1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Can active pages be deactivated as part of reclaim? */ 83 #define DEACTIVATE_ANON 1 84 #define DEACTIVATE_FILE 2 85 unsigned int may_deactivate:2; 86 unsigned int force_deactivate:1; 87 unsigned int skipped_deactivate:1; 88 89 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* 99 * Cgroups are not reclaimed below their configured memory.low, 100 * unless we threaten to OOM. If any cgroups are skipped due to 101 * memory.low and nothing was reclaimed, go back for memory.low. 102 */ 103 unsigned int memcg_low_reclaim:1; 104 unsigned int memcg_low_skipped:1; 105 106 unsigned int hibernation_mode:1; 107 108 /* One of the zones is ready for compaction */ 109 unsigned int compaction_ready:1; 110 111 /* There is easily reclaimable cold cache in the current node */ 112 unsigned int cache_trim_mode:1; 113 114 /* The file pages on the current node are dangerously low */ 115 unsigned int file_is_tiny:1; 116 117 /* Allocation order */ 118 s8 order; 119 120 /* Scan (total_size >> priority) pages at once */ 121 s8 priority; 122 123 /* The highest zone to isolate pages for reclaim from */ 124 s8 reclaim_idx; 125 126 /* This context's GFP mask */ 127 gfp_t gfp_mask; 128 129 /* Incremented by the number of inactive pages that were scanned */ 130 unsigned long nr_scanned; 131 132 /* Number of pages freed so far during a call to shrink_zones() */ 133 unsigned long nr_reclaimed; 134 135 struct { 136 unsigned int dirty; 137 unsigned int unqueued_dirty; 138 unsigned int congested; 139 unsigned int writeback; 140 unsigned int immediate; 141 unsigned int file_taken; 142 unsigned int taken; 143 } nr; 144 145 /* for recording the reclaimed slab by now */ 146 struct reclaim_state reclaim_state; 147 }; 148 149 #ifdef ARCH_HAS_PREFETCHW 150 #define prefetchw_prev_lru_page(_page, _base, _field) \ 151 do { \ 152 if ((_page)->lru.prev != _base) { \ 153 struct page *prev; \ 154 \ 155 prev = lru_to_page(&(_page->lru)); \ 156 prefetchw(&prev->_field); \ 157 } \ 158 } while (0) 159 #else 160 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 161 #endif 162 163 /* 164 * From 0 .. 100. Higher means more swappy. 165 */ 166 int vm_swappiness = 60; 167 /* 168 * The total number of pages which are beyond the high watermark within all 169 * zones. 170 */ 171 unsigned long vm_total_pages; 172 173 static void set_task_reclaim_state(struct task_struct *task, 174 struct reclaim_state *rs) 175 { 176 /* Check for an overwrite */ 177 WARN_ON_ONCE(rs && task->reclaim_state); 178 179 /* Check for the nulling of an already-nulled member */ 180 WARN_ON_ONCE(!rs && !task->reclaim_state); 181 182 task->reclaim_state = rs; 183 } 184 185 static LIST_HEAD(shrinker_list); 186 static DECLARE_RWSEM(shrinker_rwsem); 187 188 #ifdef CONFIG_MEMCG 189 /* 190 * We allow subsystems to populate their shrinker-related 191 * LRU lists before register_shrinker_prepared() is called 192 * for the shrinker, since we don't want to impose 193 * restrictions on their internal registration order. 194 * In this case shrink_slab_memcg() may find corresponding 195 * bit is set in the shrinkers map. 196 * 197 * This value is used by the function to detect registering 198 * shrinkers and to skip do_shrink_slab() calls for them. 199 */ 200 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 201 202 static DEFINE_IDR(shrinker_idr); 203 static int shrinker_nr_max; 204 205 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 206 { 207 int id, ret = -ENOMEM; 208 209 down_write(&shrinker_rwsem); 210 /* This may call shrinker, so it must use down_read_trylock() */ 211 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 212 if (id < 0) 213 goto unlock; 214 215 if (id >= shrinker_nr_max) { 216 if (memcg_expand_shrinker_maps(id)) { 217 idr_remove(&shrinker_idr, id); 218 goto unlock; 219 } 220 221 shrinker_nr_max = id + 1; 222 } 223 shrinker->id = id; 224 ret = 0; 225 unlock: 226 up_write(&shrinker_rwsem); 227 return ret; 228 } 229 230 static void unregister_memcg_shrinker(struct shrinker *shrinker) 231 { 232 int id = shrinker->id; 233 234 BUG_ON(id < 0); 235 236 down_write(&shrinker_rwsem); 237 idr_remove(&shrinker_idr, id); 238 up_write(&shrinker_rwsem); 239 } 240 241 static bool cgroup_reclaim(struct scan_control *sc) 242 { 243 return sc->target_mem_cgroup; 244 } 245 246 /** 247 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 248 * @sc: scan_control in question 249 * 250 * The normal page dirty throttling mechanism in balance_dirty_pages() is 251 * completely broken with the legacy memcg and direct stalling in 252 * shrink_page_list() is used for throttling instead, which lacks all the 253 * niceties such as fairness, adaptive pausing, bandwidth proportional 254 * allocation and configurability. 255 * 256 * This function tests whether the vmscan currently in progress can assume 257 * that the normal dirty throttling mechanism is operational. 258 */ 259 static bool writeback_throttling_sane(struct scan_control *sc) 260 { 261 if (!cgroup_reclaim(sc)) 262 return true; 263 #ifdef CONFIG_CGROUP_WRITEBACK 264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 265 return true; 266 #endif 267 return false; 268 } 269 #else 270 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 271 { 272 return 0; 273 } 274 275 static void unregister_memcg_shrinker(struct shrinker *shrinker) 276 { 277 } 278 279 static bool cgroup_reclaim(struct scan_control *sc) 280 { 281 return false; 282 } 283 284 static bool writeback_throttling_sane(struct scan_control *sc) 285 { 286 return true; 287 } 288 #endif 289 290 /* 291 * This misses isolated pages which are not accounted for to save counters. 292 * As the data only determines if reclaim or compaction continues, it is 293 * not expected that isolated pages will be a dominating factor. 294 */ 295 unsigned long zone_reclaimable_pages(struct zone *zone) 296 { 297 unsigned long nr; 298 299 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 300 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 301 if (get_nr_swap_pages() > 0) 302 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 303 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 304 305 return nr; 306 } 307 308 /** 309 * lruvec_lru_size - Returns the number of pages on the given LRU list. 310 * @lruvec: lru vector 311 * @lru: lru to use 312 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 313 */ 314 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 315 { 316 unsigned long size = 0; 317 int zid; 318 319 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 320 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 321 322 if (!managed_zone(zone)) 323 continue; 324 325 if (!mem_cgroup_disabled()) 326 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 327 else 328 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 329 } 330 return size; 331 } 332 333 /* 334 * Add a shrinker callback to be called from the vm. 335 */ 336 int prealloc_shrinker(struct shrinker *shrinker) 337 { 338 unsigned int size = sizeof(*shrinker->nr_deferred); 339 340 if (shrinker->flags & SHRINKER_NUMA_AWARE) 341 size *= nr_node_ids; 342 343 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 344 if (!shrinker->nr_deferred) 345 return -ENOMEM; 346 347 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 348 if (prealloc_memcg_shrinker(shrinker)) 349 goto free_deferred; 350 } 351 352 return 0; 353 354 free_deferred: 355 kfree(shrinker->nr_deferred); 356 shrinker->nr_deferred = NULL; 357 return -ENOMEM; 358 } 359 360 void free_prealloced_shrinker(struct shrinker *shrinker) 361 { 362 if (!shrinker->nr_deferred) 363 return; 364 365 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 366 unregister_memcg_shrinker(shrinker); 367 368 kfree(shrinker->nr_deferred); 369 shrinker->nr_deferred = NULL; 370 } 371 372 void register_shrinker_prepared(struct shrinker *shrinker) 373 { 374 down_write(&shrinker_rwsem); 375 list_add_tail(&shrinker->list, &shrinker_list); 376 #ifdef CONFIG_MEMCG 377 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 378 idr_replace(&shrinker_idr, shrinker, shrinker->id); 379 #endif 380 up_write(&shrinker_rwsem); 381 } 382 383 int register_shrinker(struct shrinker *shrinker) 384 { 385 int err = prealloc_shrinker(shrinker); 386 387 if (err) 388 return err; 389 register_shrinker_prepared(shrinker); 390 return 0; 391 } 392 EXPORT_SYMBOL(register_shrinker); 393 394 /* 395 * Remove one 396 */ 397 void unregister_shrinker(struct shrinker *shrinker) 398 { 399 if (!shrinker->nr_deferred) 400 return; 401 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 402 unregister_memcg_shrinker(shrinker); 403 down_write(&shrinker_rwsem); 404 list_del(&shrinker->list); 405 up_write(&shrinker_rwsem); 406 kfree(shrinker->nr_deferred); 407 shrinker->nr_deferred = NULL; 408 } 409 EXPORT_SYMBOL(unregister_shrinker); 410 411 #define SHRINK_BATCH 128 412 413 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 414 struct shrinker *shrinker, int priority) 415 { 416 unsigned long freed = 0; 417 unsigned long long delta; 418 long total_scan; 419 long freeable; 420 long nr; 421 long new_nr; 422 int nid = shrinkctl->nid; 423 long batch_size = shrinker->batch ? shrinker->batch 424 : SHRINK_BATCH; 425 long scanned = 0, next_deferred; 426 427 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 428 nid = 0; 429 430 freeable = shrinker->count_objects(shrinker, shrinkctl); 431 if (freeable == 0 || freeable == SHRINK_EMPTY) 432 return freeable; 433 434 /* 435 * copy the current shrinker scan count into a local variable 436 * and zero it so that other concurrent shrinker invocations 437 * don't also do this scanning work. 438 */ 439 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 440 441 total_scan = nr; 442 if (shrinker->seeks) { 443 delta = freeable >> priority; 444 delta *= 4; 445 do_div(delta, shrinker->seeks); 446 } else { 447 /* 448 * These objects don't require any IO to create. Trim 449 * them aggressively under memory pressure to keep 450 * them from causing refetches in the IO caches. 451 */ 452 delta = freeable / 2; 453 } 454 455 total_scan += delta; 456 if (total_scan < 0) { 457 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 458 shrinker->scan_objects, total_scan); 459 total_scan = freeable; 460 next_deferred = nr; 461 } else 462 next_deferred = total_scan; 463 464 /* 465 * We need to avoid excessive windup on filesystem shrinkers 466 * due to large numbers of GFP_NOFS allocations causing the 467 * shrinkers to return -1 all the time. This results in a large 468 * nr being built up so when a shrink that can do some work 469 * comes along it empties the entire cache due to nr >>> 470 * freeable. This is bad for sustaining a working set in 471 * memory. 472 * 473 * Hence only allow the shrinker to scan the entire cache when 474 * a large delta change is calculated directly. 475 */ 476 if (delta < freeable / 4) 477 total_scan = min(total_scan, freeable / 2); 478 479 /* 480 * Avoid risking looping forever due to too large nr value: 481 * never try to free more than twice the estimate number of 482 * freeable entries. 483 */ 484 if (total_scan > freeable * 2) 485 total_scan = freeable * 2; 486 487 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 488 freeable, delta, total_scan, priority); 489 490 /* 491 * Normally, we should not scan less than batch_size objects in one 492 * pass to avoid too frequent shrinker calls, but if the slab has less 493 * than batch_size objects in total and we are really tight on memory, 494 * we will try to reclaim all available objects, otherwise we can end 495 * up failing allocations although there are plenty of reclaimable 496 * objects spread over several slabs with usage less than the 497 * batch_size. 498 * 499 * We detect the "tight on memory" situations by looking at the total 500 * number of objects we want to scan (total_scan). If it is greater 501 * than the total number of objects on slab (freeable), we must be 502 * scanning at high prio and therefore should try to reclaim as much as 503 * possible. 504 */ 505 while (total_scan >= batch_size || 506 total_scan >= freeable) { 507 unsigned long ret; 508 unsigned long nr_to_scan = min(batch_size, total_scan); 509 510 shrinkctl->nr_to_scan = nr_to_scan; 511 shrinkctl->nr_scanned = nr_to_scan; 512 ret = shrinker->scan_objects(shrinker, shrinkctl); 513 if (ret == SHRINK_STOP) 514 break; 515 freed += ret; 516 517 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 518 total_scan -= shrinkctl->nr_scanned; 519 scanned += shrinkctl->nr_scanned; 520 521 cond_resched(); 522 } 523 524 if (next_deferred >= scanned) 525 next_deferred -= scanned; 526 else 527 next_deferred = 0; 528 /* 529 * move the unused scan count back into the shrinker in a 530 * manner that handles concurrent updates. If we exhausted the 531 * scan, there is no need to do an update. 532 */ 533 if (next_deferred > 0) 534 new_nr = atomic_long_add_return(next_deferred, 535 &shrinker->nr_deferred[nid]); 536 else 537 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 538 539 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 540 return freed; 541 } 542 543 #ifdef CONFIG_MEMCG 544 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 545 struct mem_cgroup *memcg, int priority) 546 { 547 struct memcg_shrinker_map *map; 548 unsigned long ret, freed = 0; 549 int i; 550 551 if (!mem_cgroup_online(memcg)) 552 return 0; 553 554 if (!down_read_trylock(&shrinker_rwsem)) 555 return 0; 556 557 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 558 true); 559 if (unlikely(!map)) 560 goto unlock; 561 562 for_each_set_bit(i, map->map, shrinker_nr_max) { 563 struct shrink_control sc = { 564 .gfp_mask = gfp_mask, 565 .nid = nid, 566 .memcg = memcg, 567 }; 568 struct shrinker *shrinker; 569 570 shrinker = idr_find(&shrinker_idr, i); 571 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 572 if (!shrinker) 573 clear_bit(i, map->map); 574 continue; 575 } 576 577 /* Call non-slab shrinkers even though kmem is disabled */ 578 if (!memcg_kmem_enabled() && 579 !(shrinker->flags & SHRINKER_NONSLAB)) 580 continue; 581 582 ret = do_shrink_slab(&sc, shrinker, priority); 583 if (ret == SHRINK_EMPTY) { 584 clear_bit(i, map->map); 585 /* 586 * After the shrinker reported that it had no objects to 587 * free, but before we cleared the corresponding bit in 588 * the memcg shrinker map, a new object might have been 589 * added. To make sure, we have the bit set in this 590 * case, we invoke the shrinker one more time and reset 591 * the bit if it reports that it is not empty anymore. 592 * The memory barrier here pairs with the barrier in 593 * memcg_set_shrinker_bit(): 594 * 595 * list_lru_add() shrink_slab_memcg() 596 * list_add_tail() clear_bit() 597 * <MB> <MB> 598 * set_bit() do_shrink_slab() 599 */ 600 smp_mb__after_atomic(); 601 ret = do_shrink_slab(&sc, shrinker, priority); 602 if (ret == SHRINK_EMPTY) 603 ret = 0; 604 else 605 memcg_set_shrinker_bit(memcg, nid, i); 606 } 607 freed += ret; 608 609 if (rwsem_is_contended(&shrinker_rwsem)) { 610 freed = freed ? : 1; 611 break; 612 } 613 } 614 unlock: 615 up_read(&shrinker_rwsem); 616 return freed; 617 } 618 #else /* CONFIG_MEMCG */ 619 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 620 struct mem_cgroup *memcg, int priority) 621 { 622 return 0; 623 } 624 #endif /* CONFIG_MEMCG */ 625 626 /** 627 * shrink_slab - shrink slab caches 628 * @gfp_mask: allocation context 629 * @nid: node whose slab caches to target 630 * @memcg: memory cgroup whose slab caches to target 631 * @priority: the reclaim priority 632 * 633 * Call the shrink functions to age shrinkable caches. 634 * 635 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 636 * unaware shrinkers will receive a node id of 0 instead. 637 * 638 * @memcg specifies the memory cgroup to target. Unaware shrinkers 639 * are called only if it is the root cgroup. 640 * 641 * @priority is sc->priority, we take the number of objects and >> by priority 642 * in order to get the scan target. 643 * 644 * Returns the number of reclaimed slab objects. 645 */ 646 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 647 struct mem_cgroup *memcg, 648 int priority) 649 { 650 unsigned long ret, freed = 0; 651 struct shrinker *shrinker; 652 653 /* 654 * The root memcg might be allocated even though memcg is disabled 655 * via "cgroup_disable=memory" boot parameter. This could make 656 * mem_cgroup_is_root() return false, then just run memcg slab 657 * shrink, but skip global shrink. This may result in premature 658 * oom. 659 */ 660 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 661 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 662 663 if (!down_read_trylock(&shrinker_rwsem)) 664 goto out; 665 666 list_for_each_entry(shrinker, &shrinker_list, list) { 667 struct shrink_control sc = { 668 .gfp_mask = gfp_mask, 669 .nid = nid, 670 .memcg = memcg, 671 }; 672 673 ret = do_shrink_slab(&sc, shrinker, priority); 674 if (ret == SHRINK_EMPTY) 675 ret = 0; 676 freed += ret; 677 /* 678 * Bail out if someone want to register a new shrinker to 679 * prevent the regsitration from being stalled for long periods 680 * by parallel ongoing shrinking. 