1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 60 #include "internal.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/vmscan.h> 64 65 struct scan_control { 66 /* How many pages shrink_list() should reclaim */ 67 unsigned long nr_to_reclaim; 68 69 /* 70 * Nodemask of nodes allowed by the caller. If NULL, all nodes 71 * are scanned. 72 */ 73 nodemask_t *nodemask; 74 75 /* 76 * The memory cgroup that hit its limit and as a result is the 77 * primary target of this reclaim invocation. 78 */ 79 struct mem_cgroup *target_mem_cgroup; 80 81 /* 82 * Scan pressure balancing between anon and file LRUs 83 */ 84 unsigned long anon_cost; 85 unsigned long file_cost; 86 87 /* Can active pages be deactivated as part of reclaim? */ 88 #define DEACTIVATE_ANON 1 89 #define DEACTIVATE_FILE 2 90 unsigned int may_deactivate:2; 91 unsigned int force_deactivate:1; 92 unsigned int skipped_deactivate:1; 93 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 95 unsigned int may_writepage:1; 96 97 /* Can mapped pages be reclaimed? */ 98 unsigned int may_unmap:1; 99 100 /* Can pages be swapped as part of reclaim? */ 101 unsigned int may_swap:1; 102 103 /* 104 * Cgroup memory below memory.low is protected as long as we 105 * don't threaten to OOM. If any cgroup is reclaimed at 106 * reduced force or passed over entirely due to its memory.low 107 * setting (memcg_low_skipped), and nothing is reclaimed as a 108 * result, then go back for one more cycle that reclaims the protected 109 * memory (memcg_low_reclaim) to avert OOM. 110 */ 111 unsigned int memcg_low_reclaim:1; 112 unsigned int memcg_low_skipped:1; 113 114 unsigned int hibernation_mode:1; 115 116 /* One of the zones is ready for compaction */ 117 unsigned int compaction_ready:1; 118 119 /* There is easily reclaimable cold cache in the current node */ 120 unsigned int cache_trim_mode:1; 121 122 /* The file pages on the current node are dangerously low */ 123 unsigned int file_is_tiny:1; 124 125 /* Always discard instead of demoting to lower tier memory */ 126 unsigned int no_demotion:1; 127 128 /* Allocation order */ 129 s8 order; 130 131 /* Scan (total_size >> priority) pages at once */ 132 s8 priority; 133 134 /* The highest zone to isolate pages for reclaim from */ 135 s8 reclaim_idx; 136 137 /* This context's GFP mask */ 138 gfp_t gfp_mask; 139 140 /* Incremented by the number of inactive pages that were scanned */ 141 unsigned long nr_scanned; 142 143 /* Number of pages freed so far during a call to shrink_zones() */ 144 unsigned long nr_reclaimed; 145 146 struct { 147 unsigned int dirty; 148 unsigned int unqueued_dirty; 149 unsigned int congested; 150 unsigned int writeback; 151 unsigned int immediate; 152 unsigned int file_taken; 153 unsigned int taken; 154 } nr; 155 156 /* for recording the reclaimed slab by now */ 157 struct reclaim_state reclaim_state; 158 }; 159 160 #ifdef ARCH_HAS_PREFETCHW 161 #define prefetchw_prev_lru_page(_page, _base, _field) \ 162 do { \ 163 if ((_page)->lru.prev != _base) { \ 164 struct page *prev; \ 165 \ 166 prev = lru_to_page(&(_page->lru)); \ 167 prefetchw(&prev->_field); \ 168 } \ 169 } while (0) 170 #else 171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 172 #endif 173 174 /* 175 * From 0 .. 200. Higher means more swappy. 176 */ 177 int vm_swappiness = 60; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size) 218 { 219 struct shrinker_info *new, *old; 220 struct mem_cgroup_per_node *pn; 221 int nid; 222 int size = map_size + defer_size; 223 224 for_each_node(nid) { 225 pn = memcg->nodeinfo[nid]; 226 old = shrinker_info_protected(memcg, nid); 227 /* Not yet online memcg */ 228 if (!old) 229 return 0; 230 231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 232 if (!new) 233 return -ENOMEM; 234 235 new->nr_deferred = (atomic_long_t *)(new + 1); 236 new->map = (void *)new->nr_deferred + defer_size; 237 238 /* map: set all old bits, clear all new bits */ 239 memset(new->map, (int)0xff, old_map_size); 240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 241 /* nr_deferred: copy old values, clear all new values */ 242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 243 memset((void *)new->nr_deferred + old_defer_size, 0, 244 defer_size - old_defer_size); 245 246 rcu_assign_pointer(pn->shrinker_info, new); 247 kvfree_rcu(old, rcu); 248 } 249 250 return 0; 251 } 252 253 void free_shrinker_info(struct mem_cgroup *memcg) 254 { 255 struct mem_cgroup_per_node *pn; 256 struct shrinker_info *info; 257 int nid; 258 259 for_each_node(nid) { 260 pn = memcg->nodeinfo[nid]; 261 info = rcu_dereference_protected(pn->shrinker_info, true); 262 kvfree(info); 263 rcu_assign_pointer(pn->shrinker_info, NULL); 264 } 265 } 266 267 int alloc_shrinker_info(struct mem_cgroup *memcg) 268 { 269 struct shrinker_info *info; 270 int nid, size, ret = 0; 271 int map_size, defer_size = 0; 272 273 down_write(&shrinker_rwsem); 274 map_size = shrinker_map_size(shrinker_nr_max); 275 defer_size = shrinker_defer_size(shrinker_nr_max); 276 size = map_size + defer_size; 277 for_each_node(nid) { 278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 279 if (!info) { 280 free_shrinker_info(memcg); 281 ret = -ENOMEM; 282 break; 283 } 284 info->nr_deferred = (atomic_long_t *)(info + 1); 285 info->map = (void *)info->nr_deferred + defer_size; 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 287 } 288 up_write(&shrinker_rwsem); 289 290 return ret; 291 } 292 293 static inline bool need_expand(int nr_max) 294 { 295 return round_up(nr_max, BITS_PER_LONG) > 296 round_up(shrinker_nr_max, BITS_PER_LONG); 297 } 298 299 static int expand_shrinker_info(int new_id) 300 { 301 int ret = 0; 302 int new_nr_max = new_id + 1; 303 int map_size, defer_size = 0; 304 int old_map_size, old_defer_size = 0; 305 struct mem_cgroup *memcg; 306 307 if (!need_expand(new_nr_max)) 308 goto out; 309 310 if (!root_mem_cgroup) 311 goto out; 312 313 lockdep_assert_held(&shrinker_rwsem); 314 315 map_size = shrinker_map_size(new_nr_max); 316 defer_size = shrinker_defer_size(new_nr_max); 317 old_map_size = shrinker_map_size(shrinker_nr_max); 318 old_defer_size = shrinker_defer_size(shrinker_nr_max); 319 320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 321 do { 322 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 323 old_map_size, old_defer_size); 324 if (ret) { 325 mem_cgroup_iter_break(NULL, memcg); 326 goto out; 327 } 328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 329 out: 330 if (!ret) 331 shrinker_nr_max = new_nr_max; 332 333 return ret; 334 } 335 336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 337 { 338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 339 struct shrinker_info *info; 340 341 rcu_read_lock(); 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 rcu_read_unlock(); 347 } 348 } 349 350 static DEFINE_IDR(shrinker_idr); 351 352 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 353 { 354 int id, ret = -ENOMEM; 355 356 if (mem_cgroup_disabled()) 357 return -ENOSYS; 358 359 down_write(&shrinker_rwsem); 360 /* This may call shrinker, so it must use down_read_trylock() */ 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 362 if (id < 0) 363 goto unlock; 364 365 if (id >= shrinker_nr_max) { 366 if (expand_shrinker_info(id)) { 367 idr_remove(&shrinker_idr, id); 368 goto unlock; 369 } 370 } 371 shrinker->id = id; 372 ret = 0; 373 unlock: 374 up_write(&shrinker_rwsem); 375 return ret; 376 } 377 378 static void unregister_memcg_shrinker(struct shrinker *shrinker) 379 { 380 int id = shrinker->id; 381 382 BUG_ON(id < 0); 383 384 lockdep_assert_held(&shrinker_rwsem); 385 386 idr_remove(&shrinker_idr, id); 387 } 388 389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 390 struct mem_cgroup *memcg) 391 { 392 struct shrinker_info *info; 393 394 info = shrinker_info_protected(memcg, nid); 395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 396 } 397 398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 399 struct mem_cgroup *memcg) 400 { 401 struct shrinker_info *info; 402 403 info = shrinker_info_protected(memcg, nid); 404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 405 } 406 407 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 408 { 409 int i, nid; 410 long nr; 411 struct mem_cgroup *parent; 412 struct shrinker_info *child_info, *parent_info; 413 414 parent = parent_mem_cgroup(memcg); 415 if (!parent) 416 parent = root_mem_cgroup; 417 418 /* Prevent from concurrent shrinker_info expand */ 419 down_read(&shrinker_rwsem); 420 for_each_node(nid) { 421 child_info = shrinker_info_protected(memcg, nid); 422 parent_info = shrinker_info_protected(parent, nid); 423 for (i = 0; i < shrinker_nr_max; i++) { 424 nr = atomic_long_read(&child_info->nr_deferred[i]); 425 atomic_long_add(nr, &parent_info->nr_deferred[i]); 426 } 427 } 428 up_read(&shrinker_rwsem); 429 } 430 431 static bool cgroup_reclaim(struct scan_control *sc) 432 { 433 return sc->target_mem_cgroup; 434 } 435 436 /** 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 438 * @sc: scan_control in question 439 * 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is 441 * completely broken with the legacy memcg and direct stalling in 442 * shrink_page_list() is used for throttling instead, which lacks all the 443 * niceties such as fairness, adaptive pausing, bandwidth proportional 444 * allocation and configurability. 445 * 446 * This function tests whether the vmscan currently in progress can assume 447 * that the normal dirty throttling mechanism is operational. 448 */ 449 static bool writeback_throttling_sane(struct scan_control *sc) 450 { 451 if (!cgroup_reclaim(sc)) 452 return true; 453 #ifdef CONFIG_CGROUP_WRITEBACK 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 455 return true; 456 #endif 457 return false; 458 } 459 #else 460 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 461 { 462 return -ENOSYS; 463 } 464 465 static void unregister_memcg_shrinker(struct shrinker *shrinker) 466 { 467 } 468 469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 470 struct mem_cgroup *memcg) 471 { 472 return 0; 473 } 474 475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static bool cgroup_reclaim(struct scan_control *sc) 482 { 483 return false; 484 } 485 486 static bool writeback_throttling_sane(struct scan_control *sc) 487 { 488 return true; 489 } 490 #endif 491 492 static long xchg_nr_deferred(struct shrinker *shrinker, 493 struct shrink_control *sc) 494 { 495 int nid = sc->nid; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 nid = 0; 499 500 if (sc->memcg && 501 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 502 return xchg_nr_deferred_memcg(nid, shrinker, 503 sc->memcg); 504 505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 506 } 507 508 509 static long add_nr_deferred(long nr, struct shrinker *shrinker, 510 struct shrink_control *sc) 511 { 512 int nid = sc->nid; 513 514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 515 nid = 0; 516 517 if (sc->memcg && 518 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 519 return add_nr_deferred_memcg(nr, nid, shrinker, 520 sc->memcg); 521 522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 523 } 524 525 static bool can_demote(int nid, struct scan_control *sc) 526 { 527 if (!numa_demotion_enabled) 528 return false; 529 if (sc) { 530 if (sc->no_demotion) 531 return false; 532 /* It is pointless to do demotion in memcg reclaim */ 533 if (cgroup_reclaim(sc)) 534 return false; 535 } 536 if (next_demotion_node(nid) == NUMA_NO_NODE) 537 return false; 538 539 return true; 540 } 541 542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 543 int nid, 544 struct scan_control *sc) 545 { 546 if (memcg == NULL) { 547 /* 548 * For non-memcg reclaim, is there 549 * space in any swap device? 550 */ 551 if (get_nr_swap_pages() > 0) 552 return true; 553 } else { 554 /* Is the memcg below its swap limit? */ 555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 556 return true; 557 } 558 559 /* 560 * The page can not be swapped. 561 * 562 * Can it be reclaimed from this node via demotion? 563 */ 564 return can_demote(nid, sc); 565 } 566 567 /* 568 * This misses isolated pages which are not accounted for to save counters. 569 * As the data only determines if reclaim or compaction continues, it is 570 * not expected that isolated pages will be a dominating factor. 571 */ 572 unsigned long zone_reclaimable_pages(struct zone *zone) 573 { 574 unsigned long nr; 575 576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 581 582 return nr; 583 } 584 585 /** 586 * lruvec_lru_size - Returns the number of pages on the given LRU list. 587 * @lruvec: lru vector 588 * @lru: lru to use 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 590 */ 591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 592 int zone_idx) 593 { 594 unsigned long size = 0; 595 int zid; 596 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 599 600 if (!managed_zone(zone)) 601 continue; 602 603 if (!mem_cgroup_disabled()) 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 605 else 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 607 } 608 return size; 609 } 610 611 /* 612 * Add a shrinker callback to be called from the vm. 613 */ 614 int prealloc_shrinker(struct shrinker *shrinker) 615 { 616 unsigned int size; 617 int err; 618 619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 620 err = prealloc_memcg_shrinker(shrinker); 621 if (err != -ENOSYS) 622 return err; 623 624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 625 } 626 627 size = sizeof(*shrinker->nr_deferred); 628 if (shrinker->flags & SHRINKER_NUMA_AWARE) 629 size *= nr_node_ids; 630 631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 632 if (!shrinker->nr_deferred) 633 return -ENOMEM; 634 635 return 0; 636 } 637 638 void free_prealloced_shrinker(struct shrinker *shrinker) 639 { 640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 641 down_write(&shrinker_rwsem); 642 unregister_memcg_shrinker(shrinker); 643 up_write(&shrinker_rwsem); 644 return; 645 } 646 647 kfree(shrinker->nr_deferred); 648 shrinker->nr_deferred = NULL; 649 } 650 651 void register_shrinker_prepared(struct shrinker *shrinker) 652 { 653 down_write(&shrinker_rwsem); 654 list_add_tail(&shrinker->list, &shrinker_list); 655 shrinker->flags |= SHRINKER_REGISTERED; 656 up_write(&shrinker_rwsem); 657 } 658 659 int register_shrinker(struct shrinker *shrinker) 660 { 661 int err = prealloc_shrinker(shrinker); 662 663 if (err) 664 return err; 665 register_shrinker_prepared(shrinker); 666 return 0; 667 } 668 EXPORT_SYMBOL(register_shrinker); 669 670 /* 671 * Remove one 672 */ 673 void unregister_shrinker(struct shrinker *shrinker) 674 { 675 if (!(shrinker->flags & SHRINKER_REGISTERED)) 676 return; 677 678 down_write(&shrinker_rwsem); 679 list_del(&shrinker->list); 680 shrinker->flags &= ~SHRINKER_REGISTERED; 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 682 unregister_memcg_shrinker(shrinker); 683 up_write(&shrinker_rwsem); 684 685 kfree(shrinker->nr_deferred); 686 shrinker->nr_deferred = NULL; 687 } 688 EXPORT_SYMBOL(unregister_shrinker); 689 690 /** 691 * synchronize_shrinkers - Wait for all running shrinkers to complete. 692 * 693 * This is equivalent to calling unregister_shrink() and register_shrinker(), 694 * but atomically and with less overhead. This is useful to guarantee that all 695 * shrinker invocations have seen an update, before freeing memory, similar to 696 * rcu. 697 */ 698 void synchronize_shrinkers(void) 699 { 700 down_write(&shrinker_rwsem); 701 up_write(&shrinker_rwsem); 702 } 703 EXPORT_SYMBOL(synchronize_shrinkers); 704 705 #define SHRINK_BATCH 128 706 707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 708 struct shrinker *shrinker, int priority) 709 { 710 unsigned long freed = 0; 711 unsigned long long delta; 712 long total_scan; 713 long freeable; 714 long nr; 715 long new_nr; 716 long batch_size = shrinker->batch ? shrinker->batch 717 : SHRINK_BATCH; 718 long scanned = 0, next_deferred; 719 720 freeable = shrinker->count_objects(shrinker, shrinkctl); 721 if (freeable == 0 || freeable == SHRINK_EMPTY) 722 return freeable; 723 724 /* 725 * copy the current shrinker scan count into a local variable 726 * and zero it so that other concurrent shrinker invocations 727 * don't also do this scanning work. 728 */ 729 nr = xchg_nr_deferred(shrinker, shrinkctl); 730 731 if (shrinker->seeks) { 732 delta = freeable >> priority; 733 delta *= 4; 734 do_div(delta, shrinker->seeks); 735 } else { 736 /* 737 * These objects don't require any IO to create. Trim 738 * them aggressively under memory pressure to keep 739 * them from causing refetches in the IO caches. 740 */ 741 delta = freeable / 2; 742 } 743 744 total_scan = nr >> priority; 745 total_scan += delta; 746 total_scan = min(total_scan, (2 * freeable)); 747 748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 749 freeable, delta, total_scan, priority); 750 751 /* 752 * Normally, we should not scan less than batch_size objects in one 753 * pass to avoid too frequent shrinker calls, but if the slab has less 754 * than batch_size objects in total and we are really tight on memory, 755 * we will try to reclaim all available objects, otherwise we can end 756 * up failing allocations although there are plenty of reclaimable 757 * objects spread over several slabs with usage less than the 758 * batch_size. 759 * 760 * We detect the "tight on memory" situations by looking at the total 761 * number of objects we want to scan (total_scan). If it is greater 762 * than the total number of objects on slab (freeable), we must be 763 * scanning at high prio and therefore should try to reclaim as much as 764 * possible. 765 */ 766 while (total_scan >= batch_size || 767 total_scan >= freeable) { 768 unsigned long ret; 769 unsigned long nr_to_scan = min(batch_size, total_scan); 770 771 shrinkctl->nr_to_scan = nr_to_scan; 772 shrinkctl->nr_scanned = nr_to_scan; 773 ret = shrinker->scan_objects(shrinker, shrinkctl); 774 if (ret == SHRINK_STOP) 775 break; 776 freed += ret; 777 778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 779 total_scan -= shrinkctl->nr_scanned; 780 scanned += shrinkctl->nr_scanned; 781 782 cond_resched(); 783 } 784 785 /* 786 * The deferred work is increased by any new work (delta) that wasn't 787 * done, decreased by old deferred work that was done now. 788 * 789 * And it is capped to two times of the freeable items. 790 */ 791 next_deferred = max_t(long, (nr + delta - scanned), 0); 792 next_deferred = min(next_deferred, (2 * freeable)); 793 794 /* 795 * move the unused scan count back into the shrinker in a 796 * manner that handles concurrent updates. 