xref: /openbmc/linux/mm/vmscan.c (revision 1c2dd16a)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h>	/* for try_to_release_page(),
31 					buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57 
58 #include "internal.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62 
63 struct scan_control {
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	/* This context's GFP mask */
68 	gfp_t gfp_mask;
69 
70 	/* Allocation order */
71 	int order;
72 
73 	/*
74 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 	 * are scanned.
76 	 */
77 	nodemask_t	*nodemask;
78 
79 	/*
80 	 * The memory cgroup that hit its limit and as a result is the
81 	 * primary target of this reclaim invocation.
82 	 */
83 	struct mem_cgroup *target_mem_cgroup;
84 
85 	/* Scan (total_size >> priority) pages at once */
86 	int priority;
87 
88 	/* The highest zone to isolate pages for reclaim from */
89 	enum zone_type reclaim_idx;
90 
91 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 	unsigned int may_writepage:1;
93 
94 	/* Can mapped pages be reclaimed? */
95 	unsigned int may_unmap:1;
96 
97 	/* Can pages be swapped as part of reclaim? */
98 	unsigned int may_swap:1;
99 
100 	/* Can cgroups be reclaimed below their normal consumption range? */
101 	unsigned int may_thrash:1;
102 
103 	unsigned int hibernation_mode:1;
104 
105 	/* One of the zones is ready for compaction */
106 	unsigned int compaction_ready:1;
107 
108 	/* Incremented by the number of inactive pages that were scanned */
109 	unsigned long nr_scanned;
110 
111 	/* Number of pages freed so far during a call to shrink_zones() */
112 	unsigned long nr_reclaimed;
113 };
114 
115 #ifdef ARCH_HAS_PREFETCH
116 #define prefetch_prev_lru_page(_page, _base, _field)			\
117 	do {								\
118 		if ((_page)->lru.prev != _base) {			\
119 			struct page *prev;				\
120 									\
121 			prev = lru_to_page(&(_page->lru));		\
122 			prefetch(&prev->_field);			\
123 		}							\
124 	} while (0)
125 #else
126 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128 
129 #ifdef ARCH_HAS_PREFETCHW
130 #define prefetchw_prev_lru_page(_page, _base, _field)			\
131 	do {								\
132 		if ((_page)->lru.prev != _base) {			\
133 			struct page *prev;				\
134 									\
135 			prev = lru_to_page(&(_page->lru));		\
136 			prefetchw(&prev->_field);			\
137 		}							\
138 	} while (0)
139 #else
140 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
141 #endif
142 
143 /*
144  * From 0 .. 100.  Higher means more swappy.
145  */
146 int vm_swappiness = 60;
147 /*
148  * The total number of pages which are beyond the high watermark within all
149  * zones.
150  */
151 unsigned long vm_total_pages;
152 
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155 
156 #ifdef CONFIG_MEMCG
157 static bool global_reclaim(struct scan_control *sc)
158 {
159 	return !sc->target_mem_cgroup;
160 }
161 
162 /**
163  * sane_reclaim - is the usual dirty throttling mechanism operational?
164  * @sc: scan_control in question
165  *
166  * The normal page dirty throttling mechanism in balance_dirty_pages() is
167  * completely broken with the legacy memcg and direct stalling in
168  * shrink_page_list() is used for throttling instead, which lacks all the
169  * niceties such as fairness, adaptive pausing, bandwidth proportional
170  * allocation and configurability.
171  *
172  * This function tests whether the vmscan currently in progress can assume
173  * that the normal dirty throttling mechanism is operational.
174  */
175 static bool sane_reclaim(struct scan_control *sc)
176 {
177 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
178 
179 	if (!memcg)
180 		return true;
181 #ifdef CONFIG_CGROUP_WRITEBACK
182 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
183 		return true;
184 #endif
185 	return false;
186 }
187 #else
188 static bool global_reclaim(struct scan_control *sc)
189 {
190 	return true;
191 }
192 
193 static bool sane_reclaim(struct scan_control *sc)
194 {
195 	return true;
196 }
197 #endif
198 
199 /*
200  * This misses isolated pages which are not accounted for to save counters.
201  * As the data only determines if reclaim or compaction continues, it is
202  * not expected that isolated pages will be a dominating factor.
203  */
204 unsigned long zone_reclaimable_pages(struct zone *zone)
205 {
206 	unsigned long nr;
207 
208 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
209 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
210 	if (get_nr_swap_pages() > 0)
211 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
212 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
213 
214 	return nr;
215 }
216 
217 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
218 {
219 	unsigned long nr;
220 
221 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
222 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
223 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
224 
225 	if (get_nr_swap_pages() > 0)
226 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
227 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
228 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
229 
230 	return nr;
231 }
232 
233 bool pgdat_reclaimable(struct pglist_data *pgdat)
234 {
235 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
236 		pgdat_reclaimable_pages(pgdat) * 6;
237 }
238 
239 /**
240  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
241  * @lruvec: lru vector
242  * @lru: lru to use
243  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244  */
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246 {
247 	unsigned long lru_size;
248 	int zid;
249 
250 	if (!mem_cgroup_disabled())
251 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 	else
253 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254 
255 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 		unsigned long size;
258 
259 		if (!managed_zone(zone))
260 			continue;
261 
262 		if (!mem_cgroup_disabled())
263 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 		else
265 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 				       NR_ZONE_LRU_BASE + lru);
267 		lru_size -= min(size, lru_size);
268 	}
269 
270 	return lru_size;
271 
272 }
273 
274 /*
275  * Add a shrinker callback to be called from the vm.
276  */
277 int register_shrinker(struct shrinker *shrinker)
278 {
279 	size_t size = sizeof(*shrinker->nr_deferred);
280 
281 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 		size *= nr_node_ids;
283 
284 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 	if (!shrinker->nr_deferred)
286 		return -ENOMEM;
287 
288 	down_write(&shrinker_rwsem);
289 	list_add_tail(&shrinker->list, &shrinker_list);
290 	up_write(&shrinker_rwsem);
291 	return 0;
292 }
293 EXPORT_SYMBOL(register_shrinker);
294 
295 /*
296  * Remove one
297  */
298 void unregister_shrinker(struct shrinker *shrinker)
299 {
300 	down_write(&shrinker_rwsem);
301 	list_del(&shrinker->list);
302 	up_write(&shrinker_rwsem);
303 	kfree(shrinker->nr_deferred);
304 }
305 EXPORT_SYMBOL(unregister_shrinker);
306 
307 #define SHRINK_BATCH 128
308 
309 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
310 				    struct shrinker *shrinker,
311 				    unsigned long nr_scanned,
312 				    unsigned long nr_eligible)
313 {
314 	unsigned long freed = 0;
315 	unsigned long long delta;
316 	long total_scan;
317 	long freeable;
318 	long nr;
319 	long new_nr;
320 	int nid = shrinkctl->nid;
321 	long batch_size = shrinker->batch ? shrinker->batch
322 					  : SHRINK_BATCH;
323 	long scanned = 0, next_deferred;
324 
325 	freeable = shrinker->count_objects(shrinker, shrinkctl);
326 	if (freeable == 0)
327 		return 0;
328 
329 	/*
330 	 * copy the current shrinker scan count into a local variable
331 	 * and zero it so that other concurrent shrinker invocations
332 	 * don't also do this scanning work.
333 	 */
334 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
335 
336 	total_scan = nr;
337 	delta = (4 * nr_scanned) / shrinker->seeks;
338 	delta *= freeable;
339 	do_div(delta, nr_eligible + 1);
340 	total_scan += delta;
341 	if (total_scan < 0) {
342 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
343 		       shrinker->scan_objects, total_scan);
344 		total_scan = freeable;
345 		next_deferred = nr;
346 	} else
347 		next_deferred = total_scan;
348 
349 	/*
350 	 * We need to avoid excessive windup on filesystem shrinkers
351 	 * due to large numbers of GFP_NOFS allocations causing the
352 	 * shrinkers to return -1 all the time. This results in a large
353 	 * nr being built up so when a shrink that can do some work
354 	 * comes along it empties the entire cache due to nr >>>
355 	 * freeable. This is bad for sustaining a working set in
356 	 * memory.
357 	 *
358 	 * Hence only allow the shrinker to scan the entire cache when
359 	 * a large delta change is calculated directly.
360 	 */
361 	if (delta < freeable / 4)
362 		total_scan = min(total_scan, freeable / 2);
363 
364 	/*
365 	 * Avoid risking looping forever due to too large nr value:
366 	 * never try to free more than twice the estimate number of
367 	 * freeable entries.
368 	 */
369 	if (total_scan > freeable * 2)
370 		total_scan = freeable * 2;
371 
372 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
373 				   nr_scanned, nr_eligible,
374 				   freeable, delta, total_scan);
375 
376 	/*
377 	 * Normally, we should not scan less than batch_size objects in one
378 	 * pass to avoid too frequent shrinker calls, but if the slab has less
379 	 * than batch_size objects in total and we are really tight on memory,
380 	 * we will try to reclaim all available objects, otherwise we can end
381 	 * up failing allocations although there are plenty of reclaimable
382 	 * objects spread over several slabs with usage less than the
383 	 * batch_size.
384 	 *
385 	 * We detect the "tight on memory" situations by looking at the total
386 	 * number of objects we want to scan (total_scan). If it is greater
387 	 * than the total number of objects on slab (freeable), we must be
388 	 * scanning at high prio and therefore should try to reclaim as much as
389 	 * possible.
390 	 */
391 	while (total_scan >= batch_size ||
392 	       total_scan >= freeable) {
393 		unsigned long ret;
394 		unsigned long nr_to_scan = min(batch_size, total_scan);
395 
396 		shrinkctl->nr_to_scan = nr_to_scan;
397 		ret = shrinker->scan_objects(shrinker, shrinkctl);
398 		if (ret == SHRINK_STOP)
399 			break;
400 		freed += ret;
401 
402 		count_vm_events(SLABS_SCANNED, nr_to_scan);
403 		total_scan -= nr_to_scan;
404 		scanned += nr_to_scan;
405 
406 		cond_resched();
407 	}
408 
409 	if (next_deferred >= scanned)
410 		next_deferred -= scanned;
411 	else
412 		next_deferred = 0;
413 	/*
414 	 * move the unused scan count back into the shrinker in a
415 	 * manner that handles concurrent updates. If we exhausted the
416 	 * scan, there is no need to do an update.
417 	 */
418 	if (next_deferred > 0)
419 		new_nr = atomic_long_add_return(next_deferred,
420 						&shrinker->nr_deferred[nid]);
421 	else
422 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
423 
424 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
425 	return freed;
426 }
427 
428 /**
429  * shrink_slab - shrink slab caches
430  * @gfp_mask: allocation context
431  * @nid: node whose slab caches to target
432  * @memcg: memory cgroup whose slab caches to target
433  * @nr_scanned: pressure numerator
434  * @nr_eligible: pressure denominator
435  *
436  * Call the shrink functions to age shrinkable caches.
437  *
438  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
439  * unaware shrinkers will receive a node id of 0 instead.
440  *
441  * @memcg specifies the memory cgroup to target. If it is not NULL,
442  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443  * objects from the memory cgroup specified. Otherwise, only unaware
444  * shrinkers are called.
445  *
446  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
447  * the available objects should be scanned.  Page reclaim for example
448  * passes the number of pages scanned and the number of pages on the
449  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
450  * when it encountered mapped pages.  The ratio is further biased by
451  * the ->seeks setting of the shrink function, which indicates the
452  * cost to recreate an object relative to that of an LRU page.
453  *
454  * Returns the number of reclaimed slab objects.
455  */
456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
457 				 struct mem_cgroup *memcg,
458 				 unsigned long nr_scanned,
459 				 unsigned long nr_eligible)
460 {
461 	struct shrinker *shrinker;
462 	unsigned long freed = 0;
463 
464 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
465 		return 0;
466 
467 	if (nr_scanned == 0)
468 		nr_scanned = SWAP_CLUSTER_MAX;
469 
470 	if (!down_read_trylock(&shrinker_rwsem)) {
471 		/*
472 		 * If we would return 0, our callers would understand that we
473 		 * have nothing else to shrink and give up trying. By returning
474 		 * 1 we keep it going and assume we'll be able to shrink next
475 		 * time.
476 		 */
477 		freed = 1;
478 		goto out;
479 	}
480 
481 	list_for_each_entry(shrinker, &shrinker_list, list) {
482 		struct shrink_control sc = {
483 			.gfp_mask = gfp_mask,
484 			.nid = nid,
485 			.memcg = memcg,
486 		};
487 
488 		/*
489 		 * If kernel memory accounting is disabled, we ignore
490 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
491 		 * passing NULL for memcg.
492 		 */
493 		if (memcg_kmem_enabled() &&
494 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
495 			continue;
496 
497 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 			sc.nid = 0;
499 
500 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
501 	}
502 
503 	up_read(&shrinker_rwsem);
504 out:
505 	cond_resched();
506 	return freed;
507 }
508 
509 void drop_slab_node(int nid)
510 {
511 	unsigned long freed;
512 
513 	do {
514 		struct mem_cgroup *memcg = NULL;
515 
516 		freed = 0;
517 		do {
518 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
519 					     1000, 1000);
520 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
521 	} while (freed > 10);
522 }
523 
524 void drop_slab(void)
525 {
526 	int nid;
527 
528 	for_each_online_node(nid)
529 		drop_slab_node(nid);
530 }
531 
532 static inline int is_page_cache_freeable(struct page *page)
533 {
534 	/*
535 	 * A freeable page cache page is referenced only by the caller
536 	 * that isolated the page, the page cache radix tree and
537 	 * optional buffer heads at page->private.
538 	 */
539 	return page_count(page) - page_has_private(page) == 2;
540 }
541 
542 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
543 {
544 	if (current->flags & PF_SWAPWRITE)
545 		return 1;
546 	if (!inode_write_congested(inode))
547 		return 1;
548 	if (inode_to_bdi(inode) == current->backing_dev_info)
549 		return 1;
550 	return 0;
551 }
552 
553 /*
554  * We detected a synchronous write error writing a page out.  Probably
555  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
556  * fsync(), msync() or close().
557  *
558  * The tricky part is that after writepage we cannot touch the mapping: nothing
559  * prevents it from being freed up.  But we have a ref on the page and once
560  * that page is locked, the mapping is pinned.
561  *
562  * We're allowed to run sleeping lock_page() here because we know the caller has
563  * __GFP_FS.
564  */
565 static void handle_write_error(struct address_space *mapping,
566 				struct page *page, int error)
567 {
568 	lock_page(page);
569 	if (page_mapping(page) == mapping)
570 		mapping_set_error(mapping, error);
571 	unlock_page(page);
572 }
573 
574 /* possible outcome of pageout() */
575 typedef enum {
576 	/* failed to write page out, page is locked */
577 	PAGE_KEEP,
578 	/* move page to the active list, page is locked */
579 	PAGE_ACTIVATE,
580 	/* page has been sent to the disk successfully, page is unlocked */
581 	PAGE_SUCCESS,
582 	/* page is clean and locked */
583 	PAGE_CLEAN,
584 } pageout_t;
585 
586 /*
587  * pageout is called by shrink_page_list() for each dirty page.
588  * Calls ->writepage().
589  */
590 static pageout_t pageout(struct page *page, struct address_space *mapping,
591 			 struct scan_control *sc)
592 {
593 	/*
594 	 * If the page is dirty, only perform writeback if that write
595 	 * will be non-blocking.  To prevent this allocation from being
596 	 * stalled by pagecache activity.  But note that there may be
597 	 * stalls if we need to run get_block().  We could test
598 	 * PagePrivate for that.