681 */ 682 if (rwsem_is_contended(&shrinker_rwsem)) { 683 freed = freed ? : 1; 684 break; 685 } 686 } 687 688 up_read(&shrinker_rwsem); 689 out: 690 cond_resched(); 691 return freed; 692 } 693 694 void drop_slab_node(int nid) 695 { 696 unsigned long freed; 697 698 do { 699 struct mem_cgroup *memcg = NULL; 700 701 freed = 0; 702 memcg = mem_cgroup_iter(NULL, NULL, NULL); 703 do { 704 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 705 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 706 } while (freed > 10); 707 } 708 709 void drop_slab(void) 710 { 711 int nid; 712 713 for_each_online_node(nid) 714 drop_slab_node(nid); 715 } 716 717 static inline int is_page_cache_freeable(struct page *page) 718 { 719 /* 720 * A freeable page cache page is referenced only by the caller 721 * that isolated the page, the page cache and optional buffer 722 * heads at page->private. 723 */ 724 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 725 HPAGE_PMD_NR : 1; 726 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 727 } 728 729 static int may_write_to_inode(struct inode *inode) 730 { 731 if (current->flags & PF_SWAPWRITE) 732 return 1; 733 if (!inode_write_congested(inode)) 734 return 1; 735 if (inode_to_bdi(inode) == current->backing_dev_info) 736 return 1; 737 return 0; 738 } 739 740 /* 741 * We detected a synchronous write error writing a page out. Probably 742 * -ENOSPC. We need to propagate that into the address_space for a subsequent 743 * fsync(), msync() or close(). 744 * 745 * The tricky part is that after writepage we cannot touch the mapping: nothing 746 * prevents it from being freed up. But we have a ref on the page and once 747 * that page is locked, the mapping is pinned. 748 * 749 * We're allowed to run sleeping lock_page() here because we know the caller has 750 * __GFP_FS. 751 */ 752 static void handle_write_error(struct address_space *mapping, 753 struct page *page, int error) 754 { 755 lock_page(page); 756 if (page_mapping(page) == mapping) 757 mapping_set_error(mapping, error); 758 unlock_page(page); 759 } 760 761 /* possible outcome of pageout() */ 762 typedef enum { 763 /* failed to write page out, page is locked */ 764 PAGE_KEEP, 765 /* move page to the active list, page is locked */ 766 PAGE_ACTIVATE, 767 /* page has been sent to the disk successfully, page is unlocked */ 768 PAGE_SUCCESS, 769 /* page is clean and locked */ 770 PAGE_CLEAN, 771 } pageout_t; 772 773 /* 774 * pageout is called by shrink_page_list() for each dirty page. 775 * Calls ->writepage(). 776 */ 777 static pageout_t pageout(struct page *page, struct address_space *mapping) 778 { 779 /* 780 * If the page is dirty, only perform writeback if that write 781 * will be non-blocking. To prevent this allocation from being 782 * stalled by pagecache activity. But note that there may be 783 * stalls if we need to run get_block(). We could test 784 * PagePrivate for that. 785 * 786 * If this process is currently in __generic_file_write_iter() against 787 * this page's queue, we can perform writeback even if that 788 * will block. 789 * 790 * If the page is swapcache, write it back even if that would 791 * block, for some throttling. This happens by accident, because 792 * swap_backing_dev_info is bust: it doesn't reflect the 793 * congestion state of the swapdevs. Easy to fix, if needed. 794 */ 795 if (!is_page_cache_freeable(page)) 796 return PAGE_KEEP; 797 if (!mapping) { 798 /* 799 * Some data journaling orphaned pages can have 800 * page->mapping == NULL while being dirty with clean buffers. 801 */ 802 if (page_has_private(page)) { 803 if (try_to_free_buffers(page)) { 804 ClearPageDirty(page); 805 pr_info("%s: orphaned page\n", __func__); 806 return PAGE_CLEAN; 807 } 808 } 809 return PAGE_KEEP; 810 } 811 if (mapping->a_ops->writepage == NULL) 812 return PAGE_ACTIVATE; 813 if (!may_write_to_inode(mapping->host)) 814 return PAGE_KEEP; 815 816 if (clear_page_dirty_for_io(page)) { 817 int res; 818 struct writeback_control wbc = { 819 .sync_mode = WB_SYNC_NONE, 820 .nr_to_write = SWAP_CLUSTER_MAX, 821 .range_start = 0, 822 .range_end = LLONG_MAX, 823 .for_reclaim = 1, 824 }; 825 826 SetPageReclaim(page); 827 res = mapping->a_ops->writepage(page, &wbc); 828 if (res < 0) 829 handle_write_error(mapping, page, res); 830 if (res == AOP_WRITEPAGE_ACTIVATE) { 831 ClearPageReclaim(page); 832 return PAGE_ACTIVATE; 833 } 834 835 if (!PageWriteback(page)) { 836 /* synchronous write or broken a_ops? */ 837 ClearPageReclaim(page); 838 } 839 trace_mm_vmscan_writepage(page); 840 inc_node_page_state(page, NR_VMSCAN_WRITE); 841 return PAGE_SUCCESS; 842 } 843 844 return PAGE_CLEAN; 845 } 846 847 /* 848 * Same as remove_mapping, but if the page is removed from the mapping, it 849 * gets returned with a refcount of 0. 850 */ 851 static int __remove_mapping(struct address_space *mapping, struct page *page, 852 bool reclaimed, struct mem_cgroup *target_memcg) 853 { 854 unsigned long flags; 855 int refcount; 856 857 BUG_ON(!PageLocked(page)); 858 BUG_ON(mapping != page_mapping(page)); 859 860 xa_lock_irqsave(&mapping->i_pages, flags); 861 /* 862 * The non racy check for a busy page. 863 * 864 * Must be careful with the order of the tests. When someone has 865 * a ref to the page, it may be possible that they dirty it then 866 * drop the reference. So if PageDirty is tested before page_count 867 * here, then the following race may occur: 868 * 869 * get_user_pages(&page); 870 * [user mapping goes away] 871 * write_to(page); 872 * !PageDirty(page) [good] 873 * SetPageDirty(page); 874 * put_page(page); 875 * !page_count(page) [good, discard it] 876 * 877 * [oops, our write_to data is lost] 878 * 879 * Reversing the order of the tests ensures such a situation cannot 880 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 881 * load is not satisfied before that of page->_refcount. 882 * 883 * Note that if SetPageDirty is always performed via set_page_dirty, 884 * and thus under the i_pages lock, then this ordering is not required. 885 */ 886 refcount = 1 + compound_nr(page); 887 if (!page_ref_freeze(page, refcount)) 888 goto cannot_free; 889 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 890 if (unlikely(PageDirty(page))) { 891 page_ref_unfreeze(page, refcount); 892 goto cannot_free; 893 } 894 895 if (PageSwapCache(page)) { 896 swp_entry_t swap = { .val = page_private(page) }; 897 mem_cgroup_swapout(page, swap); 898 __delete_from_swap_cache(page, swap); 899 xa_unlock_irqrestore(&mapping->i_pages, flags); 900 put_swap_page(page, swap); 901 } else { 902 void (*freepage)(struct page *); 903 void *shadow = NULL; 904 905 freepage = mapping->a_ops->freepage; 906 /* 907 * Remember a shadow entry for reclaimed file cache in 908 * order to detect refaults, thus thrashing, later on. 909 * 910 * But don't store shadows in an address space that is 911 * already exiting. This is not just an optizimation, 912 * inode reclaim needs to empty out the radix tree or 913 * the nodes are lost. Don't plant shadows behind its 914 * back. 915 * 916 * We also don't store shadows for DAX mappings because the 917 * only page cache pages found in these are zero pages 918 * covering holes, and because we don't want to mix DAX 919 * exceptional entries and shadow exceptional entries in the 920 * same address_space. 921 */ 922 if (reclaimed && page_is_file_lru(page) && 923 !mapping_exiting(mapping) && !dax_mapping(mapping)) 924 shadow = workingset_eviction(page, target_memcg); 925 __delete_from_page_cache(page, shadow); 926 xa_unlock_irqrestore(&mapping->i_pages, flags); 927 928 if (freepage != NULL) 929 freepage(page); 930 } 931 932 return 1; 933 934 cannot_free: 935 xa_unlock_irqrestore(&mapping->i_pages, flags); 936 return 0; 937 } 938 939 /* 940 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 941 * someone else has a ref on the page, abort and return 0. If it was 942 * successfully detached, return 1. Assumes the caller has a single ref on 943 * this page. 944 */ 945 int remove_mapping(struct address_space *mapping, struct page *page) 946 { 947 if (__remove_mapping(mapping, page, false, NULL)) { 948 /* 949 * Unfreezing the refcount with 1 rather than 2 effectively 950 * drops the pagecache ref for us without requiring another 951 * atomic operation. 952 */ 953 page_ref_unfreeze(page, 1); 954 return 1; 955 } 956 return 0; 957 } 958 959 /** 960 * putback_lru_page - put previously isolated page onto appropriate LRU list 961 * @page: page to be put back to appropriate lru list 962 * 963 * Add previously isolated @page to appropriate LRU list. 964 * Page may still be unevictable for other reasons. 965 * 966 * lru_lock must not be held, interrupts must be enabled. 967 */ 968 void putback_lru_page(struct page *page) 969 { 970 lru_cache_add(page); 971 put_page(page); /* drop ref from isolate */ 972 } 973 974 enum page_references { 975 PAGEREF_RECLAIM, 976 PAGEREF_RECLAIM_CLEAN, 977 PAGEREF_KEEP, 978 PAGEREF_ACTIVATE, 979 }; 980 981 static enum page_references page_check_references(struct page *page, 982 struct scan_control *sc) 983 { 984 int referenced_ptes, referenced_page; 985 unsigned long vm_flags; 986 987 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 988 &vm_flags); 989 referenced_page = TestClearPageReferenced(page); 990 991 /* 992 * Mlock lost the isolation race with us. Let try_to_unmap() 993 * move the page to the unevictable list. 994 */ 995 if (vm_flags & VM_LOCKED) 996 return PAGEREF_RECLAIM; 997 998 if (referenced_ptes) { 999 if (PageSwapBacked(page)) 1000 return PAGEREF_ACTIVATE; 1001 /* 1002 * All mapped pages start out with page table 1003 * references from the instantiating fault, so we need 1004 * to look twice if a mapped file page is used more 1005 * than once. 1006 * 1007 * Mark it and spare it for another trip around the 1008 * inactive list. Another page table reference will 1009 * lead to its activation. 1010 * 1011 * Note: the mark is set for activated pages as well 1012 * so that recently deactivated but used pages are 1013 * quickly recovered. 1014 */ 1015 SetPageReferenced(page); 1016 1017 if (referenced_page || referenced_ptes > 1) 1018 return PAGEREF_ACTIVATE; 1019 1020 /* 1021 * Activate file-backed executable pages after first usage. 1022 */ 1023 if (vm_flags & VM_EXEC) 1024 return PAGEREF_ACTIVATE; 1025 1026 return PAGEREF_KEEP; 1027 } 1028 1029 /* Reclaim if clean, defer dirty pages to writeback */ 1030 if (referenced_page && !PageSwapBacked(page)) 1031 return PAGEREF_RECLAIM_CLEAN; 1032 1033 return PAGEREF_RECLAIM; 1034 } 1035 1036 /* Check if a page is dirty or under writeback */ 1037 static void page_check_dirty_writeback(struct page *page, 1038 bool *dirty, bool *writeback) 1039 { 1040 struct address_space *mapping; 1041 1042 /* 1043 * Anonymous pages are not handled by flushers and must be written 1044 * from reclaim context. Do not stall reclaim based on them 1045 */ 1046 if (!page_is_file_lru(page) || 1047 (PageAnon(page) && !PageSwapBacked(page))) { 1048 *dirty = false; 1049 *writeback = false; 1050 return; 1051 } 1052 1053 /* By default assume that the page flags are accurate */ 1054 *dirty = PageDirty(page); 1055 *writeback = PageWriteback(page); 1056 1057 /* Verify dirty/writeback state if the filesystem supports it */ 1058 if (!page_has_private(page)) 1059 return; 1060 1061 mapping = page_mapping(page); 1062 if (mapping && mapping->a_ops->is_dirty_writeback) 1063 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1064 } 1065 1066 /* 1067 * shrink_page_list() returns the number of reclaimed pages 1068 */ 1069 static unsigned long shrink_page_list(struct list_head *page_list, 1070 struct pglist_data *pgdat, 1071 struct scan_control *sc, 1072 enum ttu_flags ttu_flags, 1073 struct reclaim_stat *stat, 1074 bool ignore_references) 1075 { 1076 LIST_HEAD(ret_pages); 1077 LIST_HEAD(free_pages); 1078 unsigned nr_reclaimed = 0; 1079 unsigned pgactivate = 0; 1080 1081 memset(stat, 0, sizeof(*stat)); 1082 cond_resched(); 1083 1084 while (!list_empty(page_list)) { 1085 struct address_space *mapping; 1086 struct page *page; 1087 enum page_references references = PAGEREF_RECLAIM; 1088 bool dirty, writeback, may_enter_fs; 1089 unsigned int nr_pages; 1090 1091 cond_resched(); 1092 1093 page = lru_to_page(page_list); 1094 list_del(&page->lru); 1095 1096 if (!trylock_page(page)) 1097 goto keep; 1098 1099 VM_BUG_ON_PAGE(PageActive(page), page); 1100 1101 nr_pages = compound_nr(page); 1102 1103 /* Account the number of base pages even though THP */ 1104 sc->nr_scanned += nr_pages; 1105 1106 if (unlikely(!page_evictable(page))) 1107 goto activate_locked; 1108 1109 if (!sc->may_unmap && page_mapped(page)) 1110 goto keep_locked; 1111 1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1114 1115 /* 1116 * The number of dirty pages determines if a node is marked 1117 * reclaim_congested which affects wait_iff_congested. kswapd 1118 * will stall and start writing pages if the tail of the LRU 1119 * is all dirty unqueued pages. 1120 */ 1121 page_check_dirty_writeback(page, &dirty, &writeback); 1122 if (dirty || writeback) 1123 stat->nr_dirty++; 1124 1125 if (dirty && !writeback) 1126 stat->nr_unqueued_dirty++; 1127 1128 /* 1129 * Treat this page as congested if the underlying BDI is or if 1130 * pages are cycling through the LRU so quickly that the 1131 * pages marked for immediate reclaim are making it to the 1132 * end of the LRU a second time. 1133 */ 1134 mapping = page_mapping(page); 1135 if (((dirty || writeback) && mapping && 1136 inode_write_congested(mapping->host)) || 1137 (writeback && PageReclaim(page))) 1138 stat->nr_congested++; 1139 1140 /* 1141 * If a page at the tail of the LRU is under writeback, there 1142 * are three cases to consider. 1143 * 1144 * 1) If reclaim is encountering an excessive number of pages 1145 * under writeback and this page is both under writeback and 1146 * PageReclaim then it indicates that pages are being queued 1147 * for IO but are being recycled through the LRU before the 1148 * IO can complete. Waiting on the page itself risks an 1149 * indefinite stall if it is impossible to writeback the 1150 * page due to IO error or disconnected storage so instead 1151 * note that the LRU is being scanned too quickly and the 1152 * caller can stall after page list has been processed. 1153 * 1154 * 2) Global or new memcg reclaim encounters a page that is 1155 * not marked for immediate reclaim, or the caller does not 1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1157 * not to fs). In this case mark the page for immediate 1158 * reclaim and continue scanning. 1159 * 1160 * Require may_enter_fs because we would wait on fs, which 1161 * may not have submitted IO yet. And the loop driver might 1162 * enter reclaim, and deadlock if it waits on a page for 1163 * which it is needed to do the write (loop masks off 1164 * __GFP_IO|__GFP_FS for this reason); but more thought 1165 * would probably show more reasons. 1166 * 1167 * 3) Legacy memcg encounters a page that is already marked 1168 * PageReclaim. memcg does not have any dirty pages 1169 * throttling so we could easily OOM just because too many 1170 * pages are in writeback and there is nothing else to 1171 * reclaim. Wait for the writeback to complete. 1172 * 1173 * In cases 1) and 2) we activate the pages to get them out of 1174 * the way while we continue scanning for clean pages on the 1175 * inactive list and refilling from the active list. The 1176 * observation here is that waiting for disk writes is more 1177 * expensive than potentially causing reloads down the line. 1178 * Since they're marked for immediate reclaim, they won't put 1179 * memory pressure on the cache working set any longer than it 1180 * takes to write them to disk. 1181 */ 1182 if (PageWriteback(page)) { 1183 /* Case 1 above */ 1184 if (current_is_kswapd() && 1185 PageReclaim(page) && 1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1187 stat->nr_immediate++; 1188 goto activate_locked; 1189 1190 /* Case 2 above */ 1191 } else if (writeback_throttling_sane(sc) || 1192 !PageReclaim(page) || !may_enter_fs) { 1193 /* 1194 * This is slightly racy - end_page_writeback() 1195 * might have just cleared PageReclaim, then 1196 * setting PageReclaim here end up interpreted 1197 * as PageReadahead - but that does not matter 1198 * enough to care. What we do want is for this 1199 * page to have PageReclaim set next time memcg 1200 * reclaim reaches the tests above, so it will 1201 * then wait_on_page_writeback() to avoid OOM; 1202 * and it's also appropriate in global reclaim. 