797 */ 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 799 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 801 return freed; 802 } 803 804 #ifdef CONFIG_MEMCG 805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 806 struct mem_cgroup *memcg, int priority) 807 { 808 struct shrinker_info *info; 809 unsigned long ret, freed = 0; 810 int i; 811 812 if (!mem_cgroup_online(memcg)) 813 return 0; 814 815 if (!down_read_trylock(&shrinker_rwsem)) 816 return 0; 817 818 info = shrinker_info_protected(memcg, nid); 819 if (unlikely(!info)) 820 goto unlock; 821 822 for_each_set_bit(i, info->map, shrinker_nr_max) { 823 struct shrink_control sc = { 824 .gfp_mask = gfp_mask, 825 .nid = nid, 826 .memcg = memcg, 827 }; 828 struct shrinker *shrinker; 829 830 shrinker = idr_find(&shrinker_idr, i); 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 832 if (!shrinker) 833 clear_bit(i, info->map); 834 continue; 835 } 836 837 /* Call non-slab shrinkers even though kmem is disabled */ 838 if (!memcg_kmem_enabled() && 839 !(shrinker->flags & SHRINKER_NONSLAB)) 840 continue; 841 842 ret = do_shrink_slab(&sc, shrinker, priority); 843 if (ret == SHRINK_EMPTY) { 844 clear_bit(i, info->map); 845 /* 846 * After the shrinker reported that it had no objects to 847 * free, but before we cleared the corresponding bit in 848 * the memcg shrinker map, a new object might have been 849 * added. To make sure, we have the bit set in this 850 * case, we invoke the shrinker one more time and reset 851 * the bit if it reports that it is not empty anymore. 852 * The memory barrier here pairs with the barrier in 853 * set_shrinker_bit(): 854 * 855 * list_lru_add() shrink_slab_memcg() 856 * list_add_tail() clear_bit() 857 * <MB> <MB> 858 * set_bit() do_shrink_slab() 859 */ 860 smp_mb__after_atomic(); 861 ret = do_shrink_slab(&sc, shrinker, priority); 862 if (ret == SHRINK_EMPTY) 863 ret = 0; 864 else 865 set_shrinker_bit(memcg, nid, i); 866 } 867 freed += ret; 868 869 if (rwsem_is_contended(&shrinker_rwsem)) { 870 freed = freed ? : 1; 871 break; 872 } 873 } 874 unlock: 875 up_read(&shrinker_rwsem); 876 return freed; 877 } 878 #else /* CONFIG_MEMCG */ 879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 880 struct mem_cgroup *memcg, int priority) 881 { 882 return 0; 883 } 884 #endif /* CONFIG_MEMCG */ 885 886 /** 887 * shrink_slab - shrink slab caches 888 * @gfp_mask: allocation context 889 * @nid: node whose slab caches to target 890 * @memcg: memory cgroup whose slab caches to target 891 * @priority: the reclaim priority 892 * 893 * Call the shrink functions to age shrinkable caches. 894 * 895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 896 * unaware shrinkers will receive a node id of 0 instead. 897 * 898 * @memcg specifies the memory cgroup to target. Unaware shrinkers 899 * are called only if it is the root cgroup. 900 * 901 * @priority is sc->priority, we take the number of objects and >> by priority 902 * in order to get the scan target. 903 * 904 * Returns the number of reclaimed slab objects. 905 */ 906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 907 struct mem_cgroup *memcg, 908 int priority) 909 { 910 unsigned long ret, freed = 0; 911 struct shrinker *shrinker; 912 913 /* 914 * The root memcg might be allocated even though memcg is disabled 915 * via "cgroup_disable=memory" boot parameter. This could make 916 * mem_cgroup_is_root() return false, then just run memcg slab 917 * shrink, but skip global shrink. This may result in premature 918 * oom. 919 */ 920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 922 923 if (!down_read_trylock(&shrinker_rwsem)) 924 goto out; 925 926 list_for_each_entry(shrinker, &shrinker_list, list) { 927 struct shrink_control sc = { 928 .gfp_mask = gfp_mask, 929 .nid = nid, 930 .memcg = memcg, 931 }; 932 933 ret = do_shrink_slab(&sc, shrinker, priority); 934 if (ret == SHRINK_EMPTY) 935 ret = 0; 936 freed += ret; 937 /* 938 * Bail out if someone want to register a new shrinker to 939 * prevent the registration from being stalled for long periods 940 * by parallel ongoing shrinking. 941 */ 942 if (rwsem_is_contended(&shrinker_rwsem)) { 943 freed = freed ? : 1; 944 break; 945 } 946 } 947 948 up_read(&shrinker_rwsem); 949 out: 950 cond_resched(); 951 return freed; 952 } 953 954 void drop_slab_node(int nid) 955 { 956 unsigned long freed; 957 int shift = 0; 958 959 do { 960 struct mem_cgroup *memcg = NULL; 961 962 if (fatal_signal_pending(current)) 963 return; 964 965 freed = 0; 966 memcg = mem_cgroup_iter(NULL, NULL, NULL); 967 do { 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 970 } while ((freed >> shift++) > 1); 971 } 972 973 void drop_slab(void) 974 { 975 int nid; 976 977 for_each_online_node(nid) 978 drop_slab_node(nid); 979 } 980 981 static inline int is_page_cache_freeable(struct page *page) 982 { 983 /* 984 * A freeable page cache page is referenced only by the caller 985 * that isolated the page, the page cache and optional buffer 986 * heads at page->private. 987 */ 988 int page_cache_pins = thp_nr_pages(page); 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 990 } 991 992 static int may_write_to_inode(struct inode *inode) 993 { 994 if (current->flags & PF_SWAPWRITE) 995 return 1; 996 if (!inode_write_congested(inode)) 997 return 1; 998 if (inode_to_bdi(inode) == current->backing_dev_info) 999 return 1; 1000 return 0; 1001 } 1002 1003 /* 1004 * We detected a synchronous write error writing a page out. Probably 1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1006 * fsync(), msync() or close(). 1007 * 1008 * The tricky part is that after writepage we cannot touch the mapping: nothing 1009 * prevents it from being freed up. But we have a ref on the page and once 1010 * that page is locked, the mapping is pinned. 1011 * 1012 * We're allowed to run sleeping lock_page() here because we know the caller has 1013 * __GFP_FS. 1014 */ 1015 static void handle_write_error(struct address_space *mapping, 1016 struct page *page, int error) 1017 { 1018 lock_page(page); 1019 if (page_mapping(page) == mapping) 1020 mapping_set_error(mapping, error); 1021 unlock_page(page); 1022 } 1023 1024 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1025 { 1026 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1027 long timeout, ret; 1028 DEFINE_WAIT(wait); 1029 1030 /* 1031 * Do not throttle IO workers, kthreads other than kswapd or 1032 * workqueues. They may be required for reclaim to make 1033 * forward progress (e.g. journalling workqueues or kthreads). 1034 */ 1035 if (!current_is_kswapd() && 1036 current->flags & (PF_IO_WORKER|PF_KTHREAD)) 1037 return; 1038 1039 /* 1040 * These figures are pulled out of thin air. 1041 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1042 * parallel reclaimers which is a short-lived event so the timeout is 1043 * short. Failing to make progress or waiting on writeback are 1044 * potentially long-lived events so use a longer timeout. This is shaky 1045 * logic as a failure to make progress could be due to anything from 1046 * writeback to a slow device to excessive references pages at the tail 1047 * of the inactive LRU. 1048 */ 1049 switch(reason) { 1050 case VMSCAN_THROTTLE_WRITEBACK: 1051 timeout = HZ/10; 1052 1053 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1054 WRITE_ONCE(pgdat->nr_reclaim_start, 1055 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1056 } 1057 1058 break; 1059 case VMSCAN_THROTTLE_NOPROGRESS: 1060 timeout = HZ/2; 1061 break; 1062 case VMSCAN_THROTTLE_ISOLATED: 1063 timeout = HZ/50; 1064 break; 1065 default: 1066 WARN_ON_ONCE(1); 1067 timeout = HZ; 1068 break; 1069 } 1070 1071 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1072 ret = schedule_timeout(timeout); 1073 finish_wait(wqh, &wait); 1074 1075 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1076 atomic_dec(&pgdat->nr_writeback_throttled); 1077 1078 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1079 jiffies_to_usecs(timeout - ret), 1080 reason); 1081 } 1082 1083 /* 1084 * Account for pages written if tasks are throttled waiting on dirty 1085 * pages to clean. If enough pages have been cleaned since throttling 1086 * started then wakeup the throttled tasks. 1087 */ 1088 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1089 int nr_throttled) 1090 { 1091 unsigned long nr_written; 1092 1093 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1094 1095 /* 1096 * This is an inaccurate read as the per-cpu deltas may not 1097 * be synchronised. However, given that the system is 1098 * writeback throttled, it is not worth taking the penalty 1099 * of getting an accurate count. At worst, the throttle 1100 * timeout guarantees forward progress. 1101 */ 1102 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1103 READ_ONCE(pgdat->nr_reclaim_start); 1104 1105 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1106 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1107 } 1108 1109 /* possible outcome of pageout() */ 1110 typedef enum { 1111 /* failed to write page out, page is locked */ 1112 PAGE_KEEP, 1113 /* move page to the active list, page is locked */ 1114 PAGE_ACTIVATE, 1115 /* page has been sent to the disk successfully, page is unlocked */ 1116 PAGE_SUCCESS, 1117 /* page is clean and locked */ 1118 PAGE_CLEAN, 1119 } pageout_t; 1120 1121 /* 1122 * pageout is called by shrink_page_list() for each dirty page. 1123 * Calls ->writepage(). 1124 */ 1125 static pageout_t pageout(struct page *page, struct address_space *mapping) 1126 { 1127 /* 1128 * If the page is dirty, only perform writeback if that write 1129 * will be non-blocking. To prevent this allocation from being 1130 * stalled by pagecache activity. But note that there may be 1131 * stalls if we need to run get_block(). We could test 1132 * PagePrivate for that. 1133 * 1134 * If this process is currently in __generic_file_write_iter() against 1135 * this page's queue, we can perform writeback even if that 1136 * will block. 1137 * 1138 * If the page is swapcache, write it back even if that would 1139 * block, for some throttling. This happens by accident, because 1140 * swap_backing_dev_info is bust: it doesn't reflect the 1141 * congestion state of the swapdevs. Easy to fix, if needed. 1142 */ 1143 if (!is_page_cache_freeable(page)) 1144 return PAGE_KEEP; 1145 if (!mapping) { 1146 /* 1147 * Some data journaling orphaned pages can have 1148 * page->mapping == NULL while being dirty with clean buffers. 1149 */ 1150 if (page_has_private(page)) { 1151 if (try_to_free_buffers(page)) { 1152 ClearPageDirty(page); 1153 pr_info("%s: orphaned page\n", __func__); 1154 return PAGE_CLEAN; 1155 } 1156 } 1157 return PAGE_KEEP; 1158 } 1159 if (mapping->a_ops->writepage == NULL) 1160 return PAGE_ACTIVATE; 1161 if (!may_write_to_inode(mapping->host)) 1162 return PAGE_KEEP; 1163 1164 if (clear_page_dirty_for_io(page)) { 1165 int res; 1166 struct writeback_control wbc = { 1167 .sync_mode = WB_SYNC_NONE, 1168 .nr_to_write = SWAP_CLUSTER_MAX, 1169 .range_start = 0, 1170 .range_end = LLONG_MAX, 1171 .for_reclaim = 1, 1172 }; 1173 1174 SetPageReclaim(page); 1175 res = mapping->a_ops->writepage(page, &wbc); 1176 if (res < 0) 1177 handle_write_error(mapping, page, res); 1178 if (res == AOP_WRITEPAGE_ACTIVATE) { 1179 ClearPageReclaim(page); 1180 return PAGE_ACTIVATE; 1181 } 1182 1183 if (!PageWriteback(page)) { 1184 /* synchronous write or broken a_ops? */ 1185 ClearPageReclaim(page); 1186 } 1187 trace_mm_vmscan_writepage(page); 1188 inc_node_page_state(page, NR_VMSCAN_WRITE); 1189 return PAGE_SUCCESS; 1190 } 1191 1192 return PAGE_CLEAN; 1193 } 1194 1195 /* 1196 * Same as remove_mapping, but if the page is removed from the mapping, it 1197 * gets returned with a refcount of 0. 1198 */ 1199 static int __remove_mapping(struct address_space *mapping, struct page *page, 1200 bool reclaimed, struct mem_cgroup *target_memcg) 1201 { 1202 int refcount; 1203 void *shadow = NULL; 1204 1205 BUG_ON(!PageLocked(page)); 1206 BUG_ON(mapping != page_mapping(page)); 1207 1208 xa_lock_irq(&mapping->i_pages); 1209 /* 1210 * The non racy check for a busy page. 1211 * 1212 * Must be careful with the order of the tests. When someone has 1213 * a ref to the page, it may be possible that they dirty it then 1214 * drop the reference. So if PageDirty is tested before page_count 1215 * here, then the following race may occur: 1216 * 1217 * get_user_pages(&page); 1218 * [user mapping goes away] 1219 * write_to(page); 1220 * !PageDirty(page) [good] 1221 * SetPageDirty(page); 1222 * put_page(page); 1223 * !page_count(page) [good, discard it] 1224 * 1225 * [oops, our write_to data is lost] 1226 * 1227 * Reversing the order of the tests ensures such a situation cannot 1228 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1229 * load is not satisfied before that of page->_refcount. 1230 * 1231 * Note that if SetPageDirty is always performed via set_page_dirty, 1232 * and thus under the i_pages lock, then this ordering is not required. 1233 */ 1234 refcount = 1 + compound_nr(page); 1235 if (!page_ref_freeze(page, refcount)) 1236 goto cannot_free; 1237 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1238 if (unlikely(PageDirty(page))) { 1239 page_ref_unfreeze(page, refcount); 1240 goto cannot_free; 1241 } 1242 1243 if (PageSwapCache(page)) { 1244 swp_entry_t swap = { .val = page_private(page) }; 1245 mem_cgroup_swapout(page, swap); 1246 if (reclaimed && !mapping_exiting(mapping)) 1247 shadow = workingset_eviction(page, target_memcg); 1248 __delete_from_swap_cache(page, swap, shadow); 1249 xa_unlock_irq(&mapping->i_pages); 1250 put_swap_page(page, swap); 1251 } else { 1252 void (*freepage)(struct page *); 1253 1254 freepage = mapping->a_ops->freepage; 1255 /* 1256 * Remember a shadow entry for reclaimed file cache in 1257 * order to detect refaults, thus thrashing, later on. 1258 * 1259 * But don't store shadows in an address space that is 1260 * already exiting. This is not just an optimization, 1261 * inode reclaim needs to empty out the radix tree or 1262 * the nodes are lost. Don't plant shadows behind its 1263 * back. 1264 * 1265 * We also don't store shadows for DAX mappings because the 1266 * only page cache pages found in these are zero pages 1267 * covering holes, and because we don't want to mix DAX 1268 * exceptional entries and shadow exceptional entries in the 1269 * same address_space. 1270 */ 1271 if (reclaimed && page_is_file_lru(page) && 1272 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1273 shadow = workingset_eviction(page, target_memcg); 1274 __delete_from_page_cache(page, shadow); 1275 xa_unlock_irq(&mapping->i_pages); 1276 1277 if (freepage != NULL) 1278 freepage(page); 1279 } 1280 1281 return 1; 1282 1283 cannot_free: 1284 xa_unlock_irq(&mapping->i_pages); 1285 return 0; 1286 } 1287 1288 /* 1289 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1290 * someone else has a ref on the page, abort and return 0. If it was 1291 * successfully detached, return 1. Assumes the caller has a single ref on 1292 * this page. 1293 */ 1294 int remove_mapping(struct address_space *mapping, struct page *page) 1295 { 1296 if (__remove_mapping(mapping, page, false, NULL)) { 1297 /* 1298 * Unfreezing the refcount with 1 rather than 2 effectively 1299 * drops the pagecache ref for us without requiring another 1300 * atomic operation. 1301 */ 1302 page_ref_unfreeze(page, 1); 1303 return 1; 1304 } 1305 return 0; 1306 } 1307 1308 /** 1309 * putback_lru_page - put previously isolated page onto appropriate LRU list 1310 * @page: page to be put back to appropriate lru list 1311 * 1312 * Add previously isolated @page to appropriate LRU list. 1313 * Page may still be unevictable for other reasons. 1314 * 1315 * lru_lock must not be held, interrupts must be enabled. 1316 */ 1317 void putback_lru_page(struct page *page) 1318 { 1319 lru_cache_add(page); 1320 put_page(page); /* drop ref from isolate */ 1321 } 1322 1323 enum page_references { 1324 PAGEREF_RECLAIM, 1325 PAGEREF_RECLAIM_CLEAN, 1326 PAGEREF_KEEP, 1327 PAGEREF_ACTIVATE, 1328 }; 1329 1330 static enum page_references page_check_references(struct page *page, 1331 struct scan_control *sc) 1332 { 1333 int referenced_ptes, referenced_page; 1334 unsigned long vm_flags; 1335 1336 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1337 &vm_flags); 1338 referenced_page = TestClearPageReferenced(page); 1339 1340 /* 1341 * Mlock lost the isolation race with us. Let try_to_unmap() 1342 * move the page to the unevictable list. 1343 */ 1344 if (vm_flags & VM_LOCKED) 1345 return PAGEREF_RECLAIM; 1346 1347 if (referenced_ptes) { 1348 /* 1349 * All mapped pages start out with page table 1350 * references from the instantiating fault, so we need 1351 * to look twice if a mapped file page is used more 1352 * than once. 1353 * 1354 * Mark it and spare it for another trip around the 1355 * inactive list. Another page table reference will 1356 * lead to its activation. 1357 * 1358 * Note: the mark is set for activated pages as well 1359 * so that recently deactivated but used pages are 1360 * quickly recovered. 1361 */ 1362 SetPageReferenced(page); 1363 1364 if (referenced_page || referenced_ptes > 1) 1365 return PAGEREF_ACTIVATE; 1366 1367 /* 1368 * Activate file-backed executable pages after first usage. 1369 */ 1370 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1371 return PAGEREF_ACTIVATE; 1372 1373 return PAGEREF_KEEP; 1374 } 1375 1376 /* Reclaim if clean, defer dirty pages to writeback */ 1377 if (referenced_page && !PageSwapBacked(page)) 1378 return PAGEREF_RECLAIM_CLEAN; 1379 1380 return PAGEREF_RECLAIM; 1381 } 1382 1383 /* Check if a page is dirty or under writeback */ 1384 static void page_check_dirty_writeback(struct page *page, 1385 bool *dirty, bool *writeback) 1386 { 1387 struct address_space *mapping; 1388 1389 /* 1390 * Anonymous pages are not handled by flushers and must be written 1391 * from reclaim context. Do not stall reclaim based on them 1392 */ 1393 if (!page_is_file_lru(page) || 1394 (PageAnon(page) && !PageSwapBacked(page))) { 1395 *dirty = false; 1396 *writeback = false; 1397 return; 1398 } 1399 1400 /* By default assume that the page flags are accurate */ 1401 *dirty = PageDirty(page); 1402 *writeback = PageWriteback(page); 1403 1404 /* Verify dirty/writeback state if the filesystem supports it */ 1405 if (!page_has_private(page)) 1406 return; 1407 1408 mapping = page_mapping(page); 1409 if (mapping && mapping->a_ops->is_dirty_writeback) 1410 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1411 } 1412 1413 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1414 { 1415 struct migration_target_control mtc = { 1416 /* 1417 * Allocate from 'node', or fail quickly and quietly. 