1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* This context's GFP mask */ 69 gfp_t gfp_mask; 70 71 /* Allocation order */ 72 int order; 73 74 /* 75 * Nodemask of nodes allowed by the caller. If NULL, all nodes 76 * are scanned. 77 */ 78 nodemask_t *nodemask; 79 80 /* 81 * The memory cgroup that hit its limit and as a result is the 82 * primary target of this reclaim invocation. 83 */ 84 struct mem_cgroup *target_mem_cgroup; 85 86 /* Scan (total_size >> priority) pages at once */ 87 int priority; 88 89 /* The highest zone to isolate pages for reclaim from */ 90 enum zone_type reclaim_idx; 91 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 93 unsigned int may_writepage:1; 94 95 /* Can mapped pages be reclaimed? */ 96 unsigned int may_unmap:1; 97 98 /* Can pages be swapped as part of reclaim? */ 99 unsigned int may_swap:1; 100 101 /* 102 * Cgroups are not reclaimed below their configured memory.low, 103 * unless we threaten to OOM. If any cgroups are skipped due to 104 * memory.low and nothing was reclaimed, go back for memory.low. 105 */ 106 unsigned int memcg_low_reclaim:1; 107 unsigned int memcg_low_skipped:1; 108 109 unsigned int hibernation_mode:1; 110 111 /* One of the zones is ready for compaction */ 112 unsigned int compaction_ready:1; 113 114 /* Incremented by the number of inactive pages that were scanned */ 115 unsigned long nr_scanned; 116 117 /* Number of pages freed so far during a call to shrink_zones() */ 118 unsigned long nr_reclaimed; 119 }; 120 121 #ifdef ARCH_HAS_PREFETCH 122 #define prefetch_prev_lru_page(_page, _base, _field) \ 123 do { \ 124 if ((_page)->lru.prev != _base) { \ 125 struct page *prev; \ 126 \ 127 prev = lru_to_page(&(_page->lru)); \ 128 prefetch(&prev->_field); \ 129 } \ 130 } while (0) 131 #else 132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 133 #endif 134 135 #ifdef ARCH_HAS_PREFETCHW 136 #define prefetchw_prev_lru_page(_page, _base, _field) \ 137 do { \ 138 if ((_page)->lru.prev != _base) { \ 139 struct page *prev; \ 140 \ 141 prev = lru_to_page(&(_page->lru)); \ 142 prefetchw(&prev->_field); \ 143 } \ 144 } while (0) 145 #else 146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 147 #endif 148 149 /* 150 * From 0 .. 100. Higher means more swappy. 151 */ 152 int vm_swappiness = 60; 153 /* 154 * The total number of pages which are beyond the high watermark within all 155 * zones. 156 */ 157 unsigned long vm_total_pages; 158 159 static LIST_HEAD(shrinker_list); 160 static DECLARE_RWSEM(shrinker_rwsem); 161 162 #ifdef CONFIG_MEMCG 163 static bool global_reclaim(struct scan_control *sc) 164 { 165 return !sc->target_mem_cgroup; 166 } 167 168 /** 169 * sane_reclaim - is the usual dirty throttling mechanism operational? 170 * @sc: scan_control in question 171 * 172 * The normal page dirty throttling mechanism in balance_dirty_pages() is 173 * completely broken with the legacy memcg and direct stalling in 174 * shrink_page_list() is used for throttling instead, which lacks all the 175 * niceties such as fairness, adaptive pausing, bandwidth proportional 176 * allocation and configurability. 177 * 178 * This function tests whether the vmscan currently in progress can assume 179 * that the normal dirty throttling mechanism is operational. 180 */ 181 static bool sane_reclaim(struct scan_control *sc) 182 { 183 struct mem_cgroup *memcg = sc->target_mem_cgroup; 184 185 if (!memcg) 186 return true; 187 #ifdef CONFIG_CGROUP_WRITEBACK 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 189 return true; 190 #endif 191 return false; 192 } 193 #else 194 static bool global_reclaim(struct scan_control *sc) 195 { 196 return true; 197 } 198 199 static bool sane_reclaim(struct scan_control *sc) 200 { 201 return true; 202 } 203 #endif 204 205 /* 206 * This misses isolated pages which are not accounted for to save counters. 207 * As the data only determines if reclaim or compaction continues, it is 208 * not expected that isolated pages will be a dominating factor. 209 */ 210 unsigned long zone_reclaimable_pages(struct zone *zone) 211 { 212 unsigned long nr; 213 214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 216 if (get_nr_swap_pages() > 0) 217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 219 220 return nr; 221 } 222 223 /** 224 * lruvec_lru_size - Returns the number of pages on the given LRU list. 225 * @lruvec: lru vector 226 * @lru: lru to use 227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 228 */ 229 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 230 { 231 unsigned long lru_size; 232 int zid; 233 234 if (!mem_cgroup_disabled()) 235 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 236 else 237 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 238 239 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 240 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 241 unsigned long size; 242 243 if (!managed_zone(zone)) 244 continue; 245 246 if (!mem_cgroup_disabled()) 247 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 248 else 249 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 250 NR_ZONE_LRU_BASE + lru); 251 lru_size -= min(size, lru_size); 252 } 253 254 return lru_size; 255 256 } 257 258 /* 259 * Add a shrinker callback to be called from the vm. 260 */ 261 int register_shrinker(struct shrinker *shrinker) 262 { 263 size_t size = sizeof(*shrinker->nr_deferred); 264 265 if (shrinker->flags & SHRINKER_NUMA_AWARE) 266 size *= nr_node_ids; 267 268 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 269 if (!shrinker->nr_deferred) 270 return -ENOMEM; 271 272 down_write(&shrinker_rwsem); 273 list_add_tail(&shrinker->list, &shrinker_list); 274 up_write(&shrinker_rwsem); 275 return 0; 276 } 277 EXPORT_SYMBOL(register_shrinker); 278 279 /* 280 * Remove one 281 */ 282 void unregister_shrinker(struct shrinker *shrinker) 283 { 284 if (!shrinker->nr_deferred) 285 return; 286 down_write(&shrinker_rwsem); 287 list_del(&shrinker->list); 288 up_write(&shrinker_rwsem); 289 kfree(shrinker->nr_deferred); 290 shrinker->nr_deferred = NULL; 291 } 292 EXPORT_SYMBOL(unregister_shrinker); 293 294 #define SHRINK_BATCH 128 295 296 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 297 struct shrinker *shrinker, int priority) 298 { 299 unsigned long freed = 0; 300 unsigned long long delta; 301 long total_scan; 302 long freeable; 303 long nr; 304 long new_nr; 305 int nid = shrinkctl->nid; 306 long batch_size = shrinker->batch ? shrinker->batch 307 : SHRINK_BATCH; 308 long scanned = 0, next_deferred; 309 310 freeable = shrinker->count_objects(shrinker, shrinkctl); 311 if (freeable == 0) 312 return 0; 313 314 /* 315 * copy the current shrinker scan count into a local variable 316 * and zero it so that other concurrent shrinker invocations 317 * don't also do this scanning work. 318 */ 319 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 320 321 total_scan = nr; 322 delta = freeable >> priority; 323 delta *= 4; 324 do_div(delta, shrinker->seeks); 325 total_scan += delta; 326 if (total_scan < 0) { 327 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 328 shrinker->scan_objects, total_scan); 329 total_scan = freeable; 330 next_deferred = nr; 331 } else 332 next_deferred = total_scan; 333 334 /* 335 * We need to avoid excessive windup on filesystem shrinkers 336 * due to large numbers of GFP_NOFS allocations causing the 337 * shrinkers to return -1 all the time. This results in a large 338 * nr being built up so when a shrink that can do some work 339 * comes along it empties the entire cache due to nr >>> 340 * freeable. This is bad for sustaining a working set in 341 * memory. 342 * 343 * Hence only allow the shrinker to scan the entire cache when 344 * a large delta change is calculated directly. 345 */ 346 if (delta < freeable / 4) 347 total_scan = min(total_scan, freeable / 2); 348 349 /* 350 * Avoid risking looping forever due to too large nr value: 351 * never try to free more than twice the estimate number of 352 * freeable entries. 353 */ 354 if (total_scan > freeable * 2) 355 total_scan = freeable * 2; 356 357 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 358 freeable, delta, total_scan, priority); 359 360 /* 361 * Normally, we should not scan less than batch_size objects in one 362 * pass to avoid too frequent shrinker calls, but if the slab has less 363 * than batch_size objects in total and we are really tight on memory, 364 * we will try to reclaim all available objects, otherwise we can end 365 * up failing allocations although there are plenty of reclaimable 366 * objects spread over several slabs with usage less than the 367 * batch_size. 368 * 369 * We detect the "tight on memory" situations by looking at the total 370 * number of objects we want to scan (total_scan). If it is greater 371 * than the total number of objects on slab (freeable), we must be 372 * scanning at high prio and therefore should try to reclaim as much as 373 * possible. 374 */ 375 while (total_scan >= batch_size || 376 total_scan >= freeable) { 377 unsigned long ret; 378 unsigned long nr_to_scan = min(batch_size, total_scan); 379 380 shrinkctl->nr_to_scan = nr_to_scan; 381 shrinkctl->nr_scanned = nr_to_scan; 382 ret = shrinker->scan_objects(shrinker, shrinkctl); 383 if (ret == SHRINK_STOP) 384 break; 385 freed += ret; 386 387 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 388 total_scan -= shrinkctl->nr_scanned; 389 scanned += shrinkctl->nr_scanned; 390 391 cond_resched(); 392 } 393 394 if (next_deferred >= scanned) 395 next_deferred -= scanned; 396 else 397 next_deferred = 0; 398 /* 399 * move the unused scan count back into the shrinker in a 400 * manner that handles concurrent updates. If we exhausted the 401 * scan, there is no need to do an update. 402 */ 403 if (next_deferred > 0) 404 new_nr = atomic_long_add_return(next_deferred, 405 &shrinker->nr_deferred[nid]); 406 else 407 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 408 409 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 410 return freed; 411 } 412 413 /** 414 * shrink_slab - shrink slab caches 415 * @gfp_mask: allocation context 416 * @nid: node whose slab caches to target 417 * @memcg: memory cgroup whose slab caches to target 418 * @priority: the reclaim priority 419 * 420 * Call the shrink functions to age shrinkable caches. 421 * 422 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 423 * unaware shrinkers will receive a node id of 0 instead. 424 * 425 * @memcg specifies the memory cgroup to target. If it is not NULL, 426 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 427 * objects from the memory cgroup specified. Otherwise, only unaware 428 * shrinkers are called. 429 * 430 * @priority is sc->priority, we take the number of objects and >> by priority 431 * in order to get the scan target. 432 * 433 * Returns the number of reclaimed slab objects. 434 */ 435 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 436 struct mem_cgroup *memcg, 437 int priority) 438 { 439 struct shrinker *shrinker; 440 unsigned long freed = 0; 441 442 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 443 return 0; 444 445 if (!down_read_trylock(&shrinker_rwsem)) { 446 /* 447 * If we would return 0, our callers would understand that we 448 * have nothing else to shrink and give up trying. By returning 449 * 1 we keep it going and assume we'll be able to shrink next 450 * time. 451 */ 452 freed = 1; 453 goto out; 454 } 455 456 list_for_each_entry(shrinker, &shrinker_list, list) { 457 struct shrink_control sc = { 458 .gfp_mask = gfp_mask, 459 .nid = nid, 460 .memcg = memcg, 461 }; 462 463 /* 464 * If kernel memory accounting is disabled, we ignore 465 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 466 * passing NULL for memcg. 467 */ 468 if (memcg_kmem_enabled() && 469 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 470 continue; 471 472 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 473 sc.nid = 0; 474 475 freed += do_shrink_slab(&sc, shrinker, priority); 476 /* 477 * Bail out if someone want to register a new shrinker to 478 * prevent the regsitration from being stalled for long periods 479 * by parallel ongoing shrinking. 480 */ 481 if (rwsem_is_contended(&shrinker_rwsem)) { 482 freed = freed ? : 1; 483 break; 484 } 485 } 486 487 up_read(&shrinker_rwsem); 488 out: 489 cond_resched(); 490 return freed; 491 } 492 493 void drop_slab_node(int nid) 494 { 495 unsigned long freed; 496 497 do { 498 struct mem_cgroup *memcg = NULL; 499 500 freed = 0; 501 do { 502 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 503 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 504 } while (freed > 10); 505 } 506 507 void drop_slab(void) 508 { 509 int nid; 510 511 for_each_online_node(nid) 512 drop_slab_node(nid); 513 } 514 515 static inline int is_page_cache_freeable(struct page *page) 516 { 517 /* 518 * A freeable page cache page is referenced only by the caller 519 * that isolated the page, the page cache radix tree and 520 * optional buffer heads at page->private. 521 */ 522 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 523 HPAGE_PMD_NR : 1; 524 return page_count(page) - page_has_private(page) == 1 + radix_pins; 525 } 526 527 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 528 { 529 if (current->flags & PF_SWAPWRITE) 530 return 1; 531 if (!inode_write_congested(inode)) 532 return 1; 533 if (inode_to_bdi(inode) == current->backing_dev_info) 534 return 1; 535 return 0; 536 } 537 538 /* 539 * We detected a synchronous write error writing a page out. Probably 540 * -ENOSPC. We need to propagate that into the address_space for a subsequent 541 * fsync(), msync() or close(). 542 * 543 * The tricky part is that after writepage we cannot touch the mapping: nothing 544 * prevents it from being freed up. But we have a ref on the page and once 545 * that page is locked, the mapping is pinned. 546 * 547 * We're allowed to run sleeping lock_page() here because we know the caller has 548 * __GFP_FS. 549 */ 550 static void handle_write_error(struct address_space *mapping, 551 struct page *page, int error) 552 { 553 lock_page(page); 554 if (page_mapping(page) == mapping) 555 mapping_set_error(mapping, error); 556 unlock_page(page); 557 } 558 559 /* possible outcome of pageout() */ 560 typedef enum { 561 /* failed to write page out, page is locked */ 562 PAGE_KEEP, 563 /* move page to the active list, page is locked */ 564 PAGE_ACTIVATE, 565 /* page has been sent to the disk successfully, page is unlocked */ 566 PAGE_SUCCESS, 567 /* page is clean and locked */ 568 PAGE_CLEAN, 569 } pageout_t; 570 571 /* 572 * pageout is called by shrink_page_list() for each dirty page. 573 * Calls ->writepage(). 574 */ 575 static pageout_t pageout(struct page *page, struct address_space *mapping, 576 struct scan_control *sc) 577 { 578 /* 579 * If the page is dirty, only perform writeback if that write 580 * will be non-blocking. To prevent this allocation from being 581 * stalled by pagecache activity. But note that there may be 582 * stalls if we need to run get_block(). We could test 583 * PagePrivate for that. 584 * 585 * If this process is currently in __generic_file_write_iter() against 586 * this page's queue, we can perform writeback even if that 587 * will block. 588 * 589 * If the page is swapcache, write it back even if that would 590 * block, for some throttling. This happens by accident, because 591 * swap_backing_dev_info is bust: it doesn't reflect the 592 * congestion state of the swapdevs. Easy to fix, if needed. 