xref: /openbmc/linux/mm/vmscan.c (revision 1f6ab566)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 	unsigned int may_deactivate:2;
101 	unsigned int force_deactivate:1;
102 	unsigned int skipped_deactivate:1;
103 
104 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
105 	unsigned int may_writepage:1;
106 
107 	/* Can mapped folios be reclaimed? */
108 	unsigned int may_unmap:1;
109 
110 	/* Can folios be swapped as part of reclaim? */
111 	unsigned int may_swap:1;
112 
113 	/* Proactive reclaim invoked by userspace through memory.reclaim */
114 	unsigned int proactive:1;
115 
116 	/*
117 	 * Cgroup memory below memory.low is protected as long as we
118 	 * don't threaten to OOM. If any cgroup is reclaimed at
119 	 * reduced force or passed over entirely due to its memory.low
120 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 	 * result, then go back for one more cycle that reclaims the protected
122 	 * memory (memcg_low_reclaim) to avert OOM.
123 	 */
124 	unsigned int memcg_low_reclaim:1;
125 	unsigned int memcg_low_skipped:1;
126 
127 	unsigned int hibernation_mode:1;
128 
129 	/* One of the zones is ready for compaction */
130 	unsigned int compaction_ready:1;
131 
132 	/* There is easily reclaimable cold cache in the current node */
133 	unsigned int cache_trim_mode:1;
134 
135 	/* The file folios on the current node are dangerously low */
136 	unsigned int file_is_tiny:1;
137 
138 	/* Always discard instead of demoting to lower tier memory */
139 	unsigned int no_demotion:1;
140 
141 	/* Allocation order */
142 	s8 order;
143 
144 	/* Scan (total_size >> priority) pages at once */
145 	s8 priority;
146 
147 	/* The highest zone to isolate folios for reclaim from */
148 	s8 reclaim_idx;
149 
150 	/* This context's GFP mask */
151 	gfp_t gfp_mask;
152 
153 	/* Incremented by the number of inactive pages that were scanned */
154 	unsigned long nr_scanned;
155 
156 	/* Number of pages freed so far during a call to shrink_zones() */
157 	unsigned long nr_reclaimed;
158 
159 	struct {
160 		unsigned int dirty;
161 		unsigned int unqueued_dirty;
162 		unsigned int congested;
163 		unsigned int writeback;
164 		unsigned int immediate;
165 		unsigned int file_taken;
166 		unsigned int taken;
167 	} nr;
168 
169 	/* for recording the reclaimed slab by now */
170 	struct reclaim_state reclaim_state;
171 };
172 
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
175 	do {								\
176 		if ((_folio)->lru.prev != _base) {			\
177 			struct folio *prev;				\
178 									\
179 			prev = lru_to_folio(&(_folio->lru));		\
180 			prefetchw(&prev->_field);			\
181 		}							\
182 	} while (0)
183 #else
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
185 #endif
186 
187 /*
188  * From 0 .. 200.  Higher means more swappy.
189  */
190 int vm_swappiness = 60;
191 
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
196 
197 #ifdef CONFIG_MEMCG
198 static int shrinker_nr_max;
199 
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
202 {
203 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
204 }
205 
206 static inline int shrinker_defer_size(int nr_items)
207 {
208 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
209 }
210 
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
212 						     int nid)
213 {
214 	return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
215 				      &shrinker_srcu,
216 				      lockdep_is_held(&shrinker_mutex));
217 }
218 
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
220 						     int nid)
221 {
222 	return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
223 				&shrinker_srcu);
224 }
225 
226 static void free_shrinker_info_rcu(struct rcu_head *head)
227 {
228 	kvfree(container_of(head, struct shrinker_info, rcu));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size,
234 				    int new_nr_max)
235 {
236 	struct shrinker_info *new, *old;
237 	struct mem_cgroup_per_node *pn;
238 	int nid;
239 	int size = map_size + defer_size;
240 
241 	for_each_node(nid) {
242 		pn = memcg->nodeinfo[nid];
243 		old = shrinker_info_protected(memcg, nid);
244 		/* Not yet online memcg */
245 		if (!old)
246 			return 0;
247 
248 		/* Already expanded this shrinker_info */
249 		if (new_nr_max <= old->map_nr_max)
250 			continue;
251 
252 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
253 		if (!new)
254 			return -ENOMEM;
255 
256 		new->nr_deferred = (atomic_long_t *)(new + 1);
257 		new->map = (void *)new->nr_deferred + defer_size;
258 		new->map_nr_max = new_nr_max;
259 
260 		/* map: set all old bits, clear all new bits */
261 		memset(new->map, (int)0xff, old_map_size);
262 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 		/* nr_deferred: copy old values, clear all new values */
264 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 		memset((void *)new->nr_deferred + old_defer_size, 0,
266 		       defer_size - old_defer_size);
267 
268 		rcu_assign_pointer(pn->shrinker_info, new);
269 		call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
270 	}
271 
272 	return 0;
273 }
274 
275 void free_shrinker_info(struct mem_cgroup *memcg)
276 {
277 	struct mem_cgroup_per_node *pn;
278 	struct shrinker_info *info;
279 	int nid;
280 
281 	for_each_node(nid) {
282 		pn = memcg->nodeinfo[nid];
283 		info = rcu_dereference_protected(pn->shrinker_info, true);
284 		kvfree(info);
285 		rcu_assign_pointer(pn->shrinker_info, NULL);
286 	}
287 }
288 
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
290 {
291 	struct shrinker_info *info;
292 	int nid, size, ret = 0;
293 	int map_size, defer_size = 0;
294 
295 	mutex_lock(&shrinker_mutex);
296 	map_size = shrinker_map_size(shrinker_nr_max);
297 	defer_size = shrinker_defer_size(shrinker_nr_max);
298 	size = map_size + defer_size;
299 	for_each_node(nid) {
300 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
301 		if (!info) {
302 			free_shrinker_info(memcg);
303 			ret = -ENOMEM;
304 			break;
305 		}
306 		info->nr_deferred = (atomic_long_t *)(info + 1);
307 		info->map = (void *)info->nr_deferred + defer_size;
308 		info->map_nr_max = shrinker_nr_max;
309 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
310 	}
311 	mutex_unlock(&shrinker_mutex);
312 
313 	return ret;
314 }
315 
316 static int expand_shrinker_info(int new_id)
317 {
318 	int ret = 0;
319 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 	int map_size, defer_size = 0;
321 	int old_map_size, old_defer_size = 0;
322 	struct mem_cgroup *memcg;
323 
324 	if (!root_mem_cgroup)
325 		goto out;
326 
327 	lockdep_assert_held(&shrinker_mutex);
328 
329 	map_size = shrinker_map_size(new_nr_max);
330 	defer_size = shrinker_defer_size(new_nr_max);
331 	old_map_size = shrinker_map_size(shrinker_nr_max);
332 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
333 
334 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
335 	do {
336 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 					       old_map_size, old_defer_size,
338 					       new_nr_max);
339 		if (ret) {
340 			mem_cgroup_iter_break(NULL, memcg);
341 			goto out;
342 		}
343 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
344 out:
345 	if (!ret)
346 		shrinker_nr_max = new_nr_max;
347 
348 	return ret;
349 }
350 
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352 {
353 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 		struct shrinker_info *info;
355 		int srcu_idx;
356 
357 		srcu_idx = srcu_read_lock(&shrinker_srcu);
358 		info = shrinker_info_srcu(memcg, nid);
359 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 			/* Pairs with smp mb in shrink_slab() */
361 			smp_mb__before_atomic();
362 			set_bit(shrinker_id, info->map);
363 		}
364 		srcu_read_unlock(&shrinker_srcu, srcu_idx);
365 	}
366 }
367 
368 static DEFINE_IDR(shrinker_idr);
369 
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
371 {
372 	int id, ret = -ENOMEM;
373 
374 	if (mem_cgroup_disabled())
375 		return -ENOSYS;
376 
377 	mutex_lock(&shrinker_mutex);
378 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
379 	if (id < 0)
380 		goto unlock;
381 
382 	if (id >= shrinker_nr_max) {
383 		if (expand_shrinker_info(id)) {
384 			idr_remove(&shrinker_idr, id);
385 			goto unlock;
386 		}
387 	}
388 	shrinker->id = id;
389 	ret = 0;
390 unlock:
391 	mutex_unlock(&shrinker_mutex);
392 	return ret;
393 }
394 
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
396 {
397 	int id = shrinker->id;
398 
399 	BUG_ON(id < 0);
400 
401 	lockdep_assert_held(&shrinker_mutex);
402 
403 	idr_remove(&shrinker_idr, id);
404 }
405 
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 				   struct mem_cgroup *memcg)
408 {
409 	struct shrinker_info *info;
410 
411 	info = shrinker_info_srcu(memcg, nid);
412 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
413 }
414 
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 				  struct mem_cgroup *memcg)
417 {
418 	struct shrinker_info *info;
419 
420 	info = shrinker_info_srcu(memcg, nid);
421 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
422 }
423 
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
425 {
426 	int i, nid;
427 	long nr;
428 	struct mem_cgroup *parent;
429 	struct shrinker_info *child_info, *parent_info;
430 
431 	parent = parent_mem_cgroup(memcg);
432 	if (!parent)
433 		parent = root_mem_cgroup;
434 
435 	/* Prevent from concurrent shrinker_info expand */
436 	mutex_lock(&shrinker_mutex);
437 	for_each_node(nid) {
438 		child_info = shrinker_info_protected(memcg, nid);
439 		parent_info = shrinker_info_protected(parent, nid);
440 		for (i = 0; i < child_info->map_nr_max; i++) {
441 			nr = atomic_long_read(&child_info->nr_deferred[i]);
442 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
443 		}
444 	}
445 	mutex_unlock(&shrinker_mutex);
446 }
447 
448 static bool cgroup_reclaim(struct scan_control *sc)
449 {
450 	return sc->target_mem_cgroup;
451 }
452 
453 static bool global_reclaim(struct scan_control *sc)
454 {
455 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
456 }
457 
458 /**
459  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460  * @sc: scan_control in question
461  *
462  * The normal page dirty throttling mechanism in balance_dirty_pages() is
463  * completely broken with the legacy memcg and direct stalling in
464  * shrink_folio_list() is used for throttling instead, which lacks all the
465  * niceties such as fairness, adaptive pausing, bandwidth proportional
466  * allocation and configurability.
467  *
468  * This function tests whether the vmscan currently in progress can assume
469  * that the normal dirty throttling mechanism is operational.
470  */
471 static bool writeback_throttling_sane(struct scan_control *sc)
472 {
473 	if (!cgroup_reclaim(sc))
474 		return true;
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
477 		return true;
478 #endif
479 	return false;
480 }
481 #else
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
483 {
484 	return -ENOSYS;
485 }
486 
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
488 {
489 }
490 
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 				   struct mem_cgroup *memcg)
493 {
494 	return 0;
495 }
496 
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 				  struct mem_cgroup *memcg)
499 {
500 	return 0;
501 }
502 
503 static bool cgroup_reclaim(struct scan_control *sc)
504 {
505 	return false;
506 }
507 
508 static bool global_reclaim(struct scan_control *sc)
509 {
510 	return true;
511 }
512 
513 static bool writeback_throttling_sane(struct scan_control *sc)
514 {
515 	return true;
516 }
517 #endif
518 
519 static void set_task_reclaim_state(struct task_struct *task,
520 				   struct reclaim_state *rs)
521 {
522 	/* Check for an overwrite */
523 	WARN_ON_ONCE(rs && task->reclaim_state);
524 
525 	/* Check for the nulling of an already-nulled member */
526 	WARN_ON_ONCE(!rs && !task->reclaim_state);
527 
528 	task->reclaim_state = rs;
529 }
530 
531 /*
532  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533  * scan_control->nr_reclaimed.
534  */
535 static void flush_reclaim_state(struct scan_control *sc)
536 {
537 	/*
538 	 * Currently, reclaim_state->reclaimed includes three types of pages
539 	 * freed outside of vmscan:
540 	 * (1) Slab pages.
541 	 * (2) Clean file pages from pruned inodes (on highmem systems).
542 	 * (3) XFS freed buffer pages.
543 	 *
544 	 * For all of these cases, we cannot universally link the pages to a
545 	 * single memcg. For example, a memcg-aware shrinker can free one object
546 	 * charged to the target memcg, causing an entire page to be freed.
547 	 * If we count the entire page as reclaimed from the memcg, we end up
548 	 * overestimating the reclaimed amount (potentially under-reclaiming).
549 	 *
550 	 * Only count such pages for global reclaim to prevent under-reclaiming
551 	 * from the target memcg; preventing unnecessary retries during memcg
552 	 * charging and false positives from proactive reclaim.
553 	 *
554 	 * For uncommon cases where the freed pages were actually mostly
555 	 * charged to the target memcg, we end up underestimating the reclaimed
556 	 * amount. This should be fine. The freed pages will be uncharged
557 	 * anyway, even if they are not counted here properly, and we will be
558 	 * able to make forward progress in charging (which is usually in a
559 	 * retry loop).
560 	 *
561 	 * We can go one step further, and report the uncharged objcg pages in
562 	 * memcg reclaim, to make reporting more accurate and reduce
563 	 * underestimation, but it's probably not worth the complexity for now.
564 	 */
565 	if (current->reclaim_state && global_reclaim(sc)) {
566 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 		current->reclaim_state->reclaimed = 0;
568 	}
569 }
570 
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 			     struct shrink_control *sc)
573 {
574 	int nid = sc->nid;
575 
576 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
577 		nid = 0;
578 
579 	if (sc->memcg &&
580 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 		return xchg_nr_deferred_memcg(nid, shrinker,
582 					      sc->memcg);
583 
584 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
585 }
586 
587 
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 			    struct shrink_control *sc)
590 {
591 	int nid = sc->nid;
592 
593 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
594 		nid = 0;
595 
596 	if (sc->memcg &&
597 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 		return add_nr_deferred_memcg(nr, nid, shrinker,
599 					     sc->memcg);
600 
601 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
602 }
603 
604 static bool can_demote(int nid, struct scan_control *sc)
605 {
606 	if (!numa_demotion_enabled)
607 		return false;
608 	if (sc && sc->no_demotion)
609 		return false;
610 	if (next_demotion_node(nid) == NUMA_NO_NODE)
611 		return false;
612 
613 	return true;
614 }
615 
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
617 					  int nid,
618 					  struct scan_control *sc)
619 {
620 	if (memcg == NULL) {
621 		/*
622 		 * For non-memcg reclaim, is there
623 		 * space in any swap device?
624 		 */
625 		if (get_nr_swap_pages() > 0)
626 			return true;
627 	} else {
628 		/* Is the memcg below its swap limit? */
629 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
630 			return true;
631 	}
632 
633 	/*
634 	 * The page can not be swapped.
635 	 *
636 	 * Can it be reclaimed from this node via demotion?
637 	 */
638 	return can_demote(nid, sc);
639 }
640 
641 /*
642  * This misses isolated folios which are not accounted for to save counters.
643  * As the data only determines if reclaim or compaction continues, it is
644  * not expected that isolated folios will be a dominating factor.
645  */
646 unsigned long zone_reclaimable_pages(struct zone *zone)
647 {
648 	unsigned long nr;
649 
650 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
655 
656 	return nr;
657 }
658 
659 /**
660  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
661  * @lruvec: lru vector
662  * @lru: lru to use
663  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
664  */
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
666 				     int zone_idx)
667 {
668 	unsigned long size = 0;
669 	int zid;
670 
671 	for (zid = 0; zid <= zone_idx; zid++) {
672 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
673 
674 		if (!managed_zone(zone))
675 			continue;
676 
677 		if (!mem_cgroup_disabled())
678 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
679 		else
680 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
681 	}
682 	return size;
683 }
684 
685 /*
686  * Add a shrinker callback to be called from the vm.
687  */
688 static int __prealloc_shrinker(struct shrinker *shrinker)
689 {
690 	unsigned int size;
691 	int err;
692 
693 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 		err = prealloc_memcg_shrinker(shrinker);
695 		if (err != -ENOSYS)
696 			return err;
697 
698 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
699 	}
700 
701 	size = sizeof(*shrinker->nr_deferred);
702 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
703 		size *= nr_node_ids;
704 
705 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 	if (!shrinker->nr_deferred)
707 		return -ENOMEM;
708 
709 	return 0;
710 }
711 
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	va_list ap;
716 	int err;
717 
718 	va_start(ap, fmt);
719 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
720 	va_end(ap);
721 	if (!shrinker->name)
722 		return -ENOMEM;
723 
724 	err = __prealloc_shrinker(shrinker);
725 	if (err) {
726 		kfree_const(shrinker->name);
727 		shrinker->name = NULL;
728 	}
729 
730 	return err;
731 }
732 #else
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
734 {
735 	return __prealloc_shrinker(shrinker);
736 }
737 #endif
738 
739 void free_prealloced_shrinker(struct shrinker *shrinker)
740 {
741 #ifdef CONFIG_SHRINKER_DEBUG
742 	kfree_const(shrinker->name);
743 	shrinker->name = NULL;
744 #endif
745 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 		mutex_lock(&shrinker_mutex);
747 		unregister_memcg_shrinker(shrinker);
748 		mutex_unlock(&shrinker_mutex);
749 		return;
750 	}
751 
752 	kfree(shrinker->nr_deferred);
753 	shrinker->nr_deferred = NULL;
754 }
755 
756 void register_shrinker_prepared(struct shrinker *shrinker)
757 {
758 	mutex_lock(&shrinker_mutex);
759 	list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 	shrinker->flags |= SHRINKER_REGISTERED;
761 	shrinker_debugfs_add(shrinker);
762 	mutex_unlock(&shrinker_mutex);
763 }
764 
765 static int __register_shrinker(struct shrinker *shrinker)
766 {
767 	int err = __prealloc_shrinker(shrinker);
768 
769 	if (err)
770 		return err;
771 	register_shrinker_prepared(shrinker);
772 	return 0;
773 }
774 
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
777 {
778 	va_list ap;
779 	int err;
780 
781 	va_start(ap, fmt);
782 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
783 	va_end(ap);
784 	if (!shrinker->name)
785 		return -ENOMEM;
786 
787 	err = __register_shrinker(shrinker);
788 	if (err) {
789 		kfree_const(shrinker->name);
790 		shrinker->name = NULL;
791 	}
792 	return err;
793 }
794 #else
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
796 {
797 	return __register_shrinker(shrinker);
798 }
799 #endif
800 EXPORT_SYMBOL(register_shrinker);
801 
802 /*
803  * Remove one
804  */
805 void unregister_shrinker(struct shrinker *shrinker)
806 {
807 	struct dentry *debugfs_entry;
808 
809 	if (!(shrinker->flags & SHRINKER_REGISTERED))
810 		return;
811 
812 	mutex_lock(&shrinker_mutex);
813 	list_del_rcu(&shrinker->list);
814 	shrinker->flags &= ~SHRINKER_REGISTERED;
815 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
816 		unregister_memcg_shrinker(shrinker);
817 	debugfs_entry = shrinker_debugfs_remove(shrinker);
818 	mutex_unlock(&shrinker_mutex);
819 
820 	atomic_inc(&shrinker_srcu_generation);
821 	synchronize_srcu(&shrinker_srcu);
822 
823 	debugfs_remove_recursive(debugfs_entry);
824 
825 	kfree(shrinker->nr_deferred);
826 	shrinker->nr_deferred = NULL;
827 }
828 EXPORT_SYMBOL(unregister_shrinker);
829 
830 /**
831  * synchronize_shrinkers - Wait for all running shrinkers to complete.
832  *
833  * This is useful to guarantee that all shrinker invocations have seen an
834  * update, before freeing memory.
835  */
836 void synchronize_shrinkers(void)
837 {
838 	atomic_inc(&shrinker_srcu_generation);
839 	synchronize_srcu(&shrinker_srcu);
840 }
841 EXPORT_SYMBOL(synchronize_shrinkers);
842 
843 #define SHRINK_BATCH 128
844 
845 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
846 				    struct shrinker *shrinker, int priority)
847 {
848 	unsigned long freed = 0;
849 	unsigned long long delta;
850 	long total_scan;
851 	long freeable;
852 	long nr;
853 	long new_nr;
854 	long batch_size = shrinker->batch ? shrinker->batch
855 					  : SHRINK_BATCH;
856 	long scanned = 0, next_deferred;
857 
858 	freeable = shrinker->count_objects(shrinker, shrinkctl);
859 	if (freeable == 0 || freeable == SHRINK_EMPTY)
860 		return freeable;
861 
862 	/*
863 	 * copy the current shrinker scan count into a local variable
864 	 * and zero it so that other concurrent shrinker invocations
865 	 * don't also do this scanning work.
866 	 */
867 	nr = xchg_nr_deferred(shrinker, shrinkctl);
868 
869 	if (shrinker->seeks) {
870 		delta = freeable >> priority;
871 		delta *= 4;
872 		do_div(delta, shrinker->seeks);
873 	} else {
874 		/*
875 		 * These objects don't require any IO to create. Trim
876 		 * them aggressively under memory pressure to keep
877 		 * them from causing refetches in the IO caches.
878 		 */
879 		delta = freeable / 2;
880 	}
881 
882 	total_scan = nr >> priority;
883 	total_scan += delta;
884 	total_scan = min(total_scan, (2 * freeable));
885 
886 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
887 				   freeable, delta, total_scan, priority);
888 
889 	/*
890 	 * Normally, we should not scan less than batch_size objects in one
891 	 * pass to avoid too frequent shrinker calls, but if the slab has less
892 	 * than batch_size objects in total and we are really tight on memory,
893 	 * we will try to reclaim all available objects, otherwise we can end
894 	 * up failing allocations although there are plenty of reclaimable
895 	 * objects spread over several slabs with usage less than the
896 	 * batch_size.
897 	 *
898 	 * We detect the "tight on memory" situations by looking at the total
899 	 * number of objects we want to scan (total_scan). If it is greater
900 	 * than the total number of objects on slab (freeable), we must be
901 	 * scanning at high prio and therefore should try to reclaim as much as
902 	 * possible.
903 	 */
904 	while (total_scan >= batch_size ||
905 	       total_scan >= freeable) {
906 		unsigned long ret;
907 		unsigned long nr_to_scan = min(batch_size, total_scan);
908 
909 		shrinkctl->nr_to_scan = nr_to_scan;
910 		shrinkctl->nr_scanned = nr_to_scan;
911 		ret = shrinker->scan_objects(shrinker, shrinkctl);
912 		if (ret == SHRINK_STOP)
913 			break;
914 		freed += ret;
915 
916 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
917 		total_scan -= shrinkctl->nr_scanned;
918 		scanned += shrinkctl->nr_scanned;
919 
920 		cond_resched();
921 	}
922 
923 	/*
924 	 * The deferred work is increased by any new work (delta) that wasn't
925 	 * done, decreased by old deferred work that was done now.
926 	 *
927 	 * And it is capped to two times of the freeable items.
928 	 */
929 	next_deferred = max_t(long, (nr + delta - scanned), 0);
930 	next_deferred = min(next_deferred, (2 * freeable));
931 
932 	/*
933 	 * move the unused scan count back into the shrinker in a
934 	 * manner that handles concurrent updates.
935 	 */
936 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
937 
938 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
939 	return freed;
940 }
941 
942 #ifdef CONFIG_MEMCG
943 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
944 			struct mem_cgroup *memcg, int priority)
945 {
946 	struct shrinker_info *info;
947 	unsigned long ret, freed = 0;
948 	int srcu_idx, generation;
949 	int i = 0;
950 
951 	if (!mem_cgroup_online(memcg))
952 		return 0;
953 
954 again:
955 	srcu_idx = srcu_read_lock(&shrinker_srcu);
956 	info = shrinker_info_srcu(memcg, nid);
957 	if (unlikely(!info))
958 		goto unlock;
959 
960 	generation = atomic_read(&shrinker_srcu_generation);
961 	for_each_set_bit_from(i, info->map, info->map_nr_max) {
962 		struct shrink_control sc = {
963 			.gfp_mask = gfp_mask,
964 			.nid = nid,
965 			.memcg = memcg,
966 		};
967 		struct shrinker *shrinker;
968 
969 		shrinker = idr_find(&shrinker_idr, i);
970 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
971 			if (!shrinker)
972 				clear_bit(i, info->map);
973 			continue;
974 		}
975 
976 		/* Call non-slab shrinkers even though kmem is disabled */
977 		if (!memcg_kmem_online() &&
978 		    !(shrinker->flags & SHRINKER_NONSLAB))
979 			continue;
980 
981 		ret = do_shrink_slab(&sc, shrinker, priority);
982 		if (ret == SHRINK_EMPTY) {
983 			clear_bit(i, info->map);
984 			/*
985 			 * After the shrinker reported that it had no objects to
986 			 * free, but before we cleared the corresponding bit in
987 			 * the memcg shrinker map, a new object might have been
988 			 * added. To make sure, we have the bit set in this
989 			 * case, we invoke the shrinker one more time and reset
990 			 * the bit if it reports that it is not empty anymore.
991 			 * The memory barrier here pairs with the barrier in
992 			 * set_shrinker_bit():
993 			 *
994 			 * list_lru_add()     shrink_slab_memcg()
995 			 *   list_add_tail()    clear_bit()
996 			 *   <MB>               <MB>
997 			 *   set_bit()          do_shrink_slab()
998 			 */
999 			smp_mb__after_atomic();
1000 			ret = do_shrink_slab(&sc, shrinker, priority);
1001 			if (ret == SHRINK_EMPTY)
1002 				ret = 0;
1003 			else
1004 				set_shrinker_bit(memcg, nid, i);
1005 		}
1006 		freed += ret;
1007 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1008 			srcu_read_unlock(&shrinker_srcu, srcu_idx);
1009 			i++;
1010 			goto again;
1011 		}
1012 	}
1013 unlock:
1014 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1015 	return freed;
1016 }
1017 #else /* CONFIG_MEMCG */
1018 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1019 			struct mem_cgroup *memcg, int priority)
1020 {
1021 	return 0;
1022 }
1023 #endif /* CONFIG_MEMCG */
1024 
1025 /**
1026  * shrink_slab - shrink slab caches
1027  * @gfp_mask: allocation context
1028  * @nid: node whose slab caches to target
1029  * @memcg: memory cgroup whose slab caches to target
1030  * @priority: the reclaim priority
1031  *
1032  * Call the shrink functions to age shrinkable caches.
1033  *
1034  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1035  * unaware shrinkers will receive a node id of 0 instead.
1036  *
1037  * @memcg specifies the memory cgroup to target. Unaware shrinkers
1038  * are called only if it is the root cgroup.
1039  *
1040  * @priority is sc->priority, we take the number of objects and >> by priority
1041  * in order to get the scan target.
1042  *
1043  * Returns the number of reclaimed slab objects.
1044  */
1045 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1046 				 struct mem_cgroup *memcg,
1047 				 int priority)
1048 {
1049 	unsigned long ret, freed = 0;
1050 	struct shrinker *shrinker;
1051 	int srcu_idx, generation;
1052 
1053 	/*
1054 	 * The root memcg might be allocated even though memcg is disabled
1055 	 * via "cgroup_disable=memory" boot parameter.  This could make
1056 	 * mem_cgroup_is_root() return false, then just run memcg slab
1057 	 * shrink, but skip global shrink.  This may result in premature
1058 	 * oom.
1059 	 */
1060 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1061 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1062 
1063 	srcu_idx = srcu_read_lock(&shrinker_srcu);
1064 
1065 	generation = atomic_read(&shrinker_srcu_generation);
1066 	list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1067 				 srcu_read_lock_held(&shrinker_srcu)) {
1068 		struct shrink_control sc = {
1069 			.gfp_mask = gfp_mask,
1070 			.nid = nid,
1071 			.memcg = memcg,
1072 		};
1073 
1074 		ret = do_shrink_slab(&sc, shrinker, priority);
1075 		if (ret == SHRINK_EMPTY)
1076 			ret = 0;
1077 		freed += ret;
1078 
1079 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1080 			freed = freed ? : 1;
1081 			break;
1082 		}
1083 	}
1084 
1085 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1086 	cond_resched();
1087 	return freed;
1088 }
1089 
1090 static unsigned long drop_slab_node(int nid)
1091 {
1092 	unsigned long freed = 0;
1093 	struct mem_cgroup *memcg = NULL;
1094 
1095 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1096 	do {
1097 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1098 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1099 
1100 	return freed;
1101 }
1102 
1103 void drop_slab(void)
1104 {
1105 	int nid;
1106 	int shift = 0;
1107 	unsigned long freed;
1108 
1109 	do {
1110 		freed = 0;
1111 		for_each_online_node(nid) {
1112 			if (fatal_signal_pending(current))
1113 				return;
1114 
1115 			freed += drop_slab_node(nid);
1116 		}
1117 	} while ((freed >> shift++) > 1);
1118 }
1119 
1120 static int reclaimer_offset(void)
1121 {
1122 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1123 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1124 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1125 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1126 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1127 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1128 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1129 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1130 
1131 	if (current_is_kswapd())
1132 		return 0;
1133 	if (current_is_khugepaged())
1134 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1135 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1136 }
1137 
1138 static inline int is_page_cache_freeable(struct folio *folio)
1139 {
1140 	/*
1141 	 * A freeable page cache folio is referenced only by the caller
1142 	 * that isolated the folio, the page cache and optional filesystem
1143 	 * private data at folio->private.
1144 	 */
1145 	return folio_ref_count(folio) - folio_test_private(folio) ==
1146 		1 + folio_nr_pages(folio);
1147 }
1148 
1149 /*
1150  * We detected a synchronous write error writing a folio out.  Probably
1151  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1152  * fsync(), msync() or close().