1203 */ 1204 SetPageReclaim(page); 1205 stat->nr_writeback++; 1206 goto activate_locked; 1207 1208 /* Case 3 above */ 1209 } else { 1210 unlock_page(page); 1211 wait_on_page_writeback(page); 1212 /* then go back and try same page again */ 1213 list_add_tail(&page->lru, page_list); 1214 continue; 1215 } 1216 } 1217 1218 if (!ignore_references) 1219 references = page_check_references(page, sc); 1220 1221 switch (references) { 1222 case PAGEREF_ACTIVATE: 1223 goto activate_locked; 1224 case PAGEREF_KEEP: 1225 stat->nr_ref_keep += nr_pages; 1226 goto keep_locked; 1227 case PAGEREF_RECLAIM: 1228 case PAGEREF_RECLAIM_CLEAN: 1229 ; /* try to reclaim the page below */ 1230 } 1231 1232 /* 1233 * Anonymous process memory has backing store? 1234 * Try to allocate it some swap space here. 1235 * Lazyfree page could be freed directly 1236 */ 1237 if (PageAnon(page) && PageSwapBacked(page)) { 1238 if (!PageSwapCache(page)) { 1239 if (!(sc->gfp_mask & __GFP_IO)) 1240 goto keep_locked; 1241 if (PageTransHuge(page)) { 1242 /* cannot split THP, skip it */ 1243 if (!can_split_huge_page(page, NULL)) 1244 goto activate_locked; 1245 /* 1246 * Split pages without a PMD map right 1247 * away. Chances are some or all of the 1248 * tail pages can be freed without IO. 1249 */ 1250 if (!compound_mapcount(page) && 1251 split_huge_page_to_list(page, 1252 page_list)) 1253 goto activate_locked; 1254 } 1255 if (!add_to_swap(page)) { 1256 if (!PageTransHuge(page)) 1257 goto activate_locked_split; 1258 /* Fallback to swap normal pages */ 1259 if (split_huge_page_to_list(page, 1260 page_list)) 1261 goto activate_locked; 1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1263 count_vm_event(THP_SWPOUT_FALLBACK); 1264 #endif 1265 if (!add_to_swap(page)) 1266 goto activate_locked_split; 1267 } 1268 1269 may_enter_fs = true; 1270 1271 /* Adding to swap updated mapping */ 1272 mapping = page_mapping(page); 1273 } 1274 } else if (unlikely(PageTransHuge(page))) { 1275 /* Split file THP */ 1276 if (split_huge_page_to_list(page, page_list)) 1277 goto keep_locked; 1278 } 1279 1280 /* 1281 * THP may get split above, need minus tail pages and update 1282 * nr_pages to avoid accounting tail pages twice. 1283 * 1284 * The tail pages that are added into swap cache successfully 1285 * reach here. 1286 */ 1287 if ((nr_pages > 1) && !PageTransHuge(page)) { 1288 sc->nr_scanned -= (nr_pages - 1); 1289 nr_pages = 1; 1290 } 1291 1292 /* 1293 * The page is mapped into the page tables of one or more 1294 * processes. Try to unmap it here. 1295 */ 1296 if (page_mapped(page)) { 1297 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1298 1299 if (unlikely(PageTransHuge(page))) 1300 flags |= TTU_SPLIT_HUGE_PMD; 1301 if (!try_to_unmap(page, flags)) { 1302 stat->nr_unmap_fail += nr_pages; 1303 goto activate_locked; 1304 } 1305 } 1306 1307 if (PageDirty(page)) { 1308 /* 1309 * Only kswapd can writeback filesystem pages 1310 * to avoid risk of stack overflow. But avoid 1311 * injecting inefficient single-page IO into 1312 * flusher writeback as much as possible: only 1313 * write pages when we've encountered many 1314 * dirty pages, and when we've already scanned 1315 * the rest of the LRU for clean pages and see 1316 * the same dirty pages again (PageReclaim). 1317 */ 1318 if (page_is_file_lru(page) && 1319 (!current_is_kswapd() || !PageReclaim(page) || 1320 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1321 /* 1322 * Immediately reclaim when written back. 1323 * Similar in principal to deactivate_page() 1324 * except we already have the page isolated 1325 * and know it's dirty 1326 */ 1327 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1328 SetPageReclaim(page); 1329 1330 goto activate_locked; 1331 } 1332 1333 if (references == PAGEREF_RECLAIM_CLEAN) 1334 goto keep_locked; 1335 if (!may_enter_fs) 1336 goto keep_locked; 1337 if (!sc->may_writepage) 1338 goto keep_locked; 1339 1340 /* 1341 * Page is dirty. Flush the TLB if a writable entry 1342 * potentially exists to avoid CPU writes after IO 1343 * starts and then write it out here. 1344 */ 1345 try_to_unmap_flush_dirty(); 1346 switch (pageout(page, mapping)) { 1347 case PAGE_KEEP: 1348 goto keep_locked; 1349 case PAGE_ACTIVATE: 1350 goto activate_locked; 1351 case PAGE_SUCCESS: 1352 if (PageWriteback(page)) 1353 goto keep; 1354 if (PageDirty(page)) 1355 goto keep; 1356 1357 /* 1358 * A synchronous write - probably a ramdisk. Go 1359 * ahead and try to reclaim the page. 1360 */ 1361 if (!trylock_page(page)) 1362 goto keep; 1363 if (PageDirty(page) || PageWriteback(page)) 1364 goto keep_locked; 1365 mapping = page_mapping(page); 1366 case PAGE_CLEAN: 1367 ; /* try to free the page below */ 1368 } 1369 } 1370 1371 /* 1372 * If the page has buffers, try to free the buffer mappings 1373 * associated with this page. If we succeed we try to free 1374 * the page as well. 1375 * 1376 * We do this even if the page is PageDirty(). 1377 * try_to_release_page() does not perform I/O, but it is 1378 * possible for a page to have PageDirty set, but it is actually 1379 * clean (all its buffers are clean). This happens if the 1380 * buffers were written out directly, with submit_bh(). ext3 1381 * will do this, as well as the blockdev mapping. 1382 * try_to_release_page() will discover that cleanness and will 1383 * drop the buffers and mark the page clean - it can be freed. 1384 * 1385 * Rarely, pages can have buffers and no ->mapping. These are 1386 * the pages which were not successfully invalidated in 1387 * truncate_complete_page(). We try to drop those buffers here 1388 * and if that worked, and the page is no longer mapped into 1389 * process address space (page_count == 1) it can be freed. 1390 * Otherwise, leave the page on the LRU so it is swappable. 1391 */ 1392 if (page_has_private(page)) { 1393 if (!try_to_release_page(page, sc->gfp_mask)) 1394 goto activate_locked; 1395 if (!mapping && page_count(page) == 1) { 1396 unlock_page(page); 1397 if (put_page_testzero(page)) 1398 goto free_it; 1399 else { 1400 /* 1401 * rare race with speculative reference. 1402 * the speculative reference will free 1403 * this page shortly, so we may 1404 * increment nr_reclaimed here (and 1405 * leave it off the LRU). 1406 */ 1407 nr_reclaimed++; 1408 continue; 1409 } 1410 } 1411 } 1412 1413 if (PageAnon(page) && !PageSwapBacked(page)) { 1414 /* follow __remove_mapping for reference */ 1415 if (!page_ref_freeze(page, 1)) 1416 goto keep_locked; 1417 if (PageDirty(page)) { 1418 page_ref_unfreeze(page, 1); 1419 goto keep_locked; 1420 } 1421 1422 count_vm_event(PGLAZYFREED); 1423 count_memcg_page_event(page, PGLAZYFREED); 1424 } else if (!mapping || !__remove_mapping(mapping, page, true, 1425 sc->target_mem_cgroup)) 1426 goto keep_locked; 1427 1428 unlock_page(page); 1429 free_it: 1430 /* 1431 * THP may get swapped out in a whole, need account 1432 * all base pages. 1433 */ 1434 nr_reclaimed += nr_pages; 1435 1436 /* 1437 * Is there need to periodically free_page_list? It would 1438 * appear not as the counts should be low 1439 */ 1440 if (unlikely(PageTransHuge(page))) 1441 (*get_compound_page_dtor(page))(page); 1442 else 1443 list_add(&page->lru, &free_pages); 1444 continue; 1445 1446 activate_locked_split: 1447 /* 1448 * The tail pages that are failed to add into swap cache 1449 * reach here. Fixup nr_scanned and nr_pages. 1450 */ 1451 if (nr_pages > 1) { 1452 sc->nr_scanned -= (nr_pages - 1); 1453 nr_pages = 1; 1454 } 1455 activate_locked: 1456 /* Not a candidate for swapping, so reclaim swap space. */ 1457 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1458 PageMlocked(page))) 1459 try_to_free_swap(page); 1460 VM_BUG_ON_PAGE(PageActive(page), page); 1461 if (!PageMlocked(page)) { 1462 int type = page_is_file_lru(page); 1463 SetPageActive(page); 1464 stat->nr_activate[type] += nr_pages; 1465 count_memcg_page_event(page, PGACTIVATE); 1466 } 1467 keep_locked: 1468 unlock_page(page); 1469 keep: 1470 list_add(&page->lru, &ret_pages); 1471 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1472 } 1473 1474 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1475 1476 mem_cgroup_uncharge_list(&free_pages); 1477 try_to_unmap_flush(); 1478 free_unref_page_list(&free_pages); 1479 1480 list_splice(&ret_pages, page_list); 1481 count_vm_events(PGACTIVATE, pgactivate); 1482 1483 return nr_reclaimed; 1484 } 1485 1486 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1487 struct list_head *page_list) 1488 { 1489 struct scan_control sc = { 1490 .gfp_mask = GFP_KERNEL, 1491 .priority = DEF_PRIORITY, 1492 .may_unmap = 1, 1493 }; 1494 struct reclaim_stat dummy_stat; 1495 unsigned long ret; 1496 struct page *page, *next; 1497 LIST_HEAD(clean_pages); 1498 1499 list_for_each_entry_safe(page, next, page_list, lru) { 1500 if (page_is_file_lru(page) && !PageDirty(page) && 1501 !__PageMovable(page) && !PageUnevictable(page)) { 1502 ClearPageActive(page); 1503 list_move(&page->lru, &clean_pages); 1504 } 1505 } 1506 1507 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1508 TTU_IGNORE_ACCESS, &dummy_stat, true); 1509 list_splice(&clean_pages, page_list); 1510 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1511 return ret; 1512 } 1513 1514 /* 1515 * Attempt to remove the specified page from its LRU. Only take this page 1516 * if it is of the appropriate PageActive status. Pages which are being 1517 * freed elsewhere are also ignored. 1518 * 1519 * page: page to consider 1520 * mode: one of the LRU isolation modes defined above 1521 * 1522 * returns 0 on success, -ve errno on failure. 1523 */ 1524 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1525 { 1526 int ret = -EINVAL; 1527 1528 /* Only take pages on the LRU. */ 1529 if (!PageLRU(page)) 1530 return ret; 1531 1532 /* Compaction should not handle unevictable pages but CMA can do so */ 1533 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1534 return ret; 1535 1536 ret = -EBUSY; 1537 1538 /* 1539 * To minimise LRU disruption, the caller can indicate that it only 1540 * wants to isolate pages it will be able to operate on without 1541 * blocking - clean pages for the most part. 1542 * 1543 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1544 * that it is possible to migrate without blocking 1545 */ 1546 if (mode & ISOLATE_ASYNC_MIGRATE) { 1547 /* All the caller can do on PageWriteback is block */ 1548 if (PageWriteback(page)) 1549 return ret; 1550 1551 if (PageDirty(page)) { 1552 struct address_space *mapping; 1553 bool migrate_dirty; 1554 1555 /* 1556 * Only pages without mappings or that have a 1557 * ->migratepage callback are possible to migrate 1558 * without blocking. However, we can be racing with 1559 * truncation so it's necessary to lock the page 1560 * to stabilise the mapping as truncation holds 1561 * the page lock until after the page is removed 1562 * from the page cache. 1563 */ 1564 if (!trylock_page(page)) 1565 return ret; 1566 1567 mapping = page_mapping(page); 1568 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1569 unlock_page(page); 1570 if (!migrate_dirty) 1571 return ret; 1572 } 1573 } 1574 1575 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1576 return ret; 1577 1578 if (likely(get_page_unless_zero(page))) { 1579 /* 1580 * Be careful not to clear PageLRU until after we're 1581 * sure the page is not being freed elsewhere -- the 1582 * page release code relies on it. 1583 */ 1584 ClearPageLRU(page); 1585 ret = 0; 1586 } 1587 1588 return ret; 1589 } 1590 1591 1592 /* 1593 * Update LRU sizes after isolating pages. The LRU size updates must 1594 * be complete before mem_cgroup_update_lru_size due to a santity check. 1595 */ 1596 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1597 enum lru_list lru, unsigned long *nr_zone_taken) 1598 { 1599 int zid; 1600 1601 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1602 if (!nr_zone_taken[zid]) 1603 continue; 1604 1605 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1606 #ifdef CONFIG_MEMCG 1607 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1608 #endif 1609 } 1610 1611 } 1612 1613 /** 1614 * pgdat->lru_lock is heavily contended. Some of the functions that 1615 * shrink the lists perform better by taking out a batch of pages 1616 * and working on them outside the LRU lock. 1617 * 1618 * For pagecache intensive workloads, this function is the hottest 1619 * spot in the kernel (apart from copy_*_user functions). 1620 * 1621 * Appropriate locks must be held before calling this function. 1622 * 1623 * @nr_to_scan: The number of eligible pages to look through on the list. 1624 * @lruvec: The LRU vector to pull pages from. 1625 * @dst: The temp list to put pages on to. 1626 * @nr_scanned: The number of pages that were scanned. 1627 * @sc: The scan_control struct for this reclaim session 1628 * @mode: One of the LRU isolation modes 1629 * @lru: LRU list id for isolating 1630 * 1631 * returns how many pages were moved onto *@dst. 1632 */ 1633 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1634 struct lruvec *lruvec, struct list_head *dst, 1635 unsigned long *nr_scanned, struct scan_control *sc, 1636 enum lru_list lru) 1637 { 1638 struct list_head *src = &lruvec->lists[lru]; 1639 unsigned long nr_taken = 0; 1640 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1641 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1642 unsigned long skipped = 0; 1643 unsigned long scan, total_scan, nr_pages; 1644 LIST_HEAD(pages_skipped); 1645 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1646 1647 total_scan = 0; 1648 scan = 0; 1649 while (scan < nr_to_scan && !list_empty(src)) { 1650 struct page *page; 1651 1652 page = lru_to_page(src); 1653 prefetchw_prev_lru_page(page, src, flags); 1654 1655 VM_BUG_ON_PAGE(!PageLRU(page), page); 1656 1657 nr_pages = compound_nr(page); 1658 total_scan += nr_pages; 1659 1660 if (page_zonenum(page) > sc->reclaim_idx) { 1661 list_move(&page->lru, &pages_skipped); 1662 nr_skipped[page_zonenum(page)] += nr_pages; 1663 continue; 1664 } 1665 1666 /* 1667 * Do not count skipped pages because that makes the function 1668 * return with no isolated pages if the LRU mostly contains 1669 * ineligible pages. This causes the VM to not reclaim any 1670 * pages, triggering a premature OOM. 1671 * 1672 * Account all tail pages of THP. This would not cause 1673 * premature OOM since __isolate_lru_page() returns -EBUSY 1674 * only when the page is being freed somewhere else. 1675 */ 1676 scan += nr_pages; 1677 switch (__isolate_lru_page(page, mode)) { 1678 case 0: 1679 nr_taken += nr_pages; 1680 nr_zone_taken[page_zonenum(page)] += nr_pages; 1681 list_move(&page->lru, dst); 1682 break; 1683 1684 case -EBUSY: 1685 /* else it is being freed elsewhere */ 1686 list_move(&page->lru, src); 1687 continue; 1688 1689 default: 1690 BUG(); 1691 } 1692 } 1693 1694 /* 1695 * Splice any skipped pages to the start of the LRU list. Note that 1696 * this disrupts the LRU order when reclaiming for lower zones but 1697 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1698 * scanning would soon rescan the same pages to skip and put the 1699 * system at risk of premature OOM. 1700 */ 1701 if (!list_empty(&pages_skipped)) { 1702 int zid; 1703 1704 list_splice(&pages_skipped, src); 1705 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1706 if (!nr_skipped[zid]) 1707 continue; 1708 1709 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1710 skipped += nr_skipped[zid]; 1711 } 1712 } 1713 *nr_scanned = total_scan; 1714 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1715 total_scan, skipped, nr_taken, mode, lru); 1716 update_lru_sizes(lruvec, lru, nr_zone_taken); 1717 return nr_taken; 1718 } 1719 1720 /** 1721 * isolate_lru_page - tries to isolate a page from its LRU list 1722 * @page: page to isolate from its LRU list 1723 * 1724 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1725 * vmstat statistic corresponding to whatever LRU list the page was on. 1726 * 1727 * Returns 0 if the page was removed from an LRU list. 1728 * Returns -EBUSY if the page was not on an LRU list. 1729 * 1730 * The returned page will have PageLRU() cleared. If it was found on 1731 * the active list, it will have PageActive set. If it was found on 1732 * the unevictable list, it will have the PageUnevictable bit set. That flag 1733 * may need to be cleared by the caller before letting the page go. 1734 * 1735 * The vmstat statistic corresponding to the list on which the page was 1736 * found will be decremented. 