xref: /openbmc/linux/mm/vmscan.c (revision 133f9794)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	/* Allocation order */
72 	int order;
73 
74 	/*
75 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 	 * are scanned.
77 	 */
78 	nodemask_t	*nodemask;
79 
80 	/*
81 	 * The memory cgroup that hit its limit and as a result is the
82 	 * primary target of this reclaim invocation.
83 	 */
84 	struct mem_cgroup *target_mem_cgroup;
85 
86 	/* Scan (total_size >> priority) pages at once */
87 	int priority;
88 
89 	/* The highest zone to isolate pages for reclaim from */
90 	enum zone_type reclaim_idx;
91 
92 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 	unsigned int may_writepage:1;
94 
95 	/* Can mapped pages be reclaimed? */
96 	unsigned int may_unmap:1;
97 
98 	/* Can pages be swapped as part of reclaim? */
99 	unsigned int may_swap:1;
100 
101 	/*
102 	 * Cgroups are not reclaimed below their configured memory.low,
103 	 * unless we threaten to OOM. If any cgroups are skipped due to
104 	 * memory.low and nothing was reclaimed, go back for memory.low.
105 	 */
106 	unsigned int memcg_low_reclaim:1;
107 	unsigned int memcg_low_skipped:1;
108 
109 	unsigned int hibernation_mode:1;
110 
111 	/* One of the zones is ready for compaction */
112 	unsigned int compaction_ready:1;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 };
120 
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field)			\
123 	do {								\
124 		if ((_page)->lru.prev != _base) {			\
125 			struct page *prev;				\
126 									\
127 			prev = lru_to_page(&(_page->lru));		\
128 			prefetch(&prev->_field);			\
129 		}							\
130 	} while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134 
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field)			\
137 	do {								\
138 		if ((_page)->lru.prev != _base) {			\
139 			struct page *prev;				\
140 									\
141 			prev = lru_to_page(&(_page->lru));		\
142 			prefetchw(&prev->_field);			\
143 		}							\
144 	} while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
148 
149 /*
150  * From 0 .. 100.  Higher means more swappy.
151  */
152 int vm_swappiness = 60;
153 /*
154  * The total number of pages which are beyond the high watermark within all
155  * zones.
156  */
157 unsigned long vm_total_pages;
158 
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161 
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
164 {
165 	return !sc->target_mem_cgroup;
166 }
167 
168 /**
169  * sane_reclaim - is the usual dirty throttling mechanism operational?
170  * @sc: scan_control in question
171  *
172  * The normal page dirty throttling mechanism in balance_dirty_pages() is
173  * completely broken with the legacy memcg and direct stalling in
174  * shrink_page_list() is used for throttling instead, which lacks all the
175  * niceties such as fairness, adaptive pausing, bandwidth proportional
176  * allocation and configurability.
177  *
178  * This function tests whether the vmscan currently in progress can assume
179  * that the normal dirty throttling mechanism is operational.
180  */
181 static bool sane_reclaim(struct scan_control *sc)
182 {
183 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
184 
185 	if (!memcg)
186 		return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 		return true;
190 #endif
191 	return false;
192 }
193 #else
194 static bool global_reclaim(struct scan_control *sc)
195 {
196 	return true;
197 }
198 
199 static bool sane_reclaim(struct scan_control *sc)
200 {
201 	return true;
202 }
203 #endif
204 
205 /*
206  * This misses isolated pages which are not accounted for to save counters.
207  * As the data only determines if reclaim or compaction continues, it is
208  * not expected that isolated pages will be a dominating factor.
209  */
210 unsigned long zone_reclaimable_pages(struct zone *zone)
211 {
212 	unsigned long nr;
213 
214 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 	if (get_nr_swap_pages() > 0)
217 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219 
220 	return nr;
221 }
222 
223 /**
224  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
225  * @lruvec: lru vector
226  * @lru: lru to use
227  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
228  */
229 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
230 {
231 	unsigned long lru_size;
232 	int zid;
233 
234 	if (!mem_cgroup_disabled())
235 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
236 	else
237 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
238 
239 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
241 		unsigned long size;
242 
243 		if (!managed_zone(zone))
244 			continue;
245 
246 		if (!mem_cgroup_disabled())
247 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
248 		else
249 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 				       NR_ZONE_LRU_BASE + lru);
251 		lru_size -= min(size, lru_size);
252 	}
253 
254 	return lru_size;
255 
256 }
257 
258 /*
259  * Add a shrinker callback to be called from the vm.
260  */
261 int register_shrinker(struct shrinker *shrinker)
262 {
263 	size_t size = sizeof(*shrinker->nr_deferred);
264 
265 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
266 		size *= nr_node_ids;
267 
268 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 	if (!shrinker->nr_deferred)
270 		return -ENOMEM;
271 
272 	down_write(&shrinker_rwsem);
273 	list_add_tail(&shrinker->list, &shrinker_list);
274 	up_write(&shrinker_rwsem);
275 	return 0;
276 }
277 EXPORT_SYMBOL(register_shrinker);
278 
279 /*
280  * Remove one
281  */
282 void unregister_shrinker(struct shrinker *shrinker)
283 {
284 	if (!shrinker->nr_deferred)
285 		return;
286 	down_write(&shrinker_rwsem);
287 	list_del(&shrinker->list);
288 	up_write(&shrinker_rwsem);
289 	kfree(shrinker->nr_deferred);
290 	shrinker->nr_deferred = NULL;
291 }
292 EXPORT_SYMBOL(unregister_shrinker);
293 
294 #define SHRINK_BATCH 128
295 
296 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
297 				    struct shrinker *shrinker, int priority)
298 {
299 	unsigned long freed = 0;
300 	unsigned long long delta;
301 	long total_scan;
302 	long freeable;
303 	long nr;
304 	long new_nr;
305 	int nid = shrinkctl->nid;
306 	long batch_size = shrinker->batch ? shrinker->batch
307 					  : SHRINK_BATCH;
308 	long scanned = 0, next_deferred;
309 
310 	freeable = shrinker->count_objects(shrinker, shrinkctl);
311 	if (freeable == 0)
312 		return 0;
313 
314 	/*
315 	 * copy the current shrinker scan count into a local variable
316 	 * and zero it so that other concurrent shrinker invocations
317 	 * don't also do this scanning work.
318 	 */
319 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
320 
321 	total_scan = nr;
322 	delta = freeable >> priority;
323 	delta *= 4;
324 	do_div(delta, shrinker->seeks);
325 	total_scan += delta;
326 	if (total_scan < 0) {
327 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
328 		       shrinker->scan_objects, total_scan);
329 		total_scan = freeable;
330 		next_deferred = nr;
331 	} else
332 		next_deferred = total_scan;
333 
334 	/*
335 	 * We need to avoid excessive windup on filesystem shrinkers
336 	 * due to large numbers of GFP_NOFS allocations causing the
337 	 * shrinkers to return -1 all the time. This results in a large
338 	 * nr being built up so when a shrink that can do some work
339 	 * comes along it empties the entire cache due to nr >>>
340 	 * freeable. This is bad for sustaining a working set in
341 	 * memory.
342 	 *
343 	 * Hence only allow the shrinker to scan the entire cache when
344 	 * a large delta change is calculated directly.
345 	 */
346 	if (delta < freeable / 4)
347 		total_scan = min(total_scan, freeable / 2);
348 
349 	/*
350 	 * Avoid risking looping forever due to too large nr value:
351 	 * never try to free more than twice the estimate number of
352 	 * freeable entries.
353 	 */
354 	if (total_scan > freeable * 2)
355 		total_scan = freeable * 2;
356 
357 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
358 				   freeable, delta, total_scan, priority);
359 
360 	/*
361 	 * Normally, we should not scan less than batch_size objects in one
362 	 * pass to avoid too frequent shrinker calls, but if the slab has less
363 	 * than batch_size objects in total and we are really tight on memory,
364 	 * we will try to reclaim all available objects, otherwise we can end
365 	 * up failing allocations although there are plenty of reclaimable
366 	 * objects spread over several slabs with usage less than the
367 	 * batch_size.
368 	 *
369 	 * We detect the "tight on memory" situations by looking at the total
370 	 * number of objects we want to scan (total_scan). If it is greater
371 	 * than the total number of objects on slab (freeable), we must be
372 	 * scanning at high prio and therefore should try to reclaim as much as
373 	 * possible.
374 	 */
375 	while (total_scan >= batch_size ||
376 	       total_scan >= freeable) {
377 		unsigned long ret;
378 		unsigned long nr_to_scan = min(batch_size, total_scan);
379 
380 		shrinkctl->nr_to_scan = nr_to_scan;
381 		shrinkctl->nr_scanned = nr_to_scan;
382 		ret = shrinker->scan_objects(shrinker, shrinkctl);
383 		if (ret == SHRINK_STOP)
384 			break;
385 		freed += ret;
386 
387 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
388 		total_scan -= shrinkctl->nr_scanned;
389 		scanned += shrinkctl->nr_scanned;
390 
391 		cond_resched();
392 	}
393 
394 	if (next_deferred >= scanned)
395 		next_deferred -= scanned;
396 	else
397 		next_deferred = 0;
398 	/*
399 	 * move the unused scan count back into the shrinker in a
400 	 * manner that handles concurrent updates. If we exhausted the
401 	 * scan, there is no need to do an update.
402 	 */
403 	if (next_deferred > 0)
404 		new_nr = atomic_long_add_return(next_deferred,
405 						&shrinker->nr_deferred[nid]);
406 	else
407 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
408 
409 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
410 	return freed;
411 }
412 
413 /**
414  * shrink_slab - shrink slab caches
415  * @gfp_mask: allocation context
416  * @nid: node whose slab caches to target
417  * @memcg: memory cgroup whose slab caches to target
418  * @priority: the reclaim priority
419  *
420  * Call the shrink functions to age shrinkable caches.
421  *
422  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423  * unaware shrinkers will receive a node id of 0 instead.
424  *
425  * @memcg specifies the memory cgroup to target. If it is not NULL,
426  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
427  * objects from the memory cgroup specified. Otherwise, only unaware
428  * shrinkers are called.
429  *
430  * @priority is sc->priority, we take the number of objects and >> by priority
431  * in order to get the scan target.
432  *
433  * Returns the number of reclaimed slab objects.
434  */
435 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
436 				 struct mem_cgroup *memcg,
437 				 int priority)
438 {
439 	struct shrinker *shrinker;
440 	unsigned long freed = 0;
441 
442 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
443 		return 0;
444 
445 	if (!down_read_trylock(&shrinker_rwsem)) {
446 		/*
447 		 * If we would return 0, our callers would understand that we
448 		 * have nothing else to shrink and give up trying. By returning
449 		 * 1 we keep it going and assume we'll be able to shrink next
450 		 * time.
451 		 */
452 		freed = 1;
453 		goto out;
454 	}
455 
456 	list_for_each_entry(shrinker, &shrinker_list, list) {
457 		struct shrink_control sc = {
458 			.gfp_mask = gfp_mask,
459 			.nid = nid,
460 			.memcg = memcg,
461 		};
462 
463 		/*
464 		 * If kernel memory accounting is disabled, we ignore
465 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
466 		 * passing NULL for memcg.
467 		 */
468 		if (memcg_kmem_enabled() &&
469 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
470 			continue;
471 
472 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
473 			sc.nid = 0;
474 
475 		freed += do_shrink_slab(&sc, shrinker, priority);
476 		/*
477 		 * Bail out if someone want to register a new shrinker to
478 		 * prevent the regsitration from being stalled for long periods
479 		 * by parallel ongoing shrinking.
480 		 */
481 		if (rwsem_is_contended(&shrinker_rwsem)) {
482 			freed = freed ? : 1;
483 			break;
484 		}
485 	}
486 
487 	up_read(&shrinker_rwsem);
488 out:
489 	cond_resched();
490 	return freed;
491 }
492 
493 void drop_slab_node(int nid)
494 {
495 	unsigned long freed;
496 
497 	do {
498 		struct mem_cgroup *memcg = NULL;
499 
500 		freed = 0;
501 		do {
502 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
503 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
504 	} while (freed > 10);
505 }
506 
507 void drop_slab(void)
508 {
509 	int nid;
510 
511 	for_each_online_node(nid)
512 		drop_slab_node(nid);
513 }
514 
515 static inline int is_page_cache_freeable(struct page *page)
516 {
517 	/*
518 	 * A freeable page cache page is referenced only by the caller
519 	 * that isolated the page, the page cache radix tree and
520 	 * optional buffer heads at page->private.
521 	 */
522 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
523 		HPAGE_PMD_NR : 1;
524 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
525 }
526 
527 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
528 {
529 	if (current->flags & PF_SWAPWRITE)
530 		return 1;
531 	if (!inode_write_congested(inode))
532 		return 1;
533 	if (inode_to_bdi(inode) == current->backing_dev_info)
534 		return 1;
535 	return 0;
536 }
537 
538 /*
539  * We detected a synchronous write error writing a page out.  Probably
540  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
541  * fsync(), msync() or close().
542  *
543  * The tricky part is that after writepage we cannot touch the mapping: nothing
544  * prevents it from being freed up.  But we have a ref on the page and once
545  * that page is locked, the mapping is pinned.
546  *
547  * We're allowed to run sleeping lock_page() here because we know the caller has
548  * __GFP_FS.
549  */
550 static void handle_write_error(struct address_space *mapping,
551 				struct page *page, int error)
552 {
553 	lock_page(page);
554 	if (page_mapping(page) == mapping)
555 		mapping_set_error(mapping, error);
556 	unlock_page(page);
557 }
558 
559 /* possible outcome of pageout() */
560 typedef enum {
561 	/* failed to write page out, page is locked */
562 	PAGE_KEEP,
563 	/* move page to the active list, page is locked */
564 	PAGE_ACTIVATE,
565 	/* page has been sent to the disk successfully, page is unlocked */
566 	PAGE_SUCCESS,
567 	/* page is clean and locked */
568 	PAGE_CLEAN,
569 } pageout_t;
570 
571 /*
572  * pageout is called by shrink_page_list() for each dirty page.
573  * Calls ->writepage().
574  */
575 static pageout_t pageout(struct page *page, struct address_space *mapping,
576 			 struct scan_control *sc)
577 {
578 	/*
579 	 * If the page is dirty, only perform writeback if that write
580 	 * will be non-blocking.  To prevent this allocation from being
581 	 * stalled by pagecache activity.  But note that there may be
582 	 * stalls if we need to run get_block().  We could test
583 	 * PagePrivate for that.
584 	 *
585 	 * If this process is currently in __generic_file_write_iter() against
586 	 * this page's queue, we can perform writeback even if that
587 	 * will block.
588 	 *
589 	 * If the page is swapcache, write it back even if that would
590 	 * block, for some throttling. This happens by accident, because
591 	 * swap_backing_dev_info is bust: it doesn't reflect the
592 	 * congestion state of the swapdevs.  Easy to fix, if needed.
593 	 */
594 	if (!is_page_cache_freeable(page))
595 		return PAGE_KEEP;
596 	if (!mapping) {
597 		/*
598 		 * Some data journaling orphaned pages can have
599 		 * page->mapping == NULL while being dirty with clean buffers.