1153  *
1154  * The tricky part is that after writepage we cannot touch the mapping: nothing
1155  * prevents it from being freed up.  But we have a ref on the folio and once
1156  * that folio is locked, the mapping is pinned.
1157  *
1158  * We're allowed to run sleeping folio_lock() here because we know the caller has
1159  * __GFP_FS.
1160  */
1161 static void handle_write_error(struct address_space *mapping,
1162 				struct folio *folio, int error)
1163 {
1164 	folio_lock(folio);
1165 	if (folio_mapping(folio) == mapping)
1166 		mapping_set_error(mapping, error);
1167 	folio_unlock(folio);
1168 }
1169 
1170 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1171 {
1172 	int reclaimable = 0, write_pending = 0;
1173 	int i;
1174 
1175 	/*
1176 	 * If kswapd is disabled, reschedule if necessary but do not
1177 	 * throttle as the system is likely near OOM.
1178 	 */
1179 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1180 		return true;
1181 
1182 	/*
1183 	 * If there are a lot of dirty/writeback folios then do not
1184 	 * throttle as throttling will occur when the folios cycle
1185 	 * towards the end of the LRU if still under writeback.
1186 	 */
1187 	for (i = 0; i < MAX_NR_ZONES; i++) {
1188 		struct zone *zone = pgdat->node_zones + i;
1189 
1190 		if (!managed_zone(zone))
1191 			continue;
1192 
1193 		reclaimable += zone_reclaimable_pages(zone);
1194 		write_pending += zone_page_state_snapshot(zone,
1195 						  NR_ZONE_WRITE_PENDING);
1196 	}
1197 	if (2 * write_pending <= reclaimable)
1198 		return true;
1199 
1200 	return false;
1201 }
1202 
1203 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1204 {
1205 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1206 	long timeout, ret;
1207 	DEFINE_WAIT(wait);
1208 
1209 	/*
1210 	 * Do not throttle IO workers, kthreads other than kswapd or
1211 	 * workqueues. They may be required for reclaim to make
1212 	 * forward progress (e.g. journalling workqueues or kthreads).
1213 	 */
1214 	if (!current_is_kswapd() &&
1215 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1216 		cond_resched();
1217 		return;
1218 	}
1219 
1220 	/*
1221 	 * These figures are pulled out of thin air.
1222 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1223 	 * parallel reclaimers which is a short-lived event so the timeout is
1224 	 * short. Failing to make progress or waiting on writeback are
1225 	 * potentially long-lived events so use a longer timeout. This is shaky
1226 	 * logic as a failure to make progress could be due to anything from
1227 	 * writeback to a slow device to excessive referenced folios at the tail
1228 	 * of the inactive LRU.
1229 	 */
1230 	switch(reason) {
1231 	case VMSCAN_THROTTLE_WRITEBACK:
1232 		timeout = HZ/10;
1233 
1234 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1235 			WRITE_ONCE(pgdat->nr_reclaim_start,
1236 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1237 		}
1238 
1239 		break;
1240 	case VMSCAN_THROTTLE_CONGESTED:
1241 		fallthrough;
1242 	case VMSCAN_THROTTLE_NOPROGRESS:
1243 		if (skip_throttle_noprogress(pgdat)) {
1244 			cond_resched();
1245 			return;
1246 		}
1247 
1248 		timeout = 1;
1249 
1250 		break;
1251 	case VMSCAN_THROTTLE_ISOLATED:
1252 		timeout = HZ/50;
1253 		break;
1254 	default:
1255 		WARN_ON_ONCE(1);
1256 		timeout = HZ;
1257 		break;
1258 	}
1259 
1260 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1261 	ret = schedule_timeout(timeout);
1262 	finish_wait(wqh, &wait);
1263 
1264 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1265 		atomic_dec(&pgdat->nr_writeback_throttled);
1266 
1267 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1268 				jiffies_to_usecs(timeout - ret),
1269 				reason);
1270 }
1271 
1272 /*
1273  * Account for folios written if tasks are throttled waiting on dirty
1274  * folios to clean. If enough folios have been cleaned since throttling
1275  * started then wakeup the throttled tasks.
1276  */
1277 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1278 							int nr_throttled)
1279 {
1280 	unsigned long nr_written;
1281 
1282 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1283 
1284 	/*
1285 	 * This is an inaccurate read as the per-cpu deltas may not
1286 	 * be synchronised. However, given that the system is
1287 	 * writeback throttled, it is not worth taking the penalty
1288 	 * of getting an accurate count. At worst, the throttle
1289 	 * timeout guarantees forward progress.
1290 	 */
1291 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1292 		READ_ONCE(pgdat->nr_reclaim_start);
1293 
1294 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1295 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1296 }
1297 
1298 /* possible outcome of pageout() */
1299 typedef enum {
1300 	/* failed to write folio out, folio is locked */
1301 	PAGE_KEEP,
1302 	/* move folio to the active list, folio is locked */
1303 	PAGE_ACTIVATE,
1304 	/* folio has been sent to the disk successfully, folio is unlocked */
1305 	PAGE_SUCCESS,
1306 	/* folio is clean and locked */
1307 	PAGE_CLEAN,
1308 } pageout_t;
1309 
1310 /*
1311  * pageout is called by shrink_folio_list() for each dirty folio.
1312  * Calls ->writepage().
1313  */
1314 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1315 			 struct swap_iocb **plug)
1316 {
1317 	/*
1318 	 * If the folio is dirty, only perform writeback if that write
1319 	 * will be non-blocking.  To prevent this allocation from being
1320 	 * stalled by pagecache activity.  But note that there may be
1321 	 * stalls if we need to run get_block().  We could test
1322 	 * PagePrivate for that.
1323 	 *
1324 	 * If this process is currently in __generic_file_write_iter() against
1325 	 * this folio's queue, we can perform writeback even if that
1326 	 * will block.
1327 	 *
1328 	 * If the folio is swapcache, write it back even if that would
1329 	 * block, for some throttling. This happens by accident, because
1330 	 * swap_backing_dev_info is bust: it doesn't reflect the
1331 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1332 	 */
1333 	if (!is_page_cache_freeable(folio))
1334 		return PAGE_KEEP;
1335 	if (!mapping) {
1336 		/*
1337 		 * Some data journaling orphaned folios can have
1338 		 * folio->mapping == NULL while being dirty with clean buffers.
1339 		 */
1340 		if (folio_test_private(folio)) {
1341 			if (try_to_free_buffers(folio)) {
1342 				folio_clear_dirty(folio);
1343 				pr_info("%s: orphaned folio\n", __func__);
1344 				return PAGE_CLEAN;
1345 			}
1346 		}
1347 		return PAGE_KEEP;
1348 	}
1349 	if (mapping->a_ops->writepage == NULL)
1350 		return PAGE_ACTIVATE;
1351 
1352 	if (folio_clear_dirty_for_io(folio)) {
1353 		int res;
1354 		struct writeback_control wbc = {
1355 			.sync_mode = WB_SYNC_NONE,
1356 			.nr_to_write = SWAP_CLUSTER_MAX,
1357 			.range_start = 0,
1358 			.range_end = LLONG_MAX,
1359 			.for_reclaim = 1,
1360 			.swap_plug = plug,
1361 		};
1362 
1363 		folio_set_reclaim(folio);
1364 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1365 		if (res < 0)
1366 			handle_write_error(mapping, folio, res);
1367 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1368 			folio_clear_reclaim(folio);
1369 			return PAGE_ACTIVATE;
1370 		}
1371 
1372 		if (!folio_test_writeback(folio)) {
1373 			/* synchronous write or broken a_ops? */
1374 			folio_clear_reclaim(folio);
1375 		}
1376 		trace_mm_vmscan_write_folio(folio);
1377 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1378 		return PAGE_SUCCESS;
1379 	}
1380 
1381 	return PAGE_CLEAN;
1382 }
1383 
1384 /*
1385  * Same as remove_mapping, but if the folio is removed from the mapping, it
1386  * gets returned with a refcount of 0.
1387  */
1388 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1389 			    bool reclaimed, struct mem_cgroup *target_memcg)
1390 {
1391 	int refcount;
1392 	void *shadow = NULL;
1393 
1394 	BUG_ON(!folio_test_locked(folio));
1395 	BUG_ON(mapping != folio_mapping(folio));
1396 
1397 	if (!folio_test_swapcache(folio))
1398 		spin_lock(&mapping->host->i_lock);
1399 	xa_lock_irq(&mapping->i_pages);
1400 	/*
1401 	 * The non racy check for a busy folio.
1402 	 *
1403 	 * Must be careful with the order of the tests. When someone has
1404 	 * a ref to the folio, it may be possible that they dirty it then
1405 	 * drop the reference. So if the dirty flag is tested before the
1406 	 * refcount here, then the following race may occur:
1407 	 *
1408 	 * get_user_pages(&page);
1409 	 * [user mapping goes away]
1410 	 * write_to(page);
1411 	 *				!folio_test_dirty(folio)    [good]
1412 	 * folio_set_dirty(folio);
1413 	 * folio_put(folio);
1414 	 *				!refcount(folio)   [good, discard it]
1415 	 *
1416 	 * [oops, our write_to data is lost]
1417 	 *
1418 	 * Reversing the order of the tests ensures such a situation cannot
1419 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1420 	 * load is not satisfied before that of folio->_refcount.
1421 	 *
1422 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1423 	 * and thus under the i_pages lock, then this ordering is not required.
1424 	 */
1425 	refcount = 1 + folio_nr_pages(folio);
1426 	if (!folio_ref_freeze(folio, refcount))
1427 		goto cannot_free;
1428 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1429 	if (unlikely(folio_test_dirty(folio))) {
1430 		folio_ref_unfreeze(folio, refcount);
1431 		goto cannot_free;
1432 	}
1433 
1434 	if (folio_test_swapcache(folio)) {
1435 		swp_entry_t swap = folio_swap_entry(folio);
1436 
1437 		if (reclaimed && !mapping_exiting(mapping))
1438 			shadow = workingset_eviction(folio, target_memcg);
1439 		__delete_from_swap_cache(folio, swap, shadow);
1440 		mem_cgroup_swapout(folio, swap);
1441 		xa_unlock_irq(&mapping->i_pages);
1442 		put_swap_folio(folio, swap);
1443 	} else {
1444 		void (*free_folio)(struct folio *);
1445 
1446 		free_folio = mapping->a_ops->free_folio;
1447 		/*
1448 		 * Remember a shadow entry for reclaimed file cache in
1449 		 * order to detect refaults, thus thrashing, later on.
1450 		 *
1451 		 * But don't store shadows in an address space that is
1452 		 * already exiting.  This is not just an optimization,
1453 		 * inode reclaim needs to empty out the radix tree or
1454 		 * the nodes are lost.  Don't plant shadows behind its
1455 		 * back.
1456 		 *
1457 		 * We also don't store shadows for DAX mappings because the
1458 		 * only page cache folios found in these are zero pages
1459 		 * covering holes, and because we don't want to mix DAX
1460 		 * exceptional entries and shadow exceptional entries in the
1461 		 * same address_space.
1462 		 */
1463 		if (reclaimed && folio_is_file_lru(folio) &&
1464 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1465 			shadow = workingset_eviction(folio, target_memcg);
1466 		__filemap_remove_folio(folio, shadow);
1467 		xa_unlock_irq(&mapping->i_pages);
1468 		if (mapping_shrinkable(mapping))
1469 			inode_add_lru(mapping->host);
1470 		spin_unlock(&mapping->host->i_lock);
1471 
1472 		if (free_folio)
1473 			free_folio(folio);
1474 	}
1475 
1476 	return 1;
1477 
1478 cannot_free:
1479 	xa_unlock_irq(&mapping->i_pages);
1480 	if (!folio_test_swapcache(folio))
1481 		spin_unlock(&mapping->host->i_lock);
1482 	return 0;
1483 }
1484 
1485 /**
1486  * remove_mapping() - Attempt to remove a folio from its mapping.
1487  * @mapping: The address space.
1488  * @folio: The folio to remove.
1489  *
1490  * If the folio is dirty, under writeback or if someone else has a ref
1491  * on it, removal will fail.
1492  * Return: The number of pages removed from the mapping.  0 if the folio
1493  * could not be removed.
1494  * Context: The caller should have a single refcount on the folio and
1495  * hold its lock.
1496  */
1497 long remove_mapping(struct address_space *mapping, struct folio *folio)
1498 {
1499 	if (__remove_mapping(mapping, folio, false, NULL)) {
1500 		/*
1501 		 * Unfreezing the refcount with 1 effectively
1502 		 * drops the pagecache ref for us without requiring another
1503 		 * atomic operation.
1504 		 */
1505 		folio_ref_unfreeze(folio, 1);
1506 		return folio_nr_pages(folio);
1507 	}
1508 	return 0;
1509 }
1510 
1511 /**
1512  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1513  * @folio: Folio to be returned to an LRU list.
1514  *
1515  * Add previously isolated @folio to appropriate LRU list.
1516  * The folio may still be unevictable for other reasons.
1517  *
1518  * Context: lru_lock must not be held, interrupts must be enabled.
1519  */
1520 void folio_putback_lru(struct folio *folio)
1521 {
1522 	folio_add_lru(folio);
1523 	folio_put(folio);		/* drop ref from isolate */
1524 }
1525 
1526 enum folio_references {
1527 	FOLIOREF_RECLAIM,
1528 	FOLIOREF_RECLAIM_CLEAN,
1529 	FOLIOREF_KEEP,
1530 	FOLIOREF_ACTIVATE,
1531 };
1532 
1533 static enum folio_references folio_check_references(struct folio *folio,
1534 						  struct scan_control *sc)
1535 {
1536 	int referenced_ptes, referenced_folio;
1537 	unsigned long vm_flags;
1538 
1539 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1540 					   &vm_flags);
1541 	referenced_folio = folio_test_clear_referenced(folio);
1542 
1543 	/*
1544 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1545 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1546 	 */
1547 	if (vm_flags & VM_LOCKED)
1548 		return FOLIOREF_ACTIVATE;
1549 
1550 	/* rmap lock contention: rotate */
1551 	if (referenced_ptes == -1)
1552 		return FOLIOREF_KEEP;
1553 
1554 	if (referenced_ptes) {
1555 		/*
1556 		 * All mapped folios start out with page table
1557 		 * references from the instantiating fault, so we need
1558 		 * to look twice if a mapped file/anon folio is used more
1559 		 * than once.
1560 		 *
1561 		 * Mark it and spare it for another trip around the
1562 		 * inactive list.  Another page table reference will
1563 		 * lead to its activation.
1564 		 *
1565 		 * Note: the mark is set for activated folios as well
1566 		 * so that recently deactivated but used folios are
1567 		 * quickly recovered.
1568 		 */
1569 		folio_set_referenced(folio);
1570 
1571 		if (referenced_folio || referenced_ptes > 1)
1572 			return FOLIOREF_ACTIVATE;
1573 
1574 		/*
1575 		 * Activate file-backed executable folios after first usage.
1576 		 */
1577 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1578 			return FOLIOREF_ACTIVATE;
1579 
1580 		return FOLIOREF_KEEP;
1581 	}
1582 
1583 	/* Reclaim if clean, defer dirty folios to writeback */
1584 	if (referenced_folio && folio_is_file_lru(folio))
1585 		return FOLIOREF_RECLAIM_CLEAN;
1586 
1587 	return FOLIOREF_RECLAIM;
1588 }
1589 
1590 /* Check if a folio is dirty or under writeback */
1591 static void folio_check_dirty_writeback(struct folio *folio,
1592 				       bool *dirty, bool *writeback)
1593 {
1594 	struct address_space *mapping;
1595 
1596 	/*
1597 	 * Anonymous folios are not handled by flushers and must be written
1598 	 * from reclaim context. Do not stall reclaim based on them.
1599 	 * MADV_FREE anonymous folios are put into inactive file list too.
1600 	 * They could be mistakenly treated as file lru. So further anon
1601 	 * test is needed.
1602 	 */
1603 	if (!folio_is_file_lru(folio) ||
1604 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1605 		*dirty = false;
1606 		*writeback = false;
1607 		return;
1608 	}
1609 
1610 	/* By default assume that the folio flags are accurate */
1611 	*dirty = folio_test_dirty(folio);
1612 	*writeback = folio_test_writeback(folio);
1613 
1614 	/* Verify dirty/writeback state if the filesystem supports it */
1615 	if (!folio_test_private(folio))
1616 		return;
1617 
1618 	mapping = folio_mapping(folio);
1619 	if (mapping && mapping->a_ops->is_dirty_writeback)
1620 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1621 }
1622 
1623 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1624 {
1625 	struct page *target_page;
1626 	nodemask_t *allowed_mask;
1627 	struct migration_target_control *mtc;
1628 
1629 	mtc = (struct migration_target_control *)private;
1630 
1631 	allowed_mask = mtc->nmask;
1632 	/*
1633 	 * make sure we allocate from the target node first also trying to
1634 	 * demote or reclaim pages from the target node via kswapd if we are
1635 	 * low on free memory on target node. If we don't do this and if
1636 	 * we have free memory on the slower(lower) memtier, we would start
1637 	 * allocating pages from slower(lower) memory tiers without even forcing
1638 	 * a demotion of cold pages from the target memtier. This can result
1639 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1640 	 */
1641 	mtc->nmask = NULL;
1642 	mtc->gfp_mask |= __GFP_THISNODE;
1643 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1644 	if (target_page)
1645 		return target_page;
1646 
1647 	mtc->gfp_mask &= ~__GFP_THISNODE;
1648 	mtc->nmask = allowed_mask;
1649 
1650 	return alloc_migration_target(page, (unsigned long)mtc);
1651 }
1652 
1653 /*
1654  * Take folios on @demote_folios and attempt to demote them to another node.
1655  * Folios which are not demoted are left on @demote_folios.
1656  */
1657 static unsigned int demote_folio_list(struct list_head *demote_folios,
1658 				     struct pglist_data *pgdat)
1659 {
1660 	int target_nid = next_demotion_node(pgdat->node_id);
1661 	unsigned int nr_succeeded;
1662 	nodemask_t allowed_mask;
1663 
1664 	struct migration_target_control mtc = {
1665 		/*
1666 		 * Allocate from 'node', or fail quickly and quietly.
1667 		 * When this happens, 'page' will likely just be discarded
1668 		 * instead of migrated.
1669 		 */
1670 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1671 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1672 		.nid = target_nid,
1673 		.nmask = &allowed_mask
1674 	};
1675 
1676 	if (list_empty(demote_folios))
1677 		return 0;
1678 
1679 	if (target_nid == NUMA_NO_NODE)
1680 		return 0;
1681 
1682 	node_get_allowed_targets(pgdat, &allowed_mask);
1683 
1684 	/* Demotion ignores all cpuset and mempolicy settings */
1685 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1686 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1687 		      &nr_succeeded);
1688 
1689 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1690 
1691 	return nr_succeeded;
1692 }
1693 
1694 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1695 {
1696 	if (gfp_mask & __GFP_FS)
1697 		return true;
1698 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1699 		return false;
1700 	/*
1701 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1702 	 * providing this isn't SWP_FS_OPS.
1703 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1704 	 * but that will never affect SWP_FS_OPS, so the data_race
1705 	 * is safe.
1706 	 */
1707 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1708 }
1709 
1710 /*
1711  * shrink_folio_list() returns the number of reclaimed pages
1712  */
1713 static unsigned int shrink_folio_list(struct list_head *folio_list,
1714 		struct pglist_data *pgdat, struct scan_control *sc,
1715 		struct reclaim_stat *stat, bool ignore_references)
1716 {
1717 	LIST_HEAD(ret_folios);
1718 	LIST_HEAD(free_folios);
1719 	LIST_HEAD(demote_folios);
1720 	unsigned int nr_reclaimed = 0;
1721 	unsigned int pgactivate = 0;
1722 	bool do_demote_pass;
1723 	struct swap_iocb *plug = NULL;
1724 
1725 	memset(stat, 0, sizeof(*stat));
1726 	cond_resched();
1727 	do_demote_pass = can_demote(pgdat->node_id, sc);
1728 
1729 retry:
1730 	while (!list_empty(folio_list)) {
1731 		struct address_space *mapping;
1732 		struct folio *folio;
1733 		enum folio_references references = FOLIOREF_RECLAIM;
1734 		bool dirty, writeback;
1735 		unsigned int nr_pages;
1736 
1737 		cond_resched();
1738 
1739 		folio = lru_to_folio(folio_list);
1740 		list_del(&folio->lru);
1741 
1742 		if (!folio_trylock(folio))
1743 			goto keep;
1744 
1745 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1746 
1747 		nr_pages = folio_nr_pages(folio);
1748 
1749 		/* Account the number of base pages */
1750 		sc->nr_scanned += nr_pages;
1751 
1752 		if (unlikely(!folio_evictable(folio)))
1753 			goto activate_locked;
1754 
1755 		if (!sc->may_unmap && folio_mapped(folio))
1756 			goto keep_locked;
1757 
1758 		/* folio_update_gen() tried to promote this page? */
1759 		if (lru_gen_enabled() && !ignore_references &&
1760 		    folio_mapped(folio) && folio_test_referenced(folio))
1761 			goto keep_locked;
1762 
1763 		/*
1764 		 * The number of dirty pages determines if a node is marked
1765 		 * reclaim_congested. kswapd will stall and start writing
1766 		 * folios if the tail of the LRU is all dirty unqueued folios.
1767 		 */
1768 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1769 		if (dirty || writeback)
1770 			stat->nr_dirty += nr_pages;
1771 
1772 		if (dirty && !writeback)
1773 			stat->nr_unqueued_dirty += nr_pages;
1774 
1775 		/*
1776 		 * Treat this folio as congested if folios are cycling
1777 		 * through the LRU so quickly that the folios marked
1778 		 * for immediate reclaim are making it to the end of
1779 		 * the LRU a second time.
1780 		 */
1781 		if (writeback && folio_test_reclaim(folio))
1782 			stat->nr_congested += nr_pages;
1783 
1784 		/*
1785 		 * If a folio at the tail of the LRU is under writeback, there
1786 		 * are three cases to consider.
1787 		 *
1788 		 * 1) If reclaim is encountering an excessive number
1789 		 *    of folios under writeback and this folio has both
1790 		 *    the writeback and reclaim flags set, then it
1791 		 *    indicates that folios are being queued for I/O but
1792 		 *    are being recycled through the LRU before the I/O
1793 		 *    can complete. Waiting on the folio itself risks an
1794 		 *    indefinite stall if it is impossible to writeback
1795 		 *    the folio due to I/O error or disconnected storage
1796 		 *    so instead note that the LRU is being scanned too
1797 		 *    quickly and the caller can stall after the folio
1798 		 *    list has been processed.
1799 		 *
1800 		 * 2) Global or new memcg reclaim encounters a folio that is
1801 		 *    not marked for immediate reclaim, or the caller does not
1802 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1803 		 *    not to fs). In this case mark the folio for immediate
1804 		 *    reclaim and continue scanning.
1805 		 *
1806 		 *    Require may_enter_fs() because we would wait on fs, which
1807 		 *    may not have submitted I/O yet. And the loop driver might
1808 		 *    enter reclaim, and deadlock if it waits on a folio for
1809 		 *    which it is needed to do the write (loop masks off
1810 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1811 		 *    would probably show more reasons.
1812 		 *
1813 		 * 3) Legacy memcg encounters a folio that already has the
1814 		 *    reclaim flag set. memcg does not have any dirty folio
1815 		 *    throttling so we could easily OOM just because too many
1816 		 *    folios are in writeback and there is nothing else to
1817 		 *    reclaim. Wait for the writeback to complete.
1818 		 *
1819 		 * In cases 1) and 2) we activate the folios to get them out of
1820 		 * the way while we continue scanning for clean folios on the
1821 		 * inactive list and refilling from the active list. The
1822 		 * observation here is that waiting for disk writes is more
1823 		 * expensive than potentially causing reloads down the line.
1824 		 * Since they're marked for immediate reclaim, they won't put
1825 		 * memory pressure on the cache working set any longer than it
1826 		 * takes to write them to disk.
1827 		 */
1828 		if (folio_test_writeback(folio)) {
1829 			/* Case 1 above */
1830 			if (current_is_kswapd() &&
1831 			    folio_test_reclaim(folio) &&
1832 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1833 				stat->nr_immediate += nr_pages;
1834 				goto activate_locked;
1835 
1836 			/* Case 2 above */
1837 			} else if (writeback_throttling_sane(sc) ||
1838 			    !folio_test_reclaim(folio) ||
1839 			    !may_enter_fs(folio, sc->gfp_mask)) {
1840 				/*
1841 				 * This is slightly racy -
1842 				 * folio_end_writeback() might have
1843 				 * just cleared the reclaim flag, then
1844 				 * setting the reclaim flag here ends up
1845 				 * interpreted as the readahead flag - but
1846 				 * that does not matter enough to care.
1847 				 * What we do want is for this folio to
1848 				 * have the reclaim flag set next time
1849 				 * memcg reclaim reaches the tests above,
1850 				 * so it will then wait for writeback to
1851 				 * avoid OOM; and it's also appropriate
1852 				 * in global reclaim.
1853 				 */
1854 				folio_set_reclaim(folio);
1855 				stat->nr_writeback += nr_pages;
1856 				goto activate_locked;
1857 
1858 			/* Case 3 above */
1859 			} else {
1860 				folio_unlock(folio);
1861 				folio_wait_writeback(folio);
1862 				/* then go back and try same folio again */
1863 				list_add_tail(&folio->lru, folio_list);
1864 				continue;
1865 			}
1866 		}
1867 
1868 		if (!ignore_references)
1869 			references = folio_check_references(folio, sc);
1870 
1871 		switch (references) {
1872 		case FOLIOREF_ACTIVATE:
1873 			goto activate_locked;
1874 		case FOLIOREF_KEEP:
1875 			stat->nr_ref_keep += nr_pages;
1876 			goto keep_locked;
1877 		case FOLIOREF_RECLAIM:
1878 		case FOLIOREF_RECLAIM_CLEAN:
1879 			; /* try to reclaim the folio below */
1880 		}
1881 
1882 		/*
1883 		 * Before reclaiming the folio, try to relocate
1884 		 * its contents to another node.
1885 		 */
1886 		if (do_demote_pass &&
1887 		    (thp_migration_supported() || !folio_test_large(folio))) {
1888 			list_add(&folio->lru, &demote_folios);
1889 			folio_unlock(folio);
1890 			continue;
1891 		}
1892 
1893 		/*
1894 		 * Anonymous process memory has backing store?
1895 		 * Try to allocate it some swap space here.
1896 		 * Lazyfree folio could be freed directly
1897 		 */
1898 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1899 			if (!folio_test_swapcache(folio)) {
1900 				if (!(sc->gfp_mask & __GFP_IO))
1901 					goto keep_locked;
1902 				if (folio_maybe_dma_pinned(folio))
1903 					goto keep_locked;
1904 				if (folio_test_large(folio)) {
1905 					/* cannot split folio, skip it */
1906 					if (!can_split_folio(folio, NULL))
1907 						goto activate_locked;
1908 					/*
1909 					 * Split folios without a PMD map right
1910 					 * away. Chances are some or all of the
1911 					 * tail pages can be freed without IO.
1912 					 */
1913 					if (!folio_entire_mapcount(folio) &&
1914 					    split_folio_to_list(folio,
1915 								folio_list))
1916 						goto activate_locked;
1917 				}
1918 				if (!add_to_swap(folio)) {
1919 					if (!folio_test_large(folio))
1920 						goto activate_locked_split;
1921 					/* Fallback to swap normal pages */
1922 					if (split_folio_to_list(folio,
1923 								folio_list))
1924 						goto activate_locked;
1925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1926 					count_vm_event(THP_SWPOUT_FALLBACK);
1927 #endif
1928 					if (!add_to_swap(folio))
1929 						goto activate_locked_split;
1930 				}
1931 			}
1932 		} else if (folio_test_swapbacked(folio) &&
1933 			   folio_test_large(folio)) {
1934 			/* Split shmem folio */
1935 			if (split_folio_to_list(folio, folio_list))
1936 				goto keep_locked;
1937 		}
1938 
1939 		/*
1940 		 * If the folio was split above, the tail pages will make
1941 		 * their own pass through this function and be accounted
1942 		 * then.
1943 		 */
1944 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1945 			sc->nr_scanned -= (nr_pages - 1);
1946 			nr_pages = 1;
1947 		}
1948 
1949 		/*
1950 		 * The folio is mapped into the page tables of one or more
1951 		 * processes. Try to unmap it here.
1952 		 */
1953 		if (folio_mapped(folio)) {
1954 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1955 			bool was_swapbacked = folio_test_swapbacked(folio);
1956 
1957 			if (folio_test_pmd_mappable(folio))
1958 				flags |= TTU_SPLIT_HUGE_PMD;
1959 
1960 			try_to_unmap(folio, flags);
1961 			if (folio_mapped(folio)) {
1962 				stat->nr_unmap_fail += nr_pages;
1963 				if (!was_swapbacked &&
1964 				    folio_test_swapbacked(folio))
1965 					stat->nr_lazyfree_fail += nr_pages;
1966 				goto activate_locked;
1967 			}
1968 		}
1969 
1970 		mapping = folio_mapping(folio);
1971 		if (folio_test_dirty(folio)) {
1972 			/*
1973 			 * Only kswapd can writeback filesystem folios
1974 			 * to avoid risk of stack overflow. But avoid
1975 			 * injecting inefficient single-folio I/O into
1976 			 * flusher writeback as much as possible: only
1977 			 * write folios when we've encountered many
1978 			 * dirty folios, and when we've already scanned
1979 			 * the rest of the LRU for clean folios and see
1980 			 * the same dirty folios again (with the reclaim
1981 			 * flag set).