1737 * 1738 * Restrictions: 1739 * 1740 * (1) Must be called with an elevated refcount on the page. This is a 1741 * fundamentnal difference from isolate_lru_pages (which is called 1742 * without a stable reference). 1743 * (2) the lru_lock must not be held. 1744 * (3) interrupts must be enabled. 1745 */ 1746 int isolate_lru_page(struct page *page) 1747 { 1748 int ret = -EBUSY; 1749 1750 VM_BUG_ON_PAGE(!page_count(page), page); 1751 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1752 1753 if (PageLRU(page)) { 1754 pg_data_t *pgdat = page_pgdat(page); 1755 struct lruvec *lruvec; 1756 1757 spin_lock_irq(&pgdat->lru_lock); 1758 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1759 if (PageLRU(page)) { 1760 int lru = page_lru(page); 1761 get_page(page); 1762 ClearPageLRU(page); 1763 del_page_from_lru_list(page, lruvec, lru); 1764 ret = 0; 1765 } 1766 spin_unlock_irq(&pgdat->lru_lock); 1767 } 1768 return ret; 1769 } 1770 1771 /* 1772 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1773 * then get rescheduled. When there are massive number of tasks doing page 1774 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1775 * the LRU list will go small and be scanned faster than necessary, leading to 1776 * unnecessary swapping, thrashing and OOM. 1777 */ 1778 static int too_many_isolated(struct pglist_data *pgdat, int file, 1779 struct scan_control *sc) 1780 { 1781 unsigned long inactive, isolated; 1782 1783 if (current_is_kswapd()) 1784 return 0; 1785 1786 if (!writeback_throttling_sane(sc)) 1787 return 0; 1788 1789 if (file) { 1790 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1791 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1792 } else { 1793 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1794 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1795 } 1796 1797 /* 1798 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1799 * won't get blocked by normal direct-reclaimers, forming a circular 1800 * deadlock. 1801 */ 1802 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1803 inactive >>= 3; 1804 1805 return isolated > inactive; 1806 } 1807 1808 /* 1809 * This moves pages from @list to corresponding LRU list. 1810 * 1811 * We move them the other way if the page is referenced by one or more 1812 * processes, from rmap. 1813 * 1814 * If the pages are mostly unmapped, the processing is fast and it is 1815 * appropriate to hold zone_lru_lock across the whole operation. But if 1816 * the pages are mapped, the processing is slow (page_referenced()) so we 1817 * should drop zone_lru_lock around each page. It's impossible to balance 1818 * this, so instead we remove the pages from the LRU while processing them. 1819 * It is safe to rely on PG_active against the non-LRU pages in here because 1820 * nobody will play with that bit on a non-LRU page. 1821 * 1822 * The downside is that we have to touch page->_refcount against each page. 1823 * But we had to alter page->flags anyway. 1824 * 1825 * Returns the number of pages moved to the given lruvec. 1826 */ 1827 1828 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1829 struct list_head *list) 1830 { 1831 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1832 int nr_pages, nr_moved = 0; 1833 LIST_HEAD(pages_to_free); 1834 struct page *page; 1835 enum lru_list lru; 1836 1837 while (!list_empty(list)) { 1838 page = lru_to_page(list); 1839 VM_BUG_ON_PAGE(PageLRU(page), page); 1840 if (unlikely(!page_evictable(page))) { 1841 list_del(&page->lru); 1842 spin_unlock_irq(&pgdat->lru_lock); 1843 putback_lru_page(page); 1844 spin_lock_irq(&pgdat->lru_lock); 1845 continue; 1846 } 1847 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1848 1849 SetPageLRU(page); 1850 lru = page_lru(page); 1851 1852 nr_pages = hpage_nr_pages(page); 1853 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1854 list_move(&page->lru, &lruvec->lists[lru]); 1855 1856 if (put_page_testzero(page)) { 1857 __ClearPageLRU(page); 1858 __ClearPageActive(page); 1859 del_page_from_lru_list(page, lruvec, lru); 1860 1861 if (unlikely(PageCompound(page))) { 1862 spin_unlock_irq(&pgdat->lru_lock); 1863 (*get_compound_page_dtor(page))(page); 1864 spin_lock_irq(&pgdat->lru_lock); 1865 } else 1866 list_add(&page->lru, &pages_to_free); 1867 } else { 1868 nr_moved += nr_pages; 1869 } 1870 } 1871 1872 /* 1873 * To save our caller's stack, now use input list for pages to free. 1874 */ 1875 list_splice(&pages_to_free, list); 1876 1877 return nr_moved; 1878 } 1879 1880 /* 1881 * If a kernel thread (such as nfsd for loop-back mounts) services 1882 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1883 * In that case we should only throttle if the backing device it is 1884 * writing to is congested. In other cases it is safe to throttle. 1885 */ 1886 static int current_may_throttle(void) 1887 { 1888 return !(current->flags & PF_LESS_THROTTLE) || 1889 current->backing_dev_info == NULL || 1890 bdi_write_congested(current->backing_dev_info); 1891 } 1892 1893 /* 1894 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1895 * of reclaimed pages 1896 */ 1897 static noinline_for_stack unsigned long 1898 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1899 struct scan_control *sc, enum lru_list lru) 1900 { 1901 LIST_HEAD(page_list); 1902 unsigned long nr_scanned; 1903 unsigned long nr_reclaimed = 0; 1904 unsigned long nr_taken; 1905 struct reclaim_stat stat; 1906 int file = is_file_lru(lru); 1907 enum vm_event_item item; 1908 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1909 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1910 bool stalled = false; 1911 1912 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1913 if (stalled) 1914 return 0; 1915 1916 /* wait a bit for the reclaimer. */ 1917 msleep(100); 1918 stalled = true; 1919 1920 /* We are about to die and free our memory. Return now. */ 1921 if (fatal_signal_pending(current)) 1922 return SWAP_CLUSTER_MAX; 1923 } 1924 1925 lru_add_drain(); 1926 1927 spin_lock_irq(&pgdat->lru_lock); 1928 1929 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1930 &nr_scanned, sc, lru); 1931 1932 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1933 reclaim_stat->recent_scanned[file] += nr_taken; 1934 1935 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1936 if (!cgroup_reclaim(sc)) 1937 __count_vm_events(item, nr_scanned); 1938 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1939 spin_unlock_irq(&pgdat->lru_lock); 1940 1941 if (nr_taken == 0) 1942 return 0; 1943 1944 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1945 &stat, false); 1946 1947 spin_lock_irq(&pgdat->lru_lock); 1948 1949 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1950 if (!cgroup_reclaim(sc)) 1951 __count_vm_events(item, nr_reclaimed); 1952 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1953 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 1954 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 1955 1956 move_pages_to_lru(lruvec, &page_list); 1957 1958 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1959 1960 spin_unlock_irq(&pgdat->lru_lock); 1961 1962 mem_cgroup_uncharge_list(&page_list); 1963 free_unref_page_list(&page_list); 1964 1965 /* 1966 * If dirty pages are scanned that are not queued for IO, it 1967 * implies that flushers are not doing their job. This can 1968 * happen when memory pressure pushes dirty pages to the end of 1969 * the LRU before the dirty limits are breached and the dirty 1970 * data has expired. It can also happen when the proportion of 1971 * dirty pages grows not through writes but through memory 1972 * pressure reclaiming all the clean cache. And in some cases, 1973 * the flushers simply cannot keep up with the allocation 1974 * rate. Nudge the flusher threads in case they are asleep. 1975 */ 1976 if (stat.nr_unqueued_dirty == nr_taken) 1977 wakeup_flusher_threads(WB_REASON_VMSCAN); 1978 1979 sc->nr.dirty += stat.nr_dirty; 1980 sc->nr.congested += stat.nr_congested; 1981 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1982 sc->nr.writeback += stat.nr_writeback; 1983 sc->nr.immediate += stat.nr_immediate; 1984 sc->nr.taken += nr_taken; 1985 if (file) 1986 sc->nr.file_taken += nr_taken; 1987 1988 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1989 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1990 return nr_reclaimed; 1991 } 1992 1993 static void shrink_active_list(unsigned long nr_to_scan, 1994 struct lruvec *lruvec, 1995 struct scan_control *sc, 1996 enum lru_list lru) 1997 { 1998 unsigned long nr_taken; 1999 unsigned long nr_scanned; 2000 unsigned long vm_flags; 2001 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2002 LIST_HEAD(l_active); 2003 LIST_HEAD(l_inactive); 2004 struct page *page; 2005 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2006 unsigned nr_deactivate, nr_activate; 2007 unsigned nr_rotated = 0; 2008 int file = is_file_lru(lru); 2009 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2010 2011 lru_add_drain(); 2012 2013 spin_lock_irq(&pgdat->lru_lock); 2014 2015 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2016 &nr_scanned, sc, lru); 2017 2018 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2019 reclaim_stat->recent_scanned[file] += nr_taken; 2020 2021 __count_vm_events(PGREFILL, nr_scanned); 2022 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2023 2024 spin_unlock_irq(&pgdat->lru_lock); 2025 2026 while (!list_empty(&l_hold)) { 2027 cond_resched(); 2028 page = lru_to_page(&l_hold); 2029 list_del(&page->lru); 2030 2031 if (unlikely(!page_evictable(page))) { 2032 putback_lru_page(page); 2033 continue; 2034 } 2035 2036 if (unlikely(buffer_heads_over_limit)) { 2037 if (page_has_private(page) && trylock_page(page)) { 2038 if (page_has_private(page)) 2039 try_to_release_page(page, 0); 2040 unlock_page(page); 2041 } 2042 } 2043 2044 if (page_referenced(page, 0, sc->target_mem_cgroup, 2045 &vm_flags)) { 2046 nr_rotated += hpage_nr_pages(page); 2047 /* 2048 * Identify referenced, file-backed active pages and 2049 * give them one more trip around the active list. So 2050 * that executable code get better chances to stay in 2051 * memory under moderate memory pressure. Anon pages 2052 * are not likely to be evicted by use-once streaming 2053 * IO, plus JVM can create lots of anon VM_EXEC pages, 2054 * so we ignore them here. 2055 */ 2056 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2057 list_add(&page->lru, &l_active); 2058 continue; 2059 } 2060 } 2061 2062 ClearPageActive(page); /* we are de-activating */ 2063 SetPageWorkingset(page); 2064 list_add(&page->lru, &l_inactive); 2065 } 2066 2067 /* 2068 * Move pages back to the lru list. 2069 */ 2070 spin_lock_irq(&pgdat->lru_lock); 2071 /* 2072 * Count referenced pages from currently used mappings as rotated, 2073 * even though only some of them are actually re-activated. This 2074 * helps balance scan pressure between file and anonymous pages in 2075 * get_scan_count. 2076 */ 2077 reclaim_stat->recent_rotated[file] += nr_rotated; 2078 2079 nr_activate = move_pages_to_lru(lruvec, &l_active); 2080 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2081 /* Keep all free pages in l_active list */ 2082 list_splice(&l_inactive, &l_active); 2083 2084 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2085 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2086 2087 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2088 spin_unlock_irq(&pgdat->lru_lock); 2089 2090 mem_cgroup_uncharge_list(&l_active); 2091 free_unref_page_list(&l_active); 2092 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2093 nr_deactivate, nr_rotated, sc->priority, file); 2094 } 2095 2096 unsigned long reclaim_pages(struct list_head *page_list) 2097 { 2098 int nid = NUMA_NO_NODE; 2099 unsigned long nr_reclaimed = 0; 2100 LIST_HEAD(node_page_list); 2101 struct reclaim_stat dummy_stat; 2102 struct page *page; 2103 struct scan_control sc = { 2104 .gfp_mask = GFP_KERNEL, 2105 .priority = DEF_PRIORITY, 2106 .may_writepage = 1, 2107 .may_unmap = 1, 2108 .may_swap = 1, 2109 }; 2110 2111 while (!list_empty(page_list)) { 2112 page = lru_to_page(page_list); 2113 if (nid == NUMA_NO_NODE) { 2114 nid = page_to_nid(page); 2115 INIT_LIST_HEAD(&node_page_list); 2116 } 2117 2118 if (nid == page_to_nid(page)) { 2119 ClearPageActive(page); 2120 list_move(&page->lru, &node_page_list); 2121 continue; 2122 } 2123 2124 nr_reclaimed += shrink_page_list(&node_page_list, 2125 NODE_DATA(nid), 2126 &sc, 0, 2127 &dummy_stat, false); 2128 while (!list_empty(&node_page_list)) { 2129 page = lru_to_page(&node_page_list); 2130 list_del(&page->lru); 2131 putback_lru_page(page); 2132 } 2133 2134 nid = NUMA_NO_NODE; 2135 } 2136 2137 if (!list_empty(&node_page_list)) { 2138 nr_reclaimed += shrink_page_list(&node_page_list, 2139 NODE_DATA(nid), 2140 &sc, 0, 2141 &dummy_stat, false); 2142 while (!list_empty(&node_page_list)) { 2143 page = lru_to_page(&node_page_list); 2144 list_del(&page->lru); 2145 putback_lru_page(page); 2146 } 2147 } 2148 2149 return nr_reclaimed; 2150 } 2151 2152 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2153 struct lruvec *lruvec, struct scan_control *sc) 2154 { 2155 if (is_active_lru(lru)) { 2156 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2157 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2158 else 2159 sc->skipped_deactivate = 1; 2160 return 0; 2161 } 2162 2163 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2164 } 2165 2166 /* 2167 * The inactive anon list should be small enough that the VM never has 2168 * to do too much work. 2169 * 2170 * The inactive file list should be small enough to leave most memory 2171 * to the established workingset on the scan-resistant active list, 2172 * but large enough to avoid thrashing the aggregate readahead window. 2173 * 2174 * Both inactive lists should also be large enough that each inactive 2175 * page has a chance to be referenced again before it is reclaimed. 2176 * 2177 * If that fails and refaulting is observed, the inactive list grows. 2178 * 2179 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2180 * on this LRU, maintained by the pageout code. An inactive_ratio 2181 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2182 * 2183 * total target max 2184 * memory ratio inactive 2185 * ------------------------------------- 2186 * 10MB 1 5MB 2187 * 100MB 1 50MB 2188 * 1GB 3 250MB 2189 * 10GB 10 0.9GB 2190 * 100GB 31 3GB 2191 * 1TB 101 10GB 2192 * 10TB 320 32GB 2193 */ 2194 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2195 { 2196 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2197 unsigned long inactive, active; 2198 unsigned long inactive_ratio; 2199 unsigned long gb; 2200 2201 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2202 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2203 2204 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2205 if (gb) 2206 inactive_ratio = int_sqrt(10 * gb); 2207 else 2208 inactive_ratio = 1; 2209 2210 return inactive * inactive_ratio < active; 2211 } 2212 2213 enum scan_balance { 2214 SCAN_EQUAL, 2215 SCAN_FRACT, 2216 SCAN_ANON, 2217 SCAN_FILE, 2218 }; 2219 2220 /* 2221 * Determine how aggressively the anon and file LRU lists should be 2222 * scanned. The relative value of each set of LRU lists is determined 2223 * by looking at the fraction of the pages scanned we did rotate back 2224 * onto the active list instead of evict. 2225 * 2226 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2227 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2228 */ 2229 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2230 unsigned long *nr) 2231 { 2232 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2233 int swappiness = mem_cgroup_swappiness(memcg); 2234 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2235 u64 fraction[2]; 2236 u64 denominator = 0; /* gcc */ 2237 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2238 unsigned long anon_prio, file_prio; 2239 enum scan_balance scan_balance; 2240 unsigned long anon, file; 2241 unsigned long ap, fp; 2242 enum lru_list lru; 2243 2244 /* If we have no swap space, do not bother scanning anon pages. */ 2245 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2246 scan_balance = SCAN_FILE; 2247 goto out; 2248 } 2249 2250 /* 2251 * Global reclaim will swap to prevent OOM even with no 2252 * swappiness, but memcg users want to use this knob to 2253 * disable swapping for individual groups completely when 2254 * using the memory controller's swap limit feature would be 2255 * too expensive. 2256 */ 2257 if (cgroup_reclaim(sc) && !swappiness) { 2258 scan_balance = SCAN_FILE; 2259 goto out; 2260 } 2261 2262 /* 2263 * Do not apply any pressure balancing cleverness when the 2264 * system is close to OOM, scan both anon and file equally 2265 * (unless the swappiness setting disagrees with swapping). 