xref: /openbmc/linux/mm/vmscan.c (revision 171f1bc7)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *			page from the LRU and reclaim all pages within a
64  *			naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *			order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74 
75 struct scan_control {
76 	/* Incremented by the number of inactive pages that were scanned */
77 	unsigned long nr_scanned;
78 
79 	/* Number of pages freed so far during a call to shrink_zones() */
80 	unsigned long nr_reclaimed;
81 
82 	/* How many pages shrink_list() should reclaim */
83 	unsigned long nr_to_reclaim;
84 
85 	unsigned long hibernation_mode;
86 
87 	/* This context's GFP mask */
88 	gfp_t gfp_mask;
89 
90 	int may_writepage;
91 
92 	/* Can mapped pages be reclaimed? */
93 	int may_unmap;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	int may_swap;
97 
98 	int order;
99 
100 	/*
101 	 * Intend to reclaim enough continuous memory rather than reclaim
102 	 * enough amount of memory. i.e, mode for high order allocation.
103 	 */
104 	reclaim_mode_t reclaim_mode;
105 
106 	/* Which cgroup do we reclaim from */
107 	struct mem_cgroup *mem_cgroup;
108 
109 	/*
110 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 	 * are scanned.
112 	 */
113 	nodemask_t	*nodemask;
114 };
115 
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117 
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)			\
120 	do {								\
121 		if ((_page)->lru.prev != _base) {			\
122 			struct page *prev;				\
123 									\
124 			prev = lru_to_page(&(_page->lru));		\
125 			prefetch(&prev->_field);			\
126 		}							\
127 	} while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131 
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)			\
134 	do {								\
135 		if ((_page)->lru.prev != _base) {			\
136 			struct page *prev;				\
137 									\
138 			prev = lru_to_page(&(_page->lru));		\
139 			prefetchw(&prev->_field);			\
140 		}							\
141 	} while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145 
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;	/* The total number of pages which the VM controls */
151 
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154 
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc)	(1)
159 #endif
160 
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 						  struct scan_control *sc)
163 {
164 	if (!scanning_global_lru(sc))
165 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166 
167 	return &zone->reclaim_stat;
168 }
169 
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171 				struct scan_control *sc, enum lru_list lru)
172 {
173 	if (!scanning_global_lru(sc))
174 		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176 
177 	return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179 
180 
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186 	shrinker->nr = 0;
187 	down_write(&shrinker_rwsem);
188 	list_add_tail(&shrinker->list, &shrinker_list);
189 	up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192 
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198 	down_write(&shrinker_rwsem);
199 	list_del(&shrinker->list);
200 	up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203 
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 				     struct shrink_control *sc,
206 				     unsigned long nr_to_scan)
207 {
208 	sc->nr_to_scan = nr_to_scan;
209 	return (*shrinker->shrink)(shrinker, sc);
210 }
211 
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233 			  unsigned long nr_pages_scanned,
234 			  unsigned long lru_pages)
235 {
236 	struct shrinker *shrinker;
237 	unsigned long ret = 0;
238 
239 	if (nr_pages_scanned == 0)
240 		nr_pages_scanned = SWAP_CLUSTER_MAX;
241 
242 	if (!down_read_trylock(&shrinker_rwsem)) {
243 		/* Assume we'll be able to shrink next time */
244 		ret = 1;
245 		goto out;
246 	}
247 
248 	list_for_each_entry(shrinker, &shrinker_list, list) {
249 		unsigned long long delta;
250 		unsigned long total_scan;
251 		unsigned long max_pass;
252 		int shrink_ret = 0;
253 		long nr;
254 		long new_nr;
255 		long batch_size = shrinker->batch ? shrinker->batch
256 						  : SHRINK_BATCH;
257 
258 		/*
259 		 * copy the current shrinker scan count into a local variable
260 		 * and zero it so that other concurrent shrinker invocations
261 		 * don't also do this scanning work.
262 		 */
263 		do {
264 			nr = shrinker->nr;
265 		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266 
267 		total_scan = nr;
268 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
270 		delta *= max_pass;
271 		do_div(delta, lru_pages + 1);
272 		total_scan += delta;
273 		if (total_scan < 0) {
274 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
275 			       "delete nr=%ld\n",
276 			       shrinker->shrink, total_scan);
277 			total_scan = max_pass;
278 		}
279 
280 		/*
281 		 * We need to avoid excessive windup on filesystem shrinkers
282 		 * due to large numbers of GFP_NOFS allocations causing the
283 		 * shrinkers to return -1 all the time. This results in a large
284 		 * nr being built up so when a shrink that can do some work
285 		 * comes along it empties the entire cache due to nr >>>
286 		 * max_pass.  This is bad for sustaining a working set in
287 		 * memory.
288 		 *
289 		 * Hence only allow the shrinker to scan the entire cache when
290 		 * a large delta change is calculated directly.
291 		 */
292 		if (delta < max_pass / 4)
293 			total_scan = min(total_scan, max_pass / 2);
294 
295 		/*
296 		 * Avoid risking looping forever due to too large nr value:
297 		 * never try to free more than twice the estimate number of
298 		 * freeable entries.
299 		 */
300 		if (total_scan > max_pass * 2)
301 			total_scan = max_pass * 2;
302 
303 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
304 					nr_pages_scanned, lru_pages,
305 					max_pass, delta, total_scan);
306 
307 		while (total_scan >= batch_size) {
308 			int nr_before;
309 
310 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
312 							batch_size);
313 			if (shrink_ret == -1)
314 				break;
315 			if (shrink_ret < nr_before)
316 				ret += nr_before - shrink_ret;
317 			count_vm_events(SLABS_SCANNED, batch_size);
318 			total_scan -= batch_size;
319 
320 			cond_resched();
321 		}
322 
323 		/*
324 		 * move the unused scan count back into the shrinker in a
325 		 * manner that handles concurrent updates. If we exhausted the
326 		 * scan, there is no need to do an update.
327 		 */
328 		do {
329 			nr = shrinker->nr;
330 			new_nr = total_scan + nr;
331 			if (total_scan <= 0)
332 				break;
333 		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334 
335 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336 	}
337 	up_read(&shrinker_rwsem);
338 out:
339 	cond_resched();
340 	return ret;
341 }
342 
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344 				   bool sync)
345 {
346 	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347 
348 	/*
349 	 * Initially assume we are entering either lumpy reclaim or
350 	 * reclaim/compaction.Depending on the order, we will either set the
351 	 * sync mode or just reclaim order-0 pages later.
352 	 */
353 	if (COMPACTION_BUILD)
354 		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355 	else
356 		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357 
358 	/*
359 	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 	 * restricting when its set to either costly allocations or when
361 	 * under memory pressure
362 	 */
363 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364 		sc->reclaim_mode |= syncmode;
365 	else if (sc->order && priority < DEF_PRIORITY - 2)
366 		sc->reclaim_mode |= syncmode;
367 	else
368 		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370 
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373 	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375 
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378 	/*
379 	 * A freeable page cache page is referenced only by the caller
380 	 * that isolated the page, the page cache radix tree and
381 	 * optional buffer heads at page->private.
382 	 */
383 	return page_count(page) - page_has_private(page) == 2;
384 }
385 
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387 			      struct scan_control *sc)
388 {
389 	if (current->flags & PF_SWAPWRITE)
390 		return 1;
391 	if (!bdi_write_congested(bdi))
392 		return 1;
393 	if (bdi == current->backing_dev_info)
394 		return 1;
395 
396 	/* lumpy reclaim for hugepage often need a lot of write */
397 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 		return 1;
399 	return 0;
400 }
401 
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415 				struct page *page, int error)
416 {
417 	lock_page(page);
418 	if (page_mapping(page) == mapping)
419 		mapping_set_error(mapping, error);
420 	unlock_page(page);
421 }
422 
423 /* possible outcome of pageout() */
424 typedef enum {
425 	/* failed to write page out, page is locked */
426 	PAGE_KEEP,
427 	/* move page to the active list, page is locked */
428 	PAGE_ACTIVATE,
429 	/* page has been sent to the disk successfully, page is unlocked */
430 	PAGE_SUCCESS,
431 	/* page is clean and locked */
432 	PAGE_CLEAN,
433 } pageout_t;
434 
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440 			 struct scan_control *sc)
441 {
442 	/*
443 	 * If the page is dirty, only perform writeback if that write
444 	 * will be non-blocking.  To prevent this allocation from being
445 	 * stalled by pagecache activity.  But note that there may be
446 	 * stalls if we need to run get_block().  We could test
447 	 * PagePrivate for that.
448 	 *
449 	 * If this process is currently in __generic_file_aio_write() against
450 	 * this page's queue, we can perform writeback even if that
451 	 * will block.
452 	 *
453 	 * If the page is swapcache, write it back even if that would
454 	 * block, for some throttling. This happens by accident, because
455 	 * swap_backing_dev_info is bust: it doesn't reflect the
456 	 * congestion state of the swapdevs.  Easy to fix, if needed.
457 	 */
458 	if (!is_page_cache_freeable(page))
459 		return PAGE_KEEP;
460 	if (!mapping) {
461 		/*
462 		 * Some data journaling orphaned pages can have
463 		 * page->mapping == NULL while being dirty with clean buffers.
464 		 */
465 		if (page_has_private(page)) {
466 			if (try_to_free_buffers(page)) {
467 				ClearPageDirty(page);
468 				printk("%s: orphaned page\n", __func__);
469 				return PAGE_CLEAN;
470 			}
471 		}
472 		return PAGE_KEEP;
473 	}
474 	if (mapping->a_ops->writepage == NULL)
475 		return PAGE_ACTIVATE;
476 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
477 		return PAGE_KEEP;
478 
479 	if (clear_page_dirty_for_io(page)) {
480 		int res;
481 		struct writeback_control wbc = {
482 			.sync_mode = WB_SYNC_NONE,
483 			.nr_to_write = SWAP_CLUSTER_MAX,
484 			.range_start = 0,
485 			.range_end = LLONG_MAX,
486 			.for_reclaim = 1,
487 		};
488 
489 		SetPageReclaim(page);
490 		res = mapping->a_ops->writepage(page, &wbc);
491 		if (res < 0)
492 			handle_write_error(mapping, page, res);
493 		if (res == AOP_WRITEPAGE_ACTIVATE) {
494 			ClearPageReclaim(page);
495 			return PAGE_ACTIVATE;
496 		}
497 
498 		if (!PageWriteback(page)) {
499 			/* synchronous write or broken a_ops? */
500 			ClearPageReclaim(page);
501 		}
502 		trace_mm_vmscan_writepage(page,
503 			trace_reclaim_flags(page, sc->reclaim_mode));
504 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
505 		return PAGE_SUCCESS;
506 	}
507 
508 	return PAGE_CLEAN;
509 }
510 
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517 	BUG_ON(!PageLocked(page));
518 	BUG_ON(mapping != page_mapping(page));
519 
520 	spin_lock_irq(&mapping->tree_lock);
521 	/*
522 	 * The non racy check for a busy page.
523 	 *
524 	 * Must be careful with the order of the tests. When someone has
525 	 * a ref to the page, it may be possible that they dirty it then
526 	 * drop the reference. So if PageDirty is tested before page_count
527 	 * here, then the following race may occur:
528 	 *
529 	 * get_user_pages(&page);
530 	 * [user mapping goes away]
531 	 * write_to(page);
532 	 *				!PageDirty(page)    [good]
533 	 * SetPageDirty(page);
534 	 * put_page(page);
535 	 *				!page_count(page)   [good, discard it]
536 	 *
537 	 * [oops, our write_to data is lost]
538 	 *
539 	 * Reversing the order of the tests ensures such a situation cannot
540 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541 	 * load is not satisfied before that of page->_count.
542 	 *
543 	 * Note that if SetPageDirty is always performed via set_page_dirty,
544 	 * and thus under tree_lock, then this ordering is not required.
545 	 */
546 	if (!page_freeze_refs(page, 2))
547 		goto cannot_free;
548 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549 	if (unlikely(PageDirty(page))) {
550 		page_unfreeze_refs(page, 2);
551 		goto cannot_free;
552 	}
553 
554 	if (PageSwapCache(page)) {
555 		swp_entry_t swap = { .val = page_private(page) };
556 		__delete_from_swap_cache(page);
557 		spin_unlock_irq(&mapping->tree_lock);
558 		swapcache_free(swap, page);
559 	} else {
560 		void (*freepage)(struct page *);
561 
562 		freepage = mapping->a_ops->freepage;
563 
564 		__delete_from_page_cache(page);
565 		spin_unlock_irq(&mapping->tree_lock);
566 		mem_cgroup_uncharge_cache_page(page);
567 
568 		if (freepage != NULL)
569 			freepage(page);
570 	}
571 
572 	return 1;
573 
574 cannot_free:
575 	spin_unlock_irq(&mapping->tree_lock);
576 	return 0;
577 }
578 
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587 	if (__remove_mapping(mapping, page)) {
588 		/*
589 		 * Unfreezing the refcount with 1 rather than 2 effectively
590 		 * drops the pagecache ref for us without requiring another
591 		 * atomic operation.