1982 			 */
1983 			if (folio_is_file_lru(folio) &&
1984 			    (!current_is_kswapd() ||
1985 			     !folio_test_reclaim(folio) ||
1986 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1987 				/*
1988 				 * Immediately reclaim when written back.
1989 				 * Similar in principle to folio_deactivate()
1990 				 * except we already have the folio isolated
1991 				 * and know it's dirty
1992 				 */
1993 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1994 						nr_pages);
1995 				folio_set_reclaim(folio);
1996 
1997 				goto activate_locked;
1998 			}
1999 
2000 			if (references == FOLIOREF_RECLAIM_CLEAN)
2001 				goto keep_locked;
2002 			if (!may_enter_fs(folio, sc->gfp_mask))
2003 				goto keep_locked;
2004 			if (!sc->may_writepage)
2005 				goto keep_locked;
2006 
2007 			/*
2008 			 * Folio is dirty. Flush the TLB if a writable entry
2009 			 * potentially exists to avoid CPU writes after I/O
2010 			 * starts and then write it out here.
2011 			 */
2012 			try_to_unmap_flush_dirty();
2013 			switch (pageout(folio, mapping, &plug)) {
2014 			case PAGE_KEEP:
2015 				goto keep_locked;
2016 			case PAGE_ACTIVATE:
2017 				goto activate_locked;
2018 			case PAGE_SUCCESS:
2019 				stat->nr_pageout += nr_pages;
2020 
2021 				if (folio_test_writeback(folio))
2022 					goto keep;
2023 				if (folio_test_dirty(folio))
2024 					goto keep;
2025 
2026 				/*
2027 				 * A synchronous write - probably a ramdisk.  Go
2028 				 * ahead and try to reclaim the folio.
2029 				 */
2030 				if (!folio_trylock(folio))
2031 					goto keep;
2032 				if (folio_test_dirty(folio) ||
2033 				    folio_test_writeback(folio))
2034 					goto keep_locked;
2035 				mapping = folio_mapping(folio);
2036 				fallthrough;
2037 			case PAGE_CLEAN:
2038 				; /* try to free the folio below */
2039 			}
2040 		}
2041 
2042 		/*
2043 		 * If the folio has buffers, try to free the buffer
2044 		 * mappings associated with this folio. If we succeed
2045 		 * we try to free the folio as well.
2046 		 *
2047 		 * We do this even if the folio is dirty.
2048 		 * filemap_release_folio() does not perform I/O, but it
2049 		 * is possible for a folio to have the dirty flag set,
2050 		 * but it is actually clean (all its buffers are clean).
2051 		 * This happens if the buffers were written out directly,
2052 		 * with submit_bh(). ext3 will do this, as well as
2053 		 * the blockdev mapping.  filemap_release_folio() will
2054 		 * discover that cleanness and will drop the buffers
2055 		 * and mark the folio clean - it can be freed.
2056 		 *
2057 		 * Rarely, folios can have buffers and no ->mapping.
2058 		 * These are the folios which were not successfully
2059 		 * invalidated in truncate_cleanup_folio().  We try to
2060 		 * drop those buffers here and if that worked, and the
2061 		 * folio is no longer mapped into process address space
2062 		 * (refcount == 1) it can be freed.  Otherwise, leave
2063 		 * the folio on the LRU so it is swappable.
2064 		 */
2065 		if (folio_has_private(folio)) {
2066 			if (!filemap_release_folio(folio, sc->gfp_mask))
2067 				goto activate_locked;
2068 			if (!mapping && folio_ref_count(folio) == 1) {
2069 				folio_unlock(folio);
2070 				if (folio_put_testzero(folio))
2071 					goto free_it;
2072 				else {
2073 					/*
2074 					 * rare race with speculative reference.
2075 					 * the speculative reference will free
2076 					 * this folio shortly, so we may
2077 					 * increment nr_reclaimed here (and
2078 					 * leave it off the LRU).
2079 					 */
2080 					nr_reclaimed += nr_pages;
2081 					continue;
2082 				}
2083 			}
2084 		}
2085 
2086 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2087 			/* follow __remove_mapping for reference */
2088 			if (!folio_ref_freeze(folio, 1))
2089 				goto keep_locked;
2090 			/*
2091 			 * The folio has only one reference left, which is
2092 			 * from the isolation. After the caller puts the
2093 			 * folio back on the lru and drops the reference, the
2094 			 * folio will be freed anyway. It doesn't matter
2095 			 * which lru it goes on. So we don't bother checking
2096 			 * the dirty flag here.
2097 			 */
2098 			count_vm_events(PGLAZYFREED, nr_pages);
2099 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2100 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2101 							 sc->target_mem_cgroup))
2102 			goto keep_locked;
2103 
2104 		folio_unlock(folio);
2105 free_it:
2106 		/*
2107 		 * Folio may get swapped out as a whole, need to account
2108 		 * all pages in it.
2109 		 */
2110 		nr_reclaimed += nr_pages;
2111 
2112 		/*
2113 		 * Is there need to periodically free_folio_list? It would
2114 		 * appear not as the counts should be low
2115 		 */
2116 		if (unlikely(folio_test_large(folio)))
2117 			destroy_large_folio(folio);
2118 		else
2119 			list_add(&folio->lru, &free_folios);
2120 		continue;
2121 
2122 activate_locked_split:
2123 		/*
2124 		 * The tail pages that are failed to add into swap cache
2125 		 * reach here.  Fixup nr_scanned and nr_pages.
2126 		 */
2127 		if (nr_pages > 1) {
2128 			sc->nr_scanned -= (nr_pages - 1);
2129 			nr_pages = 1;
2130 		}
2131 activate_locked:
2132 		/* Not a candidate for swapping, so reclaim swap space. */
2133 		if (folio_test_swapcache(folio) &&
2134 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2135 			folio_free_swap(folio);
2136 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2137 		if (!folio_test_mlocked(folio)) {
2138 			int type = folio_is_file_lru(folio);
2139 			folio_set_active(folio);
2140 			stat->nr_activate[type] += nr_pages;
2141 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2142 		}
2143 keep_locked:
2144 		folio_unlock(folio);
2145 keep:
2146 		list_add(&folio->lru, &ret_folios);
2147 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2148 				folio_test_unevictable(folio), folio);
2149 	}
2150 	/* 'folio_list' is always empty here */
2151 
2152 	/* Migrate folios selected for demotion */
2153 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2154 	/* Folios that could not be demoted are still in @demote_folios */
2155 	if (!list_empty(&demote_folios)) {
2156 		/* Folios which weren't demoted go back on @folio_list */
2157 		list_splice_init(&demote_folios, folio_list);
2158 
2159 		/*
2160 		 * goto retry to reclaim the undemoted folios in folio_list if
2161 		 * desired.
2162 		 *
2163 		 * Reclaiming directly from top tier nodes is not often desired
2164 		 * due to it breaking the LRU ordering: in general memory
2165 		 * should be reclaimed from lower tier nodes and demoted from
2166 		 * top tier nodes.
2167 		 *
2168 		 * However, disabling reclaim from top tier nodes entirely
2169 		 * would cause ooms in edge scenarios where lower tier memory
2170 		 * is unreclaimable for whatever reason, eg memory being
2171 		 * mlocked or too hot to reclaim. We can disable reclaim
2172 		 * from top tier nodes in proactive reclaim though as that is
2173 		 * not real memory pressure.
2174 		 */
2175 		if (!sc->proactive) {
2176 			do_demote_pass = false;
2177 			goto retry;
2178 		}
2179 	}
2180 
2181 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2182 
2183 	mem_cgroup_uncharge_list(&free_folios);
2184 	try_to_unmap_flush();
2185 	free_unref_page_list(&free_folios);
2186 
2187 	list_splice(&ret_folios, folio_list);
2188 	count_vm_events(PGACTIVATE, pgactivate);
2189 
2190 	if (plug)
2191 		swap_write_unplug(plug);
2192 	return nr_reclaimed;
2193 }
2194 
2195 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2196 					   struct list_head *folio_list)
2197 {
2198 	struct scan_control sc = {
2199 		.gfp_mask = GFP_KERNEL,
2200 		.may_unmap = 1,
2201 	};
2202 	struct reclaim_stat stat;
2203 	unsigned int nr_reclaimed;
2204 	struct folio *folio, *next;
2205 	LIST_HEAD(clean_folios);
2206 	unsigned int noreclaim_flag;
2207 
2208 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2209 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2210 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2211 		    !folio_test_unevictable(folio)) {
2212 			folio_clear_active(folio);
2213 			list_move(&folio->lru, &clean_folios);
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * We should be safe here since we are only dealing with file pages and
2219 	 * we are not kswapd and therefore cannot write dirty file pages. But
2220 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2221 	 * change in the future.
2222 	 */
2223 	noreclaim_flag = memalloc_noreclaim_save();
2224 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2225 					&stat, true);
2226 	memalloc_noreclaim_restore(noreclaim_flag);
2227 
2228 	list_splice(&clean_folios, folio_list);
2229 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2230 			    -(long)nr_reclaimed);
2231 	/*
2232 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2233 	 * they will rotate back to anonymous LRU in the end if it failed to
2234 	 * discard so isolated count will be mismatched.
2235 	 * Compensate the isolated count for both LRU lists.
2236 	 */
2237 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2238 			    stat.nr_lazyfree_fail);
2239 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2240 			    -(long)stat.nr_lazyfree_fail);
2241 	return nr_reclaimed;
2242 }
2243 
2244 /*
2245  * Update LRU sizes after isolating pages. The LRU size updates must
2246  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2247  */
2248 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2249 			enum lru_list lru, unsigned long *nr_zone_taken)
2250 {
2251 	int zid;
2252 
2253 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2254 		if (!nr_zone_taken[zid])
2255 			continue;
2256 
2257 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2258 	}
2259 
2260 }
2261 
2262 /*
2263  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2264  *
2265  * lruvec->lru_lock is heavily contended.  Some of the functions that
2266  * shrink the lists perform better by taking out a batch of pages
2267  * and working on them outside the LRU lock.
2268  *
2269  * For pagecache intensive workloads, this function is the hottest
2270  * spot in the kernel (apart from copy_*_user functions).
2271  *
2272  * Lru_lock must be held before calling this function.
2273  *
2274  * @nr_to_scan:	The number of eligible pages to look through on the list.
2275  * @lruvec:	The LRU vector to pull pages from.
2276  * @dst:	The temp list to put pages on to.
2277  * @nr_scanned:	The number of pages that were scanned.
2278  * @sc:		The scan_control struct for this reclaim session
2279  * @lru:	LRU list id for isolating
2280  *
2281  * returns how many pages were moved onto *@dst.
2282  */
2283 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2284 		struct lruvec *lruvec, struct list_head *dst,
2285 		unsigned long *nr_scanned, struct scan_control *sc,
2286 		enum lru_list lru)
2287 {
2288 	struct list_head *src = &lruvec->lists[lru];
2289 	unsigned long nr_taken = 0;
2290 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2291 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2292 	unsigned long skipped = 0;
2293 	unsigned long scan, total_scan, nr_pages;
2294 	LIST_HEAD(folios_skipped);
2295 
2296 	total_scan = 0;
2297 	scan = 0;
2298 	while (scan < nr_to_scan && !list_empty(src)) {
2299 		struct list_head *move_to = src;
2300 		struct folio *folio;
2301 
2302 		folio = lru_to_folio(src);
2303 		prefetchw_prev_lru_folio(folio, src, flags);
2304 
2305 		nr_pages = folio_nr_pages(folio);
2306 		total_scan += nr_pages;
2307 
2308 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2309 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2310 			move_to = &folios_skipped;
2311 			goto move;
2312 		}
2313 
2314 		/*
2315 		 * Do not count skipped folios because that makes the function
2316 		 * return with no isolated folios if the LRU mostly contains
2317 		 * ineligible folios.  This causes the VM to not reclaim any
2318 		 * folios, triggering a premature OOM.
2319 		 * Account all pages in a folio.
2320 		 */
2321 		scan += nr_pages;
2322 
2323 		if (!folio_test_lru(folio))
2324 			goto move;
2325 		if (!sc->may_unmap && folio_mapped(folio))
2326 			goto move;
2327 
2328 		/*
2329 		 * Be careful not to clear the lru flag until after we're
2330 		 * sure the folio is not being freed elsewhere -- the
2331 		 * folio release code relies on it.
2332 		 */
2333 		if (unlikely(!folio_try_get(folio)))
2334 			goto move;
2335 
2336 		if (!folio_test_clear_lru(folio)) {
2337 			/* Another thread is already isolating this folio */
2338 			folio_put(folio);
2339 			goto move;
2340 		}
2341 
2342 		nr_taken += nr_pages;
2343 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2344 		move_to = dst;
2345 move:
2346 		list_move(&folio->lru, move_to);
2347 	}
2348 
2349 	/*
2350 	 * Splice any skipped folios to the start of the LRU list. Note that
2351 	 * this disrupts the LRU order when reclaiming for lower zones but
2352 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2353 	 * scanning would soon rescan the same folios to skip and waste lots
2354 	 * of cpu cycles.
2355 	 */
2356 	if (!list_empty(&folios_skipped)) {
2357 		int zid;
2358 
2359 		list_splice(&folios_skipped, src);
2360 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2361 			if (!nr_skipped[zid])
2362 				continue;
2363 
2364 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2365 			skipped += nr_skipped[zid];
2366 		}
2367 	}
2368 	*nr_scanned = total_scan;
2369 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2370 				    total_scan, skipped, nr_taken,
2371 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2372 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2373 	return nr_taken;
2374 }
2375 
2376 /**
2377  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2378  * @folio: Folio to isolate from its LRU list.
2379  *
2380  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2381  * corresponding to whatever LRU list the folio was on.
2382  *
2383  * The folio will have its LRU flag cleared.  If it was found on the
2384  * active list, it will have the Active flag set.  If it was found on the
2385  * unevictable list, it will have the Unevictable flag set.  These flags
2386  * may need to be cleared by the caller before letting the page go.
2387  *
2388  * Context:
2389  *
2390  * (1) Must be called with an elevated refcount on the folio. This is a
2391  *     fundamental difference from isolate_lru_folios() (which is called
2392  *     without a stable reference).
2393  * (2) The lru_lock must not be held.
2394  * (3) Interrupts must be enabled.
2395  *
2396  * Return: true if the folio was removed from an LRU list.
2397  * false if the folio was not on an LRU list.
2398  */
2399 bool folio_isolate_lru(struct folio *folio)
2400 {
2401 	bool ret = false;
2402 
2403 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2404 
2405 	if (folio_test_clear_lru(folio)) {
2406 		struct lruvec *lruvec;
2407 
2408 		folio_get(folio);
2409 		lruvec = folio_lruvec_lock_irq(folio);
2410 		lruvec_del_folio(lruvec, folio);
2411 		unlock_page_lruvec_irq(lruvec);
2412 		ret = true;
2413 	}
2414 
2415 	return ret;
2416 }
2417 
2418 /*
2419  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2420  * then get rescheduled. When there are massive number of tasks doing page
2421  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2422  * the LRU list will go small and be scanned faster than necessary, leading to
2423  * unnecessary swapping, thrashing and OOM.
2424  */
2425 static int too_many_isolated(struct pglist_data *pgdat, int file,
2426 		struct scan_control *sc)
2427 {
2428 	unsigned long inactive, isolated;
2429 	bool too_many;
2430 
2431 	if (current_is_kswapd())
2432 		return 0;
2433 
2434 	if (!writeback_throttling_sane(sc))
2435 		return 0;
2436 
2437 	if (file) {
2438 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2439 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2440 	} else {
2441 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2442 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2443 	}
2444 
2445 	/*
2446 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2447 	 * won't get blocked by normal direct-reclaimers, forming a circular
2448 	 * deadlock.
2449 	 */
2450 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2451 		inactive >>= 3;
2452 
2453 	too_many = isolated > inactive;
2454 
2455 	/* Wake up tasks throttled due to too_many_isolated. */
2456 	if (!too_many)
2457 		wake_throttle_isolated(pgdat);
2458 
2459 	return too_many;
2460 }
2461 
2462 /*
2463  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2464  * On return, @list is reused as a list of folios to be freed by the caller.
2465  *
2466  * Returns the number of pages moved to the given lruvec.
2467  */
2468 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2469 		struct list_head *list)
2470 {
2471 	int nr_pages, nr_moved = 0;
2472 	LIST_HEAD(folios_to_free);
2473 
2474 	while (!list_empty(list)) {
2475 		struct folio *folio = lru_to_folio(list);
2476 
2477 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2478 		list_del(&folio->lru);
2479 		if (unlikely(!folio_evictable(folio))) {
2480 			spin_unlock_irq(&lruvec->lru_lock);
2481 			folio_putback_lru(folio);
2482 			spin_lock_irq(&lruvec->lru_lock);
2483 			continue;
2484 		}
2485 
2486 		/*
2487 		 * The folio_set_lru needs to be kept here for list integrity.
2488 		 * Otherwise:
2489 		 *   #0 move_folios_to_lru             #1 release_pages
2490 		 *   if (!folio_put_testzero())
2491 		 *				      if (folio_put_testzero())
2492 		 *				        !lru //skip lru_lock
2493 		 *     folio_set_lru()
2494 		 *     list_add(&folio->lru,)
2495 		 *                                        list_add(&folio->lru,)
2496 		 */
2497 		folio_set_lru(folio);
2498 
2499 		if (unlikely(folio_put_testzero(folio))) {
2500 			__folio_clear_lru_flags(folio);
2501 
2502 			if (unlikely(folio_test_large(folio))) {
2503 				spin_unlock_irq(&lruvec->lru_lock);
2504 				destroy_large_folio(folio);
2505 				spin_lock_irq(&lruvec->lru_lock);
2506 			} else
2507 				list_add(&folio->lru, &folios_to_free);
2508 
2509 			continue;
2510 		}
2511 
2512 		/*
2513 		 * All pages were isolated from the same lruvec (and isolation
2514 		 * inhibits memcg migration).
2515 		 */
2516 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2517 		lruvec_add_folio(lruvec, folio);
2518 		nr_pages = folio_nr_pages(folio);
2519 		nr_moved += nr_pages;
2520 		if (folio_test_active(folio))
2521 			workingset_age_nonresident(lruvec, nr_pages);
2522 	}
2523 
2524 	/*
2525 	 * To save our caller's stack, now use input list for pages to free.
2526 	 */
2527 	list_splice(&folios_to_free, list);
2528 
2529 	return nr_moved;
2530 }
2531 
2532 /*
2533  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2534  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2535  * we should not throttle.  Otherwise it is safe to do so.
2536  */
2537 static int current_may_throttle(void)
2538 {
2539 	return !(current->flags & PF_LOCAL_THROTTLE);
2540 }
2541 
2542 /*
2543  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2544  * of reclaimed pages
2545  */
2546 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2547 		struct lruvec *lruvec, struct scan_control *sc,
2548 		enum lru_list lru)
2549 {
2550 	LIST_HEAD(folio_list);
2551 	unsigned long nr_scanned;
2552 	unsigned int nr_reclaimed = 0;
2553 	unsigned long nr_taken;
2554 	struct reclaim_stat stat;
2555 	bool file = is_file_lru(lru);
2556 	enum vm_event_item item;
2557 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2558 	bool stalled = false;
2559 
2560 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2561 		if (stalled)
2562 			return 0;
2563 
2564 		/* wait a bit for the reclaimer. */
2565 		stalled = true;
2566 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2567 
2568 		/* We are about to die and free our memory. Return now. */
2569 		if (fatal_signal_pending(current))
2570 			return SWAP_CLUSTER_MAX;
2571 	}
2572 
2573 	lru_add_drain();
2574 
2575 	spin_lock_irq(&lruvec->lru_lock);
2576 
2577 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2578 				     &nr_scanned, sc, lru);
2579 
2580 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2581 	item = PGSCAN_KSWAPD + reclaimer_offset();
2582 	if (!cgroup_reclaim(sc))
2583 		__count_vm_events(item, nr_scanned);
2584 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2585 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2586 
2587 	spin_unlock_irq(&lruvec->lru_lock);
2588 
2589 	if (nr_taken == 0)
2590 		return 0;
2591 
2592 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2593 
2594 	spin_lock_irq(&lruvec->lru_lock);
2595 	move_folios_to_lru(lruvec, &folio_list);
2596 
2597 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2598 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2599 	if (!cgroup_reclaim(sc))
2600 		__count_vm_events(item, nr_reclaimed);
2601 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2602 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2603 	spin_unlock_irq(&lruvec->lru_lock);
2604 
2605 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2606 	mem_cgroup_uncharge_list(&folio_list);
2607 	free_unref_page_list(&folio_list);
2608 
2609 	/*
2610 	 * If dirty folios are scanned that are not queued for IO, it
2611 	 * implies that flushers are not doing their job. This can
2612 	 * happen when memory pressure pushes dirty folios to the end of
2613 	 * the LRU before the dirty limits are breached and the dirty
2614 	 * data has expired. It can also happen when the proportion of
2615 	 * dirty folios grows not through writes but through memory
2616 	 * pressure reclaiming all the clean cache. And in some cases,
2617 	 * the flushers simply cannot keep up with the allocation
2618 	 * rate. Nudge the flusher threads in case they are asleep.
2619 	 */
2620 	if (stat.nr_unqueued_dirty == nr_taken) {
2621 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2622 		/*
2623 		 * For cgroupv1 dirty throttling is achieved by waking up
2624 		 * the kernel flusher here and later waiting on folios
2625 		 * which are in writeback to finish (see shrink_folio_list()).
2626 		 *
2627 		 * Flusher may not be able to issue writeback quickly
2628 		 * enough for cgroupv1 writeback throttling to work
2629 		 * on a large system.
2630 		 */
2631 		if (!writeback_throttling_sane(sc))
2632 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2633 	}
2634 
2635 	sc->nr.dirty += stat.nr_dirty;
2636 	sc->nr.congested += stat.nr_congested;
2637 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2638 	sc->nr.writeback += stat.nr_writeback;
2639 	sc->nr.immediate += stat.nr_immediate;
2640 	sc->nr.taken += nr_taken;
2641 	if (file)
2642 		sc->nr.file_taken += nr_taken;
2643 
2644 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2645 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2646 	return nr_reclaimed;
2647 }
2648 
2649 /*
2650  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2651  *
2652  * We move them the other way if the folio is referenced by one or more
2653  * processes.
2654  *
2655  * If the folios are mostly unmapped, the processing is fast and it is
2656  * appropriate to hold lru_lock across the whole operation.  But if
2657  * the folios are mapped, the processing is slow (folio_referenced()), so
2658  * we should drop lru_lock around each folio.  It's impossible to balance
2659  * this, so instead we remove the folios from the LRU while processing them.
2660  * It is safe to rely on the active flag against the non-LRU folios in here
2661  * because nobody will play with that bit on a non-LRU folio.
2662  *
2663  * The downside is that we have to touch folio->_refcount against each folio.
2664  * But we had to alter folio->flags anyway.
2665  */
2666 static void shrink_active_list(unsigned long nr_to_scan,
2667 			       struct lruvec *lruvec,
2668 			       struct scan_control *sc,
2669 			       enum lru_list lru)
2670 {
2671 	unsigned long nr_taken;
2672 	unsigned long nr_scanned;
2673 	unsigned long vm_flags;
2674 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2675 	LIST_HEAD(l_active);
2676 	LIST_HEAD(l_inactive);
2677 	unsigned nr_deactivate, nr_activate;
2678 	unsigned nr_rotated = 0;
2679 	int file = is_file_lru(lru);
2680 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2681 
2682 	lru_add_drain();
2683 
2684 	spin_lock_irq(&lruvec->lru_lock);
2685 
2686 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2687 				     &nr_scanned, sc, lru);
2688 
2689 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2690 
2691 	if (!cgroup_reclaim(sc))
2692 		__count_vm_events(PGREFILL, nr_scanned);
2693 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2694 
2695 	spin_unlock_irq(&lruvec->lru_lock);
2696 
2697 	while (!list_empty(&l_hold)) {
2698 		struct folio *folio;
2699 
2700 		cond_resched();
2701 		folio = lru_to_folio(&l_hold);
2702 		list_del(&folio->lru);
2703 
2704 		if (unlikely(!folio_evictable(folio))) {
2705 			folio_putback_lru(folio);
2706 			continue;
2707 		}
2708 
2709 		if (unlikely(buffer_heads_over_limit)) {
2710 			if (folio_test_private(folio) && folio_trylock(folio)) {
2711 				if (folio_test_private(folio))
2712 					filemap_release_folio(folio, 0);
2713 				folio_unlock(folio);
2714 			}
2715 		}
2716 
2717 		/* Referenced or rmap lock contention: rotate */
2718 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2719 				     &vm_flags) != 0) {
2720 			/*
2721 			 * Identify referenced, file-backed active folios and
2722 			 * give them one more trip around the active list. So
2723 			 * that executable code get better chances to stay in
2724 			 * memory under moderate memory pressure.  Anon folios
2725 			 * are not likely to be evicted by use-once streaming
2726 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2727 			 * so we ignore them here.
2728 			 */
2729 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2730 				nr_rotated += folio_nr_pages(folio);
2731 				list_add(&folio->lru, &l_active);
2732 				continue;
2733 			}
2734 		}
2735 
2736 		folio_clear_active(folio);	/* we are de-activating */
2737 		folio_set_workingset(folio);
2738 		list_add(&folio->lru, &l_inactive);
2739 	}
2740 
2741 	/*
2742 	 * Move folios back to the lru list.
2743 	 */
2744 	spin_lock_irq(&lruvec->lru_lock);
2745 
2746 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2747 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2748 	/* Keep all free folios in l_active list */
2749 	list_splice(&l_inactive, &l_active);
2750 
2751 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2752 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2753 
2754 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2755 	spin_unlock_irq(&lruvec->lru_lock);
2756 
2757 	if (nr_rotated)
2758 		lru_note_cost(lruvec, file, 0, nr_rotated);
2759 	mem_cgroup_uncharge_list(&l_active);
2760 	free_unref_page_list(&l_active);
2761 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2762 			nr_deactivate, nr_rotated, sc->priority, file);
2763 }
2764 
2765 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2766 				      struct pglist_data *pgdat)
2767 {
2768 	struct reclaim_stat dummy_stat;
2769 	unsigned int nr_reclaimed;
2770 	struct folio *folio;
2771 	struct scan_control sc = {
2772 		.gfp_mask = GFP_KERNEL,
2773 		.may_writepage = 1,
2774 		.may_unmap = 1,
2775 		.may_swap = 1,
2776 		.no_demotion = 1,
2777 	};
2778 
2779 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2780 	while (!list_empty(folio_list)) {
2781 		folio = lru_to_folio(folio_list);
2782 		list_del(&folio->lru);
2783 		folio_putback_lru(folio);
2784 	}
2785 
2786 	return nr_reclaimed;
2787 }
2788 
2789 unsigned long reclaim_pages(struct list_head *folio_list)
2790 {
2791 	int nid;
2792 	unsigned int nr_reclaimed = 0;
2793 	LIST_HEAD(node_folio_list);
2794 	unsigned int noreclaim_flag;
2795 
2796 	if (list_empty(folio_list))
2797 		return nr_reclaimed;
2798 
2799 	noreclaim_flag = memalloc_noreclaim_save();
2800 
2801 	nid = folio_nid(lru_to_folio(folio_list));
2802 	do {
2803 		struct folio *folio = lru_to_folio(folio_list);
2804 
2805 		if (nid == folio_nid(folio)) {
2806 			folio_clear_active(folio);
2807 			list_move(&folio->lru, &node_folio_list);
2808 			continue;
2809 		}
2810 
2811 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2812 		nid = folio_nid(lru_to_folio(folio_list));
2813 	} while (!list_empty(folio_list));
2814 
2815 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2816 
2817 	memalloc_noreclaim_restore(noreclaim_flag);
2818 
2819 	return nr_reclaimed;
2820 }
2821 
2822 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2823 				 struct lruvec *lruvec, struct scan_control *sc)
2824 {
2825 	if (is_active_lru(lru)) {
2826 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2827 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2828 		else
2829 			sc->skipped_deactivate = 1;
2830 		return 0;
2831 	}
2832 
2833 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2834 }
2835 
2836 /*
2837  * The inactive anon list should be small enough that the VM never has
2838  * to do too much work.
2839  *
2840  * The inactive file list should be small enough to leave most memory
2841  * to the established workingset on the scan-resistant active list,
2842  * but large enough to avoid thrashing the aggregate readahead window.
2843  *
2844  * Both inactive lists should also be large enough that each inactive
2845  * folio has a chance to be referenced again before it is reclaimed.
2846  *
2847  * If that fails and refaulting is observed, the inactive list grows.
2848  *
2849  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2850  * on this LRU, maintained by the pageout code. An inactive_ratio
2851  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2852  *
2853  * total     target    max
2854  * memory    ratio     inactive
2855  * -------------------------------------
2856  *   10MB       1         5MB
2857  *  100MB       1        50MB
2858  *    1GB       3       250MB
2859  *   10GB      10       0.9GB
2860  *  100GB      31         3GB
2861  *    1TB     101        10GB
2862  *   10TB     320        32GB
2863  */
2864 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2865 {
2866 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2867 	unsigned long inactive, active;
2868 	unsigned long inactive_ratio;
2869 	unsigned long gb;
2870 
2871 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2872 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2873 
2874 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2875 	if (gb)
2876 		inactive_ratio = int_sqrt(10 * gb);
2877 	else
2878 		inactive_ratio = 1;
2879 
2880 	return inactive * inactive_ratio < active;
2881 }
2882 
2883 enum scan_balance {
2884 	SCAN_EQUAL,
2885 	SCAN_FRACT,
2886 	SCAN_ANON,
2887 	SCAN_FILE,
2888 };
2889 
2890 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2891 {
2892 	unsigned long file;
2893 	struct lruvec *target_lruvec;
2894 
2895 	if (lru_gen_enabled())
2896 		return;
2897 
2898 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2899 
2900 	/*
2901 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2902 	 * lruvec stats for heuristics.