600 		 */
601 		if (page_has_private(page)) {
602 			if (try_to_free_buffers(page)) {
603 				ClearPageDirty(page);
604 				pr_info("%s: orphaned page\n", __func__);
605 				return PAGE_CLEAN;
606 			}
607 		}
608 		return PAGE_KEEP;
609 	}
610 	if (mapping->a_ops->writepage == NULL)
611 		return PAGE_ACTIVATE;
612 	if (!may_write_to_inode(mapping->host, sc))
613 		return PAGE_KEEP;
614 
615 	if (clear_page_dirty_for_io(page)) {
616 		int res;
617 		struct writeback_control wbc = {
618 			.sync_mode = WB_SYNC_NONE,
619 			.nr_to_write = SWAP_CLUSTER_MAX,
620 			.range_start = 0,
621 			.range_end = LLONG_MAX,
622 			.for_reclaim = 1,
623 		};
624 
625 		SetPageReclaim(page);
626 		res = mapping->a_ops->writepage(page, &wbc);
627 		if (res < 0)
628 			handle_write_error(mapping, page, res);
629 		if (res == AOP_WRITEPAGE_ACTIVATE) {
630 			ClearPageReclaim(page);
631 			return PAGE_ACTIVATE;
632 		}
633 
634 		if (!PageWriteback(page)) {
635 			/* synchronous write or broken a_ops? */
636 			ClearPageReclaim(page);
637 		}
638 		trace_mm_vmscan_writepage(page);
639 		inc_node_page_state(page, NR_VMSCAN_WRITE);
640 		return PAGE_SUCCESS;
641 	}
642 
643 	return PAGE_CLEAN;
644 }
645 
646 /*
647  * Same as remove_mapping, but if the page is removed from the mapping, it
648  * gets returned with a refcount of 0.
649  */
650 static int __remove_mapping(struct address_space *mapping, struct page *page,
651 			    bool reclaimed)
652 {
653 	unsigned long flags;
654 	int refcount;
655 
656 	BUG_ON(!PageLocked(page));
657 	BUG_ON(mapping != page_mapping(page));
658 
659 	spin_lock_irqsave(&mapping->tree_lock, flags);
660 	/*
661 	 * The non racy check for a busy page.
662 	 *
663 	 * Must be careful with the order of the tests. When someone has
664 	 * a ref to the page, it may be possible that they dirty it then
665 	 * drop the reference. So if PageDirty is tested before page_count
666 	 * here, then the following race may occur:
667 	 *
668 	 * get_user_pages(&page);
669 	 * [user mapping goes away]
670 	 * write_to(page);
671 	 *				!PageDirty(page)    [good]
672 	 * SetPageDirty(page);
673 	 * put_page(page);
674 	 *				!page_count(page)   [good, discard it]
675 	 *
676 	 * [oops, our write_to data is lost]
677 	 *
678 	 * Reversing the order of the tests ensures such a situation cannot
679 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
680 	 * load is not satisfied before that of page->_refcount.
681 	 *
682 	 * Note that if SetPageDirty is always performed via set_page_dirty,
683 	 * and thus under tree_lock, then this ordering is not required.
684 	 */
685 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
686 		refcount = 1 + HPAGE_PMD_NR;
687 	else
688 		refcount = 2;
689 	if (!page_ref_freeze(page, refcount))
690 		goto cannot_free;
691 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
692 	if (unlikely(PageDirty(page))) {
693 		page_ref_unfreeze(page, refcount);
694 		goto cannot_free;
695 	}
696 
697 	if (PageSwapCache(page)) {
698 		swp_entry_t swap = { .val = page_private(page) };
699 		mem_cgroup_swapout(page, swap);
700 		__delete_from_swap_cache(page);
701 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
702 		put_swap_page(page, swap);
703 	} else {
704 		void (*freepage)(struct page *);
705 		void *shadow = NULL;
706 
707 		freepage = mapping->a_ops->freepage;
708 		/*
709 		 * Remember a shadow entry for reclaimed file cache in
710 		 * order to detect refaults, thus thrashing, later on.
711 		 *
712 		 * But don't store shadows in an address space that is
713 		 * already exiting.  This is not just an optizimation,
714 		 * inode reclaim needs to empty out the radix tree or
715 		 * the nodes are lost.  Don't plant shadows behind its
716 		 * back.
717 		 *
718 		 * We also don't store shadows for DAX mappings because the
719 		 * only page cache pages found in these are zero pages
720 		 * covering holes, and because we don't want to mix DAX
721 		 * exceptional entries and shadow exceptional entries in the
722 		 * same page_tree.
723 		 */
724 		if (reclaimed && page_is_file_cache(page) &&
725 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
726 			shadow = workingset_eviction(mapping, page);
727 		__delete_from_page_cache(page, shadow);
728 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 
730 		if (freepage != NULL)
731 			freepage(page);
732 	}
733 
734 	return 1;
735 
736 cannot_free:
737 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 	return 0;
739 }
740 
741 /*
742  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
743  * someone else has a ref on the page, abort and return 0.  If it was
744  * successfully detached, return 1.  Assumes the caller has a single ref on
745  * this page.
746  */
747 int remove_mapping(struct address_space *mapping, struct page *page)
748 {
749 	if (__remove_mapping(mapping, page, false)) {
750 		/*
751 		 * Unfreezing the refcount with 1 rather than 2 effectively
752 		 * drops the pagecache ref for us without requiring another
753 		 * atomic operation.
754 		 */
755 		page_ref_unfreeze(page, 1);
756 		return 1;
757 	}
758 	return 0;
759 }
760 
761 /**
762  * putback_lru_page - put previously isolated page onto appropriate LRU list
763  * @page: page to be put back to appropriate lru list
764  *
765  * Add previously isolated @page to appropriate LRU list.
766  * Page may still be unevictable for other reasons.
767  *
768  * lru_lock must not be held, interrupts must be enabled.
769  */
770 void putback_lru_page(struct page *page)
771 {
772 	bool is_unevictable;
773 	int was_unevictable = PageUnevictable(page);
774 
775 	VM_BUG_ON_PAGE(PageLRU(page), page);
776 
777 redo:
778 	ClearPageUnevictable(page);
779 
780 	if (page_evictable(page)) {
781 		/*
782 		 * For evictable pages, we can use the cache.
783 		 * In event of a race, worst case is we end up with an
784 		 * unevictable page on [in]active list.
785 		 * We know how to handle that.
786 		 */
787 		is_unevictable = false;
788 		lru_cache_add(page);
789 	} else {
790 		/*
791 		 * Put unevictable pages directly on zone's unevictable
792 		 * list.
793 		 */
794 		is_unevictable = true;
795 		add_page_to_unevictable_list(page);
796 		/*
797 		 * When racing with an mlock or AS_UNEVICTABLE clearing
798 		 * (page is unlocked) make sure that if the other thread
799 		 * does not observe our setting of PG_lru and fails
800 		 * isolation/check_move_unevictable_pages,
801 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
802 		 * the page back to the evictable list.
803 		 *
804 		 * The other side is TestClearPageMlocked() or shmem_lock().
805 		 */
806 		smp_mb();
807 	}
808 
809 	/*
810 	 * page's status can change while we move it among lru. If an evictable
811 	 * page is on unevictable list, it never be freed. To avoid that,
812 	 * check after we added it to the list, again.
813 	 */
814 	if (is_unevictable && page_evictable(page)) {
815 		if (!isolate_lru_page(page)) {
816 			put_page(page);
817 			goto redo;
818 		}
819 		/* This means someone else dropped this page from LRU
820 		 * So, it will be freed or putback to LRU again. There is
821 		 * nothing to do here.
822 		 */
823 	}
824 
825 	if (was_unevictable && !is_unevictable)
826 		count_vm_event(UNEVICTABLE_PGRESCUED);
827 	else if (!was_unevictable && is_unevictable)
828 		count_vm_event(UNEVICTABLE_PGCULLED);
829 
830 	put_page(page);		/* drop ref from isolate */
831 }
832 
833 enum page_references {
834 	PAGEREF_RECLAIM,
835 	PAGEREF_RECLAIM_CLEAN,
836 	PAGEREF_KEEP,
837 	PAGEREF_ACTIVATE,
838 };
839 
840 static enum page_references page_check_references(struct page *page,
841 						  struct scan_control *sc)
842 {
843 	int referenced_ptes, referenced_page;
844 	unsigned long vm_flags;
845 
846 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
847 					  &vm_flags);
848 	referenced_page = TestClearPageReferenced(page);
849 
850 	/*
851 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
852 	 * move the page to the unevictable list.
853 	 */
854 	if (vm_flags & VM_LOCKED)
855 		return PAGEREF_RECLAIM;
856 
857 	if (referenced_ptes) {
858 		if (PageSwapBacked(page))
859 			return PAGEREF_ACTIVATE;
860 		/*
861 		 * All mapped pages start out with page table
862 		 * references from the instantiating fault, so we need
863 		 * to look twice if a mapped file page is used more
864 		 * than once.
865 		 *
866 		 * Mark it and spare it for another trip around the
867 		 * inactive list.  Another page table reference will
868 		 * lead to its activation.
869 		 *
870 		 * Note: the mark is set for activated pages as well
871 		 * so that recently deactivated but used pages are
872 		 * quickly recovered.
873 		 */
874 		SetPageReferenced(page);
875 
876 		if (referenced_page || referenced_ptes > 1)
877 			return PAGEREF_ACTIVATE;
878 
879 		/*
880 		 * Activate file-backed executable pages after first usage.
881 		 */
882 		if (vm_flags & VM_EXEC)
883 			return PAGEREF_ACTIVATE;
884 
885 		return PAGEREF_KEEP;
886 	}
887 
888 	/* Reclaim if clean, defer dirty pages to writeback */
889 	if (referenced_page && !PageSwapBacked(page))
890 		return PAGEREF_RECLAIM_CLEAN;
891 
892 	return PAGEREF_RECLAIM;
893 }
894 
895 /* Check if a page is dirty or under writeback */
896 static void page_check_dirty_writeback(struct page *page,
897 				       bool *dirty, bool *writeback)
898 {
899 	struct address_space *mapping;
900 
901 	/*
902 	 * Anonymous pages are not handled by flushers and must be written
903 	 * from reclaim context. Do not stall reclaim based on them
904 	 */
905 	if (!page_is_file_cache(page) ||
906 	    (PageAnon(page) && !PageSwapBacked(page))) {
907 		*dirty = false;
908 		*writeback = false;
909 		return;
910 	}
911 
912 	/* By default assume that the page flags are accurate */
913 	*dirty = PageDirty(page);
914 	*writeback = PageWriteback(page);
915 
916 	/* Verify dirty/writeback state if the filesystem supports it */
917 	if (!page_has_private(page))
918 		return;
919 
920 	mapping = page_mapping(page);
921 	if (mapping && mapping->a_ops->is_dirty_writeback)
922 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
923 }
924 
925 struct reclaim_stat {
926 	unsigned nr_dirty;
927 	unsigned nr_unqueued_dirty;
928 	unsigned nr_congested;
929 	unsigned nr_writeback;
930 	unsigned nr_immediate;
931 	unsigned nr_activate;
932 	unsigned nr_ref_keep;
933 	unsigned nr_unmap_fail;
934 };
935 
936 /*
937  * shrink_page_list() returns the number of reclaimed pages
938  */
939 static unsigned long shrink_page_list(struct list_head *page_list,
940 				      struct pglist_data *pgdat,
941 				      struct scan_control *sc,
942 				      enum ttu_flags ttu_flags,
943 				      struct reclaim_stat *stat,
944 				      bool force_reclaim)
945 {
946 	LIST_HEAD(ret_pages);
947 	LIST_HEAD(free_pages);
948 	int pgactivate = 0;
949 	unsigned nr_unqueued_dirty = 0;
950 	unsigned nr_dirty = 0;
951 	unsigned nr_congested = 0;
952 	unsigned nr_reclaimed = 0;
953 	unsigned nr_writeback = 0;
954 	unsigned nr_immediate = 0;
955 	unsigned nr_ref_keep = 0;
956 	unsigned nr_unmap_fail = 0;
957 
958 	cond_resched();
959 
960 	while (!list_empty(page_list)) {
961 		struct address_space *mapping;
962 		struct page *page;
963 		int may_enter_fs;
964 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
965 		bool dirty, writeback;
966 
967 		cond_resched();
968 
969 		page = lru_to_page(page_list);
970 		list_del(&page->lru);
971 
972 		if (!trylock_page(page))
973 			goto keep;
974 
975 		VM_BUG_ON_PAGE(PageActive(page), page);
976 
977 		sc->nr_scanned++;
978 
979 		if (unlikely(!page_evictable(page)))
980 			goto activate_locked;
981 
982 		if (!sc->may_unmap && page_mapped(page))
983 			goto keep_locked;
984 
985 		/* Double the slab pressure for mapped and swapcache pages */
986 		if ((page_mapped(page) || PageSwapCache(page)) &&
987 		    !(PageAnon(page) && !PageSwapBacked(page)))
988 			sc->nr_scanned++;
989 
990 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
991 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
992 
993 		/*
994 		 * The number of dirty pages determines if a zone is marked
995 		 * reclaim_congested which affects wait_iff_congested. kswapd
996 		 * will stall and start writing pages if the tail of the LRU
997 		 * is all dirty unqueued pages.
998 		 */
999 		page_check_dirty_writeback(page, &dirty, &writeback);
1000 		if (dirty || writeback)
1001 			nr_dirty++;
1002 
1003 		if (dirty && !writeback)
1004 			nr_unqueued_dirty++;
1005 
1006 		/*
1007 		 * Treat this page as congested if the underlying BDI is or if
1008 		 * pages are cycling through the LRU so quickly that the
1009 		 * pages marked for immediate reclaim are making it to the
1010 		 * end of the LRU a second time.
1011 		 */
1012 		mapping = page_mapping(page);
1013 		if (((dirty || writeback) && mapping &&
1014 		     inode_write_congested(mapping->host)) ||
1015 		    (writeback && PageReclaim(page)))
1016 			nr_congested++;
1017 
1018 		/*
1019 		 * If a page at the tail of the LRU is under writeback, there
1020 		 * are three cases to consider.
1021 		 *
1022 		 * 1) If reclaim is encountering an excessive number of pages
1023 		 *    under writeback and this page is both under writeback and
1024 		 *    PageReclaim then it indicates that pages are being queued
1025 		 *    for IO but are being recycled through the LRU before the
1026 		 *    IO can complete. Waiting on the page itself risks an
1027 		 *    indefinite stall if it is impossible to writeback the
1028 		 *    page due to IO error or disconnected storage so instead
1029 		 *    note that the LRU is being scanned too quickly and the
1030 		 *    caller can stall after page list has been processed.
1031 		 *
1032 		 * 2) Global or new memcg reclaim encounters a page that is
1033 		 *    not marked for immediate reclaim, or the caller does not
1034 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1035 		 *    not to fs). In this case mark the page for immediate
1036 		 *    reclaim and continue scanning.
1037 		 *
1038 		 *    Require may_enter_fs because we would wait on fs, which
1039 		 *    may not have submitted IO yet. And the loop driver might
1040 		 *    enter reclaim, and deadlock if it waits on a page for
1041 		 *    which it is needed to do the write (loop masks off
1042 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1043 		 *    would probably show more reasons.
1044 		 *
1045 		 * 3) Legacy memcg encounters a page that is already marked
1046 		 *    PageReclaim. memcg does not have any dirty pages
1047 		 *    throttling so we could easily OOM just because too many
1048 		 *    pages are in writeback and there is nothing else to
1049 		 *    reclaim. Wait for the writeback to complete.
1050 		 *
1051 		 * In cases 1) and 2) we activate the pages to get them out of
1052 		 * the way while we continue scanning for clean pages on the
1053 		 * inactive list and refilling from the active list. The
1054 		 * observation here is that waiting for disk writes is more
1055 		 * expensive than potentially causing reloads down the line.
1056 		 * Since they're marked for immediate reclaim, they won't put
1057 		 * memory pressure on the cache working set any longer than it
1058 		 * takes to write them to disk.
