1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/sched/mm.h> 18 #include <linux/module.h> 19 #include <linux/gfp.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/swap.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/highmem.h> 25 #include <linux/vmpressure.h> 26 #include <linux/vmstat.h> 27 #include <linux/file.h> 28 #include <linux/writeback.h> 29 #include <linux/blkdev.h> 30 #include <linux/buffer_head.h> /* for try_to_release_page(), 31 buffer_heads_over_limit */ 32 #include <linux/mm_inline.h> 33 #include <linux/backing-dev.h> 34 #include <linux/rmap.h> 35 #include <linux/topology.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/compaction.h> 39 #include <linux/notifier.h> 40 #include <linux/rwsem.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/freezer.h> 44 #include <linux/memcontrol.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 52 #include <asm/tlbflush.h> 53 #include <asm/div64.h> 54 55 #include <linux/swapops.h> 56 #include <linux/balloon_compaction.h> 57 58 #include "internal.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/vmscan.h> 62 63 struct scan_control { 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 /* This context's GFP mask */ 68 gfp_t gfp_mask; 69 70 /* Allocation order */ 71 int order; 72 73 /* 74 * Nodemask of nodes allowed by the caller. If NULL, all nodes 75 * are scanned. 76 */ 77 nodemask_t *nodemask; 78 79 /* 80 * The memory cgroup that hit its limit and as a result is the 81 * primary target of this reclaim invocation. 82 */ 83 struct mem_cgroup *target_mem_cgroup; 84 85 /* Scan (total_size >> priority) pages at once */ 86 int priority; 87 88 /* The highest zone to isolate pages for reclaim from */ 89 enum zone_type reclaim_idx; 90 91 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 92 unsigned int may_writepage:1; 93 94 /* Can mapped pages be reclaimed? */ 95 unsigned int may_unmap:1; 96 97 /* Can pages be swapped as part of reclaim? */ 98 unsigned int may_swap:1; 99 100 /* Can cgroups be reclaimed below their normal consumption range? */ 101 unsigned int may_thrash:1; 102 103 unsigned int hibernation_mode:1; 104 105 /* One of the zones is ready for compaction */ 106 unsigned int compaction_ready:1; 107 108 /* Incremented by the number of inactive pages that were scanned */ 109 unsigned long nr_scanned; 110 111 /* Number of pages freed so far during a call to shrink_zones() */ 112 unsigned long nr_reclaimed; 113 }; 114 115 #ifdef ARCH_HAS_PREFETCH 116 #define prefetch_prev_lru_page(_page, _base, _field) \ 117 do { \ 118 if ((_page)->lru.prev != _base) { \ 119 struct page *prev; \ 120 \ 121 prev = lru_to_page(&(_page->lru)); \ 122 prefetch(&prev->_field); \ 123 } \ 124 } while (0) 125 #else 126 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 127 #endif 128 129 #ifdef ARCH_HAS_PREFETCHW 130 #define prefetchw_prev_lru_page(_page, _base, _field) \ 131 do { \ 132 if ((_page)->lru.prev != _base) { \ 133 struct page *prev; \ 134 \ 135 prev = lru_to_page(&(_page->lru)); \ 136 prefetchw(&prev->_field); \ 137 } \ 138 } while (0) 139 #else 140 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 141 #endif 142 143 /* 144 * From 0 .. 100. Higher means more swappy. 145 */ 146 int vm_swappiness = 60; 147 /* 148 * The total number of pages which are beyond the high watermark within all 149 * zones. 150 */ 151 unsigned long vm_total_pages; 152 153 static LIST_HEAD(shrinker_list); 154 static DECLARE_RWSEM(shrinker_rwsem); 155 156 #ifdef CONFIG_MEMCG 157 static bool global_reclaim(struct scan_control *sc) 158 { 159 return !sc->target_mem_cgroup; 160 } 161 162 /** 163 * sane_reclaim - is the usual dirty throttling mechanism operational? 164 * @sc: scan_control in question 165 * 166 * The normal page dirty throttling mechanism in balance_dirty_pages() is 167 * completely broken with the legacy memcg and direct stalling in 168 * shrink_page_list() is used for throttling instead, which lacks all the 169 * niceties such as fairness, adaptive pausing, bandwidth proportional 170 * allocation and configurability. 171 * 172 * This function tests whether the vmscan currently in progress can assume 173 * that the normal dirty throttling mechanism is operational. 174 */ 175 static bool sane_reclaim(struct scan_control *sc) 176 { 177 struct mem_cgroup *memcg = sc->target_mem_cgroup; 178 179 if (!memcg) 180 return true; 181 #ifdef CONFIG_CGROUP_WRITEBACK 182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 183 return true; 184 #endif 185 return false; 186 } 187 #else 188 static bool global_reclaim(struct scan_control *sc) 189 { 190 return true; 191 } 192 193 static bool sane_reclaim(struct scan_control *sc) 194 { 195 return true; 196 } 197 #endif 198 199 /* 200 * This misses isolated pages which are not accounted for to save counters. 201 * As the data only determines if reclaim or compaction continues, it is 202 * not expected that isolated pages will be a dominating factor. 203 */ 204 unsigned long zone_reclaimable_pages(struct zone *zone) 205 { 206 unsigned long nr; 207 208 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 209 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 210 if (get_nr_swap_pages() > 0) 211 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 213 214 return nr; 215 } 216 217 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 218 { 219 unsigned long nr; 220 221 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 222 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 223 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 224 225 if (get_nr_swap_pages() > 0) 226 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 227 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 228 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 229 230 return nr; 231 } 232 233 bool pgdat_reclaimable(struct pglist_data *pgdat) 234 { 235 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) < 236 pgdat_reclaimable_pages(pgdat) * 6; 237 } 238 239 /** 240 * lruvec_lru_size - Returns the number of pages on the given LRU list. 241 * @lruvec: lru vector 242 * @lru: lru to use 243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 244 */ 245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 246 { 247 unsigned long lru_size; 248 int zid; 249 250 if (!mem_cgroup_disabled()) 251 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 252 else 253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 254 255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 257 unsigned long size; 258 259 if (!managed_zone(zone)) 260 continue; 261 262 if (!mem_cgroup_disabled()) 263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 264 else 265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 266 NR_ZONE_LRU_BASE + lru); 267 lru_size -= min(size, lru_size); 268 } 269 270 return lru_size; 271 272 } 273 274 /* 275 * Add a shrinker callback to be called from the vm. 276 */ 277 int register_shrinker(struct shrinker *shrinker) 278 { 279 size_t size = sizeof(*shrinker->nr_deferred); 280 281 if (shrinker->flags & SHRINKER_NUMA_AWARE) 282 size *= nr_node_ids; 283 284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 285 if (!shrinker->nr_deferred) 286 return -ENOMEM; 287 288 down_write(&shrinker_rwsem); 289 list_add_tail(&shrinker->list, &shrinker_list); 290 up_write(&shrinker_rwsem); 291 return 0; 292 } 293 EXPORT_SYMBOL(register_shrinker); 294 295 /* 296 * Remove one 297 */ 298 void unregister_shrinker(struct shrinker *shrinker) 299 { 300 down_write(&shrinker_rwsem); 301 list_del(&shrinker->list); 302 up_write(&shrinker_rwsem); 303 kfree(shrinker->nr_deferred); 304 } 305 EXPORT_SYMBOL(unregister_shrinker); 306 307 #define SHRINK_BATCH 128 308 309 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 310 struct shrinker *shrinker, 311 unsigned long nr_scanned, 312 unsigned long nr_eligible) 313 { 314 unsigned long freed = 0; 315 unsigned long long delta; 316 long total_scan; 317 long freeable; 318 long nr; 319 long new_nr; 320 int nid = shrinkctl->nid; 321 long batch_size = shrinker->batch ? shrinker->batch 322 : SHRINK_BATCH; 323 long scanned = 0, next_deferred; 324 325 freeable = shrinker->count_objects(shrinker, shrinkctl); 326 if (freeable == 0) 327 return 0; 328 329 /* 330 * copy the current shrinker scan count into a local variable 331 * and zero it so that other concurrent shrinker invocations 332 * don't also do this scanning work. 333 */ 334 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 335 336 total_scan = nr; 337 delta = (4 * nr_scanned) / shrinker->seeks; 338 delta *= freeable; 339 do_div(delta, nr_eligible + 1); 340 total_scan += delta; 341 if (total_scan < 0) { 342 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 343 shrinker->scan_objects, total_scan); 344 total_scan = freeable; 345 next_deferred = nr; 346 } else 347 next_deferred = total_scan; 348 349 /* 350 * We need to avoid excessive windup on filesystem shrinkers 351 * due to large numbers of GFP_NOFS allocations causing the 352 * shrinkers to return -1 all the time. This results in a large 353 * nr being built up so when a shrink that can do some work 354 * comes along it empties the entire cache due to nr >>> 355 * freeable. This is bad for sustaining a working set in 356 * memory. 357 * 358 * Hence only allow the shrinker to scan the entire cache when 359 * a large delta change is calculated directly. 360 */ 361 if (delta < freeable / 4) 362 total_scan = min(total_scan, freeable / 2); 363 364 /* 365 * Avoid risking looping forever due to too large nr value: 366 * never try to free more than twice the estimate number of 367 * freeable entries. 368 */ 369 if (total_scan > freeable * 2) 370 total_scan = freeable * 2; 371 372 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 373 nr_scanned, nr_eligible, 374 freeable, delta, total_scan); 375 376 /* 377 * Normally, we should not scan less than batch_size objects in one 378 * pass to avoid too frequent shrinker calls, but if the slab has less 379 * than batch_size objects in total and we are really tight on memory, 380 * we will try to reclaim all available objects, otherwise we can end 381 * up failing allocations although there are plenty of reclaimable 382 * objects spread over several slabs with usage less than the 383 * batch_size. 384 * 385 * We detect the "tight on memory" situations by looking at the total 386 * number of objects we want to scan (total_scan). If it is greater 387 * than the total number of objects on slab (freeable), we must be 388 * scanning at high prio and therefore should try to reclaim as much as 389 * possible. 390 */ 391 while (total_scan >= batch_size || 392 total_scan >= freeable) { 393 unsigned long ret; 394 unsigned long nr_to_scan = min(batch_size, total_scan); 395 396 shrinkctl->nr_to_scan = nr_to_scan; 397 ret = shrinker->scan_objects(shrinker, shrinkctl); 398 if (ret == SHRINK_STOP) 399 break; 400 freed += ret; 401 402 count_vm_events(SLABS_SCANNED, nr_to_scan); 403 total_scan -= nr_to_scan; 404 scanned += nr_to_scan; 405 406 cond_resched(); 407 } 408 409 if (next_deferred >= scanned) 410 next_deferred -= scanned; 411 else 412 next_deferred = 0; 413 /* 414 * move the unused scan count back into the shrinker in a 415 * manner that handles concurrent updates. If we exhausted the 416 * scan, there is no need to do an update. 417 */ 418 if (next_deferred > 0) 419 new_nr = atomic_long_add_return(next_deferred, 420 &shrinker->nr_deferred[nid]); 421 else 422 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 423 424 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 425 return freed; 426 } 427 428 /** 429 * shrink_slab - shrink slab caches 430 * @gfp_mask: allocation context 431 * @nid: node whose slab caches to target 432 * @memcg: memory cgroup whose slab caches to target 433 * @nr_scanned: pressure numerator 434 * @nr_eligible: pressure denominator 435 * 436 * Call the shrink functions to age shrinkable caches. 437 * 438 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 439 * unaware shrinkers will receive a node id of 0 instead. 440 * 441 * @memcg specifies the memory cgroup to target. If it is not NULL, 442 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 443 * objects from the memory cgroup specified. Otherwise, only unaware 444 * shrinkers are called. 445 * 446 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 447 * the available objects should be scanned. Page reclaim for example 448 * passes the number of pages scanned and the number of pages on the 449 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 450 * when it encountered mapped pages. The ratio is further biased by 451 * the ->seeks setting of the shrink function, which indicates the 452 * cost to recreate an object relative to that of an LRU page. 453 * 454 * Returns the number of reclaimed slab objects. 455 */ 456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 457 struct mem_cgroup *memcg, 458 unsigned long nr_scanned, 459 unsigned long nr_eligible) 460 { 461 struct shrinker *shrinker; 462 unsigned long freed = 0; 463 464 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 465 return 0; 466 467 if (nr_scanned == 0) 468 nr_scanned = SWAP_CLUSTER_MAX; 469 470 if (!down_read_trylock(&shrinker_rwsem)) { 471 /* 472 * If we would return 0, our callers would understand that we 473 * have nothing else to shrink and give up trying. By returning 474 * 1 we keep it going and assume we'll be able to shrink next 475 * time. 476 */ 477 freed = 1; 478 goto out; 479 } 480 481 list_for_each_entry(shrinker, &shrinker_list, list) { 482 struct shrink_control sc = { 483 .gfp_mask = gfp_mask, 484 .nid = nid, 485 .memcg = memcg, 486 }; 487 488 /* 489 * If kernel memory accounting is disabled, we ignore 490 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 491 * passing NULL for memcg. 492 */ 493 if (memcg_kmem_enabled() && 494 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 495 continue; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 sc.nid = 0; 499 500 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 501 } 502 503 up_read(&shrinker_rwsem); 504 out: 505 cond_resched(); 506 return freed; 507 } 508 509 void drop_slab_node(int nid) 510 { 511 unsigned long freed; 512 513 do { 514 struct mem_cgroup *memcg = NULL; 515 516 freed = 0; 517 do { 518 freed += shrink_slab(GFP_KERNEL, nid, memcg, 519 1000, 1000); 520 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 521 } while (freed > 10); 522 } 523 524 void drop_slab(void) 525 { 526 int nid; 527 528 for_each_online_node(nid) 529 drop_slab_node(nid); 530 } 531 532 static inline int is_page_cache_freeable(struct page *page) 533 { 534 /* 535 * A freeable page cache page is referenced only by the caller 536 * that isolated the page, the page cache radix tree and 537 * optional buffer heads at page->private. 538 */ 539 return page_count(page) - page_has_private(page) == 2; 540 } 541 542 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 543 { 544 if (current->flags & PF_SWAPWRITE) 545 return 1; 546 if (!inode_write_congested(inode)) 547 return 1; 548 if (inode_to_bdi(inode) == current->backing_dev_info) 549 return 1; 550 return 0; 551 } 552 553 /* 554 * We detected a synchronous write error writing a page out. Probably 555 * -ENOSPC. We need to propagate that into the address_space for a subsequent 556 * fsync(), msync() or close(). 