599 	 *
600 	 * If this process is currently in __generic_file_write_iter() against
601 	 * this page's queue, we can perform writeback even if that
602 	 * will block.
603 	 *
604 	 * If the page is swapcache, write it back even if that would
605 	 * block, for some throttling. This happens by accident, because
606 	 * swap_backing_dev_info is bust: it doesn't reflect the
607 	 * congestion state of the swapdevs.  Easy to fix, if needed.
608 	 */
609 	if (!is_page_cache_freeable(page))
610 		return PAGE_KEEP;
611 	if (!mapping) {
612 		/*
613 		 * Some data journaling orphaned pages can have
614 		 * page->mapping == NULL while being dirty with clean buffers.
615 		 */
616 		if (page_has_private(page)) {
617 			if (try_to_free_buffers(page)) {
618 				ClearPageDirty(page);
619 				pr_info("%s: orphaned page\n", __func__);
620 				return PAGE_CLEAN;
621 			}
622 		}
623 		return PAGE_KEEP;
624 	}
625 	if (mapping->a_ops->writepage == NULL)
626 		return PAGE_ACTIVATE;
627 	if (!may_write_to_inode(mapping->host, sc))
628 		return PAGE_KEEP;
629 
630 	if (clear_page_dirty_for_io(page)) {
631 		int res;
632 		struct writeback_control wbc = {
633 			.sync_mode = WB_SYNC_NONE,
634 			.nr_to_write = SWAP_CLUSTER_MAX,
635 			.range_start = 0,
636 			.range_end = LLONG_MAX,
637 			.for_reclaim = 1,
638 		};
639 
640 		SetPageReclaim(page);
641 		res = mapping->a_ops->writepage(page, &wbc);
642 		if (res < 0)
643 			handle_write_error(mapping, page, res);
644 		if (res == AOP_WRITEPAGE_ACTIVATE) {
645 			ClearPageReclaim(page);
646 			return PAGE_ACTIVATE;
647 		}
648 
649 		if (!PageWriteback(page)) {
650 			/* synchronous write or broken a_ops? */
651 			ClearPageReclaim(page);
652 		}
653 		trace_mm_vmscan_writepage(page);
654 		inc_node_page_state(page, NR_VMSCAN_WRITE);
655 		return PAGE_SUCCESS;
656 	}
657 
658 	return PAGE_CLEAN;
659 }
660 
661 /*
662  * Same as remove_mapping, but if the page is removed from the mapping, it
663  * gets returned with a refcount of 0.
664  */
665 static int __remove_mapping(struct address_space *mapping, struct page *page,
666 			    bool reclaimed)
667 {
668 	unsigned long flags;
669 
670 	BUG_ON(!PageLocked(page));
671 	BUG_ON(mapping != page_mapping(page));
672 
673 	spin_lock_irqsave(&mapping->tree_lock, flags);
674 	/*
675 	 * The non racy check for a busy page.
676 	 *
677 	 * Must be careful with the order of the tests. When someone has
678 	 * a ref to the page, it may be possible that they dirty it then
679 	 * drop the reference. So if PageDirty is tested before page_count
680 	 * here, then the following race may occur:
681 	 *
682 	 * get_user_pages(&page);
683 	 * [user mapping goes away]
684 	 * write_to(page);
685 	 *				!PageDirty(page)    [good]
686 	 * SetPageDirty(page);
687 	 * put_page(page);
688 	 *				!page_count(page)   [good, discard it]
689 	 *
690 	 * [oops, our write_to data is lost]
691 	 *
692 	 * Reversing the order of the tests ensures such a situation cannot
693 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
694 	 * load is not satisfied before that of page->_refcount.
695 	 *
696 	 * Note that if SetPageDirty is always performed via set_page_dirty,
697 	 * and thus under tree_lock, then this ordering is not required.
698 	 */
699 	if (!page_ref_freeze(page, 2))
700 		goto cannot_free;
701 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
702 	if (unlikely(PageDirty(page))) {
703 		page_ref_unfreeze(page, 2);
704 		goto cannot_free;
705 	}
706 
707 	if (PageSwapCache(page)) {
708 		swp_entry_t swap = { .val = page_private(page) };
709 		mem_cgroup_swapout(page, swap);
710 		__delete_from_swap_cache(page);
711 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
712 		swapcache_free(swap);
713 	} else {
714 		void (*freepage)(struct page *);
715 		void *shadow = NULL;
716 
717 		freepage = mapping->a_ops->freepage;
718 		/*
719 		 * Remember a shadow entry for reclaimed file cache in
720 		 * order to detect refaults, thus thrashing, later on.
721 		 *
722 		 * But don't store shadows in an address space that is
723 		 * already exiting.  This is not just an optizimation,
724 		 * inode reclaim needs to empty out the radix tree or
725 		 * the nodes are lost.  Don't plant shadows behind its
726 		 * back.
727 		 *
728 		 * We also don't store shadows for DAX mappings because the
729 		 * only page cache pages found in these are zero pages
730 		 * covering holes, and because we don't want to mix DAX
731 		 * exceptional entries and shadow exceptional entries in the
732 		 * same page_tree.
733 		 */
734 		if (reclaimed && page_is_file_cache(page) &&
735 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
736 			shadow = workingset_eviction(mapping, page);
737 		__delete_from_page_cache(page, shadow);
738 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
739 
740 		if (freepage != NULL)
741 			freepage(page);
742 	}
743 
744 	return 1;
745 
746 cannot_free:
747 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
748 	return 0;
749 }
750 
751 /*
752  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
753  * someone else has a ref on the page, abort and return 0.  If it was
754  * successfully detached, return 1.  Assumes the caller has a single ref on
755  * this page.
756  */
757 int remove_mapping(struct address_space *mapping, struct page *page)
758 {
759 	if (__remove_mapping(mapping, page, false)) {
760 		/*
761 		 * Unfreezing the refcount with 1 rather than 2 effectively
762 		 * drops the pagecache ref for us without requiring another
763 		 * atomic operation.
764 		 */
765 		page_ref_unfreeze(page, 1);
766 		return 1;
767 	}
768 	return 0;
769 }
770 
771 /**
772  * putback_lru_page - put previously isolated page onto appropriate LRU list
773  * @page: page to be put back to appropriate lru list
774  *
775  * Add previously isolated @page to appropriate LRU list.
776  * Page may still be unevictable for other reasons.
777  *
778  * lru_lock must not be held, interrupts must be enabled.
779  */
780 void putback_lru_page(struct page *page)
781 {
782 	bool is_unevictable;
783 	int was_unevictable = PageUnevictable(page);
784 
785 	VM_BUG_ON_PAGE(PageLRU(page), page);
786 
787 redo:
788 	ClearPageUnevictable(page);
789 
790 	if (page_evictable(page)) {
791 		/*
792 		 * For evictable pages, we can use the cache.
793 		 * In event of a race, worst case is we end up with an
794 		 * unevictable page on [in]active list.
795 		 * We know how to handle that.
796 		 */
797 		is_unevictable = false;
798 		lru_cache_add(page);
799 	} else {
800 		/*
801 		 * Put unevictable pages directly on zone's unevictable
802 		 * list.
803 		 */
804 		is_unevictable = true;
805 		add_page_to_unevictable_list(page);
806 		/*
807 		 * When racing with an mlock or AS_UNEVICTABLE clearing
808 		 * (page is unlocked) make sure that if the other thread
809 		 * does not observe our setting of PG_lru and fails
810 		 * isolation/check_move_unevictable_pages,
811 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
812 		 * the page back to the evictable list.
813 		 *
814 		 * The other side is TestClearPageMlocked() or shmem_lock().
815 		 */
816 		smp_mb();
817 	}
818 
819 	/*
820 	 * page's status can change while we move it among lru. If an evictable
821 	 * page is on unevictable list, it never be freed. To avoid that,
822 	 * check after we added it to the list, again.
823 	 */
824 	if (is_unevictable && page_evictable(page)) {
825 		if (!isolate_lru_page(page)) {
826 			put_page(page);
827 			goto redo;
828 		}
829 		/* This means someone else dropped this page from LRU
830 		 * So, it will be freed or putback to LRU again. There is
831 		 * nothing to do here.
832 		 */
833 	}
834 
835 	if (was_unevictable && !is_unevictable)
836 		count_vm_event(UNEVICTABLE_PGRESCUED);
837 	else if (!was_unevictable && is_unevictable)
838 		count_vm_event(UNEVICTABLE_PGCULLED);
839 
840 	put_page(page);		/* drop ref from isolate */
841 }
842 
843 enum page_references {
844 	PAGEREF_RECLAIM,
845 	PAGEREF_RECLAIM_CLEAN,
846 	PAGEREF_KEEP,
847 	PAGEREF_ACTIVATE,
848 };
849 
850 static enum page_references page_check_references(struct page *page,
851 						  struct scan_control *sc)
852 {
853 	int referenced_ptes, referenced_page;
854 	unsigned long vm_flags;
855 
856 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
857 					  &vm_flags);
858 	referenced_page = TestClearPageReferenced(page);
859 
860 	/*
861 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
862 	 * move the page to the unevictable list.
863 	 */
864 	if (vm_flags & VM_LOCKED)
865 		return PAGEREF_RECLAIM;
866 
867 	if (referenced_ptes) {
868 		if (PageSwapBacked(page))
869 			return PAGEREF_ACTIVATE;
870 		/*
871 		 * All mapped pages start out with page table
872 		 * references from the instantiating fault, so we need
873 		 * to look twice if a mapped file page is used more
874 		 * than once.
875 		 *
876 		 * Mark it and spare it for another trip around the
877 		 * inactive list.  Another page table reference will
878 		 * lead to its activation.
879 		 *
880 		 * Note: the mark is set for activated pages as well
881 		 * so that recently deactivated but used pages are
882 		 * quickly recovered.
883 		 */
884 		SetPageReferenced(page);
885 
886 		if (referenced_page || referenced_ptes > 1)
887 			return PAGEREF_ACTIVATE;
888 
889 		/*
890 		 * Activate file-backed executable pages after first usage.
891 		 */
892 		if (vm_flags & VM_EXEC)
893 			return PAGEREF_ACTIVATE;
894 
895 		return PAGEREF_KEEP;
896 	}
897 
898 	/* Reclaim if clean, defer dirty pages to writeback */
899 	if (referenced_page && !PageSwapBacked(page))
900 		return PAGEREF_RECLAIM_CLEAN;
901 
902 	return PAGEREF_RECLAIM;
903 }
904 
905 /* Check if a page is dirty or under writeback */
906 static void page_check_dirty_writeback(struct page *page,
907 				       bool *dirty, bool *writeback)
908 {
909 	struct address_space *mapping;
910 
911 	/*
912 	 * Anonymous pages are not handled by flushers and must be written
913 	 * from reclaim context. Do not stall reclaim based on them
914 	 */
915 	if (!page_is_file_cache(page)) {
916 		*dirty = false;
917 		*writeback = false;
918 		return;
919 	}
920 
921 	/* By default assume that the page flags are accurate */
922 	*dirty = PageDirty(page);
923 	*writeback = PageWriteback(page);
924 
925 	/* Verify dirty/writeback state if the filesystem supports it */
926 	if (!page_has_private(page))
927 		return;
928 
929 	mapping = page_mapping(page);
930 	if (mapping && mapping->a_ops->is_dirty_writeback)
931 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 }
933 
934 struct reclaim_stat {
935 	unsigned nr_dirty;
936 	unsigned nr_unqueued_dirty;
937 	unsigned nr_congested;
938 	unsigned nr_writeback;
939 	unsigned nr_immediate;
940 	unsigned nr_activate;
941 	unsigned nr_ref_keep;
942 	unsigned nr_unmap_fail;
943 };
944 
945 /*
946  * shrink_page_list() returns the number of reclaimed pages
947  */
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 				      struct pglist_data *pgdat,
950 				      struct scan_control *sc,
951 				      enum ttu_flags ttu_flags,
952 				      struct reclaim_stat *stat,
953 				      bool force_reclaim)
954 {
955 	LIST_HEAD(ret_pages);
956 	LIST_HEAD(free_pages);
957 	int pgactivate = 0;
958 	unsigned nr_unqueued_dirty = 0;
959 	unsigned nr_dirty = 0;
960 	unsigned nr_congested = 0;
961 	unsigned nr_reclaimed = 0;
962 	unsigned nr_writeback = 0;
963 	unsigned nr_immediate = 0;
964 	unsigned nr_ref_keep = 0;
965 	unsigned nr_unmap_fail = 0;
966 
967 	cond_resched();
968 
969 	while (!list_empty(page_list)) {
970 		struct address_space *mapping;
971 		struct page *page;
972 		int may_enter_fs;
973 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 		bool dirty, writeback;
975 		bool lazyfree = false;
976 		int ret = SWAP_SUCCESS;
977 
978 		cond_resched();
979 
980 		page = lru_to_page(page_list);
981 		list_del(&page->lru);
982 
983 		if (!trylock_page(page))
984 			goto keep;
985 
986 		VM_BUG_ON_PAGE(PageActive(page), page);
987 
988 		sc->nr_scanned++;
989 
990 		if (unlikely(!page_evictable(page)))
991 			goto cull_mlocked;
992 
993 		if (!sc->may_unmap && page_mapped(page))
994 			goto keep_locked;
995 
996 		/* Double the slab pressure for mapped and swapcache pages */
997 		if (page_mapped(page) || PageSwapCache(page))
998 			sc->nr_scanned++;
999 
1000 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1001 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1002 
1003 		/*
1004 		 * The number of dirty pages determines if a zone is marked
1005 		 * reclaim_congested which affects wait_iff_congested. kswapd
1006 		 * will stall and start writing pages if the tail of the LRU
1007 		 * is all dirty unqueued pages.
1008 		 */
1009 		page_check_dirty_writeback(page, &dirty, &writeback);
1010 		if (dirty || writeback)
1011 			nr_dirty++;
1012 
1013 		if (dirty && !writeback)
1014 			nr_unqueued_dirty++;
1015 
1016 		/*
1017 		 * Treat this page as congested if the underlying BDI is or if
1018 		 * pages are cycling through the LRU so quickly that the
1019 		 * pages marked for immediate reclaim are making it to the
1020 		 * end of the LRU a second time.
1021 		 */
1022 		mapping = page_mapping(page);
1023 		if (((dirty || writeback) && mapping &&
1024 		     inode_write_congested(mapping->host)) ||
1025 		    (writeback && PageReclaim(page)))
1026 			nr_congested++;
1027 
1028 		/*
1029 		 * If a page at the tail of the LRU is under writeback, there
1030 		 * are three cases to consider.
1031 		 *
1032 		 * 1) If reclaim is encountering an excessive number of pages
1033 		 *    under writeback and this page is both under writeback and
1034 		 *    PageReclaim then it indicates that pages are being queued
1035 		 *    for IO but are being recycled through the LRU before the
1036 		 *    IO can complete. Waiting on the page itself risks an
1037 		 *    indefinite stall if it is impossible to writeback the
1038 		 *    page due to IO error or disconnected storage so instead
1039 		 *    note that the LRU is being scanned too quickly and the
1040 		 *    caller can stall after page list has been processed.
1041 		 *
1042 		 * 2) Global or new memcg reclaim encounters a page that is
1043 		 *    not marked for immediate reclaim, or the caller does not
1044 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1045 		 *    not to fs). In this case mark the page for immediate
1046 		 *    reclaim and continue scanning.