1059 		 */
1060 		if (PageWriteback(page)) {
1061 			/* Case 1 above */
1062 			if (current_is_kswapd() &&
1063 			    PageReclaim(page) &&
1064 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1065 				nr_immediate++;
1066 				goto activate_locked;
1067 
1068 			/* Case 2 above */
1069 			} else if (sane_reclaim(sc) ||
1070 			    !PageReclaim(page) || !may_enter_fs) {
1071 				/*
1072 				 * This is slightly racy - end_page_writeback()
1073 				 * might have just cleared PageReclaim, then
1074 				 * setting PageReclaim here end up interpreted
1075 				 * as PageReadahead - but that does not matter
1076 				 * enough to care.  What we do want is for this
1077 				 * page to have PageReclaim set next time memcg
1078 				 * reclaim reaches the tests above, so it will
1079 				 * then wait_on_page_writeback() to avoid OOM;
1080 				 * and it's also appropriate in global reclaim.
1081 				 */
1082 				SetPageReclaim(page);
1083 				nr_writeback++;
1084 				goto activate_locked;
1085 
1086 			/* Case 3 above */
1087 			} else {
1088 				unlock_page(page);
1089 				wait_on_page_writeback(page);
1090 				/* then go back and try same page again */
1091 				list_add_tail(&page->lru, page_list);
1092 				continue;
1093 			}
1094 		}
1095 
1096 		if (!force_reclaim)
1097 			references = page_check_references(page, sc);
1098 
1099 		switch (references) {
1100 		case PAGEREF_ACTIVATE:
1101 			goto activate_locked;
1102 		case PAGEREF_KEEP:
1103 			nr_ref_keep++;
1104 			goto keep_locked;
1105 		case PAGEREF_RECLAIM:
1106 		case PAGEREF_RECLAIM_CLEAN:
1107 			; /* try to reclaim the page below */
1108 		}
1109 
1110 		/*
1111 		 * Anonymous process memory has backing store?
1112 		 * Try to allocate it some swap space here.
1113 		 * Lazyfree page could be freed directly
1114 		 */
1115 		if (PageAnon(page) && PageSwapBacked(page)) {
1116 			if (!PageSwapCache(page)) {
1117 				if (!(sc->gfp_mask & __GFP_IO))
1118 					goto keep_locked;
1119 				if (PageTransHuge(page)) {
1120 					/* cannot split THP, skip it */
1121 					if (!can_split_huge_page(page, NULL))
1122 						goto activate_locked;
1123 					/*
1124 					 * Split pages without a PMD map right
1125 					 * away. Chances are some or all of the
1126 					 * tail pages can be freed without IO.
1127 					 */
1128 					if (!compound_mapcount(page) &&
1129 					    split_huge_page_to_list(page,
1130 								    page_list))
1131 						goto activate_locked;
1132 				}
1133 				if (!add_to_swap(page)) {
1134 					if (!PageTransHuge(page))
1135 						goto activate_locked;
1136 					/* Fallback to swap normal pages */
1137 					if (split_huge_page_to_list(page,
1138 								    page_list))
1139 						goto activate_locked;
1140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1141 					count_vm_event(THP_SWPOUT_FALLBACK);
1142 #endif
1143 					if (!add_to_swap(page))
1144 						goto activate_locked;
1145 				}
1146 
1147 				may_enter_fs = 1;
1148 
1149 				/* Adding to swap updated mapping */
1150 				mapping = page_mapping(page);
1151 			}
1152 		} else if (unlikely(PageTransHuge(page))) {
1153 			/* Split file THP */
1154 			if (split_huge_page_to_list(page, page_list))
1155 				goto keep_locked;
1156 		}
1157 
1158 		/*
1159 		 * The page is mapped into the page tables of one or more
1160 		 * processes. Try to unmap it here.
1161 		 */
1162 		if (page_mapped(page)) {
1163 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1164 
1165 			if (unlikely(PageTransHuge(page)))
1166 				flags |= TTU_SPLIT_HUGE_PMD;
1167 			if (!try_to_unmap(page, flags)) {
1168 				nr_unmap_fail++;
1169 				goto activate_locked;
1170 			}
1171 		}
1172 
1173 		if (PageDirty(page)) {
1174 			/*
1175 			 * Only kswapd can writeback filesystem pages
1176 			 * to avoid risk of stack overflow. But avoid
1177 			 * injecting inefficient single-page IO into
1178 			 * flusher writeback as much as possible: only
1179 			 * write pages when we've encountered many
1180 			 * dirty pages, and when we've already scanned
1181 			 * the rest of the LRU for clean pages and see
1182 			 * the same dirty pages again (PageReclaim).
1183 			 */
1184 			if (page_is_file_cache(page) &&
1185 			    (!current_is_kswapd() || !PageReclaim(page) ||
1186 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1187 				/*
1188 				 * Immediately reclaim when written back.
1189 				 * Similar in principal to deactivate_page()
1190 				 * except we already have the page isolated
1191 				 * and know it's dirty
1192 				 */
1193 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1194 				SetPageReclaim(page);
1195 
1196 				goto activate_locked;
1197 			}
1198 
1199 			if (references == PAGEREF_RECLAIM_CLEAN)
1200 				goto keep_locked;
1201 			if (!may_enter_fs)
1202 				goto keep_locked;
1203 			if (!sc->may_writepage)
1204 				goto keep_locked;
1205 
1206 			/*
1207 			 * Page is dirty. Flush the TLB if a writable entry
1208 			 * potentially exists to avoid CPU writes after IO
1209 			 * starts and then write it out here.
1210 			 */
1211 			try_to_unmap_flush_dirty();
1212 			switch (pageout(page, mapping, sc)) {
1213 			case PAGE_KEEP:
1214 				goto keep_locked;
1215 			case PAGE_ACTIVATE:
1216 				goto activate_locked;
1217 			case PAGE_SUCCESS:
1218 				if (PageWriteback(page))
1219 					goto keep;
1220 				if (PageDirty(page))
1221 					goto keep;
1222 
1223 				/*
1224 				 * A synchronous write - probably a ramdisk.  Go
1225 				 * ahead and try to reclaim the page.
1226 				 */
1227 				if (!trylock_page(page))
1228 					goto keep;
1229 				if (PageDirty(page) || PageWriteback(page))
1230 					goto keep_locked;
1231 				mapping = page_mapping(page);
1232 			case PAGE_CLEAN:
1233 				; /* try to free the page below */
1234 			}
1235 		}
1236 
1237 		/*
1238 		 * If the page has buffers, try to free the buffer mappings
1239 		 * associated with this page. If we succeed we try to free
1240 		 * the page as well.
1241 		 *
1242 		 * We do this even if the page is PageDirty().
1243 		 * try_to_release_page() does not perform I/O, but it is
1244 		 * possible for a page to have PageDirty set, but it is actually
1245 		 * clean (all its buffers are clean).  This happens if the
1246 		 * buffers were written out directly, with submit_bh(). ext3
1247 		 * will do this, as well as the blockdev mapping.
1248 		 * try_to_release_page() will discover that cleanness and will
1249 		 * drop the buffers and mark the page clean - it can be freed.
1250 		 *
1251 		 * Rarely, pages can have buffers and no ->mapping.  These are
1252 		 * the pages which were not successfully invalidated in
1253 		 * truncate_complete_page().  We try to drop those buffers here
1254 		 * and if that worked, and the page is no longer mapped into
1255 		 * process address space (page_count == 1) it can be freed.
1256 		 * Otherwise, leave the page on the LRU so it is swappable.
1257 		 */
1258 		if (page_has_private(page)) {
1259 			if (!try_to_release_page(page, sc->gfp_mask))
1260 				goto activate_locked;
1261 			if (!mapping && page_count(page) == 1) {
1262 				unlock_page(page);
1263 				if (put_page_testzero(page))
1264 					goto free_it;
1265 				else {
1266 					/*
1267 					 * rare race with speculative reference.
1268 					 * the speculative reference will free
1269 					 * this page shortly, so we may
1270 					 * increment nr_reclaimed here (and
1271 					 * leave it off the LRU).
1272 					 */
1273 					nr_reclaimed++;
1274 					continue;
1275 				}
1276 			}
1277 		}
1278 
1279 		if (PageAnon(page) && !PageSwapBacked(page)) {
1280 			/* follow __remove_mapping for reference */
1281 			if (!page_ref_freeze(page, 1))
1282 				goto keep_locked;
1283 			if (PageDirty(page)) {
1284 				page_ref_unfreeze(page, 1);
1285 				goto keep_locked;
1286 			}
1287 
1288 			count_vm_event(PGLAZYFREED);
1289 			count_memcg_page_event(page, PGLAZYFREED);
1290 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1291 			goto keep_locked;
1292 		/*
1293 		 * At this point, we have no other references and there is
1294 		 * no way to pick any more up (removed from LRU, removed
1295 		 * from pagecache). Can use non-atomic bitops now (and
1296 		 * we obviously don't have to worry about waking up a process
1297 		 * waiting on the page lock, because there are no references.
1298 		 */
1299 		__ClearPageLocked(page);
1300 free_it:
1301 		nr_reclaimed++;
1302 
1303 		/*
1304 		 * Is there need to periodically free_page_list? It would
1305 		 * appear not as the counts should be low
1306 		 */
1307 		if (unlikely(PageTransHuge(page))) {
1308 			mem_cgroup_uncharge(page);
1309 			(*get_compound_page_dtor(page))(page);
1310 		} else
1311 			list_add(&page->lru, &free_pages);
1312 		continue;
1313 
1314 activate_locked:
1315 		/* Not a candidate for swapping, so reclaim swap space. */
1316 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1317 						PageMlocked(page)))
1318 			try_to_free_swap(page);
1319 		VM_BUG_ON_PAGE(PageActive(page), page);
1320 		if (!PageMlocked(page)) {
1321 			SetPageActive(page);
1322 			pgactivate++;
1323 			count_memcg_page_event(page, PGACTIVATE);
1324 		}
1325 keep_locked:
1326 		unlock_page(page);
1327 keep:
1328 		list_add(&page->lru, &ret_pages);
1329 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1330 	}
1331 
1332 	mem_cgroup_uncharge_list(&free_pages);
1333 	try_to_unmap_flush();
1334 	free_unref_page_list(&free_pages);
1335 
1336 	list_splice(&ret_pages, page_list);
1337 	count_vm_events(PGACTIVATE, pgactivate);
1338 
1339 	if (stat) {
1340 		stat->nr_dirty = nr_dirty;
1341 		stat->nr_congested = nr_congested;
1342 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1343 		stat->nr_writeback = nr_writeback;
1344 		stat->nr_immediate = nr_immediate;
1345 		stat->nr_activate = pgactivate;
1346 		stat->nr_ref_keep = nr_ref_keep;
1347 		stat->nr_unmap_fail = nr_unmap_fail;
1348 	}
1349 	return nr_reclaimed;
1350 }
1351 
1352 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1353 					    struct list_head *page_list)
1354 {
1355 	struct scan_control sc = {
1356 		.gfp_mask = GFP_KERNEL,
1357 		.priority = DEF_PRIORITY,
1358 		.may_unmap = 1,
1359 	};
1360 	unsigned long ret;
1361 	struct page *page, *next;
1362 	LIST_HEAD(clean_pages);
1363 
1364 	list_for_each_entry_safe(page, next, page_list, lru) {
1365 		if (page_is_file_cache(page) && !PageDirty(page) &&
1366 		    !__PageMovable(page)) {
1367 			ClearPageActive(page);
1368 			list_move(&page->lru, &clean_pages);
1369 		}
1370 	}
1371 
1372 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1373 			TTU_IGNORE_ACCESS, NULL, true);
1374 	list_splice(&clean_pages, page_list);
1375 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1376 	return ret;
1377 }
1378 
1379 /*
1380  * Attempt to remove the specified page from its LRU.  Only take this page
1381  * if it is of the appropriate PageActive status.  Pages which are being
1382  * freed elsewhere are also ignored.
1383  *
1384  * page:	page to consider
1385  * mode:	one of the LRU isolation modes defined above
1386  *
1387  * returns 0 on success, -ve errno on failure.
1388  */
1389 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1390 {
1391 	int ret = -EINVAL;
1392 
1393 	/* Only take pages on the LRU. */
1394 	if (!PageLRU(page))
1395 		return ret;
1396 
1397 	/* Compaction should not handle unevictable pages but CMA can do so */
1398 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1399 		return ret;
1400 
1401 	ret = -EBUSY;
1402 
1403 	/*
1404 	 * To minimise LRU disruption, the caller can indicate that it only
1405 	 * wants to isolate pages it will be able to operate on without
1406 	 * blocking - clean pages for the most part.
1407 	 *
1408 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1409 	 * that it is possible to migrate without blocking
1410 	 */
1411 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1412 		/* All the caller can do on PageWriteback is block */
1413 		if (PageWriteback(page))
1414 			return ret;
1415 
1416 		if (PageDirty(page)) {
1417 			struct address_space *mapping;
1418 			bool migrate_dirty;
1419 
1420 			/*
1421 			 * Only pages without mappings or that have a
1422 			 * ->migratepage callback are possible to migrate
1423 			 * without blocking. However, we can be racing with
1424 			 * truncation so it's necessary to lock the page
1425 			 * to stabilise the mapping as truncation holds
1426 			 * the page lock until after the page is removed
1427 			 * from the page cache.
1428 			 */
1429 			if (!trylock_page(page))
1430 				return ret;
1431 
1432 			mapping = page_mapping(page);
1433 			migrate_dirty = mapping && mapping->a_ops->migratepage;
1434 			unlock_page(page);
1435 			if (!migrate_dirty)
1436 				return ret;
1437 		}
1438 	}
1439 
1440 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1441 		return ret;
1442 
1443 	if (likely(get_page_unless_zero(page))) {
1444 		/*
1445 		 * Be careful not to clear PageLRU until after we're
1446 		 * sure the page is not being freed elsewhere -- the
1447 		 * page release code relies on it.
1448 		 */
1449 		ClearPageLRU(page);
1450 		ret = 0;
1451 	}
1452 
1453 	return ret;
1454 }
1455 
1456 
1457 /*
1458  * Update LRU sizes after isolating pages. The LRU size updates must
1459  * be complete before mem_cgroup_update_lru_size due to a santity check.
1460  */
1461 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1462 			enum lru_list lru, unsigned long *nr_zone_taken)
1463 {
1464 	int zid;
1465 
1466 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1467 		if (!nr_zone_taken[zid])
1468 			continue;
1469 
1470 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1471 #ifdef CONFIG_MEMCG
1472 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1473 #endif
1474 	}
1475 
1476 }
1477 
1478 /*
1479  * zone_lru_lock is heavily contended.  Some of the functions that
1480  * shrink the lists perform better by taking out a batch of pages
1481  * and working on them outside the LRU lock.
1482  *
1483  * For pagecache intensive workloads, this function is the hottest
1484  * spot in the kernel (apart from copy_*_user functions).
1485  *
1486  * Appropriate locks must be held before calling this function.
1487  *
1488  * @nr_to_scan:	The number of eligible pages to look through on the list.
1489  * @lruvec:	The LRU vector to pull pages from.
1490  * @dst:	The temp list to put pages on to.
1491  * @nr_scanned:	The number of pages that were scanned.
1492  * @sc:		The scan_control struct for this reclaim session
1493  * @mode:	One of the LRU isolation modes
1494  * @lru:	LRU list id for isolating
1495  *
1496  * returns how many pages were moved onto *@dst.
1497  */
1498 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1499 		struct lruvec *lruvec, struct list_head *dst,
1500 		unsigned long *nr_scanned, struct scan_control *sc,
1501 		isolate_mode_t mode, enum lru_list lru)
1502 {
1503 	struct list_head *src = &lruvec->lists[lru];
1504 	unsigned long nr_taken = 0;
1505 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1506 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1507 	unsigned long skipped = 0;
1508 	unsigned long scan, total_scan, nr_pages;
1509 	LIST_HEAD(pages_skipped);
1510 
1511 	scan = 0;
1512 	for (total_scan = 0;
1513 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1514 	     total_scan++) {
1515 		struct page *page;
1516 
1517 		page = lru_to_page(src);
1518 		prefetchw_prev_lru_page(page, src, flags);
1519 
1520 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1521 
1522 		if (page_zonenum(page) > sc->reclaim_idx) {
1523 			list_move(&page->lru, &pages_skipped);
1524 			nr_skipped[page_zonenum(page)]++;
1525 			continue;
1526 		}
1527 
1528 		/*
1529 		 * Do not count skipped pages because that makes the function
1530 		 * return with no isolated pages if the LRU mostly contains
1531 		 * ineligible pages.  This causes the VM to not reclaim any
1532 		 * pages, triggering a premature OOM.