2266 */ 2267 if (!sc->priority && swappiness) { 2268 scan_balance = SCAN_EQUAL; 2269 goto out; 2270 } 2271 2272 /* 2273 * If the system is almost out of file pages, force-scan anon. 2274 */ 2275 if (sc->file_is_tiny) { 2276 scan_balance = SCAN_ANON; 2277 goto out; 2278 } 2279 2280 /* 2281 * If there is enough inactive page cache, we do not reclaim 2282 * anything from the anonymous working right now. 2283 */ 2284 if (sc->cache_trim_mode) { 2285 scan_balance = SCAN_FILE; 2286 goto out; 2287 } 2288 2289 scan_balance = SCAN_FRACT; 2290 2291 /* 2292 * With swappiness at 100, anonymous and file have the same priority. 2293 * This scanning priority is essentially the inverse of IO cost. 2294 */ 2295 anon_prio = swappiness; 2296 file_prio = 200 - anon_prio; 2297 2298 /* 2299 * OK, so we have swap space and a fair amount of page cache 2300 * pages. We use the recently rotated / recently scanned 2301 * ratios to determine how valuable each cache is. 2302 * 2303 * Because workloads change over time (and to avoid overflow) 2304 * we keep these statistics as a floating average, which ends 2305 * up weighing recent references more than old ones. 2306 * 2307 * anon in [0], file in [1] 2308 */ 2309 2310 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2311 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2312 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2313 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2314 2315 spin_lock_irq(&pgdat->lru_lock); 2316 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2317 reclaim_stat->recent_scanned[0] /= 2; 2318 reclaim_stat->recent_rotated[0] /= 2; 2319 } 2320 2321 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2322 reclaim_stat->recent_scanned[1] /= 2; 2323 reclaim_stat->recent_rotated[1] /= 2; 2324 } 2325 2326 /* 2327 * The amount of pressure on anon vs file pages is inversely 2328 * proportional to the fraction of recently scanned pages on 2329 * each list that were recently referenced and in active use. 2330 */ 2331 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2332 ap /= reclaim_stat->recent_rotated[0] + 1; 2333 2334 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2335 fp /= reclaim_stat->recent_rotated[1] + 1; 2336 spin_unlock_irq(&pgdat->lru_lock); 2337 2338 fraction[0] = ap; 2339 fraction[1] = fp; 2340 denominator = ap + fp + 1; 2341 out: 2342 for_each_evictable_lru(lru) { 2343 int file = is_file_lru(lru); 2344 unsigned long lruvec_size; 2345 unsigned long scan; 2346 unsigned long protection; 2347 2348 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2349 protection = mem_cgroup_protection(memcg, 2350 sc->memcg_low_reclaim); 2351 2352 if (protection) { 2353 /* 2354 * Scale a cgroup's reclaim pressure by proportioning 2355 * its current usage to its memory.low or memory.min 2356 * setting. 2357 * 2358 * This is important, as otherwise scanning aggression 2359 * becomes extremely binary -- from nothing as we 2360 * approach the memory protection threshold, to totally 2361 * nominal as we exceed it. This results in requiring 2362 * setting extremely liberal protection thresholds. It 2363 * also means we simply get no protection at all if we 2364 * set it too low, which is not ideal. 2365 * 2366 * If there is any protection in place, we reduce scan 2367 * pressure by how much of the total memory used is 2368 * within protection thresholds. 2369 * 2370 * There is one special case: in the first reclaim pass, 2371 * we skip over all groups that are within their low 2372 * protection. If that fails to reclaim enough pages to 2373 * satisfy the reclaim goal, we come back and override 2374 * the best-effort low protection. However, we still 2375 * ideally want to honor how well-behaved groups are in 2376 * that case instead of simply punishing them all 2377 * equally. As such, we reclaim them based on how much 2378 * memory they are using, reducing the scan pressure 2379 * again by how much of the total memory used is under 2380 * hard protection. 2381 */ 2382 unsigned long cgroup_size = mem_cgroup_size(memcg); 2383 2384 /* Avoid TOCTOU with earlier protection check */ 2385 cgroup_size = max(cgroup_size, protection); 2386 2387 scan = lruvec_size - lruvec_size * protection / 2388 cgroup_size; 2389 2390 /* 2391 * Minimally target SWAP_CLUSTER_MAX pages to keep 2392 * reclaim moving forwards, avoiding decremeting 2393 * sc->priority further than desirable. 2394 */ 2395 scan = max(scan, SWAP_CLUSTER_MAX); 2396 } else { 2397 scan = lruvec_size; 2398 } 2399 2400 scan >>= sc->priority; 2401 2402 /* 2403 * If the cgroup's already been deleted, make sure to 2404 * scrape out the remaining cache. 2405 */ 2406 if (!scan && !mem_cgroup_online(memcg)) 2407 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2408 2409 switch (scan_balance) { 2410 case SCAN_EQUAL: 2411 /* Scan lists relative to size */ 2412 break; 2413 case SCAN_FRACT: 2414 /* 2415 * Scan types proportional to swappiness and 2416 * their relative recent reclaim efficiency. 2417 * Make sure we don't miss the last page on 2418 * the offlined memory cgroups because of a 2419 * round-off error. 2420 */ 2421 scan = mem_cgroup_online(memcg) ? 2422 div64_u64(scan * fraction[file], denominator) : 2423 DIV64_U64_ROUND_UP(scan * fraction[file], 2424 denominator); 2425 break; 2426 case SCAN_FILE: 2427 case SCAN_ANON: 2428 /* Scan one type exclusively */ 2429 if ((scan_balance == SCAN_FILE) != file) 2430 scan = 0; 2431 break; 2432 default: 2433 /* Look ma, no brain */ 2434 BUG(); 2435 } 2436 2437 nr[lru] = scan; 2438 } 2439 } 2440 2441 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2442 { 2443 unsigned long nr[NR_LRU_LISTS]; 2444 unsigned long targets[NR_LRU_LISTS]; 2445 unsigned long nr_to_scan; 2446 enum lru_list lru; 2447 unsigned long nr_reclaimed = 0; 2448 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2449 struct blk_plug plug; 2450 bool scan_adjusted; 2451 2452 get_scan_count(lruvec, sc, nr); 2453 2454 /* Record the original scan target for proportional adjustments later */ 2455 memcpy(targets, nr, sizeof(nr)); 2456 2457 /* 2458 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2459 * event that can occur when there is little memory pressure e.g. 2460 * multiple streaming readers/writers. Hence, we do not abort scanning 2461 * when the requested number of pages are reclaimed when scanning at 2462 * DEF_PRIORITY on the assumption that the fact we are direct 2463 * reclaiming implies that kswapd is not keeping up and it is best to 2464 * do a batch of work at once. For memcg reclaim one check is made to 2465 * abort proportional reclaim if either the file or anon lru has already 2466 * dropped to zero at the first pass. 2467 */ 2468 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2469 sc->priority == DEF_PRIORITY); 2470 2471 blk_start_plug(&plug); 2472 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2473 nr[LRU_INACTIVE_FILE]) { 2474 unsigned long nr_anon, nr_file, percentage; 2475 unsigned long nr_scanned; 2476 2477 for_each_evictable_lru(lru) { 2478 if (nr[lru]) { 2479 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2480 nr[lru] -= nr_to_scan; 2481 2482 nr_reclaimed += shrink_list(lru, nr_to_scan, 2483 lruvec, sc); 2484 } 2485 } 2486 2487 cond_resched(); 2488 2489 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2490 continue; 2491 2492 /* 2493 * For kswapd and memcg, reclaim at least the number of pages 2494 * requested. Ensure that the anon and file LRUs are scanned 2495 * proportionally what was requested by get_scan_count(). We 2496 * stop reclaiming one LRU and reduce the amount scanning 2497 * proportional to the original scan target. 2498 */ 2499 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2500 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2501 2502 /* 2503 * It's just vindictive to attack the larger once the smaller 2504 * has gone to zero. And given the way we stop scanning the 2505 * smaller below, this makes sure that we only make one nudge 2506 * towards proportionality once we've got nr_to_reclaim. 2507 */ 2508 if (!nr_file || !nr_anon) 2509 break; 2510 2511 if (nr_file > nr_anon) { 2512 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2513 targets[LRU_ACTIVE_ANON] + 1; 2514 lru = LRU_BASE; 2515 percentage = nr_anon * 100 / scan_target; 2516 } else { 2517 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2518 targets[LRU_ACTIVE_FILE] + 1; 2519 lru = LRU_FILE; 2520 percentage = nr_file * 100 / scan_target; 2521 } 2522 2523 /* Stop scanning the smaller of the LRU */ 2524 nr[lru] = 0; 2525 nr[lru + LRU_ACTIVE] = 0; 2526 2527 /* 2528 * Recalculate the other LRU scan count based on its original 2529 * scan target and the percentage scanning already complete 2530 */ 2531 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2532 nr_scanned = targets[lru] - nr[lru]; 2533 nr[lru] = targets[lru] * (100 - percentage) / 100; 2534 nr[lru] -= min(nr[lru], nr_scanned); 2535 2536 lru += LRU_ACTIVE; 2537 nr_scanned = targets[lru] - nr[lru]; 2538 nr[lru] = targets[lru] * (100 - percentage) / 100; 2539 nr[lru] -= min(nr[lru], nr_scanned); 2540 2541 scan_adjusted = true; 2542 } 2543 blk_finish_plug(&plug); 2544 sc->nr_reclaimed += nr_reclaimed; 2545 2546 /* 2547 * Even if we did not try to evict anon pages at all, we want to 2548 * rebalance the anon lru active/inactive ratio. 2549 */ 2550 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2551 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2552 sc, LRU_ACTIVE_ANON); 2553 } 2554 2555 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2556 static bool in_reclaim_compaction(struct scan_control *sc) 2557 { 2558 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2559 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2560 sc->priority < DEF_PRIORITY - 2)) 2561 return true; 2562 2563 return false; 2564 } 2565 2566 /* 2567 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2568 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2569 * true if more pages should be reclaimed such that when the page allocator 2570 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2571 * It will give up earlier than that if there is difficulty reclaiming pages. 2572 */ 2573 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2574 unsigned long nr_reclaimed, 2575 struct scan_control *sc) 2576 { 2577 unsigned long pages_for_compaction; 2578 unsigned long inactive_lru_pages; 2579 int z; 2580 2581 /* If not in reclaim/compaction mode, stop */ 2582 if (!in_reclaim_compaction(sc)) 2583 return false; 2584 2585 /* 2586 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2587 * number of pages that were scanned. This will return to the caller 2588 * with the risk reclaim/compaction and the resulting allocation attempt 2589 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2590 * allocations through requiring that the full LRU list has been scanned 2591 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2592 * scan, but that approximation was wrong, and there were corner cases 2593 * where always a non-zero amount of pages were scanned. 2594 */ 2595 if (!nr_reclaimed) 2596 return false; 2597 2598 /* If compaction would go ahead or the allocation would succeed, stop */ 2599 for (z = 0; z <= sc->reclaim_idx; z++) { 2600 struct zone *zone = &pgdat->node_zones[z]; 2601 if (!managed_zone(zone)) 2602 continue; 2603 2604 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2605 case COMPACT_SUCCESS: 2606 case COMPACT_CONTINUE: 2607 return false; 2608 default: 2609 /* check next zone */ 2610 ; 2611 } 2612 } 2613 2614 /* 2615 * If we have not reclaimed enough pages for compaction and the 2616 * inactive lists are large enough, continue reclaiming 2617 */ 2618 pages_for_compaction = compact_gap(sc->order); 2619 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2620 if (get_nr_swap_pages() > 0) 2621 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2622 2623 return inactive_lru_pages > pages_for_compaction; 2624 } 2625 2626 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2627 { 2628 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2629 struct mem_cgroup *memcg; 2630 2631 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2632 do { 2633 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2634 unsigned long reclaimed; 2635 unsigned long scanned; 2636 2637 switch (mem_cgroup_protected(target_memcg, memcg)) { 2638 case MEMCG_PROT_MIN: 2639 /* 2640 * Hard protection. 2641 * If there is no reclaimable memory, OOM. 2642 */ 2643 continue; 2644 case MEMCG_PROT_LOW: 2645 /* 2646 * Soft protection. 2647 * Respect the protection only as long as 2648 * there is an unprotected supply 2649 * of reclaimable memory from other cgroups. 2650 */ 2651 if (!sc->memcg_low_reclaim) { 2652 sc->memcg_low_skipped = 1; 2653 continue; 2654 } 2655 memcg_memory_event(memcg, MEMCG_LOW); 2656 break; 2657 case MEMCG_PROT_NONE: 2658 /* 2659 * All protection thresholds breached. We may 2660 * still choose to vary the scan pressure 2661 * applied based on by how much the cgroup in 2662 * question has exceeded its protection 2663 * thresholds (see get_scan_count). 2664 */ 2665 break; 2666 } 2667 2668 reclaimed = sc->nr_reclaimed; 2669 scanned = sc->nr_scanned; 2670 2671 shrink_lruvec(lruvec, sc); 2672 2673 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2674 sc->priority); 2675 2676 /* Record the group's reclaim efficiency */ 2677 vmpressure(sc->gfp_mask, memcg, false, 2678 sc->nr_scanned - scanned, 2679 sc->nr_reclaimed - reclaimed); 2680 2681 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2682 } 2683 2684 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2685 { 2686 struct reclaim_state *reclaim_state = current->reclaim_state; 2687 unsigned long nr_reclaimed, nr_scanned; 2688 struct lruvec *target_lruvec; 2689 bool reclaimable = false; 2690 unsigned long file; 2691 2692 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2693 2694 again: 2695 memset(&sc->nr, 0, sizeof(sc->nr)); 2696 2697 nr_reclaimed = sc->nr_reclaimed; 2698 nr_scanned = sc->nr_scanned; 2699 2700 /* 2701 * Target desirable inactive:active list ratios for the anon 2702 * and file LRU lists. 2703 */ 2704 if (!sc->force_deactivate) { 2705 unsigned long refaults; 2706 2707 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2708 sc->may_deactivate |= DEACTIVATE_ANON; 2709 else 2710 sc->may_deactivate &= ~DEACTIVATE_ANON; 2711 2712 /* 2713 * When refaults are being observed, it means a new 2714 * workingset is being established. Deactivate to get 2715 * rid of any stale active pages quickly. 2716 */ 2717 refaults = lruvec_page_state(target_lruvec, 2718 WORKINGSET_ACTIVATE); 2719 if (refaults != target_lruvec->refaults || 2720 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2721 sc->may_deactivate |= DEACTIVATE_FILE; 2722 else 2723 sc->may_deactivate &= ~DEACTIVATE_FILE; 2724 } else 2725 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2726 2727 /* 2728 * If we have plenty of inactive file pages that aren't 2729 * thrashing, try to reclaim those first before touching 2730 * anonymous pages. 2731 */ 2732 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2733 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2734 sc->cache_trim_mode = 1; 2735 else 2736 sc->cache_trim_mode = 0; 2737 2738 /* 2739 * Prevent the reclaimer from falling into the cache trap: as 2740 * cache pages start out inactive, every cache fault will tip 2741 * the scan balance towards the file LRU. And as the file LRU 2742 * shrinks, so does the window for rotation from references. 2743 * This means we have a runaway feedback loop where a tiny 2744 * thrashing file LRU becomes infinitely more attractive than 2745 * anon pages. Try to detect this based on file LRU size. 2746 */ 2747 if (!cgroup_reclaim(sc)) { 2748 unsigned long total_high_wmark = 0; 2749 unsigned long free, anon; 2750 int z; 2751 2752 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2753 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2754 node_page_state(pgdat, NR_INACTIVE_FILE); 2755 2756 for (z = 0; z < MAX_NR_ZONES; z++) { 2757 struct zone *zone = &pgdat->node_zones[z]; 2758 if (!managed_zone(zone)) 2759 continue; 2760 2761 total_high_wmark += high_wmark_pages(zone); 2762 } 2763 2764 /* 2765 * Consider anon: if that's low too, this isn't a 2766 * runaway file reclaim problem, but rather just 2767 * extreme pressure. Reclaim as per usual then. 2768 */ 2769 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2770 2771 sc->file_is_tiny = 2772 file + free <= total_high_wmark && 2773 !