557 * 558 * The tricky part is that after writepage we cannot touch the mapping: nothing 559 * prevents it from being freed up. But we have a ref on the page and once 560 * that page is locked, the mapping is pinned. 561 * 562 * We're allowed to run sleeping lock_page() here because we know the caller has 563 * __GFP_FS. 564 */ 565 static void handle_write_error(struct address_space *mapping, 566 struct page *page, int error) 567 { 568 lock_page(page); 569 if (page_mapping(page) == mapping) 570 mapping_set_error(mapping, error); 571 unlock_page(page); 572 } 573 574 /* possible outcome of pageout() */ 575 typedef enum { 576 /* failed to write page out, page is locked */ 577 PAGE_KEEP, 578 /* move page to the active list, page is locked */ 579 PAGE_ACTIVATE, 580 /* page has been sent to the disk successfully, page is unlocked */ 581 PAGE_SUCCESS, 582 /* page is clean and locked */ 583 PAGE_CLEAN, 584 } pageout_t; 585 586 /* 587 * pageout is called by shrink_page_list() for each dirty page. 588 * Calls ->writepage(). 589 */ 590 static pageout_t pageout(struct page *page, struct address_space *mapping, 591 struct scan_control *sc) 592 { 593 /* 594 * If the page is dirty, only perform writeback if that write 595 * will be non-blocking. To prevent this allocation from being 596 * stalled by pagecache activity. But note that there may be 597 * stalls if we need to run get_block(). We could test 598 * PagePrivate for that. 599 * 600 * If this process is currently in __generic_file_write_iter() against 601 * this page's queue, we can perform writeback even if that 602 * will block. 603 * 604 * If the page is swapcache, write it back even if that would 605 * block, for some throttling. This happens by accident, because 606 * swap_backing_dev_info is bust: it doesn't reflect the 607 * congestion state of the swapdevs. Easy to fix, if needed. 608 */ 609 if (!is_page_cache_freeable(page)) 610 return PAGE_KEEP; 611 if (!mapping) { 612 /* 613 * Some data journaling orphaned pages can have 614 * page->mapping == NULL while being dirty with clean buffers. 615 */ 616 if (page_has_private(page)) { 617 if (try_to_free_buffers(page)) { 618 ClearPageDirty(page); 619 pr_info("%s: orphaned page\n", __func__); 620 return PAGE_CLEAN; 621 } 622 } 623 return PAGE_KEEP; 624 } 625 if (mapping->a_ops->writepage == NULL) 626 return PAGE_ACTIVATE; 627 if (!may_write_to_inode(mapping->host, sc)) 628 return PAGE_KEEP; 629 630 if (clear_page_dirty_for_io(page)) { 631 int res; 632 struct writeback_control wbc = { 633 .sync_mode = WB_SYNC_NONE, 634 .nr_to_write = SWAP_CLUSTER_MAX, 635 .range_start = 0, 636 .range_end = LLONG_MAX, 637 .for_reclaim = 1, 638 }; 639 640 SetPageReclaim(page); 641 res = mapping->a_ops->writepage(page, &wbc); 642 if (res < 0) 643 handle_write_error(mapping, page, res); 644 if (res == AOP_WRITEPAGE_ACTIVATE) { 645 ClearPageReclaim(page); 646 return PAGE_ACTIVATE; 647 } 648 649 if (!PageWriteback(page)) { 650 /* synchronous write or broken a_ops? */ 651 ClearPageReclaim(page); 652 } 653 trace_mm_vmscan_writepage(page); 654 inc_node_page_state(page, NR_VMSCAN_WRITE); 655 return PAGE_SUCCESS; 656 } 657 658 return PAGE_CLEAN; 659 } 660 661 /* 662 * Same as remove_mapping, but if the page is removed from the mapping, it 663 * gets returned with a refcount of 0. 664 */ 665 static int __remove_mapping(struct address_space *mapping, struct page *page, 666 bool reclaimed) 667 { 668 unsigned long flags; 669 670 BUG_ON(!PageLocked(page)); 671 BUG_ON(mapping != page_mapping(page)); 672 673 spin_lock_irqsave(&mapping->tree_lock, flags); 674 /* 675 * The non racy check for a busy page. 676 * 677 * Must be careful with the order of the tests. When someone has 678 * a ref to the page, it may be possible that they dirty it then 679 * drop the reference. So if PageDirty is tested before page_count 680 * here, then the following race may occur: 681 * 682 * get_user_pages(&page); 683 * [user mapping goes away] 684 * write_to(page); 685 * !PageDirty(page) [good] 686 * SetPageDirty(page); 687 * put_page(page); 688 * !page_count(page) [good, discard it] 689 * 690 * [oops, our write_to data is lost] 691 * 692 * Reversing the order of the tests ensures such a situation cannot 693 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 694 * load is not satisfied before that of page->_refcount. 695 * 696 * Note that if SetPageDirty is always performed via set_page_dirty, 697 * and thus under tree_lock, then this ordering is not required. 698 */ 699 if (!page_ref_freeze(page, 2)) 700 goto cannot_free; 701 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 702 if (unlikely(PageDirty(page))) { 703 page_ref_unfreeze(page, 2); 704 goto cannot_free; 705 } 706 707 if (PageSwapCache(page)) { 708 swp_entry_t swap = { .val = page_private(page) }; 709 mem_cgroup_swapout(page, swap); 710 __delete_from_swap_cache(page); 711 spin_unlock_irqrestore(&mapping->tree_lock, flags); 712 swapcache_free(swap); 713 } else { 714 void (*freepage)(struct page *); 715 void *shadow = NULL; 716 717 freepage = mapping->a_ops->freepage; 718 /* 719 * Remember a shadow entry for reclaimed file cache in 720 * order to detect refaults, thus thrashing, later on. 721 * 722 * But don't store shadows in an address space that is 723 * already exiting. This is not just an optizimation, 724 * inode reclaim needs to empty out the radix tree or 725 * the nodes are lost. Don't plant shadows behind its 726 * back. 727 * 728 * We also don't store shadows for DAX mappings because the 729 * only page cache pages found in these are zero pages 730 * covering holes, and because we don't want to mix DAX 731 * exceptional entries and shadow exceptional entries in the 732 * same page_tree. 733 */ 734 if (reclaimed && page_is_file_cache(page) && 735 !mapping_exiting(mapping) && !dax_mapping(mapping)) 736 shadow = workingset_eviction(mapping, page); 737 __delete_from_page_cache(page, shadow); 738 spin_unlock_irqrestore(&mapping->tree_lock, flags); 739 740 if (freepage != NULL) 741 freepage(page); 742 } 743 744 return 1; 745 746 cannot_free: 747 spin_unlock_irqrestore(&mapping->tree_lock, flags); 748 return 0; 749 } 750 751 /* 752 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 753 * someone else has a ref on the page, abort and return 0. If it was 754 * successfully detached, return 1. Assumes the caller has a single ref on 755 * this page. 756 */ 757 int remove_mapping(struct address_space *mapping, struct page *page) 758 { 759 if (__remove_mapping(mapping, page, false)) { 760 /* 761 * Unfreezing the refcount with 1 rather than 2 effectively 762 * drops the pagecache ref for us without requiring another 763 * atomic operation. 764 */ 765 page_ref_unfreeze(page, 1); 766 return 1; 767 } 768 return 0; 769 } 770 771 /** 772 * putback_lru_page - put previously isolated page onto appropriate LRU list 773 * @page: page to be put back to appropriate lru list 774 * 775 * Add previously isolated @page to appropriate LRU list. 776 * Page may still be unevictable for other reasons. 777 * 778 * lru_lock must not be held, interrupts must be enabled. 779 */ 780 void putback_lru_page(struct page *page) 781 { 782 bool is_unevictable; 783 int was_unevictable = PageUnevictable(page); 784 785 VM_BUG_ON_PAGE(PageLRU(page), page); 786 787 redo: 788 ClearPageUnevictable(page); 789 790 if (page_evictable(page)) { 791 /* 792 * For evictable pages, we can use the cache. 793 * In event of a race, worst case is we end up with an 794 * unevictable page on [in]active list. 795 * We know how to handle that. 796 */ 797 is_unevictable = false; 798 lru_cache_add(page); 799 } else { 800 /* 801 * Put unevictable pages directly on zone's unevictable 802 * list. 803 */ 804 is_unevictable = true; 805 add_page_to_unevictable_list(page); 806 /* 807 * When racing with an mlock or AS_UNEVICTABLE clearing 808 * (page is unlocked) make sure that if the other thread 809 * does not observe our setting of PG_lru and fails 810 * isolation/check_move_unevictable_pages, 811 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 812 * the page back to the evictable list. 813 * 814 * The other side is TestClearPageMlocked() or shmem_lock(). 815 */ 816 smp_mb(); 817 } 818 819 /* 820 * page's status can change while we move it among lru. If an evictable 821 * page is on unevictable list, it never be freed. To avoid that, 822 * check after we added it to the list, again. 823 */ 824 if (is_unevictable && page_evictable(page)) { 825 if (!isolate_lru_page(page)) { 826 put_page(page); 827 goto redo; 828 } 829 /* This means someone else dropped this page from LRU 830 * So, it will be freed or putback to LRU again. There is 831 * nothing to do here. 832 */ 833 } 834 835 if (was_unevictable && !is_unevictable) 836 count_vm_event(UNEVICTABLE_PGRESCUED); 837 else if (!was_unevictable && is_unevictable) 838 count_vm_event(UNEVICTABLE_PGCULLED); 839 840 put_page(page); /* drop ref from isolate */ 841 } 842 843 enum page_references { 844 PAGEREF_RECLAIM, 845 PAGEREF_RECLAIM_CLEAN, 846 PAGEREF_KEEP, 847 PAGEREF_ACTIVATE, 848 }; 849 850 static enum page_references page_check_references(struct page *page, 851 struct scan_control *sc) 852 { 853 int referenced_ptes, referenced_page; 854 unsigned long vm_flags; 855 856 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 857 &vm_flags); 858 referenced_page = TestClearPageReferenced(page); 859 860 /* 861 * Mlock lost the isolation race with us. Let try_to_unmap() 862 * move the page to the unevictable list. 863 */ 864 if (vm_flags & VM_LOCKED) 865 return PAGEREF_RECLAIM; 866 867 if (referenced_ptes) { 868 if (PageSwapBacked(page)) 869 return PAGEREF_ACTIVATE; 870 /* 871 * All mapped pages start out with page table 872 * references from the instantiating fault, so we need 873 * to look twice if a mapped file page is used more 874 * than once. 875 * 876 * Mark it and spare it for another trip around the 877 * inactive list. Another page table reference will 878 * lead to its activation. 879 * 880 * Note: the mark is set for activated pages as well 881 * so that recently deactivated but used pages are 882 * quickly recovered. 883 */ 884 SetPageReferenced(page); 885 886 if (referenced_page || referenced_ptes > 1) 887 return PAGEREF_ACTIVATE; 888 889 /* 890 * Activate file-backed executable pages after first usage. 891 */ 892 if (vm_flags & VM_EXEC) 893 return PAGEREF_ACTIVATE; 894 895 return PAGEREF_KEEP; 896 } 897 898 /* Reclaim if clean, defer dirty pages to writeback */ 899 if (referenced_page && !PageSwapBacked(page)) 900 return PAGEREF_RECLAIM_CLEAN; 901 902 return PAGEREF_RECLAIM; 903 } 904 905 /* Check if a page is dirty or under writeback */ 906 static void page_check_dirty_writeback(struct page *page, 907 bool *dirty, bool *writeback) 908 { 909 struct address_space *mapping; 910 911 /* 912 * Anonymous pages are not handled by flushers and must be written 913 * from reclaim context. Do not stall reclaim based on them 914 */ 915 if (!page_is_file_cache(page)) { 916 *dirty = false; 917 *writeback = false; 918 return; 919 } 920 921 /* By default assume that the page flags are accurate */ 922 *dirty = PageDirty(page); 923 *writeback = PageWriteback(page); 924 925 /* Verify dirty/writeback state if the filesystem supports it */ 926 if (!page_has_private(page)) 927 return; 928 929 mapping = page_mapping(page); 930 if (mapping && mapping->a_ops->is_dirty_writeback) 931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 932 } 933 934 struct reclaim_stat { 935 unsigned nr_dirty; 936 unsigned nr_unqueued_dirty; 937 unsigned nr_congested; 938 unsigned nr_writeback; 939 unsigned nr_immediate; 940 unsigned nr_activate; 941 unsigned nr_ref_keep; 942 unsigned nr_unmap_fail; 943 }; 944 945 /* 946 * shrink_page_list() returns the number of reclaimed pages 947 */ 948 static unsigned long shrink_page_list(struct list_head *page_list, 949 struct pglist_data *pgdat, 950 struct scan_control *sc, 951 enum ttu_flags ttu_flags, 952 struct reclaim_stat *stat, 953 bool force_reclaim) 954 { 955 LIST_HEAD(ret_pages); 956 LIST_HEAD(free_pages); 957 int pgactivate = 0; 958 unsigned nr_unqueued_dirty = 0; 959 unsigned nr_dirty = 0; 960 unsigned nr_congested = 0; 961 unsigned nr_reclaimed = 0; 962 unsigned nr_writeback = 0; 963 unsigned nr_immediate = 0; 964 unsigned nr_ref_keep = 0; 965 unsigned nr_unmap_fail = 0; 966 967 cond_resched(); 968 969 while (!list_empty(page_list)) { 970 struct address_space *mapping; 971 struct page *page; 972 int may_enter_fs; 973 enum page_references references = PAGEREF_RECLAIM_CLEAN; 974 bool dirty, writeback; 975 bool lazyfree = false; 976 int ret = SWAP_SUCCESS; 977 978 cond_resched(); 979 980 page = lru_to_page(page_list); 981 list_del(&page->lru); 982 983 if (!trylock_page(page)) 984 goto keep; 985 986 VM_BUG_ON_PAGE(PageActive(page), page); 987 988 sc->nr_scanned++; 989 990 if (unlikely(!page_evictable(page))) 991 goto cull_mlocked; 992 993 if (!sc->may_unmap && page_mapped(page)) 994 goto keep_locked; 995 996 /* Double the slab pressure for mapped and swapcache pages */ 997 if (page_mapped(page) || PageSwapCache(page)) 998 sc->nr_scanned++; 999 1000 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1001 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1002 1003 /* 1004 * The number of dirty pages determines if a zone is marked 1005 * reclaim_congested which affects wait_iff_congested. kswapd 1006 * will stall and start writing pages if the tail of the LRU 1007 * is all dirty unqueued pages. 1008 */ 1009 page_check_dirty_writeback(page, &dirty, &writeback); 1010 if (dirty || writeback) 1011 nr_dirty++; 1012 1013 if (dirty && !writeback) 1014 nr_unqueued_dirty++; 1015 1016 /* 1017 * Treat this page as congested if the underlying BDI is or if 1018 * pages are cycling through the LRU so quickly that the 1019 * pages marked for immediate reclaim are making it to the 1020 * end of the LRU a second time. 1021 */ 1022 mapping = page_mapping(page); 1023 if (((dirty || writeback) && mapping && 1024 inode_write_congested(mapping->host)) || 1025 (writeback && PageReclaim(page))) 1026 nr_congested++; 1027 1028 /* 1029 * If a page at the tail of the LRU is under writeback, there 1030 * are three cases to consider. 1031 * 1032 * 1) If reclaim is encountering an excessive number of pages 1033 * under writeback and this page is both under writeback and 1034 * PageReclaim then it indicates that pages are being queued 1035 * for IO but are being recycled through the LRU before the 1036 * IO can complete. Waiting on the page itself risks an 1037 * indefinite stall if it is impossible to writeback the 1038 * page due to IO error or disconnected storage so instead 1039 * note that the LRU is being scanned too quickly and the 1040 * caller can stall after page list has been processed. 1041 * 1042 * 2) Global or new memcg reclaim encounters a page that is 1043 * not marked for immediate reclaim, or the caller does not 1044 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1045 * not to fs). In this case mark the page for immediate 1046 * reclaim and continue scanning. 