1418 * When this happens, 'page' will likely just be discarded 1419 * instead of migrated. 1420 */ 1421 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1422 __GFP_THISNODE | __GFP_NOWARN | 1423 __GFP_NOMEMALLOC | GFP_NOWAIT, 1424 .nid = node 1425 }; 1426 1427 return alloc_migration_target(page, (unsigned long)&mtc); 1428 } 1429 1430 /* 1431 * Take pages on @demote_list and attempt to demote them to 1432 * another node. Pages which are not demoted are left on 1433 * @demote_pages. 1434 */ 1435 static unsigned int demote_page_list(struct list_head *demote_pages, 1436 struct pglist_data *pgdat) 1437 { 1438 int target_nid = next_demotion_node(pgdat->node_id); 1439 unsigned int nr_succeeded; 1440 1441 if (list_empty(demote_pages)) 1442 return 0; 1443 1444 if (target_nid == NUMA_NO_NODE) 1445 return 0; 1446 1447 /* Demotion ignores all cpuset and mempolicy settings */ 1448 migrate_pages(demote_pages, alloc_demote_page, NULL, 1449 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1450 &nr_succeeded); 1451 1452 if (current_is_kswapd()) 1453 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1454 else 1455 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1456 1457 return nr_succeeded; 1458 } 1459 1460 /* 1461 * shrink_page_list() returns the number of reclaimed pages 1462 */ 1463 static unsigned int shrink_page_list(struct list_head *page_list, 1464 struct pglist_data *pgdat, 1465 struct scan_control *sc, 1466 struct reclaim_stat *stat, 1467 bool ignore_references) 1468 { 1469 LIST_HEAD(ret_pages); 1470 LIST_HEAD(free_pages); 1471 LIST_HEAD(demote_pages); 1472 unsigned int nr_reclaimed = 0; 1473 unsigned int pgactivate = 0; 1474 bool do_demote_pass; 1475 1476 memset(stat, 0, sizeof(*stat)); 1477 cond_resched(); 1478 do_demote_pass = can_demote(pgdat->node_id, sc); 1479 1480 retry: 1481 while (!list_empty(page_list)) { 1482 struct address_space *mapping; 1483 struct page *page; 1484 enum page_references references = PAGEREF_RECLAIM; 1485 bool dirty, writeback, may_enter_fs; 1486 unsigned int nr_pages; 1487 1488 cond_resched(); 1489 1490 page = lru_to_page(page_list); 1491 list_del(&page->lru); 1492 1493 if (!trylock_page(page)) 1494 goto keep; 1495 1496 VM_BUG_ON_PAGE(PageActive(page), page); 1497 1498 nr_pages = compound_nr(page); 1499 1500 /* Account the number of base pages even though THP */ 1501 sc->nr_scanned += nr_pages; 1502 1503 if (unlikely(!page_evictable(page))) 1504 goto activate_locked; 1505 1506 if (!sc->may_unmap && page_mapped(page)) 1507 goto keep_locked; 1508 1509 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1510 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1511 1512 /* 1513 * The number of dirty pages determines if a node is marked 1514 * reclaim_congested. kswapd will stall and start writing 1515 * pages if the tail of the LRU is all dirty unqueued pages. 1516 */ 1517 page_check_dirty_writeback(page, &dirty, &writeback); 1518 if (dirty || writeback) 1519 stat->nr_dirty++; 1520 1521 if (dirty && !writeback) 1522 stat->nr_unqueued_dirty++; 1523 1524 /* 1525 * Treat this page as congested if the underlying BDI is or if 1526 * pages are cycling through the LRU so quickly that the 1527 * pages marked for immediate reclaim are making it to the 1528 * end of the LRU a second time. 1529 */ 1530 mapping = page_mapping(page); 1531 if (((dirty || writeback) && mapping && 1532 inode_write_congested(mapping->host)) || 1533 (writeback && PageReclaim(page))) 1534 stat->nr_congested++; 1535 1536 /* 1537 * If a page at the tail of the LRU is under writeback, there 1538 * are three cases to consider. 1539 * 1540 * 1) If reclaim is encountering an excessive number of pages 1541 * under writeback and this page is both under writeback and 1542 * PageReclaim then it indicates that pages are being queued 1543 * for IO but are being recycled through the LRU before the 1544 * IO can complete. Waiting on the page itself risks an 1545 * indefinite stall if it is impossible to writeback the 1546 * page due to IO error or disconnected storage so instead 1547 * note that the LRU is being scanned too quickly and the 1548 * caller can stall after page list has been processed. 1549 * 1550 * 2) Global or new memcg reclaim encounters a page that is 1551 * not marked for immediate reclaim, or the caller does not 1552 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1553 * not to fs). In this case mark the page for immediate 1554 * reclaim and continue scanning. 1555 * 1556 * Require may_enter_fs because we would wait on fs, which 1557 * may not have submitted IO yet. And the loop driver might 1558 * enter reclaim, and deadlock if it waits on a page for 1559 * which it is needed to do the write (loop masks off 1560 * __GFP_IO|__GFP_FS for this reason); but more thought 1561 * would probably show more reasons. 1562 * 1563 * 3) Legacy memcg encounters a page that is already marked 1564 * PageReclaim. memcg does not have any dirty pages 1565 * throttling so we could easily OOM just because too many 1566 * pages are in writeback and there is nothing else to 1567 * reclaim. Wait for the writeback to complete. 1568 * 1569 * In cases 1) and 2) we activate the pages to get them out of 1570 * the way while we continue scanning for clean pages on the 1571 * inactive list and refilling from the active list. The 1572 * observation here is that waiting for disk writes is more 1573 * expensive than potentially causing reloads down the line. 1574 * Since they're marked for immediate reclaim, they won't put 1575 * memory pressure on the cache working set any longer than it 1576 * takes to write them to disk. 1577 */ 1578 if (PageWriteback(page)) { 1579 /* Case 1 above */ 1580 if (current_is_kswapd() && 1581 PageReclaim(page) && 1582 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1583 stat->nr_immediate++; 1584 goto activate_locked; 1585 1586 /* Case 2 above */ 1587 } else if (writeback_throttling_sane(sc) || 1588 !PageReclaim(page) || !may_enter_fs) { 1589 /* 1590 * This is slightly racy - end_page_writeback() 1591 * might have just cleared PageReclaim, then 1592 * setting PageReclaim here end up interpreted 1593 * as PageReadahead - but that does not matter 1594 * enough to care. What we do want is for this 1595 * page to have PageReclaim set next time memcg 1596 * reclaim reaches the tests above, so it will 1597 * then wait_on_page_writeback() to avoid OOM; 1598 * and it's also appropriate in global reclaim. 1599 */ 1600 SetPageReclaim(page); 1601 stat->nr_writeback++; 1602 goto activate_locked; 1603 1604 /* Case 3 above */ 1605 } else { 1606 unlock_page(page); 1607 wait_on_page_writeback(page); 1608 /* then go back and try same page again */ 1609 list_add_tail(&page->lru, page_list); 1610 continue; 1611 } 1612 } 1613 1614 if (!ignore_references) 1615 references = page_check_references(page, sc); 1616 1617 switch (references) { 1618 case PAGEREF_ACTIVATE: 1619 goto activate_locked; 1620 case PAGEREF_KEEP: 1621 stat->nr_ref_keep += nr_pages; 1622 goto keep_locked; 1623 case PAGEREF_RECLAIM: 1624 case PAGEREF_RECLAIM_CLEAN: 1625 ; /* try to reclaim the page below */ 1626 } 1627 1628 /* 1629 * Before reclaiming the page, try to relocate 1630 * its contents to another node. 1631 */ 1632 if (do_demote_pass && 1633 (thp_migration_supported() || !PageTransHuge(page))) { 1634 list_add(&page->lru, &demote_pages); 1635 unlock_page(page); 1636 continue; 1637 } 1638 1639 /* 1640 * Anonymous process memory has backing store? 1641 * Try to allocate it some swap space here. 1642 * Lazyfree page could be freed directly 1643 */ 1644 if (PageAnon(page) && PageSwapBacked(page)) { 1645 if (!PageSwapCache(page)) { 1646 if (!(sc->gfp_mask & __GFP_IO)) 1647 goto keep_locked; 1648 if (page_maybe_dma_pinned(page)) 1649 goto keep_locked; 1650 if (PageTransHuge(page)) { 1651 /* cannot split THP, skip it */ 1652 if (!can_split_huge_page(page, NULL)) 1653 goto activate_locked; 1654 /* 1655 * Split pages without a PMD map right 1656 * away. Chances are some or all of the 1657 * tail pages can be freed without IO. 1658 */ 1659 if (!compound_mapcount(page) && 1660 split_huge_page_to_list(page, 1661 page_list)) 1662 goto activate_locked; 1663 } 1664 if (!add_to_swap(page)) { 1665 if (!PageTransHuge(page)) 1666 goto activate_locked_split; 1667 /* Fallback to swap normal pages */ 1668 if (split_huge_page_to_list(page, 1669 page_list)) 1670 goto activate_locked; 1671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1672 count_vm_event(THP_SWPOUT_FALLBACK); 1673 #endif 1674 if (!add_to_swap(page)) 1675 goto activate_locked_split; 1676 } 1677 1678 may_enter_fs = true; 1679 1680 /* Adding to swap updated mapping */ 1681 mapping = page_mapping(page); 1682 } 1683 } else if (unlikely(PageTransHuge(page))) { 1684 /* Split file THP */ 1685 if (split_huge_page_to_list(page, page_list)) 1686 goto keep_locked; 1687 } 1688 1689 /* 1690 * THP may get split above, need minus tail pages and update 1691 * nr_pages to avoid accounting tail pages twice. 1692 * 1693 * The tail pages that are added into swap cache successfully 1694 * reach here. 1695 */ 1696 if ((nr_pages > 1) && !PageTransHuge(page)) { 1697 sc->nr_scanned -= (nr_pages - 1); 1698 nr_pages = 1; 1699 } 1700 1701 /* 1702 * The page is mapped into the page tables of one or more 1703 * processes. Try to unmap it here. 1704 */ 1705 if (page_mapped(page)) { 1706 enum ttu_flags flags = TTU_BATCH_FLUSH; 1707 bool was_swapbacked = PageSwapBacked(page); 1708 1709 if (unlikely(PageTransHuge(page))) 1710 flags |= TTU_SPLIT_HUGE_PMD; 1711 1712 try_to_unmap(page, flags); 1713 if (page_mapped(page)) { 1714 stat->nr_unmap_fail += nr_pages; 1715 if (!was_swapbacked && PageSwapBacked(page)) 1716 stat->nr_lazyfree_fail += nr_pages; 1717 goto activate_locked; 1718 } 1719 } 1720 1721 if (PageDirty(page)) { 1722 /* 1723 * Only kswapd can writeback filesystem pages 1724 * to avoid risk of stack overflow. But avoid 1725 * injecting inefficient single-page IO into 1726 * flusher writeback as much as possible: only 1727 * write pages when we've encountered many 1728 * dirty pages, and when we've already scanned 1729 * the rest of the LRU for clean pages and see 1730 * the same dirty pages again (PageReclaim). 1731 */ 1732 if (page_is_file_lru(page) && 1733 (!current_is_kswapd() || !PageReclaim(page) || 1734 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1735 /* 1736 * Immediately reclaim when written back. 1737 * Similar in principal to deactivate_page() 1738 * except we already have the page isolated 1739 * and know it's dirty 1740 */ 1741 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1742 SetPageReclaim(page); 1743 1744 goto activate_locked; 1745 } 1746 1747 if (references == PAGEREF_RECLAIM_CLEAN) 1748 goto keep_locked; 1749 if (!may_enter_fs) 1750 goto keep_locked; 1751 if (!sc->may_writepage) 1752 goto keep_locked; 1753 1754 /* 1755 * Page is dirty. Flush the TLB if a writable entry 1756 * potentially exists to avoid CPU writes after IO 1757 * starts and then write it out here. 1758 */ 1759 try_to_unmap_flush_dirty(); 1760 switch (pageout(page, mapping)) { 1761 case PAGE_KEEP: 1762 goto keep_locked; 1763 case PAGE_ACTIVATE: 1764 goto activate_locked; 1765 case PAGE_SUCCESS: 1766 stat->nr_pageout += thp_nr_pages(page); 1767 1768 if (PageWriteback(page)) 1769 goto keep; 1770 if (PageDirty(page)) 1771 goto keep; 1772 1773 /* 1774 * A synchronous write - probably a ramdisk. Go 1775 * ahead and try to reclaim the page. 1776 */ 1777 if (!trylock_page(page)) 1778 goto keep; 1779 if (PageDirty(page) || PageWriteback(page)) 1780 goto keep_locked; 1781 mapping = page_mapping(page); 1782 fallthrough; 1783 case PAGE_CLEAN: 1784 ; /* try to free the page below */ 1785 } 1786 } 1787 1788 /* 1789 * If the page has buffers, try to free the buffer mappings 1790 * associated with this page. If we succeed we try to free 1791 * the page as well. 1792 * 1793 * We do this even if the page is PageDirty(). 1794 * try_to_release_page() does not perform I/O, but it is 1795 * possible for a page to have PageDirty set, but it is actually 1796 * clean (all its buffers are clean). This happens if the 1797 * buffers were written out directly, with submit_bh(). ext3 1798 * will do this, as well as the blockdev mapping. 1799 * try_to_release_page() will discover that cleanness and will 1800 * drop the buffers and mark the page clean - it can be freed. 1801 * 1802 * Rarely, pages can have buffers and no ->mapping. These are 1803 * the pages which were not successfully invalidated in 1804 * truncate_cleanup_page(). We try to drop those buffers here 1805 * and if that worked, and the page is no longer mapped into 1806 * process address space (page_count == 1) it can be freed. 1807 * Otherwise, leave the page on the LRU so it is swappable. 1808 */ 1809 if (page_has_private(page)) { 1810 if (!try_to_release_page(page, sc->gfp_mask)) 1811 goto activate_locked; 1812 if (!mapping && page_count(page) == 1) { 1813 unlock_page(page); 1814 if (put_page_testzero(page)) 1815 goto free_it; 1816 else { 1817 /* 1818 * rare race with speculative reference. 1819 * the speculative reference will free 1820 * this page shortly, so we may 1821 * increment nr_reclaimed here (and 1822 * leave it off the LRU). 1823 */ 1824 nr_reclaimed++; 1825 continue; 1826 } 1827 } 1828 } 1829 1830 if (PageAnon(page) && !PageSwapBacked(page)) { 1831 /* follow __remove_mapping for reference */ 1832 if (!page_ref_freeze(page, 1)) 1833 goto keep_locked; 1834 /* 1835 * The page has only one reference left, which is 1836 * from the isolation. After the caller puts the 1837 * page back on lru and drops the reference, the 1838 * page will be freed anyway. It doesn't matter 1839 * which lru it goes. So we don't bother checking 1840 * PageDirty here. 1841 */ 1842 count_vm_event(PGLAZYFREED); 1843 count_memcg_page_event(page, PGLAZYFREED); 1844 } else if (!mapping || !__remove_mapping(mapping, page, true, 1845 sc->target_mem_cgroup)) 1846 goto keep_locked; 1847 1848 unlock_page(page); 1849 free_it: 1850 /* 1851 * THP may get swapped out in a whole, need account 1852 * all base pages. 1853 */ 1854 nr_reclaimed += nr_pages; 1855 1856 /* 1857 * Is there need to periodically free_page_list? It would 1858 * appear not as the counts should be low 1859 */ 1860 if (unlikely(PageTransHuge(page))) 1861 destroy_compound_page(page); 1862 else 1863 list_add(&page->lru, &free_pages); 1864 continue; 1865 1866 activate_locked_split: 1867 /* 1868 * The tail pages that are failed to add into swap cache 1869 * reach here. Fixup nr_scanned and nr_pages. 1870 */ 1871 if (nr_pages > 1) { 1872 sc->nr_scanned -= (nr_pages - 1); 1873 nr_pages = 1; 1874 } 1875 activate_locked: 1876 /* Not a candidate for swapping, so reclaim swap space. */ 1877 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1878 PageMlocked(page))) 1879 try_to_free_swap(page); 1880 VM_BUG_ON_PAGE(PageActive(page), page); 1881 if (!PageMlocked(page)) { 1882 int type = page_is_file_lru(page); 1883 SetPageActive(page); 1884 stat->nr_activate[type] += nr_pages; 1885 count_memcg_page_event(page, PGACTIVATE); 1886 } 1887 keep_locked: 1888 unlock_page(page); 1889 keep: 1890 list_add(&page->lru, &ret_pages); 1891 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1892 } 1893 /* 'page_list' is always empty here */ 1894 1895 /* Migrate pages selected for demotion */ 1896 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1897 /* Pages that could not be demoted are still in @demote_pages */ 1898 if (!list_empty(&demote_pages)) { 1899 /* Pages which failed to demoted go back on @page_list for retry: */ 1900 list_splice_init(&demote_pages, page_list); 1901 do_demote_pass = false; 1902 goto retry; 1903 } 1904 1905 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1906 1907 mem_cgroup_uncharge_list(&free_pages); 1908 try_to_unmap_flush(); 1909 free_unref_page_list(&free_pages); 1910 1911 list_splice(&ret_pages, page_list); 1912 count_vm_events(PGACTIVATE, pgactivate); 1913 1914 return nr_reclaimed; 1915 } 1916 1917 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1918 struct list_head *page_list) 1919 { 1920 struct scan_control sc = { 1921 .gfp_mask = GFP_KERNEL, 1922 .may_unmap = 1, 1923 }; 1924 struct reclaim_stat stat; 1925 unsigned int nr_reclaimed; 1926 struct page *page, *next; 1927 LIST_HEAD(clean_pages); 1928 unsigned int noreclaim_flag; 1929 1930 list_for_each_entry_safe(page, next, page_list, lru) { 1931 if (!PageHuge(page) && page_is_file_lru(page) && 1932 !PageDirty(page) && !__PageMovable(page) && 1933 !PageUnevictable(page)) { 1934 ClearPageActive(page); 1935 list_move(&page->lru, &clean_pages); 1936 } 1937 } 1938 1939 /* 1940 * We should be safe here since we are only dealing with file pages and 1941 * we are not kswapd and therefore cannot write dirty file pages. But 1942 * call memalloc_noreclaim_save() anyway, just in case these conditions 1943 * change in the future. 1944 */ 1945 noreclaim_flag = memalloc_noreclaim_save(); 1946 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1947 &stat, true); 1948 memalloc_noreclaim_restore(noreclaim_flag); 1949 1950 list_splice(&clean_pages, page_list); 1951 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1952 -(long)nr_reclaimed); 1953 /* 1954 * Since lazyfree pages are isolated from file LRU from the beginning, 1955 * they will rotate back to anonymous LRU in the end if it failed to 1956 * discard so isolated count will be mismatched. 1957 * Compensate the isolated count for both LRU lists. 1958 */ 1959 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1960 stat.nr_lazyfree_fail); 1961 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1962 -(long)stat.nr_lazyfree_fail); 1963 return nr_reclaimed; 1964 } 1965 1966 /* 1967 * Attempt to remove the specified page from its LRU. Only take this page 1968 * if it is of the appropriate PageActive status. Pages which are being 1969 * freed elsewhere are also ignored. 1970 * 1971 * page: page to consider 1972 * mode: one of the LRU isolation modes defined above 1973 * 1974 * returns true on success, false on failure. 