2903 	 */
2904 	mem_cgroup_flush_stats();
2905 
2906 	/*
2907 	 * Determine the scan balance between anon and file LRUs.
2908 	 */
2909 	spin_lock_irq(&target_lruvec->lru_lock);
2910 	sc->anon_cost = target_lruvec->anon_cost;
2911 	sc->file_cost = target_lruvec->file_cost;
2912 	spin_unlock_irq(&target_lruvec->lru_lock);
2913 
2914 	/*
2915 	 * Target desirable inactive:active list ratios for the anon
2916 	 * and file LRU lists.
2917 	 */
2918 	if (!sc->force_deactivate) {
2919 		unsigned long refaults;
2920 
2921 		/*
2922 		 * When refaults are being observed, it means a new
2923 		 * workingset is being established. Deactivate to get
2924 		 * rid of any stale active pages quickly.
2925 		 */
2926 		refaults = lruvec_page_state(target_lruvec,
2927 				WORKINGSET_ACTIVATE_ANON);
2928 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2929 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2930 			sc->may_deactivate |= DEACTIVATE_ANON;
2931 		else
2932 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2933 
2934 		refaults = lruvec_page_state(target_lruvec,
2935 				WORKINGSET_ACTIVATE_FILE);
2936 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2937 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2938 			sc->may_deactivate |= DEACTIVATE_FILE;
2939 		else
2940 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2941 	} else
2942 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2943 
2944 	/*
2945 	 * If we have plenty of inactive file pages that aren't
2946 	 * thrashing, try to reclaim those first before touching
2947 	 * anonymous pages.
2948 	 */
2949 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2950 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2951 		sc->cache_trim_mode = 1;
2952 	else
2953 		sc->cache_trim_mode = 0;
2954 
2955 	/*
2956 	 * Prevent the reclaimer from falling into the cache trap: as
2957 	 * cache pages start out inactive, every cache fault will tip
2958 	 * the scan balance towards the file LRU.  And as the file LRU
2959 	 * shrinks, so does the window for rotation from references.
2960 	 * This means we have a runaway feedback loop where a tiny
2961 	 * thrashing file LRU becomes infinitely more attractive than
2962 	 * anon pages.  Try to detect this based on file LRU size.
2963 	 */
2964 	if (!cgroup_reclaim(sc)) {
2965 		unsigned long total_high_wmark = 0;
2966 		unsigned long free, anon;
2967 		int z;
2968 
2969 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2970 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2971 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2972 
2973 		for (z = 0; z < MAX_NR_ZONES; z++) {
2974 			struct zone *zone = &pgdat->node_zones[z];
2975 
2976 			if (!managed_zone(zone))
2977 				continue;
2978 
2979 			total_high_wmark += high_wmark_pages(zone);
2980 		}
2981 
2982 		/*
2983 		 * Consider anon: if that's low too, this isn't a
2984 		 * runaway file reclaim problem, but rather just
2985 		 * extreme pressure. Reclaim as per usual then.
2986 		 */
2987 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2988 
2989 		sc->file_is_tiny =
2990 			file + free <= total_high_wmark &&
2991 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2992 			anon >> sc->priority;
2993 	}
2994 }
2995 
2996 /*
2997  * Determine how aggressively the anon and file LRU lists should be
2998  * scanned.
2999  *
3000  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3001  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3002  */
3003 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3004 			   unsigned long *nr)
3005 {
3006 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3007 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3008 	unsigned long anon_cost, file_cost, total_cost;
3009 	int swappiness = mem_cgroup_swappiness(memcg);
3010 	u64 fraction[ANON_AND_FILE];
3011 	u64 denominator = 0;	/* gcc */
3012 	enum scan_balance scan_balance;
3013 	unsigned long ap, fp;
3014 	enum lru_list lru;
3015 
3016 	/* If we have no swap space, do not bother scanning anon folios. */
3017 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3018 		scan_balance = SCAN_FILE;
3019 		goto out;
3020 	}
3021 
3022 	/*
3023 	 * Global reclaim will swap to prevent OOM even with no
3024 	 * swappiness, but memcg users want to use this knob to
3025 	 * disable swapping for individual groups completely when
3026 	 * using the memory controller's swap limit feature would be
3027 	 * too expensive.
3028 	 */
3029 	if (cgroup_reclaim(sc) && !swappiness) {
3030 		scan_balance = SCAN_FILE;
3031 		goto out;
3032 	}
3033 
3034 	/*
3035 	 * Do not apply any pressure balancing cleverness when the
3036 	 * system is close to OOM, scan both anon and file equally
3037 	 * (unless the swappiness setting disagrees with swapping).
3038 	 */
3039 	if (!sc->priority && swappiness) {
3040 		scan_balance = SCAN_EQUAL;
3041 		goto out;
3042 	}
3043 
3044 	/*
3045 	 * If the system is almost out of file pages, force-scan anon.
3046 	 */
3047 	if (sc->file_is_tiny) {
3048 		scan_balance = SCAN_ANON;
3049 		goto out;
3050 	}
3051 
3052 	/*
3053 	 * If there is enough inactive page cache, we do not reclaim
3054 	 * anything from the anonymous working right now.
3055 	 */
3056 	if (sc->cache_trim_mode) {
3057 		scan_balance = SCAN_FILE;
3058 		goto out;
3059 	}
3060 
3061 	scan_balance = SCAN_FRACT;
3062 	/*
3063 	 * Calculate the pressure balance between anon and file pages.
3064 	 *
3065 	 * The amount of pressure we put on each LRU is inversely
3066 	 * proportional to the cost of reclaiming each list, as
3067 	 * determined by the share of pages that are refaulting, times
3068 	 * the relative IO cost of bringing back a swapped out
3069 	 * anonymous page vs reloading a filesystem page (swappiness).
3070 	 *
3071 	 * Although we limit that influence to ensure no list gets
3072 	 * left behind completely: at least a third of the pressure is
3073 	 * applied, before swappiness.
3074 	 *
3075 	 * With swappiness at 100, anon and file have equal IO cost.
3076 	 */
3077 	total_cost = sc->anon_cost + sc->file_cost;
3078 	anon_cost = total_cost + sc->anon_cost;
3079 	file_cost = total_cost + sc->file_cost;
3080 	total_cost = anon_cost + file_cost;
3081 
3082 	ap = swappiness * (total_cost + 1);
3083 	ap /= anon_cost + 1;
3084 
3085 	fp = (200 - swappiness) * (total_cost + 1);
3086 	fp /= file_cost + 1;
3087 
3088 	fraction[0] = ap;
3089 	fraction[1] = fp;
3090 	denominator = ap + fp;
3091 out:
3092 	for_each_evictable_lru(lru) {
3093 		int file = is_file_lru(lru);
3094 		unsigned long lruvec_size;
3095 		unsigned long low, min;
3096 		unsigned long scan;
3097 
3098 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3099 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3100 				      &min, &low);
3101 
3102 		if (min || low) {
3103 			/*
3104 			 * Scale a cgroup's reclaim pressure by proportioning
3105 			 * its current usage to its memory.low or memory.min
3106 			 * setting.
3107 			 *
3108 			 * This is important, as otherwise scanning aggression
3109 			 * becomes extremely binary -- from nothing as we
3110 			 * approach the memory protection threshold, to totally
3111 			 * nominal as we exceed it.  This results in requiring
3112 			 * setting extremely liberal protection thresholds. It
3113 			 * also means we simply get no protection at all if we
3114 			 * set it too low, which is not ideal.
3115 			 *
3116 			 * If there is any protection in place, we reduce scan
3117 			 * pressure by how much of the total memory used is
3118 			 * within protection thresholds.
3119 			 *
3120 			 * There is one special case: in the first reclaim pass,
3121 			 * we skip over all groups that are within their low
3122 			 * protection. If that fails to reclaim enough pages to
3123 			 * satisfy the reclaim goal, we come back and override
3124 			 * the best-effort low protection. However, we still
3125 			 * ideally want to honor how well-behaved groups are in
3126 			 * that case instead of simply punishing them all
3127 			 * equally. As such, we reclaim them based on how much
3128 			 * memory they are using, reducing the scan pressure
3129 			 * again by how much of the total memory used is under
3130 			 * hard protection.
3131 			 */
3132 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3133 			unsigned long protection;
3134 
3135 			/* memory.low scaling, make sure we retry before OOM */
3136 			if (!sc->memcg_low_reclaim && low > min) {
3137 				protection = low;
3138 				sc->memcg_low_skipped = 1;
3139 			} else {
3140 				protection = min;
3141 			}
3142 
3143 			/* Avoid TOCTOU with earlier protection check */
3144 			cgroup_size = max(cgroup_size, protection);
3145 
3146 			scan = lruvec_size - lruvec_size * protection /
3147 				(cgroup_size + 1);
3148 
3149 			/*
3150 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3151 			 * reclaim moving forwards, avoiding decrementing
3152 			 * sc->priority further than desirable.
3153 			 */
3154 			scan = max(scan, SWAP_CLUSTER_MAX);
3155 		} else {
3156 			scan = lruvec_size;
3157 		}
3158 
3159 		scan >>= sc->priority;
3160 
3161 		/*
3162 		 * If the cgroup's already been deleted, make sure to
3163 		 * scrape out the remaining cache.
3164 		 */
3165 		if (!scan && !mem_cgroup_online(memcg))
3166 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3167 
3168 		switch (scan_balance) {
3169 		case SCAN_EQUAL:
3170 			/* Scan lists relative to size */
3171 			break;
3172 		case SCAN_FRACT:
3173 			/*
3174 			 * Scan types proportional to swappiness and
3175 			 * their relative recent reclaim efficiency.
3176 			 * Make sure we don't miss the last page on
3177 			 * the offlined memory cgroups because of a
3178 			 * round-off error.
3179 			 */
3180 			scan = mem_cgroup_online(memcg) ?
3181 			       div64_u64(scan * fraction[file], denominator) :
3182 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3183 						  denominator);
3184 			break;
3185 		case SCAN_FILE:
3186 		case SCAN_ANON:
3187 			/* Scan one type exclusively */
3188 			if ((scan_balance == SCAN_FILE) != file)
3189 				scan = 0;
3190 			break;
3191 		default:
3192 			/* Look ma, no brain */
3193 			BUG();
3194 		}
3195 
3196 		nr[lru] = scan;
3197 	}
3198 }
3199 
3200 /*
3201  * Anonymous LRU management is a waste if there is
3202  * ultimately no way to reclaim the memory.
3203  */
3204 static bool can_age_anon_pages(struct pglist_data *pgdat,
3205 			       struct scan_control *sc)
3206 {
3207 	/* Aging the anon LRU is valuable if swap is present: */
3208 	if (total_swap_pages > 0)
3209 		return true;
3210 
3211 	/* Also valuable if anon pages can be demoted: */
3212 	return can_demote(pgdat->node_id, sc);
3213 }
3214 
3215 #ifdef CONFIG_LRU_GEN
3216 
3217 #ifdef CONFIG_LRU_GEN_ENABLED
3218 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3219 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3220 #else
3221 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3222 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3223 #endif
3224 
3225 /******************************************************************************
3226  *                          shorthand helpers
3227  ******************************************************************************/
3228 
3229 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3230 
3231 #define DEFINE_MAX_SEQ(lruvec)						\
3232 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3233 
3234 #define DEFINE_MIN_SEQ(lruvec)						\
3235 	unsigned long min_seq[ANON_AND_FILE] = {			\
3236 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3237 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3238 	}
3239 
3240 #define for_each_gen_type_zone(gen, type, zone)				\
3241 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3242 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3243 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3244 
3245 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3246 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3247 
3248 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3249 {
3250 	struct pglist_data *pgdat = NODE_DATA(nid);
3251 
3252 #ifdef CONFIG_MEMCG
3253 	if (memcg) {
3254 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3255 
3256 		/* see the comment in mem_cgroup_lruvec() */
3257 		if (!lruvec->pgdat)
3258 			lruvec->pgdat = pgdat;
3259 
3260 		return lruvec;
3261 	}
3262 #endif
3263 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3264 
3265 	return &pgdat->__lruvec;
3266 }
3267 
3268 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3269 {
3270 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3271 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3272 
3273 	if (!sc->may_swap)
3274 		return 0;
3275 
3276 	if (!can_demote(pgdat->node_id, sc) &&
3277 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3278 		return 0;
3279 
3280 	return mem_cgroup_swappiness(memcg);
3281 }
3282 
3283 static int get_nr_gens(struct lruvec *lruvec, int type)
3284 {
3285 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3286 }
3287 
3288 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3289 {
3290 	/* see the comment on lru_gen_folio */
3291 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3292 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3293 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3294 }
3295 
3296 /******************************************************************************
3297  *                          Bloom filters
3298  ******************************************************************************/
3299 
3300 /*
3301  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3302  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3303  * bits in a bitmap, k is the number of hash functions and n is the number of
3304  * inserted items.
3305  *
3306  * Page table walkers use one of the two filters to reduce their search space.
3307  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3308  * aging uses the double-buffering technique to flip to the other filter each
3309  * time it produces a new generation. For non-leaf entries that have enough
3310  * leaf entries, the aging carries them over to the next generation in
3311  * walk_pmd_range(); the eviction also report them when walking the rmap
3312  * in lru_gen_look_around().
3313  *
3314  * For future optimizations:
3315  * 1. It's not necessary to keep both filters all the time. The spare one can be
3316  *    freed after the RCU grace period and reallocated if needed again.
3317  * 2. And when reallocating, it's worth scaling its size according to the number
3318  *    of inserted entries in the other filter, to reduce the memory overhead on
3319  *    small systems and false positives on large systems.
3320  * 3. Jenkins' hash function is an alternative to Knuth's.
3321  */
3322 #define BLOOM_FILTER_SHIFT	15
3323 
3324 static inline int filter_gen_from_seq(unsigned long seq)
3325 {
3326 	return seq % NR_BLOOM_FILTERS;
3327 }
3328 
3329 static void get_item_key(void *item, int *key)
3330 {
3331 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3332 
3333 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3334 
3335 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3336 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3337 }
3338 
3339 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3340 {
3341 	int key[2];
3342 	unsigned long *filter;
3343 	int gen = filter_gen_from_seq(seq);
3344 
3345 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3346 	if (!filter)
3347 		return true;
3348 
3349 	get_item_key(item, key);
3350 
3351 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3352 }
3353 
3354 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3355 {
3356 	int key[2];
3357 	unsigned long *filter;
3358 	int gen = filter_gen_from_seq(seq);
3359 
3360 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3361 	if (!filter)
3362 		return;
3363 
3364 	get_item_key(item, key);
3365 
3366 	if (!test_bit(key[0], filter))
3367 		set_bit(key[0], filter);
3368 	if (!test_bit(key[1], filter))
3369 		set_bit(key[1], filter);
3370 }
3371 
3372 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3373 {
3374 	unsigned long *filter;
3375 	int gen = filter_gen_from_seq(seq);
3376 
3377 	filter = lruvec->mm_state.filters[gen];
3378 	if (filter) {
3379 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3380 		return;
3381 	}
3382 
3383 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3384 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3385 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3386 }
3387 
3388 /******************************************************************************
3389  *                          mm_struct list
3390  ******************************************************************************/
3391 
3392 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3393 {
3394 	static struct lru_gen_mm_list mm_list = {
3395 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3396 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3397 	};
3398 
3399 #ifdef CONFIG_MEMCG
3400 	if (memcg)
3401 		return &memcg->mm_list;
3402 #endif
3403 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3404 
3405 	return &mm_list;
3406 }
3407 
3408 void lru_gen_add_mm(struct mm_struct *mm)
3409 {
3410 	int nid;
3411 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3412 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3413 
3414 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3415 #ifdef CONFIG_MEMCG
3416 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3417 	mm->lru_gen.memcg = memcg;
3418 #endif
3419 	spin_lock(&mm_list->lock);
3420 
3421 	for_each_node_state(nid, N_MEMORY) {
3422 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3423 
3424 		/* the first addition since the last iteration */
3425 		if (lruvec->mm_state.tail == &mm_list->fifo)
3426 			lruvec->mm_state.tail = &mm->lru_gen.list;
3427 	}
3428 
3429 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3430 
3431 	spin_unlock(&mm_list->lock);
3432 }
3433 
3434 void lru_gen_del_mm(struct mm_struct *mm)
3435 {
3436 	int nid;
3437 	struct lru_gen_mm_list *mm_list;
3438 	struct mem_cgroup *memcg = NULL;
3439 
3440 	if (list_empty(&mm->lru_gen.list))
3441 		return;
3442 
3443 #ifdef CONFIG_MEMCG
3444 	memcg = mm->lru_gen.memcg;
3445 #endif
3446 	mm_list = get_mm_list(memcg);
3447 
3448 	spin_lock(&mm_list->lock);
3449 
3450 	for_each_node(nid) {
3451 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3452 
3453 		/* where the last iteration ended (exclusive) */
3454 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3455 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3456 
3457 		/* where the current iteration continues (inclusive) */
3458 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3459 			continue;
3460 
3461 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3462 		/* the deletion ends the current iteration */
3463 		if (lruvec->mm_state.head == &mm_list->fifo)
3464 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3465 	}
3466 
3467 	list_del_init(&mm->lru_gen.list);
3468 
3469 	spin_unlock(&mm_list->lock);
3470 
3471 #ifdef CONFIG_MEMCG
3472 	mem_cgroup_put(mm->lru_gen.memcg);
3473 	mm->lru_gen.memcg = NULL;
3474 #endif
3475 }
3476 
3477 #ifdef CONFIG_MEMCG
3478 void lru_gen_migrate_mm(struct mm_struct *mm)
3479 {
3480 	struct mem_cgroup *memcg;
3481 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3482 
3483 	VM_WARN_ON_ONCE(task->mm != mm);
3484 	lockdep_assert_held(&task->alloc_lock);
3485 
3486 	/* for mm_update_next_owner() */
3487 	if (mem_cgroup_disabled())
3488 		return;
3489 
3490 	/* migration can happen before addition */
3491 	if (!mm->lru_gen.memcg)
3492 		return;
3493 
3494 	rcu_read_lock();
3495 	memcg = mem_cgroup_from_task(task);
3496 	rcu_read_unlock();
3497 	if (memcg == mm->lru_gen.memcg)
3498 		return;
3499 
3500 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3501 
3502 	lru_gen_del_mm(mm);
3503 	lru_gen_add_mm(mm);
3504 }
3505 #endif
3506 
3507 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3508 {
3509 	int i;
3510 	int hist;
3511 
3512 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3513 
3514 	if (walk) {
3515 		hist = lru_hist_from_seq(walk->max_seq);
3516 
3517 		for (i = 0; i < NR_MM_STATS; i++) {
3518 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3519 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3520 			walk->mm_stats[i] = 0;
3521 		}
3522 	}
3523 
3524 	if (NR_HIST_GENS > 1 && last) {
3525 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3526 
3527 		for (i = 0; i < NR_MM_STATS; i++)
3528 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3529 	}
3530 }
3531 
3532 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3533 {
3534 	int type;
3535 	unsigned long size = 0;
3536 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3537 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3538 
3539 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3540 		return true;
3541 
3542 	clear_bit(key, &mm->lru_gen.bitmap);
3543 
3544 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3545 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3546 			       get_mm_counter(mm, MM_ANONPAGES) +
3547 			       get_mm_counter(mm, MM_SHMEMPAGES);
3548 	}
3549 
3550 	if (size < MIN_LRU_BATCH)
3551 		return true;
3552 
3553 	return !mmget_not_zero(mm);
3554 }
3555 
3556 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3557 			    struct mm_struct **iter)
3558 {
3559 	bool first = false;
3560 	bool last = true;
3561 	struct mm_struct *mm = NULL;
3562 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3563 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3564 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3565 
3566 	/*
3567 	 * There are four interesting cases for this page table walker:
3568 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3569 	 *    there is nothing left to do.
3570 	 * 2. It's the first of the current generation, and it needs to reset
3571 	 *    the Bloom filter for the next generation.
3572 	 * 3. It reaches the end of mm_list, and it needs to increment
3573 	 *    mm_state->seq; the iteration is done.
3574 	 * 4. It's the last of the current generation, and it needs to reset the
3575 	 *    mm stats counters for the next generation.
3576 	 */
3577 	spin_lock(&mm_list->lock);
3578 
3579 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3580 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3581 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3582 
3583 	if (walk->max_seq <= mm_state->seq) {
3584 		if (!*iter)
3585 			last = false;
3586 		goto done;
3587 	}
3588 
3589 	if (!mm_state->nr_walkers) {
3590 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3591 
3592 		mm_state->head = mm_list->fifo.next;
3593 		first = true;
3594 	}
3595 
3596 	while (!mm && mm_state->head != &mm_list->fifo) {
3597 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3598 
3599 		mm_state->head = mm_state->head->next;
3600 
3601 		/* force scan for those added after the last iteration */
3602 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3603 			mm_state->tail = mm_state->head;
3604 			walk->force_scan = true;
3605 		}
3606 
3607 		if (should_skip_mm(mm, walk))
3608 			mm = NULL;
3609 	}
3610 
3611 	if (mm_state->head == &mm_list->fifo)
3612 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3613 done:
3614 	if (*iter && !mm)
3615 		mm_state->nr_walkers--;
3616 	if (!*iter && mm)
3617 		mm_state->nr_walkers++;
3618 
3619 	if (mm_state->nr_walkers)
3620 		last = false;
3621 
3622 	if (*iter || last)
3623 		reset_mm_stats(lruvec, walk, last);
3624 
3625 	spin_unlock(&mm_list->lock);
3626 
3627 	if (mm && first)
3628 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3629 
3630 	if (*iter)
3631 		mmput_async(*iter);
3632 
3633 	*iter = mm;
3634 
3635 	return last;
3636 }
3637 
3638 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3639 {
3640 	bool success = false;
3641 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3642 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3643 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3644 
3645 	spin_lock(&mm_list->lock);
3646 
3647 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3648 
3649 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3650 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3651 
3652 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3653 		reset_mm_stats(lruvec, NULL, true);
3654 		success = true;
3655 	}
3656 
3657 	spin_unlock(&mm_list->lock);
3658 
3659 	return success;
3660 }
3661 
3662 /******************************************************************************
3663  *                          PID controller
3664  ******************************************************************************/
3665 
3666 /*
3667  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3668  *
3669  * The P term is refaulted/(evicted+protected) from a tier in the generation
3670  * currently being evicted; the I term is the exponential moving average of the
3671  * P term over the generations previously evicted, using the smoothing factor
3672  * 1/2; the D term isn't supported.
3673  *
3674  * The setpoint (SP) is always the first tier of one type; the process variable
3675  * (PV) is either any tier of the other type or any other tier of the same
3676  * type.
3677  *
3678  * The error is the difference between the SP and the PV; the correction is to
3679  * turn off protection when SP>PV or turn on protection when SP<PV.
3680  *
3681  * For future optimizations:
3682  * 1. The D term may discount the other two terms over time so that long-lived
3683  *    generations can resist stale information.
3684  */
3685 struct ctrl_pos {
3686 	unsigned long refaulted;
3687 	unsigned long total;
3688 	int gain;
3689 };
3690 
3691 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3692 			  struct ctrl_pos *pos)
3693 {
3694 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3695 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3696 
3697 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3698 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3699 	pos->total = lrugen->avg_total[type][tier] +
3700 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3701 	if (tier)
3702 		pos->total += lrugen->protected[hist][type][tier - 1];
3703 	pos->gain = gain;
3704 }
3705 
3706 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3707 {
3708 	int hist, tier;
3709 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3710 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3711 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3712 
3713 	lockdep_assert_held(&lruvec->lru_lock);
3714 
3715 	if (!carryover && !clear)
3716 		return;
3717 
3718 	hist = lru_hist_from_seq(seq);
3719 
3720 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3721 		if (carryover) {
3722 			unsigned long sum;
3723 
3724 			sum = lrugen->avg_refaulted[type][tier] +
3725 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3726 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3727 
3728 			sum = lrugen->avg_total[type][tier] +
3729 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3730 			if (tier)
3731 				sum += lrugen->protected[hist][type][tier - 1];
3732 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3733 		}
3734 
3735 		if (clear) {
3736 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3737 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3738 			if (tier)
3739 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3740 		}
3741 	}
3742 }
3743 
3744 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3745 {
3746 	/*
3747 	 * Return true if the PV has a limited number of refaults or a lower
3748 	 * refaulted/total than the SP.
3749 	 */
3750 	return pv->refaulted < MIN_LRU_BATCH ||
3751 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3752 	       (sp->refaulted + 1) * pv->total * pv->gain;
3753 }
3754 
3755 /******************************************************************************
3756  *                          the aging
3757  ******************************************************************************/
3758 
3759 /* promote pages accessed through page tables */
3760 static int folio_update_gen(struct folio *folio, int gen)
3761 {
3762 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3763 
3764 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3765 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3766 
3767 	do {
3768 		/* lru_gen_del_folio() has isolated this page? */
3769 		if (!(old_flags & LRU_GEN_MASK)) {
3770 			/* for shrink_folio_list() */
3771 			new_flags = old_flags | BIT(PG_referenced);
3772 			continue;
3773 		}
3774 
3775 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3776 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3777 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3778 
3779 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3780 }
3781 
3782 /* protect pages accessed multiple times through file descriptors */
3783 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3784 {
3785 	int type = folio_is_file_lru(folio);
3786 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3787 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3788 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3789 
3790 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3791 
3792 	do {
3793 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3794 		/* folio_update_gen() has promoted this page? */
3795 		if (new_gen >= 0 && new_gen != old_gen)
3796 			return new_gen;
3797 
3798 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3799 
3800 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3801 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3802 		/* for folio_end_writeback() */
3803 		if (reclaiming)
3804 			new_flags |= BIT(PG_reclaim);
3805 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3806 
3807 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3808 
3809 	return new_gen;
3810 }
3811 
3812 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3813 			      int old_gen, int new_gen)
3814 {
3815 	int type = folio_is_file_lru(folio);
3816 	int zone = folio_zonenum(folio);
3817 	int delta = folio_nr_pages(folio);
3818 
3819 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3820 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3821 
3822 	walk->batched++;
3823 
3824 	walk->nr_pages[old_gen][type][zone] -= delta;
3825 	walk->nr_pages[new_gen][type][zone] += delta;
3826 }
3827 
3828 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3829 {
3830 	int gen, type, zone;
3831 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3832 
3833 	walk->batched = 0;
3834 
3835 	for_each_gen_type_zone(gen, type, zone) {
3836 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3837 		int delta = walk->nr_pages[gen][type][zone];
3838 
3839 		if (!delta)
3840 			continue;
3841 
3842 		walk->nr_pages[gen][type][zone] = 0;
3843 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3844 			   lrugen->nr_pages[gen][type][zone] + delta);
3845 
3846 		if (lru_gen_is_active(lruvec, gen))
3847 			lru += LRU_ACTIVE;
3848 		__update_lru_size(lruvec, lru, zone, delta);
3849 	}
3850 }
3851 
3852 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3853 {
3854 	struct address_space *mapping;
3855 	struct vm_area_struct *vma = args->vma;
3856 	struct lru_gen_mm_walk *walk = args->private;
3857 
3858 	if (!vma_is_accessible(vma))
3859 		return true;
3860 
3861 	if (is_vm_hugetlb_page(vma))
3862 		return true;
3863 
3864 	if (!vma_has_recency(vma))
3865 		return true;
3866 
3867 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3868 		return true;
3869 
3870 	if (vma == get_gate_vma(vma->vm_mm))
3871 		return true;
3872 
3873 	if (vma_is_anonymous(vma))
3874 		return !walk->can_swap;
3875 
3876 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3877 		return true;
3878 
3879 	mapping = vma->vm_file->f_mapping;
3880 	if (mapping_unevictable(mapping))
3881 		return true;
3882 
3883 	if (shmem_mapping(mapping))
3884 		return !walk->can_swap;
3885 
3886 	/* to exclude special mappings like dax, etc. */
3887 	return !mapping->a_ops->read_folio;
3888 }
3889 
3890 /*
3891  * Some userspace memory allocators map many single-page VMAs. Instead of
3892  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3893  * table to reduce zigzags and improve cache performance.