1047 		 *
1048 		 *    Require may_enter_fs because we would wait on fs, which
1049 		 *    may not have submitted IO yet. And the loop driver might
1050 		 *    enter reclaim, and deadlock if it waits on a page for
1051 		 *    which it is needed to do the write (loop masks off
1052 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1053 		 *    would probably show more reasons.
1054 		 *
1055 		 * 3) Legacy memcg encounters a page that is already marked
1056 		 *    PageReclaim. memcg does not have any dirty pages
1057 		 *    throttling so we could easily OOM just because too many
1058 		 *    pages are in writeback and there is nothing else to
1059 		 *    reclaim. Wait for the writeback to complete.
1060 		 *
1061 		 * In cases 1) and 2) we activate the pages to get them out of
1062 		 * the way while we continue scanning for clean pages on the
1063 		 * inactive list and refilling from the active list. The
1064 		 * observation here is that waiting for disk writes is more
1065 		 * expensive than potentially causing reloads down the line.
1066 		 * Since they're marked for immediate reclaim, they won't put
1067 		 * memory pressure on the cache working set any longer than it
1068 		 * takes to write them to disk.
1069 		 */
1070 		if (PageWriteback(page)) {
1071 			/* Case 1 above */
1072 			if (current_is_kswapd() &&
1073 			    PageReclaim(page) &&
1074 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075 				nr_immediate++;
1076 				goto activate_locked;
1077 
1078 			/* Case 2 above */
1079 			} else if (sane_reclaim(sc) ||
1080 			    !PageReclaim(page) || !may_enter_fs) {
1081 				/*
1082 				 * This is slightly racy - end_page_writeback()
1083 				 * might have just cleared PageReclaim, then
1084 				 * setting PageReclaim here end up interpreted
1085 				 * as PageReadahead - but that does not matter
1086 				 * enough to care.  What we do want is for this
1087 				 * page to have PageReclaim set next time memcg
1088 				 * reclaim reaches the tests above, so it will
1089 				 * then wait_on_page_writeback() to avoid OOM;
1090 				 * and it's also appropriate in global reclaim.
1091 				 */
1092 				SetPageReclaim(page);
1093 				nr_writeback++;
1094 				goto activate_locked;
1095 
1096 			/* Case 3 above */
1097 			} else {
1098 				unlock_page(page);
1099 				wait_on_page_writeback(page);
1100 				/* then go back and try same page again */
1101 				list_add_tail(&page->lru, page_list);
1102 				continue;
1103 			}
1104 		}
1105 
1106 		if (!force_reclaim)
1107 			references = page_check_references(page, sc);
1108 
1109 		switch (references) {
1110 		case PAGEREF_ACTIVATE:
1111 			goto activate_locked;
1112 		case PAGEREF_KEEP:
1113 			nr_ref_keep++;
1114 			goto keep_locked;
1115 		case PAGEREF_RECLAIM:
1116 		case PAGEREF_RECLAIM_CLEAN:
1117 			; /* try to reclaim the page below */
1118 		}
1119 
1120 		/*
1121 		 * Anonymous process memory has backing store?
1122 		 * Try to allocate it some swap space here.
1123 		 */
1124 		if (PageAnon(page) && !PageSwapCache(page)) {
1125 			if (!(sc->gfp_mask & __GFP_IO))
1126 				goto keep_locked;
1127 			if (!add_to_swap(page, page_list))
1128 				goto activate_locked;
1129 			lazyfree = true;
1130 			may_enter_fs = 1;
1131 
1132 			/* Adding to swap updated mapping */
1133 			mapping = page_mapping(page);
1134 		} else if (unlikely(PageTransHuge(page))) {
1135 			/* Split file THP */
1136 			if (split_huge_page_to_list(page, page_list))
1137 				goto keep_locked;
1138 		}
1139 
1140 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1141 
1142 		/*
1143 		 * The page is mapped into the page tables of one or more
1144 		 * processes. Try to unmap it here.
1145 		 */
1146 		if (page_mapped(page) && mapping) {
1147 			switch (ret = try_to_unmap(page, lazyfree ?
1148 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1149 				(ttu_flags | TTU_BATCH_FLUSH))) {
1150 			case SWAP_FAIL:
1151 				nr_unmap_fail++;
1152 				goto activate_locked;
1153 			case SWAP_AGAIN:
1154 				goto keep_locked;
1155 			case SWAP_MLOCK:
1156 				goto cull_mlocked;
1157 			case SWAP_LZFREE:
1158 				goto lazyfree;
1159 			case SWAP_SUCCESS:
1160 				; /* try to free the page below */
1161 			}
1162 		}
1163 
1164 		if (PageDirty(page)) {
1165 			/*
1166 			 * Only kswapd can writeback filesystem pages
1167 			 * to avoid risk of stack overflow. But avoid
1168 			 * injecting inefficient single-page IO into
1169 			 * flusher writeback as much as possible: only
1170 			 * write pages when we've encountered many
1171 			 * dirty pages, and when we've already scanned
1172 			 * the rest of the LRU for clean pages and see
1173 			 * the same dirty pages again (PageReclaim).
1174 			 */
1175 			if (page_is_file_cache(page) &&
1176 			    (!current_is_kswapd() || !PageReclaim(page) ||
1177 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1178 				/*
1179 				 * Immediately reclaim when written back.
1180 				 * Similar in principal to deactivate_page()
1181 				 * except we already have the page isolated
1182 				 * and know it's dirty
1183 				 */
1184 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1185 				SetPageReclaim(page);
1186 
1187 				goto activate_locked;
1188 			}
1189 
1190 			if (references == PAGEREF_RECLAIM_CLEAN)
1191 				goto keep_locked;
1192 			if (!may_enter_fs)
1193 				goto keep_locked;
1194 			if (!sc->may_writepage)
1195 				goto keep_locked;
1196 
1197 			/*
1198 			 * Page is dirty. Flush the TLB if a writable entry
1199 			 * potentially exists to avoid CPU writes after IO
1200 			 * starts and then write it out here.
1201 			 */
1202 			try_to_unmap_flush_dirty();
1203 			switch (pageout(page, mapping, sc)) {
1204 			case PAGE_KEEP:
1205 				goto keep_locked;
1206 			case PAGE_ACTIVATE:
1207 				goto activate_locked;
1208 			case PAGE_SUCCESS:
1209 				if (PageWriteback(page))
1210 					goto keep;
1211 				if (PageDirty(page))
1212 					goto keep;
1213 
1214 				/*
1215 				 * A synchronous write - probably a ramdisk.  Go
1216 				 * ahead and try to reclaim the page.
1217 				 */
1218 				if (!trylock_page(page))
1219 					goto keep;
1220 				if (PageDirty(page) || PageWriteback(page))
1221 					goto keep_locked;
1222 				mapping = page_mapping(page);
1223 			case PAGE_CLEAN:
1224 				; /* try to free the page below */
1225 			}
1226 		}
1227 
1228 		/*
1229 		 * If the page has buffers, try to free the buffer mappings
1230 		 * associated with this page. If we succeed we try to free
1231 		 * the page as well.
1232 		 *
1233 		 * We do this even if the page is PageDirty().
1234 		 * try_to_release_page() does not perform I/O, but it is
1235 		 * possible for a page to have PageDirty set, but it is actually
1236 		 * clean (all its buffers are clean).  This happens if the
1237 		 * buffers were written out directly, with submit_bh(). ext3
1238 		 * will do this, as well as the blockdev mapping.
1239 		 * try_to_release_page() will discover that cleanness and will
1240 		 * drop the buffers and mark the page clean - it can be freed.
1241 		 *
1242 		 * Rarely, pages can have buffers and no ->mapping.  These are
1243 		 * the pages which were not successfully invalidated in
1244 		 * truncate_complete_page().  We try to drop those buffers here
1245 		 * and if that worked, and the page is no longer mapped into
1246 		 * process address space (page_count == 1) it can be freed.
1247 		 * Otherwise, leave the page on the LRU so it is swappable.
1248 		 */
1249 		if (page_has_private(page)) {
1250 			if (!try_to_release_page(page, sc->gfp_mask))
1251 				goto activate_locked;
1252 			if (!mapping && page_count(page) == 1) {
1253 				unlock_page(page);
1254 				if (put_page_testzero(page))
1255 					goto free_it;
1256 				else {
1257 					/*
1258 					 * rare race with speculative reference.
1259 					 * the speculative reference will free
1260 					 * this page shortly, so we may
1261 					 * increment nr_reclaimed here (and
1262 					 * leave it off the LRU).
1263 					 */
1264 					nr_reclaimed++;
1265 					continue;
1266 				}
1267 			}
1268 		}
1269 
1270 lazyfree:
1271 		if (!mapping || !__remove_mapping(mapping, page, true))
1272 			goto keep_locked;
1273 
1274 		/*
1275 		 * At this point, we have no other references and there is
1276 		 * no way to pick any more up (removed from LRU, removed
1277 		 * from pagecache). Can use non-atomic bitops now (and
1278 		 * we obviously don't have to worry about waking up a process
1279 		 * waiting on the page lock, because there are no references.
1280 		 */
1281 		__ClearPageLocked(page);
1282 free_it:
1283 		if (ret == SWAP_LZFREE)
1284 			count_vm_event(PGLAZYFREED);
1285 
1286 		nr_reclaimed++;
1287 
1288 		/*
1289 		 * Is there need to periodically free_page_list? It would
1290 		 * appear not as the counts should be low
1291 		 */
1292 		list_add(&page->lru, &free_pages);
1293 		continue;
1294 
1295 cull_mlocked:
1296 		if (PageSwapCache(page))
1297 			try_to_free_swap(page);
1298 		unlock_page(page);
1299 		list_add(&page->lru, &ret_pages);
1300 		continue;
1301 
1302 activate_locked:
1303 		/* Not a candidate for swapping, so reclaim swap space. */
1304 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1305 			try_to_free_swap(page);
1306 		VM_BUG_ON_PAGE(PageActive(page), page);
1307 		SetPageActive(page);
1308 		pgactivate++;
1309 keep_locked:
1310 		unlock_page(page);
1311 keep:
1312 		list_add(&page->lru, &ret_pages);
1313 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1314 	}
1315 
1316 	mem_cgroup_uncharge_list(&free_pages);
1317 	try_to_unmap_flush();
1318 	free_hot_cold_page_list(&free_pages, true);
1319 
1320 	list_splice(&ret_pages, page_list);
1321 	count_vm_events(PGACTIVATE, pgactivate);
1322 
1323 	if (stat) {
1324 		stat->nr_dirty = nr_dirty;
1325 		stat->nr_congested = nr_congested;
1326 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1327 		stat->nr_writeback = nr_writeback;
1328 		stat->nr_immediate = nr_immediate;
1329 		stat->nr_activate = pgactivate;
1330 		stat->nr_ref_keep = nr_ref_keep;
1331 		stat->nr_unmap_fail = nr_unmap_fail;
1332 	}
1333 	return nr_reclaimed;
1334 }
1335 
1336 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1337 					    struct list_head *page_list)
1338 {
1339 	struct scan_control sc = {
1340 		.gfp_mask = GFP_KERNEL,
1341 		.priority = DEF_PRIORITY,
1342 		.may_unmap = 1,
1343 	};
1344 	unsigned long ret;
1345 	struct page *page, *next;
1346 	LIST_HEAD(clean_pages);
1347 
1348 	list_for_each_entry_safe(page, next, page_list, lru) {
1349 		if (page_is_file_cache(page) && !PageDirty(page) &&
1350 		    !__PageMovable(page)) {
1351 			ClearPageActive(page);
1352 			list_move(&page->lru, &clean_pages);
1353 		}
1354 	}
1355 
1356 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1357 			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1358 	list_splice(&clean_pages, page_list);
1359 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1360 	return ret;
1361 }
1362 
1363 /*
1364  * Attempt to remove the specified page from its LRU.  Only take this page
1365  * if it is of the appropriate PageActive status.  Pages which are being
1366  * freed elsewhere are also ignored.
1367  *
1368  * page:	page to consider
1369  * mode:	one of the LRU isolation modes defined above
1370  *
1371  * returns 0 on success, -ve errno on failure.
1372  */
1373 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1374 {
1375 	int ret = -EINVAL;
1376 
1377 	/* Only take pages on the LRU. */
1378 	if (!PageLRU(page))
1379 		return ret;
1380 
1381 	/* Compaction should not handle unevictable pages but CMA can do so */
1382 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1383 		return ret;
1384 
1385 	ret = -EBUSY;
1386 
1387 	/*
1388 	 * To minimise LRU disruption, the caller can indicate that it only
1389 	 * wants to isolate pages it will be able to operate on without
1390 	 * blocking - clean pages for the most part.
1391 	 *
1392 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1393 	 * that it is possible to migrate without blocking
1394 	 */
1395 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1396 		/* All the caller can do on PageWriteback is block */
1397 		if (PageWriteback(page))
1398 			return ret;
1399 
1400 		if (PageDirty(page)) {
1401 			struct address_space *mapping;
1402 
1403 			/*
1404 			 * Only pages without mappings or that have a
1405 			 * ->migratepage callback are possible to migrate
1406 			 * without blocking
1407 			 */
1408 			mapping = page_mapping(page);
1409 			if (mapping && !mapping->a_ops->migratepage)
1410 				return ret;
1411 		}
1412 	}
1413 
1414 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1415 		return ret;
1416 
1417 	if (likely(get_page_unless_zero(page))) {
1418 		/*
1419 		 * Be careful not to clear PageLRU until after we're
1420 		 * sure the page is not being freed elsewhere -- the
1421 		 * page release code relies on it.
1422 		 */
1423 		ClearPageLRU(page);
1424 		ret = 0;
1425 	}
1426 
1427 	return ret;
1428 }
1429 
1430 
1431 /*
1432  * Update LRU sizes after isolating pages. The LRU size updates must
1433  * be complete before mem_cgroup_update_lru_size due to a santity check.
1434  */
1435 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1436 			enum lru_list lru, unsigned long *nr_zone_taken)
1437 {
1438 	int zid;
1439 
1440 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1441 		if (!nr_zone_taken[zid])
1442 			continue;
1443 
1444 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1445 #ifdef CONFIG_MEMCG
1446 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1447 #endif
1448 	}
1449 
1450 }
1451 
1452 /*
1453  * zone_lru_lock is heavily contended.  Some of the functions that
1454  * shrink the lists perform better by taking out a batch of pages
1455  * and working on them outside the LRU lock.
1456  *
1457  * For pagecache intensive workloads, this function is the hottest
1458  * spot in the kernel (apart from copy_*_user functions).
1459  *
1460  * Appropriate locks must be held before calling this function.
1461  *
1462  * @nr_to_scan:	The number of pages to look through on the list.
1463  * @lruvec:	The LRU vector to pull pages from.
1464  * @dst:	The temp list to put pages on to.
1465  * @nr_scanned:	The number of pages that were scanned.
1466  * @sc:		The scan_control struct for this reclaim session
1467  * @mode:	One of the LRU isolation modes
1468  * @lru:	LRU list id for isolating
1469  *
1470  * returns how many pages were moved onto *@dst.