593 */ 594 if (!is_page_cache_freeable(page)) 595 return PAGE_KEEP; 596 if (!mapping) { 597 /* 598 * Some data journaling orphaned pages can have 599 * page->mapping == NULL while being dirty with clean buffers. 600 */ 601 if (page_has_private(page)) { 602 if (try_to_free_buffers(page)) { 603 ClearPageDirty(page); 604 pr_info("%s: orphaned page\n", __func__); 605 return PAGE_CLEAN; 606 } 607 } 608 return PAGE_KEEP; 609 } 610 if (mapping->a_ops->writepage == NULL) 611 return PAGE_ACTIVATE; 612 if (!may_write_to_inode(mapping->host, sc)) 613 return PAGE_KEEP; 614 615 if (clear_page_dirty_for_io(page)) { 616 int res; 617 struct writeback_control wbc = { 618 .sync_mode = WB_SYNC_NONE, 619 .nr_to_write = SWAP_CLUSTER_MAX, 620 .range_start = 0, 621 .range_end = LLONG_MAX, 622 .for_reclaim = 1, 623 }; 624 625 SetPageReclaim(page); 626 res = mapping->a_ops->writepage(page, &wbc); 627 if (res < 0) 628 handle_write_error(mapping, page, res); 629 if (res == AOP_WRITEPAGE_ACTIVATE) { 630 ClearPageReclaim(page); 631 return PAGE_ACTIVATE; 632 } 633 634 if (!PageWriteback(page)) { 635 /* synchronous write or broken a_ops? */ 636 ClearPageReclaim(page); 637 } 638 trace_mm_vmscan_writepage(page); 639 inc_node_page_state(page, NR_VMSCAN_WRITE); 640 return PAGE_SUCCESS; 641 } 642 643 return PAGE_CLEAN; 644 } 645 646 /* 647 * Same as remove_mapping, but if the page is removed from the mapping, it 648 * gets returned with a refcount of 0. 649 */ 650 static int __remove_mapping(struct address_space *mapping, struct page *page, 651 bool reclaimed) 652 { 653 unsigned long flags; 654 int refcount; 655 656 BUG_ON(!PageLocked(page)); 657 BUG_ON(mapping != page_mapping(page)); 658 659 spin_lock_irqsave(&mapping->tree_lock, flags); 660 /* 661 * The non racy check for a busy page. 662 * 663 * Must be careful with the order of the tests. When someone has 664 * a ref to the page, it may be possible that they dirty it then 665 * drop the reference. So if PageDirty is tested before page_count 666 * here, then the following race may occur: 667 * 668 * get_user_pages(&page); 669 * [user mapping goes away] 670 * write_to(page); 671 * !PageDirty(page) [good] 672 * SetPageDirty(page); 673 * put_page(page); 674 * !page_count(page) [good, discard it] 675 * 676 * [oops, our write_to data is lost] 677 * 678 * Reversing the order of the tests ensures such a situation cannot 679 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 680 * load is not satisfied before that of page->_refcount. 681 * 682 * Note that if SetPageDirty is always performed via set_page_dirty, 683 * and thus under tree_lock, then this ordering is not required. 684 */ 685 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 686 refcount = 1 + HPAGE_PMD_NR; 687 else 688 refcount = 2; 689 if (!page_ref_freeze(page, refcount)) 690 goto cannot_free; 691 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 692 if (unlikely(PageDirty(page))) { 693 page_ref_unfreeze(page, refcount); 694 goto cannot_free; 695 } 696 697 if (PageSwapCache(page)) { 698 swp_entry_t swap = { .val = page_private(page) }; 699 mem_cgroup_swapout(page, swap); 700 __delete_from_swap_cache(page); 701 spin_unlock_irqrestore(&mapping->tree_lock, flags); 702 put_swap_page(page, swap); 703 } else { 704 void (*freepage)(struct page *); 705 void *shadow = NULL; 706 707 freepage = mapping->a_ops->freepage; 708 /* 709 * Remember a shadow entry for reclaimed file cache in 710 * order to detect refaults, thus thrashing, later on. 711 * 712 * But don't store shadows in an address space that is 713 * already exiting. This is not just an optizimation, 714 * inode reclaim needs to empty out the radix tree or 715 * the nodes are lost. Don't plant shadows behind its 716 * back. 717 * 718 * We also don't store shadows for DAX mappings because the 719 * only page cache pages found in these are zero pages 720 * covering holes, and because we don't want to mix DAX 721 * exceptional entries and shadow exceptional entries in the 722 * same page_tree. 723 */ 724 if (reclaimed && page_is_file_cache(page) && 725 !mapping_exiting(mapping) && !dax_mapping(mapping)) 726 shadow = workingset_eviction(mapping, page); 727 __delete_from_page_cache(page, shadow); 728 spin_unlock_irqrestore(&mapping->tree_lock, flags); 729 730 if (freepage != NULL) 731 freepage(page); 732 } 733 734 return 1; 735 736 cannot_free: 737 spin_unlock_irqrestore(&mapping->tree_lock, flags); 738 return 0; 739 } 740 741 /* 742 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 743 * someone else has a ref on the page, abort and return 0. If it was 744 * successfully detached, return 1. Assumes the caller has a single ref on 745 * this page. 746 */ 747 int remove_mapping(struct address_space *mapping, struct page *page) 748 { 749 if (__remove_mapping(mapping, page, false)) { 750 /* 751 * Unfreezing the refcount with 1 rather than 2 effectively 752 * drops the pagecache ref for us without requiring another 753 * atomic operation. 754 */ 755 page_ref_unfreeze(page, 1); 756 return 1; 757 } 758 return 0; 759 } 760 761 /** 762 * putback_lru_page - put previously isolated page onto appropriate LRU list 763 * @page: page to be put back to appropriate lru list 764 * 765 * Add previously isolated @page to appropriate LRU list. 766 * Page may still be unevictable for other reasons. 767 * 768 * lru_lock must not be held, interrupts must be enabled. 769 */ 770 void putback_lru_page(struct page *page) 771 { 772 bool is_unevictable; 773 int was_unevictable = PageUnevictable(page); 774 775 VM_BUG_ON_PAGE(PageLRU(page), page); 776 777 redo: 778 ClearPageUnevictable(page); 779 780 if (page_evictable(page)) { 781 /* 782 * For evictable pages, we can use the cache. 783 * In event of a race, worst case is we end up with an 784 * unevictable page on [in]active list. 785 * We know how to handle that. 786 */ 787 is_unevictable = false; 788 lru_cache_add(page); 789 } else { 790 /* 791 * Put unevictable pages directly on zone's unevictable 792 * list. 793 */ 794 is_unevictable = true; 795 add_page_to_unevictable_list(page); 796 /* 797 * When racing with an mlock or AS_UNEVICTABLE clearing 798 * (page is unlocked) make sure that if the other thread 799 * does not observe our setting of PG_lru and fails 800 * isolation/check_move_unevictable_pages, 801 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 802 * the page back to the evictable list. 803 * 804 * The other side is TestClearPageMlocked() or shmem_lock(). 805 */ 806 smp_mb(); 807 } 808 809 /* 810 * page's status can change while we move it among lru. If an evictable 811 * page is on unevictable list, it never be freed. To avoid that, 812 * check after we added it to the list, again. 813 */ 814 if (is_unevictable && page_evictable(page)) { 815 if (!isolate_lru_page(page)) { 816 put_page(page); 817 goto redo; 818 } 819 /* This means someone else dropped this page from LRU 820 * So, it will be freed or putback to LRU again. There is 821 * nothing to do here. 822 */ 823 } 824 825 if (was_unevictable && !is_unevictable) 826 count_vm_event(UNEVICTABLE_PGRESCUED); 827 else if (!was_unevictable && is_unevictable) 828 count_vm_event(UNEVICTABLE_PGCULLED); 829 830 put_page(page); /* drop ref from isolate */ 831 } 832 833 enum page_references { 834 PAGEREF_RECLAIM, 835 PAGEREF_RECLAIM_CLEAN, 836 PAGEREF_KEEP, 837 PAGEREF_ACTIVATE, 838 }; 839 840 static enum page_references page_check_references(struct page *page, 841 struct scan_control *sc) 842 { 843 int referenced_ptes, referenced_page; 844 unsigned long vm_flags; 845 846 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 847 &vm_flags); 848 referenced_page = TestClearPageReferenced(page); 849 850 /* 851 * Mlock lost the isolation race with us. Let try_to_unmap() 852 * move the page to the unevictable list. 853 */ 854 if (vm_flags & VM_LOCKED) 855 return PAGEREF_RECLAIM; 856 857 if (referenced_ptes) { 858 if (PageSwapBacked(page)) 859 return PAGEREF_ACTIVATE; 860 /* 861 * All mapped pages start out with page table 862 * references from the instantiating fault, so we need 863 * to look twice if a mapped file page is used more 864 * than once. 865 * 866 * Mark it and spare it for another trip around the 867 * inactive list. Another page table reference will 868 * lead to its activation. 869 * 870 * Note: the mark is set for activated pages as well 871 * so that recently deactivated but used pages are 872 * quickly recovered. 873 */ 874 SetPageReferenced(page); 875 876 if (referenced_page || referenced_ptes > 1) 877 return PAGEREF_ACTIVATE; 878 879 /* 880 * Activate file-backed executable pages after first usage. 881 */ 882 if (vm_flags & VM_EXEC) 883 return PAGEREF_ACTIVATE; 884 885 return PAGEREF_KEEP; 886 } 887 888 /* Reclaim if clean, defer dirty pages to writeback */ 889 if (referenced_page && !PageSwapBacked(page)) 890 return PAGEREF_RECLAIM_CLEAN; 891 892 return PAGEREF_RECLAIM; 893 } 894 895 /* Check if a page is dirty or under writeback */ 896 static void page_check_dirty_writeback(struct page *page, 897 bool *dirty, bool *writeback) 898 { 899 struct address_space *mapping; 900 901 /* 902 * Anonymous pages are not handled by flushers and must be written 903 * from reclaim context. Do not stall reclaim based on them 904 */ 905 if (!page_is_file_cache(page) || 906 (PageAnon(page) && !PageSwapBacked(page))) { 907 *dirty = false; 908 *writeback = false; 909 return; 910 } 911 912 /* By default assume that the page flags are accurate */ 913 *dirty = PageDirty(page); 914 *writeback = PageWriteback(page); 915 916 /* Verify dirty/writeback state if the filesystem supports it */ 917 if (!page_has_private(page)) 918 return; 919 920 mapping = page_mapping(page); 921 if (mapping && mapping->a_ops->is_dirty_writeback) 922 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 923 } 924 925 struct reclaim_stat { 926 unsigned nr_dirty; 927 unsigned nr_unqueued_dirty; 928 unsigned nr_congested; 929 unsigned nr_writeback; 930 unsigned nr_immediate; 931 unsigned nr_activate; 932 unsigned nr_ref_keep; 933 unsigned nr_unmap_fail; 934 }; 935 936 /* 937 * shrink_page_list() returns the number of reclaimed pages 938 */ 939 static unsigned long shrink_page_list(struct list_head *page_list, 940 struct pglist_data *pgdat, 941 struct scan_control *sc, 942 enum ttu_flags ttu_flags, 943 struct reclaim_stat *stat, 944 bool force_reclaim) 945 { 946 LIST_HEAD(ret_pages); 947 LIST_HEAD(free_pages); 948 int pgactivate = 0; 949 unsigned nr_unqueued_dirty = 0; 950 unsigned nr_dirty = 0; 951 unsigned nr_congested = 0; 952 unsigned nr_reclaimed = 0; 953 unsigned nr_writeback = 0; 954 unsigned nr_immediate = 0; 955 unsigned nr_ref_keep = 0; 956 unsigned nr_unmap_fail = 0; 957 958 cond_resched(); 959 960 while (!list_empty(page_list)) { 961 struct address_space *mapping; 962 struct page *page; 963 int may_enter_fs; 964 enum page_references references = PAGEREF_RECLAIM_CLEAN; 965 bool dirty, writeback; 966 967 cond_resched(); 968 969 page = lru_to_page(page_list); 970 list_del(&page->lru); 971 972 if (!trylock_page(page)) 973 goto keep; 974 975 VM_BUG_ON_PAGE(PageActive(page), page); 976 977 sc->nr_scanned++; 978 979 if (unlikely(!page_evictable(page))) 980 goto activate_locked; 981 982 if (!sc->may_unmap && page_mapped(page)) 983 goto keep_locked; 984 985 /* Double the slab pressure for mapped and swapcache pages */ 986 if ((page_mapped(page) || PageSwapCache(page)) && 987 !(PageAnon(page) && !PageSwapBacked(page))) 988 sc->nr_scanned++; 989 990 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 991 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 992 993 /* 994 * The number of dirty pages determines if a zone is marked 995 * reclaim_congested which affects wait_iff_congested. kswapd 996 * will stall and start writing pages if the tail of the LRU 997 * is all dirty unqueued pages. 998 */ 999 page_check_dirty_writeback(page, &dirty, &writeback); 1000 if (dirty || writeback) 1001 nr_dirty++; 1002 1003 if (dirty && !writeback) 1004 nr_unqueued_dirty++; 1005 1006 /* 1007 * Treat this page as congested if the underlying BDI is or if 1008 * pages are cycling through the LRU so quickly that the 1009 * pages marked for immediate reclaim are making it to the 1010 * end of the LRU a second time. 1011 */ 1012 mapping = page_mapping(page); 1013 if (((dirty || writeback) && mapping && 1014 inode_write_congested(mapping->host)) || 1015 (writeback && PageReclaim(page))) 1016 nr_congested++; 1017 1018 /* 1019 * If a page at the tail of the LRU is under writeback, there 1020 * are three cases to consider. 1021 * 1022 * 1) If reclaim is encountering an excessive number of pages 1023 * under writeback and this page is both under writeback and 1024 * PageReclaim then it indicates that pages are being queued 1025 * for IO but are being recycled through the LRU before the 1026 * IO can complete. Waiting on the page itself risks an 1027 * indefinite stall if it is impossible to writeback the 1028 * page due to IO error or disconnected storage so instead 1029 * note that the LRU is being scanned too quickly and the 1030 * caller can stall after page list has been processed. 1031 * 1032 * 2) Global or new memcg reclaim encounters a page that is 1033 * not marked for immediate reclaim, or the caller does not 1034 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1035 * not to fs). In this case mark the page for immediate 1036 * reclaim and continue scanning. 1037 * 1038 * Require may_enter_fs because we would wait on fs, which 1039 * may not have submitted IO yet. And the loop driver might 1040 * enter reclaim, and deadlock if it waits on a page for 1041 * which it is needed to do the write (loop masks off 1042 * __GFP_IO|__GFP_FS for this reason); but more thought 1043 * would probably show more reasons. 1044 * 1045 * 3) Legacy memcg encounters a page that is already marked 1046 * PageReclaim. memcg does not have any dirty pages 1047 * throttling so we could easily OOM just because too many 1048 * pages are in writeback and there is nothing else to 1049 * reclaim. Wait for the writeback to complete. 1050 * 1051 * In cases 1) and 2) we activate the pages to get them out of 1052 * the way while we continue scanning for clean pages on the 1053 * inactive list and refilling from the active list. The 1054 * observation here is that waiting for disk writes is more 1055 * expensive than potentially causing reloads down the line. 1056 * Since they're marked for immediate reclaim, they won't put 1057 * memory pressure on the cache working set any longer than it 1058 * takes to write them to disk. 1059 */ 1060 if (PageWriteback(page)) { 1061 /* Case 1 above */ 1062 if (current_is_kswapd() && 1063 PageReclaim(page) && 1064 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1065 nr_immediate++; 1066 goto activate_locked; 1067 1068 /* Case 2 above */ 1069 } else if (sane_reclaim(sc) || 1070 !PageReclaim(page) || !may_enter_fs) { 1071 /* 1072 * This is slightly racy - end_page_writeback() 1073 * might have just cleared PageReclaim, then 1074 * setting PageReclaim here end up interpreted 1075 * as PageReadahead - but that does not matter 1076 * enough to care. What we do want is for this 1077 * page to have PageReclaim set next time memcg 1078 * reclaim reaches the tests above, so it will 1079 * then wait_on_page_writeback() to avoid OOM; 1080 * and it's also appropriate in global reclaim. 