3894  */
3895 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3896 			 unsigned long *vm_start, unsigned long *vm_end)
3897 {
3898 	unsigned long start = round_up(*vm_end, size);
3899 	unsigned long end = (start | ~mask) + 1;
3900 	VMA_ITERATOR(vmi, args->mm, start);
3901 
3902 	VM_WARN_ON_ONCE(mask & size);
3903 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3904 
3905 	for_each_vma(vmi, args->vma) {
3906 		if (end && end <= args->vma->vm_start)
3907 			return false;
3908 
3909 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3910 			continue;
3911 
3912 		*vm_start = max(start, args->vma->vm_start);
3913 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3914 
3915 		return true;
3916 	}
3917 
3918 	return false;
3919 }
3920 
3921 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3922 {
3923 	unsigned long pfn = pte_pfn(pte);
3924 
3925 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3926 
3927 	if (!pte_present(pte) || is_zero_pfn(pfn))
3928 		return -1;
3929 
3930 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3931 		return -1;
3932 
3933 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3934 		return -1;
3935 
3936 	return pfn;
3937 }
3938 
3939 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3940 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3941 {
3942 	unsigned long pfn = pmd_pfn(pmd);
3943 
3944 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3945 
3946 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3947 		return -1;
3948 
3949 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3950 		return -1;
3951 
3952 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3953 		return -1;
3954 
3955 	return pfn;
3956 }
3957 #endif
3958 
3959 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3960 				   struct pglist_data *pgdat, bool can_swap)
3961 {
3962 	struct folio *folio;
3963 
3964 	/* try to avoid unnecessary memory loads */
3965 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3966 		return NULL;
3967 
3968 	folio = pfn_folio(pfn);
3969 	if (folio_nid(folio) != pgdat->node_id)
3970 		return NULL;
3971 
3972 	if (folio_memcg_rcu(folio) != memcg)
3973 		return NULL;
3974 
3975 	/* file VMAs can contain anon pages from COW */
3976 	if (!folio_is_file_lru(folio) && !can_swap)
3977 		return NULL;
3978 
3979 	return folio;
3980 }
3981 
3982 static bool suitable_to_scan(int total, int young)
3983 {
3984 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3985 
3986 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3987 	return young * n >= total;
3988 }
3989 
3990 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3991 			   struct mm_walk *args)
3992 {
3993 	int i;
3994 	pte_t *pte;
3995 	spinlock_t *ptl;
3996 	unsigned long addr;
3997 	int total = 0;
3998 	int young = 0;
3999 	struct lru_gen_mm_walk *walk = args->private;
4000 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4001 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4002 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4003 
4004 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
4005 
4006 	ptl = pte_lockptr(args->mm, pmd);
4007 	if (!spin_trylock(ptl))
4008 		return false;
4009 
4010 	arch_enter_lazy_mmu_mode();
4011 
4012 	pte = pte_offset_map(pmd, start & PMD_MASK);
4013 restart:
4014 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4015 		unsigned long pfn;
4016 		struct folio *folio;
4017 
4018 		total++;
4019 		walk->mm_stats[MM_LEAF_TOTAL]++;
4020 
4021 		pfn = get_pte_pfn(pte[i], args->vma, addr);
4022 		if (pfn == -1)
4023 			continue;
4024 
4025 		if (!pte_young(pte[i])) {
4026 			walk->mm_stats[MM_LEAF_OLD]++;
4027 			continue;
4028 		}
4029 
4030 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4031 		if (!folio)
4032 			continue;
4033 
4034 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4035 			VM_WARN_ON_ONCE(true);
4036 
4037 		young++;
4038 		walk->mm_stats[MM_LEAF_YOUNG]++;
4039 
4040 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4041 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4042 		      !folio_test_swapcache(folio)))
4043 			folio_mark_dirty(folio);
4044 
4045 		old_gen = folio_update_gen(folio, new_gen);
4046 		if (old_gen >= 0 && old_gen != new_gen)
4047 			update_batch_size(walk, folio, old_gen, new_gen);
4048 	}
4049 
4050 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4051 		goto restart;
4052 
4053 	pte_unmap(pte);
4054 
4055 	arch_leave_lazy_mmu_mode();
4056 	spin_unlock(ptl);
4057 
4058 	return suitable_to_scan(total, young);
4059 }
4060 
4061 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4062 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4063 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4064 {
4065 	int i;
4066 	pmd_t *pmd;
4067 	spinlock_t *ptl;
4068 	struct lru_gen_mm_walk *walk = args->private;
4069 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4070 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4071 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4072 
4073 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4074 
4075 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4076 	if (*first == -1) {
4077 		*first = addr;
4078 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4079 		return;
4080 	}
4081 
4082 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4083 	if (i && i <= MIN_LRU_BATCH) {
4084 		__set_bit(i - 1, bitmap);
4085 		return;
4086 	}
4087 
4088 	pmd = pmd_offset(pud, *first);
4089 
4090 	ptl = pmd_lockptr(args->mm, pmd);
4091 	if (!spin_trylock(ptl))
4092 		goto done;
4093 
4094 	arch_enter_lazy_mmu_mode();
4095 
4096 	do {
4097 		unsigned long pfn;
4098 		struct folio *folio;
4099 
4100 		/* don't round down the first address */
4101 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4102 
4103 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4104 		if (pfn == -1)
4105 			goto next;
4106 
4107 		if (!pmd_trans_huge(pmd[i])) {
4108 			if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4109 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4110 			goto next;
4111 		}
4112 
4113 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4114 		if (!folio)
4115 			goto next;
4116 
4117 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4118 			goto next;
4119 
4120 		walk->mm_stats[MM_LEAF_YOUNG]++;
4121 
4122 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4123 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4124 		      !folio_test_swapcache(folio)))
4125 			folio_mark_dirty(folio);
4126 
4127 		old_gen = folio_update_gen(folio, new_gen);
4128 		if (old_gen >= 0 && old_gen != new_gen)
4129 			update_batch_size(walk, folio, old_gen, new_gen);
4130 next:
4131 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4132 	} while (i <= MIN_LRU_BATCH);
4133 
4134 	arch_leave_lazy_mmu_mode();
4135 	spin_unlock(ptl);
4136 done:
4137 	*first = -1;
4138 }
4139 #else
4140 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4141 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4142 {
4143 }
4144 #endif
4145 
4146 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4147 			   struct mm_walk *args)
4148 {
4149 	int i;
4150 	pmd_t *pmd;
4151 	unsigned long next;
4152 	unsigned long addr;
4153 	struct vm_area_struct *vma;
4154 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4155 	unsigned long first = -1;
4156 	struct lru_gen_mm_walk *walk = args->private;
4157 
4158 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4159 
4160 	/*
4161 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4162 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4163 	 * the PMD lock to clear the accessed bit in PMD entries.
4164 	 */
4165 	pmd = pmd_offset(pud, start & PUD_MASK);
4166 restart:
4167 	/* walk_pte_range() may call get_next_vma() */
4168 	vma = args->vma;
4169 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4170 		pmd_t val = pmdp_get_lockless(pmd + i);
4171 
4172 		next = pmd_addr_end(addr, end);
4173 
4174 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4175 			walk->mm_stats[MM_LEAF_TOTAL]++;
4176 			continue;
4177 		}
4178 
4179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4180 		if (pmd_trans_huge(val)) {
4181 			unsigned long pfn = pmd_pfn(val);
4182 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4183 
4184 			walk->mm_stats[MM_LEAF_TOTAL]++;
4185 
4186 			if (!pmd_young(val)) {
4187 				walk->mm_stats[MM_LEAF_OLD]++;
4188 				continue;
4189 			}
4190 
4191 			/* try to avoid unnecessary memory loads */
4192 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4193 				continue;
4194 
4195 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4196 			continue;
4197 		}
4198 #endif
4199 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4200 
4201 		if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4202 			if (!pmd_young(val))
4203 				continue;
4204 
4205 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4206 		}
4207 
4208 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4209 			continue;
4210 
4211 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4212 
4213 		if (!walk_pte_range(&val, addr, next, args))
4214 			continue;
4215 
4216 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4217 
4218 		/* carry over to the next generation */
4219 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4220 	}
4221 
4222 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4223 
4224 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4225 		goto restart;
4226 }
4227 
4228 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4229 			  struct mm_walk *args)
4230 {
4231 	int i;
4232 	pud_t *pud;
4233 	unsigned long addr;
4234 	unsigned long next;
4235 	struct lru_gen_mm_walk *walk = args->private;
4236 
4237 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4238 
4239 	pud = pud_offset(p4d, start & P4D_MASK);
4240 restart:
4241 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4242 		pud_t val = READ_ONCE(pud[i]);
4243 
4244 		next = pud_addr_end(addr, end);
4245 
4246 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4247 			continue;
4248 
4249 		walk_pmd_range(&val, addr, next, args);
4250 
4251 		/* a racy check to curtail the waiting time */
4252 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4253 			return 1;
4254 
4255 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4256 			end = (addr | ~PUD_MASK) + 1;
4257 			goto done;
4258 		}
4259 	}
4260 
4261 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4262 		goto restart;
4263 
4264 	end = round_up(end, P4D_SIZE);
4265 done:
4266 	if (!end || !args->vma)
4267 		return 1;
4268 
4269 	walk->next_addr = max(end, args->vma->vm_start);
4270 
4271 	return -EAGAIN;
4272 }
4273 
4274 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4275 {
4276 	static const struct mm_walk_ops mm_walk_ops = {
4277 		.test_walk = should_skip_vma,
4278 		.p4d_entry = walk_pud_range,
4279 	};
4280 
4281 	int err;
4282 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4283 
4284 	walk->next_addr = FIRST_USER_ADDRESS;
4285 
4286 	do {
4287 		err = -EBUSY;
4288 
4289 		/* folio_update_gen() requires stable folio_memcg() */
4290 		if (!mem_cgroup_trylock_pages(memcg))
4291 			break;
4292 
4293 		/* the caller might be holding the lock for write */
4294 		if (mmap_read_trylock(mm)) {
4295 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4296 
4297 			mmap_read_unlock(mm);
4298 		}
4299 
4300 		mem_cgroup_unlock_pages();
4301 
4302 		if (walk->batched) {
4303 			spin_lock_irq(&lruvec->lru_lock);
4304 			reset_batch_size(lruvec, walk);
4305 			spin_unlock_irq(&lruvec->lru_lock);
4306 		}
4307 
4308 		cond_resched();
4309 	} while (err == -EAGAIN);
4310 }
4311 
4312 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4313 {
4314 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4315 
4316 	if (pgdat && current_is_kswapd()) {
4317 		VM_WARN_ON_ONCE(walk);
4318 
4319 		walk = &pgdat->mm_walk;
4320 	} else if (!walk && force_alloc) {
4321 		VM_WARN_ON_ONCE(current_is_kswapd());
4322 
4323 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4324 	}
4325 
4326 	current->reclaim_state->mm_walk = walk;
4327 
4328 	return walk;
4329 }
4330 
4331 static void clear_mm_walk(void)
4332 {
4333 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4334 
4335 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4336 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4337 
4338 	current->reclaim_state->mm_walk = NULL;
4339 
4340 	if (!current_is_kswapd())
4341 		kfree(walk);
4342 }
4343 
4344 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4345 {
4346 	int zone;
4347 	int remaining = MAX_LRU_BATCH;
4348 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4349 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4350 
4351 	if (type == LRU_GEN_ANON && !can_swap)
4352 		goto done;
4353 
4354 	/* prevent cold/hot inversion if force_scan is true */
4355 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4356 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4357 
4358 		while (!list_empty(head)) {
4359 			struct folio *folio = lru_to_folio(head);
4360 
4361 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4362 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4363 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4364 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4365 
4366 			new_gen = folio_inc_gen(lruvec, folio, false);
4367 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4368 
4369 			if (!--remaining)
4370 				return false;
4371 		}
4372 	}
4373 done:
4374 	reset_ctrl_pos(lruvec, type, true);
4375 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4376 
4377 	return true;
4378 }
4379 
4380 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4381 {
4382 	int gen, type, zone;
4383 	bool success = false;
4384 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4385 	DEFINE_MIN_SEQ(lruvec);
4386 
4387 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4388 
4389 	/* find the oldest populated generation */
4390 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4391 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4392 			gen = lru_gen_from_seq(min_seq[type]);
4393 
4394 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4395 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4396 					goto next;
4397 			}
4398 
4399 			min_seq[type]++;
4400 		}
4401 next:
4402 		;
4403 	}
4404 
4405 	/* see the comment on lru_gen_folio */
4406 	if (can_swap) {
4407 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4408 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4409 	}
4410 
4411 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4412 		if (min_seq[type] == lrugen->min_seq[type])
4413 			continue;
4414 
4415 		reset_ctrl_pos(lruvec, type, true);
4416 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4417 		success = true;
4418 	}
4419 
4420 	return success;
4421 }
4422 
4423 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4424 {
4425 	int prev, next;
4426 	int type, zone;
4427 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4428 
4429 	spin_lock_irq(&lruvec->lru_lock);
4430 
4431 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4432 
4433 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4434 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4435 			continue;
4436 
4437 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4438 
4439 		while (!inc_min_seq(lruvec, type, can_swap)) {
4440 			spin_unlock_irq(&lruvec->lru_lock);
4441 			cond_resched();
4442 			spin_lock_irq(&lruvec->lru_lock);
4443 		}
4444 	}
4445 
4446 	/*
4447 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4448 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4449 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4450 	 * overlap, cold/hot inversion happens.
4451 	 */
4452 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4453 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4454 
4455 	for (type = 0; type < ANON_AND_FILE; type++) {
4456 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4457 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4458 			long delta = lrugen->nr_pages[prev][type][zone] -
4459 				     lrugen->nr_pages[next][type][zone];
4460 
4461 			if (!delta)
4462 				continue;
4463 
4464 			__update_lru_size(lruvec, lru, zone, delta);
4465 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4466 		}
4467 	}
4468 
4469 	for (type = 0; type < ANON_AND_FILE; type++)
4470 		reset_ctrl_pos(lruvec, type, false);
4471 
4472 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4473 	/* make sure preceding modifications appear */
4474 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4475 
4476 	spin_unlock_irq(&lruvec->lru_lock);
4477 }
4478 
4479 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4480 			       struct scan_control *sc, bool can_swap, bool force_scan)
4481 {
4482 	bool success;
4483 	struct lru_gen_mm_walk *walk;
4484 	struct mm_struct *mm = NULL;
4485 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4486 
4487 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4488 
4489 	/* see the comment in iterate_mm_list() */
4490 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4491 		success = false;
4492 		goto done;
4493 	}
4494 
4495 	/*
4496 	 * If the hardware doesn't automatically set the accessed bit, fallback
4497 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4498 	 * handful of PTEs. Spreading the work out over a period of time usually
4499 	 * is less efficient, but it avoids bursty page faults.
4500 	 */
4501 	if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4502 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4503 		goto done;
4504 	}
4505 
4506 	walk = set_mm_walk(NULL, true);
4507 	if (!walk) {
4508 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4509 		goto done;
4510 	}
4511 
4512 	walk->lruvec = lruvec;
4513 	walk->max_seq = max_seq;
4514 	walk->can_swap = can_swap;
4515 	walk->force_scan = force_scan;
4516 
4517 	do {
4518 		success = iterate_mm_list(lruvec, walk, &mm);
4519 		if (mm)
4520 			walk_mm(lruvec, mm, walk);
4521 
4522 		cond_resched();
4523 	} while (mm);
4524 done:
4525 	if (!success) {
4526 		if (sc->priority <= DEF_PRIORITY - 2)
4527 			wait_event_killable(lruvec->mm_state.wait,
4528 					    max_seq < READ_ONCE(lrugen->max_seq));
4529 		return false;
4530 	}
4531 
4532 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4533 
4534 	inc_max_seq(lruvec, can_swap, force_scan);
4535 	/* either this sees any waiters or they will see updated max_seq */
4536 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4537 		wake_up_all(&lruvec->mm_state.wait);
4538 
4539 	return true;
4540 }
4541 
4542 /******************************************************************************
4543  *                          working set protection
4544  ******************************************************************************/
4545 
4546 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4547 {
4548 	int gen, type, zone;
4549 	unsigned long total = 0;
4550 	bool can_swap = get_swappiness(lruvec, sc);
4551 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4552 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4553 	DEFINE_MAX_SEQ(lruvec);
4554 	DEFINE_MIN_SEQ(lruvec);
4555 
4556 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4557 		unsigned long seq;
4558 
4559 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4560 			gen = lru_gen_from_seq(seq);
4561 
4562 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4563 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4564 		}
4565 	}
4566 
4567 	/* whether the size is big enough to be helpful */
4568 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4569 }
4570 
4571 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4572 				  unsigned long min_ttl)
4573 {
4574 	int gen;
4575 	unsigned long birth;
4576 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4577 	DEFINE_MIN_SEQ(lruvec);
4578 
4579 	/* see the comment on lru_gen_folio */
4580 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4581 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4582 
4583 	if (time_is_after_jiffies(birth + min_ttl))
4584 		return false;
4585 
4586 	if (!lruvec_is_sizable(lruvec, sc))
4587 		return false;
4588 
4589 	mem_cgroup_calculate_protection(NULL, memcg);
4590 
4591 	return !mem_cgroup_below_min(NULL, memcg);
4592 }
4593 
4594 /* to protect the working set of the last N jiffies */
4595 static unsigned long lru_gen_min_ttl __read_mostly;
4596 
4597 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4598 {
4599 	struct mem_cgroup *memcg;
4600 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4601 
4602 	VM_WARN_ON_ONCE(!current_is_kswapd());
4603 
4604 	/* check the order to exclude compaction-induced reclaim */
4605 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4606 		return;
4607 
4608 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4609 	do {
4610 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4611 
4612 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4613 			mem_cgroup_iter_break(NULL, memcg);
4614 			return;
4615 		}
4616 
4617 		cond_resched();
4618 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4619 
4620 	/*
4621 	 * The main goal is to OOM kill if every generation from all memcgs is
4622 	 * younger than min_ttl. However, another possibility is all memcgs are
4623 	 * either too small or below min.
4624 	 */
4625 	if (mutex_trylock(&oom_lock)) {
4626 		struct oom_control oc = {
4627 			.gfp_mask = sc->gfp_mask,
4628 		};
4629 
4630 		out_of_memory(&oc);
4631 
4632 		mutex_unlock(&oom_lock);
4633 	}
4634 }
4635 
4636 /******************************************************************************
4637  *                          rmap/PT walk feedback
4638  ******************************************************************************/
4639 
4640 /*
4641  * This function exploits spatial locality when shrink_folio_list() walks the
4642  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4643  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4644  * the PTE table to the Bloom filter. This forms a feedback loop between the
4645  * eviction and the aging.
4646  */
4647 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4648 {
4649 	int i;
4650 	unsigned long start;
4651 	unsigned long end;
4652 	struct lru_gen_mm_walk *walk;
4653 	int young = 0;
4654 	pte_t *pte = pvmw->pte;
4655 	unsigned long addr = pvmw->address;
4656 	struct folio *folio = pfn_folio(pvmw->pfn);
4657 	struct mem_cgroup *memcg = folio_memcg(folio);
4658 	struct pglist_data *pgdat = folio_pgdat(folio);
4659 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4660 	DEFINE_MAX_SEQ(lruvec);
4661 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4662 
4663 	lockdep_assert_held(pvmw->ptl);
4664 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4665 
4666 	if (spin_is_contended(pvmw->ptl))
4667 		return;
4668 
4669 	/* avoid taking the LRU lock under the PTL when possible */
4670 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4671 
4672 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4673 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4674 
4675 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4676 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4677 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4678 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4679 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4680 		else {
4681 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4682 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4683 		}
4684 	}
4685 
4686 	/* folio_update_gen() requires stable folio_memcg() */
4687 	if (!mem_cgroup_trylock_pages(memcg))
4688 		return;
4689 
4690 	arch_enter_lazy_mmu_mode();
4691 
4692 	pte -= (addr - start) / PAGE_SIZE;
4693 
4694 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4695 		unsigned long pfn;
4696 
4697 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4698 		if (pfn == -1)
4699 			continue;
4700 
4701 		if (!pte_young(pte[i]))
4702 			continue;
4703 
4704 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4705 		if (!folio)
4706 			continue;
4707 
4708 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4709 			VM_WARN_ON_ONCE(true);
4710 
4711 		young++;
4712 
4713 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4714 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4715 		      !folio_test_swapcache(folio)))
4716 			folio_mark_dirty(folio);
4717 
4718 		if (walk) {
4719 			old_gen = folio_update_gen(folio, new_gen);
4720 			if (old_gen >= 0 && old_gen != new_gen)
4721 				update_batch_size(walk, folio, old_gen, new_gen);
4722 
4723 			continue;
4724 		}
4725 
4726 		old_gen = folio_lru_gen(folio);
4727 		if (old_gen < 0)
4728 			folio_set_referenced(folio);
4729 		else if (old_gen != new_gen)
4730 			folio_activate(folio);
4731 	}
4732 
4733 	arch_leave_lazy_mmu_mode();
4734 	mem_cgroup_unlock_pages();
4735 
4736 	/* feedback from rmap walkers to page table walkers */
4737 	if (suitable_to_scan(i, young))
4738 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4739 }
4740 
4741 /******************************************************************************
4742  *                          memcg LRU
4743  ******************************************************************************/
4744 
4745 /* see the comment on MEMCG_NR_GENS */
4746 enum {
4747 	MEMCG_LRU_NOP,
4748 	MEMCG_LRU_HEAD,
4749 	MEMCG_LRU_TAIL,
4750 	MEMCG_LRU_OLD,
4751 	MEMCG_LRU_YOUNG,
4752 };
4753 
4754 #ifdef CONFIG_MEMCG
4755 
4756 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4757 {
4758 	return READ_ONCE(lruvec->lrugen.seg);
4759 }
4760 
4761 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4762 {
4763 	int seg;
4764 	int old, new;
4765 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4766 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4767 
4768 	spin_lock(&pgdat->memcg_lru.lock);
4769 
4770 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4771 
4772 	seg = 0;
4773 	new = old = lruvec->lrugen.gen;
4774 
4775 	/* see the comment on MEMCG_NR_GENS */
4776 	if (op == MEMCG_LRU_HEAD)
4777 		seg = MEMCG_LRU_HEAD;
4778 	else if (op == MEMCG_LRU_TAIL)
4779 		seg = MEMCG_LRU_TAIL;
4780 	else if (op == MEMCG_LRU_OLD)
4781 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4782 	else if (op == MEMCG_LRU_YOUNG)
4783 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4784 	else
4785 		VM_WARN_ON_ONCE(true);
4786 
4787 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4788 
4789 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4790 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4791 	else
4792 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4793 
4794 	pgdat->memcg_lru.nr_memcgs[old]--;
4795 	pgdat->memcg_lru.nr_memcgs[new]++;
4796 
4797 	lruvec->lrugen.gen = new;
4798 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4799 
4800 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4801 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4802 
4803 	spin_unlock(&pgdat->memcg_lru.lock);
4804 }
4805 
4806 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4807 {
4808 	int gen;
4809 	int nid;
4810 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4811 
4812 	for_each_node(nid) {
4813 		struct pglist_data *pgdat = NODE_DATA(nid);
4814 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4815 
4816 		spin_lock(&pgdat->memcg_lru.lock);
4817 
4818 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4819 
4820 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4821 
4822 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4823 		pgdat->memcg_lru.nr_memcgs[gen]++;
4824 
4825 		lruvec->lrugen.gen = gen;
4826 
4827 		spin_unlock(&pgdat->memcg_lru.lock);
4828 	}
4829 }
4830 
4831 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4832 {
4833 	int nid;
4834 
4835 	for_each_node(nid) {
4836 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4837 
4838 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4839 	}
4840 }
4841 
4842 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4843 {
4844 	int gen;
4845 	int nid;
4846 
4847 	for_each_node(nid) {
4848 		struct pglist_data *pgdat = NODE_DATA(nid);
4849 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4850 
4851 		spin_lock(&pgdat->memcg_lru.lock);
4852 
4853 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4854 
4855 		gen = lruvec->lrugen.gen;
4856 
4857 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
4858 		pgdat->memcg_lru.nr_memcgs[gen]--;
4859 
4860 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4861 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4862 
4863 		spin_unlock(&pgdat->memcg_lru.lock);
4864 	}
4865 }
4866 
4867 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4868 {
4869 	/* see the comment on MEMCG_NR_GENS */
4870 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4871 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4872 }
4873 
4874 #else /* !CONFIG_MEMCG */
4875 
4876 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4877 {
4878 	return 0;
4879 }
4880 
4881 #endif
4882 
4883 /******************************************************************************
4884  *                          the eviction
4885  ******************************************************************************/
4886 
4887 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4888 {
4889 	bool success;
4890 	int gen = folio_lru_gen(folio);
4891 	int type = folio_is_file_lru(folio);
4892 	int zone = folio_zonenum(folio);
4893 	int delta = folio_nr_pages(folio);
4894 	int refs = folio_lru_refs(folio);
4895 	int tier = lru_tier_from_refs(refs);
4896 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4897 
4898 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4899 
4900 	/* unevictable */
4901 	if (!folio_evictable(folio)) {
4902 		success = lru_gen_del_folio(lruvec, folio, true);
4903 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4904 		folio_set_unevictable(folio);
4905 		lruvec_add_folio(lruvec, folio);
4906 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4907 		return true;
4908 	}
4909 
4910 	/* dirty lazyfree */
4911 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4912 		success = lru_gen_del_folio(lruvec, folio, true);
4913 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4914 		folio_set_swapbacked(folio);
4915 		lruvec_add_folio_tail(lruvec, folio);
4916 		return true;
4917 	}
4918 
4919 	/* promoted */
4920 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4921 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4922 		return true;
4923 	}
4924 
4925 	/* protected */
4926 	if (tier > tier_idx) {
4927 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4928 
4929 		gen = folio_inc_gen(lruvec, folio, false);
4930 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4931 
4932 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4933 			   lrugen->protected[hist][type][tier - 1] + delta);
4934 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4935 		return true;
4936 	}
4937 
4938 	/* waiting for writeback */
4939 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4940 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4941 		gen = folio_inc_gen(lruvec, folio, true);
4942 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4943 		return true;
4944 	}
4945 
4946 	return false;
4947 }
4948 
4949 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4950 {
4951 	bool success;
4952 
4953 	/* swapping inhibited */
4954 	if (!(sc->gfp_mask & __GFP_IO) &&
4955 	    (folio_test_dirty(folio) ||
4956 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4957 		return false;
4958 
4959 	/* raced with release_pages() */
4960 	if (!folio_try_get(folio))
4961 		return false;
4962 
4963 	/* raced with another isolation */
4964 	if (!folio_test_clear_lru(folio)) {
4965 		folio_put(folio);
4966 		return false;
4967 	}
4968 
4969 	/* see the comment on MAX_NR_TIERS */
4970 	if (!folio_test_referenced(folio))
4971 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4972 
4973 	/* for shrink_folio_list() */
4974 	folio_clear_reclaim(folio);
4975 	folio_clear_referenced(folio);
4976 
4977 	success = lru_gen_del_folio(lruvec, folio, true);
4978 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4979 
4980 	return true;
4981 }
4982 
4983 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4984 		       int type, int tier, struct list_head *list)
4985 {
4986 	int gen, zone;
4987 	enum vm_event_item item;
4988 	int sorted = 0;
4989 	int scanned = 0;
4990 	int isolated = 0;
4991 	int remaining = MAX_LRU_BATCH;
4992 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4993 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4994 
4995 	VM_WARN_ON_ONCE(!list_empty(list));
4996 
4997 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4998 		return 0;
4999 
5000 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
5001 
5002 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
5003 		LIST_HEAD(moved);
5004 		int skipped = 0;
5005 		struct list_head *head = &lrugen->folios[gen][type][zone];
5006 
5007 		while (!list_empty(head)) {
5008 			struct folio *folio = lru_to_folio(head);
5009 			int delta = folio_nr_pages(folio);
5010 
5011 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5012 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5013 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5014 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5015 
5016 			scanned += delta;
5017 
5018 			if (sort_folio(lruvec, folio, tier))
5019 				sorted += delta;
5020 			else if (isolate_folio(lruvec, folio, sc)) {
5021 				list_add(&folio->lru, list);
5022 				isolated += delta;
5023 			} else {
5024 				list_move(&folio->lru, &moved);
5025 				skipped += delta;
5026 			}
5027 
5028 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5029 				break;
5030 		}
5031 
5032 		if (skipped) {
5033 			list_splice(&moved, head);
5034 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5035 		}
5036 
5037 		if (!remaining || isolated >= MIN_LRU_BATCH)
5038 			break;
5039 	}
5040 
5041 	item = PGSCAN_KSWAPD + reclaimer_offset();
5042 	if (!cgroup_reclaim(sc)) {
5043 		__count_vm_events(item, isolated);
5044 		__count_vm_events(PGREFILL, sorted);
5045 	}
5046 	__count_memcg_events(memcg, item, isolated);
5047 	__count_memcg_events(memcg, PGREFILL, sorted);
5048 	__count_vm_events(PGSCAN_ANON + type, isolated);
5049 
5050 	/*
5051 	 * There might not be eligible folios due to reclaim_idx. Check the
5052 	 * remaining to prevent livelock if it's not making progress.
5053 	 */
5054 	return isolated || !remaining ? scanned : 0;
5055 }
5056 
5057 static int get_tier_idx(struct lruvec *lruvec, int type)
5058 {
5059 	int tier;
5060 	struct ctrl_pos sp, pv;
5061 
5062 	/*
5063 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5064 	 * This value is chosen because any other tier would have at least twice
5065 	 * as many refaults as the first tier.
5066 	 */
5067 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5068 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5069 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5070 		if (!positive_ctrl_err(&sp, &pv))
5071 			break;
5072 	}
5073 
5074 	return tier - 1;
5075 }
5076 
5077 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5078 {
5079 	int type, tier;
5080 	struct ctrl_pos sp, pv;
5081 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5082 
5083 	/*
5084 	 * Compare the first tier of anon with that of file to determine which
5085 	 * type to scan. Also need to compare other tiers of the selected type
5086 	 * with the first tier of the other type to determine the last tier (of
5087 	 * the selected type) to evict.
5088 	 */
5089 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5090 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5091 	type = positive_ctrl_err(&sp, &pv);
5092 
5093 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5094 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5095 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5096 		if (!positive_ctrl_err(&sp, &pv))
5097 			break;
5098 	}
5099 
5100 	*tier_idx = tier - 1;
5101 
5102 	return type;
5103 }
5104 
5105 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5106 			  int *type_scanned, struct list_head *list)
5107 {
5108 	int i;
5109 	int type;
5110 	int scanned;
5111 	int tier = -1;
5112 	DEFINE_MIN_SEQ(lruvec);
5113 
5114 	/*
5115 	 * Try to make the obvious choice first. When anon and file are both
5116 	 * available from the same generation, interpret swappiness 1 as file
5117 	 * first and 200 as anon first.