1471  */
1472 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1473 		struct lruvec *lruvec, struct list_head *dst,
1474 		unsigned long *nr_scanned, struct scan_control *sc,
1475 		isolate_mode_t mode, enum lru_list lru)
1476 {
1477 	struct list_head *src = &lruvec->lists[lru];
1478 	unsigned long nr_taken = 0;
1479 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1480 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1481 	unsigned long skipped = 0, total_skipped = 0;
1482 	unsigned long scan, nr_pages;
1483 	LIST_HEAD(pages_skipped);
1484 
1485 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1486 					!list_empty(src);) {
1487 		struct page *page;
1488 
1489 		page = lru_to_page(src);
1490 		prefetchw_prev_lru_page(page, src, flags);
1491 
1492 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1493 
1494 		if (page_zonenum(page) > sc->reclaim_idx) {
1495 			list_move(&page->lru, &pages_skipped);
1496 			nr_skipped[page_zonenum(page)]++;
1497 			continue;
1498 		}
1499 
1500 		/*
1501 		 * Account for scanned and skipped separetly to avoid the pgdat
1502 		 * being prematurely marked unreclaimable by pgdat_reclaimable.
1503 		 */
1504 		scan++;
1505 
1506 		switch (__isolate_lru_page(page, mode)) {
1507 		case 0:
1508 			nr_pages = hpage_nr_pages(page);
1509 			nr_taken += nr_pages;
1510 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1511 			list_move(&page->lru, dst);
1512 			break;
1513 
1514 		case -EBUSY:
1515 			/* else it is being freed elsewhere */
1516 			list_move(&page->lru, src);
1517 			continue;
1518 
1519 		default:
1520 			BUG();
1521 		}
1522 	}
1523 
1524 	/*
1525 	 * Splice any skipped pages to the start of the LRU list. Note that
1526 	 * this disrupts the LRU order when reclaiming for lower zones but
1527 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1528 	 * scanning would soon rescan the same pages to skip and put the
1529 	 * system at risk of premature OOM.
1530 	 */
1531 	if (!list_empty(&pages_skipped)) {
1532 		int zid;
1533 
1534 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1535 			if (!nr_skipped[zid])
1536 				continue;
1537 
1538 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1539 			skipped += nr_skipped[zid];
1540 		}
1541 
1542 		/*
1543 		 * Account skipped pages as a partial scan as the pgdat may be
1544 		 * close to unreclaimable. If the LRU list is empty, account
1545 		 * skipped pages as a full scan.
1546 		 */
1547 		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1548 
1549 		list_splice(&pages_skipped, src);
1550 	}
1551 	*nr_scanned = scan + total_skipped;
1552 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1553 				    scan, skipped, nr_taken, mode, lru);
1554 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1555 	return nr_taken;
1556 }
1557 
1558 /**
1559  * isolate_lru_page - tries to isolate a page from its LRU list
1560  * @page: page to isolate from its LRU list
1561  *
1562  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1563  * vmstat statistic corresponding to whatever LRU list the page was on.
1564  *
1565  * Returns 0 if the page was removed from an LRU list.
1566  * Returns -EBUSY if the page was not on an LRU list.
1567  *
1568  * The returned page will have PageLRU() cleared.  If it was found on
1569  * the active list, it will have PageActive set.  If it was found on
1570  * the unevictable list, it will have the PageUnevictable bit set. That flag
1571  * may need to be cleared by the caller before letting the page go.
1572  *
1573  * The vmstat statistic corresponding to the list on which the page was
1574  * found will be decremented.
1575  *
1576  * Restrictions:
1577  * (1) Must be called with an elevated refcount on the page. This is a
1578  *     fundamentnal difference from isolate_lru_pages (which is called
1579  *     without a stable reference).
1580  * (2) the lru_lock must not be held.
1581  * (3) interrupts must be enabled.
1582  */
1583 int isolate_lru_page(struct page *page)
1584 {
1585 	int ret = -EBUSY;
1586 
1587 	VM_BUG_ON_PAGE(!page_count(page), page);
1588 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1589 
1590 	if (PageLRU(page)) {
1591 		struct zone *zone = page_zone(page);
1592 		struct lruvec *lruvec;
1593 
1594 		spin_lock_irq(zone_lru_lock(zone));
1595 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1596 		if (PageLRU(page)) {
1597 			int lru = page_lru(page);
1598 			get_page(page);
1599 			ClearPageLRU(page);
1600 			del_page_from_lru_list(page, lruvec, lru);
1601 			ret = 0;
1602 		}
1603 		spin_unlock_irq(zone_lru_lock(zone));
1604 	}
1605 	return ret;
1606 }
1607 
1608 /*
1609  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1610  * then get resheduled. When there are massive number of tasks doing page
1611  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1612  * the LRU list will go small and be scanned faster than necessary, leading to
1613  * unnecessary swapping, thrashing and OOM.
1614  */
1615 static int too_many_isolated(struct pglist_data *pgdat, int file,
1616 		struct scan_control *sc)
1617 {
1618 	unsigned long inactive, isolated;
1619 
1620 	if (current_is_kswapd())
1621 		return 0;
1622 
1623 	if (!sane_reclaim(sc))
1624 		return 0;
1625 
1626 	if (file) {
1627 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1628 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1629 	} else {
1630 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1631 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1632 	}
1633 
1634 	/*
1635 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1636 	 * won't get blocked by normal direct-reclaimers, forming a circular
1637 	 * deadlock.
1638 	 */
1639 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1640 		inactive >>= 3;
1641 
1642 	return isolated > inactive;
1643 }
1644 
1645 static noinline_for_stack void
1646 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1647 {
1648 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1649 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1650 	LIST_HEAD(pages_to_free);
1651 
1652 	/*
1653 	 * Put back any unfreeable pages.
1654 	 */
1655 	while (!list_empty(page_list)) {
1656 		struct page *page = lru_to_page(page_list);
1657 		int lru;
1658 
1659 		VM_BUG_ON_PAGE(PageLRU(page), page);
1660 		list_del(&page->lru);
1661 		if (unlikely(!page_evictable(page))) {
1662 			spin_unlock_irq(&pgdat->lru_lock);
1663 			putback_lru_page(page);
1664 			spin_lock_irq(&pgdat->lru_lock);
1665 			continue;
1666 		}
1667 
1668 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1669 
1670 		SetPageLRU(page);
1671 		lru = page_lru(page);
1672 		add_page_to_lru_list(page, lruvec, lru);
1673 
1674 		if (is_active_lru(lru)) {
1675 			int file = is_file_lru(lru);
1676 			int numpages = hpage_nr_pages(page);
1677 			reclaim_stat->recent_rotated[file] += numpages;
1678 		}
1679 		if (put_page_testzero(page)) {
1680 			__ClearPageLRU(page);
1681 			__ClearPageActive(page);
1682 			del_page_from_lru_list(page, lruvec, lru);
1683 
1684 			if (unlikely(PageCompound(page))) {
1685 				spin_unlock_irq(&pgdat->lru_lock);
1686 				mem_cgroup_uncharge(page);
1687 				(*get_compound_page_dtor(page))(page);
1688 				spin_lock_irq(&pgdat->lru_lock);
1689 			} else
1690 				list_add(&page->lru, &pages_to_free);
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * To save our caller's stack, now use input list for pages to free.
1696 	 */
1697 	list_splice(&pages_to_free, page_list);
1698 }
1699 
1700 /*
1701  * If a kernel thread (such as nfsd for loop-back mounts) services
1702  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1703  * In that case we should only throttle if the backing device it is
1704  * writing to is congested.  In other cases it is safe to throttle.
1705  */
1706 static int current_may_throttle(void)
1707 {
1708 	return !(current->flags & PF_LESS_THROTTLE) ||
1709 		current->backing_dev_info == NULL ||
1710 		bdi_write_congested(current->backing_dev_info);
1711 }
1712 
1713 /*
1714  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1715  * of reclaimed pages
1716  */
1717 static noinline_for_stack unsigned long
1718 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1719 		     struct scan_control *sc, enum lru_list lru)
1720 {
1721 	LIST_HEAD(page_list);
1722 	unsigned long nr_scanned;
1723 	unsigned long nr_reclaimed = 0;
1724 	unsigned long nr_taken;
1725 	struct reclaim_stat stat = {};
1726 	isolate_mode_t isolate_mode = 0;
1727 	int file = is_file_lru(lru);
1728 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1729 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1730 
1731 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1732 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1733 
1734 		/* We are about to die and free our memory. Return now. */
1735 		if (fatal_signal_pending(current))
1736 			return SWAP_CLUSTER_MAX;
1737 	}
1738 
1739 	lru_add_drain();
1740 
1741 	if (!sc->may_unmap)
1742 		isolate_mode |= ISOLATE_UNMAPPED;
1743 
1744 	spin_lock_irq(&pgdat->lru_lock);
1745 
1746 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1747 				     &nr_scanned, sc, isolate_mode, lru);
1748 
1749 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1750 	reclaim_stat->recent_scanned[file] += nr_taken;
1751 
1752 	if (global_reclaim(sc)) {
1753 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1754 		if (current_is_kswapd())
1755 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1756 		else
1757 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1758 	}
1759 	spin_unlock_irq(&pgdat->lru_lock);
1760 
1761 	if (nr_taken == 0)
1762 		return 0;
1763 
1764 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1765 				&stat, false);
1766 
1767 	spin_lock_irq(&pgdat->lru_lock);
1768 
1769 	if (global_reclaim(sc)) {
1770 		if (current_is_kswapd())
1771 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1772 		else
1773 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1774 	}
1775 
1776 	putback_inactive_pages(lruvec, &page_list);
1777 
1778 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1779 
1780 	spin_unlock_irq(&pgdat->lru_lock);
1781 
1782 	mem_cgroup_uncharge_list(&page_list);
1783 	free_hot_cold_page_list(&page_list, true);
1784 
1785 	/*
1786 	 * If reclaim is isolating dirty pages under writeback, it implies
1787 	 * that the long-lived page allocation rate is exceeding the page
1788 	 * laundering rate. Either the global limits are not being effective
1789 	 * at throttling processes due to the page distribution throughout
1790 	 * zones or there is heavy usage of a slow backing device. The
1791 	 * only option is to throttle from reclaim context which is not ideal
1792 	 * as there is no guarantee the dirtying process is throttled in the
1793 	 * same way balance_dirty_pages() manages.
1794 	 *
1795 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1796 	 * of pages under pages flagged for immediate reclaim and stall if any
1797 	 * are encountered in the nr_immediate check below.
1798 	 */
1799 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1800 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1801 
1802 	/*
1803 	 * Legacy memcg will stall in page writeback so avoid forcibly
1804 	 * stalling here.
1805 	 */
1806 	if (sane_reclaim(sc)) {
1807 		/*
1808 		 * Tag a zone as congested if all the dirty pages scanned were
1809 		 * backed by a congested BDI and wait_iff_congested will stall.
1810 		 */
1811 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1812 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1813 
1814 		/*
1815 		 * If dirty pages are scanned that are not queued for IO, it
1816 		 * implies that flushers are not doing their job. This can
1817 		 * happen when memory pressure pushes dirty pages to the end of
1818 		 * the LRU before the dirty limits are breached and the dirty
1819 		 * data has expired. It can also happen when the proportion of
1820 		 * dirty pages grows not through writes but through memory
1821 		 * pressure reclaiming all the clean cache. And in some cases,
1822 		 * the flushers simply cannot keep up with the allocation
1823 		 * rate. Nudge the flusher threads in case they are asleep, but
1824 		 * also allow kswapd to start writing pages during reclaim.
1825 		 */
1826 		if (stat.nr_unqueued_dirty == nr_taken) {
1827 			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1828 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1829 		}
1830 
1831 		/*
1832 		 * If kswapd scans pages marked marked for immediate
1833 		 * reclaim and under writeback (nr_immediate), it implies
1834 		 * that pages are cycling through the LRU faster than
1835 		 * they are written so also forcibly stall.
1836 		 */
1837 		if (stat.nr_immediate && current_may_throttle())
1838 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1839 	}
1840 
1841 	/*
1842 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1843 	 * is congested. Allow kswapd to continue until it starts encountering
1844 	 * unqueued dirty pages or cycling through the LRU too quickly.
1845 	 */
1846 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1847 	    current_may_throttle())
1848 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1849 
1850 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1851 			nr_scanned, nr_reclaimed,
1852 			stat.nr_dirty,  stat.nr_writeback,
1853 			stat.nr_congested, stat.nr_immediate,
1854 			stat.nr_activate, stat.nr_ref_keep,
1855 			stat.nr_unmap_fail,
1856 			sc->priority, file);
1857 	return nr_reclaimed;
1858 }
1859 
1860 /*
1861  * This moves pages from the active list to the inactive list.
1862  *
1863  * We move them the other way if the page is referenced by one or more
1864  * processes, from rmap.
1865  *
1866  * If the pages are mostly unmapped, the processing is fast and it is
1867  * appropriate to hold zone_lru_lock across the whole operation.  But if
1868  * the pages are mapped, the processing is slow (page_referenced()) so we
1869  * should drop zone_lru_lock around each page.  It's impossible to balance
1870  * this, so instead we remove the pages from the LRU while processing them.
1871  * It is safe to rely on PG_active against the non-LRU pages in here because
1872  * nobody will play with that bit on a non-LRU page.
1873  *
1874  * The downside is that we have to touch page->_refcount against each page.
1875  * But we had to alter page->flags anyway.
1876  *
1877  * Returns the number of pages moved to the given lru.
1878  */
1879 
1880 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1881 				     struct list_head *list,
1882 				     struct list_head *pages_to_free,
1883 				     enum lru_list lru)
1884 {
1885 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1886 	struct page *page;
1887 	int nr_pages;
1888 	int nr_moved = 0;
1889 
1890 	while (!list_empty(list)) {
1891 		page = lru_to_page(list);
1892 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1893 
1894 		VM_BUG_ON_PAGE(PageLRU(page), page);
1895 		SetPageLRU(page);
1896 
1897 		nr_pages = hpage_nr_pages(page);
1898 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1899 		list_move(&page->lru, &lruvec->lists[lru]);
1900 
1901 		if (put_page_testzero(page)) {
1902 			__ClearPageLRU(page);
1903 			__ClearPageActive(page);
1904 			del_page_from_lru_list(page, lruvec, lru);
1905 
1906 			if (unlikely(PageCompound(page))) {
1907 				spin_unlock_irq(&pgdat->lru_lock);
1908 				mem_cgroup_uncharge(page);
1909 				(*get_compound_page_dtor(page))(page);
1910 				spin_lock_irq(&pgdat->lru_lock);
1911 			} else
1912 				list_add(&page->lru, pages_to_free);
1913 		} else {
1914 			nr_moved += nr_pages;
1915 		}
1916 	}
1917 
1918 	if (!is_active_lru(lru))
1919 		__count_vm_events(PGDEACTIVATE, nr_moved);
1920 
1921 	return nr_moved;
1922 }
1923 
1924 static void shrink_active_list(unsigned long nr_to_scan,
1925 			       struct lruvec *lruvec,
1926 			       struct scan_control *sc,
1927 			       enum lru_list lru)
1928 {
1929 	unsigned long nr_taken;
1930 	unsigned long nr_scanned;
1931 	unsigned long vm_flags;
1932 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1933 	LIST_HEAD(l_active);
1934 	LIST_HEAD(l_inactive);
1935 	struct page *page;
1936 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1937 	unsigned nr_deactivate, nr_activate;
1938 	unsigned nr_rotated = 0;
1939 	isolate_mode_t isolate_mode = 0;
1940 	int file = is_file_lru(lru);
1941 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1942 
1943 	lru_add_drain();
1944 
1945 	if (!sc->may_unmap)
1946 		isolate_mode |= ISOLATE_UNMAPPED;
1947 
1948 	spin_lock_irq(&pgdat->lru_lock);
1949 
1950 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1951 				     &nr_scanned, sc, isolate_mode, lru);
1952 
1953 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1954 	reclaim_stat->recent_scanned[file] += nr_taken;
1955 
1956 	if (global_reclaim(sc))
1957 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1958 	__count_vm_events(PGREFILL, nr_scanned);
1959 
1960 	spin_unlock_irq(&pgdat->lru_lock);
1961 
1962 	while (!list_empty(&l_hold)) {
1963 		cond_resched();
1964 		page = lru_to_page(&l_hold);
1965 		list_del(&page->lru);
1966 
1967 		if (unlikely(!page_evictable(page))) {
1968 			putback_lru_page(page);
1969 			continue;
1970 		}
1971 
1972 		if (unlikely(buffer_heads_over_limit)) {
1973 			if (page_has_private(page) && trylock_page(page)) {
1974 				if (page_has_private(page))
1975 					try_to_release_page(page, 0);
1976 				unlock_page(page);
1977 			}
1978 		}
1979 
1980 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1981 				    &vm_flags)) {
1982 			nr_rotated += hpage_nr_pages(page);
1983 			/*
1984 			 * Identify referenced, file-backed active pages and
1985 			 * give them one more trip around the active list. So
1986 			 * that executable code get better chances to stay in
1987 			 * memory under moderate memory pressure.  Anon pages
1988 			 * are not likely to be evicted by use-once streaming
1989 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1990 			 * so we ignore them here.