592 		 */
593 		page_unfreeze_refs(page, 1);
594 		return 1;
595 	}
596 	return 0;
597 }
598 
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610 	int lru;
611 	int active = !!TestClearPageActive(page);
612 	int was_unevictable = PageUnevictable(page);
613 
614 	VM_BUG_ON(PageLRU(page));
615 
616 redo:
617 	ClearPageUnevictable(page);
618 
619 	if (page_evictable(page, NULL)) {
620 		/*
621 		 * For evictable pages, we can use the cache.
622 		 * In event of a race, worst case is we end up with an
623 		 * unevictable page on [in]active list.
624 		 * We know how to handle that.
625 		 */
626 		lru = active + page_lru_base_type(page);
627 		lru_cache_add_lru(page, lru);
628 	} else {
629 		/*
630 		 * Put unevictable pages directly on zone's unevictable
631 		 * list.
632 		 */
633 		lru = LRU_UNEVICTABLE;
634 		add_page_to_unevictable_list(page);
635 		/*
636 		 * When racing with an mlock or AS_UNEVICTABLE clearing
637 		 * (page is unlocked) make sure that if the other thread
638 		 * does not observe our setting of PG_lru and fails
639 		 * isolation/check_move_unevictable_page,
640 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641 		 * the page back to the evictable list.
642 		 *
643 		 * The other side is TestClearPageMlocked() or shmem_lock().
644 		 */
645 		smp_mb();
646 	}
647 
648 	/*
649 	 * page's status can change while we move it among lru. If an evictable
650 	 * page is on unevictable list, it never be freed. To avoid that,
651 	 * check after we added it to the list, again.
652 	 */
653 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654 		if (!isolate_lru_page(page)) {
655 			put_page(page);
656 			goto redo;
657 		}
658 		/* This means someone else dropped this page from LRU
659 		 * So, it will be freed or putback to LRU again. There is
660 		 * nothing to do here.
661 		 */
662 	}
663 
664 	if (was_unevictable && lru != LRU_UNEVICTABLE)
665 		count_vm_event(UNEVICTABLE_PGRESCUED);
666 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667 		count_vm_event(UNEVICTABLE_PGCULLED);
668 
669 	put_page(page);		/* drop ref from isolate */
670 }
671 
672 enum page_references {
673 	PAGEREF_RECLAIM,
674 	PAGEREF_RECLAIM_CLEAN,
675 	PAGEREF_KEEP,
676 	PAGEREF_ACTIVATE,
677 };
678 
679 static enum page_references page_check_references(struct page *page,
680 						  struct scan_control *sc)
681 {
682 	int referenced_ptes, referenced_page;
683 	unsigned long vm_flags;
684 
685 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686 	referenced_page = TestClearPageReferenced(page);
687 
688 	/* Lumpy reclaim - ignore references */
689 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690 		return PAGEREF_RECLAIM;
691 
692 	/*
693 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
694 	 * move the page to the unevictable list.
695 	 */
696 	if (vm_flags & VM_LOCKED)
697 		return PAGEREF_RECLAIM;
698 
699 	if (referenced_ptes) {
700 		if (PageAnon(page))
701 			return PAGEREF_ACTIVATE;
702 		/*
703 		 * All mapped pages start out with page table
704 		 * references from the instantiating fault, so we need
705 		 * to look twice if a mapped file page is used more
706 		 * than once.
707 		 *
708 		 * Mark it and spare it for another trip around the
709 		 * inactive list.  Another page table reference will
710 		 * lead to its activation.
711 		 *
712 		 * Note: the mark is set for activated pages as well
713 		 * so that recently deactivated but used pages are
714 		 * quickly recovered.
715 		 */
716 		SetPageReferenced(page);
717 
718 		if (referenced_page)
719 			return PAGEREF_ACTIVATE;
720 
721 		return PAGEREF_KEEP;
722 	}
723 
724 	/* Reclaim if clean, defer dirty pages to writeback */
725 	if (referenced_page && !PageSwapBacked(page))
726 		return PAGEREF_RECLAIM_CLEAN;
727 
728 	return PAGEREF_RECLAIM;
729 }
730 
731 static noinline_for_stack void free_page_list(struct list_head *free_pages)
732 {
733 	struct pagevec freed_pvec;
734 	struct page *page, *tmp;
735 
736 	pagevec_init(&freed_pvec, 1);
737 
738 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
739 		list_del(&page->lru);
740 		if (!pagevec_add(&freed_pvec, page)) {
741 			__pagevec_free(&freed_pvec);
742 			pagevec_reinit(&freed_pvec);
743 		}
744 	}
745 
746 	pagevec_free(&freed_pvec);
747 }
748 
749 /*
750  * shrink_page_list() returns the number of reclaimed pages
751  */
752 static unsigned long shrink_page_list(struct list_head *page_list,
753 				      struct zone *zone,
754 				      struct scan_control *sc,
755 				      int priority,
756 				      unsigned long *ret_nr_dirty,
757 				      unsigned long *ret_nr_writeback)
758 {
759 	LIST_HEAD(ret_pages);
760 	LIST_HEAD(free_pages);
761 	int pgactivate = 0;
762 	unsigned long nr_dirty = 0;
763 	unsigned long nr_congested = 0;
764 	unsigned long nr_reclaimed = 0;
765 	unsigned long nr_writeback = 0;
766 
767 	cond_resched();
768 
769 	while (!list_empty(page_list)) {
770 		enum page_references references;
771 		struct address_space *mapping;
772 		struct page *page;
773 		int may_enter_fs;
774 
775 		cond_resched();
776 
777 		page = lru_to_page(page_list);
778 		list_del(&page->lru);
779 
780 		if (!trylock_page(page))
781 			goto keep;
782 
783 		VM_BUG_ON(PageActive(page));
784 		VM_BUG_ON(page_zone(page) != zone);
785 
786 		sc->nr_scanned++;
787 
788 		if (unlikely(!page_evictable(page, NULL)))
789 			goto cull_mlocked;
790 
791 		if (!sc->may_unmap && page_mapped(page))
792 			goto keep_locked;
793 
794 		/* Double the slab pressure for mapped and swapcache pages */
795 		if (page_mapped(page) || PageSwapCache(page))
796 			sc->nr_scanned++;
797 
798 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
799 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
800 
801 		if (PageWriteback(page)) {
802 			nr_writeback++;
803 			/*
804 			 * Synchronous reclaim cannot queue pages for
805 			 * writeback due to the possibility of stack overflow
806 			 * but if it encounters a page under writeback, wait
807 			 * for the IO to complete.
808 			 */
809 			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
810 			    may_enter_fs)
811 				wait_on_page_writeback(page);
812 			else {
813 				unlock_page(page);
814 				goto keep_lumpy;
815 			}
816 		}
817 
818 		references = page_check_references(page, sc);
819 		switch (references) {
820 		case PAGEREF_ACTIVATE:
821 			goto activate_locked;
822 		case PAGEREF_KEEP:
823 			goto keep_locked;
824 		case PAGEREF_RECLAIM:
825 		case PAGEREF_RECLAIM_CLEAN:
826 			; /* try to reclaim the page below */
827 		}
828 
829 		/*
830 		 * Anonymous process memory has backing store?
831 		 * Try to allocate it some swap space here.
832 		 */
833 		if (PageAnon(page) && !PageSwapCache(page)) {
834 			if (!(sc->gfp_mask & __GFP_IO))
835 				goto keep_locked;
836 			if (!add_to_swap(page))
837 				goto activate_locked;
838 			may_enter_fs = 1;
839 		}
840 
841 		mapping = page_mapping(page);
842 
843 		/*
844 		 * The page is mapped into the page tables of one or more
845 		 * processes. Try to unmap it here.
846 		 */
847 		if (page_mapped(page) && mapping) {
848 			switch (try_to_unmap(page, TTU_UNMAP)) {
849 			case SWAP_FAIL:
850 				goto activate_locked;
851 			case SWAP_AGAIN:
852 				goto keep_locked;
853 			case SWAP_MLOCK:
854 				goto cull_mlocked;
855 			case SWAP_SUCCESS:
856 				; /* try to free the page below */
857 			}
858 		}
859 
860 		if (PageDirty(page)) {
861 			nr_dirty++;
862 
863 			/*
864 			 * Only kswapd can writeback filesystem pages to
865 			 * avoid risk of stack overflow but do not writeback
866 			 * unless under significant pressure.
867 			 */
868 			if (page_is_file_cache(page) &&
869 					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
870 				/*
871 				 * Immediately reclaim when written back.
872 				 * Similar in principal to deactivate_page()
873 				 * except we already have the page isolated
874 				 * and know it's dirty
875 				 */
876 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
877 				SetPageReclaim(page);
878 
879 				goto keep_locked;
880 			}
881 
882 			if (references == PAGEREF_RECLAIM_CLEAN)
883 				goto keep_locked;
884 			if (!may_enter_fs)
885 				goto keep_locked;
886 			if (!sc->may_writepage)
887 				goto keep_locked;
888 
889 			/* Page is dirty, try to write it out here */
890 			switch (pageout(page, mapping, sc)) {
891 			case PAGE_KEEP:
892 				nr_congested++;
893 				goto keep_locked;
894 			case PAGE_ACTIVATE:
895 				goto activate_locked;
896 			case PAGE_SUCCESS:
897 				if (PageWriteback(page))
898 					goto keep_lumpy;
899 				if (PageDirty(page))
900 					goto keep;
901 
902 				/*
903 				 * A synchronous write - probably a ramdisk.  Go
904 				 * ahead and try to reclaim the page.
905 				 */
906 				if (!trylock_page(page))
907 					goto keep;
908 				if (PageDirty(page) || PageWriteback(page))
909 					goto keep_locked;
910 				mapping = page_mapping(page);
911 			case PAGE_CLEAN:
912 				; /* try to free the page below */
913 			}
914 		}
915 
916 		/*
917 		 * If the page has buffers, try to free the buffer mappings
918 		 * associated with this page. If we succeed we try to free
919 		 * the page as well.
920 		 *
921 		 * We do this even if the page is PageDirty().
922 		 * try_to_release_page() does not perform I/O, but it is
923 		 * possible for a page to have PageDirty set, but it is actually
924 		 * clean (all its buffers are clean).  This happens if the
925 		 * buffers were written out directly, with submit_bh(). ext3
926 		 * will do this, as well as the blockdev mapping.
927 		 * try_to_release_page() will discover that cleanness and will
928 		 * drop the buffers and mark the page clean - it can be freed.
929 		 *
930 		 * Rarely, pages can have buffers and no ->mapping.  These are
931 		 * the pages which were not successfully invalidated in
932 		 * truncate_complete_page().  We try to drop those buffers here
933 		 * and if that worked, and the page is no longer mapped into
934 		 * process address space (page_count == 1) it can be freed.
935 		 * Otherwise, leave the page on the LRU so it is swappable.
936 		 */
937 		if (page_has_private(page)) {
938 			if (!try_to_release_page(page, sc->gfp_mask))
939 				goto activate_locked;
940 			if (!mapping && page_count(page) == 1) {
941 				unlock_page(page);
942 				if (put_page_testzero(page))
943 					goto free_it;
944 				else {
945 					/*
946 					 * rare race with speculative reference.
947 					 * the speculative reference will free
948 					 * this page shortly, so we may
949 					 * increment nr_reclaimed here (and
950 					 * leave it off the LRU).
951 					 */
952 					nr_reclaimed++;
953 					continue;
954 				}
955 			}
956 		}
957 
958 		if (!mapping || !__remove_mapping(mapping, page))
959 			goto keep_locked;
960 
961 		/*
962 		 * At this point, we have no other references and there is
963 		 * no way to pick any more up (removed from LRU, removed
964 		 * from pagecache). Can use non-atomic bitops now (and
965 		 * we obviously don't have to worry about waking up a process
966 		 * waiting on the page lock, because there are no references.
967 		 */
968 		__clear_page_locked(page);
969 free_it:
970 		nr_reclaimed++;
971 
972 		/*
973 		 * Is there need to periodically free_page_list? It would
974 		 * appear not as the counts should be low
975 		 */
976 		list_add(&page->lru, &free_pages);
977 		continue;
978 
979 cull_mlocked:
980 		if (PageSwapCache(page))
981 			try_to_free_swap(page);
982 		unlock_page(page);
983 		putback_lru_page(page);
984 		reset_reclaim_mode(sc);
985 		continue;
986 
987 activate_locked:
988 		/* Not a candidate for swapping, so reclaim swap space. */
989 		if (PageSwapCache(page) && vm_swap_full())
990 			try_to_free_swap(page);
991 		VM_BUG_ON(PageActive(page));
992 		SetPageActive(page);
993 		pgactivate++;
994 keep_locked:
995 		unlock_page(page);
996 keep:
997 		reset_reclaim_mode(sc);
998 keep_lumpy:
999 		list_add(&page->lru, &ret_pages);
1000 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1001 	}
1002 
1003 	/*
1004 	 * Tag a zone as congested if all the dirty pages encountered were
1005 	 * backed by a congested BDI. In this case, reclaimers should just
1006 	 * back off and wait for congestion to clear because further reclaim
1007 	 * will encounter the same problem
1008 	 */
1009 	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1010 		zone_set_flag(zone, ZONE_CONGESTED);
1011 
1012 	free_page_list(&free_pages);
1013 
1014 	list_splice(&ret_pages, page_list);
1015 	count_vm_events(PGACTIVATE, pgactivate);
1016 	*ret_nr_dirty += nr_dirty;
1017 	*ret_nr_writeback += nr_writeback;
1018 	return nr_reclaimed;
1019 }
1020 
1021 /*
1022  * Attempt to remove the specified page from its LRU.  Only take this page
1023  * if it is of the appropriate PageActive status.  Pages which are being
1024  * freed elsewhere are also ignored.