1533 		 */
1534 		scan++;
1535 		switch (__isolate_lru_page(page, mode)) {
1536 		case 0:
1537 			nr_pages = hpage_nr_pages(page);
1538 			nr_taken += nr_pages;
1539 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1540 			list_move(&page->lru, dst);
1541 			break;
1542 
1543 		case -EBUSY:
1544 			/* else it is being freed elsewhere */
1545 			list_move(&page->lru, src);
1546 			continue;
1547 
1548 		default:
1549 			BUG();
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Splice any skipped pages to the start of the LRU list. Note that
1555 	 * this disrupts the LRU order when reclaiming for lower zones but
1556 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1557 	 * scanning would soon rescan the same pages to skip and put the
1558 	 * system at risk of premature OOM.
1559 	 */
1560 	if (!list_empty(&pages_skipped)) {
1561 		int zid;
1562 
1563 		list_splice(&pages_skipped, src);
1564 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565 			if (!nr_skipped[zid])
1566 				continue;
1567 
1568 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1569 			skipped += nr_skipped[zid];
1570 		}
1571 	}
1572 	*nr_scanned = total_scan;
1573 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1574 				    total_scan, skipped, nr_taken, mode, lru);
1575 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1576 	return nr_taken;
1577 }
1578 
1579 /**
1580  * isolate_lru_page - tries to isolate a page from its LRU list
1581  * @page: page to isolate from its LRU list
1582  *
1583  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1584  * vmstat statistic corresponding to whatever LRU list the page was on.
1585  *
1586  * Returns 0 if the page was removed from an LRU list.
1587  * Returns -EBUSY if the page was not on an LRU list.
1588  *
1589  * The returned page will have PageLRU() cleared.  If it was found on
1590  * the active list, it will have PageActive set.  If it was found on
1591  * the unevictable list, it will have the PageUnevictable bit set. That flag
1592  * may need to be cleared by the caller before letting the page go.
1593  *
1594  * The vmstat statistic corresponding to the list on which the page was
1595  * found will be decremented.
1596  *
1597  * Restrictions:
1598  *
1599  * (1) Must be called with an elevated refcount on the page. This is a
1600  *     fundamentnal difference from isolate_lru_pages (which is called
1601  *     without a stable reference).
1602  * (2) the lru_lock must not be held.
1603  * (3) interrupts must be enabled.
1604  */
1605 int isolate_lru_page(struct page *page)
1606 {
1607 	int ret = -EBUSY;
1608 
1609 	VM_BUG_ON_PAGE(!page_count(page), page);
1610 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1611 
1612 	if (PageLRU(page)) {
1613 		struct zone *zone = page_zone(page);
1614 		struct lruvec *lruvec;
1615 
1616 		spin_lock_irq(zone_lru_lock(zone));
1617 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1618 		if (PageLRU(page)) {
1619 			int lru = page_lru(page);
1620 			get_page(page);
1621 			ClearPageLRU(page);
1622 			del_page_from_lru_list(page, lruvec, lru);
1623 			ret = 0;
1624 		}
1625 		spin_unlock_irq(zone_lru_lock(zone));
1626 	}
1627 	return ret;
1628 }
1629 
1630 /*
1631  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1632  * then get resheduled. When there are massive number of tasks doing page
1633  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1634  * the LRU list will go small and be scanned faster than necessary, leading to
1635  * unnecessary swapping, thrashing and OOM.
1636  */
1637 static int too_many_isolated(struct pglist_data *pgdat, int file,
1638 		struct scan_control *sc)
1639 {
1640 	unsigned long inactive, isolated;
1641 
1642 	if (current_is_kswapd())
1643 		return 0;
1644 
1645 	if (!sane_reclaim(sc))
1646 		return 0;
1647 
1648 	if (file) {
1649 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1650 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1651 	} else {
1652 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1653 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1654 	}
1655 
1656 	/*
1657 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1658 	 * won't get blocked by normal direct-reclaimers, forming a circular
1659 	 * deadlock.
1660 	 */
1661 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1662 		inactive >>= 3;
1663 
1664 	return isolated > inactive;
1665 }
1666 
1667 static noinline_for_stack void
1668 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1669 {
1670 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1671 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1672 	LIST_HEAD(pages_to_free);
1673 
1674 	/*
1675 	 * Put back any unfreeable pages.
1676 	 */
1677 	while (!list_empty(page_list)) {
1678 		struct page *page = lru_to_page(page_list);
1679 		int lru;
1680 
1681 		VM_BUG_ON_PAGE(PageLRU(page), page);
1682 		list_del(&page->lru);
1683 		if (unlikely(!page_evictable(page))) {
1684 			spin_unlock_irq(&pgdat->lru_lock);
1685 			putback_lru_page(page);
1686 			spin_lock_irq(&pgdat->lru_lock);
1687 			continue;
1688 		}
1689 
1690 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1691 
1692 		SetPageLRU(page);
1693 		lru = page_lru(page);
1694 		add_page_to_lru_list(page, lruvec, lru);
1695 
1696 		if (is_active_lru(lru)) {
1697 			int file = is_file_lru(lru);
1698 			int numpages = hpage_nr_pages(page);
1699 			reclaim_stat->recent_rotated[file] += numpages;
1700 		}
1701 		if (put_page_testzero(page)) {
1702 			__ClearPageLRU(page);
1703 			__ClearPageActive(page);
1704 			del_page_from_lru_list(page, lruvec, lru);
1705 
1706 			if (unlikely(PageCompound(page))) {
1707 				spin_unlock_irq(&pgdat->lru_lock);
1708 				mem_cgroup_uncharge(page);
1709 				(*get_compound_page_dtor(page))(page);
1710 				spin_lock_irq(&pgdat->lru_lock);
1711 			} else
1712 				list_add(&page->lru, &pages_to_free);
1713 		}
1714 	}
1715 
1716 	/*
1717 	 * To save our caller's stack, now use input list for pages to free.
1718 	 */
1719 	list_splice(&pages_to_free, page_list);
1720 }
1721 
1722 /*
1723  * If a kernel thread (such as nfsd for loop-back mounts) services
1724  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1725  * In that case we should only throttle if the backing device it is
1726  * writing to is congested.  In other cases it is safe to throttle.
1727  */
1728 static int current_may_throttle(void)
1729 {
1730 	return !(current->flags & PF_LESS_THROTTLE) ||
1731 		current->backing_dev_info == NULL ||
1732 		bdi_write_congested(current->backing_dev_info);
1733 }
1734 
1735 /*
1736  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1737  * of reclaimed pages
1738  */
1739 static noinline_for_stack unsigned long
1740 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1741 		     struct scan_control *sc, enum lru_list lru)
1742 {
1743 	LIST_HEAD(page_list);
1744 	unsigned long nr_scanned;
1745 	unsigned long nr_reclaimed = 0;
1746 	unsigned long nr_taken;
1747 	struct reclaim_stat stat = {};
1748 	isolate_mode_t isolate_mode = 0;
1749 	int file = is_file_lru(lru);
1750 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1751 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1752 	bool stalled = false;
1753 
1754 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1755 		if (stalled)
1756 			return 0;
1757 
1758 		/* wait a bit for the reclaimer. */
1759 		msleep(100);
1760 		stalled = true;
1761 
1762 		/* We are about to die and free our memory. Return now. */
1763 		if (fatal_signal_pending(current))
1764 			return SWAP_CLUSTER_MAX;
1765 	}
1766 
1767 	lru_add_drain();
1768 
1769 	if (!sc->may_unmap)
1770 		isolate_mode |= ISOLATE_UNMAPPED;
1771 
1772 	spin_lock_irq(&pgdat->lru_lock);
1773 
1774 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1775 				     &nr_scanned, sc, isolate_mode, lru);
1776 
1777 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1778 	reclaim_stat->recent_scanned[file] += nr_taken;
1779 
1780 	if (current_is_kswapd()) {
1781 		if (global_reclaim(sc))
1782 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1783 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1784 				   nr_scanned);
1785 	} else {
1786 		if (global_reclaim(sc))
1787 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1788 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1789 				   nr_scanned);
1790 	}
1791 	spin_unlock_irq(&pgdat->lru_lock);
1792 
1793 	if (nr_taken == 0)
1794 		return 0;
1795 
1796 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1797 				&stat, false);
1798 
1799 	spin_lock_irq(&pgdat->lru_lock);
1800 
1801 	if (current_is_kswapd()) {
1802 		if (global_reclaim(sc))
1803 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1804 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1805 				   nr_reclaimed);
1806 	} else {
1807 		if (global_reclaim(sc))
1808 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1809 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1810 				   nr_reclaimed);
1811 	}
1812 
1813 	putback_inactive_pages(lruvec, &page_list);
1814 
1815 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1816 
1817 	spin_unlock_irq(&pgdat->lru_lock);
1818 
1819 	mem_cgroup_uncharge_list(&page_list);
1820 	free_unref_page_list(&page_list);
1821 
1822 	/*
1823 	 * If reclaim is isolating dirty pages under writeback, it implies
1824 	 * that the long-lived page allocation rate is exceeding the page
1825 	 * laundering rate. Either the global limits are not being effective
1826 	 * at throttling processes due to the page distribution throughout
1827 	 * zones or there is heavy usage of a slow backing device. The
1828 	 * only option is to throttle from reclaim context which is not ideal
1829 	 * as there is no guarantee the dirtying process is throttled in the
1830 	 * same way balance_dirty_pages() manages.
1831 	 *
1832 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1833 	 * of pages under pages flagged for immediate reclaim and stall if any
1834 	 * are encountered in the nr_immediate check below.
1835 	 */
1836 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1837 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1838 
1839 	/*
1840 	 * Legacy memcg will stall in page writeback so avoid forcibly
1841 	 * stalling here.
1842 	 */
1843 	if (sane_reclaim(sc)) {
1844 		/*
1845 		 * Tag a zone as congested if all the dirty pages scanned were
1846 		 * backed by a congested BDI and wait_iff_congested will stall.
1847 		 */
1848 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1849 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1850 
1851 		/*
1852 		 * If dirty pages are scanned that are not queued for IO, it
1853 		 * implies that flushers are not doing their job. This can
1854 		 * happen when memory pressure pushes dirty pages to the end of
1855 		 * the LRU before the dirty limits are breached and the dirty
1856 		 * data has expired. It can also happen when the proportion of
1857 		 * dirty pages grows not through writes but through memory
1858 		 * pressure reclaiming all the clean cache. And in some cases,
1859 		 * the flushers simply cannot keep up with the allocation
1860 		 * rate. Nudge the flusher threads in case they are asleep, but
1861 		 * also allow kswapd to start writing pages during reclaim.
1862 		 */
1863 		if (stat.nr_unqueued_dirty == nr_taken) {
1864 			wakeup_flusher_threads(WB_REASON_VMSCAN);
1865 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1866 		}
1867 
1868 		/*
1869 		 * If kswapd scans pages marked marked for immediate
1870 		 * reclaim and under writeback (nr_immediate), it implies
1871 		 * that pages are cycling through the LRU faster than
1872 		 * they are written so also forcibly stall.
1873 		 */
1874 		if (stat.nr_immediate && current_may_throttle())
1875 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1876 	}
1877 
1878 	/*
1879 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1880 	 * is congested. Allow kswapd to continue until it starts encountering
1881 	 * unqueued dirty pages or cycling through the LRU too quickly.
1882 	 */
1883 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1884 	    current_may_throttle())
1885 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1886 
1887 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1888 			nr_scanned, nr_reclaimed,
1889 			stat.nr_dirty,  stat.nr_writeback,
1890 			stat.nr_congested, stat.nr_immediate,
1891 			stat.nr_activate, stat.nr_ref_keep,
1892 			stat.nr_unmap_fail,
1893 			sc->priority, file);
1894 	return nr_reclaimed;
1895 }
1896 
1897 /*
1898  * This moves pages from the active list to the inactive list.
1899  *
1900  * We move them the other way if the page is referenced by one or more
1901  * processes, from rmap.
1902  *
1903  * If the pages are mostly unmapped, the processing is fast and it is
1904  * appropriate to hold zone_lru_lock across the whole operation.  But if
1905  * the pages are mapped, the processing is slow (page_referenced()) so we
1906  * should drop zone_lru_lock around each page.  It's impossible to balance
1907  * this, so instead we remove the pages from the LRU while processing them.
1908  * It is safe to rely on PG_active against the non-LRU pages in here because
1909  * nobody will play with that bit on a non-LRU page.
1910  *
1911  * The downside is that we have to touch page->_refcount against each page.
1912  * But we had to alter page->flags anyway.
1913  *
1914  * Returns the number of pages moved to the given lru.
1915  */
1916 
1917 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1918 				     struct list_head *list,
1919 				     struct list_head *pages_to_free,
1920 				     enum lru_list lru)
1921 {
1922 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923 	struct page *page;
1924 	int nr_pages;
1925 	int nr_moved = 0;
1926 
1927 	while (!list_empty(list)) {
1928 		page = lru_to_page(list);
1929 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1930 
1931 		VM_BUG_ON_PAGE(PageLRU(page), page);
1932 		SetPageLRU(page);
1933 
1934 		nr_pages = hpage_nr_pages(page);
1935 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1936 		list_move(&page->lru, &lruvec->lists[lru]);
1937 
1938 		if (put_page_testzero(page)) {
1939 			__ClearPageLRU(page);
1940 			__ClearPageActive(page);
1941 			del_page_from_lru_list(page, lruvec, lru);
1942 
1943 			if (unlikely(PageCompound(page))) {
1944 				spin_unlock_irq(&pgdat->lru_lock);
1945 				mem_cgroup_uncharge(page);
1946 				(*get_compound_page_dtor(page))(page);
1947 				spin_lock_irq(&pgdat->lru_lock);
1948 			} else
1949 				list_add(&page->lru, pages_to_free);
1950 		} else {
1951 			nr_moved += nr_pages;
1952 		}
1953 	}
1954 
1955 	if (!is_active_lru(lru)) {
1956 		__count_vm_events(PGDEACTIVATE, nr_moved);
1957 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1958 				   nr_moved);
1959 	}
1960 
1961 	return nr_moved;
1962 }
1963 
1964 static void shrink_active_list(unsigned long nr_to_scan,
1965 			       struct lruvec *lruvec,
1966 			       struct scan_control *sc,
1967 			       enum lru_list lru)
1968 {
1969 	unsigned long nr_taken;
1970 	unsigned long nr_scanned;
1971 	unsigned long vm_flags;
1972 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1973 	LIST_HEAD(l_active);
1974 	LIST_HEAD(l_inactive);
1975 	struct page *page;
1976 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1977 	unsigned nr_deactivate, nr_activate;
1978 	unsigned nr_rotated = 0;
1979 	isolate_mode_t isolate_mode = 0;
1980 	int file = is_file_lru(lru);
1981 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1982 
1983 	lru_add_drain();
1984 
1985 	if (!sc->may_unmap)
1986 		isolate_mode |= ISOLATE_UNMAPPED;
1987 
1988 	spin_lock_irq(&pgdat->lru_lock);
1989 
1990 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1991 				     &nr_scanned, sc, isolate_mode, lru);
1992 
1993 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1994 	reclaim_stat->recent_scanned[file] += nr_taken;
1995 
1996 	__count_vm_events(PGREFILL, nr_scanned);
1997 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1998 
1999 	spin_unlock_irq(&pgdat->lru_lock);
2000 
2001 	while (!list_empty(&l_hold)) {
2002 		cond_resched();
2003 		page = lru_to_page(&l_hold);
2004 		list_del(&page->lru);
2005 
2006 		if (unlikely(!page_evictable(page))) {
2007 			putback_lru_page(page);
2008 			continue;
2009 		}
2010 
2011 		if (unlikely(buffer_heads_over_limit)) {
2012 			if (page_has_private(page) && trylock_page(page)) {
2013 				if (page_has_private(page))
2014 					try_to_release_page(page, 0);
2015 				unlock_page(page);
2016 			}
2017 		}
2018 
2019 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2020 				    &vm_flags)) {
2021 			nr_rotated += hpage_nr_pages(page);
2022 			/*
2023 			 * Identify referenced, file-backed active pages and
2024 			 * give them one more trip around the active list. So
2025 			 * that executable code get better chances to stay in
2026 			 * memory under moderate memory pressure.  Anon pages
2027 			 * are not likely to be evicted by use-once streaming
2028 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2029 			 * so we ignore them here.