1975 */ 1976 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1977 { 1978 /* Only take pages on the LRU. */ 1979 if (!PageLRU(page)) 1980 return false; 1981 1982 /* Compaction should not handle unevictable pages but CMA can do so */ 1983 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1984 return false; 1985 1986 /* 1987 * To minimise LRU disruption, the caller can indicate that it only 1988 * wants to isolate pages it will be able to operate on without 1989 * blocking - clean pages for the most part. 1990 * 1991 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1992 * that it is possible to migrate without blocking 1993 */ 1994 if (mode & ISOLATE_ASYNC_MIGRATE) { 1995 /* All the caller can do on PageWriteback is block */ 1996 if (PageWriteback(page)) 1997 return false; 1998 1999 if (PageDirty(page)) { 2000 struct address_space *mapping; 2001 bool migrate_dirty; 2002 2003 /* 2004 * Only pages without mappings or that have a 2005 * ->migratepage callback are possible to migrate 2006 * without blocking. However, we can be racing with 2007 * truncation so it's necessary to lock the page 2008 * to stabilise the mapping as truncation holds 2009 * the page lock until after the page is removed 2010 * from the page cache. 2011 */ 2012 if (!trylock_page(page)) 2013 return false; 2014 2015 mapping = page_mapping(page); 2016 migrate_dirty = !mapping || mapping->a_ops->migratepage; 2017 unlock_page(page); 2018 if (!migrate_dirty) 2019 return false; 2020 } 2021 } 2022 2023 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 2024 return false; 2025 2026 return true; 2027 } 2028 2029 /* 2030 * Update LRU sizes after isolating pages. The LRU size updates must 2031 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2032 */ 2033 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2034 enum lru_list lru, unsigned long *nr_zone_taken) 2035 { 2036 int zid; 2037 2038 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2039 if (!nr_zone_taken[zid]) 2040 continue; 2041 2042 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2043 } 2044 2045 } 2046 2047 /* 2048 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2049 * 2050 * lruvec->lru_lock is heavily contended. Some of the functions that 2051 * shrink the lists perform better by taking out a batch of pages 2052 * and working on them outside the LRU lock. 2053 * 2054 * For pagecache intensive workloads, this function is the hottest 2055 * spot in the kernel (apart from copy_*_user functions). 2056 * 2057 * Lru_lock must be held before calling this function. 2058 * 2059 * @nr_to_scan: The number of eligible pages to look through on the list. 2060 * @lruvec: The LRU vector to pull pages from. 2061 * @dst: The temp list to put pages on to. 2062 * @nr_scanned: The number of pages that were scanned. 2063 * @sc: The scan_control struct for this reclaim session 2064 * @lru: LRU list id for isolating 2065 * 2066 * returns how many pages were moved onto *@dst. 2067 */ 2068 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 2069 struct lruvec *lruvec, struct list_head *dst, 2070 unsigned long *nr_scanned, struct scan_control *sc, 2071 enum lru_list lru) 2072 { 2073 struct list_head *src = &lruvec->lists[lru]; 2074 unsigned long nr_taken = 0; 2075 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2076 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2077 unsigned long skipped = 0; 2078 unsigned long scan, total_scan, nr_pages; 2079 LIST_HEAD(pages_skipped); 2080 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 2081 2082 total_scan = 0; 2083 scan = 0; 2084 while (scan < nr_to_scan && !list_empty(src)) { 2085 struct page *page; 2086 2087 page = lru_to_page(src); 2088 prefetchw_prev_lru_page(page, src, flags); 2089 2090 nr_pages = compound_nr(page); 2091 total_scan += nr_pages; 2092 2093 if (page_zonenum(page) > sc->reclaim_idx) { 2094 list_move(&page->lru, &pages_skipped); 2095 nr_skipped[page_zonenum(page)] += nr_pages; 2096 continue; 2097 } 2098 2099 /* 2100 * Do not count skipped pages because that makes the function 2101 * return with no isolated pages if the LRU mostly contains 2102 * ineligible pages. This causes the VM to not reclaim any 2103 * pages, triggering a premature OOM. 2104 * 2105 * Account all tail pages of THP. This would not cause 2106 * premature OOM since __isolate_lru_page() returns -EBUSY 2107 * only when the page is being freed somewhere else. 2108 */ 2109 scan += nr_pages; 2110 if (!__isolate_lru_page_prepare(page, mode)) { 2111 /* It is being freed elsewhere */ 2112 list_move(&page->lru, src); 2113 continue; 2114 } 2115 /* 2116 * Be careful not to clear PageLRU until after we're 2117 * sure the page is not being freed elsewhere -- the 2118 * page release code relies on it. 2119 */ 2120 if (unlikely(!get_page_unless_zero(page))) { 2121 list_move(&page->lru, src); 2122 continue; 2123 } 2124 2125 if (!TestClearPageLRU(page)) { 2126 /* Another thread is already isolating this page */ 2127 put_page(page); 2128 list_move(&page->lru, src); 2129 continue; 2130 } 2131 2132 nr_taken += nr_pages; 2133 nr_zone_taken[page_zonenum(page)] += nr_pages; 2134 list_move(&page->lru, dst); 2135 } 2136 2137 /* 2138 * Splice any skipped pages to the start of the LRU list. Note that 2139 * this disrupts the LRU order when reclaiming for lower zones but 2140 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2141 * scanning would soon rescan the same pages to skip and put the 2142 * system at risk of premature OOM. 2143 */ 2144 if (!list_empty(&pages_skipped)) { 2145 int zid; 2146 2147 list_splice(&pages_skipped, src); 2148 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2149 if (!nr_skipped[zid]) 2150 continue; 2151 2152 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2153 skipped += nr_skipped[zid]; 2154 } 2155 } 2156 *nr_scanned = total_scan; 2157 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2158 total_scan, skipped, nr_taken, mode, lru); 2159 update_lru_sizes(lruvec, lru, nr_zone_taken); 2160 return nr_taken; 2161 } 2162 2163 /** 2164 * isolate_lru_page - tries to isolate a page from its LRU list 2165 * @page: page to isolate from its LRU list 2166 * 2167 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2168 * vmstat statistic corresponding to whatever LRU list the page was on. 2169 * 2170 * Returns 0 if the page was removed from an LRU list. 2171 * Returns -EBUSY if the page was not on an LRU list. 2172 * 2173 * The returned page will have PageLRU() cleared. If it was found on 2174 * the active list, it will have PageActive set. If it was found on 2175 * the unevictable list, it will have the PageUnevictable bit set. That flag 2176 * may need to be cleared by the caller before letting the page go. 2177 * 2178 * The vmstat statistic corresponding to the list on which the page was 2179 * found will be decremented. 2180 * 2181 * Restrictions: 2182 * 2183 * (1) Must be called with an elevated refcount on the page. This is a 2184 * fundamental difference from isolate_lru_pages (which is called 2185 * without a stable reference). 2186 * (2) the lru_lock must not be held. 2187 * (3) interrupts must be enabled. 2188 */ 2189 int isolate_lru_page(struct page *page) 2190 { 2191 struct folio *folio = page_folio(page); 2192 int ret = -EBUSY; 2193 2194 VM_BUG_ON_PAGE(!page_count(page), page); 2195 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2196 2197 if (TestClearPageLRU(page)) { 2198 struct lruvec *lruvec; 2199 2200 get_page(page); 2201 lruvec = folio_lruvec_lock_irq(folio); 2202 del_page_from_lru_list(page, lruvec); 2203 unlock_page_lruvec_irq(lruvec); 2204 ret = 0; 2205 } 2206 2207 return ret; 2208 } 2209 2210 /* 2211 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2212 * then get rescheduled. When there are massive number of tasks doing page 2213 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2214 * the LRU list will go small and be scanned faster than necessary, leading to 2215 * unnecessary swapping, thrashing and OOM. 2216 */ 2217 static int too_many_isolated(struct pglist_data *pgdat, int file, 2218 struct scan_control *sc) 2219 { 2220 unsigned long inactive, isolated; 2221 bool too_many; 2222 2223 if (current_is_kswapd()) 2224 return 0; 2225 2226 if (!writeback_throttling_sane(sc)) 2227 return 0; 2228 2229 if (file) { 2230 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2231 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2232 } else { 2233 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2234 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2235 } 2236 2237 /* 2238 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2239 * won't get blocked by normal direct-reclaimers, forming a circular 2240 * deadlock. 2241 */ 2242 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2243 inactive >>= 3; 2244 2245 too_many = isolated > inactive; 2246 2247 /* Wake up tasks throttled due to too_many_isolated. */ 2248 if (!too_many) 2249 wake_throttle_isolated(pgdat); 2250 2251 return too_many; 2252 } 2253 2254 /* 2255 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2256 * On return, @list is reused as a list of pages to be freed by the caller. 2257 * 2258 * Returns the number of pages moved to the given lruvec. 2259 */ 2260 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2261 struct list_head *list) 2262 { 2263 int nr_pages, nr_moved = 0; 2264 LIST_HEAD(pages_to_free); 2265 struct page *page; 2266 2267 while (!list_empty(list)) { 2268 page = lru_to_page(list); 2269 VM_BUG_ON_PAGE(PageLRU(page), page); 2270 list_del(&page->lru); 2271 if (unlikely(!page_evictable(page))) { 2272 spin_unlock_irq(&lruvec->lru_lock); 2273 putback_lru_page(page); 2274 spin_lock_irq(&lruvec->lru_lock); 2275 continue; 2276 } 2277 2278 /* 2279 * The SetPageLRU needs to be kept here for list integrity. 2280 * Otherwise: 2281 * #0 move_pages_to_lru #1 release_pages 2282 * if !put_page_testzero 2283 * if (put_page_testzero()) 2284 * !PageLRU //skip lru_lock 2285 * SetPageLRU() 2286 * list_add(&page->lru,) 2287 * list_add(&page->lru,) 2288 */ 2289 SetPageLRU(page); 2290 2291 if (unlikely(put_page_testzero(page))) { 2292 __clear_page_lru_flags(page); 2293 2294 if (unlikely(PageCompound(page))) { 2295 spin_unlock_irq(&lruvec->lru_lock); 2296 destroy_compound_page(page); 2297 spin_lock_irq(&lruvec->lru_lock); 2298 } else 2299 list_add(&page->lru, &pages_to_free); 2300 2301 continue; 2302 } 2303 2304 /* 2305 * All pages were isolated from the same lruvec (and isolation 2306 * inhibits memcg migration). 2307 */ 2308 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page); 2309 add_page_to_lru_list(page, lruvec); 2310 nr_pages = thp_nr_pages(page); 2311 nr_moved += nr_pages; 2312 if (PageActive(page)) 2313 workingset_age_nonresident(lruvec, nr_pages); 2314 } 2315 2316 /* 2317 * To save our caller's stack, now use input list for pages to free. 2318 */ 2319 list_splice(&pages_to_free, list); 2320 2321 return nr_moved; 2322 } 2323 2324 /* 2325 * If a kernel thread (such as nfsd for loop-back mounts) services 2326 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2327 * In that case we should only throttle if the backing device it is 2328 * writing to is congested. In other cases it is safe to throttle. 2329 */ 2330 static int current_may_throttle(void) 2331 { 2332 return !(current->flags & PF_LOCAL_THROTTLE) || 2333 current->backing_dev_info == NULL || 2334 bdi_write_congested(current->backing_dev_info); 2335 } 2336 2337 /* 2338 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2339 * of reclaimed pages 2340 */ 2341 static unsigned long 2342 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2343 struct scan_control *sc, enum lru_list lru) 2344 { 2345 LIST_HEAD(page_list); 2346 unsigned long nr_scanned; 2347 unsigned int nr_reclaimed = 0; 2348 unsigned long nr_taken; 2349 struct reclaim_stat stat; 2350 bool file = is_file_lru(lru); 2351 enum vm_event_item item; 2352 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2353 bool stalled = false; 2354 2355 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2356 if (stalled) 2357 return 0; 2358 2359 /* wait a bit for the reclaimer. */ 2360 stalled = true; 2361 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2362 2363 /* We are about to die and free our memory. Return now. */ 2364 if (fatal_signal_pending(current)) 2365 return SWAP_CLUSTER_MAX; 2366 } 2367 2368 lru_add_drain(); 2369 2370 spin_lock_irq(&lruvec->lru_lock); 2371 2372 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2373 &nr_scanned, sc, lru); 2374 2375 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2376 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2377 if (!cgroup_reclaim(sc)) 2378 __count_vm_events(item, nr_scanned); 2379 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2380 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2381 2382 spin_unlock_irq(&lruvec->lru_lock); 2383 2384 if (nr_taken == 0) 2385 return 0; 2386 2387 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2388 2389 spin_lock_irq(&lruvec->lru_lock); 2390 move_pages_to_lru(lruvec, &page_list); 2391 2392 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2393 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2394 if (!cgroup_reclaim(sc)) 2395 __count_vm_events(item, nr_reclaimed); 2396 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2397 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2398 spin_unlock_irq(&lruvec->lru_lock); 2399 2400 lru_note_cost(lruvec, file, stat.nr_pageout); 2401 mem_cgroup_uncharge_list(&page_list); 2402 free_unref_page_list(&page_list); 2403 2404 /* 2405 * If dirty pages are scanned that are not queued for IO, it 2406 * implies that flushers are not doing their job. This can 2407 * happen when memory pressure pushes dirty pages to the end of 2408 * the LRU before the dirty limits are breached and the dirty 2409 * data has expired. It can also happen when the proportion of 2410 * dirty pages grows not through writes but through memory 2411 * pressure reclaiming all the clean cache. And in some cases, 2412 * the flushers simply cannot keep up with the allocation 2413 * rate. Nudge the flusher threads in case they are asleep. 2414 */ 2415 if (stat.nr_unqueued_dirty == nr_taken) 2416 wakeup_flusher_threads(WB_REASON_VMSCAN); 2417 2418 sc->nr.dirty += stat.nr_dirty; 2419 sc->nr.congested += stat.nr_congested; 2420 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2421 sc->nr.writeback += stat.nr_writeback; 2422 sc->nr.immediate += stat.nr_immediate; 2423 sc->nr.taken += nr_taken; 2424 if (file) 2425 sc->nr.file_taken += nr_taken; 2426 2427 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2428 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2429 return nr_reclaimed; 2430 } 2431 2432 /* 2433 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2434 * 2435 * We move them the other way if the page is referenced by one or more 2436 * processes. 2437 * 2438 * If the pages are mostly unmapped, the processing is fast and it is 2439 * appropriate to hold lru_lock across the whole operation. But if 2440 * the pages are mapped, the processing is slow (page_referenced()), so 2441 * we should drop lru_lock around each page. It's impossible to balance 2442 * this, so instead we remove the pages from the LRU while processing them. 2443 * It is safe to rely on PG_active against the non-LRU pages in here because 2444 * nobody will play with that bit on a non-LRU page. 2445 * 2446 * The downside is that we have to touch page->_refcount against each page. 2447 * But we had to alter page->flags anyway. 2448 */ 2449 static void shrink_active_list(unsigned long nr_to_scan, 2450 struct lruvec *lruvec, 2451 struct scan_control *sc, 2452 enum lru_list lru) 2453 { 2454 unsigned long nr_taken; 2455 unsigned long nr_scanned; 2456 unsigned long vm_flags; 2457 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2458 LIST_HEAD(l_active); 2459 LIST_HEAD(l_inactive); 2460 struct page *page; 2461 unsigned nr_deactivate, nr_activate; 2462 unsigned nr_rotated = 0; 2463 int file = is_file_lru(lru); 2464 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2465 2466 lru_add_drain(); 2467 2468 spin_lock_irq(&lruvec->lru_lock); 2469 2470 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2471 &nr_scanned, sc, lru); 2472 2473 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2474 2475 if (!cgroup_reclaim(sc)) 2476 __count_vm_events(PGREFILL, nr_scanned); 2477 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2478 2479 spin_unlock_irq(&lruvec->lru_lock); 2480 2481 while (!list_empty(&l_hold)) { 2482 cond_resched(); 2483 page = lru_to_page(&l_hold); 2484 list_del(&page->lru); 2485 2486 if (unlikely(!page_evictable(page))) { 2487 putback_lru_page(page); 2488 continue; 2489 } 2490 2491 if (unlikely(buffer_heads_over_limit)) { 2492 if (page_has_private(page) && trylock_page(page)) { 2493 if (page_has_private(page)) 2494 try_to_release_page(page, 0); 2495 unlock_page(page); 2496 } 2497 } 2498 2499 if (page_referenced(page, 0, sc->target_mem_cgroup, 2500 &vm_flags)) { 2501 /* 2502 * Identify referenced, file-backed active pages and 2503 * give them one more trip around the active list. So 2504 * that executable code get better chances to stay in 2505 * memory under moderate memory pressure. Anon pages 2506 * are not likely to be evicted by use-once streaming 2507 * IO, plus JVM can create lots of anon VM_EXEC pages, 2508 * so we ignore them here. 2509 */ 2510 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2511 nr_rotated += thp_nr_pages(page); 2512 list_add(&page->lru, &l_active); 2513 continue; 2514 } 2515 } 2516 2517 ClearPageActive(page); /* we are de-activating */ 2518 SetPageWorkingset(page); 2519 list_add(&page->lru, &l_inactive); 2520 } 2521 2522 /* 2523 * Move pages back to the lru list. 2524 */ 2525 spin_lock_irq(&lruvec->lru_lock); 2526 2527 nr_activate = move_pages_to_lru(lruvec, &l_active); 2528 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2529 /* Keep all free pages in l_active list */ 2530 list_splice(&l_inactive, &l_active); 2531 2532 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2533 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2534 2535 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2536 spin_unlock_irq(&lruvec->lru_lock); 2537 2538 mem_cgroup_uncharge_list(&l_active); 2539 free_unref_page_list(&l_active); 2540 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2541 nr_deactivate, nr_rotated, sc->priority, file); 2542 } 2543 2544 unsigned long reclaim_pages(struct list_head *page_list) 2545 { 2546 int nid = NUMA_NO_NODE; 2547 unsigned int nr_reclaimed = 0; 2548 LIST_HEAD(node_page_list); 2549 struct reclaim_stat dummy_stat; 2550 struct page *page; 2551 unsigned int noreclaim_flag; 2552 struct scan_control sc = { 2553 .gfp_mask = GFP_KERNEL, 2554 .may_writepage = 1, 2555 .may_unmap = 1, 2556 .may_swap = 1, 2557 .no_demotion = 1, 2558 }; 2559 2560 noreclaim_flag = memalloc_noreclaim_save(); 2561 2562 while (!list_empty(page_list)) { 2563 page = lru_to_page(page_list); 2564 if (nid == NUMA_NO_NODE) { 2565 nid = page_to_nid(page); 2566 INIT_LIST_HEAD(&node_page_list); 2567 } 2568 2569 if (nid == page_to_nid(page)) { 2570 ClearPageActive(page); 2571 list_move(&page->lru, &node_page_list); 2572 continue; 2573 } 2574 2575 nr_reclaimed += shrink_page_list(&node_page_list, 2576 NODE_DATA(nid), 2577 &sc, &dummy_stat, false); 2578 while (!list_empty(&node_page_list)) { 2579 page = lru_to_page(&node_page_list); 2580 list_del(&page->lru); 2581 putback_lru_page(page); 2582 } 2583 2584 nid = NUMA_NO_NODE; 2585 } 2586 2587 if (!list_empty(&node_page_list)) { 2588 nr_reclaimed += shrink_page_list(&node_page_list, 2589 NODE_DATA(nid), 2590 &sc, &dummy_stat, false); 2591 while (!list_empty(&node_page_list)) { 2592 page = lru_to_page(&node_page_list); 2593 list_del(&page->lru); 2594 putback_lru_page(page); 2595 } 2596 } 2597 2598 memalloc_noreclaim_restore(noreclaim_flag); 2599 2600 return nr_reclaimed; 2601 } 2602 2603 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2604 struct lruvec *lruvec, struct scan_control *sc) 2605 { 2606 if (is_active_lru(lru)) { 2607 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2608 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2609 else 2610 sc->skipped_deactivate = 1; 2611 return 0; 2612 } 2613 2614 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2615 } 2616 2617 /* 2618 * The inactive anon list should be small enough that the VM never has 2619 * to do too much work. 2620 * 2621 * The inactive file list should be small enough to leave most memory 2622 * to the established workingset on the scan-resistant active list, 2623 * but large enough to avoid thrashing the aggregate readahead window. 