1025  *
1026  * page:	page to consider
1027  * mode:	one of the LRU isolation modes defined above
1028  *
1029  * returns 0 on success, -ve errno on failure.
1030  */
1031 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1032 {
1033 	bool all_lru_mode;
1034 	int ret = -EINVAL;
1035 
1036 	/* Only take pages on the LRU. */
1037 	if (!PageLRU(page))
1038 		return ret;
1039 
1040 	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1041 		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1042 
1043 	/*
1044 	 * When checking the active state, we need to be sure we are
1045 	 * dealing with comparible boolean values.  Take the logical not
1046 	 * of each.
1047 	 */
1048 	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1049 		return ret;
1050 
1051 	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1052 		return ret;
1053 
1054 	/*
1055 	 * When this function is being called for lumpy reclaim, we
1056 	 * initially look into all LRU pages, active, inactive and
1057 	 * unevictable; only give shrink_page_list evictable pages.
1058 	 */
1059 	if (PageUnevictable(page))
1060 		return ret;
1061 
1062 	ret = -EBUSY;
1063 
1064 	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1065 		return ret;
1066 
1067 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1068 		return ret;
1069 
1070 	if (likely(get_page_unless_zero(page))) {
1071 		/*
1072 		 * Be careful not to clear PageLRU until after we're
1073 		 * sure the page is not being freed elsewhere -- the
1074 		 * page release code relies on it.
1075 		 */
1076 		ClearPageLRU(page);
1077 		ret = 0;
1078 	}
1079 
1080 	return ret;
1081 }
1082 
1083 /*
1084  * zone->lru_lock is heavily contended.  Some of the functions that
1085  * shrink the lists perform better by taking out a batch of pages
1086  * and working on them outside the LRU lock.
1087  *
1088  * For pagecache intensive workloads, this function is the hottest
1089  * spot in the kernel (apart from copy_*_user functions).
1090  *
1091  * Appropriate locks must be held before calling this function.
1092  *
1093  * @nr_to_scan:	The number of pages to look through on the list.
1094  * @src:	The LRU list to pull pages off.
1095  * @dst:	The temp list to put pages on to.
1096  * @scanned:	The number of pages that were scanned.
1097  * @order:	The caller's attempted allocation order
1098  * @mode:	One of the LRU isolation modes
1099  * @file:	True [1] if isolating file [!anon] pages
1100  *
1101  * returns how many pages were moved onto *@dst.
1102  */
1103 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1104 		struct list_head *src, struct list_head *dst,
1105 		unsigned long *scanned, int order, isolate_mode_t mode,
1106 		int file)
1107 {
1108 	unsigned long nr_taken = 0;
1109 	unsigned long nr_lumpy_taken = 0;
1110 	unsigned long nr_lumpy_dirty = 0;
1111 	unsigned long nr_lumpy_failed = 0;
1112 	unsigned long scan;
1113 
1114 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1115 		struct page *page;
1116 		unsigned long pfn;
1117 		unsigned long end_pfn;
1118 		unsigned long page_pfn;
1119 		int zone_id;
1120 
1121 		page = lru_to_page(src);
1122 		prefetchw_prev_lru_page(page, src, flags);
1123 
1124 		VM_BUG_ON(!PageLRU(page));
1125 
1126 		switch (__isolate_lru_page(page, mode, file)) {
1127 		case 0:
1128 			list_move(&page->lru, dst);
1129 			mem_cgroup_del_lru(page);
1130 			nr_taken += hpage_nr_pages(page);
1131 			break;
1132 
1133 		case -EBUSY:
1134 			/* else it is being freed elsewhere */
1135 			list_move(&page->lru, src);
1136 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1137 			continue;
1138 
1139 		default:
1140 			BUG();
1141 		}
1142 
1143 		if (!order)
1144 			continue;
1145 
1146 		/*
1147 		 * Attempt to take all pages in the order aligned region
1148 		 * surrounding the tag page.  Only take those pages of
1149 		 * the same active state as that tag page.  We may safely
1150 		 * round the target page pfn down to the requested order
1151 		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1152 		 * where that page is in a different zone we will detect
1153 		 * it from its zone id and abort this block scan.
1154 		 */
1155 		zone_id = page_zone_id(page);
1156 		page_pfn = page_to_pfn(page);
1157 		pfn = page_pfn & ~((1 << order) - 1);
1158 		end_pfn = pfn + (1 << order);
1159 		for (; pfn < end_pfn; pfn++) {
1160 			struct page *cursor_page;
1161 
1162 			/* The target page is in the block, ignore it. */
1163 			if (unlikely(pfn == page_pfn))
1164 				continue;
1165 
1166 			/* Avoid holes within the zone. */
1167 			if (unlikely(!pfn_valid_within(pfn)))
1168 				break;
1169 
1170 			cursor_page = pfn_to_page(pfn);
1171 
1172 			/* Check that we have not crossed a zone boundary. */
1173 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1174 				break;
1175 
1176 			/*
1177 			 * If we don't have enough swap space, reclaiming of
1178 			 * anon page which don't already have a swap slot is
1179 			 * pointless.
1180 			 */
1181 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1182 			    !PageSwapCache(cursor_page))
1183 				break;
1184 
1185 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1186 				list_move(&cursor_page->lru, dst);
1187 				mem_cgroup_del_lru(cursor_page);
1188 				nr_taken += hpage_nr_pages(page);
1189 				nr_lumpy_taken++;
1190 				if (PageDirty(cursor_page))
1191 					nr_lumpy_dirty++;
1192 				scan++;
1193 			} else {
1194 				/*
1195 				 * Check if the page is freed already.
1196 				 *
1197 				 * We can't use page_count() as that
1198 				 * requires compound_head and we don't
1199 				 * have a pin on the page here. If a
1200 				 * page is tail, we may or may not
1201 				 * have isolated the head, so assume
1202 				 * it's not free, it'd be tricky to
1203 				 * track the head status without a
1204 				 * page pin.
1205 				 */
1206 				if (!PageTail(cursor_page) &&
1207 				    !atomic_read(&cursor_page->_count))
1208 					continue;
1209 				break;
1210 			}
1211 		}
1212 
1213 		/* If we break out of the loop above, lumpy reclaim failed */
1214 		if (pfn < end_pfn)
1215 			nr_lumpy_failed++;
1216 	}
1217 
1218 	*scanned = scan;
1219 
1220 	trace_mm_vmscan_lru_isolate(order,
1221 			nr_to_scan, scan,
1222 			nr_taken,
1223 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1224 			mode);
1225 	return nr_taken;
1226 }
1227 
1228 static unsigned long isolate_pages_global(unsigned long nr,
1229 					struct list_head *dst,
1230 					unsigned long *scanned, int order,
1231 					isolate_mode_t mode,
1232 					struct zone *z,	int active, int file)
1233 {
1234 	int lru = LRU_BASE;
1235 	if (active)
1236 		lru += LRU_ACTIVE;
1237 	if (file)
1238 		lru += LRU_FILE;
1239 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1240 								mode, file);
1241 }
1242 
1243 /*
1244  * clear_active_flags() is a helper for shrink_active_list(), clearing
1245  * any active bits from the pages in the list.
1246  */
1247 static unsigned long clear_active_flags(struct list_head *page_list,
1248 					unsigned int *count)
1249 {
1250 	int nr_active = 0;
1251 	int lru;
1252 	struct page *page;
1253 
1254 	list_for_each_entry(page, page_list, lru) {
1255 		int numpages = hpage_nr_pages(page);
1256 		lru = page_lru_base_type(page);
1257 		if (PageActive(page)) {
1258 			lru += LRU_ACTIVE;
1259 			ClearPageActive(page);
1260 			nr_active += numpages;
1261 		}
1262 		if (count)
1263 			count[lru] += numpages;
1264 	}
1265 
1266 	return nr_active;
1267 }
1268 
1269 /**
1270  * isolate_lru_page - tries to isolate a page from its LRU list
1271  * @page: page to isolate from its LRU list
1272  *
1273  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1274  * vmstat statistic corresponding to whatever LRU list the page was on.
1275  *
1276  * Returns 0 if the page was removed from an LRU list.
1277  * Returns -EBUSY if the page was not on an LRU list.
1278  *
1279  * The returned page will have PageLRU() cleared.  If it was found on
1280  * the active list, it will have PageActive set.  If it was found on
1281  * the unevictable list, it will have the PageUnevictable bit set. That flag
1282  * may need to be cleared by the caller before letting the page go.
1283  *
1284  * The vmstat statistic corresponding to the list on which the page was
1285  * found will be decremented.
1286  *
1287  * Restrictions:
1288  * (1) Must be called with an elevated refcount on the page. This is a
1289  *     fundamentnal difference from isolate_lru_pages (which is called
1290  *     without a stable reference).
1291  * (2) the lru_lock must not be held.
1292  * (3) interrupts must be enabled.
1293  */
1294 int isolate_lru_page(struct page *page)
1295 {
1296 	int ret = -EBUSY;
1297 
1298 	VM_BUG_ON(!page_count(page));
1299 
1300 	if (PageLRU(page)) {
1301 		struct zone *zone = page_zone(page);
1302 
1303 		spin_lock_irq(&zone->lru_lock);
1304 		if (PageLRU(page)) {
1305 			int lru = page_lru(page);
1306 			ret = 0;
1307 			get_page(page);
1308 			ClearPageLRU(page);
1309 
1310 			del_page_from_lru_list(zone, page, lru);
1311 		}
1312 		spin_unlock_irq(&zone->lru_lock);
1313 	}
1314 	return ret;
1315 }
1316 
1317 /*
1318  * Are there way too many processes in the direct reclaim path already?
1319  */
1320 static int too_many_isolated(struct zone *zone, int file,
1321 		struct scan_control *sc)
1322 {
1323 	unsigned long inactive, isolated;
1324 
1325 	if (current_is_kswapd())
1326 		return 0;
1327 
1328 	if (!scanning_global_lru(sc))
1329 		return 0;
1330 
1331 	if (file) {
1332 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1333 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1334 	} else {
1335 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1336 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1337 	}
1338 
1339 	return isolated > inactive;
1340 }
1341 
1342 /*
1343  * TODO: Try merging with migrations version of putback_lru_pages
1344  */
1345 static noinline_for_stack void
1346 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1347 				unsigned long nr_anon, unsigned long nr_file,
1348 				struct list_head *page_list)
1349 {
1350 	struct page *page;
1351 	struct pagevec pvec;
1352 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1353 
1354 	pagevec_init(&pvec, 1);
1355 
1356 	/*
1357 	 * Put back any unfreeable pages.
1358 	 */
1359 	spin_lock(&zone->lru_lock);
1360 	while (!list_empty(page_list)) {
1361 		int lru;
1362 		page = lru_to_page(page_list);
1363 		VM_BUG_ON(PageLRU(page));
1364 		list_del(&page->lru);
1365 		if (unlikely(!page_evictable(page, NULL))) {
1366 			spin_unlock_irq(&zone->lru_lock);
1367 			putback_lru_page(page);
1368 			spin_lock_irq(&zone->lru_lock);
1369 			continue;
1370 		}
1371 		SetPageLRU(page);
1372 		lru = page_lru(page);
1373 		add_page_to_lru_list(zone, page, lru);
1374 		if (is_active_lru(lru)) {
1375 			int file = is_file_lru(lru);
1376 			int numpages = hpage_nr_pages(page);
1377 			reclaim_stat->recent_rotated[file] += numpages;
1378 		}
1379 		if (!pagevec_add(&pvec, page)) {
1380 			spin_unlock_irq(&zone->lru_lock);
1381 			__pagevec_release(&pvec);
1382 			spin_lock_irq(&zone->lru_lock);
1383 		}
1384 	}
1385 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1386 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1387 
1388 	spin_unlock_irq(&zone->lru_lock);
1389 	pagevec_release(&pvec);
1390 }
1391 
1392 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1393 					struct scan_control *sc,
1394 					unsigned long *nr_anon,
1395 					unsigned long *nr_file,
1396 					struct list_head *isolated_list)
1397 {
1398 	unsigned long nr_active;
1399 	unsigned int count[NR_LRU_LISTS] = { 0, };
1400 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1401 
1402 	nr_active = clear_active_flags(isolated_list, count);
1403 	__count_vm_events(PGDEACTIVATE, nr_active);
1404 
1405 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1406 			      -count[LRU_ACTIVE_FILE]);
1407 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1408 			      -count[LRU_INACTIVE_FILE]);
1409 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1410 			      -count[LRU_ACTIVE_ANON]);
1411 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1412 			      -count[LRU_INACTIVE_ANON]);
1413 
1414 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1415 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1416 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1417 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1418 
1419 	reclaim_stat->recent_scanned[0] += *nr_anon;
1420 	reclaim_stat->recent_scanned[1] += *nr_file;
1421 }
1422 
1423 /*
1424  * Returns true if a direct reclaim should wait on pages under writeback.
1425  *
1426  * If we are direct reclaiming for contiguous pages and we do not reclaim
1427  * everything in the list, try again and wait for writeback IO to complete.
1428  * This will stall high-order allocations noticeably. Only do that when really
1429  * need to free the pages under high memory pressure.