2030 			 */
2031 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2032 				list_add(&page->lru, &l_active);
2033 				continue;
2034 			}
2035 		}
2036 
2037 		ClearPageActive(page);	/* we are de-activating */
2038 		list_add(&page->lru, &l_inactive);
2039 	}
2040 
2041 	/*
2042 	 * Move pages back to the lru list.
2043 	 */
2044 	spin_lock_irq(&pgdat->lru_lock);
2045 	/*
2046 	 * Count referenced pages from currently used mappings as rotated,
2047 	 * even though only some of them are actually re-activated.  This
2048 	 * helps balance scan pressure between file and anonymous pages in
2049 	 * get_scan_count.
2050 	 */
2051 	reclaim_stat->recent_rotated[file] += nr_rotated;
2052 
2053 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2054 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2055 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2056 	spin_unlock_irq(&pgdat->lru_lock);
2057 
2058 	mem_cgroup_uncharge_list(&l_hold);
2059 	free_unref_page_list(&l_hold);
2060 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2061 			nr_deactivate, nr_rotated, sc->priority, file);
2062 }
2063 
2064 /*
2065  * The inactive anon list should be small enough that the VM never has
2066  * to do too much work.
2067  *
2068  * The inactive file list should be small enough to leave most memory
2069  * to the established workingset on the scan-resistant active list,
2070  * but large enough to avoid thrashing the aggregate readahead window.
2071  *
2072  * Both inactive lists should also be large enough that each inactive
2073  * page has a chance to be referenced again before it is reclaimed.
2074  *
2075  * If that fails and refaulting is observed, the inactive list grows.
2076  *
2077  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2078  * on this LRU, maintained by the pageout code. An inactive_ratio
2079  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2080  *
2081  * total     target    max
2082  * memory    ratio     inactive
2083  * -------------------------------------
2084  *   10MB       1         5MB
2085  *  100MB       1        50MB
2086  *    1GB       3       250MB
2087  *   10GB      10       0.9GB
2088  *  100GB      31         3GB
2089  *    1TB     101        10GB
2090  *   10TB     320        32GB
2091  */
2092 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2093 				 struct mem_cgroup *memcg,
2094 				 struct scan_control *sc, bool actual_reclaim)
2095 {
2096 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2097 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2098 	enum lru_list inactive_lru = file * LRU_FILE;
2099 	unsigned long inactive, active;
2100 	unsigned long inactive_ratio;
2101 	unsigned long refaults;
2102 	unsigned long gb;
2103 
2104 	/*
2105 	 * If we don't have swap space, anonymous page deactivation
2106 	 * is pointless.
2107 	 */
2108 	if (!file && !total_swap_pages)
2109 		return false;
2110 
2111 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2112 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2113 
2114 	if (memcg)
2115 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2116 	else
2117 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2118 
2119 	/*
2120 	 * When refaults are being observed, it means a new workingset
2121 	 * is being established. Disable active list protection to get
2122 	 * rid of the stale workingset quickly.
2123 	 */
2124 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2125 		inactive_ratio = 0;
2126 	} else {
2127 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2128 		if (gb)
2129 			inactive_ratio = int_sqrt(10 * gb);
2130 		else
2131 			inactive_ratio = 1;
2132 	}
2133 
2134 	if (actual_reclaim)
2135 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2136 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2137 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2138 			inactive_ratio, file);
2139 
2140 	return inactive * inactive_ratio < active;
2141 }
2142 
2143 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2144 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2145 				 struct scan_control *sc)
2146 {
2147 	if (is_active_lru(lru)) {
2148 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2149 					 memcg, sc, true))
2150 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2151 		return 0;
2152 	}
2153 
2154 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2155 }
2156 
2157 enum scan_balance {
2158 	SCAN_EQUAL,
2159 	SCAN_FRACT,
2160 	SCAN_ANON,
2161 	SCAN_FILE,
2162 };
2163 
2164 /*
2165  * Determine how aggressively the anon and file LRU lists should be
2166  * scanned.  The relative value of each set of LRU lists is determined
2167  * by looking at the fraction of the pages scanned we did rotate back
2168  * onto the active list instead of evict.
2169  *
2170  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2171  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2172  */
2173 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2174 			   struct scan_control *sc, unsigned long *nr,
2175 			   unsigned long *lru_pages)
2176 {
2177 	int swappiness = mem_cgroup_swappiness(memcg);
2178 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2179 	u64 fraction[2];
2180 	u64 denominator = 0;	/* gcc */
2181 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2182 	unsigned long anon_prio, file_prio;
2183 	enum scan_balance scan_balance;
2184 	unsigned long anon, file;
2185 	unsigned long ap, fp;
2186 	enum lru_list lru;
2187 
2188 	/* If we have no swap space, do not bother scanning anon pages. */
2189 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2190 		scan_balance = SCAN_FILE;
2191 		goto out;
2192 	}
2193 
2194 	/*
2195 	 * Global reclaim will swap to prevent OOM even with no
2196 	 * swappiness, but memcg users want to use this knob to
2197 	 * disable swapping for individual groups completely when
2198 	 * using the memory controller's swap limit feature would be
2199 	 * too expensive.
2200 	 */
2201 	if (!global_reclaim(sc) && !swappiness) {
2202 		scan_balance = SCAN_FILE;
2203 		goto out;
2204 	}
2205 
2206 	/*
2207 	 * Do not apply any pressure balancing cleverness when the
2208 	 * system is close to OOM, scan both anon and file equally
2209 	 * (unless the swappiness setting disagrees with swapping).
2210 	 */
2211 	if (!sc->priority && swappiness) {
2212 		scan_balance = SCAN_EQUAL;
2213 		goto out;
2214 	}
2215 
2216 	/*
2217 	 * Prevent the reclaimer from falling into the cache trap: as
2218 	 * cache pages start out inactive, every cache fault will tip
2219 	 * the scan balance towards the file LRU.  And as the file LRU
2220 	 * shrinks, so does the window for rotation from references.
2221 	 * This means we have a runaway feedback loop where a tiny
2222 	 * thrashing file LRU becomes infinitely more attractive than
2223 	 * anon pages.  Try to detect this based on file LRU size.
2224 	 */
2225 	if (global_reclaim(sc)) {
2226 		unsigned long pgdatfile;
2227 		unsigned long pgdatfree;
2228 		int z;
2229 		unsigned long total_high_wmark = 0;
2230 
2231 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2232 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2233 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2234 
2235 		for (z = 0; z < MAX_NR_ZONES; z++) {
2236 			struct zone *zone = &pgdat->node_zones[z];
2237 			if (!managed_zone(zone))
2238 				continue;
2239 
2240 			total_high_wmark += high_wmark_pages(zone);
2241 		}
2242 
2243 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2244 			/*
2245 			 * Force SCAN_ANON if there are enough inactive
2246 			 * anonymous pages on the LRU in eligible zones.
2247 			 * Otherwise, the small LRU gets thrashed.
2248 			 */
2249 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2250 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2251 					>> sc->priority) {
2252 				scan_balance = SCAN_ANON;
2253 				goto out;
2254 			}
2255 		}
2256 	}
2257 
2258 	/*
2259 	 * If there is enough inactive page cache, i.e. if the size of the
2260 	 * inactive list is greater than that of the active list *and* the
2261 	 * inactive list actually has some pages to scan on this priority, we
2262 	 * do not reclaim anything from the anonymous working set right now.
2263 	 * Without the second condition we could end up never scanning an
2264 	 * lruvec even if it has plenty of old anonymous pages unless the
2265 	 * system is under heavy pressure.
2266 	 */
2267 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2268 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2269 		scan_balance = SCAN_FILE;
2270 		goto out;
2271 	}
2272 
2273 	scan_balance = SCAN_FRACT;
2274 
2275 	/*
2276 	 * With swappiness at 100, anonymous and file have the same priority.
2277 	 * This scanning priority is essentially the inverse of IO cost.
2278 	 */
2279 	anon_prio = swappiness;
2280 	file_prio = 200 - anon_prio;
2281 
2282 	/*
2283 	 * OK, so we have swap space and a fair amount of page cache
2284 	 * pages.  We use the recently rotated / recently scanned
2285 	 * ratios to determine how valuable each cache is.
2286 	 *
2287 	 * Because workloads change over time (and to avoid overflow)
2288 	 * we keep these statistics as a floating average, which ends
2289 	 * up weighing recent references more than old ones.
2290 	 *
2291 	 * anon in [0], file in [1]
2292 	 */
2293 
2294 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2295 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2296 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2297 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2298 
2299 	spin_lock_irq(&pgdat->lru_lock);
2300 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2301 		reclaim_stat->recent_scanned[0] /= 2;
2302 		reclaim_stat->recent_rotated[0] /= 2;
2303 	}
2304 
2305 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2306 		reclaim_stat->recent_scanned[1] /= 2;
2307 		reclaim_stat->recent_rotated[1] /= 2;
2308 	}
2309 
2310 	/*
2311 	 * The amount of pressure on anon vs file pages is inversely
2312 	 * proportional to the fraction of recently scanned pages on
2313 	 * each list that were recently referenced and in active use.
2314 	 */
2315 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2316 	ap /= reclaim_stat->recent_rotated[0] + 1;
2317 
2318 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2319 	fp /= reclaim_stat->recent_rotated[1] + 1;
2320 	spin_unlock_irq(&pgdat->lru_lock);
2321 
2322 	fraction[0] = ap;
2323 	fraction[1] = fp;
2324 	denominator = ap + fp + 1;
2325 out:
2326 	*lru_pages = 0;
2327 	for_each_evictable_lru(lru) {
2328 		int file = is_file_lru(lru);
2329 		unsigned long size;
2330 		unsigned long scan;
2331 
2332 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2333 		scan = size >> sc->priority;
2334 		/*
2335 		 * If the cgroup's already been deleted, make sure to
2336 		 * scrape out the remaining cache.
2337 		 */
2338 		if (!scan && !mem_cgroup_online(memcg))
2339 			scan = min(size, SWAP_CLUSTER_MAX);
2340 
2341 		switch (scan_balance) {
2342 		case SCAN_EQUAL:
2343 			/* Scan lists relative to size */
2344 			break;
2345 		case SCAN_FRACT:
2346 			/*
2347 			 * Scan types proportional to swappiness and
2348 			 * their relative recent reclaim efficiency.
2349 			 */
2350 			scan = div64_u64(scan * fraction[file],
2351 					 denominator);
2352 			break;
2353 		case SCAN_FILE:
2354 		case SCAN_ANON:
2355 			/* Scan one type exclusively */
2356 			if ((scan_balance == SCAN_FILE) != file) {
2357 				size = 0;
2358 				scan = 0;
2359 			}
2360 			break;
2361 		default:
2362 			/* Look ma, no brain */
2363 			BUG();
2364 		}
2365 
2366 		*lru_pages += size;
2367 		nr[lru] = scan;
2368 	}
2369 }
2370 
2371 /*
2372  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2373  */
2374 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2375 			      struct scan_control *sc, unsigned long *lru_pages)
2376 {
2377 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2378 	unsigned long nr[NR_LRU_LISTS];
2379 	unsigned long targets[NR_LRU_LISTS];
2380 	unsigned long nr_to_scan;
2381 	enum lru_list lru;
2382 	unsigned long nr_reclaimed = 0;
2383 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2384 	struct blk_plug plug;
2385 	bool scan_adjusted;
2386 
2387 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2388 
2389 	/* Record the original scan target for proportional adjustments later */
2390 	memcpy(targets, nr, sizeof(nr));
2391 
2392 	/*
2393 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2394 	 * event that can occur when there is little memory pressure e.g.
2395 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2396 	 * when the requested number of pages are reclaimed when scanning at
2397 	 * DEF_PRIORITY on the assumption that the fact we are direct
2398 	 * reclaiming implies that kswapd is not keeping up and it is best to
2399 	 * do a batch of work at once. For memcg reclaim one check is made to
2400 	 * abort proportional reclaim if either the file or anon lru has already
2401 	 * dropped to zero at the first pass.
2402 	 */
2403 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2404 			 sc->priority == DEF_PRIORITY);
2405 
2406 	blk_start_plug(&plug);
2407 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2408 					nr[LRU_INACTIVE_FILE]) {
2409 		unsigned long nr_anon, nr_file, percentage;
2410 		unsigned long nr_scanned;
2411 
2412 		for_each_evictable_lru(lru) {
2413 			if (nr[lru]) {
2414 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2415 				nr[lru] -= nr_to_scan;
2416 
2417 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2418 							    lruvec, memcg, sc);
2419 			}
2420 		}
2421 
2422 		cond_resched();
2423 
2424 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2425 			continue;
2426 
2427 		/*
2428 		 * For kswapd and memcg, reclaim at least the number of pages
2429 		 * requested. Ensure that the anon and file LRUs are scanned
2430 		 * proportionally what was requested by get_scan_count(). We
2431 		 * stop reclaiming one LRU and reduce the amount scanning
2432 		 * proportional to the original scan target.
2433 		 */
2434 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2435 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2436 
2437 		/*
2438 		 * It's just vindictive to attack the larger once the smaller
2439 		 * has gone to zero.  And given the way we stop scanning the
2440 		 * smaller below, this makes sure that we only make one nudge
2441 		 * towards proportionality once we've got nr_to_reclaim.
2442 		 */
2443 		if (!nr_file || !nr_anon)
2444 			break;
2445 
2446 		if (nr_file > nr_anon) {
2447 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2448 						targets[LRU_ACTIVE_ANON] + 1;
2449 			lru = LRU_BASE;
2450 			percentage = nr_anon * 100 / scan_target;
2451 		} else {
2452 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2453 						targets[LRU_ACTIVE_FILE] + 1;
2454 			lru = LRU_FILE;
2455 			percentage = nr_file * 100 / scan_target;
2456 		}
2457 
2458 		/* Stop scanning the smaller of the LRU */
2459 		nr[lru] = 0;
2460 		nr[lru + LRU_ACTIVE] = 0;
2461 
2462 		/*
2463 		 * Recalculate the other LRU scan count based on its original
2464 		 * scan target and the percentage scanning already complete
2465 		 */
2466 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2467 		nr_scanned = targets[lru] - nr[lru];
2468 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2469 		nr[lru] -= min(nr[lru], nr_scanned);
2470 
2471 		lru += LRU_ACTIVE;
2472 		nr_scanned = targets[lru] - nr[lru];
2473 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2474 		nr[lru] -= min(nr[lru], nr_scanned);
2475 
2476 		scan_adjusted = true;
2477 	}
2478 	blk_finish_plug(&plug);
2479 	sc->nr_reclaimed += nr_reclaimed;
2480 
2481 	/*
2482 	 * Even if we did not try to evict anon pages at all, we want to
2483 	 * rebalance the anon lru active/inactive ratio.