2624 * 2625 * Both inactive lists should also be large enough that each inactive 2626 * page has a chance to be referenced again before it is reclaimed. 2627 * 2628 * If that fails and refaulting is observed, the inactive list grows. 2629 * 2630 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2631 * on this LRU, maintained by the pageout code. An inactive_ratio 2632 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2633 * 2634 * total target max 2635 * memory ratio inactive 2636 * ------------------------------------- 2637 * 10MB 1 5MB 2638 * 100MB 1 50MB 2639 * 1GB 3 250MB 2640 * 10GB 10 0.9GB 2641 * 100GB 31 3GB 2642 * 1TB 101 10GB 2643 * 10TB 320 32GB 2644 */ 2645 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2646 { 2647 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2648 unsigned long inactive, active; 2649 unsigned long inactive_ratio; 2650 unsigned long gb; 2651 2652 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2653 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2654 2655 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2656 if (gb) 2657 inactive_ratio = int_sqrt(10 * gb); 2658 else 2659 inactive_ratio = 1; 2660 2661 return inactive * inactive_ratio < active; 2662 } 2663 2664 enum scan_balance { 2665 SCAN_EQUAL, 2666 SCAN_FRACT, 2667 SCAN_ANON, 2668 SCAN_FILE, 2669 }; 2670 2671 /* 2672 * Determine how aggressively the anon and file LRU lists should be 2673 * scanned. The relative value of each set of LRU lists is determined 2674 * by looking at the fraction of the pages scanned we did rotate back 2675 * onto the active list instead of evict. 2676 * 2677 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2678 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2679 */ 2680 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2681 unsigned long *nr) 2682 { 2683 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2684 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2685 unsigned long anon_cost, file_cost, total_cost; 2686 int swappiness = mem_cgroup_swappiness(memcg); 2687 u64 fraction[ANON_AND_FILE]; 2688 u64 denominator = 0; /* gcc */ 2689 enum scan_balance scan_balance; 2690 unsigned long ap, fp; 2691 enum lru_list lru; 2692 2693 /* If we have no swap space, do not bother scanning anon pages. */ 2694 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2695 scan_balance = SCAN_FILE; 2696 goto out; 2697 } 2698 2699 /* 2700 * Global reclaim will swap to prevent OOM even with no 2701 * swappiness, but memcg users want to use this knob to 2702 * disable swapping for individual groups completely when 2703 * using the memory controller's swap limit feature would be 2704 * too expensive. 2705 */ 2706 if (cgroup_reclaim(sc) && !swappiness) { 2707 scan_balance = SCAN_FILE; 2708 goto out; 2709 } 2710 2711 /* 2712 * Do not apply any pressure balancing cleverness when the 2713 * system is close to OOM, scan both anon and file equally 2714 * (unless the swappiness setting disagrees with swapping). 2715 */ 2716 if (!sc->priority && swappiness) { 2717 scan_balance = SCAN_EQUAL; 2718 goto out; 2719 } 2720 2721 /* 2722 * If the system is almost out of file pages, force-scan anon. 2723 */ 2724 if (sc->file_is_tiny) { 2725 scan_balance = SCAN_ANON; 2726 goto out; 2727 } 2728 2729 /* 2730 * If there is enough inactive page cache, we do not reclaim 2731 * anything from the anonymous working right now. 2732 */ 2733 if (sc->cache_trim_mode) { 2734 scan_balance = SCAN_FILE; 2735 goto out; 2736 } 2737 2738 scan_balance = SCAN_FRACT; 2739 /* 2740 * Calculate the pressure balance between anon and file pages. 2741 * 2742 * The amount of pressure we put on each LRU is inversely 2743 * proportional to the cost of reclaiming each list, as 2744 * determined by the share of pages that are refaulting, times 2745 * the relative IO cost of bringing back a swapped out 2746 * anonymous page vs reloading a filesystem page (swappiness). 2747 * 2748 * Although we limit that influence to ensure no list gets 2749 * left behind completely: at least a third of the pressure is 2750 * applied, before swappiness. 2751 * 2752 * With swappiness at 100, anon and file have equal IO cost. 2753 */ 2754 total_cost = sc->anon_cost + sc->file_cost; 2755 anon_cost = total_cost + sc->anon_cost; 2756 file_cost = total_cost + sc->file_cost; 2757 total_cost = anon_cost + file_cost; 2758 2759 ap = swappiness * (total_cost + 1); 2760 ap /= anon_cost + 1; 2761 2762 fp = (200 - swappiness) * (total_cost + 1); 2763 fp /= file_cost + 1; 2764 2765 fraction[0] = ap; 2766 fraction[1] = fp; 2767 denominator = ap + fp; 2768 out: 2769 for_each_evictable_lru(lru) { 2770 int file = is_file_lru(lru); 2771 unsigned long lruvec_size; 2772 unsigned long low, min; 2773 unsigned long scan; 2774 2775 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2776 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2777 &min, &low); 2778 2779 if (min || low) { 2780 /* 2781 * Scale a cgroup's reclaim pressure by proportioning 2782 * its current usage to its memory.low or memory.min 2783 * setting. 2784 * 2785 * This is important, as otherwise scanning aggression 2786 * becomes extremely binary -- from nothing as we 2787 * approach the memory protection threshold, to totally 2788 * nominal as we exceed it. This results in requiring 2789 * setting extremely liberal protection thresholds. It 2790 * also means we simply get no protection at all if we 2791 * set it too low, which is not ideal. 2792 * 2793 * If there is any protection in place, we reduce scan 2794 * pressure by how much of the total memory used is 2795 * within protection thresholds. 2796 * 2797 * There is one special case: in the first reclaim pass, 2798 * we skip over all groups that are within their low 2799 * protection. If that fails to reclaim enough pages to 2800 * satisfy the reclaim goal, we come back and override 2801 * the best-effort low protection. However, we still 2802 * ideally want to honor how well-behaved groups are in 2803 * that case instead of simply punishing them all 2804 * equally. As such, we reclaim them based on how much 2805 * memory they are using, reducing the scan pressure 2806 * again by how much of the total memory used is under 2807 * hard protection. 2808 */ 2809 unsigned long cgroup_size = mem_cgroup_size(memcg); 2810 unsigned long protection; 2811 2812 /* memory.low scaling, make sure we retry before OOM */ 2813 if (!sc->memcg_low_reclaim && low > min) { 2814 protection = low; 2815 sc->memcg_low_skipped = 1; 2816 } else { 2817 protection = min; 2818 } 2819 2820 /* Avoid TOCTOU with earlier protection check */ 2821 cgroup_size = max(cgroup_size, protection); 2822 2823 scan = lruvec_size - lruvec_size * protection / 2824 (cgroup_size + 1); 2825 2826 /* 2827 * Minimally target SWAP_CLUSTER_MAX pages to keep 2828 * reclaim moving forwards, avoiding decrementing 2829 * sc->priority further than desirable. 2830 */ 2831 scan = max(scan, SWAP_CLUSTER_MAX); 2832 } else { 2833 scan = lruvec_size; 2834 } 2835 2836 scan >>= sc->priority; 2837 2838 /* 2839 * If the cgroup's already been deleted, make sure to 2840 * scrape out the remaining cache. 2841 */ 2842 if (!scan && !mem_cgroup_online(memcg)) 2843 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2844 2845 switch (scan_balance) { 2846 case SCAN_EQUAL: 2847 /* Scan lists relative to size */ 2848 break; 2849 case SCAN_FRACT: 2850 /* 2851 * Scan types proportional to swappiness and 2852 * their relative recent reclaim efficiency. 2853 * Make sure we don't miss the last page on 2854 * the offlined memory cgroups because of a 2855 * round-off error. 2856 */ 2857 scan = mem_cgroup_online(memcg) ? 2858 div64_u64(scan * fraction[file], denominator) : 2859 DIV64_U64_ROUND_UP(scan * fraction[file], 2860 denominator); 2861 break; 2862 case SCAN_FILE: 2863 case SCAN_ANON: 2864 /* Scan one type exclusively */ 2865 if ((scan_balance == SCAN_FILE) != file) 2866 scan = 0; 2867 break; 2868 default: 2869 /* Look ma, no brain */ 2870 BUG(); 2871 } 2872 2873 nr[lru] = scan; 2874 } 2875 } 2876 2877 /* 2878 * Anonymous LRU management is a waste if there is 2879 * ultimately no way to reclaim the memory. 2880 */ 2881 static bool can_age_anon_pages(struct pglist_data *pgdat, 2882 struct scan_control *sc) 2883 { 2884 /* Aging the anon LRU is valuable if swap is present: */ 2885 if (total_swap_pages > 0) 2886 return true; 2887 2888 /* Also valuable if anon pages can be demoted: */ 2889 return can_demote(pgdat->node_id, sc); 2890 } 2891 2892 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2893 { 2894 unsigned long nr[NR_LRU_LISTS]; 2895 unsigned long targets[NR_LRU_LISTS]; 2896 unsigned long nr_to_scan; 2897 enum lru_list lru; 2898 unsigned long nr_reclaimed = 0; 2899 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2900 struct blk_plug plug; 2901 bool scan_adjusted; 2902 2903 get_scan_count(lruvec, sc, nr); 2904 2905 /* Record the original scan target for proportional adjustments later */ 2906 memcpy(targets, nr, sizeof(nr)); 2907 2908 /* 2909 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2910 * event that can occur when there is little memory pressure e.g. 2911 * multiple streaming readers/writers. Hence, we do not abort scanning 2912 * when the requested number of pages are reclaimed when scanning at 2913 * DEF_PRIORITY on the assumption that the fact we are direct 2914 * reclaiming implies that kswapd is not keeping up and it is best to 2915 * do a batch of work at once. For memcg reclaim one check is made to 2916 * abort proportional reclaim if either the file or anon lru has already 2917 * dropped to zero at the first pass. 2918 */ 2919 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2920 sc->priority == DEF_PRIORITY); 2921 2922 blk_start_plug(&plug); 2923 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2924 nr[LRU_INACTIVE_FILE]) { 2925 unsigned long nr_anon, nr_file, percentage; 2926 unsigned long nr_scanned; 2927 2928 for_each_evictable_lru(lru) { 2929 if (nr[lru]) { 2930 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2931 nr[lru] -= nr_to_scan; 2932 2933 nr_reclaimed += shrink_list(lru, nr_to_scan, 2934 lruvec, sc); 2935 } 2936 } 2937 2938 cond_resched(); 2939 2940 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2941 continue; 2942 2943 /* 2944 * For kswapd and memcg, reclaim at least the number of pages 2945 * requested. Ensure that the anon and file LRUs are scanned 2946 * proportionally what was requested by get_scan_count(). We 2947 * stop reclaiming one LRU and reduce the amount scanning 2948 * proportional to the original scan target. 2949 */ 2950 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2951 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2952 2953 /* 2954 * It's just vindictive to attack the larger once the smaller 2955 * has gone to zero. And given the way we stop scanning the 2956 * smaller below, this makes sure that we only make one nudge 2957 * towards proportionality once we've got nr_to_reclaim. 2958 */ 2959 if (!nr_file || !nr_anon) 2960 break; 2961 2962 if (nr_file > nr_anon) { 2963 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2964 targets[LRU_ACTIVE_ANON] + 1; 2965 lru = LRU_BASE; 2966 percentage = nr_anon * 100 / scan_target; 2967 } else { 2968 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2969 targets[LRU_ACTIVE_FILE] + 1; 2970 lru = LRU_FILE; 2971 percentage = nr_file * 100 / scan_target; 2972 } 2973 2974 /* Stop scanning the smaller of the LRU */ 2975 nr[lru] = 0; 2976 nr[lru + LRU_ACTIVE] = 0; 2977 2978 /* 2979 * Recalculate the other LRU scan count based on its original 2980 * scan target and the percentage scanning already complete 2981 */ 2982 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2983 nr_scanned = targets[lru] - nr[lru]; 2984 nr[lru] = targets[lru] * (100 - percentage) / 100; 2985 nr[lru] -= min(nr[lru], nr_scanned); 2986 2987 lru += LRU_ACTIVE; 2988 nr_scanned = targets[lru] - nr[lru]; 2989 nr[lru] = targets[lru] * (100 - percentage) / 100; 2990 nr[lru] -= min(nr[lru], nr_scanned); 2991 2992 scan_adjusted = true; 2993 } 2994 blk_finish_plug(&plug); 2995 sc->nr_reclaimed += nr_reclaimed; 2996 2997 /* 2998 * Even if we did not try to evict anon pages at all, we want to 2999 * rebalance the anon lru active/inactive ratio. 3000 */ 3001 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 3002 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3003 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3004 sc, LRU_ACTIVE_ANON); 3005 } 3006 3007 /* Use reclaim/compaction for costly allocs or under memory pressure */ 3008 static bool in_reclaim_compaction(struct scan_control *sc) 3009 { 3010 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3011 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 3012 sc->priority < DEF_PRIORITY - 2)) 3013 return true; 3014 3015 return false; 3016 } 3017 3018 /* 3019 * Reclaim/compaction is used for high-order allocation requests. It reclaims 3020 * order-0 pages before compacting the zone. should_continue_reclaim() returns 3021 * true if more pages should be reclaimed such that when the page allocator 3022 * calls try_to_compact_pages() that it will have enough free pages to succeed. 3023 * It will give up earlier than that if there is difficulty reclaiming pages. 3024 */ 3025 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 3026 unsigned long nr_reclaimed, 3027 struct scan_control *sc) 3028 { 3029 unsigned long pages_for_compaction; 3030 unsigned long inactive_lru_pages; 3031 int z; 3032 3033 /* If not in reclaim/compaction mode, stop */ 3034 if (!in_reclaim_compaction(sc)) 3035 return false; 3036 3037 /* 3038 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 3039 * number of pages that were scanned. This will return to the caller 3040 * with the risk reclaim/compaction and the resulting allocation attempt 3041 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 3042 * allocations through requiring that the full LRU list has been scanned 3043 * first, by assuming that zero delta of sc->nr_scanned means full LRU 3044 * scan, but that approximation was wrong, and there were corner cases 3045 * where always a non-zero amount of pages were scanned. 3046 */ 3047 if (!nr_reclaimed) 3048 return false; 3049 3050 /* If compaction would go ahead or the allocation would succeed, stop */ 3051 for (z = 0; z <= sc->reclaim_idx; z++) { 3052 struct zone *zone = &pgdat->node_zones[z]; 3053 if (!managed_zone(zone)) 3054 continue; 3055 3056 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 3057 case COMPACT_SUCCESS: 3058 case COMPACT_CONTINUE: 3059 return false; 3060 default: 3061 /* check next zone */ 3062 ; 3063 } 3064 } 3065 3066 /* 3067 * If we have not reclaimed enough pages for compaction and the 3068 * inactive lists are large enough, continue reclaiming 3069 */ 3070 pages_for_compaction = compact_gap(sc->order); 3071 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 3072 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3073 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 3074 3075 return inactive_lru_pages > pages_for_compaction; 3076 } 3077 3078 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 3079 { 3080 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 3081 struct mem_cgroup *memcg; 3082 3083 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 3084 do { 3085 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3086 unsigned long reclaimed; 3087 unsigned long scanned; 3088 3089 /* 3090 * This loop can become CPU-bound when target memcgs 3091 * aren't eligible for reclaim - either because they 3092 * don't have any reclaimable pages, or because their 3093 * memory is explicitly protected. Avoid soft lockups. 3094 */ 3095 cond_resched(); 3096 3097 mem_cgroup_calculate_protection(target_memcg, memcg); 3098 3099 if (mem_cgroup_below_min(memcg)) { 3100 /* 3101 * Hard protection. 3102 * If there is no reclaimable memory, OOM. 3103 */ 3104 continue; 3105 } else if (mem_cgroup_below_low(memcg)) { 3106 /* 3107 * Soft protection. 3108 * Respect the protection only as long as 3109 * there is an unprotected supply 3110 * of reclaimable memory from other cgroups. 3111 */ 3112 if (!sc->memcg_low_reclaim) { 3113 sc->memcg_low_skipped = 1; 3114 continue; 3115 } 3116 memcg_memory_event(memcg, MEMCG_LOW); 3117 } 3118 3119 reclaimed = sc->nr_reclaimed; 3120 scanned = sc->nr_scanned; 3121 3122 shrink_lruvec(lruvec, sc); 3123 3124 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3125 sc->priority); 3126 3127 /* Record the group's reclaim efficiency */ 3128 vmpressure(sc->gfp_mask, memcg, false, 3129 sc->nr_scanned - scanned, 3130 sc->nr_reclaimed - reclaimed); 3131 3132 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3133 } 3134 3135 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3136 { 3137 struct reclaim_state *reclaim_state = current->reclaim_state; 3138 unsigned long nr_reclaimed, nr_scanned; 3139 struct lruvec *target_lruvec; 3140 bool reclaimable = false; 3141 unsigned long file; 3142 3143 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3144 3145 again: 3146 /* 3147 * Flush the memory cgroup stats, so that we read accurate per-memcg 3148 * lruvec stats for heuristics. 