1430  */
1431 static inline bool should_reclaim_stall(unsigned long nr_taken,
1432 					unsigned long nr_freed,
1433 					int priority,
1434 					struct scan_control *sc)
1435 {
1436 	int lumpy_stall_priority;
1437 
1438 	/* kswapd should not stall on sync IO */
1439 	if (current_is_kswapd())
1440 		return false;
1441 
1442 	/* Only stall on lumpy reclaim */
1443 	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1444 		return false;
1445 
1446 	/* If we have reclaimed everything on the isolated list, no stall */
1447 	if (nr_freed == nr_taken)
1448 		return false;
1449 
1450 	/*
1451 	 * For high-order allocations, there are two stall thresholds.
1452 	 * High-cost allocations stall immediately where as lower
1453 	 * order allocations such as stacks require the scanning
1454 	 * priority to be much higher before stalling.
1455 	 */
1456 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1457 		lumpy_stall_priority = DEF_PRIORITY;
1458 	else
1459 		lumpy_stall_priority = DEF_PRIORITY / 3;
1460 
1461 	return priority <= lumpy_stall_priority;
1462 }
1463 
1464 /*
1465  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1466  * of reclaimed pages
1467  */
1468 static noinline_for_stack unsigned long
1469 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1470 			struct scan_control *sc, int priority, int file)
1471 {
1472 	LIST_HEAD(page_list);
1473 	unsigned long nr_scanned;
1474 	unsigned long nr_reclaimed = 0;
1475 	unsigned long nr_taken;
1476 	unsigned long nr_anon;
1477 	unsigned long nr_file;
1478 	unsigned long nr_dirty = 0;
1479 	unsigned long nr_writeback = 0;
1480 	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1481 
1482 	while (unlikely(too_many_isolated(zone, file, sc))) {
1483 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1484 
1485 		/* We are about to die and free our memory. Return now. */
1486 		if (fatal_signal_pending(current))
1487 			return SWAP_CLUSTER_MAX;
1488 	}
1489 
1490 	set_reclaim_mode(priority, sc, false);
1491 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1492 		reclaim_mode |= ISOLATE_ACTIVE;
1493 
1494 	lru_add_drain();
1495 
1496 	if (!sc->may_unmap)
1497 		reclaim_mode |= ISOLATE_UNMAPPED;
1498 	if (!sc->may_writepage)
1499 		reclaim_mode |= ISOLATE_CLEAN;
1500 
1501 	spin_lock_irq(&zone->lru_lock);
1502 
1503 	if (scanning_global_lru(sc)) {
1504 		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1505 			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1506 		zone->pages_scanned += nr_scanned;
1507 		if (current_is_kswapd())
1508 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1509 					       nr_scanned);
1510 		else
1511 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1512 					       nr_scanned);
1513 	} else {
1514 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1515 			&nr_scanned, sc->order, reclaim_mode, zone,
1516 			sc->mem_cgroup, 0, file);
1517 		/*
1518 		 * mem_cgroup_isolate_pages() keeps track of
1519 		 * scanned pages on its own.
1520 		 */
1521 	}
1522 
1523 	if (nr_taken == 0) {
1524 		spin_unlock_irq(&zone->lru_lock);
1525 		return 0;
1526 	}
1527 
1528 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1529 
1530 	spin_unlock_irq(&zone->lru_lock);
1531 
1532 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1533 						&nr_dirty, &nr_writeback);
1534 
1535 	/* Check if we should syncronously wait for writeback */
1536 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1537 		set_reclaim_mode(priority, sc, true);
1538 		nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1539 					priority, &nr_dirty, &nr_writeback);
1540 	}
1541 
1542 	local_irq_disable();
1543 	if (current_is_kswapd())
1544 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1545 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1546 
1547 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1548 
1549 	/*
1550 	 * If reclaim is isolating dirty pages under writeback, it implies
1551 	 * that the long-lived page allocation rate is exceeding the page
1552 	 * laundering rate. Either the global limits are not being effective
1553 	 * at throttling processes due to the page distribution throughout
1554 	 * zones or there is heavy usage of a slow backing device. The
1555 	 * only option is to throttle from reclaim context which is not ideal
1556 	 * as there is no guarantee the dirtying process is throttled in the
1557 	 * same way balance_dirty_pages() manages.
1558 	 *
1559 	 * This scales the number of dirty pages that must be under writeback
1560 	 * before throttling depending on priority. It is a simple backoff
1561 	 * function that has the most effect in the range DEF_PRIORITY to
1562 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1563 	 * in trouble and reclaim is considered to be in trouble.
1564 	 *
1565 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1566 	 * DEF_PRIORITY-1  50% must be PageWriteback
1567 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1568 	 * ...
1569 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1570 	 *                     isolated page is PageWriteback
1571 	 */
1572 	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1573 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1574 
1575 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1576 		zone_idx(zone),
1577 		nr_scanned, nr_reclaimed,
1578 		priority,
1579 		trace_shrink_flags(file, sc->reclaim_mode));
1580 	return nr_reclaimed;
1581 }
1582 
1583 /*
1584  * This moves pages from the active list to the inactive list.
1585  *
1586  * We move them the other way if the page is referenced by one or more
1587  * processes, from rmap.
1588  *
1589  * If the pages are mostly unmapped, the processing is fast and it is
1590  * appropriate to hold zone->lru_lock across the whole operation.  But if
1591  * the pages are mapped, the processing is slow (page_referenced()) so we
1592  * should drop zone->lru_lock around each page.  It's impossible to balance
1593  * this, so instead we remove the pages from the LRU while processing them.
1594  * It is safe to rely on PG_active against the non-LRU pages in here because
1595  * nobody will play with that bit on a non-LRU page.
1596  *
1597  * The downside is that we have to touch page->_count against each page.
1598  * But we had to alter page->flags anyway.
1599  */
1600 
1601 static void move_active_pages_to_lru(struct zone *zone,
1602 				     struct list_head *list,
1603 				     enum lru_list lru)
1604 {
1605 	unsigned long pgmoved = 0;
1606 	struct pagevec pvec;
1607 	struct page *page;
1608 
1609 	pagevec_init(&pvec, 1);
1610 
1611 	while (!list_empty(list)) {
1612 		page = lru_to_page(list);
1613 
1614 		VM_BUG_ON(PageLRU(page));
1615 		SetPageLRU(page);
1616 
1617 		list_move(&page->lru, &zone->lru[lru].list);
1618 		mem_cgroup_add_lru_list(page, lru);
1619 		pgmoved += hpage_nr_pages(page);
1620 
1621 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1622 			spin_unlock_irq(&zone->lru_lock);
1623 			if (buffer_heads_over_limit)
1624 				pagevec_strip(&pvec);
1625 			__pagevec_release(&pvec);
1626 			spin_lock_irq(&zone->lru_lock);
1627 		}
1628 	}
1629 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1630 	if (!is_active_lru(lru))
1631 		__count_vm_events(PGDEACTIVATE, pgmoved);
1632 }
1633 
1634 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1635 			struct scan_control *sc, int priority, int file)
1636 {
1637 	unsigned long nr_taken;
1638 	unsigned long pgscanned;
1639 	unsigned long vm_flags;
1640 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1641 	LIST_HEAD(l_active);
1642 	LIST_HEAD(l_inactive);
1643 	struct page *page;
1644 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1645 	unsigned long nr_rotated = 0;
1646 	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1647 
1648 	lru_add_drain();
1649 
1650 	if (!sc->may_unmap)
1651 		reclaim_mode |= ISOLATE_UNMAPPED;
1652 	if (!sc->may_writepage)
1653 		reclaim_mode |= ISOLATE_CLEAN;
1654 
1655 	spin_lock_irq(&zone->lru_lock);
1656 	if (scanning_global_lru(sc)) {
1657 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1658 						&pgscanned, sc->order,
1659 						reclaim_mode, zone,
1660 						1, file);
1661 		zone->pages_scanned += pgscanned;
1662 	} else {
1663 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1664 						&pgscanned, sc->order,
1665 						reclaim_mode, zone,
1666 						sc->mem_cgroup, 1, file);
1667 		/*
1668 		 * mem_cgroup_isolate_pages() keeps track of
1669 		 * scanned pages on its own.
1670 		 */
1671 	}
1672 
1673 	reclaim_stat->recent_scanned[file] += nr_taken;
1674 
1675 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1676 	if (file)
1677 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1678 	else
1679 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1680 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1681 	spin_unlock_irq(&zone->lru_lock);
1682 
1683 	while (!list_empty(&l_hold)) {
1684 		cond_resched();
1685 		page = lru_to_page(&l_hold);
1686 		list_del(&page->lru);
1687 
1688 		if (unlikely(!page_evictable(page, NULL))) {
1689 			putback_lru_page(page);
1690 			continue;
1691 		}
1692 
1693 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1694 			nr_rotated += hpage_nr_pages(page);
1695 			/*
1696 			 * Identify referenced, file-backed active pages and
1697 			 * give them one more trip around the active list. So
1698 			 * that executable code get better chances to stay in
1699 			 * memory under moderate memory pressure.  Anon pages
1700 			 * are not likely to be evicted by use-once streaming
1701 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1702 			 * so we ignore them here.
1703 			 */
1704 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1705 				list_add(&page->lru, &l_active);
1706 				continue;
1707 			}
1708 		}
1709 
1710 		ClearPageActive(page);	/* we are de-activating */
1711 		list_add(&page->lru, &l_inactive);
1712 	}
1713 
1714 	/*
1715 	 * Move pages back to the lru list.
1716 	 */
1717 	spin_lock_irq(&zone->lru_lock);
1718 	/*
1719 	 * Count referenced pages from currently used mappings as rotated,
1720 	 * even though only some of them are actually re-activated.  This
1721 	 * helps balance scan pressure between file and anonymous pages in
1722 	 * get_scan_ratio.
1723 	 */
1724 	reclaim_stat->recent_rotated[file] += nr_rotated;
1725 
1726 	move_active_pages_to_lru(zone, &l_active,
1727 						LRU_ACTIVE + file * LRU_FILE);
1728 	move_active_pages_to_lru(zone, &l_inactive,
1729 						LRU_BASE   + file * LRU_FILE);
1730 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1731 	spin_unlock_irq(&zone->lru_lock);
1732 }
1733 
1734 #ifdef CONFIG_SWAP
1735 static int inactive_anon_is_low_global(struct zone *zone)
1736 {
1737 	unsigned long active, inactive;
1738 
1739 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1740 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1741 
1742 	if (inactive * zone->inactive_ratio < active)
1743 		return 1;
1744 
1745 	return 0;
1746 }
1747 
1748 /**
1749  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1750  * @zone: zone to check
1751  * @sc:   scan control of this context
1752  *
1753  * Returns true if the zone does not have enough inactive anon pages,
1754  * meaning some active anon pages need to be deactivated.
1755  */
1756 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1757 {
1758 	int low;
1759 
1760 	/*
1761 	 * If we don't have swap space, anonymous page deactivation
1762 	 * is pointless.
1763 	 */
1764 	if (!total_swap_pages)
1765 		return 0;
1766 
1767 	if (scanning_global_lru(sc))
1768 		low = inactive_anon_is_low_global(zone);
1769 	else
1770 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1771 	return low;
1772 }
1773 #else
1774 static inline int inactive_anon_is_low(struct zone *zone,
1775 					struct scan_control *sc)
1776 {
1777 	return 0;
1778 }
1779 #endif
1780 
1781 static int inactive_file_is_low_global(struct zone *zone)
1782 {
1783 	unsigned long active, inactive;
1784 
1785 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1786 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1787 
1788 	return (active > inactive);
1789 }
1790 
1791 /**
1792  * inactive_file_is_low - check if file pages need to be deactivated
1793  * @zone: zone to check
1794  * @sc:   scan control of this context
1795  *
1796  * When the system is doing streaming IO, memory pressure here
1797  * ensures that active file pages get deactivated, until more
1798  * than half of the file pages are on the inactive list.
1799  *
1800  * Once we get to that situation, protect the system's working
1801  * set from being evicted by disabling active file page aging.
1802  *
1803  * This uses a different ratio than the anonymous pages, because
1804  * the page cache uses a use-once replacement algorithm.
1805  */
1806 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1807 {
1808 	int low;
1809 
1810 	if (scanning_global_lru(sc))
1811 		low = inactive_file_is_low_global(zone);
1812 	else
1813 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1814 	return low;
1815 }
1816 
1817 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1818 				int file)
1819 {
1820 	if (file)
1821 		return inactive_file_is_low(zone, sc);
1822 	else
1823 		return inactive_anon_is_low(zone, sc);
1824 }
1825 
1826 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1827 	struct zone *zone, struct scan_control *sc, int priority)
1828 {
1829 	int file = is_file_lru(lru);
1830 
1831 	if (is_active_lru(lru)) {
1832 		if (inactive_list_is_low(zone, sc, file))
1833 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1834 		return 0;
1835 	}
1836 
1837 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1838 }
1839 
1840 static int vmscan_swappiness(struct scan_control *sc)
1841 {
1842 	if (scanning_global_lru(sc))
1843 		return vm_swappiness;
1844 	return mem_cgroup_swappiness(sc->mem_cgroup);
1845 }
1846 
1847 /*
1848  * Determine how aggressively the anon and file LRU lists should be
1849  * scanned.  The relative value of each set of LRU lists is determined
1850  * by looking at the fraction of the pages scanned we did rotate back
1851  * onto the active list instead of evict.