1081 */ 1082 SetPageReclaim(page); 1083 nr_writeback++; 1084 goto activate_locked; 1085 1086 /* Case 3 above */ 1087 } else { 1088 unlock_page(page); 1089 wait_on_page_writeback(page); 1090 /* then go back and try same page again */ 1091 list_add_tail(&page->lru, page_list); 1092 continue; 1093 } 1094 } 1095 1096 if (!force_reclaim) 1097 references = page_check_references(page, sc); 1098 1099 switch (references) { 1100 case PAGEREF_ACTIVATE: 1101 goto activate_locked; 1102 case PAGEREF_KEEP: 1103 nr_ref_keep++; 1104 goto keep_locked; 1105 case PAGEREF_RECLAIM: 1106 case PAGEREF_RECLAIM_CLEAN: 1107 ; /* try to reclaim the page below */ 1108 } 1109 1110 /* 1111 * Anonymous process memory has backing store? 1112 * Try to allocate it some swap space here. 1113 * Lazyfree page could be freed directly 1114 */ 1115 if (PageAnon(page) && PageSwapBacked(page)) { 1116 if (!PageSwapCache(page)) { 1117 if (!(sc->gfp_mask & __GFP_IO)) 1118 goto keep_locked; 1119 if (PageTransHuge(page)) { 1120 /* cannot split THP, skip it */ 1121 if (!can_split_huge_page(page, NULL)) 1122 goto activate_locked; 1123 /* 1124 * Split pages without a PMD map right 1125 * away. Chances are some or all of the 1126 * tail pages can be freed without IO. 1127 */ 1128 if (!compound_mapcount(page) && 1129 split_huge_page_to_list(page, 1130 page_list)) 1131 goto activate_locked; 1132 } 1133 if (!add_to_swap(page)) { 1134 if (!PageTransHuge(page)) 1135 goto activate_locked; 1136 /* Fallback to swap normal pages */ 1137 if (split_huge_page_to_list(page, 1138 page_list)) 1139 goto activate_locked; 1140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1141 count_vm_event(THP_SWPOUT_FALLBACK); 1142 #endif 1143 if (!add_to_swap(page)) 1144 goto activate_locked; 1145 } 1146 1147 may_enter_fs = 1; 1148 1149 /* Adding to swap updated mapping */ 1150 mapping = page_mapping(page); 1151 } 1152 } else if (unlikely(PageTransHuge(page))) { 1153 /* Split file THP */ 1154 if (split_huge_page_to_list(page, page_list)) 1155 goto keep_locked; 1156 } 1157 1158 /* 1159 * The page is mapped into the page tables of one or more 1160 * processes. Try to unmap it here. 1161 */ 1162 if (page_mapped(page)) { 1163 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1164 1165 if (unlikely(PageTransHuge(page))) 1166 flags |= TTU_SPLIT_HUGE_PMD; 1167 if (!try_to_unmap(page, flags)) { 1168 nr_unmap_fail++; 1169 goto activate_locked; 1170 } 1171 } 1172 1173 if (PageDirty(page)) { 1174 /* 1175 * Only kswapd can writeback filesystem pages 1176 * to avoid risk of stack overflow. But avoid 1177 * injecting inefficient single-page IO into 1178 * flusher writeback as much as possible: only 1179 * write pages when we've encountered many 1180 * dirty pages, and when we've already scanned 1181 * the rest of the LRU for clean pages and see 1182 * the same dirty pages again (PageReclaim). 1183 */ 1184 if (page_is_file_cache(page) && 1185 (!current_is_kswapd() || !PageReclaim(page) || 1186 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1187 /* 1188 * Immediately reclaim when written back. 1189 * Similar in principal to deactivate_page() 1190 * except we already have the page isolated 1191 * and know it's dirty 1192 */ 1193 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1194 SetPageReclaim(page); 1195 1196 goto activate_locked; 1197 } 1198 1199 if (references == PAGEREF_RECLAIM_CLEAN) 1200 goto keep_locked; 1201 if (!may_enter_fs) 1202 goto keep_locked; 1203 if (!sc->may_writepage) 1204 goto keep_locked; 1205 1206 /* 1207 * Page is dirty. Flush the TLB if a writable entry 1208 * potentially exists to avoid CPU writes after IO 1209 * starts and then write it out here. 1210 */ 1211 try_to_unmap_flush_dirty(); 1212 switch (pageout(page, mapping, sc)) { 1213 case PAGE_KEEP: 1214 goto keep_locked; 1215 case PAGE_ACTIVATE: 1216 goto activate_locked; 1217 case PAGE_SUCCESS: 1218 if (PageWriteback(page)) 1219 goto keep; 1220 if (PageDirty(page)) 1221 goto keep; 1222 1223 /* 1224 * A synchronous write - probably a ramdisk. Go 1225 * ahead and try to reclaim the page. 1226 */ 1227 if (!trylock_page(page)) 1228 goto keep; 1229 if (PageDirty(page) || PageWriteback(page)) 1230 goto keep_locked; 1231 mapping = page_mapping(page); 1232 case PAGE_CLEAN: 1233 ; /* try to free the page below */ 1234 } 1235 } 1236 1237 /* 1238 * If the page has buffers, try to free the buffer mappings 1239 * associated with this page. If we succeed we try to free 1240 * the page as well. 1241 * 1242 * We do this even if the page is PageDirty(). 1243 * try_to_release_page() does not perform I/O, but it is 1244 * possible for a page to have PageDirty set, but it is actually 1245 * clean (all its buffers are clean). This happens if the 1246 * buffers were written out directly, with submit_bh(). ext3 1247 * will do this, as well as the blockdev mapping. 1248 * try_to_release_page() will discover that cleanness and will 1249 * drop the buffers and mark the page clean - it can be freed. 1250 * 1251 * Rarely, pages can have buffers and no ->mapping. These are 1252 * the pages which were not successfully invalidated in 1253 * truncate_complete_page(). We try to drop those buffers here 1254 * and if that worked, and the page is no longer mapped into 1255 * process address space (page_count == 1) it can be freed. 1256 * Otherwise, leave the page on the LRU so it is swappable. 1257 */ 1258 if (page_has_private(page)) { 1259 if (!try_to_release_page(page, sc->gfp_mask)) 1260 goto activate_locked; 1261 if (!mapping && page_count(page) == 1) { 1262 unlock_page(page); 1263 if (put_page_testzero(page)) 1264 goto free_it; 1265 else { 1266 /* 1267 * rare race with speculative reference. 1268 * the speculative reference will free 1269 * this page shortly, so we may 1270 * increment nr_reclaimed here (and 1271 * leave it off the LRU). 1272 */ 1273 nr_reclaimed++; 1274 continue; 1275 } 1276 } 1277 } 1278 1279 if (PageAnon(page) && !PageSwapBacked(page)) { 1280 /* follow __remove_mapping for reference */ 1281 if (!page_ref_freeze(page, 1)) 1282 goto keep_locked; 1283 if (PageDirty(page)) { 1284 page_ref_unfreeze(page, 1); 1285 goto keep_locked; 1286 } 1287 1288 count_vm_event(PGLAZYFREED); 1289 count_memcg_page_event(page, PGLAZYFREED); 1290 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1291 goto keep_locked; 1292 /* 1293 * At this point, we have no other references and there is 1294 * no way to pick any more up (removed from LRU, removed 1295 * from pagecache). Can use non-atomic bitops now (and 1296 * we obviously don't have to worry about waking up a process 1297 * waiting on the page lock, because there are no references. 1298 */ 1299 __ClearPageLocked(page); 1300 free_it: 1301 nr_reclaimed++; 1302 1303 /* 1304 * Is there need to periodically free_page_list? It would 1305 * appear not as the counts should be low 1306 */ 1307 if (unlikely(PageTransHuge(page))) { 1308 mem_cgroup_uncharge(page); 1309 (*get_compound_page_dtor(page))(page); 1310 } else 1311 list_add(&page->lru, &free_pages); 1312 continue; 1313 1314 activate_locked: 1315 /* Not a candidate for swapping, so reclaim swap space. */ 1316 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1317 PageMlocked(page))) 1318 try_to_free_swap(page); 1319 VM_BUG_ON_PAGE(PageActive(page), page); 1320 if (!PageMlocked(page)) { 1321 SetPageActive(page); 1322 pgactivate++; 1323 count_memcg_page_event(page, PGACTIVATE); 1324 } 1325 keep_locked: 1326 unlock_page(page); 1327 keep: 1328 list_add(&page->lru, &ret_pages); 1329 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1330 } 1331 1332 mem_cgroup_uncharge_list(&free_pages); 1333 try_to_unmap_flush(); 1334 free_unref_page_list(&free_pages); 1335 1336 list_splice(&ret_pages, page_list); 1337 count_vm_events(PGACTIVATE, pgactivate); 1338 1339 if (stat) { 1340 stat->nr_dirty = nr_dirty; 1341 stat->nr_congested = nr_congested; 1342 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1343 stat->nr_writeback = nr_writeback; 1344 stat->nr_immediate = nr_immediate; 1345 stat->nr_activate = pgactivate; 1346 stat->nr_ref_keep = nr_ref_keep; 1347 stat->nr_unmap_fail = nr_unmap_fail; 1348 } 1349 return nr_reclaimed; 1350 } 1351 1352 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1353 struct list_head *page_list) 1354 { 1355 struct scan_control sc = { 1356 .gfp_mask = GFP_KERNEL, 1357 .priority = DEF_PRIORITY, 1358 .may_unmap = 1, 1359 }; 1360 unsigned long ret; 1361 struct page *page, *next; 1362 LIST_HEAD(clean_pages); 1363 1364 list_for_each_entry_safe(page, next, page_list, lru) { 1365 if (page_is_file_cache(page) && !PageDirty(page) && 1366 !__PageMovable(page)) { 1367 ClearPageActive(page); 1368 list_move(&page->lru, &clean_pages); 1369 } 1370 } 1371 1372 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1373 TTU_IGNORE_ACCESS, NULL, true); 1374 list_splice(&clean_pages, page_list); 1375 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1376 return ret; 1377 } 1378 1379 /* 1380 * Attempt to remove the specified page from its LRU. Only take this page 1381 * if it is of the appropriate PageActive status. Pages which are being 1382 * freed elsewhere are also ignored. 1383 * 1384 * page: page to consider 1385 * mode: one of the LRU isolation modes defined above 1386 * 1387 * returns 0 on success, -ve errno on failure. 1388 */ 1389 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1390 { 1391 int ret = -EINVAL; 1392 1393 /* Only take pages on the LRU. */ 1394 if (!PageLRU(page)) 1395 return ret; 1396 1397 /* Compaction should not handle unevictable pages but CMA can do so */ 1398 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1399 return ret; 1400 1401 ret = -EBUSY; 1402 1403 /* 1404 * To minimise LRU disruption, the caller can indicate that it only 1405 * wants to isolate pages it will be able to operate on without 1406 * blocking - clean pages for the most part. 1407 * 1408 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1409 * that it is possible to migrate without blocking 1410 */ 1411 if (mode & ISOLATE_ASYNC_MIGRATE) { 1412 /* All the caller can do on PageWriteback is block */ 1413 if (PageWriteback(page)) 1414 return ret; 1415 1416 if (PageDirty(page)) { 1417 struct address_space *mapping; 1418 bool migrate_dirty; 1419 1420 /* 1421 * Only pages without mappings or that have a 1422 * ->migratepage callback are possible to migrate 1423 * without blocking. However, we can be racing with 1424 * truncation so it's necessary to lock the page 1425 * to stabilise the mapping as truncation holds 1426 * the page lock until after the page is removed 1427 * from the page cache. 1428 */ 1429 if (!trylock_page(page)) 1430 return ret; 1431 1432 mapping = page_mapping(page); 1433 migrate_dirty = mapping && mapping->a_ops->migratepage; 1434 unlock_page(page); 1435 if (!migrate_dirty) 1436 return ret; 1437 } 1438 } 1439 1440 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1441 return ret; 1442 1443 if (likely(get_page_unless_zero(page))) { 1444 /* 1445 * Be careful not to clear PageLRU until after we're 1446 * sure the page is not being freed elsewhere -- the 1447 * page release code relies on it. 1448 */ 1449 ClearPageLRU(page); 1450 ret = 0; 1451 } 1452 1453 return ret; 1454 } 1455 1456 1457 /* 1458 * Update LRU sizes after isolating pages. The LRU size updates must 1459 * be complete before mem_cgroup_update_lru_size due to a santity check. 1460 */ 1461 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1462 enum lru_list lru, unsigned long *nr_zone_taken) 1463 { 1464 int zid; 1465 1466 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1467 if (!nr_zone_taken[zid]) 1468 continue; 1469 1470 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1471 #ifdef CONFIG_MEMCG 1472 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1473 #endif 1474 } 1475 1476 } 1477 1478 /* 1479 * zone_lru_lock is heavily contended. Some of the functions that 1480 * shrink the lists perform better by taking out a batch of pages 1481 * and working on them outside the LRU lock. 1482 * 1483 * For pagecache intensive workloads, this function is the hottest 1484 * spot in the kernel (apart from copy_*_user functions). 1485 * 1486 * Appropriate locks must be held before calling this function. 1487 * 1488 * @nr_to_scan: The number of eligible pages to look through on the list. 1489 * @lruvec: The LRU vector to pull pages from. 1490 * @dst: The temp list to put pages on to. 1491 * @nr_scanned: The number of pages that were scanned. 1492 * @sc: The scan_control struct for this reclaim session 1493 * @mode: One of the LRU isolation modes 1494 * @lru: LRU list id for isolating 1495 * 1496 * returns how many pages were moved onto *@dst. 1497 */ 1498 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1499 struct lruvec *lruvec, struct list_head *dst, 1500 unsigned long *nr_scanned, struct scan_control *sc, 1501 isolate_mode_t mode, enum lru_list lru) 1502 { 1503 struct list_head *src = &lruvec->lists[lru]; 1504 unsigned long nr_taken = 0; 1505 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1506 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1507 unsigned long skipped = 0; 1508 unsigned long scan, total_scan, nr_pages; 1509 LIST_HEAD(pages_skipped); 1510 1511 scan = 0; 1512 for (total_scan = 0; 1513 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1514 total_scan++) { 1515 struct page *page; 1516 1517 page = lru_to_page(src); 1518 prefetchw_prev_lru_page(page, src, flags); 1519 1520 VM_BUG_ON_PAGE(!PageLRU(page), page); 1521 1522 if (page_zonenum(page) > sc->reclaim_idx) { 1523 list_move(&page->lru, &pages_skipped); 1524 nr_skipped[page_zonenum(page)]++; 1525 continue; 1526 } 1527 1528 /* 1529 * Do not count skipped pages because that makes the function 1530 * return with no isolated pages if the LRU mostly contains 1531 * ineligible pages. This causes the VM to not reclaim any 1532 * pages, triggering a premature OOM. 1533 */ 1534 scan++; 1535 switch (__isolate_lru_page(page, mode)) { 1536 case 0: 1537 nr_pages = hpage_nr_pages(page); 1538 nr_taken += nr_pages; 1539 nr_zone_taken[page_zonenum(page)] += nr_pages; 1540 list_move(&page->lru, dst); 1541 break; 1542 1543 case -EBUSY: 1544 /* else it is being freed elsewhere */ 1545 list_move(&page->lru, src); 1546 continue; 1547 1548 default: 1549 BUG(); 1550 } 1551 } 1552 1553 /* 1554 * Splice any skipped pages to the start of the LRU list. Note that 1555 * this disrupts the LRU order when reclaiming for lower zones but 1556 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1557 * scanning would soon rescan the same pages to skip and put the 1558 * system at risk of premature OOM. 1559 */ 1560 if (!list_empty(&pages_skipped)) { 1561 int zid; 1562 1563 list_splice(&pages_skipped, src); 1564 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1565 if (!nr_skipped[zid]) 1566 continue; 1567 1568 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1569 skipped += nr_skipped[zid]; 1570 } 1571 } 1572 *nr_scanned = total_scan; 1573 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1574 total_scan, skipped, nr_taken, mode, lru); 1575 update_lru_sizes(lruvec, lru, nr_zone_taken); 1576 return nr_taken; 1577 } 1578 1579 /** 1580 * isolate_lru_page - tries to isolate a page from its LRU list 1581 * @page: page to isolate from its LRU list 1582 * 1583 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1584 * vmstat statistic corresponding to whatever LRU list the page was on. 1585 * 1586 * Returns 0 if the page was removed from an LRU list. 1587 * Returns -EBUSY if the page was not on an LRU list. 1588 * 1589 * The returned page will have PageLRU() cleared. If it was found on 1590 * the active list, it will have PageActive set. If it was found on 1591 * the unevictable list, it will have the PageUnevictable bit set. That flag 1592 * may need to be cleared by the caller before letting the page go. 1593 * 1594 * The vmstat statistic corresponding to the list on which the page was 1595 * found will be decremented. 