3149 */ 3150 mem_cgroup_flush_stats(); 3151 3152 memset(&sc->nr, 0, sizeof(sc->nr)); 3153 3154 nr_reclaimed = sc->nr_reclaimed; 3155 nr_scanned = sc->nr_scanned; 3156 3157 /* 3158 * Determine the scan balance between anon and file LRUs. 3159 */ 3160 spin_lock_irq(&target_lruvec->lru_lock); 3161 sc->anon_cost = target_lruvec->anon_cost; 3162 sc->file_cost = target_lruvec->file_cost; 3163 spin_unlock_irq(&target_lruvec->lru_lock); 3164 3165 /* 3166 * Target desirable inactive:active list ratios for the anon 3167 * and file LRU lists. 3168 */ 3169 if (!sc->force_deactivate) { 3170 unsigned long refaults; 3171 3172 refaults = lruvec_page_state(target_lruvec, 3173 WORKINGSET_ACTIVATE_ANON); 3174 if (refaults != target_lruvec->refaults[0] || 3175 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3176 sc->may_deactivate |= DEACTIVATE_ANON; 3177 else 3178 sc->may_deactivate &= ~DEACTIVATE_ANON; 3179 3180 /* 3181 * When refaults are being observed, it means a new 3182 * workingset is being established. Deactivate to get 3183 * rid of any stale active pages quickly. 3184 */ 3185 refaults = lruvec_page_state(target_lruvec, 3186 WORKINGSET_ACTIVATE_FILE); 3187 if (refaults != target_lruvec->refaults[1] || 3188 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3189 sc->may_deactivate |= DEACTIVATE_FILE; 3190 else 3191 sc->may_deactivate &= ~DEACTIVATE_FILE; 3192 } else 3193 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3194 3195 /* 3196 * If we have plenty of inactive file pages that aren't 3197 * thrashing, try to reclaim those first before touching 3198 * anonymous pages. 3199 */ 3200 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3201 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3202 sc->cache_trim_mode = 1; 3203 else 3204 sc->cache_trim_mode = 0; 3205 3206 /* 3207 * Prevent the reclaimer from falling into the cache trap: as 3208 * cache pages start out inactive, every cache fault will tip 3209 * the scan balance towards the file LRU. And as the file LRU 3210 * shrinks, so does the window for rotation from references. 3211 * This means we have a runaway feedback loop where a tiny 3212 * thrashing file LRU becomes infinitely more attractive than 3213 * anon pages. Try to detect this based on file LRU size. 3214 */ 3215 if (!cgroup_reclaim(sc)) { 3216 unsigned long total_high_wmark = 0; 3217 unsigned long free, anon; 3218 int z; 3219 3220 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3221 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3222 node_page_state(pgdat, NR_INACTIVE_FILE); 3223 3224 for (z = 0; z < MAX_NR_ZONES; z++) { 3225 struct zone *zone = &pgdat->node_zones[z]; 3226 if (!managed_zone(zone)) 3227 continue; 3228 3229 total_high_wmark += high_wmark_pages(zone); 3230 } 3231 3232 /* 3233 * Consider anon: if that's low too, this isn't a 3234 * runaway file reclaim problem, but rather just 3235 * extreme pressure. Reclaim as per usual then. 3236 */ 3237 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3238 3239 sc->file_is_tiny = 3240 file + free <= total_high_wmark && 3241 !(sc->may_deactivate & DEACTIVATE_ANON) && 3242 anon >> sc->priority; 3243 } 3244 3245 shrink_node_memcgs(pgdat, sc); 3246 3247 if (reclaim_state) { 3248 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3249 reclaim_state->reclaimed_slab = 0; 3250 } 3251 3252 /* Record the subtree's reclaim efficiency */ 3253 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3254 sc->nr_scanned - nr_scanned, 3255 sc->nr_reclaimed - nr_reclaimed); 3256 3257 if (sc->nr_reclaimed - nr_reclaimed) 3258 reclaimable = true; 3259 3260 if (current_is_kswapd()) { 3261 /* 3262 * If reclaim is isolating dirty pages under writeback, 3263 * it implies that the long-lived page allocation rate 3264 * is exceeding the page laundering rate. Either the 3265 * global limits are not being effective at throttling 3266 * processes due to the page distribution throughout 3267 * zones or there is heavy usage of a slow backing 3268 * device. The only option is to throttle from reclaim 3269 * context which is not ideal as there is no guarantee 3270 * the dirtying process is throttled in the same way 3271 * balance_dirty_pages() manages. 3272 * 3273 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3274 * count the number of pages under pages flagged for 3275 * immediate reclaim and stall if any are encountered 3276 * in the nr_immediate check below. 3277 */ 3278 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3279 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3280 3281 /* Allow kswapd to start writing pages during reclaim.*/ 3282 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3283 set_bit(PGDAT_DIRTY, &pgdat->flags); 3284 3285 /* 3286 * If kswapd scans pages marked for immediate 3287 * reclaim and under writeback (nr_immediate), it 3288 * implies that pages are cycling through the LRU 3289 * faster than they are written so forcibly stall 3290 * until some pages complete writeback. 3291 */ 3292 if (sc->nr.immediate) 3293 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3294 } 3295 3296 /* 3297 * Tag a node/memcg as congested if all the dirty pages were marked 3298 * for writeback and immediate reclaim (counted in nr.congested). 3299 * 3300 * Legacy memcg will stall in page writeback so avoid forcibly 3301 * stalling in reclaim_throttle(). 3302 */ 3303 if ((current_is_kswapd() || 3304 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3305 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3306 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3307 3308 /* 3309 * Stall direct reclaim for IO completions if the lruvec is 3310 * node is congested. Allow kswapd to continue until it 3311 * starts encountering unqueued dirty pages or cycling through 3312 * the LRU too quickly. 3313 */ 3314 if (!current_is_kswapd() && current_may_throttle() && 3315 !sc->hibernation_mode && 3316 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3317 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3318 3319 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3320 sc)) 3321 goto again; 3322 3323 /* 3324 * Kswapd gives up on balancing particular nodes after too 3325 * many failures to reclaim anything from them and goes to 3326 * sleep. On reclaim progress, reset the failure counter. A 3327 * successful direct reclaim run will revive a dormant kswapd. 3328 */ 3329 if (reclaimable) 3330 pgdat->kswapd_failures = 0; 3331 } 3332 3333 /* 3334 * Returns true if compaction should go ahead for a costly-order request, or 3335 * the allocation would already succeed without compaction. Return false if we 3336 * should reclaim first. 3337 */ 3338 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3339 { 3340 unsigned long watermark; 3341 enum compact_result suitable; 3342 3343 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3344 if (suitable == COMPACT_SUCCESS) 3345 /* Allocation should succeed already. Don't reclaim. */ 3346 return true; 3347 if (suitable == COMPACT_SKIPPED) 3348 /* Compaction cannot yet proceed. Do reclaim. */ 3349 return false; 3350 3351 /* 3352 * Compaction is already possible, but it takes time to run and there 3353 * are potentially other callers using the pages just freed. So proceed 3354 * with reclaim to make a buffer of free pages available to give 3355 * compaction a reasonable chance of completing and allocating the page. 3356 * Note that we won't actually reclaim the whole buffer in one attempt 3357 * as the target watermark in should_continue_reclaim() is lower. But if 3358 * we are already above the high+gap watermark, don't reclaim at all. 3359 */ 3360 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3361 3362 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3363 } 3364 3365 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 3366 { 3367 /* 3368 * If reclaim is making progress greater than 12% efficiency then 3369 * wake all the NOPROGRESS throttled tasks. 3370 */ 3371 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 3372 wait_queue_head_t *wqh; 3373 3374 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 3375 if (waitqueue_active(wqh)) 3376 wake_up(wqh); 3377 3378 return; 3379 } 3380 3381 /* 3382 * Do not throttle kswapd on NOPROGRESS as it will throttle on 3383 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under 3384 * writeback and marked for immediate reclaim at the tail of 3385 * the LRU. 3386 */ 3387 if (current_is_kswapd()) 3388 return; 3389 3390 /* Throttle if making no progress at high prioities. */ 3391 if (sc->priority < DEF_PRIORITY - 2) 3392 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 3393 } 3394 3395 /* 3396 * This is the direct reclaim path, for page-allocating processes. We only 3397 * try to reclaim pages from zones which will satisfy the caller's allocation 3398 * request. 3399 * 3400 * If a zone is deemed to be full of pinned pages then just give it a light 3401 * scan then give up on it. 3402 */ 3403 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3404 { 3405 struct zoneref *z; 3406 struct zone *zone; 3407 unsigned long nr_soft_reclaimed; 3408 unsigned long nr_soft_scanned; 3409 gfp_t orig_mask; 3410 pg_data_t *last_pgdat = NULL; 3411 3412 /* 3413 * If the number of buffer_heads in the machine exceeds the maximum 3414 * allowed level, force direct reclaim to scan the highmem zone as 3415 * highmem pages could be pinning lowmem pages storing buffer_heads 3416 */ 3417 orig_mask = sc->gfp_mask; 3418 if (buffer_heads_over_limit) { 3419 sc->gfp_mask |= __GFP_HIGHMEM; 3420 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3421 } 3422 3423 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3424 sc->reclaim_idx, sc->nodemask) { 3425 /* 3426 * Take care memory controller reclaiming has small influence 3427 * to global LRU. 3428 */ 3429 if (!cgroup_reclaim(sc)) { 3430 if (!cpuset_zone_allowed(zone, 3431 GFP_KERNEL | __GFP_HARDWALL)) 3432 continue; 3433 3434 /* 3435 * If we already have plenty of memory free for 3436 * compaction in this zone, don't free any more. 3437 * Even though compaction is invoked for any 3438 * non-zero order, only frequent costly order 3439 * reclamation is disruptive enough to become a 3440 * noticeable problem, like transparent huge 3441 * page allocations. 3442 */ 3443 if (IS_ENABLED(CONFIG_COMPACTION) && 3444 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3445 compaction_ready(zone, sc)) { 3446 sc->compaction_ready = true; 3447 continue; 3448 } 3449 3450 /* 3451 * Shrink each node in the zonelist once. If the 3452 * zonelist is ordered by zone (not the default) then a 3453 * node may be shrunk multiple times but in that case 3454 * the user prefers lower zones being preserved. 3455 */ 3456 if (zone->zone_pgdat == last_pgdat) 3457 continue; 3458 3459 /* 3460 * This steals pages from memory cgroups over softlimit 3461 * and returns the number of reclaimed pages and 3462 * scanned pages. This works for global memory pressure 3463 * and balancing, not for a memcg's limit. 3464 */ 3465 nr_soft_scanned = 0; 3466 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3467 sc->order, sc->gfp_mask, 3468 &nr_soft_scanned); 3469 sc->nr_reclaimed += nr_soft_reclaimed; 3470 sc->nr_scanned += nr_soft_scanned; 3471 /* need some check for avoid more shrink_zone() */ 3472 } 3473 3474 /* See comment about same check for global reclaim above */ 3475 if (zone->zone_pgdat == last_pgdat) 3476 continue; 3477 last_pgdat = zone->zone_pgdat; 3478 shrink_node(zone->zone_pgdat, sc); 3479 consider_reclaim_throttle(zone->zone_pgdat, sc); 3480 } 3481 3482 /* 3483 * Restore to original mask to avoid the impact on the caller if we 3484 * promoted it to __GFP_HIGHMEM. 3485 */ 3486 sc->gfp_mask = orig_mask; 3487 } 3488 3489 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3490 { 3491 struct lruvec *target_lruvec; 3492 unsigned long refaults; 3493 3494 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3495 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3496 target_lruvec->refaults[0] = refaults; 3497 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3498 target_lruvec->refaults[1] = refaults; 3499 } 3500 3501 /* 3502 * This is the main entry point to direct page reclaim. 3503 * 3504 * If a full scan of the inactive list fails to free enough memory then we 3505 * are "out of memory" and something needs to be killed. 3506 * 3507 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3508 * high - the zone may be full of dirty or under-writeback pages, which this 3509 * caller can't do much about. We kick the writeback threads and take explicit 3510 * naps in the hope that some of these pages can be written. But if the 3511 * allocating task holds filesystem locks which prevent writeout this might not 3512 * work, and the allocation attempt will fail. 3513 * 3514 * returns: 0, if no pages reclaimed 3515 * else, the number of pages reclaimed 3516 */ 3517 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3518 struct scan_control *sc) 3519 { 3520 int initial_priority = sc->priority; 3521 pg_data_t *last_pgdat; 3522 struct zoneref *z; 3523 struct zone *zone; 3524 retry: 3525 delayacct_freepages_start(); 3526 3527 if (!cgroup_reclaim(sc)) 3528 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3529 3530 do { 3531 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3532 sc->priority); 3533 sc->nr_scanned = 0; 3534 shrink_zones(zonelist, sc); 3535 3536 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3537 break; 3538 3539 if (sc->compaction_ready) 3540 break; 3541 3542 /* 3543 * If we're getting trouble reclaiming, start doing 3544 * writepage even in laptop mode. 3545 */ 3546 if (sc->priority < DEF_PRIORITY - 2) 3547 sc->may_writepage = 1; 3548 } while (--sc->priority >= 0); 3549 3550 last_pgdat = NULL; 3551 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3552 sc->nodemask) { 3553 if (zone->zone_pgdat == last_pgdat) 3554 continue; 3555 last_pgdat = zone->zone_pgdat; 3556 3557 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3558 3559 if (cgroup_reclaim(sc)) { 3560 struct lruvec *lruvec; 3561 3562 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3563 zone->zone_pgdat); 3564 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3565 } 3566 } 3567 3568 delayacct_freepages_end(); 3569 3570 if (sc->nr_reclaimed) 3571 return sc->nr_reclaimed; 3572 3573 /* Aborted reclaim to try compaction? don't OOM, then */ 3574 if (sc->compaction_ready) 3575 return 1; 3576 3577 /* 3578 * We make inactive:active ratio decisions based on the node's 3579 * composition of memory, but a restrictive reclaim_idx or a 3580 * memory.low cgroup setting can exempt large amounts of 3581 * memory from reclaim. Neither of which are very common, so 3582 * instead of doing costly eligibility calculations of the 3583 * entire cgroup subtree up front, we assume the estimates are 3584 * good, and retry with forcible deactivation if that fails. 3585 */ 3586 if (sc->skipped_deactivate) { 3587 sc->priority = initial_priority; 3588 sc->force_deactivate = 1; 3589 sc->skipped_deactivate = 0; 3590 goto retry; 3591 } 3592 3593 /* Untapped cgroup reserves? Don't OOM, retry. */ 3594 if (sc->memcg_low_skipped) { 3595 sc->priority = initial_priority; 3596 sc->force_deactivate = 0; 3597 sc->memcg_low_reclaim = 1; 3598 sc->memcg_low_skipped = 0; 3599 goto retry; 3600 } 3601 3602 return 0; 3603 } 3604 3605 static bool allow_direct_reclaim(pg_data_t *pgdat) 3606 { 3607 struct zone *zone; 3608 unsigned long pfmemalloc_reserve = 0; 3609 unsigned long free_pages = 0; 3610 int i; 3611 bool wmark_ok; 3612 3613 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3614 return true; 3615 3616 for (i = 0; i <= ZONE_NORMAL; i++) { 3617 zone = &pgdat->node_zones[i]; 3618 if (!managed_zone(zone)) 3619 continue; 3620 3621 if (!zone_reclaimable_pages(zone)) 3622 continue; 3623 3624 pfmemalloc_reserve += min_wmark_pages(zone); 3625 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3626 } 3627 3628 /* If there are no reserves (unexpected config) then do not throttle */ 3629 if (!pfmemalloc_reserve) 3630 return true; 3631 3632 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3633 3634 /* kswapd must be awake if processes are being throttled */ 3635 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3636 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3637 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3638 3639 wake_up_interruptible(&pgdat->kswapd_wait); 3640 } 3641 3642 return wmark_ok; 3643 } 3644 3645 /* 3646 * Throttle direct reclaimers if backing storage is backed by the network 3647 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3648 * depleted. kswapd will continue to make progress and wake the processes 3649 * when the low watermark is reached. 3650 * 3651 * Returns true if a fatal signal was delivered during throttling. If this 3652 * happens, the page allocator should not consider triggering the OOM killer. 3653 */ 3654 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3655 nodemask_t *nodemask) 3656 { 3657 struct zoneref *z; 3658 struct zone *zone; 3659 pg_data_t *pgdat = NULL; 3660 3661 /* 3662 * Kernel threads should not be throttled as they may be indirectly 3663 * responsible for cleaning pages necessary for reclaim to make forward 3664 * progress. kjournald for example may enter direct reclaim while 3665 * committing a transaction where throttling it could forcing other 3666 * processes to block on log_wait_commit(). 3667 */ 3668 if (current->flags & PF_KTHREAD) 3669 goto out; 3670 3671 /* 3672 * If a fatal signal is pending, this process should not throttle. 3673 * It should return quickly so it can exit and free its memory 3674 */ 3675 if (fatal_signal_pending(current)) 3676 goto out; 3677 3678 /* 3679 * Check if the pfmemalloc reserves are ok by finding the first node 3680 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3681 * GFP_KERNEL will be required for allocating network buffers when 3682 * swapping over the network so ZONE_HIGHMEM is unusable. 3683 * 3684 * Throttling is based on the first usable node and throttled processes 3685 * wait on a queue until kswapd makes progress and wakes them. There 3686 * is an affinity then between processes waking up and where reclaim 3687 * progress has been made assuming the process wakes on the same node. 3688 * More importantly, processes running on remote nodes will not compete 3689 * for remote pfmemalloc reserves and processes on different nodes 3690 * should make reasonable progress. 