1047 * 1048 * Require may_enter_fs because we would wait on fs, which 1049 * may not have submitted IO yet. And the loop driver might 1050 * enter reclaim, and deadlock if it waits on a page for 1051 * which it is needed to do the write (loop masks off 1052 * __GFP_IO|__GFP_FS for this reason); but more thought 1053 * would probably show more reasons. 1054 * 1055 * 3) Legacy memcg encounters a page that is already marked 1056 * PageReclaim. memcg does not have any dirty pages 1057 * throttling so we could easily OOM just because too many 1058 * pages are in writeback and there is nothing else to 1059 * reclaim. Wait for the writeback to complete. 1060 * 1061 * In cases 1) and 2) we activate the pages to get them out of 1062 * the way while we continue scanning for clean pages on the 1063 * inactive list and refilling from the active list. The 1064 * observation here is that waiting for disk writes is more 1065 * expensive than potentially causing reloads down the line. 1066 * Since they're marked for immediate reclaim, they won't put 1067 * memory pressure on the cache working set any longer than it 1068 * takes to write them to disk. 1069 */ 1070 if (PageWriteback(page)) { 1071 /* Case 1 above */ 1072 if (current_is_kswapd() && 1073 PageReclaim(page) && 1074 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1075 nr_immediate++; 1076 goto activate_locked; 1077 1078 /* Case 2 above */ 1079 } else if (sane_reclaim(sc) || 1080 !PageReclaim(page) || !may_enter_fs) { 1081 /* 1082 * This is slightly racy - end_page_writeback() 1083 * might have just cleared PageReclaim, then 1084 * setting PageReclaim here end up interpreted 1085 * as PageReadahead - but that does not matter 1086 * enough to care. What we do want is for this 1087 * page to have PageReclaim set next time memcg 1088 * reclaim reaches the tests above, so it will 1089 * then wait_on_page_writeback() to avoid OOM; 1090 * and it's also appropriate in global reclaim. 1091 */ 1092 SetPageReclaim(page); 1093 nr_writeback++; 1094 goto activate_locked; 1095 1096 /* Case 3 above */ 1097 } else { 1098 unlock_page(page); 1099 wait_on_page_writeback(page); 1100 /* then go back and try same page again */ 1101 list_add_tail(&page->lru, page_list); 1102 continue; 1103 } 1104 } 1105 1106 if (!force_reclaim) 1107 references = page_check_references(page, sc); 1108 1109 switch (references) { 1110 case PAGEREF_ACTIVATE: 1111 goto activate_locked; 1112 case PAGEREF_KEEP: 1113 nr_ref_keep++; 1114 goto keep_locked; 1115 case PAGEREF_RECLAIM: 1116 case PAGEREF_RECLAIM_CLEAN: 1117 ; /* try to reclaim the page below */ 1118 } 1119 1120 /* 1121 * Anonymous process memory has backing store? 1122 * Try to allocate it some swap space here. 1123 */ 1124 if (PageAnon(page) && !PageSwapCache(page)) { 1125 if (!(sc->gfp_mask & __GFP_IO)) 1126 goto keep_locked; 1127 if (!add_to_swap(page, page_list)) 1128 goto activate_locked; 1129 lazyfree = true; 1130 may_enter_fs = 1; 1131 1132 /* Adding to swap updated mapping */ 1133 mapping = page_mapping(page); 1134 } else if (unlikely(PageTransHuge(page))) { 1135 /* Split file THP */ 1136 if (split_huge_page_to_list(page, page_list)) 1137 goto keep_locked; 1138 } 1139 1140 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1141 1142 /* 1143 * The page is mapped into the page tables of one or more 1144 * processes. Try to unmap it here. 1145 */ 1146 if (page_mapped(page) && mapping) { 1147 switch (ret = try_to_unmap(page, lazyfree ? 1148 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1149 (ttu_flags | TTU_BATCH_FLUSH))) { 1150 case SWAP_FAIL: 1151 nr_unmap_fail++; 1152 goto activate_locked; 1153 case SWAP_AGAIN: 1154 goto keep_locked; 1155 case SWAP_MLOCK: 1156 goto cull_mlocked; 1157 case SWAP_LZFREE: 1158 goto lazyfree; 1159 case SWAP_SUCCESS: 1160 ; /* try to free the page below */ 1161 } 1162 } 1163 1164 if (PageDirty(page)) { 1165 /* 1166 * Only kswapd can writeback filesystem pages 1167 * to avoid risk of stack overflow. But avoid 1168 * injecting inefficient single-page IO into 1169 * flusher writeback as much as possible: only 1170 * write pages when we've encountered many 1171 * dirty pages, and when we've already scanned 1172 * the rest of the LRU for clean pages and see 1173 * the same dirty pages again (PageReclaim). 1174 */ 1175 if (page_is_file_cache(page) && 1176 (!current_is_kswapd() || !PageReclaim(page) || 1177 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1178 /* 1179 * Immediately reclaim when written back. 1180 * Similar in principal to deactivate_page() 1181 * except we already have the page isolated 1182 * and know it's dirty 1183 */ 1184 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1185 SetPageReclaim(page); 1186 1187 goto activate_locked; 1188 } 1189 1190 if (references == PAGEREF_RECLAIM_CLEAN) 1191 goto keep_locked; 1192 if (!may_enter_fs) 1193 goto keep_locked; 1194 if (!sc->may_writepage) 1195 goto keep_locked; 1196 1197 /* 1198 * Page is dirty. Flush the TLB if a writable entry 1199 * potentially exists to avoid CPU writes after IO 1200 * starts and then write it out here. 1201 */ 1202 try_to_unmap_flush_dirty(); 1203 switch (pageout(page, mapping, sc)) { 1204 case PAGE_KEEP: 1205 goto keep_locked; 1206 case PAGE_ACTIVATE: 1207 goto activate_locked; 1208 case PAGE_SUCCESS: 1209 if (PageWriteback(page)) 1210 goto keep; 1211 if (PageDirty(page)) 1212 goto keep; 1213 1214 /* 1215 * A synchronous write - probably a ramdisk. Go 1216 * ahead and try to reclaim the page. 1217 */ 1218 if (!trylock_page(page)) 1219 goto keep; 1220 if (PageDirty(page) || PageWriteback(page)) 1221 goto keep_locked; 1222 mapping = page_mapping(page); 1223 case PAGE_CLEAN: 1224 ; /* try to free the page below */ 1225 } 1226 } 1227 1228 /* 1229 * If the page has buffers, try to free the buffer mappings 1230 * associated with this page. If we succeed we try to free 1231 * the page as well. 1232 * 1233 * We do this even if the page is PageDirty(). 1234 * try_to_release_page() does not perform I/O, but it is 1235 * possible for a page to have PageDirty set, but it is actually 1236 * clean (all its buffers are clean). This happens if the 1237 * buffers were written out directly, with submit_bh(). ext3 1238 * will do this, as well as the blockdev mapping. 1239 * try_to_release_page() will discover that cleanness and will 1240 * drop the buffers and mark the page clean - it can be freed. 1241 * 1242 * Rarely, pages can have buffers and no ->mapping. These are 1243 * the pages which were not successfully invalidated in 1244 * truncate_complete_page(). We try to drop those buffers here 1245 * and if that worked, and the page is no longer mapped into 1246 * process address space (page_count == 1) it can be freed. 1247 * Otherwise, leave the page on the LRU so it is swappable. 1248 */ 1249 if (page_has_private(page)) { 1250 if (!try_to_release_page(page, sc->gfp_mask)) 1251 goto activate_locked; 1252 if (!mapping && page_count(page) == 1) { 1253 unlock_page(page); 1254 if (put_page_testzero(page)) 1255 goto free_it; 1256 else { 1257 /* 1258 * rare race with speculative reference. 1259 * the speculative reference will free 1260 * this page shortly, so we may 1261 * increment nr_reclaimed here (and 1262 * leave it off the LRU). 1263 */ 1264 nr_reclaimed++; 1265 continue; 1266 } 1267 } 1268 } 1269 1270 lazyfree: 1271 if (!mapping || !__remove_mapping(mapping, page, true)) 1272 goto keep_locked; 1273 1274 /* 1275 * At this point, we have no other references and there is 1276 * no way to pick any more up (removed from LRU, removed 1277 * from pagecache). Can use non-atomic bitops now (and 1278 * we obviously don't have to worry about waking up a process 1279 * waiting on the page lock, because there are no references. 1280 */ 1281 __ClearPageLocked(page); 1282 free_it: 1283 if (ret == SWAP_LZFREE) 1284 count_vm_event(PGLAZYFREED); 1285 1286 nr_reclaimed++; 1287 1288 /* 1289 * Is there need to periodically free_page_list? It would 1290 * appear not as the counts should be low 1291 */ 1292 list_add(&page->lru, &free_pages); 1293 continue; 1294 1295 cull_mlocked: 1296 if (PageSwapCache(page)) 1297 try_to_free_swap(page); 1298 unlock_page(page); 1299 list_add(&page->lru, &ret_pages); 1300 continue; 1301 1302 activate_locked: 1303 /* Not a candidate for swapping, so reclaim swap space. */ 1304 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1305 try_to_free_swap(page); 1306 VM_BUG_ON_PAGE(PageActive(page), page); 1307 SetPageActive(page); 1308 pgactivate++; 1309 keep_locked: 1310 unlock_page(page); 1311 keep: 1312 list_add(&page->lru, &ret_pages); 1313 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1314 } 1315 1316 mem_cgroup_uncharge_list(&free_pages); 1317 try_to_unmap_flush(); 1318 free_hot_cold_page_list(&free_pages, true); 1319 1320 list_splice(&ret_pages, page_list); 1321 count_vm_events(PGACTIVATE, pgactivate); 1322 1323 if (stat) { 1324 stat->nr_dirty = nr_dirty; 1325 stat->nr_congested = nr_congested; 1326 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1327 stat->nr_writeback = nr_writeback; 1328 stat->nr_immediate = nr_immediate; 1329 stat->nr_activate = pgactivate; 1330 stat->nr_ref_keep = nr_ref_keep; 1331 stat->nr_unmap_fail = nr_unmap_fail; 1332 } 1333 return nr_reclaimed; 1334 } 1335 1336 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1337 struct list_head *page_list) 1338 { 1339 struct scan_control sc = { 1340 .gfp_mask = GFP_KERNEL, 1341 .priority = DEF_PRIORITY, 1342 .may_unmap = 1, 1343 }; 1344 unsigned long ret; 1345 struct page *page, *next; 1346 LIST_HEAD(clean_pages); 1347 1348 list_for_each_entry_safe(page, next, page_list, lru) { 1349 if (page_is_file_cache(page) && !PageDirty(page) && 1350 !__PageMovable(page)) { 1351 ClearPageActive(page); 1352 list_move(&page->lru, &clean_pages); 1353 } 1354 } 1355 1356 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1357 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true); 1358 list_splice(&clean_pages, page_list); 1359 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1360 return ret; 1361 } 1362 1363 /* 1364 * Attempt to remove the specified page from its LRU. Only take this page 1365 * if it is of the appropriate PageActive status. Pages which are being 1366 * freed elsewhere are also ignored. 1367 * 1368 * page: page to consider 1369 * mode: one of the LRU isolation modes defined above 1370 * 1371 * returns 0 on success, -ve errno on failure. 1372 */ 1373 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1374 { 1375 int ret = -EINVAL; 1376 1377 /* Only take pages on the LRU. */ 1378 if (!PageLRU(page)) 1379 return ret; 1380 1381 /* Compaction should not handle unevictable pages but CMA can do so */ 1382 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1383 return ret; 1384 1385 ret = -EBUSY; 1386 1387 /* 1388 * To minimise LRU disruption, the caller can indicate that it only 1389 * wants to isolate pages it will be able to operate on without 1390 * blocking - clean pages for the most part. 1391 * 1392 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1393 * that it is possible to migrate without blocking 1394 */ 1395 if (mode & ISOLATE_ASYNC_MIGRATE) { 1396 /* All the caller can do on PageWriteback is block */ 1397 if (PageWriteback(page)) 1398 return ret; 1399 1400 if (PageDirty(page)) { 1401 struct address_space *mapping; 1402 1403 /* 1404 * Only pages without mappings or that have a 1405 * ->migratepage callback are possible to migrate 1406 * without blocking 1407 */ 1408 mapping = page_mapping(page); 1409 if (mapping && !mapping->a_ops->migratepage) 1410 return ret; 1411 } 1412 } 1413 1414 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1415 return ret; 1416 1417 if (likely(get_page_unless_zero(page))) { 1418 /* 1419 * Be careful not to clear PageLRU until after we're 1420 * sure the page is not being freed elsewhere -- the 1421 * page release code relies on it. 1422 */ 1423 ClearPageLRU(page); 1424 ret = 0; 1425 } 1426 1427 return ret; 1428 } 1429 1430 1431 /* 1432 * Update LRU sizes after isolating pages. The LRU size updates must 1433 * be complete before mem_cgroup_update_lru_size due to a santity check. 1434 */ 1435 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1436 enum lru_list lru, unsigned long *nr_zone_taken) 1437 { 1438 int zid; 1439 1440 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1441 if (!nr_zone_taken[zid]) 1442 continue; 1443 1444 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1445 #ifdef CONFIG_MEMCG 1446 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1447 #endif 1448 } 1449 1450 } 1451 1452 /* 1453 * zone_lru_lock is heavily contended. Some of the functions that 1454 * shrink the lists perform better by taking out a batch of pages 1455 * and working on them outside the LRU lock. 1456 * 1457 * For pagecache intensive workloads, this function is the hottest 1458 * spot in the kernel (apart from copy_*_user functions). 1459 * 1460 * Appropriate locks must be held before calling this function. 1461 * 1462 * @nr_to_scan: The number of pages to look through on the list. 1463 * @lruvec: The LRU vector to pull pages from. 1464 * @dst: The temp list to put pages on to. 1465 * @nr_scanned: The number of pages that were scanned. 1466 * @sc: The scan_control struct for this reclaim session 1467 * @mode: One of the LRU isolation modes 1468 * @lru: LRU list id for isolating 1469 * 1470 * returns how many pages were moved onto *@dst. 1471 */ 1472 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1473 struct lruvec *lruvec, struct list_head *dst, 1474 unsigned long *nr_scanned, struct scan_control *sc, 1475 isolate_mode_t mode, enum lru_list lru) 1476 { 1477 struct list_head *src = &lruvec->lists[lru]; 1478 unsigned long nr_taken = 0; 1479 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1480 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1481 unsigned long skipped = 0, total_skipped = 0; 1482 unsigned long scan, nr_pages; 1483 LIST_HEAD(pages_skipped); 1484 1485 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1486 !list_empty(src);) { 1487 struct page *page; 1488 1489 page = lru_to_page(src); 1490 prefetchw_prev_lru_page(page, src, flags); 1491 1492 VM_BUG_ON_PAGE(!PageLRU(page), page); 1493 1494 if (page_zonenum(page) > sc->reclaim_idx) { 1495 list_move(&page->lru, &pages_skipped); 1496 nr_skipped[page_zonenum(page)]++; 1497 continue; 1498 } 1499 1500 /* 1501 * Account for scanned and skipped separetly to avoid the pgdat 1502 * being prematurely marked unreclaimable by pgdat_reclaimable. 