xref: /openbmc/linux/mm/vmscan.c (revision 0c5c62ddf88c34bc83b66e4ac9beb2bb0e1887d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/*
70 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 	 * are scanned.
72 	 */
73 	nodemask_t	*nodemask;
74 
75 	/*
76 	 * The memory cgroup that hit its limit and as a result is the
77 	 * primary target of this reclaim invocation.
78 	 */
79 	struct mem_cgroup *target_mem_cgroup;
80 
81 	/*
82 	 * Scan pressure balancing between anon and file LRUs
83 	 */
84 	unsigned long	anon_cost;
85 	unsigned long	file_cost;
86 
87 	/* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 	unsigned int may_deactivate:2;
91 	unsigned int force_deactivate:1;
92 	unsigned int skipped_deactivate:1;
93 
94 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
95 	unsigned int may_writepage:1;
96 
97 	/* Can mapped pages be reclaimed? */
98 	unsigned int may_unmap:1;
99 
100 	/* Can pages be swapped as part of reclaim? */
101 	unsigned int may_swap:1;
102 
103 	/*
104 	 * Cgroup memory below memory.low is protected as long as we
105 	 * don't threaten to OOM. If any cgroup is reclaimed at
106 	 * reduced force or passed over entirely due to its memory.low
107 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 	 * result, then go back for one more cycle that reclaims the protected
109 	 * memory (memcg_low_reclaim) to avert OOM.
110 	 */
111 	unsigned int memcg_low_reclaim:1;
112 	unsigned int memcg_low_skipped:1;
113 
114 	unsigned int hibernation_mode:1;
115 
116 	/* One of the zones is ready for compaction */
117 	unsigned int compaction_ready:1;
118 
119 	/* There is easily reclaimable cold cache in the current node */
120 	unsigned int cache_trim_mode:1;
121 
122 	/* The file pages on the current node are dangerously low */
123 	unsigned int file_is_tiny:1;
124 
125 	/* Always discard instead of demoting to lower tier memory */
126 	unsigned int no_demotion:1;
127 
128 	/* Allocation order */
129 	s8 order;
130 
131 	/* Scan (total_size >> priority) pages at once */
132 	s8 priority;
133 
134 	/* The highest zone to isolate pages for reclaim from */
135 	s8 reclaim_idx;
136 
137 	/* This context's GFP mask */
138 	gfp_t gfp_mask;
139 
140 	/* Incremented by the number of inactive pages that were scanned */
141 	unsigned long nr_scanned;
142 
143 	/* Number of pages freed so far during a call to shrink_zones() */
144 	unsigned long nr_reclaimed;
145 
146 	struct {
147 		unsigned int dirty;
148 		unsigned int unqueued_dirty;
149 		unsigned int congested;
150 		unsigned int writeback;
151 		unsigned int immediate;
152 		unsigned int file_taken;
153 		unsigned int taken;
154 	} nr;
155 
156 	/* for recording the reclaimed slab by now */
157 	struct reclaim_state reclaim_state;
158 };
159 
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field)			\
162 	do {								\
163 		if ((_page)->lru.prev != _base) {			\
164 			struct page *prev;				\
165 									\
166 			prev = lru_to_page(&(_page->lru));		\
167 			prefetchw(&prev->_field);			\
168 		}							\
169 	} while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173 
174 /*
175  * From 0 .. 200.  Higher means more swappy.
176  */
177 int vm_swappiness = 60;
178 
179 static void set_task_reclaim_state(struct task_struct *task,
180 				   struct reclaim_state *rs)
181 {
182 	/* Check for an overwrite */
183 	WARN_ON_ONCE(rs && task->reclaim_state);
184 
185 	/* Check for the nulling of an already-nulled member */
186 	WARN_ON_ONCE(!rs && !task->reclaim_state);
187 
188 	task->reclaim_state = rs;
189 }
190 
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size)
218 {
219 	struct shrinker_info *new, *old;
220 	struct mem_cgroup_per_node *pn;
221 	int nid;
222 	int size = map_size + defer_size;
223 
224 	for_each_node(nid) {
225 		pn = memcg->nodeinfo[nid];
226 		old = shrinker_info_protected(memcg, nid);
227 		/* Not yet online memcg */
228 		if (!old)
229 			return 0;
230 
231 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 		if (!new)
233 			return -ENOMEM;
234 
235 		new->nr_deferred = (atomic_long_t *)(new + 1);
236 		new->map = (void *)new->nr_deferred + defer_size;
237 
238 		/* map: set all old bits, clear all new bits */
239 		memset(new->map, (int)0xff, old_map_size);
240 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 		/* nr_deferred: copy old values, clear all new values */
242 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 		memset((void *)new->nr_deferred + old_defer_size, 0,
244 		       defer_size - old_defer_size);
245 
246 		rcu_assign_pointer(pn->shrinker_info, new);
247 		kvfree_rcu(old, rcu);
248 	}
249 
250 	return 0;
251 }
252 
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 	struct mem_cgroup_per_node *pn;
256 	struct shrinker_info *info;
257 	int nid;
258 
259 	for_each_node(nid) {
260 		pn = memcg->nodeinfo[nid];
261 		info = rcu_dereference_protected(pn->shrinker_info, true);
262 		kvfree(info);
263 		rcu_assign_pointer(pn->shrinker_info, NULL);
264 	}
265 }
266 
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 	struct shrinker_info *info;
270 	int nid, size, ret = 0;
271 	int map_size, defer_size = 0;
272 
273 	down_write(&shrinker_rwsem);
274 	map_size = shrinker_map_size(shrinker_nr_max);
275 	defer_size = shrinker_defer_size(shrinker_nr_max);
276 	size = map_size + defer_size;
277 	for_each_node(nid) {
278 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 		if (!info) {
280 			free_shrinker_info(memcg);
281 			ret = -ENOMEM;
282 			break;
283 		}
284 		info->nr_deferred = (atomic_long_t *)(info + 1);
285 		info->map = (void *)info->nr_deferred + defer_size;
286 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 	}
288 	up_write(&shrinker_rwsem);
289 
290 	return ret;
291 }
292 
293 static inline bool need_expand(int nr_max)
294 {
295 	return round_up(nr_max, BITS_PER_LONG) >
296 	       round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298 
299 static int expand_shrinker_info(int new_id)
300 {
301 	int ret = 0;
302 	int new_nr_max = new_id + 1;
303 	int map_size, defer_size = 0;
304 	int old_map_size, old_defer_size = 0;
305 	struct mem_cgroup *memcg;
306 
307 	if (!need_expand(new_nr_max))
308 		goto out;
309 
310 	if (!root_mem_cgroup)
311 		goto out;
312 
313 	lockdep_assert_held(&shrinker_rwsem);
314 
315 	map_size = shrinker_map_size(new_nr_max);
316 	defer_size = shrinker_defer_size(new_nr_max);
317 	old_map_size = shrinker_map_size(shrinker_nr_max);
318 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
319 
320 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 	do {
322 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 					       old_map_size, old_defer_size);
324 		if (ret) {
325 			mem_cgroup_iter_break(NULL, memcg);
326 			goto out;
327 		}
328 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 	if (!ret)
331 		shrinker_nr_max = new_nr_max;
332 
333 	return ret;
334 }
335 
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 		struct shrinker_info *info;
340 
341 		rcu_read_lock();
342 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 		/* Pairs with smp mb in shrink_slab() */
344 		smp_mb__before_atomic();
345 		set_bit(shrinker_id, info->map);
346 		rcu_read_unlock();
347 	}
348 }
349 
350 static DEFINE_IDR(shrinker_idr);
351 
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 	int id, ret = -ENOMEM;
355 
356 	if (mem_cgroup_disabled())
357 		return -ENOSYS;
358 
359 	down_write(&shrinker_rwsem);
360 	/* This may call shrinker, so it must use down_read_trylock() */
361 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 	if (id < 0)
363 		goto unlock;
364 
365 	if (id >= shrinker_nr_max) {
366 		if (expand_shrinker_info(id)) {
367 			idr_remove(&shrinker_idr, id);
368 			goto unlock;
369 		}
370 	}
371 	shrinker->id = id;
372 	ret = 0;
373 unlock:
374 	up_write(&shrinker_rwsem);
375 	return ret;
376 }
377 
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 	int id = shrinker->id;
381 
382 	BUG_ON(id < 0);
383 
384 	lockdep_assert_held(&shrinker_rwsem);
385 
386 	idr_remove(&shrinker_idr, id);
387 }
388 
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 				   struct mem_cgroup *memcg)
391 {
392 	struct shrinker_info *info;
393 
394 	info = shrinker_info_protected(memcg, nid);
395 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397 
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 				  struct mem_cgroup *memcg)
400 {
401 	struct shrinker_info *info;
402 
403 	info = shrinker_info_protected(memcg, nid);
404 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406 
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 	int i, nid;
410 	long nr;
411 	struct mem_cgroup *parent;
412 	struct shrinker_info *child_info, *parent_info;
413 
414 	parent = parent_mem_cgroup(memcg);
415 	if (!parent)
416 		parent = root_mem_cgroup;
417 
418 	/* Prevent from concurrent shrinker_info expand */
419 	down_read(&shrinker_rwsem);
420 	for_each_node(nid) {
421 		child_info = shrinker_info_protected(memcg, nid);
422 		parent_info = shrinker_info_protected(parent, nid);
423 		for (i = 0; i < shrinker_nr_max; i++) {
424 			nr = atomic_long_read(&child_info->nr_deferred[i]);
425 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 		}
427 	}
428 	up_read(&shrinker_rwsem);
429 }
430 
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 	return sc->target_mem_cgroup;
434 }
435 
436 /**
437  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438  * @sc: scan_control in question
439  *
440  * The normal page dirty throttling mechanism in balance_dirty_pages() is
441  * completely broken with the legacy memcg and direct stalling in
442  * shrink_page_list() is used for throttling instead, which lacks all the
443  * niceties such as fairness, adaptive pausing, bandwidth proportional
444  * allocation and configurability.
445  *
446  * This function tests whether the vmscan currently in progress can assume
447  * that the normal dirty throttling mechanism is operational.
448  */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 	if (!cgroup_reclaim(sc))
452 		return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 		return true;
456 #endif
457 	return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 	return -ENOSYS;
463 }
464 
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468 
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 				   struct mem_cgroup *memcg)
471 {
472 	return 0;
473 }
474 
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 				  struct mem_cgroup *memcg)
477 {
478 	return 0;
479 }
480 
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 	return false;
484 }
485 
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 	return true;
489 }
490 #endif
491 
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 			     struct shrink_control *sc)
494 {
495 	int nid = sc->nid;
496 
497 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 		nid = 0;
499 
500 	if (sc->memcg &&
501 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 		return xchg_nr_deferred_memcg(nid, shrinker,
503 					      sc->memcg);
504 
505 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507 
508 
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 			    struct shrink_control *sc)
511 {
512 	int nid = sc->nid;
513 
514 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 		nid = 0;
516 
517 	if (sc->memcg &&
518 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 		return add_nr_deferred_memcg(nr, nid, shrinker,
520 					     sc->memcg);
521 
522 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524 
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 	if (!numa_demotion_enabled)
528 		return false;
529 	if (sc) {
530 		if (sc->no_demotion)
531 			return false;
532 		/* It is pointless to do demotion in memcg reclaim */
533 		if (cgroup_reclaim(sc))
534 			return false;
535 	}
536 	if (next_demotion_node(nid) == NUMA_NO_NODE)
537 		return false;
538 
539 	return true;
540 }
541 
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 					  int nid,
544 					  struct scan_control *sc)
545 {
546 	if (memcg == NULL) {
547 		/*
548 		 * For non-memcg reclaim, is there
549 		 * space in any swap device?
550 		 */
551 		if (get_nr_swap_pages() > 0)
552 			return true;
553 	} else {
554 		/* Is the memcg below its swap limit? */
555 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 			return true;
557 	}
558 
559 	/*
560 	 * The page can not be swapped.
561 	 *
562 	 * Can it be reclaimed from this node via demotion?
563 	 */
564 	return can_demote(nid, sc);
565 }
566 
567 /*
568  * This misses isolated pages which are not accounted for to save counters.
569  * As the data only determines if reclaim or compaction continues, it is
570  * not expected that isolated pages will be a dominating factor.
571  */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 	unsigned long nr;
575 
576 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581 
582 	return nr;
583 }
584 
585 /**
586  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
587  * @lruvec: lru vector
588  * @lru: lru to use
589  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590  */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 				     int zone_idx)
593 {
594 	unsigned long size = 0;
595 	int zid;
596 
597 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599 
600 		if (!managed_zone(zone))
601 			continue;
602 
603 		if (!mem_cgroup_disabled())
604 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 		else
606 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 	}
608 	return size;
609 }
610 
611 /*
612  * Add a shrinker callback to be called from the vm.
613  */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 	unsigned int size;
617 	int err;
618 
619 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 		err = prealloc_memcg_shrinker(shrinker);
621 		if (err != -ENOSYS)
622 			return err;
623 
624 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 	}
626 
627 	size = sizeof(*shrinker->nr_deferred);
628 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 		size *= nr_node_ids;
630 
631 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 	if (!shrinker->nr_deferred)
633 		return -ENOMEM;
634 
635 	return 0;
636 }
637 
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 		down_write(&shrinker_rwsem);
642 		unregister_memcg_shrinker(shrinker);
643 		up_write(&shrinker_rwsem);
644 		return;
645 	}
646 
647 	kfree(shrinker->nr_deferred);
648 	shrinker->nr_deferred = NULL;
649 }
650 
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 	down_write(&shrinker_rwsem);
654 	list_add_tail(&shrinker->list, &shrinker_list);
655 	shrinker->flags |= SHRINKER_REGISTERED;
656 	up_write(&shrinker_rwsem);
657 }
658 
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 	int err = prealloc_shrinker(shrinker);
662 
663 	if (err)
664 		return err;
665 	register_shrinker_prepared(shrinker);
666 	return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669 
670 /*
671  * Remove one
672  */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 	if (!(shrinker->flags & SHRINKER_REGISTERED))
676 		return;
677 
678 	down_write(&shrinker_rwsem);
679 	list_del(&shrinker->list);
680 	shrinker->flags &= ~SHRINKER_REGISTERED;
681 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 		unregister_memcg_shrinker(shrinker);
683 	up_write(&shrinker_rwsem);
684 
685 	kfree(shrinker->nr_deferred);
686 	shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689 
690 /**
691  * synchronize_shrinkers - Wait for all running shrinkers to complete.
692  *
693  * This is equivalent to calling unregister_shrink() and register_shrinker(),
694  * but atomically and with less overhead. This is useful to guarantee that all
695  * shrinker invocations have seen an update, before freeing memory, similar to
696  * rcu.
697  */
698 void synchronize_shrinkers(void)
699 {
700 	down_write(&shrinker_rwsem);
701 	up_write(&shrinker_rwsem);
702 }
703 EXPORT_SYMBOL(synchronize_shrinkers);
704 
705 #define SHRINK_BATCH 128
706 
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 				    struct shrinker *shrinker, int priority)
709 {
710 	unsigned long freed = 0;
711 	unsigned long long delta;
712 	long total_scan;
713 	long freeable;
714 	long nr;
715 	long new_nr;
716 	long batch_size = shrinker->batch ? shrinker->batch
717 					  : SHRINK_BATCH;
718 	long scanned = 0, next_deferred;
719 
720 	freeable = shrinker->count_objects(shrinker, shrinkctl);
721 	if (freeable == 0 || freeable == SHRINK_EMPTY)
722 		return freeable;
723 
724 	/*
725 	 * copy the current shrinker scan count into a local variable
726 	 * and zero it so that other concurrent shrinker invocations
727 	 * don't also do this scanning work.
728 	 */
729 	nr = xchg_nr_deferred(shrinker, shrinkctl);
730 
731 	if (shrinker->seeks) {
732 		delta = freeable >> priority;
733 		delta *= 4;
734 		do_div(delta, shrinker->seeks);
735 	} else {
736 		/*
737 		 * These objects don't require any IO to create. Trim
738 		 * them aggressively under memory pressure to keep
739 		 * them from causing refetches in the IO caches.
740 		 */
741 		delta = freeable / 2;
742 	}
743 
744 	total_scan = nr >> priority;
745 	total_scan += delta;
746 	total_scan = min(total_scan, (2 * freeable));
747 
748 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 				   freeable, delta, total_scan, priority);
750 
751 	/*
752 	 * Normally, we should not scan less than batch_size objects in one
753 	 * pass to avoid too frequent shrinker calls, but if the slab has less
754 	 * than batch_size objects in total and we are really tight on memory,
755 	 * we will try to reclaim all available objects, otherwise we can end
756 	 * up failing allocations although there are plenty of reclaimable
757 	 * objects spread over several slabs with usage less than the
758 	 * batch_size.
759 	 *
760 	 * We detect the "tight on memory" situations by looking at the total
761 	 * number of objects we want to scan (total_scan). If it is greater
762 	 * than the total number of objects on slab (freeable), we must be
763 	 * scanning at high prio and therefore should try to reclaim as much as
764 	 * possible.
765 	 */
766 	while (total_scan >= batch_size ||
767 	       total_scan >= freeable) {
768 		unsigned long ret;
769 		unsigned long nr_to_scan = min(batch_size, total_scan);
770 
771 		shrinkctl->nr_to_scan = nr_to_scan;
772 		shrinkctl->nr_scanned = nr_to_scan;
773 		ret = shrinker->scan_objects(shrinker, shrinkctl);
774 		if (ret == SHRINK_STOP)
775 			break;
776 		freed += ret;
777 
778 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 		total_scan -= shrinkctl->nr_scanned;
780 		scanned += shrinkctl->nr_scanned;
781 
782 		cond_resched();
783 	}
784 
785 	/*
786 	 * The deferred work is increased by any new work (delta) that wasn't
787 	 * done, decreased by old deferred work that was done now.
788 	 *
789 	 * And it is capped to two times of the freeable items.
790 	 */
791 	next_deferred = max_t(long, (nr + delta - scanned), 0);
792 	next_deferred = min(next_deferred, (2 * freeable));
793 
794 	/*
795 	 * move the unused scan count back into the shrinker in a
796 	 * manner that handles concurrent updates.