(sc->may_deactivate & DEACTIVATE_ANON) && 2774 anon >> sc->priority; 2775 } 2776 2777 shrink_node_memcgs(pgdat, sc); 2778 2779 if (reclaim_state) { 2780 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2781 reclaim_state->reclaimed_slab = 0; 2782 } 2783 2784 /* Record the subtree's reclaim efficiency */ 2785 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2786 sc->nr_scanned - nr_scanned, 2787 sc->nr_reclaimed - nr_reclaimed); 2788 2789 if (sc->nr_reclaimed - nr_reclaimed) 2790 reclaimable = true; 2791 2792 if (current_is_kswapd()) { 2793 /* 2794 * If reclaim is isolating dirty pages under writeback, 2795 * it implies that the long-lived page allocation rate 2796 * is exceeding the page laundering rate. Either the 2797 * global limits are not being effective at throttling 2798 * processes due to the page distribution throughout 2799 * zones or there is heavy usage of a slow backing 2800 * device. The only option is to throttle from reclaim 2801 * context which is not ideal as there is no guarantee 2802 * the dirtying process is throttled in the same way 2803 * balance_dirty_pages() manages. 2804 * 2805 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2806 * count the number of pages under pages flagged for 2807 * immediate reclaim and stall if any are encountered 2808 * in the nr_immediate check below. 2809 */ 2810 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2811 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2812 2813 /* Allow kswapd to start writing pages during reclaim.*/ 2814 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2815 set_bit(PGDAT_DIRTY, &pgdat->flags); 2816 2817 /* 2818 * If kswapd scans pages marked marked for immediate 2819 * reclaim and under writeback (nr_immediate), it 2820 * implies that pages are cycling through the LRU 2821 * faster than they are written so also forcibly stall. 2822 */ 2823 if (sc->nr.immediate) 2824 congestion_wait(BLK_RW_ASYNC, HZ/10); 2825 } 2826 2827 /* 2828 * Tag a node/memcg as congested if all the dirty pages 2829 * scanned were backed by a congested BDI and 2830 * wait_iff_congested will stall. 2831 * 2832 * Legacy memcg will stall in page writeback so avoid forcibly 2833 * stalling in wait_iff_congested(). 2834 */ 2835 if ((current_is_kswapd() || 2836 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2837 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2838 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2839 2840 /* 2841 * Stall direct reclaim for IO completions if underlying BDIs 2842 * and node is congested. Allow kswapd to continue until it 2843 * starts encountering unqueued dirty pages or cycling through 2844 * the LRU too quickly. 2845 */ 2846 if (!current_is_kswapd() && current_may_throttle() && 2847 !sc->hibernation_mode && 2848 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2849 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2850 2851 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2852 sc)) 2853 goto again; 2854 2855 /* 2856 * Kswapd gives up on balancing particular nodes after too 2857 * many failures to reclaim anything from them and goes to 2858 * sleep. On reclaim progress, reset the failure counter. A 2859 * successful direct reclaim run will revive a dormant kswapd. 2860 */ 2861 if (reclaimable) 2862 pgdat->kswapd_failures = 0; 2863 } 2864 2865 /* 2866 * Returns true if compaction should go ahead for a costly-order request, or 2867 * the allocation would already succeed without compaction. Return false if we 2868 * should reclaim first. 2869 */ 2870 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2871 { 2872 unsigned long watermark; 2873 enum compact_result suitable; 2874 2875 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2876 if (suitable == COMPACT_SUCCESS) 2877 /* Allocation should succeed already. Don't reclaim. */ 2878 return true; 2879 if (suitable == COMPACT_SKIPPED) 2880 /* Compaction cannot yet proceed. Do reclaim. */ 2881 return false; 2882 2883 /* 2884 * Compaction is already possible, but it takes time to run and there 2885 * are potentially other callers using the pages just freed. So proceed 2886 * with reclaim to make a buffer of free pages available to give 2887 * compaction a reasonable chance of completing and allocating the page. 2888 * Note that we won't actually reclaim the whole buffer in one attempt 2889 * as the target watermark in should_continue_reclaim() is lower. But if 2890 * we are already above the high+gap watermark, don't reclaim at all. 2891 */ 2892 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2893 2894 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2895 } 2896 2897 /* 2898 * This is the direct reclaim path, for page-allocating processes. We only 2899 * try to reclaim pages from zones which will satisfy the caller's allocation 2900 * request. 2901 * 2902 * If a zone is deemed to be full of pinned pages then just give it a light 2903 * scan then give up on it. 2904 */ 2905 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2906 { 2907 struct zoneref *z; 2908 struct zone *zone; 2909 unsigned long nr_soft_reclaimed; 2910 unsigned long nr_soft_scanned; 2911 gfp_t orig_mask; 2912 pg_data_t *last_pgdat = NULL; 2913 2914 /* 2915 * If the number of buffer_heads in the machine exceeds the maximum 2916 * allowed level, force direct reclaim to scan the highmem zone as 2917 * highmem pages could be pinning lowmem pages storing buffer_heads 2918 */ 2919 orig_mask = sc->gfp_mask; 2920 if (buffer_heads_over_limit) { 2921 sc->gfp_mask |= __GFP_HIGHMEM; 2922 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2923 } 2924 2925 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2926 sc->reclaim_idx, sc->nodemask) { 2927 /* 2928 * Take care memory controller reclaiming has small influence 2929 * to global LRU. 2930 */ 2931 if (!cgroup_reclaim(sc)) { 2932 if (!cpuset_zone_allowed(zone, 2933 GFP_KERNEL | __GFP_HARDWALL)) 2934 continue; 2935 2936 /* 2937 * If we already have plenty of memory free for 2938 * compaction in this zone, don't free any more. 2939 * Even though compaction is invoked for any 2940 * non-zero order, only frequent costly order 2941 * reclamation is disruptive enough to become a 2942 * noticeable problem, like transparent huge 2943 * page allocations. 2944 */ 2945 if (IS_ENABLED(CONFIG_COMPACTION) && 2946 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2947 compaction_ready(zone, sc)) { 2948 sc->compaction_ready = true; 2949 continue; 2950 } 2951 2952 /* 2953 * Shrink each node in the zonelist once. If the 2954 * zonelist is ordered by zone (not the default) then a 2955 * node may be shrunk multiple times but in that case 2956 * the user prefers lower zones being preserved. 2957 */ 2958 if (zone->zone_pgdat == last_pgdat) 2959 continue; 2960 2961 /* 2962 * This steals pages from memory cgroups over softlimit 2963 * and returns the number of reclaimed pages and 2964 * scanned pages. This works for global memory pressure 2965 * and balancing, not for a memcg's limit. 2966 */ 2967 nr_soft_scanned = 0; 2968 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2969 sc->order, sc->gfp_mask, 2970 &nr_soft_scanned); 2971 sc->nr_reclaimed += nr_soft_reclaimed; 2972 sc->nr_scanned += nr_soft_scanned; 2973 /* need some check for avoid more shrink_zone() */ 2974 } 2975 2976 /* See comment about same check for global reclaim above */ 2977 if (zone->zone_pgdat == last_pgdat) 2978 continue; 2979 last_pgdat = zone->zone_pgdat; 2980 shrink_node(zone->zone_pgdat, sc); 2981 } 2982 2983 /* 2984 * Restore to original mask to avoid the impact on the caller if we 2985 * promoted it to __GFP_HIGHMEM. 2986 */ 2987 sc->gfp_mask = orig_mask; 2988 } 2989 2990 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2991 { 2992 struct lruvec *target_lruvec; 2993 unsigned long refaults; 2994 2995 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2996 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE); 2997 target_lruvec->refaults = refaults; 2998 } 2999 3000 /* 3001 * This is the main entry point to direct page reclaim. 3002 * 3003 * If a full scan of the inactive list fails to free enough memory then we 3004 * are "out of memory" and something needs to be killed. 3005 * 3006 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3007 * high - the zone may be full of dirty or under-writeback pages, which this 3008 * caller can't do much about. We kick the writeback threads and take explicit 3009 * naps in the hope that some of these pages can be written. But if the 3010 * allocating task holds filesystem locks which prevent writeout this might not 3011 * work, and the allocation attempt will fail. 3012 * 3013 * returns: 0, if no pages reclaimed 3014 * else, the number of pages reclaimed 3015 */ 3016 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3017 struct scan_control *sc) 3018 { 3019 int initial_priority = sc->priority; 3020 pg_data_t *last_pgdat; 3021 struct zoneref *z; 3022 struct zone *zone; 3023 retry: 3024 delayacct_freepages_start(); 3025 3026 if (!cgroup_reclaim(sc)) 3027 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3028 3029 do { 3030 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3031 sc->priority); 3032 sc->nr_scanned = 0; 3033 shrink_zones(zonelist, sc); 3034 3035 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3036 break; 3037 3038 if (sc->compaction_ready) 3039 break; 3040 3041 /* 3042 * If we're getting trouble reclaiming, start doing 3043 * writepage even in laptop mode. 3044 */ 3045 if (sc->priority < DEF_PRIORITY - 2) 3046 sc->may_writepage = 1; 3047 } while (--sc->priority >= 0); 3048 3049 last_pgdat = NULL; 3050 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3051 sc->nodemask) { 3052 if (zone->zone_pgdat == last_pgdat) 3053 continue; 3054 last_pgdat = zone->zone_pgdat; 3055 3056 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3057 3058 if (cgroup_reclaim(sc)) { 3059 struct lruvec *lruvec; 3060 3061 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3062 zone->zone_pgdat); 3063 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3064 } 3065 } 3066 3067 delayacct_freepages_end(); 3068 3069 if (sc->nr_reclaimed) 3070 return sc->nr_reclaimed; 3071 3072 /* Aborted reclaim to try compaction? don't OOM, then */ 3073 if (sc->compaction_ready) 3074 return 1; 3075 3076 /* 3077 * We make inactive:active ratio decisions based on the node's 3078 * composition of memory, but a restrictive reclaim_idx or a 3079 * memory.low cgroup setting can exempt large amounts of 3080 * memory from reclaim. Neither of which are very common, so 3081 * instead of doing costly eligibility calculations of the 3082 * entire cgroup subtree up front, we assume the estimates are 3083 * good, and retry with forcible deactivation if that fails. 3084 */ 3085 if (sc->skipped_deactivate) { 3086 sc->priority = initial_priority; 3087 sc->force_deactivate = 1; 3088 sc->skipped_deactivate = 0; 3089 goto retry; 3090 } 3091 3092 /* Untapped cgroup reserves? Don't OOM, retry. */ 3093 if (sc->memcg_low_skipped) { 3094 sc->priority = initial_priority; 3095 sc->force_deactivate = 0; 3096 sc->memcg_low_reclaim = 1; 3097 sc->memcg_low_skipped = 0; 3098 goto retry; 3099 } 3100 3101 return 0; 3102 } 3103 3104 static bool allow_direct_reclaim(pg_data_t *pgdat) 3105 { 3106 struct zone *zone; 3107 unsigned long pfmemalloc_reserve = 0; 3108 unsigned long free_pages = 0; 3109 int i; 3110 bool wmark_ok; 3111 3112 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3113 return true; 3114 3115 for (i = 0; i <= ZONE_NORMAL; i++) { 3116 zone = &pgdat->node_zones[i]; 3117 if (!managed_zone(zone)) 3118 continue; 3119 3120 if (!zone_reclaimable_pages(zone)) 3121 continue; 3122 3123 pfmemalloc_reserve += min_wmark_pages(zone); 3124 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3125 } 3126 3127 /* If there are no reserves (unexpected config) then do not throttle */ 3128 if (!pfmemalloc_reserve) 3129 return true; 3130 3131 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3132 3133 /* kswapd must be awake if processes are being throttled */ 3134 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3135 if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL) 3136 WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL); 3137 3138 wake_up_interruptible(&pgdat->kswapd_wait); 3139 } 3140 3141 return wmark_ok; 3142 } 3143 3144 /* 3145 * Throttle direct reclaimers if backing storage is backed by the network 3146 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3147 * depleted. kswapd will continue to make progress and wake the processes 3148 * when the low watermark is reached. 3149 * 3150 * Returns true if a fatal signal was delivered during throttling. If this 3151 * happens, the page allocator should not consider triggering the OOM killer. 3152 */ 3153 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3154 nodemask_t *nodemask) 3155 { 3156 struct zoneref *z; 3157 struct zone *zone; 3158 pg_data_t *pgdat = NULL; 3159 3160 /* 3161 * Kernel threads should not be throttled as they may be indirectly 3162 * responsible for cleaning pages necessary for reclaim to make forward 3163 * progress. kjournald for example may enter direct reclaim while 3164 * committing a transaction where throttling it could forcing other 3165 * processes to block on log_wait_commit(). 3166 */ 3167 if (current->flags & PF_KTHREAD) 3168 goto out; 3169 3170 /* 3171 * If a fatal signal is pending, this process should not throttle. 3172 * It should return quickly so it can exit and free its memory 3173 */ 3174 if (fatal_signal_pending(current)) 3175 goto out; 3176 3177 /* 3178 * Check if the pfmemalloc reserves are ok by finding the first node 3179 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3180 * GFP_KERNEL will be required for allocating network buffers when 3181 * swapping over the network so ZONE_HIGHMEM is unusable. 3182 * 3183 * Throttling is based on the first usable node and throttled processes 3184 * wait on a queue until kswapd makes progress and wakes them. There 3185 * is an affinity then between processes waking up and where reclaim 3186 * progress has been made assuming the process wakes on the same node. 3187 * More importantly, processes running on remote nodes will not compete 3188 * for remote pfmemalloc reserves and processes on different nodes 3189 * should make reasonable progress. 3190 */ 3191 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3192 gfp_zone(gfp_mask), nodemask) { 3193 if (zone_idx(zone) > ZONE_NORMAL) 3194 continue; 3195 3196 /* Throttle based on the first usable node */ 3197 pgdat = zone->zone_pgdat; 3198 if (allow_direct_reclaim(pgdat)) 3199 goto out; 3200 break; 3201 } 3202 3203 /* If no zone was usable by the allocation flags then do not throttle */ 3204 if (!pgdat) 3205 goto out; 3206 3207 /* Account for the throttling */ 3208 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3209 3210 /* 3211 * If the caller cannot enter the filesystem, it's possible that it 3212 * is due to the caller holding an FS lock or performing a journal 3213 * transaction in the case of a filesystem like ext[3|4]. In this case, 3214 * it is not safe to block on pfmemalloc_wait as kswapd could be 3215 * blocked waiting on the same lock. Instead, throttle for up to a 3216 * second before continuing. 3217 */ 3218 if (!(gfp_mask & __GFP_FS)) { 3219 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3220 allow_direct_reclaim(pgdat), HZ); 3221 3222 goto check_pending; 3223 } 3224 3225 /* Throttle until kswapd wakes the process */ 3226 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3227 allow_direct_reclaim(pgdat)); 3228 3229 check_pending: 3230 if (fatal_signal_pending(current)) 3231 return true; 3232 3233 out: 3234 return false; 3235 } 3236 3237 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3238 gfp_t gfp_mask, nodemask_t *nodemask) 3239 { 3240 unsigned long nr_reclaimed; 3241 struct scan_control sc = { 3242 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3243 .gfp_mask = current_gfp_context(gfp_mask), 3244 .reclaim_idx = gfp_zone(gfp_mask), 3245 .order = order, 3246 .nodemask = nodemask, 3247 .priority = DEF_PRIORITY, 3248 .may_writepage = !laptop_mode, 3249 .may_unmap = 1, 3250 .may_swap = 1, 3251 }; 3252 3253 /* 3254 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3255 * Confirm they are large enough for max values. 3256 */ 3257 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3258 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3259 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3260 3261 /* 3262 * Do not enter reclaim if fatal signal was delivered while throttled. 3263 * 1 is returned so that the page allocator does not OOM kill at this 3264 * point. 