1503 */ 1504 scan++; 1505 1506 switch (__isolate_lru_page(page, mode)) { 1507 case 0: 1508 nr_pages = hpage_nr_pages(page); 1509 nr_taken += nr_pages; 1510 nr_zone_taken[page_zonenum(page)] += nr_pages; 1511 list_move(&page->lru, dst); 1512 break; 1513 1514 case -EBUSY: 1515 /* else it is being freed elsewhere */ 1516 list_move(&page->lru, src); 1517 continue; 1518 1519 default: 1520 BUG(); 1521 } 1522 } 1523 1524 /* 1525 * Splice any skipped pages to the start of the LRU list. Note that 1526 * this disrupts the LRU order when reclaiming for lower zones but 1527 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1528 * scanning would soon rescan the same pages to skip and put the 1529 * system at risk of premature OOM. 1530 */ 1531 if (!list_empty(&pages_skipped)) { 1532 int zid; 1533 1534 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1535 if (!nr_skipped[zid]) 1536 continue; 1537 1538 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1539 skipped += nr_skipped[zid]; 1540 } 1541 1542 /* 1543 * Account skipped pages as a partial scan as the pgdat may be 1544 * close to unreclaimable. If the LRU list is empty, account 1545 * skipped pages as a full scan. 1546 */ 1547 total_skipped = list_empty(src) ? skipped : skipped >> 2; 1548 1549 list_splice(&pages_skipped, src); 1550 } 1551 *nr_scanned = scan + total_skipped; 1552 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1553 scan, skipped, nr_taken, mode, lru); 1554 update_lru_sizes(lruvec, lru, nr_zone_taken); 1555 return nr_taken; 1556 } 1557 1558 /** 1559 * isolate_lru_page - tries to isolate a page from its LRU list 1560 * @page: page to isolate from its LRU list 1561 * 1562 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1563 * vmstat statistic corresponding to whatever LRU list the page was on. 1564 * 1565 * Returns 0 if the page was removed from an LRU list. 1566 * Returns -EBUSY if the page was not on an LRU list. 1567 * 1568 * The returned page will have PageLRU() cleared. If it was found on 1569 * the active list, it will have PageActive set. If it was found on 1570 * the unevictable list, it will have the PageUnevictable bit set. That flag 1571 * may need to be cleared by the caller before letting the page go. 1572 * 1573 * The vmstat statistic corresponding to the list on which the page was 1574 * found will be decremented. 1575 * 1576 * Restrictions: 1577 * (1) Must be called with an elevated refcount on the page. This is a 1578 * fundamentnal difference from isolate_lru_pages (which is called 1579 * without a stable reference). 1580 * (2) the lru_lock must not be held. 1581 * (3) interrupts must be enabled. 1582 */ 1583 int isolate_lru_page(struct page *page) 1584 { 1585 int ret = -EBUSY; 1586 1587 VM_BUG_ON_PAGE(!page_count(page), page); 1588 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1589 1590 if (PageLRU(page)) { 1591 struct zone *zone = page_zone(page); 1592 struct lruvec *lruvec; 1593 1594 spin_lock_irq(zone_lru_lock(zone)); 1595 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1596 if (PageLRU(page)) { 1597 int lru = page_lru(page); 1598 get_page(page); 1599 ClearPageLRU(page); 1600 del_page_from_lru_list(page, lruvec, lru); 1601 ret = 0; 1602 } 1603 spin_unlock_irq(zone_lru_lock(zone)); 1604 } 1605 return ret; 1606 } 1607 1608 /* 1609 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1610 * then get resheduled. When there are massive number of tasks doing page 1611 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1612 * the LRU list will go small and be scanned faster than necessary, leading to 1613 * unnecessary swapping, thrashing and OOM. 1614 */ 1615 static int too_many_isolated(struct pglist_data *pgdat, int file, 1616 struct scan_control *sc) 1617 { 1618 unsigned long inactive, isolated; 1619 1620 if (current_is_kswapd()) 1621 return 0; 1622 1623 if (!sane_reclaim(sc)) 1624 return 0; 1625 1626 if (file) { 1627 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1628 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1629 } else { 1630 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1631 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1632 } 1633 1634 /* 1635 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1636 * won't get blocked by normal direct-reclaimers, forming a circular 1637 * deadlock. 1638 */ 1639 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1640 inactive >>= 3; 1641 1642 return isolated > inactive; 1643 } 1644 1645 static noinline_for_stack void 1646 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1647 { 1648 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1649 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1650 LIST_HEAD(pages_to_free); 1651 1652 /* 1653 * Put back any unfreeable pages. 1654 */ 1655 while (!list_empty(page_list)) { 1656 struct page *page = lru_to_page(page_list); 1657 int lru; 1658 1659 VM_BUG_ON_PAGE(PageLRU(page), page); 1660 list_del(&page->lru); 1661 if (unlikely(!page_evictable(page))) { 1662 spin_unlock_irq(&pgdat->lru_lock); 1663 putback_lru_page(page); 1664 spin_lock_irq(&pgdat->lru_lock); 1665 continue; 1666 } 1667 1668 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1669 1670 SetPageLRU(page); 1671 lru = page_lru(page); 1672 add_page_to_lru_list(page, lruvec, lru); 1673 1674 if (is_active_lru(lru)) { 1675 int file = is_file_lru(lru); 1676 int numpages = hpage_nr_pages(page); 1677 reclaim_stat->recent_rotated[file] += numpages; 1678 } 1679 if (put_page_testzero(page)) { 1680 __ClearPageLRU(page); 1681 __ClearPageActive(page); 1682 del_page_from_lru_list(page, lruvec, lru); 1683 1684 if (unlikely(PageCompound(page))) { 1685 spin_unlock_irq(&pgdat->lru_lock); 1686 mem_cgroup_uncharge(page); 1687 (*get_compound_page_dtor(page))(page); 1688 spin_lock_irq(&pgdat->lru_lock); 1689 } else 1690 list_add(&page->lru, &pages_to_free); 1691 } 1692 } 1693 1694 /* 1695 * To save our caller's stack, now use input list for pages to free. 1696 */ 1697 list_splice(&pages_to_free, page_list); 1698 } 1699 1700 /* 1701 * If a kernel thread (such as nfsd for loop-back mounts) services 1702 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1703 * In that case we should only throttle if the backing device it is 1704 * writing to is congested. In other cases it is safe to throttle. 1705 */ 1706 static int current_may_throttle(void) 1707 { 1708 return !(current->flags & PF_LESS_THROTTLE) || 1709 current->backing_dev_info == NULL || 1710 bdi_write_congested(current->backing_dev_info); 1711 } 1712 1713 /* 1714 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1715 * of reclaimed pages 1716 */ 1717 static noinline_for_stack unsigned long 1718 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1719 struct scan_control *sc, enum lru_list lru) 1720 { 1721 LIST_HEAD(page_list); 1722 unsigned long nr_scanned; 1723 unsigned long nr_reclaimed = 0; 1724 unsigned long nr_taken; 1725 struct reclaim_stat stat = {}; 1726 isolate_mode_t isolate_mode = 0; 1727 int file = is_file_lru(lru); 1728 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1729 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1730 1731 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1732 congestion_wait(BLK_RW_ASYNC, HZ/10); 1733 1734 /* We are about to die and free our memory. Return now. */ 1735 if (fatal_signal_pending(current)) 1736 return SWAP_CLUSTER_MAX; 1737 } 1738 1739 lru_add_drain(); 1740 1741 if (!sc->may_unmap) 1742 isolate_mode |= ISOLATE_UNMAPPED; 1743 1744 spin_lock_irq(&pgdat->lru_lock); 1745 1746 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1747 &nr_scanned, sc, isolate_mode, lru); 1748 1749 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1750 reclaim_stat->recent_scanned[file] += nr_taken; 1751 1752 if (global_reclaim(sc)) { 1753 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1754 if (current_is_kswapd()) 1755 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1756 else 1757 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1758 } 1759 spin_unlock_irq(&pgdat->lru_lock); 1760 1761 if (nr_taken == 0) 1762 return 0; 1763 1764 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, 1765 &stat, false); 1766 1767 spin_lock_irq(&pgdat->lru_lock); 1768 1769 if (global_reclaim(sc)) { 1770 if (current_is_kswapd()) 1771 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1772 else 1773 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1774 } 1775 1776 putback_inactive_pages(lruvec, &page_list); 1777 1778 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1779 1780 spin_unlock_irq(&pgdat->lru_lock); 1781 1782 mem_cgroup_uncharge_list(&page_list); 1783 free_hot_cold_page_list(&page_list, true); 1784 1785 /* 1786 * If reclaim is isolating dirty pages under writeback, it implies 1787 * that the long-lived page allocation rate is exceeding the page 1788 * laundering rate. Either the global limits are not being effective 1789 * at throttling processes due to the page distribution throughout 1790 * zones or there is heavy usage of a slow backing device. The 1791 * only option is to throttle from reclaim context which is not ideal 1792 * as there is no guarantee the dirtying process is throttled in the 1793 * same way balance_dirty_pages() manages. 1794 * 1795 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1796 * of pages under pages flagged for immediate reclaim and stall if any 1797 * are encountered in the nr_immediate check below. 1798 */ 1799 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1800 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1801 1802 /* 1803 * Legacy memcg will stall in page writeback so avoid forcibly 1804 * stalling here. 1805 */ 1806 if (sane_reclaim(sc)) { 1807 /* 1808 * Tag a zone as congested if all the dirty pages scanned were 1809 * backed by a congested BDI and wait_iff_congested will stall. 1810 */ 1811 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1812 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1813 1814 /* 1815 * If dirty pages are scanned that are not queued for IO, it 1816 * implies that flushers are not doing their job. This can 1817 * happen when memory pressure pushes dirty pages to the end of 1818 * the LRU before the dirty limits are breached and the dirty 1819 * data has expired. It can also happen when the proportion of 1820 * dirty pages grows not through writes but through memory 1821 * pressure reclaiming all the clean cache. And in some cases, 1822 * the flushers simply cannot keep up with the allocation 1823 * rate. Nudge the flusher threads in case they are asleep, but 1824 * also allow kswapd to start writing pages during reclaim. 1825 */ 1826 if (stat.nr_unqueued_dirty == nr_taken) { 1827 wakeup_flusher_threads(0, WB_REASON_VMSCAN); 1828 set_bit(PGDAT_DIRTY, &pgdat->flags); 1829 } 1830 1831 /* 1832 * If kswapd scans pages marked marked for immediate 1833 * reclaim and under writeback (nr_immediate), it implies 1834 * that pages are cycling through the LRU faster than 1835 * they are written so also forcibly stall. 1836 */ 1837 if (stat.nr_immediate && current_may_throttle()) 1838 congestion_wait(BLK_RW_ASYNC, HZ/10); 1839 } 1840 1841 /* 1842 * Stall direct reclaim for IO completions if underlying BDIs or zone 1843 * is congested. Allow kswapd to continue until it starts encountering 1844 * unqueued dirty pages or cycling through the LRU too quickly. 1845 */ 1846 if (!sc->hibernation_mode && !current_is_kswapd() && 1847 current_may_throttle()) 1848 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1849 1850 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1851 nr_scanned, nr_reclaimed, 1852 stat.nr_dirty, stat.nr_writeback, 1853 stat.nr_congested, stat.nr_immediate, 1854 stat.nr_activate, stat.nr_ref_keep, 1855 stat.nr_unmap_fail, 1856 sc->priority, file); 1857 return nr_reclaimed; 1858 } 1859 1860 /* 1861 * This moves pages from the active list to the inactive list. 1862 * 1863 * We move them the other way if the page is referenced by one or more 1864 * processes, from rmap. 1865 * 1866 * If the pages are mostly unmapped, the processing is fast and it is 1867 * appropriate to hold zone_lru_lock across the whole operation. But if 1868 * the pages are mapped, the processing is slow (page_referenced()) so we 1869 * should drop zone_lru_lock around each page. It's impossible to balance 1870 * this, so instead we remove the pages from the LRU while processing them. 1871 * It is safe to rely on PG_active against the non-LRU pages in here because 1872 * nobody will play with that bit on a non-LRU page. 1873 * 1874 * The downside is that we have to touch page->_refcount against each page. 1875 * But we had to alter page->flags anyway. 1876 * 1877 * Returns the number of pages moved to the given lru. 1878 */ 1879 1880 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1881 struct list_head *list, 1882 struct list_head *pages_to_free, 1883 enum lru_list lru) 1884 { 1885 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1886 struct page *page; 1887 int nr_pages; 1888 int nr_moved = 0; 1889 1890 while (!list_empty(list)) { 1891 page = lru_to_page(list); 1892 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1893 1894 VM_BUG_ON_PAGE(PageLRU(page), page); 1895 SetPageLRU(page); 1896 1897 nr_pages = hpage_nr_pages(page); 1898 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1899 list_move(&page->lru, &lruvec->lists[lru]); 1900 1901 if (put_page_testzero(page)) { 1902 __ClearPageLRU(page); 1903 __ClearPageActive(page); 1904 del_page_from_lru_list(page, lruvec, lru); 1905 1906 if (unlikely(PageCompound(page))) { 1907 spin_unlock_irq(&pgdat->lru_lock); 1908 mem_cgroup_uncharge(page); 1909 (*get_compound_page_dtor(page))(page); 1910 spin_lock_irq(&pgdat->lru_lock); 1911 } else 1912 list_add(&page->lru, pages_to_free); 1913 } else { 1914 nr_moved += nr_pages; 1915 } 1916 } 1917 1918 if (!is_active_lru(lru)) 1919 __count_vm_events(PGDEACTIVATE, nr_moved); 1920 1921 return nr_moved; 1922 } 1923 1924 static void shrink_active_list(unsigned long nr_to_scan, 1925 struct lruvec *lruvec, 1926 struct scan_control *sc, 1927 enum lru_list lru) 1928 { 1929 unsigned long nr_taken; 1930 unsigned long nr_scanned; 1931 unsigned long vm_flags; 1932 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1933 LIST_HEAD(l_active); 1934 LIST_HEAD(l_inactive); 1935 struct page *page; 1936 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1937 unsigned nr_deactivate, nr_activate; 1938 unsigned nr_rotated = 0; 1939 isolate_mode_t isolate_mode = 0; 1940 int file = is_file_lru(lru); 1941 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1942 1943 lru_add_drain(); 1944 1945 if (!sc->may_unmap) 1946 isolate_mode |= ISOLATE_UNMAPPED; 1947 1948 spin_lock_irq(&pgdat->lru_lock); 1949 1950 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1951 &nr_scanned, sc, isolate_mode, lru); 1952 1953 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1954 reclaim_stat->recent_scanned[file] += nr_taken; 1955 1956 if (global_reclaim(sc)) 1957 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1958 __count_vm_events(PGREFILL, nr_scanned); 1959 1960 spin_unlock_irq(&pgdat->lru_lock); 1961 1962 while (!list_empty(&l_hold)) { 1963 cond_resched(); 1964 page = lru_to_page(&l_hold); 1965 list_del(&page->lru); 1966 1967 if (unlikely(!page_evictable(page))) { 1968 putback_lru_page(page); 1969 continue; 1970 } 1971 1972 if (unlikely(buffer_heads_over_limit)) { 1973 if (page_has_private(page) && trylock_page(page)) { 1974 if (page_has_private(page)) 1975 try_to_release_page(page, 0); 1976 unlock_page(page); 1977 } 1978 } 1979 1980 if (page_referenced(page, 0, sc->target_mem_cgroup, 1981 &vm_flags)) { 1982 nr_rotated += hpage_nr_pages(page); 1983 /* 1984 * Identify referenced, file-backed active pages and 1985 * give them one more trip around the active list. So 1986 * that executable code get better chances to stay in 1987 * memory under moderate memory pressure. Anon pages 1988 * are not likely to be evicted by use-once streaming 1989 * IO, plus JVM can create lots of anon VM_EXEC pages, 1990 * so we ignore them here. 1991 */ 1992 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1993 list_add(&page->lru, &l_active); 1994 continue; 1995 } 1996 } 1997 1998 ClearPageActive(page); /* we are de-activating */ 1999 list_add(&page->lru, &l_inactive); 2000 } 2001 2002 /* 2003 * Move pages back to the lru list. 2004 */ 2005 spin_lock_irq(&pgdat->lru_lock); 2006 /* 2007 * Count referenced pages from currently used mappings as rotated, 2008 * even though only some of them are actually re-activated. This 2009 * helps balance scan pressure between file and anonymous pages in 2010 * get_scan_count. 