3691 */ 3692 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3693 gfp_zone(gfp_mask), nodemask) { 3694 if (zone_idx(zone) > ZONE_NORMAL) 3695 continue; 3696 3697 /* Throttle based on the first usable node */ 3698 pgdat = zone->zone_pgdat; 3699 if (allow_direct_reclaim(pgdat)) 3700 goto out; 3701 break; 3702 } 3703 3704 /* If no zone was usable by the allocation flags then do not throttle */ 3705 if (!pgdat) 3706 goto out; 3707 3708 /* Account for the throttling */ 3709 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3710 3711 /* 3712 * If the caller cannot enter the filesystem, it's possible that it 3713 * is due to the caller holding an FS lock or performing a journal 3714 * transaction in the case of a filesystem like ext[3|4]. In this case, 3715 * it is not safe to block on pfmemalloc_wait as kswapd could be 3716 * blocked waiting on the same lock. Instead, throttle for up to a 3717 * second before continuing. 3718 */ 3719 if (!(gfp_mask & __GFP_FS)) 3720 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3721 allow_direct_reclaim(pgdat), HZ); 3722 else 3723 /* Throttle until kswapd wakes the process */ 3724 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3725 allow_direct_reclaim(pgdat)); 3726 3727 if (fatal_signal_pending(current)) 3728 return true; 3729 3730 out: 3731 return false; 3732 } 3733 3734 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3735 gfp_t gfp_mask, nodemask_t *nodemask) 3736 { 3737 unsigned long nr_reclaimed; 3738 struct scan_control sc = { 3739 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3740 .gfp_mask = current_gfp_context(gfp_mask), 3741 .reclaim_idx = gfp_zone(gfp_mask), 3742 .order = order, 3743 .nodemask = nodemask, 3744 .priority = DEF_PRIORITY, 3745 .may_writepage = !laptop_mode, 3746 .may_unmap = 1, 3747 .may_swap = 1, 3748 }; 3749 3750 /* 3751 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3752 * Confirm they are large enough for max values. 3753 */ 3754 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3755 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3756 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3757 3758 /* 3759 * Do not enter reclaim if fatal signal was delivered while throttled. 3760 * 1 is returned so that the page allocator does not OOM kill at this 3761 * point. 3762 */ 3763 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3764 return 1; 3765 3766 set_task_reclaim_state(current, &sc.reclaim_state); 3767 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3768 3769 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3770 3771 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3772 set_task_reclaim_state(current, NULL); 3773 3774 return nr_reclaimed; 3775 } 3776 3777 #ifdef CONFIG_MEMCG 3778 3779 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3780 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3781 gfp_t gfp_mask, bool noswap, 3782 pg_data_t *pgdat, 3783 unsigned long *nr_scanned) 3784 { 3785 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3786 struct scan_control sc = { 3787 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3788 .target_mem_cgroup = memcg, 3789 .may_writepage = !laptop_mode, 3790 .may_unmap = 1, 3791 .reclaim_idx = MAX_NR_ZONES - 1, 3792 .may_swap = !noswap, 3793 }; 3794 3795 WARN_ON_ONCE(!current->reclaim_state); 3796 3797 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3798 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3799 3800 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3801 sc.gfp_mask); 3802 3803 /* 3804 * NOTE: Although we can get the priority field, using it 3805 * here is not a good idea, since it limits the pages we can scan. 3806 * if we don't reclaim here, the shrink_node from balance_pgdat 3807 * will pick up pages from other mem cgroup's as well. We hack 3808 * the priority and make it zero. 3809 */ 3810 shrink_lruvec(lruvec, &sc); 3811 3812 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3813 3814 *nr_scanned = sc.nr_scanned; 3815 3816 return sc.nr_reclaimed; 3817 } 3818 3819 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3820 unsigned long nr_pages, 3821 gfp_t gfp_mask, 3822 bool may_swap) 3823 { 3824 unsigned long nr_reclaimed; 3825 unsigned int noreclaim_flag; 3826 struct scan_control sc = { 3827 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3828 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3829 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3830 .reclaim_idx = MAX_NR_ZONES - 1, 3831 .target_mem_cgroup = memcg, 3832 .priority = DEF_PRIORITY, 3833 .may_writepage = !laptop_mode, 3834 .may_unmap = 1, 3835 .may_swap = may_swap, 3836 }; 3837 /* 3838 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3839 * equal pressure on all the nodes. This is based on the assumption that 3840 * the reclaim does not bail out early. 3841 */ 3842 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3843 3844 set_task_reclaim_state(current, &sc.reclaim_state); 3845 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3846 noreclaim_flag = memalloc_noreclaim_save(); 3847 3848 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3849 3850 memalloc_noreclaim_restore(noreclaim_flag); 3851 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3852 set_task_reclaim_state(current, NULL); 3853 3854 return nr_reclaimed; 3855 } 3856 #endif 3857 3858 static void age_active_anon(struct pglist_data *pgdat, 3859 struct scan_control *sc) 3860 { 3861 struct mem_cgroup *memcg; 3862 struct lruvec *lruvec; 3863 3864 if (!can_age_anon_pages(pgdat, sc)) 3865 return; 3866 3867 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3868 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3869 return; 3870 3871 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3872 do { 3873 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3874 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3875 sc, LRU_ACTIVE_ANON); 3876 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3877 } while (memcg); 3878 } 3879 3880 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3881 { 3882 int i; 3883 struct zone *zone; 3884 3885 /* 3886 * Check for watermark boosts top-down as the higher zones 3887 * are more likely to be boosted. Both watermarks and boosts 3888 * should not be checked at the same time as reclaim would 3889 * start prematurely when there is no boosting and a lower 3890 * zone is balanced. 3891 */ 3892 for (i = highest_zoneidx; i >= 0; i--) { 3893 zone = pgdat->node_zones + i; 3894 if (!managed_zone(zone)) 3895 continue; 3896 3897 if (zone->watermark_boost) 3898 return true; 3899 } 3900 3901 return false; 3902 } 3903 3904 /* 3905 * Returns true if there is an eligible zone balanced for the request order 3906 * and highest_zoneidx 3907 */ 3908 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3909 { 3910 int i; 3911 unsigned long mark = -1; 3912 struct zone *zone; 3913 3914 /* 3915 * Check watermarks bottom-up as lower zones are more likely to 3916 * meet watermarks. 3917 */ 3918 for (i = 0; i <= highest_zoneidx; i++) { 3919 zone = pgdat->node_zones + i; 3920 3921 if (!managed_zone(zone)) 3922 continue; 3923 3924 mark = high_wmark_pages(zone); 3925 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3926 return true; 3927 } 3928 3929 /* 3930 * If a node has no populated zone within highest_zoneidx, it does not 3931 * need balancing by definition. This can happen if a zone-restricted 3932 * allocation tries to wake a remote kswapd. 3933 */ 3934 if (mark == -1) 3935 return true; 3936 3937 return false; 3938 } 3939 3940 /* Clear pgdat state for congested, dirty or under writeback. */ 3941 static void clear_pgdat_congested(pg_data_t *pgdat) 3942 { 3943 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3944 3945 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3946 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3947 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3948 } 3949 3950 /* 3951 * Prepare kswapd for sleeping. This verifies that there are no processes 3952 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3953 * 3954 * Returns true if kswapd is ready to sleep 3955 */ 3956 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3957 int highest_zoneidx) 3958 { 3959 /* 3960 * The throttled processes are normally woken up in balance_pgdat() as 3961 * soon as allow_direct_reclaim() is true. But there is a potential 3962 * race between when kswapd checks the watermarks and a process gets 3963 * throttled. There is also a potential race if processes get 3964 * throttled, kswapd wakes, a large process exits thereby balancing the 3965 * zones, which causes kswapd to exit balance_pgdat() before reaching 3966 * the wake up checks. If kswapd is going to sleep, no process should 3967 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3968 * the wake up is premature, processes will wake kswapd and get 3969 * throttled again. The difference from wake ups in balance_pgdat() is 3970 * that here we are under prepare_to_wait(). 3971 */ 3972 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3973 wake_up_all(&pgdat->pfmemalloc_wait); 3974 3975 /* Hopeless node, leave it to direct reclaim */ 3976 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3977 return true; 3978 3979 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3980 clear_pgdat_congested(pgdat); 3981 return true; 3982 } 3983 3984 return false; 3985 } 3986 3987 /* 3988 * kswapd shrinks a node of pages that are at or below the highest usable 3989 * zone that is currently unbalanced. 3990 * 3991 * Returns true if kswapd scanned at least the requested number of pages to 3992 * reclaim or if the lack of progress was due to pages under writeback. 3993 * This is used to determine if the scanning priority needs to be raised. 3994 */ 3995 static bool kswapd_shrink_node(pg_data_t *pgdat, 3996 struct scan_control *sc) 3997 { 3998 struct zone *zone; 3999 int z; 4000 4001 /* Reclaim a number of pages proportional to the number of zones */ 4002 sc->nr_to_reclaim = 0; 4003 for (z = 0; z <= sc->reclaim_idx; z++) { 4004 zone = pgdat->node_zones + z; 4005 if (!managed_zone(zone)) 4006 continue; 4007 4008 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 4009 } 4010 4011 /* 4012 * Historically care was taken to put equal pressure on all zones but 4013 * now pressure is applied based on node LRU order. 4014 */ 4015 shrink_node(pgdat, sc); 4016 4017 /* 4018 * Fragmentation may mean that the system cannot be rebalanced for 4019 * high-order allocations. If twice the allocation size has been 4020 * reclaimed then recheck watermarks only at order-0 to prevent 4021 * excessive reclaim. Assume that a process requested a high-order 4022 * can direct reclaim/compact. 4023 */ 4024 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 4025 sc->order = 0; 4026 4027 return sc->nr_scanned >= sc->nr_to_reclaim; 4028 } 4029 4030 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 4031 static inline void 4032 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 4033 { 4034 int i; 4035 struct zone *zone; 4036 4037 for (i = 0; i <= highest_zoneidx; i++) { 4038 zone = pgdat->node_zones + i; 4039 4040 if (!managed_zone(zone)) 4041 continue; 4042 4043 if (active) 4044 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4045 else 4046 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4047 } 4048 } 4049 4050 static inline void 4051 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4052 { 4053 update_reclaim_active(pgdat, highest_zoneidx, true); 4054 } 4055 4056 static inline void 4057 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4058 { 4059 update_reclaim_active(pgdat, highest_zoneidx, false); 4060 } 4061 4062 /* 4063 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 4064 * that are eligible for use by the caller until at least one zone is 4065 * balanced. 4066 * 4067 * Returns the order kswapd finished reclaiming at. 4068 * 4069 * kswapd scans the zones in the highmem->normal->dma direction. It skips 4070 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 4071 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 4072 * or lower is eligible for reclaim until at least one usable zone is 4073 * balanced. 4074 */ 4075 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 4076 { 4077 int i; 4078 unsigned long nr_soft_reclaimed; 4079 unsigned long nr_soft_scanned; 4080 unsigned long pflags; 4081 unsigned long nr_boost_reclaim; 4082 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 4083 bool boosted; 4084 struct zone *zone; 4085 struct scan_control sc = { 4086 .gfp_mask = GFP_KERNEL, 4087 .order = order, 4088 .may_unmap = 1, 4089 }; 4090 4091 set_task_reclaim_state(current, &sc.reclaim_state); 4092 psi_memstall_enter(&pflags); 4093 __fs_reclaim_acquire(_THIS_IP_); 4094 4095 count_vm_event(PAGEOUTRUN); 4096 4097 /* 4098 * Account for the reclaim boost. Note that the zone boost is left in 4099 * place so that parallel allocations that are near the watermark will 4100 * stall or direct reclaim until kswapd is finished. 4101 */ 4102 nr_boost_reclaim = 0; 4103 for (i = 0; i <= highest_zoneidx; i++) { 4104 zone = pgdat->node_zones + i; 4105 if (!managed_zone(zone)) 4106 continue; 4107 4108 nr_boost_reclaim += zone->watermark_boost; 4109 zone_boosts[i] = zone->watermark_boost; 4110 } 4111 boosted = nr_boost_reclaim; 4112 4113 restart: 4114 set_reclaim_active(pgdat, highest_zoneidx); 4115 sc.priority = DEF_PRIORITY; 4116 do { 4117 unsigned long nr_reclaimed = sc.nr_reclaimed; 4118 bool raise_priority = true; 4119 bool balanced; 4120 bool ret; 4121 4122 sc.reclaim_idx = highest_zoneidx; 4123 4124 /* 4125 * If the number of buffer_heads exceeds the maximum allowed 4126 * then consider reclaiming from all zones. This has a dual 4127 * purpose -- on 64-bit systems it is expected that 4128 * buffer_heads are stripped during active rotation. On 32-bit 4129 * systems, highmem pages can pin lowmem memory and shrinking 4130 * buffers can relieve lowmem pressure. Reclaim may still not 4131 * go ahead if all eligible zones for the original allocation 4132 * request are balanced to avoid excessive reclaim from kswapd. 4133 */ 4134 if (buffer_heads_over_limit) { 4135 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4136 zone = pgdat->node_zones + i; 4137 if (!managed_zone(zone)) 4138 continue; 4139 4140 sc.reclaim_idx = i; 4141 break; 4142 } 4143 } 4144 4145 /* 4146 * If the pgdat is imbalanced then ignore boosting and preserve 4147 * the watermarks for a later time and restart. Note that the 4148 * zone watermarks will be still reset at the end of balancing 4149 * on the grounds that the normal reclaim should be enough to 4150 * re-evaluate if boosting is required when kswapd next wakes. 4151 */ 4152 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4153 if (!balanced && nr_boost_reclaim) { 4154 nr_boost_reclaim = 0; 4155 goto restart; 4156 } 4157 4158 /* 4159 * If boosting is not active then only reclaim if there are no 4160 * eligible zones. Note that sc.reclaim_idx is not used as 4161 * buffer_heads_over_limit may have adjusted it. 4162 */ 4163 if (!nr_boost_reclaim && balanced) 4164 goto out; 4165 4166 /* Limit the priority of boosting to avoid reclaim writeback */ 4167 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4168 raise_priority = false; 4169 4170 /* 4171 * Do not writeback or swap pages for boosted reclaim. The 4172 * intent is to relieve pressure not issue sub-optimal IO 4173 * from reclaim context. If no pages are reclaimed, the 4174 * reclaim will be aborted. 4175 */ 4176 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4177 sc.may_swap = !nr_boost_reclaim; 4178 4179 /* 4180 * Do some background aging of the anon list, to give 4181 * pages a chance to be referenced before reclaiming. All 4182 * pages are rotated regardless of classzone as this is 4183 * about consistent aging. 4184 */ 4185 age_active_anon(pgdat, &sc); 4186 4187 /* 4188 * If we're getting trouble reclaiming, start doing writepage 4189 * even in laptop mode. 4190 */ 4191 if (sc.priority < DEF_PRIORITY - 2) 4192 sc.may_writepage = 1; 4193 4194 /* Call soft limit reclaim before calling shrink_node. */ 4195 sc.nr_scanned = 0; 4196 nr_soft_scanned = 0; 4197 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4198 sc.gfp_mask, &nr_soft_scanned); 4199 sc.nr_reclaimed += nr_soft_reclaimed; 4200 4201 /* 4202 * There should be no need to raise the scanning priority if 4203 * enough pages are already being scanned that that high 4204 * watermark would be met at 100% efficiency. 4205 */ 4206 if (kswapd_shrink_node(pgdat, &sc)) 4207 raise_priority = false; 4208 4209 /* 4210 * If the low watermark is met there is no need for processes 4211 * to be throttled on pfmemalloc_wait as they should not be 4212 * able to safely make forward progress. Wake them 4213 */ 4214 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4215 allow_direct_reclaim(pgdat)) 4216 wake_up_all(&pgdat->pfmemalloc_wait); 4217 4218 /* Check if kswapd should be suspending */ 4219 __fs_reclaim_release(_THIS_IP_); 4220 ret = try_to_freeze(); 4221 __fs_reclaim_acquire(_THIS_IP_); 4222 if (ret || kthread_should_stop()) 4223 break; 4224 4225 /* 4226 * Raise priority if scanning rate is too low or there was no 4227 * progress in reclaiming pages 4228 */ 4229 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4230 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4231 4232 /* 4233 * If reclaim made no progress for a boost, stop reclaim as 4234 * IO cannot be queued and it could be an infinite loop in 4235 * extreme circumstances. 4236 */ 4237 if (nr_boost_reclaim && !nr_reclaimed) 4238 break; 4239 4240 if (raise_priority || !nr_reclaimed) 4241 sc.priority--; 4242 } while (sc.priority >= 1); 4243 4244 if (!sc.nr_reclaimed) 4245 pgdat->kswapd_failures++; 4246 4247 out: 4248 clear_reclaim_active(pgdat, highest_zoneidx); 4249 4250 /* If reclaim was boosted, account for the reclaim done in this pass */ 4251 if (boosted) { 4252 unsigned long flags; 4253 4254 for (i = 0; i <= highest_zoneidx; i++) { 4255 if (!zone_boosts[i]) 4256 continue; 4257 4258 /* Increments are under the zone lock */ 4259 zone = pgdat->node_zones + i; 4260 spin_lock_irqsave(&zone->lock, flags); 4261 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4262 spin_unlock_irqrestore(&zone->lock, flags); 4263 } 4264 4265 /* 4266 * As there is now likely space, wakeup kcompact to defragment 4267 * pageblocks. 