1852  *
1853  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1854  */
1855 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1856 					unsigned long *nr, int priority)
1857 {
1858 	unsigned long anon, file, free;
1859 	unsigned long anon_prio, file_prio;
1860 	unsigned long ap, fp;
1861 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1862 	u64 fraction[2], denominator;
1863 	enum lru_list l;
1864 	int noswap = 0;
1865 	bool force_scan = false;
1866 
1867 	/*
1868 	 * If the zone or memcg is small, nr[l] can be 0.  This
1869 	 * results in no scanning on this priority and a potential
1870 	 * priority drop.  Global direct reclaim can go to the next
1871 	 * zone and tends to have no problems. Global kswapd is for
1872 	 * zone balancing and it needs to scan a minimum amount. When
1873 	 * reclaiming for a memcg, a priority drop can cause high
1874 	 * latencies, so it's better to scan a minimum amount there as
1875 	 * well.
1876 	 */
1877 	if (scanning_global_lru(sc) && current_is_kswapd())
1878 		force_scan = true;
1879 	if (!scanning_global_lru(sc))
1880 		force_scan = true;
1881 
1882 	/* If we have no swap space, do not bother scanning anon pages. */
1883 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1884 		noswap = 1;
1885 		fraction[0] = 0;
1886 		fraction[1] = 1;
1887 		denominator = 1;
1888 		goto out;
1889 	}
1890 
1891 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1892 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1893 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1894 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1895 
1896 	if (scanning_global_lru(sc)) {
1897 		free  = zone_page_state(zone, NR_FREE_PAGES);
1898 		/* If we have very few page cache pages,
1899 		   force-scan anon pages. */
1900 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1901 			fraction[0] = 1;
1902 			fraction[1] = 0;
1903 			denominator = 1;
1904 			goto out;
1905 		}
1906 	}
1907 
1908 	/*
1909 	 * With swappiness at 100, anonymous and file have the same priority.
1910 	 * This scanning priority is essentially the inverse of IO cost.
1911 	 */
1912 	anon_prio = vmscan_swappiness(sc);
1913 	file_prio = 200 - vmscan_swappiness(sc);
1914 
1915 	/*
1916 	 * OK, so we have swap space and a fair amount of page cache
1917 	 * pages.  We use the recently rotated / recently scanned
1918 	 * ratios to determine how valuable each cache is.
1919 	 *
1920 	 * Because workloads change over time (and to avoid overflow)
1921 	 * we keep these statistics as a floating average, which ends
1922 	 * up weighing recent references more than old ones.
1923 	 *
1924 	 * anon in [0], file in [1]
1925 	 */
1926 	spin_lock_irq(&zone->lru_lock);
1927 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1928 		reclaim_stat->recent_scanned[0] /= 2;
1929 		reclaim_stat->recent_rotated[0] /= 2;
1930 	}
1931 
1932 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1933 		reclaim_stat->recent_scanned[1] /= 2;
1934 		reclaim_stat->recent_rotated[1] /= 2;
1935 	}
1936 
1937 	/*
1938 	 * The amount of pressure on anon vs file pages is inversely
1939 	 * proportional to the fraction of recently scanned pages on
1940 	 * each list that were recently referenced and in active use.
1941 	 */
1942 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1943 	ap /= reclaim_stat->recent_rotated[0] + 1;
1944 
1945 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1946 	fp /= reclaim_stat->recent_rotated[1] + 1;
1947 	spin_unlock_irq(&zone->lru_lock);
1948 
1949 	fraction[0] = ap;
1950 	fraction[1] = fp;
1951 	denominator = ap + fp + 1;
1952 out:
1953 	for_each_evictable_lru(l) {
1954 		int file = is_file_lru(l);
1955 		unsigned long scan;
1956 
1957 		scan = zone_nr_lru_pages(zone, sc, l);
1958 		if (priority || noswap) {
1959 			scan >>= priority;
1960 			if (!scan && force_scan)
1961 				scan = SWAP_CLUSTER_MAX;
1962 			scan = div64_u64(scan * fraction[file], denominator);
1963 		}
1964 		nr[l] = scan;
1965 	}
1966 }
1967 
1968 /*
1969  * Reclaim/compaction depends on a number of pages being freed. To avoid
1970  * disruption to the system, a small number of order-0 pages continue to be
1971  * rotated and reclaimed in the normal fashion. However, by the time we get
1972  * back to the allocator and call try_to_compact_zone(), we ensure that
1973  * there are enough free pages for it to be likely successful
1974  */
1975 static inline bool should_continue_reclaim(struct zone *zone,
1976 					unsigned long nr_reclaimed,
1977 					unsigned long nr_scanned,
1978 					struct scan_control *sc)
1979 {
1980 	unsigned long pages_for_compaction;
1981 	unsigned long inactive_lru_pages;
1982 
1983 	/* If not in reclaim/compaction mode, stop */
1984 	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1985 		return false;
1986 
1987 	/* Consider stopping depending on scan and reclaim activity */
1988 	if (sc->gfp_mask & __GFP_REPEAT) {
1989 		/*
1990 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1991 		 * full LRU list has been scanned and we are still failing
1992 		 * to reclaim pages. This full LRU scan is potentially
1993 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1994 		 */
1995 		if (!nr_reclaimed && !nr_scanned)
1996 			return false;
1997 	} else {
1998 		/*
1999 		 * For non-__GFP_REPEAT allocations which can presumably
2000 		 * fail without consequence, stop if we failed to reclaim
2001 		 * any pages from the last SWAP_CLUSTER_MAX number of
2002 		 * pages that were scanned. This will return to the
2003 		 * caller faster at the risk reclaim/compaction and
2004 		 * the resulting allocation attempt fails
2005 		 */
2006 		if (!nr_reclaimed)
2007 			return false;
2008 	}
2009 
2010 	/*
2011 	 * If we have not reclaimed enough pages for compaction and the
2012 	 * inactive lists are large enough, continue reclaiming
2013 	 */
2014 	pages_for_compaction = (2UL << sc->order);
2015 	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2016 				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2017 	if (sc->nr_reclaimed < pages_for_compaction &&
2018 			inactive_lru_pages > pages_for_compaction)
2019 		return true;
2020 
2021 	/* If compaction would go ahead or the allocation would succeed, stop */
2022 	switch (compaction_suitable(zone, sc->order)) {
2023 	case COMPACT_PARTIAL:
2024 	case COMPACT_CONTINUE:
2025 		return false;
2026 	default:
2027 		return true;
2028 	}
2029 }
2030 
2031 /*
2032  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2033  */
2034 static void shrink_zone(int priority, struct zone *zone,
2035 				struct scan_control *sc)
2036 {
2037 	unsigned long nr[NR_LRU_LISTS];
2038 	unsigned long nr_to_scan;
2039 	enum lru_list l;
2040 	unsigned long nr_reclaimed, nr_scanned;
2041 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2042 	struct blk_plug plug;
2043 
2044 restart:
2045 	nr_reclaimed = 0;
2046 	nr_scanned = sc->nr_scanned;
2047 	get_scan_count(zone, sc, nr, priority);
2048 
2049 	blk_start_plug(&plug);
2050 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2051 					nr[LRU_INACTIVE_FILE]) {
2052 		for_each_evictable_lru(l) {
2053 			if (nr[l]) {
2054 				nr_to_scan = min_t(unsigned long,
2055 						   nr[l], SWAP_CLUSTER_MAX);
2056 				nr[l] -= nr_to_scan;
2057 
2058 				nr_reclaimed += shrink_list(l, nr_to_scan,
2059 							    zone, sc, priority);
2060 			}
2061 		}
2062 		/*
2063 		 * On large memory systems, scan >> priority can become
2064 		 * really large. This is fine for the starting priority;
2065 		 * we want to put equal scanning pressure on each zone.
2066 		 * However, if the VM has a harder time of freeing pages,
2067 		 * with multiple processes reclaiming pages, the total
2068 		 * freeing target can get unreasonably large.
2069 		 */
2070 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2071 			break;
2072 	}
2073 	blk_finish_plug(&plug);
2074 	sc->nr_reclaimed += nr_reclaimed;
2075 
2076 	/*
2077 	 * Even if we did not try to evict anon pages at all, we want to
2078 	 * rebalance the anon lru active/inactive ratio.
2079 	 */
2080 	if (inactive_anon_is_low(zone, sc))
2081 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2082 
2083 	/* reclaim/compaction might need reclaim to continue */
2084 	if (should_continue_reclaim(zone, nr_reclaimed,
2085 					sc->nr_scanned - nr_scanned, sc))
2086 		goto restart;
2087 
2088 	throttle_vm_writeout(sc->gfp_mask);
2089 }
2090 
2091 /*
2092  * This is the direct reclaim path, for page-allocating processes.  We only
2093  * try to reclaim pages from zones which will satisfy the caller's allocation
2094  * request.
2095  *
2096  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2097  * Because:
2098  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2099  *    allocation or
2100  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2101  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2102  *    zone defense algorithm.
2103  *
2104  * If a zone is deemed to be full of pinned pages then just give it a light
2105  * scan then give up on it.
2106  *
2107  * This function returns true if a zone is being reclaimed for a costly
2108  * high-order allocation and compaction is either ready to begin or deferred.
2109  * This indicates to the caller that it should retry the allocation or fail.
2110  */
2111 static bool shrink_zones(int priority, struct zonelist *zonelist,
2112 					struct scan_control *sc)
2113 {
2114 	struct zoneref *z;
2115 	struct zone *zone;
2116 	unsigned long nr_soft_reclaimed;
2117 	unsigned long nr_soft_scanned;
2118 	bool should_abort_reclaim = false;
2119 
2120 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2121 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2122 		if (!populated_zone(zone))
2123 			continue;
2124 		/*
2125 		 * Take care memory controller reclaiming has small influence
2126 		 * to global LRU.
2127 		 */
2128 		if (scanning_global_lru(sc)) {
2129 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2130 				continue;
2131 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2132 				continue;	/* Let kswapd poll it */
2133 			if (COMPACTION_BUILD) {
2134 				/*
2135 				 * If we already have plenty of memory free for
2136 				 * compaction in this zone, don't free any more.
2137 				 * Even though compaction is invoked for any
2138 				 * non-zero order, only frequent costly order
2139 				 * reclamation is disruptive enough to become a
2140 				 * noticable problem, like transparent huge page
2141 				 * allocations.
2142 				 */
2143 				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2144 					(compaction_suitable(zone, sc->order) ||
2145 					 compaction_deferred(zone))) {
2146 					should_abort_reclaim = true;
2147 					continue;
2148 				}
2149 			}
2150 			/*
2151 			 * This steals pages from memory cgroups over softlimit
2152 			 * and returns the number of reclaimed pages and
2153 			 * scanned pages. This works for global memory pressure
2154 			 * and balancing, not for a memcg's limit.
2155 			 */
2156 			nr_soft_scanned = 0;
2157 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2158 						sc->order, sc->gfp_mask,
2159 						&nr_soft_scanned);
2160 			sc->nr_reclaimed += nr_soft_reclaimed;
2161 			sc->nr_scanned += nr_soft_scanned;
2162 			/* need some check for avoid more shrink_zone() */
2163 		}
2164 
2165 		shrink_zone(priority, zone, sc);
2166 	}
2167 
2168 	return should_abort_reclaim;
2169 }
2170 
2171 static bool zone_reclaimable(struct zone *zone)
2172 {
2173 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2174 }
2175 
2176 /* All zones in zonelist are unreclaimable? */
2177 static bool all_unreclaimable(struct zonelist *zonelist,
2178 		struct scan_control *sc)
2179 {
2180 	struct zoneref *z;
2181 	struct zone *zone;
2182 
2183 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2184 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2185 		if (!populated_zone(zone))
2186 			continue;
2187 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2188 			continue;
2189 		if (!zone->all_unreclaimable)
2190 			return false;
2191 	}
2192 
2193 	return true;
2194 }
2195 
2196 /*
2197  * This is the main entry point to direct page reclaim.
2198  *
2199  * If a full scan of the inactive list fails to free enough memory then we
2200  * are "out of memory" and something needs to be killed.
2201  *
2202  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2203  * high - the zone may be full of dirty or under-writeback pages, which this
2204  * caller can't do much about.  We kick the writeback threads and take explicit
2205  * naps in the hope that some of these pages can be written.  But if the
2206  * allocating task holds filesystem locks which prevent writeout this might not
2207  * work, and the allocation attempt will fail.