1596 * 1597 * Restrictions: 1598 * 1599 * (1) Must be called with an elevated refcount on the page. This is a 1600 * fundamentnal difference from isolate_lru_pages (which is called 1601 * without a stable reference). 1602 * (2) the lru_lock must not be held. 1603 * (3) interrupts must be enabled. 1604 */ 1605 int isolate_lru_page(struct page *page) 1606 { 1607 int ret = -EBUSY; 1608 1609 VM_BUG_ON_PAGE(!page_count(page), page); 1610 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1611 1612 if (PageLRU(page)) { 1613 struct zone *zone = page_zone(page); 1614 struct lruvec *lruvec; 1615 1616 spin_lock_irq(zone_lru_lock(zone)); 1617 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1618 if (PageLRU(page)) { 1619 int lru = page_lru(page); 1620 get_page(page); 1621 ClearPageLRU(page); 1622 del_page_from_lru_list(page, lruvec, lru); 1623 ret = 0; 1624 } 1625 spin_unlock_irq(zone_lru_lock(zone)); 1626 } 1627 return ret; 1628 } 1629 1630 /* 1631 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1632 * then get resheduled. When there are massive number of tasks doing page 1633 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1634 * the LRU list will go small and be scanned faster than necessary, leading to 1635 * unnecessary swapping, thrashing and OOM. 1636 */ 1637 static int too_many_isolated(struct pglist_data *pgdat, int file, 1638 struct scan_control *sc) 1639 { 1640 unsigned long inactive, isolated; 1641 1642 if (current_is_kswapd()) 1643 return 0; 1644 1645 if (!sane_reclaim(sc)) 1646 return 0; 1647 1648 if (file) { 1649 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1650 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1651 } else { 1652 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1653 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1654 } 1655 1656 /* 1657 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1658 * won't get blocked by normal direct-reclaimers, forming a circular 1659 * deadlock. 1660 */ 1661 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1662 inactive >>= 3; 1663 1664 return isolated > inactive; 1665 } 1666 1667 static noinline_for_stack void 1668 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1669 { 1670 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1671 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1672 LIST_HEAD(pages_to_free); 1673 1674 /* 1675 * Put back any unfreeable pages. 1676 */ 1677 while (!list_empty(page_list)) { 1678 struct page *page = lru_to_page(page_list); 1679 int lru; 1680 1681 VM_BUG_ON_PAGE(PageLRU(page), page); 1682 list_del(&page->lru); 1683 if (unlikely(!page_evictable(page))) { 1684 spin_unlock_irq(&pgdat->lru_lock); 1685 putback_lru_page(page); 1686 spin_lock_irq(&pgdat->lru_lock); 1687 continue; 1688 } 1689 1690 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1691 1692 SetPageLRU(page); 1693 lru = page_lru(page); 1694 add_page_to_lru_list(page, lruvec, lru); 1695 1696 if (is_active_lru(lru)) { 1697 int file = is_file_lru(lru); 1698 int numpages = hpage_nr_pages(page); 1699 reclaim_stat->recent_rotated[file] += numpages; 1700 } 1701 if (put_page_testzero(page)) { 1702 __ClearPageLRU(page); 1703 __ClearPageActive(page); 1704 del_page_from_lru_list(page, lruvec, lru); 1705 1706 if (unlikely(PageCompound(page))) { 1707 spin_unlock_irq(&pgdat->lru_lock); 1708 mem_cgroup_uncharge(page); 1709 (*get_compound_page_dtor(page))(page); 1710 spin_lock_irq(&pgdat->lru_lock); 1711 } else 1712 list_add(&page->lru, &pages_to_free); 1713 } 1714 } 1715 1716 /* 1717 * To save our caller's stack, now use input list for pages to free. 1718 */ 1719 list_splice(&pages_to_free, page_list); 1720 } 1721 1722 /* 1723 * If a kernel thread (such as nfsd for loop-back mounts) services 1724 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1725 * In that case we should only throttle if the backing device it is 1726 * writing to is congested. In other cases it is safe to throttle. 1727 */ 1728 static int current_may_throttle(void) 1729 { 1730 return !(current->flags & PF_LESS_THROTTLE) || 1731 current->backing_dev_info == NULL || 1732 bdi_write_congested(current->backing_dev_info); 1733 } 1734 1735 /* 1736 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1737 * of reclaimed pages 1738 */ 1739 static noinline_for_stack unsigned long 1740 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1741 struct scan_control *sc, enum lru_list lru) 1742 { 1743 LIST_HEAD(page_list); 1744 unsigned long nr_scanned; 1745 unsigned long nr_reclaimed = 0; 1746 unsigned long nr_taken; 1747 struct reclaim_stat stat = {}; 1748 isolate_mode_t isolate_mode = 0; 1749 int file = is_file_lru(lru); 1750 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1751 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1752 bool stalled = false; 1753 1754 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1755 if (stalled) 1756 return 0; 1757 1758 /* wait a bit for the reclaimer. */ 1759 msleep(100); 1760 stalled = true; 1761 1762 /* We are about to die and free our memory. Return now. */ 1763 if (fatal_signal_pending(current)) 1764 return SWAP_CLUSTER_MAX; 1765 } 1766 1767 lru_add_drain(); 1768 1769 if (!sc->may_unmap) 1770 isolate_mode |= ISOLATE_UNMAPPED; 1771 1772 spin_lock_irq(&pgdat->lru_lock); 1773 1774 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1775 &nr_scanned, sc, isolate_mode, lru); 1776 1777 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1778 reclaim_stat->recent_scanned[file] += nr_taken; 1779 1780 if (current_is_kswapd()) { 1781 if (global_reclaim(sc)) 1782 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1783 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1784 nr_scanned); 1785 } else { 1786 if (global_reclaim(sc)) 1787 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1788 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1789 nr_scanned); 1790 } 1791 spin_unlock_irq(&pgdat->lru_lock); 1792 1793 if (nr_taken == 0) 1794 return 0; 1795 1796 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1797 &stat, false); 1798 1799 spin_lock_irq(&pgdat->lru_lock); 1800 1801 if (current_is_kswapd()) { 1802 if (global_reclaim(sc)) 1803 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1804 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1805 nr_reclaimed); 1806 } else { 1807 if (global_reclaim(sc)) 1808 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1809 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1810 nr_reclaimed); 1811 } 1812 1813 putback_inactive_pages(lruvec, &page_list); 1814 1815 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1816 1817 spin_unlock_irq(&pgdat->lru_lock); 1818 1819 mem_cgroup_uncharge_list(&page_list); 1820 free_unref_page_list(&page_list); 1821 1822 /* 1823 * If reclaim is isolating dirty pages under writeback, it implies 1824 * that the long-lived page allocation rate is exceeding the page 1825 * laundering rate. Either the global limits are not being effective 1826 * at throttling processes due to the page distribution throughout 1827 * zones or there is heavy usage of a slow backing device. The 1828 * only option is to throttle from reclaim context which is not ideal 1829 * as there is no guarantee the dirtying process is throttled in the 1830 * same way balance_dirty_pages() manages. 1831 * 1832 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1833 * of pages under pages flagged for immediate reclaim and stall if any 1834 * are encountered in the nr_immediate check below. 1835 */ 1836 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1837 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1838 1839 /* 1840 * Legacy memcg will stall in page writeback so avoid forcibly 1841 * stalling here. 1842 */ 1843 if (sane_reclaim(sc)) { 1844 /* 1845 * Tag a zone as congested if all the dirty pages scanned were 1846 * backed by a congested BDI and wait_iff_congested will stall. 1847 */ 1848 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1849 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1850 1851 /* 1852 * If dirty pages are scanned that are not queued for IO, it 1853 * implies that flushers are not doing their job. This can 1854 * happen when memory pressure pushes dirty pages to the end of 1855 * the LRU before the dirty limits are breached and the dirty 1856 * data has expired. It can also happen when the proportion of 1857 * dirty pages grows not through writes but through memory 1858 * pressure reclaiming all the clean cache. And in some cases, 1859 * the flushers simply cannot keep up with the allocation 1860 * rate. Nudge the flusher threads in case they are asleep, but 1861 * also allow kswapd to start writing pages during reclaim. 1862 */ 1863 if (stat.nr_unqueued_dirty == nr_taken) { 1864 wakeup_flusher_threads(WB_REASON_VMSCAN); 1865 set_bit(PGDAT_DIRTY, &pgdat->flags); 1866 } 1867 1868 /* 1869 * If kswapd scans pages marked marked for immediate 1870 * reclaim and under writeback (nr_immediate), it implies 1871 * that pages are cycling through the LRU faster than 1872 * they are written so also forcibly stall. 1873 */ 1874 if (stat.nr_immediate && current_may_throttle()) 1875 congestion_wait(BLK_RW_ASYNC, HZ/10); 1876 } 1877 1878 /* 1879 * Stall direct reclaim for IO completions if underlying BDIs or zone 1880 * is congested. Allow kswapd to continue until it starts encountering 1881 * unqueued dirty pages or cycling through the LRU too quickly. 1882 */ 1883 if (!sc->hibernation_mode && !current_is_kswapd() && 1884 current_may_throttle()) 1885 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1886 1887 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1888 nr_scanned, nr_reclaimed, 1889 stat.nr_dirty, stat.nr_writeback, 1890 stat.nr_congested, stat.nr_immediate, 1891 stat.nr_activate, stat.nr_ref_keep, 1892 stat.nr_unmap_fail, 1893 sc->priority, file); 1894 return nr_reclaimed; 1895 } 1896 1897 /* 1898 * This moves pages from the active list to the inactive list. 1899 * 1900 * We move them the other way if the page is referenced by one or more 1901 * processes, from rmap. 1902 * 1903 * If the pages are mostly unmapped, the processing is fast and it is 1904 * appropriate to hold zone_lru_lock across the whole operation. But if 1905 * the pages are mapped, the processing is slow (page_referenced()) so we 1906 * should drop zone_lru_lock around each page. It's impossible to balance 1907 * this, so instead we remove the pages from the LRU while processing them. 1908 * It is safe to rely on PG_active against the non-LRU pages in here because 1909 * nobody will play with that bit on a non-LRU page. 1910 * 1911 * The downside is that we have to touch page->_refcount against each page. 1912 * But we had to alter page->flags anyway. 1913 * 1914 * Returns the number of pages moved to the given lru. 1915 */ 1916 1917 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1918 struct list_head *list, 1919 struct list_head *pages_to_free, 1920 enum lru_list lru) 1921 { 1922 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1923 struct page *page; 1924 int nr_pages; 1925 int nr_moved = 0; 1926 1927 while (!list_empty(list)) { 1928 page = lru_to_page(list); 1929 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1930 1931 VM_BUG_ON_PAGE(PageLRU(page), page); 1932 SetPageLRU(page); 1933 1934 nr_pages = hpage_nr_pages(page); 1935 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1936 list_move(&page->lru, &lruvec->lists[lru]); 1937 1938 if (put_page_testzero(page)) { 1939 __ClearPageLRU(page); 1940 __ClearPageActive(page); 1941 del_page_from_lru_list(page, lruvec, lru); 1942 1943 if (unlikely(PageCompound(page))) { 1944 spin_unlock_irq(&pgdat->lru_lock); 1945 mem_cgroup_uncharge(page); 1946 (*get_compound_page_dtor(page))(page); 1947 spin_lock_irq(&pgdat->lru_lock); 1948 } else 1949 list_add(&page->lru, pages_to_free); 1950 } else { 1951 nr_moved += nr_pages; 1952 } 1953 } 1954 1955 if (!is_active_lru(lru)) { 1956 __count_vm_events(PGDEACTIVATE, nr_moved); 1957 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 1958 nr_moved); 1959 } 1960 1961 return nr_moved; 1962 } 1963 1964 static void shrink_active_list(unsigned long nr_to_scan, 1965 struct lruvec *lruvec, 1966 struct scan_control *sc, 1967 enum lru_list lru) 1968 { 1969 unsigned long nr_taken; 1970 unsigned long nr_scanned; 1971 unsigned long vm_flags; 1972 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1973 LIST_HEAD(l_active); 1974 LIST_HEAD(l_inactive); 1975 struct page *page; 1976 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1977 unsigned nr_deactivate, nr_activate; 1978 unsigned nr_rotated = 0; 1979 isolate_mode_t isolate_mode = 0; 1980 int file = is_file_lru(lru); 1981 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1982 1983 lru_add_drain(); 1984 1985 if (!sc->may_unmap) 1986 isolate_mode |= ISOLATE_UNMAPPED; 1987 1988 spin_lock_irq(&pgdat->lru_lock); 1989 1990 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1991 &nr_scanned, sc, isolate_mode, lru); 1992 1993 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1994 reclaim_stat->recent_scanned[file] += nr_taken; 1995 1996 __count_vm_events(PGREFILL, nr_scanned); 1997 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 1998 1999 spin_unlock_irq(&pgdat->lru_lock); 2000 2001 while (!list_empty(&l_hold)) { 2002 cond_resched(); 2003 page = lru_to_page(&l_hold); 2004 list_del(&page->lru); 2005 2006 if (unlikely(!page_evictable(page))) { 2007 putback_lru_page(page); 2008 continue; 2009 } 2010 2011 if (unlikely(buffer_heads_over_limit)) { 2012 if (page_has_private(page) && trylock_page(page)) { 2013 if (page_has_private(page)) 2014 try_to_release_page(page, 0); 2015 unlock_page(page); 2016 } 2017 } 2018 2019 if (page_referenced(page, 0, sc->target_mem_cgroup, 2020 &vm_flags)) { 2021 nr_rotated += hpage_nr_pages(page); 2022 /* 2023 * Identify referenced, file-backed active pages and 2024 * give them one more trip around the active list. So 2025 * that executable code get better chances to stay in 2026 * memory under moderate memory pressure. Anon pages 2027 * are not likely to be evicted by use-once streaming 2028 * IO, plus JVM can create lots of anon VM_EXEC pages, 2029 * so we ignore them here. 2030 */ 2031 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2032 list_add(&page->lru, &l_active); 2033 continue; 2034 } 2035 } 2036 2037 ClearPageActive(page); /* we are de-activating */ 2038 list_add(&page->lru, &l_inactive); 2039 } 2040 2041 /* 2042 * Move pages back to the lru list. 2043 */ 2044 spin_lock_irq(&pgdat->lru_lock); 2045 /* 2046 * Count referenced pages from currently used mappings as rotated, 2047 * even though only some of them are actually re-activated. This 2048 * helps balance scan pressure between file and anonymous pages in 2049 * get_scan_count. 2050 */ 2051 reclaim_stat->recent_rotated[file] += nr_rotated; 2052 2053 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2054 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2055 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2056 spin_unlock_irq(&pgdat->lru_lock); 2057 2058 mem_cgroup_uncharge_list(&l_hold); 2059 free_unref_page_list(&l_hold); 2060 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2061 nr_deactivate, nr_rotated, sc->priority, file); 2062 } 2063 2064 /* 2065 * The inactive anon list should be small enough that the VM never has 2066 * to do too much work. 2067 * 2068 * The inactive file list should be small enough to leave most memory 2069 * to the established workingset on the scan-resistant active list, 2070 * but large enough to avoid thrashing the aggregate readahead window. 