5118 	 */
5119 	if (!swappiness)
5120 		type = LRU_GEN_FILE;
5121 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5122 		type = LRU_GEN_ANON;
5123 	else if (swappiness == 1)
5124 		type = LRU_GEN_FILE;
5125 	else if (swappiness == 200)
5126 		type = LRU_GEN_ANON;
5127 	else
5128 		type = get_type_to_scan(lruvec, swappiness, &tier);
5129 
5130 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5131 		if (tier < 0)
5132 			tier = get_tier_idx(lruvec, type);
5133 
5134 		scanned = scan_folios(lruvec, sc, type, tier, list);
5135 		if (scanned)
5136 			break;
5137 
5138 		type = !type;
5139 		tier = -1;
5140 	}
5141 
5142 	*type_scanned = type;
5143 
5144 	return scanned;
5145 }
5146 
5147 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5148 {
5149 	int type;
5150 	int scanned;
5151 	int reclaimed;
5152 	LIST_HEAD(list);
5153 	LIST_HEAD(clean);
5154 	struct folio *folio;
5155 	struct folio *next;
5156 	enum vm_event_item item;
5157 	struct reclaim_stat stat;
5158 	struct lru_gen_mm_walk *walk;
5159 	bool skip_retry = false;
5160 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5161 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5162 
5163 	spin_lock_irq(&lruvec->lru_lock);
5164 
5165 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5166 
5167 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5168 
5169 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5170 		scanned = 0;
5171 
5172 	spin_unlock_irq(&lruvec->lru_lock);
5173 
5174 	if (list_empty(&list))
5175 		return scanned;
5176 retry:
5177 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5178 	sc->nr_reclaimed += reclaimed;
5179 
5180 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5181 		if (!folio_evictable(folio)) {
5182 			list_del(&folio->lru);
5183 			folio_putback_lru(folio);
5184 			continue;
5185 		}
5186 
5187 		if (folio_test_reclaim(folio) &&
5188 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5189 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5190 			if (folio_test_workingset(folio))
5191 				folio_set_referenced(folio);
5192 			continue;
5193 		}
5194 
5195 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5196 		    folio_mapped(folio) || folio_test_locked(folio) ||
5197 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5198 			/* don't add rejected folios to the oldest generation */
5199 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5200 				      BIT(PG_active));
5201 			continue;
5202 		}
5203 
5204 		/* retry folios that may have missed folio_rotate_reclaimable() */
5205 		list_move(&folio->lru, &clean);
5206 		sc->nr_scanned -= folio_nr_pages(folio);
5207 	}
5208 
5209 	spin_lock_irq(&lruvec->lru_lock);
5210 
5211 	move_folios_to_lru(lruvec, &list);
5212 
5213 	walk = current->reclaim_state->mm_walk;
5214 	if (walk && walk->batched)
5215 		reset_batch_size(lruvec, walk);
5216 
5217 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5218 	if (!cgroup_reclaim(sc))
5219 		__count_vm_events(item, reclaimed);
5220 	__count_memcg_events(memcg, item, reclaimed);
5221 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5222 
5223 	spin_unlock_irq(&lruvec->lru_lock);
5224 
5225 	mem_cgroup_uncharge_list(&list);
5226 	free_unref_page_list(&list);
5227 
5228 	INIT_LIST_HEAD(&list);
5229 	list_splice_init(&clean, &list);
5230 
5231 	if (!list_empty(&list)) {
5232 		skip_retry = true;
5233 		goto retry;
5234 	}
5235 
5236 	return scanned;
5237 }
5238 
5239 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5240 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5241 {
5242 	int gen, type, zone;
5243 	unsigned long old = 0;
5244 	unsigned long young = 0;
5245 	unsigned long total = 0;
5246 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5247 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5248 	DEFINE_MIN_SEQ(lruvec);
5249 
5250 	/* whether this lruvec is completely out of cold folios */
5251 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5252 		*nr_to_scan = 0;
5253 		return true;
5254 	}
5255 
5256 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5257 		unsigned long seq;
5258 
5259 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5260 			unsigned long size = 0;
5261 
5262 			gen = lru_gen_from_seq(seq);
5263 
5264 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5265 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5266 
5267 			total += size;
5268 			if (seq == max_seq)
5269 				young += size;
5270 			else if (seq + MIN_NR_GENS == max_seq)
5271 				old += size;
5272 		}
5273 	}
5274 
5275 	/* try to scrape all its memory if this memcg was deleted */
5276 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5277 
5278 	/*
5279 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5280 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5281 	 * ideal number of generations is MIN_NR_GENS+1.
5282 	 */
5283 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5284 		return false;
5285 
5286 	/*
5287 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5288 	 * of the total number of pages for each generation. A reasonable range
5289 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5290 	 * aging cares about the upper bound of hot pages, while the eviction
5291 	 * cares about the lower bound of cold pages.
5292 	 */
5293 	if (young * MIN_NR_GENS > total)
5294 		return true;
5295 	if (old * (MIN_NR_GENS + 2) < total)
5296 		return true;
5297 
5298 	return false;
5299 }
5300 
5301 /*
5302  * For future optimizations:
5303  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5304  *    reclaim.
5305  */
5306 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5307 {
5308 	unsigned long nr_to_scan;
5309 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5310 	DEFINE_MAX_SEQ(lruvec);
5311 
5312 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5313 		return 0;
5314 
5315 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5316 		return nr_to_scan;
5317 
5318 	/* skip the aging path at the default priority */
5319 	if (sc->priority == DEF_PRIORITY)
5320 		return nr_to_scan;
5321 
5322 	/* skip this lruvec as it's low on cold folios */
5323 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5324 }
5325 
5326 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5327 {
5328 	/* don't abort memcg reclaim to ensure fairness */
5329 	if (!global_reclaim(sc))
5330 		return -1;
5331 
5332 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5333 }
5334 
5335 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5336 {
5337 	long nr_to_scan;
5338 	unsigned long scanned = 0;
5339 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5340 	int swappiness = get_swappiness(lruvec, sc);
5341 
5342 	/* clean file folios are more likely to exist */
5343 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5344 		swappiness = 1;
5345 
5346 	while (true) {
5347 		int delta;
5348 
5349 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5350 		if (nr_to_scan <= 0)
5351 			break;
5352 
5353 		delta = evict_folios(lruvec, sc, swappiness);
5354 		if (!delta)
5355 			break;
5356 
5357 		scanned += delta;
5358 		if (scanned >= nr_to_scan)
5359 			break;
5360 
5361 		if (sc->nr_reclaimed >= nr_to_reclaim)
5362 			break;
5363 
5364 		cond_resched();
5365 	}
5366 
5367 	/* whether try_to_inc_max_seq() was successful */
5368 	return nr_to_scan < 0;
5369 }
5370 
5371 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5372 {
5373 	bool success;
5374 	unsigned long scanned = sc->nr_scanned;
5375 	unsigned long reclaimed = sc->nr_reclaimed;
5376 	int seg = lru_gen_memcg_seg(lruvec);
5377 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5378 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5379 
5380 	/* see the comment on MEMCG_NR_GENS */
5381 	if (!lruvec_is_sizable(lruvec, sc))
5382 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5383 
5384 	mem_cgroup_calculate_protection(NULL, memcg);
5385 
5386 	if (mem_cgroup_below_min(NULL, memcg))
5387 		return MEMCG_LRU_YOUNG;
5388 
5389 	if (mem_cgroup_below_low(NULL, memcg)) {
5390 		/* see the comment on MEMCG_NR_GENS */
5391 		if (seg != MEMCG_LRU_TAIL)
5392 			return MEMCG_LRU_TAIL;
5393 
5394 		memcg_memory_event(memcg, MEMCG_LOW);
5395 	}
5396 
5397 	success = try_to_shrink_lruvec(lruvec, sc);
5398 
5399 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5400 
5401 	if (!sc->proactive)
5402 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5403 			   sc->nr_reclaimed - reclaimed);
5404 
5405 	flush_reclaim_state(sc);
5406 
5407 	return success ? MEMCG_LRU_YOUNG : 0;
5408 }
5409 
5410 #ifdef CONFIG_MEMCG
5411 
5412 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5413 {
5414 	int op;
5415 	int gen;
5416 	int bin;
5417 	int first_bin;
5418 	struct lruvec *lruvec;
5419 	struct lru_gen_folio *lrugen;
5420 	struct mem_cgroup *memcg;
5421 	const struct hlist_nulls_node *pos;
5422 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5423 
5424 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5425 restart:
5426 	op = 0;
5427 	memcg = NULL;
5428 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5429 
5430 	rcu_read_lock();
5431 
5432 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5433 		if (op)
5434 			lru_gen_rotate_memcg(lruvec, op);
5435 
5436 		mem_cgroup_put(memcg);
5437 
5438 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5439 		memcg = lruvec_memcg(lruvec);
5440 
5441 		if (!mem_cgroup_tryget(memcg)) {
5442 			op = 0;
5443 			memcg = NULL;
5444 			continue;
5445 		}
5446 
5447 		rcu_read_unlock();
5448 
5449 		op = shrink_one(lruvec, sc);
5450 
5451 		rcu_read_lock();
5452 
5453 		if (sc->nr_reclaimed >= nr_to_reclaim)
5454 			break;
5455 	}
5456 
5457 	rcu_read_unlock();
5458 
5459 	if (op)
5460 		lru_gen_rotate_memcg(lruvec, op);
5461 
5462 	mem_cgroup_put(memcg);
5463 
5464 	if (sc->nr_reclaimed >= nr_to_reclaim)
5465 		return;
5466 
5467 	/* restart if raced with lru_gen_rotate_memcg() */
5468 	if (gen != get_nulls_value(pos))
5469 		goto restart;
5470 
5471 	/* try the rest of the bins of the current generation */
5472 	bin = get_memcg_bin(bin + 1);
5473 	if (bin != first_bin)
5474 		goto restart;
5475 }
5476 
5477 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5478 {
5479 	struct blk_plug plug;
5480 
5481 	VM_WARN_ON_ONCE(global_reclaim(sc));
5482 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5483 
5484 	lru_add_drain();
5485 
5486 	blk_start_plug(&plug);
5487 
5488 	set_mm_walk(NULL, sc->proactive);
5489 
5490 	if (try_to_shrink_lruvec(lruvec, sc))
5491 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5492 
5493 	clear_mm_walk();
5494 
5495 	blk_finish_plug(&plug);
5496 }
5497 
5498 #else /* !CONFIG_MEMCG */
5499 
5500 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5501 {
5502 	BUILD_BUG();
5503 }
5504 
5505 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5506 {
5507 	BUILD_BUG();
5508 }
5509 
5510 #endif
5511 
5512 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5513 {
5514 	int priority;
5515 	unsigned long reclaimable;
5516 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5517 
5518 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5519 		return;
5520 	/*
5521 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5522 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5523 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5524 	 */
5525 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5526 	if (get_swappiness(lruvec, sc))
5527 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5528 
5529 	reclaimable /= MEMCG_NR_GENS;
5530 
5531 	/* round down reclaimable and round up sc->nr_to_reclaim */
5532 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5533 
5534 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5535 }
5536 
5537 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5538 {
5539 	struct blk_plug plug;
5540 	unsigned long reclaimed = sc->nr_reclaimed;
5541 
5542 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5543 
5544 	/*
5545 	 * Unmapped clean folios are already prioritized. Scanning for more of
5546 	 * them is likely futile and can cause high reclaim latency when there
5547 	 * is a large number of memcgs.
5548 	 */
5549 	if (!sc->may_writepage || !sc->may_unmap)
5550 		goto done;
5551 
5552 	lru_add_drain();
5553 
5554 	blk_start_plug(&plug);
5555 
5556 	set_mm_walk(pgdat, sc->proactive);
5557 
5558 	set_initial_priority(pgdat, sc);
5559 
5560 	if (current_is_kswapd())
5561 		sc->nr_reclaimed = 0;
5562 
5563 	if (mem_cgroup_disabled())
5564 		shrink_one(&pgdat->__lruvec, sc);
5565 	else
5566 		shrink_many(pgdat, sc);
5567 
5568 	if (current_is_kswapd())
5569 		sc->nr_reclaimed += reclaimed;
5570 
5571 	clear_mm_walk();
5572 
5573 	blk_finish_plug(&plug);
5574 done:
5575 	/* kswapd should never fail */
5576 	pgdat->kswapd_failures = 0;
5577 }
5578 
5579 /******************************************************************************
5580  *                          state change
5581  ******************************************************************************/
5582 
5583 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5584 {
5585 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5586 
5587 	if (lrugen->enabled) {
5588 		enum lru_list lru;
5589 
5590 		for_each_evictable_lru(lru) {
5591 			if (!list_empty(&lruvec->lists[lru]))
5592 				return false;
5593 		}
5594 	} else {
5595 		int gen, type, zone;
5596 
5597 		for_each_gen_type_zone(gen, type, zone) {
5598 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5599 				return false;
5600 		}
5601 	}
5602 
5603 	return true;
5604 }
5605 
5606 static bool fill_evictable(struct lruvec *lruvec)
5607 {
5608 	enum lru_list lru;
5609 	int remaining = MAX_LRU_BATCH;
5610 
5611 	for_each_evictable_lru(lru) {
5612 		int type = is_file_lru(lru);
5613 		bool active = is_active_lru(lru);
5614 		struct list_head *head = &lruvec->lists[lru];
5615 
5616 		while (!list_empty(head)) {
5617 			bool success;
5618 			struct folio *folio = lru_to_folio(head);
5619 
5620 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5621 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5622 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5623 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5624 
5625 			lruvec_del_folio(lruvec, folio);
5626 			success = lru_gen_add_folio(lruvec, folio, false);
5627 			VM_WARN_ON_ONCE(!success);
5628 
5629 			if (!--remaining)
5630 				return false;
5631 		}
5632 	}
5633 
5634 	return true;
5635 }
5636 
5637 static bool drain_evictable(struct lruvec *lruvec)
5638 {
5639 	int gen, type, zone;
5640 	int remaining = MAX_LRU_BATCH;
5641 
5642 	for_each_gen_type_zone(gen, type, zone) {
5643 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5644 
5645 		while (!list_empty(head)) {
5646 			bool success;
5647 			struct folio *folio = lru_to_folio(head);
5648 
5649 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5650 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5651 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5652 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5653 
5654 			success = lru_gen_del_folio(lruvec, folio, false);
5655 			VM_WARN_ON_ONCE(!success);
5656 			lruvec_add_folio(lruvec, folio);
5657 
5658 			if (!--remaining)
5659 				return false;
5660 		}
5661 	}
5662 
5663 	return true;
5664 }
5665 
5666 static void lru_gen_change_state(bool enabled)
5667 {
5668 	static DEFINE_MUTEX(state_mutex);
5669 
5670 	struct mem_cgroup *memcg;
5671 
5672 	cgroup_lock();
5673 	cpus_read_lock();
5674 	get_online_mems();
5675 	mutex_lock(&state_mutex);
5676 
5677 	if (enabled == lru_gen_enabled())
5678 		goto unlock;
5679 
5680 	if (enabled)
5681 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5682 	else
5683 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5684 
5685 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5686 	do {
5687 		int nid;
5688 
5689 		for_each_node(nid) {
5690 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5691 
5692 			spin_lock_irq(&lruvec->lru_lock);
5693 
5694 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5695 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5696 
5697 			lruvec->lrugen.enabled = enabled;
5698 
5699 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5700 				spin_unlock_irq(&lruvec->lru_lock);
5701 				cond_resched();
5702 				spin_lock_irq(&lruvec->lru_lock);
5703 			}
5704 
5705 			spin_unlock_irq(&lruvec->lru_lock);
5706 		}
5707 
5708 		cond_resched();
5709 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5710 unlock:
5711 	mutex_unlock(&state_mutex);
5712 	put_online_mems();
5713 	cpus_read_unlock();
5714 	cgroup_unlock();
5715 }
5716 
5717 /******************************************************************************
5718  *                          sysfs interface
5719  ******************************************************************************/
5720 
5721 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5722 {
5723 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5724 }
5725 
5726 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5727 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5728 				const char *buf, size_t len)
5729 {
5730 	unsigned int msecs;
5731 
5732 	if (kstrtouint(buf, 0, &msecs))
5733 		return -EINVAL;
5734 
5735 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5736 
5737 	return len;
5738 }
5739 
5740 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5741 
5742 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5743 {
5744 	unsigned int caps = 0;
5745 
5746 	if (get_cap(LRU_GEN_CORE))
5747 		caps |= BIT(LRU_GEN_CORE);
5748 
5749 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5750 		caps |= BIT(LRU_GEN_MM_WALK);
5751 
5752 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5753 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5754 
5755 	return sysfs_emit(buf, "0x%04x\n", caps);
5756 }
5757 
5758 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5759 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5760 			     const char *buf, size_t len)
5761 {
5762 	int i;
5763 	unsigned int caps;
5764 
5765 	if (tolower(*buf) == 'n')
5766 		caps = 0;
5767 	else if (tolower(*buf) == 'y')
5768 		caps = -1;
5769 	else if (kstrtouint(buf, 0, &caps))
5770 		return -EINVAL;
5771 
5772 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5773 		bool enabled = caps & BIT(i);
5774 
5775 		if (i == LRU_GEN_CORE)
5776 			lru_gen_change_state(enabled);
5777 		else if (enabled)
5778 			static_branch_enable(&lru_gen_caps[i]);
5779 		else
5780 			static_branch_disable(&lru_gen_caps[i]);
5781 	}
5782 
5783 	return len;
5784 }
5785 
5786 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5787 
5788 static struct attribute *lru_gen_attrs[] = {
5789 	&lru_gen_min_ttl_attr.attr,
5790 	&lru_gen_enabled_attr.attr,
5791 	NULL
5792 };
5793 
5794 static const struct attribute_group lru_gen_attr_group = {
5795 	.name = "lru_gen",
5796 	.attrs = lru_gen_attrs,
5797 };
5798 
5799 /******************************************************************************
5800  *                          debugfs interface
5801  ******************************************************************************/
5802 
5803 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5804 {
5805 	struct mem_cgroup *memcg;
5806 	loff_t nr_to_skip = *pos;
5807 
5808 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5809 	if (!m->private)
5810 		return ERR_PTR(-ENOMEM);
5811 
5812 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5813 	do {
5814 		int nid;
5815 
5816 		for_each_node_state(nid, N_MEMORY) {
5817 			if (!nr_to_skip--)
5818 				return get_lruvec(memcg, nid);
5819 		}
5820 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5821 
5822 	return NULL;
5823 }
5824 
5825 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5826 {
5827 	if (!IS_ERR_OR_NULL(v))
5828 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5829 
5830 	kvfree(m->private);
5831 	m->private = NULL;
5832 }
5833 
5834 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5835 {
5836 	int nid = lruvec_pgdat(v)->node_id;
5837 	struct mem_cgroup *memcg = lruvec_memcg(v);
5838 
5839 	++*pos;
5840 
5841 	nid = next_memory_node(nid);
5842 	if (nid == MAX_NUMNODES) {
5843 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5844 		if (!memcg)
5845 			return NULL;
5846 
5847 		nid = first_memory_node;
5848 	}
5849 
5850 	return get_lruvec(memcg, nid);
5851 }
5852 
5853 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5854 				  unsigned long max_seq, unsigned long *min_seq,
5855 				  unsigned long seq)
5856 {
5857 	int i;
5858 	int type, tier;
5859 	int hist = lru_hist_from_seq(seq);
5860 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5861 
5862 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5863 		seq_printf(m, "            %10d", tier);
5864 		for (type = 0; type < ANON_AND_FILE; type++) {
5865 			const char *s = "   ";
5866 			unsigned long n[3] = {};
5867 
5868 			if (seq == max_seq) {
5869 				s = "RT ";
5870 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5871 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5872 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5873 				s = "rep";
5874 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5875 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5876 				if (tier)
5877 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5878 			}
5879 
5880 			for (i = 0; i < 3; i++)
5881 				seq_printf(m, " %10lu%c", n[i], s[i]);
5882 		}
5883 		seq_putc(m, '\n');
5884 	}
5885 
5886 	seq_puts(m, "                      ");
5887 	for (i = 0; i < NR_MM_STATS; i++) {
5888 		const char *s = "      ";
5889 		unsigned long n = 0;
5890 
5891 		if (seq == max_seq && NR_HIST_GENS == 1) {
5892 			s = "LOYNFA";
5893 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5894 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5895 			s = "loynfa";
5896 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5897 		}
5898 
5899 		seq_printf(m, " %10lu%c", n, s[i]);
5900 	}
5901 	seq_putc(m, '\n');
5902 }
5903 
5904 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5905 static int lru_gen_seq_show(struct seq_file *m, void *v)
5906 {
5907 	unsigned long seq;
5908 	bool full = !debugfs_real_fops(m->file)->write;
5909 	struct lruvec *lruvec = v;
5910 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5911 	int nid = lruvec_pgdat(lruvec)->node_id;
5912 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5913 	DEFINE_MAX_SEQ(lruvec);
5914 	DEFINE_MIN_SEQ(lruvec);
5915 
5916 	if (nid == first_memory_node) {
5917 		const char *path = memcg ? m->private : "";
5918 
5919 #ifdef CONFIG_MEMCG
5920 		if (memcg)
5921 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5922 #endif
5923 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5924 	}
5925 
5926 	seq_printf(m, " node %5d\n", nid);
5927 
5928 	if (!full)
5929 		seq = min_seq[LRU_GEN_ANON];
5930 	else if (max_seq >= MAX_NR_GENS)
5931 		seq = max_seq - MAX_NR_GENS + 1;
5932 	else
5933 		seq = 0;
5934 
5935 	for (; seq <= max_seq; seq++) {
5936 		int type, zone;
5937 		int gen = lru_gen_from_seq(seq);
5938 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5939 
5940 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5941 
5942 		for (type = 0; type < ANON_AND_FILE; type++) {
5943 			unsigned long size = 0;
5944 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5945 
5946 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5947 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5948 
5949 			seq_printf(m, " %10lu%c", size, mark);
5950 		}
5951 
5952 		seq_putc(m, '\n');
5953 
5954 		if (full)
5955 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5956 	}
5957 
5958 	return 0;
5959 }
5960 
5961 static const struct seq_operations lru_gen_seq_ops = {
5962 	.start = lru_gen_seq_start,
5963 	.stop = lru_gen_seq_stop,
5964 	.next = lru_gen_seq_next,
5965 	.show = lru_gen_seq_show,
5966 };
5967 
5968 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5969 		     bool can_swap, bool force_scan)
5970 {
5971 	DEFINE_MAX_SEQ(lruvec);
5972 	DEFINE_MIN_SEQ(lruvec);
5973 
5974 	if (seq < max_seq)
5975 		return 0;
5976 
5977 	if (seq > max_seq)
5978 		return -EINVAL;
5979 
5980 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5981 		return -ERANGE;
5982 
5983 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5984 
5985 	return 0;
5986 }
5987 
5988 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5989 			int swappiness, unsigned long nr_to_reclaim)
5990 {
5991 	DEFINE_MAX_SEQ(lruvec);
5992 
5993 	if (seq + MIN_NR_GENS > max_seq)
5994 		return -EINVAL;
5995 
5996 	sc->nr_reclaimed = 0;
5997 
5998 	while (!signal_pending(current)) {
5999 		DEFINE_MIN_SEQ(lruvec);
6000 
6001 		if (seq < min_seq[!swappiness])
6002 			return 0;
6003 
6004 		if (sc->nr_reclaimed >= nr_to_reclaim)
6005 			return 0;
6006 
6007 		if (!evict_folios(lruvec, sc, swappiness))
6008 			return 0;
6009 
6010 		cond_resched();
6011 	}
6012 
6013 	return -EINTR;
6014 }
6015 
6016 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6017 		   struct scan_control *sc, int swappiness, unsigned long opt)
6018 {
6019 	struct lruvec *lruvec;
6020 	int err = -EINVAL;
6021 	struct mem_cgroup *memcg = NULL;
6022 
6023 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6024 		return -EINVAL;
6025 
6026 	if (!mem_cgroup_disabled()) {
6027 		rcu_read_lock();
6028 
6029 		memcg = mem_cgroup_from_id(memcg_id);
6030 		if (!mem_cgroup_tryget(memcg))
6031 			memcg = NULL;
6032 
6033 		rcu_read_unlock();
6034 
6035 		if (!memcg)
6036 			return -EINVAL;
6037 	}
6038 
6039 	if (memcg_id != mem_cgroup_id(memcg))
6040 		goto done;
6041 
6042 	lruvec = get_lruvec(memcg, nid);
6043 
6044 	if (swappiness < 0)
6045 		swappiness = get_swappiness(lruvec, sc);
6046 	else if (swappiness > 200)
6047 		goto done;
6048 
6049 	switch (cmd) {
6050 	case '+':
6051 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6052 		break;
6053 	case '-':
6054 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6055 		break;
6056 	}
6057 done:
6058 	mem_cgroup_put(memcg);
6059 
6060 	return err;
6061 }
6062 
6063 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6064 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6065 				 size_t len, loff_t *pos)
6066 {
6067 	void *buf;
6068 	char *cur, *next;
6069 	unsigned int flags;
6070 	struct blk_plug plug;
6071 	int err = -EINVAL;
6072 	struct scan_control sc = {
6073 		.may_writepage = true,
6074 		.may_unmap = true,
6075 		.may_swap = true,
6076 		.reclaim_idx = MAX_NR_ZONES - 1,
6077 		.gfp_mask = GFP_KERNEL,
6078 	};
6079 
6080 	buf = kvmalloc(len + 1, GFP_KERNEL);
6081 	if (!buf)
6082 		return -ENOMEM;
6083 
6084 	if (copy_from_user(buf, src, len)) {
6085 		kvfree(buf);
6086 		return -EFAULT;
6087 	}
6088 
6089 	set_task_reclaim_state(current, &sc.reclaim_state);
6090 	flags = memalloc_noreclaim_save();
6091 	blk_start_plug(&plug);
6092 	if (!set_mm_walk(NULL, true)) {
6093 		err = -ENOMEM;
6094 		goto done;
6095 	}
6096 
6097 	next = buf;
6098 	next[len] = '\0';
6099 
6100 	while ((cur = strsep(&next, ",;\n"))) {
6101 		int n;
6102 		int end;
6103 		char cmd;
6104 		unsigned int memcg_id;
6105 		unsigned int nid;
6106 		unsigned long seq;
6107 		unsigned int swappiness = -1;
6108 		unsigned long opt = -1;
6109 
6110 		cur = skip_spaces(cur);
6111 		if (!*cur)
6112 			continue;
6113 
6114 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6115 			   &seq, &end, &swappiness, &end, &opt, &end);
6116 		if (n < 4 || cur[end]) {
6117 			err = -EINVAL;
6118 			break;
6119 		}
6120 
6121 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6122 		if (err)
6123 			break;
6124 	}
6125 done:
6126 	clear_mm_walk();
6127 	blk_finish_plug(&plug);
6128 	memalloc_noreclaim_restore(flags);
6129 	set_task_reclaim_state(current, NULL);
6130 
6131 	kvfree(buf);
6132 
6133 	return err ? : len;
6134 }
6135 
6136 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6137 {
6138 	return seq_open(file, &lru_gen_seq_ops);
6139 }
6140 
6141 static const struct file_operations lru_gen_rw_fops = {
6142 	.open = lru_gen_seq_open,
6143 	.read = seq_read,
6144 	.write = lru_gen_seq_write,
6145 	.llseek = seq_lseek,
6146 	.release = seq_release,
6147 };
6148 
6149 static const struct file_operations lru_gen_ro_fops = {
6150 	.open = lru_gen_seq_open,
6151 	.read = seq_read,
6152 	.llseek = seq_lseek,
6153 	.release = seq_release,
6154 };
6155 
6156 /******************************************************************************
6157  *                          initialization
6158  ******************************************************************************/
6159 
6160 void lru_gen_init_lruvec(struct lruvec *lruvec)
6161 {
6162 	int i;
6163 	int gen, type, zone;
6164 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6165 
6166 	lrugen->max_seq = MIN_NR_GENS + 1;
6167 	lrugen->enabled = lru_gen_enabled();
6168 
6169 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6170 		lrugen->timestamps[i] = jiffies;
6171 
6172 	for_each_gen_type_zone(gen, type, zone)
6173 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6174 
6175 	lruvec->mm_state.seq = MIN_NR_GENS;
6176 	init_waitqueue_head(&lruvec->mm_state.wait);
6177 }
6178 
6179 #ifdef CONFIG_MEMCG
6180 
6181 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6182 {
6183 	int i, j;
6184 
6185 	spin_lock_init(&pgdat->memcg_lru.lock);
6186 
6187 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6188 		for (j = 0; j < MEMCG_NR_BINS; j++)
6189 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6190 	}
6191 }
6192 
6193 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6194 {
6195 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6196 	spin_lock_init(&memcg->mm_list.lock);
6197 }
6198 
6199 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6200 {
6201 	int i;
6202 	int nid;
6203 
6204 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6205 
6206 	for_each_node(nid) {
6207 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6208 
6209 		VM_WARN_ON_ONCE(lruvec->mm_state.nr_walkers);
6210 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6211 					   sizeof(lruvec->lrugen.nr_pages)));
6212 
6213 		lruvec->lrugen.list.next = LIST_POISON1;
6214 
6215 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6216 			bitmap_free(lruvec->mm_state.filters[i]);
6217 			lruvec->mm_state.filters[i] = NULL;
6218 		}
6219 	}
6220 }
6221 
6222 #endif /* CONFIG_MEMCG */
6223 
6224 static int __init init_lru_gen(void)
6225 {
6226 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6227 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6228 
6229 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6230 		pr_err("lru_gen: failed to create sysfs group\n");
6231 
6232 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6233 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6234 
6235 	return 0;
6236 };
6237 late_initcall(init_lru_gen);
6238 
6239 #else /* !CONFIG_LRU_GEN */
6240 
6241 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6242 {
6243 }
6244 
6245 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6246 {
6247 }
6248 
6249 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6250 {
6251 }
6252 
6253 #endif /* CONFIG_LRU_GEN */
6254 
6255 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6256 {
6257 	unsigned long nr[NR_LRU_LISTS];
6258 	unsigned long targets[NR_LRU_LISTS];
6259 	unsigned long nr_to_scan;
6260 	enum lru_list lru;
6261 	unsigned long nr_reclaimed = 0;
6262 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6263 	bool proportional_reclaim;
6264 	struct blk_plug plug;
6265 
6266 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6267 		lru_gen_shrink_lruvec(lruvec, sc);
6268 		return;
6269 	}
6270 
6271 	get_scan_count(lruvec, sc, nr);
6272 
6273 	/* Record the original scan target for proportional adjustments later */
6274 	memcpy(targets, nr, sizeof(nr));
6275 
6276 	/*
6277 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6278 	 * event that can occur when there is little memory pressure e.g.