797 	 */
798 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
799 
800 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
801 	return freed;
802 }
803 
804 #ifdef CONFIG_MEMCG
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 			struct mem_cgroup *memcg, int priority)
807 {
808 	struct shrinker_info *info;
809 	unsigned long ret, freed = 0;
810 	int i;
811 
812 	if (!mem_cgroup_online(memcg))
813 		return 0;
814 
815 	if (!down_read_trylock(&shrinker_rwsem))
816 		return 0;
817 
818 	info = shrinker_info_protected(memcg, nid);
819 	if (unlikely(!info))
820 		goto unlock;
821 
822 	for_each_set_bit(i, info->map, shrinker_nr_max) {
823 		struct shrink_control sc = {
824 			.gfp_mask = gfp_mask,
825 			.nid = nid,
826 			.memcg = memcg,
827 		};
828 		struct shrinker *shrinker;
829 
830 		shrinker = idr_find(&shrinker_idr, i);
831 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
832 			if (!shrinker)
833 				clear_bit(i, info->map);
834 			continue;
835 		}
836 
837 		/* Call non-slab shrinkers even though kmem is disabled */
838 		if (!memcg_kmem_enabled() &&
839 		    !(shrinker->flags & SHRINKER_NONSLAB))
840 			continue;
841 
842 		ret = do_shrink_slab(&sc, shrinker, priority);
843 		if (ret == SHRINK_EMPTY) {
844 			clear_bit(i, info->map);
845 			/*
846 			 * After the shrinker reported that it had no objects to
847 			 * free, but before we cleared the corresponding bit in
848 			 * the memcg shrinker map, a new object might have been
849 			 * added. To make sure, we have the bit set in this
850 			 * case, we invoke the shrinker one more time and reset
851 			 * the bit if it reports that it is not empty anymore.
852 			 * The memory barrier here pairs with the barrier in
853 			 * set_shrinker_bit():
854 			 *
855 			 * list_lru_add()     shrink_slab_memcg()
856 			 *   list_add_tail()    clear_bit()
857 			 *   <MB>               <MB>
858 			 *   set_bit()          do_shrink_slab()
859 			 */
860 			smp_mb__after_atomic();
861 			ret = do_shrink_slab(&sc, shrinker, priority);
862 			if (ret == SHRINK_EMPTY)
863 				ret = 0;
864 			else
865 				set_shrinker_bit(memcg, nid, i);
866 		}
867 		freed += ret;
868 
869 		if (rwsem_is_contended(&shrinker_rwsem)) {
870 			freed = freed ? : 1;
871 			break;
872 		}
873 	}
874 unlock:
875 	up_read(&shrinker_rwsem);
876 	return freed;
877 }
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 			struct mem_cgroup *memcg, int priority)
881 {
882 	return 0;
883 }
884 #endif /* CONFIG_MEMCG */
885 
886 /**
887  * shrink_slab - shrink slab caches
888  * @gfp_mask: allocation context
889  * @nid: node whose slab caches to target
890  * @memcg: memory cgroup whose slab caches to target
891  * @priority: the reclaim priority
892  *
893  * Call the shrink functions to age shrinkable caches.
894  *
895  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896  * unaware shrinkers will receive a node id of 0 instead.
897  *
898  * @memcg specifies the memory cgroup to target. Unaware shrinkers
899  * are called only if it is the root cgroup.
900  *
901  * @priority is sc->priority, we take the number of objects and >> by priority
902  * in order to get the scan target.
903  *
904  * Returns the number of reclaimed slab objects.
905  */
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 				 struct mem_cgroup *memcg,
908 				 int priority)
909 {
910 	unsigned long ret, freed = 0;
911 	struct shrinker *shrinker;
912 
913 	/*
914 	 * The root memcg might be allocated even though memcg is disabled
915 	 * via "cgroup_disable=memory" boot parameter.  This could make
916 	 * mem_cgroup_is_root() return false, then just run memcg slab
917 	 * shrink, but skip global shrink.  This may result in premature
918 	 * oom.
919 	 */
920 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
922 
923 	if (!down_read_trylock(&shrinker_rwsem))
924 		goto out;
925 
926 	list_for_each_entry(shrinker, &shrinker_list, list) {
927 		struct shrink_control sc = {
928 			.gfp_mask = gfp_mask,
929 			.nid = nid,
930 			.memcg = memcg,
931 		};
932 
933 		ret = do_shrink_slab(&sc, shrinker, priority);
934 		if (ret == SHRINK_EMPTY)
935 			ret = 0;
936 		freed += ret;
937 		/*
938 		 * Bail out if someone want to register a new shrinker to
939 		 * prevent the registration from being stalled for long periods
940 		 * by parallel ongoing shrinking.
941 		 */
942 		if (rwsem_is_contended(&shrinker_rwsem)) {
943 			freed = freed ? : 1;
944 			break;
945 		}
946 	}
947 
948 	up_read(&shrinker_rwsem);
949 out:
950 	cond_resched();
951 	return freed;
952 }
953 
954 void drop_slab_node(int nid)
955 {
956 	unsigned long freed;
957 	int shift = 0;
958 
959 	do {
960 		struct mem_cgroup *memcg = NULL;
961 
962 		if (fatal_signal_pending(current))
963 			return;
964 
965 		freed = 0;
966 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
967 		do {
968 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 	} while ((freed >> shift++) > 1);
971 }
972 
973 void drop_slab(void)
974 {
975 	int nid;
976 
977 	for_each_online_node(nid)
978 		drop_slab_node(nid);
979 }
980 
981 static inline int is_page_cache_freeable(struct page *page)
982 {
983 	/*
984 	 * A freeable page cache page is referenced only by the caller
985 	 * that isolated the page, the page cache and optional buffer
986 	 * heads at page->private.
987 	 */
988 	int page_cache_pins = thp_nr_pages(page);
989 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
990 }
991 
992 static int may_write_to_inode(struct inode *inode)
993 {
994 	if (current->flags & PF_SWAPWRITE)
995 		return 1;
996 	if (!inode_write_congested(inode))
997 		return 1;
998 	if (inode_to_bdi(inode) == current->backing_dev_info)
999 		return 1;
1000 	return 0;
1001 }
1002 
1003 /*
1004  * We detected a synchronous write error writing a page out.  Probably
1005  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1006  * fsync(), msync() or close().
1007  *
1008  * The tricky part is that after writepage we cannot touch the mapping: nothing
1009  * prevents it from being freed up.  But we have a ref on the page and once
1010  * that page is locked, the mapping is pinned.
1011  *
1012  * We're allowed to run sleeping lock_page() here because we know the caller has
1013  * __GFP_FS.
1014  */
1015 static void handle_write_error(struct address_space *mapping,
1016 				struct page *page, int error)
1017 {
1018 	lock_page(page);
1019 	if (page_mapping(page) == mapping)
1020 		mapping_set_error(mapping, error);
1021 	unlock_page(page);
1022 }
1023 
1024 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1025 {
1026 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1027 	long timeout, ret;
1028 	DEFINE_WAIT(wait);
1029 
1030 	/*
1031 	 * Do not throttle IO workers, kthreads other than kswapd or
1032 	 * workqueues. They may be required for reclaim to make
1033 	 * forward progress (e.g. journalling workqueues or kthreads).
1034 	 */
1035 	if (!current_is_kswapd() &&
1036 	    current->flags & (PF_IO_WORKER|PF_KTHREAD))
1037 		return;
1038 
1039 	/*
1040 	 * These figures are pulled out of thin air.
1041 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1042 	 * parallel reclaimers which is a short-lived event so the timeout is
1043 	 * short. Failing to make progress or waiting on writeback are
1044 	 * potentially long-lived events so use a longer timeout. This is shaky
1045 	 * logic as a failure to make progress could be due to anything from
1046 	 * writeback to a slow device to excessive references pages at the tail
1047 	 * of the inactive LRU.
1048 	 */
1049 	switch(reason) {
1050 	case VMSCAN_THROTTLE_WRITEBACK:
1051 		timeout = HZ/10;
1052 
1053 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1054 			WRITE_ONCE(pgdat->nr_reclaim_start,
1055 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1056 		}
1057 
1058 		break;
1059 	case VMSCAN_THROTTLE_NOPROGRESS:
1060 		timeout = HZ/2;
1061 		break;
1062 	case VMSCAN_THROTTLE_ISOLATED:
1063 		timeout = HZ/50;
1064 		break;
1065 	default:
1066 		WARN_ON_ONCE(1);
1067 		timeout = HZ;
1068 		break;
1069 	}
1070 
1071 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1072 	ret = schedule_timeout(timeout);
1073 	finish_wait(wqh, &wait);
1074 
1075 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1076 		atomic_dec(&pgdat->nr_writeback_throttled);
1077 
1078 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1079 				jiffies_to_usecs(timeout - ret),
1080 				reason);
1081 }
1082 
1083 /*
1084  * Account for pages written if tasks are throttled waiting on dirty
1085  * pages to clean. If enough pages have been cleaned since throttling
1086  * started then wakeup the throttled tasks.
1087  */
1088 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1089 							int nr_throttled)
1090 {
1091 	unsigned long nr_written;
1092 
1093 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1094 
1095 	/*
1096 	 * This is an inaccurate read as the per-cpu deltas may not
1097 	 * be synchronised. However, given that the system is
1098 	 * writeback throttled, it is not worth taking the penalty
1099 	 * of getting an accurate count. At worst, the throttle
1100 	 * timeout guarantees forward progress.
1101 	 */
1102 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1103 		READ_ONCE(pgdat->nr_reclaim_start);
1104 
1105 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1106 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1107 }
1108 
1109 /* possible outcome of pageout() */
1110 typedef enum {
1111 	/* failed to write page out, page is locked */
1112 	PAGE_KEEP,
1113 	/* move page to the active list, page is locked */
1114 	PAGE_ACTIVATE,
1115 	/* page has been sent to the disk successfully, page is unlocked */
1116 	PAGE_SUCCESS,
1117 	/* page is clean and locked */
1118 	PAGE_CLEAN,
1119 } pageout_t;
1120 
1121 /*
1122  * pageout is called by shrink_page_list() for each dirty page.
1123  * Calls ->writepage().
1124  */
1125 static pageout_t pageout(struct page *page, struct address_space *mapping)
1126 {
1127 	/*
1128 	 * If the page is dirty, only perform writeback if that write
1129 	 * will be non-blocking.  To prevent this allocation from being
1130 	 * stalled by pagecache activity.  But note that there may be
1131 	 * stalls if we need to run get_block().  We could test
1132 	 * PagePrivate for that.
1133 	 *
1134 	 * If this process is currently in __generic_file_write_iter() against
1135 	 * this page's queue, we can perform writeback even if that
1136 	 * will block.
1137 	 *
1138 	 * If the page is swapcache, write it back even if that would
1139 	 * block, for some throttling. This happens by accident, because
1140 	 * swap_backing_dev_info is bust: it doesn't reflect the
1141 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1142 	 */
1143 	if (!is_page_cache_freeable(page))
1144 		return PAGE_KEEP;
1145 	if (!mapping) {
1146 		/*
1147 		 * Some data journaling orphaned pages can have
1148 		 * page->mapping == NULL while being dirty with clean buffers.
1149 		 */
1150 		if (page_has_private(page)) {
1151 			if (try_to_free_buffers(page)) {
1152 				ClearPageDirty(page);
1153 				pr_info("%s: orphaned page\n", __func__);
1154 				return PAGE_CLEAN;
1155 			}
1156 		}
1157 		return PAGE_KEEP;
1158 	}
1159 	if (mapping->a_ops->writepage == NULL)
1160 		return PAGE_ACTIVATE;
1161 	if (!may_write_to_inode(mapping->host))
1162 		return PAGE_KEEP;
1163 
1164 	if (clear_page_dirty_for_io(page)) {
1165 		int res;
1166 		struct writeback_control wbc = {
1167 			.sync_mode = WB_SYNC_NONE,
1168 			.nr_to_write = SWAP_CLUSTER_MAX,
1169 			.range_start = 0,
1170 			.range_end = LLONG_MAX,
1171 			.for_reclaim = 1,
1172 		};
1173 
1174 		SetPageReclaim(page);
1175 		res = mapping->a_ops->writepage(page, &wbc);
1176 		if (res < 0)
1177 			handle_write_error(mapping, page, res);
1178 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1179 			ClearPageReclaim(page);
1180 			return PAGE_ACTIVATE;
1181 		}
1182 
1183 		if (!PageWriteback(page)) {
1184 			/* synchronous write or broken a_ops? */
1185 			ClearPageReclaim(page);
1186 		}
1187 		trace_mm_vmscan_writepage(page);
1188 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1189 		return PAGE_SUCCESS;
1190 	}
1191 
1192 	return PAGE_CLEAN;
1193 }
1194 
1195 /*
1196  * Same as remove_mapping, but if the page is removed from the mapping, it
1197  * gets returned with a refcount of 0.
1198  */
1199 static int __remove_mapping(struct address_space *mapping, struct page *page,
1200 			    bool reclaimed, struct mem_cgroup *target_memcg)
1201 {
1202 	int refcount;
1203 	void *shadow = NULL;
1204 
1205 	BUG_ON(!PageLocked(page));
1206 	BUG_ON(mapping != page_mapping(page));
1207 
1208 	xa_lock_irq(&mapping->i_pages);
1209 	/*
1210 	 * The non racy check for a busy page.
1211 	 *
1212 	 * Must be careful with the order of the tests. When someone has
1213 	 * a ref to the page, it may be possible that they dirty it then
1214 	 * drop the reference. So if PageDirty is tested before page_count
1215 	 * here, then the following race may occur:
1216 	 *
1217 	 * get_user_pages(&page);
1218 	 * [user mapping goes away]
1219 	 * write_to(page);
1220 	 *				!PageDirty(page)    [good]
1221 	 * SetPageDirty(page);
1222 	 * put_page(page);
1223 	 *				!page_count(page)   [good, discard it]
1224 	 *
1225 	 * [oops, our write_to data is lost]
1226 	 *
1227 	 * Reversing the order of the tests ensures such a situation cannot
1228 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1229 	 * load is not satisfied before that of page->_refcount.
1230 	 *
1231 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1232 	 * and thus under the i_pages lock, then this ordering is not required.
1233 	 */
1234 	refcount = 1 + compound_nr(page);
1235 	if (!page_ref_freeze(page, refcount))
1236 		goto cannot_free;
1237 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1238 	if (unlikely(PageDirty(page))) {
1239 		page_ref_unfreeze(page, refcount);
1240 		goto cannot_free;
1241 	}
1242 
1243 	if (PageSwapCache(page)) {
1244 		swp_entry_t swap = { .val = page_private(page) };
1245 		mem_cgroup_swapout(page, swap);
1246 		if (reclaimed && !mapping_exiting(mapping))
1247 			shadow = workingset_eviction(page, target_memcg);
1248 		__delete_from_swap_cache(page, swap, shadow);
1249 		xa_unlock_irq(&mapping->i_pages);
1250 		put_swap_page(page, swap);
1251 	} else {
1252 		void (*freepage)(struct page *);
1253 
1254 		freepage = mapping->a_ops->freepage;
1255 		/*
1256 		 * Remember a shadow entry for reclaimed file cache in
1257 		 * order to detect refaults, thus thrashing, later on.
1258 		 *
1259 		 * But don't store shadows in an address space that is
1260 		 * already exiting.  This is not just an optimization,
1261 		 * inode reclaim needs to empty out the radix tree or
1262 		 * the nodes are lost.  Don't plant shadows behind its
1263 		 * back.
1264 		 *
1265 		 * We also don't store shadows for DAX mappings because the
1266 		 * only page cache pages found in these are zero pages
1267 		 * covering holes, and because we don't want to mix DAX
1268 		 * exceptional entries and shadow exceptional entries in the
1269 		 * same address_space.
1270 		 */
1271 		if (reclaimed && page_is_file_lru(page) &&
1272 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1273 			shadow = workingset_eviction(page, target_memcg);
1274 		__delete_from_page_cache(page, shadow);
1275 		xa_unlock_irq(&mapping->i_pages);
1276 
1277 		if (freepage != NULL)
1278 			freepage(page);
1279 	}
1280 
1281 	return 1;
1282 
1283 cannot_free:
1284 	xa_unlock_irq(&mapping->i_pages);
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1290  * someone else has a ref on the page, abort and return 0.  If it was
1291  * successfully detached, return 1.  Assumes the caller has a single ref on
1292  * this page.
1293  */
1294 int remove_mapping(struct address_space *mapping, struct page *page)
1295 {
1296 	if (__remove_mapping(mapping, page, false, NULL)) {
1297 		/*
1298 		 * Unfreezing the refcount with 1 rather than 2 effectively
1299 		 * drops the pagecache ref for us without requiring another
1300 		 * atomic operation.
1301 		 */
1302 		page_ref_unfreeze(page, 1);
1303 		return 1;
1304 	}
1305 	return 0;
1306 }
1307 
1308 /**
1309  * putback_lru_page - put previously isolated page onto appropriate LRU list
1310  * @page: page to be put back to appropriate lru list
1311  *
1312  * Add previously isolated @page to appropriate LRU list.
1313  * Page may still be unevictable for other reasons.
1314  *
1315  * lru_lock must not be held, interrupts must be enabled.
1316  */
1317 void putback_lru_page(struct page *page)
1318 {
1319 	lru_cache_add(page);
1320 	put_page(page);		/* drop ref from isolate */
1321 }
1322 
1323 enum page_references {
1324 	PAGEREF_RECLAIM,
1325 	PAGEREF_RECLAIM_CLEAN,
1326 	PAGEREF_KEEP,
1327 	PAGEREF_ACTIVATE,
1328 };
1329 
1330 static enum page_references page_check_references(struct page *page,
1331 						  struct scan_control *sc)
1332 {
1333 	int referenced_ptes, referenced_page;
1334 	unsigned long vm_flags;
1335 
1336 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1337 					  &vm_flags);
1338 	referenced_page = TestClearPageReferenced(page);
1339 
1340 	/*
1341 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1342 	 * move the page to the unevictable list.
1343 	 */
1344 	if (vm_flags & VM_LOCKED)
1345 		return PAGEREF_RECLAIM;
1346 
1347 	if (referenced_ptes) {
1348 		/*
1349 		 * All mapped pages start out with page table
1350 		 * references from the instantiating fault, so we need
1351 		 * to look twice if a mapped file page is used more
1352 		 * than once.
1353 		 *
1354 		 * Mark it and spare it for another trip around the
1355 		 * inactive list.  Another page table reference will
1356 		 * lead to its activation.
1357 		 *
1358 		 * Note: the mark is set for activated pages as well
1359 		 * so that recently deactivated but used pages are
1360 		 * quickly recovered.
1361 		 */
1362 		SetPageReferenced(page);
1363 
1364 		if (referenced_page || referenced_ptes > 1)
1365 			return PAGEREF_ACTIVATE;
1366 
1367 		/*
1368 		 * Activate file-backed executable pages after first usage.