2011 */ 2012 reclaim_stat->recent_rotated[file] += nr_rotated; 2013 2014 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2015 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2016 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2017 spin_unlock_irq(&pgdat->lru_lock); 2018 2019 mem_cgroup_uncharge_list(&l_hold); 2020 free_hot_cold_page_list(&l_hold, true); 2021 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2022 nr_deactivate, nr_rotated, sc->priority, file); 2023 } 2024 2025 /* 2026 * The inactive anon list should be small enough that the VM never has 2027 * to do too much work. 2028 * 2029 * The inactive file list should be small enough to leave most memory 2030 * to the established workingset on the scan-resistant active list, 2031 * but large enough to avoid thrashing the aggregate readahead window. 2032 * 2033 * Both inactive lists should also be large enough that each inactive 2034 * page has a chance to be referenced again before it is reclaimed. 2035 * 2036 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2037 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2038 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2039 * 2040 * total target max 2041 * memory ratio inactive 2042 * ------------------------------------- 2043 * 10MB 1 5MB 2044 * 100MB 1 50MB 2045 * 1GB 3 250MB 2046 * 10GB 10 0.9GB 2047 * 100GB 31 3GB 2048 * 1TB 101 10GB 2049 * 10TB 320 32GB 2050 */ 2051 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2052 struct scan_control *sc, bool trace) 2053 { 2054 unsigned long inactive_ratio; 2055 unsigned long inactive, active; 2056 enum lru_list inactive_lru = file * LRU_FILE; 2057 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2058 unsigned long gb; 2059 2060 /* 2061 * If we don't have swap space, anonymous page deactivation 2062 * is pointless. 2063 */ 2064 if (!file && !total_swap_pages) 2065 return false; 2066 2067 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2068 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2069 2070 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2071 if (gb) 2072 inactive_ratio = int_sqrt(10 * gb); 2073 else 2074 inactive_ratio = 1; 2075 2076 if (trace) 2077 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id, 2078 sc->reclaim_idx, 2079 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2080 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2081 inactive_ratio, file); 2082 2083 return inactive * inactive_ratio < active; 2084 } 2085 2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2087 struct lruvec *lruvec, struct scan_control *sc) 2088 { 2089 if (is_active_lru(lru)) { 2090 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2091 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2092 return 0; 2093 } 2094 2095 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2096 } 2097 2098 enum scan_balance { 2099 SCAN_EQUAL, 2100 SCAN_FRACT, 2101 SCAN_ANON, 2102 SCAN_FILE, 2103 }; 2104 2105 /* 2106 * Determine how aggressively the anon and file LRU lists should be 2107 * scanned. The relative value of each set of LRU lists is determined 2108 * by looking at the fraction of the pages scanned we did rotate back 2109 * onto the active list instead of evict. 2110 * 2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2113 */ 2114 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2115 struct scan_control *sc, unsigned long *nr, 2116 unsigned long *lru_pages) 2117 { 2118 int swappiness = mem_cgroup_swappiness(memcg); 2119 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2120 u64 fraction[2]; 2121 u64 denominator = 0; /* gcc */ 2122 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2123 unsigned long anon_prio, file_prio; 2124 enum scan_balance scan_balance; 2125 unsigned long anon, file; 2126 bool force_scan = false; 2127 unsigned long ap, fp; 2128 enum lru_list lru; 2129 bool some_scanned; 2130 int pass; 2131 2132 /* 2133 * If the zone or memcg is small, nr[l] can be 0. This 2134 * results in no scanning on this priority and a potential 2135 * priority drop. Global direct reclaim can go to the next 2136 * zone and tends to have no problems. Global kswapd is for 2137 * zone balancing and it needs to scan a minimum amount. When 2138 * reclaiming for a memcg, a priority drop can cause high 2139 * latencies, so it's better to scan a minimum amount there as 2140 * well. 2141 */ 2142 if (current_is_kswapd()) { 2143 if (!pgdat_reclaimable(pgdat)) 2144 force_scan = true; 2145 if (!mem_cgroup_online(memcg)) 2146 force_scan = true; 2147 } 2148 if (!global_reclaim(sc)) 2149 force_scan = true; 2150 2151 /* If we have no swap space, do not bother scanning anon pages. */ 2152 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2153 scan_balance = SCAN_FILE; 2154 goto out; 2155 } 2156 2157 /* 2158 * Global reclaim will swap to prevent OOM even with no 2159 * swappiness, but memcg users want to use this knob to 2160 * disable swapping for individual groups completely when 2161 * using the memory controller's swap limit feature would be 2162 * too expensive. 2163 */ 2164 if (!global_reclaim(sc) && !swappiness) { 2165 scan_balance = SCAN_FILE; 2166 goto out; 2167 } 2168 2169 /* 2170 * Do not apply any pressure balancing cleverness when the 2171 * system is close to OOM, scan both anon and file equally 2172 * (unless the swappiness setting disagrees with swapping). 2173 */ 2174 if (!sc->priority && swappiness) { 2175 scan_balance = SCAN_EQUAL; 2176 goto out; 2177 } 2178 2179 /* 2180 * Prevent the reclaimer from falling into the cache trap: as 2181 * cache pages start out inactive, every cache fault will tip 2182 * the scan balance towards the file LRU. And as the file LRU 2183 * shrinks, so does the window for rotation from references. 2184 * This means we have a runaway feedback loop where a tiny 2185 * thrashing file LRU becomes infinitely more attractive than 2186 * anon pages. Try to detect this based on file LRU size. 2187 */ 2188 if (global_reclaim(sc)) { 2189 unsigned long pgdatfile; 2190 unsigned long pgdatfree; 2191 int z; 2192 unsigned long total_high_wmark = 0; 2193 2194 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2195 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2196 node_page_state(pgdat, NR_INACTIVE_FILE); 2197 2198 for (z = 0; z < MAX_NR_ZONES; z++) { 2199 struct zone *zone = &pgdat->node_zones[z]; 2200 if (!managed_zone(zone)) 2201 continue; 2202 2203 total_high_wmark += high_wmark_pages(zone); 2204 } 2205 2206 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2207 scan_balance = SCAN_ANON; 2208 goto out; 2209 } 2210 } 2211 2212 /* 2213 * If there is enough inactive page cache, i.e. if the size of the 2214 * inactive list is greater than that of the active list *and* the 2215 * inactive list actually has some pages to scan on this priority, we 2216 * do not reclaim anything from the anonymous working set right now. 2217 * Without the second condition we could end up never scanning an 2218 * lruvec even if it has plenty of old anonymous pages unless the 2219 * system is under heavy pressure. 2220 */ 2221 if (!inactive_list_is_low(lruvec, true, sc, false) && 2222 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2223 scan_balance = SCAN_FILE; 2224 goto out; 2225 } 2226 2227 scan_balance = SCAN_FRACT; 2228 2229 /* 2230 * With swappiness at 100, anonymous and file have the same priority. 2231 * This scanning priority is essentially the inverse of IO cost. 2232 */ 2233 anon_prio = swappiness; 2234 file_prio = 200 - anon_prio; 2235 2236 /* 2237 * OK, so we have swap space and a fair amount of page cache 2238 * pages. We use the recently rotated / recently scanned 2239 * ratios to determine how valuable each cache is. 2240 * 2241 * Because workloads change over time (and to avoid overflow) 2242 * we keep these statistics as a floating average, which ends 2243 * up weighing recent references more than old ones. 2244 * 2245 * anon in [0], file in [1] 2246 */ 2247 2248 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2249 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2250 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2251 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2252 2253 spin_lock_irq(&pgdat->lru_lock); 2254 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2255 reclaim_stat->recent_scanned[0] /= 2; 2256 reclaim_stat->recent_rotated[0] /= 2; 2257 } 2258 2259 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2260 reclaim_stat->recent_scanned[1] /= 2; 2261 reclaim_stat->recent_rotated[1] /= 2; 2262 } 2263 2264 /* 2265 * The amount of pressure on anon vs file pages is inversely 2266 * proportional to the fraction of recently scanned pages on 2267 * each list that were recently referenced and in active use. 2268 */ 2269 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2270 ap /= reclaim_stat->recent_rotated[0] + 1; 2271 2272 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2273 fp /= reclaim_stat->recent_rotated[1] + 1; 2274 spin_unlock_irq(&pgdat->lru_lock); 2275 2276 fraction[0] = ap; 2277 fraction[1] = fp; 2278 denominator = ap + fp + 1; 2279 out: 2280 some_scanned = false; 2281 /* Only use force_scan on second pass. */ 2282 for (pass = 0; !some_scanned && pass < 2; pass++) { 2283 *lru_pages = 0; 2284 for_each_evictable_lru(lru) { 2285 int file = is_file_lru(lru); 2286 unsigned long size; 2287 unsigned long scan; 2288 2289 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2290 scan = size >> sc->priority; 2291 2292 if (!scan && pass && force_scan) 2293 scan = min(size, SWAP_CLUSTER_MAX); 2294 2295 switch (scan_balance) { 2296 case SCAN_EQUAL: 2297 /* Scan lists relative to size */ 2298 break; 2299 case SCAN_FRACT: 2300 /* 2301 * Scan types proportional to swappiness and 2302 * their relative recent reclaim efficiency. 2303 */ 2304 scan = div64_u64(scan * fraction[file], 2305 denominator); 2306 break; 2307 case SCAN_FILE: 2308 case SCAN_ANON: 2309 /* Scan one type exclusively */ 2310 if ((scan_balance == SCAN_FILE) != file) { 2311 size = 0; 2312 scan = 0; 2313 } 2314 break; 2315 default: 2316 /* Look ma, no brain */ 2317 BUG(); 2318 } 2319 2320 *lru_pages += size; 2321 nr[lru] = scan; 2322 2323 /* 2324 * Skip the second pass and don't force_scan, 2325 * if we found something to scan. 2326 */ 2327 some_scanned |= !!scan; 2328 } 2329 } 2330 } 2331 2332 /* 2333 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2334 */ 2335 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2336 struct scan_control *sc, unsigned long *lru_pages) 2337 { 2338 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2339 unsigned long nr[NR_LRU_LISTS]; 2340 unsigned long targets[NR_LRU_LISTS]; 2341 unsigned long nr_to_scan; 2342 enum lru_list lru; 2343 unsigned long nr_reclaimed = 0; 2344 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2345 struct blk_plug plug; 2346 bool scan_adjusted; 2347 2348 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2349 2350 /* Record the original scan target for proportional adjustments later */ 2351 memcpy(targets, nr, sizeof(nr)); 2352 2353 /* 2354 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2355 * event that can occur when there is little memory pressure e.g. 2356 * multiple streaming readers/writers. Hence, we do not abort scanning 2357 * when the requested number of pages are reclaimed when scanning at 2358 * DEF_PRIORITY on the assumption that the fact we are direct 2359 * reclaiming implies that kswapd is not keeping up and it is best to 2360 * do a batch of work at once. For memcg reclaim one check is made to 2361 * abort proportional reclaim if either the file or anon lru has already 2362 * dropped to zero at the first pass. 2363 */ 2364 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2365 sc->priority == DEF_PRIORITY); 2366 2367 blk_start_plug(&plug); 2368 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2369 nr[LRU_INACTIVE_FILE]) { 2370 unsigned long nr_anon, nr_file, percentage; 2371 unsigned long nr_scanned; 2372 2373 for_each_evictable_lru(lru) { 2374 if (nr[lru]) { 2375 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2376 nr[lru] -= nr_to_scan; 2377 2378 nr_reclaimed += shrink_list(lru, nr_to_scan, 2379 lruvec, sc); 2380 } 2381 } 2382 2383 cond_resched(); 2384 2385 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2386 continue; 2387 2388 /* 2389 * For kswapd and memcg, reclaim at least the number of pages 2390 * requested. Ensure that the anon and file LRUs are scanned 2391 * proportionally what was requested by get_scan_count(). We 2392 * stop reclaiming one LRU and reduce the amount scanning 2393 * proportional to the original scan target. 2394 */ 2395 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2396 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2397 2398 /* 2399 * It's just vindictive to attack the larger once the smaller 2400 * has gone to zero. And given the way we stop scanning the 2401 * smaller below, this makes sure that we only make one nudge 2402 * towards proportionality once we've got nr_to_reclaim. 2403 */ 2404 if (!nr_file || !nr_anon) 2405 break; 2406 2407 if (nr_file > nr_anon) { 2408 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2409 targets[LRU_ACTIVE_ANON] + 1; 2410 lru = LRU_BASE; 2411 percentage = nr_anon * 100 / scan_target; 2412 } else { 2413 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2414 targets[LRU_ACTIVE_FILE] + 1; 2415 lru = LRU_FILE; 2416 percentage = nr_file * 100 / scan_target; 2417 } 2418 2419 /* Stop scanning the smaller of the LRU */ 2420 nr[lru] = 0; 2421 nr[lru + LRU_ACTIVE] = 0; 2422 2423 /* 2424 * Recalculate the other LRU scan count based on its original 2425 * scan target and the percentage scanning already complete 2426 */ 2427 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2428 nr_scanned = targets[lru] - nr[lru]; 2429 nr[lru] = targets[lru] * (100 - percentage) / 100; 2430 nr[lru] -= min(nr[lru], nr_scanned); 2431 2432 lru += LRU_ACTIVE; 2433 nr_scanned = targets[lru] - nr[lru]; 2434 nr[lru] = targets[lru] * (100 - percentage) / 100; 2435 nr[lru] -= min(nr[lru], nr_scanned); 2436 2437 scan_adjusted = true; 2438 } 2439 blk_finish_plug(&plug); 2440 sc->nr_reclaimed += nr_reclaimed; 2441 2442 /* 2443 * Even if we did not try to evict anon pages at all, we want to 2444 * rebalance the anon lru active/inactive ratio. 2445 */ 2446 if (inactive_list_is_low(lruvec, false, sc, true)) 2447 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2448 sc, LRU_ACTIVE_ANON); 2449 } 2450 2451 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2452 static bool in_reclaim_compaction(struct scan_control *sc) 2453 { 2454 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2455 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2456 sc->priority < DEF_PRIORITY - 2)) 2457 return true; 2458 2459 return false; 2460 } 2461 2462 /* 2463 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2464 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2465 * true if more pages should be reclaimed such that when the page allocator 2466 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2467 * It will give up earlier than that if there is difficulty reclaiming pages. 