2208  *
2209  * returns:	0, if no pages reclaimed
2210  * 		else, the number of pages reclaimed
2211  */
2212 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2213 					struct scan_control *sc,
2214 					struct shrink_control *shrink)
2215 {
2216 	int priority;
2217 	unsigned long total_scanned = 0;
2218 	struct reclaim_state *reclaim_state = current->reclaim_state;
2219 	struct zoneref *z;
2220 	struct zone *zone;
2221 	unsigned long writeback_threshold;
2222 
2223 	get_mems_allowed();
2224 	delayacct_freepages_start();
2225 
2226 	if (scanning_global_lru(sc))
2227 		count_vm_event(ALLOCSTALL);
2228 
2229 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2230 		sc->nr_scanned = 0;
2231 		if (!priority)
2232 			disable_swap_token(sc->mem_cgroup);
2233 		if (shrink_zones(priority, zonelist, sc))
2234 			break;
2235 
2236 		/*
2237 		 * Don't shrink slabs when reclaiming memory from
2238 		 * over limit cgroups
2239 		 */
2240 		if (scanning_global_lru(sc)) {
2241 			unsigned long lru_pages = 0;
2242 			for_each_zone_zonelist(zone, z, zonelist,
2243 					gfp_zone(sc->gfp_mask)) {
2244 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2245 					continue;
2246 
2247 				lru_pages += zone_reclaimable_pages(zone);
2248 			}
2249 
2250 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2251 			if (reclaim_state) {
2252 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2253 				reclaim_state->reclaimed_slab = 0;
2254 			}
2255 		}
2256 		total_scanned += sc->nr_scanned;
2257 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2258 			goto out;
2259 
2260 		/*
2261 		 * Try to write back as many pages as we just scanned.  This
2262 		 * tends to cause slow streaming writers to write data to the
2263 		 * disk smoothly, at the dirtying rate, which is nice.   But
2264 		 * that's undesirable in laptop mode, where we *want* lumpy
2265 		 * writeout.  So in laptop mode, write out the whole world.
2266 		 */
2267 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2268 		if (total_scanned > writeback_threshold) {
2269 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2270 						WB_REASON_TRY_TO_FREE_PAGES);
2271 			sc->may_writepage = 1;
2272 		}
2273 
2274 		/* Take a nap, wait for some writeback to complete */
2275 		if (!sc->hibernation_mode && sc->nr_scanned &&
2276 		    priority < DEF_PRIORITY - 2) {
2277 			struct zone *preferred_zone;
2278 
2279 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2280 						&cpuset_current_mems_allowed,
2281 						&preferred_zone);
2282 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2283 		}
2284 	}
2285 
2286 out:
2287 	delayacct_freepages_end();
2288 	put_mems_allowed();
2289 
2290 	if (sc->nr_reclaimed)
2291 		return sc->nr_reclaimed;
2292 
2293 	/*
2294 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2295 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2296 	 * check.
2297 	 */
2298 	if (oom_killer_disabled)
2299 		return 0;
2300 
2301 	/* top priority shrink_zones still had more to do? don't OOM, then */
2302 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2303 		return 1;
2304 
2305 	return 0;
2306 }
2307 
2308 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2309 				gfp_t gfp_mask, nodemask_t *nodemask)
2310 {
2311 	unsigned long nr_reclaimed;
2312 	struct scan_control sc = {
2313 		.gfp_mask = gfp_mask,
2314 		.may_writepage = !laptop_mode,
2315 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2316 		.may_unmap = 1,
2317 		.may_swap = 1,
2318 		.order = order,
2319 		.mem_cgroup = NULL,
2320 		.nodemask = nodemask,
2321 	};
2322 	struct shrink_control shrink = {
2323 		.gfp_mask = sc.gfp_mask,
2324 	};
2325 
2326 	trace_mm_vmscan_direct_reclaim_begin(order,
2327 				sc.may_writepage,
2328 				gfp_mask);
2329 
2330 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2331 
2332 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2333 
2334 	return nr_reclaimed;
2335 }
2336 
2337 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2338 
2339 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2340 						gfp_t gfp_mask, bool noswap,
2341 						struct zone *zone,
2342 						unsigned long *nr_scanned)
2343 {
2344 	struct scan_control sc = {
2345 		.nr_scanned = 0,
2346 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2347 		.may_writepage = !laptop_mode,
2348 		.may_unmap = 1,
2349 		.may_swap = !noswap,
2350 		.order = 0,
2351 		.mem_cgroup = mem,
2352 	};
2353 
2354 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2355 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2356 
2357 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2358 						      sc.may_writepage,
2359 						      sc.gfp_mask);
2360 
2361 	/*
2362 	 * NOTE: Although we can get the priority field, using it
2363 	 * here is not a good idea, since it limits the pages we can scan.
2364 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2365 	 * will pick up pages from other mem cgroup's as well. We hack
2366 	 * the priority and make it zero.
2367 	 */
2368 	shrink_zone(0, zone, &sc);
2369 
2370 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2371 
2372 	*nr_scanned = sc.nr_scanned;
2373 	return sc.nr_reclaimed;
2374 }
2375 
2376 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2377 					   gfp_t gfp_mask,
2378 					   bool noswap)
2379 {
2380 	struct zonelist *zonelist;
2381 	unsigned long nr_reclaimed;
2382 	int nid;
2383 	struct scan_control sc = {
2384 		.may_writepage = !laptop_mode,
2385 		.may_unmap = 1,
2386 		.may_swap = !noswap,
2387 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2388 		.order = 0,
2389 		.mem_cgroup = mem_cont,
2390 		.nodemask = NULL, /* we don't care the placement */
2391 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2392 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2393 	};
2394 	struct shrink_control shrink = {
2395 		.gfp_mask = sc.gfp_mask,
2396 	};
2397 
2398 	/*
2399 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2400 	 * take care of from where we get pages. So the node where we start the
2401 	 * scan does not need to be the current node.
2402 	 */
2403 	nid = mem_cgroup_select_victim_node(mem_cont);
2404 
2405 	zonelist = NODE_DATA(nid)->node_zonelists;
2406 
2407 	trace_mm_vmscan_memcg_reclaim_begin(0,
2408 					    sc.may_writepage,
2409 					    sc.gfp_mask);
2410 
2411 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2412 
2413 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2414 
2415 	return nr_reclaimed;
2416 }
2417 #endif
2418 
2419 /*
2420  * pgdat_balanced is used when checking if a node is balanced for high-order
2421  * allocations. Only zones that meet watermarks and are in a zone allowed
2422  * by the callers classzone_idx are added to balanced_pages. The total of
2423  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2424  * for the node to be considered balanced. Forcing all zones to be balanced
2425  * for high orders can cause excessive reclaim when there are imbalanced zones.
2426  * The choice of 25% is due to
2427  *   o a 16M DMA zone that is balanced will not balance a zone on any
2428  *     reasonable sized machine
2429  *   o On all other machines, the top zone must be at least a reasonable
2430  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2431  *     would need to be at least 256M for it to be balance a whole node.
2432  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2433  *     to balance a node on its own. These seemed like reasonable ratios.
2434  */
2435 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2436 						int classzone_idx)
2437 {
2438 	unsigned long present_pages = 0;
2439 	int i;
2440 
2441 	for (i = 0; i <= classzone_idx; i++)
2442 		present_pages += pgdat->node_zones[i].present_pages;
2443 
2444 	/* A special case here: if zone has no page, we think it's balanced */
2445 	return balanced_pages >= (present_pages >> 2);
2446 }
2447 
2448 /* is kswapd sleeping prematurely? */
2449 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2450 					int classzone_idx)
2451 {
2452 	int i;
2453 	unsigned long balanced = 0;
2454 	bool all_zones_ok = true;
2455 
2456 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2457 	if (remaining)
2458 		return true;
2459 
2460 	/* Check the watermark levels */
2461 	for (i = 0; i <= classzone_idx; i++) {
2462 		struct zone *zone = pgdat->node_zones + i;
2463 
2464 		if (!populated_zone(zone))
2465 			continue;
2466 
2467 		/*
2468 		 * balance_pgdat() skips over all_unreclaimable after
2469 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2470 		 * they must be considered balanced here as well if kswapd
2471 		 * is to sleep
2472 		 */
2473 		if (zone->all_unreclaimable) {
2474 			balanced += zone->present_pages;
2475 			continue;
2476 		}
2477 
2478 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2479 							i, 0))
2480 			all_zones_ok = false;
2481 		else
2482 			balanced += zone->present_pages;
2483 	}
2484 
2485 	/*
2486 	 * For high-order requests, the balanced zones must contain at least
2487 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2488 	 * must be balanced
2489 	 */
2490 	if (order)
2491 		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2492 	else
2493 		return !all_zones_ok;
2494 }
2495 
2496 /*
2497  * For kswapd, balance_pgdat() will work across all this node's zones until
2498  * they are all at high_wmark_pages(zone).
2499  *
2500  * Returns the final order kswapd was reclaiming at
2501  *
2502  * There is special handling here for zones which are full of pinned pages.
2503  * This can happen if the pages are all mlocked, or if they are all used by
2504  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2505  * What we do is to detect the case where all pages in the zone have been
2506  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2507  * dead and from now on, only perform a short scan.  Basically we're polling
2508  * the zone for when the problem goes away.
2509  *
2510  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2511  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2512  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2513  * lower zones regardless of the number of free pages in the lower zones. This
2514  * interoperates with the page allocator fallback scheme to ensure that aging
2515  * of pages is balanced across the zones.
2516  */
2517 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2518 							int *classzone_idx)
2519 {
2520 	int all_zones_ok;
2521 	unsigned long balanced;
2522 	int priority;
2523 	int i;
2524 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2525 	unsigned long total_scanned;
2526 	struct reclaim_state *reclaim_state = current->reclaim_state;
2527 	unsigned long nr_soft_reclaimed;
2528 	unsigned long nr_soft_scanned;
2529 	struct scan_control sc = {
2530 		.gfp_mask = GFP_KERNEL,
2531 		.may_unmap = 1,
2532 		.may_swap = 1,
2533 		/*
2534 		 * kswapd doesn't want to be bailed out while reclaim. because
2535 		 * we want to put equal scanning pressure on each zone.
2536 		 */
2537 		.nr_to_reclaim = ULONG_MAX,
2538 		.order = order,
2539 		.mem_cgroup = NULL,
2540 	};
2541 	struct shrink_control shrink = {
2542 		.gfp_mask = sc.gfp_mask,
2543 	};
2544 loop_again:
2545 	total_scanned = 0;
2546 	sc.nr_reclaimed = 0;
2547 	sc.may_writepage = !laptop_mode;
2548 	count_vm_event(PAGEOUTRUN);
2549 
2550 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2551 		unsigned long lru_pages = 0;
2552 		int has_under_min_watermark_zone = 0;
2553 
2554 		/* The swap token gets in the way of swapout... */
2555 		if (!priority)
2556 			disable_swap_token(NULL);
2557 
2558 		all_zones_ok = 1;
2559 		balanced = 0;
2560 
2561 		/*
2562 		 * Scan in the highmem->dma direction for the highest
2563 		 * zone which needs scanning
2564 		 */
2565 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2566 			struct zone *zone = pgdat->node_zones + i;
2567 
2568 			if (!populated_zone(zone))
2569 				continue;
2570 
2571 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2572 				continue;
2573 
2574 			/*
2575 			 * Do some background aging of the anon list, to give
2576 			 * pages a chance to be referenced before reclaiming.
2577 			 */
2578 			if (inactive_anon_is_low(zone, &sc))
2579 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2580 							&sc, priority, 0);
2581 
2582 			if (!zone_watermark_ok_safe(zone, order,
2583 					high_wmark_pages(zone), 0, 0)) {
2584 				end_zone = i;
2585 				break;
2586 			} else {
2587 				/* If balanced, clear the congested flag */
2588 				zone_clear_flag(zone, ZONE_CONGESTED);
2589 			}
2590 		}
2591 		if (i < 0)
2592 			goto out;
2593 
2594 		for (i = 0; i <= end_zone; i++) {
2595 			struct zone *zone = pgdat->node_zones + i;
2596 
2597 			lru_pages += zone_reclaimable_pages(zone);
2598 		}
2599 
2600 		/*
2601 		 * Now scan the zone in the dma->highmem direction, stopping
2602 		 * at the last zone which needs scanning.
2603 		 *
2604 		 * We do this because the page allocator works in the opposite
2605 		 * direction.  This prevents the page allocator from allocating
2606 		 * pages behind kswapd's direction of progress, which would
2607 		 * cause too much scanning of the lower zones.
2608 		 */
2609 		for (i = 0; i <= end_zone; i++) {
2610 			struct zone *zone = pgdat->node_zones + i;
2611 			int nr_slab;
2612 			unsigned long balance_gap;
2613 
2614 			if (!populated_zone(zone))
2615 				continue;
2616 
2617 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2618 				continue;
2619 
2620 			sc.nr_scanned = 0;
2621 
2622 			nr_soft_scanned = 0;
2623 			/*
2624 			 * Call soft limit reclaim before calling shrink_zone.
2625 			 */
2626 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2627 							order, sc.gfp_mask,
2628 							&nr_soft_scanned);
2629 			sc.nr_reclaimed += nr_soft_reclaimed;
2630 			total_scanned += nr_soft_scanned;
2631 
2632 			/*
2633 			 * We put equal pressure on every zone, unless
2634 			 * one zone has way too many pages free
2635 			 * already. The "too many pages" is defined
2636 			 * as the high wmark plus a "gap" where the
2637 			 * gap is either the low watermark or 1%
2638 			 * of the zone, whichever is smaller.