1369 		 */
1370 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1371 			return PAGEREF_ACTIVATE;
1372 
1373 		return PAGEREF_KEEP;
1374 	}
1375 
1376 	/* Reclaim if clean, defer dirty pages to writeback */
1377 	if (referenced_page && !PageSwapBacked(page))
1378 		return PAGEREF_RECLAIM_CLEAN;
1379 
1380 	return PAGEREF_RECLAIM;
1381 }
1382 
1383 /* Check if a page is dirty or under writeback */
1384 static void page_check_dirty_writeback(struct page *page,
1385 				       bool *dirty, bool *writeback)
1386 {
1387 	struct address_space *mapping;
1388 
1389 	/*
1390 	 * Anonymous pages are not handled by flushers and must be written
1391 	 * from reclaim context. Do not stall reclaim based on them
1392 	 */
1393 	if (!page_is_file_lru(page) ||
1394 	    (PageAnon(page) && !PageSwapBacked(page))) {
1395 		*dirty = false;
1396 		*writeback = false;
1397 		return;
1398 	}
1399 
1400 	/* By default assume that the page flags are accurate */
1401 	*dirty = PageDirty(page);
1402 	*writeback = PageWriteback(page);
1403 
1404 	/* Verify dirty/writeback state if the filesystem supports it */
1405 	if (!page_has_private(page))
1406 		return;
1407 
1408 	mapping = page_mapping(page);
1409 	if (mapping && mapping->a_ops->is_dirty_writeback)
1410 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1411 }
1412 
1413 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1414 {
1415 	struct migration_target_control mtc = {
1416 		/*
1417 		 * Allocate from 'node', or fail quickly and quietly.
1418 		 * When this happens, 'page' will likely just be discarded
1419 		 * instead of migrated.
1420 		 */
1421 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1422 			    __GFP_THISNODE  | __GFP_NOWARN |
1423 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1424 		.nid = node
1425 	};
1426 
1427 	return alloc_migration_target(page, (unsigned long)&mtc);
1428 }
1429 
1430 /*
1431  * Take pages on @demote_list and attempt to demote them to
1432  * another node.  Pages which are not demoted are left on
1433  * @demote_pages.
1434  */
1435 static unsigned int demote_page_list(struct list_head *demote_pages,
1436 				     struct pglist_data *pgdat)
1437 {
1438 	int target_nid = next_demotion_node(pgdat->node_id);
1439 	unsigned int nr_succeeded;
1440 
1441 	if (list_empty(demote_pages))
1442 		return 0;
1443 
1444 	if (target_nid == NUMA_NO_NODE)
1445 		return 0;
1446 
1447 	/* Demotion ignores all cpuset and mempolicy settings */
1448 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1449 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1450 			    &nr_succeeded);
1451 
1452 	if (current_is_kswapd())
1453 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1454 	else
1455 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1456 
1457 	return nr_succeeded;
1458 }
1459 
1460 /*
1461  * shrink_page_list() returns the number of reclaimed pages
1462  */
1463 static unsigned int shrink_page_list(struct list_head *page_list,
1464 				     struct pglist_data *pgdat,
1465 				     struct scan_control *sc,
1466 				     struct reclaim_stat *stat,
1467 				     bool ignore_references)
1468 {
1469 	LIST_HEAD(ret_pages);
1470 	LIST_HEAD(free_pages);
1471 	LIST_HEAD(demote_pages);
1472 	unsigned int nr_reclaimed = 0;
1473 	unsigned int pgactivate = 0;
1474 	bool do_demote_pass;
1475 
1476 	memset(stat, 0, sizeof(*stat));
1477 	cond_resched();
1478 	do_demote_pass = can_demote(pgdat->node_id, sc);
1479 
1480 retry:
1481 	while (!list_empty(page_list)) {
1482 		struct address_space *mapping;
1483 		struct page *page;
1484 		enum page_references references = PAGEREF_RECLAIM;
1485 		bool dirty, writeback, may_enter_fs;
1486 		unsigned int nr_pages;
1487 
1488 		cond_resched();
1489 
1490 		page = lru_to_page(page_list);
1491 		list_del(&page->lru);
1492 
1493 		if (!trylock_page(page))
1494 			goto keep;
1495 
1496 		VM_BUG_ON_PAGE(PageActive(page), page);
1497 
1498 		nr_pages = compound_nr(page);
1499 
1500 		/* Account the number of base pages even though THP */
1501 		sc->nr_scanned += nr_pages;
1502 
1503 		if (unlikely(!page_evictable(page)))
1504 			goto activate_locked;
1505 
1506 		if (!sc->may_unmap && page_mapped(page))
1507 			goto keep_locked;
1508 
1509 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1510 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1511 
1512 		/*
1513 		 * The number of dirty pages determines if a node is marked
1514 		 * reclaim_congested. kswapd will stall and start writing
1515 		 * pages if the tail of the LRU is all dirty unqueued pages.
1516 		 */
1517 		page_check_dirty_writeback(page, &dirty, &writeback);
1518 		if (dirty || writeback)
1519 			stat->nr_dirty++;
1520 
1521 		if (dirty && !writeback)
1522 			stat->nr_unqueued_dirty++;
1523 
1524 		/*
1525 		 * Treat this page as congested if the underlying BDI is or if
1526 		 * pages are cycling through the LRU so quickly that the
1527 		 * pages marked for immediate reclaim are making it to the
1528 		 * end of the LRU a second time.
1529 		 */
1530 		mapping = page_mapping(page);
1531 		if (((dirty || writeback) && mapping &&
1532 		     inode_write_congested(mapping->host)) ||
1533 		    (writeback && PageReclaim(page)))
1534 			stat->nr_congested++;
1535 
1536 		/*
1537 		 * If a page at the tail of the LRU is under writeback, there
1538 		 * are three cases to consider.
1539 		 *
1540 		 * 1) If reclaim is encountering an excessive number of pages
1541 		 *    under writeback and this page is both under writeback and
1542 		 *    PageReclaim then it indicates that pages are being queued
1543 		 *    for IO but are being recycled through the LRU before the
1544 		 *    IO can complete. Waiting on the page itself risks an
1545 		 *    indefinite stall if it is impossible to writeback the
1546 		 *    page due to IO error or disconnected storage so instead
1547 		 *    note that the LRU is being scanned too quickly and the
1548 		 *    caller can stall after page list has been processed.
1549 		 *
1550 		 * 2) Global or new memcg reclaim encounters a page that is
1551 		 *    not marked for immediate reclaim, or the caller does not
1552 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1553 		 *    not to fs). In this case mark the page for immediate
1554 		 *    reclaim and continue scanning.
1555 		 *
1556 		 *    Require may_enter_fs because we would wait on fs, which
1557 		 *    may not have submitted IO yet. And the loop driver might
1558 		 *    enter reclaim, and deadlock if it waits on a page for
1559 		 *    which it is needed to do the write (loop masks off
1560 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1561 		 *    would probably show more reasons.
1562 		 *
1563 		 * 3) Legacy memcg encounters a page that is already marked
1564 		 *    PageReclaim. memcg does not have any dirty pages
1565 		 *    throttling so we could easily OOM just because too many
1566 		 *    pages are in writeback and there is nothing else to
1567 		 *    reclaim. Wait for the writeback to complete.
1568 		 *
1569 		 * In cases 1) and 2) we activate the pages to get them out of
1570 		 * the way while we continue scanning for clean pages on the
1571 		 * inactive list and refilling from the active list. The
1572 		 * observation here is that waiting for disk writes is more
1573 		 * expensive than potentially causing reloads down the line.
1574 		 * Since they're marked for immediate reclaim, they won't put
1575 		 * memory pressure on the cache working set any longer than it
1576 		 * takes to write them to disk.
1577 		 */
1578 		if (PageWriteback(page)) {
1579 			/* Case 1 above */
1580 			if (current_is_kswapd() &&
1581 			    PageReclaim(page) &&
1582 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1583 				stat->nr_immediate++;
1584 				goto activate_locked;
1585 
1586 			/* Case 2 above */
1587 			} else if (writeback_throttling_sane(sc) ||
1588 			    !PageReclaim(page) || !may_enter_fs) {
1589 				/*
1590 				 * This is slightly racy - end_page_writeback()
1591 				 * might have just cleared PageReclaim, then
1592 				 * setting PageReclaim here end up interpreted
1593 				 * as PageReadahead - but that does not matter
1594 				 * enough to care.  What we do want is for this
1595 				 * page to have PageReclaim set next time memcg
1596 				 * reclaim reaches the tests above, so it will
1597 				 * then wait_on_page_writeback() to avoid OOM;
1598 				 * and it's also appropriate in global reclaim.
1599 				 */
1600 				SetPageReclaim(page);
1601 				stat->nr_writeback++;
1602 				goto activate_locked;
1603 
1604 			/* Case 3 above */
1605 			} else {
1606 				unlock_page(page);
1607 				wait_on_page_writeback(page);
1608 				/* then go back and try same page again */
1609 				list_add_tail(&page->lru, page_list);
1610 				continue;
1611 			}
1612 		}
1613 
1614 		if (!ignore_references)
1615 			references = page_check_references(page, sc);
1616 
1617 		switch (references) {
1618 		case PAGEREF_ACTIVATE:
1619 			goto activate_locked;
1620 		case PAGEREF_KEEP:
1621 			stat->nr_ref_keep += nr_pages;
1622 			goto keep_locked;
1623 		case PAGEREF_RECLAIM:
1624 		case PAGEREF_RECLAIM_CLEAN:
1625 			; /* try to reclaim the page below */
1626 		}
1627 
1628 		/*
1629 		 * Before reclaiming the page, try to relocate
1630 		 * its contents to another node.
1631 		 */
1632 		if (do_demote_pass &&
1633 		    (thp_migration_supported() || !PageTransHuge(page))) {
1634 			list_add(&page->lru, &demote_pages);
1635 			unlock_page(page);
1636 			continue;
1637 		}
1638 
1639 		/*
1640 		 * Anonymous process memory has backing store?
1641 		 * Try to allocate it some swap space here.
1642 		 * Lazyfree page could be freed directly
1643 		 */
1644 		if (PageAnon(page) && PageSwapBacked(page)) {
1645 			if (!PageSwapCache(page)) {
1646 				if (!(sc->gfp_mask & __GFP_IO))
1647 					goto keep_locked;
1648 				if (page_maybe_dma_pinned(page))
1649 					goto keep_locked;
1650 				if (PageTransHuge(page)) {
1651 					/* cannot split THP, skip it */
1652 					if (!can_split_huge_page(page, NULL))
1653 						goto activate_locked;
1654 					/*
1655 					 * Split pages without a PMD map right
1656 					 * away. Chances are some or all of the
1657 					 * tail pages can be freed without IO.
1658 					 */
1659 					if (!compound_mapcount(page) &&
1660 					    split_huge_page_to_list(page,
1661 								    page_list))
1662 						goto activate_locked;
1663 				}
1664 				if (!add_to_swap(page)) {
1665 					if (!PageTransHuge(page))
1666 						goto activate_locked_split;
1667 					/* Fallback to swap normal pages */
1668 					if (split_huge_page_to_list(page,
1669 								    page_list))
1670 						goto activate_locked;
1671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1672 					count_vm_event(THP_SWPOUT_FALLBACK);
1673 #endif
1674 					if (!add_to_swap(page))
1675 						goto activate_locked_split;
1676 				}
1677 
1678 				may_enter_fs = true;
1679 
1680 				/* Adding to swap updated mapping */
1681 				mapping = page_mapping(page);
1682 			}
1683 		} else if (unlikely(PageTransHuge(page))) {
1684 			/* Split file THP */
1685 			if (split_huge_page_to_list(page, page_list))
1686 				goto keep_locked;
1687 		}
1688 
1689 		/*
1690 		 * THP may get split above, need minus tail pages and update
1691 		 * nr_pages to avoid accounting tail pages twice.
1692 		 *
1693 		 * The tail pages that are added into swap cache successfully
1694 		 * reach here.
1695 		 */
1696 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1697 			sc->nr_scanned -= (nr_pages - 1);
1698 			nr_pages = 1;
1699 		}
1700 
1701 		/*
1702 		 * The page is mapped into the page tables of one or more
1703 		 * processes. Try to unmap it here.
1704 		 */
1705 		if (page_mapped(page)) {
1706 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1707 			bool was_swapbacked = PageSwapBacked(page);
1708 
1709 			if (unlikely(PageTransHuge(page)))
1710 				flags |= TTU_SPLIT_HUGE_PMD;
1711 
1712 			try_to_unmap(page, flags);
1713 			if (page_mapped(page)) {
1714 				stat->nr_unmap_fail += nr_pages;
1715 				if (!was_swapbacked && PageSwapBacked(page))
1716 					stat->nr_lazyfree_fail += nr_pages;
1717 				goto activate_locked;
1718 			}
1719 		}
1720 
1721 		if (PageDirty(page)) {
1722 			/*
1723 			 * Only kswapd can writeback filesystem pages
1724 			 * to avoid risk of stack overflow. But avoid
1725 			 * injecting inefficient single-page IO into
1726 			 * flusher writeback as much as possible: only
1727 			 * write pages when we've encountered many
1728 			 * dirty pages, and when we've already scanned
1729 			 * the rest of the LRU for clean pages and see
1730 			 * the same dirty pages again (PageReclaim).
1731 			 */
1732 			if (page_is_file_lru(page) &&
1733 			    (!current_is_kswapd() || !PageReclaim(page) ||
1734 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1735 				/*
1736 				 * Immediately reclaim when written back.
1737 				 * Similar in principal to deactivate_page()
1738 				 * except we already have the page isolated
1739 				 * and know it's dirty
1740 				 */
1741 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1742 				SetPageReclaim(page);
1743 
1744 				goto activate_locked;
1745 			}
1746 
1747 			if (references == PAGEREF_RECLAIM_CLEAN)
1748 				goto keep_locked;
1749 			if (!may_enter_fs)
1750 				goto keep_locked;
1751 			if (!sc->may_writepage)
1752 				goto keep_locked;
1753 
1754 			/*
1755 			 * Page is dirty. Flush the TLB if a writable entry
1756 			 * potentially exists to avoid CPU writes after IO
1757 			 * starts and then write it out here.
1758 			 */
1759 			try_to_unmap_flush_dirty();
1760 			switch (pageout(page, mapping)) {
1761 			case PAGE_KEEP:
1762 				goto keep_locked;
1763 			case PAGE_ACTIVATE:
1764 				goto activate_locked;
1765 			case PAGE_SUCCESS:
1766 				stat->nr_pageout += thp_nr_pages(page);
1767 
1768 				if (PageWriteback(page))
1769 					goto keep;
1770 				if (PageDirty(page))
1771 					goto keep;
1772 
1773 				/*
1774 				 * A synchronous write - probably a ramdisk.  Go
1775 				 * ahead and try to reclaim the page.
1776 				 */
1777 				if (!trylock_page(page))
1778 					goto keep;
1779 				if (PageDirty(page) || PageWriteback(page))
1780 					goto keep_locked;
1781 				mapping = page_mapping(page);
1782 				fallthrough;
1783 			case PAGE_CLEAN:
1784 				; /* try to free the page below */
1785 			}
1786 		}
1787 
1788 		/*
1789 		 * If the page has buffers, try to free the buffer mappings
1790 		 * associated with this page. If we succeed we try to free
1791 		 * the page as well.
1792 		 *
1793 		 * We do this even if the page is PageDirty().
1794 		 * try_to_release_page() does not perform I/O, but it is
1795 		 * possible for a page to have PageDirty set, but it is actually
1796 		 * clean (all its buffers are clean).  This happens if the
1797 		 * buffers were written out directly, with submit_bh(). ext3
1798 		 * will do this, as well as the blockdev mapping.
1799 		 * try_to_release_page() will discover that cleanness and will
1800 		 * drop the buffers and mark the page clean - it can be freed.
1801 		 *
1802 		 * Rarely, pages can have buffers and no ->mapping.  These are
1803 		 * the pages which were not successfully invalidated in
1804 		 * truncate_cleanup_page().  We try to drop those buffers here
1805 		 * and if that worked, and the page is no longer mapped into
1806 		 * process address space (page_count == 1) it can be freed.
1807 		 * Otherwise, leave the page on the LRU so it is swappable.
1808 		 */
1809 		if (page_has_private(page)) {
1810 			if (!try_to_release_page(page, sc->gfp_mask))
1811 				goto activate_locked;
1812 			if (!mapping && page_count(page) == 1) {
1813 				unlock_page(page);
1814 				if (put_page_testzero(page))
1815 					goto free_it;
1816 				else {
1817 					/*
1818 					 * rare race with speculative reference.
1819 					 * the speculative reference will free
1820 					 * this page shortly, so we may
1821 					 * increment nr_reclaimed here (and
1822 					 * leave it off the LRU).
1823 					 */
1824 					nr_reclaimed++;
1825 					continue;
1826 				}
1827 			}
1828 		}
1829 
1830 		if (PageAnon(page) && !PageSwapBacked(page)) {
1831 			/* follow __remove_mapping for reference */
1832 			if (!page_ref_freeze(page, 1))
1833 				goto keep_locked;
1834 			/*
1835 			 * The page has only one reference left, which is
1836 			 * from the isolation. After the caller puts the
1837 			 * page back on lru and drops the reference, the
1838 			 * page will be freed anyway. It doesn't matter
1839 			 * which lru it goes. So we don't bother checking
1840 			 * PageDirty here.
1841 			 */
1842 			count_vm_event(PGLAZYFREED);
1843 			count_memcg_page_event(page, PGLAZYFREED);
1844 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1845 							 sc->target_mem_cgroup))
1846 			goto keep_locked;
1847 
1848 		unlock_page(page);
1849 free_it:
1850 		/*
1851 		 * THP may get swapped out in a whole, need account
1852 		 * all base pages.
1853 		 */
1854 		nr_reclaimed += nr_pages;
1855 
1856 		/*
1857 		 * Is there need to periodically free_page_list? It would
1858 		 * appear not as the counts should be low
1859 		 */
1860 		if (unlikely(PageTransHuge(page)))
1861 			destroy_compound_page(page);
1862 		else
1863 			list_add(&page->lru, &free_pages);
1864 		continue;
1865 
1866 activate_locked_split:
1867 		/*
1868 		 * The tail pages that are failed to add into swap cache
1869 		 * reach here.  Fixup nr_scanned and nr_pages.
1870 		 */
1871 		if (nr_pages > 1) {
1872 			sc->nr_scanned -= (nr_pages - 1);
1873 			nr_pages = 1;
1874 		}
1875 activate_locked:
1876 		/* Not a candidate for swapping, so reclaim swap space. */
1877 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1878 						PageMlocked(page)))
1879 			try_to_free_swap(page);
1880 		VM_BUG_ON_PAGE(PageActive(page), page);
1881 		if (!PageMlocked(page)) {
1882 			int type = page_is_file_lru(page);
1883 			SetPageActive(page);
1884 			stat->nr_activate[type] += nr_pages;
1885 			count_memcg_page_event(page, PGACTIVATE);
1886 		}
1887 keep_locked:
1888 		unlock_page(page);
1889 keep:
1890 		list_add(&page->lru, &ret_pages);
1891 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1892 	}
1893 	/* 'page_list' is always empty here */
1894 
1895 	/* Migrate pages selected for demotion */
1896 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1897 	/* Pages that could not be demoted are still in @demote_pages */
1898 	if (!list_empty(&demote_pages)) {
1899 		/* Pages which failed to demoted go back on @page_list for retry: */
1900 		list_splice_init(&demote_pages, page_list);
1901 		do_demote_pass = false;
1902 		goto retry;
1903 	}
1904 
1905 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1906 
1907 	mem_cgroup_uncharge_list(&free_pages);
1908 	try_to_unmap_flush();
1909 	free_unref_page_list(&free_pages);
1910 
1911 	list_splice(&ret_pages, page_list);
1912 	count_vm_events(PGACTIVATE, pgactivate);
1913 
1914 	return nr_reclaimed;
1915 }
1916 
1917 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1918 					    struct list_head *page_list)
1919 {
1920 	struct scan_control sc = {
1921 		.gfp_mask = GFP_KERNEL,
1922 		.may_unmap = 1,
1923 	};
1924 	struct reclaim_stat stat;
1925 	unsigned int nr_reclaimed;
1926 	struct page *page, *next;
1927 	LIST_HEAD(clean_pages);
1928 	unsigned int noreclaim_flag;
1929 
1930 	list_for_each_entry_safe(page, next, page_list, lru) {
1931 		if (!PageHuge(page) && page_is_file_lru(page) &&
1932 		    !PageDirty(page) && !__PageMovable(page) &&
1933 		    !PageUnevictable(page)) {
1934 			ClearPageActive(page);
1935 			list_move(&page->lru, &clean_pages);
1936 		}
1937 	}
1938 
1939 	/*
1940 	 * We should be safe here since we are only dealing with file pages and
1941 	 * we are not kswapd and therefore cannot write dirty file pages. But
1942 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1943 	 * change in the future.