4268 */ 4269 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4270 } 4271 4272 snapshot_refaults(NULL, pgdat); 4273 __fs_reclaim_release(_THIS_IP_); 4274 psi_memstall_leave(&pflags); 4275 set_task_reclaim_state(current, NULL); 4276 4277 /* 4278 * Return the order kswapd stopped reclaiming at as 4279 * prepare_kswapd_sleep() takes it into account. If another caller 4280 * entered the allocator slow path while kswapd was awake, order will 4281 * remain at the higher level. 4282 */ 4283 return sc.order; 4284 } 4285 4286 /* 4287 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4288 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4289 * not a valid index then either kswapd runs for first time or kswapd couldn't 4290 * sleep after previous reclaim attempt (node is still unbalanced). In that 4291 * case return the zone index of the previous kswapd reclaim cycle. 4292 */ 4293 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4294 enum zone_type prev_highest_zoneidx) 4295 { 4296 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4297 4298 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4299 } 4300 4301 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4302 unsigned int highest_zoneidx) 4303 { 4304 long remaining = 0; 4305 DEFINE_WAIT(wait); 4306 4307 if (freezing(current) || kthread_should_stop()) 4308 return; 4309 4310 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4311 4312 /* 4313 * Try to sleep for a short interval. Note that kcompactd will only be 4314 * woken if it is possible to sleep for a short interval. This is 4315 * deliberate on the assumption that if reclaim cannot keep an 4316 * eligible zone balanced that it's also unlikely that compaction will 4317 * succeed. 4318 */ 4319 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4320 /* 4321 * Compaction records what page blocks it recently failed to 4322 * isolate pages from and skips them in the future scanning. 4323 * When kswapd is going to sleep, it is reasonable to assume 4324 * that pages and compaction may succeed so reset the cache. 4325 */ 4326 reset_isolation_suitable(pgdat); 4327 4328 /* 4329 * We have freed the memory, now we should compact it to make 4330 * allocation of the requested order possible. 4331 */ 4332 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4333 4334 remaining = schedule_timeout(HZ/10); 4335 4336 /* 4337 * If woken prematurely then reset kswapd_highest_zoneidx and 4338 * order. The values will either be from a wakeup request or 4339 * the previous request that slept prematurely. 4340 */ 4341 if (remaining) { 4342 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4343 kswapd_highest_zoneidx(pgdat, 4344 highest_zoneidx)); 4345 4346 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4347 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4348 } 4349 4350 finish_wait(&pgdat->kswapd_wait, &wait); 4351 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4352 } 4353 4354 /* 4355 * After a short sleep, check if it was a premature sleep. If not, then 4356 * go fully to sleep until explicitly woken up. 4357 */ 4358 if (!remaining && 4359 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4360 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4361 4362 /* 4363 * vmstat counters are not perfectly accurate and the estimated 4364 * value for counters such as NR_FREE_PAGES can deviate from the 4365 * true value by nr_online_cpus * threshold. To avoid the zone 4366 * watermarks being breached while under pressure, we reduce the 4367 * per-cpu vmstat threshold while kswapd is awake and restore 4368 * them before going back to sleep. 4369 */ 4370 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4371 4372 if (!kthread_should_stop()) 4373 schedule(); 4374 4375 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4376 } else { 4377 if (remaining) 4378 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4379 else 4380 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4381 } 4382 finish_wait(&pgdat->kswapd_wait, &wait); 4383 } 4384 4385 /* 4386 * The background pageout daemon, started as a kernel thread 4387 * from the init process. 4388 * 4389 * This basically trickles out pages so that we have _some_ 4390 * free memory available even if there is no other activity 4391 * that frees anything up. This is needed for things like routing 4392 * etc, where we otherwise might have all activity going on in 4393 * asynchronous contexts that cannot page things out. 4394 * 4395 * If there are applications that are active memory-allocators 4396 * (most normal use), this basically shouldn't matter. 4397 */ 4398 static int kswapd(void *p) 4399 { 4400 unsigned int alloc_order, reclaim_order; 4401 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4402 pg_data_t *pgdat = (pg_data_t *)p; 4403 struct task_struct *tsk = current; 4404 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4405 4406 if (!cpumask_empty(cpumask)) 4407 set_cpus_allowed_ptr(tsk, cpumask); 4408 4409 /* 4410 * Tell the memory management that we're a "memory allocator", 4411 * and that if we need more memory we should get access to it 4412 * regardless (see "__alloc_pages()"). "kswapd" should 4413 * never get caught in the normal page freeing logic. 4414 * 4415 * (Kswapd normally doesn't need memory anyway, but sometimes 4416 * you need a small amount of memory in order to be able to 4417 * page out something else, and this flag essentially protects 4418 * us from recursively trying to free more memory as we're 4419 * trying to free the first piece of memory in the first place). 4420 */ 4421 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4422 set_freezable(); 4423 4424 WRITE_ONCE(pgdat->kswapd_order, 0); 4425 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4426 atomic_set(&pgdat->nr_writeback_throttled, 0); 4427 for ( ; ; ) { 4428 bool ret; 4429 4430 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4431 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4432 highest_zoneidx); 4433 4434 kswapd_try_sleep: 4435 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4436 highest_zoneidx); 4437 4438 /* Read the new order and highest_zoneidx */ 4439 alloc_order = READ_ONCE(pgdat->kswapd_order); 4440 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4441 highest_zoneidx); 4442 WRITE_ONCE(pgdat->kswapd_order, 0); 4443 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4444 4445 ret = try_to_freeze(); 4446 if (kthread_should_stop()) 4447 break; 4448 4449 /* 4450 * We can speed up thawing tasks if we don't call balance_pgdat 4451 * after returning from the refrigerator 4452 */ 4453 if (ret) 4454 continue; 4455 4456 /* 4457 * Reclaim begins at the requested order but if a high-order 4458 * reclaim fails then kswapd falls back to reclaiming for 4459 * order-0. If that happens, kswapd will consider sleeping 4460 * for the order it finished reclaiming at (reclaim_order) 4461 * but kcompactd is woken to compact for the original 4462 * request (alloc_order). 4463 */ 4464 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4465 alloc_order); 4466 reclaim_order = balance_pgdat(pgdat, alloc_order, 4467 highest_zoneidx); 4468 if (reclaim_order < alloc_order) 4469 goto kswapd_try_sleep; 4470 } 4471 4472 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4473 4474 return 0; 4475 } 4476 4477 /* 4478 * A zone is low on free memory or too fragmented for high-order memory. If 4479 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4480 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4481 * has failed or is not needed, still wake up kcompactd if only compaction is 4482 * needed. 4483 */ 4484 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4485 enum zone_type highest_zoneidx) 4486 { 4487 pg_data_t *pgdat; 4488 enum zone_type curr_idx; 4489 4490 if (!managed_zone(zone)) 4491 return; 4492 4493 if (!cpuset_zone_allowed(zone, gfp_flags)) 4494 return; 4495 4496 pgdat = zone->zone_pgdat; 4497 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4498 4499 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4500 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4501 4502 if (READ_ONCE(pgdat->kswapd_order) < order) 4503 WRITE_ONCE(pgdat->kswapd_order, order); 4504 4505 if (!waitqueue_active(&pgdat->kswapd_wait)) 4506 return; 4507 4508 /* Hopeless node, leave it to direct reclaim if possible */ 4509 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4510 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4511 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4512 /* 4513 * There may be plenty of free memory available, but it's too 4514 * fragmented for high-order allocations. Wake up kcompactd 4515 * and rely on compaction_suitable() to determine if it's 4516 * needed. If it fails, it will defer subsequent attempts to 4517 * ratelimit its work. 4518 */ 4519 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4520 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4521 return; 4522 } 4523 4524 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4525 gfp_flags); 4526 wake_up_interruptible(&pgdat->kswapd_wait); 4527 } 4528 4529 #ifdef CONFIG_HIBERNATION 4530 /* 4531 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4532 * freed pages. 4533 * 4534 * Rather than trying to age LRUs the aim is to preserve the overall 4535 * LRU order by reclaiming preferentially 4536 * inactive > active > active referenced > active mapped 4537 */ 4538 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4539 { 4540 struct scan_control sc = { 4541 .nr_to_reclaim = nr_to_reclaim, 4542 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4543 .reclaim_idx = MAX_NR_ZONES - 1, 4544 .priority = DEF_PRIORITY, 4545 .may_writepage = 1, 4546 .may_unmap = 1, 4547 .may_swap = 1, 4548 .hibernation_mode = 1, 4549 }; 4550 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4551 unsigned long nr_reclaimed; 4552 unsigned int noreclaim_flag; 4553 4554 fs_reclaim_acquire(sc.gfp_mask); 4555 noreclaim_flag = memalloc_noreclaim_save(); 4556 set_task_reclaim_state(current, &sc.reclaim_state); 4557 4558 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4559 4560 set_task_reclaim_state(current, NULL); 4561 memalloc_noreclaim_restore(noreclaim_flag); 4562 fs_reclaim_release(sc.gfp_mask); 4563 4564 return nr_reclaimed; 4565 } 4566 #endif /* CONFIG_HIBERNATION */ 4567 4568 /* 4569 * This kswapd start function will be called by init and node-hot-add. 4570 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4571 */ 4572 void kswapd_run(int nid) 4573 { 4574 pg_data_t *pgdat = NODE_DATA(nid); 4575 4576 if (pgdat->kswapd) 4577 return; 4578 4579 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4580 if (IS_ERR(pgdat->kswapd)) { 4581 /* failure at boot is fatal */ 4582 BUG_ON(system_state < SYSTEM_RUNNING); 4583 pr_err("Failed to start kswapd on node %d\n", nid); 4584 pgdat->kswapd = NULL; 4585 } 4586 } 4587 4588 /* 4589 * Called by memory hotplug when all memory in a node is offlined. Caller must 4590 * hold mem_hotplug_begin/end(). 4591 */ 4592 void kswapd_stop(int nid) 4593 { 4594 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4595 4596 if (kswapd) { 4597 kthread_stop(kswapd); 4598 NODE_DATA(nid)->kswapd = NULL; 4599 } 4600 } 4601 4602 static int __init kswapd_init(void) 4603 { 4604 int nid; 4605 4606 swap_setup(); 4607 for_each_node_state(nid, N_MEMORY) 4608 kswapd_run(nid); 4609 return 0; 4610 } 4611 4612 module_init(kswapd_init) 4613 4614 #ifdef CONFIG_NUMA 4615 /* 4616 * Node reclaim mode 4617 * 4618 * If non-zero call node_reclaim when the number of free pages falls below 4619 * the watermarks. 4620 */ 4621 int node_reclaim_mode __read_mostly; 4622 4623 /* 4624 * Priority for NODE_RECLAIM. This determines the fraction of pages 4625 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4626 * a zone. 4627 */ 4628 #define NODE_RECLAIM_PRIORITY 4 4629 4630 /* 4631 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4632 * occur. 4633 */ 4634 int sysctl_min_unmapped_ratio = 1; 4635 4636 /* 4637 * If the number of slab pages in a zone grows beyond this percentage then 4638 * slab reclaim needs to occur. 4639 */ 4640 int sysctl_min_slab_ratio = 5; 4641 4642 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4643 { 4644 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4645 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4646 node_page_state(pgdat, NR_ACTIVE_FILE); 4647 4648 /* 4649 * It's possible for there to be more file mapped pages than 4650 * accounted for by the pages on the file LRU lists because 4651 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4652 */ 4653 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4654 } 4655 4656 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4657 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4658 { 4659 unsigned long nr_pagecache_reclaimable; 4660 unsigned long delta = 0; 4661 4662 /* 4663 * If RECLAIM_UNMAP is set, then all file pages are considered 4664 * potentially reclaimable. Otherwise, we have to worry about 4665 * pages like swapcache and node_unmapped_file_pages() provides 4666 * a better estimate 4667 */ 4668 if (node_reclaim_mode & RECLAIM_UNMAP) 4669 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4670 else 4671 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4672 4673 /* If we can't clean pages, remove dirty pages from consideration */ 4674 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4675 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4676 4677 /* Watch for any possible underflows due to delta */ 4678 if (unlikely(delta > nr_pagecache_reclaimable)) 4679 delta = nr_pagecache_reclaimable; 4680 4681 return nr_pagecache_reclaimable - delta; 4682 } 4683 4684 /* 4685 * Try to free up some pages from this node through reclaim. 4686 */ 4687 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4688 { 4689 /* Minimum pages needed in order to stay on node */ 4690 const unsigned long nr_pages = 1 << order; 4691 struct task_struct *p = current; 4692 unsigned int noreclaim_flag; 4693 struct scan_control sc = { 4694 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4695 .gfp_mask = current_gfp_context(gfp_mask), 4696 .order = order, 4697 .priority = NODE_RECLAIM_PRIORITY, 4698 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4699 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4700 .may_swap = 1, 4701 .reclaim_idx = gfp_zone(gfp_mask), 4702 }; 4703 unsigned long pflags; 4704 4705 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4706 sc.gfp_mask); 4707 4708 cond_resched(); 4709 psi_memstall_enter(&pflags); 4710 fs_reclaim_acquire(sc.gfp_mask); 4711 /* 4712 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4713 * and we also need to be able to write out pages for RECLAIM_WRITE 4714 * and RECLAIM_UNMAP. 4715 */ 4716 noreclaim_flag = memalloc_noreclaim_save(); 4717 p->flags |= PF_SWAPWRITE; 4718 set_task_reclaim_state(p, &sc.reclaim_state); 4719 4720 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4721 /* 4722 * Free memory by calling shrink node with increasing 4723 * priorities until we have enough memory freed. 4724 */ 4725 do { 4726 shrink_node(pgdat, &sc); 4727 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4728 } 4729 4730 set_task_reclaim_state(p, NULL); 4731 current->flags &= ~PF_SWAPWRITE; 4732 memalloc_noreclaim_restore(noreclaim_flag); 4733 fs_reclaim_release(sc.gfp_mask); 4734 psi_memstall_leave(&pflags); 4735 4736 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4737 4738 return sc.nr_reclaimed >= nr_pages; 4739 } 4740 4741 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4742 { 4743 int ret; 4744 4745 /* 4746 * Node reclaim reclaims unmapped file backed pages and 4747 * slab pages if we are over the defined limits. 4748 * 4749 * A small portion of unmapped file backed pages is needed for 4750 * file I/O otherwise pages read by file I/O will be immediately 4751 * thrown out if the node is overallocated. So we do not reclaim 4752 * if less than a specified percentage of the node is used by 4753 * unmapped file backed pages. 4754 */ 4755 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4756 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4757 pgdat->min_slab_pages) 4758 return NODE_RECLAIM_FULL; 4759 4760 /* 4761 * Do not scan if the allocation should not be delayed. 4762 */ 4763 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4764 return NODE_RECLAIM_NOSCAN; 4765 4766 /* 4767 * Only run node reclaim on the local node or on nodes that do not 4768 * have associated processors. This will favor the local processor 4769 * over remote processors and spread off node memory allocations 4770 * as wide as possible. 4771 */ 4772 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4773 return NODE_RECLAIM_NOSCAN; 4774 4775 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4776 return NODE_RECLAIM_NOSCAN; 4777 4778 ret = __node_reclaim(pgdat, gfp_mask, order); 4779 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4780 4781 if (!ret) 4782 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4783 4784 return ret; 4785 } 4786 #endif 4787 4788 /** 4789 * check_move_unevictable_pages - check pages for evictability and move to 4790 * appropriate zone lru list 4791 * @pvec: pagevec with lru pages to check 4792 * 4793 * Checks pages for evictability, if an evictable page is in the unevictable 4794 * lru list, moves it to the appropriate evictable lru list. This function 4795 * should be only used for lru pages. 4796 */ 4797 void check_move_unevictable_pages(struct pagevec *pvec) 4798 { 4799 struct lruvec *lruvec = NULL; 4800 int pgscanned = 0; 4801 int pgrescued = 0; 4802 int i; 4803 4804 for (i = 0; i < pvec->nr; i++) { 4805 struct page *page = pvec->pages[i]; 4806 struct folio *folio = page_folio(page); 4807 int nr_pages; 4808 4809 if (PageTransTail(page)) 4810 continue; 4811 4812 nr_pages = thp_nr_pages(page); 4813 pgscanned += nr_pages; 4814 4815 /* block memcg migration during page moving between lru */ 4816 if (!TestClearPageLRU(page)) 4817 continue; 4818 4819 lruvec = folio_lruvec_relock_irq(folio, lruvec); 4820 if (page_evictable(page) && PageUnevictable(page)) { 4821 del_page_from_lru_list(page, lruvec); 4822 ClearPageUnevictable(page); 4823 add_page_to_lru_list(page, lruvec); 4824 pgrescued += nr_pages; 4825 } 4826 SetPageLRU(page); 4827 } 4828 4829 if (lruvec) { 4830 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4831 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4832 unlock_page_lruvec_irq(lruvec); 4833 } else if (pgscanned) { 4834 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4835 } 4836 } 4837 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4838