2639 			 */
2640 			balance_gap = min(low_wmark_pages(zone),
2641 				(zone->present_pages +
2642 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2643 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2644 			if (!zone_watermark_ok_safe(zone, order,
2645 					high_wmark_pages(zone) + balance_gap,
2646 					end_zone, 0)) {
2647 				shrink_zone(priority, zone, &sc);
2648 
2649 				reclaim_state->reclaimed_slab = 0;
2650 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2651 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2652 				total_scanned += sc.nr_scanned;
2653 
2654 				if (nr_slab == 0 && !zone_reclaimable(zone))
2655 					zone->all_unreclaimable = 1;
2656 			}
2657 
2658 			/*
2659 			 * If we've done a decent amount of scanning and
2660 			 * the reclaim ratio is low, start doing writepage
2661 			 * even in laptop mode
2662 			 */
2663 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2664 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2665 				sc.may_writepage = 1;
2666 
2667 			if (zone->all_unreclaimable) {
2668 				if (end_zone && end_zone == i)
2669 					end_zone--;
2670 				continue;
2671 			}
2672 
2673 			if (!zone_watermark_ok_safe(zone, order,
2674 					high_wmark_pages(zone), end_zone, 0)) {
2675 				all_zones_ok = 0;
2676 				/*
2677 				 * We are still under min water mark.  This
2678 				 * means that we have a GFP_ATOMIC allocation
2679 				 * failure risk. Hurry up!
2680 				 */
2681 				if (!zone_watermark_ok_safe(zone, order,
2682 					    min_wmark_pages(zone), end_zone, 0))
2683 					has_under_min_watermark_zone = 1;
2684 			} else {
2685 				/*
2686 				 * If a zone reaches its high watermark,
2687 				 * consider it to be no longer congested. It's
2688 				 * possible there are dirty pages backed by
2689 				 * congested BDIs but as pressure is relieved,
2690 				 * spectulatively avoid congestion waits
2691 				 */
2692 				zone_clear_flag(zone, ZONE_CONGESTED);
2693 				if (i <= *classzone_idx)
2694 					balanced += zone->present_pages;
2695 			}
2696 
2697 		}
2698 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2699 			break;		/* kswapd: all done */
2700 		/*
2701 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2702 		 * another pass across the zones.
2703 		 */
2704 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2705 			if (has_under_min_watermark_zone)
2706 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2707 			else
2708 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2709 		}
2710 
2711 		/*
2712 		 * We do this so kswapd doesn't build up large priorities for
2713 		 * example when it is freeing in parallel with allocators. It
2714 		 * matches the direct reclaim path behaviour in terms of impact
2715 		 * on zone->*_priority.
2716 		 */
2717 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2718 			break;
2719 	}
2720 out:
2721 
2722 	/*
2723 	 * order-0: All zones must meet high watermark for a balanced node
2724 	 * high-order: Balanced zones must make up at least 25% of the node
2725 	 *             for the node to be balanced
2726 	 */
2727 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2728 		cond_resched();
2729 
2730 		try_to_freeze();
2731 
2732 		/*
2733 		 * Fragmentation may mean that the system cannot be
2734 		 * rebalanced for high-order allocations in all zones.
2735 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2736 		 * it means the zones have been fully scanned and are still
2737 		 * not balanced. For high-order allocations, there is
2738 		 * little point trying all over again as kswapd may
2739 		 * infinite loop.
2740 		 *
2741 		 * Instead, recheck all watermarks at order-0 as they
2742 		 * are the most important. If watermarks are ok, kswapd will go
2743 		 * back to sleep. High-order users can still perform direct
2744 		 * reclaim if they wish.
2745 		 */
2746 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2747 			order = sc.order = 0;
2748 
2749 		goto loop_again;
2750 	}
2751 
2752 	/*
2753 	 * If kswapd was reclaiming at a higher order, it has the option of
2754 	 * sleeping without all zones being balanced. Before it does, it must
2755 	 * ensure that the watermarks for order-0 on *all* zones are met and
2756 	 * that the congestion flags are cleared. The congestion flag must
2757 	 * be cleared as kswapd is the only mechanism that clears the flag
2758 	 * and it is potentially going to sleep here.
2759 	 */
2760 	if (order) {
2761 		for (i = 0; i <= end_zone; i++) {
2762 			struct zone *zone = pgdat->node_zones + i;
2763 
2764 			if (!populated_zone(zone))
2765 				continue;
2766 
2767 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2768 				continue;
2769 
2770 			/* Confirm the zone is balanced for order-0 */
2771 			if (!zone_watermark_ok(zone, 0,
2772 					high_wmark_pages(zone), 0, 0)) {
2773 				order = sc.order = 0;
2774 				goto loop_again;
2775 			}
2776 
2777 			/* If balanced, clear the congested flag */
2778 			zone_clear_flag(zone, ZONE_CONGESTED);
2779 			if (i <= *classzone_idx)
2780 				balanced += zone->present_pages;
2781 		}
2782 	}
2783 
2784 	/*
2785 	 * Return the order we were reclaiming at so sleeping_prematurely()
2786 	 * makes a decision on the order we were last reclaiming at. However,
2787 	 * if another caller entered the allocator slow path while kswapd
2788 	 * was awake, order will remain at the higher level
2789 	 */
2790 	*classzone_idx = end_zone;
2791 	return order;
2792 }
2793 
2794 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2795 {
2796 	long remaining = 0;
2797 	DEFINE_WAIT(wait);
2798 
2799 	if (freezing(current) || kthread_should_stop())
2800 		return;
2801 
2802 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2803 
2804 	/* Try to sleep for a short interval */
2805 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2806 		remaining = schedule_timeout(HZ/10);
2807 		finish_wait(&pgdat->kswapd_wait, &wait);
2808 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2809 	}
2810 
2811 	/*
2812 	 * After a short sleep, check if it was a premature sleep. If not, then
2813 	 * go fully to sleep until explicitly woken up.
2814 	 */
2815 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2816 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2817 
2818 		/*
2819 		 * vmstat counters are not perfectly accurate and the estimated
2820 		 * value for counters such as NR_FREE_PAGES can deviate from the
2821 		 * true value by nr_online_cpus * threshold. To avoid the zone
2822 		 * watermarks being breached while under pressure, we reduce the
2823 		 * per-cpu vmstat threshold while kswapd is awake and restore
2824 		 * them before going back to sleep.
2825 		 */
2826 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2827 		schedule();
2828 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2829 	} else {
2830 		if (remaining)
2831 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2832 		else
2833 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2834 	}
2835 	finish_wait(&pgdat->kswapd_wait, &wait);
2836 }
2837 
2838 /*
2839  * The background pageout daemon, started as a kernel thread
2840  * from the init process.
2841  *
2842  * This basically trickles out pages so that we have _some_
2843  * free memory available even if there is no other activity
2844  * that frees anything up. This is needed for things like routing
2845  * etc, where we otherwise might have all activity going on in
2846  * asynchronous contexts that cannot page things out.
2847  *
2848  * If there are applications that are active memory-allocators
2849  * (most normal use), this basically shouldn't matter.
2850  */
2851 static int kswapd(void *p)
2852 {
2853 	unsigned long order, new_order;
2854 	unsigned balanced_order;
2855 	int classzone_idx, new_classzone_idx;
2856 	int balanced_classzone_idx;
2857 	pg_data_t *pgdat = (pg_data_t*)p;
2858 	struct task_struct *tsk = current;
2859 
2860 	struct reclaim_state reclaim_state = {
2861 		.reclaimed_slab = 0,
2862 	};
2863 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2864 
2865 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2866 
2867 	if (!cpumask_empty(cpumask))
2868 		set_cpus_allowed_ptr(tsk, cpumask);
2869 	current->reclaim_state = &reclaim_state;
2870 
2871 	/*
2872 	 * Tell the memory management that we're a "memory allocator",
2873 	 * and that if we need more memory we should get access to it
2874 	 * regardless (see "__alloc_pages()"). "kswapd" should
2875 	 * never get caught in the normal page freeing logic.
2876 	 *
2877 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2878 	 * you need a small amount of memory in order to be able to
2879 	 * page out something else, and this flag essentially protects
2880 	 * us from recursively trying to free more memory as we're
2881 	 * trying to free the first piece of memory in the first place).
2882 	 */
2883 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2884 	set_freezable();
2885 
2886 	order = new_order = 0;
2887 	balanced_order = 0;
2888 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2889 	balanced_classzone_idx = classzone_idx;
2890 	for ( ; ; ) {
2891 		int ret;
2892 
2893 		/*
2894 		 * If the last balance_pgdat was unsuccessful it's unlikely a
2895 		 * new request of a similar or harder type will succeed soon
2896 		 * so consider going to sleep on the basis we reclaimed at
2897 		 */
2898 		if (balanced_classzone_idx >= new_classzone_idx &&
2899 					balanced_order == new_order) {
2900 			new_order = pgdat->kswapd_max_order;
2901 			new_classzone_idx = pgdat->classzone_idx;
2902 			pgdat->kswapd_max_order =  0;
2903 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2904 		}
2905 
2906 		if (order < new_order || classzone_idx > new_classzone_idx) {
2907 			/*
2908 			 * Don't sleep if someone wants a larger 'order'
2909 			 * allocation or has tigher zone constraints
2910 			 */
2911 			order = new_order;
2912 			classzone_idx = new_classzone_idx;
2913 		} else {
2914 			kswapd_try_to_sleep(pgdat, balanced_order,
2915 						balanced_classzone_idx);
2916 			order = pgdat->kswapd_max_order;
2917 			classzone_idx = pgdat->classzone_idx;
2918 			new_order = order;
2919 			new_classzone_idx = classzone_idx;
2920 			pgdat->kswapd_max_order = 0;
2921 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2922 		}
2923 
2924 		ret = try_to_freeze();
2925 		if (kthread_should_stop())
2926 			break;
2927 
2928 		/*
2929 		 * We can speed up thawing tasks if we don't call balance_pgdat
2930 		 * after returning from the refrigerator
2931 		 */
2932 		if (!ret) {
2933 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2934 			balanced_classzone_idx = classzone_idx;
2935 			balanced_order = balance_pgdat(pgdat, order,
2936 						&balanced_classzone_idx);
2937 		}
2938 	}
2939 	return 0;
2940 }
2941 
2942 /*
2943  * A zone is low on free memory, so wake its kswapd task to service it.
2944  */
2945 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2946 {
2947 	pg_data_t *pgdat;
2948 
2949 	if (!populated_zone(zone))
2950 		return;
2951 
2952 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2953 		return;
2954 	pgdat = zone->zone_pgdat;
2955 	if (pgdat->kswapd_max_order < order) {
2956 		pgdat->kswapd_max_order = order;
2957 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2958 	}
2959 	if (!waitqueue_active(&pgdat->kswapd_wait))
2960 		return;
2961 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2962 		return;
2963 
2964 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2965 	wake_up_interruptible(&pgdat->kswapd_wait);
2966 }
2967 
2968 /*
2969  * The reclaimable count would be mostly accurate.
2970  * The less reclaimable pages may be
2971  * - mlocked pages, which will be moved to unevictable list when encountered
2972  * - mapped pages, which may require several travels to be reclaimed
2973  * - dirty pages, which is not "instantly" reclaimable
2974  */
2975 unsigned long global_reclaimable_pages(void)
2976 {
2977 	int nr;
2978 
2979 	nr = global_page_state(NR_ACTIVE_FILE) +
2980 	     global_page_state(NR_INACTIVE_FILE);
2981 
2982 	if (nr_swap_pages > 0)
2983 		nr += global_page_state(NR_ACTIVE_ANON) +
2984 		      global_page_state(NR_INACTIVE_ANON);
2985 
2986 	return nr;
2987 }
2988 
2989 unsigned long zone_reclaimable_pages(struct zone *zone)
2990 {
2991 	int nr;
2992 
2993 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2994 	     zone_page_state(zone, NR_INACTIVE_FILE);
2995 
2996 	if (nr_swap_pages > 0)
2997 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2998 		      zone_page_state(zone, NR_INACTIVE_ANON);
2999 
3000 	return nr;
3001 }
3002 
3003 #ifdef CONFIG_HIBERNATION
3004 /*
3005  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3006  * freed pages.
3007  *
3008  * Rather than trying to age LRUs the aim is to preserve the overall
3009  * LRU order by reclaiming preferentially
3010  * inactive > active > active referenced > active mapped
3011  */
3012 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3013 {
3014 	struct reclaim_state reclaim_state;
3015 	struct scan_control sc = {
3016 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3017 		.may_swap = 1,
3018 		.may_unmap = 1,
3019 		.may_writepage = 1,
3020 		.nr_to_reclaim = nr_to_reclaim,
3021 		.hibernation_mode = 1,
3022 		.order = 0,
3023 	};
3024 	struct shrink_control shrink = {
3025 		.gfp_mask = sc.gfp_mask,
3026 	};
3027 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3028 	struct task_struct *p = current;
3029 	unsigned long nr_reclaimed;
3030 
3031 	p->flags |= PF_MEMALLOC;
3032 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3033 	reclaim_state.reclaimed_slab = 0;
3034 	p->reclaim_state = &reclaim_state;
3035 
3036 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3037 
3038 	p->reclaim_state = NULL;
3039 	lockdep_clear_current_reclaim_state();
3040 	p->flags &= ~PF_MEMALLOC;
3041 
3042 	return nr_reclaimed;
3043 }
3044 #endif /* CONFIG_HIBERNATION */
3045 
3046 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3047    not required for correctness.  So if the last cpu in a node goes
3048    away, we get changed to run anywhere: as the first one comes back,
3049    restore their cpu bindings. */
3050 static int __devinit cpu_callback(struct notifier_block *nfb,
3051 				  unsigned long action, void *hcpu)
3052 {
3053 	int nid;
3054 
3055 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3056 		for_each_node_state(nid, N_HIGH_MEMORY) {
3057 			pg_data_t *pgdat = NODE_DATA(nid);
3058 			const struct cpumask *mask;
3059 
3060 			mask = cpumask_of_node(pgdat->node_id);
3061 
3062 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3063 				/* One of our CPUs online: restore mask */
3064 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3065 		}
3066 	}
3067 	return NOTIFY_OK;
3068 }
3069 
3070 /*
3071  * This kswapd start function will be called by init and node-hot-add.