1944 	 */
1945 	noreclaim_flag = memalloc_noreclaim_save();
1946 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1947 					&stat, true);
1948 	memalloc_noreclaim_restore(noreclaim_flag);
1949 
1950 	list_splice(&clean_pages, page_list);
1951 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1952 			    -(long)nr_reclaimed);
1953 	/*
1954 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1955 	 * they will rotate back to anonymous LRU in the end if it failed to
1956 	 * discard so isolated count will be mismatched.
1957 	 * Compensate the isolated count for both LRU lists.
1958 	 */
1959 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1960 			    stat.nr_lazyfree_fail);
1961 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1962 			    -(long)stat.nr_lazyfree_fail);
1963 	return nr_reclaimed;
1964 }
1965 
1966 /*
1967  * Attempt to remove the specified page from its LRU.  Only take this page
1968  * if it is of the appropriate PageActive status.  Pages which are being
1969  * freed elsewhere are also ignored.
1970  *
1971  * page:	page to consider
1972  * mode:	one of the LRU isolation modes defined above
1973  *
1974  * returns true on success, false on failure.
1975  */
1976 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1977 {
1978 	/* Only take pages on the LRU. */
1979 	if (!PageLRU(page))
1980 		return false;
1981 
1982 	/* Compaction should not handle unevictable pages but CMA can do so */
1983 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1984 		return false;
1985 
1986 	/*
1987 	 * To minimise LRU disruption, the caller can indicate that it only
1988 	 * wants to isolate pages it will be able to operate on without
1989 	 * blocking - clean pages for the most part.
1990 	 *
1991 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1992 	 * that it is possible to migrate without blocking
1993 	 */
1994 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1995 		/* All the caller can do on PageWriteback is block */
1996 		if (PageWriteback(page))
1997 			return false;
1998 
1999 		if (PageDirty(page)) {
2000 			struct address_space *mapping;
2001 			bool migrate_dirty;
2002 
2003 			/*
2004 			 * Only pages without mappings or that have a
2005 			 * ->migratepage callback are possible to migrate
2006 			 * without blocking. However, we can be racing with
2007 			 * truncation so it's necessary to lock the page
2008 			 * to stabilise the mapping as truncation holds
2009 			 * the page lock until after the page is removed
2010 			 * from the page cache.
2011 			 */
2012 			if (!trylock_page(page))
2013 				return false;
2014 
2015 			mapping = page_mapping(page);
2016 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
2017 			unlock_page(page);
2018 			if (!migrate_dirty)
2019 				return false;
2020 		}
2021 	}
2022 
2023 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2024 		return false;
2025 
2026 	return true;
2027 }
2028 
2029 /*
2030  * Update LRU sizes after isolating pages. The LRU size updates must
2031  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2032  */
2033 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2034 			enum lru_list lru, unsigned long *nr_zone_taken)
2035 {
2036 	int zid;
2037 
2038 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2039 		if (!nr_zone_taken[zid])
2040 			continue;
2041 
2042 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2043 	}
2044 
2045 }
2046 
2047 /*
2048  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2049  *
2050  * lruvec->lru_lock is heavily contended.  Some of the functions that
2051  * shrink the lists perform better by taking out a batch of pages
2052  * and working on them outside the LRU lock.
2053  *
2054  * For pagecache intensive workloads, this function is the hottest
2055  * spot in the kernel (apart from copy_*_user functions).
2056  *
2057  * Lru_lock must be held before calling this function.
2058  *
2059  * @nr_to_scan:	The number of eligible pages to look through on the list.
2060  * @lruvec:	The LRU vector to pull pages from.
2061  * @dst:	The temp list to put pages on to.
2062  * @nr_scanned:	The number of pages that were scanned.
2063  * @sc:		The scan_control struct for this reclaim session
2064  * @lru:	LRU list id for isolating
2065  *
2066  * returns how many pages were moved onto *@dst.
2067  */
2068 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2069 		struct lruvec *lruvec, struct list_head *dst,
2070 		unsigned long *nr_scanned, struct scan_control *sc,
2071 		enum lru_list lru)
2072 {
2073 	struct list_head *src = &lruvec->lists[lru];
2074 	unsigned long nr_taken = 0;
2075 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2076 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2077 	unsigned long skipped = 0;
2078 	unsigned long scan, total_scan, nr_pages;
2079 	LIST_HEAD(pages_skipped);
2080 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2081 
2082 	total_scan = 0;
2083 	scan = 0;
2084 	while (scan < nr_to_scan && !list_empty(src)) {
2085 		struct page *page;
2086 
2087 		page = lru_to_page(src);
2088 		prefetchw_prev_lru_page(page, src, flags);
2089 
2090 		nr_pages = compound_nr(page);
2091 		total_scan += nr_pages;
2092 
2093 		if (page_zonenum(page) > sc->reclaim_idx) {
2094 			list_move(&page->lru, &pages_skipped);
2095 			nr_skipped[page_zonenum(page)] += nr_pages;
2096 			continue;
2097 		}
2098 
2099 		/*
2100 		 * Do not count skipped pages because that makes the function
2101 		 * return with no isolated pages if the LRU mostly contains
2102 		 * ineligible pages.  This causes the VM to not reclaim any
2103 		 * pages, triggering a premature OOM.
2104 		 *
2105 		 * Account all tail pages of THP.  This would not cause
2106 		 * premature OOM since __isolate_lru_page() returns -EBUSY
2107 		 * only when the page is being freed somewhere else.
2108 		 */
2109 		scan += nr_pages;
2110 		if (!__isolate_lru_page_prepare(page, mode)) {
2111 			/* It is being freed elsewhere */
2112 			list_move(&page->lru, src);
2113 			continue;
2114 		}
2115 		/*
2116 		 * Be careful not to clear PageLRU until after we're
2117 		 * sure the page is not being freed elsewhere -- the
2118 		 * page release code relies on it.
2119 		 */
2120 		if (unlikely(!get_page_unless_zero(page))) {
2121 			list_move(&page->lru, src);
2122 			continue;
2123 		}
2124 
2125 		if (!TestClearPageLRU(page)) {
2126 			/* Another thread is already isolating this page */
2127 			put_page(page);
2128 			list_move(&page->lru, src);
2129 			continue;
2130 		}
2131 
2132 		nr_taken += nr_pages;
2133 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2134 		list_move(&page->lru, dst);
2135 	}
2136 
2137 	/*
2138 	 * Splice any skipped pages to the start of the LRU list. Note that
2139 	 * this disrupts the LRU order when reclaiming for lower zones but
2140 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2141 	 * scanning would soon rescan the same pages to skip and put the
2142 	 * system at risk of premature OOM.
2143 	 */
2144 	if (!list_empty(&pages_skipped)) {
2145 		int zid;
2146 
2147 		list_splice(&pages_skipped, src);
2148 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2149 			if (!nr_skipped[zid])
2150 				continue;
2151 
2152 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2153 			skipped += nr_skipped[zid];
2154 		}
2155 	}
2156 	*nr_scanned = total_scan;
2157 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2158 				    total_scan, skipped, nr_taken, mode, lru);
2159 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2160 	return nr_taken;
2161 }
2162 
2163 /**
2164  * isolate_lru_page - tries to isolate a page from its LRU list
2165  * @page: page to isolate from its LRU list
2166  *
2167  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2168  * vmstat statistic corresponding to whatever LRU list the page was on.
2169  *
2170  * Returns 0 if the page was removed from an LRU list.
2171  * Returns -EBUSY if the page was not on an LRU list.
2172  *
2173  * The returned page will have PageLRU() cleared.  If it was found on
2174  * the active list, it will have PageActive set.  If it was found on
2175  * the unevictable list, it will have the PageUnevictable bit set. That flag
2176  * may need to be cleared by the caller before letting the page go.
2177  *
2178  * The vmstat statistic corresponding to the list on which the page was
2179  * found will be decremented.
2180  *
2181  * Restrictions:
2182  *
2183  * (1) Must be called with an elevated refcount on the page. This is a
2184  *     fundamental difference from isolate_lru_pages (which is called
2185  *     without a stable reference).
2186  * (2) the lru_lock must not be held.
2187  * (3) interrupts must be enabled.
2188  */
2189 int isolate_lru_page(struct page *page)
2190 {
2191 	struct folio *folio = page_folio(page);
2192 	int ret = -EBUSY;
2193 
2194 	VM_BUG_ON_PAGE(!page_count(page), page);
2195 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2196 
2197 	if (TestClearPageLRU(page)) {
2198 		struct lruvec *lruvec;
2199 
2200 		get_page(page);
2201 		lruvec = folio_lruvec_lock_irq(folio);
2202 		del_page_from_lru_list(page, lruvec);
2203 		unlock_page_lruvec_irq(lruvec);
2204 		ret = 0;
2205 	}
2206 
2207 	return ret;
2208 }
2209 
2210 /*
2211  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2212  * then get rescheduled. When there are massive number of tasks doing page
2213  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2214  * the LRU list will go small and be scanned faster than necessary, leading to
2215  * unnecessary swapping, thrashing and OOM.
2216  */
2217 static int too_many_isolated(struct pglist_data *pgdat, int file,
2218 		struct scan_control *sc)
2219 {
2220 	unsigned long inactive, isolated;
2221 	bool too_many;
2222 
2223 	if (current_is_kswapd())
2224 		return 0;
2225 
2226 	if (!writeback_throttling_sane(sc))
2227 		return 0;
2228 
2229 	if (file) {
2230 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2231 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2232 	} else {
2233 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2234 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2235 	}
2236 
2237 	/*
2238 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2239 	 * won't get blocked by normal direct-reclaimers, forming a circular
2240 	 * deadlock.
2241 	 */
2242 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2243 		inactive >>= 3;
2244 
2245 	too_many = isolated > inactive;
2246 
2247 	/* Wake up tasks throttled due to too_many_isolated. */
2248 	if (!too_many)
2249 		wake_throttle_isolated(pgdat);
2250 
2251 	return too_many;
2252 }
2253 
2254 /*
2255  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2256  * On return, @list is reused as a list of pages to be freed by the caller.
2257  *
2258  * Returns the number of pages moved to the given lruvec.
2259  */
2260 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2261 				      struct list_head *list)
2262 {
2263 	int nr_pages, nr_moved = 0;
2264 	LIST_HEAD(pages_to_free);
2265 	struct page *page;
2266 
2267 	while (!list_empty(list)) {
2268 		page = lru_to_page(list);
2269 		VM_BUG_ON_PAGE(PageLRU(page), page);
2270 		list_del(&page->lru);
2271 		if (unlikely(!page_evictable(page))) {
2272 			spin_unlock_irq(&lruvec->lru_lock);
2273 			putback_lru_page(page);
2274 			spin_lock_irq(&lruvec->lru_lock);
2275 			continue;
2276 		}
2277 
2278 		/*
2279 		 * The SetPageLRU needs to be kept here for list integrity.
2280 		 * Otherwise:
2281 		 *   #0 move_pages_to_lru             #1 release_pages
2282 		 *   if !put_page_testzero
2283 		 *				      if (put_page_testzero())
2284 		 *				        !PageLRU //skip lru_lock
2285 		 *     SetPageLRU()
2286 		 *     list_add(&page->lru,)
2287 		 *                                        list_add(&page->lru,)
2288 		 */
2289 		SetPageLRU(page);
2290 
2291 		if (unlikely(put_page_testzero(page))) {
2292 			__clear_page_lru_flags(page);
2293 
2294 			if (unlikely(PageCompound(page))) {
2295 				spin_unlock_irq(&lruvec->lru_lock);
2296 				destroy_compound_page(page);
2297 				spin_lock_irq(&lruvec->lru_lock);
2298 			} else
2299 				list_add(&page->lru, &pages_to_free);
2300 
2301 			continue;
2302 		}
2303 
2304 		/*
2305 		 * All pages were isolated from the same lruvec (and isolation
2306 		 * inhibits memcg migration).
2307 		 */
2308 		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2309 		add_page_to_lru_list(page, lruvec);
2310 		nr_pages = thp_nr_pages(page);
2311 		nr_moved += nr_pages;
2312 		if (PageActive(page))
2313 			workingset_age_nonresident(lruvec, nr_pages);
2314 	}
2315 
2316 	/*
2317 	 * To save our caller's stack, now use input list for pages to free.
2318 	 */
2319 	list_splice(&pages_to_free, list);
2320 
2321 	return nr_moved;
2322 }
2323 
2324 /*
2325  * If a kernel thread (such as nfsd for loop-back mounts) services
2326  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2327  * In that case we should only throttle if the backing device it is
2328  * writing to is congested.  In other cases it is safe to throttle.
2329  */
2330 static int current_may_throttle(void)
2331 {
2332 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2333 		current->backing_dev_info == NULL ||
2334 		bdi_write_congested(current->backing_dev_info);
2335 }
2336 
2337 /*
2338  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2339  * of reclaimed pages
2340  */
2341 static unsigned long
2342 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2343 		     struct scan_control *sc, enum lru_list lru)
2344 {
2345 	LIST_HEAD(page_list);
2346 	unsigned long nr_scanned;
2347 	unsigned int nr_reclaimed = 0;
2348 	unsigned long nr_taken;
2349 	struct reclaim_stat stat;
2350 	bool file = is_file_lru(lru);
2351 	enum vm_event_item item;
2352 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2353 	bool stalled = false;
2354 
2355 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2356 		if (stalled)
2357 			return 0;
2358 
2359 		/* wait a bit for the reclaimer. */
2360 		stalled = true;
2361 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2362 
2363 		/* We are about to die and free our memory. Return now. */
2364 		if (fatal_signal_pending(current))
2365 			return SWAP_CLUSTER_MAX;
2366 	}
2367 
2368 	lru_add_drain();
2369 
2370 	spin_lock_irq(&lruvec->lru_lock);
2371 
2372 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2373 				     &nr_scanned, sc, lru);
2374 
2375 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2376 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2377 	if (!cgroup_reclaim(sc))
2378 		__count_vm_events(item, nr_scanned);
2379 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2380 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2381 
2382 	spin_unlock_irq(&lruvec->lru_lock);
2383 
2384 	if (nr_taken == 0)
2385 		return 0;
2386 
2387 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2388 
2389 	spin_lock_irq(&lruvec->lru_lock);
2390 	move_pages_to_lru(lruvec, &page_list);
2391 
2392 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2393 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2394 	if (!cgroup_reclaim(sc))
2395 		__count_vm_events(item, nr_reclaimed);
2396 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2397 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2398 	spin_unlock_irq(&lruvec->lru_lock);
2399 
2400 	lru_note_cost(lruvec, file, stat.nr_pageout);
2401 	mem_cgroup_uncharge_list(&page_list);
2402 	free_unref_page_list(&page_list);
2403 
2404 	/*
2405 	 * If dirty pages are scanned that are not queued for IO, it
2406 	 * implies that flushers are not doing their job. This can
2407 	 * happen when memory pressure pushes dirty pages to the end of
2408 	 * the LRU before the dirty limits are breached and the dirty
2409 	 * data has expired. It can also happen when the proportion of
2410 	 * dirty pages grows not through writes but through memory
2411 	 * pressure reclaiming all the clean cache. And in some cases,
2412 	 * the flushers simply cannot keep up with the allocation
2413 	 * rate. Nudge the flusher threads in case they are asleep.
2414 	 */
2415 	if (stat.nr_unqueued_dirty == nr_taken)
2416 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2417 
2418 	sc->nr.dirty += stat.nr_dirty;
2419 	sc->nr.congested += stat.nr_congested;
2420 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2421 	sc->nr.writeback += stat.nr_writeback;
2422 	sc->nr.immediate += stat.nr_immediate;
2423 	sc->nr.taken += nr_taken;
2424 	if (file)
2425 		sc->nr.file_taken += nr_taken;
2426 
2427 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2428 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2429 	return nr_reclaimed;
2430 }
2431 
2432 /*
2433  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2434  *
2435  * We move them the other way if the page is referenced by one or more
2436  * processes.
2437  *
2438  * If the pages are mostly unmapped, the processing is fast and it is
2439  * appropriate to hold lru_lock across the whole operation.  But if
2440  * the pages are mapped, the processing is slow (page_referenced()), so
2441  * we should drop lru_lock around each page.  It's impossible to balance
2442  * this, so instead we remove the pages from the LRU while processing them.
2443  * It is safe to rely on PG_active against the non-LRU pages in here because
2444  * nobody will play with that bit on a non-LRU page.
2445  *
2446  * The downside is that we have to touch page->_refcount against each page.
2447  * But we had to alter page->flags anyway.
2448  */
2449 static void shrink_active_list(unsigned long nr_to_scan,
2450 			       struct lruvec *lruvec,
2451 			       struct scan_control *sc,
2452 			       enum lru_list lru)
2453 {
2454 	unsigned long nr_taken;
2455 	unsigned long nr_scanned;
2456 	unsigned long vm_flags;
2457 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2458 	LIST_HEAD(l_active);
2459 	LIST_HEAD(l_inactive);
2460 	struct page *page;
2461 	unsigned nr_deactivate, nr_activate;
2462 	unsigned nr_rotated = 0;
2463 	int file = is_file_lru(lru);
2464 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2465 
2466 	lru_add_drain();
2467 
2468 	spin_lock_irq(&lruvec->lru_lock);
2469 
2470 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2471 				     &nr_scanned, sc, lru);
2472 
2473 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2474 
2475 	if (!cgroup_reclaim(sc))
2476 		__count_vm_events(PGREFILL, nr_scanned);
2477 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2478 
2479 	spin_unlock_irq(&lruvec->lru_lock);
2480 
2481 	while (!list_empty(&l_hold)) {
2482 		cond_resched();
2483 		page = lru_to_page(&l_hold);
2484 		list_del(&page->lru);
2485 
2486 		if (unlikely(!page_evictable(page))) {
2487 			putback_lru_page(page);
2488 			continue;
2489 		}
2490 
2491 		if (unlikely(buffer_heads_over_limit)) {
2492 			if (page_has_private(page) && trylock_page(page)) {
2493 				if (page_has_private(page))
2494 					try_to_release_page(page, 0);
2495 				unlock_page(page);
2496 			}
2497 		}
2498 
2499 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2500 				    &vm_flags)) {
2501 			/*
2502 			 * Identify referenced, file-backed active pages and
2503 			 * give them one more trip around the active list. So
2504 			 * that executable code get better chances to stay in
2505 			 * memory under moderate memory pressure.  Anon pages
2506 			 * are not likely to be evicted by use-once streaming
2507 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2508 			 * so we ignore them here.