2071 * 2072 * Both inactive lists should also be large enough that each inactive 2073 * page has a chance to be referenced again before it is reclaimed. 2074 * 2075 * If that fails and refaulting is observed, the inactive list grows. 2076 * 2077 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2078 * on this LRU, maintained by the pageout code. An inactive_ratio 2079 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2080 * 2081 * total target max 2082 * memory ratio inactive 2083 * ------------------------------------- 2084 * 10MB 1 5MB 2085 * 100MB 1 50MB 2086 * 1GB 3 250MB 2087 * 10GB 10 0.9GB 2088 * 100GB 31 3GB 2089 * 1TB 101 10GB 2090 * 10TB 320 32GB 2091 */ 2092 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2093 struct mem_cgroup *memcg, 2094 struct scan_control *sc, bool actual_reclaim) 2095 { 2096 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2097 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2098 enum lru_list inactive_lru = file * LRU_FILE; 2099 unsigned long inactive, active; 2100 unsigned long inactive_ratio; 2101 unsigned long refaults; 2102 unsigned long gb; 2103 2104 /* 2105 * If we don't have swap space, anonymous page deactivation 2106 * is pointless. 2107 */ 2108 if (!file && !total_swap_pages) 2109 return false; 2110 2111 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2112 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2113 2114 if (memcg) 2115 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2116 else 2117 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2118 2119 /* 2120 * When refaults are being observed, it means a new workingset 2121 * is being established. Disable active list protection to get 2122 * rid of the stale workingset quickly. 2123 */ 2124 if (file && actual_reclaim && lruvec->refaults != refaults) { 2125 inactive_ratio = 0; 2126 } else { 2127 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2128 if (gb) 2129 inactive_ratio = int_sqrt(10 * gb); 2130 else 2131 inactive_ratio = 1; 2132 } 2133 2134 if (actual_reclaim) 2135 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2136 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2137 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2138 inactive_ratio, file); 2139 2140 return inactive * inactive_ratio < active; 2141 } 2142 2143 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2144 struct lruvec *lruvec, struct mem_cgroup *memcg, 2145 struct scan_control *sc) 2146 { 2147 if (is_active_lru(lru)) { 2148 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2149 memcg, sc, true)) 2150 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2151 return 0; 2152 } 2153 2154 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2155 } 2156 2157 enum scan_balance { 2158 SCAN_EQUAL, 2159 SCAN_FRACT, 2160 SCAN_ANON, 2161 SCAN_FILE, 2162 }; 2163 2164 /* 2165 * Determine how aggressively the anon and file LRU lists should be 2166 * scanned. The relative value of each set of LRU lists is determined 2167 * by looking at the fraction of the pages scanned we did rotate back 2168 * onto the active list instead of evict. 2169 * 2170 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2171 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2172 */ 2173 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2174 struct scan_control *sc, unsigned long *nr, 2175 unsigned long *lru_pages) 2176 { 2177 int swappiness = mem_cgroup_swappiness(memcg); 2178 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2179 u64 fraction[2]; 2180 u64 denominator = 0; /* gcc */ 2181 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2182 unsigned long anon_prio, file_prio; 2183 enum scan_balance scan_balance; 2184 unsigned long anon, file; 2185 unsigned long ap, fp; 2186 enum lru_list lru; 2187 2188 /* If we have no swap space, do not bother scanning anon pages. */ 2189 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2190 scan_balance = SCAN_FILE; 2191 goto out; 2192 } 2193 2194 /* 2195 * Global reclaim will swap to prevent OOM even with no 2196 * swappiness, but memcg users want to use this knob to 2197 * disable swapping for individual groups completely when 2198 * using the memory controller's swap limit feature would be 2199 * too expensive. 2200 */ 2201 if (!global_reclaim(sc) && !swappiness) { 2202 scan_balance = SCAN_FILE; 2203 goto out; 2204 } 2205 2206 /* 2207 * Do not apply any pressure balancing cleverness when the 2208 * system is close to OOM, scan both anon and file equally 2209 * (unless the swappiness setting disagrees with swapping). 2210 */ 2211 if (!sc->priority && swappiness) { 2212 scan_balance = SCAN_EQUAL; 2213 goto out; 2214 } 2215 2216 /* 2217 * Prevent the reclaimer from falling into the cache trap: as 2218 * cache pages start out inactive, every cache fault will tip 2219 * the scan balance towards the file LRU. And as the file LRU 2220 * shrinks, so does the window for rotation from references. 2221 * This means we have a runaway feedback loop where a tiny 2222 * thrashing file LRU becomes infinitely more attractive than 2223 * anon pages. Try to detect this based on file LRU size. 2224 */ 2225 if (global_reclaim(sc)) { 2226 unsigned long pgdatfile; 2227 unsigned long pgdatfree; 2228 int z; 2229 unsigned long total_high_wmark = 0; 2230 2231 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2232 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2233 node_page_state(pgdat, NR_INACTIVE_FILE); 2234 2235 for (z = 0; z < MAX_NR_ZONES; z++) { 2236 struct zone *zone = &pgdat->node_zones[z]; 2237 if (!managed_zone(zone)) 2238 continue; 2239 2240 total_high_wmark += high_wmark_pages(zone); 2241 } 2242 2243 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2244 /* 2245 * Force SCAN_ANON if there are enough inactive 2246 * anonymous pages on the LRU in eligible zones. 2247 * Otherwise, the small LRU gets thrashed. 2248 */ 2249 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2250 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2251 >> sc->priority) { 2252 scan_balance = SCAN_ANON; 2253 goto out; 2254 } 2255 } 2256 } 2257 2258 /* 2259 * If there is enough inactive page cache, i.e. if the size of the 2260 * inactive list is greater than that of the active list *and* the 2261 * inactive list actually has some pages to scan on this priority, we 2262 * do not reclaim anything from the anonymous working set right now. 2263 * Without the second condition we could end up never scanning an 2264 * lruvec even if it has plenty of old anonymous pages unless the 2265 * system is under heavy pressure. 2266 */ 2267 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2268 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2269 scan_balance = SCAN_FILE; 2270 goto out; 2271 } 2272 2273 scan_balance = SCAN_FRACT; 2274 2275 /* 2276 * With swappiness at 100, anonymous and file have the same priority. 2277 * This scanning priority is essentially the inverse of IO cost. 2278 */ 2279 anon_prio = swappiness; 2280 file_prio = 200 - anon_prio; 2281 2282 /* 2283 * OK, so we have swap space and a fair amount of page cache 2284 * pages. We use the recently rotated / recently scanned 2285 * ratios to determine how valuable each cache is. 2286 * 2287 * Because workloads change over time (and to avoid overflow) 2288 * we keep these statistics as a floating average, which ends 2289 * up weighing recent references more than old ones. 2290 * 2291 * anon in [0], file in [1] 2292 */ 2293 2294 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2295 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2296 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2297 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2298 2299 spin_lock_irq(&pgdat->lru_lock); 2300 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2301 reclaim_stat->recent_scanned[0] /= 2; 2302 reclaim_stat->recent_rotated[0] /= 2; 2303 } 2304 2305 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2306 reclaim_stat->recent_scanned[1] /= 2; 2307 reclaim_stat->recent_rotated[1] /= 2; 2308 } 2309 2310 /* 2311 * The amount of pressure on anon vs file pages is inversely 2312 * proportional to the fraction of recently scanned pages on 2313 * each list that were recently referenced and in active use. 2314 */ 2315 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2316 ap /= reclaim_stat->recent_rotated[0] + 1; 2317 2318 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2319 fp /= reclaim_stat->recent_rotated[1] + 1; 2320 spin_unlock_irq(&pgdat->lru_lock); 2321 2322 fraction[0] = ap; 2323 fraction[1] = fp; 2324 denominator = ap + fp + 1; 2325 out: 2326 *lru_pages = 0; 2327 for_each_evictable_lru(lru) { 2328 int file = is_file_lru(lru); 2329 unsigned long size; 2330 unsigned long scan; 2331 2332 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2333 scan = size >> sc->priority; 2334 /* 2335 * If the cgroup's already been deleted, make sure to 2336 * scrape out the remaining cache. 2337 */ 2338 if (!scan && !mem_cgroup_online(memcg)) 2339 scan = min(size, SWAP_CLUSTER_MAX); 2340 2341 switch (scan_balance) { 2342 case SCAN_EQUAL: 2343 /* Scan lists relative to size */ 2344 break; 2345 case SCAN_FRACT: 2346 /* 2347 * Scan types proportional to swappiness and 2348 * their relative recent reclaim efficiency. 2349 */ 2350 scan = div64_u64(scan * fraction[file], 2351 denominator); 2352 break; 2353 case SCAN_FILE: 2354 case SCAN_ANON: 2355 /* Scan one type exclusively */ 2356 if ((scan_balance == SCAN_FILE) != file) { 2357 size = 0; 2358 scan = 0; 2359 } 2360 break; 2361 default: 2362 /* Look ma, no brain */ 2363 BUG(); 2364 } 2365 2366 *lru_pages += size; 2367 nr[lru] = scan; 2368 } 2369 } 2370 2371 /* 2372 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2373 */ 2374 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2375 struct scan_control *sc, unsigned long *lru_pages) 2376 { 2377 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2378 unsigned long nr[NR_LRU_LISTS]; 2379 unsigned long targets[NR_LRU_LISTS]; 2380 unsigned long nr_to_scan; 2381 enum lru_list lru; 2382 unsigned long nr_reclaimed = 0; 2383 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2384 struct blk_plug plug; 2385 bool scan_adjusted; 2386 2387 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2388 2389 /* Record the original scan target for proportional adjustments later */ 2390 memcpy(targets, nr, sizeof(nr)); 2391 2392 /* 2393 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2394 * event that can occur when there is little memory pressure e.g. 2395 * multiple streaming readers/writers. Hence, we do not abort scanning 2396 * when the requested number of pages are reclaimed when scanning at 2397 * DEF_PRIORITY on the assumption that the fact we are direct 2398 * reclaiming implies that kswapd is not keeping up and it is best to 2399 * do a batch of work at once. For memcg reclaim one check is made to 2400 * abort proportional reclaim if either the file or anon lru has already 2401 * dropped to zero at the first pass. 2402 */ 2403 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2404 sc->priority == DEF_PRIORITY); 2405 2406 blk_start_plug(&plug); 2407 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2408 nr[LRU_INACTIVE_FILE]) { 2409 unsigned long nr_anon, nr_file, percentage; 2410 unsigned long nr_scanned; 2411 2412 for_each_evictable_lru(lru) { 2413 if (nr[lru]) { 2414 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2415 nr[lru] -= nr_to_scan; 2416 2417 nr_reclaimed += shrink_list(lru, nr_to_scan, 2418 lruvec, memcg, sc); 2419 } 2420 } 2421 2422 cond_resched(); 2423 2424 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2425 continue; 2426 2427 /* 2428 * For kswapd and memcg, reclaim at least the number of pages 2429 * requested. Ensure that the anon and file LRUs are scanned 2430 * proportionally what was requested by get_scan_count(). We 2431 * stop reclaiming one LRU and reduce the amount scanning 2432 * proportional to the original scan target. 2433 */ 2434 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2435 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2436 2437 /* 2438 * It's just vindictive to attack the larger once the smaller 2439 * has gone to zero. And given the way we stop scanning the 2440 * smaller below, this makes sure that we only make one nudge 2441 * towards proportionality once we've got nr_to_reclaim. 2442 */ 2443 if (!nr_file || !nr_anon) 2444 break; 2445 2446 if (nr_file > nr_anon) { 2447 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2448 targets[LRU_ACTIVE_ANON] + 1; 2449 lru = LRU_BASE; 2450 percentage = nr_anon * 100 / scan_target; 2451 } else { 2452 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2453 targets[LRU_ACTIVE_FILE] + 1; 2454 lru = LRU_FILE; 2455 percentage = nr_file * 100 / scan_target; 2456 } 2457 2458 /* Stop scanning the smaller of the LRU */ 2459 nr[lru] = 0; 2460 nr[lru + LRU_ACTIVE] = 0; 2461 2462 /* 2463 * Recalculate the other LRU scan count based on its original 2464 * scan target and the percentage scanning already complete 2465 */ 2466 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2467 nr_scanned = targets[lru] - nr[lru]; 2468 nr[lru] = targets[lru] * (100 - percentage) / 100; 2469 nr[lru] -= min(nr[lru], nr_scanned); 2470 2471 lru += LRU_ACTIVE; 2472 nr_scanned = targets[lru] - nr[lru]; 2473 nr[lru] = targets[lru] * (100 - percentage) / 100; 2474 nr[lru] -= min(nr[lru], nr_scanned); 2475 2476 scan_adjusted = true; 2477 } 2478 blk_finish_plug(&plug); 2479 sc->nr_reclaimed += nr_reclaimed; 2480 2481 /* 2482 * Even if we did not try to evict anon pages at all, we want to 2483 * rebalance the anon lru active/inactive ratio. 2484 */ 2485 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2486 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2487 sc, LRU_ACTIVE_ANON); 2488 } 2489 2490 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2491 static bool in_reclaim_compaction(struct scan_control *sc) 2492 { 2493 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2494 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2495 sc->priority < DEF_PRIORITY - 2)) 2496 return true; 2497 2498 return false; 2499 } 2500 2501 /* 2502 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2503 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2504 * true if more pages should be reclaimed such that when the page allocator 2505 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2506 * It will give up earlier than that if there is difficulty reclaiming pages. 