2468 */ 2469 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2470 unsigned long nr_reclaimed, 2471 unsigned long nr_scanned, 2472 struct scan_control *sc) 2473 { 2474 unsigned long pages_for_compaction; 2475 unsigned long inactive_lru_pages; 2476 int z; 2477 2478 /* If not in reclaim/compaction mode, stop */ 2479 if (!in_reclaim_compaction(sc)) 2480 return false; 2481 2482 /* Consider stopping depending on scan and reclaim activity */ 2483 if (sc->gfp_mask & __GFP_REPEAT) { 2484 /* 2485 * For __GFP_REPEAT allocations, stop reclaiming if the 2486 * full LRU list has been scanned and we are still failing 2487 * to reclaim pages. This full LRU scan is potentially 2488 * expensive but a __GFP_REPEAT caller really wants to succeed 2489 */ 2490 if (!nr_reclaimed && !nr_scanned) 2491 return false; 2492 } else { 2493 /* 2494 * For non-__GFP_REPEAT allocations which can presumably 2495 * fail without consequence, stop if we failed to reclaim 2496 * any pages from the last SWAP_CLUSTER_MAX number of 2497 * pages that were scanned. This will return to the 2498 * caller faster at the risk reclaim/compaction and 2499 * the resulting allocation attempt fails 2500 */ 2501 if (!nr_reclaimed) 2502 return false; 2503 } 2504 2505 /* 2506 * If we have not reclaimed enough pages for compaction and the 2507 * inactive lists are large enough, continue reclaiming 2508 */ 2509 pages_for_compaction = compact_gap(sc->order); 2510 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2511 if (get_nr_swap_pages() > 0) 2512 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2513 if (sc->nr_reclaimed < pages_for_compaction && 2514 inactive_lru_pages > pages_for_compaction) 2515 return true; 2516 2517 /* If compaction would go ahead or the allocation would succeed, stop */ 2518 for (z = 0; z <= sc->reclaim_idx; z++) { 2519 struct zone *zone = &pgdat->node_zones[z]; 2520 if (!managed_zone(zone)) 2521 continue; 2522 2523 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2524 case COMPACT_SUCCESS: 2525 case COMPACT_CONTINUE: 2526 return false; 2527 default: 2528 /* check next zone */ 2529 ; 2530 } 2531 } 2532 return true; 2533 } 2534 2535 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2536 { 2537 struct reclaim_state *reclaim_state = current->reclaim_state; 2538 unsigned long nr_reclaimed, nr_scanned; 2539 bool reclaimable = false; 2540 2541 do { 2542 struct mem_cgroup *root = sc->target_mem_cgroup; 2543 struct mem_cgroup_reclaim_cookie reclaim = { 2544 .pgdat = pgdat, 2545 .priority = sc->priority, 2546 }; 2547 unsigned long node_lru_pages = 0; 2548 struct mem_cgroup *memcg; 2549 2550 nr_reclaimed = sc->nr_reclaimed; 2551 nr_scanned = sc->nr_scanned; 2552 2553 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2554 do { 2555 unsigned long lru_pages; 2556 unsigned long reclaimed; 2557 unsigned long scanned; 2558 2559 if (mem_cgroup_low(root, memcg)) { 2560 if (!sc->may_thrash) 2561 continue; 2562 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2563 } 2564 2565 reclaimed = sc->nr_reclaimed; 2566 scanned = sc->nr_scanned; 2567 2568 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2569 node_lru_pages += lru_pages; 2570 2571 if (memcg) 2572 shrink_slab(sc->gfp_mask, pgdat->node_id, 2573 memcg, sc->nr_scanned - scanned, 2574 lru_pages); 2575 2576 /* Record the group's reclaim efficiency */ 2577 vmpressure(sc->gfp_mask, memcg, false, 2578 sc->nr_scanned - scanned, 2579 sc->nr_reclaimed - reclaimed); 2580 2581 /* 2582 * Direct reclaim and kswapd have to scan all memory 2583 * cgroups to fulfill the overall scan target for the 2584 * node. 2585 * 2586 * Limit reclaim, on the other hand, only cares about 2587 * nr_to_reclaim pages to be reclaimed and it will 2588 * retry with decreasing priority if one round over the 2589 * whole hierarchy is not sufficient. 2590 */ 2591 if (!global_reclaim(sc) && 2592 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2593 mem_cgroup_iter_break(root, memcg); 2594 break; 2595 } 2596 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2597 2598 /* 2599 * Shrink the slab caches in the same proportion that 2600 * the eligible LRU pages were scanned. 2601 */ 2602 if (global_reclaim(sc)) 2603 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2604 sc->nr_scanned - nr_scanned, 2605 node_lru_pages); 2606 2607 if (reclaim_state) { 2608 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2609 reclaim_state->reclaimed_slab = 0; 2610 } 2611 2612 /* Record the subtree's reclaim efficiency */ 2613 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2614 sc->nr_scanned - nr_scanned, 2615 sc->nr_reclaimed - nr_reclaimed); 2616 2617 if (sc->nr_reclaimed - nr_reclaimed) 2618 reclaimable = true; 2619 2620 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2621 sc->nr_scanned - nr_scanned, sc)); 2622 2623 return reclaimable; 2624 } 2625 2626 /* 2627 * Returns true if compaction should go ahead for a costly-order request, or 2628 * the allocation would already succeed without compaction. Return false if we 2629 * should reclaim first. 2630 */ 2631 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2632 { 2633 unsigned long watermark; 2634 enum compact_result suitable; 2635 2636 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2637 if (suitable == COMPACT_SUCCESS) 2638 /* Allocation should succeed already. Don't reclaim. */ 2639 return true; 2640 if (suitable == COMPACT_SKIPPED) 2641 /* Compaction cannot yet proceed. Do reclaim. */ 2642 return false; 2643 2644 /* 2645 * Compaction is already possible, but it takes time to run and there 2646 * are potentially other callers using the pages just freed. So proceed 2647 * with reclaim to make a buffer of free pages available to give 2648 * compaction a reasonable chance of completing and allocating the page. 2649 * Note that we won't actually reclaim the whole buffer in one attempt 2650 * as the target watermark in should_continue_reclaim() is lower. But if 2651 * we are already above the high+gap watermark, don't reclaim at all. 2652 */ 2653 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2654 2655 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2656 } 2657 2658 /* 2659 * This is the direct reclaim path, for page-allocating processes. We only 2660 * try to reclaim pages from zones which will satisfy the caller's allocation 2661 * request. 2662 * 2663 * If a zone is deemed to be full of pinned pages then just give it a light 2664 * scan then give up on it. 2665 */ 2666 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2667 { 2668 struct zoneref *z; 2669 struct zone *zone; 2670 unsigned long nr_soft_reclaimed; 2671 unsigned long nr_soft_scanned; 2672 gfp_t orig_mask; 2673 pg_data_t *last_pgdat = NULL; 2674 2675 /* 2676 * If the number of buffer_heads in the machine exceeds the maximum 2677 * allowed level, force direct reclaim to scan the highmem zone as 2678 * highmem pages could be pinning lowmem pages storing buffer_heads 2679 */ 2680 orig_mask = sc->gfp_mask; 2681 if (buffer_heads_over_limit) { 2682 sc->gfp_mask |= __GFP_HIGHMEM; 2683 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2684 } 2685 2686 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2687 sc->reclaim_idx, sc->nodemask) { 2688 /* 2689 * Take care memory controller reclaiming has small influence 2690 * to global LRU. 2691 */ 2692 if (global_reclaim(sc)) { 2693 if (!cpuset_zone_allowed(zone, 2694 GFP_KERNEL | __GFP_HARDWALL)) 2695 continue; 2696 2697 if (sc->priority != DEF_PRIORITY && 2698 !pgdat_reclaimable(zone->zone_pgdat)) 2699 continue; /* Let kswapd poll it */ 2700 2701 /* 2702 * If we already have plenty of memory free for 2703 * compaction in this zone, don't free any more. 2704 * Even though compaction is invoked for any 2705 * non-zero order, only frequent costly order 2706 * reclamation is disruptive enough to become a 2707 * noticeable problem, like transparent huge 2708 * page allocations. 2709 */ 2710 if (IS_ENABLED(CONFIG_COMPACTION) && 2711 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2712 compaction_ready(zone, sc)) { 2713 sc->compaction_ready = true; 2714 continue; 2715 } 2716 2717 /* 2718 * Shrink each node in the zonelist once. If the 2719 * zonelist is ordered by zone (not the default) then a 2720 * node may be shrunk multiple times but in that case 2721 * the user prefers lower zones being preserved. 2722 */ 2723 if (zone->zone_pgdat == last_pgdat) 2724 continue; 2725 2726 /* 2727 * This steals pages from memory cgroups over softlimit 2728 * and returns the number of reclaimed pages and 2729 * scanned pages. This works for global memory pressure 2730 * and balancing, not for a memcg's limit. 2731 */ 2732 nr_soft_scanned = 0; 2733 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2734 sc->order, sc->gfp_mask, 2735 &nr_soft_scanned); 2736 sc->nr_reclaimed += nr_soft_reclaimed; 2737 sc->nr_scanned += nr_soft_scanned; 2738 /* need some check for avoid more shrink_zone() */ 2739 } 2740 2741 /* See comment about same check for global reclaim above */ 2742 if (zone->zone_pgdat == last_pgdat) 2743 continue; 2744 last_pgdat = zone->zone_pgdat; 2745 shrink_node(zone->zone_pgdat, sc); 2746 } 2747 2748 /* 2749 * Restore to original mask to avoid the impact on the caller if we 2750 * promoted it to __GFP_HIGHMEM. 2751 */ 2752 sc->gfp_mask = orig_mask; 2753 } 2754 2755 /* 2756 * This is the main entry point to direct page reclaim. 2757 * 2758 * If a full scan of the inactive list fails to free enough memory then we 2759 * are "out of memory" and something needs to be killed. 2760 * 2761 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2762 * high - the zone may be full of dirty or under-writeback pages, which this 2763 * caller can't do much about. We kick the writeback threads and take explicit 2764 * naps in the hope that some of these pages can be written. But if the 2765 * allocating task holds filesystem locks which prevent writeout this might not 2766 * work, and the allocation attempt will fail. 2767 * 2768 * returns: 0, if no pages reclaimed 2769 * else, the number of pages reclaimed 2770 */ 2771 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2772 struct scan_control *sc) 2773 { 2774 int initial_priority = sc->priority; 2775 retry: 2776 delayacct_freepages_start(); 2777 2778 if (global_reclaim(sc)) 2779 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2780 2781 do { 2782 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2783 sc->priority); 2784 sc->nr_scanned = 0; 2785 shrink_zones(zonelist, sc); 2786 2787 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2788 break; 2789 2790 if (sc->compaction_ready) 2791 break; 2792 2793 /* 2794 * If we're getting trouble reclaiming, start doing 2795 * writepage even in laptop mode. 2796 */ 2797 if (sc->priority < DEF_PRIORITY - 2) 2798 sc->may_writepage = 1; 2799 } while (--sc->priority >= 0); 2800 2801 delayacct_freepages_end(); 2802 2803 if (sc->nr_reclaimed) 2804 return sc->nr_reclaimed; 2805 2806 /* Aborted reclaim to try compaction? don't OOM, then */ 2807 if (sc->compaction_ready) 2808 return 1; 2809 2810 /* Untapped cgroup reserves? Don't OOM, retry. */ 2811 if (!sc->may_thrash) { 2812 sc->priority = initial_priority; 2813 sc->may_thrash = 1; 2814 goto retry; 2815 } 2816 2817 return 0; 2818 } 2819 2820 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2821 { 2822 struct zone *zone; 2823 unsigned long pfmemalloc_reserve = 0; 2824 unsigned long free_pages = 0; 2825 int i; 2826 bool wmark_ok; 2827 2828 for (i = 0; i <= ZONE_NORMAL; i++) { 2829 zone = &pgdat->node_zones[i]; 2830 if (!managed_zone(zone) || 2831 pgdat_reclaimable_pages(pgdat) == 0) 2832 continue; 2833 2834 pfmemalloc_reserve += min_wmark_pages(zone); 2835 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2836 } 2837 2838 /* If there are no reserves (unexpected config) then do not throttle */ 2839 if (!pfmemalloc_reserve) 2840 return true; 2841 2842 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2843 2844 /* kswapd must be awake if processes are being throttled */ 2845 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2846 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2847 (enum zone_type)ZONE_NORMAL); 2848 wake_up_interruptible(&pgdat->kswapd_wait); 2849 } 2850 2851 return wmark_ok; 2852 } 2853 2854 /* 2855 * Throttle direct reclaimers if backing storage is backed by the network 2856 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2857 * depleted. kswapd will continue to make progress and wake the processes 2858 * when the low watermark is reached. 2859 * 2860 * Returns true if a fatal signal was delivered during throttling. If this 2861 * happens, the page allocator should not consider triggering the OOM killer. 2862 */ 2863 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2864 nodemask_t *nodemask) 2865 { 2866 struct zoneref *z; 2867 struct zone *zone; 2868 pg_data_t *pgdat = NULL; 2869 2870 /* 2871 * Kernel threads should not be throttled as they may be indirectly 2872 * responsible for cleaning pages necessary for reclaim to make forward 2873 * progress. kjournald for example may enter direct reclaim while 2874 * committing a transaction where throttling it could forcing other 2875 * processes to block on log_wait_commit(). 2876 */ 2877 if (current->flags & PF_KTHREAD) 2878 goto out; 2879 2880 /* 2881 * If a fatal signal is pending, this process should not throttle. 2882 * It should return quickly so it can exit and free its memory 2883 */ 2884 if (fatal_signal_pending(current)) 2885 goto out; 2886 2887 /* 2888 * Check if the pfmemalloc reserves are ok by finding the first node 2889 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2890 * GFP_KERNEL will be required for allocating network buffers when 2891 * swapping over the network so ZONE_HIGHMEM is unusable. 2892 * 2893 * Throttling is based on the first usable node and throttled processes 2894 * wait on a queue until kswapd makes progress and wakes them. There 2895 * is an affinity then between processes waking up and where reclaim 2896 * progress has been made assuming the process wakes on the same node. 2897 * More importantly, processes running on remote nodes will not compete 2898 * for remote pfmemalloc reserves and processes on different nodes 2899 * should make reasonable progress. 2900 */ 2901 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2902 gfp_zone(gfp_mask), nodemask) { 2903 if (zone_idx(zone) > ZONE_NORMAL) 2904 continue; 2905 2906 /* Throttle based on the first usable node */ 2907 pgdat = zone->zone_pgdat; 2908 if (pfmemalloc_watermark_ok(pgdat)) 2909 goto out; 2910 break; 2911 } 2912 2913 /* If no zone was usable by the allocation flags then do not throttle */ 2914 if (!pgdat) 2915 goto out; 2916 2917 /* Account for the throttling */ 2918 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2919 2920 /* 2921 * If the caller cannot enter the filesystem, it's possible that it 2922 * is due to the caller holding an FS lock or performing a journal 2923 * transaction in the case of a filesystem like ext[3|4]. In this case, 2924 * it is not safe to block on pfmemalloc_wait as kswapd could be 2925 * blocked waiting on the same lock. Instead, throttle for up to a 2926 * second before continuing. 