3072  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3073  */
3074 int kswapd_run(int nid)
3075 {
3076 	pg_data_t *pgdat = NODE_DATA(nid);
3077 	int ret = 0;
3078 
3079 	if (pgdat->kswapd)
3080 		return 0;
3081 
3082 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3083 	if (IS_ERR(pgdat->kswapd)) {
3084 		/* failure at boot is fatal */
3085 		BUG_ON(system_state == SYSTEM_BOOTING);
3086 		printk("Failed to start kswapd on node %d\n",nid);
3087 		ret = -1;
3088 	}
3089 	return ret;
3090 }
3091 
3092 /*
3093  * Called by memory hotplug when all memory in a node is offlined.
3094  */
3095 void kswapd_stop(int nid)
3096 {
3097 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3098 
3099 	if (kswapd)
3100 		kthread_stop(kswapd);
3101 }
3102 
3103 static int __init kswapd_init(void)
3104 {
3105 	int nid;
3106 
3107 	swap_setup();
3108 	for_each_node_state(nid, N_HIGH_MEMORY)
3109  		kswapd_run(nid);
3110 	hotcpu_notifier(cpu_callback, 0);
3111 	return 0;
3112 }
3113 
3114 module_init(kswapd_init)
3115 
3116 #ifdef CONFIG_NUMA
3117 /*
3118  * Zone reclaim mode
3119  *
3120  * If non-zero call zone_reclaim when the number of free pages falls below
3121  * the watermarks.
3122  */
3123 int zone_reclaim_mode __read_mostly;
3124 
3125 #define RECLAIM_OFF 0
3126 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3127 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3128 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3129 
3130 /*
3131  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3132  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3133  * a zone.
3134  */
3135 #define ZONE_RECLAIM_PRIORITY 4
3136 
3137 /*
3138  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3139  * occur.
3140  */
3141 int sysctl_min_unmapped_ratio = 1;
3142 
3143 /*
3144  * If the number of slab pages in a zone grows beyond this percentage then
3145  * slab reclaim needs to occur.
3146  */
3147 int sysctl_min_slab_ratio = 5;
3148 
3149 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3150 {
3151 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3152 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3153 		zone_page_state(zone, NR_ACTIVE_FILE);
3154 
3155 	/*
3156 	 * It's possible for there to be more file mapped pages than
3157 	 * accounted for by the pages on the file LRU lists because
3158 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3159 	 */
3160 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3161 }
3162 
3163 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3164 static long zone_pagecache_reclaimable(struct zone *zone)
3165 {
3166 	long nr_pagecache_reclaimable;
3167 	long delta = 0;
3168 
3169 	/*
3170 	 * If RECLAIM_SWAP is set, then all file pages are considered
3171 	 * potentially reclaimable. Otherwise, we have to worry about
3172 	 * pages like swapcache and zone_unmapped_file_pages() provides
3173 	 * a better estimate
3174 	 */
3175 	if (zone_reclaim_mode & RECLAIM_SWAP)
3176 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3177 	else
3178 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3179 
3180 	/* If we can't clean pages, remove dirty pages from consideration */
3181 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3182 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3183 
3184 	/* Watch for any possible underflows due to delta */
3185 	if (unlikely(delta > nr_pagecache_reclaimable))
3186 		delta = nr_pagecache_reclaimable;
3187 
3188 	return nr_pagecache_reclaimable - delta;
3189 }
3190 
3191 /*
3192  * Try to free up some pages from this zone through reclaim.
3193  */
3194 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3195 {
3196 	/* Minimum pages needed in order to stay on node */
3197 	const unsigned long nr_pages = 1 << order;
3198 	struct task_struct *p = current;
3199 	struct reclaim_state reclaim_state;
3200 	int priority;
3201 	struct scan_control sc = {
3202 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3203 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3204 		.may_swap = 1,
3205 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3206 				       SWAP_CLUSTER_MAX),
3207 		.gfp_mask = gfp_mask,
3208 		.order = order,
3209 	};
3210 	struct shrink_control shrink = {
3211 		.gfp_mask = sc.gfp_mask,
3212 	};
3213 	unsigned long nr_slab_pages0, nr_slab_pages1;
3214 
3215 	cond_resched();
3216 	/*
3217 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3218 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3219 	 * and RECLAIM_SWAP.
3220 	 */
3221 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3222 	lockdep_set_current_reclaim_state(gfp_mask);
3223 	reclaim_state.reclaimed_slab = 0;
3224 	p->reclaim_state = &reclaim_state;
3225 
3226 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3227 		/*
3228 		 * Free memory by calling shrink zone with increasing
3229 		 * priorities until we have enough memory freed.
3230 		 */
3231 		priority = ZONE_RECLAIM_PRIORITY;
3232 		do {
3233 			shrink_zone(priority, zone, &sc);
3234 			priority--;
3235 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3236 	}
3237 
3238 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3239 	if (nr_slab_pages0 > zone->min_slab_pages) {
3240 		/*
3241 		 * shrink_slab() does not currently allow us to determine how
3242 		 * many pages were freed in this zone. So we take the current
3243 		 * number of slab pages and shake the slab until it is reduced
3244 		 * by the same nr_pages that we used for reclaiming unmapped
3245 		 * pages.
3246 		 *
3247 		 * Note that shrink_slab will free memory on all zones and may
3248 		 * take a long time.
3249 		 */
3250 		for (;;) {
3251 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3252 
3253 			/* No reclaimable slab or very low memory pressure */
3254 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3255 				break;
3256 
3257 			/* Freed enough memory */
3258 			nr_slab_pages1 = zone_page_state(zone,
3259 							NR_SLAB_RECLAIMABLE);
3260 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3261 				break;
3262 		}
3263 
3264 		/*
3265 		 * Update nr_reclaimed by the number of slab pages we
3266 		 * reclaimed from this zone.
3267 		 */
3268 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3269 		if (nr_slab_pages1 < nr_slab_pages0)
3270 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3271 	}
3272 
3273 	p->reclaim_state = NULL;
3274 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3275 	lockdep_clear_current_reclaim_state();
3276 	return sc.nr_reclaimed >= nr_pages;
3277 }
3278 
3279 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3280 {
3281 	int node_id;
3282 	int ret;
3283 
3284 	/*
3285 	 * Zone reclaim reclaims unmapped file backed pages and
3286 	 * slab pages if we are over the defined limits.
3287 	 *
3288 	 * A small portion of unmapped file backed pages is needed for
3289 	 * file I/O otherwise pages read by file I/O will be immediately
3290 	 * thrown out if the zone is overallocated. So we do not reclaim
3291 	 * if less than a specified percentage of the zone is used by
3292 	 * unmapped file backed pages.
3293 	 */
3294 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3295 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3296 		return ZONE_RECLAIM_FULL;
3297 
3298 	if (zone->all_unreclaimable)
3299 		return ZONE_RECLAIM_FULL;
3300 
3301 	/*
3302 	 * Do not scan if the allocation should not be delayed.
3303 	 */
3304 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3305 		return ZONE_RECLAIM_NOSCAN;
3306 
3307 	/*
3308 	 * Only run zone reclaim on the local zone or on zones that do not
3309 	 * have associated processors. This will favor the local processor
3310 	 * over remote processors and spread off node memory allocations
3311 	 * as wide as possible.
3312 	 */
3313 	node_id = zone_to_nid(zone);
3314 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3315 		return ZONE_RECLAIM_NOSCAN;
3316 
3317 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3318 		return ZONE_RECLAIM_NOSCAN;
3319 
3320 	ret = __zone_reclaim(zone, gfp_mask, order);
3321 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3322 
3323 	if (!ret)
3324 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3325 
3326 	return ret;
3327 }
3328 #endif
3329 
3330 /*
3331  * page_evictable - test whether a page is evictable
3332  * @page: the page to test
3333  * @vma: the VMA in which the page is or will be mapped, may be NULL
3334  *
3335  * Test whether page is evictable--i.e., should be placed on active/inactive
3336  * lists vs unevictable list.  The vma argument is !NULL when called from the
3337  * fault path to determine how to instantate a new page.
3338  *
3339  * Reasons page might not be evictable:
3340  * (1) page's mapping marked unevictable
3341  * (2) page is part of an mlocked VMA
3342  *
3343  */
3344 int page_evictable(struct page *page, struct vm_area_struct *vma)
3345 {
3346 
3347 	if (mapping_unevictable(page_mapping(page)))
3348 		return 0;
3349 
3350 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3351 		return 0;
3352 
3353 	return 1;
3354 }
3355 
3356 /**
3357  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3358  * @page: page to check evictability and move to appropriate lru list
3359  * @zone: zone page is in
3360  *
3361  * Checks a page for evictability and moves the page to the appropriate
3362  * zone lru list.
3363  *
3364  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3365  * have PageUnevictable set.
3366  */
3367 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3368 {
3369 	VM_BUG_ON(PageActive(page));
3370 
3371 retry:
3372 	ClearPageUnevictable(page);
3373 	if (page_evictable(page, NULL)) {
3374 		enum lru_list l = page_lru_base_type(page);
3375 
3376 		__dec_zone_state(zone, NR_UNEVICTABLE);
3377 		list_move(&page->lru, &zone->lru[l].list);
3378 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3379 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3380 		__count_vm_event(UNEVICTABLE_PGRESCUED);
3381 	} else {
3382 		/*
3383 		 * rotate unevictable list
3384 		 */
3385 		SetPageUnevictable(page);
3386 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3387 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3388 		if (page_evictable(page, NULL))
3389 			goto retry;
3390 	}
3391 }
3392 
3393 /**
3394  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3395  * @mapping: struct address_space to scan for evictable pages
3396  *
3397  * Scan all pages in mapping.  Check unevictable pages for
3398  * evictability and move them to the appropriate zone lru list.
3399  */
3400 void scan_mapping_unevictable_pages(struct address_space *mapping)
3401 {
3402 	pgoff_t next = 0;
3403 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3404 			 PAGE_CACHE_SHIFT;
3405 	struct zone *zone;
3406 	struct pagevec pvec;
3407 
3408 	if (mapping->nrpages == 0)
3409 		return;
3410 
3411 	pagevec_init(&pvec, 0);
3412 	while (next < end &&
3413 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3414 		int i;
3415 		int pg_scanned = 0;
3416 
3417 		zone = NULL;
3418 
3419 		for (i = 0; i < pagevec_count(&pvec); i++) {
3420 			struct page *page = pvec.pages[i];
3421 			pgoff_t page_index = page->index;
3422 			struct zone *pagezone = page_zone(page);
3423 
3424 			pg_scanned++;
3425 			if (page_index > next)
3426 				next = page_index;
3427 			next++;
3428 
3429 			if (pagezone != zone) {
3430 				if (zone)
3431 					spin_unlock_irq(&zone->lru_lock);
3432 				zone = pagezone;
3433 				spin_lock_irq(&zone->lru_lock);
3434 			}
3435 
3436 			if (PageLRU(page) && PageUnevictable(page))
3437 				check_move_unevictable_page(page, zone);
3438 		}
3439 		if (zone)
3440 			spin_unlock_irq(&zone->lru_lock);
3441 		pagevec_release(&pvec);
3442 
3443 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3444 	}
3445 
3446 }
3447 
3448 static void warn_scan_unevictable_pages(void)
3449 {
3450 	printk_once(KERN_WARNING
3451 		    "The scan_unevictable_pages sysctl/node-interface has been "
3452 		    "disabled for lack of a legitimate use case.  If you have "
3453 		    "one, please send an email to linux-mm@kvack.org.\n");
3454 }
3455 
3456 /*
3457  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3458  * all nodes' unevictable lists for evictable pages
3459  */
3460 unsigned long scan_unevictable_pages;
3461 
3462 int scan_unevictable_handler(struct ctl_table *table, int write,
3463 			   void __user *buffer,
3464 			   size_t *length, loff_t *ppos)
3465 {
3466 	warn_scan_unevictable_pages();
3467 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3468 	scan_unevictable_pages = 0;
3469 	return 0;
3470 }
3471 
3472 #ifdef CONFIG_NUMA
3473 /*
3474  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3475  * a specified node's per zone unevictable lists for evictable pages.
3476  */
3477 
3478 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3479 					  struct sysdev_attribute *attr,
3480 					  char *buf)
3481 {
3482 	warn_scan_unevictable_pages();
3483 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3484 }
3485 
3486 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3487 					   struct sysdev_attribute *attr,
3488 					const char *buf, size_t count)
3489 {
3490 	warn_scan_unevictable_pages();
3491 	return 1;
3492 }
3493 
3494 
3495 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3496 			read_scan_unevictable_node,
3497 			write_scan_unevictable_node);
3498 
3499 int scan_unevictable_register_node(struct node *node)
3500 {
3501 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3502 }
3503 
3504 void scan_unevictable_unregister_node(struct node *node)
3505 {
3506 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3507 }
3508 #endif
3509