3265 */ 3266 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3267 return 1; 3268 3269 set_task_reclaim_state(current, &sc.reclaim_state); 3270 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3271 3272 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3273 3274 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3275 set_task_reclaim_state(current, NULL); 3276 3277 return nr_reclaimed; 3278 } 3279 3280 #ifdef CONFIG_MEMCG 3281 3282 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3283 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3284 gfp_t gfp_mask, bool noswap, 3285 pg_data_t *pgdat, 3286 unsigned long *nr_scanned) 3287 { 3288 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3289 struct scan_control sc = { 3290 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3291 .target_mem_cgroup = memcg, 3292 .may_writepage = !laptop_mode, 3293 .may_unmap = 1, 3294 .reclaim_idx = MAX_NR_ZONES - 1, 3295 .may_swap = !noswap, 3296 }; 3297 3298 WARN_ON_ONCE(!current->reclaim_state); 3299 3300 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3301 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3302 3303 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3304 sc.gfp_mask); 3305 3306 /* 3307 * NOTE: Although we can get the priority field, using it 3308 * here is not a good idea, since it limits the pages we can scan. 3309 * if we don't reclaim here, the shrink_node from balance_pgdat 3310 * will pick up pages from other mem cgroup's as well. We hack 3311 * the priority and make it zero. 3312 */ 3313 shrink_lruvec(lruvec, &sc); 3314 3315 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3316 3317 *nr_scanned = sc.nr_scanned; 3318 3319 return sc.nr_reclaimed; 3320 } 3321 3322 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3323 unsigned long nr_pages, 3324 gfp_t gfp_mask, 3325 bool may_swap) 3326 { 3327 unsigned long nr_reclaimed; 3328 unsigned long pflags; 3329 unsigned int noreclaim_flag; 3330 struct scan_control sc = { 3331 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3332 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3333 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3334 .reclaim_idx = MAX_NR_ZONES - 1, 3335 .target_mem_cgroup = memcg, 3336 .priority = DEF_PRIORITY, 3337 .may_writepage = !laptop_mode, 3338 .may_unmap = 1, 3339 .may_swap = may_swap, 3340 }; 3341 /* 3342 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3343 * equal pressure on all the nodes. This is based on the assumption that 3344 * the reclaim does not bail out early. 3345 */ 3346 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3347 3348 set_task_reclaim_state(current, &sc.reclaim_state); 3349 3350 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3351 3352 psi_memstall_enter(&pflags); 3353 noreclaim_flag = memalloc_noreclaim_save(); 3354 3355 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3356 3357 memalloc_noreclaim_restore(noreclaim_flag); 3358 psi_memstall_leave(&pflags); 3359 3360 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3361 set_task_reclaim_state(current, NULL); 3362 3363 return nr_reclaimed; 3364 } 3365 #endif 3366 3367 static void age_active_anon(struct pglist_data *pgdat, 3368 struct scan_control *sc) 3369 { 3370 struct mem_cgroup *memcg; 3371 struct lruvec *lruvec; 3372 3373 if (!total_swap_pages) 3374 return; 3375 3376 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3377 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3378 return; 3379 3380 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3381 do { 3382 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3383 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3384 sc, LRU_ACTIVE_ANON); 3385 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3386 } while (memcg); 3387 } 3388 3389 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3390 { 3391 int i; 3392 struct zone *zone; 3393 3394 /* 3395 * Check for watermark boosts top-down as the higher zones 3396 * are more likely to be boosted. Both watermarks and boosts 3397 * should not be checked at the time time as reclaim would 3398 * start prematurely when there is no boosting and a lower 3399 * zone is balanced. 3400 */ 3401 for (i = classzone_idx; i >= 0; i--) { 3402 zone = pgdat->node_zones + i; 3403 if (!managed_zone(zone)) 3404 continue; 3405 3406 if (zone->watermark_boost) 3407 return true; 3408 } 3409 3410 return false; 3411 } 3412 3413 /* 3414 * Returns true if there is an eligible zone balanced for the request order 3415 * and classzone_idx 3416 */ 3417 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3418 { 3419 int i; 3420 unsigned long mark = -1; 3421 struct zone *zone; 3422 3423 /* 3424 * Check watermarks bottom-up as lower zones are more likely to 3425 * meet watermarks. 3426 */ 3427 for (i = 0; i <= classzone_idx; i++) { 3428 zone = pgdat->node_zones + i; 3429 3430 if (!managed_zone(zone)) 3431 continue; 3432 3433 mark = high_wmark_pages(zone); 3434 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3435 return true; 3436 } 3437 3438 /* 3439 * If a node has no populated zone within classzone_idx, it does not 3440 * need balancing by definition. This can happen if a zone-restricted 3441 * allocation tries to wake a remote kswapd. 3442 */ 3443 if (mark == -1) 3444 return true; 3445 3446 return false; 3447 } 3448 3449 /* Clear pgdat state for congested, dirty or under writeback. */ 3450 static void clear_pgdat_congested(pg_data_t *pgdat) 3451 { 3452 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3453 3454 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3455 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3456 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3457 } 3458 3459 /* 3460 * Prepare kswapd for sleeping. This verifies that there are no processes 3461 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3462 * 3463 * Returns true if kswapd is ready to sleep 3464 */ 3465 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3466 { 3467 /* 3468 * The throttled processes are normally woken up in balance_pgdat() as 3469 * soon as allow_direct_reclaim() is true. But there is a potential 3470 * race between when kswapd checks the watermarks and a process gets 3471 * throttled. There is also a potential race if processes get 3472 * throttled, kswapd wakes, a large process exits thereby balancing the 3473 * zones, which causes kswapd to exit balance_pgdat() before reaching 3474 * the wake up checks. If kswapd is going to sleep, no process should 3475 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3476 * the wake up is premature, processes will wake kswapd and get 3477 * throttled again. The difference from wake ups in balance_pgdat() is 3478 * that here we are under prepare_to_wait(). 3479 */ 3480 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3481 wake_up_all(&pgdat->pfmemalloc_wait); 3482 3483 /* Hopeless node, leave it to direct reclaim */ 3484 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3485 return true; 3486 3487 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3488 clear_pgdat_congested(pgdat); 3489 return true; 3490 } 3491 3492 return false; 3493 } 3494 3495 /* 3496 * kswapd shrinks a node of pages that are at or below the highest usable 3497 * zone that is currently unbalanced. 3498 * 3499 * Returns true if kswapd scanned at least the requested number of pages to 3500 * reclaim or if the lack of progress was due to pages under writeback. 3501 * This is used to determine if the scanning priority needs to be raised. 3502 */ 3503 static bool kswapd_shrink_node(pg_data_t *pgdat, 3504 struct scan_control *sc) 3505 { 3506 struct zone *zone; 3507 int z; 3508 3509 /* Reclaim a number of pages proportional to the number of zones */ 3510 sc->nr_to_reclaim = 0; 3511 for (z = 0; z <= sc->reclaim_idx; z++) { 3512 zone = pgdat->node_zones + z; 3513 if (!managed_zone(zone)) 3514 continue; 3515 3516 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3517 } 3518 3519 /* 3520 * Historically care was taken to put equal pressure on all zones but 3521 * now pressure is applied based on node LRU order. 3522 */ 3523 shrink_node(pgdat, sc); 3524 3525 /* 3526 * Fragmentation may mean that the system cannot be rebalanced for 3527 * high-order allocations. If twice the allocation size has been 3528 * reclaimed then recheck watermarks only at order-0 to prevent 3529 * excessive reclaim. Assume that a process requested a high-order 3530 * can direct reclaim/compact. 3531 */ 3532 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3533 sc->order = 0; 3534 3535 return sc->nr_scanned >= sc->nr_to_reclaim; 3536 } 3537 3538 /* 3539 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3540 * that are eligible for use by the caller until at least one zone is 3541 * balanced. 3542 * 3543 * Returns the order kswapd finished reclaiming at. 3544 * 3545 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3546 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3547 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3548 * or lower is eligible for reclaim until at least one usable zone is 3549 * balanced. 3550 */ 3551 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3552 { 3553 int i; 3554 unsigned long nr_soft_reclaimed; 3555 unsigned long nr_soft_scanned; 3556 unsigned long pflags; 3557 unsigned long nr_boost_reclaim; 3558 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3559 bool boosted; 3560 struct zone *zone; 3561 struct scan_control sc = { 3562 .gfp_mask = GFP_KERNEL, 3563 .order = order, 3564 .may_unmap = 1, 3565 }; 3566 3567 set_task_reclaim_state(current, &sc.reclaim_state); 3568 psi_memstall_enter(&pflags); 3569 __fs_reclaim_acquire(); 3570 3571 count_vm_event(PAGEOUTRUN); 3572 3573 /* 3574 * Account for the reclaim boost. Note that the zone boost is left in 3575 * place so that parallel allocations that are near the watermark will 3576 * stall or direct reclaim until kswapd is finished. 3577 */ 3578 nr_boost_reclaim = 0; 3579 for (i = 0; i <= classzone_idx; i++) { 3580 zone = pgdat->node_zones + i; 3581 if (!managed_zone(zone)) 3582 continue; 3583 3584 nr_boost_reclaim += zone->watermark_boost; 3585 zone_boosts[i] = zone->watermark_boost; 3586 } 3587 boosted = nr_boost_reclaim; 3588 3589 restart: 3590 sc.priority = DEF_PRIORITY; 3591 do { 3592 unsigned long nr_reclaimed = sc.nr_reclaimed; 3593 bool raise_priority = true; 3594 bool balanced; 3595 bool ret; 3596 3597 sc.reclaim_idx = classzone_idx; 3598 3599 /* 3600 * If the number of buffer_heads exceeds the maximum allowed 3601 * then consider reclaiming from all zones. This has a dual 3602 * purpose -- on 64-bit systems it is expected that 3603 * buffer_heads are stripped during active rotation. On 32-bit 3604 * systems, highmem pages can pin lowmem memory and shrinking 3605 * buffers can relieve lowmem pressure. Reclaim may still not 3606 * go ahead if all eligible zones for the original allocation 3607 * request are balanced to avoid excessive reclaim from kswapd. 3608 */ 3609 if (buffer_heads_over_limit) { 3610 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3611 zone = pgdat->node_zones + i; 3612 if (!managed_zone(zone)) 3613 continue; 3614 3615 sc.reclaim_idx = i; 3616 break; 3617 } 3618 } 3619 3620 /* 3621 * If the pgdat is imbalanced then ignore boosting and preserve 3622 * the watermarks for a later time and restart. Note that the 3623 * zone watermarks will be still reset at the end of balancing 3624 * on the grounds that the normal reclaim should be enough to 3625 * re-evaluate if boosting is required when kswapd next wakes. 3626 */ 3627 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3628 if (!balanced && nr_boost_reclaim) { 3629 nr_boost_reclaim = 0; 3630 goto restart; 3631 } 3632 3633 /* 3634 * If boosting is not active then only reclaim if there are no 3635 * eligible zones. Note that sc.reclaim_idx is not used as 3636 * buffer_heads_over_limit may have adjusted it. 3637 */ 3638 if (!nr_boost_reclaim && balanced) 3639 goto out; 3640 3641 /* Limit the priority of boosting to avoid reclaim writeback */ 3642 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3643 raise_priority = false; 3644 3645 /* 3646 * Do not writeback or swap pages for boosted reclaim. The 3647 * intent is to relieve pressure not issue sub-optimal IO 3648 * from reclaim context. If no pages are reclaimed, the 3649 * reclaim will be aborted. 3650 */ 3651 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3652 sc.may_swap = !nr_boost_reclaim; 3653 3654 /* 3655 * Do some background aging of the anon list, to give 3656 * pages a chance to be referenced before reclaiming. All 3657 * pages are rotated regardless of classzone as this is 3658 * about consistent aging. 3659 */ 3660 age_active_anon(pgdat, &sc); 3661 3662 /* 3663 * If we're getting trouble reclaiming, start doing writepage 3664 * even in laptop mode. 3665 */ 3666 if (sc.priority < DEF_PRIORITY - 2) 3667 sc.may_writepage = 1; 3668 3669 /* Call soft limit reclaim before calling shrink_node. */ 3670 sc.nr_scanned = 0; 3671 nr_soft_scanned = 0; 3672 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3673 sc.gfp_mask, &nr_soft_scanned); 3674 sc.nr_reclaimed += nr_soft_reclaimed; 3675 3676 /* 3677 * There should be no need to raise the scanning priority if 3678 * enough pages are already being scanned that that high 3679 * watermark would be met at 100% efficiency. 3680 */ 3681 if (kswapd_shrink_node(pgdat, &sc)) 3682 raise_priority = false; 3683 3684 /* 3685 * If the low watermark is met there is no need for processes 3686 * to be throttled on pfmemalloc_wait as they should not be 3687 * able to safely make forward progress. Wake them 3688 */ 3689 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3690 allow_direct_reclaim(pgdat)) 3691 wake_up_all(&pgdat->pfmemalloc_wait); 3692 3693 /* Check if kswapd should be suspending */ 3694 __fs_reclaim_release(); 3695 ret = try_to_freeze(); 3696 __fs_reclaim_acquire(); 3697 if (ret || kthread_should_stop()) 3698 break; 3699 3700 /* 3701 * Raise priority if scanning rate is too low or there was no 3702 * progress in reclaiming pages 3703 */ 3704 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3705 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3706 3707 /* 3708 * If reclaim made no progress for a boost, stop reclaim as 3709 * IO cannot be queued and it could be an infinite loop in 3710 * extreme circumstances. 3711 */ 3712 if (nr_boost_reclaim && !nr_reclaimed) 3713 break; 3714 3715 if (raise_priority || !nr_reclaimed) 3716 sc.priority--; 3717 } while (sc.priority >= 1); 3718 3719 if (!sc.nr_reclaimed) 3720 pgdat->kswapd_failures++; 3721 3722 out: 3723 /* If reclaim was boosted, account for the reclaim done in this pass */ 3724 if (boosted) { 3725 unsigned long flags; 3726 3727 for (i = 0; i <= classzone_idx; i++) { 3728 if (!zone_boosts[i]) 3729 continue; 3730 3731 /* Increments are under the zone lock */ 3732 zone = pgdat->node_zones + i; 3733 spin_lock_irqsave(&zone->lock, flags); 3734 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3735 spin_unlock_irqrestore(&zone->lock, flags); 3736 } 3737 3738 /* 3739 * As there is now likely space, wakeup kcompact to defragment 3740 * pageblocks. 3741 */ 3742 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3743 } 3744 3745 snapshot_refaults(NULL, pgdat); 3746 __fs_reclaim_release(); 3747 psi_memstall_leave(&pflags); 3748 set_task_reclaim_state(current, NULL); 3749 3750 /* 3751 * Return the order kswapd stopped reclaiming at as 3752 * prepare_kswapd_sleep() takes it into account. If another caller 3753 * entered the allocator slow path while kswapd was awake, order will 3754 * remain at the higher level. 3755 */ 3756 return sc.order; 3757 } 3758 3759 /* 3760 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3761 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3762 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3763 * after previous reclaim attempt (node is still unbalanced). In that case 3764 * return the zone index of the previous kswapd reclaim cycle. 3765 */ 3766 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3767 enum zone_type prev_classzone_idx) 3768 { 3769 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx); 3770 3771 return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx; 3772 } 3773 3774 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3775 unsigned int classzone_idx) 3776 { 3777 long remaining = 0; 3778 DEFINE_WAIT(wait); 3779 3780 if (freezing(current) || kthread_should_stop()) 3781 return; 3782 3783 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3784 3785 /* 3786 * Try to sleep for a short interval. Note that kcompactd will only be 3787 * woken if it is possible to sleep for a short interval. This is 3788 * deliberate on the assumption that if reclaim cannot keep an 3789 * eligible zone balanced that it's also unlikely that compaction will 3790 * succeed. 3791 */ 3792 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3793 /* 3794 * Compaction records what page blocks it recently failed to 3795 * isolate pages from and skips them in the future scanning. 