2509 			 */
2510 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2511 				nr_rotated += thp_nr_pages(page);
2512 				list_add(&page->lru, &l_active);
2513 				continue;
2514 			}
2515 		}
2516 
2517 		ClearPageActive(page);	/* we are de-activating */
2518 		SetPageWorkingset(page);
2519 		list_add(&page->lru, &l_inactive);
2520 	}
2521 
2522 	/*
2523 	 * Move pages back to the lru list.
2524 	 */
2525 	spin_lock_irq(&lruvec->lru_lock);
2526 
2527 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2528 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2529 	/* Keep all free pages in l_active list */
2530 	list_splice(&l_inactive, &l_active);
2531 
2532 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2533 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2534 
2535 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2536 	spin_unlock_irq(&lruvec->lru_lock);
2537 
2538 	mem_cgroup_uncharge_list(&l_active);
2539 	free_unref_page_list(&l_active);
2540 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2541 			nr_deactivate, nr_rotated, sc->priority, file);
2542 }
2543 
2544 unsigned long reclaim_pages(struct list_head *page_list)
2545 {
2546 	int nid = NUMA_NO_NODE;
2547 	unsigned int nr_reclaimed = 0;
2548 	LIST_HEAD(node_page_list);
2549 	struct reclaim_stat dummy_stat;
2550 	struct page *page;
2551 	unsigned int noreclaim_flag;
2552 	struct scan_control sc = {
2553 		.gfp_mask = GFP_KERNEL,
2554 		.may_writepage = 1,
2555 		.may_unmap = 1,
2556 		.may_swap = 1,
2557 		.no_demotion = 1,
2558 	};
2559 
2560 	noreclaim_flag = memalloc_noreclaim_save();
2561 
2562 	while (!list_empty(page_list)) {
2563 		page = lru_to_page(page_list);
2564 		if (nid == NUMA_NO_NODE) {
2565 			nid = page_to_nid(page);
2566 			INIT_LIST_HEAD(&node_page_list);
2567 		}
2568 
2569 		if (nid == page_to_nid(page)) {
2570 			ClearPageActive(page);
2571 			list_move(&page->lru, &node_page_list);
2572 			continue;
2573 		}
2574 
2575 		nr_reclaimed += shrink_page_list(&node_page_list,
2576 						NODE_DATA(nid),
2577 						&sc, &dummy_stat, false);
2578 		while (!list_empty(&node_page_list)) {
2579 			page = lru_to_page(&node_page_list);
2580 			list_del(&page->lru);
2581 			putback_lru_page(page);
2582 		}
2583 
2584 		nid = NUMA_NO_NODE;
2585 	}
2586 
2587 	if (!list_empty(&node_page_list)) {
2588 		nr_reclaimed += shrink_page_list(&node_page_list,
2589 						NODE_DATA(nid),
2590 						&sc, &dummy_stat, false);
2591 		while (!list_empty(&node_page_list)) {
2592 			page = lru_to_page(&node_page_list);
2593 			list_del(&page->lru);
2594 			putback_lru_page(page);
2595 		}
2596 	}
2597 
2598 	memalloc_noreclaim_restore(noreclaim_flag);
2599 
2600 	return nr_reclaimed;
2601 }
2602 
2603 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2604 				 struct lruvec *lruvec, struct scan_control *sc)
2605 {
2606 	if (is_active_lru(lru)) {
2607 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2608 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2609 		else
2610 			sc->skipped_deactivate = 1;
2611 		return 0;
2612 	}
2613 
2614 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2615 }
2616 
2617 /*
2618  * The inactive anon list should be small enough that the VM never has
2619  * to do too much work.
2620  *
2621  * The inactive file list should be small enough to leave most memory
2622  * to the established workingset on the scan-resistant active list,
2623  * but large enough to avoid thrashing the aggregate readahead window.
2624  *
2625  * Both inactive lists should also be large enough that each inactive
2626  * page has a chance to be referenced again before it is reclaimed.
2627  *
2628  * If that fails and refaulting is observed, the inactive list grows.
2629  *
2630  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2631  * on this LRU, maintained by the pageout code. An inactive_ratio
2632  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2633  *
2634  * total     target    max
2635  * memory    ratio     inactive
2636  * -------------------------------------
2637  *   10MB       1         5MB
2638  *  100MB       1        50MB
2639  *    1GB       3       250MB
2640  *   10GB      10       0.9GB
2641  *  100GB      31         3GB
2642  *    1TB     101        10GB
2643  *   10TB     320        32GB
2644  */
2645 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2646 {
2647 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2648 	unsigned long inactive, active;
2649 	unsigned long inactive_ratio;
2650 	unsigned long gb;
2651 
2652 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2653 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2654 
2655 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2656 	if (gb)
2657 		inactive_ratio = int_sqrt(10 * gb);
2658 	else
2659 		inactive_ratio = 1;
2660 
2661 	return inactive * inactive_ratio < active;
2662 }
2663 
2664 enum scan_balance {
2665 	SCAN_EQUAL,
2666 	SCAN_FRACT,
2667 	SCAN_ANON,
2668 	SCAN_FILE,
2669 };
2670 
2671 /*
2672  * Determine how aggressively the anon and file LRU lists should be
2673  * scanned.  The relative value of each set of LRU lists is determined
2674  * by looking at the fraction of the pages scanned we did rotate back
2675  * onto the active list instead of evict.
2676  *
2677  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2678  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2679  */
2680 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2681 			   unsigned long *nr)
2682 {
2683 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2684 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2685 	unsigned long anon_cost, file_cost, total_cost;
2686 	int swappiness = mem_cgroup_swappiness(memcg);
2687 	u64 fraction[ANON_AND_FILE];
2688 	u64 denominator = 0;	/* gcc */
2689 	enum scan_balance scan_balance;
2690 	unsigned long ap, fp;
2691 	enum lru_list lru;
2692 
2693 	/* If we have no swap space, do not bother scanning anon pages. */
2694 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2695 		scan_balance = SCAN_FILE;
2696 		goto out;
2697 	}
2698 
2699 	/*
2700 	 * Global reclaim will swap to prevent OOM even with no
2701 	 * swappiness, but memcg users want to use this knob to
2702 	 * disable swapping for individual groups completely when
2703 	 * using the memory controller's swap limit feature would be
2704 	 * too expensive.
2705 	 */
2706 	if (cgroup_reclaim(sc) && !swappiness) {
2707 		scan_balance = SCAN_FILE;
2708 		goto out;
2709 	}
2710 
2711 	/*
2712 	 * Do not apply any pressure balancing cleverness when the
2713 	 * system is close to OOM, scan both anon and file equally
2714 	 * (unless the swappiness setting disagrees with swapping).
2715 	 */
2716 	if (!sc->priority && swappiness) {
2717 		scan_balance = SCAN_EQUAL;
2718 		goto out;
2719 	}
2720 
2721 	/*
2722 	 * If the system is almost out of file pages, force-scan anon.
2723 	 */
2724 	if (sc->file_is_tiny) {
2725 		scan_balance = SCAN_ANON;
2726 		goto out;
2727 	}
2728 
2729 	/*
2730 	 * If there is enough inactive page cache, we do not reclaim
2731 	 * anything from the anonymous working right now.
2732 	 */
2733 	if (sc->cache_trim_mode) {
2734 		scan_balance = SCAN_FILE;
2735 		goto out;
2736 	}
2737 
2738 	scan_balance = SCAN_FRACT;
2739 	/*
2740 	 * Calculate the pressure balance between anon and file pages.
2741 	 *
2742 	 * The amount of pressure we put on each LRU is inversely
2743 	 * proportional to the cost of reclaiming each list, as
2744 	 * determined by the share of pages that are refaulting, times
2745 	 * the relative IO cost of bringing back a swapped out
2746 	 * anonymous page vs reloading a filesystem page (swappiness).
2747 	 *
2748 	 * Although we limit that influence to ensure no list gets
2749 	 * left behind completely: at least a third of the pressure is
2750 	 * applied, before swappiness.
2751 	 *
2752 	 * With swappiness at 100, anon and file have equal IO cost.
2753 	 */
2754 	total_cost = sc->anon_cost + sc->file_cost;
2755 	anon_cost = total_cost + sc->anon_cost;
2756 	file_cost = total_cost + sc->file_cost;
2757 	total_cost = anon_cost + file_cost;
2758 
2759 	ap = swappiness * (total_cost + 1);
2760 	ap /= anon_cost + 1;
2761 
2762 	fp = (200 - swappiness) * (total_cost + 1);
2763 	fp /= file_cost + 1;
2764 
2765 	fraction[0] = ap;
2766 	fraction[1] = fp;
2767 	denominator = ap + fp;
2768 out:
2769 	for_each_evictable_lru(lru) {
2770 		int file = is_file_lru(lru);
2771 		unsigned long lruvec_size;
2772 		unsigned long low, min;
2773 		unsigned long scan;
2774 
2775 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2776 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2777 				      &min, &low);
2778 
2779 		if (min || low) {
2780 			/*
2781 			 * Scale a cgroup's reclaim pressure by proportioning
2782 			 * its current usage to its memory.low or memory.min
2783 			 * setting.
2784 			 *
2785 			 * This is important, as otherwise scanning aggression
2786 			 * becomes extremely binary -- from nothing as we
2787 			 * approach the memory protection threshold, to totally
2788 			 * nominal as we exceed it.  This results in requiring
2789 			 * setting extremely liberal protection thresholds. It
2790 			 * also means we simply get no protection at all if we
2791 			 * set it too low, which is not ideal.
2792 			 *
2793 			 * If there is any protection in place, we reduce scan
2794 			 * pressure by how much of the total memory used is
2795 			 * within protection thresholds.
2796 			 *
2797 			 * There is one special case: in the first reclaim pass,
2798 			 * we skip over all groups that are within their low
2799 			 * protection. If that fails to reclaim enough pages to
2800 			 * satisfy the reclaim goal, we come back and override
2801 			 * the best-effort low protection. However, we still
2802 			 * ideally want to honor how well-behaved groups are in
2803 			 * that case instead of simply punishing them all
2804 			 * equally. As such, we reclaim them based on how much
2805 			 * memory they are using, reducing the scan pressure
2806 			 * again by how much of the total memory used is under
2807 			 * hard protection.
2808 			 */
2809 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2810 			unsigned long protection;
2811 
2812 			/* memory.low scaling, make sure we retry before OOM */
2813 			if (!sc->memcg_low_reclaim && low > min) {
2814 				protection = low;
2815 				sc->memcg_low_skipped = 1;
2816 			} else {
2817 				protection = min;
2818 			}
2819 
2820 			/* Avoid TOCTOU with earlier protection check */
2821 			cgroup_size = max(cgroup_size, protection);
2822 
2823 			scan = lruvec_size - lruvec_size * protection /
2824 				(cgroup_size + 1);
2825 
2826 			/*
2827 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2828 			 * reclaim moving forwards, avoiding decrementing
2829 			 * sc->priority further than desirable.
2830 			 */
2831 			scan = max(scan, SWAP_CLUSTER_MAX);
2832 		} else {
2833 			scan = lruvec_size;
2834 		}
2835 
2836 		scan >>= sc->priority;
2837 
2838 		/*
2839 		 * If the cgroup's already been deleted, make sure to
2840 		 * scrape out the remaining cache.
2841 		 */
2842 		if (!scan && !mem_cgroup_online(memcg))
2843 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2844 
2845 		switch (scan_balance) {
2846 		case SCAN_EQUAL:
2847 			/* Scan lists relative to size */
2848 			break;
2849 		case SCAN_FRACT:
2850 			/*
2851 			 * Scan types proportional to swappiness and
2852 			 * their relative recent reclaim efficiency.
2853 			 * Make sure we don't miss the last page on
2854 			 * the offlined memory cgroups because of a
2855 			 * round-off error.
2856 			 */
2857 			scan = mem_cgroup_online(memcg) ?
2858 			       div64_u64(scan * fraction[file], denominator) :
2859 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2860 						  denominator);
2861 			break;
2862 		case SCAN_FILE:
2863 		case SCAN_ANON:
2864 			/* Scan one type exclusively */
2865 			if ((scan_balance == SCAN_FILE) != file)
2866 				scan = 0;
2867 			break;
2868 		default:
2869 			/* Look ma, no brain */
2870 			BUG();
2871 		}
2872 
2873 		nr[lru] = scan;
2874 	}
2875 }
2876 
2877 /*
2878  * Anonymous LRU management is a waste if there is
2879  * ultimately no way to reclaim the memory.
2880  */
2881 static bool can_age_anon_pages(struct pglist_data *pgdat,
2882 			       struct scan_control *sc)
2883 {
2884 	/* Aging the anon LRU is valuable if swap is present: */
2885 	if (total_swap_pages > 0)
2886 		return true;
2887 
2888 	/* Also valuable if anon pages can be demoted: */
2889 	return can_demote(pgdat->node_id, sc);
2890 }
2891 
2892 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2893 {
2894 	unsigned long nr[NR_LRU_LISTS];
2895 	unsigned long targets[NR_LRU_LISTS];
2896 	unsigned long nr_to_scan;
2897 	enum lru_list lru;
2898 	unsigned long nr_reclaimed = 0;
2899 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2900 	struct blk_plug plug;
2901 	bool scan_adjusted;
2902 
2903 	get_scan_count(lruvec, sc, nr);
2904 
2905 	/* Record the original scan target for proportional adjustments later */
2906 	memcpy(targets, nr, sizeof(nr));
2907 
2908 	/*
2909 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2910 	 * event that can occur when there is little memory pressure e.g.
2911 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2912 	 * when the requested number of pages are reclaimed when scanning at
2913 	 * DEF_PRIORITY on the assumption that the fact we are direct
2914 	 * reclaiming implies that kswapd is not keeping up and it is best to
2915 	 * do a batch of work at once. For memcg reclaim one check is made to
2916 	 * abort proportional reclaim if either the file or anon lru has already
2917 	 * dropped to zero at the first pass.
2918 	 */
2919 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2920 			 sc->priority == DEF_PRIORITY);
2921 
2922 	blk_start_plug(&plug);
2923 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2924 					nr[LRU_INACTIVE_FILE]) {
2925 		unsigned long nr_anon, nr_file, percentage;
2926 		unsigned long nr_scanned;
2927 
2928 		for_each_evictable_lru(lru) {
2929 			if (nr[lru]) {
2930 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2931 				nr[lru] -= nr_to_scan;
2932 
2933 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2934 							    lruvec, sc);
2935 			}
2936 		}
2937 
2938 		cond_resched();
2939 
2940 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2941 			continue;
2942 
2943 		/*
2944 		 * For kswapd and memcg, reclaim at least the number of pages
2945 		 * requested. Ensure that the anon and file LRUs are scanned
2946 		 * proportionally what was requested by get_scan_count(). We
2947 		 * stop reclaiming one LRU and reduce the amount scanning
2948 		 * proportional to the original scan target.
2949 		 */
2950 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2951 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2952 
2953 		/*
2954 		 * It's just vindictive to attack the larger once the smaller
2955 		 * has gone to zero.  And given the way we stop scanning the
2956 		 * smaller below, this makes sure that we only make one nudge
2957 		 * towards proportionality once we've got nr_to_reclaim.
2958 		 */
2959 		if (!nr_file || !nr_anon)
2960 			break;
2961 
2962 		if (nr_file > nr_anon) {
2963 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2964 						targets[LRU_ACTIVE_ANON] + 1;
2965 			lru = LRU_BASE;
2966 			percentage = nr_anon * 100 / scan_target;
2967 		} else {
2968 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2969 						targets[LRU_ACTIVE_FILE] + 1;
2970 			lru = LRU_FILE;
2971 			percentage = nr_file * 100 / scan_target;
2972 		}
2973 
2974 		/* Stop scanning the smaller of the LRU */
2975 		nr[lru] = 0;
2976 		nr[lru + LRU_ACTIVE] = 0;
2977 
2978 		/*
2979 		 * Recalculate the other LRU scan count based on its original
2980 		 * scan target and the percentage scanning already complete
2981 		 */
2982 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2983 		nr_scanned = targets[lru] - nr[lru];
2984 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2985 		nr[lru] -= min(nr[lru], nr_scanned);
2986 
2987 		lru += LRU_ACTIVE;
2988 		nr_scanned = targets[lru] - nr[lru];
2989 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2990 		nr[lru] -= min(nr[lru], nr_scanned);
2991 
2992 		scan_adjusted = true;
2993 	}
2994 	blk_finish_plug(&plug);
2995 	sc->nr_reclaimed += nr_reclaimed;
2996 
2997 	/*
2998 	 * Even if we did not try to evict anon pages at all, we want to
2999 	 * rebalance the anon lru active/inactive ratio.
3000 	 */
3001 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3002 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3003 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3004 				   sc, LRU_ACTIVE_ANON);
3005 }
3006 
3007 /* Use reclaim/compaction for costly allocs or under memory pressure */
3008 static bool in_reclaim_compaction(struct scan_control *sc)
3009 {
3010 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3011 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3012 			 sc->priority < DEF_PRIORITY - 2))
3013 		return true;
3014 
3015 	return false;
3016 }
3017 
3018 /*
3019  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3020  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3021  * true if more pages should be reclaimed such that when the page allocator
3022  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3023  * It will give up earlier than that if there is difficulty reclaiming pages.
3024  */
3025 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3026 					unsigned long nr_reclaimed,
3027 					struct scan_control *sc)
3028 {
3029 	unsigned long pages_for_compaction;
3030 	unsigned long inactive_lru_pages;
3031 	int z;
3032 
3033 	/* If not in reclaim/compaction mode, stop */
3034 	if (!in_reclaim_compaction(sc))
3035 		return false;
3036 
3037 	/*
3038 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3039 	 * number of pages that were scanned. This will return to the caller
3040 	 * with the risk reclaim/compaction and the resulting allocation attempt
3041 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3042 	 * allocations through requiring that the full LRU list has been scanned
3043 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3044 	 * scan, but that approximation was wrong, and there were corner cases
3045 	 * where always a non-zero amount of pages were scanned.