2927 */ 2928 if (!(gfp_mask & __GFP_FS)) { 2929 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2930 pfmemalloc_watermark_ok(pgdat), HZ); 2931 2932 goto check_pending; 2933 } 2934 2935 /* Throttle until kswapd wakes the process */ 2936 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2937 pfmemalloc_watermark_ok(pgdat)); 2938 2939 check_pending: 2940 if (fatal_signal_pending(current)) 2941 return true; 2942 2943 out: 2944 return false; 2945 } 2946 2947 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2948 gfp_t gfp_mask, nodemask_t *nodemask) 2949 { 2950 unsigned long nr_reclaimed; 2951 struct scan_control sc = { 2952 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2953 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2954 .reclaim_idx = gfp_zone(gfp_mask), 2955 .order = order, 2956 .nodemask = nodemask, 2957 .priority = DEF_PRIORITY, 2958 .may_writepage = !laptop_mode, 2959 .may_unmap = 1, 2960 .may_swap = 1, 2961 }; 2962 2963 /* 2964 * Do not enter reclaim if fatal signal was delivered while throttled. 2965 * 1 is returned so that the page allocator does not OOM kill at this 2966 * point. 2967 */ 2968 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2969 return 1; 2970 2971 trace_mm_vmscan_direct_reclaim_begin(order, 2972 sc.may_writepage, 2973 gfp_mask, 2974 sc.reclaim_idx); 2975 2976 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2977 2978 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2979 2980 return nr_reclaimed; 2981 } 2982 2983 #ifdef CONFIG_MEMCG 2984 2985 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 2986 gfp_t gfp_mask, bool noswap, 2987 pg_data_t *pgdat, 2988 unsigned long *nr_scanned) 2989 { 2990 struct scan_control sc = { 2991 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2992 .target_mem_cgroup = memcg, 2993 .may_writepage = !laptop_mode, 2994 .may_unmap = 1, 2995 .reclaim_idx = MAX_NR_ZONES - 1, 2996 .may_swap = !noswap, 2997 }; 2998 unsigned long lru_pages; 2999 3000 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3001 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3002 3003 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3004 sc.may_writepage, 3005 sc.gfp_mask, 3006 sc.reclaim_idx); 3007 3008 /* 3009 * NOTE: Although we can get the priority field, using it 3010 * here is not a good idea, since it limits the pages we can scan. 3011 * if we don't reclaim here, the shrink_node from balance_pgdat 3012 * will pick up pages from other mem cgroup's as well. We hack 3013 * the priority and make it zero. 3014 */ 3015 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3016 3017 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3018 3019 *nr_scanned = sc.nr_scanned; 3020 return sc.nr_reclaimed; 3021 } 3022 3023 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3024 unsigned long nr_pages, 3025 gfp_t gfp_mask, 3026 bool may_swap) 3027 { 3028 struct zonelist *zonelist; 3029 unsigned long nr_reclaimed; 3030 int nid; 3031 struct scan_control sc = { 3032 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3033 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3034 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3035 .reclaim_idx = MAX_NR_ZONES - 1, 3036 .target_mem_cgroup = memcg, 3037 .priority = DEF_PRIORITY, 3038 .may_writepage = !laptop_mode, 3039 .may_unmap = 1, 3040 .may_swap = may_swap, 3041 }; 3042 3043 /* 3044 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3045 * take care of from where we get pages. So the node where we start the 3046 * scan does not need to be the current node. 3047 */ 3048 nid = mem_cgroup_select_victim_node(memcg); 3049 3050 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3051 3052 trace_mm_vmscan_memcg_reclaim_begin(0, 3053 sc.may_writepage, 3054 sc.gfp_mask, 3055 sc.reclaim_idx); 3056 3057 current->flags |= PF_MEMALLOC; 3058 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3059 current->flags &= ~PF_MEMALLOC; 3060 3061 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3062 3063 return nr_reclaimed; 3064 } 3065 #endif 3066 3067 static void age_active_anon(struct pglist_data *pgdat, 3068 struct scan_control *sc) 3069 { 3070 struct mem_cgroup *memcg; 3071 3072 if (!total_swap_pages) 3073 return; 3074 3075 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3076 do { 3077 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3078 3079 if (inactive_list_is_low(lruvec, false, sc, true)) 3080 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3081 sc, LRU_ACTIVE_ANON); 3082 3083 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3084 } while (memcg); 3085 } 3086 3087 static bool zone_balanced(struct zone *zone, int order, int classzone_idx) 3088 { 3089 unsigned long mark = high_wmark_pages(zone); 3090 3091 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3092 return false; 3093 3094 /* 3095 * If any eligible zone is balanced then the node is not considered 3096 * to be congested or dirty 3097 */ 3098 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); 3099 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); 3100 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags); 3101 3102 return true; 3103 } 3104 3105 /* 3106 * Prepare kswapd for sleeping. This verifies that there are no processes 3107 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3108 * 3109 * Returns true if kswapd is ready to sleep 3110 */ 3111 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3112 { 3113 int i; 3114 3115 /* 3116 * The throttled processes are normally woken up in balance_pgdat() as 3117 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3118 * race between when kswapd checks the watermarks and a process gets 3119 * throttled. There is also a potential race if processes get 3120 * throttled, kswapd wakes, a large process exits thereby balancing the 3121 * zones, which causes kswapd to exit balance_pgdat() before reaching 3122 * the wake up checks. If kswapd is going to sleep, no process should 3123 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3124 * the wake up is premature, processes will wake kswapd and get 3125 * throttled again. The difference from wake ups in balance_pgdat() is 3126 * that here we are under prepare_to_wait(). 3127 */ 3128 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3129 wake_up_all(&pgdat->pfmemalloc_wait); 3130 3131 for (i = 0; i <= classzone_idx; i++) { 3132 struct zone *zone = pgdat->node_zones + i; 3133 3134 if (!managed_zone(zone)) 3135 continue; 3136 3137 if (!zone_balanced(zone, order, classzone_idx)) 3138 return false; 3139 } 3140 3141 return true; 3142 } 3143 3144 /* 3145 * kswapd shrinks a node of pages that are at or below the highest usable 3146 * zone that is currently unbalanced. 3147 * 3148 * Returns true if kswapd scanned at least the requested number of pages to 3149 * reclaim or if the lack of progress was due to pages under writeback. 3150 * This is used to determine if the scanning priority needs to be raised. 3151 */ 3152 static bool kswapd_shrink_node(pg_data_t *pgdat, 3153 struct scan_control *sc) 3154 { 3155 struct zone *zone; 3156 int z; 3157 3158 /* Reclaim a number of pages proportional to the number of zones */ 3159 sc->nr_to_reclaim = 0; 3160 for (z = 0; z <= sc->reclaim_idx; z++) { 3161 zone = pgdat->node_zones + z; 3162 if (!managed_zone(zone)) 3163 continue; 3164 3165 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3166 } 3167 3168 /* 3169 * Historically care was taken to put equal pressure on all zones but 3170 * now pressure is applied based on node LRU order. 3171 */ 3172 shrink_node(pgdat, sc); 3173 3174 /* 3175 * Fragmentation may mean that the system cannot be rebalanced for 3176 * high-order allocations. If twice the allocation size has been 3177 * reclaimed then recheck watermarks only at order-0 to prevent 3178 * excessive reclaim. Assume that a process requested a high-order 3179 * can direct reclaim/compact. 3180 */ 3181 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3182 sc->order = 0; 3183 3184 return sc->nr_scanned >= sc->nr_to_reclaim; 3185 } 3186 3187 /* 3188 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3189 * that are eligible for use by the caller until at least one zone is 3190 * balanced. 3191 * 3192 * Returns the order kswapd finished reclaiming at. 3193 * 3194 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3195 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3196 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3197 * or lower is eligible for reclaim until at least one usable zone is 3198 * balanced. 3199 */ 3200 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3201 { 3202 int i; 3203 unsigned long nr_soft_reclaimed; 3204 unsigned long nr_soft_scanned; 3205 struct zone *zone; 3206 struct scan_control sc = { 3207 .gfp_mask = GFP_KERNEL, 3208 .order = order, 3209 .priority = DEF_PRIORITY, 3210 .may_writepage = !laptop_mode, 3211 .may_unmap = 1, 3212 .may_swap = 1, 3213 }; 3214 count_vm_event(PAGEOUTRUN); 3215 3216 do { 3217 bool raise_priority = true; 3218 3219 sc.nr_reclaimed = 0; 3220 sc.reclaim_idx = classzone_idx; 3221 3222 /* 3223 * If the number of buffer_heads exceeds the maximum allowed 3224 * then consider reclaiming from all zones. This has a dual 3225 * purpose -- on 64-bit systems it is expected that 3226 * buffer_heads are stripped during active rotation. On 32-bit 3227 * systems, highmem pages can pin lowmem memory and shrinking 3228 * buffers can relieve lowmem pressure. Reclaim may still not 3229 * go ahead if all eligible zones for the original allocation 3230 * request are balanced to avoid excessive reclaim from kswapd. 3231 */ 3232 if (buffer_heads_over_limit) { 3233 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3234 zone = pgdat->node_zones + i; 3235 if (!managed_zone(zone)) 3236 continue; 3237 3238 sc.reclaim_idx = i; 3239 break; 3240 } 3241 } 3242 3243 /* 3244 * Only reclaim if there are no eligible zones. Check from 3245 * high to low zone as allocations prefer higher zones. 3246 * Scanning from low to high zone would allow congestion to be 3247 * cleared during a very small window when a small low 3248 * zone was balanced even under extreme pressure when the 3249 * overall node may be congested. Note that sc.reclaim_idx 3250 * is not used as buffer_heads_over_limit may have adjusted 3251 * it. 3252 */ 3253 for (i = classzone_idx; i >= 0; i--) { 3254 zone = pgdat->node_zones + i; 3255 if (!managed_zone(zone)) 3256 continue; 3257 3258 if (zone_balanced(zone, sc.order, classzone_idx)) 3259 goto out; 3260 } 3261 3262 /* 3263 * Do some background aging of the anon list, to give 3264 * pages a chance to be referenced before reclaiming. All 3265 * pages are rotated regardless of classzone as this is 3266 * about consistent aging. 3267 */ 3268 age_active_anon(pgdat, &sc); 3269 3270 /* 3271 * If we're getting trouble reclaiming, start doing writepage 3272 * even in laptop mode. 3273 */ 3274 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat)) 3275 sc.may_writepage = 1; 3276 3277 /* Call soft limit reclaim before calling shrink_node. */ 3278 sc.nr_scanned = 0; 3279 nr_soft_scanned = 0; 3280 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3281 sc.gfp_mask, &nr_soft_scanned); 3282 sc.nr_reclaimed += nr_soft_reclaimed; 3283 3284 /* 3285 * There should be no need to raise the scanning priority if 3286 * enough pages are already being scanned that that high 3287 * watermark would be met at 100% efficiency. 3288 */ 3289 if (kswapd_shrink_node(pgdat, &sc)) 3290 raise_priority = false; 3291 3292 /* 3293 * If the low watermark is met there is no need for processes 3294 * to be throttled on pfmemalloc_wait as they should not be 3295 * able to safely make forward progress. Wake them 3296 */ 3297 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3298 pfmemalloc_watermark_ok(pgdat)) 3299 wake_up_all(&pgdat->pfmemalloc_wait); 3300 3301 /* Check if kswapd should be suspending */ 3302 if (try_to_freeze() || kthread_should_stop()) 3303 break; 3304 3305 /* 3306 * Raise priority if scanning rate is too low or there was no 3307 * progress in reclaiming pages 3308 */ 3309 if (raise_priority || !sc.nr_reclaimed) 3310 sc.priority--; 3311 } while (sc.priority >= 1); 3312 3313 out: 3314 /* 3315 * Return the order kswapd stopped reclaiming at as 3316 * prepare_kswapd_sleep() takes it into account. If another caller 3317 * entered the allocator slow path while kswapd was awake, order will 3318 * remain at the higher level. 3319 */ 3320 return sc.order; 3321 } 3322 3323 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3324 unsigned int classzone_idx) 3325 { 3326 long remaining = 0; 3327 DEFINE_WAIT(wait); 3328 3329 if (freezing(current) || kthread_should_stop()) 3330 return; 3331 3332 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3333 3334 /* Try to sleep for a short interval */ 3335 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3336 /* 3337 * Compaction records what page blocks it recently failed to 3338 * isolate pages from and skips them in the future scanning. 3339 * When kswapd is going to sleep, it is reasonable to assume 3340 * that pages and compaction may succeed so reset the cache. 3341 */ 3342 reset_isolation_suitable(pgdat); 3343 3344 /* 3345 * We have freed the memory, now we should compact it to make 3346 * allocation of the requested order possible. 3347 */ 3348 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3349 3350 remaining = schedule_timeout(HZ/10); 3351 3352 /* 3353 * If woken prematurely then reset kswapd_classzone_idx and 3354 * order. The values will either be from a wakeup request or 3355 * the previous request that slept prematurely. 3356 */ 3357 if (remaining) { 3358 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3359 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3360 } 3361 3362 finish_wait(&pgdat->kswapd_wait, &wait); 3363 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3364 } 3365 3366 /* 3367 * After a short sleep, check if it was a premature sleep. If not, then 3368 * go fully to sleep until explicitly woken up. 3369 */ 3370 if (!remaining && 3371 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3372 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3373 3374 /* 3375 * vmstat counters are not perfectly accurate and the estimated 3376 * value for counters such as NR_FREE_PAGES can deviate from the 3377 * true value by nr_online_cpus * threshold. To avoid the zone 3378 * watermarks being breached while under pressure, we reduce the 3379 * per-cpu vmstat threshold while kswapd is awake and restore 3380 * them before going back to sleep. 3381 */ 3382 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3383 3384 if (!kthread_should_stop()) 3385 schedule(); 3386 3387 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3388 } else { 3389 if (remaining) 3390 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3391 else 3392 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3393 } 3394 finish_wait(&pgdat->kswapd_wait, &wait); 3395 } 3396 3397 /* 3398 * The background pageout daemon, started as a kernel thread 3399 * from the init process. 