2507 */ 2508 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2509 unsigned long nr_reclaimed, 2510 unsigned long nr_scanned, 2511 struct scan_control *sc) 2512 { 2513 unsigned long pages_for_compaction; 2514 unsigned long inactive_lru_pages; 2515 int z; 2516 2517 /* If not in reclaim/compaction mode, stop */ 2518 if (!in_reclaim_compaction(sc)) 2519 return false; 2520 2521 /* Consider stopping depending on scan and reclaim activity */ 2522 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2523 /* 2524 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2525 * full LRU list has been scanned and we are still failing 2526 * to reclaim pages. This full LRU scan is potentially 2527 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2528 */ 2529 if (!nr_reclaimed && !nr_scanned) 2530 return false; 2531 } else { 2532 /* 2533 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2534 * fail without consequence, stop if we failed to reclaim 2535 * any pages from the last SWAP_CLUSTER_MAX number of 2536 * pages that were scanned. This will return to the 2537 * caller faster at the risk reclaim/compaction and 2538 * the resulting allocation attempt fails 2539 */ 2540 if (!nr_reclaimed) 2541 return false; 2542 } 2543 2544 /* 2545 * If we have not reclaimed enough pages for compaction and the 2546 * inactive lists are large enough, continue reclaiming 2547 */ 2548 pages_for_compaction = compact_gap(sc->order); 2549 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2550 if (get_nr_swap_pages() > 0) 2551 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2552 if (sc->nr_reclaimed < pages_for_compaction && 2553 inactive_lru_pages > pages_for_compaction) 2554 return true; 2555 2556 /* If compaction would go ahead or the allocation would succeed, stop */ 2557 for (z = 0; z <= sc->reclaim_idx; z++) { 2558 struct zone *zone = &pgdat->node_zones[z]; 2559 if (!managed_zone(zone)) 2560 continue; 2561 2562 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2563 case COMPACT_SUCCESS: 2564 case COMPACT_CONTINUE: 2565 return false; 2566 default: 2567 /* check next zone */ 2568 ; 2569 } 2570 } 2571 return true; 2572 } 2573 2574 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2575 { 2576 struct reclaim_state *reclaim_state = current->reclaim_state; 2577 unsigned long nr_reclaimed, nr_scanned; 2578 bool reclaimable = false; 2579 2580 do { 2581 struct mem_cgroup *root = sc->target_mem_cgroup; 2582 struct mem_cgroup_reclaim_cookie reclaim = { 2583 .pgdat = pgdat, 2584 .priority = sc->priority, 2585 }; 2586 unsigned long node_lru_pages = 0; 2587 struct mem_cgroup *memcg; 2588 2589 nr_reclaimed = sc->nr_reclaimed; 2590 nr_scanned = sc->nr_scanned; 2591 2592 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2593 do { 2594 unsigned long lru_pages; 2595 unsigned long reclaimed; 2596 unsigned long scanned; 2597 2598 if (mem_cgroup_low(root, memcg)) { 2599 if (!sc->memcg_low_reclaim) { 2600 sc->memcg_low_skipped = 1; 2601 continue; 2602 } 2603 mem_cgroup_event(memcg, MEMCG_LOW); 2604 } 2605 2606 reclaimed = sc->nr_reclaimed; 2607 scanned = sc->nr_scanned; 2608 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2609 node_lru_pages += lru_pages; 2610 2611 if (memcg) 2612 shrink_slab(sc->gfp_mask, pgdat->node_id, 2613 memcg, sc->priority); 2614 2615 /* Record the group's reclaim efficiency */ 2616 vmpressure(sc->gfp_mask, memcg, false, 2617 sc->nr_scanned - scanned, 2618 sc->nr_reclaimed - reclaimed); 2619 2620 /* 2621 * Direct reclaim and kswapd have to scan all memory 2622 * cgroups to fulfill the overall scan target for the 2623 * node. 2624 * 2625 * Limit reclaim, on the other hand, only cares about 2626 * nr_to_reclaim pages to be reclaimed and it will 2627 * retry with decreasing priority if one round over the 2628 * whole hierarchy is not sufficient. 2629 */ 2630 if (!global_reclaim(sc) && 2631 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2632 mem_cgroup_iter_break(root, memcg); 2633 break; 2634 } 2635 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2636 2637 if (global_reclaim(sc)) 2638 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2639 sc->priority); 2640 2641 if (reclaim_state) { 2642 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2643 reclaim_state->reclaimed_slab = 0; 2644 } 2645 2646 /* Record the subtree's reclaim efficiency */ 2647 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2648 sc->nr_scanned - nr_scanned, 2649 sc->nr_reclaimed - nr_reclaimed); 2650 2651 if (sc->nr_reclaimed - nr_reclaimed) 2652 reclaimable = true; 2653 2654 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2655 sc->nr_scanned - nr_scanned, sc)); 2656 2657 /* 2658 * Kswapd gives up on balancing particular nodes after too 2659 * many failures to reclaim anything from them and goes to 2660 * sleep. On reclaim progress, reset the failure counter. A 2661 * successful direct reclaim run will revive a dormant kswapd. 2662 */ 2663 if (reclaimable) 2664 pgdat->kswapd_failures = 0; 2665 2666 return reclaimable; 2667 } 2668 2669 /* 2670 * Returns true if compaction should go ahead for a costly-order request, or 2671 * the allocation would already succeed without compaction. Return false if we 2672 * should reclaim first. 2673 */ 2674 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2675 { 2676 unsigned long watermark; 2677 enum compact_result suitable; 2678 2679 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2680 if (suitable == COMPACT_SUCCESS) 2681 /* Allocation should succeed already. Don't reclaim. */ 2682 return true; 2683 if (suitable == COMPACT_SKIPPED) 2684 /* Compaction cannot yet proceed. Do reclaim. */ 2685 return false; 2686 2687 /* 2688 * Compaction is already possible, but it takes time to run and there 2689 * are potentially other callers using the pages just freed. So proceed 2690 * with reclaim to make a buffer of free pages available to give 2691 * compaction a reasonable chance of completing and allocating the page. 2692 * Note that we won't actually reclaim the whole buffer in one attempt 2693 * as the target watermark in should_continue_reclaim() is lower. But if 2694 * we are already above the high+gap watermark, don't reclaim at all. 2695 */ 2696 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2697 2698 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2699 } 2700 2701 /* 2702 * This is the direct reclaim path, for page-allocating processes. We only 2703 * try to reclaim pages from zones which will satisfy the caller's allocation 2704 * request. 2705 * 2706 * If a zone is deemed to be full of pinned pages then just give it a light 2707 * scan then give up on it. 2708 */ 2709 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2710 { 2711 struct zoneref *z; 2712 struct zone *zone; 2713 unsigned long nr_soft_reclaimed; 2714 unsigned long nr_soft_scanned; 2715 gfp_t orig_mask; 2716 pg_data_t *last_pgdat = NULL; 2717 2718 /* 2719 * If the number of buffer_heads in the machine exceeds the maximum 2720 * allowed level, force direct reclaim to scan the highmem zone as 2721 * highmem pages could be pinning lowmem pages storing buffer_heads 2722 */ 2723 orig_mask = sc->gfp_mask; 2724 if (buffer_heads_over_limit) { 2725 sc->gfp_mask |= __GFP_HIGHMEM; 2726 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2727 } 2728 2729 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2730 sc->reclaim_idx, sc->nodemask) { 2731 /* 2732 * Take care memory controller reclaiming has small influence 2733 * to global LRU. 2734 */ 2735 if (global_reclaim(sc)) { 2736 if (!cpuset_zone_allowed(zone, 2737 GFP_KERNEL | __GFP_HARDWALL)) 2738 continue; 2739 2740 /* 2741 * If we already have plenty of memory free for 2742 * compaction in this zone, don't free any more. 2743 * Even though compaction is invoked for any 2744 * non-zero order, only frequent costly order 2745 * reclamation is disruptive enough to become a 2746 * noticeable problem, like transparent huge 2747 * page allocations. 2748 */ 2749 if (IS_ENABLED(CONFIG_COMPACTION) && 2750 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2751 compaction_ready(zone, sc)) { 2752 sc->compaction_ready = true; 2753 continue; 2754 } 2755 2756 /* 2757 * Shrink each node in the zonelist once. If the 2758 * zonelist is ordered by zone (not the default) then a 2759 * node may be shrunk multiple times but in that case 2760 * the user prefers lower zones being preserved. 2761 */ 2762 if (zone->zone_pgdat == last_pgdat) 2763 continue; 2764 2765 /* 2766 * This steals pages from memory cgroups over softlimit 2767 * and returns the number of reclaimed pages and 2768 * scanned pages. This works for global memory pressure 2769 * and balancing, not for a memcg's limit. 2770 */ 2771 nr_soft_scanned = 0; 2772 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2773 sc->order, sc->gfp_mask, 2774 &nr_soft_scanned); 2775 sc->nr_reclaimed += nr_soft_reclaimed; 2776 sc->nr_scanned += nr_soft_scanned; 2777 /* need some check for avoid more shrink_zone() */ 2778 } 2779 2780 /* See comment about same check for global reclaim above */ 2781 if (zone->zone_pgdat == last_pgdat) 2782 continue; 2783 last_pgdat = zone->zone_pgdat; 2784 shrink_node(zone->zone_pgdat, sc); 2785 } 2786 2787 /* 2788 * Restore to original mask to avoid the impact on the caller if we 2789 * promoted it to __GFP_HIGHMEM. 2790 */ 2791 sc->gfp_mask = orig_mask; 2792 } 2793 2794 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2795 { 2796 struct mem_cgroup *memcg; 2797 2798 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2799 do { 2800 unsigned long refaults; 2801 struct lruvec *lruvec; 2802 2803 if (memcg) 2804 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2805 else 2806 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2807 2808 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2809 lruvec->refaults = refaults; 2810 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2811 } 2812 2813 /* 2814 * This is the main entry point to direct page reclaim. 2815 * 2816 * If a full scan of the inactive list fails to free enough memory then we 2817 * are "out of memory" and something needs to be killed. 2818 * 2819 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2820 * high - the zone may be full of dirty or under-writeback pages, which this 2821 * caller can't do much about. We kick the writeback threads and take explicit 2822 * naps in the hope that some of these pages can be written. But if the 2823 * allocating task holds filesystem locks which prevent writeout this might not 2824 * work, and the allocation attempt will fail. 2825 * 2826 * returns: 0, if no pages reclaimed 2827 * else, the number of pages reclaimed 2828 */ 2829 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2830 struct scan_control *sc) 2831 { 2832 int initial_priority = sc->priority; 2833 pg_data_t *last_pgdat; 2834 struct zoneref *z; 2835 struct zone *zone; 2836 retry: 2837 delayacct_freepages_start(); 2838 2839 if (global_reclaim(sc)) 2840 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2841 2842 do { 2843 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2844 sc->priority); 2845 sc->nr_scanned = 0; 2846 shrink_zones(zonelist, sc); 2847 2848 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2849 break; 2850 2851 if (sc->compaction_ready) 2852 break; 2853 2854 /* 2855 * If we're getting trouble reclaiming, start doing 2856 * writepage even in laptop mode. 2857 */ 2858 if (sc->priority < DEF_PRIORITY - 2) 2859 sc->may_writepage = 1; 2860 } while (--sc->priority >= 0); 2861 2862 last_pgdat = NULL; 2863 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2864 sc->nodemask) { 2865 if (zone->zone_pgdat == last_pgdat) 2866 continue; 2867 last_pgdat = zone->zone_pgdat; 2868 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2869 } 2870 2871 delayacct_freepages_end(); 2872 2873 if (sc->nr_reclaimed) 2874 return sc->nr_reclaimed; 2875 2876 /* Aborted reclaim to try compaction? don't OOM, then */ 2877 if (sc->compaction_ready) 2878 return 1; 2879 2880 /* Untapped cgroup reserves? Don't OOM, retry. */ 2881 if (sc->memcg_low_skipped) { 2882 sc->priority = initial_priority; 2883 sc->memcg_low_reclaim = 1; 2884 sc->memcg_low_skipped = 0; 2885 goto retry; 2886 } 2887 2888 return 0; 2889 } 2890 2891 static bool allow_direct_reclaim(pg_data_t *pgdat) 2892 { 2893 struct zone *zone; 2894 unsigned long pfmemalloc_reserve = 0; 2895 unsigned long free_pages = 0; 2896 int i; 2897 bool wmark_ok; 2898 2899 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2900 return true; 2901 2902 for (i = 0; i <= ZONE_NORMAL; i++) { 2903 zone = &pgdat->node_zones[i]; 2904 if (!managed_zone(zone)) 2905 continue; 2906 2907 if (!zone_reclaimable_pages(zone)) 2908 continue; 2909 2910 pfmemalloc_reserve += min_wmark_pages(zone); 2911 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2912 } 2913 2914 /* If there are no reserves (unexpected config) then do not throttle */ 2915 if (!pfmemalloc_reserve) 2916 return true; 2917 2918 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2919 2920 /* kswapd must be awake if processes are being throttled */ 2921 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2922 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2923 (enum zone_type)ZONE_NORMAL); 2924 wake_up_interruptible(&pgdat->kswapd_wait); 2925 } 2926 2927 return wmark_ok; 2928 } 2929 2930 /* 2931 * Throttle direct reclaimers if backing storage is backed by the network 2932 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2933 * depleted. kswapd will continue to make progress and wake the processes 2934 * when the low watermark is reached. 2935 * 2936 * Returns true if a fatal signal was delivered during throttling. If this 2937 * happens, the page allocator should not consider triggering the OOM killer. 2938 */ 2939 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2940 nodemask_t *nodemask) 2941 { 2942 struct zoneref *z; 2943 struct zone *zone; 2944 pg_data_t *pgdat = NULL; 2945 2946 /* 2947 * Kernel threads should not be throttled as they may be indirectly 2948 * responsible for cleaning pages necessary for reclaim to make forward 2949 * progress. kjournald for example may enter direct reclaim while 2950 * committing a transaction where throttling it could forcing other 2951 * processes to block on log_wait_commit(). 2952 */ 2953 if (current->flags & PF_KTHREAD) 2954 goto out; 2955 2956 /* 2957 * If a fatal signal is pending, this process should not throttle. 2958 * It should return quickly so it can exit and free its memory 2959 */ 2960 if (fatal_signal_pending(current)) 2961 goto out; 2962 2963 /* 2964 * Check if the pfmemalloc reserves are ok by finding the first node 2965 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2966 * GFP_KERNEL will be required for allocating network buffers when 2967 * swapping over the network so ZONE_HIGHMEM is unusable. 2968 * 2969 * Throttling is based on the first usable node and throttled processes 2970 * wait on a queue until kswapd makes progress and wakes them. There 2971 * is an affinity then between processes waking up and where reclaim 2972 * progress has been made assuming the process wakes on the same node. 2973 * More importantly, processes running on remote nodes will not compete 2974 * for remote pfmemalloc reserves and processes on different nodes 2975 * should make reasonable progress. 2976 */ 2977 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2978 gfp_zone(gfp_mask), nodemask) { 2979 if (zone_idx(zone) > ZONE_NORMAL) 2980 continue; 2981 2982 /* Throttle based on the first usable node */ 2983 pgdat = zone->zone_pgdat; 2984 if (allow_direct_reclaim(pgdat)) 2985 goto out; 2986 break; 2987 } 2988 2989 /* If no zone was usable by the allocation flags then do not throttle */ 2990 if (!pgdat) 2991 goto out; 2992 2993 /* Account for the throttling */ 2994 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2995 2996 /* 2997 * If the caller cannot enter the filesystem, it's possible that it 2998 * is due to the caller holding an FS lock or performing a journal 2999 * transaction in the case of a filesystem like ext[3|4]. In this case, 3000 * it is not safe to block on pfmemalloc_wait as kswapd could be 3001 * blocked waiting on the same lock. Instead, throttle for up to a 3002 * second before continuing. 3003 */ 3004 if (!