3796 * When kswapd is going to sleep, it is reasonable to assume 3797 * that pages and compaction may succeed so reset the cache. 3798 */ 3799 reset_isolation_suitable(pgdat); 3800 3801 /* 3802 * We have freed the memory, now we should compact it to make 3803 * allocation of the requested order possible. 3804 */ 3805 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3806 3807 remaining = schedule_timeout(HZ/10); 3808 3809 /* 3810 * If woken prematurely then reset kswapd_classzone_idx and 3811 * order. The values will either be from a wakeup request or 3812 * the previous request that slept prematurely. 3813 */ 3814 if (remaining) { 3815 WRITE_ONCE(pgdat->kswapd_classzone_idx, 3816 kswapd_classzone_idx(pgdat, classzone_idx)); 3817 3818 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3819 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3820 } 3821 3822 finish_wait(&pgdat->kswapd_wait, &wait); 3823 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3824 } 3825 3826 /* 3827 * After a short sleep, check if it was a premature sleep. If not, then 3828 * go fully to sleep until explicitly woken up. 3829 */ 3830 if (!remaining && 3831 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3832 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3833 3834 /* 3835 * vmstat counters are not perfectly accurate and the estimated 3836 * value for counters such as NR_FREE_PAGES can deviate from the 3837 * true value by nr_online_cpus * threshold. To avoid the zone 3838 * watermarks being breached while under pressure, we reduce the 3839 * per-cpu vmstat threshold while kswapd is awake and restore 3840 * them before going back to sleep. 3841 */ 3842 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3843 3844 if (!kthread_should_stop()) 3845 schedule(); 3846 3847 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3848 } else { 3849 if (remaining) 3850 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3851 else 3852 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3853 } 3854 finish_wait(&pgdat->kswapd_wait, &wait); 3855 } 3856 3857 /* 3858 * The background pageout daemon, started as a kernel thread 3859 * from the init process. 3860 * 3861 * This basically trickles out pages so that we have _some_ 3862 * free memory available even if there is no other activity 3863 * that frees anything up. This is needed for things like routing 3864 * etc, where we otherwise might have all activity going on in 3865 * asynchronous contexts that cannot page things out. 3866 * 3867 * If there are applications that are active memory-allocators 3868 * (most normal use), this basically shouldn't matter. 3869 */ 3870 static int kswapd(void *p) 3871 { 3872 unsigned int alloc_order, reclaim_order; 3873 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3874 pg_data_t *pgdat = (pg_data_t*)p; 3875 struct task_struct *tsk = current; 3876 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3877 3878 if (!cpumask_empty(cpumask)) 3879 set_cpus_allowed_ptr(tsk, cpumask); 3880 3881 /* 3882 * Tell the memory management that we're a "memory allocator", 3883 * and that if we need more memory we should get access to it 3884 * regardless (see "__alloc_pages()"). "kswapd" should 3885 * never get caught in the normal page freeing logic. 3886 * 3887 * (Kswapd normally doesn't need memory anyway, but sometimes 3888 * you need a small amount of memory in order to be able to 3889 * page out something else, and this flag essentially protects 3890 * us from recursively trying to free more memory as we're 3891 * trying to free the first piece of memory in the first place). 3892 */ 3893 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3894 set_freezable(); 3895 3896 WRITE_ONCE(pgdat->kswapd_order, 0); 3897 WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES); 3898 for ( ; ; ) { 3899 bool ret; 3900 3901 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3902 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3903 3904 kswapd_try_sleep: 3905 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3906 classzone_idx); 3907 3908 /* Read the new order and classzone_idx */ 3909 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3910 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3911 WRITE_ONCE(pgdat->kswapd_order, 0); 3912 WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES); 3913 3914 ret = try_to_freeze(); 3915 if (kthread_should_stop()) 3916 break; 3917 3918 /* 3919 * We can speed up thawing tasks if we don't call balance_pgdat 3920 * after returning from the refrigerator 3921 */ 3922 if (ret) 3923 continue; 3924 3925 /* 3926 * Reclaim begins at the requested order but if a high-order 3927 * reclaim fails then kswapd falls back to reclaiming for 3928 * order-0. If that happens, kswapd will consider sleeping 3929 * for the order it finished reclaiming at (reclaim_order) 3930 * but kcompactd is woken to compact for the original 3931 * request (alloc_order). 3932 */ 3933 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3934 alloc_order); 3935 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3936 if (reclaim_order < alloc_order) 3937 goto kswapd_try_sleep; 3938 } 3939 3940 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3941 3942 return 0; 3943 } 3944 3945 /* 3946 * A zone is low on free memory or too fragmented for high-order memory. If 3947 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3948 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3949 * has failed or is not needed, still wake up kcompactd if only compaction is 3950 * needed. 3951 */ 3952 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3953 enum zone_type classzone_idx) 3954 { 3955 pg_data_t *pgdat; 3956 enum zone_type curr_idx; 3957 3958 if (!managed_zone(zone)) 3959 return; 3960 3961 if (!cpuset_zone_allowed(zone, gfp_flags)) 3962 return; 3963 3964 pgdat = zone->zone_pgdat; 3965 curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx); 3966 3967 if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx) 3968 WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx); 3969 3970 if (READ_ONCE(pgdat->kswapd_order) < order) 3971 WRITE_ONCE(pgdat->kswapd_order, order); 3972 3973 if (!waitqueue_active(&pgdat->kswapd_wait)) 3974 return; 3975 3976 /* Hopeless node, leave it to direct reclaim if possible */ 3977 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3978 (pgdat_balanced(pgdat, order, classzone_idx) && 3979 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3980 /* 3981 * There may be plenty of free memory available, but it's too 3982 * fragmented for high-order allocations. Wake up kcompactd 3983 * and rely on compaction_suitable() to determine if it's 3984 * needed. If it fails, it will defer subsequent attempts to 3985 * ratelimit its work. 3986 */ 3987 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3988 wakeup_kcompactd(pgdat, order, classzone_idx); 3989 return; 3990 } 3991 3992 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3993 gfp_flags); 3994 wake_up_interruptible(&pgdat->kswapd_wait); 3995 } 3996 3997 #ifdef CONFIG_HIBERNATION 3998 /* 3999 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4000 * freed pages. 4001 * 4002 * Rather than trying to age LRUs the aim is to preserve the overall 4003 * LRU order by reclaiming preferentially 4004 * inactive > active > active referenced > active mapped 4005 */ 4006 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4007 { 4008 struct scan_control sc = { 4009 .nr_to_reclaim = nr_to_reclaim, 4010 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4011 .reclaim_idx = MAX_NR_ZONES - 1, 4012 .priority = DEF_PRIORITY, 4013 .may_writepage = 1, 4014 .may_unmap = 1, 4015 .may_swap = 1, 4016 .hibernation_mode = 1, 4017 }; 4018 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4019 unsigned long nr_reclaimed; 4020 unsigned int noreclaim_flag; 4021 4022 fs_reclaim_acquire(sc.gfp_mask); 4023 noreclaim_flag = memalloc_noreclaim_save(); 4024 set_task_reclaim_state(current, &sc.reclaim_state); 4025 4026 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4027 4028 set_task_reclaim_state(current, NULL); 4029 memalloc_noreclaim_restore(noreclaim_flag); 4030 fs_reclaim_release(sc.gfp_mask); 4031 4032 return nr_reclaimed; 4033 } 4034 #endif /* CONFIG_HIBERNATION */ 4035 4036 /* 4037 * This kswapd start function will be called by init and node-hot-add. 4038 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4039 */ 4040 int kswapd_run(int nid) 4041 { 4042 pg_data_t *pgdat = NODE_DATA(nid); 4043 int ret = 0; 4044 4045 if (pgdat->kswapd) 4046 return 0; 4047 4048 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4049 if (IS_ERR(pgdat->kswapd)) { 4050 /* failure at boot is fatal */ 4051 BUG_ON(system_state < SYSTEM_RUNNING); 4052 pr_err("Failed to start kswapd on node %d\n", nid); 4053 ret = PTR_ERR(pgdat->kswapd); 4054 pgdat->kswapd = NULL; 4055 } 4056 return ret; 4057 } 4058 4059 /* 4060 * Called by memory hotplug when all memory in a node is offlined. Caller must 4061 * hold mem_hotplug_begin/end(). 4062 */ 4063 void kswapd_stop(int nid) 4064 { 4065 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4066 4067 if (kswapd) { 4068 kthread_stop(kswapd); 4069 NODE_DATA(nid)->kswapd = NULL; 4070 } 4071 } 4072 4073 static int __init kswapd_init(void) 4074 { 4075 int nid; 4076 4077 swap_setup(); 4078 for_each_node_state(nid, N_MEMORY) 4079 kswapd_run(nid); 4080 return 0; 4081 } 4082 4083 module_init(kswapd_init) 4084 4085 #ifdef CONFIG_NUMA 4086 /* 4087 * Node reclaim mode 4088 * 4089 * If non-zero call node_reclaim when the number of free pages falls below 4090 * the watermarks. 4091 */ 4092 int node_reclaim_mode __read_mostly; 4093 4094 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ 4095 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ 4096 4097 /* 4098 * Priority for NODE_RECLAIM. This determines the fraction of pages 4099 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4100 * a zone. 4101 */ 4102 #define NODE_RECLAIM_PRIORITY 4 4103 4104 /* 4105 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4106 * occur. 4107 */ 4108 int sysctl_min_unmapped_ratio = 1; 4109 4110 /* 4111 * If the number of slab pages in a zone grows beyond this percentage then 4112 * slab reclaim needs to occur. 4113 */ 4114 int sysctl_min_slab_ratio = 5; 4115 4116 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4117 { 4118 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4119 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4120 node_page_state(pgdat, NR_ACTIVE_FILE); 4121 4122 /* 4123 * It's possible for there to be more file mapped pages than 4124 * accounted for by the pages on the file LRU lists because 4125 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4126 */ 4127 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4128 } 4129 4130 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4131 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4132 { 4133 unsigned long nr_pagecache_reclaimable; 4134 unsigned long delta = 0; 4135 4136 /* 4137 * If RECLAIM_UNMAP is set, then all file pages are considered 4138 * potentially reclaimable. Otherwise, we have to worry about 4139 * pages like swapcache and node_unmapped_file_pages() provides 4140 * a better estimate 4141 */ 4142 if (node_reclaim_mode & RECLAIM_UNMAP) 4143 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4144 else 4145 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4146 4147 /* If we can't clean pages, remove dirty pages from consideration */ 4148 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4149 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4150 4151 /* Watch for any possible underflows due to delta */ 4152 if (unlikely(delta > nr_pagecache_reclaimable)) 4153 delta = nr_pagecache_reclaimable; 4154 4155 return nr_pagecache_reclaimable - delta; 4156 } 4157 4158 /* 4159 * Try to free up some pages from this node through reclaim. 4160 */ 4161 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4162 { 4163 /* Minimum pages needed in order to stay on node */ 4164 const unsigned long nr_pages = 1 << order; 4165 struct task_struct *p = current; 4166 unsigned int noreclaim_flag; 4167 struct scan_control sc = { 4168 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4169 .gfp_mask = current_gfp_context(gfp_mask), 4170 .order = order, 4171 .priority = NODE_RECLAIM_PRIORITY, 4172 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4173 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4174 .may_swap = 1, 4175 .reclaim_idx = gfp_zone(gfp_mask), 4176 }; 4177 4178 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4179 sc.gfp_mask); 4180 4181 cond_resched(); 4182 fs_reclaim_acquire(sc.gfp_mask); 4183 /* 4184 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4185 * and we also need to be able to write out pages for RECLAIM_WRITE 4186 * and RECLAIM_UNMAP. 4187 */ 4188 noreclaim_flag = memalloc_noreclaim_save(); 4189 p->flags |= PF_SWAPWRITE; 4190 set_task_reclaim_state(p, &sc.reclaim_state); 4191 4192 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4193 /* 4194 * Free memory by calling shrink node with increasing 4195 * priorities until we have enough memory freed. 4196 */ 4197 do { 4198 shrink_node(pgdat, &sc); 4199 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4200 } 4201 4202 set_task_reclaim_state(p, NULL); 4203 current->flags &= ~PF_SWAPWRITE; 4204 memalloc_noreclaim_restore(noreclaim_flag); 4205 fs_reclaim_release(sc.gfp_mask); 4206 4207 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4208 4209 return sc.nr_reclaimed >= nr_pages; 4210 } 4211 4212 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4213 { 4214 int ret; 4215 4216 /* 4217 * Node reclaim reclaims unmapped file backed pages and 4218 * slab pages if we are over the defined limits. 4219 * 4220 * A small portion of unmapped file backed pages is needed for 4221 * file I/O otherwise pages read by file I/O will be immediately 4222 * thrown out if the node is overallocated. So we do not reclaim 4223 * if less than a specified percentage of the node is used by 4224 * unmapped file backed pages. 4225 */ 4226 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4227 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4228 return NODE_RECLAIM_FULL; 4229 4230 /* 4231 * Do not scan if the allocation should not be delayed. 4232 */ 4233 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4234 return NODE_RECLAIM_NOSCAN; 4235 4236 /* 4237 * Only run node reclaim on the local node or on nodes that do not 4238 * have associated processors. This will favor the local processor 4239 * over remote processors and spread off node memory allocations 4240 * as wide as possible. 4241 */ 4242 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4243 return NODE_RECLAIM_NOSCAN; 4244 4245 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4246 return NODE_RECLAIM_NOSCAN; 4247 4248 ret = __node_reclaim(pgdat, gfp_mask, order); 4249 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4250 4251 if (!ret) 4252 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4253 4254 return ret; 4255 } 4256 #endif 4257 4258 /** 4259 * check_move_unevictable_pages - check pages for evictability and move to 4260 * appropriate zone lru list 4261 * @pvec: pagevec with lru pages to check 4262 * 4263 * Checks pages for evictability, if an evictable page is in the unevictable 4264 * lru list, moves it to the appropriate evictable lru list. This function 4265 * should be only used for lru pages. 4266 */ 4267 void check_move_unevictable_pages(struct pagevec *pvec) 4268 { 4269 struct lruvec *lruvec; 4270 struct pglist_data *pgdat = NULL; 4271 int pgscanned = 0; 4272 int pgrescued = 0; 4273 int i; 4274 4275 for (i = 0; i < pvec->nr; i++) { 4276 struct page *page = pvec->pages[i]; 4277 struct pglist_data *pagepgdat = page_pgdat(page); 4278 4279 pgscanned++; 4280 if (pagepgdat != pgdat) { 4281 if (pgdat) 4282 spin_unlock_irq(&pgdat->lru_lock); 4283 pgdat = pagepgdat; 4284 spin_lock_irq(&pgdat->lru_lock); 4285 } 4286 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4287 4288 if (!PageLRU(page) || !PageUnevictable(page)) 4289 continue; 4290 4291 if (page_evictable(page)) { 4292 enum lru_list lru = page_lru_base_type(page); 4293 4294 VM_BUG_ON_PAGE(PageActive(page), page); 4295 ClearPageUnevictable(page); 4296 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4297 add_page_to_lru_list(page, lruvec, lru); 4298 pgrescued++; 4299 } 4300 } 4301 4302 if (pgdat) { 4303 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4304 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4305 spin_unlock_irq(&pgdat->lru_lock); 4306 } 4307 } 4308 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4309