3046 	 */
3047 	if (!nr_reclaimed)
3048 		return false;
3049 
3050 	/* If compaction would go ahead or the allocation would succeed, stop */
3051 	for (z = 0; z <= sc->reclaim_idx; z++) {
3052 		struct zone *zone = &pgdat->node_zones[z];
3053 		if (!managed_zone(zone))
3054 			continue;
3055 
3056 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3057 		case COMPACT_SUCCESS:
3058 		case COMPACT_CONTINUE:
3059 			return false;
3060 		default:
3061 			/* check next zone */
3062 			;
3063 		}
3064 	}
3065 
3066 	/*
3067 	 * If we have not reclaimed enough pages for compaction and the
3068 	 * inactive lists are large enough, continue reclaiming
3069 	 */
3070 	pages_for_compaction = compact_gap(sc->order);
3071 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3072 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3073 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3074 
3075 	return inactive_lru_pages > pages_for_compaction;
3076 }
3077 
3078 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3079 {
3080 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3081 	struct mem_cgroup *memcg;
3082 
3083 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3084 	do {
3085 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3086 		unsigned long reclaimed;
3087 		unsigned long scanned;
3088 
3089 		/*
3090 		 * This loop can become CPU-bound when target memcgs
3091 		 * aren't eligible for reclaim - either because they
3092 		 * don't have any reclaimable pages, or because their
3093 		 * memory is explicitly protected. Avoid soft lockups.
3094 		 */
3095 		cond_resched();
3096 
3097 		mem_cgroup_calculate_protection(target_memcg, memcg);
3098 
3099 		if (mem_cgroup_below_min(memcg)) {
3100 			/*
3101 			 * Hard protection.
3102 			 * If there is no reclaimable memory, OOM.
3103 			 */
3104 			continue;
3105 		} else if (mem_cgroup_below_low(memcg)) {
3106 			/*
3107 			 * Soft protection.
3108 			 * Respect the protection only as long as
3109 			 * there is an unprotected supply
3110 			 * of reclaimable memory from other cgroups.
3111 			 */
3112 			if (!sc->memcg_low_reclaim) {
3113 				sc->memcg_low_skipped = 1;
3114 				continue;
3115 			}
3116 			memcg_memory_event(memcg, MEMCG_LOW);
3117 		}
3118 
3119 		reclaimed = sc->nr_reclaimed;
3120 		scanned = sc->nr_scanned;
3121 
3122 		shrink_lruvec(lruvec, sc);
3123 
3124 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3125 			    sc->priority);
3126 
3127 		/* Record the group's reclaim efficiency */
3128 		vmpressure(sc->gfp_mask, memcg, false,
3129 			   sc->nr_scanned - scanned,
3130 			   sc->nr_reclaimed - reclaimed);
3131 
3132 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3133 }
3134 
3135 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3136 {
3137 	struct reclaim_state *reclaim_state = current->reclaim_state;
3138 	unsigned long nr_reclaimed, nr_scanned;
3139 	struct lruvec *target_lruvec;
3140 	bool reclaimable = false;
3141 	unsigned long file;
3142 
3143 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3144 
3145 again:
3146 	/*
3147 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3148 	 * lruvec stats for heuristics.
3149 	 */
3150 	mem_cgroup_flush_stats();
3151 
3152 	memset(&sc->nr, 0, sizeof(sc->nr));
3153 
3154 	nr_reclaimed = sc->nr_reclaimed;
3155 	nr_scanned = sc->nr_scanned;
3156 
3157 	/*
3158 	 * Determine the scan balance between anon and file LRUs.
3159 	 */
3160 	spin_lock_irq(&target_lruvec->lru_lock);
3161 	sc->anon_cost = target_lruvec->anon_cost;
3162 	sc->file_cost = target_lruvec->file_cost;
3163 	spin_unlock_irq(&target_lruvec->lru_lock);
3164 
3165 	/*
3166 	 * Target desirable inactive:active list ratios for the anon
3167 	 * and file LRU lists.
3168 	 */
3169 	if (!sc->force_deactivate) {
3170 		unsigned long refaults;
3171 
3172 		refaults = lruvec_page_state(target_lruvec,
3173 				WORKINGSET_ACTIVATE_ANON);
3174 		if (refaults != target_lruvec->refaults[0] ||
3175 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3176 			sc->may_deactivate |= DEACTIVATE_ANON;
3177 		else
3178 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3179 
3180 		/*
3181 		 * When refaults are being observed, it means a new
3182 		 * workingset is being established. Deactivate to get
3183 		 * rid of any stale active pages quickly.
3184 		 */
3185 		refaults = lruvec_page_state(target_lruvec,
3186 				WORKINGSET_ACTIVATE_FILE);
3187 		if (refaults != target_lruvec->refaults[1] ||
3188 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3189 			sc->may_deactivate |= DEACTIVATE_FILE;
3190 		else
3191 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3192 	} else
3193 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3194 
3195 	/*
3196 	 * If we have plenty of inactive file pages that aren't
3197 	 * thrashing, try to reclaim those first before touching
3198 	 * anonymous pages.
3199 	 */
3200 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3201 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3202 		sc->cache_trim_mode = 1;
3203 	else
3204 		sc->cache_trim_mode = 0;
3205 
3206 	/*
3207 	 * Prevent the reclaimer from falling into the cache trap: as
3208 	 * cache pages start out inactive, every cache fault will tip
3209 	 * the scan balance towards the file LRU.  And as the file LRU
3210 	 * shrinks, so does the window for rotation from references.
3211 	 * This means we have a runaway feedback loop where a tiny
3212 	 * thrashing file LRU becomes infinitely more attractive than
3213 	 * anon pages.  Try to detect this based on file LRU size.
3214 	 */
3215 	if (!cgroup_reclaim(sc)) {
3216 		unsigned long total_high_wmark = 0;
3217 		unsigned long free, anon;
3218 		int z;
3219 
3220 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3221 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3222 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3223 
3224 		for (z = 0; z < MAX_NR_ZONES; z++) {
3225 			struct zone *zone = &pgdat->node_zones[z];
3226 			if (!managed_zone(zone))
3227 				continue;
3228 
3229 			total_high_wmark += high_wmark_pages(zone);
3230 		}
3231 
3232 		/*
3233 		 * Consider anon: if that's low too, this isn't a
3234 		 * runaway file reclaim problem, but rather just
3235 		 * extreme pressure. Reclaim as per usual then.
3236 		 */
3237 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3238 
3239 		sc->file_is_tiny =
3240 			file + free <= total_high_wmark &&
3241 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3242 			anon >> sc->priority;
3243 	}
3244 
3245 	shrink_node_memcgs(pgdat, sc);
3246 
3247 	if (reclaim_state) {
3248 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3249 		reclaim_state->reclaimed_slab = 0;
3250 	}
3251 
3252 	/* Record the subtree's reclaim efficiency */
3253 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3254 		   sc->nr_scanned - nr_scanned,
3255 		   sc->nr_reclaimed - nr_reclaimed);
3256 
3257 	if (sc->nr_reclaimed - nr_reclaimed)
3258 		reclaimable = true;
3259 
3260 	if (current_is_kswapd()) {
3261 		/*
3262 		 * If reclaim is isolating dirty pages under writeback,
3263 		 * it implies that the long-lived page allocation rate
3264 		 * is exceeding the page laundering rate. Either the
3265 		 * global limits are not being effective at throttling
3266 		 * processes due to the page distribution throughout
3267 		 * zones or there is heavy usage of a slow backing
3268 		 * device. The only option is to throttle from reclaim
3269 		 * context which is not ideal as there is no guarantee
3270 		 * the dirtying process is throttled in the same way
3271 		 * balance_dirty_pages() manages.
3272 		 *
3273 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3274 		 * count the number of pages under pages flagged for
3275 		 * immediate reclaim and stall if any are encountered
3276 		 * in the nr_immediate check below.
3277 		 */
3278 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3279 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3280 
3281 		/* Allow kswapd to start writing pages during reclaim.*/
3282 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3283 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3284 
3285 		/*
3286 		 * If kswapd scans pages marked for immediate
3287 		 * reclaim and under writeback (nr_immediate), it
3288 		 * implies that pages are cycling through the LRU
3289 		 * faster than they are written so forcibly stall
3290 		 * until some pages complete writeback.
3291 		 */
3292 		if (sc->nr.immediate)
3293 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3294 	}
3295 
3296 	/*
3297 	 * Tag a node/memcg as congested if all the dirty pages were marked
3298 	 * for writeback and immediate reclaim (counted in nr.congested).
3299 	 *
3300 	 * Legacy memcg will stall in page writeback so avoid forcibly
3301 	 * stalling in reclaim_throttle().
3302 	 */
3303 	if ((current_is_kswapd() ||
3304 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3305 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3306 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3307 
3308 	/*
3309 	 * Stall direct reclaim for IO completions if the lruvec is
3310 	 * node is congested. Allow kswapd to continue until it
3311 	 * starts encountering unqueued dirty pages or cycling through
3312 	 * the LRU too quickly.
3313 	 */
3314 	if (!current_is_kswapd() && current_may_throttle() &&
3315 	    !sc->hibernation_mode &&
3316 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3317 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3318 
3319 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3320 				    sc))
3321 		goto again;
3322 
3323 	/*
3324 	 * Kswapd gives up on balancing particular nodes after too
3325 	 * many failures to reclaim anything from them and goes to
3326 	 * sleep. On reclaim progress, reset the failure counter. A
3327 	 * successful direct reclaim run will revive a dormant kswapd.
3328 	 */
3329 	if (reclaimable)
3330 		pgdat->kswapd_failures = 0;
3331 }
3332 
3333 /*
3334  * Returns true if compaction should go ahead for a costly-order request, or
3335  * the allocation would already succeed without compaction. Return false if we
3336  * should reclaim first.
3337  */
3338 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3339 {
3340 	unsigned long watermark;
3341 	enum compact_result suitable;
3342 
3343 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3344 	if (suitable == COMPACT_SUCCESS)
3345 		/* Allocation should succeed already. Don't reclaim. */
3346 		return true;
3347 	if (suitable == COMPACT_SKIPPED)
3348 		/* Compaction cannot yet proceed. Do reclaim. */
3349 		return false;
3350 
3351 	/*
3352 	 * Compaction is already possible, but it takes time to run and there
3353 	 * are potentially other callers using the pages just freed. So proceed
3354 	 * with reclaim to make a buffer of free pages available to give
3355 	 * compaction a reasonable chance of completing and allocating the page.
3356 	 * Note that we won't actually reclaim the whole buffer in one attempt
3357 	 * as the target watermark in should_continue_reclaim() is lower. But if
3358 	 * we are already above the high+gap watermark, don't reclaim at all.
3359 	 */
3360 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3361 
3362 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3363 }
3364 
3365 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3366 {
3367 	/*
3368 	 * If reclaim is making progress greater than 12% efficiency then
3369 	 * wake all the NOPROGRESS throttled tasks.
3370 	 */
3371 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3372 		wait_queue_head_t *wqh;
3373 
3374 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3375 		if (waitqueue_active(wqh))
3376 			wake_up(wqh);
3377 
3378 		return;
3379 	}
3380 
3381 	/*
3382 	 * Do not throttle kswapd on NOPROGRESS as it will throttle on
3383 	 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under
3384 	 * writeback and marked for immediate reclaim at the tail of
3385 	 * the LRU.
3386 	 */
3387 	if (current_is_kswapd())
3388 		return;
3389 
3390 	/* Throttle if making no progress at high prioities. */
3391 	if (sc->priority < DEF_PRIORITY - 2)
3392 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3393 }
3394 
3395 /*
3396  * This is the direct reclaim path, for page-allocating processes.  We only
3397  * try to reclaim pages from zones which will satisfy the caller's allocation
3398  * request.
3399  *
3400  * If a zone is deemed to be full of pinned pages then just give it a light
3401  * scan then give up on it.
3402  */
3403 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3404 {
3405 	struct zoneref *z;
3406 	struct zone *zone;
3407 	unsigned long nr_soft_reclaimed;
3408 	unsigned long nr_soft_scanned;
3409 	gfp_t orig_mask;
3410 	pg_data_t *last_pgdat = NULL;
3411 
3412 	/*
3413 	 * If the number of buffer_heads in the machine exceeds the maximum
3414 	 * allowed level, force direct reclaim to scan the highmem zone as
3415 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3416 	 */
3417 	orig_mask = sc->gfp_mask;
3418 	if (buffer_heads_over_limit) {
3419 		sc->gfp_mask |= __GFP_HIGHMEM;
3420 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3421 	}
3422 
3423 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3424 					sc->reclaim_idx, sc->nodemask) {
3425 		/*
3426 		 * Take care memory controller reclaiming has small influence
3427 		 * to global LRU.
3428 		 */
3429 		if (!cgroup_reclaim(sc)) {
3430 			if (!cpuset_zone_allowed(zone,
3431 						 GFP_KERNEL | __GFP_HARDWALL))
3432 				continue;
3433 
3434 			/*
3435 			 * If we already have plenty of memory free for
3436 			 * compaction in this zone, don't free any more.
3437 			 * Even though compaction is invoked for any
3438 			 * non-zero order, only frequent costly order
3439 			 * reclamation is disruptive enough to become a
3440 			 * noticeable problem, like transparent huge
3441 			 * page allocations.
3442 			 */
3443 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3444 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3445 			    compaction_ready(zone, sc)) {
3446 				sc->compaction_ready = true;
3447 				continue;
3448 			}
3449 
3450 			/*
3451 			 * Shrink each node in the zonelist once. If the
3452 			 * zonelist is ordered by zone (not the default) then a
3453 			 * node may be shrunk multiple times but in that case
3454 			 * the user prefers lower zones being preserved.
3455 			 */
3456 			if (zone->zone_pgdat == last_pgdat)
3457 				continue;
3458 
3459 			/*
3460 			 * This steals pages from memory cgroups over softlimit
3461 			 * and returns the number of reclaimed pages and
3462 			 * scanned pages. This works for global memory pressure
3463 			 * and balancing, not for a memcg's limit.
3464 			 */
3465 			nr_soft_scanned = 0;
3466 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3467 						sc->order, sc->gfp_mask,
3468 						&nr_soft_scanned);
3469 			sc->nr_reclaimed += nr_soft_reclaimed;
3470 			sc->nr_scanned += nr_soft_scanned;
3471 			/* need some check for avoid more shrink_zone() */
3472 		}
3473 
3474 		/* See comment about same check for global reclaim above */
3475 		if (zone->zone_pgdat == last_pgdat)
3476 			continue;
3477 		last_pgdat = zone->zone_pgdat;
3478 		shrink_node(zone->zone_pgdat, sc);
3479 		consider_reclaim_throttle(zone->zone_pgdat, sc);
3480 	}
3481 
3482 	/*
3483 	 * Restore to original mask to avoid the impact on the caller if we
3484 	 * promoted it to __GFP_HIGHMEM.
3485 	 */
3486 	sc->gfp_mask = orig_mask;
3487 }
3488 
3489 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3490 {
3491 	struct lruvec *target_lruvec;
3492 	unsigned long refaults;
3493 
3494 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3495 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3496 	target_lruvec->refaults[0] = refaults;
3497 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3498 	target_lruvec->refaults[1] = refaults;
3499 }
3500 
3501 /*
3502  * This is the main entry point to direct page reclaim.
3503  *
3504  * If a full scan of the inactive list fails to free enough memory then we
3505  * are "out of memory" and something needs to be killed.
3506  *
3507  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3508  * high - the zone may be full of dirty or under-writeback pages, which this
3509  * caller can't do much about.  We kick the writeback threads and take explicit
3510  * naps in the hope that some of these pages can be written.  But if the
3511  * allocating task holds filesystem locks which prevent writeout this might not
3512  * work, and the allocation attempt will fail.
3513  *
3514  * returns:	0, if no pages reclaimed
3515  * 		else, the number of pages reclaimed
3516  */
3517 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3518 					  struct scan_control *sc)
3519 {
3520 	int initial_priority = sc->priority;
3521 	pg_data_t *last_pgdat;
3522 	struct zoneref *z;
3523 	struct zone *zone;
3524 retry:
3525 	delayacct_freepages_start();
3526 
3527 	if (!cgroup_reclaim(sc))
3528 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3529 
3530 	do {
3531 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3532 				sc->priority);
3533 		sc->nr_scanned = 0;
3534 		shrink_zones(zonelist, sc);
3535 
3536 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3537 			break;
3538 
3539 		if (sc->compaction_ready)
3540 			break;
3541 
3542 		/*
3543 		 * If we're getting trouble reclaiming, start doing
3544 		 * writepage even in laptop mode.
3545 		 */
3546 		if (sc->priority < DEF_PRIORITY - 2)
3547 			sc->may_writepage = 1;
3548 	} while (--sc->priority >= 0);
3549 
3550 	last_pgdat = NULL;
3551 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3552 					sc->nodemask) {
3553 		if (zone->zone_pgdat == last_pgdat)
3554 			continue;
3555 		last_pgdat = zone->zone_pgdat;
3556 
3557 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3558 
3559 		if (cgroup_reclaim(sc)) {
3560 			struct lruvec *lruvec;
3561 
3562 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3563 						   zone->zone_pgdat);
3564 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3565 		}
3566 	}
3567 
3568 	delayacct_freepages_end();
3569 
3570 	if (sc->nr_reclaimed)
3571 		return sc->nr_reclaimed;
3572 
3573 	/* Aborted reclaim to try compaction? don't OOM, then */
3574 	if (sc->compaction_ready)
3575 		return 1;
3576 
3577 	/*
3578 	 * We make inactive:active ratio decisions based on the node's
3579 	 * composition of memory, but a restrictive reclaim_idx or a
3580 	 * memory.low cgroup setting can exempt large amounts of
3581 	 * memory from reclaim. Neither of which are very common, so
3582 	 * instead of doing costly eligibility calculations of the
3583 	 * entire cgroup subtree up front, we assume the estimates are
3584 	 * good, and retry with forcible deactivation if that fails.
3585 	 */
3586 	if (sc->skipped_deactivate) {
3587 		sc->priority = initial_priority;
3588 		sc->force_deactivate = 1;
3589 		sc->skipped_deactivate = 0;
3590 		goto retry;
3591 	}
3592 
3593 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3594 	if (sc->memcg_low_skipped) {
3595 		sc->priority = initial_priority;
3596 		sc->force_deactivate = 0;
3597 		sc->memcg_low_reclaim = 1;
3598 		sc->memcg_low_skipped = 0;
3599 		goto retry;
3600 	}
3601 
3602 	return 0;
3603 }
3604 
3605 static bool allow_direct_reclaim(pg_data_t *pgdat)
3606 {
3607 	struct zone *zone;
3608 	unsigned long pfmemalloc_reserve = 0;
3609 	unsigned long free_pages = 0;
3610 	int i;
3611 	bool wmark_ok;
3612 
3613 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3614 		return true;
3615 
3616 	for (i = 0; i <= ZONE_NORMAL; i++) {
3617 		zone = &pgdat->node_zones[i];
3618 		if (!managed_zone(zone))
3619 			continue;
3620 
3621 		if (!zone_reclaimable_pages(zone))
3622 			continue;
3623 
3624 		pfmemalloc_reserve += min_wmark_pages(zone);
3625 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3626 	}
3627 
3628 	/* If there are no reserves (unexpected config) then do not throttle */
3629 	if (!pfmemalloc_reserve)
3630 		return true;
3631 
3632 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3633 
3634 	/* kswapd must be awake if processes are being throttled */
3635 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3636 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3637 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3638 
3639 		wake_up_interruptible(&pgdat->kswapd_wait);
3640 	}
3641 
3642 	return wmark_ok;
3643 }
3644 
3645 /*
3646  * Throttle direct reclaimers if backing storage is backed by the network
3647  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3648  * depleted. kswapd will continue to make progress and wake the processes
3649  * when the low watermark is reached.