3400 * 3401 * This basically trickles out pages so that we have _some_ 3402 * free memory available even if there is no other activity 3403 * that frees anything up. This is needed for things like routing 3404 * etc, where we otherwise might have all activity going on in 3405 * asynchronous contexts that cannot page things out. 3406 * 3407 * If there are applications that are active memory-allocators 3408 * (most normal use), this basically shouldn't matter. 3409 */ 3410 static int kswapd(void *p) 3411 { 3412 unsigned int alloc_order, reclaim_order, classzone_idx; 3413 pg_data_t *pgdat = (pg_data_t*)p; 3414 struct task_struct *tsk = current; 3415 3416 struct reclaim_state reclaim_state = { 3417 .reclaimed_slab = 0, 3418 }; 3419 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3420 3421 lockdep_set_current_reclaim_state(GFP_KERNEL); 3422 3423 if (!cpumask_empty(cpumask)) 3424 set_cpus_allowed_ptr(tsk, cpumask); 3425 current->reclaim_state = &reclaim_state; 3426 3427 /* 3428 * Tell the memory management that we're a "memory allocator", 3429 * and that if we need more memory we should get access to it 3430 * regardless (see "__alloc_pages()"). "kswapd" should 3431 * never get caught in the normal page freeing logic. 3432 * 3433 * (Kswapd normally doesn't need memory anyway, but sometimes 3434 * you need a small amount of memory in order to be able to 3435 * page out something else, and this flag essentially protects 3436 * us from recursively trying to free more memory as we're 3437 * trying to free the first piece of memory in the first place). 3438 */ 3439 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3440 set_freezable(); 3441 3442 pgdat->kswapd_order = alloc_order = reclaim_order = 0; 3443 pgdat->kswapd_classzone_idx = classzone_idx = 0; 3444 for ( ; ; ) { 3445 bool ret; 3446 3447 kswapd_try_sleep: 3448 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3449 classzone_idx); 3450 3451 /* Read the new order and classzone_idx */ 3452 alloc_order = reclaim_order = pgdat->kswapd_order; 3453 classzone_idx = pgdat->kswapd_classzone_idx; 3454 pgdat->kswapd_order = 0; 3455 pgdat->kswapd_classzone_idx = 0; 3456 3457 ret = try_to_freeze(); 3458 if (kthread_should_stop()) 3459 break; 3460 3461 /* 3462 * We can speed up thawing tasks if we don't call balance_pgdat 3463 * after returning from the refrigerator 3464 */ 3465 if (ret) 3466 continue; 3467 3468 /* 3469 * Reclaim begins at the requested order but if a high-order 3470 * reclaim fails then kswapd falls back to reclaiming for 3471 * order-0. If that happens, kswapd will consider sleeping 3472 * for the order it finished reclaiming at (reclaim_order) 3473 * but kcompactd is woken to compact for the original 3474 * request (alloc_order). 3475 */ 3476 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3477 alloc_order); 3478 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3479 if (reclaim_order < alloc_order) 3480 goto kswapd_try_sleep; 3481 3482 alloc_order = reclaim_order = pgdat->kswapd_order; 3483 classzone_idx = pgdat->kswapd_classzone_idx; 3484 } 3485 3486 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3487 current->reclaim_state = NULL; 3488 lockdep_clear_current_reclaim_state(); 3489 3490 return 0; 3491 } 3492 3493 /* 3494 * A zone is low on free memory, so wake its kswapd task to service it. 3495 */ 3496 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3497 { 3498 pg_data_t *pgdat; 3499 int z; 3500 3501 if (!managed_zone(zone)) 3502 return; 3503 3504 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3505 return; 3506 pgdat = zone->zone_pgdat; 3507 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3508 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3509 if (!waitqueue_active(&pgdat->kswapd_wait)) 3510 return; 3511 3512 /* Only wake kswapd if all zones are unbalanced */ 3513 for (z = 0; z <= classzone_idx; z++) { 3514 zone = pgdat->node_zones + z; 3515 if (!managed_zone(zone)) 3516 continue; 3517 3518 if (zone_balanced(zone, order, classzone_idx)) 3519 return; 3520 } 3521 3522 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3523 wake_up_interruptible(&pgdat->kswapd_wait); 3524 } 3525 3526 #ifdef CONFIG_HIBERNATION 3527 /* 3528 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3529 * freed pages. 3530 * 3531 * Rather than trying to age LRUs the aim is to preserve the overall 3532 * LRU order by reclaiming preferentially 3533 * inactive > active > active referenced > active mapped 3534 */ 3535 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3536 { 3537 struct reclaim_state reclaim_state; 3538 struct scan_control sc = { 3539 .nr_to_reclaim = nr_to_reclaim, 3540 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3541 .reclaim_idx = MAX_NR_ZONES - 1, 3542 .priority = DEF_PRIORITY, 3543 .may_writepage = 1, 3544 .may_unmap = 1, 3545 .may_swap = 1, 3546 .hibernation_mode = 1, 3547 }; 3548 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3549 struct task_struct *p = current; 3550 unsigned long nr_reclaimed; 3551 3552 p->flags |= PF_MEMALLOC; 3553 lockdep_set_current_reclaim_state(sc.gfp_mask); 3554 reclaim_state.reclaimed_slab = 0; 3555 p->reclaim_state = &reclaim_state; 3556 3557 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3558 3559 p->reclaim_state = NULL; 3560 lockdep_clear_current_reclaim_state(); 3561 p->flags &= ~PF_MEMALLOC; 3562 3563 return nr_reclaimed; 3564 } 3565 #endif /* CONFIG_HIBERNATION */ 3566 3567 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3568 not required for correctness. So if the last cpu in a node goes 3569 away, we get changed to run anywhere: as the first one comes back, 3570 restore their cpu bindings. */ 3571 static int kswapd_cpu_online(unsigned int cpu) 3572 { 3573 int nid; 3574 3575 for_each_node_state(nid, N_MEMORY) { 3576 pg_data_t *pgdat = NODE_DATA(nid); 3577 const struct cpumask *mask; 3578 3579 mask = cpumask_of_node(pgdat->node_id); 3580 3581 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3582 /* One of our CPUs online: restore mask */ 3583 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3584 } 3585 return 0; 3586 } 3587 3588 /* 3589 * This kswapd start function will be called by init and node-hot-add. 3590 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3591 */ 3592 int kswapd_run(int nid) 3593 { 3594 pg_data_t *pgdat = NODE_DATA(nid); 3595 int ret = 0; 3596 3597 if (pgdat->kswapd) 3598 return 0; 3599 3600 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3601 if (IS_ERR(pgdat->kswapd)) { 3602 /* failure at boot is fatal */ 3603 BUG_ON(system_state == SYSTEM_BOOTING); 3604 pr_err("Failed to start kswapd on node %d\n", nid); 3605 ret = PTR_ERR(pgdat->kswapd); 3606 pgdat->kswapd = NULL; 3607 } 3608 return ret; 3609 } 3610 3611 /* 3612 * Called by memory hotplug when all memory in a node is offlined. Caller must 3613 * hold mem_hotplug_begin/end(). 3614 */ 3615 void kswapd_stop(int nid) 3616 { 3617 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3618 3619 if (kswapd) { 3620 kthread_stop(kswapd); 3621 NODE_DATA(nid)->kswapd = NULL; 3622 } 3623 } 3624 3625 static int __init kswapd_init(void) 3626 { 3627 int nid, ret; 3628 3629 swap_setup(); 3630 for_each_node_state(nid, N_MEMORY) 3631 kswapd_run(nid); 3632 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3633 "mm/vmscan:online", kswapd_cpu_online, 3634 NULL); 3635 WARN_ON(ret < 0); 3636 return 0; 3637 } 3638 3639 module_init(kswapd_init) 3640 3641 #ifdef CONFIG_NUMA 3642 /* 3643 * Node reclaim mode 3644 * 3645 * If non-zero call node_reclaim when the number of free pages falls below 3646 * the watermarks. 3647 */ 3648 int node_reclaim_mode __read_mostly; 3649 3650 #define RECLAIM_OFF 0 3651 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3652 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3653 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3654 3655 /* 3656 * Priority for NODE_RECLAIM. This determines the fraction of pages 3657 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3658 * a zone. 3659 */ 3660 #define NODE_RECLAIM_PRIORITY 4 3661 3662 /* 3663 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3664 * occur. 3665 */ 3666 int sysctl_min_unmapped_ratio = 1; 3667 3668 /* 3669 * If the number of slab pages in a zone grows beyond this percentage then 3670 * slab reclaim needs to occur. 3671 */ 3672 int sysctl_min_slab_ratio = 5; 3673 3674 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3675 { 3676 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3677 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3678 node_page_state(pgdat, NR_ACTIVE_FILE); 3679 3680 /* 3681 * It's possible for there to be more file mapped pages than 3682 * accounted for by the pages on the file LRU lists because 3683 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3684 */ 3685 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3686 } 3687 3688 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3689 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3690 { 3691 unsigned long nr_pagecache_reclaimable; 3692 unsigned long delta = 0; 3693 3694 /* 3695 * If RECLAIM_UNMAP is set, then all file pages are considered 3696 * potentially reclaimable. Otherwise, we have to worry about 3697 * pages like swapcache and node_unmapped_file_pages() provides 3698 * a better estimate 3699 */ 3700 if (node_reclaim_mode & RECLAIM_UNMAP) 3701 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3702 else 3703 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3704 3705 /* If we can't clean pages, remove dirty pages from consideration */ 3706 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3707 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3708 3709 /* Watch for any possible underflows due to delta */ 3710 if (unlikely(delta > nr_pagecache_reclaimable)) 3711 delta = nr_pagecache_reclaimable; 3712 3713 return nr_pagecache_reclaimable - delta; 3714 } 3715 3716 /* 3717 * Try to free up some pages from this node through reclaim. 3718 */ 3719 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3720 { 3721 /* Minimum pages needed in order to stay on node */ 3722 const unsigned long nr_pages = 1 << order; 3723 struct task_struct *p = current; 3724 struct reclaim_state reclaim_state; 3725 int classzone_idx = gfp_zone(gfp_mask); 3726 struct scan_control sc = { 3727 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3728 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3729 .order = order, 3730 .priority = NODE_RECLAIM_PRIORITY, 3731 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3732 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3733 .may_swap = 1, 3734 .reclaim_idx = classzone_idx, 3735 }; 3736 3737 cond_resched(); 3738 /* 3739 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3740 * and we also need to be able to write out pages for RECLAIM_WRITE 3741 * and RECLAIM_UNMAP. 3742 */ 3743 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3744 lockdep_set_current_reclaim_state(gfp_mask); 3745 reclaim_state.reclaimed_slab = 0; 3746 p->reclaim_state = &reclaim_state; 3747 3748 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3749 /* 3750 * Free memory by calling shrink zone with increasing 3751 * priorities until we have enough memory freed. 3752 */ 3753 do { 3754 shrink_node(pgdat, &sc); 3755 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3756 } 3757 3758 p->reclaim_state = NULL; 3759 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3760 lockdep_clear_current_reclaim_state(); 3761 return sc.nr_reclaimed >= nr_pages; 3762 } 3763 3764 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3765 { 3766 int ret; 3767 3768 /* 3769 * Node reclaim reclaims unmapped file backed pages and 3770 * slab pages if we are over the defined limits. 3771 * 3772 * A small portion of unmapped file backed pages is needed for 3773 * file I/O otherwise pages read by file I/O will be immediately 3774 * thrown out if the node is overallocated. So we do not reclaim 3775 * if less than a specified percentage of the node is used by 3776 * unmapped file backed pages. 3777 */ 3778 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3779 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3780 return NODE_RECLAIM_FULL; 3781 3782 if (!pgdat_reclaimable(pgdat)) 3783 return NODE_RECLAIM_FULL; 3784 3785 /* 3786 * Do not scan if the allocation should not be delayed. 3787 */ 3788 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3789 return NODE_RECLAIM_NOSCAN; 3790 3791 /* 3792 * Only run node reclaim on the local node or on nodes that do not 3793 * have associated processors. This will favor the local processor 3794 * over remote processors and spread off node memory allocations 3795 * as wide as possible. 3796 */ 3797 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3798 return NODE_RECLAIM_NOSCAN; 3799 3800 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3801 return NODE_RECLAIM_NOSCAN; 3802 3803 ret = __node_reclaim(pgdat, gfp_mask, order); 3804 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3805 3806 if (!ret) 3807 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3808 3809 return ret; 3810 } 3811 #endif 3812 3813 /* 3814 * page_evictable - test whether a page is evictable 3815 * @page: the page to test 3816 * 3817 * Test whether page is evictable--i.e., should be placed on active/inactive 3818 * lists vs unevictable list. 3819 * 3820 * Reasons page might not be evictable: 3821 * (1) page's mapping marked unevictable 3822 * (2) page is part of an mlocked VMA 3823 * 3824 */ 3825 int page_evictable(struct page *page) 3826 { 3827 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3828 } 3829 3830 #ifdef CONFIG_SHMEM 3831 /** 3832 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3833 * @pages: array of pages to check 3834 * @nr_pages: number of pages to check 3835 * 3836 * Checks pages for evictability and moves them to the appropriate lru list. 3837 * 3838 * This function is only used for SysV IPC SHM_UNLOCK. 3839 */ 3840 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3841 { 3842 struct lruvec *lruvec; 3843 struct pglist_data *pgdat = NULL; 3844 int pgscanned = 0; 3845 int pgrescued = 0; 3846 int i; 3847 3848 for (i = 0; i < nr_pages; i++) { 3849 struct page *page = pages[i]; 3850 struct pglist_data *pagepgdat = page_pgdat(page); 3851 3852 pgscanned++; 3853 if (pagepgdat != pgdat) { 3854 if (pgdat) 3855 spin_unlock_irq(&pgdat->lru_lock); 3856 pgdat = pagepgdat; 3857 spin_lock_irq(&pgdat->lru_lock); 3858 } 3859 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3860 3861 if (!PageLRU(page) || !PageUnevictable(page)) 3862 continue; 3863 3864 if (page_evictable(page)) { 3865 enum lru_list lru = page_lru_base_type(page); 3866 3867 VM_BUG_ON_PAGE(PageActive(page), page); 3868 ClearPageUnevictable(page); 3869 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3870 add_page_to_lru_list(page, lruvec, lru); 3871 pgrescued++; 3872 } 3873 } 3874 3875 if (pgdat) { 3876 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3877 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3878 spin_unlock_irq(&pgdat->lru_lock); 3879 } 3880 } 3881 #endif /* CONFIG_SHMEM */ 3882