2484 	 */
2485 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2486 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2487 				   sc, LRU_ACTIVE_ANON);
2488 }
2489 
2490 /* Use reclaim/compaction for costly allocs or under memory pressure */
2491 static bool in_reclaim_compaction(struct scan_control *sc)
2492 {
2493 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2494 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2495 			 sc->priority < DEF_PRIORITY - 2))
2496 		return true;
2497 
2498 	return false;
2499 }
2500 
2501 /*
2502  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2503  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2504  * true if more pages should be reclaimed such that when the page allocator
2505  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2506  * It will give up earlier than that if there is difficulty reclaiming pages.
2507  */
2508 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2509 					unsigned long nr_reclaimed,
2510 					unsigned long nr_scanned,
2511 					struct scan_control *sc)
2512 {
2513 	unsigned long pages_for_compaction;
2514 	unsigned long inactive_lru_pages;
2515 	int z;
2516 
2517 	/* If not in reclaim/compaction mode, stop */
2518 	if (!in_reclaim_compaction(sc))
2519 		return false;
2520 
2521 	/* Consider stopping depending on scan and reclaim activity */
2522 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2523 		/*
2524 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2525 		 * full LRU list has been scanned and we are still failing
2526 		 * to reclaim pages. This full LRU scan is potentially
2527 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2528 		 */
2529 		if (!nr_reclaimed && !nr_scanned)
2530 			return false;
2531 	} else {
2532 		/*
2533 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2534 		 * fail without consequence, stop if we failed to reclaim
2535 		 * any pages from the last SWAP_CLUSTER_MAX number of
2536 		 * pages that were scanned. This will return to the
2537 		 * caller faster at the risk reclaim/compaction and
2538 		 * the resulting allocation attempt fails
2539 		 */
2540 		if (!nr_reclaimed)
2541 			return false;
2542 	}
2543 
2544 	/*
2545 	 * If we have not reclaimed enough pages for compaction and the
2546 	 * inactive lists are large enough, continue reclaiming
2547 	 */
2548 	pages_for_compaction = compact_gap(sc->order);
2549 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2550 	if (get_nr_swap_pages() > 0)
2551 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2552 	if (sc->nr_reclaimed < pages_for_compaction &&
2553 			inactive_lru_pages > pages_for_compaction)
2554 		return true;
2555 
2556 	/* If compaction would go ahead or the allocation would succeed, stop */
2557 	for (z = 0; z <= sc->reclaim_idx; z++) {
2558 		struct zone *zone = &pgdat->node_zones[z];
2559 		if (!managed_zone(zone))
2560 			continue;
2561 
2562 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2563 		case COMPACT_SUCCESS:
2564 		case COMPACT_CONTINUE:
2565 			return false;
2566 		default:
2567 			/* check next zone */
2568 			;
2569 		}
2570 	}
2571 	return true;
2572 }
2573 
2574 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2575 {
2576 	struct reclaim_state *reclaim_state = current->reclaim_state;
2577 	unsigned long nr_reclaimed, nr_scanned;
2578 	bool reclaimable = false;
2579 
2580 	do {
2581 		struct mem_cgroup *root = sc->target_mem_cgroup;
2582 		struct mem_cgroup_reclaim_cookie reclaim = {
2583 			.pgdat = pgdat,
2584 			.priority = sc->priority,
2585 		};
2586 		unsigned long node_lru_pages = 0;
2587 		struct mem_cgroup *memcg;
2588 
2589 		nr_reclaimed = sc->nr_reclaimed;
2590 		nr_scanned = sc->nr_scanned;
2591 
2592 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2593 		do {
2594 			unsigned long lru_pages;
2595 			unsigned long reclaimed;
2596 			unsigned long scanned;
2597 
2598 			if (mem_cgroup_low(root, memcg)) {
2599 				if (!sc->memcg_low_reclaim) {
2600 					sc->memcg_low_skipped = 1;
2601 					continue;
2602 				}
2603 				mem_cgroup_event(memcg, MEMCG_LOW);
2604 			}
2605 
2606 			reclaimed = sc->nr_reclaimed;
2607 			scanned = sc->nr_scanned;
2608 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2609 			node_lru_pages += lru_pages;
2610 
2611 			if (memcg)
2612 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2613 					    memcg, sc->priority);
2614 
2615 			/* Record the group's reclaim efficiency */
2616 			vmpressure(sc->gfp_mask, memcg, false,
2617 				   sc->nr_scanned - scanned,
2618 				   sc->nr_reclaimed - reclaimed);
2619 
2620 			/*
2621 			 * Direct reclaim and kswapd have to scan all memory
2622 			 * cgroups to fulfill the overall scan target for the
2623 			 * node.
2624 			 *
2625 			 * Limit reclaim, on the other hand, only cares about
2626 			 * nr_to_reclaim pages to be reclaimed and it will
2627 			 * retry with decreasing priority if one round over the
2628 			 * whole hierarchy is not sufficient.
2629 			 */
2630 			if (!global_reclaim(sc) &&
2631 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2632 				mem_cgroup_iter_break(root, memcg);
2633 				break;
2634 			}
2635 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2636 
2637 		if (global_reclaim(sc))
2638 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2639 				    sc->priority);
2640 
2641 		if (reclaim_state) {
2642 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2643 			reclaim_state->reclaimed_slab = 0;
2644 		}
2645 
2646 		/* Record the subtree's reclaim efficiency */
2647 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2648 			   sc->nr_scanned - nr_scanned,
2649 			   sc->nr_reclaimed - nr_reclaimed);
2650 
2651 		if (sc->nr_reclaimed - nr_reclaimed)
2652 			reclaimable = true;
2653 
2654 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2655 					 sc->nr_scanned - nr_scanned, sc));
2656 
2657 	/*
2658 	 * Kswapd gives up on balancing particular nodes after too
2659 	 * many failures to reclaim anything from them and goes to
2660 	 * sleep. On reclaim progress, reset the failure counter. A
2661 	 * successful direct reclaim run will revive a dormant kswapd.
2662 	 */
2663 	if (reclaimable)
2664 		pgdat->kswapd_failures = 0;
2665 
2666 	return reclaimable;
2667 }
2668 
2669 /*
2670  * Returns true if compaction should go ahead for a costly-order request, or
2671  * the allocation would already succeed without compaction. Return false if we
2672  * should reclaim first.
2673  */
2674 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2675 {
2676 	unsigned long watermark;
2677 	enum compact_result suitable;
2678 
2679 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2680 	if (suitable == COMPACT_SUCCESS)
2681 		/* Allocation should succeed already. Don't reclaim. */
2682 		return true;
2683 	if (suitable == COMPACT_SKIPPED)
2684 		/* Compaction cannot yet proceed. Do reclaim. */
2685 		return false;
2686 
2687 	/*
2688 	 * Compaction is already possible, but it takes time to run and there
2689 	 * are potentially other callers using the pages just freed. So proceed
2690 	 * with reclaim to make a buffer of free pages available to give
2691 	 * compaction a reasonable chance of completing and allocating the page.
2692 	 * Note that we won't actually reclaim the whole buffer in one attempt
2693 	 * as the target watermark in should_continue_reclaim() is lower. But if
2694 	 * we are already above the high+gap watermark, don't reclaim at all.
2695 	 */
2696 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2697 
2698 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2699 }
2700 
2701 /*
2702  * This is the direct reclaim path, for page-allocating processes.  We only
2703  * try to reclaim pages from zones which will satisfy the caller's allocation
2704  * request.
2705  *
2706  * If a zone is deemed to be full of pinned pages then just give it a light
2707  * scan then give up on it.
2708  */
2709 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2710 {
2711 	struct zoneref *z;
2712 	struct zone *zone;
2713 	unsigned long nr_soft_reclaimed;
2714 	unsigned long nr_soft_scanned;
2715 	gfp_t orig_mask;
2716 	pg_data_t *last_pgdat = NULL;
2717 
2718 	/*
2719 	 * If the number of buffer_heads in the machine exceeds the maximum
2720 	 * allowed level, force direct reclaim to scan the highmem zone as
2721 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2722 	 */
2723 	orig_mask = sc->gfp_mask;
2724 	if (buffer_heads_over_limit) {
2725 		sc->gfp_mask |= __GFP_HIGHMEM;
2726 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2727 	}
2728 
2729 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2730 					sc->reclaim_idx, sc->nodemask) {
2731 		/*
2732 		 * Take care memory controller reclaiming has small influence
2733 		 * to global LRU.
2734 		 */
2735 		if (global_reclaim(sc)) {
2736 			if (!cpuset_zone_allowed(zone,
2737 						 GFP_KERNEL | __GFP_HARDWALL))
2738 				continue;
2739 
2740 			/*
2741 			 * If we already have plenty of memory free for
2742 			 * compaction in this zone, don't free any more.
2743 			 * Even though compaction is invoked for any
2744 			 * non-zero order, only frequent costly order
2745 			 * reclamation is disruptive enough to become a
2746 			 * noticeable problem, like transparent huge
2747 			 * page allocations.
2748 			 */
2749 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2750 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2751 			    compaction_ready(zone, sc)) {
2752 				sc->compaction_ready = true;
2753 				continue;
2754 			}
2755 
2756 			/*
2757 			 * Shrink each node in the zonelist once. If the
2758 			 * zonelist is ordered by zone (not the default) then a
2759 			 * node may be shrunk multiple times but in that case
2760 			 * the user prefers lower zones being preserved.
2761 			 */
2762 			if (zone->zone_pgdat == last_pgdat)
2763 				continue;
2764 
2765 			/*
2766 			 * This steals pages from memory cgroups over softlimit
2767 			 * and returns the number of reclaimed pages and
2768 			 * scanned pages. This works for global memory pressure
2769 			 * and balancing, not for a memcg's limit.
2770 			 */
2771 			nr_soft_scanned = 0;
2772 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2773 						sc->order, sc->gfp_mask,
2774 						&nr_soft_scanned);
2775 			sc->nr_reclaimed += nr_soft_reclaimed;
2776 			sc->nr_scanned += nr_soft_scanned;
2777 			/* need some check for avoid more shrink_zone() */
2778 		}
2779 
2780 		/* See comment about same check for global reclaim above */
2781 		if (zone->zone_pgdat == last_pgdat)
2782 			continue;
2783 		last_pgdat = zone->zone_pgdat;
2784 		shrink_node(zone->zone_pgdat, sc);
2785 	}
2786 
2787 	/*
2788 	 * Restore to original mask to avoid the impact on the caller if we
2789 	 * promoted it to __GFP_HIGHMEM.
2790 	 */
2791 	sc->gfp_mask = orig_mask;
2792 }
2793 
2794 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2795 {
2796 	struct mem_cgroup *memcg;
2797 
2798 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2799 	do {
2800 		unsigned long refaults;
2801 		struct lruvec *lruvec;
2802 
2803 		if (memcg)
2804 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2805 		else
2806 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2807 
2808 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2809 		lruvec->refaults = refaults;
2810 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2811 }
2812 
2813 /*
2814  * This is the main entry point to direct page reclaim.
2815  *
2816  * If a full scan of the inactive list fails to free enough memory then we
2817  * are "out of memory" and something needs to be killed.
2818  *
2819  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2820  * high - the zone may be full of dirty or under-writeback pages, which this
2821  * caller can't do much about.  We kick the writeback threads and take explicit
2822  * naps in the hope that some of these pages can be written.  But if the
2823  * allocating task holds filesystem locks which prevent writeout this might not
2824  * work, and the allocation attempt will fail.
2825  *
2826  * returns:	0, if no pages reclaimed
2827  * 		else, the number of pages reclaimed
2828  */
2829 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2830 					  struct scan_control *sc)
2831 {
2832 	int initial_priority = sc->priority;
2833 	pg_data_t *last_pgdat;
2834 	struct zoneref *z;
2835 	struct zone *zone;
2836 retry:
2837 	delayacct_freepages_start();
2838 
2839 	if (global_reclaim(sc))
2840 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2841 
2842 	do {
2843 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2844 				sc->priority);
2845 		sc->nr_scanned = 0;
2846 		shrink_zones(zonelist, sc);
2847 
2848 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2849 			break;
2850 
2851 		if (sc->compaction_ready)
2852 			break;
2853 
2854 		/*
2855 		 * If we're getting trouble reclaiming, start doing
2856 		 * writepage even in laptop mode.
2857 		 */
2858 		if (sc->priority < DEF_PRIORITY - 2)
2859 			sc->may_writepage = 1;
2860 	} while (--sc->priority >= 0);
2861 
2862 	last_pgdat = NULL;
2863 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2864 					sc->nodemask) {
2865 		if (zone->zone_pgdat == last_pgdat)
2866 			continue;
2867 		last_pgdat = zone->zone_pgdat;
2868 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2869 	}
2870 
2871 	delayacct_freepages_end();
2872 
2873 	if (sc->nr_reclaimed)
2874 		return sc->nr_reclaimed;
2875 
2876 	/* Aborted reclaim to try compaction? don't OOM, then */
2877 	if (sc->compaction_ready)
2878 		return 1;
2879 
2880 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2881 	if (sc->memcg_low_skipped) {
2882 		sc->priority = initial_priority;
2883 		sc->memcg_low_reclaim = 1;
2884 		sc->memcg_low_skipped = 0;
2885 		goto retry;
2886 	}
2887 
2888 	return 0;
2889 }
2890 
2891 static bool allow_direct_reclaim(pg_data_t *pgdat)
2892 {
2893 	struct zone *zone;
2894 	unsigned long pfmemalloc_reserve = 0;
2895 	unsigned long free_pages = 0;
2896 	int i;
2897 	bool wmark_ok;
2898 
2899 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2900 		return true;
2901 
2902 	for (i = 0; i <= ZONE_NORMAL; i++) {
2903 		zone = &pgdat->node_zones[i];
2904 		if (!managed_zone(zone))
2905 			continue;
2906 
2907 		if (!zone_reclaimable_pages(zone))
2908 			continue;
2909 
2910 		pfmemalloc_reserve += min_wmark_pages(zone);
2911 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2912 	}
2913 
2914 	/* If there are no reserves (unexpected config) then do not throttle */
2915 	if (!pfmemalloc_reserve)
2916 		return true;
2917 
2918 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2919 
2920 	/* kswapd must be awake if processes are being throttled */
2921 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2922 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2923 						(enum zone_type)ZONE_NORMAL);
2924 		wake_up_interruptible(&pgdat->kswapd_wait);
2925 	}
2926 
2927 	return wmark_ok;
2928 }
2929 
2930 /*
2931  * Throttle direct reclaimers if backing storage is backed by the network
2932  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2933  * depleted. kswapd will continue to make progress and wake the processes
2934  * when the low watermark is reached.
2935  *
2936  * Returns true if a fatal signal was delivered during throttling. If this
2937  * happens, the page allocator should not consider triggering the OOM killer.
2938  */
2939 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2940 					nodemask_t *nodemask)
2941 {
2942 	struct zoneref *z;
2943 	struct zone *zone;
2944 	pg_data_t *pgdat = NULL;
2945 
2946 	/*
2947 	 * Kernel threads should not be throttled as they may be indirectly
2948 	 * responsible for cleaning pages necessary for reclaim to make forward
2949 	 * progress. kjournald for example may enter direct reclaim while
2950 	 * committing a transaction where throttling it could forcing other
2951 	 * processes to block on log_wait_commit().
2952 	 */
2953 	if (current->flags & PF_KTHREAD)
2954 		goto out;
2955 
2956 	/*
2957 	 * If a fatal signal is pending, this process should not throttle.
2958 	 * It should return quickly so it can exit and free its memory
2959 	 */
2960 	if (fatal_signal_pending(current))
2961 		goto out;
2962 
2963 	/*
2964 	 * Check if the pfmemalloc reserves are ok by finding the first node
2965 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2966 	 * GFP_KERNEL will be required for allocating network buffers when
2967 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2968 	 *
2969 	 * Throttling is based on the first usable node and throttled processes
2970 	 * wait on a queue until kswapd makes progress and wakes them. There
2971 	 * is an affinity then between processes waking up and where reclaim
2972 	 * progress has been made assuming the process wakes on the same node.