3650  *
3651  * Returns true if a fatal signal was delivered during throttling. If this
3652  * happens, the page allocator should not consider triggering the OOM killer.
3653  */
3654 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3655 					nodemask_t *nodemask)
3656 {
3657 	struct zoneref *z;
3658 	struct zone *zone;
3659 	pg_data_t *pgdat = NULL;
3660 
3661 	/*
3662 	 * Kernel threads should not be throttled as they may be indirectly
3663 	 * responsible for cleaning pages necessary for reclaim to make forward
3664 	 * progress. kjournald for example may enter direct reclaim while
3665 	 * committing a transaction where throttling it could forcing other
3666 	 * processes to block on log_wait_commit().
3667 	 */
3668 	if (current->flags & PF_KTHREAD)
3669 		goto out;
3670 
3671 	/*
3672 	 * If a fatal signal is pending, this process should not throttle.
3673 	 * It should return quickly so it can exit and free its memory
3674 	 */
3675 	if (fatal_signal_pending(current))
3676 		goto out;
3677 
3678 	/*
3679 	 * Check if the pfmemalloc reserves are ok by finding the first node
3680 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3681 	 * GFP_KERNEL will be required for allocating network buffers when
3682 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3683 	 *
3684 	 * Throttling is based on the first usable node and throttled processes
3685 	 * wait on a queue until kswapd makes progress and wakes them. There
3686 	 * is an affinity then between processes waking up and where reclaim
3687 	 * progress has been made assuming the process wakes on the same node.
3688 	 * More importantly, processes running on remote nodes will not compete
3689 	 * for remote pfmemalloc reserves and processes on different nodes
3690 	 * should make reasonable progress.
3691 	 */
3692 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3693 					gfp_zone(gfp_mask), nodemask) {
3694 		if (zone_idx(zone) > ZONE_NORMAL)
3695 			continue;
3696 
3697 		/* Throttle based on the first usable node */
3698 		pgdat = zone->zone_pgdat;
3699 		if (allow_direct_reclaim(pgdat))
3700 			goto out;
3701 		break;
3702 	}
3703 
3704 	/* If no zone was usable by the allocation flags then do not throttle */
3705 	if (!pgdat)
3706 		goto out;
3707 
3708 	/* Account for the throttling */
3709 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3710 
3711 	/*
3712 	 * If the caller cannot enter the filesystem, it's possible that it
3713 	 * is due to the caller holding an FS lock or performing a journal
3714 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3715 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3716 	 * blocked waiting on the same lock. Instead, throttle for up to a
3717 	 * second before continuing.
3718 	 */
3719 	if (!(gfp_mask & __GFP_FS))
3720 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3721 			allow_direct_reclaim(pgdat), HZ);
3722 	else
3723 		/* Throttle until kswapd wakes the process */
3724 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3725 			allow_direct_reclaim(pgdat));
3726 
3727 	if (fatal_signal_pending(current))
3728 		return true;
3729 
3730 out:
3731 	return false;
3732 }
3733 
3734 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3735 				gfp_t gfp_mask, nodemask_t *nodemask)
3736 {
3737 	unsigned long nr_reclaimed;
3738 	struct scan_control sc = {
3739 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3740 		.gfp_mask = current_gfp_context(gfp_mask),
3741 		.reclaim_idx = gfp_zone(gfp_mask),
3742 		.order = order,
3743 		.nodemask = nodemask,
3744 		.priority = DEF_PRIORITY,
3745 		.may_writepage = !laptop_mode,
3746 		.may_unmap = 1,
3747 		.may_swap = 1,
3748 	};
3749 
3750 	/*
3751 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3752 	 * Confirm they are large enough for max values.
3753 	 */
3754 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3755 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3756 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3757 
3758 	/*
3759 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3760 	 * 1 is returned so that the page allocator does not OOM kill at this
3761 	 * point.
3762 	 */
3763 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3764 		return 1;
3765 
3766 	set_task_reclaim_state(current, &sc.reclaim_state);
3767 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3768 
3769 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3770 
3771 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3772 	set_task_reclaim_state(current, NULL);
3773 
3774 	return nr_reclaimed;
3775 }
3776 
3777 #ifdef CONFIG_MEMCG
3778 
3779 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3780 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3781 						gfp_t gfp_mask, bool noswap,
3782 						pg_data_t *pgdat,
3783 						unsigned long *nr_scanned)
3784 {
3785 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3786 	struct scan_control sc = {
3787 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3788 		.target_mem_cgroup = memcg,
3789 		.may_writepage = !laptop_mode,
3790 		.may_unmap = 1,
3791 		.reclaim_idx = MAX_NR_ZONES - 1,
3792 		.may_swap = !noswap,
3793 	};
3794 
3795 	WARN_ON_ONCE(!current->reclaim_state);
3796 
3797 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3798 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3799 
3800 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3801 						      sc.gfp_mask);
3802 
3803 	/*
3804 	 * NOTE: Although we can get the priority field, using it
3805 	 * here is not a good idea, since it limits the pages we can scan.
3806 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3807 	 * will pick up pages from other mem cgroup's as well. We hack
3808 	 * the priority and make it zero.
3809 	 */
3810 	shrink_lruvec(lruvec, &sc);
3811 
3812 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3813 
3814 	*nr_scanned = sc.nr_scanned;
3815 
3816 	return sc.nr_reclaimed;
3817 }
3818 
3819 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3820 					   unsigned long nr_pages,
3821 					   gfp_t gfp_mask,
3822 					   bool may_swap)
3823 {
3824 	unsigned long nr_reclaimed;
3825 	unsigned int noreclaim_flag;
3826 	struct scan_control sc = {
3827 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3828 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3829 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3830 		.reclaim_idx = MAX_NR_ZONES - 1,
3831 		.target_mem_cgroup = memcg,
3832 		.priority = DEF_PRIORITY,
3833 		.may_writepage = !laptop_mode,
3834 		.may_unmap = 1,
3835 		.may_swap = may_swap,
3836 	};
3837 	/*
3838 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3839 	 * equal pressure on all the nodes. This is based on the assumption that
3840 	 * the reclaim does not bail out early.
3841 	 */
3842 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3843 
3844 	set_task_reclaim_state(current, &sc.reclaim_state);
3845 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3846 	noreclaim_flag = memalloc_noreclaim_save();
3847 
3848 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3849 
3850 	memalloc_noreclaim_restore(noreclaim_flag);
3851 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3852 	set_task_reclaim_state(current, NULL);
3853 
3854 	return nr_reclaimed;
3855 }
3856 #endif
3857 
3858 static void age_active_anon(struct pglist_data *pgdat,
3859 				struct scan_control *sc)
3860 {
3861 	struct mem_cgroup *memcg;
3862 	struct lruvec *lruvec;
3863 
3864 	if (!can_age_anon_pages(pgdat, sc))
3865 		return;
3866 
3867 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3868 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3869 		return;
3870 
3871 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3872 	do {
3873 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3874 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3875 				   sc, LRU_ACTIVE_ANON);
3876 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3877 	} while (memcg);
3878 }
3879 
3880 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3881 {
3882 	int i;
3883 	struct zone *zone;
3884 
3885 	/*
3886 	 * Check for watermark boosts top-down as the higher zones
3887 	 * are more likely to be boosted. Both watermarks and boosts
3888 	 * should not be checked at the same time as reclaim would
3889 	 * start prematurely when there is no boosting and a lower
3890 	 * zone is balanced.
3891 	 */
3892 	for (i = highest_zoneidx; i >= 0; i--) {
3893 		zone = pgdat->node_zones + i;
3894 		if (!managed_zone(zone))
3895 			continue;
3896 
3897 		if (zone->watermark_boost)
3898 			return true;
3899 	}
3900 
3901 	return false;
3902 }
3903 
3904 /*
3905  * Returns true if there is an eligible zone balanced for the request order
3906  * and highest_zoneidx
3907  */
3908 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3909 {
3910 	int i;
3911 	unsigned long mark = -1;
3912 	struct zone *zone;
3913 
3914 	/*
3915 	 * Check watermarks bottom-up as lower zones are more likely to
3916 	 * meet watermarks.
3917 	 */
3918 	for (i = 0; i <= highest_zoneidx; i++) {
3919 		zone = pgdat->node_zones + i;
3920 
3921 		if (!managed_zone(zone))
3922 			continue;
3923 
3924 		mark = high_wmark_pages(zone);
3925 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3926 			return true;
3927 	}
3928 
3929 	/*
3930 	 * If a node has no populated zone within highest_zoneidx, it does not
3931 	 * need balancing by definition. This can happen if a zone-restricted
3932 	 * allocation tries to wake a remote kswapd.
3933 	 */
3934 	if (mark == -1)
3935 		return true;
3936 
3937 	return false;
3938 }
3939 
3940 /* Clear pgdat state for congested, dirty or under writeback. */
3941 static void clear_pgdat_congested(pg_data_t *pgdat)
3942 {
3943 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3944 
3945 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3946 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3947 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3948 }
3949 
3950 /*
3951  * Prepare kswapd for sleeping. This verifies that there are no processes
3952  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3953  *
3954  * Returns true if kswapd is ready to sleep
3955  */
3956 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3957 				int highest_zoneidx)
3958 {
3959 	/*
3960 	 * The throttled processes are normally woken up in balance_pgdat() as
3961 	 * soon as allow_direct_reclaim() is true. But there is a potential
3962 	 * race between when kswapd checks the watermarks and a process gets
3963 	 * throttled. There is also a potential race if processes get
3964 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3965 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3966 	 * the wake up checks. If kswapd is going to sleep, no process should
3967 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3968 	 * the wake up is premature, processes will wake kswapd and get
3969 	 * throttled again. The difference from wake ups in balance_pgdat() is
3970 	 * that here we are under prepare_to_wait().
3971 	 */
3972 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3973 		wake_up_all(&pgdat->pfmemalloc_wait);
3974 
3975 	/* Hopeless node, leave it to direct reclaim */
3976 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3977 		return true;
3978 
3979 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3980 		clear_pgdat_congested(pgdat);
3981 		return true;
3982 	}
3983 
3984 	return false;
3985 }
3986 
3987 /*
3988  * kswapd shrinks a node of pages that are at or below the highest usable
3989  * zone that is currently unbalanced.
3990  *
3991  * Returns true if kswapd scanned at least the requested number of pages to
3992  * reclaim or if the lack of progress was due to pages under writeback.
3993  * This is used to determine if the scanning priority needs to be raised.
3994  */
3995 static bool kswapd_shrink_node(pg_data_t *pgdat,
3996 			       struct scan_control *sc)
3997 {
3998 	struct zone *zone;
3999 	int z;
4000 
4001 	/* Reclaim a number of pages proportional to the number of zones */
4002 	sc->nr_to_reclaim = 0;
4003 	for (z = 0; z <= sc->reclaim_idx; z++) {
4004 		zone = pgdat->node_zones + z;
4005 		if (!managed_zone(zone))
4006 			continue;
4007 
4008 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4009 	}
4010 
4011 	/*
4012 	 * Historically care was taken to put equal pressure on all zones but
4013 	 * now pressure is applied based on node LRU order.
4014 	 */
4015 	shrink_node(pgdat, sc);
4016 
4017 	/*
4018 	 * Fragmentation may mean that the system cannot be rebalanced for
4019 	 * high-order allocations. If twice the allocation size has been
4020 	 * reclaimed then recheck watermarks only at order-0 to prevent
4021 	 * excessive reclaim. Assume that a process requested a high-order
4022 	 * can direct reclaim/compact.
4023 	 */
4024 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4025 		sc->order = 0;
4026 
4027 	return sc->nr_scanned >= sc->nr_to_reclaim;
4028 }
4029 
4030 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4031 static inline void
4032 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4033 {
4034 	int i;
4035 	struct zone *zone;
4036 
4037 	for (i = 0; i <= highest_zoneidx; i++) {
4038 		zone = pgdat->node_zones + i;
4039 
4040 		if (!managed_zone(zone))
4041 			continue;
4042 
4043 		if (active)
4044 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4045 		else
4046 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4047 	}
4048 }
4049 
4050 static inline void
4051 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4052 {
4053 	update_reclaim_active(pgdat, highest_zoneidx, true);
4054 }
4055 
4056 static inline void
4057 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4058 {
4059 	update_reclaim_active(pgdat, highest_zoneidx, false);
4060 }
4061 
4062 /*
4063  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4064  * that are eligible for use by the caller until at least one zone is
4065  * balanced.
4066  *
4067  * Returns the order kswapd finished reclaiming at.
4068  *
4069  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4070  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4071  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4072  * or lower is eligible for reclaim until at least one usable zone is
4073  * balanced.
4074  */
4075 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4076 {
4077 	int i;
4078 	unsigned long nr_soft_reclaimed;
4079 	unsigned long nr_soft_scanned;
4080 	unsigned long pflags;
4081 	unsigned long nr_boost_reclaim;
4082 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4083 	bool boosted;
4084 	struct zone *zone;
4085 	struct scan_control sc = {
4086 		.gfp_mask = GFP_KERNEL,
4087 		.order = order,
4088 		.may_unmap = 1,
4089 	};
4090 
4091 	set_task_reclaim_state(current, &sc.reclaim_state);
4092 	psi_memstall_enter(&pflags);
4093 	__fs_reclaim_acquire(_THIS_IP_);
4094 
4095 	count_vm_event(PAGEOUTRUN);
4096 
4097 	/*
4098 	 * Account for the reclaim boost. Note that the zone boost is left in
4099 	 * place so that parallel allocations that are near the watermark will
4100 	 * stall or direct reclaim until kswapd is finished.
4101 	 */
4102 	nr_boost_reclaim = 0;
4103 	for (i = 0; i <= highest_zoneidx; i++) {
4104 		zone = pgdat->node_zones + i;
4105 		if (!managed_zone(zone))
4106 			continue;
4107 
4108 		nr_boost_reclaim += zone->watermark_boost;
4109 		zone_boosts[i] = zone->watermark_boost;
4110 	}
4111 	boosted = nr_boost_reclaim;
4112 
4113 restart:
4114 	set_reclaim_active(pgdat, highest_zoneidx);
4115 	sc.priority = DEF_PRIORITY;
4116 	do {
4117 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4118 		bool raise_priority = true;
4119 		bool balanced;
4120 		bool ret;
4121 
4122 		sc.reclaim_idx = highest_zoneidx;
4123 
4124 		/*
4125 		 * If the number of buffer_heads exceeds the maximum allowed
4126 		 * then consider reclaiming from all zones. This has a dual
4127 		 * purpose -- on 64-bit systems it is expected that
4128 		 * buffer_heads are stripped during active rotation. On 32-bit
4129 		 * systems, highmem pages can pin lowmem memory and shrinking
4130 		 * buffers can relieve lowmem pressure. Reclaim may still not
4131 		 * go ahead if all eligible zones for the original allocation
4132 		 * request are balanced to avoid excessive reclaim from kswapd.
4133 		 */
4134 		if (buffer_heads_over_limit) {
4135 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4136 				zone = pgdat->node_zones + i;
4137 				if (!managed_zone(zone))
4138 					continue;
4139 
4140 				sc.reclaim_idx = i;
4141 				break;
4142 			}
4143 		}
4144 
4145 		/*
4146 		 * If the pgdat is imbalanced then ignore boosting and preserve
4147 		 * the watermarks for a later time and restart. Note that the
4148 		 * zone watermarks will be still reset at the end of balancing
4149 		 * on the grounds that the normal reclaim should be enough to
4150 		 * re-evaluate if boosting is required when kswapd next wakes.
4151 		 */
4152 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4153 		if (!balanced && nr_boost_reclaim) {
4154 			nr_boost_reclaim = 0;
4155 			goto restart;
4156 		}
4157 
4158 		/*
4159 		 * If boosting is not active then only reclaim if there are no
4160 		 * eligible zones. Note that sc.reclaim_idx is not used as
4161 		 * buffer_heads_over_limit may have adjusted it.
4162 		 */
4163 		if (!nr_boost_reclaim && balanced)
4164 			goto out;
4165 
4166 		/* Limit the priority of boosting to avoid reclaim writeback */
4167 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4168 			raise_priority = false;
4169 
4170 		/*
4171 		 * Do not writeback or swap pages for boosted reclaim. The
4172 		 * intent is to relieve pressure not issue sub-optimal IO
4173 		 * from reclaim context. If no pages are reclaimed, the
4174 		 * reclaim will be aborted.
4175 		 */
4176 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4177 		sc.may_swap = !nr_boost_reclaim;
4178 
4179 		/*
4180 		 * Do some background aging of the anon list, to give
4181 		 * pages a chance to be referenced before reclaiming. All
4182 		 * pages are rotated regardless of classzone as this is
4183 		 * about consistent aging.
4184 		 */
4185 		age_active_anon(pgdat, &sc);
4186 
4187 		/*
4188 		 * If we're getting trouble reclaiming, start doing writepage
4189 		 * even in laptop mode.
4190 		 */
4191 		if (sc.priority < DEF_PRIORITY - 2)
4192 			sc.may_writepage = 1;
4193 
4194 		/* Call soft limit reclaim before calling shrink_node. */
4195 		sc.nr_scanned = 0;
4196 		nr_soft_scanned = 0;
4197 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4198 						sc.gfp_mask, &nr_soft_scanned);
4199 		sc.nr_reclaimed += nr_soft_reclaimed;
4200 
4201 		/*
4202 		 * There should be no need to raise the scanning priority if
4203 		 * enough pages are already being scanned that that high
4204 		 * watermark would be met at 100% efficiency.
4205 		 */
4206 		if (kswapd_shrink_node(pgdat, &sc))
4207 			raise_priority = false;
4208 
4209 		/*
4210 		 * If the low watermark is met there is no need for processes
4211 		 * to be throttled on pfmemalloc_wait as they should not be
4212 		 * able to safely make forward progress. Wake them
4213 		 */
4214 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4215 				allow_direct_reclaim(pgdat))
4216 			wake_up_all(&pgdat->pfmemalloc_wait);
4217 
4218 		/* Check if kswapd should be suspending */
4219 		__fs_reclaim_release(_THIS_IP_);
4220 		ret = try_to_freeze();
4221 		__fs_reclaim_acquire(_THIS_IP_);
4222 		if (ret || kthread_should_stop())
4223 			break;
4224 
4225 		/*
4226 		 * Raise priority if scanning rate is too low or there was no
4227 		 * progress in reclaiming pages
4228 		 */
4229 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4230 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4231 
4232 		/*
4233 		 * If reclaim made no progress for a boost, stop reclaim as
4234 		 * IO cannot be queued and it could be an infinite loop in
4235 		 * extreme circumstances.