1991 			 */
1992 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1993 				list_add(&page->lru, &l_active);
1994 				continue;
1995 			}
1996 		}
1997 
1998 		ClearPageActive(page);	/* we are de-activating */
1999 		list_add(&page->lru, &l_inactive);
2000 	}
2001 
2002 	/*
2003 	 * Move pages back to the lru list.
2004 	 */
2005 	spin_lock_irq(&pgdat->lru_lock);
2006 	/*
2007 	 * Count referenced pages from currently used mappings as rotated,
2008 	 * even though only some of them are actually re-activated.  This
2009 	 * helps balance scan pressure between file and anonymous pages in
2010 	 * get_scan_count.
2011 	 */
2012 	reclaim_stat->recent_rotated[file] += nr_rotated;
2013 
2014 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2015 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2016 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2017 	spin_unlock_irq(&pgdat->lru_lock);
2018 
2019 	mem_cgroup_uncharge_list(&l_hold);
2020 	free_hot_cold_page_list(&l_hold, true);
2021 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2022 			nr_deactivate, nr_rotated, sc->priority, file);
2023 }
2024 
2025 /*
2026  * The inactive anon list should be small enough that the VM never has
2027  * to do too much work.
2028  *
2029  * The inactive file list should be small enough to leave most memory
2030  * to the established workingset on the scan-resistant active list,
2031  * but large enough to avoid thrashing the aggregate readahead window.
2032  *
2033  * Both inactive lists should also be large enough that each inactive
2034  * page has a chance to be referenced again before it is reclaimed.
2035  *
2036  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2037  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2038  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2039  *
2040  * total     target    max
2041  * memory    ratio     inactive
2042  * -------------------------------------
2043  *   10MB       1         5MB
2044  *  100MB       1        50MB
2045  *    1GB       3       250MB
2046  *   10GB      10       0.9GB
2047  *  100GB      31         3GB
2048  *    1TB     101        10GB
2049  *   10TB     320        32GB
2050  */
2051 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2052 						struct scan_control *sc, bool trace)
2053 {
2054 	unsigned long inactive_ratio;
2055 	unsigned long inactive, active;
2056 	enum lru_list inactive_lru = file * LRU_FILE;
2057 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2058 	unsigned long gb;
2059 
2060 	/*
2061 	 * If we don't have swap space, anonymous page deactivation
2062 	 * is pointless.
2063 	 */
2064 	if (!file && !total_swap_pages)
2065 		return false;
2066 
2067 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2068 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2069 
2070 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2071 	if (gb)
2072 		inactive_ratio = int_sqrt(10 * gb);
2073 	else
2074 		inactive_ratio = 1;
2075 
2076 	if (trace)
2077 		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2078 				sc->reclaim_idx,
2079 				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2080 				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2081 				inactive_ratio, file);
2082 
2083 	return inactive * inactive_ratio < active;
2084 }
2085 
2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087 				 struct lruvec *lruvec, struct scan_control *sc)
2088 {
2089 	if (is_active_lru(lru)) {
2090 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2091 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092 		return 0;
2093 	}
2094 
2095 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096 }
2097 
2098 enum scan_balance {
2099 	SCAN_EQUAL,
2100 	SCAN_FRACT,
2101 	SCAN_ANON,
2102 	SCAN_FILE,
2103 };
2104 
2105 /*
2106  * Determine how aggressively the anon and file LRU lists should be
2107  * scanned.  The relative value of each set of LRU lists is determined
2108  * by looking at the fraction of the pages scanned we did rotate back
2109  * onto the active list instead of evict.
2110  *
2111  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113  */
2114 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115 			   struct scan_control *sc, unsigned long *nr,
2116 			   unsigned long *lru_pages)
2117 {
2118 	int swappiness = mem_cgroup_swappiness(memcg);
2119 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120 	u64 fraction[2];
2121 	u64 denominator = 0;	/* gcc */
2122 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123 	unsigned long anon_prio, file_prio;
2124 	enum scan_balance scan_balance;
2125 	unsigned long anon, file;
2126 	bool force_scan = false;
2127 	unsigned long ap, fp;
2128 	enum lru_list lru;
2129 	bool some_scanned;
2130 	int pass;
2131 
2132 	/*
2133 	 * If the zone or memcg is small, nr[l] can be 0.  This
2134 	 * results in no scanning on this priority and a potential
2135 	 * priority drop.  Global direct reclaim can go to the next
2136 	 * zone and tends to have no problems. Global kswapd is for
2137 	 * zone balancing and it needs to scan a minimum amount. When
2138 	 * reclaiming for a memcg, a priority drop can cause high
2139 	 * latencies, so it's better to scan a minimum amount there as
2140 	 * well.
2141 	 */
2142 	if (current_is_kswapd()) {
2143 		if (!pgdat_reclaimable(pgdat))
2144 			force_scan = true;
2145 		if (!mem_cgroup_online(memcg))
2146 			force_scan = true;
2147 	}
2148 	if (!global_reclaim(sc))
2149 		force_scan = true;
2150 
2151 	/* If we have no swap space, do not bother scanning anon pages. */
2152 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2153 		scan_balance = SCAN_FILE;
2154 		goto out;
2155 	}
2156 
2157 	/*
2158 	 * Global reclaim will swap to prevent OOM even with no
2159 	 * swappiness, but memcg users want to use this knob to
2160 	 * disable swapping for individual groups completely when
2161 	 * using the memory controller's swap limit feature would be
2162 	 * too expensive.
2163 	 */
2164 	if (!global_reclaim(sc) && !swappiness) {
2165 		scan_balance = SCAN_FILE;
2166 		goto out;
2167 	}
2168 
2169 	/*
2170 	 * Do not apply any pressure balancing cleverness when the
2171 	 * system is close to OOM, scan both anon and file equally
2172 	 * (unless the swappiness setting disagrees with swapping).
2173 	 */
2174 	if (!sc->priority && swappiness) {
2175 		scan_balance = SCAN_EQUAL;
2176 		goto out;
2177 	}
2178 
2179 	/*
2180 	 * Prevent the reclaimer from falling into the cache trap: as
2181 	 * cache pages start out inactive, every cache fault will tip
2182 	 * the scan balance towards the file LRU.  And as the file LRU
2183 	 * shrinks, so does the window for rotation from references.
2184 	 * This means we have a runaway feedback loop where a tiny
2185 	 * thrashing file LRU becomes infinitely more attractive than
2186 	 * anon pages.  Try to detect this based on file LRU size.
2187 	 */
2188 	if (global_reclaim(sc)) {
2189 		unsigned long pgdatfile;
2190 		unsigned long pgdatfree;
2191 		int z;
2192 		unsigned long total_high_wmark = 0;
2193 
2194 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2195 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2196 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2197 
2198 		for (z = 0; z < MAX_NR_ZONES; z++) {
2199 			struct zone *zone = &pgdat->node_zones[z];
2200 			if (!managed_zone(zone))
2201 				continue;
2202 
2203 			total_high_wmark += high_wmark_pages(zone);
2204 		}
2205 
2206 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2207 			scan_balance = SCAN_ANON;
2208 			goto out;
2209 		}
2210 	}
2211 
2212 	/*
2213 	 * If there is enough inactive page cache, i.e. if the size of the
2214 	 * inactive list is greater than that of the active list *and* the
2215 	 * inactive list actually has some pages to scan on this priority, we
2216 	 * do not reclaim anything from the anonymous working set right now.
2217 	 * Without the second condition we could end up never scanning an
2218 	 * lruvec even if it has plenty of old anonymous pages unless the
2219 	 * system is under heavy pressure.
2220 	 */
2221 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2222 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2223 		scan_balance = SCAN_FILE;
2224 		goto out;
2225 	}
2226 
2227 	scan_balance = SCAN_FRACT;
2228 
2229 	/*
2230 	 * With swappiness at 100, anonymous and file have the same priority.
2231 	 * This scanning priority is essentially the inverse of IO cost.
2232 	 */
2233 	anon_prio = swappiness;
2234 	file_prio = 200 - anon_prio;
2235 
2236 	/*
2237 	 * OK, so we have swap space and a fair amount of page cache
2238 	 * pages.  We use the recently rotated / recently scanned
2239 	 * ratios to determine how valuable each cache is.
2240 	 *
2241 	 * Because workloads change over time (and to avoid overflow)
2242 	 * we keep these statistics as a floating average, which ends
2243 	 * up weighing recent references more than old ones.
2244 	 *
2245 	 * anon in [0], file in [1]
2246 	 */
2247 
2248 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2249 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2250 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2251 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2252 
2253 	spin_lock_irq(&pgdat->lru_lock);
2254 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2255 		reclaim_stat->recent_scanned[0] /= 2;
2256 		reclaim_stat->recent_rotated[0] /= 2;
2257 	}
2258 
2259 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2260 		reclaim_stat->recent_scanned[1] /= 2;
2261 		reclaim_stat->recent_rotated[1] /= 2;
2262 	}
2263 
2264 	/*
2265 	 * The amount of pressure on anon vs file pages is inversely
2266 	 * proportional to the fraction of recently scanned pages on
2267 	 * each list that were recently referenced and in active use.
2268 	 */
2269 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2270 	ap /= reclaim_stat->recent_rotated[0] + 1;
2271 
2272 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2273 	fp /= reclaim_stat->recent_rotated[1] + 1;
2274 	spin_unlock_irq(&pgdat->lru_lock);
2275 
2276 	fraction[0] = ap;
2277 	fraction[1] = fp;
2278 	denominator = ap + fp + 1;
2279 out:
2280 	some_scanned = false;
2281 	/* Only use force_scan on second pass. */
2282 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2283 		*lru_pages = 0;
2284 		for_each_evictable_lru(lru) {
2285 			int file = is_file_lru(lru);
2286 			unsigned long size;
2287 			unsigned long scan;
2288 
2289 			size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2290 			scan = size >> sc->priority;
2291 
2292 			if (!scan && pass && force_scan)
2293 				scan = min(size, SWAP_CLUSTER_MAX);
2294 
2295 			switch (scan_balance) {
2296 			case SCAN_EQUAL:
2297 				/* Scan lists relative to size */
2298 				break;
2299 			case SCAN_FRACT:
2300 				/*
2301 				 * Scan types proportional to swappiness and
2302 				 * their relative recent reclaim efficiency.
2303 				 */
2304 				scan = div64_u64(scan * fraction[file],
2305 							denominator);
2306 				break;
2307 			case SCAN_FILE:
2308 			case SCAN_ANON:
2309 				/* Scan one type exclusively */
2310 				if ((scan_balance == SCAN_FILE) != file) {
2311 					size = 0;
2312 					scan = 0;
2313 				}
2314 				break;
2315 			default:
2316 				/* Look ma, no brain */
2317 				BUG();
2318 			}
2319 
2320 			*lru_pages += size;
2321 			nr[lru] = scan;
2322 
2323 			/*
2324 			 * Skip the second pass and don't force_scan,
2325 			 * if we found something to scan.
2326 			 */
2327 			some_scanned |= !!scan;
2328 		}
2329 	}
2330 }
2331 
2332 /*
2333  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2334  */
2335 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2336 			      struct scan_control *sc, unsigned long *lru_pages)
2337 {
2338 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2339 	unsigned long nr[NR_LRU_LISTS];
2340 	unsigned long targets[NR_LRU_LISTS];
2341 	unsigned long nr_to_scan;
2342 	enum lru_list lru;
2343 	unsigned long nr_reclaimed = 0;
2344 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2345 	struct blk_plug plug;
2346 	bool scan_adjusted;
2347 
2348 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2349 
2350 	/* Record the original scan target for proportional adjustments later */
2351 	memcpy(targets, nr, sizeof(nr));
2352 
2353 	/*
2354 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2355 	 * event that can occur when there is little memory pressure e.g.
2356 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2357 	 * when the requested number of pages are reclaimed when scanning at
2358 	 * DEF_PRIORITY on the assumption that the fact we are direct
2359 	 * reclaiming implies that kswapd is not keeping up and it is best to
2360 	 * do a batch of work at once. For memcg reclaim one check is made to
2361 	 * abort proportional reclaim if either the file or anon lru has already
2362 	 * dropped to zero at the first pass.
2363 	 */
2364 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2365 			 sc->priority == DEF_PRIORITY);
2366 
2367 	blk_start_plug(&plug);
2368 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2369 					nr[LRU_INACTIVE_FILE]) {
2370 		unsigned long nr_anon, nr_file, percentage;
2371 		unsigned long nr_scanned;
2372 
2373 		for_each_evictable_lru(lru) {
2374 			if (nr[lru]) {
2375 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2376 				nr[lru] -= nr_to_scan;
2377 
2378 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2379 							    lruvec, sc);
2380 			}
2381 		}
2382 
2383 		cond_resched();
2384 
2385 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2386 			continue;
2387 
2388 		/*
2389 		 * For kswapd and memcg, reclaim at least the number of pages
2390 		 * requested. Ensure that the anon and file LRUs are scanned
2391 		 * proportionally what was requested by get_scan_count(). We
2392 		 * stop reclaiming one LRU and reduce the amount scanning
2393 		 * proportional to the original scan target.
2394 		 */
2395 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2396 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2397 
2398 		/*
2399 		 * It's just vindictive to attack the larger once the smaller
2400 		 * has gone to zero.  And given the way we stop scanning the
2401 		 * smaller below, this makes sure that we only make one nudge
2402 		 * towards proportionality once we've got nr_to_reclaim.
2403 		 */
2404 		if (!nr_file || !nr_anon)
2405 			break;
2406 
2407 		if (nr_file > nr_anon) {
2408 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2409 						targets[LRU_ACTIVE_ANON] + 1;
2410 			lru = LRU_BASE;
2411 			percentage = nr_anon * 100 / scan_target;
2412 		} else {
2413 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2414 						targets[LRU_ACTIVE_FILE] + 1;
2415 			lru = LRU_FILE;
2416 			percentage = nr_file * 100 / scan_target;
2417 		}
2418 
2419 		/* Stop scanning the smaller of the LRU */
2420 		nr[lru] = 0;
2421 		nr[lru + LRU_ACTIVE] = 0;
2422 
2423 		/*
2424 		 * Recalculate the other LRU scan count based on its original
2425 		 * scan target and the percentage scanning already complete
2426 		 */
2427 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2428 		nr_scanned = targets[lru] - nr[lru];
2429 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2430 		nr[lru] -= min(nr[lru], nr_scanned);
2431 
2432 		lru += LRU_ACTIVE;
2433 		nr_scanned = targets[lru] - nr[lru];
2434 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2435 		nr[lru] -= min(nr[lru], nr_scanned);
2436 
2437 		scan_adjusted = true;
2438 	}
2439 	blk_finish_plug(&plug);
2440 	sc->nr_reclaimed += nr_reclaimed;
2441 
2442 	/*
2443 	 * Even if we did not try to evict anon pages at all, we want to
2444 	 * rebalance the anon lru active/inactive ratio.