2973 	 * More importantly, processes running on remote nodes will not compete
2974 	 * for remote pfmemalloc reserves and processes on different nodes
2975 	 * should make reasonable progress.
2976 	 */
2977 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2978 					gfp_zone(gfp_mask), nodemask) {
2979 		if (zone_idx(zone) > ZONE_NORMAL)
2980 			continue;
2981 
2982 		/* Throttle based on the first usable node */
2983 		pgdat = zone->zone_pgdat;
2984 		if (allow_direct_reclaim(pgdat))
2985 			goto out;
2986 		break;
2987 	}
2988 
2989 	/* If no zone was usable by the allocation flags then do not throttle */
2990 	if (!pgdat)
2991 		goto out;
2992 
2993 	/* Account for the throttling */
2994 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2995 
2996 	/*
2997 	 * If the caller cannot enter the filesystem, it's possible that it
2998 	 * is due to the caller holding an FS lock or performing a journal
2999 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3000 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3001 	 * blocked waiting on the same lock. Instead, throttle for up to a
3002 	 * second before continuing.
3003 	 */
3004 	if (!(gfp_mask & __GFP_FS)) {
3005 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3006 			allow_direct_reclaim(pgdat), HZ);
3007 
3008 		goto check_pending;
3009 	}
3010 
3011 	/* Throttle until kswapd wakes the process */
3012 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3013 		allow_direct_reclaim(pgdat));
3014 
3015 check_pending:
3016 	if (fatal_signal_pending(current))
3017 		return true;
3018 
3019 out:
3020 	return false;
3021 }
3022 
3023 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3024 				gfp_t gfp_mask, nodemask_t *nodemask)
3025 {
3026 	unsigned long nr_reclaimed;
3027 	struct scan_control sc = {
3028 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3029 		.gfp_mask = current_gfp_context(gfp_mask),
3030 		.reclaim_idx = gfp_zone(gfp_mask),
3031 		.order = order,
3032 		.nodemask = nodemask,
3033 		.priority = DEF_PRIORITY,
3034 		.may_writepage = !laptop_mode,
3035 		.may_unmap = 1,
3036 		.may_swap = 1,
3037 	};
3038 
3039 	/*
3040 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3041 	 * 1 is returned so that the page allocator does not OOM kill at this
3042 	 * point.
3043 	 */
3044 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3045 		return 1;
3046 
3047 	trace_mm_vmscan_direct_reclaim_begin(order,
3048 				sc.may_writepage,
3049 				sc.gfp_mask,
3050 				sc.reclaim_idx);
3051 
3052 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3053 
3054 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3055 
3056 	return nr_reclaimed;
3057 }
3058 
3059 #ifdef CONFIG_MEMCG
3060 
3061 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3062 						gfp_t gfp_mask, bool noswap,
3063 						pg_data_t *pgdat,
3064 						unsigned long *nr_scanned)
3065 {
3066 	struct scan_control sc = {
3067 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3068 		.target_mem_cgroup = memcg,
3069 		.may_writepage = !laptop_mode,
3070 		.may_unmap = 1,
3071 		.reclaim_idx = MAX_NR_ZONES - 1,
3072 		.may_swap = !noswap,
3073 	};
3074 	unsigned long lru_pages;
3075 
3076 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3077 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3078 
3079 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3080 						      sc.may_writepage,
3081 						      sc.gfp_mask,
3082 						      sc.reclaim_idx);
3083 
3084 	/*
3085 	 * NOTE: Although we can get the priority field, using it
3086 	 * here is not a good idea, since it limits the pages we can scan.
3087 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3088 	 * will pick up pages from other mem cgroup's as well. We hack
3089 	 * the priority and make it zero.
3090 	 */
3091 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3092 
3093 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3094 
3095 	*nr_scanned = sc.nr_scanned;
3096 	return sc.nr_reclaimed;
3097 }
3098 
3099 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3100 					   unsigned long nr_pages,
3101 					   gfp_t gfp_mask,
3102 					   bool may_swap)
3103 {
3104 	struct zonelist *zonelist;
3105 	unsigned long nr_reclaimed;
3106 	int nid;
3107 	unsigned int noreclaim_flag;
3108 	struct scan_control sc = {
3109 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3110 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3111 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3112 		.reclaim_idx = MAX_NR_ZONES - 1,
3113 		.target_mem_cgroup = memcg,
3114 		.priority = DEF_PRIORITY,
3115 		.may_writepage = !laptop_mode,
3116 		.may_unmap = 1,
3117 		.may_swap = may_swap,
3118 	};
3119 
3120 	/*
3121 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3122 	 * take care of from where we get pages. So the node where we start the
3123 	 * scan does not need to be the current node.
3124 	 */
3125 	nid = mem_cgroup_select_victim_node(memcg);
3126 
3127 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3128 
3129 	trace_mm_vmscan_memcg_reclaim_begin(0,
3130 					    sc.may_writepage,
3131 					    sc.gfp_mask,
3132 					    sc.reclaim_idx);
3133 
3134 	noreclaim_flag = memalloc_noreclaim_save();
3135 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3136 	memalloc_noreclaim_restore(noreclaim_flag);
3137 
3138 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3139 
3140 	return nr_reclaimed;
3141 }
3142 #endif
3143 
3144 static void age_active_anon(struct pglist_data *pgdat,
3145 				struct scan_control *sc)
3146 {
3147 	struct mem_cgroup *memcg;
3148 
3149 	if (!total_swap_pages)
3150 		return;
3151 
3152 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3153 	do {
3154 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3155 
3156 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3157 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3158 					   sc, LRU_ACTIVE_ANON);
3159 
3160 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3161 	} while (memcg);
3162 }
3163 
3164 /*
3165  * Returns true if there is an eligible zone balanced for the request order
3166  * and classzone_idx
3167  */
3168 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3169 {
3170 	int i;
3171 	unsigned long mark = -1;
3172 	struct zone *zone;
3173 
3174 	for (i = 0; i <= classzone_idx; i++) {
3175 		zone = pgdat->node_zones + i;
3176 
3177 		if (!managed_zone(zone))
3178 			continue;
3179 
3180 		mark = high_wmark_pages(zone);
3181 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3182 			return true;
3183 	}
3184 
3185 	/*
3186 	 * If a node has no populated zone within classzone_idx, it does not
3187 	 * need balancing by definition. This can happen if a zone-restricted
3188 	 * allocation tries to wake a remote kswapd.
3189 	 */
3190 	if (mark == -1)
3191 		return true;
3192 
3193 	return false;
3194 }
3195 
3196 /* Clear pgdat state for congested, dirty or under writeback. */
3197 static void clear_pgdat_congested(pg_data_t *pgdat)
3198 {
3199 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3200 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3201 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3202 }
3203 
3204 /*
3205  * Prepare kswapd for sleeping. This verifies that there are no processes
3206  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3207  *
3208  * Returns true if kswapd is ready to sleep
3209  */
3210 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3211 {
3212 	/*
3213 	 * The throttled processes are normally woken up in balance_pgdat() as
3214 	 * soon as allow_direct_reclaim() is true. But there is a potential
3215 	 * race between when kswapd checks the watermarks and a process gets
3216 	 * throttled. There is also a potential race if processes get
3217 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3218 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3219 	 * the wake up checks. If kswapd is going to sleep, no process should
3220 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3221 	 * the wake up is premature, processes will wake kswapd and get
3222 	 * throttled again. The difference from wake ups in balance_pgdat() is
3223 	 * that here we are under prepare_to_wait().
3224 	 */
3225 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3226 		wake_up_all(&pgdat->pfmemalloc_wait);
3227 
3228 	/* Hopeless node, leave it to direct reclaim */
3229 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3230 		return true;
3231 
3232 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3233 		clear_pgdat_congested(pgdat);
3234 		return true;
3235 	}
3236 
3237 	return false;
3238 }
3239 
3240 /*
3241  * kswapd shrinks a node of pages that are at or below the highest usable
3242  * zone that is currently unbalanced.
3243  *
3244  * Returns true if kswapd scanned at least the requested number of pages to
3245  * reclaim or if the lack of progress was due to pages under writeback.
3246  * This is used to determine if the scanning priority needs to be raised.
3247  */
3248 static bool kswapd_shrink_node(pg_data_t *pgdat,
3249 			       struct scan_control *sc)
3250 {
3251 	struct zone *zone;
3252 	int z;
3253 
3254 	/* Reclaim a number of pages proportional to the number of zones */
3255 	sc->nr_to_reclaim = 0;
3256 	for (z = 0; z <= sc->reclaim_idx; z++) {
3257 		zone = pgdat->node_zones + z;
3258 		if (!managed_zone(zone))
3259 			continue;
3260 
3261 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3262 	}
3263 
3264 	/*
3265 	 * Historically care was taken to put equal pressure on all zones but
3266 	 * now pressure is applied based on node LRU order.
3267 	 */
3268 	shrink_node(pgdat, sc);
3269 
3270 	/*
3271 	 * Fragmentation may mean that the system cannot be rebalanced for
3272 	 * high-order allocations. If twice the allocation size has been
3273 	 * reclaimed then recheck watermarks only at order-0 to prevent
3274 	 * excessive reclaim. Assume that a process requested a high-order
3275 	 * can direct reclaim/compact.
3276 	 */
3277 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3278 		sc->order = 0;
3279 
3280 	return sc->nr_scanned >= sc->nr_to_reclaim;
3281 }
3282 
3283 /*
3284  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3285  * that are eligible for use by the caller until at least one zone is
3286  * balanced.
3287  *
3288  * Returns the order kswapd finished reclaiming at.
3289  *
3290  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3291  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3292  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3293  * or lower is eligible for reclaim until at least one usable zone is
3294  * balanced.
3295  */
3296 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3297 {
3298 	int i;
3299 	unsigned long nr_soft_reclaimed;
3300 	unsigned long nr_soft_scanned;
3301 	struct zone *zone;
3302 	struct scan_control sc = {
3303 		.gfp_mask = GFP_KERNEL,
3304 		.order = order,
3305 		.priority = DEF_PRIORITY,
3306 		.may_writepage = !laptop_mode,
3307 		.may_unmap = 1,
3308 		.may_swap = 1,
3309 	};
3310 	count_vm_event(PAGEOUTRUN);
3311 
3312 	do {
3313 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3314 		bool raise_priority = true;
3315 
3316 		sc.reclaim_idx = classzone_idx;
3317 
3318 		/*
3319 		 * If the number of buffer_heads exceeds the maximum allowed
3320 		 * then consider reclaiming from all zones. This has a dual
3321 		 * purpose -- on 64-bit systems it is expected that
3322 		 * buffer_heads are stripped during active rotation. On 32-bit
3323 		 * systems, highmem pages can pin lowmem memory and shrinking
3324 		 * buffers can relieve lowmem pressure. Reclaim may still not
3325 		 * go ahead if all eligible zones for the original allocation
3326 		 * request are balanced to avoid excessive reclaim from kswapd.
3327 		 */
3328 		if (buffer_heads_over_limit) {
3329 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3330 				zone = pgdat->node_zones + i;
3331 				if (!managed_zone(zone))
3332 					continue;
3333 
3334 				sc.reclaim_idx = i;
3335 				break;
3336 			}
3337 		}
3338 
3339 		/*
3340 		 * Only reclaim if there are no eligible zones. Note that
3341 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3342 		 * have adjusted it.
3343 		 */
3344 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3345 			goto out;
3346 
3347 		/*
3348 		 * Do some background aging of the anon list, to give
3349 		 * pages a chance to be referenced before reclaiming. All
3350 		 * pages are rotated regardless of classzone as this is
3351 		 * about consistent aging.
3352 		 */
3353 		age_active_anon(pgdat, &sc);
3354 
3355 		/*
3356 		 * If we're getting trouble reclaiming, start doing writepage
3357 		 * even in laptop mode.
3358 		 */
3359 		if (sc.priority < DEF_PRIORITY - 2)
3360 			sc.may_writepage = 1;
3361 
3362 		/* Call soft limit reclaim before calling shrink_node. */
3363 		sc.nr_scanned = 0;
3364 		nr_soft_scanned = 0;
3365 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3366 						sc.gfp_mask, &nr_soft_scanned);
3367 		sc.nr_reclaimed += nr_soft_reclaimed;
3368 
3369 		/*
3370 		 * There should be no need to raise the scanning priority if
3371 		 * enough pages are already being scanned that that high
3372 		 * watermark would be met at 100% efficiency.
3373 		 */
3374 		if (kswapd_shrink_node(pgdat, &sc))
3375 			raise_priority = false;
3376 
3377 		/*
3378 		 * If the low watermark is met there is no need for processes
3379 		 * to be throttled on pfmemalloc_wait as they should not be
3380 		 * able to safely make forward progress. Wake them
3381 		 */
3382 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3383 				allow_direct_reclaim(pgdat))
3384 			wake_up_all(&pgdat->pfmemalloc_wait);
3385 
3386 		/* Check if kswapd should be suspending */
3387 		if (try_to_freeze() || kthread_should_stop())
3388 			break;
3389 
3390 		/*
3391 		 * Raise priority if scanning rate is too low or there was no
3392 		 * progress in reclaiming pages
3393 		 */
3394 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3395 		if (raise_priority || !nr_reclaimed)
3396 			sc.priority--;
3397 	} while (sc.priority >= 1);
3398 
3399 	if (!sc.nr_reclaimed)
3400 		pgdat->kswapd_failures++;
3401 
3402 out:
3403 	snapshot_refaults(NULL, pgdat);
3404 	/*
3405 	 * Return the order kswapd stopped reclaiming at as
3406 	 * prepare_kswapd_sleep() takes it into account. If another caller
3407 	 * entered the allocator slow path while kswapd was awake, order will
3408 	 * remain at the higher level.
3409 	 */
3410 	return sc.order;
3411 }
3412 
3413 /*
3414  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3415  * allocation request woke kswapd for. When kswapd has not woken recently,
3416  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3417  * given classzone and returns it or the highest classzone index kswapd
3418  * was recently woke for.
3419  */
3420 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3421 					   enum zone_type classzone_idx)
3422 {
3423 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3424 		return classzone_idx;
3425 
3426 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3427 }
3428 
3429 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3430 				unsigned int classzone_idx)
3431 {
3432 	long remaining = 0;
3433 	DEFINE_WAIT(wait);
3434 
3435 	if (freezing(current) || kthread_should_stop())
3436 		return;
3437 
3438 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3439 
3440 	/*
3441 	 * Try to sleep for a short interval. Note that kcompactd will only be
3442 	 * woken if it is possible to sleep for a short interval. This is
3443 	 * deliberate on the assumption that if reclaim cannot keep an
3444 	 * eligible zone balanced that it's also unlikely that compaction will
3445 	 * succeed.
3446 	 */
3447 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3448 		/*
3449 		 * Compaction records what page blocks it recently failed to
3450 		 * isolate pages from and skips them in the future scanning.
3451 		 * When kswapd is going to sleep, it is reasonable to assume
3452 		 * that pages and compaction may succeed so reset the cache.
3453 		 */
3454 		reset_isolation_suitable(pgdat);
3455 
3456 		/*
3457 		 * We have freed the memory, now we should compact it to make
3458 		 * allocation of the requested order possible.
3459 		 */
3460 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3461 
3462 		remaining = schedule_timeout(HZ/10);
3463 
3464 		/*
3465 		 * If woken prematurely then reset kswapd_classzone_idx and
3466 		 * order. The values will either be from a wakeup request or
3467 		 * the previous request that slept prematurely.
3468 		 */
3469 		if (remaining) {
3470 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3471 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3472 		}
3473 
3474 		finish_wait(&pgdat->kswapd_wait, &wait);
3475 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3476 	}
3477 
3478 	/*
3479 	 * After a short sleep, check if it was a premature sleep. If not, then
3480 	 * go fully to sleep until explicitly woken up.