6279 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6280 	 * when the requested number of pages are reclaimed when scanning at
6281 	 * DEF_PRIORITY on the assumption that the fact we are direct
6282 	 * reclaiming implies that kswapd is not keeping up and it is best to
6283 	 * do a batch of work at once. For memcg reclaim one check is made to
6284 	 * abort proportional reclaim if either the file or anon lru has already
6285 	 * dropped to zero at the first pass.
6286 	 */
6287 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6288 				sc->priority == DEF_PRIORITY);
6289 
6290 	blk_start_plug(&plug);
6291 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6292 					nr[LRU_INACTIVE_FILE]) {
6293 		unsigned long nr_anon, nr_file, percentage;
6294 		unsigned long nr_scanned;
6295 
6296 		for_each_evictable_lru(lru) {
6297 			if (nr[lru]) {
6298 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6299 				nr[lru] -= nr_to_scan;
6300 
6301 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6302 							    lruvec, sc);
6303 			}
6304 		}
6305 
6306 		cond_resched();
6307 
6308 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6309 			continue;
6310 
6311 		/*
6312 		 * For kswapd and memcg, reclaim at least the number of pages
6313 		 * requested. Ensure that the anon and file LRUs are scanned
6314 		 * proportionally what was requested by get_scan_count(). We
6315 		 * stop reclaiming one LRU and reduce the amount scanning
6316 		 * proportional to the original scan target.
6317 		 */
6318 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6319 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6320 
6321 		/*
6322 		 * It's just vindictive to attack the larger once the smaller
6323 		 * has gone to zero.  And given the way we stop scanning the
6324 		 * smaller below, this makes sure that we only make one nudge
6325 		 * towards proportionality once we've got nr_to_reclaim.
6326 		 */
6327 		if (!nr_file || !nr_anon)
6328 			break;
6329 
6330 		if (nr_file > nr_anon) {
6331 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6332 						targets[LRU_ACTIVE_ANON] + 1;
6333 			lru = LRU_BASE;
6334 			percentage = nr_anon * 100 / scan_target;
6335 		} else {
6336 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6337 						targets[LRU_ACTIVE_FILE] + 1;
6338 			lru = LRU_FILE;
6339 			percentage = nr_file * 100 / scan_target;
6340 		}
6341 
6342 		/* Stop scanning the smaller of the LRU */
6343 		nr[lru] = 0;
6344 		nr[lru + LRU_ACTIVE] = 0;
6345 
6346 		/*
6347 		 * Recalculate the other LRU scan count based on its original
6348 		 * scan target and the percentage scanning already complete
6349 		 */
6350 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6351 		nr_scanned = targets[lru] - nr[lru];
6352 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6353 		nr[lru] -= min(nr[lru], nr_scanned);
6354 
6355 		lru += LRU_ACTIVE;
6356 		nr_scanned = targets[lru] - nr[lru];
6357 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6358 		nr[lru] -= min(nr[lru], nr_scanned);
6359 	}
6360 	blk_finish_plug(&plug);
6361 	sc->nr_reclaimed += nr_reclaimed;
6362 
6363 	/*
6364 	 * Even if we did not try to evict anon pages at all, we want to
6365 	 * rebalance the anon lru active/inactive ratio.
6366 	 */
6367 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6368 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6369 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6370 				   sc, LRU_ACTIVE_ANON);
6371 }
6372 
6373 /* Use reclaim/compaction for costly allocs or under memory pressure */
6374 static bool in_reclaim_compaction(struct scan_control *sc)
6375 {
6376 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6377 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6378 			 sc->priority < DEF_PRIORITY - 2))
6379 		return true;
6380 
6381 	return false;
6382 }
6383 
6384 /*
6385  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6386  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6387  * true if more pages should be reclaimed such that when the page allocator
6388  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6389  * It will give up earlier than that if there is difficulty reclaiming pages.
6390  */
6391 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6392 					unsigned long nr_reclaimed,
6393 					struct scan_control *sc)
6394 {
6395 	unsigned long pages_for_compaction;
6396 	unsigned long inactive_lru_pages;
6397 	int z;
6398 
6399 	/* If not in reclaim/compaction mode, stop */
6400 	if (!in_reclaim_compaction(sc))
6401 		return false;
6402 
6403 	/*
6404 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6405 	 * number of pages that were scanned. This will return to the caller
6406 	 * with the risk reclaim/compaction and the resulting allocation attempt
6407 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6408 	 * allocations through requiring that the full LRU list has been scanned
6409 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6410 	 * scan, but that approximation was wrong, and there were corner cases
6411 	 * where always a non-zero amount of pages were scanned.
6412 	 */
6413 	if (!nr_reclaimed)
6414 		return false;
6415 
6416 	/* If compaction would go ahead or the allocation would succeed, stop */
6417 	for (z = 0; z <= sc->reclaim_idx; z++) {
6418 		struct zone *zone = &pgdat->node_zones[z];
6419 		if (!managed_zone(zone))
6420 			continue;
6421 
6422 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6423 		case COMPACT_SUCCESS:
6424 		case COMPACT_CONTINUE:
6425 			return false;
6426 		default:
6427 			/* check next zone */
6428 			;
6429 		}
6430 	}
6431 
6432 	/*
6433 	 * If we have not reclaimed enough pages for compaction and the
6434 	 * inactive lists are large enough, continue reclaiming
6435 	 */
6436 	pages_for_compaction = compact_gap(sc->order);
6437 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6438 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6439 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6440 
6441 	return inactive_lru_pages > pages_for_compaction;
6442 }
6443 
6444 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6445 {
6446 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6447 	struct mem_cgroup *memcg;
6448 
6449 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6450 	do {
6451 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6452 		unsigned long reclaimed;
6453 		unsigned long scanned;
6454 
6455 		/*
6456 		 * This loop can become CPU-bound when target memcgs
6457 		 * aren't eligible for reclaim - either because they
6458 		 * don't have any reclaimable pages, or because their
6459 		 * memory is explicitly protected. Avoid soft lockups.
6460 		 */
6461 		cond_resched();
6462 
6463 		mem_cgroup_calculate_protection(target_memcg, memcg);
6464 
6465 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6466 			/*
6467 			 * Hard protection.
6468 			 * If there is no reclaimable memory, OOM.
6469 			 */
6470 			continue;
6471 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6472 			/*
6473 			 * Soft protection.
6474 			 * Respect the protection only as long as
6475 			 * there is an unprotected supply
6476 			 * of reclaimable memory from other cgroups.
6477 			 */
6478 			if (!sc->memcg_low_reclaim) {
6479 				sc->memcg_low_skipped = 1;
6480 				continue;
6481 			}
6482 			memcg_memory_event(memcg, MEMCG_LOW);
6483 		}
6484 
6485 		reclaimed = sc->nr_reclaimed;
6486 		scanned = sc->nr_scanned;
6487 
6488 		shrink_lruvec(lruvec, sc);
6489 
6490 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6491 			    sc->priority);
6492 
6493 		/* Record the group's reclaim efficiency */
6494 		if (!sc->proactive)
6495 			vmpressure(sc->gfp_mask, memcg, false,
6496 				   sc->nr_scanned - scanned,
6497 				   sc->nr_reclaimed - reclaimed);
6498 
6499 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6500 }
6501 
6502 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6503 {
6504 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6505 	struct lruvec *target_lruvec;
6506 	bool reclaimable = false;
6507 
6508 	if (lru_gen_enabled() && global_reclaim(sc)) {
6509 		lru_gen_shrink_node(pgdat, sc);
6510 		return;
6511 	}
6512 
6513 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6514 
6515 again:
6516 	memset(&sc->nr, 0, sizeof(sc->nr));
6517 
6518 	nr_reclaimed = sc->nr_reclaimed;
6519 	nr_scanned = sc->nr_scanned;
6520 
6521 	prepare_scan_count(pgdat, sc);
6522 
6523 	shrink_node_memcgs(pgdat, sc);
6524 
6525 	flush_reclaim_state(sc);
6526 
6527 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6528 
6529 	/* Record the subtree's reclaim efficiency */
6530 	if (!sc->proactive)
6531 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6532 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6533 
6534 	if (nr_node_reclaimed)
6535 		reclaimable = true;
6536 
6537 	if (current_is_kswapd()) {
6538 		/*
6539 		 * If reclaim is isolating dirty pages under writeback,
6540 		 * it implies that the long-lived page allocation rate
6541 		 * is exceeding the page laundering rate. Either the
6542 		 * global limits are not being effective at throttling
6543 		 * processes due to the page distribution throughout
6544 		 * zones or there is heavy usage of a slow backing
6545 		 * device. The only option is to throttle from reclaim
6546 		 * context which is not ideal as there is no guarantee
6547 		 * the dirtying process is throttled in the same way
6548 		 * balance_dirty_pages() manages.
6549 		 *
6550 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6551 		 * count the number of pages under pages flagged for
6552 		 * immediate reclaim and stall if any are encountered
6553 		 * in the nr_immediate check below.
6554 		 */
6555 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6556 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6557 
6558 		/* Allow kswapd to start writing pages during reclaim.*/
6559 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6560 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6561 
6562 		/*
6563 		 * If kswapd scans pages marked for immediate
6564 		 * reclaim and under writeback (nr_immediate), it
6565 		 * implies that pages are cycling through the LRU
6566 		 * faster than they are written so forcibly stall
6567 		 * until some pages complete writeback.
6568 		 */
6569 		if (sc->nr.immediate)
6570 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6571 	}
6572 
6573 	/*
6574 	 * Tag a node/memcg as congested if all the dirty pages were marked
6575 	 * for writeback and immediate reclaim (counted in nr.congested).
6576 	 *
6577 	 * Legacy memcg will stall in page writeback so avoid forcibly
6578 	 * stalling in reclaim_throttle().
6579 	 */
6580 	if ((current_is_kswapd() ||
6581 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6582 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6583 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6584 
6585 	/*
6586 	 * Stall direct reclaim for IO completions if the lruvec is
6587 	 * node is congested. Allow kswapd to continue until it
6588 	 * starts encountering unqueued dirty pages or cycling through
6589 	 * the LRU too quickly.
6590 	 */
6591 	if (!current_is_kswapd() && current_may_throttle() &&
6592 	    !sc->hibernation_mode &&
6593 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6594 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6595 
6596 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6597 		goto again;
6598 
6599 	/*
6600 	 * Kswapd gives up on balancing particular nodes after too
6601 	 * many failures to reclaim anything from them and goes to
6602 	 * sleep. On reclaim progress, reset the failure counter. A
6603 	 * successful direct reclaim run will revive a dormant kswapd.
6604 	 */
6605 	if (reclaimable)
6606 		pgdat->kswapd_failures = 0;
6607 }
6608 
6609 /*
6610  * Returns true if compaction should go ahead for a costly-order request, or
6611  * the allocation would already succeed without compaction. Return false if we
6612  * should reclaim first.
6613  */
6614 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6615 {
6616 	unsigned long watermark;
6617 	enum compact_result suitable;
6618 
6619 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6620 	if (suitable == COMPACT_SUCCESS)
6621 		/* Allocation should succeed already. Don't reclaim. */
6622 		return true;
6623 	if (suitable == COMPACT_SKIPPED)
6624 		/* Compaction cannot yet proceed. Do reclaim. */
6625 		return false;
6626 
6627 	/*
6628 	 * Compaction is already possible, but it takes time to run and there
6629 	 * are potentially other callers using the pages just freed. So proceed
6630 	 * with reclaim to make a buffer of free pages available to give
6631 	 * compaction a reasonable chance of completing and allocating the page.
6632 	 * Note that we won't actually reclaim the whole buffer in one attempt
6633 	 * as the target watermark in should_continue_reclaim() is lower. But if
6634 	 * we are already above the high+gap watermark, don't reclaim at all.
6635 	 */
6636 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6637 
6638 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6639 }
6640 
6641 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6642 {
6643 	/*
6644 	 * If reclaim is making progress greater than 12% efficiency then
6645 	 * wake all the NOPROGRESS throttled tasks.
6646 	 */
6647 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6648 		wait_queue_head_t *wqh;
6649 
6650 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6651 		if (waitqueue_active(wqh))
6652 			wake_up(wqh);
6653 
6654 		return;
6655 	}
6656 
6657 	/*
6658 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6659 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6660 	 * under writeback and marked for immediate reclaim at the tail of the
6661 	 * LRU.
6662 	 */
6663 	if (current_is_kswapd() || cgroup_reclaim(sc))
6664 		return;
6665 
6666 	/* Throttle if making no progress at high prioities. */
6667 	if (sc->priority == 1 && !sc->nr_reclaimed)
6668 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6669 }
6670 
6671 /*
6672  * This is the direct reclaim path, for page-allocating processes.  We only
6673  * try to reclaim pages from zones which will satisfy the caller's allocation
6674  * request.
6675  *
6676  * If a zone is deemed to be full of pinned pages then just give it a light
6677  * scan then give up on it.
6678  */
6679 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6680 {
6681 	struct zoneref *z;
6682 	struct zone *zone;
6683 	unsigned long nr_soft_reclaimed;
6684 	unsigned long nr_soft_scanned;
6685 	gfp_t orig_mask;
6686 	pg_data_t *last_pgdat = NULL;
6687 	pg_data_t *first_pgdat = NULL;
6688 
6689 	/*
6690 	 * If the number of buffer_heads in the machine exceeds the maximum
6691 	 * allowed level, force direct reclaim to scan the highmem zone as
6692 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6693 	 */
6694 	orig_mask = sc->gfp_mask;
6695 	if (buffer_heads_over_limit) {
6696 		sc->gfp_mask |= __GFP_HIGHMEM;
6697 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6698 	}
6699 
6700 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6701 					sc->reclaim_idx, sc->nodemask) {
6702 		/*
6703 		 * Take care memory controller reclaiming has small influence
6704 		 * to global LRU.
6705 		 */
6706 		if (!cgroup_reclaim(sc)) {
6707 			if (!cpuset_zone_allowed(zone,
6708 						 GFP_KERNEL | __GFP_HARDWALL))
6709 				continue;
6710 
6711 			/*
6712 			 * If we already have plenty of memory free for
6713 			 * compaction in this zone, don't free any more.
6714 			 * Even though compaction is invoked for any
6715 			 * non-zero order, only frequent costly order
6716 			 * reclamation is disruptive enough to become a
6717 			 * noticeable problem, like transparent huge
6718 			 * page allocations.
6719 			 */
6720 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6721 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6722 			    compaction_ready(zone, sc)) {
6723 				sc->compaction_ready = true;
6724 				continue;
6725 			}
6726 
6727 			/*
6728 			 * Shrink each node in the zonelist once. If the
6729 			 * zonelist is ordered by zone (not the default) then a
6730 			 * node may be shrunk multiple times but in that case
6731 			 * the user prefers lower zones being preserved.
6732 			 */
6733 			if (zone->zone_pgdat == last_pgdat)
6734 				continue;
6735 
6736 			/*
6737 			 * This steals pages from memory cgroups over softlimit
6738 			 * and returns the number of reclaimed pages and
6739 			 * scanned pages. This works for global memory pressure
6740 			 * and balancing, not for a memcg's limit.
6741 			 */
6742 			nr_soft_scanned = 0;
6743 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6744 						sc->order, sc->gfp_mask,
6745 						&nr_soft_scanned);
6746 			sc->nr_reclaimed += nr_soft_reclaimed;
6747 			sc->nr_scanned += nr_soft_scanned;
6748 			/* need some check for avoid more shrink_zone() */
6749 		}
6750 
6751 		if (!first_pgdat)
6752 			first_pgdat = zone->zone_pgdat;
6753 
6754 		/* See comment about same check for global reclaim above */
6755 		if (zone->zone_pgdat == last_pgdat)
6756 			continue;
6757 		last_pgdat = zone->zone_pgdat;
6758 		shrink_node(zone->zone_pgdat, sc);
6759 	}
6760 
6761 	if (first_pgdat)
6762 		consider_reclaim_throttle(first_pgdat, sc);
6763 
6764 	/*
6765 	 * Restore to original mask to avoid the impact on the caller if we
6766 	 * promoted it to __GFP_HIGHMEM.
6767 	 */
6768 	sc->gfp_mask = orig_mask;
6769 }
6770 
6771 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6772 {
6773 	struct lruvec *target_lruvec;
6774 	unsigned long refaults;
6775 
6776 	if (lru_gen_enabled())
6777 		return;
6778 
6779 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6780 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6781 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6782 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6783 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6784 }
6785 
6786 /*
6787  * This is the main entry point to direct page reclaim.
6788  *
6789  * If a full scan of the inactive list fails to free enough memory then we
6790  * are "out of memory" and something needs to be killed.
6791  *
6792  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6793  * high - the zone may be full of dirty or under-writeback pages, which this
6794  * caller can't do much about.  We kick the writeback threads and take explicit
6795  * naps in the hope that some of these pages can be written.  But if the
6796  * allocating task holds filesystem locks which prevent writeout this might not
6797  * work, and the allocation attempt will fail.
6798  *
6799  * returns:	0, if no pages reclaimed
6800  * 		else, the number of pages reclaimed
6801  */
6802 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6803 					  struct scan_control *sc)
6804 {
6805 	int initial_priority = sc->priority;
6806 	pg_data_t *last_pgdat;
6807 	struct zoneref *z;
6808 	struct zone *zone;
6809 retry:
6810 	delayacct_freepages_start();
6811 
6812 	if (!cgroup_reclaim(sc))
6813 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6814 
6815 	do {
6816 		if (!sc->proactive)
6817 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6818 					sc->priority);
6819 		sc->nr_scanned = 0;
6820 		shrink_zones(zonelist, sc);
6821 
6822 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6823 			break;
6824 
6825 		if (sc->compaction_ready)
6826 			break;
6827 
6828 		/*
6829 		 * If we're getting trouble reclaiming, start doing
6830 		 * writepage even in laptop mode.
6831 		 */
6832 		if (sc->priority < DEF_PRIORITY - 2)
6833 			sc->may_writepage = 1;
6834 	} while (--sc->priority >= 0);
6835 
6836 	last_pgdat = NULL;
6837 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6838 					sc->nodemask) {
6839 		if (zone->zone_pgdat == last_pgdat)
6840 			continue;
6841 		last_pgdat = zone->zone_pgdat;
6842 
6843 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6844 
6845 		if (cgroup_reclaim(sc)) {
6846 			struct lruvec *lruvec;
6847 
6848 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6849 						   zone->zone_pgdat);
6850 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6851 		}
6852 	}
6853 
6854 	delayacct_freepages_end();
6855 
6856 	if (sc->nr_reclaimed)
6857 		return sc->nr_reclaimed;
6858 
6859 	/* Aborted reclaim to try compaction? don't OOM, then */
6860 	if (sc->compaction_ready)
6861 		return 1;
6862 
6863 	/*
6864 	 * We make inactive:active ratio decisions based on the node's
6865 	 * composition of memory, but a restrictive reclaim_idx or a
6866 	 * memory.low cgroup setting can exempt large amounts of
6867 	 * memory from reclaim. Neither of which are very common, so
6868 	 * instead of doing costly eligibility calculations of the
6869 	 * entire cgroup subtree up front, we assume the estimates are
6870 	 * good, and retry with forcible deactivation if that fails.
6871 	 */
6872 	if (sc->skipped_deactivate) {
6873 		sc->priority = initial_priority;
6874 		sc->force_deactivate = 1;
6875 		sc->skipped_deactivate = 0;
6876 		goto retry;
6877 	}
6878 
6879 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6880 	if (sc->memcg_low_skipped) {
6881 		sc->priority = initial_priority;
6882 		sc->force_deactivate = 0;
6883 		sc->memcg_low_reclaim = 1;
6884 		sc->memcg_low_skipped = 0;
6885 		goto retry;
6886 	}
6887 
6888 	return 0;
6889 }
6890 
6891 static bool allow_direct_reclaim(pg_data_t *pgdat)
6892 {
6893 	struct zone *zone;
6894 	unsigned long pfmemalloc_reserve = 0;
6895 	unsigned long free_pages = 0;
6896 	int i;
6897 	bool wmark_ok;
6898 
6899 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6900 		return true;
6901 
6902 	for (i = 0; i <= ZONE_NORMAL; i++) {
6903 		zone = &pgdat->node_zones[i];
6904 		if (!managed_zone(zone))
6905 			continue;
6906 
6907 		if (!zone_reclaimable_pages(zone))
6908 			continue;
6909 
6910 		pfmemalloc_reserve += min_wmark_pages(zone);
6911 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6912 	}
6913 
6914 	/* If there are no reserves (unexpected config) then do not throttle */
6915 	if (!pfmemalloc_reserve)
6916 		return true;
6917 
6918 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6919 
6920 	/* kswapd must be awake if processes are being throttled */
6921 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6922 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6923 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6924 
6925 		wake_up_interruptible(&pgdat->kswapd_wait);
6926 	}
6927 
6928 	return wmark_ok;
6929 }
6930 
6931 /*
6932  * Throttle direct reclaimers if backing storage is backed by the network
6933  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6934  * depleted. kswapd will continue to make progress and wake the processes
6935  * when the low watermark is reached.
6936  *
6937  * Returns true if a fatal signal was delivered during throttling. If this
6938  * happens, the page allocator should not consider triggering the OOM killer.
6939  */
6940 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6941 					nodemask_t *nodemask)
6942 {
6943 	struct zoneref *z;
6944 	struct zone *zone;
6945 	pg_data_t *pgdat = NULL;
6946 
6947 	/*
6948 	 * Kernel threads should not be throttled as they may be indirectly
6949 	 * responsible for cleaning pages necessary for reclaim to make forward
6950 	 * progress. kjournald for example may enter direct reclaim while
6951 	 * committing a transaction where throttling it could forcing other
6952 	 * processes to block on log_wait_commit().
6953 	 */
6954 	if (current->flags & PF_KTHREAD)
6955 		goto out;
6956 
6957 	/*
6958 	 * If a fatal signal is pending, this process should not throttle.
6959 	 * It should return quickly so it can exit and free its memory
6960 	 */
6961 	if (fatal_signal_pending(current))
6962 		goto out;
6963 
6964 	/*
6965 	 * Check if the pfmemalloc reserves are ok by finding the first node
6966 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6967 	 * GFP_KERNEL will be required for allocating network buffers when
6968 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6969 	 *
6970 	 * Throttling is based on the first usable node and throttled processes
6971 	 * wait on a queue until kswapd makes progress and wakes them. There
6972 	 * is an affinity then between processes waking up and where reclaim
6973 	 * progress has been made assuming the process wakes on the same node.
6974 	 * More importantly, processes running on remote nodes will not compete
6975 	 * for remote pfmemalloc reserves and processes on different nodes
6976 	 * should make reasonable progress.
6977 	 */
6978 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6979 					gfp_zone(gfp_mask), nodemask) {
6980 		if (zone_idx(zone) > ZONE_NORMAL)
6981 			continue;
6982 
6983 		/* Throttle based on the first usable node */
6984 		pgdat = zone->zone_pgdat;
6985 		if (allow_direct_reclaim(pgdat))
6986 			goto out;
6987 		break;
6988 	}
6989 
6990 	/* If no zone was usable by the allocation flags then do not throttle */
6991 	if (!pgdat)
6992 		goto out;
6993 
6994 	/* Account for the throttling */
6995 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6996 
6997 	/*
6998 	 * If the caller cannot enter the filesystem, it's possible that it
6999 	 * is due to the caller holding an FS lock or performing a journal
7000 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
7001 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
7002 	 * blocked waiting on the same lock. Instead, throttle for up to a
7003 	 * second before continuing.
7004 	 */
7005 	if (!(gfp_mask & __GFP_FS))
7006 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
7007 			allow_direct_reclaim(pgdat), HZ);
7008 	else
7009 		/* Throttle until kswapd wakes the process */
7010 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7011 			allow_direct_reclaim(pgdat));
7012 
7013 	if (fatal_signal_pending(current))
7014 		return true;
7015 
7016 out:
7017 	return false;
7018 }
7019 
7020 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7021 				gfp_t gfp_mask, nodemask_t *nodemask)
7022 {
7023 	unsigned long nr_reclaimed;
7024 	struct scan_control sc = {
7025 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7026 		.gfp_mask = current_gfp_context(gfp_mask),
7027 		.reclaim_idx = gfp_zone(gfp_mask),
7028 		.order = order,
7029 		.nodemask = nodemask,
7030 		.priority = DEF_PRIORITY,
7031 		.may_writepage = !laptop_mode,
7032 		.may_unmap = 1,
7033 		.may_swap = 1,
7034 	};
7035 
7036 	/*
7037 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7038 	 * Confirm they are large enough for max values.
7039 	 */
7040 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7041 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7042 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7043 
7044 	/*
7045 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7046 	 * 1 is returned so that the page allocator does not OOM kill at this
7047 	 * point.
7048 	 */
7049 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7050 		return 1;
7051 
7052 	set_task_reclaim_state(current, &sc.reclaim_state);
7053 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7054 
7055 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7056 
7057 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7058 	set_task_reclaim_state(current, NULL);
7059 
7060 	return nr_reclaimed;
7061 }
7062 
7063 #ifdef CONFIG_MEMCG
7064 
7065 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7066 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7067 						gfp_t gfp_mask, bool noswap,
7068 						pg_data_t *pgdat,
7069 						unsigned long *nr_scanned)
7070 {
7071 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7072 	struct scan_control sc = {
7073 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7074 		.target_mem_cgroup = memcg,
7075 		.may_writepage = !laptop_mode,
7076 		.may_unmap = 1,
7077 		.reclaim_idx = MAX_NR_ZONES - 1,
7078 		.may_swap = !noswap,
7079 	};
7080 
7081 	WARN_ON_ONCE(!current->reclaim_state);
7082 
7083 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7084 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7085 
7086 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7087 						      sc.gfp_mask);
7088 
7089 	/*
7090 	 * NOTE: Although we can get the priority field, using it
7091 	 * here is not a good idea, since it limits the pages we can scan.
7092 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7093 	 * will pick up pages from other mem cgroup's as well. We hack
7094 	 * the priority and make it zero.
7095 	 */
7096 	shrink_lruvec(lruvec, &sc);
7097 
7098 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7099 
7100 	*nr_scanned = sc.nr_scanned;
7101 
7102 	return sc.nr_reclaimed;
7103 }
7104 
7105 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7106 					   unsigned long nr_pages,
7107 					   gfp_t gfp_mask,
7108 					   unsigned int reclaim_options)
7109 {
7110 	unsigned long nr_reclaimed;
7111 	unsigned int noreclaim_flag;
7112 	struct scan_control sc = {
7113 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7114 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7115 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7116 		.reclaim_idx = MAX_NR_ZONES - 1,
7117 		.target_mem_cgroup = memcg,
7118 		.priority = DEF_PRIORITY,
7119 		.may_writepage = !laptop_mode,
7120 		.may_unmap = 1,
7121 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7122 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7123 	};
7124 	/*
7125 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7126 	 * equal pressure on all the nodes. This is based on the assumption that
7127 	 * the reclaim does not bail out early.
7128 	 */
7129 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7130 
7131 	set_task_reclaim_state(current, &sc.reclaim_state);
7132 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7133 	noreclaim_flag = memalloc_noreclaim_save();
7134 
7135 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7136 
7137 	memalloc_noreclaim_restore(noreclaim_flag);
7138 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7139 	set_task_reclaim_state(current, NULL);
7140 
7141 	return nr_reclaimed;
7142 }
7143 #endif
7144 
7145 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7146 {
7147 	struct mem_cgroup *memcg;
7148 	struct lruvec *lruvec;
7149 
7150 	if (lru_gen_enabled()) {
7151 		lru_gen_age_node(pgdat, sc);
7152 		return;
7153 	}
7154 
7155 	if (!can_age_anon_pages(pgdat, sc))
7156 		return;
7157 
7158 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7159 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7160 		return;
7161 
7162 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7163 	do {
7164 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7165 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7166 				   sc, LRU_ACTIVE_ANON);
7167 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7168 	} while (memcg);
7169 }
7170 
7171 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7172 {
7173 	int i;
7174 	struct zone *zone;
7175 
7176 	/*
7177 	 * Check for watermark boosts top-down as the higher zones
7178 	 * are more likely to be boosted. Both watermarks and boosts
7179 	 * should not be checked at the same time as reclaim would
7180 	 * start prematurely when there is no boosting and a lower
7181 	 * zone is balanced.
7182 	 */
7183 	for (i = highest_zoneidx; i >= 0; i--) {
7184 		zone = pgdat->node_zones + i;
7185 		if (!managed_zone(zone))
7186 			continue;
7187 
7188 		if (zone->watermark_boost)
7189 			return true;
7190 	}
7191 
7192 	return false;
7193 }
7194 
7195 /*
7196  * Returns true if there is an eligible zone balanced for the request order
7197  * and highest_zoneidx
7198  */
7199 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7200 {
7201 	int i;
7202 	unsigned long mark = -1;
7203 	struct zone *zone;
7204 
7205 	/*
7206 	 * Check watermarks bottom-up as lower zones are more likely to
7207 	 * meet watermarks.