(gfp_mask & __GFP_FS)) { 3005 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3006 allow_direct_reclaim(pgdat), HZ); 3007 3008 goto check_pending; 3009 } 3010 3011 /* Throttle until kswapd wakes the process */ 3012 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3013 allow_direct_reclaim(pgdat)); 3014 3015 check_pending: 3016 if (fatal_signal_pending(current)) 3017 return true; 3018 3019 out: 3020 return false; 3021 } 3022 3023 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3024 gfp_t gfp_mask, nodemask_t *nodemask) 3025 { 3026 unsigned long nr_reclaimed; 3027 struct scan_control sc = { 3028 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3029 .gfp_mask = current_gfp_context(gfp_mask), 3030 .reclaim_idx = gfp_zone(gfp_mask), 3031 .order = order, 3032 .nodemask = nodemask, 3033 .priority = DEF_PRIORITY, 3034 .may_writepage = !laptop_mode, 3035 .may_unmap = 1, 3036 .may_swap = 1, 3037 }; 3038 3039 /* 3040 * Do not enter reclaim if fatal signal was delivered while throttled. 3041 * 1 is returned so that the page allocator does not OOM kill at this 3042 * point. 3043 */ 3044 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3045 return 1; 3046 3047 trace_mm_vmscan_direct_reclaim_begin(order, 3048 sc.may_writepage, 3049 sc.gfp_mask, 3050 sc.reclaim_idx); 3051 3052 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3053 3054 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3055 3056 return nr_reclaimed; 3057 } 3058 3059 #ifdef CONFIG_MEMCG 3060 3061 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3062 gfp_t gfp_mask, bool noswap, 3063 pg_data_t *pgdat, 3064 unsigned long *nr_scanned) 3065 { 3066 struct scan_control sc = { 3067 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3068 .target_mem_cgroup = memcg, 3069 .may_writepage = !laptop_mode, 3070 .may_unmap = 1, 3071 .reclaim_idx = MAX_NR_ZONES - 1, 3072 .may_swap = !noswap, 3073 }; 3074 unsigned long lru_pages; 3075 3076 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3077 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3078 3079 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3080 sc.may_writepage, 3081 sc.gfp_mask, 3082 sc.reclaim_idx); 3083 3084 /* 3085 * NOTE: Although we can get the priority field, using it 3086 * here is not a good idea, since it limits the pages we can scan. 3087 * if we don't reclaim here, the shrink_node from balance_pgdat 3088 * will pick up pages from other mem cgroup's as well. We hack 3089 * the priority and make it zero. 3090 */ 3091 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3092 3093 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3094 3095 *nr_scanned = sc.nr_scanned; 3096 return sc.nr_reclaimed; 3097 } 3098 3099 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3100 unsigned long nr_pages, 3101 gfp_t gfp_mask, 3102 bool may_swap) 3103 { 3104 struct zonelist *zonelist; 3105 unsigned long nr_reclaimed; 3106 int nid; 3107 unsigned int noreclaim_flag; 3108 struct scan_control sc = { 3109 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3110 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3111 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3112 .reclaim_idx = MAX_NR_ZONES - 1, 3113 .target_mem_cgroup = memcg, 3114 .priority = DEF_PRIORITY, 3115 .may_writepage = !laptop_mode, 3116 .may_unmap = 1, 3117 .may_swap = may_swap, 3118 }; 3119 3120 /* 3121 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3122 * take care of from where we get pages. So the node where we start the 3123 * scan does not need to be the current node. 3124 */ 3125 nid = mem_cgroup_select_victim_node(memcg); 3126 3127 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3128 3129 trace_mm_vmscan_memcg_reclaim_begin(0, 3130 sc.may_writepage, 3131 sc.gfp_mask, 3132 sc.reclaim_idx); 3133 3134 noreclaim_flag = memalloc_noreclaim_save(); 3135 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3136 memalloc_noreclaim_restore(noreclaim_flag); 3137 3138 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3139 3140 return nr_reclaimed; 3141 } 3142 #endif 3143 3144 static void age_active_anon(struct pglist_data *pgdat, 3145 struct scan_control *sc) 3146 { 3147 struct mem_cgroup *memcg; 3148 3149 if (!total_swap_pages) 3150 return; 3151 3152 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3153 do { 3154 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3155 3156 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3157 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3158 sc, LRU_ACTIVE_ANON); 3159 3160 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3161 } while (memcg); 3162 } 3163 3164 /* 3165 * Returns true if there is an eligible zone balanced for the request order 3166 * and classzone_idx 3167 */ 3168 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3169 { 3170 int i; 3171 unsigned long mark = -1; 3172 struct zone *zone; 3173 3174 for (i = 0; i <= classzone_idx; i++) { 3175 zone = pgdat->node_zones + i; 3176 3177 if (!managed_zone(zone)) 3178 continue; 3179 3180 mark = high_wmark_pages(zone); 3181 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3182 return true; 3183 } 3184 3185 /* 3186 * If a node has no populated zone within classzone_idx, it does not 3187 * need balancing by definition. This can happen if a zone-restricted 3188 * allocation tries to wake a remote kswapd. 3189 */ 3190 if (mark == -1) 3191 return true; 3192 3193 return false; 3194 } 3195 3196 /* Clear pgdat state for congested, dirty or under writeback. */ 3197 static void clear_pgdat_congested(pg_data_t *pgdat) 3198 { 3199 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3200 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3201 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3202 } 3203 3204 /* 3205 * Prepare kswapd for sleeping. This verifies that there are no processes 3206 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3207 * 3208 * Returns true if kswapd is ready to sleep 3209 */ 3210 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3211 { 3212 /* 3213 * The throttled processes are normally woken up in balance_pgdat() as 3214 * soon as allow_direct_reclaim() is true. But there is a potential 3215 * race between when kswapd checks the watermarks and a process gets 3216 * throttled. There is also a potential race if processes get 3217 * throttled, kswapd wakes, a large process exits thereby balancing the 3218 * zones, which causes kswapd to exit balance_pgdat() before reaching 3219 * the wake up checks. If kswapd is going to sleep, no process should 3220 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3221 * the wake up is premature, processes will wake kswapd and get 3222 * throttled again. The difference from wake ups in balance_pgdat() is 3223 * that here we are under prepare_to_wait(). 3224 */ 3225 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3226 wake_up_all(&pgdat->pfmemalloc_wait); 3227 3228 /* Hopeless node, leave it to direct reclaim */ 3229 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3230 return true; 3231 3232 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3233 clear_pgdat_congested(pgdat); 3234 return true; 3235 } 3236 3237 return false; 3238 } 3239 3240 /* 3241 * kswapd shrinks a node of pages that are at or below the highest usable 3242 * zone that is currently unbalanced. 3243 * 3244 * Returns true if kswapd scanned at least the requested number of pages to 3245 * reclaim or if the lack of progress was due to pages under writeback. 3246 * This is used to determine if the scanning priority needs to be raised. 3247 */ 3248 static bool kswapd_shrink_node(pg_data_t *pgdat, 3249 struct scan_control *sc) 3250 { 3251 struct zone *zone; 3252 int z; 3253 3254 /* Reclaim a number of pages proportional to the number of zones */ 3255 sc->nr_to_reclaim = 0; 3256 for (z = 0; z <= sc->reclaim_idx; z++) { 3257 zone = pgdat->node_zones + z; 3258 if (!managed_zone(zone)) 3259 continue; 3260 3261 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3262 } 3263 3264 /* 3265 * Historically care was taken to put equal pressure on all zones but 3266 * now pressure is applied based on node LRU order. 3267 */ 3268 shrink_node(pgdat, sc); 3269 3270 /* 3271 * Fragmentation may mean that the system cannot be rebalanced for 3272 * high-order allocations. If twice the allocation size has been 3273 * reclaimed then recheck watermarks only at order-0 to prevent 3274 * excessive reclaim. Assume that a process requested a high-order 3275 * can direct reclaim/compact. 3276 */ 3277 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3278 sc->order = 0; 3279 3280 return sc->nr_scanned >= sc->nr_to_reclaim; 3281 } 3282 3283 /* 3284 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3285 * that are eligible for use by the caller until at least one zone is 3286 * balanced. 3287 * 3288 * Returns the order kswapd finished reclaiming at. 3289 * 3290 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3291 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3292 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3293 * or lower is eligible for reclaim until at least one usable zone is 3294 * balanced. 3295 */ 3296 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3297 { 3298 int i; 3299 unsigned long nr_soft_reclaimed; 3300 unsigned long nr_soft_scanned; 3301 struct zone *zone; 3302 struct scan_control sc = { 3303 .gfp_mask = GFP_KERNEL, 3304 .order = order, 3305 .priority = DEF_PRIORITY, 3306 .may_writepage = !laptop_mode, 3307 .may_unmap = 1, 3308 .may_swap = 1, 3309 }; 3310 count_vm_event(PAGEOUTRUN); 3311 3312 do { 3313 unsigned long nr_reclaimed = sc.nr_reclaimed; 3314 bool raise_priority = true; 3315 3316 sc.reclaim_idx = classzone_idx; 3317 3318 /* 3319 * If the number of buffer_heads exceeds the maximum allowed 3320 * then consider reclaiming from all zones. This has a dual 3321 * purpose -- on 64-bit systems it is expected that 3322 * buffer_heads are stripped during active rotation. On 32-bit 3323 * systems, highmem pages can pin lowmem memory and shrinking 3324 * buffers can relieve lowmem pressure. Reclaim may still not 3325 * go ahead if all eligible zones for the original allocation 3326 * request are balanced to avoid excessive reclaim from kswapd. 3327 */ 3328 if (buffer_heads_over_limit) { 3329 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3330 zone = pgdat->node_zones + i; 3331 if (!managed_zone(zone)) 3332 continue; 3333 3334 sc.reclaim_idx = i; 3335 break; 3336 } 3337 } 3338 3339 /* 3340 * Only reclaim if there are no eligible zones. Note that 3341 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3342 * have adjusted it. 3343 */ 3344 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3345 goto out; 3346 3347 /* 3348 * Do some background aging of the anon list, to give 3349 * pages a chance to be referenced before reclaiming. All 3350 * pages are rotated regardless of classzone as this is 3351 * about consistent aging. 3352 */ 3353 age_active_anon(pgdat, &sc); 3354 3355 /* 3356 * If we're getting trouble reclaiming, start doing writepage 3357 * even in laptop mode. 3358 */ 3359 if (sc.priority < DEF_PRIORITY - 2) 3360 sc.may_writepage = 1; 3361 3362 /* Call soft limit reclaim before calling shrink_node. */ 3363 sc.nr_scanned = 0; 3364 nr_soft_scanned = 0; 3365 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3366 sc.gfp_mask, &nr_soft_scanned); 3367 sc.nr_reclaimed += nr_soft_reclaimed; 3368 3369 /* 3370 * There should be no need to raise the scanning priority if 3371 * enough pages are already being scanned that that high 3372 * watermark would be met at 100% efficiency. 3373 */ 3374 if (kswapd_shrink_node(pgdat, &sc)) 3375 raise_priority = false; 3376 3377 /* 3378 * If the low watermark is met there is no need for processes 3379 * to be throttled on pfmemalloc_wait as they should not be 3380 * able to safely make forward progress. Wake them 3381 */ 3382 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3383 allow_direct_reclaim(pgdat)) 3384 wake_up_all(&pgdat->pfmemalloc_wait); 3385 3386 /* Check if kswapd should be suspending */ 3387 if (try_to_freeze() || kthread_should_stop()) 3388 break; 3389 3390 /* 3391 * Raise priority if scanning rate is too low or there was no 3392 * progress in reclaiming pages 3393 */ 3394 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3395 if (raise_priority || !nr_reclaimed) 3396 sc.priority--; 3397 } while (sc.priority >= 1); 3398 3399 if (!sc.nr_reclaimed) 3400 pgdat->kswapd_failures++; 3401 3402 out: 3403 snapshot_refaults(NULL, pgdat); 3404 /* 3405 * Return the order kswapd stopped reclaiming at as 3406 * prepare_kswapd_sleep() takes it into account. If another caller 3407 * entered the allocator slow path while kswapd was awake, order will 3408 * remain at the higher level. 3409 */ 3410 return sc.order; 3411 } 3412 3413 /* 3414 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3415 * allocation request woke kswapd for. When kswapd has not woken recently, 3416 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3417 * given classzone and returns it or the highest classzone index kswapd 3418 * was recently woke for. 3419 */ 3420 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3421 enum zone_type classzone_idx) 3422 { 3423 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3424 return classzone_idx; 3425 3426 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3427 } 3428 3429 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3430 unsigned int classzone_idx) 3431 { 3432 long remaining = 0; 3433 DEFINE_WAIT(wait); 3434 3435 if (freezing(current) || kthread_should_stop()) 3436 return; 3437 3438 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3439 3440 /* 3441 * Try to sleep for a short interval. Note that kcompactd will only be 3442 * woken if it is possible to sleep for a short interval. This is 3443 * deliberate on the assumption that if reclaim cannot keep an 3444 * eligible zone balanced that it's also unlikely that compaction will 3445 * succeed. 3446 */ 3447 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3448 /* 3449 * Compaction records what page blocks it recently failed to 3450 * isolate pages from and skips them in the future scanning. 3451 * When kswapd is going to sleep, it is reasonable to assume 3452 * that pages and compaction may succeed so reset the cache. 3453 */ 3454 reset_isolation_suitable(pgdat); 3455 3456 /* 3457 * We have freed the memory, now we should compact it to make 3458 * allocation of the requested order possible. 3459 */ 3460 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3461 3462 remaining = schedule_timeout(HZ/10); 3463 3464 /* 3465 * If woken prematurely then reset kswapd_classzone_idx and 3466 * order. The values will either be from a wakeup request or 3467 * the previous request that slept prematurely. 3468 */ 3469 if (remaining) { 3470 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3471 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3472 } 3473 3474 finish_wait(&pgdat->kswapd_wait, &wait); 3475 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3476 } 3477 3478 /* 3479 * After a short sleep, check if it was a premature sleep. If not, then 3480 * go fully to sleep until explicitly woken up. 3481 */ 3482 if (!remaining && 3483 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3484 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3485 3486 /* 3487 * vmstat counters are not perfectly accurate and the estimated 3488 * value for counters such as NR_FREE_PAGES can deviate from the 3489 * true value by nr_online_cpus * threshold. To avoid the zone 3490 * watermarks being breached while under pressure, we reduce the 3491 * per-cpu vmstat threshold while kswapd is awake and restore 3492 * them before going back to sleep. 