3481 	 */
3482 	if (!remaining &&
3483 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3484 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3485 
3486 		/*
3487 		 * vmstat counters are not perfectly accurate and the estimated
3488 		 * value for counters such as NR_FREE_PAGES can deviate from the
3489 		 * true value by nr_online_cpus * threshold. To avoid the zone
3490 		 * watermarks being breached while under pressure, we reduce the
3491 		 * per-cpu vmstat threshold while kswapd is awake and restore
3492 		 * them before going back to sleep.
3493 		 */
3494 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3495 
3496 		if (!kthread_should_stop())
3497 			schedule();
3498 
3499 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3500 	} else {
3501 		if (remaining)
3502 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3503 		else
3504 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3505 	}
3506 	finish_wait(&pgdat->kswapd_wait, &wait);
3507 }
3508 
3509 /*
3510  * The background pageout daemon, started as a kernel thread
3511  * from the init process.
3512  *
3513  * This basically trickles out pages so that we have _some_
3514  * free memory available even if there is no other activity
3515  * that frees anything up. This is needed for things like routing
3516  * etc, where we otherwise might have all activity going on in
3517  * asynchronous contexts that cannot page things out.
3518  *
3519  * If there are applications that are active memory-allocators
3520  * (most normal use), this basically shouldn't matter.
3521  */
3522 static int kswapd(void *p)
3523 {
3524 	unsigned int alloc_order, reclaim_order;
3525 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3526 	pg_data_t *pgdat = (pg_data_t*)p;
3527 	struct task_struct *tsk = current;
3528 
3529 	struct reclaim_state reclaim_state = {
3530 		.reclaimed_slab = 0,
3531 	};
3532 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3533 
3534 	if (!cpumask_empty(cpumask))
3535 		set_cpus_allowed_ptr(tsk, cpumask);
3536 	current->reclaim_state = &reclaim_state;
3537 
3538 	/*
3539 	 * Tell the memory management that we're a "memory allocator",
3540 	 * and that if we need more memory we should get access to it
3541 	 * regardless (see "__alloc_pages()"). "kswapd" should
3542 	 * never get caught in the normal page freeing logic.
3543 	 *
3544 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3545 	 * you need a small amount of memory in order to be able to
3546 	 * page out something else, and this flag essentially protects
3547 	 * us from recursively trying to free more memory as we're
3548 	 * trying to free the first piece of memory in the first place).
3549 	 */
3550 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3551 	set_freezable();
3552 
3553 	pgdat->kswapd_order = 0;
3554 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3555 	for ( ; ; ) {
3556 		bool ret;
3557 
3558 		alloc_order = reclaim_order = pgdat->kswapd_order;
3559 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3560 
3561 kswapd_try_sleep:
3562 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3563 					classzone_idx);
3564 
3565 		/* Read the new order and classzone_idx */
3566 		alloc_order = reclaim_order = pgdat->kswapd_order;
3567 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3568 		pgdat->kswapd_order = 0;
3569 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3570 
3571 		ret = try_to_freeze();
3572 		if (kthread_should_stop())
3573 			break;
3574 
3575 		/*
3576 		 * We can speed up thawing tasks if we don't call balance_pgdat
3577 		 * after returning from the refrigerator
3578 		 */
3579 		if (ret)
3580 			continue;
3581 
3582 		/*
3583 		 * Reclaim begins at the requested order but if a high-order
3584 		 * reclaim fails then kswapd falls back to reclaiming for
3585 		 * order-0. If that happens, kswapd will consider sleeping
3586 		 * for the order it finished reclaiming at (reclaim_order)
3587 		 * but kcompactd is woken to compact for the original
3588 		 * request (alloc_order).
3589 		 */
3590 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3591 						alloc_order);
3592 		fs_reclaim_acquire(GFP_KERNEL);
3593 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3594 		fs_reclaim_release(GFP_KERNEL);
3595 		if (reclaim_order < alloc_order)
3596 			goto kswapd_try_sleep;
3597 	}
3598 
3599 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3600 	current->reclaim_state = NULL;
3601 
3602 	return 0;
3603 }
3604 
3605 /*
3606  * A zone is low on free memory, so wake its kswapd task to service it.
3607  */
3608 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3609 {
3610 	pg_data_t *pgdat;
3611 
3612 	if (!managed_zone(zone))
3613 		return;
3614 
3615 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3616 		return;
3617 	pgdat = zone->zone_pgdat;
3618 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3619 							   classzone_idx);
3620 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3621 	if (!waitqueue_active(&pgdat->kswapd_wait))
3622 		return;
3623 
3624 	/* Hopeless node, leave it to direct reclaim */
3625 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3626 		return;
3627 
3628 	if (pgdat_balanced(pgdat, order, classzone_idx))
3629 		return;
3630 
3631 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3632 	wake_up_interruptible(&pgdat->kswapd_wait);
3633 }
3634 
3635 #ifdef CONFIG_HIBERNATION
3636 /*
3637  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3638  * freed pages.
3639  *
3640  * Rather than trying to age LRUs the aim is to preserve the overall
3641  * LRU order by reclaiming preferentially
3642  * inactive > active > active referenced > active mapped
3643  */
3644 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3645 {
3646 	struct reclaim_state reclaim_state;
3647 	struct scan_control sc = {
3648 		.nr_to_reclaim = nr_to_reclaim,
3649 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3650 		.reclaim_idx = MAX_NR_ZONES - 1,
3651 		.priority = DEF_PRIORITY,
3652 		.may_writepage = 1,
3653 		.may_unmap = 1,
3654 		.may_swap = 1,
3655 		.hibernation_mode = 1,
3656 	};
3657 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3658 	struct task_struct *p = current;
3659 	unsigned long nr_reclaimed;
3660 	unsigned int noreclaim_flag;
3661 
3662 	noreclaim_flag = memalloc_noreclaim_save();
3663 	fs_reclaim_acquire(sc.gfp_mask);
3664 	reclaim_state.reclaimed_slab = 0;
3665 	p->reclaim_state = &reclaim_state;
3666 
3667 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3668 
3669 	p->reclaim_state = NULL;
3670 	fs_reclaim_release(sc.gfp_mask);
3671 	memalloc_noreclaim_restore(noreclaim_flag);
3672 
3673 	return nr_reclaimed;
3674 }
3675 #endif /* CONFIG_HIBERNATION */
3676 
3677 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3678    not required for correctness.  So if the last cpu in a node goes
3679    away, we get changed to run anywhere: as the first one comes back,
3680    restore their cpu bindings. */
3681 static int kswapd_cpu_online(unsigned int cpu)
3682 {
3683 	int nid;
3684 
3685 	for_each_node_state(nid, N_MEMORY) {
3686 		pg_data_t *pgdat = NODE_DATA(nid);
3687 		const struct cpumask *mask;
3688 
3689 		mask = cpumask_of_node(pgdat->node_id);
3690 
3691 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3692 			/* One of our CPUs online: restore mask */
3693 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3694 	}
3695 	return 0;
3696 }
3697 
3698 /*
3699  * This kswapd start function will be called by init and node-hot-add.
3700  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3701  */
3702 int kswapd_run(int nid)
3703 {
3704 	pg_data_t *pgdat = NODE_DATA(nid);
3705 	int ret = 0;
3706 
3707 	if (pgdat->kswapd)
3708 		return 0;
3709 
3710 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3711 	if (IS_ERR(pgdat->kswapd)) {
3712 		/* failure at boot is fatal */
3713 		BUG_ON(system_state < SYSTEM_RUNNING);
3714 		pr_err("Failed to start kswapd on node %d\n", nid);
3715 		ret = PTR_ERR(pgdat->kswapd);
3716 		pgdat->kswapd = NULL;
3717 	}
3718 	return ret;
3719 }
3720 
3721 /*
3722  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3723  * hold mem_hotplug_begin/end().
3724  */
3725 void kswapd_stop(int nid)
3726 {
3727 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3728 
3729 	if (kswapd) {
3730 		kthread_stop(kswapd);
3731 		NODE_DATA(nid)->kswapd = NULL;
3732 	}
3733 }
3734 
3735 static int __init kswapd_init(void)
3736 {
3737 	int nid, ret;
3738 
3739 	swap_setup();
3740 	for_each_node_state(nid, N_MEMORY)
3741  		kswapd_run(nid);
3742 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3743 					"mm/vmscan:online", kswapd_cpu_online,
3744 					NULL);
3745 	WARN_ON(ret < 0);
3746 	return 0;
3747 }
3748 
3749 module_init(kswapd_init)
3750 
3751 #ifdef CONFIG_NUMA
3752 /*
3753  * Node reclaim mode
3754  *
3755  * If non-zero call node_reclaim when the number of free pages falls below
3756  * the watermarks.
3757  */
3758 int node_reclaim_mode __read_mostly;
3759 
3760 #define RECLAIM_OFF 0
3761 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3762 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3763 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3764 
3765 /*
3766  * Priority for NODE_RECLAIM. This determines the fraction of pages
3767  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3768  * a zone.
3769  */
3770 #define NODE_RECLAIM_PRIORITY 4
3771 
3772 /*
3773  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3774  * occur.
3775  */
3776 int sysctl_min_unmapped_ratio = 1;
3777 
3778 /*
3779  * If the number of slab pages in a zone grows beyond this percentage then
3780  * slab reclaim needs to occur.
3781  */
3782 int sysctl_min_slab_ratio = 5;
3783 
3784 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3785 {
3786 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3787 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3788 		node_page_state(pgdat, NR_ACTIVE_FILE);
3789 
3790 	/*
3791 	 * It's possible for there to be more file mapped pages than
3792 	 * accounted for by the pages on the file LRU lists because
3793 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3794 	 */
3795 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3796 }
3797 
3798 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3799 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3800 {
3801 	unsigned long nr_pagecache_reclaimable;
3802 	unsigned long delta = 0;
3803 
3804 	/*
3805 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3806 	 * potentially reclaimable. Otherwise, we have to worry about
3807 	 * pages like swapcache and node_unmapped_file_pages() provides
3808 	 * a better estimate
3809 	 */
3810 	if (node_reclaim_mode & RECLAIM_UNMAP)
3811 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3812 	else
3813 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3814 
3815 	/* If we can't clean pages, remove dirty pages from consideration */
3816 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3817 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3818 
3819 	/* Watch for any possible underflows due to delta */
3820 	if (unlikely(delta > nr_pagecache_reclaimable))
3821 		delta = nr_pagecache_reclaimable;
3822 
3823 	return nr_pagecache_reclaimable - delta;
3824 }
3825 
3826 /*
3827  * Try to free up some pages from this node through reclaim.
3828  */
3829 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3830 {
3831 	/* Minimum pages needed in order to stay on node */
3832 	const unsigned long nr_pages = 1 << order;
3833 	struct task_struct *p = current;
3834 	struct reclaim_state reclaim_state;
3835 	unsigned int noreclaim_flag;
3836 	struct scan_control sc = {
3837 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3838 		.gfp_mask = current_gfp_context(gfp_mask),
3839 		.order = order,
3840 		.priority = NODE_RECLAIM_PRIORITY,
3841 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3842 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3843 		.may_swap = 1,
3844 		.reclaim_idx = gfp_zone(gfp_mask),
3845 	};
3846 
3847 	cond_resched();
3848 	/*
3849 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3850 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3851 	 * and RECLAIM_UNMAP.
3852 	 */
3853 	noreclaim_flag = memalloc_noreclaim_save();
3854 	p->flags |= PF_SWAPWRITE;
3855 	fs_reclaim_acquire(sc.gfp_mask);
3856 	reclaim_state.reclaimed_slab = 0;
3857 	p->reclaim_state = &reclaim_state;
3858 
3859 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3860 		/*
3861 		 * Free memory by calling shrink zone with increasing
3862 		 * priorities until we have enough memory freed.
3863 		 */
3864 		do {
3865 			shrink_node(pgdat, &sc);
3866 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3867 	}
3868 
3869 	p->reclaim_state = NULL;
3870 	fs_reclaim_release(gfp_mask);
3871 	current->flags &= ~PF_SWAPWRITE;
3872 	memalloc_noreclaim_restore(noreclaim_flag);
3873 	return sc.nr_reclaimed >= nr_pages;
3874 }
3875 
3876 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3877 {
3878 	int ret;
3879 
3880 	/*
3881 	 * Node reclaim reclaims unmapped file backed pages and
3882 	 * slab pages if we are over the defined limits.
3883 	 *
3884 	 * A small portion of unmapped file backed pages is needed for
3885 	 * file I/O otherwise pages read by file I/O will be immediately
3886 	 * thrown out if the node is overallocated. So we do not reclaim
3887 	 * if less than a specified percentage of the node is used by
3888 	 * unmapped file backed pages.
3889 	 */
3890 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3891 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3892 		return NODE_RECLAIM_FULL;
3893 
3894 	/*
3895 	 * Do not scan if the allocation should not be delayed.
3896 	 */
3897 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3898 		return NODE_RECLAIM_NOSCAN;
3899 
3900 	/*
3901 	 * Only run node reclaim on the local node or on nodes that do not
3902 	 * have associated processors. This will favor the local processor
3903 	 * over remote processors and spread off node memory allocations
3904 	 * as wide as possible.
3905 	 */
3906 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3907 		return NODE_RECLAIM_NOSCAN;
3908 
3909 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3910 		return NODE_RECLAIM_NOSCAN;
3911 
3912 	ret = __node_reclaim(pgdat, gfp_mask, order);
3913 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3914 
3915 	if (!ret)
3916 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3917 
3918 	return ret;
3919 }
3920 #endif
3921 
3922 /*
3923  * page_evictable - test whether a page is evictable
3924  * @page: the page to test
3925  *
3926  * Test whether page is evictable--i.e., should be placed on active/inactive
3927  * lists vs unevictable list.
3928  *
3929  * Reasons page might not be evictable:
3930  * (1) page's mapping marked unevictable
3931  * (2) page is part of an mlocked VMA
3932  *
3933  */
3934 int page_evictable(struct page *page)
3935 {
3936 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3937 }
3938 
3939 #ifdef CONFIG_SHMEM
3940 /**
3941  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3942  * @pages:	array of pages to check
3943  * @nr_pages:	number of pages to check
3944  *
3945  * Checks pages for evictability and moves them to the appropriate lru list.
3946  *
3947  * This function is only used for SysV IPC SHM_UNLOCK.
3948  */
3949 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3950 {
3951 	struct lruvec *lruvec;
3952 	struct pglist_data *pgdat = NULL;
3953 	int pgscanned = 0;
3954 	int pgrescued = 0;
3955 	int i;
3956 
3957 	for (i = 0; i < nr_pages; i++) {
3958 		struct page *page = pages[i];
3959 		struct pglist_data *pagepgdat = page_pgdat(page);
3960 
3961 		pgscanned++;
3962 		if (pagepgdat != pgdat) {
3963 			if (pgdat)
3964 				spin_unlock_irq(&pgdat->lru_lock);
3965 			pgdat = pagepgdat;
3966 			spin_lock_irq(&pgdat->lru_lock);
3967 		}
3968 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3969 
3970 		if (!PageLRU(page) || !PageUnevictable(page))
3971 			continue;
3972 
3973 		if (page_evictable(page)) {
3974 			enum lru_list lru = page_lru_base_type(page);
3975 
3976 			VM_BUG_ON_PAGE(PageActive(page), page);
3977 			ClearPageUnevictable(page);
3978 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3979 			add_page_to_lru_list(page, lruvec, lru);
3980 			pgrescued++;
3981 		}
3982 	}
3983 
3984 	if (pgdat) {
3985 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3986 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3987 		spin_unlock_irq(&pgdat->lru_lock);
3988 	}
3989 }
3990 #endif /* CONFIG_SHMEM */
3991