2445 	 */
2446 	if (inactive_list_is_low(lruvec, false, sc, true))
2447 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2448 				   sc, LRU_ACTIVE_ANON);
2449 }
2450 
2451 /* Use reclaim/compaction for costly allocs or under memory pressure */
2452 static bool in_reclaim_compaction(struct scan_control *sc)
2453 {
2454 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2455 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2456 			 sc->priority < DEF_PRIORITY - 2))
2457 		return true;
2458 
2459 	return false;
2460 }
2461 
2462 /*
2463  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2464  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2465  * true if more pages should be reclaimed such that when the page allocator
2466  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2467  * It will give up earlier than that if there is difficulty reclaiming pages.
2468  */
2469 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2470 					unsigned long nr_reclaimed,
2471 					unsigned long nr_scanned,
2472 					struct scan_control *sc)
2473 {
2474 	unsigned long pages_for_compaction;
2475 	unsigned long inactive_lru_pages;
2476 	int z;
2477 
2478 	/* If not in reclaim/compaction mode, stop */
2479 	if (!in_reclaim_compaction(sc))
2480 		return false;
2481 
2482 	/* Consider stopping depending on scan and reclaim activity */
2483 	if (sc->gfp_mask & __GFP_REPEAT) {
2484 		/*
2485 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2486 		 * full LRU list has been scanned and we are still failing
2487 		 * to reclaim pages. This full LRU scan is potentially
2488 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2489 		 */
2490 		if (!nr_reclaimed && !nr_scanned)
2491 			return false;
2492 	} else {
2493 		/*
2494 		 * For non-__GFP_REPEAT allocations which can presumably
2495 		 * fail without consequence, stop if we failed to reclaim
2496 		 * any pages from the last SWAP_CLUSTER_MAX number of
2497 		 * pages that were scanned. This will return to the
2498 		 * caller faster at the risk reclaim/compaction and
2499 		 * the resulting allocation attempt fails
2500 		 */
2501 		if (!nr_reclaimed)
2502 			return false;
2503 	}
2504 
2505 	/*
2506 	 * If we have not reclaimed enough pages for compaction and the
2507 	 * inactive lists are large enough, continue reclaiming
2508 	 */
2509 	pages_for_compaction = compact_gap(sc->order);
2510 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2511 	if (get_nr_swap_pages() > 0)
2512 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2513 	if (sc->nr_reclaimed < pages_for_compaction &&
2514 			inactive_lru_pages > pages_for_compaction)
2515 		return true;
2516 
2517 	/* If compaction would go ahead or the allocation would succeed, stop */
2518 	for (z = 0; z <= sc->reclaim_idx; z++) {
2519 		struct zone *zone = &pgdat->node_zones[z];
2520 		if (!managed_zone(zone))
2521 			continue;
2522 
2523 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2524 		case COMPACT_SUCCESS:
2525 		case COMPACT_CONTINUE:
2526 			return false;
2527 		default:
2528 			/* check next zone */
2529 			;
2530 		}
2531 	}
2532 	return true;
2533 }
2534 
2535 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2536 {
2537 	struct reclaim_state *reclaim_state = current->reclaim_state;
2538 	unsigned long nr_reclaimed, nr_scanned;
2539 	bool reclaimable = false;
2540 
2541 	do {
2542 		struct mem_cgroup *root = sc->target_mem_cgroup;
2543 		struct mem_cgroup_reclaim_cookie reclaim = {
2544 			.pgdat = pgdat,
2545 			.priority = sc->priority,
2546 		};
2547 		unsigned long node_lru_pages = 0;
2548 		struct mem_cgroup *memcg;
2549 
2550 		nr_reclaimed = sc->nr_reclaimed;
2551 		nr_scanned = sc->nr_scanned;
2552 
2553 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2554 		do {
2555 			unsigned long lru_pages;
2556 			unsigned long reclaimed;
2557 			unsigned long scanned;
2558 
2559 			if (mem_cgroup_low(root, memcg)) {
2560 				if (!sc->may_thrash)
2561 					continue;
2562 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2563 			}
2564 
2565 			reclaimed = sc->nr_reclaimed;
2566 			scanned = sc->nr_scanned;
2567 
2568 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2569 			node_lru_pages += lru_pages;
2570 
2571 			if (memcg)
2572 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2573 					    memcg, sc->nr_scanned - scanned,
2574 					    lru_pages);
2575 
2576 			/* Record the group's reclaim efficiency */
2577 			vmpressure(sc->gfp_mask, memcg, false,
2578 				   sc->nr_scanned - scanned,
2579 				   sc->nr_reclaimed - reclaimed);
2580 
2581 			/*
2582 			 * Direct reclaim and kswapd have to scan all memory
2583 			 * cgroups to fulfill the overall scan target for the
2584 			 * node.
2585 			 *
2586 			 * Limit reclaim, on the other hand, only cares about
2587 			 * nr_to_reclaim pages to be reclaimed and it will
2588 			 * retry with decreasing priority if one round over the
2589 			 * whole hierarchy is not sufficient.
2590 			 */
2591 			if (!global_reclaim(sc) &&
2592 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2593 				mem_cgroup_iter_break(root, memcg);
2594 				break;
2595 			}
2596 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2597 
2598 		/*
2599 		 * Shrink the slab caches in the same proportion that
2600 		 * the eligible LRU pages were scanned.
2601 		 */
2602 		if (global_reclaim(sc))
2603 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2604 				    sc->nr_scanned - nr_scanned,
2605 				    node_lru_pages);
2606 
2607 		if (reclaim_state) {
2608 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2609 			reclaim_state->reclaimed_slab = 0;
2610 		}
2611 
2612 		/* Record the subtree's reclaim efficiency */
2613 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2614 			   sc->nr_scanned - nr_scanned,
2615 			   sc->nr_reclaimed - nr_reclaimed);
2616 
2617 		if (sc->nr_reclaimed - nr_reclaimed)
2618 			reclaimable = true;
2619 
2620 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2621 					 sc->nr_scanned - nr_scanned, sc));
2622 
2623 	return reclaimable;
2624 }
2625 
2626 /*
2627  * Returns true if compaction should go ahead for a costly-order request, or
2628  * the allocation would already succeed without compaction. Return false if we
2629  * should reclaim first.
2630  */
2631 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2632 {
2633 	unsigned long watermark;
2634 	enum compact_result suitable;
2635 
2636 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2637 	if (suitable == COMPACT_SUCCESS)
2638 		/* Allocation should succeed already. Don't reclaim. */
2639 		return true;
2640 	if (suitable == COMPACT_SKIPPED)
2641 		/* Compaction cannot yet proceed. Do reclaim. */
2642 		return false;
2643 
2644 	/*
2645 	 * Compaction is already possible, but it takes time to run and there
2646 	 * are potentially other callers using the pages just freed. So proceed
2647 	 * with reclaim to make a buffer of free pages available to give
2648 	 * compaction a reasonable chance of completing and allocating the page.
2649 	 * Note that we won't actually reclaim the whole buffer in one attempt
2650 	 * as the target watermark in should_continue_reclaim() is lower. But if
2651 	 * we are already above the high+gap watermark, don't reclaim at all.
2652 	 */
2653 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2654 
2655 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2656 }
2657 
2658 /*
2659  * This is the direct reclaim path, for page-allocating processes.  We only
2660  * try to reclaim pages from zones which will satisfy the caller's allocation
2661  * request.
2662  *
2663  * If a zone is deemed to be full of pinned pages then just give it a light
2664  * scan then give up on it.
2665  */
2666 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2667 {
2668 	struct zoneref *z;
2669 	struct zone *zone;
2670 	unsigned long nr_soft_reclaimed;
2671 	unsigned long nr_soft_scanned;
2672 	gfp_t orig_mask;
2673 	pg_data_t *last_pgdat = NULL;
2674 
2675 	/*
2676 	 * If the number of buffer_heads in the machine exceeds the maximum
2677 	 * allowed level, force direct reclaim to scan the highmem zone as
2678 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2679 	 */
2680 	orig_mask = sc->gfp_mask;
2681 	if (buffer_heads_over_limit) {
2682 		sc->gfp_mask |= __GFP_HIGHMEM;
2683 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2684 	}
2685 
2686 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2687 					sc->reclaim_idx, sc->nodemask) {
2688 		/*
2689 		 * Take care memory controller reclaiming has small influence
2690 		 * to global LRU.
2691 		 */
2692 		if (global_reclaim(sc)) {
2693 			if (!cpuset_zone_allowed(zone,
2694 						 GFP_KERNEL | __GFP_HARDWALL))
2695 				continue;
2696 
2697 			if (sc->priority != DEF_PRIORITY &&
2698 			    !pgdat_reclaimable(zone->zone_pgdat))
2699 				continue;	/* Let kswapd poll it */
2700 
2701 			/*
2702 			 * If we already have plenty of memory free for
2703 			 * compaction in this zone, don't free any more.
2704 			 * Even though compaction is invoked for any
2705 			 * non-zero order, only frequent costly order
2706 			 * reclamation is disruptive enough to become a
2707 			 * noticeable problem, like transparent huge
2708 			 * page allocations.
2709 			 */
2710 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2711 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2712 			    compaction_ready(zone, sc)) {
2713 				sc->compaction_ready = true;
2714 				continue;
2715 			}
2716 
2717 			/*
2718 			 * Shrink each node in the zonelist once. If the
2719 			 * zonelist is ordered by zone (not the default) then a
2720 			 * node may be shrunk multiple times but in that case
2721 			 * the user prefers lower zones being preserved.
2722 			 */
2723 			if (zone->zone_pgdat == last_pgdat)
2724 				continue;
2725 
2726 			/*
2727 			 * This steals pages from memory cgroups over softlimit
2728 			 * and returns the number of reclaimed pages and
2729 			 * scanned pages. This works for global memory pressure
2730 			 * and balancing, not for a memcg's limit.
2731 			 */
2732 			nr_soft_scanned = 0;
2733 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2734 						sc->order, sc->gfp_mask,
2735 						&nr_soft_scanned);
2736 			sc->nr_reclaimed += nr_soft_reclaimed;
2737 			sc->nr_scanned += nr_soft_scanned;
2738 			/* need some check for avoid more shrink_zone() */
2739 		}
2740 
2741 		/* See comment about same check for global reclaim above */
2742 		if (zone->zone_pgdat == last_pgdat)
2743 			continue;
2744 		last_pgdat = zone->zone_pgdat;
2745 		shrink_node(zone->zone_pgdat, sc);
2746 	}
2747 
2748 	/*
2749 	 * Restore to original mask to avoid the impact on the caller if we
2750 	 * promoted it to __GFP_HIGHMEM.
2751 	 */
2752 	sc->gfp_mask = orig_mask;
2753 }
2754 
2755 /*
2756  * This is the main entry point to direct page reclaim.
2757  *
2758  * If a full scan of the inactive list fails to free enough memory then we
2759  * are "out of memory" and something needs to be killed.
2760  *
2761  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2762  * high - the zone may be full of dirty or under-writeback pages, which this
2763  * caller can't do much about.  We kick the writeback threads and take explicit
2764  * naps in the hope that some of these pages can be written.  But if the
2765  * allocating task holds filesystem locks which prevent writeout this might not
2766  * work, and the allocation attempt will fail.
2767  *
2768  * returns:	0, if no pages reclaimed
2769  * 		else, the number of pages reclaimed
2770  */
2771 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2772 					  struct scan_control *sc)
2773 {
2774 	int initial_priority = sc->priority;
2775 retry:
2776 	delayacct_freepages_start();
2777 
2778 	if (global_reclaim(sc))
2779 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2780 
2781 	do {
2782 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2783 				sc->priority);
2784 		sc->nr_scanned = 0;
2785 		shrink_zones(zonelist, sc);
2786 
2787 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2788 			break;
2789 
2790 		if (sc->compaction_ready)
2791 			break;
2792 
2793 		/*
2794 		 * If we're getting trouble reclaiming, start doing
2795 		 * writepage even in laptop mode.
2796 		 */
2797 		if (sc->priority < DEF_PRIORITY - 2)
2798 			sc->may_writepage = 1;
2799 	} while (--sc->priority >= 0);
2800 
2801 	delayacct_freepages_end();
2802 
2803 	if (sc->nr_reclaimed)
2804 		return sc->nr_reclaimed;
2805 
2806 	/* Aborted reclaim to try compaction? don't OOM, then */
2807 	if (sc->compaction_ready)
2808 		return 1;
2809 
2810 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2811 	if (!sc->may_thrash) {
2812 		sc->priority = initial_priority;
2813 		sc->may_thrash = 1;
2814 		goto retry;
2815 	}
2816 
2817 	return 0;
2818 }
2819 
2820 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2821 {
2822 	struct zone *zone;
2823 	unsigned long pfmemalloc_reserve = 0;
2824 	unsigned long free_pages = 0;
2825 	int i;
2826 	bool wmark_ok;
2827 
2828 	for (i = 0; i <= ZONE_NORMAL; i++) {
2829 		zone = &pgdat->node_zones[i];
2830 		if (!managed_zone(zone) ||
2831 		    pgdat_reclaimable_pages(pgdat) == 0)
2832 			continue;
2833 
2834 		pfmemalloc_reserve += min_wmark_pages(zone);
2835 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2836 	}
2837 
2838 	/* If there are no reserves (unexpected config) then do not throttle */
2839 	if (!pfmemalloc_reserve)
2840 		return true;
2841 
2842 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2843 
2844 	/* kswapd must be awake if processes are being throttled */
2845 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2846 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2847 						(enum zone_type)ZONE_NORMAL);
2848 		wake_up_interruptible(&pgdat->kswapd_wait);
2849 	}
2850 
2851 	return wmark_ok;
2852 }
2853 
2854 /*
2855  * Throttle direct reclaimers if backing storage is backed by the network
2856  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2857  * depleted. kswapd will continue to make progress and wake the processes
2858  * when the low watermark is reached.
2859  *
2860  * Returns true if a fatal signal was delivered during throttling. If this
2861  * happens, the page allocator should not consider triggering the OOM killer.
2862  */
2863 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2864 					nodemask_t *nodemask)
2865 {
2866 	struct zoneref *z;
2867 	struct zone *zone;
2868 	pg_data_t *pgdat = NULL;
2869 
2870 	/*
2871 	 * Kernel threads should not be throttled as they may be indirectly
2872 	 * responsible for cleaning pages necessary for reclaim to make forward
2873 	 * progress. kjournald for example may enter direct reclaim while
2874 	 * committing a transaction where throttling it could forcing other
2875 	 * processes to block on log_wait_commit().
2876 	 */
2877 	if (current->flags & PF_KTHREAD)
2878 		goto out;
2879 
2880 	/*
2881 	 * If a fatal signal is pending, this process should not throttle.