3493 */ 3494 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3495 3496 if (!kthread_should_stop()) 3497 schedule(); 3498 3499 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3500 } else { 3501 if (remaining) 3502 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3503 else 3504 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3505 } 3506 finish_wait(&pgdat->kswapd_wait, &wait); 3507 } 3508 3509 /* 3510 * The background pageout daemon, started as a kernel thread 3511 * from the init process. 3512 * 3513 * This basically trickles out pages so that we have _some_ 3514 * free memory available even if there is no other activity 3515 * that frees anything up. This is needed for things like routing 3516 * etc, where we otherwise might have all activity going on in 3517 * asynchronous contexts that cannot page things out. 3518 * 3519 * If there are applications that are active memory-allocators 3520 * (most normal use), this basically shouldn't matter. 3521 */ 3522 static int kswapd(void *p) 3523 { 3524 unsigned int alloc_order, reclaim_order; 3525 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3526 pg_data_t *pgdat = (pg_data_t*)p; 3527 struct task_struct *tsk = current; 3528 3529 struct reclaim_state reclaim_state = { 3530 .reclaimed_slab = 0, 3531 }; 3532 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3533 3534 if (!cpumask_empty(cpumask)) 3535 set_cpus_allowed_ptr(tsk, cpumask); 3536 current->reclaim_state = &reclaim_state; 3537 3538 /* 3539 * Tell the memory management that we're a "memory allocator", 3540 * and that if we need more memory we should get access to it 3541 * regardless (see "__alloc_pages()"). "kswapd" should 3542 * never get caught in the normal page freeing logic. 3543 * 3544 * (Kswapd normally doesn't need memory anyway, but sometimes 3545 * you need a small amount of memory in order to be able to 3546 * page out something else, and this flag essentially protects 3547 * us from recursively trying to free more memory as we're 3548 * trying to free the first piece of memory in the first place). 3549 */ 3550 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3551 set_freezable(); 3552 3553 pgdat->kswapd_order = 0; 3554 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3555 for ( ; ; ) { 3556 bool ret; 3557 3558 alloc_order = reclaim_order = pgdat->kswapd_order; 3559 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3560 3561 kswapd_try_sleep: 3562 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3563 classzone_idx); 3564 3565 /* Read the new order and classzone_idx */ 3566 alloc_order = reclaim_order = pgdat->kswapd_order; 3567 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3568 pgdat->kswapd_order = 0; 3569 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3570 3571 ret = try_to_freeze(); 3572 if (kthread_should_stop()) 3573 break; 3574 3575 /* 3576 * We can speed up thawing tasks if we don't call balance_pgdat 3577 * after returning from the refrigerator 3578 */ 3579 if (ret) 3580 continue; 3581 3582 /* 3583 * Reclaim begins at the requested order but if a high-order 3584 * reclaim fails then kswapd falls back to reclaiming for 3585 * order-0. If that happens, kswapd will consider sleeping 3586 * for the order it finished reclaiming at (reclaim_order) 3587 * but kcompactd is woken to compact for the original 3588 * request (alloc_order). 3589 */ 3590 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3591 alloc_order); 3592 fs_reclaim_acquire(GFP_KERNEL); 3593 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3594 fs_reclaim_release(GFP_KERNEL); 3595 if (reclaim_order < alloc_order) 3596 goto kswapd_try_sleep; 3597 } 3598 3599 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3600 current->reclaim_state = NULL; 3601 3602 return 0; 3603 } 3604 3605 /* 3606 * A zone is low on free memory, so wake its kswapd task to service it. 3607 */ 3608 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3609 { 3610 pg_data_t *pgdat; 3611 3612 if (!managed_zone(zone)) 3613 return; 3614 3615 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3616 return; 3617 pgdat = zone->zone_pgdat; 3618 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3619 classzone_idx); 3620 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3621 if (!waitqueue_active(&pgdat->kswapd_wait)) 3622 return; 3623 3624 /* Hopeless node, leave it to direct reclaim */ 3625 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3626 return; 3627 3628 if (pgdat_balanced(pgdat, order, classzone_idx)) 3629 return; 3630 3631 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order); 3632 wake_up_interruptible(&pgdat->kswapd_wait); 3633 } 3634 3635 #ifdef CONFIG_HIBERNATION 3636 /* 3637 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3638 * freed pages. 3639 * 3640 * Rather than trying to age LRUs the aim is to preserve the overall 3641 * LRU order by reclaiming preferentially 3642 * inactive > active > active referenced > active mapped 3643 */ 3644 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3645 { 3646 struct reclaim_state reclaim_state; 3647 struct scan_control sc = { 3648 .nr_to_reclaim = nr_to_reclaim, 3649 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3650 .reclaim_idx = MAX_NR_ZONES - 1, 3651 .priority = DEF_PRIORITY, 3652 .may_writepage = 1, 3653 .may_unmap = 1, 3654 .may_swap = 1, 3655 .hibernation_mode = 1, 3656 }; 3657 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3658 struct task_struct *p = current; 3659 unsigned long nr_reclaimed; 3660 unsigned int noreclaim_flag; 3661 3662 noreclaim_flag = memalloc_noreclaim_save(); 3663 fs_reclaim_acquire(sc.gfp_mask); 3664 reclaim_state.reclaimed_slab = 0; 3665 p->reclaim_state = &reclaim_state; 3666 3667 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3668 3669 p->reclaim_state = NULL; 3670 fs_reclaim_release(sc.gfp_mask); 3671 memalloc_noreclaim_restore(noreclaim_flag); 3672 3673 return nr_reclaimed; 3674 } 3675 #endif /* CONFIG_HIBERNATION */ 3676 3677 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3678 not required for correctness. So if the last cpu in a node goes 3679 away, we get changed to run anywhere: as the first one comes back, 3680 restore their cpu bindings. */ 3681 static int kswapd_cpu_online(unsigned int cpu) 3682 { 3683 int nid; 3684 3685 for_each_node_state(nid, N_MEMORY) { 3686 pg_data_t *pgdat = NODE_DATA(nid); 3687 const struct cpumask *mask; 3688 3689 mask = cpumask_of_node(pgdat->node_id); 3690 3691 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3692 /* One of our CPUs online: restore mask */ 3693 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3694 } 3695 return 0; 3696 } 3697 3698 /* 3699 * This kswapd start function will be called by init and node-hot-add. 3700 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3701 */ 3702 int kswapd_run(int nid) 3703 { 3704 pg_data_t *pgdat = NODE_DATA(nid); 3705 int ret = 0; 3706 3707 if (pgdat->kswapd) 3708 return 0; 3709 3710 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3711 if (IS_ERR(pgdat->kswapd)) { 3712 /* failure at boot is fatal */ 3713 BUG_ON(system_state < SYSTEM_RUNNING); 3714 pr_err("Failed to start kswapd on node %d\n", nid); 3715 ret = PTR_ERR(pgdat->kswapd); 3716 pgdat->kswapd = NULL; 3717 } 3718 return ret; 3719 } 3720 3721 /* 3722 * Called by memory hotplug when all memory in a node is offlined. Caller must 3723 * hold mem_hotplug_begin/end(). 3724 */ 3725 void kswapd_stop(int nid) 3726 { 3727 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3728 3729 if (kswapd) { 3730 kthread_stop(kswapd); 3731 NODE_DATA(nid)->kswapd = NULL; 3732 } 3733 } 3734 3735 static int __init kswapd_init(void) 3736 { 3737 int nid, ret; 3738 3739 swap_setup(); 3740 for_each_node_state(nid, N_MEMORY) 3741 kswapd_run(nid); 3742 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3743 "mm/vmscan:online", kswapd_cpu_online, 3744 NULL); 3745 WARN_ON(ret < 0); 3746 return 0; 3747 } 3748 3749 module_init(kswapd_init) 3750 3751 #ifdef CONFIG_NUMA 3752 /* 3753 * Node reclaim mode 3754 * 3755 * If non-zero call node_reclaim when the number of free pages falls below 3756 * the watermarks. 3757 */ 3758 int node_reclaim_mode __read_mostly; 3759 3760 #define RECLAIM_OFF 0 3761 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3762 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3763 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3764 3765 /* 3766 * Priority for NODE_RECLAIM. This determines the fraction of pages 3767 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3768 * a zone. 3769 */ 3770 #define NODE_RECLAIM_PRIORITY 4 3771 3772 /* 3773 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3774 * occur. 3775 */ 3776 int sysctl_min_unmapped_ratio = 1; 3777 3778 /* 3779 * If the number of slab pages in a zone grows beyond this percentage then 3780 * slab reclaim needs to occur. 3781 */ 3782 int sysctl_min_slab_ratio = 5; 3783 3784 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3785 { 3786 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3787 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3788 node_page_state(pgdat, NR_ACTIVE_FILE); 3789 3790 /* 3791 * It's possible for there to be more file mapped pages than 3792 * accounted for by the pages on the file LRU lists because 3793 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3794 */ 3795 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3796 } 3797 3798 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3799 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3800 { 3801 unsigned long nr_pagecache_reclaimable; 3802 unsigned long delta = 0; 3803 3804 /* 3805 * If RECLAIM_UNMAP is set, then all file pages are considered 3806 * potentially reclaimable. Otherwise, we have to worry about 3807 * pages like swapcache and node_unmapped_file_pages() provides 3808 * a better estimate 3809 */ 3810 if (node_reclaim_mode & RECLAIM_UNMAP) 3811 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3812 else 3813 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3814 3815 /* If we can't clean pages, remove dirty pages from consideration */ 3816 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3817 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3818 3819 /* Watch for any possible underflows due to delta */ 3820 if (unlikely(delta > nr_pagecache_reclaimable)) 3821 delta = nr_pagecache_reclaimable; 3822 3823 return nr_pagecache_reclaimable - delta; 3824 } 3825 3826 /* 3827 * Try to free up some pages from this node through reclaim. 3828 */ 3829 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3830 { 3831 /* Minimum pages needed in order to stay on node */ 3832 const unsigned long nr_pages = 1 << order; 3833 struct task_struct *p = current; 3834 struct reclaim_state reclaim_state; 3835 unsigned int noreclaim_flag; 3836 struct scan_control sc = { 3837 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3838 .gfp_mask = current_gfp_context(gfp_mask), 3839 .order = order, 3840 .priority = NODE_RECLAIM_PRIORITY, 3841 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3842 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3843 .may_swap = 1, 3844 .reclaim_idx = gfp_zone(gfp_mask), 3845 }; 3846 3847 cond_resched(); 3848 /* 3849 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3850 * and we also need to be able to write out pages for RECLAIM_WRITE 3851 * and RECLAIM_UNMAP. 3852 */ 3853 noreclaim_flag = memalloc_noreclaim_save(); 3854 p->flags |= PF_SWAPWRITE; 3855 fs_reclaim_acquire(sc.gfp_mask); 3856 reclaim_state.reclaimed_slab = 0; 3857 p->reclaim_state = &reclaim_state; 3858 3859 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3860 /* 3861 * Free memory by calling shrink zone with increasing 3862 * priorities until we have enough memory freed. 3863 */ 3864 do { 3865 shrink_node(pgdat, &sc); 3866 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3867 } 3868 3869 p->reclaim_state = NULL; 3870 fs_reclaim_release(gfp_mask); 3871 current->flags &= ~PF_SWAPWRITE; 3872 memalloc_noreclaim_restore(noreclaim_flag); 3873 return sc.nr_reclaimed >= nr_pages; 3874 } 3875 3876 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3877 { 3878 int ret; 3879 3880 /* 3881 * Node reclaim reclaims unmapped file backed pages and 3882 * slab pages if we are over the defined limits. 3883 * 3884 * A small portion of unmapped file backed pages is needed for 3885 * file I/O otherwise pages read by file I/O will be immediately 3886 * thrown out if the node is overallocated. So we do not reclaim 3887 * if less than a specified percentage of the node is used by 3888 * unmapped file backed pages. 3889 */ 3890 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3891 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3892 return NODE_RECLAIM_FULL; 3893 3894 /* 3895 * Do not scan if the allocation should not be delayed. 3896 */ 3897 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3898 return NODE_RECLAIM_NOSCAN; 3899 3900 /* 3901 * Only run node reclaim on the local node or on nodes that do not 3902 * have associated processors. This will favor the local processor 3903 * over remote processors and spread off node memory allocations 3904 * as wide as possible. 3905 */ 3906 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3907 return NODE_RECLAIM_NOSCAN; 3908 3909 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3910 return NODE_RECLAIM_NOSCAN; 3911 3912 ret = __node_reclaim(pgdat, gfp_mask, order); 3913 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3914 3915 if (!ret) 3916 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3917 3918 return ret; 3919 } 3920 #endif 3921 3922 /* 3923 * page_evictable - test whether a page is evictable 3924 * @page: the page to test 3925 * 3926 * Test whether page is evictable--i.e., should be placed on active/inactive 3927 * lists vs unevictable list. 3928 * 3929 * Reasons page might not be evictable: 3930 * (1) page's mapping marked unevictable 3931 * (2) page is part of an mlocked VMA 3932 * 3933 */ 3934 int page_evictable(struct page *page) 3935 { 3936 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3937 } 3938 3939 #ifdef CONFIG_SHMEM 3940 /** 3941 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3942 * @pages: array of pages to check 3943 * @nr_pages: number of pages to check 3944 * 3945 * Checks pages for evictability and moves them to the appropriate lru list. 3946 * 3947 * This function is only used for SysV IPC SHM_UNLOCK. 3948 */ 3949 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3950 { 3951 struct lruvec *lruvec; 3952 struct pglist_data *pgdat = NULL; 3953 int pgscanned = 0; 3954 int pgrescued = 0; 3955 int i; 3956 3957 for (i = 0; i < nr_pages; i++) { 3958 struct page *page = pages[i]; 3959 struct pglist_data *pagepgdat = page_pgdat(page); 3960 3961 pgscanned++; 3962 if (pagepgdat != pgdat) { 3963 if (pgdat) 3964 spin_unlock_irq(&pgdat->lru_lock); 3965 pgdat = pagepgdat; 3966 spin_lock_irq(&pgdat->lru_lock); 3967 } 3968 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3969 3970 if (!PageLRU(page) || !PageUnevictable(page)) 3971 continue; 3972 3973 if (page_evictable(page)) { 3974 enum lru_list lru = page_lru_base_type(page); 3975 3976 VM_BUG_ON_PAGE(PageActive(page), page); 3977 ClearPageUnevictable(page); 3978 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3979 add_page_to_lru_list(page, lruvec, lru); 3980 pgrescued++; 3981 } 3982 } 3983 3984 if (pgdat) { 3985 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3986 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3987 spin_unlock_irq(&pgdat->lru_lock); 3988 } 3989 } 3990 #endif /* CONFIG_SHMEM */ 3991