescued++; 4285 } 4286 } 4287 4288 if (pgdat) { 4289 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4290 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4291 spin_unlock_irq(&pgdat->lru_lock); 4292 } 4293 } 4294 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4295