2882 	 * It should return quickly so it can exit and free its memory
2883 	 */
2884 	if (fatal_signal_pending(current))
2885 		goto out;
2886 
2887 	/*
2888 	 * Check if the pfmemalloc reserves are ok by finding the first node
2889 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2890 	 * GFP_KERNEL will be required for allocating network buffers when
2891 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2892 	 *
2893 	 * Throttling is based on the first usable node and throttled processes
2894 	 * wait on a queue until kswapd makes progress and wakes them. There
2895 	 * is an affinity then between processes waking up and where reclaim
2896 	 * progress has been made assuming the process wakes on the same node.
2897 	 * More importantly, processes running on remote nodes will not compete
2898 	 * for remote pfmemalloc reserves and processes on different nodes
2899 	 * should make reasonable progress.
2900 	 */
2901 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2902 					gfp_zone(gfp_mask), nodemask) {
2903 		if (zone_idx(zone) > ZONE_NORMAL)
2904 			continue;
2905 
2906 		/* Throttle based on the first usable node */
2907 		pgdat = zone->zone_pgdat;
2908 		if (pfmemalloc_watermark_ok(pgdat))
2909 			goto out;
2910 		break;
2911 	}
2912 
2913 	/* If no zone was usable by the allocation flags then do not throttle */
2914 	if (!pgdat)
2915 		goto out;
2916 
2917 	/* Account for the throttling */
2918 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2919 
2920 	/*
2921 	 * If the caller cannot enter the filesystem, it's possible that it
2922 	 * is due to the caller holding an FS lock or performing a journal
2923 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2924 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2925 	 * blocked waiting on the same lock. Instead, throttle for up to a
2926 	 * second before continuing.
2927 	 */
2928 	if (!(gfp_mask & __GFP_FS)) {
2929 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2930 			pfmemalloc_watermark_ok(pgdat), HZ);
2931 
2932 		goto check_pending;
2933 	}
2934 
2935 	/* Throttle until kswapd wakes the process */
2936 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2937 		pfmemalloc_watermark_ok(pgdat));
2938 
2939 check_pending:
2940 	if (fatal_signal_pending(current))
2941 		return true;
2942 
2943 out:
2944 	return false;
2945 }
2946 
2947 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2948 				gfp_t gfp_mask, nodemask_t *nodemask)
2949 {
2950 	unsigned long nr_reclaimed;
2951 	struct scan_control sc = {
2952 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2953 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2954 		.reclaim_idx = gfp_zone(gfp_mask),
2955 		.order = order,
2956 		.nodemask = nodemask,
2957 		.priority = DEF_PRIORITY,
2958 		.may_writepage = !laptop_mode,
2959 		.may_unmap = 1,
2960 		.may_swap = 1,
2961 	};
2962 
2963 	/*
2964 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2965 	 * 1 is returned so that the page allocator does not OOM kill at this
2966 	 * point.
2967 	 */
2968 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2969 		return 1;
2970 
2971 	trace_mm_vmscan_direct_reclaim_begin(order,
2972 				sc.may_writepage,
2973 				gfp_mask,
2974 				sc.reclaim_idx);
2975 
2976 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2977 
2978 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2979 
2980 	return nr_reclaimed;
2981 }
2982 
2983 #ifdef CONFIG_MEMCG
2984 
2985 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2986 						gfp_t gfp_mask, bool noswap,
2987 						pg_data_t *pgdat,
2988 						unsigned long *nr_scanned)
2989 {
2990 	struct scan_control sc = {
2991 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2992 		.target_mem_cgroup = memcg,
2993 		.may_writepage = !laptop_mode,
2994 		.may_unmap = 1,
2995 		.reclaim_idx = MAX_NR_ZONES - 1,
2996 		.may_swap = !noswap,
2997 	};
2998 	unsigned long lru_pages;
2999 
3000 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3001 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3002 
3003 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3004 						      sc.may_writepage,
3005 						      sc.gfp_mask,
3006 						      sc.reclaim_idx);
3007 
3008 	/*
3009 	 * NOTE: Although we can get the priority field, using it
3010 	 * here is not a good idea, since it limits the pages we can scan.
3011 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3012 	 * will pick up pages from other mem cgroup's as well. We hack
3013 	 * the priority and make it zero.
3014 	 */
3015 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3016 
3017 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3018 
3019 	*nr_scanned = sc.nr_scanned;
3020 	return sc.nr_reclaimed;
3021 }
3022 
3023 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3024 					   unsigned long nr_pages,
3025 					   gfp_t gfp_mask,
3026 					   bool may_swap)
3027 {
3028 	struct zonelist *zonelist;
3029 	unsigned long nr_reclaimed;
3030 	int nid;
3031 	struct scan_control sc = {
3032 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3033 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3034 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3035 		.reclaim_idx = MAX_NR_ZONES - 1,
3036 		.target_mem_cgroup = memcg,
3037 		.priority = DEF_PRIORITY,
3038 		.may_writepage = !laptop_mode,
3039 		.may_unmap = 1,
3040 		.may_swap = may_swap,
3041 	};
3042 
3043 	/*
3044 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3045 	 * take care of from where we get pages. So the node where we start the
3046 	 * scan does not need to be the current node.
3047 	 */
3048 	nid = mem_cgroup_select_victim_node(memcg);
3049 
3050 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3051 
3052 	trace_mm_vmscan_memcg_reclaim_begin(0,
3053 					    sc.may_writepage,
3054 					    sc.gfp_mask,
3055 					    sc.reclaim_idx);
3056 
3057 	current->flags |= PF_MEMALLOC;
3058 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3059 	current->flags &= ~PF_MEMALLOC;
3060 
3061 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3062 
3063 	return nr_reclaimed;
3064 }
3065 #endif
3066 
3067 static void age_active_anon(struct pglist_data *pgdat,
3068 				struct scan_control *sc)
3069 {
3070 	struct mem_cgroup *memcg;
3071 
3072 	if (!total_swap_pages)
3073 		return;
3074 
3075 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3076 	do {
3077 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3078 
3079 		if (inactive_list_is_low(lruvec, false, sc, true))
3080 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3081 					   sc, LRU_ACTIVE_ANON);
3082 
3083 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3084 	} while (memcg);
3085 }
3086 
3087 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3088 {
3089 	unsigned long mark = high_wmark_pages(zone);
3090 
3091 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3092 		return false;
3093 
3094 	/*
3095 	 * If any eligible zone is balanced then the node is not considered
3096 	 * to be congested or dirty
3097 	 */
3098 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3099 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3100 	clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3101 
3102 	return true;
3103 }
3104 
3105 /*
3106  * Prepare kswapd for sleeping. This verifies that there are no processes
3107  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3108  *
3109  * Returns true if kswapd is ready to sleep
3110  */
3111 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3112 {
3113 	int i;
3114 
3115 	/*
3116 	 * The throttled processes are normally woken up in balance_pgdat() as
3117 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3118 	 * race between when kswapd checks the watermarks and a process gets
3119 	 * throttled. There is also a potential race if processes get
3120 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3121 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3122 	 * the wake up checks. If kswapd is going to sleep, no process should
3123 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3124 	 * the wake up is premature, processes will wake kswapd and get
3125 	 * throttled again. The difference from wake ups in balance_pgdat() is
3126 	 * that here we are under prepare_to_wait().
3127 	 */
3128 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3129 		wake_up_all(&pgdat->pfmemalloc_wait);
3130 
3131 	for (i = 0; i <= classzone_idx; i++) {
3132 		struct zone *zone = pgdat->node_zones + i;
3133 
3134 		if (!managed_zone(zone))
3135 			continue;
3136 
3137 		if (!zone_balanced(zone, order, classzone_idx))
3138 			return false;
3139 	}
3140 
3141 	return true;
3142 }
3143 
3144 /*
3145  * kswapd shrinks a node of pages that are at or below the highest usable
3146  * zone that is currently unbalanced.
3147  *
3148  * Returns true if kswapd scanned at least the requested number of pages to
3149  * reclaim or if the lack of progress was due to pages under writeback.
3150  * This is used to determine if the scanning priority needs to be raised.
3151  */
3152 static bool kswapd_shrink_node(pg_data_t *pgdat,
3153 			       struct scan_control *sc)
3154 {
3155 	struct zone *zone;
3156 	int z;
3157 
3158 	/* Reclaim a number of pages proportional to the number of zones */
3159 	sc->nr_to_reclaim = 0;
3160 	for (z = 0; z <= sc->reclaim_idx; z++) {
3161 		zone = pgdat->node_zones + z;
3162 		if (!managed_zone(zone))
3163 			continue;
3164 
3165 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3166 	}
3167 
3168 	/*
3169 	 * Historically care was taken to put equal pressure on all zones but
3170 	 * now pressure is applied based on node LRU order.
3171 	 */
3172 	shrink_node(pgdat, sc);
3173 
3174 	/*
3175 	 * Fragmentation may mean that the system cannot be rebalanced for
3176 	 * high-order allocations. If twice the allocation size has been
3177 	 * reclaimed then recheck watermarks only at order-0 to prevent
3178 	 * excessive reclaim. Assume that a process requested a high-order
3179 	 * can direct reclaim/compact.
3180 	 */
3181 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3182 		sc->order = 0;
3183 
3184 	return sc->nr_scanned >= sc->nr_to_reclaim;
3185 }
3186 
3187 /*
3188  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3189  * that are eligible for use by the caller until at least one zone is
3190  * balanced.
3191  *
3192  * Returns the order kswapd finished reclaiming at.
3193  *
3194  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3195  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3196  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3197  * or lower is eligible for reclaim until at least one usable zone is
3198  * balanced.
3199  */
3200 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3201 {
3202 	int i;
3203 	unsigned long nr_soft_reclaimed;
3204 	unsigned long nr_soft_scanned;
3205 	struct zone *zone;
3206 	struct scan_control sc = {
3207 		.gfp_mask = GFP_KERNEL,
3208 		.order = order,
3209 		.priority = DEF_PRIORITY,
3210 		.may_writepage = !laptop_mode,
3211 		.may_unmap = 1,
3212 		.may_swap = 1,
3213 	};
3214 	count_vm_event(PAGEOUTRUN);
3215 
3216 	do {
3217 		bool raise_priority = true;
3218 
3219 		sc.nr_reclaimed = 0;
3220 		sc.reclaim_idx = classzone_idx;
3221 
3222 		/*
3223 		 * If the number of buffer_heads exceeds the maximum allowed
3224 		 * then consider reclaiming from all zones. This has a dual
3225 		 * purpose -- on 64-bit systems it is expected that
3226 		 * buffer_heads are stripped during active rotation. On 32-bit
3227 		 * systems, highmem pages can pin lowmem memory and shrinking
3228 		 * buffers can relieve lowmem pressure. Reclaim may still not
3229 		 * go ahead if all eligible zones for the original allocation
3230 		 * request are balanced to avoid excessive reclaim from kswapd.
3231 		 */
3232 		if (buffer_heads_over_limit) {
3233 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3234 				zone = pgdat->node_zones + i;
3235 				if (!managed_zone(zone))
3236 					continue;
3237 
3238 				sc.reclaim_idx = i;
3239 				break;
3240 			}
3241 		}
3242 
3243 		/*
3244 		 * Only reclaim if there are no eligible zones. Check from
3245 		 * high to low zone as allocations prefer higher zones.
3246 		 * Scanning from low to high zone would allow congestion to be
3247 		 * cleared during a very small window when a small low
3248 		 * zone was balanced even under extreme pressure when the
3249 		 * overall node may be congested. Note that sc.reclaim_idx
3250 		 * is not used as buffer_heads_over_limit may have adjusted
3251 		 * it.
3252 		 */
3253 		for (i = classzone_idx; i >= 0; i--) {
3254 			zone = pgdat->node_zones + i;
3255 			if (!managed_zone(zone))
3256 				continue;
3257 
3258 			if (zone_balanced(zone, sc.order, classzone_idx))
3259 				goto out;
3260 		}
3261 
3262 		/*
3263 		 * Do some background aging of the anon list, to give
3264 		 * pages a chance to be referenced before reclaiming. All
3265 		 * pages are rotated regardless of classzone as this is
3266 		 * about consistent aging.
3267 		 */
3268 		age_active_anon(pgdat, &sc);
3269 
3270 		/*
3271 		 * If we're getting trouble reclaiming, start doing writepage
3272 		 * even in laptop mode.
3273 		 */
3274 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3275 			sc.may_writepage = 1;
3276 
3277 		/* Call soft limit reclaim before calling shrink_node. */
3278 		sc.nr_scanned = 0;
3279 		nr_soft_scanned = 0;
3280 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3281 						sc.gfp_mask, &nr_soft_scanned);
3282 		sc.nr_reclaimed += nr_soft_reclaimed;
3283 
3284 		/*
3285 		 * There should be no need to raise the scanning priority if
3286 		 * enough pages are already being scanned that that high
3287 		 * watermark would be met at 100% efficiency.
3288 		 */
3289 		if (kswapd_shrink_node(pgdat, &sc))
3290 			raise_priority = false;
3291 
3292 		/*
3293 		 * If the low watermark is met there is no need for processes
3294 		 * to be throttled on pfmemalloc_wait as they should not be
3295 		 * able to safely make forward progress. Wake them
3296 		 */
3297 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3298 				pfmemalloc_watermark_ok(pgdat))
3299 			wake_up_all(&pgdat->pfmemalloc_wait);
3300 
3301 		/* Check if kswapd should be suspending */
3302 		if (try_to_freeze() || kthread_should_stop())
3303 			break;
3304 
3305 		/*
3306 		 * Raise priority if scanning rate is too low or there was no
3307 		 * progress in reclaiming pages
3308 		 */
3309 		if (raise_priority || !sc.nr_reclaimed)
3310 			sc.priority--;
3311 	} while (sc.priority >= 1);
3312 
3313 out:
3314 	/*
3315 	 * Return the order kswapd stopped reclaiming at as
3316 	 * prepare_kswapd_sleep() takes it into account. If another caller
3317 	 * entered the allocator slow path while kswapd was awake, order will
3318 	 * remain at the higher level.
3319 	 */
3320 	return sc.order;
3321 }
3322 
3323 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3324 				unsigned int classzone_idx)
3325 {
3326 	long remaining = 0;
3327 	DEFINE_WAIT(wait);
3328 
3329 	if (freezing(current) || kthread_should_stop())
3330 		return;
3331 
3332 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3333 
3334 	/* Try to sleep for a short interval */
3335 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3336 		/*
3337 		 * Compaction records what page blocks it recently failed to
3338 		 * isolate pages from and skips them in the future scanning.
3339 		 * When kswapd is going to sleep, it is reasonable to assume
3340 		 * that pages and compaction may succeed so reset the cache.
3341 		 */
3342 		reset_isolation_suitable(pgdat);
3343 
3344 		/*
3345 		 * We have freed the memory, now we should compact it to make
3346 		 * allocation of the requested order possible.
3347 		 */
3348 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3349 
3350 		remaining = schedule_timeout(HZ/10);
3351 
3352 		/*
3353 		 * If woken prematurely then reset kswapd_classzone_idx and
3354 		 * order. The values will either be from a wakeup request or
3355 		 * the previous request that slept prematurely.
3356 		 */
3357 		if (remaining) {
3358 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3359 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3360 		}
3361 
3362 		finish_wait(&pgdat->kswapd_wait, &wait);
3363 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3364 	}
3365 
3366 	/*
3367 	 * After a short sleep, check if it was a premature sleep. If not, then
3368 	 * go fully to sleep until explicitly woken up.