7208 	 */
7209 	for (i = 0; i <= highest_zoneidx; i++) {
7210 		zone = pgdat->node_zones + i;
7211 
7212 		if (!managed_zone(zone))
7213 			continue;
7214 
7215 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7216 			mark = wmark_pages(zone, WMARK_PROMO);
7217 		else
7218 			mark = high_wmark_pages(zone);
7219 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7220 			return true;
7221 	}
7222 
7223 	/*
7224 	 * If a node has no managed zone within highest_zoneidx, it does not
7225 	 * need balancing by definition. This can happen if a zone-restricted
7226 	 * allocation tries to wake a remote kswapd.
7227 	 */
7228 	if (mark == -1)
7229 		return true;
7230 
7231 	return false;
7232 }
7233 
7234 /* Clear pgdat state for congested, dirty or under writeback. */
7235 static void clear_pgdat_congested(pg_data_t *pgdat)
7236 {
7237 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7238 
7239 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7240 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7241 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7242 }
7243 
7244 /*
7245  * Prepare kswapd for sleeping. This verifies that there are no processes
7246  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7247  *
7248  * Returns true if kswapd is ready to sleep
7249  */
7250 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7251 				int highest_zoneidx)
7252 {
7253 	/*
7254 	 * The throttled processes are normally woken up in balance_pgdat() as
7255 	 * soon as allow_direct_reclaim() is true. But there is a potential
7256 	 * race between when kswapd checks the watermarks and a process gets
7257 	 * throttled. There is also a potential race if processes get
7258 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7259 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7260 	 * the wake up checks. If kswapd is going to sleep, no process should
7261 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7262 	 * the wake up is premature, processes will wake kswapd and get
7263 	 * throttled again. The difference from wake ups in balance_pgdat() is
7264 	 * that here we are under prepare_to_wait().
7265 	 */
7266 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7267 		wake_up_all(&pgdat->pfmemalloc_wait);
7268 
7269 	/* Hopeless node, leave it to direct reclaim */
7270 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7271 		return true;
7272 
7273 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7274 		clear_pgdat_congested(pgdat);
7275 		return true;
7276 	}
7277 
7278 	return false;
7279 }
7280 
7281 /*
7282  * kswapd shrinks a node of pages that are at or below the highest usable
7283  * zone that is currently unbalanced.
7284  *
7285  * Returns true if kswapd scanned at least the requested number of pages to
7286  * reclaim or if the lack of progress was due to pages under writeback.
7287  * This is used to determine if the scanning priority needs to be raised.
7288  */
7289 static bool kswapd_shrink_node(pg_data_t *pgdat,
7290 			       struct scan_control *sc)
7291 {
7292 	struct zone *zone;
7293 	int z;
7294 
7295 	/* Reclaim a number of pages proportional to the number of zones */
7296 	sc->nr_to_reclaim = 0;
7297 	for (z = 0; z <= sc->reclaim_idx; z++) {
7298 		zone = pgdat->node_zones + z;
7299 		if (!managed_zone(zone))
7300 			continue;
7301 
7302 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7303 	}
7304 
7305 	/*
7306 	 * Historically care was taken to put equal pressure on all zones but
7307 	 * now pressure is applied based on node LRU order.
7308 	 */
7309 	shrink_node(pgdat, sc);
7310 
7311 	/*
7312 	 * Fragmentation may mean that the system cannot be rebalanced for
7313 	 * high-order allocations. If twice the allocation size has been
7314 	 * reclaimed then recheck watermarks only at order-0 to prevent
7315 	 * excessive reclaim. Assume that a process requested a high-order
7316 	 * can direct reclaim/compact.
7317 	 */
7318 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7319 		sc->order = 0;
7320 
7321 	return sc->nr_scanned >= sc->nr_to_reclaim;
7322 }
7323 
7324 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7325 static inline void
7326 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7327 {
7328 	int i;
7329 	struct zone *zone;
7330 
7331 	for (i = 0; i <= highest_zoneidx; i++) {
7332 		zone = pgdat->node_zones + i;
7333 
7334 		if (!managed_zone(zone))
7335 			continue;
7336 
7337 		if (active)
7338 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7339 		else
7340 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7341 	}
7342 }
7343 
7344 static inline void
7345 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7346 {
7347 	update_reclaim_active(pgdat, highest_zoneidx, true);
7348 }
7349 
7350 static inline void
7351 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7352 {
7353 	update_reclaim_active(pgdat, highest_zoneidx, false);
7354 }
7355 
7356 /*
7357  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7358  * that are eligible for use by the caller until at least one zone is
7359  * balanced.
7360  *
7361  * Returns the order kswapd finished reclaiming at.
7362  *
7363  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7364  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7365  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7366  * or lower is eligible for reclaim until at least one usable zone is
7367  * balanced.
7368  */
7369 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7370 {
7371 	int i;
7372 	unsigned long nr_soft_reclaimed;
7373 	unsigned long nr_soft_scanned;
7374 	unsigned long pflags;
7375 	unsigned long nr_boost_reclaim;
7376 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7377 	bool boosted;
7378 	struct zone *zone;
7379 	struct scan_control sc = {
7380 		.gfp_mask = GFP_KERNEL,
7381 		.order = order,
7382 		.may_unmap = 1,
7383 	};
7384 
7385 	set_task_reclaim_state(current, &sc.reclaim_state);
7386 	psi_memstall_enter(&pflags);
7387 	__fs_reclaim_acquire(_THIS_IP_);
7388 
7389 	count_vm_event(PAGEOUTRUN);
7390 
7391 	/*
7392 	 * Account for the reclaim boost. Note that the zone boost is left in
7393 	 * place so that parallel allocations that are near the watermark will
7394 	 * stall or direct reclaim until kswapd is finished.
7395 	 */
7396 	nr_boost_reclaim = 0;
7397 	for (i = 0; i <= highest_zoneidx; i++) {
7398 		zone = pgdat->node_zones + i;
7399 		if (!managed_zone(zone))
7400 			continue;
7401 
7402 		nr_boost_reclaim += zone->watermark_boost;
7403 		zone_boosts[i] = zone->watermark_boost;
7404 	}
7405 	boosted = nr_boost_reclaim;
7406 
7407 restart:
7408 	set_reclaim_active(pgdat, highest_zoneidx);
7409 	sc.priority = DEF_PRIORITY;
7410 	do {
7411 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7412 		bool raise_priority = true;
7413 		bool balanced;
7414 		bool ret;
7415 
7416 		sc.reclaim_idx = highest_zoneidx;
7417 
7418 		/*
7419 		 * If the number of buffer_heads exceeds the maximum allowed
7420 		 * then consider reclaiming from all zones. This has a dual
7421 		 * purpose -- on 64-bit systems it is expected that
7422 		 * buffer_heads are stripped during active rotation. On 32-bit
7423 		 * systems, highmem pages can pin lowmem memory and shrinking
7424 		 * buffers can relieve lowmem pressure. Reclaim may still not
7425 		 * go ahead if all eligible zones for the original allocation
7426 		 * request are balanced to avoid excessive reclaim from kswapd.
7427 		 */
7428 		if (buffer_heads_over_limit) {
7429 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7430 				zone = pgdat->node_zones + i;
7431 				if (!managed_zone(zone))
7432 					continue;
7433 
7434 				sc.reclaim_idx = i;
7435 				break;
7436 			}
7437 		}
7438 
7439 		/*
7440 		 * If the pgdat is imbalanced then ignore boosting and preserve
7441 		 * the watermarks for a later time and restart. Note that the
7442 		 * zone watermarks will be still reset at the end of balancing
7443 		 * on the grounds that the normal reclaim should be enough to
7444 		 * re-evaluate if boosting is required when kswapd next wakes.
7445 		 */
7446 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7447 		if (!balanced && nr_boost_reclaim) {
7448 			nr_boost_reclaim = 0;
7449 			goto restart;
7450 		}
7451 
7452 		/*
7453 		 * If boosting is not active then only reclaim if there are no
7454 		 * eligible zones. Note that sc.reclaim_idx is not used as
7455 		 * buffer_heads_over_limit may have adjusted it.
7456 		 */
7457 		if (!nr_boost_reclaim && balanced)
7458 			goto out;
7459 
7460 		/* Limit the priority of boosting to avoid reclaim writeback */
7461 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7462 			raise_priority = false;
7463 
7464 		/*
7465 		 * Do not writeback or swap pages for boosted reclaim. The
7466 		 * intent is to relieve pressure not issue sub-optimal IO
7467 		 * from reclaim context. If no pages are reclaimed, the
7468 		 * reclaim will be aborted.
7469 		 */
7470 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7471 		sc.may_swap = !nr_boost_reclaim;
7472 
7473 		/*
7474 		 * Do some background aging, to give pages a chance to be
7475 		 * referenced before reclaiming. All pages are rotated
7476 		 * regardless of classzone as this is about consistent aging.
7477 		 */
7478 		kswapd_age_node(pgdat, &sc);
7479 
7480 		/*
7481 		 * If we're getting trouble reclaiming, start doing writepage
7482 		 * even in laptop mode.
7483 		 */
7484 		if (sc.priority < DEF_PRIORITY - 2)
7485 			sc.may_writepage = 1;
7486 
7487 		/* Call soft limit reclaim before calling shrink_node. */
7488 		sc.nr_scanned = 0;
7489 		nr_soft_scanned = 0;
7490 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7491 						sc.gfp_mask, &nr_soft_scanned);
7492 		sc.nr_reclaimed += nr_soft_reclaimed;
7493 
7494 		/*
7495 		 * There should be no need to raise the scanning priority if
7496 		 * enough pages are already being scanned that that high
7497 		 * watermark would be met at 100% efficiency.
7498 		 */
7499 		if (kswapd_shrink_node(pgdat, &sc))
7500 			raise_priority = false;
7501 
7502 		/*
7503 		 * If the low watermark is met there is no need for processes
7504 		 * to be throttled on pfmemalloc_wait as they should not be
7505 		 * able to safely make forward progress. Wake them
7506 		 */
7507 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7508 				allow_direct_reclaim(pgdat))
7509 			wake_up_all(&pgdat->pfmemalloc_wait);
7510 
7511 		/* Check if kswapd should be suspending */
7512 		__fs_reclaim_release(_THIS_IP_);
7513 		ret = try_to_freeze();
7514 		__fs_reclaim_acquire(_THIS_IP_);
7515 		if (ret || kthread_should_stop())
7516 			break;
7517 
7518 		/*
7519 		 * Raise priority if scanning rate is too low or there was no
7520 		 * progress in reclaiming pages
7521 		 */
7522 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7523 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7524 
7525 		/*
7526 		 * If reclaim made no progress for a boost, stop reclaim as
7527 		 * IO cannot be queued and it could be an infinite loop in
7528 		 * extreme circumstances.
7529 		 */
7530 		if (nr_boost_reclaim && !nr_reclaimed)
7531 			break;
7532 
7533 		if (raise_priority || !nr_reclaimed)
7534 			sc.priority--;
7535 	} while (sc.priority >= 1);
7536 
7537 	if (!sc.nr_reclaimed)
7538 		pgdat->kswapd_failures++;
7539 
7540 out:
7541 	clear_reclaim_active(pgdat, highest_zoneidx);
7542 
7543 	/* If reclaim was boosted, account for the reclaim done in this pass */
7544 	if (boosted) {
7545 		unsigned long flags;
7546 
7547 		for (i = 0; i <= highest_zoneidx; i++) {
7548 			if (!zone_boosts[i])
7549 				continue;
7550 
7551 			/* Increments are under the zone lock */
7552 			zone = pgdat->node_zones + i;
7553 			spin_lock_irqsave(&zone->lock, flags);
7554 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7555 			spin_unlock_irqrestore(&zone->lock, flags);
7556 		}
7557 
7558 		/*
7559 		 * As there is now likely space, wakeup kcompact to defragment
7560 		 * pageblocks.
7561 		 */
7562 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7563 	}
7564 
7565 	snapshot_refaults(NULL, pgdat);
7566 	__fs_reclaim_release(_THIS_IP_);
7567 	psi_memstall_leave(&pflags);
7568 	set_task_reclaim_state(current, NULL);
7569 
7570 	/*
7571 	 * Return the order kswapd stopped reclaiming at as
7572 	 * prepare_kswapd_sleep() takes it into account. If another caller
7573 	 * entered the allocator slow path while kswapd was awake, order will
7574 	 * remain at the higher level.
7575 	 */
7576 	return sc.order;
7577 }
7578 
7579 /*
7580  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7581  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7582  * not a valid index then either kswapd runs for first time or kswapd couldn't
7583  * sleep after previous reclaim attempt (node is still unbalanced). In that
7584  * case return the zone index of the previous kswapd reclaim cycle.
7585  */
7586 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7587 					   enum zone_type prev_highest_zoneidx)
7588 {
7589 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7590 
7591 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7592 }
7593 
7594 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7595 				unsigned int highest_zoneidx)
7596 {
7597 	long remaining = 0;
7598 	DEFINE_WAIT(wait);
7599 
7600 	if (freezing(current) || kthread_should_stop())
7601 		return;
7602 
7603 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7604 
7605 	/*
7606 	 * Try to sleep for a short interval. Note that kcompactd will only be
7607 	 * woken if it is possible to sleep for a short interval. This is
7608 	 * deliberate on the assumption that if reclaim cannot keep an
7609 	 * eligible zone balanced that it's also unlikely that compaction will
7610 	 * succeed.
7611 	 */
7612 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7613 		/*
7614 		 * Compaction records what page blocks it recently failed to
7615 		 * isolate pages from and skips them in the future scanning.
7616 		 * When kswapd is going to sleep, it is reasonable to assume
7617 		 * that pages and compaction may succeed so reset the cache.
7618 		 */
7619 		reset_isolation_suitable(pgdat);
7620 
7621 		/*
7622 		 * We have freed the memory, now we should compact it to make
7623 		 * allocation of the requested order possible.
7624 		 */
7625 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7626 
7627 		remaining = schedule_timeout(HZ/10);
7628 
7629 		/*
7630 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7631 		 * order. The values will either be from a wakeup request or
7632 		 * the previous request that slept prematurely.
7633 		 */
7634 		if (remaining) {
7635 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7636 					kswapd_highest_zoneidx(pgdat,
7637 							highest_zoneidx));
7638 
7639 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7640 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7641 		}
7642 
7643 		finish_wait(&pgdat->kswapd_wait, &wait);
7644 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7645 	}
7646 
7647 	/*
7648 	 * After a short sleep, check if it was a premature sleep. If not, then
7649 	 * go fully to sleep until explicitly woken up.
7650 	 */
7651 	if (!remaining &&
7652 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7653 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7654 
7655 		/*
7656 		 * vmstat counters are not perfectly accurate and the estimated
7657 		 * value for counters such as NR_FREE_PAGES can deviate from the
7658 		 * true value by nr_online_cpus * threshold. To avoid the zone
7659 		 * watermarks being breached while under pressure, we reduce the
7660 		 * per-cpu vmstat threshold while kswapd is awake and restore
7661 		 * them before going back to sleep.
7662 		 */
7663 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7664 
7665 		if (!kthread_should_stop())
7666 			schedule();
7667 
7668 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7669 	} else {
7670 		if (remaining)
7671 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7672 		else
7673 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7674 	}
7675 	finish_wait(&pgdat->kswapd_wait, &wait);
7676 }
7677 
7678 /*
7679  * The background pageout daemon, started as a kernel thread
7680  * from the init process.
7681  *
7682  * This basically trickles out pages so that we have _some_
7683  * free memory available even if there is no other activity
7684  * that frees anything up. This is needed for things like routing
7685  * etc, where we otherwise might have all activity going on in
7686  * asynchronous contexts that cannot page things out.
7687  *
7688  * If there are applications that are active memory-allocators
7689  * (most normal use), this basically shouldn't matter.
7690  */
7691 static int kswapd(void *p)
7692 {
7693 	unsigned int alloc_order, reclaim_order;
7694 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7695 	pg_data_t *pgdat = (pg_data_t *)p;
7696 	struct task_struct *tsk = current;
7697 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7698 
7699 	if (!cpumask_empty(cpumask))
7700 		set_cpus_allowed_ptr(tsk, cpumask);
7701 
7702 	/*
7703 	 * Tell the memory management that we're a "memory allocator",
7704 	 * and that if we need more memory we should get access to it
7705 	 * regardless (see "__alloc_pages()"). "kswapd" should
7706 	 * never get caught in the normal page freeing logic.
7707 	 *
7708 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7709 	 * you need a small amount of memory in order to be able to
7710 	 * page out something else, and this flag essentially protects
7711 	 * us from recursively trying to free more memory as we're
7712 	 * trying to free the first piece of memory in the first place).
7713 	 */
7714 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7715 	set_freezable();
7716 
7717 	WRITE_ONCE(pgdat->kswapd_order, 0);
7718 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7719 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7720 	for ( ; ; ) {
7721 		bool ret;
7722 
7723 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7724 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7725 							highest_zoneidx);
7726 
7727 kswapd_try_sleep:
7728 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7729 					highest_zoneidx);
7730 
7731 		/* Read the new order and highest_zoneidx */
7732 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7733 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7734 							highest_zoneidx);
7735 		WRITE_ONCE(pgdat->kswapd_order, 0);
7736 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7737 
7738 		ret = try_to_freeze();
7739 		if (kthread_should_stop())
7740 			break;
7741 
7742 		/*
7743 		 * We can speed up thawing tasks if we don't call balance_pgdat
7744 		 * after returning from the refrigerator
7745 		 */
7746 		if (ret)
7747 			continue;
7748 
7749 		/*
7750 		 * Reclaim begins at the requested order but if a high-order
7751 		 * reclaim fails then kswapd falls back to reclaiming for
7752 		 * order-0. If that happens, kswapd will consider sleeping
7753 		 * for the order it finished reclaiming at (reclaim_order)
7754 		 * but kcompactd is woken to compact for the original
7755 		 * request (alloc_order).
7756 		 */
7757 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7758 						alloc_order);
7759 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7760 						highest_zoneidx);
7761 		if (reclaim_order < alloc_order)
7762 			goto kswapd_try_sleep;
7763 	}
7764 
7765 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7766 
7767 	return 0;
7768 }
7769 
7770 /*
7771  * A zone is low on free memory or too fragmented for high-order memory.  If
7772  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7773  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7774  * has failed or is not needed, still wake up kcompactd if only compaction is
7775  * needed.
7776  */
7777 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7778 		   enum zone_type highest_zoneidx)
7779 {
7780 	pg_data_t *pgdat;
7781 	enum zone_type curr_idx;
7782 
7783 	if (!managed_zone(zone))
7784 		return;
7785 
7786 	if (!cpuset_zone_allowed(zone, gfp_flags))
7787 		return;
7788 
7789 	pgdat = zone->zone_pgdat;
7790 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7791 
7792 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7793 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7794 
7795 	if (READ_ONCE(pgdat->kswapd_order) < order)
7796 		WRITE_ONCE(pgdat->kswapd_order, order);
7797 
7798 	if (!waitqueue_active(&pgdat->kswapd_wait))
7799 		return;
7800 
7801 	/* Hopeless node, leave it to direct reclaim if possible */
7802 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7803 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7804 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7805 		/*
7806 		 * There may be plenty of free memory available, but it's too
7807 		 * fragmented for high-order allocations.  Wake up kcompactd
7808 		 * and rely on compaction_suitable() to determine if it's
7809 		 * needed.  If it fails, it will defer subsequent attempts to
7810 		 * ratelimit its work.
7811 		 */
7812 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7813 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7814 		return;
7815 	}
7816 
7817 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7818 				      gfp_flags);
7819 	wake_up_interruptible(&pgdat->kswapd_wait);
7820 }
7821 
7822 #ifdef CONFIG_HIBERNATION
7823 /*
7824  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7825  * freed pages.
7826  *
7827  * Rather than trying to age LRUs the aim is to preserve the overall
7828  * LRU order by reclaiming preferentially
7829  * inactive > active > active referenced > active mapped
7830  */
7831 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7832 {
7833 	struct scan_control sc = {
7834 		.nr_to_reclaim = nr_to_reclaim,
7835 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7836 		.reclaim_idx = MAX_NR_ZONES - 1,
7837 		.priority = DEF_PRIORITY,
7838 		.may_writepage = 1,
7839 		.may_unmap = 1,
7840 		.may_swap = 1,
7841 		.hibernation_mode = 1,
7842 	};
7843 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7844 	unsigned long nr_reclaimed;
7845 	unsigned int noreclaim_flag;
7846 
7847 	fs_reclaim_acquire(sc.gfp_mask);
7848 	noreclaim_flag = memalloc_noreclaim_save();
7849 	set_task_reclaim_state(current, &sc.reclaim_state);
7850 
7851 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7852 
7853 	set_task_reclaim_state(current, NULL);
7854 	memalloc_noreclaim_restore(noreclaim_flag);
7855 	fs_reclaim_release(sc.gfp_mask);
7856 
7857 	return nr_reclaimed;
7858 }
7859 #endif /* CONFIG_HIBERNATION */
7860 
7861 /*
7862  * This kswapd start function will be called by init and node-hot-add.
7863  */
7864 void kswapd_run(int nid)
7865 {
7866 	pg_data_t *pgdat = NODE_DATA(nid);
7867 
7868 	pgdat_kswapd_lock(pgdat);
7869 	if (!pgdat->kswapd) {
7870 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7871 		if (IS_ERR(pgdat->kswapd)) {
7872 			/* failure at boot is fatal */
7873 			BUG_ON(system_state < SYSTEM_RUNNING);
7874 			pr_err("Failed to start kswapd on node %d\n", nid);
7875 			pgdat->kswapd = NULL;
7876 		}
7877 	}
7878 	pgdat_kswapd_unlock(pgdat);
7879 }
7880 
7881 /*
7882  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7883  * be holding mem_hotplug_begin/done().
7884  */
7885 void kswapd_stop(int nid)
7886 {
7887 	pg_data_t *pgdat = NODE_DATA(nid);
7888 	struct task_struct *kswapd;
7889 
7890 	pgdat_kswapd_lock(pgdat);
7891 	kswapd = pgdat->kswapd;
7892 	if (kswapd) {
7893 		kthread_stop(kswapd);
7894 		pgdat->kswapd = NULL;
7895 	}
7896 	pgdat_kswapd_unlock(pgdat);
7897 }
7898 
7899 static int __init kswapd_init(void)
7900 {
7901 	int nid;
7902 
7903 	swap_setup();
7904 	for_each_node_state(nid, N_MEMORY)
7905  		kswapd_run(nid);
7906 	return 0;
7907 }
7908 
7909 module_init(kswapd_init)
7910 
7911 #ifdef CONFIG_NUMA
7912 /*
7913  * Node reclaim mode
7914  *
7915  * If non-zero call node_reclaim when the number of free pages falls below
7916  * the watermarks.
7917  */
7918 int node_reclaim_mode __read_mostly;
7919 
7920 /*
7921  * Priority for NODE_RECLAIM. This determines the fraction of pages
7922  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7923  * a zone.
7924  */
7925 #define NODE_RECLAIM_PRIORITY 4
7926 
7927 /*
7928  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7929  * occur.
7930  */
7931 int sysctl_min_unmapped_ratio = 1;
7932 
7933 /*
7934  * If the number of slab pages in a zone grows beyond this percentage then
7935  * slab reclaim needs to occur.
7936  */
7937 int sysctl_min_slab_ratio = 5;
7938 
7939 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7940 {
7941 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7942 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7943 		node_page_state(pgdat, NR_ACTIVE_FILE);
7944 
7945 	/*
7946 	 * It's possible for there to be more file mapped pages than
7947 	 * accounted for by the pages on the file LRU lists because
7948 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7949 	 */
7950 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7951 }
7952 
7953 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7954 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7955 {
7956 	unsigned long nr_pagecache_reclaimable;
7957 	unsigned long delta = 0;
7958 
7959 	/*
7960 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7961 	 * potentially reclaimable. Otherwise, we have to worry about
7962 	 * pages like swapcache and node_unmapped_file_pages() provides
7963 	 * a better estimate
7964 	 */
7965 	if (node_reclaim_mode & RECLAIM_UNMAP)
7966 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7967 	else
7968 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7969 
7970 	/* If we can't clean pages, remove dirty pages from consideration */
7971 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7972 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7973 
7974 	/* Watch for any possible underflows due to delta */
7975 	if (unlikely(delta > nr_pagecache_reclaimable))
7976 		delta = nr_pagecache_reclaimable;
7977 
7978 	return nr_pagecache_reclaimable - delta;
7979 }
7980 
7981 /*
7982  * Try to free up some pages from this node through reclaim.
7983  */
7984 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7985 {
7986 	/* Minimum pages needed in order to stay on node */
7987 	const unsigned long nr_pages = 1 << order;
7988 	struct task_struct *p = current;
7989 	unsigned int noreclaim_flag;
7990 	struct scan_control sc = {
7991 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7992 		.gfp_mask = current_gfp_context(gfp_mask),
7993 		.order = order,
7994 		.priority = NODE_RECLAIM_PRIORITY,
7995 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7996 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7997 		.may_swap = 1,
7998 		.reclaim_idx = gfp_zone(gfp_mask),
7999 	};
8000 	unsigned long pflags;
8001 
8002 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
8003 					   sc.gfp_mask);
8004 
8005 	cond_resched();
8006 	psi_memstall_enter(&pflags);
8007 	fs_reclaim_acquire(sc.gfp_mask);
8008 	/*
8009 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8010 	 */
8011 	noreclaim_flag = memalloc_noreclaim_save();
8012 	set_task_reclaim_state(p, &sc.reclaim_state);
8013 
8014 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8015 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8016 		/*
8017 		 * Free memory by calling shrink node with increasing
8018 		 * priorities until we have enough memory freed.
8019 		 */
8020 		do {
8021 			shrink_node(pgdat, &sc);
8022 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8023 	}
8024 
8025 	set_task_reclaim_state(p, NULL);
8026 	memalloc_noreclaim_restore(noreclaim_flag);
8027 	fs_reclaim_release(sc.gfp_mask);
8028 	psi_memstall_leave(&pflags);
8029 
8030 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8031 
8032 	return sc.nr_reclaimed >= nr_pages;
8033 }
8034 
8035 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8036 {
8037 	int ret;
8038 
8039 	/*
8040 	 * Node reclaim reclaims unmapped file backed pages and
8041 	 * slab pages if we are over the defined limits.
8042 	 *
8043 	 * A small portion of unmapped file backed pages is needed for
8044 	 * file I/O otherwise pages read by file I/O will be immediately
8045 	 * thrown out if the node is overallocated. So we do not reclaim
8046 	 * if less than a specified percentage of the node is used by
8047 	 * unmapped file backed pages.
8048 	 */
8049 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8050 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8051 	    pgdat->min_slab_pages)
8052 		return NODE_RECLAIM_FULL;
8053 
8054 	/*
8055 	 * Do not scan if the allocation should not be delayed.
8056 	 */
8057 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8058 		return NODE_RECLAIM_NOSCAN;
8059 
8060 	/*
8061 	 * Only run node reclaim on the local node or on nodes that do not
8062 	 * have associated processors. This will favor the local processor
8063 	 * over remote processors and spread off node memory allocations
8064 	 * as wide as possible.
8065 	 */
8066 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8067 		return NODE_RECLAIM_NOSCAN;
8068 
8069 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8070 		return NODE_RECLAIM_NOSCAN;
8071 
8072 	ret = __node_reclaim(pgdat, gfp_mask, order);
8073 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8074 
8075 	if (!ret)
8076 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8077 
8078 	return ret;
8079 }
8080 #endif
8081 
8082 void check_move_unevictable_pages(struct pagevec *pvec)
8083 {
8084 	struct folio_batch fbatch;
8085 	unsigned i;
8086 
8087 	folio_batch_init(&fbatch);
8088 	for (i = 0; i < pvec->nr; i++) {
8089 		struct page *page = pvec->pages[i];
8090 
8091 		if (PageTransTail(page))
8092 			continue;
8093 		folio_batch_add(&fbatch, page_folio(page));
8094 	}
8095 	check_move_unevictable_folios(&fbatch);
8096 }
8097 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8098 
8099 /**
8100  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8101  * lru list
8102  * @fbatch: Batch of lru folios to check.
8103  *
8104  * Checks folios for evictability, if an evictable folio is in the unevictable
8105  * lru list, moves it to the appropriate evictable lru list. This function
8106  * should be only used for lru folios.
8107  */
8108 void check_move_unevictable_folios(struct folio_batch *fbatch)
8109 {
8110 	struct lruvec *lruvec = NULL;
8111 	int pgscanned = 0;
8112 	int pgrescued = 0;
8113 	int i;
8114 
8115 	for (i = 0; i < fbatch->nr; i++) {
8116 		struct folio *folio = fbatch->folios[i];
8117 		int nr_pages = folio_nr_pages(folio);
8118 
8119 		pgscanned += nr_pages;
8120 
8121 		/* block memcg migration while the folio moves between lrus */
8122 		if (!folio_test_clear_lru(folio))
8123 			continue;
8124 
8125 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8126 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8127 			lruvec_del_folio(lruvec, folio);
8128 			folio_clear_unevictable(folio);
8129 			lruvec_add_folio(lruvec, folio);
8130 			pgrescued += nr_pages;
8131 		}
8132 		folio_set_lru(folio);
8133 	}
8134 
8135 	if (lruvec) {
8136 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8137 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8138 		unlock_page_lruvec_irq(lruvec);
8139 	} else if (pgscanned) {
8140 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8141 	}
8142 }
8143 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8144