4236 		 */
4237 		if (nr_boost_reclaim && !nr_reclaimed)
4238 			break;
4239 
4240 		if (raise_priority || !nr_reclaimed)
4241 			sc.priority--;
4242 	} while (sc.priority >= 1);
4243 
4244 	if (!sc.nr_reclaimed)
4245 		pgdat->kswapd_failures++;
4246 
4247 out:
4248 	clear_reclaim_active(pgdat, highest_zoneidx);
4249 
4250 	/* If reclaim was boosted, account for the reclaim done in this pass */
4251 	if (boosted) {
4252 		unsigned long flags;
4253 
4254 		for (i = 0; i <= highest_zoneidx; i++) {
4255 			if (!zone_boosts[i])
4256 				continue;
4257 
4258 			/* Increments are under the zone lock */
4259 			zone = pgdat->node_zones + i;
4260 			spin_lock_irqsave(&zone->lock, flags);
4261 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4262 			spin_unlock_irqrestore(&zone->lock, flags);
4263 		}
4264 
4265 		/*
4266 		 * As there is now likely space, wakeup kcompact to defragment
4267 		 * pageblocks.
4268 		 */
4269 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4270 	}
4271 
4272 	snapshot_refaults(NULL, pgdat);
4273 	__fs_reclaim_release(_THIS_IP_);
4274 	psi_memstall_leave(&pflags);
4275 	set_task_reclaim_state(current, NULL);
4276 
4277 	/*
4278 	 * Return the order kswapd stopped reclaiming at as
4279 	 * prepare_kswapd_sleep() takes it into account. If another caller
4280 	 * entered the allocator slow path while kswapd was awake, order will
4281 	 * remain at the higher level.
4282 	 */
4283 	return sc.order;
4284 }
4285 
4286 /*
4287  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4288  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4289  * not a valid index then either kswapd runs for first time or kswapd couldn't
4290  * sleep after previous reclaim attempt (node is still unbalanced). In that
4291  * case return the zone index of the previous kswapd reclaim cycle.
4292  */
4293 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4294 					   enum zone_type prev_highest_zoneidx)
4295 {
4296 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4297 
4298 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4299 }
4300 
4301 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4302 				unsigned int highest_zoneidx)
4303 {
4304 	long remaining = 0;
4305 	DEFINE_WAIT(wait);
4306 
4307 	if (freezing(current) || kthread_should_stop())
4308 		return;
4309 
4310 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4311 
4312 	/*
4313 	 * Try to sleep for a short interval. Note that kcompactd will only be
4314 	 * woken if it is possible to sleep for a short interval. This is
4315 	 * deliberate on the assumption that if reclaim cannot keep an
4316 	 * eligible zone balanced that it's also unlikely that compaction will
4317 	 * succeed.
4318 	 */
4319 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4320 		/*
4321 		 * Compaction records what page blocks it recently failed to
4322 		 * isolate pages from and skips them in the future scanning.
4323 		 * When kswapd is going to sleep, it is reasonable to assume
4324 		 * that pages and compaction may succeed so reset the cache.
4325 		 */
4326 		reset_isolation_suitable(pgdat);
4327 
4328 		/*
4329 		 * We have freed the memory, now we should compact it to make
4330 		 * allocation of the requested order possible.
4331 		 */
4332 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4333 
4334 		remaining = schedule_timeout(HZ/10);
4335 
4336 		/*
4337 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4338 		 * order. The values will either be from a wakeup request or
4339 		 * the previous request that slept prematurely.
4340 		 */
4341 		if (remaining) {
4342 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4343 					kswapd_highest_zoneidx(pgdat,
4344 							highest_zoneidx));
4345 
4346 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4347 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4348 		}
4349 
4350 		finish_wait(&pgdat->kswapd_wait, &wait);
4351 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4352 	}
4353 
4354 	/*
4355 	 * After a short sleep, check if it was a premature sleep. If not, then
4356 	 * go fully to sleep until explicitly woken up.
4357 	 */
4358 	if (!remaining &&
4359 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4360 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4361 
4362 		/*
4363 		 * vmstat counters are not perfectly accurate and the estimated
4364 		 * value for counters such as NR_FREE_PAGES can deviate from the
4365 		 * true value by nr_online_cpus * threshold. To avoid the zone
4366 		 * watermarks being breached while under pressure, we reduce the
4367 		 * per-cpu vmstat threshold while kswapd is awake and restore
4368 		 * them before going back to sleep.
4369 		 */
4370 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4371 
4372 		if (!kthread_should_stop())
4373 			schedule();
4374 
4375 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4376 	} else {
4377 		if (remaining)
4378 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4379 		else
4380 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4381 	}
4382 	finish_wait(&pgdat->kswapd_wait, &wait);
4383 }
4384 
4385 /*
4386  * The background pageout daemon, started as a kernel thread
4387  * from the init process.
4388  *
4389  * This basically trickles out pages so that we have _some_
4390  * free memory available even if there is no other activity
4391  * that frees anything up. This is needed for things like routing
4392  * etc, where we otherwise might have all activity going on in
4393  * asynchronous contexts that cannot page things out.
4394  *
4395  * If there are applications that are active memory-allocators
4396  * (most normal use), this basically shouldn't matter.
4397  */
4398 static int kswapd(void *p)
4399 {
4400 	unsigned int alloc_order, reclaim_order;
4401 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4402 	pg_data_t *pgdat = (pg_data_t *)p;
4403 	struct task_struct *tsk = current;
4404 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4405 
4406 	if (!cpumask_empty(cpumask))
4407 		set_cpus_allowed_ptr(tsk, cpumask);
4408 
4409 	/*
4410 	 * Tell the memory management that we're a "memory allocator",
4411 	 * and that if we need more memory we should get access to it
4412 	 * regardless (see "__alloc_pages()"). "kswapd" should
4413 	 * never get caught in the normal page freeing logic.
4414 	 *
4415 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4416 	 * you need a small amount of memory in order to be able to
4417 	 * page out something else, and this flag essentially protects
4418 	 * us from recursively trying to free more memory as we're
4419 	 * trying to free the first piece of memory in the first place).
4420 	 */
4421 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4422 	set_freezable();
4423 
4424 	WRITE_ONCE(pgdat->kswapd_order, 0);
4425 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4426 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4427 	for ( ; ; ) {
4428 		bool ret;
4429 
4430 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4431 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4432 							highest_zoneidx);
4433 
4434 kswapd_try_sleep:
4435 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4436 					highest_zoneidx);
4437 
4438 		/* Read the new order and highest_zoneidx */
4439 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4440 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4441 							highest_zoneidx);
4442 		WRITE_ONCE(pgdat->kswapd_order, 0);
4443 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4444 
4445 		ret = try_to_freeze();
4446 		if (kthread_should_stop())
4447 			break;
4448 
4449 		/*
4450 		 * We can speed up thawing tasks if we don't call balance_pgdat
4451 		 * after returning from the refrigerator
4452 		 */
4453 		if (ret)
4454 			continue;
4455 
4456 		/*
4457 		 * Reclaim begins at the requested order but if a high-order
4458 		 * reclaim fails then kswapd falls back to reclaiming for
4459 		 * order-0. If that happens, kswapd will consider sleeping
4460 		 * for the order it finished reclaiming at (reclaim_order)
4461 		 * but kcompactd is woken to compact for the original
4462 		 * request (alloc_order).
4463 		 */
4464 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4465 						alloc_order);
4466 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4467 						highest_zoneidx);
4468 		if (reclaim_order < alloc_order)
4469 			goto kswapd_try_sleep;
4470 	}
4471 
4472 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4473 
4474 	return 0;
4475 }
4476 
4477 /*
4478  * A zone is low on free memory or too fragmented for high-order memory.  If
4479  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4480  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4481  * has failed or is not needed, still wake up kcompactd if only compaction is
4482  * needed.
4483  */
4484 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4485 		   enum zone_type highest_zoneidx)
4486 {
4487 	pg_data_t *pgdat;
4488 	enum zone_type curr_idx;
4489 
4490 	if (!managed_zone(zone))
4491 		return;
4492 
4493 	if (!cpuset_zone_allowed(zone, gfp_flags))
4494 		return;
4495 
4496 	pgdat = zone->zone_pgdat;
4497 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4498 
4499 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4500 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4501 
4502 	if (READ_ONCE(pgdat->kswapd_order) < order)
4503 		WRITE_ONCE(pgdat->kswapd_order, order);
4504 
4505 	if (!waitqueue_active(&pgdat->kswapd_wait))
4506 		return;
4507 
4508 	/* Hopeless node, leave it to direct reclaim if possible */
4509 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4510 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4511 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4512 		/*
4513 		 * There may be plenty of free memory available, but it's too
4514 		 * fragmented for high-order allocations.  Wake up kcompactd
4515 		 * and rely on compaction_suitable() to determine if it's
4516 		 * needed.  If it fails, it will defer subsequent attempts to
4517 		 * ratelimit its work.
4518 		 */
4519 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4520 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4521 		return;
4522 	}
4523 
4524 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4525 				      gfp_flags);
4526 	wake_up_interruptible(&pgdat->kswapd_wait);
4527 }
4528 
4529 #ifdef CONFIG_HIBERNATION
4530 /*
4531  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4532  * freed pages.
4533  *
4534  * Rather than trying to age LRUs the aim is to preserve the overall
4535  * LRU order by reclaiming preferentially
4536  * inactive > active > active referenced > active mapped
4537  */
4538 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4539 {
4540 	struct scan_control sc = {
4541 		.nr_to_reclaim = nr_to_reclaim,
4542 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4543 		.reclaim_idx = MAX_NR_ZONES - 1,
4544 		.priority = DEF_PRIORITY,
4545 		.may_writepage = 1,
4546 		.may_unmap = 1,
4547 		.may_swap = 1,
4548 		.hibernation_mode = 1,
4549 	};
4550 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4551 	unsigned long nr_reclaimed;
4552 	unsigned int noreclaim_flag;
4553 
4554 	fs_reclaim_acquire(sc.gfp_mask);
4555 	noreclaim_flag = memalloc_noreclaim_save();
4556 	set_task_reclaim_state(current, &sc.reclaim_state);
4557 
4558 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4559 
4560 	set_task_reclaim_state(current, NULL);
4561 	memalloc_noreclaim_restore(noreclaim_flag);
4562 	fs_reclaim_release(sc.gfp_mask);
4563 
4564 	return nr_reclaimed;
4565 }
4566 #endif /* CONFIG_HIBERNATION */
4567 
4568 /*
4569  * This kswapd start function will be called by init and node-hot-add.
4570  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4571  */
4572 void kswapd_run(int nid)
4573 {
4574 	pg_data_t *pgdat = NODE_DATA(nid);
4575 
4576 	if (pgdat->kswapd)
4577 		return;
4578 
4579 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4580 	if (IS_ERR(pgdat->kswapd)) {
4581 		/* failure at boot is fatal */
4582 		BUG_ON(system_state < SYSTEM_RUNNING);
4583 		pr_err("Failed to start kswapd on node %d\n", nid);
4584 		pgdat->kswapd = NULL;
4585 	}
4586 }
4587 
4588 /*
4589  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4590  * hold mem_hotplug_begin/end().
4591  */
4592 void kswapd_stop(int nid)
4593 {
4594 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4595 
4596 	if (kswapd) {
4597 		kthread_stop(kswapd);
4598 		NODE_DATA(nid)->kswapd = NULL;
4599 	}
4600 }
4601 
4602 static int __init kswapd_init(void)
4603 {
4604 	int nid;
4605 
4606 	swap_setup();
4607 	for_each_node_state(nid, N_MEMORY)
4608  		kswapd_run(nid);
4609 	return 0;
4610 }
4611 
4612 module_init(kswapd_init)
4613 
4614 #ifdef CONFIG_NUMA
4615 /*
4616  * Node reclaim mode
4617  *
4618  * If non-zero call node_reclaim when the number of free pages falls below
4619  * the watermarks.
4620  */
4621 int node_reclaim_mode __read_mostly;
4622 
4623 /*
4624  * Priority for NODE_RECLAIM. This determines the fraction of pages
4625  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4626  * a zone.
4627  */
4628 #define NODE_RECLAIM_PRIORITY 4
4629 
4630 /*
4631  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4632  * occur.
4633  */
4634 int sysctl_min_unmapped_ratio = 1;
4635 
4636 /*
4637  * If the number of slab pages in a zone grows beyond this percentage then
4638  * slab reclaim needs to occur.
4639  */
4640 int sysctl_min_slab_ratio = 5;
4641 
4642 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4643 {
4644 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4645 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4646 		node_page_state(pgdat, NR_ACTIVE_FILE);
4647 
4648 	/*
4649 	 * It's possible for there to be more file mapped pages than
4650 	 * accounted for by the pages on the file LRU lists because
4651 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4652 	 */
4653 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4654 }
4655 
4656 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4657 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4658 {
4659 	unsigned long nr_pagecache_reclaimable;
4660 	unsigned long delta = 0;
4661 
4662 	/*
4663 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4664 	 * potentially reclaimable. Otherwise, we have to worry about
4665 	 * pages like swapcache and node_unmapped_file_pages() provides
4666 	 * a better estimate
4667 	 */
4668 	if (node_reclaim_mode & RECLAIM_UNMAP)
4669 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4670 	else
4671 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4672 
4673 	/* If we can't clean pages, remove dirty pages from consideration */
4674 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4675 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4676 
4677 	/* Watch for any possible underflows due to delta */
4678 	if (unlikely(delta > nr_pagecache_reclaimable))
4679 		delta = nr_pagecache_reclaimable;
4680 
4681 	return nr_pagecache_reclaimable - delta;
4682 }
4683 
4684 /*
4685  * Try to free up some pages from this node through reclaim.
4686  */
4687 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4688 {
4689 	/* Minimum pages needed in order to stay on node */
4690 	const unsigned long nr_pages = 1 << order;
4691 	struct task_struct *p = current;
4692 	unsigned int noreclaim_flag;
4693 	struct scan_control sc = {
4694 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4695 		.gfp_mask = current_gfp_context(gfp_mask),
4696 		.order = order,
4697 		.priority = NODE_RECLAIM_PRIORITY,
4698 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4699 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4700 		.may_swap = 1,
4701 		.reclaim_idx = gfp_zone(gfp_mask),
4702 	};
4703 	unsigned long pflags;
4704 
4705 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4706 					   sc.gfp_mask);
4707 
4708 	cond_resched();
4709 	psi_memstall_enter(&pflags);
4710 	fs_reclaim_acquire(sc.gfp_mask);
4711 	/*
4712 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4713 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4714 	 * and RECLAIM_UNMAP.
4715 	 */
4716 	noreclaim_flag = memalloc_noreclaim_save();
4717 	p->flags |= PF_SWAPWRITE;
4718 	set_task_reclaim_state(p, &sc.reclaim_state);
4719 
4720 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4721 		/*
4722 		 * Free memory by calling shrink node with increasing
4723 		 * priorities until we have enough memory freed.
4724 		 */
4725 		do {
4726 			shrink_node(pgdat, &sc);
4727 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4728 	}
4729 
4730 	set_task_reclaim_state(p, NULL);
4731 	current->flags &= ~PF_SWAPWRITE;
4732 	memalloc_noreclaim_restore(noreclaim_flag);
4733 	fs_reclaim_release(sc.gfp_mask);
4734 	psi_memstall_leave(&pflags);
4735 
4736 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4737 
4738 	return sc.nr_reclaimed >= nr_pages;
4739 }
4740 
4741 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4742 {
4743 	int ret;
4744 
4745 	/*
4746 	 * Node reclaim reclaims unmapped file backed pages and
4747 	 * slab pages if we are over the defined limits.
4748 	 *
4749 	 * A small portion of unmapped file backed pages is needed for
4750 	 * file I/O otherwise pages read by file I/O will be immediately
4751 	 * thrown out if the node is overallocated. So we do not reclaim
4752 	 * if less than a specified percentage of the node is used by
4753 	 * unmapped file backed pages.
4754 	 */
4755 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4756 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4757 	    pgdat->min_slab_pages)
4758 		return NODE_RECLAIM_FULL;
4759 
4760 	/*
4761 	 * Do not scan if the allocation should not be delayed.
4762 	 */
4763 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4764 		return NODE_RECLAIM_NOSCAN;
4765 
4766 	/*
4767 	 * Only run node reclaim on the local node or on nodes that do not
4768 	 * have associated processors. This will favor the local processor
4769 	 * over remote processors and spread off node memory allocations
4770 	 * as wide as possible.
4771 	 */
4772 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4773 		return NODE_RECLAIM_NOSCAN;
4774 
4775 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4776 		return NODE_RECLAIM_NOSCAN;
4777 
4778 	ret = __node_reclaim(pgdat, gfp_mask, order);
4779 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4780 
4781 	if (!ret)
4782 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4783 
4784 	return ret;
4785 }
4786 #endif
4787 
4788 /**
4789  * check_move_unevictable_pages - check pages for evictability and move to
4790  * appropriate zone lru list
4791  * @pvec: pagevec with lru pages to check
4792  *
4793  * Checks pages for evictability, if an evictable page is in the unevictable
4794  * lru list, moves it to the appropriate evictable lru list. This function
4795  * should be only used for lru pages.
4796  */
4797 void check_move_unevictable_pages(struct pagevec *pvec)
4798 {
4799 	struct lruvec *lruvec = NULL;
4800 	int pgscanned = 0;
4801 	int pgrescued = 0;
4802 	int i;
4803 
4804 	for (i = 0; i < pvec->nr; i++) {
4805 		struct page *page = pvec->pages[i];
4806 		struct folio *folio = page_folio(page);
4807 		int nr_pages;
4808 
4809 		if (PageTransTail(page))
4810 			continue;
4811 
4812 		nr_pages = thp_nr_pages(page);
4813 		pgscanned += nr_pages;
4814 
4815 		/* block memcg migration during page moving between lru */
4816 		if (!TestClearPageLRU(page))
4817 			continue;
4818 
4819 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4820 		if (page_evictable(page) && PageUnevictable(page)) {
4821 			del_page_from_lru_list(page, lruvec);
4822 			ClearPageUnevictable(page);
4823 			add_page_to_lru_list(page, lruvec);
4824 			pgrescued += nr_pages;
4825 		}
4826 		SetPageLRU(page);
4827 	}
4828 
4829 	if (lruvec) {
4830 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4831 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4832 		unlock_page_lruvec_irq(lruvec);
4833 	} else if (pgscanned) {
4834 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4835 	}
4836 }
4837 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4838