3369 	 */
3370 	if (!remaining &&
3371 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3372 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3373 
3374 		/*
3375 		 * vmstat counters are not perfectly accurate and the estimated
3376 		 * value for counters such as NR_FREE_PAGES can deviate from the
3377 		 * true value by nr_online_cpus * threshold. To avoid the zone
3378 		 * watermarks being breached while under pressure, we reduce the
3379 		 * per-cpu vmstat threshold while kswapd is awake and restore
3380 		 * them before going back to sleep.
3381 		 */
3382 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3383 
3384 		if (!kthread_should_stop())
3385 			schedule();
3386 
3387 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3388 	} else {
3389 		if (remaining)
3390 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3391 		else
3392 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3393 	}
3394 	finish_wait(&pgdat->kswapd_wait, &wait);
3395 }
3396 
3397 /*
3398  * The background pageout daemon, started as a kernel thread
3399  * from the init process.
3400  *
3401  * This basically trickles out pages so that we have _some_
3402  * free memory available even if there is no other activity
3403  * that frees anything up. This is needed for things like routing
3404  * etc, where we otherwise might have all activity going on in
3405  * asynchronous contexts that cannot page things out.
3406  *
3407  * If there are applications that are active memory-allocators
3408  * (most normal use), this basically shouldn't matter.
3409  */
3410 static int kswapd(void *p)
3411 {
3412 	unsigned int alloc_order, reclaim_order, classzone_idx;
3413 	pg_data_t *pgdat = (pg_data_t*)p;
3414 	struct task_struct *tsk = current;
3415 
3416 	struct reclaim_state reclaim_state = {
3417 		.reclaimed_slab = 0,
3418 	};
3419 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3420 
3421 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3422 
3423 	if (!cpumask_empty(cpumask))
3424 		set_cpus_allowed_ptr(tsk, cpumask);
3425 	current->reclaim_state = &reclaim_state;
3426 
3427 	/*
3428 	 * Tell the memory management that we're a "memory allocator",
3429 	 * and that if we need more memory we should get access to it
3430 	 * regardless (see "__alloc_pages()"). "kswapd" should
3431 	 * never get caught in the normal page freeing logic.
3432 	 *
3433 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3434 	 * you need a small amount of memory in order to be able to
3435 	 * page out something else, and this flag essentially protects
3436 	 * us from recursively trying to free more memory as we're
3437 	 * trying to free the first piece of memory in the first place).
3438 	 */
3439 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3440 	set_freezable();
3441 
3442 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3443 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3444 	for ( ; ; ) {
3445 		bool ret;
3446 
3447 kswapd_try_sleep:
3448 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3449 					classzone_idx);
3450 
3451 		/* Read the new order and classzone_idx */
3452 		alloc_order = reclaim_order = pgdat->kswapd_order;
3453 		classzone_idx = pgdat->kswapd_classzone_idx;
3454 		pgdat->kswapd_order = 0;
3455 		pgdat->kswapd_classzone_idx = 0;
3456 
3457 		ret = try_to_freeze();
3458 		if (kthread_should_stop())
3459 			break;
3460 
3461 		/*
3462 		 * We can speed up thawing tasks if we don't call balance_pgdat
3463 		 * after returning from the refrigerator
3464 		 */
3465 		if (ret)
3466 			continue;
3467 
3468 		/*
3469 		 * Reclaim begins at the requested order but if a high-order
3470 		 * reclaim fails then kswapd falls back to reclaiming for
3471 		 * order-0. If that happens, kswapd will consider sleeping
3472 		 * for the order it finished reclaiming at (reclaim_order)
3473 		 * but kcompactd is woken to compact for the original
3474 		 * request (alloc_order).
3475 		 */
3476 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3477 						alloc_order);
3478 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3479 		if (reclaim_order < alloc_order)
3480 			goto kswapd_try_sleep;
3481 
3482 		alloc_order = reclaim_order = pgdat->kswapd_order;
3483 		classzone_idx = pgdat->kswapd_classzone_idx;
3484 	}
3485 
3486 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3487 	current->reclaim_state = NULL;
3488 	lockdep_clear_current_reclaim_state();
3489 
3490 	return 0;
3491 }
3492 
3493 /*
3494  * A zone is low on free memory, so wake its kswapd task to service it.
3495  */
3496 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3497 {
3498 	pg_data_t *pgdat;
3499 	int z;
3500 
3501 	if (!managed_zone(zone))
3502 		return;
3503 
3504 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3505 		return;
3506 	pgdat = zone->zone_pgdat;
3507 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3508 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3509 	if (!waitqueue_active(&pgdat->kswapd_wait))
3510 		return;
3511 
3512 	/* Only wake kswapd if all zones are unbalanced */
3513 	for (z = 0; z <= classzone_idx; z++) {
3514 		zone = pgdat->node_zones + z;
3515 		if (!managed_zone(zone))
3516 			continue;
3517 
3518 		if (zone_balanced(zone, order, classzone_idx))
3519 			return;
3520 	}
3521 
3522 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3523 	wake_up_interruptible(&pgdat->kswapd_wait);
3524 }
3525 
3526 #ifdef CONFIG_HIBERNATION
3527 /*
3528  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3529  * freed pages.
3530  *
3531  * Rather than trying to age LRUs the aim is to preserve the overall
3532  * LRU order by reclaiming preferentially
3533  * inactive > active > active referenced > active mapped
3534  */
3535 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3536 {
3537 	struct reclaim_state reclaim_state;
3538 	struct scan_control sc = {
3539 		.nr_to_reclaim = nr_to_reclaim,
3540 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3541 		.reclaim_idx = MAX_NR_ZONES - 1,
3542 		.priority = DEF_PRIORITY,
3543 		.may_writepage = 1,
3544 		.may_unmap = 1,
3545 		.may_swap = 1,
3546 		.hibernation_mode = 1,
3547 	};
3548 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3549 	struct task_struct *p = current;
3550 	unsigned long nr_reclaimed;
3551 
3552 	p->flags |= PF_MEMALLOC;
3553 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3554 	reclaim_state.reclaimed_slab = 0;
3555 	p->reclaim_state = &reclaim_state;
3556 
3557 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3558 
3559 	p->reclaim_state = NULL;
3560 	lockdep_clear_current_reclaim_state();
3561 	p->flags &= ~PF_MEMALLOC;
3562 
3563 	return nr_reclaimed;
3564 }
3565 #endif /* CONFIG_HIBERNATION */
3566 
3567 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3568    not required for correctness.  So if the last cpu in a node goes
3569    away, we get changed to run anywhere: as the first one comes back,
3570    restore their cpu bindings. */
3571 static int kswapd_cpu_online(unsigned int cpu)
3572 {
3573 	int nid;
3574 
3575 	for_each_node_state(nid, N_MEMORY) {
3576 		pg_data_t *pgdat = NODE_DATA(nid);
3577 		const struct cpumask *mask;
3578 
3579 		mask = cpumask_of_node(pgdat->node_id);
3580 
3581 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3582 			/* One of our CPUs online: restore mask */
3583 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3584 	}
3585 	return 0;
3586 }
3587 
3588 /*
3589  * This kswapd start function will be called by init and node-hot-add.
3590  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3591  */
3592 int kswapd_run(int nid)
3593 {
3594 	pg_data_t *pgdat = NODE_DATA(nid);
3595 	int ret = 0;
3596 
3597 	if (pgdat->kswapd)
3598 		return 0;
3599 
3600 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3601 	if (IS_ERR(pgdat->kswapd)) {
3602 		/* failure at boot is fatal */
3603 		BUG_ON(system_state == SYSTEM_BOOTING);
3604 		pr_err("Failed to start kswapd on node %d\n", nid);
3605 		ret = PTR_ERR(pgdat->kswapd);
3606 		pgdat->kswapd = NULL;
3607 	}
3608 	return ret;
3609 }
3610 
3611 /*
3612  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3613  * hold mem_hotplug_begin/end().
3614  */
3615 void kswapd_stop(int nid)
3616 {
3617 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3618 
3619 	if (kswapd) {
3620 		kthread_stop(kswapd);
3621 		NODE_DATA(nid)->kswapd = NULL;
3622 	}
3623 }
3624 
3625 static int __init kswapd_init(void)
3626 {
3627 	int nid, ret;
3628 
3629 	swap_setup();
3630 	for_each_node_state(nid, N_MEMORY)
3631  		kswapd_run(nid);
3632 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3633 					"mm/vmscan:online", kswapd_cpu_online,
3634 					NULL);
3635 	WARN_ON(ret < 0);
3636 	return 0;
3637 }
3638 
3639 module_init(kswapd_init)
3640 
3641 #ifdef CONFIG_NUMA
3642 /*
3643  * Node reclaim mode
3644  *
3645  * If non-zero call node_reclaim when the number of free pages falls below
3646  * the watermarks.
3647  */
3648 int node_reclaim_mode __read_mostly;
3649 
3650 #define RECLAIM_OFF 0
3651 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3652 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3653 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3654 
3655 /*
3656  * Priority for NODE_RECLAIM. This determines the fraction of pages
3657  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3658  * a zone.
3659  */
3660 #define NODE_RECLAIM_PRIORITY 4
3661 
3662 /*
3663  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3664  * occur.
3665  */
3666 int sysctl_min_unmapped_ratio = 1;
3667 
3668 /*
3669  * If the number of slab pages in a zone grows beyond this percentage then
3670  * slab reclaim needs to occur.
3671  */
3672 int sysctl_min_slab_ratio = 5;
3673 
3674 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3675 {
3676 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3677 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3678 		node_page_state(pgdat, NR_ACTIVE_FILE);
3679 
3680 	/*
3681 	 * It's possible for there to be more file mapped pages than
3682 	 * accounted for by the pages on the file LRU lists because
3683 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3684 	 */
3685 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3686 }
3687 
3688 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3689 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3690 {
3691 	unsigned long nr_pagecache_reclaimable;
3692 	unsigned long delta = 0;
3693 
3694 	/*
3695 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3696 	 * potentially reclaimable. Otherwise, we have to worry about
3697 	 * pages like swapcache and node_unmapped_file_pages() provides
3698 	 * a better estimate
3699 	 */
3700 	if (node_reclaim_mode & RECLAIM_UNMAP)
3701 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3702 	else
3703 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3704 
3705 	/* If we can't clean pages, remove dirty pages from consideration */
3706 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3707 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3708 
3709 	/* Watch for any possible underflows due to delta */
3710 	if (unlikely(delta > nr_pagecache_reclaimable))
3711 		delta = nr_pagecache_reclaimable;
3712 
3713 	return nr_pagecache_reclaimable - delta;
3714 }
3715 
3716 /*
3717  * Try to free up some pages from this node through reclaim.
3718  */
3719 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3720 {
3721 	/* Minimum pages needed in order to stay on node */
3722 	const unsigned long nr_pages = 1 << order;
3723 	struct task_struct *p = current;
3724 	struct reclaim_state reclaim_state;
3725 	int classzone_idx = gfp_zone(gfp_mask);
3726 	struct scan_control sc = {
3727 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3728 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3729 		.order = order,
3730 		.priority = NODE_RECLAIM_PRIORITY,
3731 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3732 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3733 		.may_swap = 1,
3734 		.reclaim_idx = classzone_idx,
3735 	};
3736 
3737 	cond_resched();
3738 	/*
3739 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3740 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3741 	 * and RECLAIM_UNMAP.
3742 	 */
3743 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3744 	lockdep_set_current_reclaim_state(gfp_mask);
3745 	reclaim_state.reclaimed_slab = 0;
3746 	p->reclaim_state = &reclaim_state;
3747 
3748 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3749 		/*
3750 		 * Free memory by calling shrink zone with increasing
3751 		 * priorities until we have enough memory freed.
3752 		 */
3753 		do {
3754 			shrink_node(pgdat, &sc);
3755 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3756 	}
3757 
3758 	p->reclaim_state = NULL;
3759 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3760 	lockdep_clear_current_reclaim_state();
3761 	return sc.nr_reclaimed >= nr_pages;
3762 }
3763 
3764 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3765 {
3766 	int ret;
3767 
3768 	/*
3769 	 * Node reclaim reclaims unmapped file backed pages and
3770 	 * slab pages if we are over the defined limits.
3771 	 *
3772 	 * A small portion of unmapped file backed pages is needed for
3773 	 * file I/O otherwise pages read by file I/O will be immediately
3774 	 * thrown out if the node is overallocated. So we do not reclaim
3775 	 * if less than a specified percentage of the node is used by
3776 	 * unmapped file backed pages.
3777 	 */
3778 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3779 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3780 		return NODE_RECLAIM_FULL;
3781 
3782 	if (!pgdat_reclaimable(pgdat))
3783 		return NODE_RECLAIM_FULL;
3784 
3785 	/*
3786 	 * Do not scan if the allocation should not be delayed.
3787 	 */
3788 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3789 		return NODE_RECLAIM_NOSCAN;
3790 
3791 	/*
3792 	 * Only run node reclaim on the local node or on nodes that do not
3793 	 * have associated processors. This will favor the local processor
3794 	 * over remote processors and spread off node memory allocations
3795 	 * as wide as possible.
3796 	 */
3797 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3798 		return NODE_RECLAIM_NOSCAN;
3799 
3800 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3801 		return NODE_RECLAIM_NOSCAN;
3802 
3803 	ret = __node_reclaim(pgdat, gfp_mask, order);
3804 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3805 
3806 	if (!ret)
3807 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3808 
3809 	return ret;
3810 }
3811 #endif
3812 
3813 /*
3814  * page_evictable - test whether a page is evictable
3815  * @page: the page to test
3816  *
3817  * Test whether page is evictable--i.e., should be placed on active/inactive
3818  * lists vs unevictable list.
3819  *
3820  * Reasons page might not be evictable:
3821  * (1) page's mapping marked unevictable
3822  * (2) page is part of an mlocked VMA
3823  *
3824  */
3825 int page_evictable(struct page *page)
3826 {
3827 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3828 }
3829 
3830 #ifdef CONFIG_SHMEM
3831 /**
3832  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3833  * @pages:	array of pages to check
3834  * @nr_pages:	number of pages to check
3835  *
3836  * Checks pages for evictability and moves them to the appropriate lru list.
3837  *
3838  * This function is only used for SysV IPC SHM_UNLOCK.
3839  */
3840 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3841 {
3842 	struct lruvec *lruvec;
3843 	struct pglist_data *pgdat = NULL;
3844 	int pgscanned = 0;
3845 	int pgrescued = 0;
3846 	int i;
3847 
3848 	for (i = 0; i < nr_pages; i++) {
3849 		struct page *page = pages[i];
3850 		struct pglist_data *pagepgdat = page_pgdat(page);
3851 
3852 		pgscanned++;
3853 		if (pagepgdat != pgdat) {
3854 			if (pgdat)
3855 				spin_unlock_irq(&pgdat->lru_lock);
3856 			pgdat = pagepgdat;
3857 			spin_lock_irq(&pgdat->lru_lock);
3858 		}
3859 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3860 
3861 		if (!PageLRU(page) || !PageUnevictable(page))
3862 			continue;
3863 
3864 		if (page_evictable(page)) {
3865 			enum lru_list lru = page_lru_base_type(page);
3866 
3867 			VM_BUG_ON_PAGE(PageActive(page), page);
3868 			ClearPageUnevictable(page);
3869 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3870 			add_page_to_lru_list(page, lruvec, lru);
3871 			pgrescued++;
3872 		}
3873 	}
3874 
3875 	if (pgdat) {
3876 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3877 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3878 		spin_unlock_irq(&pgdat->lru_lock);
3879 	}
3880 }
3881 #endif /* CONFIG_SHMEM */
3882